
240

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 5

Bei diesem Beitrag handelt es sich um einen wissenschaftlich
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Analyse des OPC Foundation Whitepaper zur Nutzung in Modellierungstools und für Testfälle

OPC UA Best Practices
in der Modellierung nutzen

T. Heinemann, T. König, A. Lechler, O. Riedel

ZUSAMMENFASSUNG Mit der Popularität von Open
Platform Communications Unified Architecture (OPC UA) und
Companion Specifications (CS) wird ein allgemeines Verständ-
nis von OPC-UA-Modellen wichtiger. Dazu hat die OPC Foun-
dation ein Best Practices Whitepaper verfasst, um die Model-
lierenden zu unterstützen. Dieser Beitrag beschreibt, welche
Inhalte in verschiedener Weise zur Nutzung und Überprüfung
von OPC-UA-Modellen und Implementierungen geeignet sind
und inwiefern diese Nutzung automatisiert erfolgen kann.

Using OPC UA Best Practices in Modelling

ABSTRACT With the rising popularity of Open Platform
Communications Unified Architecture (OPC UA) and Compani-
on Specifications (CS), a universal understanding of OPC
UA models becomes increasingly important. Thus, the OPC
Foundation published a Best Practices Whitepaper to support
 modellers. This paper describes which of its contents can
be used to implement and validate OPC UA models and
 applications. It is also considered whether this usage can be
automated by tools.

1 Einleitung

Open Platform Communications Unified Architecture
(OPC UA) ist ein offener und herstellerunabhängiger Kommuni-
kationsstandard, der sich im letzten Jahrzehnt zunehmend im
Maschinen- und Anlagenbau etabliert hat [1]. OPC UA definiert
zum einen die Kommunikationsmechanismen, die auf etablierten
Protokollen des Internet Protocol aufbauen und diese in den obe-
ren Schichten des ISO/OSI-Modells (Open Systems Intercon-
nection model) erweitern. Zum anderen werden die Nachrich-
teninhalte über ein Informationsmodell spezifiziert [2].

Ein wesentliches Ziel der OPC Foundation und des VDMA ist
es, die semantische Interoperabilität bei der Kommunikation
 zwischen und mit Maschinen zu stärken. Dies soll unter anderem
durch die Standardisierung von Base- und Companion-Spezifika-
tionen erreicht werden [3]. Darüber hinaus können hersteller-
oder kundenspezifische Erweiterungen definiert werden.

OPC-UA-Modelle werden von verschiedenen Teilnehmern
 erstellt, erweitert und implementiert. Um Interoperabilität zu er-
reichen, müssen Missverständnisse zwischen diesen Teilnehmern
ausgeräumt werden. Die OPC Foundation hat hierzu ein White-
paper zu Best Practices in der Modellierung veröffentlicht [4].
Die Inhalte des Whitepapers direkt in Vorschläge zur Modellie-
rung oder zur Erstellung von Modelltests zu integrieren, unter-
stützt die breite Nutzung dieser Best Practices. Letztlich wird so
die Nutzung ähnlicher Modellierungsansätze durch verschiedene,
untereinander anonyme Akteure in vergleichbaren Situationen
vereinfacht.

2 OPC-UA-Modellierung,
 Spezifikation und Testfälle

Open Platforms Communications Unified Architecture
(OPC UA) besteht seit 2008 als Standard [2]. Dieser Standard
legt die technischen Inhalte für die Datenübertragung, wie Proto-
kolle, Serialisierung und Sicherheitskonzepte fest. Um die Inhalte
für die Übertragung abzubilden, bietet IEC 62541 Regeln für die
Erstellung von Informationsmodellen. Der Standard umfasst eine
Beschreibung der Services, welche es erlaubt, auf diese Modelle
zuzugreifen und mit ihnen zu interagieren. Zudem beschreibt
OPC UA die wesentlichen Modellelemente, auf die spezialisierte-
re Modelle aufbauen können [2].

Allgemeine Modelle wie etwa ein Modell für die generische
Darstellung von kommunizierenden Geräten oder einzelnen Ele-
menten für Automatisierungsgeräte werden ebenfalls von der
OPC Foundation erstellt [5, 6]. Modelle, die branchenspezifische
Informationen verallgemeinern, werden außerdem von einem
Branchenverband oder einer bestehenden Nutzerorganisation er-
stellt und über die OPC Foundation veröffentlicht. Solche Model-
le heißen Companion Specifications (CS) [7]. CS bestehen aus
einer formalen Modellbeschreibung. Die in dieser Modellbe-
schreibung genutzten Modellelemente werden in OPC UA als
Nodes bezeichnet. Das für die formalen Modellbeschreibungen
definierte Austauschformat „NodeSetXML“ ist von der OPC
Foundation vorgegeben [2]. Zusätzlich werden die Elemente in
einem Dokument mit textuellen Beschreibungen erläutert. Auch
Informationen zur Nutzung und zum Verhalten des Modells wer-
den in diesem Textdokument transportiert. Um Implementierun-

ST I C HWÖRT E R

Forschung, Normen/Richtlinien, Software

doi.org/10.37544/1436–4980–2024–05–76

https://doi.org/10.37544/1436-4980-2024-05-76 - am 24.01.2026, 17:02:02. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-05-76
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

241WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 5

gen einer CS auf Übereinstimmung mit diesen Dokumenten zu
prüfen, werden Conformance-Testfälle erstellt [8].

Für Modelle mit geringerer Allgemeingültigkeit, zum Beispiel
firmeninterne Vorgaben, ist eine Veröffentlichung über die OPC
Foundation nicht notwendig. Solche Modelle können weiterhin
über NodeSetXML ausgetauscht werden. Eine Beschreibung der
Inhalte ist hier als Dokumentation sinnvoll, ebenso die Erstellung
von Testfällen. Im Gegensatz zu veröffentlichten CS ist eine Ein-
haltung der Richtlinien der OPC Foundation in Bezug auf
 Beschreibungsdokument und Testfälle nicht notwendig.

Die spezifischste Form von Modellen sind diejenigen, die In-
stanzen beschreiben. Während CS und mögliche firmeninterne
Vorgaben Typen von möglichen Geräten/Anlagen/Softwarean-
wendungen etc. beschreiben, legen Instanzmodelle die Daten fest,
die von genau einem Gerät/einer Anlage/einer Softwareanwen-
dung transportiert werden.

Die Standardisierung bedeutet also die Erstellung von OPC-
UA-Informationsmodellen für die CS und zugehörigen Testfällen.
Um in der Anwendung Flexibilität zu bieten, enthalten die stan-
dardisierten Informationsmodelle oft optionale Anteile. Deren
Konkretisierung und gegebenenfalls eine Aggregation mehrerer
Standard-Informationsmodelle erfolgt in einem produktspezifi-
schen Informationsmodell, dem Instanzmodell.

In beiden Fällen erfolgt diese Modellerstellung nach demsel-
ben Muster (Bild 1), unterscheidet sich aber in Details.

Zunächst wird festgelegt, welche Inhalte im Modell abgebildet
werden sollen. Dabei wird für die Erstellung von Spezifikationen
betrachtet, welche Möglichkeiten die Spezifikation bieten soll.
Für Instanzmodelle fokussiert sich der Inhalt auf die konkrete
Anwendung. Der Blick auf eine Integration bestehender Modelle
ist ebenfalls verschieden: Spezifikationen nutzen Grundlagen und
erweitern diese. Instanzmodelle nutzen eine oder mehrere Spezi-
fikationen vergleichbar mit einem Baukasten. Für neue Spezifika-
tionsmodelle muss immer modelliert werden: Hier werden zum
Teil die bestehenden Modelle passend erweitert und ansonsten
Modellteile erstellt. Das ist auch für Instanzmodelle möglich: Hier

können zudem die Inhalte von bestehenden Spezifikationen über-
nommen und konkretisiert werden. Für jedes Modell muss die
Syntax korrekt eingehalten sein, und für die Verständlichkeit und
Interoperabilität muss eine Mindestqualität erfüllt sein. Deren
Prüfung unterscheidet sich für verschieden genutzte Modelle
nicht wesentlich. Spezifikationen werden „genutzt“, indem sie für
die geplante Zielgruppe zur Verfügung gestellt werden. Instanz-
modelle werden genutzt, indem OPC-UA-Softwareanwendungen
implementiert werden, welche dieses Modell abbilden. [9]

Die parallel zur Spezifikation erstellten Testfälle haben den
Zweck sicherzustellen, dass ein nach Spezifikation erstelltes Pro-
gramm dieser Spezifikation auch tatsächlich entspricht. Bild 2
verdeutlicht diesen Zusammenhang: Programm und Testfälle
werden basierend auf der Spezifikation erstellt. Die Testfälle
 liegen als Anweisungen oder als Programmcode für eine automa-
tisierte Testumgebung vor. Durch Tester oder automatisiert mit-
tels dieser Testumgebung werden die Testfälle ausgeführt, um das
Programm zu testen. [8]

In erster Linie befassen sich typische Testfälle für CS mit einer
fehlerfreien Wiedergabe der Modellinhalte, wie sie im Node-
SetXML definiert sind [10]. Um sicherzustellen, dass auch das
Modellverhalten korrekt abgebildet wird und geplante Anwen-
dungen mit der Schnittstelle ermöglicht werden, lohnt sich die
Erstellung weiterer Testfälle, welche verhaltensrelevante Aspekte
berücksichtigen. Dabei werden alle Testfälle als Anweisungen mit
erwartetem Ergebnis formuliert. Ihre Durchführung erfolgt je
nach Möglichkeit automatisiert mit einem Testprogramm oder
durch manuelle Tester, die Zustände auslösen, welche nicht per
Software übernommen werden können [8]. In welchem Umfang
Testfälle bereitgestellt werden, hängt von der Arbeitsgruppe ab,
welche die CS erstellt.

Im Zuge der steigenden Anzahl an CS hat die interdisziplinäre
Harmonization Working Group in der OPC Foundation ein Best
Practices Whitepaper als Modellierungshilfe erstellt [11, 4]. Hier
werden verschiedene Regeln vorgestellt, die in der Modellierung
zu beachten sind. Auch werden Lösungsvorschläge für bestimmte
Modellierungsprobleme gegeben. Ziel ist es, dass CS möglichst
allgemein verständlich und untereinander ähnlich erstellt werden.

3 Nutzung von Best Practices
 in Modellierungstools vereinfachen

Im Erstellungsprozess für Informationsmodelle sind letztlich
unterschiedliche Akteure involviert: die Ersteller der CS, die Er-
steller firmeninterner Spezifikationen und die Ersteller der fina-
len Instanzmodelle. Mehrere Modelle können verknüpft und ver-
bunden sein. Durch mehrere Teilnehmende werden verschiedene
Sichtweisen und Stile eingebracht, dadurch unterscheiden sich die
Spezifikationen in ihrer Form [7]. Einheitliche Grundprinzipien

Bild 1. Ablauf der Erstellung von OPC-UA-Modellen für Spezifikationen (oben), allgemein (mittig) und Instanzmodelle (unten). Grafik: Universität Stuttgart, ISW

Bild 2. Zusammenhang zwischen Spezifikation, Testfällen und implemen-
tiertem OPC-UA-Programm. Grafik: Universität Stuttgart, ISW

https://doi.org/10.37544/1436-4980-2024-05-76 - am 24.01.2026, 17:02:02. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-05-76
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

242

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 5

helfen, übergreifendes Verständnis zu fördern. Dazu wird im For-
schungsprojekt „Clean OPC UA Information Modeling“ (CLOU)
ein Hinweis auf übliche Best Practices bereits im Modellierungs-
tool angestrebt [9].

Zur Erstellung der Testfälle dient in erster Linie das formale
Modell als Basis, im Weiteren auch das in der Spezifikation be-
schriebene Modellverhalten. In einem zweiten Forschungsprojekt
wird untersucht, wie die Testfallerstellung automatisiert unter-
stützt werden kann [12]. In diesem Beitrag wird zusätzlich zur
Nutzung der Best Practices in einer Entwicklungsumgebung für
OPC-UA-Informationsmodelle untersucht, ob bisher unberück-
sichtigte Testfälle aus Best Practices abgeleitet werden können.

4 Analyse und Vorbereitung der Tool-Regeln

Als Quelle für Best Practices in OPC UA wird das Best Practi-
ces Whitepaper der OPC Foundation genutzt [4]. Es wird sowohl
für die Nutzung in einer Entwicklungsumgebung unter den
 Aspekten Linting und Metrik sowie bezüglich der Nutzung zur
Erstellung von Testfällen aus Informationsmodellen analysiert.
Dabei wird für die einzelnen Regeln und Hinweise neben der
 Relevanz für den Anwendungsfall auch betrachtet, ob die Anwen-
dung automatisiert stattfinden kann.

Für die Modellerstellung wird zunächst geprüft, ob die einzel-
nen Regeln des Whitepaper für die Modellierung relevant sind
und aus dem NodeSetXML ohne weitere Informationen geprüft
werden können. Der Einbezug des Spezifikationsdokuments, das
tiefer gehende Beschreibungen enthalten kann, wird im ersten
Schritt nicht betrachtet. Ein weiterer zu beachtender Punkt ist die
automatisierbare Prüfung und Ausgabe von Verbesserungshinwei-
sen für das Linting. Für die Ableitung einer Modellbewertung
wird der Einfluss beziehungsweise die Tragweite eines Regelver-
stoßes für die weitere Verwendung betrachtet.

Um die Testfallerstellung zu unterstützen, werden ebenfalls
passende Regeln aus dem Whitepaper zusammengetragen. Es
wird vermerkt, welche Inhalte genau zur Testfallerstellung aus
dem XML benötigt werden. Auch wird vermerkt, welche Inhalte
zusätzlich benötigt werden. Beispielhafte Testfallbeschreibungen
werden skizziert. Mit diesen Vorlagen beziehungsweise Beispie-
len können Ersteller von CS analoge Testfälle für ihr Modell
 definieren.

5 Aus dem Whitepaper extrahierte Regeln

Für die Modellerstellung gibt das Kapitel „Naming Conventi-
ons“ eindeutige Regeln für die Benennung der Modellelemente
vor. Diese Regeln umfassen einerseits Anforderungen, welche
zwingend erfüllt sein müssen, wie die Eindeutigkeit der Nodes
innerhalb eines Namespaces. Andererseits werden Regeln be-
schrieben, welche die Übersichtlichkeit des Modells verbessern
und über alle Spezifikationen hinweg zu einem einheitlichen Stil
führen, wie etwa die Konvention, die BrowseNames in „upper
 camel case“ zu definieren.

Des Weiteren werden Konzepte zur Modellierung im Best
Practices Whitepaper behandelt. Zu deren Anwendung ist häufig
Hintergrundwissen notwendig, um die Modellierungssituation
korrekt zu identifizieren. Dabei können gewisse Eigenschaften als
Indikator herangezogen werden, beispielsweise flache Listen mit
einer Vielzahl an Variablen. In diesem Beispiel sind in vielen Fäl-
len weitere Hierarchieebenen hilfreich, um die Übersichtlichkeit

der Strukturen zu verbessern. Ein weiteres Beispiel sind Rekur-
sionen innerhalb von Strukturen. An dieser Stelle muss bei der
Implementierung des Modells sichergestellt werden, dass die An-
wendungen zur Laufzeit nicht ausfallen.

Ein weiterer wichtiger Aspekt ist die Abwärtskompatibilität,
welche in den meisten Fällen gewünscht ist, um einen Standard
konsistent fortzuführen und bestehende Implementierungen wei-
terhin einsetzen zu können. Dafür ist es beispielsweise wichtig,
dass neue Nodes als optional definiert werden und keine beste-
henden Nodes entfernt werden. Des Weiteren können Enumera-
tions und OptionSets nicht verändert werden. Andererseits kann
ein Breaking Change auch bewusst in Kauf genommen werden,
wenn Basisfunktionalitäten im Modell fehlen oder sich Fehler
eingeschlichen haben. Ein weiterer Grund für einen Breaking
Change kann die Steigerung der Interoperabilität sein, wenn sich
bestimmte Teilmodelle in anderen Spezifikationen durchgesetzt
haben und die bisherige Funktionalität angeglichen werden soll.
In diesen Fällen empfiehlt das Whitepaper, die Typdefinitionen
der betroffenen Nodes durch eine Versionsnummer zu ergänzen
oder bei größeren Änderungen den Namespace zu ändern.

Für die Testfallerstellung lassen sich die passenden Inhalte des
Best Practices Whitepaper im Wesentlichen zwei Gruppen zuord-
nen. In der ersten Gruppe finden sich allgemeine Modellregeln,
wie die bereits angesprochenen Regeln für die Benennung von
Modellelementen. All diese Inhalte können ohne weitere Infor-
mationen geprüft werden.

Die zweite Gruppe behandelt Strategien zum Umgang mit
„ModellingRules“, einem Konzept in OPC-UA-Modellen. Die
OPC-UA-Modellinhalte können optional oder verpflichtend
(mandatory) definiert werden. Speziell in Fällen, in denen Inhal-
te als mandatory definiert werden, aber davon ausgegangen wird,
dass diese Inhalte nicht jederzeit angegeben werden können, bie-
tet das Best Practices Whitepaper Möglichkeiten zum Umgang
mit dieser Situation. Beispiele sind die Nutzung von speziellen
Werten oder die Bereitstellung als schreibbar für Clients. In
 diesen Fällen wird zur Testfallerstellung Information über das ge-
wählte Verfahren benötigt, eine automatische Erstellung aus dem
NodeSetXML ist also nicht möglich.

Darüber hinaus sind zwei einzelne Regeln des Whitepapers
aufgefallen. Erstens, eine Prüfung der Source- und Target-Nodes
von References, falls diese durch den ReferenceType einge-
schränkt werden. Zweitens, Pattern für applikationsspezifische
Stati von Methoden. Hier wird in der Methode ein numerischer
Parameter definiert, dessen Wert eine in der Spezifikation be-
schriebene Bedeutung transportiert. In beiden Fällen werden
 Informationen benötigt, die dem NodeSetXML nicht entnommen
werden können.

6 Nutzung der Best-Practices-Regeln

Beim Linting während der Modellerstellung können die
 Regeln der Naming Conventions als allgemeine Modellregeln
 automatisiert überprüft werden. Bei Regelverstößen kann die ent-
sprechende Stelle markiert und ein Hinweis zur Lösung des Pro-
blems oder zur Verbesserung des Modells angezeigt werden.
Ähnliches gilt für die Abwärtskompatibilität. In diesem Fall ist es
für das unterstützende Tooling wichtig, die vorherige Spezifikati-
on zur Verfügung zu haben. Dann kann während der Modellie-
rung ein Hinweis eingeblendet werden, dass eine Änderung zu
 einem Breaking Change führt und welche Regel verletzt wurde.

https://doi.org/10.37544/1436-4980-2024-05-76 - am 24.01.2026, 17:02:02. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-05-76
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

243WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 5

So kann während der Modellierung abgewogen werden, ob dieser
Bruch in der Spezifikation so gewollt ist.

Bei Modellierungskonzepten ist es schwierig, den Modellie-
rungsprozess über ein Linting zu unterstützen, da in den meisten
Fällen Hintergrundwissen nötig ist. Allgemeine Auffälligkeiten
können jedoch hervorgehoben und durch Korrekturmaßnahmen
unterstützt werden. In diesem Fall liegt die Entscheidung über
den sinnvollen Einsatz bei den Modellierenden. In Bild 3 sind die
bei der Analyse ermittelten Regelkategorien in den Zusammen-
hang mit den Modellkategorien gesetzt, um das Einflussverhalten
zu beschreiben.

Für die Bestimmung der Modellqualität durch die Entwick-
lung einer Metrik liefern die Best Practices einige Ansätze. Für
die meisten Hinweise kann jedoch nicht direkt eine Qualitäts -
bewertung abgeleitet werden. Grundsätzlich können auch hier die
Naming Conventions sowie einige Modellkonzepte berücksichtigt
werden. Insbesondere bei der Rückwärtskompatibilität können
Abweichungen nicht allein auf Basis der NodeSetXML Dateien
bewertet werden, da ein Breaking Change hier in vielen Fällen
die Struktur verbessert, indem der Funktionsumfang erhöht wird
oder Fehler aus der Vergangenheit korrigiert werden.

Für die Definition von Testfällen ist das Best Practices White-
paper eine unterstützende Quelle. Primärquellen sind unter ande-
rem die Modellinhalte und die Verhaltensbeschreibungen in der
Spezifikation. Trotzdem bietet das Whitepaper eine relevante
Sichtweise auf die Überprüfung von Implementierungen: Wenn
Best Practices als allgemein bekannt angenommen und nicht
 dediziert in Spezifikationen erwähnt werden, können Missver-
ständnisse in der Implementierung entstehen. Ebenso ist eine Ab-
weichung von Best Practices eine Erwähnung in der Spezifikation
wert – das kann beim Erstellen der Testfälle auffallen, wenn sich
Vorschläge für Testfälle an Best Practices orientieren.

In Bezug auf die allgemeinen Modellregeln ist eine Prüfung
immer möglich und vom tatsächlichen Modell unabhängig. Die
Einhaltung von Namenskonventionen zu überprüfen benötigt
vorab kein Modellwissen. In Bezug auf technische Regeln und
übliche Einschränkungen sind solche Tests sinnvoll, um Interope-
rabilität sicherzustellen. Im zugehörigen Forschungsprojekt wird
diese Kategorie von Testfällen nun mit berücksichtigt.

Der Umgang mit ModellingRules ist in der Anwendung von
OPC UA entscheidend. Die allgemeine Annahme, dass als manda-
tory deklarierte Werte vorhanden sein müssen, wird erst durch
die Information, welcher Wert oder welches Verhalten erwartet
wird, semantisch wertvoll. Auch hier ist das Definieren von Test-
fällen sinnvoll: So kann sichergestellt werden, dass das Serverver-
halten der Spezifikation entspricht und dass benötigte Funktiona-
litäten (zum Beispiel Schreibzugang für Clients) in Implementie-
rungen berücksichtigt sind. Für alle betrachteten Beispiele des
Whitepapers werden zum NodeSetXML zusätzliche Informatio-
nen benötigt – allen voran die Information, dass eine besondere
Nutzungsregel für eine bestimme Node existiert. Bei vorgegebe-
nen Werten müssen exakt diese Werte bekannt sein.

Für Einschränkungen der Source- und Target-Nodes von
 References sind im NodeSetXML keine Informationen enthalten.
Diese Informationen müssen also von den Erstellern der Spezifi-
kation kommen und sollten auch im Spezifikationstext zu finden
sein, um korrekt implementiert zu werden. Zur Erstellung von
Testfällen ist initial die Kenntnis notwendig, ob eine solche Ein-
schränkung existiert und wie diese Einschränkung gestaltet ist.

Ebenso verhält es sich für Stati von Methoden. Soll ein appli-
kationsspezifischer Status zurückgegeben werden, so muss dessen
Bedeutung erklärt sein. Im NodeSetXML ist ein Vorkommen
 solcher Stati schwer zu erkennen. Die Empfehlung ist, einen
„Int32“ als Datentyp zu nutzen und den Wert als letztes Output-
Argument der Methode zu definieren. Der umgekehrte Schluss
kann allerdings nicht gezogen werden, ein Output-Argument des
Datentyps Int32 kann auch andere Bedeutungen als einen Status
haben. Auch hier ist erforderlich, dass die Ersteller der Spezifika-
tion aktiv an der Testfallerstellung teilnehmen, sofern eine Über-
prüfung dieser Codes gewünscht ist.

Allgemein können die Gründe, Testfälle zu erstellen in drei
Kategorien eingeteilt werden, wie in Bild 4 dargestellt.

Zum einen, um das formal definierte Modell zu testen, wie es
im NodeSetXML beziehungsweise auf dem OPC-UA-Server vor-
liegt. Hier müssen alle Definitionen exakt mit der Spezifikation
übereinstimmen. Diese Testfälle sind oftmals automatisch aus
dem Modell ableitbar. Die zweite Kategorie ist das Modellverhal-
ten. Bestimmte Werte oder Wertänderungen, deren Grund im
OPC-UA-Server oder außerhalb liegt, können sowohl vorgegeben
und beschrieben als auch überprüft werden. Nötig ist dabei, dass
die betreffende Situation im Testlabor nachgestellt werden kann.
Die dritte Kategorie bezieht sich auf den Umfang des Modells:
sollen bestimmte Funktionalitäten geboten werden, ist meist ein
Mindestumfang des Modells erforderlich. Die vollständige Um-
setzung dieses Umfangs kann durch Testfälle bestätigt werden.

Die aus dem Best-Practices-Dokument extrahierten möglichen
Testfälle liegen fast alle im Bereich des Modellverhaltens: ein
 gesonderter Umfang der Nutzung von optional/mandatory geht
über das formale Modell hinaus, wie auch die Einschränkung der
Source- und Target-Nodes von References, die im NodeSetXML
nicht enthalten ist. Alle speziell definierten Werte und Wertebe-
reiche sind Teil des Modellverhaltens – so auch applikationsspe-
zifische Stati von Methoden. Nur die allgemeinen Modellregeln
fallen in den Bereich des formalen Modells. Die Unabhängigkeit

Bild 3. Im Linting genutzte Regeln im Zusammenhang mit Modellkatego-
rien. Grafik: Universität Stuttgart, ISW

https://doi.org/10.37544/1436-4980-2024-05-76 - am 24.01.2026, 17:02:02. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-05-76
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

244

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 5

dieser Testfälle vom vorliegenden Modell spielt allerdings eine
Sonderrolle in dieser Kategorie.

Testfälle für die allgemeinen Modellregeln können Tools wie
das Compliance Test Tool (CTT) [8] in Zukunft bereichern und
müssen dabei nicht je CS erstellt werden. Die Testfälle zu Refe-
rences, Stati von Methoden und dem Umgang mit Modelling -
Rules müssen dagegen für jede CS erstellt werden. Dabei ist ein
Vorteil, dass den Erstellern der Spezifikation vor Augen geführt
wird, die notwendigen Zusammenhänge auch klar in der Spezifi-
kation zu beschreiben. Ein weiterer Vorteil besteht vor allem in
Testfällen für die ModellingRules. Hier werden wesentliche
 Modellinhalte abgeprüft, deren korrekte Umsetzung oft für eine
Nutzung des Modells grundlegend ist. Es lohnt sich also, Test -
fallersteller darauf hinzuweisen, auf diese Kategorie von Test -
fällen besonders zu achten.

L i t e r a t u r

[1] VDMA e. V. (Hrsg.): Studie zur Interoperabilität im Maschinen- und An-
lagenbau – Die Weltsprache der Produktion als Grundlage für Industrie
4.0. Stand: 2021. Internet: www.vdma.org/documents/
34570/4802302/Studie+OPC+UA.pdf/
16364989-bed9–705b-0e22–08daac09c173?t=1618219349899. Zugriff
am 26.03.2024

[2] International Electrotechnical Commission.: IEC TR 62541–1:2020. OPC
Unified Architecture – Part 1: Overview and Concepts. Deutsche Fas-
sung, Ausgabe November 2020

[3] Drath, R. et al.: Diskussionspapier – Interoperabilität mit der Verwal-
tungsschale, OPC UA und AutomationML – Zielbild und Handlungs-
empfehlungen für industrielle Interoperabilität. Stand: 11.04.2023.
 Internet: opcfoundation.org/wp-content/uploads/2023/04/Diskussions
papier-Zielbild-und-Handlungsempfehlungen-fur-industrielle-Interope-
rabilitat-5.3-protected.pdf. Zugriff am 26.03.2024

[4] OPC Foundation.: OPC 11030 UA Modelling Best Practices. Draft
1.02.00 [noch nicht veröffentlicht]

[5] OPC Foundation.: OPC 10000–100: Devices. Released 1.04. Stand:
03.11.2022. Internet: reference.opcfoundation.org/DI/v104/docs/.
Zugriff am 02.04.2024

[6] OPC Foundation.: OPC 10000–200: Industrial Automation – Basics.
Released 1.01.2. Stand: 17.06.2022. Internet: opcfoundation.org/
developer-tools/documents/view/199. Zugriff am 02.04.2024

[7] Heinemann, T.; Friedl, S.; Lechler, A.: OPC-UA-Domänenmodelle heute
und morgen. wt Werkstattstechnik online 112 (2022) 5, S. 320–324

[8] OPC Foundation.: OPC 21010–1 OPC TestLab – Part 1: Concepts. Stand
16.02.2023. Internet: opcfoundation.org/developer-tools/documents/
view/325. Zugriff am 02.04.2024

[9] Keilig, C.: Clean OPC UA Information Modeling – CLOU. Fraunhofer-In-
stitut für Werkzeugmaschinen und Umformtechnik IWU. Internet:
www.iwu.fraunhofer.de/de/projekte/clean-opc-ua-information-mode
ling-clou.html. Zugriff am 26.03.2024

[10] Heinemann, T. et al.: Automating Test Cases for OPC UA Information
Models. 27th International Conference on Production Research Cluj-
Napoca, Romania, 23–28 July 2023. Lecture Notes in Production Engi-
neering. Cham: Springer International Publishing, 2023, pp. 101-112

[11] OPC Foundation.:OPC-F Working Groups. Internet: opcfoundation.org/
opcf-wg/. Zugriff am 26.03.2024

[12] Universität Stuttgart, ISW.: OPC UA Testfall Generator. Internet: www.
isw.uni-stuttgart.de/forschung/kommunikation/OPC-UA-Testfall-Gene
rator/. Zugriff am 26.03.2024

F Ö RD E RH I NWE I S

Im Forschungsprojekt „Entwicklung eines Expertensystems für
eine informationstechnische Automatisierung der Erstellung
von OPC-UA-Testfällen und -skripten in Industrial-Internet-of-
Things-Anwendungen“ wird die automatisierte Erstellung von
Testfällen thematisiert. Das Projekt wird vom Bundesministeri-
um für Wirtschaft und Klimaschutz (BMWK) aufgrund eines
 Beschlusses des Deutschen Bundes tages gefördert.

Das Projekt „Clean OPC UA Information Modeling“ (23084 BG /
1) der Forschungsvereinigung VDW-Forschungsinstitut e.V.
wird im Rahmen des Programms zur Förderung der Industriel-
len Gemeinschaftsforschung (IGF) vom Bundesministerium
für Wirtschaft und Klimaschutz aufgrund eines Beschlusses
des Deutschen Bundestages gefördert.

Bild 4. Zur Testfallgenerierung genutzte Regeln im Zusammenhang mit
Testzwecken. Grafik: Universität Stuttgart, ISW

7 Zusammenfassung und Ausblick

In Summe liefert das Best Practices Whitepaper wichtige Hin-
weise, welche den gesamten Lebenszyklus einer CS begleiten. Die
Analyse des Dokuments bezogen auf die Entwicklung weiterer
Tools zur Unterstützung des Modellierungsprozesses hat relevan-
te Regeln identifiziert, welche sich voraussichtlich für eine auto-
matisierbare Überprüfung sowie Anzeige von Hinweisen in Form
eines Linting eignen. Zur Erstellung einer Modellmetrik liefern
dieselben Regeln Anhaltspunkte, um ein umfassenderes Bild der
Modellqualität zu erzeugen. Von diesem Ausgangspunkt werden
im Weiteren auch Modellmetriken aus anderen Domänen unter-
sucht und deren Übertragbarkeit ermittelt.

Für die Testfallerstellung sind vor allem Anstöße für Test -
konzepte zu ModellingRules aus dem Best Practices Whitepaper
hervorzuheben. Die Intention der Spezifikation in diesem Bezug
ist von großer Bedeutung für interoperable Softwarelösungen,
 daher ist der Nutzen dieser Testfälle voraussichtlich hoch. Test-
fälle für die allgemeinen Modellregeln liefern einen schnellen und
einfachen Weg zur Vermeidung von Formfehlern. Um eine kon-
sistente Menge an Testfällen für eine CS zu erstellen, werden im
Verlauf des zugehörigen Projekts Anhaltspunkte für Testfälle aus
allen drei hier vorgestellten Kategorien zusammengestellt.

https://doi.org/10.37544/1436-4980-2024-05-76 - am 24.01.2026, 17:02:02. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-05-76
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

245WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 5

T o n j a H e i n e m a n n , M . S c .
tonja.heinemann@isw.uni-stuttgart.de
Tel. +49 711 / 685-84626
Foto: ISW

T i m o K ö n i g , M . S c .

D r . - I n g . A r m i n L e c h l e r

P r o f . D r . - I n g . O l i v e r R i e d e l

Universität Stuttgart
Institut für Steuerungstechnik der Werkzeugmaschinen
und Fertigungseinrichtungen (ISW)
Seidenstr. 36, 70174 Stuttgart
www.isw.uni-stuttgart.de

L I Z E N Z

Dieser Fachaufsatz steht unter der Lizenz Creative Commons
Namensnennung 4.0 International (CC BY 4.0)

https://doi.org/10.37544/1436-4980-2024-05-76 - am 24.01.2026, 17:02:02. https://www.inlibra.com/de/agb - Open Access -

https://orcid.org/0000-0001-8601-7820
https://orcid.org/0000-0002-6872-1010
https://orcid.org/0000-0002-4073-1487
https://orcid.org/0000-0002-1883-6813
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37544/1436-4980-2024-05-76
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8601-7820
https://orcid.org/0000-0002-6872-1010
https://orcid.org/0000-0002-4073-1487
https://orcid.org/0000-0002-1883-6813
https://creativecommons.org/licenses/by/4.0/

