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˛ heat transfer coefficient W/(m2K)
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p1 pressure before the compressor Pa or bar
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p2ic pressure after the intercooler Pa or bar
p3 pressure in the exhaust manifold Pa or bar
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VdVV displacement volume m3

WengWW engine work kWh
x air content (ratio of fresh air mass to total gas mass) 1
x1 air content before the compressor 1
x2c air content after the compressor 1
x2ic air content after the intercooler 1
x2i air content in the intake manifold 1
xeng;in air content entering the cylinder 1
xeng;out air content exiting the cylinder 1
x3 air content in the exhaust manifold 1
x4 air content before the particulate filter 1
x5 air content after the particulate filter 1
xhp�egr air content in the HP-EGR pipe 1
xlp�egr air content in the LP-EGR pipe 1
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	 air-fuel ratio 1
	a volumetric efficiency 1
'mi start of main injection ıCA
'Q50 crank angle of 50 % mass fraction burned ıCA

hp

 �egr desired proportion of HP-EGR 1

p

 ;st pipe volume fraction 1
�hp�egr fraction of HP-EGR to total EGR 1
!tc angular velocity turbocharger rad/s
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Subscripts

Index Explanation

1 state variables before compressor
2c state variables after compressor
2ic state variables after intercooler
2i state variables intake manifold
3 state variables exhaust manifold
4 state variables after turbine
5 exhaust pipe quantities
a actuator
acc acceleration
adi adiabatic
af air filter quantities
c compressor quantities
cj cold junction
ctl closed-loop control
cyl cylinder
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Index Explanation

des desired quantity
dia diabatic
dpf Diesel particulate filter quantities
dyn dynamical
eng,in entering cylinder
eng,out exiting cylinder
eth exhaust throttle valve quantities
f friction
fil filtered
ffc feedforward control
gas gas
h2o engine coolant liquid
hp-egr HP-EGR quantities
icc intercooler cooler
in input, inflow
ise isentropic
lim limited
lp-egr LP-EGR quantities
mair-ctl air mass flow rate control
measured measured
mi main injection / mean indicated pressure
mi,lp mean indicated pressure intake and exhaust stroke

low pressure loop in p-V diagram
mi,hp mean indicated pressure compression and power stroke

high pressure loop in p-V diagram
min minimum
mss micro soot sensor quantities
nox NOx quantities
opa opacimeter quantities
opt optimised quantity
out output, outflow
p power, pipe
r receiver
ref reference
regr-ctl EGR-rate control
rsf reference shaping filtered
s shunt
sim simulated
stat stationary
t turbine quantities
tc turbocharger quantities
th throttle valve quantities
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General Abbreviations

Abbreviations Explanation
ıCA Unit of the Rotational Angle of the Crank Shaft
CAN Controller Area Network
CASEM Crank Angle Synchronous Engine Models
CLK Clock Generator Oscillator
CO Carbon Monoxide
cyc Combustion Cycle
DOC Diesel Oxidation Catalyst
DPF Diesel Particulate Filter
ECU Electronic Control Unit
EGR Exhaust Gas Recirculation
EMF Electro Magnetic Fields
HC Hydrocarbons
HCCI Homogeneous Charge Compression Ignition
HP-EGR High-Pressure Exhaust Gas Recirculation
IMC Internal Model Control
LOLIMOT Local Linear Model Tree
LOPOMOT Local Polynomial Model Tree
LP-EGR Low-Pressure Exhaust Gas Recirculation
LSB Least Significant Bit
MFB50 50 % Mass Fraction Burned
MVEM Mean Value Engine Model
NEDC New European Driving Cycle
NOx Nitrogen Oxides
PM Particulate Matter
PN Particulate Number
PRBS Pseudo Random Binary Signals
RDE Real Driving Emissions
RMSE Root-Mean-Square Error
RSF Reference Shaping Filter
VGT Variable Geometry Turbine
VVT Variable Valve Timing
WLTP Worldwide Harmonized Light-Duty Vehicles Test Procedure

https://doi.org/10.51202/9783186803122-I - Generiert durch IP 216.73.216.96, am 13.01.2026, 21:08:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186803122-I


XVI

Mathematical Abbreviations

Abbreviations Explanation

f .�/ function of �
fLOLIMOTff .�/ LOLIMOT model with the model inputs �
O� modelled quantity �
� mean value of quantity �
x scalar
x vector
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Abstract

Modern Diesel engines fulfil challenging requirements for emission limits, fuel consumption and
ride comfort by numerous modular combinable components and mechatronical actuators. These
components are utilised for precondition and aftertreatment of air, fuel and exhaust gas, which is
involved in the combustion process. In this dissertation a methodology for a model-based function
development with semi-physical engine models for control of air path quantities of an exemplary
Diesel engine with high-pressure (HP-EGR) and low-pressure exhaust gas recirculation (LP-EGR)
is developed. In this framework for function development black-box models for stationary and
dynamical emission formation are utilised to optimise reference values for the air path control and
to rate the developed control scheme with regard to the cumulated driving cycle emissions of the
new European driving cycle (NEDC).

A combination of HP-EGR and LP-EGR represents a novel approach to significantly lower the
particulate and NOx emissions of Diesel engines. A semi-physical mean value engine model with
lumped parameters is the base to analyse the system properties of the complex air path. In doing
so, the additional LP-EGR shows only minor influences to the quantities charge air pressure and
HP-EGR, while there are significant influences of these quantities on the LP-EGR mass flow rate.
Furthermore, the LP-EGR is characterised by significant gas propagation times in the intake and
exhaust system. These delays are modelled by a gas composition model, which is incorporated
into the control scheme.

NOx and particulate emissions as well as engine torque are stationary modelled by local polyno-
mial models with input quantities of the combustion process. These quantities are air mass flow
rate, charge air pressure, intake temperature and crank angle of 50 % mass fraction burned. A
bilinear interpolation between engine speed and injection quantity transforms local polynomial
models into global models. Models for the dynamical emission formation are given by consider-
ing the combustion as a batch process. Consequently all dynamics are included in the quantities
of the cylinder charge at intake valve closing and the emission measurement dynamics. Thus, a
combination of a dynamical gas composition model, stationary emission models and models for
the emission measurement dynamics yield the dynamical course of the engine emissions.

The investigated system properties and the emission models deliver the control variables charge
air pressure, air content and intake temperature for the engine with VGT-turbocharger, HP- and
LP-EGR. A stationary optimisation with regard to emissions and engine torque delivers reference
values for the air path control and further shows the potential of the LP-EGR to lower the emis-
sions. Due to the multi-variable characteristics of the air path with different dynamics, there are
increased dynamical emissions at engine transients. These dynamical emissions are lowered by
dynamical optimised reference values for the air path control.
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Generally, the air path is a strongly nonlinear process and the multitude of engine variants and
engine operation modes result in a trade-off between achievable control quality, control robust-
ness and number of control parameter sets. A semi-physical feedforward control, which is based
upon parameterised model relationships of the mean value engine model delivers a good response
to setpoint changes. Thus, the disturbance rejection can be achieved by relatively simple con-
trollers. This results in an significantly lower application effort of control parameters and allows
by its modular structure to exchange engine components without the drawback to completely re-
parameterise the control parameters. A reference value transformation with modelled states of the
gas composition model compensates long gas propagation times in the intake and exhaust system
and delivers an optimal air content in the cylinder charge. All control concepts are validated with
measurements at the engine test bench. Finally, the derived control concepts for the LP-EGR are
compared to the classical HP-EGR control with regard to the cumulated driving cycle emissions.
In this investigation the proportion of stationary and dynamical emissions is clearly quantified.

In a nutshell this dissertation is an important contribution for model-based optimisation and func-
tion development for the air path control of Diesel engines. The given combination of models for
dynamical emission formation, dynamically optimised reference values for the air path control
and semi-physical control design are a holistic framework to master the complexity and variance
of future Diesel and gasoline engines.
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Kurzfassung

Moderne Dieselmotoren erfüllen die hohen Anforderungen bezüglich Emissionen, Verbrauch
und Fahrkomfort durch eine Vielzahl von modular kombinierbaren Bauteilen und mechatron-
ischen Aktoren zur Vor- und Nachbehandlung der am Verbrennungsprozess beteiligten Stoffe
Frischluft, Kraftstoff und Abgas. In dieser Dissertation wird am Beispielprozess eines aufge-
ladenen Dieselmotors mit Hoch- (HD-AGR) und Niederdruck-Abgasrückführung (ND-AGR) eine
Methodik zur modularen modellbasierten Funktionsentwicklung für die Luftpfadregelung mit
semi-physikalischen Modellen entwickelt. Black-Box-Modelle für die stationären und dynamis-
chen Emissionen werden zur Optimierung der Sollwerte für die Luftpfadregelung und zur Bewer-
tung des entwickelten Regelungskonzepts anhand der kumulierten Emssionen des neuen Europäis-
chen Fahrzyklus (NEFZ) verwendet.

Eine Kombination von Hoch- und Niederdruck-Abgasrückführung ist ein neuer Ansatz, die Ruß-
und Stickoxidemissionen von Dieselmotoren erheblich zu verringern. Ausgehend von einer semi-
physikalischen Modellierung des Luft- und Abgaspfades mit konzentrierten Parametern werden
die Systemeigenschaften des komplexen Luftpfades untersucht. Dabei zeigt das ND-AGR-System
geringen Einfluss auf Ladedruck und HD-AGR, während selbige den ND-AGR-Massenstrom
stark beeinflussen. Weiterhin kann die ND-AGR durch lange Gaslaufzeiten im Einlass- und Ab-
gassystem charakterisiert werden. Diese Laufzeiten werden durch ein Gaszusammensetzungs-
modell abgebildet und später in den Regelungsentwurf integriert.

Die Emissionen NOx , Ruß und das Motordrehmoment werden stationär mit lokalen Polynomen
mit den Eingangsgrößen Luftmasse, Ladedruck, Ladungstemperatur und Schwerpunktlage der
Verbrennung modelliert. Eine bilineare Interpolation der lokalen Polynome über Motordrehzahl
und Einspritzmenge liefert stationäre globale Emissionsmodelle. Betrachtet man die Verbrennung
als Chargenprozess, so ergibt sich der dynamisch messbare Verlauf der Emissionen durch die
dynamische Beschreibung der Zylinderfüllung beim Schließen der Einlassventile und der Mess-
dynamik der Emissionsmessung. Durch die Kombination des Gaszusammensetzungsmodells, der
stationären Emissionsmodelle und Modellen für die Messdynamik wird der dynamische Emis-
sionsverlauf simuliert.

Aus den Systemeigenschaften und den Emissionsmodellen werden Ladedruck, Gaszusammenset-
zung und Einlasstemperatur als Regelgrößen für den Luftpfad mit Turbolader, HD- und ND-AGR
ausgewählt. Eine stationäre Optimierung bezüglich der Emissionen und des Motordrehmoments
liefert die Sollwerte für die Regelung und zeigt im Vergleich mit der HD-AGR Serienkonfigur-
ation das Potential der ND-AGR zur Verringerung der Emissionen. Durch die unterschiedlichen
Dynamiken der Regelgrößen im Luftpfad kommt es bei Arbeitspunktwechseln zu erhöhten Emis-
sionen. Dieses Verhalten wird durch eine dynamische Optimierung der Sollwerte der Luftpfadre-
gelung kompensiert.
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Der Luftpfad ist ein stark nichtlinearer Prozess und die Vielzahl von Motorvarianten und Mo-
torbetriebsmodi führt zu einem Zielkonflikt zwischen erreichbarer Regelgüte, Robustheit der Re-
gelung und der dazu notwendigen Anzahl von Reglerparametersätzen. Der Einsatz einer semi-
physikalischen Vorsteuerung basierend auf den parametrierten Modellgleichungen des Luftpfad-
modells liefert ein sehr gutes Führungsverhalten, während das Störverhalten durch einfache Regler
kompensiert werden kann. Dies verringert den Applikationsaufwand und erlaubt durch den modu-
laren Aufbau den Austausch einzelner Motorbauteile, ohne den Nachteil einer Neuparametrierung
aller Reglerkennfelder. Eine Sollwerttransformation mit modellierten Zuständen des Gaszusam-
mensetzungsmodells kompensiert die langen Gaslaufzeiten im Einlass- und Auslasssystem des
Motors und sorgt für eine optimale Gaszusammensetzung der Zylinderfüllung. Alle Regelung-
skonzepte werden mit Messdaten vom Motorprüfstand validiert. Abschließend werden die en-
twickelten Regelungskonzepte für die ND-AGR mit der klassischen Regelung einer HD-AGR
anhand der kumulierten Zyklusemissionen während des NEFZ verglichen. In dieser Betrachtung
wird für alle Regelungskonzepte der Anteil von dynamischen Emissionen und stationären Emis-
sionen quantifiziert.

Zusammenfassend leistet diese Dissertation einen wichtigen Beitrag zur modellbasierten Op-
timierung und Funktionsentwicklung der Luftpfadregelung von Dieselmotoren. Die Kombina-
tion von dynamischen Emissionsmodellen, einer dynamischen Optimierung der Sollwerte für die
Luftpfadregelung und der semi-physikalische Regelungsentwurf stellen ein ganzheitliches Vorge-
hen zur Beherrschung der Komplexität und Varianz von zukünftigen Diesel- und Ottomotoren
dar.
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