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Abstract: The scale of knowledge is growing rapidly in the big data environment, and traditional knowledge or-
ganization and services have faced the dilemma of semantic inaccuracy and untimeliness. From a knowledge fusion
perspective—combining the precise semantic superiority of traditional ontology with the large-scale graph pro-
cessing power and the predicate attribute expression ability of property graph—this paper presents an ontology and
property graph fusion framework (OPGFF). The fusion process is divided into content layer fusion and constraint
layer fusion. The result of the fusion, that is, the knowledge representation model is called knowledge big graph. In
addition, this paper applies the knowledge big graph model to the ownership network in the China’s financial field
and builds a financial ownership knowledge big graph. Furthermore, this paper designs and implements six con-
sistency inference algorithms for finding contradictory data and filling in missing data in the financial ownership
knowledge big graph, five of which are completely domain agnostic. The correctness and validity of the algorithms

AN

have been experimentally verified with actual data. The fusion OPGFF framework and the implementation method of the knowledge big graph

could provide technical reference for big data knowledge organization and services.
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1.0 Introduction

Knowledge organization is a process for conceptual repre-
sentation of knowledge domains as an activity (Ligia et al.
2017; Bragato et al. 2019). According to Hjerland (2008),
knowledge representation processes and knowledge repre-
sentation systems can be used to characterize knowledge or-
ganization. Ontology, a typical method of traditional know-
ledge representation and knowledge organization systems,
has garnered long-term attention (Stuart 2016). Its develop-
ment context roughly spans from the semantic network to
the ontology language represented by RDFS/OWL and
then to the development of linked data (Bizer et al. 2009),
which also accumulates many ontology knowledge bases.
Knowledge graphs based on the property graph model have
made great achievements in academia and industry in recent
years, such as recommendation systems based on knowledge
graph (Constantinov et al. 2016; Silva et al. 2010), the bio-
informatics data management platform Bio4j (Pareja-Tobes
et al. 2015), Facebook’s OpenGraph (Ching et al. 2015),
and Twitter’s FlockDB (Hecht and Jablonski 2011). Know-
ledge graphs based on the property graph model are widely
used to represent large amounts of heterogeneous know-
ledge from disparate sources.

The ontology model and property graph model are in-
compatible with each other, which directly hinders the con-
tinuity and inheritance of knowledge representation re-
search. The ontology model usually defines the concepts of
“things” and complex semantic relationships between con-
cepts and can perform semantic reasoning. The model is
generally expressed with the RDEFS/OWL ontology lan-
guage. The property graph model refers to a directed graph
composed of nodes with multiple attributes and edges with
multiple attributes (Rodriguez and Neubauer 2010; Hartig
2014; Tomaszuk and Dominik 2016). Different types of
nodes and edges are identified by labels. On one hand, with
the advent of the era of big data, traditional ontology is in-
creasingly difficult to adapt to the rapid expansion of the
knowledge scale. Due to the NP problem, semantic reason-
ing takes too long and crosses boundaries, and query re-
sponses are getting slower and slower, making it more diffi-
cult to land in actual application scenarios. This widens the
gap between the research of ontology theory and knowledge
services in industry (Cui et al. 2016; Gong et al. 2018). On
the other hand, the knowledge contradiction rate is high in
knowledge graphs based on the property graph model with-

out semantic constraints and it is difficult to integrate do-
main knowledge from different experts using a property
graph model (Miller 2013).

To effectively cope with the dual challenges of volume
and semantic complexity brought by big data, this paper
fuses ontology and property graph at the level of knowledge
representation, and refers to the fused knowledge represen-
tation model as the “knowledge big graph.” Finally, seman-
tic consistent reasoning is performed to verify the effective-

ness of the knowledge big graph.
2.0 Related research

The conceptual model of ontology is generally represented
by the triple, which is significantly different from the stor-
age model of ontology—plain text storage and variants of
relational database storage. The difference between the con-
ceptual model and the storage model not only causes low
query efficiency but also brings obstruction to the release
and utilization of the ontology. The graph database used to
store the property graph adopts native graph processing and
native graph storage technology. The resulting physical stor-
age model formed is consistent with the conceptual model
of a property graph, which can effectively match the charac-
teristics of local data association in the big data environ-
ment, narrow the range of data traversal during data query
and analysis, and improve the efficiency of formalization,
storage, and utilization of large-scale knowledge. Therefore,
many studies have begun to focus on how to transfer an on-
tology into a graph database, which are mainly divided into
RDEF level transformation and RDFS/OWL level transfor-
mation with complex semantic relationships.

2.1 RDF level transformation research

The ontology model is based on RDF triples and consists of
more semantic vocabularies and primitives. Therefore, the
ontology described by the mainstream language RDFS/
OWL recommended by the W3C standard is also an RDF tri-
ple set, but the RDF triple set is not necessarily a standard on-
tology. The RDF triple form <subject, predict, object> natu-
rally corresponds to the basic structure <nodel, edge, node2>
of a property graph. Therefore, many scholars started from
the corresponding structure, designed the rules of ontology
to property graph conversion, and implemented graph data-
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base storage of ontologies. For example, Gong et al. (2018)
treated the attribute values in the RDF directed graph as
nodes in the property graph model and dumped the oil do-
main ontology into the Neo4j graph database. Drakopoulos
et al. (2017) converted the RDF triples corresponding to the
instance layer of the ontology into edges in the property
graph, where object property name and datatype property
name were used as edge labels. Tomaszuk and Dominik
(2016) proposed an algorithm, YARS, that translates RDF
graphs into attribute graphs and serializes them into graph da-
tabases. The RDF-level transformation research only retains
the data content of the ontology, which essentially degener-
ates the ontology into a set of RDF triples and then trans-
formsitintoa property graph model, losing the semantic con-
straints of the ontology itself.

2.2 RDFS/OWL level conversion research

Most of ontologies are described by the primitives provided
by the RDES/OWL ontology language, so some scholars
mapped primitives in RDFS/OWL to the labels and attrib-
utes in the property graph model to represent the complex
semantic relationship of the ontology. Krétzsch et al. (2016,
2017) used attribute logic to represent the ontology seman-
tics in the property graph and explored the logical fit of the
ontology into the property graph. Konno et al. (2017) con-
structed a two-layer property graph transformed from a re-
tail ontology. Pham et al. (2018) built a computer science
domain knowledge base and compared the query efficiency
of the ontology version to the property graph version.

Related research mainly focused on the problem of
dumping the ontology into a graph database at the physical
level, rather than the fusion of the ontology and property
graph at a higher level; that is, the semantic reasoning of the
ontology and the predicate attribute of the property graph
are not merged into a logical self-consistent whole. There-
fore, from the perspective of knowledge fusion, this paper
explores the fusion of the ontology and the property graph
at the level of knowledge representation and constructs a
knowledge big graph with both ontological reasoning and
predicate attribute representation capabilities. Application
scenarios of Chinese financial ownership network is used to
verify the feasibility and practical value of the knowledge big
graph proposed in this paper.

3.0 Knowledge fusion—the theoretical basis of
knowledge big graph

The core function of knowledge fusion can be summarized
as extracting knowledge elements from heterogeneous know-
ledge resources, adopting methods such as transformation,
reasoning, merging, reorganization, and integration to estab-

lish a unified knowledge model. New knowledge can be ob-

tained from the generated knowledge model to provide high-
quality knowledge services (Smirnov et al. 2015; Preece et al.
2000). The ontology model can be regarded as knowledge A,
and the property graph model can be regarded as knowledge
B. Exploring the fusion of the ontology and the property
graph is essential to establish the fusion logic of knowledge A
and knowledge B. Therefore, it is possible to start from the
conversion, merger, and reduction of knowledge elements
and consider the mapping of the relationships among ele-
ments, that is, to investigate the integration of the ontology
and the property graph from the perspective of knowledge fu-
sion to ensure the logical consistency and coordination of the
two knowledge representations in the knowledge big graph
and to obtain new knowledge from the fusion results.
Ontology generally consists of a concept layer and an in-
stance layer. Its description logic is <TBox, ABox>, where
TBox corresponds to the concept layer of the ontology and
ABox corresponds to the instance layer of the ontology
(Dutta et al. 2014). The specific composition is as follows:

TBox: a finite set of axioms such as term inclusion re-
lationship C E D, term equivalent relationship C = D,
term mutual exclusion relationship C M D = @;
ABox: a finite set of conceptual assertions C(a), role
assertions R(a, b), negative role assertions —R(a,b),
identity assertion statements a = b, and negative as-
sertion statements a # b.

Property graph uses graph theory in mathematics as their
logical basis, with a relatively simple structure, mainly con-
sisting of nodes and edges. The property graph can be rep-
resented by a quaternion <V, E, P, L>, and the correspond-
ing mapping functions <h., te, py, Pe, L, I> are attached. The
description of each structure is as follows:

1. Vrepresents the set of nodesin the property graph;
E represents the set of edges in the property graph;

3. P represents the set of attributes in the property
graph, generally represented by the key-value pair
<attribute name, attribute value>;
L represents the set of labels in the property graph;

5. h.represents the bijective function of E to the head
node Vy;

6.t represents the bijective function of E to the tail
node V;

7.  pvrepresents the injective function of P to V;

8. p.represents the injective function of P to E;

9. I represents the injective function of L to V;

10. L represents the bijective function of L to E.

In the above formal description, the bijective function rep-
resents a one-to-one mapping relationship, and the injective
function generally represents a many-to-one mapping rela-
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tionship. In a property graph, a node can belong to multiple
types at the same time, that is, it can possess multiple labels,
so 1, is an injective function. An edge only expresses a rela-
tionship; that is, there is only one label, so I is an injective
function.

The ontology model and the property graph model are
heterogeneous in syntax and semantics. Through a know-
ledge fusion lens, the fusion of ontology and property graph
is mainly divided into transformation fusion, recombination
fusion, and mapping fusion. Transformation fusion refers to
the syntax conversion that converts the grammatical format
of heterogeneous knowledge resources to the same syntax
type. For example, the primitives described by RDFS/OWL
in an ontology are converted into attribute key-value pairs
and labels in a property graph. Knowledge resources are also
semantically heterogeneous, which brings the need to merge
and fuse the same element parts in an ontology and a property
graph at the granularity of the knowledge elements and re-
combine different parts. Mapping fusion refers to mapping
the <TBox, ABox> structure of an ontology and the four-tu-
ple representation of a property graph to generate the skele-
ton of the knowledge big graph.

Obtaining new knowledge is one of the goals of know-
ledge fusion, and it should also be the goal of fusing ontology
and property graph. The way to get new knowledge for an
ontology is ontology reasoning, and for a property graph, it is
graph mining based on path traversal and query. We fuse the
two methods of obtaining new knowledge to generate a new
reasoning mode. The new mode of inference is not only the

new knowledge obtained after the knowledge fusion but also
the means to obtain the new knowledge from the knowledge

big graph after fusing ontology and property graph.

4.0 Ontology and property graph fusion
framework—the logical realization of
knowledge big graph

The explicit semantics of structured data and knowledge ba-
ses are generally described by an explicit or implicit vocabu-
lary. The vocabulary is the data that describes the data, that
is, metadata. Metadata describing the structure of the ontol-
ogy is called primitive in ontology. This paper maps main
primitives in the traditional ontology language RDFS/
OWL recommended by the W3C into property graph
model and develops the ontology and property graph fusion
framework (OPGFF) as shown in Figure 1.

The content layer fusion in OPGFF mainly involves
combining the primitives of the TBox layer and the ABox
layer in the ontology with the elements in the property
graph model. The constraint layer fusion combines the con-
sistent reasoning of the ontology with the path traversal and
predicate attribute of the property graph on the basis of the
content layer fusion to realize the correctness of the know-
ledge and the derivation of new knowledge. A knowledge
big graph is generated through the two-layer fusions, and
the subsequent semantic query and semantic inference rules
based on the knowledge big graph can be highly decoupled

and completely domain agnostic.

Explanation RDFS/OWL primitive mapped property graph element
a concept or class owl:Class Node(:Class)
role that associates one instance with another | owl:ObjectProperty Node(:ObjectProperty)

transitive role

0wl:Tmmz‘tz'uerperty

Node(:Transitive Property)

antisymmetric role owl: AsymmetricProperty | Node(:AsymmetricProperty)
role that associates instance with literal owl:DatatypeProperty Node(:DatatypeProperty)
role-to-concept domain relationship rdfs:domain Edge(:Domain)
role-to-concept range relationship rdfs:range Edge(:Range)

role-to-role inverse relationship owl:inverseOf Edge(:InverseOf)

role-to-role equivalent relationship

owl-equivalentProperty

Edge(:EquivalentProperty)

role-to-role disjoint relationship owl:disjoint Property Edge(:Disjoint Property)
role-to-role sub-property relationship rdfs:subPropertyOf Edge(:SubPropertyOf)
concept-to-concept subclassOf relationship rdfs:subClassOf Edge(:SubClassOf)

concept-to-concept equivalent relationship

owl:equivalentClass

Edge(:EquivalentClass)

concept-to-concept disjoint relationship

owl:disjoint With

Edge(:Disjoint With)

Table 1. Terminology mapping in the TBox layer fusion
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Box 1a

ClassNodes(PG) = {tc : "Class” < “cname”=tco.ConceptName > | tco € Classes(Ontology)}. @
RoleNodes(PG) = {tp : RoleType < “ename”=tpo.RoleName >

U {tp : DatatypeProperty < “pname”=tpo.RoleName > |tpo € Roles(Ontology)}. 2)

Box 1b

TEdges(PG) = {tr : RelationName |RelationName € OntologyRel}, where OntologyRel
= {SubClassOf, SubPropertyOf, DisjointWith, Domain, Range}. 3)

tpo € Roles(Ontology), }
RoleType # DatatypeProperty

Box 2

he(tr) = tp; (tr) = tp; he(tr) = tc; to(tr) = tc, where tr € TEdges(PG), tp € RoleNodes(PG), tc € ClassNodes(PG). (4)

4.1 Content layer fusion

Content layer fusion refers to redefining the TBox layer and
the ABox layer of an ontology in a property graph model. The
result of the fusion corresponds to the schema layer and in-
stance layer of the knowledge big graph so that the knowledge

big graph can express the basic semantics of the ontology.
4.1.1 TBox layer fusion

We represent the semantics of the ontology’s TBox layer by
converting the concepts, roles, and relationships between
them into nodes and edges in the property graph as shown
in Table 1. First, the concepts and roles in the ontology are
converted into nodes of the property graph so that the basic
skeletal elements corresponding to the ontology TBox layer
are constructed in the knowledge big graph. The transfor-
mation fusion formula is shown in Box 1a.

ClassNodes(PG) is the set of nodes representing all concepts
of the ontology in the knowledge big graph, and
RoleNodes(PG) is the set of nodes representing all roles of
the ontology in the knowledge big graph. (:"Class”.
:RoleType. :”DatatypeProperty”) are used as the labels of
nodes in the knowledge big graph, and ( “cname”.
"ename”. “pname”) are used as the properties of nodes in
the knowledge big graph. The meaning of tco€
Classes(Ontology) is that the symbol “tco” represents the
conceptual elements of the ontology.

The edges in the property graph model are used to repre-

sent the vertical and horizontal relationships between the ele-

ments forming the skeleton structure of the knowledge big
graph. The transformation fusion formula is shown in Box 1b.

TEdges(PG) is a set of edges representing all the relation-
ships between concepts and concepts, roles and roles, and
concepts and roles. Finally, the bijective functions h. and t.
are used to associate the above nodes and edges together to
form specific semantics. The recombination fusion formula
is shown in Box 2.

Through the various combinations of these four fusion
equations (1)~(4), the complex semantic relationships
formed between the concepts and roles in the ontology
TBox layer can be represented in the knowledge big graph.
For example, he(tr(:Domain))=tp, t(tr(:Domain))=tc;,
h(tr(:Range))=tp, t(tr(:Range))=tc, jointly express the se-
mantics of role tp, that is, role tp associates an instance of
concept tcy with an instance of concept tc,. For example,

Person(: Class) m AuthorOf(: ObjectProperty)

a8 B ook(: Class)
expresses the authorOf role relationship between the in-

stance belonging to Person and the instance belonging to
Book.

4.1.2 A Box layer fusion

We map the concept assertions and role assertions in the on-
tology to the nodes, edges, and attributes of the nodes in the
knowledge big graph and connect the corresponding edges
and nodes to represent the semantic relationships among in-
stance objects and semantic constraints of the TBox layer on
the ABox layer of the ontology. The mapping fusion for-
mula is shown in Box 3.

Box 3

InNodes(PG) = {ni : tc."cname” < tp. "pname” = specialValue, ... >

AEdges(PG) = {ar : tp."ename” |tp € RoleNodes(PG)}.
he(ar) = ni; te(ar) = ni,where ni € InNodes(PG), ar € AEdges(PG). 7

tc € ClassNodes(PG),}

tp € RoleNodes(PG) ®)

(6)
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Figure 1. Ontology and property graph fusion framework(OPGFF).

InNodes(PG) is the set of nodes representing all the concept
assertions of the ontology in the knowledge big
graph, tc.”cname” represents the specific name of a con-
cept; AEdges(PG)is the set of edges representing all the non-
DatatypeProperty role assertions of the ontology in the
knowledge big graph. (tp."ename,” tp. "pname”) represents
the specific name of a role; the bijective functions h. and t.
associate nodes with edges. The result of the fusion corre-
sponds to the instance layer of the knowledge big graph as
shown in Figure 2.

Using the above mapping fusion formula (5)~(7), the se-
mantic constraints of the TBox layer on the ABox layer in
the ontology can be mapped to the semantic constraints of
the schema layer on the instance layer in the knowledge big
graph. All concept names in the ontology are used as labels
of nodes in the instance layer of the knowledge big graph.
Thus, the association between the schema layer and the in-
stance layer is naturally established in the knowledge big
graph. Although additional edges can be used to connect
the instance layer and the schema layer in knowledge big
graph, it will likely cause tens of millions of nodes in the in-
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Figure 2. ABox layer fusion.

stance layer to be connected with one node in the schema
layer, making the structure of the entire knowledge big
graph sparse and unbalanced, which is not conducive to a
rapid response to the query. It also does not take advantage
of the characteristics of the native storage and the adjacency
query of the property graph model and increases storage
and query costs. We use the attribute value of the “cname”
attribute of the concept node as the label of instance nodes
and do not add extra edges to the entire knowledge big
graph so that when querying an instance of a concept node,
only the subgraph is traversed whose node label is the name
of the concept node without having to traverse the entire

knowledge big graph.
4.1.3 Fusion of predicate attribute and edge attribute

The attributes of the predicates cannot be directly expressed
in RDF triples. As a result, the ABox layer of the ontology
based on the RDF triples cannot directly represent the at-
tributes of the relationship. For example, <Jack, marry,
Rose> can indicate the marriage relationship between Jack
and Rose but cannot directly indicate when Jack and Rose
married. The mainstream solution is to treat the marriage

relationship as an intermediate entity, such as: <Marriage,
bridegroom, Jack>, <Marriage, bride, Rose>, <Marriage,
date, 1990>. However, this solution increases the cognitive
complexity, the storage costs of the computer, and the com-
plexity of the semantic query. In contrast, we can directly set
key-value pairs for edges to represent the attributes of a rela-
tionship in a property graph. By combining the predicate
attributes of the ontology with the edge attributes in the
property graph model, a large number of intermediate enti-
ties in an ontology are eliminated and the expressiveness of
the ontology model is improved. The recombination fusion
formula shown in Box 4.

AEdges_pa(PG) is the edge set with predicate attributes in
knowledge big graph, and tp,.”pname” represents the spe-
cific role name of the DatatypeProperty role. DatatypeProp-
erty role nodes can be associated with concept nodes or other
role nodes through the “Domain” edge in the schema layer of
the knowledge big graph. DatatypeProperty role nodes repre-
sent the attributes of the other role nodes when they are asso-
ciated with other role nodes. In the instance layer of the
knowledge big graph, the edge attribute name is the attribute
value of the “pname” attribute of a DatatypeProperty role
node. As shown in Figure 3, the DatatypeProperty role node

Box 4

AEdgesp,pg) = {ar : tp;.ename”’<tp,.pname” = someValue > [tpy, tp, € RoleNodes(PG)}. (6))
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Figure 3. Example of fusion of predicate attribute and edge attribute.

expressing time (the attribute value of the “pname” attribute
is “date”) associates with the SymmetricProperty role node
representing the marriage relationship (the attribute value of
the “ename” attribute is “marry”) through the “Domain”
edge. It means that the marriage relationship has the “date”
attribute and the marriage relationship is bidirectional. The
“Jack” node and the “Rose” node are associated through the
edge with the “marry” label, and this edge has a “date” attrib-
ute of which the value is “1990.”

4.2 Constraint layer fusion

The function of the ontology is reflected in two aspects.
One is the interchangeability of knowledge. By integrating
the ontology into the knowledge big graph, the semantics
are placed in the data. The description information about
the knowledge big graph’s structure can be obtained easily
by querying the schema layer of the knowledge big graph,
making the knowledge big graph self-descriptive, which fa-
cilitates its subsequent transfer and utilization. The other
aspect is the interoperability between knowledge elements,
which is reflected in the semantic application of ontology
reasoning. However, the property graph model lacks strong
semantic constraints. It is likely to produce incorrect or con-
tradictory data during construction and evolution, which in
turn leads to knowledge graphs based on the property graph
model being prone to providing incorrect answers in subse-
quent knowledge services. Therefore, it is necessary to inte-
grate the consistent reasoning function of the ontology into
the knowledge big graph to improve the self-checking abil-
ity of knowledge big graph, which has important practical
significance for the construction and update of the know-

ledge base.

This paper also focuses on the fusion of knowledge in-
teroperability in ontologies with the predicate attributes of
the property graph model to achieve semantically consistent
reasoning in the knowledge big graph. The constraint layer
fusion consists of two parts: 1) mapping the traditional con-
sistent reasoning of ontology to the path traversal query of
the property graph model; and, 2)recombining the ontol-
ogy semantics and the predicate attribute of the property
graph model to make the knowledge big graph capable of
consistent reasoning of predicate attributes that the ontol-
ogy cannot.

4.2.1 Traditional consistent reasoning of ontology

Traditional ontology’s consistent reasoning mainly relies on
an external reasoning machine, modifying internal algo-
rithms of inference engines or directly calling external rea-
soning machines to determine whether and where incon-
sistency problems exist in the ontology knowledge base by
finding the minimal unsatisfactory maintaining subset (Liu
et al. 2012, Parsia et al. 2005). These methods have insuffi-
cient efficiency and stability and cannot deal with large-
scale ontology knowledge bases. Existing studies have
shown that the methods based on graph traversal is superior
to the calculation methods based on inference engines (Fu
et al. 2016; Qi et al. 2015; Fu et al. 2014). Taking compre-
hensive consideration of efficiency and usefulness, we
achieve completely domain-independent consistent reason-
ing by fusing the primitives of the ontology and the path
traversal query of the graph. Specifically, it is divided into
two levels: 1) consistent reasoning at the schema level of the
knowledge big graph, focusing on whether logical contra-
diction exists in the semantic relationships between concep-
tual nodes; and, 2) consistent reasoning at the instance level
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Figure 4. Inconsistent semantics in the knowledge big graph.

of knowledge big graph, focusing on whether the attributes
of the instance nodes and the relationship between the in-
stance nodes are consistent with the semantics defined by
the schema layer.

(1) Consistent reasoning at the schema level of the
knowledge big graph. It mainly includes subclassOf
consistency reasoning (see Figure 4a) and disjoint rela-
tionship consistency reasoning at the schema level (see
Figure 4b). The schema layer of the knowledge big
graph is mainly composed of concepts and subclassOf
relationships between concepts. There may be incon-
sistent semantics between two concepts with a subclas-
sOf relationship; that is, it is necessary to check
whether the path formed by the subclassOf relation-
ship is looped to complete the subclassOf consistency
inference. Disjoint consistency inference at the schema
level refers to finding whether two concepts with dis-
joint relationships have the same subclasses.

(2) Consistent reasoning at the instance level of the
knowledge big graph. It mainly includes instance rela-
tionship consistency reasoning (see Figure 4c), con-
sistency reasoning of the attribute domain of the in-
stance (see Figure 4e), and consistency reasoning of
disjoint relationships at the instance level (see Figure

4d). Instance relationship consistency reasoning is also
called object property consistency reasoning. It refers
to checking whether the label of the edge in the in-
stance layer and the labels of the two nodes associated
with the edge are correctly mapped one by one in the
schema layer. Consistency reasoning of the attribute
domain of the instance refers to checking whether the
attribute domain of the instance node is consistent
with the label of the instance node; that is, finding
whether the two nodes corresponding to the label of
the instance node and the attribute of the instance
node are connected through the “Domain” edge in the
schema layer. Consistency reasoning of disjoint rela-
tionships at the instance level refers to checking
whether there is an instance node belonging to two
disjoint classes.

4.2.2 Consistent reasoning for predicate attribute

The predicate attribute cannot be directly expressed in the
traditional ontology model, and consistent reasoning for
predicate attribute is impossible to be performed for the on-
tology. The attributes of the edge can be used to directly rep-
resent the attributes of the predicate in knowledge big
graph, which enriches the expression ability of the ontology.
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As a result, we implement the consistent reasoning of the
domain of predicate attribute and the consistent reasoning
of custom domain constraints in the knowledge big graph.
Similar to the consistency reasoning of the attribute domain
of instance, the consistent reasoning of the domain of pred-
icate attribute refers to checking whether the two nodes cor-
responding to the label of the edge and the attribute of the
edge at the instance layer are connected through the “Do-
main” edge at the schema layer of the knowledge big graph
(see Figure 4f). The consistent reasoning of custom domain
constraints refers to checking whether the predicate attrib-
ute meets the domain constraint defined by domain experts,
such as the sum of shareholding ratios that the same com-
pany held by all shareholders cannot exceed one hundred
percent in the financial domain.

5.0 Application of the knowledge big graph in
financial shareholding structure

The shareholding structure is the foundation of the govern-
ance system of financial institutions in the financial field,
which determines governance mechanisms of financial in-
stitutions and related companies (Lemmon and Lins 2003).
The financial ownership network formed by the equity re-
lationship of financial institutions profoundly affects the
stability of the entire financial system, such as the occur-
rence of financial risks (Saunders et al. 1990; Fichtner et al.
2017) and the spread of financial risks (Elliott et al. 2014).
Furthermore, analysis of the financial ownership network is
the basis of the supervision and risk control of typical finan-
cial problems—capital groups, cross-shareholding, actual
controller, etc.

We are concerned with China’s financial ownership net-
work. The financial ownership network consists of finan-
cial institutions and the direct or indirect shareholders’
holding relationships of financial institutions. In general,
conflicting data is prone to appear during the construction
process due to the need to extract data from multiple data
sources to build a complete financial ownership network.
Moreover, the shareholding structure of enterprises changes
frequently over time, which easily leads to data incon-
sistency in financial ownership network. Therefore, we con-
vert the China’s financial ownership network into the
knowledge big graph to lay the foundation for the accuracy
and efficiency of the subsequent analysis of the financial
shareholding structure.

5.1 Financial ownership knowledge big graph

The schema layer of the financial ownership knowledge big
graph explained here explicitly describes the semantics of
the hierarchical classes and relationships of entities in
China’s financial shareholding structure while the instance

layer mainly shows the entities and relationships in the fi-
nancial shareholding structure.

According to the TBox layer fusion rules, the schema layer
of the financial ownership knowledge big graph constructed
is shown in Figure 5. The schema layer stipulates the main
categories of financial institutions and the hierarchical cate-
gories of civil subjects that are shareholders of the financial
institutions. The shareholding property as the object prop-
erty stipulates that all social subjects can be shareholders in
the shareholding structure while the entity held can only be
an entity of the type of enterprise or financial institution and
their subclasses. The control property is a sub-property of the
shareholding and is an asymmetric role; that is, entity B can-
not control entity A when entity A controls entity B. The
event is the key element of financial risk identification and
control. Social subjects as participants in events that contain
financial risks are likely to become the media for the spread of
financial risks (Petrone and Latora 2018; Poledna et al. 2015).

According to the ABox layer fusion rules, the fragment of
the instance layer of the financial ownership knowledge big
graph is shown in Figure 6, using the shareholding structure
of the China Development Bank as an example. The direct
shareholders of the China Development Bank are the Chi-
nese Ministry of Finance, Wutongshu Investment Platform
Co.,, Ltd., Central Huijin Investment Ltd., and the National
Council for Social Security Fund. The sum of the shares that
they hold in China Development Bank is one. The share and
start time are attributes of shareholding edges and control
edges, corresponding to the role nodes of “share” and “start
time” in the schema layer of the financial ownership know-
ledge big graph. The labels of the China Development Bank
node correspond to the “state policy bank” and “state-owned
business” nodes in the schema layer of the financial owner-

ship knowledge big graph.

5.2 Consistent reasoning algorithms for the financial
ownership knowledge big graph

We use Cypher query language to describe the consistent in-
ference algorithms for the financial ownership knowledge
big graph. Cypher is a user-friendly, declarative property
graph query language. The Cypher query used in this paper

has the following structure:

MATCH <pattern1>

[ WITH <resultl> ]

[MATCH <pattern2> ]

[ WHERE <constraint> |

RETURN <result2> [ as <expression>].
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Figure 5. The schema layer of the financial

The MATCH clause refers to the path or subgraph struc-
ture being queried. The WITH clause uses the result of the
previous MATCH clause query as the input of the next
MATCH clause query. The WHERE clause is used to con-
ditionally restrict the query process or filter the query result,
and the RETURN clause returns the final query result.
The MATCH clause in this paper involves indefinite-length
path queries. For example, “(n1:Class)-[:SubClassOf*0..]-
>(n2:Class)” means that the nl concept node is a direct
child of the n2 concept node Class (path length is 1), indi-
rect subclass (path length is greater than 1), or n2 concept
node itself (path length is 0). “*0..” means that the path
length is at least zero.

The descriptions of the consistent reasoning algorithms
implemented with Cypher are shown in Table 2. If the re-
sult returned by the consistent reasoning is null, it means
there are no inconsistent semantics. Otherwise, the result re-
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ownership knowledge big graph.

turned by the consistent reasoning represents the incon-
sistent semantics, which needs to be subsequently corrected
manually. Taking “consistency reasoning of subclassOf” as
an example (Table 2a), if n1 is a(n) (indirect) subclass of n2,
n2 is a(n) (indirect) subclass of n3, and nl and n3 are the
same conceptual node, then the path will be returned,
which contains inconsistent semantics. The Cypher de-
scriptions of the five consistent reasoning algorithms do not
involve specific domain vocabularies and are completely do-
main-independent except for the consistent reasoning algo-
rithm of custom domain constraints.

5.3 Experimental results
The financial ownership knowledge big graph we con-

structed contains the ownership of 1,432 financial institu-
tions and all enterprises and other entities of the National
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Figure 6. The fragment in the instance layer of the financial ownership knowledge big graph.

Enterprise Credit Information Publicity System of China. non-operating subject. This results in inconsistent se-

There are currently more than eighty million entities and mantics of disjoint classes based on common subclass
nearly 100 million shareholding edges, covering almost all and inconsistent semantics of disjoint classes based on
Chinese enterprises and their shareholders. The original common instance.

data comes from the National Enterprise Credit Infor- 3. Remove all labels of the “Chinese Ministry of Finance”
mation Database of China and annual reports of Chinese node and the “China Development Bank” node. Figure 6
shows that the Chinese Ministry of Finance is the direct
shareholder of the China Development Bank. The do-

mains of shareholding relationships are social subject and

financial institutions. The Neo4j graph database is used to
store, query, and reason about the financial ownership
knowledge big graph. The query results of the schema layer
and instance layer of the financial ownership knowledge big its subclasses, and the ranges of shareholding relationships
graph in the Neo4j database are shown in Figure 7. are enterprise and financial institution as well as their sub-
In order to test the accuracy of the consistent inference classes (Figure 5), resulting in inconsistent semantics of in-
algorithm, the following inconsistent semantics is added to stance relationship (shareholding). The Chinese Ministry

the financial ownership knowledge big graph in advance:

1. Add
:SubClassof

“civil subject —— social group.”

of Finance node and the China Development Bank node
have datatype property (“name”), and the domains of
datatype property (“name”) are social subject and its sub-
classes. Therefore, inconsistent semantics of attribute do-

Figure S shows that the social group is an indirect sub- main of instance are also generated.

class of the civil subject, which results in semantic incon- 4. Change the label of the shareholding edge of the “Cen-
sistency of the subclassOf relationship.

tral Huijin Investment Ltd.” node to the “China Devel-
2. Add

:SubClassof

“state_owned business public institution”

and set the instance node “China Investment Corpora-
tion” to have the labels “state-owned enterprise” and
“government agency.” Figure 5 also shows that state-
owned enterprise is an indirect subclass of non-operating
subject and government agency and public institutions
are indirect subclasses of operating subject. There is a dis-

joint relationship between non-operating subject and

opment Bank” node from “shareholding” to “partici-
pate.” The edge has a datatype property (“share”), and
the domains of the datatype property (“share”) are the
object property (“shareholding”) and its sub-properties
(see Figure 5), resulting in inconsistent semantics of the
domain of predicate attribute.
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a. Consistency reasoning of subclassOf

MATCH path=(nl)-[:SubClassOf*1..]->(n2:Class)-[:SubClassOf*1..]->(n3)
WHERE nl=n3

RETURN path as SubClassOf Inconsistency

b. Consistency reasoning of disjoint relationship between classes

h‘@ check for the inconsistent semantics of the disjoint relationship in schema layer

MATCH path=(n3)-[:SubClassOf* 1..]-> (n1:Class)<-[:DisjointWith]-(n2:Class)<-[:SubClassOf* 1..]-(n4)
WHERE n3=n4

RETURN nJ3.cname as SubClass_DisjointWith_Inconsistency,nl.cname as DisClassl n2.cname as DisClass2
a‘f@ check for the inconsistent semantics of the disjoint relationship in instance layer

MATCH (n3)-[:SubClassOf* 1..]-> (nl:Class)<-[:DisjointWith]-(n2:Class)<-[:SubClassOf* 1..]-(n4)

WITH n3,nd

MATCH (iNode)

WHERE n3.cname in labels(iNode) and nd.cname in labels(iNode)

RETURN iNode.name as Instance_DisjointWith_Inconsistency, n3.cname as DisClassl nd.cname as DisClass2

c. Consistency reasoning of class of instance

i (Dchcck for the inconsistent semantics of object property domain

MATCH (n)-[:SubClassOf*0..]->(n1:Class)<-[:Domain]-(r1 :ObjectProperty)<-[:SubPropertyOf* 0..]-(r)

WITH collect(distinct n.cname) as classLables, r.ename as edgeName

MATCH (iNode)-[edge]->()

WHERE type(edge)=cdgeName and none( iLable in labels(iNodc) where iLable in classLables )

RETURN iNode.name as instance_node,edgeName as ObjectProperty_Domainlnconsistency,classLables as TrueClasses

i @chcck for the inconsistent semantics of object property range

MATCH (n)-[:SubClassOf*0..]->(nl :Class)<-[:Range]-(r 1 :ObjectProperty)<-[:SubProperty Of* 0..]-(r)

WITH collect(distinct n.cname) as classLables,r.ename as edgeName

MATCH ()-[edge]->(iNode)

WHERE type(edge)=cdgeName and nonc(iLable in labels(iNode) where il.able in classLables )

RETURN iNode.name as instance_node, edgeName as ObjectProperty Rangelnconsistency,classLables as TrueClasses

d. Consistency reasoning of datatype property domain of instance

MATCH (n)-[:SubClassOf*0..]->(nl :Class)<-[:Domain]-(pl :DatatypeProperty)<-[:SubPropcrtyOf* 0..]-(p)

WITH collect(distinet n.cname) as classLables, p.pname as propertyName

MATCH (iNodc) WHERE propertyName in keys(iNode) and none(iLable in labels(iNode) where iLable in classLables)
RETURN iNode.name as instance_node, propertyName as Instance_DataProperty_Domainlnconsistency,classLables as
TrucClasses

¢. Consistency reasoning of the datatype property domain of predicate

MATCH (r)-[:SubPropertyOf*0..)->(r1:ObjectProperty)<-[:Domain]-(pl :DatatypcProperty)<-[:SubProperty Of* 0..]-(p)
WITH collect(distinct r.ename) as edgeNames p.pname as propertyName

MATCH ()-[¢dge]->() WHERE propertyName in keys(edge) and not type(edge) in cdgeNames

RETURN id(edge) as edgeid, propertyName as Edge DataProperty Domainlnconsistency,cdgeMames as TrueClasses

f. Consistency reasoning of custom domain constraints about the attribute of predicate

/I check for companies with more than | sum of shares held or controlled
MATCH (nl)-[r]:sharcholding|:control]->(n2)

WITH n2, sum(toFloat(rl.share)) as sumshare WHERE sumshare > 1 WITH n2
MATCH path=(nl)-[r] :sharcholding|:control]->(n2)

RETURN n2.name as Firm_with_EquityOverl Inconsistency, sumshare

Table 2. The Cypher description of the consistent reasoning algorithms.

5. Add one, which generates inconsistent semantics of predicate
:control . . .
“Ministry of Finance —— Chinese Ministry of attribute custom domain constraints.
Finance”

and set the value of the attribute (share) of the control The results of the implementation in the Neo4j database us-

edge to 0.3654. This results in the China Development ing the consistent reasoning algorithms designed in this pa-

Bank being controlled or held by a ratio of more than per are shown in Figure 8. The consistent reasoning algo-
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Figure 7. Visual query results of financial ownership knowledge big graph.

rithms reasoned out all the pre-added inconsistent seman-
tics, which proves the logical correctness of the knowledge
big graph and the validity of the consistent reasoning algo-
rithms based on the knowledge big graph. According to the
results of the inconsistent reasoning shown in Figure 8, fur-
ther correction can be performed to remove inconsistent se-
mantics, ensure the logical consistency of the knowledge big
graph, and lay a quality foundation for subsequent know-
ledge services based on the knowledge big graph.

6.0 Conclusion

The huge amount of knowledge, the complexity of know-
ledge semantics, and the frequent updates of knowledge
have brought new problems to knowledge representation,
organization, storage, and utilization in big data environ-
ment. These facts seriously hinder the timeliness and accu-
racy of subsequent knowledge services. To this end, the pa-

per first proposes the ontology and property graph fusion
framework (OPGFF), combining the precise description of
the ontology model and the native graph characteristics of
the property graph model from the perspective of know-
ledge fusion. Then, the construction of the financial own-
ership knowledge big graph and semantic reasoning are per-
formed. The OPGFF framework proposed in this paper can
be applied to general, large-scale knowledge organizations,
such as application in the field of medical biology, and can
be new a perspective for the construction and utilization of
knowledge bases. In addition, the schema layer of the finan-
cial ownership knowledge big graph and the consistent rea-
soning algorithms provide semantic analysis tool and se-
mantic data quality constraints for subsequent financial
risk discovery.

Generic ontology model contains other semantic rela-
tionships in addition to the basic semantic relationships se-
lected in the paper. Therefore, the knowledge big graph
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Figure 8. Experimental results of consistency reasoning.

does not contain all the ontology semantics (such as equiv-
alent anonymous classes or disjoint attributes). Subsequent
research can add more ontology semantics to the knowledge
big graph according to actual needs. The consistent reason-
ing algorithms we proposed can be further expanded or im-
proved in the future, such as by combining more efficient
graph mining algorithms and cognitive computing technol-
ogies (Chen et al. 2019).
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