
Die Entwicklung von Forschungssoftware als
praktische Interdisziplinarität

Gerret von Nordheim / Lars Koppers / Karin Boczek / Jonas Rieger / Carsten Jentsch /
Henrik Müller / Jörg Rahnenführer*

Wir stellen in diesem Aufsatz ein Modell interdisziplinärer Zusammenarbeit zwischen
Kommunikationswissenschaft und Methodenwissenschaft (hier: Statistik) vor. Dabei
steht die Frage im Mittelpunkt, wie sich die Kollaboration grundverschiedener Diszipli-
nen über einen längeren Zeitraum verstetigen lässt. Der agilen Entwicklung von For-
schungssoftware, die die fachübergreifende Zusammenarbeit strukturiert, kann hierbei
eine zentrale Rolle zukommen. Sie ermöglicht zwei Ebenen der Zusammenarbeit mit
verschiedenen Zeithorizonten: auf der einen werden zeitlich begrenzte Projekte umge-
setzt, auf der anderen die längerfristige Zusammenarbeit organisiert. Wechselnde Team-
Konstellationen und Hierarchien ermöglichen kontinuierlichen Wissensaustausch, die
verwendete Programmiersprache ist Grundlage für die Entstehung einer fächerüber-
greifenden Kommunikation und die Orientierung auf ein gemeinsames Produkt schafft
eine Kultur der gemeinsamen Verantwortlichkeit. Um die theoretischen Reflexionen an
der Forschungspraxis zu spiegeln, greifen die Autor*innen auf ihre Erfahrungen im Kon-
text des Dortmund Center für datenbasierte Medien-Analyse (kurz: DoCMA) zurück.
DoCMA ist deswegen als Fallbeispiel relevant, da Struktur und Organisation hier auf
die Erfordernisse der agilen Entwicklung offener Forschungssoftware ausgerichtet wur-
den.

Schlüsselwörter: Interdisziplinarität, agile Software-Entwicklung, Forschungssoft-
ware, interpositionales Wissen, intersektionales Wissen, Programmiersprache R

The Development of Research Software as Practical Interdisciplinarity

In this paper we present a model of interdisciplinary cooperation between communication science
and methodological science (here: statistics). We focus on the question of how the collaboration of
fundamentally different disciplines can be perpetuated over a longer period of time. The agile de-
velopment of research software that structures cross-disciplinary collaboration can play a central role
here. It enables two levels of collaboration with different time horizons: On one, fixed-term projects

* Dr. Gerret von Nordheim, Universität Hamburg, Institut für Journalistik und Kommunikati-
onswissenschaft, Allende-Platz 1, 20146 Hamburg, Deutschland, gerret.vonnordheim@uni-
hamburg.de;
M.Sc. Lars Koppers, Karlsruher Institut für Technologie (KIT), Department für Wissenschafts-
kommunikation, Englerstr. 2, 76131 Karlsruhe, Deutschland, lars.koppers@kit.edu;
Jun.-Prof. Dr. Karin Boczek, Johannes Gutenberg-Universität Mainz, Journalistisches Seminar,
Alte Universitätsstraße 17, 55116 Mainz, Deutschland, karin.boczek@uni-mainz.de;
M.Sc. Jonas Rieger, Technische Universität Dortmund, Fakultät Statistik, 44221 Dortmund,
Deutschland, rieger@statistik.tu-dortmund.de;
Prof. Dr. Carsten Jentsch, Technische Universität Dortmund, Fakultät Statistik, 44221 Dort-
mund, Deutschland, jentsch@statistik.tu-dortmund.de;
Prof. Dr. Henrik Müller, Technische Universität Dortmund, Institut für Journalistik, 44221
Dortmund, Deutschland, henrik.mueller@tu-dortmund.de;
Prof. Dr. Jörg Rahnenführer, Technische Universität Dortmund, Fakultät Statistik, 44221 Dort-
mund, Deutschland, rahnenfuehrer@statistik.tu-dortmund.de.

80 DOI: 10.5771/1615-634X-2021-1-80

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


are implemented; on the other, longer-term collaboration is organized. Changing team constellations
and hierarchies enable continuous knowledge exchange, the applied programming language is the
foundation for the emergence of interdisciplinary communication, and the orientation towards a
common product creates a culture of shared responsibility. In order to relate the theoretical reflections
to research practice, the authors draw on their experiences in the context of the Dortmund Center
for Data-Based Media Analysis (DoCMA). DoCMA is relevant as a case study because its structure
and organization were designed to meet the requirements of agile development of open research
software.

Keywords: interdisciplinarity, agile software development, research software, interpositional
knowledge, intersectional knowledge, R programming language.

Einleitung

In einer komplexen und verschränkt globalisierten Welt bedarf es interdisziplinärer An-
sätze, um gesellschaftliche Probleme zu bearbeiten. In der Wissenschaft vollzieht sich
Fortschritt zunehmend „an den Grenzen beziehungsweise an den Schnittstellen zwi-
schen den Disziplinen“ (Kleiner, Vorwort zu Defila u. a., 2008, S. VII). Die Tendenz hin
zur Interdisziplinarität ist nicht neu (vgl. Brozek und Keys, 1944), sie hat sich jedoch in
den vergangenen Jahren verstärkt. So ist die Vergabe von Forschungsgeldern inzwischen
häufig an interdisziplinäre Projektausrichtungen gekoppelt, was als Symptom und
Triebfeder dieser Entwicklung gelten kann (DFG, 2020; BMBF, 2019). Für einzelne,
insbesondere kleine Fächer entsteht hierdurch ein Spannungsfeld, wie Loosen u. a. un-
längst in einem Konferenz-Call zum Thema interdisziplinäre Journalismusforschung
konstatierten: Zwischen Selbstverständnisdebatten und disziplinärer Konturierung auf
der einen und Rufen nach integrativ(er)er interdisziplinärer Forschung auf der anderen
Seite (vgl. Loosen u. a., 2019). Auch Tsatsou beobachtet, dass die Forderungen nach
interdisziplinärer Öffnung an die Adresse der Medien- und Kommunikationswissen-
schaftler*innen immer dringlicher werden (vgl. Tsatsou, 2016, S. 652). Doch auch sie
sieht damit verbunden eine „fundamental tension“ (ebd.): Zwar sei die Disziplin einer-
seits inhärent interdisziplinär mit traditionellen Querverbindungen zu Sozial-, Geistes-
und Politikwissenschaften, Linguistik, Cultural Studies oder Sozialpsychologie. Ande-
rerseits beobachtet die Autorin, dass Medien- und Kommunikationswissenschaftler*in-
nen zögerten, ihre „comfort zone“ zu verlassen – sie scheiterten daran, Praktiken zu
entwickeln, die eine Kollaboration mit Disziplinen ermöglichen, die eine andere Sprache
sprechen und einer anderen epistemologischen Tradition angehören (vgl. ebd., S. 653).

Analog betonen Peters und Broersma (2019), dass Digitalisierung, Medienkonver-
genz und die Entstehung von Web 2.0 und 3.0 die Medienlandschaft derart verändert
hätten, dass Journalismusforscher*innen kaum auf sich allein gestellt schritthalten könn-
ten. Als Antwort auf diese Herausforderungen sei in den vergangenen Jahren eine ganze
Reihe „neuer und verbesserter“ Forschungstechnologien vorgestellt worden (Peters und
Broersma, 2019, S. 661) – diese werden zumeist unter dem Sammelbegriff „computatio-
nal methods“ zusammengefasst, also beispielsweise Netzwerkanalysen, automatisierte
Inhaltsanalysen wie überwachte Klassifikationen oder unüberwachte Verfahren wie To-
pic Modeling, Word Embeddings etc. (für eine weiterführende Übersicht vgl. van Atte-
veldt und Peng, 2018). In einem Feld, das ohnehin zur Multidisziplinarität neige, seien
solche Trends „intellectually seductive (to say nothing of overwhelming)” (ebd.) – gerade
deswegen sei jedoch eine gewisse Vorsicht geboten. Um die Potenziale der neuen Me-
thoden zu heben, müssen Medien- und Kommunikationswissenschaftler*innen Wege
erkunden, die mit ihnen einhergehenden vielgestaltigen Herausforderungen zu bewäl-

1.

von Nordheim et al. · Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität

81

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


tigen – etwa die Speicherung und Verarbeitung großer Datenmengen oder die Weiter-
entwicklung und Adaption algorithmischer Methoden.

Um einer Lösung dieser Probleme näherzukommen, möchten wir in diesem Aufsatz
ein Modell interdisziplinärer Zusammenarbeit zwischen Kommunikationswissenschaft
und Methodenwissenschaft (hier: Statistik) vorstellen. Insbesondere soll dabei die Frage
im Mittelpunkt stehen, wie sich die Kollaboration grundverschiedener Disziplinen über
einen längeren Zeitraum verstetigen lässt. Der iterativen Entwicklung von Forschungs-
software, die die fachübergreifende Zusammenarbeit strukturiert, kann hierbei eine zen-
trale Rolle zukommen – sie ist die Grundlage der hier beschriebenen praktischen Inter-
disziplinarität, ihr Bindeglied. In gemeinsamen Forschungsprojekten werden gleichzei-
tig Iterationen der Software-Entwicklung vorgenommen, die sich in neuen Features und
Versionen manifestieren. Dabei wird deutlich, wie Software-Entwicklung die kontinu-
ierliche interdisziplinäre Praxis stimulieren kann: Insbesondere die Prinzipien der agilen
Entwicklung von Programmen strukturieren die Zusammenarbeit und fungieren als
zentrales Bindeglied der interdisziplinären Forschungsarbeit.

Das folgende Kapitel stellt die Prinzipien des interdisziplinären Arbeitens und der
agilen Softwareentwicklung dar. In einem zweiten Schritt wird das daraus abgeleitete
Konzept der agilen Softwareentwicklung als interdisziplinäre Forschungspraxis in einer
konkreten Umsetzung beschrieben: Das Fallbeispiel des Dortmund Center für daten-
basierte Medien-Analyse (DoCMA) zeigt, wie sich jahrelange fächerübergreifende Zu-
sammenarbeit entlang kontinuierlicher Softwareentwicklung gestalten lässt. DoCMA
wurde 2014 unter Beteiligung von Professoren des Instituts für Journalistik sowie der
Fakultäten Statistik und Informatik der TU Dortmund gegründet. Am Anfang der Kol-
laboration stand das gemeinsame Ziel, massenmediale Berichterstattung mittels Text-
Mining-Verfahren auszuwerten. In gemeinsamen Forschungsvorhaben entstanden Soft-
ware-Funktionalitäten, aus denen wiederum in der längerfristigen Kooperation das ge-
meinsame Projekt einer für Dritte nutzbaren Forschungssoftware hervorging (das R-
Paket tosca). Diese Art der Zusammenarbeit wird im vorliegenden Paper systematisch
als interdisziplinäre Forschungspraxis vorgestellt. Forschungsprobleme und ‑projekte
werden skizziert, außerdem ihre interdisziplinäre Dimension und ihr jeweiliger Beitrag
zum gemeinsamen interdisziplinären Software-Produkt.

Softwareentwicklung als interdisziplinäre Forschungspraxis

Im folgenden Kapitel sollen zunächst Begriffe umrissen werden, die jeweils bestimmte
Konstellationen der fächerübergreifenden Forschung beschreiben: Parallele werden von
integrativen Ansätzen unterschieden; Modelle, in denen Disziplinen gleichberechtigt
kooperieren, werden von solchen abgegrenzt, in denen sich Fächer dem wissenschaftli-
chen Fortschritt anderer unterordnen. Neben diesen Formen fächerübergreifender For-
schungspraxis und ihren Charakteristika werden bestimmte Elemente beschrieben, die
für die Organisation der Zusammenarbeit von zentraler Bedeutung sind, etwa der Um-
gang und die Verteilung von Wissen, die gemeinsame Kommunikation etc. Diese allge-
meine Annäherung an interdisziplinäre Formen setzt den Rahmen für den zweiten Teil
des Kapitels, in dem die Prinzipien agiler Softwareentwicklung umrissen werden, um sie
schließlich als Modus interdisziplinärer Forschungspraxis zu beschreiben.

Formen, Charakteristika und Elemente fächerübergreifender Forschungspraxis

Terminologisch ist grundsätzlich zwischen multidisziplinärer und interdisziplinärer
Forschung zu unterscheiden. Während erstere vor allem komplementäre, aber separate

2.

2.1

M&K 69. Jahrgang 1/2021

82

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Beiträge der beteiligten Fächer zur Beantwortung gemeinsamer Fragestellungen umfasst,
zielt letztere auf die systematische Integration von Ideen: „There is a requirement for a
form of collaboration that leads to the design of new types of complex empirical ap-
proaches along with integrated analyses combining methods and concepts from parti-
cipating disciplines“ (Fiore, 2008, S. 254). Ähnlich definieren Defila u. a. Interdiszipli-
narität als „integrationsorientiertes Zusammenwirken von Personen aus mindestens
zwei Disziplinen im Hinblick auf gemeinsame Ziele und Ergebnisse, indem die diszi-
plinären Sichtweisen zu einer Gesamtsicht zusammengeführt werden“ (Defila u. a., 2008,
S. 12).

Analog zu der Unterscheidung zwischen multi- und interdisziplinärer Forschung
differenzieren Barry u. a. (2008, S. 28) zwischen verschiedenen Modi der Forschungs-
zusammenarbeit (die sie jedoch insgesamt unter den Begriff der Interdisziplinarität sub-
sumieren): Im „subordination-service mode“ ordnet sich eine Service-Disziplin der
Haupt-Disziplin unter, arbeitet ihr zu und kompensiert das Fehlen von Kompetenzen
oder Perspektiven (ebd., S. 29). Dabei sind Disziplinen keineswegs auf eine Rolle abon-
niert; in verschiedenen Konstellationen sind unterschiedliche Funktionszuweisungen
möglich. Sozialwissenschaften können sich beispielsweise als Haupt-Disziplin mit me-
thodisch ausgerichteten Fächern zusammentun, aber auch als Service-Disziplin in Ko-
operation mit naturwissenschaftlichen Disziplinen zur Analyse ansonsten unberück-
sichtigter „sozialer Faktoren“ (ebd.) beitragen.

Im Gegensatz dazu stehe der „integrative-synthesis mode“, der beidseitige episte-
mische Transformation im oben beschriebenen wahrhaft interdisziplinären Sinne be-
deute (ebd., S. 28). Beide Modi träten nicht exklusiv, sondern in der Praxis zumeist pa-
rallel auf. Der Katalysator beim Schritt von multi- zu interdisziplinären Teams ist laut
Fiore die zunehmende Komplexität der Probleme, die die Forscher*innen gemeinsam
zu adressieren versuchen (Fiore, 2008, S. 254). Barry u. a. betonen entsprechend, dass
insbesondere integrativ-synthetische Forschung das Potenzial habe, Innovationen her-
vorzubringen – also Erneuerungen, die „protend and open up the space of future pos-
sibilities“ (Barry u. a., 2008, S. 26).

Zentral bei der interdisziplinären Arbeit ist die effektive Verteilung von Wissen, also
die Unterscheidung zwischen Expertenwissen und generalisiertem Wissen (Porter u. a.,
2006, S. 192), das gegenseitiges Verständnis und überhaupt erst Kommunikation ermög-
licht. Die Pflege von „partially overlapping knowledge“ (Fiore, 2008, S. 256) manifestiert
sich in einer gemeinsamen Sprache, in der sich die Interdisziplinarität als Hybrid der
Technolekte, also der Fachsprachen der einzelnen Disziplinen, spiegelt. Schon 1944 be-
schrieben Brozek und Keys die fächerübergreifende Kollaboration dementsprechend als
„social art“ (Brozek und Keys, 1944, S. 512), die von den Beteiligten Geduld erfordere.
In ihrem kanonischen Science-Aufsatz zu den allgemeinen Aspekten interdisziplinärer
Arbeit betonten sie, dass es für die fächerübergreifende Kollaboration nicht nur „ab-
stract, theoretical intelligence (and, frequently, manipulative skill) but also ‘social intel-
ligence’“ (ebd.) brauche.

In einem Forschungsüberblick stellt Fiore fest, dass erfolgreiche fächerübergreifende
Kollaboration mit Konzepten aus der Teamwork-Forschung korrespondiere: Rollen-
differenzierung, komplementäres Wissen und gemeinsame mentale Modelle sind ent-
scheidende Erfolgsfaktoren. Förderlich für diese Qualitäten sei insbesondere der Aufbau
von interpositionalem Wissen, das durch dynamische Funktionszirkulation innerhalb
des Teams entstehe. Salas u. a. (2007, S. 474) beschreiben diese Technik als „cross-trai-
ning“: Durch die Positionsrotation entwickeln die Team-Mitglieder ein Verständnis für
das Wissen und die Fähigkeiten, die nötig sind, um die Aufgaben ihrer Kollegen auszu-

von Nordheim et al. · Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität

83

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


führen. Interpositionales Wissen fördere das gegenseitige Verständnis innerhalb des
Teams und biete die Möglichkeit, cross-disziplinäre Perspektiven auf gemeinsame For-
schungsprobleme zu entwickeln (Fiore, 2008, S. 268). Verwandt damit ist das Konzept
der shared leadership, also die wechselnde Übertragung von Führungsaufgaben inner-
halb des Teams „in order to take advantage of member strengths (e.g., knowledge, skills,
attitudes, perspectives, contacts, and time available) as dictated by either environmental
demands or the development stage of the team“ (Burke u. a., 2003, S. 105).

Gleichzeitig zeichnet sich interdisziplinäre Zusammenarbeit durch die Logik der
Verantwortlichkeit aus („logic of accountability“, siehe Barry u. a., 2008, S. 31). Die Idee
dahinter ist, dass die Zusammenarbeit mit fremden Fächern zahlreiche Anlässe der ge-
genseitigen Erklärung (oder auch Rechenschaft) erzeugt – diese Irritation kann zu einer
Steigerung der Qualität interdisziplinärer Forschung beitragen. Interdisziplinäres Ar-
beiten katalysiere auf diese Weise Lernprozesse, Wissenstransfer und die Aneignung und
Entwicklung von Fähigkeiten. Der Aufbau einer interdisziplinären Forschungsinfra-
struktur ist in diesem Sinne sowohl ein Investment in materielle Ressourcen als auch in
Humankapital (Woolley u. a., 2015, S. 568).

Die Konstellationen interdisziplinärer Zusammenarbeit sind in mehrfacher Hinsicht
dynamisch: Hierarchien orientieren sich an wechselnden Fragestellungen – die Disziplin,
die sich in einem Projekt unterordnet, übernimmt in anderen Phasen den Lead. Mit dieser
integrativen Form der Interdisziplinarität gehen indes hohe Anforderungen einher. Un-
ter die Oberbegriffe der Teamfähigkeit oder der sozialen Intelligenz lassen sich vor allem
drei zentrale Herausforderungen fächerübergreifender Kollaboration zusammenfassen:
(1) ein effizientes Gleichgewicht zwischen disziplinärem Expertenwissen und allgemei-
nem, intersektionalem Wissen; (2) ein hohes Maß an gegenseitigem Verständnis für die
Aufgaben und Arbeitsabläufe anderer Gruppenmitglieder, also die Pflege von interpo-
sitionalem Wissen; (3) eine Kultur geteilter Verantwortlichkeit auf Basis flacher Hier-
archien und konstanter Kommunikation zwischen allen Beteiligten. Eine interdiszipli-
näre Infrastruktur, also der organisationale Rahmen der Kollaboration, muss auf diese
Faktoren ausgerichtet sein.

Das beschriebene Ideal interdisziplinärer Zusammenarbeit ist in der Praxis allerdings
nicht ad hoc umzusetzen und ist regelmäßig das Resultat jahrelanger Kooperation. In-
terdisziplinäre Arbeit muss also auch als Entwicklung betrachtet werden, die nicht im
Idealzustand beginnt und in ihren Anfängen sogar an idealisierten Ansprüchen scheitern
könnte. Es ist daher zentral, auch den – in der Forschung eher wenig beachteten – Prozess
der interdisziplinären Annäherung zu beschreiben und Anforderungen zu definieren,
die für das jeweilige Entwicklungsstadium angemessen sind. Beispielsweise ist es denk-
bar, dass interdisziplinäre Zusammenarbeit zunächst in Projekten organisiert wird, die
bewusst Service- und Haupt-Disziplin definieren und erst später eine sukzessive Inte-
gration anstreben. Gleichzeitig legitimiert sich die Kollaboration erst durch wissen-
schaftlichen Output – diese eher kurzfristigen Ansprüche bilden ein Spannungsfeld mit
den langfristigen Perspektiven, etwa dem Aufbau gemeinsamer Ressourcen, dem Finden
einer gemeinsamen Sprache etc. – die Organisation interdisziplinärer Zusammenarbeit
muss beide zunächst konfligierenden Modi und die damit assoziierten Geschwindigkei-
ten berücksichtigen.

An die Frage danach, wie dieser Weg zunehmender Integration entlang eines ge-
meinsamen, projektübergreifenden Zwecks zu gestalten ist, knüpfen die folgenden
Überlegungen einer Kollaboration an, in deren Fokus die agile Entwicklung gemeinsa-
mer Forschungssoftware steht.

M&K 69. Jahrgang 1/2021

84

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Agile Software-Entwicklung als Modus der Interdisziplinarität

Agilität als Philosophie der Software-Entwicklung basiert auf adaptiven Prozessen und
evolutionärer Entwicklung (Beck u. a., 2001). Die agile Entwicklung von Software er-
möglicht, mittels inkrementeller Arbeitskadenzen („Sprints“) auf Unvorhersehbarkei-
ten im Produktionsprozess zu reagieren (Yadav u. a., 2015, S. 542). Dies ist auch ihr
entscheidender Vorteil gegenüber Methoden, die den Anspruch verfolgen, vor Beginn
der Entwicklung den gesamten Entwicklungsprozess zu determinieren (und sich da-
durch wiederum durch verlässlichere Planbarkeit auszeichnen).

Die agile Planung, Implementierung und das Testen neuer Code-Teile finden in sich
ständig wiederholenden Kreisläufen statt, die jeweils eine neue Iteration des schnell ar-
beitsfähigen Software-Produkts erzeugen („Rapid Prototyping“): „The key point is that
agile approaches plan features, not tasks“ (Highsmith und Cockburn, 2001, S. 121). Ite-
rationen können in diesem Sinne auch als kleine, in sich abgeschlossene Projekte be-
schrieben werden (Yadav u. a. bezeichnen dieses Vorgehen als „mini-waterfalls“, Yadav
u. a., 2015, S. 543), die aus fünf Aktivitäten bestehen (Biju, 2008, S. 98): Am Anfang steht
die Planung, am Ende die Integration – dazwischen inkrementell-iteratives Design, Co-
ding und Testen.

Zum Zweck wiederkehrender Nachjustierung und Qualitätssicherung werden an
verschiedenen Stellen des Prozesses unterschiedliche Stakeholder (Kunden, Entwickler
und Programmierer, Analysten und Tester, Projekt-Manager und Team-Leader) invol-
viert (Galkina und Yachenko, 2014, S. 37). Die Behebung von Fehlern („Bugs“) findet
dementsprechend fortlaufend statt und nicht nur am Ende des Prozesses.

Zentrale Anforderung an die Teams, die agile Software-Entwicklung betreiben, ist
Flexibilität – sie zeichnen sich zudem durch flache Hierarchien und Selbstorganisation
aus (Kakar, 2017). In den verschiedenen Iterationen können und sollen die Team-Mit-
glieder verschiedene Funktionen übernehmen; während einer Iteration jedoch soll die
Rollenzuordnung unverändert bleiben (Yadav u. a., 2015, S. 543). Diese Dynamik er-
fordert ständige Kommunikation (Galkina und Yachenko, 2014, S. 37), vor allem Über-
gaben und eine extensive Dokumentation des Codes (Yadav u. a., 2015, S. 543).

Überträgt man die Prinzipien der Agilität auf die interdisziplinäre Entwicklung von
Forschungssoftware, lassen sich zwei Ebenen der Zusammenarbeit nach ihren verschie-
denen Zeithorizonten unterscheiden: auf der einen werden zeitlich begrenzte Projekte
umgesetzt, auf der anderen die längerfristige Zusammenarbeit organisiert:

Auf Ebene eins gibt es zunächst die konkreten Forschungsprojekte mit klar verteilten
Rollen und fixen Hierarchien. In der Sprache der agilen Softwareentwicklung lassen sich
diese zeitlich klar definierten Projekte als Iterationen bezeichnen (Abbildung 1 be-
schreibt den Zyklus einer solchen Iteration). Die einzelne Iteration ist damit ein für sich
zu betrachtendes, abgeschlossenes Forschungsprojekt, dessen Output ein neues Feature,
also eine neue Funktionalität der Software, darstellt. Der Ausgangspunkt jeder dieser
Iterationen ist die Erkenntnis, dass die durchzuführenden Analysen später wiederholt
und in ähnlicher Weise durchgeführt werden – die Automatisierung in Form von Soft-
ware steigert so langfristig die Effizienz der Analysen (siehe forschungspraktische Bei-
spiele in Folgekapiteln).

Die oben genannten Aktivitäten in jeder Iteration lassen sich als Phasen eines For-
schungsprojekts beschreiben (siehe Abbildung 1), bei dem die Operationalisierung der
Forschungsfrage mit der Entwicklung eines neuen Software-Features einhergeht, also
mit dem Coding (Umsetzung in Programmcode), der praktischen Erprobung (Testen/
Durchführung) und letztendlich der Implementierung eines neuen Features, also einer
Erweiterung der Softwarefunktionalität. Der folgende Feedback- und Publikationspro-

2.2

von Nordheim et al. · Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität

85

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


zess (bspw. im Rahmen eines Review-Verfahrens) entspricht der Überprüfung der Soft-
ware durch Dritte.

Die Iteration trägt damit gleichzeitig zu einer übergeordneten Entwicklung bei, in-
dem sie die Software auf einer zweiten Ebene als langfristiges, gemeinsames Projekt
weiterentwickelt. Anknüpfend an die Iteration in Abbildung 1 ließe sich diese über das
Einzelprojekt hinausweisende Entwicklung als (aufwärtsgerichtete) Spirale aus aufein-
anderfolgenden Iterationen darstellen.

Insbesondere auf dieser zweiten Ebene ist interdisziplinäres Arbeiten im integrativ-
synthetischen Sinn möglich. Das gemeinsame Projekt ermöglicht und katalysiert den
Aufbau von intersektionalem und interpositionalem Wissen. Die Investition in gemein-
same Ressourcen und der Aufbau einer interdisziplinären Forschungsinfrastruktur er-
zeugen geteiltes Wissen. Die in verschiedenen Rollen- und Hierarchiekonstellationen
durchgeführten Iterationen ermöglichen kontinuierliches Cross-Training und shared
leadership. Die Aktivität der Softwareentwicklung führt eine dritte Sprache ein, die über
den Code und die Dokumentation zur interdisziplinären lingua franca wird und so zur
Integration beiträgt. Die Orientierung auf ein gemeinsames Produkt schafft eine Kultur
der gemeinsamen Verantwortlichkeit gegenüber Teammitgliedern und externen Testern
(bspw. Reviewer*innen) und Anwender*innen.

In den folgenden Abschnitten sollen die zwei vorgestellten Konzepte – Interdiszi-
plinarität und Agilität – am Beispiel der Kooperation zwischen Kommunikationswis-
senschaft und Statistik (verallgemeinert: Anwender- und Methodendisziplin) zusam-
mengeführt werden. Hierdurch soll deutlich werden, dass die Prinzipien der agilen Soft-
wareentwicklung prädestiniert sind, die Arbeit fächerübergreifender Teams über lange
Zeiträume zu strukturieren. Es werden hierbei verschiedene Stufen interdisziplinärer
Zusammenarbeit beschrieben, zunächst sehr konkret in ihrer möglichen Operationali-

Abbildung 1: Die Iteration der Forschungssoftware-Entwicklung als Spezialfall der
agilen Softwareentwicklung

Anm.: Jeder Kreislauf stellt auch ein Forschungsprojekt dar. Die jeweils durchzuführenden Ana-
lysen werden als Programmcode umgesetzt und tragen dadurch gleichzeitig als neue Funktionali-
täten – oder Features – zur Entwicklung der gemeinsamen Software bei (eigene Darstellung).

M&K 69. Jahrgang 1/2021

86

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


sierung, um von dort aus wieder verallgemeinerbare Rückschlüsse bezüglich der zuvor
formulierten Modelle agiler Interdisziplinarität zu ziehen.

Software-Entwicklung als interdisziplinäre Praxis am Beispiel des Dortmund
Center für datenbasierte Medien-Analyse (DoCMA)

Infrastruktur

Um die vorangegangenen theoretischen Erwägungen konkret zu exemplifizieren, greifen
die Autor*innen auf ihre Erfahrungen im Kontext des Dortmund Center für datenba-
sierte Medien-Analyse (kurz: DoCMA) zurück. DoCMA ist deswegen als Fallbeispiel
relevant, da Struktur und Organisation der interdisziplinären Zusammenarbeit hier auf
die Erfordernisse der agilen Entwicklung offener Forschungssoftware ausgerichtet wur-
den.

Im Folgenden soll erklärt werden, was dies im Einzelnen für den Aufbau einer in-
terdisziplinären Forschungsinfrastruktur bedeutet und wie diese (1) intersektionales und
interpositionales Wissensmanagement strukturiert und (2) flache Hierarchien bezie-
hungsweise shared leadership organisiert.

Intersektionales und interpositionales Wissensmanagement

Zentrale Grundlage für den Aufbau des gemeinsamen, generalisierten Wissens (Porter
u. a., 2006) ist die Ausbildung einer gemeinsamen Sprache sowie die Etablierung ge-
meinsamer Kommunikationsmedien und ‑formen. Sie sind die Basis für ein hohes Maß
an gegenseitigem Verständnis für die Aufgaben und Arbeitsabläufe anderer Gruppen-
mitglieder.

Tatsächlich lassen sich die Erfordernisse gemeinsamer Softwareprojekte als Aus-
gangspunkt der Formalisierung eigener technolektischer Codes nutzen. So werden bei-
spielsweise an Datenformate (Input und Output der Software) sowohl technische als
auch inhaltliche Anforderungen formuliert – sie sind damit ausgehandelte, interdiszi-
plinäre Sprache, die zum gegenseitigen Verständnis und damit zur Ausprägung des in-
tersektionalen Wissens beitragen. So müssen beispielsweise Textdaten aus verschiedenen
Quellen in ein einheitliches Format überführt werden, um von der Software verarbeitet
zu werden. Dieses Zielformat definiert unter anderem, welche Metadaten unter welchen
Bezeichnungen in welcher Objektstruktur abgelegt werden, und ist damit eine Konven-
tion, die auf inhaltlichen und technischen Erwägungen basiert.

In der Text-Mining-Praxis lassen sich diese Prozesse unter dem Begriff des For-
schungsdatenmanagements subsumieren. Korpora können in standardisierter Form auf
einer gemeinsamen zentralen Server-Infrastruktur abgelegt werden. Das ermöglicht, die
ursprünglich heterogenen Korpora (zumeist verschieden strukturierte HTML- und
XML-Formate) in eine einheitliche Form zu bringen, die für die Anwendung von stan-
dardisierten Funktionen zur Analyse vonnöten ist. Durch die interne Bereitstellung und
Archivierung der Korpora auf einem Datenserver ist neben der Reproduzierbarkeit von
Ergebnissen aus Forschungsprojekten auch eine ständige Verfügbarkeit der Daten für
alle Beteiligten gesichert.

Der Ausgangspunkt der Software-Entwicklung ist die Erkenntnis, dass Analysen
wiederholt und in ähnlicher Weise durchgeführt werden. Neben dem Datenformat ent-
steht hier als nächste Stufe gemeinsamer Sprachentwicklung die Programm-Funktion,
als verallgemeinerte Version des konkreten Analyseschritts. Die Formulierung dieser
Funktion muss sich wiederum den Konventionen einer Programmiersprache unterord-

3.

3.1

3.1.1

von Nordheim et al. · Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität

87

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


nen, die so ebenfalls zum gemeinsamen Medium interdisziplinärer Arbeit wird. For-
schungspraktisch bietet die Implementierung als Softwarepaket in eine bestehende Pro-
grammiersprache den Vorteil, dass sie deutlich ressourcensparender und damit leichter
forschungsaktuell zu halten ist als beispielsweise eine eigenständige Software mit grafi-
scher Oberfläche.

Die im Rahmen von DoCMA erstellte Software wird in R (R Core Team, 2020)
programmiert. R ist neben Python eine der am weitesten verbreiteten Sprachen für Da-
tenanalysen. Beide Sprachen enthalten bereits für die Kommunikationswissenschaft
nützliche Programmpakete (weit verbreitet ist beispielsweise das R-Paket quanteda, Be-
noit u. a., 2018). Neben der Voraussetzung, dass für die Benutzung von R-Paketen
grundlegende Kenntnisse der Sprache benötigt werden, hat die Software-Entwicklung
als R-Paket Vorteile in Bezug auf Nachhaltigkeit, Validierung, Anschlussfähigkeit und
Kontribution, die bei der Entwicklung von Forschungssoftware unabdingbar sind. Zu
jedem R-Paket gehört beispielsweise ein Handbuch, in dem jede Funktion in einer stan-
dardisierten Form dokumentiert ist. Diese Dokumentation kann ebenso aus dem lau-
fenden Programm heraus für einzelne Funktionen aufgerufen werden und liefert eine
schnelle Hilfestellung für alle Anwender*innen. Als ausführlichere Anleitung werden
R-Pakete außerdem in sogenannten Vignetten beschrieben. Da sich die Software an die
interdisziplinär ausgerichtete R-Community richtet, muss auch für Handbuch und Vi-
gnette eine Sprache gefunden werden (samt veranschaulichenden Beispielen, Demo-Da-
tensätzen etc.), die die einzelnen Fachterminologien überwindet und sowohl für An-
wender aus Geistes- und Sozialwissenschaften als auch für Interessenten aus den Me-
thodenwissenschaften angemessen ist.

Flache Hierarchien und gemeinsame Verantwortung

Flache Hierarchien sind die Grundlage für eine Kultur gemeinsamer Verantwortlichkeit.
Entscheidend für die Entwicklung dieser Kultur sind indes als Gegenpart verschiedene
interne und externe Instanzen der Rechenschaft, gegenüber denen verschiedene Betei-
ligte verantwortlich zeichnen. Die (agile) Softwareentwicklung geht mit verschiedenen
Rechenschaftspflichten einher, die die Etablierung geteilter Verantwortung oder shared
leadership fördern.

Im Folgenden werden die internen und externen Instanzen beschrieben, gegenüber
denen sich die DoCMA-Team-Mitglieder zur Rechenschaft verpflichten. Es wird deut-
lich, dass diese die interdisziplinäre Zusammenarbeit durch spezifische Affordanzen
strukturieren. Sie erzeugen die Notwendigkeit für Aushandlungen und Vereinbarungen,
letztlich für eine Kommunikation über Kommunikation. Es entsteht auf diesem Weg
eine gemeinsame Sprache, die Funktionen und Verantwortlichkeiten gegenüber ver-
schiedenen Rechenschaftsinstanzen so definiert, dass sie intersektional verstanden und
interpositional ausgefüllt werden können.

Ein R-Paket sollte beispielsweise so programmiert werden, dass Funktionalitäten
automatisiert intern überprüft werden. Das heißt, dass Tests, die den vollen Funktions-
umfang des Pakets abdecken, schon als wichtiger Bestandteil der iterativ-agilen Pro-
grammierung selbst vorgesehen sind (vgl. Abbildung 1). In R gibt es eine Auswahl an
Paketen, die beim Erstellen solcher Tests unterstützen (Wickham, 2011; Lang, 2017).
Durch die netzwerkartige Struktur der voneinander abhängigen Pakete (die meisten R-
Pakete integrieren Funktionen anderer Pakete), weisen diese Tests auch auf Funktions-
änderungen in Programmcodes Dritter hin – die „Depedencies“ der Software entspre-
chen also einem Netz gegenseitiger Verantwortlichkeiten.

3.1.2

M&K 69. Jahrgang 1/2021

88

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


R-Pakete, die im offiziellen Archiv CRAN (Comprehensive R Archive Network,
https://cran.r-project.org/) gelistet werden, müssen des Weiteren grundlegende Eigen-
schaften erfüllen (https://cran.r-project.org/web/packages/policies.html), die von fach-
kundigen Mitarbeiter*innen des R-Core-Teams vor einer initialen Veröffentlichung und
vor jedem folgenden Update des Pakets kontrolliert werden. Jedes Paket benötigt haupt-
verantwortliche Autor*innen, die für die Wartung des Pakets zuständig sind. Diese Ver-
antwortung gegenüber der externen Instanz CRAN spiegelt sich vor allem in einer all-
gemeinen Erreichbarkeit, die eine zeitnahe Beantwortung von Fragen bei Problemen
gewährleistet sowie eine Weiterleitung von Schwächen oder Fehlern des Pakets an die
entsprechend zuständigen Programmierer*innen. Bei der Erstveröffentlichung eines Pa-
ketes muss eine Open-Source-Lizenz gewählt werden, unter der das Paket veröffentlicht
wird. Um fehlerhafter Programmierung vorzubeugen, werden R-Pakete auf CRAN also
nicht nur als Binärdateien, sondern auch als komplett einsehbarer Quellcode bereitge-
stellt. R-Pakete sind zudem in der Regel plattformunabhängig anwendbar, ein Paket soll
aber mindestens unter zwei der gängigen Plattformen für R (Windows, Linux, MacOS)
lauffähig sein. Diese Offenheit verschafft unabhängigen Wissenschaftler*innen die Mög-
lichkeit zu schneller Intervention bei ungewolltem Verhalten oder bei fehlerhaften Be-
rechnungen durch die Software.

Qualitätsmerkmale für nachhaltige Softwareentwicklung sind unter anderen die ein-
fache Möglichkeit des Austausches über die Implementation (Community), des Meldens
von Fehlern und von Rückmeldungen und Wünschen zu zukünftiger Funktionalität
(Supportability) sowie die einfache Integration fremden Programmcodes in bestehende
Software (Interoperability) (Jackson u. a., 2011). Diese Merkmale spiegeln sich im Design
Git-basierter Plattformen (wie zum Beispiel GitHub), die als Repositorium von Beta-
Versionen, Code-Archiv, als soziales Medium und Team-Plattform genutzt werden
können und eine weitere Vernetzung mit Projekten und Entwickler*innen ermöglichen.

Stufen interdisziplinärer Software-Entwicklung

Im Folgenden sollen idealtypisch drei Stufen der längerfristigen Evolution (oder inte-
grativen Annäherung) interdisziplinärer Forschungssoftware-Entwicklung beschrieben
werden: die Phasen des Utilisierens, des Adaptierens sowie eine Phase der Entwicklung.
Die Phasen lassen sich als Pyramide darstellen, die die zunehmenden Ansprüche an die
interdisziplinäre Zusammenarbeit, aber auch ihre zunehmende Innovationsleistung vi-
sualisiert (siehe Abbildung 2): Während es auf der ersten Stufe (Utilisieren) vor allem
darum geht, Funktionalitäten bestehender Software zu kombinieren und so für eigene
Fragestellungen nutzbar zu machen, geht es im zweiten Schritt (Adaptieren) darum,
Programmcode anzupassen und zu ergänzen. Auf der letzten Stufe (Entwickeln) schließ-
lich werden Fragestellungen als eigenständige, neue Software-Features operationalisiert.

Entsprechend dem oben beschriebenen Bild der aufwärtsgerichteten Spirale wird die
Entwicklung von Stufe eins bis drei durch Iterationen vorangetrieben, an deren Ende
der Software Features hinzugefügt werden. Sie entsprechen einzelnen Forschungspro-
jekten, die im Folgenden exemplarisch beschrieben werden.

Zu Beginn einer interdisziplinären Zusammenarbeit zwischen Anwender- und Me-
thodendisziplinen ist es naheliegend, zunächst das bestehende Methoden- und Soft-
warerepertoire mit möglichen Fragestellungen abzugleichen, also der Frage nachzuge-
hen: Für welche Art von Untersuchungen gibt es bereits Methoden beziehungsweise
Software (utilisieren) oder lassen sich Methoden oder Software anpassen (adaptieren)?
Wie in Abbildung 2 dargestellt, bildet die Stufe des Utilisierens das Fundament der An-
forderungspyramide. Diese Anfangsphase der interdisziplinären Zusammenarbeit

3.2

von Nordheim et al. · Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität

89

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


zeichnet sich durch die Implementierung bekannter Methoden aus und stellt im Allge-
meinen durch den hohen Aufwand und zunächst geringen Mehrwert für beide Parteien
eine Herausforderung für die weitere Zusammenarbeit dar. Die frühzeitige Implemen-
tierung sich wiederholender Analyseschritte als Forschungssoftware (rapid prototyp-
ing) verringert jedoch den Aufwand späterer Analysen und schafft damit Kapazitäten
für methodenwissenschaftliche Forschung (s. u.).

Das R-Paket tosca (Tools for Statistical Content Analysis, Koppers u. a., 2020) vereint
die im Rahmen von DoCMA geschriebenen Funktionen. Auf der Ebene des Utilisierens
sind, im Rahmen konkreter Forschungsprojekte, Features für das Einlesen von Daten,
die Vorverarbeitung und das Anwenden des Topic-Modells Latent Dirichlet Allocati-
on (kurz: LDA, Blei u. a., 2003) entstanden. Topic-Modeling-Verfahren wie LDA er-
möglichen es, latente thematische Zusammenhänge in großen Textkorpora sichtbar zu
machen. Bei der LDA werden diese Zusammenhänge als Topics modelliert, als Wahr-
scheinlichkeitsverteilungen über alle Wörter. Zur Interpretation der Modelle bedarf es
Visualisierungen, die dem Paket bedarfsorientiert hinzugefügt wurden. Parallel wurden
verschiedene Validierungsmethoden für LDA implementiert (Maier u. a., 2018; Song
u. a., 2020): tosca ermöglicht Validierung mittels intruder words und topics (Chang u. a.,
2009) sowie topic coherence (Mimno u. a., 2011).

Die Implementierung wurde dabei möglichst generisch vorgenommen, sodass die
Funktionen nicht nur bei der konkreten Anwendung, sondern auch für verallgemeinerte
Probleme angewandt werden können. In von Nordheim, Boczek, Koppers und Erd-
mann (2018) wurde bereits das Grundgerüst der Datenvorverarbeitung genutzt, so dass
von Nordheim, Boczek und Koppers (2018) auf diese fundamentalen Funktionen auf-
bauen konnten. Insbesondere das Bereitstellen von Funktionalitäten zur Erschließung
neuer Datenquellen wird zumeist durch neue Projektideen motiviert. Um die Analysen
für Boczek und Koppers (2020) durchführen zu können, musste tosca etwa um eine

Abbildung 2: Anforderungspyramide interdisziplinärer Software-Entwicklung

Anm.: Mit den drei Stufen der Entwicklung interdisziplinärer Arbeit sind jeweils unterschiedliche
Anforderungen und Innovationspotenziale assoziiert: Auf den ersten Stufen geht es um das An-
wenden und Anpassen bestehender Forschungssoftware, auf der dritten Stufe um die Entwicklung
neuer Features (eigene Darstellung).

M&K 69. Jahrgang 1/2021

90

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Funktion zum Einlesen von WhatsApp-Daten erweitert werden. Die vollständige Pipe-
line des Pakets konnte zusätzlich in mehreren Abschlussarbeiten und Dissertationen
(Boczek, 2019; von Nordheim, 2019) im Bereich der Journalistik genutzt werden, wo-
durch Absolvent*innen befähigt wurden, eigene Datenprojekte durchzuführen.

Der Einsatz der Software im Bereich der Lehre ermöglicht insbesondere Studieren-
den der Journalistik, ohne große Programmierkenntnisse nach kurzer Einführung eigene
Datenanalysen durchzuführen. Die Nutzung von tosca außerhalb der eigenen For-
schungsgruppe wird durch die Anbindung an andere R-Pakete, wie zum Beispiel an die
für quanteda (Benoit u. a., 2018) oder tidyverse (Wickham, 2019) gängigen Datenstruk-
turen, erleichtert.

Eine kontinuierliche und nachhaltige Kooperation wird wahrscheinlicher, wenn die
beteiligten Akteure gegenseitigen Nutzen aus ihr ziehen, also möglichst gleichberechtigt
zusammenarbeiten. Dies würde bedeuten, den einseitigen Subordination-Service-Mo-
dus zugunsten einer integrativ-synthetischen Zusammenarbeit zu überwinden. Dieser
Modus entspricht im genannten Beispiel der Stufe der integrativen Software-Entwick-
lung; hierbei ist die wissenschaftliche Innovationsleistung (also der Erkenntnisfort-
schritt) zwischen den Disziplinen quasi gleich verteilt. Die Zusammenarbeit erzeugt auf
dieser Stufe Erkenntnisse, die in beiden Disziplinen wissenschaftlich verwertbar sind.

Die Organisation dieser Form von gleichberechtigter Interdisziplinarität ist beson-
ders komplex, da schon die Formulierung synergetisch zu bearbeitender Fragestellungen
ein hohes Maß an gegenseitigem Verständnis erfordert. Wie durch die folgenden Bei-
spiele klar wird, entsteht dieses Verständnis eben mit der Erfahrung wiederholter, ähn-
lich gelagerter Projekte und der damit verbundenen, iterativen Optimierung von Pro-
zessen. So entstehen Fragestellungen auf der Ebene der Entwicklung vor allem aus der
Forschungspraxis und sind damit zumeist methodischer Natur. Wiederholt auftretende
Forschungsdilemmata werden zum Ausgangspunkt gemeinsamer Methodenentwick-
lungen und neuer Software-Features.

Praxisbeispiel 1: Effizientes Sampling

Ein Beispiel eines solchen Dilemmas aus der DoCMA-Forschungspraxis ist das zeitauf-
wendige Sampling von Artikeln aus einer Grundgesamtheit: Für die Beantwortung einer
Forschungsfrage mit Hilfe von großen Textsammlungen müssen diese oft zu Beginn der
Analyse mittels passender Suchworte auf die relevanten Texte eingeschränkt werden.
Die Validierung solcher Wortfilter ist sehr zeitaufwendig, da eine ausreichend große
Zufallsstichprobe von Codierer*innen betrachtet und bezüglich ihrer Relevanz beurteilt
werden muss. Dieser Aufwand führt in vielen Studien dazu, dass Gütekriterien wie Pre-
cision und Recall nicht berichtet werden (Stryker u. a., 2006). Dieses forschungsprakti-
sche Dilemma erwies sich als fruchtbares interdisziplinäres Problem. Die Entwicklung
eines gewichteten Schätzverfahrens für diesen Anwendungsfall ist eine typische statis-
tische Forschungsfrage. Ein passendes Verfahren wurde entwickelt und als neues Feature
in tosca implementiert.

Praxisbeispiel 2: Reliable LDA

Ein weiteres Beispiel ist die Frage, wie mit der Zufallskomponente von LDA-Topic-
Modellen methodisch umgegangen werden kann. Bei dem probabilistischen Verfahren
können sich die Ergebnisse von unabhängig auf identischen Daten durchgeführten
LDA-Läufen mit gleicher Parametrisierung unterscheiden. Diese Instabilität der LDA
wird in der Literatur nur selten thematisiert (Agrawal u. a., 2018). Im Sinne guter wis-

von Nordheim et al. · Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität

91

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


senschaftlicher Praxis ist die Eigenschaft der Instabilität ein Makel, schränkt sie doch die
Reproduzierbarkeit der Ergebnisse ein. Aus dieser Beobachtung heraus hat sich das Be-
dürfnis nach reliableren Ergebnissen entwickelt. Zwar haben sich sowohl aus dem Be-
reich der Statistik und Informatik (z. B. Mantyla u. a., 2018; Su u. a., 2016; Greene u. a.,
2014; Nguyen u. a., 2014; Stevens u. a., 2012; Newman u. a., 2011; Mimno u. a., 2011) als
auch aus dem Bereich der Kommunikationswissenschaften (z. B. Maier u. a., 2018;
Niekler, 2016; Niekler und Jähnichen, 2012) bereits vereinzelte Forschungsgruppen mit
dem Thema beschäftigt – ein valides generisches Vorgehen stand aber bislang aus.

Der Lösungsansatz für das beschriebene Problem der LDA-Instabilität orientiert
sich an einem klassischen Vorgehen aus der Statistik. Für eine gewählte Parametrisierung
werden eine große Anzahl von LDA-Läufen (typischerweise etwa 100) durchgeführt,
deren Repräsentanten es zu bestimmen gilt. Dabei wird die Ähnlichkeit von zwei Mo-
dellen aus zwei LDA-Läufen dadurch quantifiziert, wie gut sich die zugehörigen Topics
paarweise aus beiden Läufen zuordnen lassen. Schlussendlich bildet das Modell den
Prototyp, das die höchste mittlere paarweise Ähnlichkeit zu allen anderen LDA-Läufen
besitzt. Dieses Vorgehen wird in Rieger u. a. (2020) beschrieben, ist als getestetes R-Paket
auf CRAN und GitHub unter dem Namen ldaPrototype (Rieger, 2020) verfügbar und
bereits in ersten Forschungsprojekten zum Einsatz gekommen (von Nordheim und
Rieger, 2020).

Beide Beispiele verdeutlichen, dass interdisziplinäre Innovationen, d. h. Forschungs-
ergebnisse, die in allen beteiligten Disziplinen einen Erkenntnisfortschritt darstellen, im
Fall von DoCMA erst durch eine vorangegangene Phase der Annäherung möglich wur-
den. Die Phase des Utilisierens und Adaptierens bildete hier also ein notwendiges Fun-
dament, das gegenseitiges Verständnis (um nicht zu sagen: gegenseitige Empathie) för-
derte und so die Identifikation integrativ-synthetischer Fragestellungen ermöglichte.

Zusammenfassung

Ausgangspunkt dieser Arbeit war die Erkenntnis, dass wissenschaftlicher Fortschritt
zunehmend durch interdisziplinäre Verschränkung ermöglicht wird: Impact und Inter-
disziplinarität sind „twin challenges“ (Tsatsou, 2016, S. 655). Insbesondere für die Me-
dien- und Kommunikationswissenschaften ist es vor dem Hintergrund von Digitalisie-
rung und Medienkonvergenz zwingend notwendig, sich Disziplinen zu öffnen, deren
Kerngeschäft die computergestützte Analyse großer Datenmengen ist. Ein möglicher
Weg, diese Annäherung zu motivieren, wurde in dieser Arbeit beschrieben – die agile
Entwicklung von Forschungssoftware. Sie katalysiert interdisziplinäre Zusammenar-
beit, indem sie…
– …zwei Geschwindigkeiten ermöglicht: Die Pyramide interdisziplinärer Anforde-

rungen (Abbildung 2) verdeutlicht, dass die Wahrscheinlichkeit für interdisziplinären
Erkenntnisfortschritt (im integrativ-synthetischen Modus) wächst, wenn hierfür zu-
nächst Grundlagen geschaffen werden. Die Bildung dieses Fundaments lässt sich als
Aufbau einer gemeinsamen Infrastruktur beschreiben. Um die interdisziplinäre Kol-
laboration nicht zu überfordern, sollten auf jeder Stufe realistische Erwartungen an
die gemeinsame Zusammenarbeit formuliert werden – in dieser ersten Phase des Res-
sourcenaufbaus sollten entsprechend Projekte im Mittelpunkt stehen, die sich mit
dem Utilisieren und Adaptieren bestehender Methoden (im Subordination-Service-
Modus) in Form von Software befassen. Iterationen – für sich genommen sowohl
Forschungsprojekte als auch Feature-Entwicklung auf basalem Niveau – führen so
zu kurzfristigen Ergebnissen und zahlen gleichzeitig auf die langfristige Entwicklung
der Zusammenarbeit ein. Diese Annäherung ermöglicht es später, Probleme aus

4.

M&K 69. Jahrgang 1/2021

92

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


einem neuen Blickwinkel zu betrachten, zu definieren und neue Lösungsansätze im
Sinne des integrativ-synthetischen Modus zu entwickeln.
Diese zwei parallelen Prozesse, die der kurzfristigen wissenschaftlichen Verwer-
tungslogik Rechnung tragen (durch output-orientierte Iterationen) und gleichzeitig
langfristige Evolution ermöglichen (durch sukzessiven Ressourcenaufbau), lassen
sich als aufwärtsgerichtete Spirale beschreiben.

– …die Entstehung einer gemeinsamen Sprache fördert: Die kollaborative Entwicklung
von Software schafft Anlässe, sprachliche Konventionen auszuhandeln. Die Pro-
grammiersprache ist gemeinsame Grundlage, aus der das Vokabular des interdiszi-
plinären Teams entsteht; Medien der Softwareentwicklung bilden den Rahmen für
diesen Prozess. Datenformate müssen nach inhaltlichen und technologischen Ge-
sichtspunkten definiert werden, Funktionen müssen als standardisiertes Aggregat
wiederkehrender Analysen formuliert und Dokumentationen für ein interdiszipli-
näres Publikum verfasst werden. All diese Aufgaben fördern die Bildung eines ge-
meinsamen Technolekts. Durch diese Sprachentwicklung entlang der Affordanzen
der Software-Entwicklung entsteht unweigerlich gemeinsames Wissen – die elemen-
tare Grundlage interdisziplinären Arbeitens.

– …eine Logik der Rechenschaft etabliert: Geteilte Verantwortung und flache Hierar-
chien bedingen sich. Dieser Grundsatz erfolgreicher interdisziplinärer Zusammen-
arbeit spiegelt sich bei der Entwicklung von Open-Source-Software in verschiedenen
Konstellationen der Accountability: Die Programmierer*innen sind gegenüber der
Community rechenschaftspflichtig, gegenüber Distributor*innen (beispielsweise
den CRAN-Betreiber*innen), anderen Entwickler*innen und Usern.

Abschließend ist es wichtig zu betonen, dass der Aufbau interdisziplinärer Strukturen
über die Entwicklung gemeinsamer Forschungssoftware als Investment zu sehen ist, das
sich nicht immer kurzfristig im Sinne der Verwertungs- beziehungsweise Publikations-
logik des Wissenschaftsbetriebs auszahlt. Eine Disziplin wie die Medien- und Kommu-
nikationswissenschaft könnte indes den Aufbau von Strukturen anregen, indem sie Orte
institutionalisiert, die die Sichtbarkeit solcher interdisziplinärer Arbeit erhöhen. Dies
geschieht sicherlich zunehmend: Publikationen1 und Konferenzen schaffen Diskurs-
und Sichtbarkeitsräume für Interdisziplinarität im Allgemeinen und Forschungssoft-
ware im Speziellen – wir befinden uns jedoch erst am Anfang dieser Entwicklung.

Gleichzeitig müssen die Voraussetzungen für interdisziplinäre Annäherung über die
gemeinsame Arbeit an Programmcode schon in der Ausbildung geschaffen werden. Aus
Sicht der Medien- und Kommunikationswissenschaft kann insbesondere der Erwerb
neuer Kompetenzen, etwa das Erlernen von Programmiersprachen, zur Hürde für den
interdisziplinären Austausch werden. Die derzeit zu beobachtende Integration entspre-
chender Kompetenzen in die Curricula medien- und kommunikationswissenschaftlicher
Studiengänge kann in diesem Sinne zu einer wünschenswerten Öffnung der Fächer bei-
tragen.

Es bedarf zudem einer frühen Sensibilisierung für den Wert (und die Mühen) der
interdisziplinären Entwicklung von Forschungssoftware – bestenfalls durch praktische
Tandem-Projekte (zum Beispiel Hackathons), bei denen Studierende verschiedener Fä-
cher zusammenarbeiten. Hierbei kann früh vermittelt werden, dass es bei einer inter-
disziplinären Entwicklung gemeinsamer Forschungssoftware nicht zuletzt um soziale
Faktoren geht: die Bereitschaft, sich auf eine neue Fachkultur einzulassen, also Offenheit,

1 Neben diesem Heft selbst steht beispielsweise das 2019 erstmals erschienene Journal „Compu-
tational Communication Research“ für die zunehmende Wichtigkeit der inhärent interdiszipli-
nären computergestützten Methoden im Fach.

von Nordheim et al. · Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität

93

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Empathie und Neugierde – denn am Ende bleibt Interdisziplinarität vor allem eine „so-
cial art“ (Brozek und Keys, 1944, S. 512).

Literaturverzeichnis
Agrawal, Amritanshu, Wei Fu und Tim Menzies (2018). What is Wrong with Topic Modeling? And

How to Fix It Using Search-Based Software Engineering. In: Information and Software Tech-
nology 98, S. 74–88. doi: 10.1016/j.infsof.2018.02.005.

Barry, Andrew, Georgina Born und Gisa Weszkalnys (2008). Logics of Interdisciplinarity. In:
Economy and Society 37(1) (Feb.), S. 20–49. doi: 10.1080/03085140701760841.

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland und Dave Thomas (2001).
Manifesto for Agile Software Development. http://www.agilemanifesto.org/ [10.01.2021].

Benoit, Kenneth, Kohei Watanabe, Haiyan Wang, Paul Nulty, Adam Obeng, Stefan Müller und
Akitaka Matsuo (2018). quanteda: An R Package for the Quantitative Analysis of Textual Data.
In: Journal of Open Source Software 3(30), S. 774. doi: 10.21105/joss.00774.

Biju, Soly Mathew (2008). Agile Software Development. In: E-Learning and Digital Media, 5(1),
S. 97–102. doi: 10.2304/elea.2008.5.1.97.

Blei, David M., Andrew Y. Ng und Michael I. Jordan (2003). Latent Dirichlet Allocation. In: Journal
of Machine Learning Research 3, S. 993–1022. doi: 10.1162/jmlr.2003.3.4-5.993.

BMBF (2019). Richtlinie zur Förderung von Projekten für inter- und transdisziplinär arbeitende
Nachwuchsgruppen in der Sozial-ökologischen Forschung. https://www.bmbf.de/foerderun
gen/bekanntmachung-2346.html [10.01.2021].

Boczek, Karin (2019). Vielfalt als journalistischer Wert? Eine Analyse der Nutzung von Experten-
quellen in der Berichterstattung mit Text-Mining und klassischer Inhaltsanalyse. TU Dortmund:
Dissertation. doi: http://dx.doi.org/10.17877/DE290R-20109.

Boczek, Karin und Lars Koppers (2020). What’s New about Whatsapp for News? A Mixed Method
Study on News Outlets’ Strategies for Using WhatsApp“. In: Digital Journalism 8(1), S. 126–
144. doi: 10.1080/21670811.2019.1692685.

Brozek, Josef und Ancel Keys (1944). General Aspects of Interdisciplinary Research in Experi-
mental Human Biology. In: Science 100(2606) (Dez.), S. 507–512. doi: 10.1126/science.
100.2606.507.

Burke, C. Shawn, Stephen M. Fiore und Eduardo Salas (2003). The Role of Shared Cognition in
Enabling Shared Leadership and Team Adaptability. In: Shared Leadership: Reframing the
Hows and Whys of Leadership. Thousand Oaks, CA: SAGE Publications, S. 103–122. doi:
10.4135/9781452229539.n5.

Chang, Jonathan, Sean Gerrish, Chong Wang, Jordan L. Boyd-Graber und David M. Blei (2009).
Reading Tea Leaves: How Humans Interpret Topic Models. In: Yoshua Bengio, Dale Schuur-
mans, John D. Lafferty, Christopher K. I. Williams und Aron Culotta (Hrsg.), Advances in
Neural Information Processing Systems 22. NIPS. Vancouver, Canada: Curran Associates Inc.,
S. 288–296.

Defila, Rico, Antonietta Di Giulio und Michael Scheuermann (2008). Management von Forschungs-
verbünden – Möglichkeiten der Professionalisierung und Unterstützung. Deutsche Forschungs-
gemeinschaft. Standpunkte. Weinheim: Wiley.

DFG (2020). Die Förderstrategie der DFG. https://www.dfg.de/dfg_profil/geschichte/foerde
rung_gestern_und_heute/aktuelle_strategie/index.html [10.01.2021].

Fiore, Stephen M. (2008). Interdisciplinarity as Teamwork: How the Science of Teams Can Inform
Team Science. In: Small Group Research 39(3), S. 251–277. doi: 10.1177/1046496408317797.

Galkina, Olga und Vladimir Yachenko (2014). Application of Iterative Software Development
Methodologies for Reducing Service Quality Gaps. In: Proceedings of the 2014 IEEE NW Russia
Young Researchers in Electrical and Electronic Engineering Conference. Feb. 2014, S. 36–37.
doi: 10.1109/ElConRusNW.2014.6839195.

M&K 69. Jahrgang 1/2021

94

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Greene, Derek, Derek O’Callaghan und Pádraig Cunningham (2014). How Many Topics? Stability
Analysis for Topic Models. In: Toon Calders, Floriana Esposito, Eyke Hüllermeier und Rosa
Meo (Hrsg.), Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg:
Springer, S. 498–513.

Highsmith, Jim und Alistair Cockburn (2001). Agile Software Development: The Business of In-
novation. In: Computer 34(9), S. 120–127. doi: 10.1109/2.947100.

Jackson, Mike, Steve Crouch und Rob Baxter (2011). Software Evaluation: Criteria-based Assess-
ment. https://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf
[11.01.2021]

Kakar, Adarsh Kumar (2017). Assessing Self-S Development Teams. In: Journal of Computer In-
formation Systems 57(3), S. 208–217. doi: 10.1080/07362994.2016.1184002.

Koppers, Lars, Jonas Rieger, Karin Boczek und Gerret von Nordheim (2020). tosca: Tools for Sta-
tistical Content Analysis. R package version 0.2-0. doi: 10.5281/zenodo.3591068.

Lang, Michel (2017). checkmate: Fast Argument Checks for Defensive R Programming. In: The R
Journal 9(1), S. 437–445.

Loosen, Wiebke, Nina Springer, Petra Werner und Daniel Nölleke (2019). Call for Papers zur Ta-
gung „Interdisziplinäre Journalismusforschung – Journalismus interdisziplinär“. https://leibniz-
hbi.de/uploads/media/default/cms/media/ruq58fj_CfP_FGJournalistik_Journalismusfor
schung2020.pdf [07.01.2021].

Maier, Daniel, Annie Waldherr, Peter Miltner, Gregor Wiedemann, Andreas Niekler, Alexa Kei-
nert, Barbara Pfetsch, Gerhard Heyer, Ueli Reber, Thomas Häussler, Hannah Schmid-Petri,
und Silke Adam (2018). Applying LDA Topic Modeling in Communication Research: Toward
a Valid and Reliable Methodology. In: Communication Methods and Measures 12(2-3), S. 93–
118. doi: 10.1080/19312458.2018.1430754.

Mantyla, Mika V., Maelick Claes und Umar Farooq (2018). Measuring LDA Topic Stability from
Clusters of Replicated Runs. In: Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. ESEM. Oulu, Finland: Association for
Computing Machinery. doi: 10.1145/3239235.3267435.

Mimno, David, Hanna M. Wallach, Edmund Talley, Miriam Leenders und Andrew McCallum
(2011). Optimizing Semantic Coherence in Topic Models. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing. EMNLP. Edinburgh, United Kingdom:
Association for Computational Linguistics, S. 262–272.

Newman, David, Edwin V. Bonilla und Wray Buntine (2011). Improving Topic Coherence with
Regularized Topic Models. In: Proceedings of the 24th International Conference on Neural
Information Processing Systems. NIPS. Granada, Spain: Curran Associates Inc., S. 496–504.

Nguyen, Viet-An, Jordan Boyd-Graber und Philip Resnik (2014). Sometimes Average is Best: The
Importance of Averaging for Prediction Using MCMC Inference in Topic Modeling. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.
EMNLP. Doha, Qatar: Association for Computational Linguistics, S. 1752–1757. doi: 10.3115/
v1/D14-1182.

Niekler, Andreas (2016). Automatisierte Verfahren für die Themenanalyse nachrichtenorientierter
Textquellen. Universität Leipzig: Dissertation.

Niekler, Andreas und Patrick Jähnichen (2012). Matching Results of Latent Dirichlet Allocation
for Text. In: Proceedings of ICCM 2012, 11th International Conference on Cognitive Model-
ing. Berlin: Universitätsverlag der TU Berlin, S. 317–322.

Peters, Chris und Marcel Broersma (2019). Fusion Cuisine: A Functional Approach to Interdisci-
plinary Cooking in Journalism Studies. In: Journalism 20(5), S. 660–669. doi: 10.1177/
1464884918760671.

Porter, Alan L., J. David Roessner, Alex S. Cohen und Marty Perreault (2006). Interdisciplinary
Research: Meaning, Metrics and Nurture. In: Research Evaluation 15(3), S. 187–196. doi:
10.3152/147154406781775841.

R Core Team (2020). R: A Language and Environment for Statistical Computing. Wien, Österreich:
R Foundation for Statistical Computing.

Rieger, Jonas (2020). ldaPrototype: A Method in R to Get a Prototype of Multiple Latent Dirichlet
Allocations. In: Journal of Open Source Software 5(51), S. 2181. doi: 10.21105/joss.02181.

von Nordheim et al. · Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität

95

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Rieger, Jonas, Lars Koppers, Carsten Jentsch und Jörg Rahnenführer (2020). Improving Reliability
of Latent Dirichlet Allocation by Assessing Its Stability Using Clustering Techniques on Repli-
cated Runs. arXiv:2003.04980 [cs, stat].

Salas, Eduardo, Diana R. Nichols und James E. Driskell (2007). Testing Three Team Training
Strategies in Intact Teams: A Meta-Analysis. In: Small Group Research 38(4), S. 471–488. doi:
10.1177/1046496407304332.

Song, Hyunjin, Petro Tolochko, Jakob-Moritz Eberl, Olga Eisele, Esther Greussing, Tobias Hei-
denreich, Fabienne Lind, Sebastian Galyga und Hajo G. Boomgaarden (2020). In Validations
We Trust? The Impact of Imperfect Human Annotations as a Gold Standard on the Quality of
Validation of Automated Content Analysis. In: Political Communication 37(4), S. 550–572. doi:
10.1080/10584609.2020.1723752.

Stevens, Keith, Philip Kegelmeyer, David Andrzejewski und David Buttler (2012). Exploring Topic
Coherence over Many Models and Many Topics. In: Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning. EMNLP/CoNLL. Jeju Island, Korea: Association for Computational Linguistics,
S. 952–961.

Stryker, Jo Ellen, Ricardo J. Wray, Robert C. Hornik und Itzik Yanovitzky (2006). Validation of
Database Search Terms for Content Analysis: The Case of Cancer News Coverage. In: Jour-
nalism & Mass Communication Quarterly 83, S. 413–430. doi: 10.1177/107769900608300212.

Su, Jing, Derek Greene und Oisin Boydell (2016). Topic Stability over Noisy Sources. In: Proceed-
ings of the 2nd Workshop on Noisy User-generated Text (WNUT). Osaka, Japan: The COLING
2016 Organizing Committee, S. 85–93.

Tsatsou, Panayiota (2016). Can Media and Communication Researchers Turn the Present Chal-
lenges of Research Impact and Interdisciplinarity into Future Opportunities? In: International
Communication Gazette 78(7), S. 650–656. doi: 10.1177/1748048516655718.

van Atteveldt, Wouter und Tai-Quan Peng (2018). When Communication Meets Computation:
Opportunities, Challenges, and Pitfalls in Computational Communication Science. In: Com-
munication Methods and Measures, 12(2–3), S. 81–92. https://doi.org/10.1080/19312458.
2018.1458084.

von Nordheim, Gerret (2019). Journalism in the Age of Sigularization. Inter-Media Perspectives
through Computational Methods. TU Dortmund: Dissertation.

von Nordheim, Gerret, Karin Boczek und Lars Koppers (2018). Sourcing the Sources. In: Digital
Journalism 6(7), S. 807–828. doi: 10.1080/21670811.2018.1490658.

von Nordheim, Gerret, Karin Boczek, Lars Koppers und Elena Erdmann (2018). Digital Traces in
Context | Reuniting a Divided Public? Tracing the TTIP Debate on Twitter and in Traditional
Media. In: International Journal of Communication 12(2018), S. 548–569.

von Nordheim, Gerret und Jonas Rieger (2020). Im Zerrspiegel des Populismus. In: Publizistik,
65(3), S. 403–424. doi: 10.1007/s11616-020-00591-7.

Wickham, Hadley (2011). testthat: Get Started with Testing. In: The R Journal 3, S. 5–10.
Wickham, Hadley (2019). Welcome to the Tidyverse. In: Journal of Open Source Software 4(43),

S. 1686. doi: 10.21105/joss.01686.
Woolley, Richard, Mabel Sánchez-Barrioluengo, Tim Turpin und Jane Marceau (2015). Research

Collaboration in the Social Sciences: What factors are associated with disciplinary and inter-
disciplinary collaboration? In: Science and Public Policy 42(4), S. 567–582. doi: 10.1093/scipol/
scu074.

Yadav, Monika, Neha Goyal und Jyoti Yadav (2015). Agile Methodology over Iterative Approach
of Software Development. A Review. In: 2015 – 2nd International Conference on Computing
for Sustainable Global Development (INDIACom). März, S. 542–547.

M&K 69. Jahrgang 1/2021

96

https://doi.org/10.5771/1615-634X-2021-1-80 - am 18.01.2026, 09:31:56. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-80
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

