

MAX-PLANCK-GESELLSCHAFT

TUM
TECHNISCHE
UNIVERSITÄT
MÜNCHEN

THE GEORGE
WASHINGTON
UNIVERSITY
LAW SCHOOL
WASHINGTON DC

MIPLC Studies

Edited by

Prof. Dr. Christoph Ann, LL.M. (Duke Univ.)

Technische Universität München

Prof. Robert Brauneis

The George Washington University Law School

Prof. Dr. Josef Drexl, LL.M. (Berkeley)

Max Planck Institute for Intellectual Property,
Competition, and Tax Law

Prof. Dr. Thomas M.J. Möllers

University of Augsburg

Prof. Dr. Dres. h.c. Joseph Straus,

Max Planck Institute for Intellectual Property,
Competition, and Tax Law

Volume 6

Martina Schuster

Patenting Proteomics

Patentability and Scope of Protection of
Three-Dimensional Protein Structure Claims
under German, European and US Law

Nomos

MIPLC

Munich
Intellectual
Property
Law Center

Augsburg
München
Washington DC

Gedruckt mit Unterstützung des Förderungs- und Beihilfefonds
Wissenschaft VG Wort

Printed with support by "Förderungs- und Beihilfefonds
Wissenschaft VG Wort".

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in
der Deutschen Nationalbibliografie; detaillierte bibliografische
Daten sind im Internet über <http://dnb.d-nb.de> abrufbar.

The Deutsche Nationalbibliothek lists this publication in the
Deutsche Nationalbibliografie; detailed bibliographic data
is available in the Internet at <http://dnb.d-nb.de> .

Zugl.: München, Univ., Diss., 2009

ISBN 978-3-8329-4748-4

1. Auflage 2010

© Nomos Verlagsgesellschaft, Baden-Baden 2010. Printed in Germany. Alle Rechte, auch
die des Nachdrucks von Auszügen, der fotomechanischen Wiedergabe und der Über-
setzung, vorbehalten. Gedruckt auf alterungsbeständigem Papier.

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies are
made for other than private use a fee is payable to »Verwertungsgesellschaft Wort«,
Munich.

Acknowledgements

This dissertation was accepted by the Ludwig-Maximilians-University Munich for the degree of doctor juris in March of 2009. It takes into account the law until the end of 2008.

The thesis would not have been written without the help and support of many different people from diverse backgrounds. The most sincere appreciation goes to my advisor Prof. Dr. Dres. h.c. Joseph Straus for his continuing help and encouragements, and to Prof. Dr. Michael Lehmann for his efforts as second referee.

I am also very grateful to the Honorable Judge Randall R. Rader for his advice and the deep insights into U.S. and comparative patent law during my time as a Visiting Scholar at the Federal Circuit Court in Washington, DC. Many thanks also to Professor Robert Brauneis and his wife for helping me and my family to settle in in Washington, DC, to Professor John Duffy for organizing access to the Jacob Burns Law Library, to Chris Holman, associate professor at the University of Missouri-Kansas City School of Law, for creating his most useful IP and biotech listserv for academics “IpBiotechProfs” and his invitation to join it, and to Josh Sarnoff, Assistant Director of the Glushko-Samuelson Intellectual Property Law Clinic in Washington DC, for reading the U.S. Patent Law chapter and sending me several pages with comments.

While working on the thesis, I benefited a lot from conversations with my colleagues at the Max-Planck-Institute for Intellectual Property, Competition and Tax Law in Munich, in particular Marc-Oliver Mackenrodt, Peter Ganea and Wolrad Prinz zu Waldeck und Pyrmont. Furthermore, Clara Sattler provided most valuable comments on the scientific background chapter.

Many thanks also to Christian Kummer SJ, professor of natural philosophy at the Munich School of Philosophy for letting me participate in his bioethical colloquium.

Many thanks also to my family and friends: my parents for their never ending support and patience; Tim and Niels Schuster, as well as Dorothee Gottwald for their huge efforts with reading corrections in exemplary ways; Marianne Menth for her substantive scientific direction.

Never enough thanks to my husband Uli for his encouragement, academic spirit and just being. He always got my back through thick and thin.

I dedicate this thesis to my son Samuel, the bringer of joy and light. May he always think of proteins as the central building blocks for all life on earth.

November 2009

Martina Schuster

Contents

List of Abbreviations	13
Chapter 1: Introduction	19
Chapter 2: Scientific background	23
A. Definition of the Term	23
B. Proteins and the biological organism	25
I. Amino acid sequences	25
1. Primary structure	26
2. Secondary structure	27
3. Tertiary structure	28
II. Protein folding	30
1. Folding funnel theory of protein folding	30
2. Protein misfolding and diseases arising from ‘folding’ defects	33
III. Structurally similar, sequence dissimilar proteins	34
IV. Posttranslational modifications (PTM)	34
V. Role of Enzymes and their chemical activity	35
C. Genetic coding of proteins	40
D. Recombinant Protein Synthesis	41
E. Proteomic research	42
I. Proteome initiatives	43
II. Proteomics Technologies	45
1. Protein expression, purification and characterization	45
a) Gel electrophoresis	45
b) Mass spectrometry	46
2. Physical methods of determining the three-dimensional structure of proteins	47
a) Protein Crystallization	47
b) X-ray crystallography	49
c) NMR structure determination	50
d) Protein modeling (homologous-comparison)	51
III. Data and Bioinformatics for proteomics	52
1. Databases	52
2. Cross-linking of database information	54
3. Database screening and drug design	55
4. In-silico screening of binding pockets	56

A. Statutory Background and Fundamental Case Law in Europe and the U.S.	59
I. Introduction	59
II. Applicable law in the U.S. and Europe	59
1. Patentable Subject Matter	60
a) U.S.	60
b) Europe	62
aa) Patentability of biological material	62
bb) Exclusions from patentability	64
2. Utility and Industrial Applicability	67
a) U.S. (Utility)	67
b) Europe (Industrial Applicability)	71
3. Novelty	73
a) U.S.	73
b) Europe	77
aa) The principle of unambiguous parameters	79
bb) The principles of second and further medical indications	83
4. Nonobviousness and Inventive Step	86
a) U.S. (Nonobviousness)	86
b) Europe (Inventive Step)	93
5. Written description/patent description and sufficient disclosure	96
a). U.S.	96
aa) Basic statutory background	96
bb) Deposit requirements	99
cc) The debate on a separate written description requirement	100
i. Background to the debate	100
ii. Development of a ‘separate written description’ doctrine	102
iii. The ‘dissenting line’	104
b) Europe (Sufficient disclosure)	110
III. Conclusion	114
B. Case study related to protein 3-D-structure related inventions	116
I. Introductory Remarks	116
1. Aim of the study	116
2. Major fields of 3-D protein structure inventions	117
II. Proteomics and protein structural properties <i>per se</i>	117
1. Structure defined by structural coordinates and protein crystals	117
a) Claims	117
b) Background	118
c) Solutions proposed by the EPO and the USPTO	118
d) Discussion	121

2. Protein Domains	126
a) Claims	127
b) Background	128
c) Solutions proposed by the EPO and the USPTO	128
d) Discussion	130
III. Proteomics and Bioinformatics	138
1. <i>In-silico</i> screening methods	139
a) Claim 1	140
aa) Background	140
bb) Patent Offices Analysis	141
cc) Discussion	143
i. The discussion on the patentability of computer-implemented inventions in Europe	143
ii. Classification of <i>In-Silico</i> Screening Methods in Europe	147
iii. Classification of <i>In-Silico</i> Screening Methods in the U.S.	149
b) Claim 2	153
aa) Background	154
bb) Patent Offices' Analysis	154
cc) Discussion	156
2. Structural Data of proteins per se	157
a) Claims and Claim Background	157
b) Patent Offices' Analysis	158
c) Discussion	160
3. Compounds identified by <i>in-silico</i> screening methods	161
a) Claims	162
b) Patent Offices' Analysis	162
c) Discussion	164
aa) Reach-through-Claims	164
bb) Reach-through licensing	166
i. Statutory background in Germany	166
ii. Legal situation under U.S. law	167
IV. Conclusion	169
Chapter 4: Scope of Protection	173
A. Introductory Remarks	173
B. Claim construction in the U.S. and in Europe	174
I. Claim construction and doctrine of equivalents in the U.S.	174
1. Claim Construction	174
2. Doctrine of equivalents	177

II.	Claim construction and Doctrine of equivalents under German law	181
1.	Claim Construction	181
2.	Doctrine of equivalents	183
a)	Moulded Curbstone	184
b)	Further Decisions	185
III.	Research/Experimental Use Exemption	186
1.	Germany	186
2.	U.S.	190
C.	Use of 3-D protein structure (concrete claim analysis)	194
I.	Use of 3-D structure from naturally obtained proteins	196
II.	Use of 3-D structure from recombinant proteins	198
III.	Use of 3-D structure from crystallized proteins	200
IV.	Use of new proteomics technologies: An example using sequence-dissimilar proteins sharing common 3-D fold	203
1.	Protein engineering and legal standards for the use of protein variants	205
2.	Literal infringement	207
a)	Treatment of protein variants in the U.S.	207
aa)	Claims defining proteins in terms of function	208
bb)	The USPTO Guidelines for Examination of the ‘Written Description Requirement’	210
b)	Treatment of protein variants in Germany	213
c)	Application of the principles reliable for protein variants on the use of sequence-dissimilar proteins	215
d)	Analysis of the approach to define a protein by folding type and function	216
3.	Infringement under the doctrine of equivalents	218
a)	U.S.	218
aa)	Methods for determining equivalents	218
i.	The ‘Hypothetical Claim’ Analysis	219
ii.	The interchangeability test	220
iii.	The ‘function-way-result’ test	221
bb)	The ruling of <i>Genentech v. Wellcome</i> and the doctrine of equivalents	222
cc)	Application of the ‘function-way-result’ test to the issue of sequence-dissimilar proteins	224
dd)	Expansion of the patent coverage to as yet unidentified species	225
b)	Germany	228
aa)	Infringement under the doctrine of equivalents	228
bb)	Transfer of the case law related to figures and measurements to the field of 3-D protein structures inventions	231

c) Conclusions	235
V. U.S. Patent No. 5,835,382 “Small Molecule Mimetics of Erythropoietin”: A characteristic proteomic patent	237
VI. Use of selective 3-D protein structure parts (Selection inventions)	240
1. Relationship to patents covering the entire protein	240
2. The Amgen case	242
3. Applicable law	242
VII. Use of compounds identified through 3-D protein structure screening methods	246
1. Protection as product of patentable process	246
2. The Bayer v. Housey Case	247
VIII. Concluding Remarks	249
 Chapter 5: Summary and Findings	253
A. Patentability of Proteomic Patent Claims	253
B. Scope of Protection	256
C. General Findings	259
 Bibliography	263

