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algorithmic operations of mutually aligning the fMRI images to one another, as well

as matching them to other imaging modalities and external image-based templates,

researchers create a dataset that is “compatible with already-established centres of

calculation.”360 Importantly, the output of these transformations are 4D functional

datasets that are still illegible—when preprocessed fMRI datasets are submitted to

visual inspection, even experts cannot ‘read’ them. In short, by looking at these images,

it is still impossible to determine which voxels exhibit task-induced activity and which

do not. Nevertheless, thus standardised, the images can now finally undergo statistical

analysis that will translate them into legible brain maps. Hence, as shown by my

analysis, the purpose of preprocessing is to construct the analysability of the fMRI

datasets while at the same time preserving their indexicality via a chain of traceable

mathematical operations.

3.4 Statistical Analysis: Articulating the Task-Induced Neural Activity of
Interest

Preprocessed functional 4D datasets remain illegible because the pertinent information

concerning the brain activity of interests they entail is still spread across multiple brain

volumes and buried under random noise. To construct the legibility of their fMRI data,

researchers must determine which areas of the subjects’ brains can be declared active.

They do this by using statistical analysis, which enables them to make judgments about

the “underlying patterns in the data” ridden with random noise.361 Instead of more

commonly known descriptive statistics that merely summarise the data, fMRI studies

apply inferential statistics.This type of statistics permits researchers to use the datasets

from their subject sample to make claims about a larger population.362

Inferential data analysis is based on the process called hypothesis testing. Generally

speaking, this type of statistical analysis starts with the formulation of two opposing

claims—the null hypothesis and the alternative hypothesis.363 In the subsequent step,

statistical tests are used to evaluate which of the two hypotheses describes the data with

a higher probability. In fMRI, the null hypothesis amounts to the claim that the task had

no effect on the data, or in other words, that there is no temporal correlation between

the variation in the BOLD time series and the different experimental conditions. The

alternative hypothesis states that themeasured differences in the BOLD signal’s average

intensities between the task and the control condition are temporally correlated with

the experimental intervention.364

During hypothesis testing, the analysis software executes automated statistical

tests for each voxel independently. This voxel-by-voxel approach is known as mass

360 Latour, 71–72.

361 Worsley, “Statistical Analysis,” 251.

362 Worsley, 251.

363 Huettel, Song, and McCarthy, Imaging, 331.

364 Huettel, Song, and McCarthy, 331.
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346 From Photography to fMRI

univariate analysis.365 It aims to identify the voxels in which the data provide sufficient

empirical evidence to reject the null hypothesis.366 If the numerical value of the

resulting statistical test at a given voxel is below a predetermined threshold value, the

null hypothesis has to be rejected, and that voxel is declared active.367The joint outcome

of all tests performed across the brain is a statistical activationmap—a 3D image whose

voxels contain numerical values of test statistics. Only those voxels within this map

that have been declared active are visualised in bright colours and superimposed on an

anatomical brain image (see figs. 3.12 and 3.13). Conversely, all inactive voxels within

this map remain invisible to the observer. It transpires from my description that such

a map does not provide information about the neural activity of interest in absolute

terms. Instead, the map shows in which voxels the probability that the task-induced

response was due to chance is sufficiently low to declare these voxels active.

To apply hypothesis testing to fMRI data, researchers must first create a model

that provides the basis for the alternative hypothesis. In most studies, this model

is built within the theoretical framework called the general linear model (GML) and

it entails researchers’ detailed estimation of how the task intervention affected the

subjects’ brains during the experiment.368 Put simply, by drawing on the GLM,369

researchers create a study-specific model—called design matrix—that is tailored to

their experiment. As we are about to see, by using a study-specific model, researchers

can reconstruct from the fMRI data the information about the task-induced brain

activity. Thus, in what follows, I will argue that study-specific models play crucial roles

in producing the legibility of fMRI data.

My analysis in the upcoming sections is informed by Margaret Morrison’s and Mary

S. Morgan’s notion of models as instruments of enquiry. Morrison and Margaret have

argued that due to their “ability to effect a relation between scientific theories and

the world,” models can be used both as “a means to and a source of knowledge.”370

According to Morrison and Morgan, models can function as instruments because

of their following features. First, their partial independence from both theory and

data; second, their ability to fulfil diverse tasks (“functional autonomy”); and third,

the flexible ways in which they can relate to both theory and data (“representational

power”).371 Importantly, Morrison and Morgan have insisted that to understand the

productive roles of models, we must look at how they are created and used in actual

scientific practice.

365 Poldrack, Mumford, and Nichols, Handbook, 70.

366 Huettel, Song, and McCarthy, Imaging, 331.

367 Huettel, Song, and McCarthy, 331–32.

368 Poldrack, Mumford, and Nichols, Handbook, 70.

369 Friston, “Statistical Parametric Mapping,” 16.

370 Morrison and Morgan, “Models as Mediating Instruments,” 35.

371 Morrison and Morgan, 32. In fact, Morrison and Morgan have argued that these three

characteristics allow models to function as autonomous agents in scientific research. See ibid.,

10. Since I find that this term overstates the degree of partial independence both in the models’

construction and use, I will refrain from calling models autonomous agents in the concrete cases

I analyse here. I will talk instead about the productive roles of models in fMRI research.
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Following this dictum, I will return to the case study from the previous sections

to analyse how de Lange, Roelofs, and Toni transformed the model suggested by

theory into a study-specific model that they then deployed to create multiple statistical

activation maps. After that, I will examine a later study by the same group of authors to

demonstrate how researchers canmake the same dataset yield an entirely different type

of analytical outcome called a connectivitymap by using an alternative theoreticalmodel

of brain function. In the following four sections, I will discuss the chain of modelling

decisions that determine what becomes visible and thus legible in brain maps as the

output of statistical analysis.My aim is to show that despite their reliance on automated

algorithms to transform the fMRI data into brain maps, researchers actively shape

statistical analysis by deciding how many and what kinds of maps to create from a

single dataset.

3.4.1 Building the Design Matrix as a Tool of Enquiry

Having collected and preprocessed fMRI data from eight patients with one-sided

hysterical arm paralysis, de Lange, Roelofs, and Toni then moved on to the main stage

of processing to identify the task-induced neural activities in the data. Using the SPM

software, they performed a two-stage statistical analysis based on the general linear

model (GLM). They first conducted separate first-level analyses for each subject. Next,

during the second-level analysis, they combined the outputs from all single-subject

analyses to compute group-level functional activation maps.372 Since most studies

use this approach, both in hysteria research and in neuroimaging in general, the de

Lange, Roelofs, and Toni study is representative of fMRI data analysis and is treated as

such throughout my discussion.373This and the following sections will focus mainly on

examining the epistemic implications of the first-level analysis because, as I will show,

this stage entails crucial modelling decisions that inform all subsequent processing

steps.

But before we can examine the modelling decisions that de Lange, Roelofs, and

Toni made, we must first take a brief look at the conceptual framework underlying

their analysis. At its most basic, the GLM is an equation that defines a mathematical

relationship between the signal intensity registered at a single voxel throughout the

measurement and the experimental conditions that temporally coincided with this

measurement. The underlying assumption of the GLM is that all factors contributing

to the neural activity in a particular voxel linearly add up to form an overall BOLD

response.374 Based on this assumption of linearity, the GML describes the BOLD

372 Ashburner et al., “SPM12 Manual,” 63; and Poldrack, Mumford, and Nichols, Handbook, 70.

373 Ashburner et al., “SPM12 Manual,” 63; and Huettel, Song, and McCarthy, Imaging, 345.

374 The presumed linearity of the fMRI BOLD response is based on experimental findings. See Boynton

et al., “Linear Systems Analysis”; and Dale and Buckner, “Selective Averaging.” However, it should

be noted that the linearity of the haemodynamic response is first and foremost a theoretical

approximation,which is neither universally applicable to all study designs nor is it unchallenged as

a concept. For experimental findings that have challenged the assumption of linearity, see Friston

et al., “Non-Linear Responses”; and Vazquez and Noll, “Non-Linear Aspects.” Nevertheless, most

fMRI studies use the assumption of linearity as an acceptable approximation that considerably
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response measured in a single voxel across various time points as a scaled sum of

known contributing factors—referred to as explanatory variables—with the addition

of unknown random noise.375 Consequently, during statistical analysis, fMRI data are

not processed in their spatial form—as a collection of brain slices. Instead, they are

processed in their temporal form—as a set of time courses, one for each voxel.

The segment of the GLM equation that contains all explanatory variables together

with the specifications of how each variable changes over time is known as the design

matrix. This particular segment of the equation represents the study-specific model I

referred to above.The random noise in the equation accounts for the difference between

the values predicted by this model and the actual fMRI data.376 Significantly, each

explanatory variable in the design matrix is scaled by a parameter called the effect

size. The effect size defines the relative contribution of the respective variable to the

overall BOLD response measured at a given voxel.377 In essence, effect sizes quantify

the relative magnitude of the neural responses induced by particular experimental

conditions at a single location. The crucial point is that the value of effect sizes is

unknown before analysis. Hence, the very purpose of statistical analysis is to compute

from the fMRI data the effect size estimates—and their standard errors—for each

experimental condition specified in the design matrix.378 But to be able to do this,

researchers first have to use the GLM to build a study-specific design matrix. To

examine how this is done in practice, let us now turn to our case study.

To create a designmatrix, researchersmust first define thosemutually independent

components of their experimental task that, according to their assumptions, added up

to produce the neural activity behind the measured BOLD response in each voxel.379

This means that the GLM provides researchers with an abstract template with which

they can flexibly decompose the measured BOLD responses into a set of components.

To perform such decomposition, researchers have to make judgments about the

expected neural effects that different components of their experimental task elicited

simultaneously. This step would be straightforward in an imaginary experiment that

used a single stimulus. Yet, we have seen earlier in the chapter that de Lange, Roelofs,

and Toni used amixture of factorial and parametric experimental designs by employing

multifaceted stimuli whose several aspects varied at once. In what follows, my analysis

will demonstrate that translating such a complex experimental task into a designmatrix

entails multiple interpretational decisions.

As discussed previously, the stimuli in our case study comprised thirty-two

drawings of the left and right hands, presented in eight different degrees of rotation,

either with the palm up or down. The patients were instructed to judge the laterality

simplifies the data analysis. For a more detailed discussion of the linearity of the BOLD response

and the limits to this assumption, see Huettel, Song, and McCarthy, Imaging, 229–37.

375 Friston, “Statistical Parametric Mapping,” 16.

376 In mathematical terms, the GLM is a matrix equation that takes the following form: Y= Xβ + ε. Y

denotes the fMRI data, X the design matrix, ε the residual error, and β the effect sizes. For details,

see Friston et al., “General Linear Approach,” 191.

377 Friston et al., 191–92.

378 See Ashburner et al., “SPM12 Manual,” 73; and Huettel, Song, and McCarthy, Imaging, 343–5.

379 Ashburner et al., “SPM12 Manual,” 63–68; and Huettel, Song, and McCarthy, Imaging, 345–51.
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of the presented hand. De Lange, Roelofs, and Toni chose to isolate only two factors of

their experimental task in the first-level analysis—whether the motor imagery engaged

the affected hand; andwhich level of biomechanical complexity the imaginedmovement

entailed.380 In effect, the researchers thus hypothesised that the overall activity in each

voxel depended on two factors: first, whether the drawing corresponded to the patient’s

paralysed hand; and second, the degree of rotation of the presented image relative to

the body.381 Since half of the patients had left- and the other half right-hand paralysis,

the researchers disregarded the laterality of the stimuli at the level of single-subject

analyses.382 Moreover, in building their matrix, the researchers also decided to ignore

whether a particular hand stimulus was shown with the palm up or down.383

So far, we have seen how de Lange, Roelofs, and Toni defined the factors of the

design matrix by choosing the components of their experimental manipulations whose

effects on the data they wanted to explore.Next, the researchers turned tomodelling the

respective levels of these factors. This meant that they had to determine how the values

of each component of interest changed during the experiment. The first factor could

only have two different levels by referring to the affected or the healthy hand. However,

regarding the increasing biomechanical complexity of the task (i.e., its parametric

component), the researchers had several modelling options.They could assume a linear

link between the increasing degree of rotation of the stimuli and the increasing intensity

of the neural response. Alternatively, they could also allow for different types of non-

linear relations.384 Based on the analysis of the behavioural data,385 de Lange, Roelofs,

and Toni concluded that the relation was non-linear. Therefore, they chose to model

the effect of each particular degree of rotation separately.386 Finally, by conflating the

clockwise and anti-clockwise orientations of the stimuli, they divided the eight degrees

380 De Lange, Roelofs, and Toni, “Self-Monitoring,” 2053.

381 De Lange, Roelofs, and Toni, 2053.

382 In other words, at this stage, it did notmatter which side of the patient’s bodywas affected. But we

will see later that the laterality of the hand drawings played a significant role in the subsequent

group-level analysis.

383 The researchers provided no justification for this decision. Hence, it remains an open question

why they included this stimulus variation in their task if they had no intention of analysing its

effects. One possible explanation is that the inclusion of this particular aspect merely served to

increase the variability of the presented images and thus prevent the patients from feeling bored

or habituating to the stimuli. As discussed in section 3.1.2, it is vital to avoid or at least reduce the

experimental subjects’ habituation to stimuli, as it results in unwanted confounds that, in turn,

lead to the production of potentially invalid fMRI maps.

384 For a theoretical explanation of different ways in which a parametric experimental design can be

translated into a design matrix, see Worsley, “Statistical Analysis,” 259–60.

385 Asmentioned earlier, in many fMRI studies, researchers not only collect the imaging data but also

measure various aspects of the participants’ task performance, such as response times and error

rates.

386 De Lange, Roelofs, and Toni, “Self-Monitoring,” 2053. This decision was significant because if the

researchers had chosen to assume either a linear or a less complex non-linear link, their factor

would have contained fewer levels, thus resulting in a simpler but potentially less precise matrix.

For details on the alternative options, see Worsley, “Statistical Analysis,” 259–60.
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of rotation into five different levels.387 In the end, de Lange, Roelofs, and Toni thus

created a complex 2-by-5 factorial design matrix. Hence, the columns of this matrix

contained ten explanatory variables of interest altogether.

Each modelling decision discussed above is significant as it selectively imposed a

specific interpretational framework on the data while foreclosing possible alternatives.

Crucially, choosing into how many and which particular components to partition the

experimental task determineswhat can bemade legible in the fMRI data.This is because

only the components that have been laid out in the matrix as separate explanatory

variables can be taken into account when calculating activation maps. By deciding

to omit an aspect of the experimental task from their design matrix, researchers

essentially declare it epistemically insignificant and relegate its effects to random noise.

Conversely, by explicitly including specific aspects of the task in the design matrix,

researchers ascribe to them an active role in providing potential insights into the

presumed neural mechanisms of hysteria. Hence, it is not the experimental design that

determines what counts as a variable of interest and what as noise. Instead—and this

is a crucial point—what is a variable of interest and what is noise in a particular study

depends on how researchers decide to build their study-specific model.

The next step in building the design matrix entails modelling random noise.

To this end, de Lange, Roelofs, and Toni included in their matrix the six motion

parameters—three translations and three rotations—to filter out the residual effects

of the subjects’ head motion.388 As discussed previously, during preprocessing, fMRI

data had already been submitted tomotion correction to erase the spatial misalignment

caused by the subjects’ minimal head movements during the acquisition. However,

this preprocessing step was unable to remove the unwanted signal changes that also

arose from the subjects’ head movements. Such signal changes represent a significant

problem for statistical analysis. Specifically, “even a very small [head]motion (< 0.3mm)

in a functional series can induce signal changes in the order of 10 percent,” whereas “the

typical changes in the neuronal signals of interest” amount to “only about 1 percent.”389

Since subjects’ headmovements tend to temporally correlate with their performance

of experimental tasks, such unwanted changes in the signal can be mistaken during

analysis for the actual BOLD effects of interest and thus lead to the production of invalid

fMRImaps.390 To circumvent this problem, de Lange, Roelofs, and Toni included the six

motion parameters in their design matrix so that, during the computer-based analysis,

the motion-induced changes in the signal could be identified as noise and discarded.

Moreover, de Lange, Roelofs, and Toni also added to their matrix the patients’ incorrect

responses to the experimental task, which had been registered as behavioural data

during the measurement. In doing so, the researchers defined as noise the patients’

387 Specifically, the researchers assumed that the stimulus-induced imagined movement away from

the body at an angle of 45 degrees had the same neural effects as themovement towards the body

at the same angle. De Lange, Roelofs, and Toni, “Self-Monitoring,” 2053.

388 These motion parameters were analysed in detail in section 3.3.2.

389 Jenkinson and Chappell, Neuroimaging Analysis, 201.

390 Jenkinson and Chappell, 115–16.
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BOLD responses that temporally coincided with their false responses. Consequently,

these effects were also excluded from further analysis.

It follows from my analysis that the additional columns in the design matrix jointly

referred to as confounds serve to designate those changes in the BOLD signal that were

not intentionally induced by the experimental manipulation. Although not actively used

in the analysis, such confounds have an important auxiliary function.By clearly defining

various sources of noise, the confounds help improve the fit between the measurement

and the values predicted by the design matrix. In doing so, they increase the validity

with which the effect sizes of the explanatory variables can be estimated from the

data.391 Hence, it can be said that modelling random noise is just as important a step

in constructing the design matrix as is defining the variables of interest.

In principle, the inclusion of additional explanatory variables, both those of interest

and confounds, allows researchers to construct a model that matches the predicted

signal to the signal measured with increasing accuracy. Nevertheless, there is one

caveat. Each additional explanatory variable lowers the potential validity with which

subsequent statistical tests can detect task-induced brain activations.392 This caveat

is due to the very nature of statistical testing—the higher the amount of information

one estimates from the noisy data, the less probable such estimates are.393 Thus,

when building their study-specific model, researchers have to establish a trade-off.

On the one hand, they need to use a sufficient number of variables to describe their

experimental effects with sufficient precision. On the other hand, however, they must

also avoid having too many variables, which would lead to overfitting the data and thus

inadvertently declaring noise for the information of interest.

In addition to deciding which explanatory variables to include in their design

matrix, researchersmust alsomake judgments about the temporal pattern of the neural

activity that each variable elicited during the experiment. This is necessary because the

designmatrix has two dimensions.Whereas its columns contain individual explanatory

variables, its rows describe the expected intensity of the neural activity arising from

each of these variables at a specific point in time.394 Thus, to fill in the rows of their

design matrix, researchers must predict the onset, intensity, and duration of the neural

responses induced by each explanatory variable. In most studies, the onset of the task-

induced neural activity is assumed to coincide with the onset of the stimulus.395 It is

391 Huettel, Song, and McCarthy, Imaging, 349.

392 Huettel, Song, and McCarthy, 349.

393 Specifically, each “additional column in the design matrix reduces the number of degrees of

freedom available. In the limiting case, one could reproduce perfectly any set of n time points

with a combination of n – 1 different model factors. Since the significance of any individual factor

is evaluated as a function of the number of available degrees of freedom, it is in the researcher’s

interest for the number of factors to be as small as possible.” Huettel, Song, andMcCarthy, 349. The

term degrees of freedom refers to the “number of independent observations within a data set. For

many statistical tests, there is n – 1 degrees of freedom associated with n data points.” Ibid., 335.

394 Huettel, Song, and McCarthy, 345–46.

395 Huettel, Song, and McCarthy, 351. This is why the synchronisation between the stimulus exposure

and data acquisition is of critical importance for the analysability of the fMRI data.
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this assumption that de Lange, Roelofs, and Toni made in their study.396 Additionally,

they judged that the duration of the induced neural responses corresponded with

each patient’s average response time, i.e., the period between the stimulus onset and

the pressing of the button. Finally, they modelled the rotation-related increase in the

intensity of the neural response as a non-linear process that had the same shape as the

increase in the patients’ reaction times. To determine the particular shape of this non-

linear increase, de Lange, Roelofs, and Toni performed a separate statistical evaluation

of the patients’ behavioural data.397

Based on my analysis, it is apparent that the GLM, which the researchers used as

the basic theoretical framework, did not determine their modelling decisions about

the temporal structure of their study-specific matrix. Instead, we have seen that

their modelling decisions were informed by the specific details of their experimental

design, such as the timing of the stimuli. Just as importantly, the researchers also

based their modelling decisions on the additional information about the participants’

task performance (i.e., average response times) that they derived from the separately

acquired behavioural data. Hence, I argue that the way in which de Lange, Roelofs, and

Toni used non-imaging data to construct the legibility of their fMRI data represents a

pertinent example of intermedial transcription.398

At this point, the design matrix that de Lange, Roelofs, and Toni had created

contained the predicted neural responses for each explanatory variable over the

course of the experiment. But, as discussed previously, the fMRI data that the

matrix is meant to model contain the measurements of the correlated BOLD—i.e.,

haemodynamic—responses.Therefore, to create the matrix that the software can use to

analyse the fMRI data, the prediction of the neural responses has to be mathematically

combined with a model of the haemodynamic response.399 The simplest option is

to choose the software’s default setting. This setting uses a canonical mathematical

function to describe an average temporal course and a standard empirical shape of

the BOLD response (see fig. 3.6).400 This is the option that de Lange, Roelofs, and Toni

chose to use. Yet, the canonical haemodynamic response function has its limitations.

The generic function disregards physiological variations in the neurovascular coupling

that result in different shapes and durations of the BOLD responses among different

subjects and across different brain regions of the same individual.401 Studies that

396 De Lange, Roelofs, and Toni, “Self-Monitoring,” 2053.

397 De Lange, Roelofs, and Toni, 2053.

398 See Jäger, “Epistemology of Disruptions,” 72.

399 Ashburner et al., “SPM 12 Manual,” 68–69; and Huettel, Song and McCarthy, Imaging, 351–54.

400 Different analysis software packages offer their own generic model as a default setting. In the

generic model used by the SPM, the BOLD response is described by a mathematical function

whose visual representation is a curve. It has an onset delay of 1 to 2 seconds in relation to the

short-duration neural activity that initiated it. This is then followed by a gradual rise to the peak

at 6 seconds and a slow return to the baseline, including a prolonged undershoot. See Poldrack,

Mumford, and Nichols, Handbook, 75–76.

401 Huettel, Song and McCarthy, Imaging, 352.
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deploy the canonical function consider such variations as noise and are “biased to only

find responses that are similar to that function.”402

As an alternative, the SPM allows researchers to use more flexible models or

even to calculate the characteristics of each subject’s BOLD responses.403 However,

although the latter approaches are consideredmore precise than the use of the canonical

haemodynamic response function, they are also more complex to compute and more

challenging to interpret.404 Consequently, the generic model is used in many studies

as an acceptable approximation that significantly simplifies the analysis. On the whole,

researchers’ particular choice regarding which BOLD response model to implement in

their study is a significant interpretational decision. As shown by my analysis, this

choice has epistemic implications for the resulting functional maps.

Finally, beforemoving on to discuss how researchers deploy the designmatrix, there

is onemore aspect to which I want to draw attention.While building the designmatrix,

researchers interact with the software’s user interface and type commands that allow

the software to implement their modelling decisions. Thus, the underlying structure

of the resulting design matrix is a set of mathematical functions that informs the

software-based statistical analysis. Significantly, such a design matrix, which consists

of rows and columns, can also be displayed in the form of a table diagram. A single cell

in this diagram refers to the intensity of the predicted neural response induced by a

respective explanatory variable at a given time point of the experiment. This diagram

is then visualised by encoding different intensities of the predicted neural responses

in corresponding grey-scale values (fig. 3.9). The highest predicted neural response is

indicated in white, its absence in black, and the intermediary values in various grey

shades.405

It is important to note that the resulting diagrammatic visualisation is not requisite

for the computer-based analysis. Instead, it specifically addresses the human eye and

has a distinct utilitarian function. The diagram provides a highly effective overview

of various modelling decisions that went into building the matrix by bringing them

into explicit visual relations to one another. In other words, the results of the entire

modelling process are thus summarised within a single image and can be viewed

at a glance. In effect, it is in its diagrammatic form that the design matrix—as a

mathematical representation of the predicted experimental effects—becomes graspable

to its human creators. Also at this stage, the targeted use of a specifically designed

visualisation plays an epistemically productive role in theworking process.The key point

here is that by scrutinising its diagrammatic visualisation, researchers can check the

accuracy of their design matrix before putting it to work. Yet, as in all cases analysed so

402 Poldrack, Mumford, and Nichols, Handbook, 76.

403 For details, see Ashburner et al., “SPM12 Manual,” 68–69. Se also Poldrack, Mumford, and Nichols,

Handbook, 76–81.

404 Huettel, Song, and McCarthy, Imaging, 352–54.

405 Huettel, Song, and McCarthy, 346.
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far, being able to ‘read’ this diagram to assess its accuracy presupposes particular visual

skills that researchers have to acquire through practice.406

Figure 3.9. Diagrammatic visualisation of a design matrix.

***

To sum up, we have seen how in the process of constructing a study-specific model,

researchers actively and productively draw on the broader theoretical model provided

by the GLM. My analysis has highlighted that one of the key features of this modelling

process is its flexibility. On the one hand, this flexibility permits researchers to

assemble a highly specific design matrix as a sufficiently accurate description of their

particular experiment. On the other hand, it also allows them to inscribe a particular

interpretational framework into their matrix. By this, however, I do not mean to imply

that, in the process of constructing the design matrix, researchers already build the

outcome of the analysis into their matrix.

Instead, the point I ammaking is that the researchers’ modelling decisions limit the

kinds of questions they can ask with the design matrix. I have analysed how in creating

their study-specific model, researchers not only make judgments about the effects of

their specific experimental task but also rely on a set of more general assumptions

about the relations between the elicited neural and haemodynamic responses. All these

choices add up to establish a particular epistemic framework that, while opening

certain interpretational possibilities, also imposes constraints on what can be made

406 I am using the term reading here in the sense that Sybille Krämer has introduced. See Krämer,

“Operative Bildlichkeit,” 102.
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legible in the fMRI data. My analysis thus allows us to draw the following conclusion.

While the resulting study-specific model is a relatively accurate representation of

the experimental intervention, it is also a representation explicitly built as a tool for

selectively answering concrete research questions by filtering out brain activities of no

interest from the data.

3.4.2 Deploying the Design Matrix to Compute Activation Maps from fMRI Data

Having built the design matrix, researchers then use it to translate the preprocessed

fMRI data into statistical maps. As stated previously, statistical analysis is first

performed for each subject separately. In the second stage, the results of single-subject

analyses are used to draw statistical inferences at the group level.This two-stage process

ends with the creation of group-level activation maps. Each of these stages entails

multiple steps, during which algorithms execute massive amounts of black-boxed

calculations. Two aspects of statistical analysis are of central concern for our discussion.

First, in what follows, I will delineate the operations through which researchers close

the gaps between the fMRI data and group-level activation maps. I will argue that the

results of this process are indexical signs. Second, we will examine at which points of

statistical analysis researchers actively shape the algorithmic operations.

In the previous section, we have discussed how researchers first build a design

matrix by breaking up the experimental task into a set of conditions whose effects on

the subjects’ brains they want to explore in their fMRI data. As we have seen, each such

condition of interest becomes an explanatory variable of interest in the study-specific

design matrix. In the subsequent step, called model estimation, researchers put the

design matrix to work.407 During this step, researchers rely on automated algorithms

to compare the study-specific model to the fMRI data. Based on the comparison,

the algorithms calculate the extent to which each explanatory variable of interest

contributed to the overall task-induced neural response at a given location. Model

estimation is performed independently for each voxel.408

At the level of a single voxel, the result of this analytical step is a set of estimates of

the unknown effect sizes—one for each explanatory variable of interest. To estimate the

effect sizes that best explain the fMRI data at a given voxel, the algorithms match the

time course of the BOLD response registered across different acquisition time points

to the temporally correlated time course predicted by the design matrix.409 Through

a series of iterative steps, the algorithms then compute the best fit between these two

time courses. For each effect size at each voxel, the algorithms calculate a single value.

This value has been averaged across the subject’s responses to multiple repetitions of

407 Huettel, Song, andMcCarthy, Imaging, 343; andPoldrack,Mumford, andNichols,Handbook, 191–94.

408 Huettel, Song, and McCarthy, Imaging, 343.

409 Expressed in mathematical terms, the algorithms have to solve the GLM equation by minimising

the difference between the data and the value predicted by the design matrix. The difference is

quantified by a cost function, which in this case is the so-called sum of least squares. For details,

see Huettel, Song, and McCarthy, 336–37.
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the same task over the course of the experiment.410 The resulting combination of the

estimated effect sizes necessarily varies from voxel to voxel. Such differences in the

estimated effect sizes across voxels reflect the differences in the response magnitudes

with which different parts of the subject’s brain reacted to the same set of task

conditions.

All the effect sizes estimated for a single experimental condition—one for each

voxel—are stored as a 3D matrix.411 This means that the output of model estimation

is a new set of images. Each newly computed image encodes a subject-specific spatial

distribution of the estimated effect sizes for a single task condition. It can thus be

argued that model estimation categorically transforms fMRI data. Using a 4D fMRI

dataset as its input,412 model estimation produces a distinctly different kind of a 3D

image. In the resulting images, the numerical voxel values no longer refer to signal

intensities but to the estimated effect sizes.

For the sake of clarity, let me summarise a few points that I have made throughout

this chapter. Researchers are interested in finding out the response magnitudes of the

task-induced brain activity across voxels. However, as discussed previously, the scanner

cannot measure this information directly. Instead, as a proxy for the information of

interest, the scanner registers the correlated changes in the MR signal intensities.413

The effect sizes researchers calculate from the MR signal intensities during model

estimation are estimates of the not directly measurable response magnitudes of the

task-induced brain activity. My analysis has shown that the design matrix—as the

study-specific model of the estimated task-induced effects—plays a pivotal role in

transforming a set of images that encode the measured signal intensities into a new

set of images that encode the estimated effect sizes. As we have seen, the design matrix

allows the black-boxedmathematical operations,which are hard-coded into the analysis

software, to bridge the evidently sizeable gap between these two kinds of images.

We need to pay particular attention to two specific effects of this categorical

transformation. First, model estimation results in massive compression of data since

it displaces a large fMRI dataset with a small number of images. For example, in the

de Lange, Roelofs, and Toni study, the fMRI dataset that comprised 547 brain volumes

per subject was compressed into ten 3D images of the estimated effect sizes. Second,

during model estimation, fMRI data undergo what I chose to designate as the elision

of the temporal dimension. Specifically, whereas a 4D fMRI dataset encodes both the

spatial distribution and the temporal development of the signal’s intensity, images of

the estimated effect sizes are devoid of any time-related information. In short, the input

of model estimation is characterised by a temporal dimension, but the output is not. To

understand why this elision happens, we need to remind ourselves that the automated

410 Earlier in this chapter, I have discussed how each task condition is repeated many times during

an experiment. The very purpose of the repetition is to enable the averaging of the task-induced

BOLD responses during the stage of model estimation.

411 Ashburner et al., “SPM12 Manual,” 78.

412 As stated previously, a 4D fMRI dataset encodes the signal intensities registered not only at

different spatial locations across the subject’s brain but also throughout multiple task repetitions

at various time points.

413 See section 3.2.1.
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algorithms required the temporal correlation between the design matrix and fMRI data

to compare the measured and predicted BOLD time courses. Based on this comparison,

the algorithms computed the effect size estimates by averaging the BOLD responses

across multiple repetitions of the same task. Hence, it can be said that the purpose of

the temporal information was to enable the closing of the gap between the data and the

model. Having fulfilled its purpose, the temporal information is no longer needed and,

therefore, disappears from the rest of the analysis.

So far, we have discussed the process of model estimation.We now need to examine

its output. In mathematical terms, the images of the estimated effect sizes are 3D

matrices. Like fMRI data, these 3D matrices can also be visualised as a series of grey-

scale brain slices.414 At this point, a layperson might presume that large effect sizes

contained in these images indicate voxels activated by a given task condition. Based

on this assumption, the layperson might expect that researchers can identify active

voxels by visually inspecting these images. This, however, is not the case. In fact,

researchers do not even look at these images but merely use them as input for the

next stage of algorithmic analysis. This is because these intermediary images are just

as illegible as the fMRI data from which they were computed. Put simply, even in the

images of the estimated effect sizes, the information of interest is still not encoded in

ways that make it accessible to visual inspection. The problem is the following. Since

they were computed from extremely noisy data, even numerically large effect sizes

do not necessarily point to the presence of task-induced neural responses but could

have instead occurred by mere chance.415 To resolve this problem, in the next step of

data analysis, researchers must evaluate whether an estimated effect size is significant

compared to the residual noise in the data. To do this, researchers deploy inferential

statistics.

As mentioned previously, inferential statistics entails testing the assumption

called the null hypothesis. Generally speaking, the null hypothesis states that a task

component of interest failed to elicit any brain activity in a given voxel. To submit

the data to automated hypothesis testing, researchers must first specify the null

hypothesis in relation to their particular experimental conditions and then decide

which type of test to use to evaluate the thus defined null hypothesis. Depending

on the analysis software they are using, researchers can choose among several types

of test statistics. Each of the available tests implements a different mathematical

model and makes different assumptions about the data.416 Despite differences, the

most commonly used statistics—such as t-tests and F-tests—share a key feature. They

quantify the uncertainty of a task-induced response by evaluating its average estimated

effect size relative to the extent to which this effect size randomly fluctuated during

the experiment.417 That is, both t- and F-tests measure if the task-induced effect is

414 Ashburner et al., “SPM12 Manual,” 78.

415 Worsley, “Statistical Analysis,” 251.

416 For details, see Worsley, 257–59.

417 For details, see Poldrack, Mumford, and Nichols, Handbook, 194–200. It is worth noting that to

enable statistical testing, it is necessary first of all to calculate the level of noise fluctuation in the

data. This is done by computing at each voxel the so-called error variance—the difference between

the measured signal and the value predicted by the design matrix. See Worsley, “Statistical
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sufficiently large compared to random noise so as not to have occurred by chance. As we

will see later, based on the resulting numerical values of such test statistics, researchers

differentiate between active and inactive voxels.

At this point, however, we still need to examine two significant aspects of hypothesis

testing. First, in a group study, such as our case study, hypothesis testing is not done at

the single-subject level, because the individual results are not of interest in themselves.

Instead, the outputs of single-subject model estimations serve as the input for the

second-level analysis. But before they can perform hypothesis testing at the group

level, researchers must first use the software’s algorithms to average the effect sizes

across all subjects.418 To this end, de Lange, Roelofs, and Toni used a so-called mixed-

effect approach, whose underlying assumption is that the responses to the same task

conditions vary randomly across subjects. In statistical terminology, this is expressed

by saying that subjects are treated as a random effect.419

The mixed-effect approach is dominant in hysteria research and neuroimaging in

general because it permits researchers to make inferences generalisable to a larger

population.420The integral aspect of this approach is the estimation of a particular kind

of noise, which is called inter-subject variance. Since this noise reflects the differences

in the task-induced responses across subjects, it is not containedwithin a single dataset.

Rather, this type of noise can be estimated only when fMRI data from various subjects

are mathematically compared to one another. In this process, the individual subject’s

idiosyncratic task-induced neural responses are categorised as unwanted disturbances

that could skew the results of the analysis. To eliminate such disturbances, during

between-subject hypothesis testing, the algorithms quantify the magnitudes of the

group-averaged task-induced responses relative to the variability in these responses

across the subjects.421 The resulting statistical group-level maps indicate only those

task-induced neural responses that were shared across the subjects. Such responses

are considered to be generalisable to all other hysteria patients with the same type of

symptoms.

The second crucial aspect of hypothesis testing allows us to examine how human

judgments shape algorithmic processes, as it entails researchers’ decisions on how

to specify concrete null hypotheses concerning their concrete experimental task.

So far, we have seen how researchers first construct the design matrix and then

Analysis,” 257–59; and Poldrack, Mumford, and Nichols,Handbook, 191–92. The computed values of

error variance for all voxels are stored in a separate 3D image. SeeAshburner et al., “SPM12Manual,”

78. Hence, the procedure of model estimation generates not only a set of images of estimated

effect sizes but also an additional image that encodes the subject-specific spatial distribution of

the estimated noise fluctuation across the brain.

418 The averaging entails building a second-level design matrix, which is then used during model

estimation for calculating the means from the subject-specific effect size estimates. For details,

see Poldrack, Mumford, and Nichols, Handbook, 102–4.

419 See Poldrack, Mumford, and Nichols, 100–2. An alternative approach, called fixed-effect analysis,

assumes that all subjects reacted to the assigned task similarly. Yet, the fixed-effect analysis is

viewed as less adequate since inferences based on it cannot be generalised beyond the sample.

Ibid.

420 Ashburner et al., “SPM12 Manual,” 63; and Poldrack, Mumford, and Nichols, Handbook, 100–5.

421 Poldrack, Mumford, and Nichols, Handbook, 102–4.
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use hard-coded algorithms to estimate the contribution of each of its explanatory

variables of interest to the BOLD responses measured across voxels. The next step

of the analysis accommodates the fact that, as discussed previously, fMRI cannot

measure the brain activity of interest in absolute terms. Instead, the acquired dataset

only provides information about the relative MR signal changes across different

experimental conditions.422 For this reason, during hypothesis testing, researchers

use test statistics to assess differential BOLD responses to various combinations of

experimental conditions. In this context, a comparison of two or more experimental

conditions—i.e., explanatory variables of interest—is called contrast. Working with

such contrasts characterises the statistical analysis in most task-based fMRI studies.423

In fact, defining a set of null hypotheses in terms of testable contrasts represents the

key step in implementing the design matrix as the study-specific model.This particular

step enables researchers to combinemultiple elements of their designmatrix in various

ways, both across different conditions within a single subject and among multiple

subjects. Once they have used the design matrix to define contrasts, researchers can

then look for the effects of these contrasts in the data. Crucially, through such use of

contrasts, researchers explore their data in search of task-elicited brain responses. For

example, researchers can search for voxels in which the activation either increased or

decreased in response to a single task condition as opposed to baseline. Alternatively,

research can choose to identify the locations of the voxels in which a particular

explanatory variable of interest induced a greater average BOLD response than another

variable.424 For each of the contrasts thus defined, the algorithms calculate a separate

activation map.

When defining contrasts for hypothesis testing, researchers can rely on the analysis

software to automatically generate a range of mathematically possible contrasts based

on the structure of the design matrix they created.425 Yet, importantly, both the

SPM and other analysis programmes permit researchers to flexibly define a variety of

custom-made contrast. As we are about to see in the example of the de Lange, Roelofs,

and Toni study, another significant point about hypothesis testing is that researchers

do not compute activation maps for all calculable contrasts. Instead, researchers select

only those contrasts they deem potentially meaningful. As my analysis will show,

‘meaningful’ contrasts are only those judged to be able to isolate a set of cognitive

components of interest and map these onto the associated neural activity to deliver

insights into the neural mechanism underlying the phenomenon under investigation.

422 See Huettel, Song, and McCarthy, Imaging, 354.

423 Hypothesis testing of single contrasts that entail a comparison of two conditions is performedwith

t-tests. Conversely, F-tests are used for contrasts that simultaneously comparemultiple conditions.

For details, see Poldrack, Mumford, and Nichols,Handbook, 194–200. Importantly, the contrast we

are discussing here (in the sense of comparing the effects of two ormore experimental conditions)

is not to be confused with the image contrast we discussed earlier in this chapter.

424 The baseline condition is typically not included as a separate explanatory variable in the matrix,

evenwhen it plays a role in an experiment. If used in a contrast, the baseline is defined as themere

absence of all the other explanatory variables—i.e., a null condition. See Ashburner et al., “SPM12

Manual,” 63.

425 See Ashburner et al., 88, 267, 269.
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Contrasts that fail to unambiguously fulfil this function are disregarded. In effect,

the choice for which particular contrasts to compute functional maps is guided by

researchers’ assumptions about the elementary cognitive components—and associated

neural responses—that different aspects of their tasks were designed to induce. Let us

now turn to our case study to see how this is done in practice.

As analysed previously, de Lange,Roelofs, and Toni constructed the first-level design

matrix that contained ten explanatory variables of interest. Each variable referred to the

presentation of either the affected or the unaffected hand in one of the five rotation

levels. Although these variables could have been compared in many different ways,

de Lange, Roelofs, and Toni chose to compute only two contrasts, which they then

forwarded to the second-level analysis.426 The first contrast entailed the comparison

of the overall activity induced by the drawings of the affected as opposed to the

unaffected hand, irrespective of their rotation levels. The other contrast isolated the

increasing hand-independent BOLD response elicited by the increasing rotation level of

the presented hand drawing as opposed to baseline.427These two contrasts allowed the

researchers to isolate two mutually independent aspects of their task.The first contrast

permitted them to search the data for the neural effects associated with hysterical

paralysis. The second contrast enabled them to identify the neural responses elicited

by the increasing task complexity. De Lange, Roelofs, and Toni chose to disregard all

other possible contrasts at the single-subject levels, thus effectively declaring them

meaningless.428

During group analysis, the researchers recombined the two single-subject contrasts

from the first-level analyses to create more complex comparisons. By recombining the

single-subject contrasts, de Lange, Roelofs, and Toni defined four different across-

subject contrasts in the second-level analysis.429 First, they computed the same two

contrasts as they had done at the first-level analyses, only this time averaging them

across all subjects. Additionally, they created a third group-level contrast to test if

their two experimental factors (i.e., hand affectedness and rotation levels) mutually

influenced each other. Notably, this new group-level contrast enabled them to search

for the responses induced by the rotation-related differences between the affected and

unaffected hands across subjects.

The choices de Lange, Roelofs, and Toni made so far were selective since

they did not test all mathematically possible contrast but only those they deemed

potentially meaningful from the cognitive perspective. Nevertheless, until this point,

the researchers remained in the framework of standard contrasts that were pre-

specified by the software. Yet, at this point, de Lange, Roelofs, and Toni decided to

exploit the fact that half of their patients had a left-hand and the other half a right-hand

paralysis. This fact permitted them to differently rearrange the single-subject contrasts

426 De Lange and colleagues selected the so-called main effects of each factor. See de Lange, Roelofs,

and Toni, “Self-Monitoring,” 2053.

427 As mentioned earlier, patients were looking at a fixation cross during the baseline condition.

428 For instance, the researchers chose to disregard the contrast between the affected hand and

baseline, as well as multiple possible contrasts between each single rotation level and baseline.

429 See de Lange, Roelofs, and Toni, “Self-Monitoring,” 2053.
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between the affected and the unaffected hand at the level of group analysis. Specifically,

the researchers used these single-subject contrasts to construct the fourth group-level

contrast that compared the activations elicited by the left and the right hand. Since

the software could not automatically generate this group-level contrast,430 de Lange,

Roelofs, and Toni had to define it manually. That is, their fourth group-level contrast

was a custom-made one. Importantly, through this intervention, de Lange, Roelofs,

and Toni were able to separate the task-induced neural effect of hysterical paralysis

from those related to the hand laterality and thus calculate separate activation maps

for each of these effects. It is safe to assume that this course of action was motivated

by the researchers’ active judgment that a separate analysis of these two particular

experimental effects was relevant for providing potential insights into neural correlates

of hysterical paralysis.

***

By way of summarising my analysis of statistical modelling of fMRI data, several points

need to be emphasised. We have seen that a significant part of statistical analysis

entails automated algorithmic operations such as model estimation and the computing

of test statistics. Yet, I have foregrounded that the selective use of contrasts during

hypothesis testing allows researchers to substantially shape the automated processes.

By combining the explanatory variables of the design matrix into different contrasts,

researchers can choose how to flexibly decompose the measured task-induced BOLD

responses into multiple, separately analysable constituent parts. Each thus defined

contrast enables researchers to isolate the neural effects that a particular aspect of their

experimental intervention induced in the data. Therefore, I argue that while defining

contrasts of interest, researchers reason with their study-specific model and use it as a

tool with which they can actively explore an fMRI dataset from a variety of perspectives.

In the subsequent phase of hypothesis testing, automated algorithms analyse the

data to identify the brain areas activated by the contrasts of interest, computing a

separate statistical activation map for each contrast. Potential effects of other contrasts

that could have been specified through alternative combinations of the elements of the

design matrix are fully disregarded during hypothesis testing. The entire process is

informed by researchers’ selective judgments about which particular set of calculable

contrasts is relevant for detecting the putative neural mechanisms of hysteria. Hence,

the choice of pertinent contrasts is an act of interpretation a computer algorithm cannot

make. Through this act of interpretation, researchers define which aspects of their

430 This is because de Lange, Roelofs, and Toni did not specify in the design matrix whether the

presented stimulus was the right or the left hand. Instead, they only specified whether the

stimulus referred to a patient’s affected or unaffected hand. However, because the researchers

knew which patient had an affected left instead of the affected right hand, they could easily

intervene and instruct the software how to recombine the individual images to create the desired

contrast between the left and the right hand. Since the study’s authors did not respond to my

attempts to communicatewith them, the reconstruction I offer here ismy own interpretation. This

interpretation is based on the analysis of secondary literature and the insights I have gained while

attending two SPM courses at the Department of Psychiatry and Psychotherapy, Charité Campus

Mitte Berlin in March 2014 and January 2015.
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experimental intervention will be made visible in the maps and which are relegated

to noise.

Additionally, in this and the previous sections, I delineated how the operations of

building and applying the study-specific statistical model to the fMRI data play a crucial

role in constituting the activation maps’ referential quality. Earlier in this chapter,

I have shown that the measurement already establishes a physical link to the active

brain. However, without the operations performed during statistical analysis, the task-

induced neurophysiological effects of interest would remain buried under noise, as well

as fragmented across fMRI images and datasets and, in effect, illegible.The consecutive

steps through which the fMRI data are transformed into statistical maps thus articulate

the traces of the neural effects of interests by isolating them fromnoise and synthesising

them across multiple experimental conditions, time points and subjects.

As analysed above, this fMRI-specific process of articulation rests on a series

of semantic operations that build a framework of interrelated comparisons and

references.431 Crucially, what follows from my analysis is that the resulting trace of the

neural activity of interest does not exist independently of the process of its semantic

articulation. In other words, my account challenges those neuroscientific narratives,

which typically frame statistical analysis as a simple extraction of the information that

had been inscribed into the fMRI data during the mutually synchronised experimental

manipulation and data acquisition.432 Contrary to this narrative, I claim that statistical

analysis is best understood not as a passive reconstruction but as a medium-specific

process of active interpretation. I have shown that statistical analysis relies heavily on

the use of automated algorithms yet also necessitates researchers’ active judgments

to produce a new hybrid object. The resulting functional brain map is at once a fact

and artefact,433 a synthesis of measurement and modelling. Significantly, the process

of computing epistemically valid functional brain maps is by no means arbitrary, as

it is constrained by the evolving standards of the neuroimaging community about

what constitutes acceptable methodological practice.434Thus constrained, this chain of

interpretational operations provides an unbroken link between the resulting statistical

maps and the indexical MR signals that went into the maps’ construction.

431 For the sake of clarity, letme sumup the operationswehave discussed in detail in this section. First,

the model of the expected task-induced responses is compared to the data. Second, responses of

a single subject tomultiple task repetitions are compared to one another and averaged. Third, the

average single-subject responses are compared across different individuals and again averaged.

Fourth, different task conditions aremutually contrasted at both within- and across-subject levels

and then compared to the level of noise. Importantly, the averaging across subjects is not based on

merely calculating the arithmeticmean, since each subject is treated as a random variable. Hence,

as previously mentioned, the averaging is based on the mixed-effects approach.

432 See, e.g., Worsley, “Statistical Analysis,” 261.

433 See Latour, Pandora’s Hope, 125.

434 Admittedly, the enormous flexibility with which researchers can analyse their data means that

the process of statistical analysis is vulnerable to mishandling of the data by randomly trying out

different analytical approaches and then selectively reporting only those that gave the best results

(so-calledp-hacking).However, suchpractices are consideredbad science, producing epistemically

questionable findings. See, e.g., Head et al., “P-Hacking,” 1, e1002106.
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Consequently, I argue that a statistical activation map is constituted as a highly

mediated indexical sign. Its creation entails the combined effects of, first, the initial

physical inscription of neurophysiological processes into the fMRI data; and second,

the subsequent chain of semantic operations and mathematical transformations that

articulate this trace in the data. My argument draws on Ludwig Jäger. He claims that

to be instituted as an indexical sign of an object, a trace of some causal, physical

contact with that object must undergo a medium-specific process of interpretation,

which embeds this trace into a network of references to other signs and inscriptions.

According to Jäger, both the indexical sign that points to an object and the object as

the addressee of the sign’s referential function are constituted through such semantic

operations.435

My detailed analysis has shown that the indexicality of a functional activation map

in the context of hysteria research does not consist in the map’s ability to point to

a single neural event or even to an individual subject’s idiosyncratic, random brain

activity. Instead, the indexicality of a functional map consists in its ability to point to,

mostly group-averaged, brain activities of interest that were isolated during protracted

statistical data analysis through a particular comparison of experimental conditions.

Just as importantly, I have demonstrated that the indexicality of functional maps is as

much a result of complex discursive and mathematical operations as it is of physical

interventions. Therefore, the potential truth function of fMRI maps and, by extension,

their epistemic efficacy in the scientific context cannot be divorced from the chain of

the medium-specific operations that underpin their production.

However, before researchers can use the thus obtained fMRI activation maps to

make judgments about possible neural mechanisms that underpin different hysterical

symptoms, they must perform one additional step. As we will discuss in detail in the

following section, this step addresses and aims to remedy the inherent limitation of

statistical testing.Unless remedied, this limitation poses a serious threat to the carefully

constructed indexicality of functional brain maps.

3.4.3 Disambiguating Active from Inactive Voxels

After the automated algorithms have calculated the chosen test statistics for a given

contrast of experimental conditions across the entire brain, each voxel obtains a single

numerical value. A large statistic value indicates a significant difference between the

effects elicited by the experimental conditions contrasted at a given voxel. However, it

is crucial to note that even a large statistic value in itself still does not provide sufficient

reason to declare a voxel active. In fact, as we are about to see in what follows, even

at this point, researchers have to make a few more crucial interpretational decisions

before they can disambiguate active from inactive voxels.

435 See Jäger, “Indexikalität und Evidenz,” 302–9. For similar positions that define indexicality not as a

direct effect of the physical contact between an object and its sign but as a result of the subsequent

process of interpretation, see Lefebvre, “Pointing,” 220–44; and Olin, “Touching Photographs,”

99–118.
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To be able to reject the null hypothesis for a chosen contrast and thus declare a

set of voxels active, researchers must first use the resulting test statistics to obtain the

estimates of the so-called probability values (p-values). By definition, a p-value denotes

the probability of observing under an identical replication of the experiment a test

statistic as large as or larger than the one obtained, provided that the null hypothesis

of no effect is true.436 Expressed in simpler terms, the smaller the p-value is, the less

likely it is that the reconstructed task-induced response is mere noise. By convention,

the null hypothesis is rejected in a voxel whose p-value is below a predefined numerical

level, called the significance threshold.437 Voxels that fulfil this condition are considered

to exhibit a statistically significant value. They are declared active and included in the

statistical activation map. Conversely, all voxels with p-values above the threshold are

labelled inactive and excluded from the map. Consequently, the resulting activation

map does not display the presence of task-induced neural activations in absolute terms.

Instead, and this is crucial, the map only shows the varying levels of probability that

certain brain areas responded to a chosen contrast of experimental conditions.

A predefined threshold is used for distinguishing between active and inactive voxels

so as to minimise the amount of what, in statistical terms, is referred to as the type I

errors or false positives. Such errors arise when an inactive voxel is falsely declared

active by rejecting the null hypothesis, although there was no actual experimentally

induced effect in the data.438 False positives are an inherent feature of statistical testing

because there is always a chance of obtaining large statistic values by chance and

thus mislabelling noise for an effect of interest. Such errors present a serious problem

since they generate wrong information. To minimise the presence of false positives, in

statistics in general and in fMRI in particular, the threshold is typically set at a nominal

value of 0.05 for single test statistics. This means that a 5% rate of false positives is

typically deemed to produce valid results.439

However, the problem concerning fMRI is that statistical tests are performed

for each voxel separately across the whole brain volume. This approach entails an

enormous number of tests, which inflate the number of false positives and result

in what is known as the multiple comparisons problem.440 For example, since a 3D

fMRI image in our case study contained 64 x 64 x 32 voxels, approximately 50,000 to

436 Poldrack, Mumford, and Nichols, Handbook, 110.

437 Huettel, Song, and McCarthy, Imaging, 332–33.

438 Huettel, Song, and McCarthy, 332–33. See also Poldrack, Mumford, and Nichols, Handbook, 110.

439 Huettel, Song, and McCarthy, Imaging, 357. This arbitrary cut-off value “was originally developed

by statistician Ronald Fisher in the 1920s in the context of his research on crop variance in

Hertfordshire, England. Fisher offered the idea of p-values as a means of protecting researchers

from declaring truth based on patterns in noise. In an ironic twist, p-values are now often used

to lend credence to noisy claims based on small samples.” Gelman and Loken, “Statistical Crisis in

Science,” 460. For discussions of the challenges and potential pitfalls of the current focus in the

scientific research in general on a false-positive rate of 5% (i.e., p ≤ .05) and how this can often lead

to biased and unreproducible experimental results, see Gelman and Loken, 460–64; and Simmons,

Nelson, and Simonsohn, “False-Positive Psychology.”

440 Huettel, Song, and McCarthy, Imaging, 357.
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75,000 independent statistical tests had to be performed for each contrast.441 With the

significance threshold set at 0.05 for every test in isolation, the resulting activation

maps contained, on average, several thousand voxels that were falsely labelled active.

The problem with false positives was humorously illustrated by a famous fMRI study

by Bennett et al. in which the researchers ‘demonstrated’ the presence of brain activity

in a dead salmon.442 As a matter of fact, all activated voxels in the functional maps

they computed for the dead salmon were false positives. Importantly, the very aim of

the Bennett et al. study was to emphasise the necessity of adequately correcting such

errors.

Multiple methods have been developed for addressing the multiple comparisons

problem. Several of the most widely used methods are included in the SPM and

comparable analysis software as available pre-programmed options.443The shared aim

of all such options is to minimise the number of false-positive voxels in the resulting

maps by calculating a corrected threshold value.What differs across themethods is how

they calculate the corrected threshold value. Several particularly stringent correction

procedures are jointly referred to as familywise error rate (FEW) methods. The FEW

methods take into account the total number of statistical tests that have been performed

across the brain volume during the analysis and then compute corrected maps, which,

on average, have only a 5% chance of containing any false positives.444 The newly

calculated threshold value of 0.05 implies that only one in twenty corrected functional

maps contains a false positive. The FEWmethods are highly effective in controlling the

false positives. Yet, theirmajor drawback is that they considerably increase another type

of intrinsic statistical error called false negatives.

False negatives are the direct opposite of false positives. Also known as the type II

errors, false negatives arise when active voxels are falsely declared inactive by accepting

the null hypothesis when there are actual effects in the data.445 To avoid inflating the

false-negative rate through the excessively stringent FEW methods, researchers may

opt to use a more liberal correction approach, called the false discovery rate (FDR).446

441 Strictly speaking, a 3D fMRI image whose size is 64 x 64 x 32 entails 130,000 voxels. But the brain

does not occupy the entire volume of this 3D image. Those portions of the image that do not

contain brain tissue are referred to as “nonbrain voxels.” Jenkinson and Chappell, Neuroimaging

Analysis, 150. During the preprocessing step called the brain extraction, the intensity of nonbrain

voxels is set to zero. Ibid. In a normalised 3D fMRI image, typically only 50,000–75,000 out

of 130,000 voxels refer to the brain tissue. The rest are nonbrain voxels. Statistical testing is

performed only on those voxels that contain brain tissue, whereas nonbrain voxels are entirely

disregarded. See Ashburner et al., “SPM12 Manual,” 69–70. Hence, the correction of the multiple

comparisons problem only considers the number of tests performed on the within-brain voxels. I

am grateful to Torsten Wüstenberg for drawing my attention to this fact.

442 Bennett et al., “Post-Mortem Atlantic Salmon,” 39–41.

443 See Ashburner et al., “SPM12 Manual,” 237–38; and Poldrack, Mumford, and Nichols, Handbook,

116–23.

444 Ashburner et al., “SPM12 Manual,” 247–48. The three most widely used FEW procedures are the

randomfield theory approach, the Bonferroni, and theMonte Carlo corrections. See also Poldrack,

Mumford, and Nichols, Handbook, 117.

445 Poldrack, Mumford, and Nichols, Handbook, 111.

446 Poldrack, Mumford, and Nichols, 121–23.
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However, while the FDR method increases the chance of detecting real effects in the

data, its disadvantage is that it less effectively reduces the presence of false positives.

This is due to the fact that the FEW and FDR methods not only deploy different

mathematical models but also differently define what counts as an acceptable false-

positive rate. By definition, in an FDR-corrected map with a significance value of 0.05,

on average, 5% of all active voxels are false positives.447 In effect, by choosing a specific

correction method, researchers make crucial interpretational decisions about how to

balance the reduction of false positives at the expense of increasing false negatives in

their functional maps.

In essence, both false positives and false negatives present a major problem for

fMRI analysis because a significant presence of either of these types of errors results

in invalid statistical maps.448 False positives lead researchers to make erroneous claims

about non-existent effects in the data. False negatives are no less problematic as they

cause researchers to miss potentially significant activations. The crucial problem, I

suggest, is that both types of errors introduce a potential rupture into the thus far

carefully constructed referential chain, which links statistical maps to the indexical

MR signals. But these errors are the unavoidable price that researchers have to pay for

using statistical analysis to translate the noisy, illegible fMRI data into legible functional

maps.

It should be emphasised that fMRImaps can never be entirely purged of either false

positives or false negatives. Nevertheless, we have seen that various correction methods

allow researchers to reduce the rupture introduced by such errors.The principal goal of

such correction methods is to achieve what members of the neuroimaging community

consider an optimal balance between minimising the presence of both false positives

and false negatives. If researchers manage to achieve this goal, the resulting maps

are regarded to possess sufficient referential quality to point to the brain activities

of interest and can thus serve as the basis for scientific judgments about these brain

activities. It can, therefore, be argued that, if chosen adequately, the correctionmethods

perform the operation of restoring the indexicality of fMRI maps. They do so by

decreasing the presence of the elements that threaten to break the integrity of the

referential chain which underpins the production of fMRI maps. My analysis has

foregrounded that, on the one hand, this operation ismaterial because it entails specific

mathematical transformations to which fMRI maps are submitted. Yet, on the other

hand, the restoration of the indexicality of fMRI maps is also a discursive operation, as

it requires the authentication of the community of experts.

There are two caveats, however. First, the general adequacy of even well-established

and widely used correction methods is still debated in the neuroimaging community.

In other words, what counts as the optimal approach to correcting the multiple

comparisons problem continues to be re-negotiated among experts. While some

researchers “feel that conventional approaches to multiple-comparison correction are

too lax and allow too many false positives”, others argue that most “thresholds are

447 Poldrack, Mumford, and Nichols, 121–23.

448 In specialist terms, maps with a high rate of false positives are said to lack specificity, whereas

those with a large amount of false negatives lack sensitivity. Poldrack, Mumford, and Nichols, 122.

https://doi.org/10.14361/9783839461761-016 - am 14.02.2026, 22:11:46. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839461761-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


3 Using fMRI as an Investigation Tool in Hysteria Research 367

too conservative and risk missing most of the interesting effects.”449 Second, the level

of balance between the rates of false positives and false negatives researchers can

achieve in a particular study is also limited by the conditions of the data acquisition.

Specifically, the rates of both types of errors do not only depend on the efficacy of

statistical tests. Instead, they are also influenced by the relative size of the task-

induced effects compared to the noise and, most problematically, the size of the

subject sample.450 Consequently, studies with a small number of participants—which,

as discussed previously, are prevalent in fMRI hysteria research—suffer from what

is known as low statistical power. This means that such studies are hampered by a

significantly lower chance of discovering true effects of experimental intervention in

the data and a higher likelihood that the nominally positive results are false.451 In short,

small-sized studies tend to have higher rates of both false positives and false negatives.

Moreover, by extension, small-sized studies might struggle with the fact that hardly any

of their active voxels survive either of the correction methods described above.452

To circumvent this problem and thus avoid producing empty maps, many fMRI

studies employ an alternative correction method called clusterwise thresholding. This

approach predominates in fMRI hysteria research and was also used in our case

study.453 Its underlying assumption is that the likelihood of a single voxel being active

by chance is much higher than that of a group of neighbouring voxels called a cluster.454

In essence, researchers ignore single voxels and instead ascribe statistical significance

only to groups of voxels whose size is above a threshold that specifies a critical cluster

size.This approach effectively minimises false positives while also allowing researchers

to detect activations that would not survive more stringent correction methods.455 Yet

its drawback lies in the potential loss of spatial specificity. If the calculated clusters are

particularly large—as was the case in the de Lange, Roloefs, and Toni study—suchmaps

449 Poldrack et al., “Scanning the Horizon,” 121–22.

450 Poldrack, Mumford, and Nichols, Handbook, 111.

451 Button et al., “Power Failure,” 366. See also Cremers,Wager, and Yarkoni, “Statistical Power.” Strictly

speaking, the sample size required for detecting an underlying neural activity with a particular

experimental design can be calculated using the procedure called power analysis. See Poldrack,

Mumford, and Nichols, Handbook, 126–29. The problem with this analysis is that it is, in effect,

somewhat circular. To perform it, one has to be able to estimate the size of the expected neural

activity by relying on previously conducted studies. But, as discussed earlier, most fMRI studies of

hysteria have so far been performed on small samples. Hence, it is easy to conclude that there is

currently not enough reliable data for adequate power analysis in fMRI-based hysteria research.

452 Poldrack, Mumford, and Nichols, Handbook, 121.

453 See, e.g., Baek, “Motor Intention,” 1626; Espay et al., ”Functional Tremor,” 182; and Stone et al.,

“Simulated Weakness,” 963.

454 In a two-step procedure, researchers first choose a liberal primary threshold arbitrarily. This allows

them to identify groups of neighbouring voxels whose individual statistical values lie above this

primary threshold. In the second step, only those clusters that are as large as or larger than the

cluster-size threshold are declared to be statistically significant and thus active. This second, more

stringent threshold is calculated “based on the estimated distribution of cluster sizes under the

null hypothesis of no activation in any voxel in that cluster.” Importantly, a more liberal primary

threshold results in a larger critical size threshold. Woo, Krishnan, and Wager, “Cluster-Extent

Thresholding,” 412. Hence, choosing the primary threshold is an important epistemic decision.

455 Huettel, Song, and McCarthy, Imaging, 361.
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merely provide somewhat vague information that some signal was present somewhere

within a relatively extensive brain area. Put differently, “evenwhen the cluster-level false

positive rate is well controlled, large true positive clusters are likely to consist of mostly

noise and render the positive findings useless because of its low informativeness.”456

Thus, although cluster-size thresholding allows researchers to translate fMRI data into

visualisable maps without compromising their epistemic validity, the resulting maps

are not always unambiguously interpretable in anatomical terms. The interpretational

ambiguity is particularly pronounced if active clusters happen to spread across multiple

brain areas.

***

In sum, only after the ascription of statistical significance entailed in thresholding

and the correction of multiple comparisons problem are researchers finally able

to distinguish between active and inactive voxels. Significantly, the ascription of

significance is also an attribution of visibility since only those voxels that pass the

corrected threshold are visualised in the resulting statistical maps. We have seen that

researchers can choose among various commonly used thresholding methods, all of

which have particular advantages but also carry potential pitfalls. To produce maps that

are indexically linked to the brain activity of interest, researchers must find a trade-

off between controlling both false positives and false negatives, while at the same time

achieving sufficient spatial specificity.Moreover, researchersmust not only comply with

the standards of the neuroimaging community but also take into account the particular

epistemic limitations of their study.

On the whole, I suggest that the ascription of significance represents a focal

semantic operation in fMRI analysis. Depending on how optimally researchers are able

to perform it, this operation either successfully perpetuates or ruptures the medium-

specific construction of the functional maps’ indexicality on which the potential

epistemic validity of these images hinges. Notably, the indexicality of functional maps

necessarily remains highly indirect. It amounts to pointing with sufficient statistical

likelihood to the presence of task-induced activations, which researchers can finally

visualise and interpret. But before we turn to discussing how researchers work with

visualisations of functional activation maps, let us now take a step back and examine

how an alternative statistical analysis can be used to produce an entirely different kind

of brain map from the same fMRI dataset.

3.4.4 Modelling the Legibility of the Brain’s Internal Interactions

In the previous sections, we have examined the operations through which scientists

transform fMRI data into statistical activation maps to identify the spatial distribution

of the brain areas activated by a chosen contrast of experimental conditions.

Referred to as functional segregation or localisation, this approach parcellates

the brain into separate, functionally specialised regions.457 Despite its widespread

456 Woo, Krishnan, and Wager, “Cluster-Extent Thresholding,” 418.

457 See Büchel and Friston, “Brain Connectivity,” 295.
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application, from the point of view of cognitive neuroscience, localisation has a major

epistemic limitation. Based on activation maps alone, researchers cannot determine

whether—and if then how—disparate brain regions interacted with one another to

produce the task-induced responses.458 To surpass this limitation, researchers can use

an alternative approach that permits them to make inferences about “how spatially

distant brain regions interact and work together to create mental function.”459 Known

as functional integration, this approach comprises different analytical methods and

different concepts of what counts as an interaction among brain regions.460 Two key

concepts that dominate this still relatively new approach are functional and effective

connectivity.

Functional connectivity is defined as a correlation in temporal patterns of activity

across remote brain regions. Its underlying assumption is that the temporal coherence

of the spatially distributed brain activities indicates some level of mutual interaction

among these activities.461 Although mostly used in resting-state fMRI studies,462

functional connectivity analyses can also be applied to task-based data. Yet the caveat

is that such analyses provide neither information about the direction of the neural

interactions nor about how such interactions arise.463 Conversely, the alternative

concept of effective connectivity comprises analyses aimed at determining the influence

that one brain region exerts upon another, thus allowing researchers to “disambiguate

correlations of a spurious sort from those mediated by direct or indirect neuronal

interactions.”464 A variety of methods used for measuring effective connectivity deploy

not only different models of neural influence but also ascribe different levels of

causality to that influence. Furthermore, there is a disagreement in the neuroscientific

literature about where to draw the demarcation line between functional and effective

connectivity.465

Due to such competing approaches to both how connectivity is defined and

analysed, functional integration is still considered “a less than a mature field.”466

Nevertheless, the use of connectivity analyses in cognitive neuroscience has surged in

458 An activation map neither provides information about the region-specific responses' temporal

sequence nor their mutual causal relationships. Büchel and Friston, 295–56.

459 Poldrack, Mumford, and Nichols, Handbook, 130.

460 See Poldrack, Mumford, and Nichols, 130–59. For a detailed account, see Friston, “Functional

Integration,” 471–91.

461 Büchel and Friston, “Brain Connectivity,” 296.

462 As mentioned previously, in the resting-state fMRI paradigm, the subject is not required to

perform an explicit task, but instead instructed to lie still and not think about anything specific.

Resting-state fMRI studies deploy various types of functional connectivity analyses to identify

correlated patterns of intrinsic brain activities that are independent of any external stimuli.

See, e.g., Raichle, “Restless Brain.” I will discuss the application of the resting-state approach in

contemporary hysteria research in section 4.4.1.

463 Büchel and Friston, “Brain Connectivity,” 296.

464 Friston et al., “Psychophysiological Interactions,” 219.

465 For an overview of methods, see Friston, “Functional and Effective Connectivity”, 13–36. See also

Poldrack, Mumford and Nichols, Handbook, 130–59. Interestingly, these two accounts differ in

where they place the demarcation line between functional and effective connectivity.

466 Büchel and Friston, “Brain Connectivity,” 307.
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recent years.467 This general trend has been mirrored by a gradual increase in both

resting-state and task-based studies that aim to establish how spatially distributed

brain areas interact to give rise to hysterical symptoms.468 Interestingly, none other

than de Lange, Toni, and Roelofs authored the first full-length fMRI group study that

applied connectivity analysis to hysteria.469 Three years after their initial fMRI paper

on hysterical arm paralysis—which so far served as our case study—de Lange, Toni,

and Roelofs returned to the same dataset. This time, they used a method called the

psychophysiological interaction (PPI) to translate their initial fMRI data into a set of

statistical connectivity maps. Since then,multiple task-based fMRI studies of hysterical

symptoms have used the PPI to compute connectivity maps.470 It can, therefore, be

said that this type of functional map is playing an increasing role in recent attempts

to elucidate potential neural correlates of hysterical symptoms. For this reason, in

what follows, I will analyse the operations that determine the production of task-based

connectivity maps by drawing on the example of the de Lange, Toni, and Roelofs study

from 2010.

In general terms, the psychophysiological interaction analysis permits researchers

to make inferences about how task-induced cognitive processes (i.e., the psychological

factor) alter the influence that one brain region has on others (i.e., the physiological

factor).471 To perform the PPI analysis, researchers must first specify the task

components whose modulatory effect is of interest to them. Next, they need to choose

the area—called the seed region—whose influence on the rest of the brain they want

to investigate. Since the seed region is necessarily an area activated by the task

components of interest, researchers must first perform a standard GLM activation

analysis to identify its location.472 Put simply, the creation of a pertinent statistical

activation map is a necessary precondition for the PPI analysis. For this reason, de

Lange, Toni, andRoelofs used the PPI analysis to build directly upon their initial study in

which they had pinpointed several areas of the prefrontal cortex that were differentially

activated by the stimuli of the affected and the unaffected hand.473 With the PPI

analysis, the researchers could now use the same fMRI dataset to ask the following

question: With which brain areas did the chosen seed regions interact differently

depending on whether the patients were induced to imagine moving their affected or

467 In 2010, “the annual increase in publications on connectivity surpassed the yearly increase in

publications on activations per se.” Friston, “Functional and Effective Connectivity,” 13 (emphasis

in original).

468 Baek et al., “Motor Intention”; Otti et al., “Somatoform Pain”; and Voon et al., “Limbic Activity.”

469 See de Lange, Toni, and Roelofs, “Altered Connectivity.”

470 See, e.g., Aybek et al., “Life Events”; Hassa et al., “Motor Control”; and Voon et al., “Involuntary

Nature.”

471 Friston et al., “Psychophysiological Interactions,” 223. Strictly speaking, the PPI is amethod located

at the intersection between functional and effective connectivity. Researchers use the PPI to

establish a neural interaction that is stronger than a mere temporal correlation across brain

regions. However, researchers cannot interpret the thus identified neural interaction in terms of

any clear-cut causal relations. See Ashburner et al., “SPM12 Manual,” 340.

472 See Ashburner et al., “SPM12 Manual,” 341; and Poldrack, Mumford, and Nichols, Handbook, 134.

473 De Lange, Roelofs, and Toni, “Self-Monitoring,” 2056. I will return inmore detail to the researchers’

interpretation of the activation maps later in the chapter.
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unaffected hand? Significantly, this new question allowed the researchers to shift the

focus away from identifying the direct effects that the external factors (i.e., the task

conditions) had on the patients’ brains and focus instead on examining the internal

neural interactions.

Answering this question with the PPI analysis meant that de Lange, Toni, and

Roelofs had to oncemore rely on the general linearmodel (GLM) to construct yet another

study-specific designmatrix.474They then used thismatrix in the subsequent statistical

testing to compute the connectivity maps. We now appear to be on familiar ground,

as this process sounds similar to the standard GLM analysis discussed previously.

However, there are several significant differences. We have seen that the standard GLM

analysis allowed researchers considerable autonomy in defining the elements of the

design matrix. This autonomy, as I have argued, was a necessary precondition that

enabled researchers to pertinently model the expected effects of their experimental

task on the data. By contrast, the PPI design matrix comprises three fixed types

of explanatory variables that partition the BOLD response within each voxel into a

combination of the experimental intervention and the brain’s internal interactions.

These variables include: first, the estimated local BOLD response to the task condition;

second, the input from the seed region’s BOLD response; and finally, the PPI term

that models the additional task-modulated influence of the seed region.475 Since the

structure of the PPI design matrix is predefined, in this case, researchers have a

considerably narrower modelling autonomy than in the activation analysis. In fact, the

only modelling decisions they can make are choosing the location of the seed region

and selecting the task condition of interest.

Despite its apparent structural simplicity, the construction of the PPI designmatrix

is far from straightforward, as it requires multiple intermediary modelling steps.

First, the seed region’s BOLD response must be computed using the classical GLM

activation analysis.476Thismeans that the PPI analysis is already implicitly informed by

the theoretical assumptions, mathematical operations, and interpretational decisions

inscribed into the preceding activation analysis. Moreover, the biggest challenge

involves specifying the PPI term. It is worth noting that the PPI term is of central

interest for the analysis as it models the predicted task-modulated neural interaction

between the seed region and the rest of the brain. To define the PPI term, researchers

must first estimate the neural activity in the seed region. Since fMRI cannot measure

the neural activity directly, researchers rely on specifically developed deconvolution

algorithms that use sophisticated mathematical modelling to compute the most likely

neural signal underlying the BOLD response from the seed region.477 Finally, to build

the PPI term that predicts the BOLD responses across the brain, the estimated neural

signal must be multiplied by the timing of the experimental task that induced it and a

474 De Lange, Toni, and Roelofs, “Altered Connectivity,” 1783–84. See also Ashburner et al., “SPM12

Manual,” 339–41.

475 Ashburner et al., “SPM12Manual,” 339–40; and Poldrack,Mumford, andNichols,Handbook, 134–35.

476 Ashburner et al., “SPM12 Manual,” 340; and Poldrack, Mumford, and Nichols, Handbook, 134.

477 Poldrack, Mumford, and Nichols, Handbook, 135–36.
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model of the haemodynamic response.478 Only after the SPM’s black-boxed machinery

has executed all these extensive mathematical transformations can the PPI matrix be

put to work.

The deployment of the PPI matrix is performed in steps that are very similar to

those we have analysed in the previous section. Hence, the outputs of single-subject

model estimations are used for the voxelwise hypothesis testing of chosen contrasts at

the group level.479 However, the key difference is that, in the PPI analysis, the effect

of interest is defined by comparing the PPI term and baseline.480 This contrast allows

researchers to identify the voxels in which the BOLD response temporally co-fluctuated

with the experimentally induced response in the seed region.481 Using this contrast,

researchers can determine which spatially distant brain areas interacted differently

with the seed region under the influence of the task. In other words, what is of interest

in the PPI analysis is the indirect influence that the task-related neural activity in the

seed region had on the task-related brain activities in the rest of the brain. Crucially,

this means that what was considered noise in the standard activation analysis is now

declared the signal of interest. Conversely, the direct effects of the task on the BOLD

response in each voxel, which represented the information of interest in the standard

activation analysis, are treated as noise by the PPI analysis and, therefore, disregarded

during statistical testing. Thus, what counts as pertinent information and what is

viewed as a disturbing factor is not fixed within a single fMRI dataset. Instead, such

decisions depend entirely on the type of analysis researchers choose to perform on the

data.

After the algorithms had executed hypothesis testing at each voxel, and the results

underwent clusterwise thresholding as described previously, de Lange, Toni, and

Roelofs were able to visualise their connectivity maps.The resulting maps displayed the

brain areas whose neural interactions with the chosen seed regions in the prefrontal

cortex either increased or decreased with sufficient statistical significance, depending

on whether the patients were shown the imagery of the paralysed or the healthy hand.

The PPI analysis thus enabled the researchers to use the same fMRI dataset as in the

previous study, but this time to create maps that provided complementary insights into

the hysteria patients’ neural activities. In the initial study, the researchers used their

fMRI dataset to identify those isolated brain areas whose localised dysfunction might

have given rise to hysterical paralysis. Conversely, the connectivity analysis facilitated a

substantial shift in the perspective. In the subsequent study, de Lange, Toni, and Roelofs

used the same fMRI dataset to identify the aberrant interactions across spatially distant

brain regions as the potential neural mechanism underlying hysterical paralysis.

478 Poldrack, Mumford, and Nichols, 136.

479 Ashburner et al., “SPM12 Manual,” 350–54.

480 In sections 3.4.1 and 3.4.2, I have shown that researchers can flexibly define and test a variety of

contrasts of interest during standard activation analysis.

481 Friston, “Functional and Effective Connectivity,” 23.
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***

In summary, the two consecutive studies by de Lange, Toni, and Roelofs generated

categorically different imaging findings through the applications of two different

analytical approaches to the same fMRI dataset. We have seen that each of the two

approaches was informed by a substantially different model of the brain function.

In one case, the focus was on strictly localised activations (functional segregation),

whereas in the other, on the dynamic connections among spatially remote brain areas

(functional integration). Just as significantly, each approach also rested on partly

contrary definitions of what counted as the information of interest in the fMRI data

instead of noise.Therefore, each approach required that the researchers deploy different

kinds of mathematical transformations to obtain what they defined as pertinent

information.

In effect, my analysis has shown that the kind of information that is articulated

from a particular fMRI dataset and translated into a legible statistical map is, at the

most basic level, predicated on the model of the brain’s functional organisation which

underpins the analytical approach chosen by researchers. Because these models are not

mutually exclusive, they can be applied in separate analytical procedures to the same

fMRI dataset to construct multiple, mutually complementary statistical brain maps.

Through the use of such mutually complementary analyses, a single fMRI dataset is

constructed as what I would like to designate as semantically multipotent. What I mean

by this is that each fMRI dataset holds the potential to be made legible in multiple

epistemically valid ways. As we have seen, it is up to researchers to decide which specific

semantic potential of their fMRI dataset they want to articulate to answer their study-

specific research questions. In each case, the result of such an articulation is a particular

statistical brain map.

3.5 Visualising Functional Brain Maps: Ascribing the Symbolic Meaning

Only after they have completed all the steps entailed in the time-consuming data

analysis and thus obtained the statistical maps of their choice can researchers finally

turn to evaluating the empirical results of their experiment. To put it more plainly,

it is not before this point that researchers can even see which brain areas were

differentially activated—with sufficient statistical significance—by the comparisons of

the experimental conditions they chose to test. Having invested weeks or even months

into painstakingly constructing their functionalmaps, researchers can, at last, use them

to answer two crucial questions. In which anatomical regions of the brain did the

experimental intervention trigger neural responses? And, how do such patterns of brain

activity relate to cognitive processes that play a role in the formation and manifestation

of the hysterical symptom of interest, or more generally, any other phenomenon under

investigation?

Answering these questions requires researchers to make sense of their statistical

brain maps. Yet, there is one crucial point that I want to make. Although the statistical

brain maps are legible, their exact informational content and medical meaning are far
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