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VII

Notation

a) Lateinische Formelzeichen

A1, A2 Parameter im Bruchkriterium nach Richard
Af , Am, Av Querschnittsfläche der Faser, Matrix bzw. des Verbunds
B1, B2, B3, B4 Parameter im Bruchkriterium nach Richard
C Integrationsweg
C Steifigkeitsmatrix
CE Parameter im Rissfortschrittgesetz nach Erdogan und Ratwani
CP Parameter im Rissfortschrittgesetz nach Paris
E Elastizitätsmodul, Zugelastizitätsmodul
E

′ zustandsabhängiger Elastizitätsmodul, Elastizitätsmodul im
Bruchkriterium nach Hussain, Pu und Underwood

Ef , Em Elastizitätsmodul der Faser bzw. Matrix
Ef‖ Elastizitätsmodul der Faser in Längsrichtung
E‖ Elastizitätsmodul des Verbunds in Faserlängsrichtung
E⊥ Elastizitätsmodul des Verbunds in Querrichtung
Ex, Ey, Ez Elastizitätsmoduln in Koordinatenrichtungen
E∗

x, E
∗
y, E

∗
z Elastizitätsmoduln im gedrehten Koordinatensystem

F Kraft
Ff , Fm Kraft in der Faser bzw. Matrix
Fk Kraftkomponente am Knotenpunkt
Fmax Maximalzugkraft
Fy Kraft in y-Richtung
F‖ Kraft in Faserlängsrichtung
G Energiefreisetzungsrate
Gxy, Gxz, Gyz Schubmodul in Koordinatenrichtungen
GI, GII, GIII Energiefreisetzungsrate für Mode I, II bzw. III
GIc kritische Energiefreisetzungsrate, Materialgrenzwert
G(ϕ) winkelabhängige Energiefreisetzungsrate
∆G zyklische Energiefreisetzungsrate
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VIII Notation

∆GI,∆GII zyklische Energiefreisetzungsrate für Mode I bzw. II
J Wert des J-Integrals
JIc kritischer Wert des J-Integrals
Jc(ϕ) winkelabhängiger, kritischer Wert des J-Integrals im Bruchkri-

terium nach Judt
JR(ϕ) winkelabhängiger Wert des J-Integrals im Bruchkriterium nach

Judt
JPD

c , JTD
c kritischer Wert des J-Integrals in transversaler bzw. senkrechter

Richtung
J1, J2 Wert des J-Integrals in x- bzw. y-Richtung
K Spannungsintensitätsfaktor
KI, KII, KIII Spannungsintensitätsfaktor für Mode I, II bzw. III
KI,max, KI,min maximaler bzw. minimaler Spannungsintensitätsfaktor
KV Vergleichsspannungsintensitätsfaktor
KI, KII Spannungsintensitätsfaktor für Mode I bzw. II im Bruchkrite-

rium nach Nuismer
KIc, KIIc Risszähigkeit für Mode I bzw. II
KI, II, c Risszähigkeit für Mixed-Mode Beanspruchung (Mode I und

II)
KIc(ϕ) winkelabhängige Risszähigkeit für Mode I
KIc,M1, KIc,M2 Risszähigkeit des Materials 1 bzw. 2 im Bruchkriterium nach

Schramm und Richard
KC

I (ϕ) winkelabhängiger, normierter Spannungsintensitätsfaktor im
Bruchkriterium nach Schramm und Richard

KC,TSSR
I Minimalwert der normierten Spannungsintensitätsfaktoren im

Bruchkriterium nach Schramm und Richard
KPD

Ic , KTD
Ic Spannungsintensitätsfaktor in senkrechter bzw. transversaler

Richtung im Bruchkriterium nach Judt
∆KI,∆KII,∆KIII Zyklischer Spannungsintensitätsfaktor für Mode I, II bzw. III
∆KIc zyklische Risszähigkeit für Mode I
∆KI,th Schwellenwert des Ermüdungsrisswachstums für Mode I
∆KV zyklischer Vergleichsspannungsintensitätsfaktor
N Lastwechselzahl
P Knotenpunkt
R Spannungsverhältnis, R-Verhältnis
Rf , Rm Festigkeit der Faser bzw. Matrix
Rf‖ Zugfestigkeit der Faser in Längsrichtung
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Notation IX

S Rissoberflächenenergie
S Energiedichtefaktor
S Nachgiebigkeitsmatrix
Smin minimaler Energiedichtefaktor
Smin,c kritischer Energiedichtefaktor, Materialgrenzwert
T Transformationsmatrix
U elastische Energie, Formänderungsenergie
U elastische Energiedichte
V Verhältnis von Mode I und II
Vf , Vm, Vv Faser-, Matrix- bzw. Verbundvolumen
W Arbeit der äußeren Kräfte
W Rissschließungsenergie, Rissschließungsarbeit
Y Geometriefaktor
YI, YII, YIII Geometriefaktoren für Mode I, II bzw. III

a Risslänge
a Länge eines abgeknickten Risses
a, b Längen der großen bzw. kleinen Halbachse einer Kerbe
a1, a2 untere bzw. obere Grenze der Risslängen
a1, a2 Parameter zur Modifikation des Grauwerts eines Bildpunkts
a11, a12, a22 Funktionen im Bruchkriterium nach Sih
aij elastische Konstanten
∆a Rissinkrement
bmn Wert eines Bildpunkts des Binärbilds
cij elastische Steifigkeiten
df Faserdurchmesser
da Rissfortschritt
da inkrementelle Risslänge
da/dN Rissgeschwindigkeit
dc/dN Rissgeschwindigkeit
ds Wegkoordinate
dx Länge eines Teilstücks
dN Lastwechseldifferenz
dW Arbeitsanteil
e Elementgröße
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X Notation

f(gmn) Funktion zur Modifikation des Grauwerts eines Bildpunkts
fi(α, ϕ), fj(α, ϕ) Ansatzfunktionen
fb,k(ϕ) Bereichsfunktion
fij(ϕ) winkelabhängige Funktion für das Rissspitzenspannungsfeld
f I

ij(ϕ), f II
ij (ϕ), f III

ij (ϕ) winkelabhängige Funktionen für das Risspitzenspannungsfeld
für Mode I, II bzw. III

gmn Wert eines Bildpunkts des Grauwertbilds
g∗

mn modifizierter Wert eines Bildpunkts des Grauwertbilds
gth Schwellenwert eines Bildpunkts, Grauwertschwelle
l Länge, Ausgangslänge
lf Faserlänge
∆l Längenänderung
m Masse
m Wicklungsanzahl
m,n Zeile bzw. Spalte der Bildmatrix
mE Parameter im Rissfortschrittgesetz nach Erdogan und Ratwani
mP Parameter im Rissfortschrittgesetz nach Paris
r Polarkoordinate, Abstand zur Risspitze
s Standardabweichung
s1, s2, s3, s4 komplexe Konstanten
t Dicke, Probendicke
t Zeit
tk Elementlänge
∆tk Elementlänge
u, v, w Verschiebung in y-, x- bzw. z-Richtung
~u Verschiebungsvektor
∆u Rissuferverschiebung
v Prüfgeschwindigkeit
w spezifische Probenbreite
x, y, z kartesische Koordinaten
x∗, y∗ kartesische Koordinaten des Materialkoordinatensystems

b) Griechische Symbole

Π potenzielle Energie
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Notation XI

Ψ Fasermasseanteil
α Faserwinkel, Winkel zwischen Initialriss und Faser
α1, α2 Parameter zur Krümmungsanpassung der Regressionsfunktion
α1, α2 Werkstoffparameter im Bruchkriterium nach Richard
β Abknickwinkel, Winkel zwischen Initialriss und Risspfadende
β1 Abknickwinkel, Winkel zwischen Initialriss und Risspfad-

beginn
β(α, ϕ) Regressionsfunktion des Rissabknickwinkels
γ Winkel im Bruchkriterium nach Judt
γxy, γxz, γyz Gleitungen in kartesischen Koordinaten
δrms mittlerer quadratischer Fehler
ε Abweichung
εf , εm Bruchdehnung der Faser bzw. Matrix
εf‖ Bruchdehnung der Faser in Längsrichtung
ε‖ Bruchdehnung des Verbunds in Faserlängsrichtung
εij Dehnungstensor
εx, εy, εz Dehnungen in kartesischen Koordinaten
λ0 Exponentialkoeffizient
λi, λj Regressionskoeffizient
µ Schubmodul
ν Querkontraktionszahl
νxy, νxz, νyz Querkontraktionszahlen in Koordinatenrichtungen
ρ Krümmungsradius der Kerbe
ρf , ρm Dichte der Faser bzw. Matrix
σ Normalspannung, statische Spannung, äußere Bauteilbe-

lastung
σij Spannungsfunktion
σij Spannungstensor
σc Materialkennwert
σf , σm Spannung in der Faser bzw. Matrix
σmax, σmin maximale bzw. minimale Spannung
σx, σy, σz Spannungen in kartesischen Koordinaten
σ∞

y äußere Belastung
σr, σϕ Spannungen in Polarkoordinaten
σϕmax maximale Tangentialspannung
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XII Notation

σ
′
1 Hauptnormalspannung des σ′

1-Kriteriums
σ‖ Spannung in Faserlängsrichtung
∆σ Schwingbreite der Spannung bei zyklischer Belastung
τxy, τyz, τxz Schubspannungen in kartesischen Koordinaten
τ∞

yx , τ
∞
yz äußere Belastung

τrϕ, τϕz Schubspannung in Polarkoordinaten
ϕ Polarkoordinate, Winkel
ϕ Faservolumenanteil
ϕ∗ Winkel im Bruchkriterium nach Judt
ϕ0 Abknickwinkel
ϕ0 Abknickwinkel im Bruchkriterium nach Richard
ϕ0,MTS Abknickwinkel im Bruchkriterium nach Erdogan und Sih
ϕth Schwellenwert zur Bereichsabgrenzung
ϕk Parameter der Bereichsfunktion
ϕM Gradierungswinkel im Bruchkriterium nach Schramm und

Richard
ϕTSSR Abknickwinkel im Bruchkriterium nach Schramm und Richard
ϕc Abknickwinkel im Bruchkriterium nach Judt
χ Verhältnis der richtungsabhängigen Risszähigkeiten im Bruch-

kriterium nach Judt
ψ0 Verdrehwinkel

c) Sonstige Abkürzungen und Symbole

BR Butadien-Kautschuk (engl. butadiene rubber)
CAD rechnerunterstützte Konstruktion (engl. computer-aided

design)
CLT Klassische Laminattheorie (engl. classical laminate theory)
CT Kompaktzugprobe (engl. compact tension specimen)
EP Epoxidharz
ESZ ebener Spannungszustand
EVZ ebener Verzerrungszustand
FE Finite-Elemente
FEM Finite-Elemente-Methode
HM hoher Elastizitätsmodul (engl. high modulus)
HT hohe Festigkeit (engl. high tenacity)
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Notation XIII

LM Lichtmikroskop
M1,M2 Material 1 bzw. 2 im Bruchkriterium nach Schramm und

Richard
MTS maximale Tangentialspannung
MVCCI modifizierte Rissschließungsintegralmethode (engl. modified

virtual crack closure integral)
NR Naturkautschuk (engl. natural rubber)
PA Polyamid
PET Polyethylenterephthalat
PD Vorzugsrichtung (engl. predominant direction)
PF Phenolharz
PP Polypropylen
PPS Polyphenylensulfid
REM Rasterelektronenmikroskop
SS Strahldurchmesser (engl. spot size)
SiC Siliziumcarbid
TD Querrichtung (engl. transverse direction)
TSSR Kriterium der Tangentialspannung für gradierte Materialien

nach Schramm und Richard
VE Vinylesterharz
f Faser
m Matrix
‖ Längsrichtung

Weitere oder abweichende Formelzeichen und Symbole sind im Text beschrieben.
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XIV

Kurzfassung

Faserverstärkte Kunststoffe weisen aufgrund ihrer Zusammensetzung ein besonderes Ei-
genschaftsprofil auf, wobei insbesondere die dichtebezogenen Kennwerte ein Kriterium
bei der Werkstoffwahl sind. Eine Vielzahl von Verstärkungsfasern hat dabei anisotrope
Eigenschaften. Diese Dissertation behandelt die bruchmechanische Charakterisierung von
Flachsfaser-Epoxidharz-Verbunden infolge statischer Belastung. Die Flachsgarne sind im
Verbund unidirektional orientiert. Nach den Grundlagen zur linear-elastischen Bruchme-
chanik und zu Verbundwerkstoffen folgen die Beschreibung der experimentellen Untersu-
chungen und die Auswertung der Ergebnisse. Dabei werden insbesondere die Risspfade der
Kompaktzugproben analysiert. Durch Variation des Winkels zwischen Faserorientierung
und Belastungsrichtung (von 0◦ bis 90◦ mit einer Schrittweite von 22,5◦) in Kombination
mit Faservolumenanteilen zwischen etwa 2 und 13 % ergeben sich unterschiedliche Riss-
pfade. Die Rissausbreitungsrichtung wird neben der Belastungsrichtung gravierend von
der Orientierung und Anzahl der Verstärkungsfasern beeinflusst. Des Weiteren erfolgen
numerische Simulationen für homogene und inhomogene Materialmodelle. Ein auf den
experimentellen Daten basierendes mathematisches Modell ermöglicht die Vorhersage der
Rissabknickwinkel in Abhängigkeit von dem Faserwinkel und dem Faservolumenanteil.

Abstract

Due to their composition, fibre-reinforced composites exhibit special characteristics.
Density-related properties, in particular, are an important consideration when selecting a
suitable material. Furthermore, a multitude of reinforcements are highly anisotropic. This
doctoral thesis deals with the fracture mechanics of flax fibre-reinforced epoxy composites
under static loading. The fibres used are flax yarns in unidirectional alignment. A review
of the fundamentals of linear elastic fracture mechanics and composites is followed by the
description of the experiments and the analysis of the findings. Special emphasis is placed
on the crack paths occurring in the compact tension specimens. By varying the angle
between fibre orientation and loading direction (from 0◦ up to 90◦ with an increment of
22.5◦) in conjunction with fibre volume fractions of between 2% and 13% approximately, the
resulting crack paths are shown to be dependent on those two parameters. Not only are the
crack paths governed by the loading direction, but they are also affected by the orientation
and the amount of fibres. Numerical simulations are performed using homogeneous and
heterogeneous models. Finally, a mathematical model based on the experimental data is
presented. It can be used to predict crack kinking angles as a function of fibre angle and
fibre volume fraction.
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1

1 Einleitung

Eine festigkeitsgerechte und bruchsichere Auslegung von Bauteilen ist eine konstitutive
Forderung bei der Konstruktion von Maschinen und Anlagen. Ein Schadensfall kann
negative Auswirkungen auf Mensch und Umwelt haben sowie die Wirtschaftlichkeit gravie-
rend beeinflussen. Vor allem Sprödbruch, resultierend in einem Funktionsverlust bis zum
kompletten Versagen, gilt es zu vermeiden. Die Auslegung erfolgt mit Hilfe von Nachweisen,
die (meist) sowohl gegen Festigkeitsversagen als auch gegen bruchmechanisches Versagen
geführt werden. Dabei wird jeweils eine Beanspruchungsgröße einem Werkstoffkennwert
gegenübergestellt.

Mit der Annahme fehlerfreier Materialien werden bei Festigkeitsnachweisen die ermittelten
Spannungen (infolge mechanischer und/oder thermischer Belastungen) mit Werkstoff-
kennwerten unter Berücksichtigung von Sicherheitsbeiwerten verglichen. Reale Strukturen
weisen allerdings Defekte auf, die geringere Tragfähigkeiten und dementsprechend erhöhte
Bruchwahrscheinlichkeiten zur Folge haben können, jedoch bei klassischen Ansätzen der
Mechanik nicht berücksichtigt werden. Im Rahmen der Bruchmechanik erfolgt daher eine
qualitative sowie quantitative Beschreibung und Bewertung des Bruchverhaltens von riss-
behafteten Bauteilen und Komponenten [Hah76]. Eine ganzheitliche Betrachtung umfasst
dabei sowohl mechanische als auch bruchmechanische Charakteristika.

Die Strukturfestlegung und die Werkstoffauswahl sind zwei zentrale Bestandteile des Pro-
duktentstehungsprozesses, wobei ebenfalls Leichtbauprinzipien und weitere wirtschaftliche
Faktoren (u. a. Fertigung und Montage) zu berücksichtigen sind. Bei den eingesetzten
Werkstoffen haben sich neben Stahl und Aluminium Materialkombinationen in Form
von Verbundwerkstoffen etabliert. Durch die Kombination von Werkstoffen – z. B. durch
die Einbringung von Fasern bei Faserverbunden – resultiert ein eigenschaftsoptimiertes
Material (z. B. hinsichtlich Festigkeit und Steifigkeit). Aufgrund ihrer Eigenschaften (mecha-
nisch, chemisch etc.) und ihrer (meist geringen) Dichten haben Faserverbunde ein breites
Anwendungsspektrum (z. B. Automobilbau, Schienenfahrzeugbau, Luft- und Raumfahrt).

Neben den Eigenschaften der Einzelkomponenten und des Verbunds spielen Aspekte wie
z. B. Herstellungskosten und Recyclingfähigkeit sowie Umweltfreundlichkeit und Ressour-
censchonung eine entscheidende Rolle. Die Verwendung von nachwachsenden Rohstoffen
natürlichen Ursprungs ist eine Option, die diesen Anforderungen Rechnung trägt. Bei Fa-
serverbunden wäre dies z. B. eine Substitution von synthetischen Fasern durch Naturfasern.
Dabei gilt es zu beachten, dass die Eigenschaften der Faser-Kunststoff-Verbunde maßgeb-
lich durch die Adhäsionseigenschaften zwischen Naturfasern und polymerem Matrixsystem
bestimmt werden. Das Bruch- und Rissverhalten wird somit sowohl durch die einzelnen
Komponenten als auch deren Interaktion beeinflusst und bildet einen Schwerpunkt bei der
Analyse derartiger Werkstoffkombinationen.

Kernpunkt dieser Arbeit ist die bruchmechanische Charakterisierung von Flachsfaser-
Epoxidharz-Verbunden infolge statischer Belastung. Dabei sind die mechanisch anisotropen
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2 1 Einleitung

Flachsfasern unidirektional orientiert sind und die Einzelschicht weist folglich transversal
isotrope Eigenschaften auf. Das Versagensverhalten und die Rissverläufe werden unter
folgenden Konstellationen untersucht:

K1 Variation des Winkels zwischen Faserorientierung und Belastungsrichtung und

K2 Variation des Faservolumenanteils (in Kombination mit K1).

Grundlegende Zusammenhänge, die für bruchmechanische Beschreibungen und Bewertun-
gen von Materialien relevant sind, finden im zweiten Kapitel Erwähnung. Ausgangspunkt
sind dabei die Spannungs- und Verschiebungsfelder in Rissspitzennähe in homogenen Ma-
terialien mit isotropen Eigenschaften. Zudem werden Bruchkriterien vorgestellt. Das dritte
Kapitel beinhaltet Grundlagen über Verbundwerkstoffe mit dem Fokus auf Faser-Kunststoff-
Verbunde, wobei neben den Einzelkomponenten die Verbunde und deren mechanische sowie
bruchmechanische Eigenschaften vorgestellt werden. Des Weiteren wird auf prinzipielle
Versagensmechanismen eingegangen.

Im vierten Kapitel werden die experimentellen Untersuchungen beschrieben und die Riss-
pfade in Abhängigkeit von der Faserorientierung und dem Faservolumenanteil analysiert.
Anhand der Bruchflächen verschiedener Kompaktzugproben werden die Versagensmecha-
nismen aufgezeigt. Basierend auf diesen Erkenntnissen werden im fünften Kapitel die
Parameter (Material, Belastung etc.) für die numerischen Simulationen definiert und
die Ergebnisse in Form von Spannungsverläufen und bruchmechanischen Größen darge-
stellt. Abschließend wird im sechsten Kapitel ein mathematisches Modell entwickelt und
verifiziert sowie im ersten Schritt validiert, das die Vorhersage der Rissausbreitungsrich-
tung (Rissabknickwinkel) in unidirektional orientierten Flachsfaser-Epoxidharz-Verbunden
ermöglicht.
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3

2 Bruchmechanische Grundlagen

Im Gegensatz zur Festigkeitslehre (siehe z. B. [Bal10]), in welcher die Spannungs- und
Verzerrungsfelder mit der Annahme defektfreier Materialien ermittelt werden, erfolgt in
der Bruchmechanik eine qualitative sowie quantitative Beschreibung und Bewertung des
Bruchverhaltens von fehlerbehafteten Bauteilen und Komponenten. Die Fehler können
u. a. herstellungsbedingt bzw. unter Betriebsbelastungen entstanden sein und werden als
Risse abgebildet. Bedingt durch diese lokalen Materialtrennungen treten an der Rissspitze
inhomogene Spannungen auf, welche im Rahmen der Festigkeitslehre nicht mehr bewertet
werden können [Hah76, Kun10].

Bezüglich des Materialverhaltens existieren verschiedene Konzepte. Die linear-elastische
Bruchmechanik setzt unabhängig von der Ausbildung einer plastischen Zone im Rissspit-
zenbereich ein nahezu linear-elastisches Materialverhalten voraus. Zudem sei die plastische
Zone deutlich kleiner als die Proben- oder Bauteilabmessungen. Die linear-elastische
Bruchmechanik fußt auf der Betrachtung der Spannungs- und Verzerrungsfelder in der
Rissspitzenumgebung basierend auf der Elastizitätstheorie. Ebenso sind Energiebetrach-
tungen möglich [BP93]. Werkstoffe mit elastisch-plastischem Verhalten werden im Rahmen
der elastisch-plastischen Bruchmechanik, auch als Fließbruchmechanik bezeichnet, be-
handelt. Die nachfolgenden Erläuterungen beziehen sich primär auf die linear-elastische
Bruchmechanik. Konzepte der elastisch-plastischen Bruchmechanik sind u. a. in [BP93] zu
finden.

2.1 Linear-elastische Bruchmechanik homogener und
isotroper Materialien

2.1.1 Spannungsverteilung an der Rissspitze

In Abbildung 2.1a ist ein elliptisches Loch in einer ebenen Scheibe unter Zugbelastung
dargestellt. Die maximale Spannung σmax resultiert aus der äußeren Spannung σ, den
Halbachsenlängen a und b bzw. der Halbachse a und dem Kerbkrümmungsradius ρ,
Gleichung (2.1).

σmax = σ

(
1 + 2 a

b

)
= σ

(
1 + 2

√
a

ρ

)
(2.1)

Werden die Halbachse b bzw. der Krümmungsradius ρ verringert, erhöht sich die maximale
Spannung σmax. Unter der Prämisse verschwindender Längen (b → 0 bzw. ρ → 0) entsteht
der Grenzfall des elliptischen Lochs mit singulären Spannungen (σmax → ∞) und das
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4 2 Bruchmechanische Grundlagen

elliptische Loch nimmt die Gestalt eines scharfen Risses an. Der entstandene Riss (der
Länge 2a) wird als Griffith-Riss bezeichnet (Abbildung 2.1b) [RS12].

a)

x

y

2a

2b ρ

σ

σ

σmax
σy

b)

x

y

2a

σ

σ

σy

Abbildung 2.1: Schematische Darstellung der Spannungsverteilung an Kerbe und Riss [RS12]:
a) Elliptische Kerbe mit den Halbachsen a und b,
b) Innenriss der Länge 2a, Rissmodell nach Griffith

Basierend auf einer lokalen Festigkeitsbewertung müssten demzufolge theoretisch alle
Strukturen aufgrund der scharfen Kraftflussumlenkung und der unendlich großen Span-
nung an der Rissspitze versagen. Das ist allerdings nicht der Fall, da ein scharfer Riss eine
mathematische Abstraktion darstellt und in realen Materialien aufgrund deren atomaren
Aufbaus nicht auftritt [And95]. Somit scheint die lokale Spannung nicht als Versagenskri-
terium anwendbar zu sein, sodass eine bruchmechanische Größe benötigt wird, welche die
Gefährlichkeit des Risses berücksichtigt.

Eine solche Größe stellt der Spannungsintensitätsfaktor K dar, welcher die Art und Inten-
sität der Spannungsverteilung in Rissspitzennähe quantifiziert, allerdings keine Aussagen
zu deren Verteilung macht. Die Berechnung erfolgt über die äußere Bauteilbelastung σ,
die Risslänge a und einen Geometriefaktor Y (siehe Gleichung (2.4), Kapitel 2.1.3). Die
Spannungs- und Verschiebungsfelder in der Rissspitzenumgebung sind maßgebend für die
bruchmechanische Bewertung rissbehafteter Bauteile [Hah76, RS12].

Die Spannungskomponenten können mit Hilfe von kartesischen bzw. Polarkoordinaten
angegeben werden (siehe Abbildung 2.2). Gleichung (2.2) gibt die Funktion für das
Spannungsfeld um die Rissspitze an.

σij = K√
2πr

fij(ϕ) mit i, j = x, y bzw. r, ϕ (2.2)

Dabei bezeichnen K den Spannungsintensitätsfaktor und r den Abstand von der Rissspitze
(Abbildung 2.2b). Die dimensionslose Funktion fij(ϕ) beschreibt die Abhängigkeit der
Spannung von dem Winkel ϕ. Gleichung (2.2) liefert bei der Annahme rein elastischen
Materialverhaltens für r → 0 die exakte Spannungsverteilung und für Abstände r, die
kleiner als charakteristische Längen, z. B. Risslängen und Bauteilabmessungen, sind, Nähe-
rungswerte. Die 1/

√
r-Abhängigkeit der Polarkoordinate r charakterisiert das singuläres

Spannungsfeld an der Rissspitze. Durch die Ausbildung einer plastischen Zone um die
Rissspitze ist die Singularität nur theoretisch möglich. Die Nahfeldlösung, Gleichung (2.2),
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2 Bruchmechanische Grundlagen 5

kann im Rahmen der linear-elastischen Bruchmechanik homogener isotroper Körper, bei
denen ein ebener Spannungs- oder Verzerrungszustand angenommen ist, verwendet werden.
Voraussetzung ist, dass der Parameter r größer als die plastische Zone und kleiner als die
charakteristischen Längen ist [RS12, Kun10].

a) x

y

σxσx

σy

σy

τxy

τxy

τxy

τxyr

ϕ

b) x

y

r

ϕ

σr

σr

σϕ

σϕ

τrϕ

τrϕ

τrϕ

τrϕ

Abbildung 2.2: Spannungen an der Rissspitze nach [RS12]:
a) Kartesische Koordinaten, b) Polarkoordinaten

2.1.2 Rissbeanspruchungsarten

In Abhängigkeit von der Belastungsrichtung an den Rissufern werden drei grundlegende
Rissbeanspruchungsarten (Abbildung 2.3), welche auf Irwin [Irw57] zurückgehen, unter-
schieden. Diese werden auch als Moden bezeichnet:

M1 Mode I ist eine Normalbeanspruchung, die ein symmetrisches Öffnen der Rissober-
flächen zur Folge hat (Abbildung 2.3a),

M2 Mode II ist eine ebene Schubbeanspruchung, wodurch ein Gleiten der Rissflächen
entgegengesetzt zueinander resultiert (Abbildung 2.3b) und

M3 Mode III ist eine nicht-ebene Schubbeanspruchung, bei der die Rissflächen quer zur
Rissrichtung gleiten (Abbildung 2.3c).

a)

xy
z

F

F

b)

xy
z

F

F

c)

xy
z

F

F

Abbildung 2.3: Rissbeanspruchungsarten: a) Mode I, b) Mode II, c) Mode III

Überlagerte Beanspruchungen führen zu einer Mixed-Mode-Beanspruchung. Eine ebene
Mixed-Mode-Beanspruchung ist aus zwei Rissbeanspruchungsarten (Mode I und II) und
eine räumliche Mixed-Mode-Beanspruchung aus allen drei Moden zusammengesetzt. Ent-
sprechend der vorliegenden Rissbeanspruchungsart wird der Spannungsintensitätsfaktor K
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6 2 Bruchmechanische Grundlagen

indiziert. Die Berechnungsvorschrift zur Ermittlung der Spannungen in der Rissumgebung
weist für alle drei Moden prinzipiell die gleiche Struktur auf. Gleichung (2.2) ergibt sich
für i, j = x, y, z bzw. r, ϕ, z folglich zu Gleichung (2.3).

σij = 1√
2πr

[
KI · f I

ij(ϕ) +KII · f II
ij (ϕ) +KIII · f III

ij (ϕ)
]

(2.3)

2.1.3 Rissverhalten infolge statischer Belastung

Analog zu den Spannungen in der Festigkeitslehre können bruchmechanische Größen
definiert werden. Zur Quantifizierung der Beanspruchung von rissbehafteten Bauteilen
und Strukturen dienen u. a. Spannungsintensitätsfaktoren, welche die Spannungs- und
Verschiebungsfelder in der Rissspitzenumgebung beschreiben (siehe Kapitel 2.1.1). Weitere
charakteristische Größen sind die Energiefreisetzungsrate [Irw58, Hah76] und das J-Integral
[Ric68], siehe Kapitel 2.1.5.

Beanspruchung infolge Mode I, II oder III

Abbildung 2.4 zeigt den Zusammenhang zwischen Spannung und Spannungsintensitäts-
faktor am Beispiel von Mode I. Nach der Phase der Lasteinleitung verursacht eine statische
Belastung eine konstante Beanspruchung σ (vgl. Abbildung 2.4a). Mit der Spannung σ
ist ein Spannungsintensitätsfaktor K verknüpft und die Indizierung erfolgt gemäß der
Rissbeanspruchungsart (siehe Abbildung 2.4b für Mode I).

a) t

σ

σ

b) t

KI

KI

Abbildung 2.4: Statische Belastung:
a) Spannung σ über der Zeit t,
b) Spannungsintensitätsfaktor KI über der Zeit t

Der Spannungsintensitätsfaktor (für Mode I) kann bei statischer Belastung über Glei-
chung (2.4) berechnet werden. Der Geometriefaktor Y ist abhängig von der Risslage,
-anordnung und -anzahl, Bauteilgeometrie sowie Art und Stelle der Lasteinleitung. Die-
ser wird entsprechend der Rissbeanspruchungsart indiziert und ist dimensionslos. Der
Spannungsintensitätsfaktor wird z. B. in der Einheit MPa

√
m angegeben.

KI = σ
√
πa YI (2.4)

Für Mode II und III gelten analoge funktionale Zusammenhänge (KII = τxy
√
πa YII bzw.

KIII = τxz
√
πa YIII mit der Schubspannung τxy bzw. τxz und dem Geometriefaktor YII bei

Mode II- bzw. YIII bei Mode III-Beanspruchung).
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Mixed-Mode-Beanspruchung

Spannungsintensitätsfaktoren können zur Charakterisierung der lokalen Beanspruchung
an der Rissspitze verwendet werden und stellen eine werkstoffunabhängige Größe dar.
Sie kommen bei Bruchkriterien zur Anwendung, wobei im Falle überlagerter Beanspru-
chung ein Vergleichsspannungsintensitätsfaktor KV ermittelt und einem Werkstoffkennwert
gegenübergestellt wird, Kapitel 2.1.6. Eine ebene Mixed-Mode-Beanspruchung liegt vor,
wenn am Riss zwei verschiedene Beanspruchungsarten (Mode I und II) auftreten. Der
Vergleichsspannungsintensitätsfaktor KV ist in Gleichung (2.5) angegeben [RS12]. Dabei
ist α1 ein Werkstoffparameter, welcher das Verhältnis der Risszähigkeiten KIc und KIIc
wiedergibt.

KV = KI

2 + 1
2

√
K2

I + 4(α1 ·KII)2 (2.5)

Gleichung (2.6) enthält die Berechnungsvorschrift für eine räumliche Mixed-Mode-
Beanspruchung mit den Werkstoffparametern α1 und α2 [RFS05].

KV = KI

2 + 1
2

√
K2

I + 4(α1 ·KII)2 + 4(α2 ·KIII)2 (2.6)

2.1.4 Rissverhalten infolge zyklischer Belastung

Unterliegt ein Bauteil einer zyklischen Belastung, so ist die Spannung zeitabhängig. Abbil-
dung 2.5a zeigt den Verlauf der Spannung σ über der Zeit t für eine periodische Belastung.
Dabei stellen σmax die maximale Spannung, σmin die minimale Spannung und ∆σ die
Schwingbreite der Spannung dar. Demzufolge resultieren auch ein zeitlich veränderliches
Spannungsfeld in der Rissumgebung und instationäre Spannungsintensitätsfaktoren. In
Abbildung 2.5b ist der zeitliche Verlauf des Spannungsintensitätsfaktors KI dargestellt.
Der maximale und minimale Spannungsintensitätsfaktor (KI,max bzw. KI,min) können
mit Hilfe der Gleichung (2.7) bzw. (2.8) berechnet werden. Der zyklische Spannungs-
intensitätsfaktor ∆KI ergibt sich aus der Differenz des Maximal- und Minimalwertes,
Gleichung (2.9). Der Quotient aus minimaler und maximaler Spannung, Gleichung (2.10),
wird als Spannungsverhältnis R bzw. R-Verhältnis bezeichnet. Der zyklische Spannungs-
intensitätsfaktor ∆KI ist in Gleichung (2.11) mit Hilfe des R-Verhältnisses angegeben.

KI,max = σmax
√
πa YI (2.7)

KI,min = σmin
√
πa YI (2.8)

∆KI = KI,max −KI,min = (σmax − σmin)
√
πa YI = ∆σ

√
πa YI (2.9)

R = σmin

σmax
= KI,min

KI,max
(2.10)

∆KI = KI,max −KI,min = (1 −R)KI,max (2.11)

Analog zur statischen Belastung kann bei dem Zusammenwirken der drei Moden ein
zyklischer Vergleichsspannungsintensitätsfaktor ∆KV ermittelt werden, Gleichung (2.12).

∆KV = ∆KI

2 + 1
2

√
∆K2

I + 4(α1 · ∆KII)2 + 4(α2 · ∆KIII)2 (2.12)

https://doi.org/10.51202/9783186354181 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:45:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186354181


8 2 Bruchmechanische Grundlagen

a) t

σ

σmax

σmin

∆σ

b) t

KI

KI,max

KI,min

∆KI

Abbildung 2.5: Zyklische Belastung nach [RS12]:
a) Spannung σ über der Zeit t,
b) Spannungsintensitätsfaktor KI über der Zeit t

Bei schwingenden Belastungen ist es möglich, dass der Riss bei einer Lastwechseldiffe-
renz dN um einen gewissen Betrag, den Rissfortschritt da, wächst. Der Quotient aus
Rissfortschritt da und Lastwechseldifferenz dN stellt den Rissfortschritt pro Schwing-
spiel dar und kann als Rissgeschwindigkeit da/dN interpretiert werden. Aufgetragen über
den zyklischen Spannungsintensitätsfaktor ∆KI resultiert eine Rissgeschwindigkeitskurve,
Abbildung 2.6, die meist doppeltlogarithmisch dargestellt wird.

log(∆KI)

log
(
da

dN

)

∆KI,th ∆KIc

Riss-
stillstand

Ermüdungs-
risswachstum

instabiles
Risswachstum

Abbildung 2.6: Schematische Darstellung einer Rissgeschwindigkeitskurve

Bis zu einem Schwellenwert (engl. threshold) ist der Riss nicht wachstumsfähig. Die
Indizierung dieses zyklischen Spannungsintensitätsfaktors erfolgt mit ∆KI,th. Wird der
Schwellenwert ∆KI,th erreicht, breitet sich der Riss aus. Die obere Grenze dieses Bereiches
stellt die zyklische Risszähigkeit ∆KIc dar. Erreicht der zyklische Spannungsintensitäts-
faktor ∆KI die zyklische Risszähigkeit ∆KIc, tritt instabiles Risswachstum ein und es
kommt zum Bruch. Das Risswachstum im Bereich zwischen dem zyklischen Schwellen-
wert ∆KI,th und der zyklischen Risszähigkeit ∆KIc wird als Ermüdungsrisswachstum
bezeichnet, da sich der Riss in dieser Zone stabil ausbreitet (∆KI,th<∆KI<∆KIc).
Zur Beschreibung des Ermüdungsrissbereiches existieren verschiedene Ansätze (siehe u. a.
[RS12]). Das Paris-Gesetz [PGA61], Gleichung (2.13), beschreibt den linearen Bereich des
Ermüdungsrisswachstums, wobei die Parameter CP und mP werkstoffabhängig sind.

da

dN
= CP (∆KI)mP (2.13)
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2 Bruchmechanische Grundlagen 9

Der vollständige Verlauf der Rissgeschwindigkeitskurve wird u. a. mit Hilfe des Gesetzes
nach Erdogan und Ratwani [ER70], Gleichung (2.14), beschrieben. Dabei gehen sowohl
die Werkstoffparameter CE und mE als auch der Schwellenwert des Ermüdungsrisswachs-
tums ∆KI,th und die Risszähigkeit ∆KIc in die Berechnung ein.

da

dN
= CE

(∆KI − ∆KI,th)mE

(1 −R)KIc − ∆KI
(2.14)

Die Bestimmung der Lastwechsel für einen definierten Rissfortschritt, z. B. bis zum Eintritt
des Bruches, erfolgt durch Integration einer Rissfortschrittsgleichung, siehe Gleichung (2.15).
Dabei bezeichnet N die Lastwechselzahl, die ein Riss der Länge a1 auf die Länge a2 benötigt.

N =
N∫

0

dN =
a2∫

a1

1
da
dN

da (2.15)

2.1.5 Weitere bruchmechanische Größen

Eine Möglichkeit zur Beschreibung der Spannungsverteilungen um die Rissspitze kann mit
Hilfe von Spannungsintensitätsfaktoren (siehe Kapitel 2.1.1) erfolgen. Weitere charakteris-
tische Größen sind die Energiefreisetzungsrate und das J-Integral.
Energiefreisetzungsrate

Eine erste energetische Bilanzierung von Rissausbreitungsvorgängen stammt von Grif-
fith [Gri21], siehe Kapitel 2.1.6. Durch die Weiterführung dieses Ansatzes formulierte
Irwin [Irw58] die Energiefreisetzungsrate G. Die Energiefreisetzungsrate kann als Riss-
ausbreitungskraft interpretiert werden. Die Annahme dabei ist, dass die aufgrund einer
Rissverlängerung um da freiwerdende elastische Energie U (Formänderungsenergie) gleich
der Oberflächenenergie S und der Arbeit der äußeren Kräfte W ist. Für die Energie-
freisetzungsrate bei ebenen Rissproblemen gilt Gleichung 2.16. Dabei wird angenommen,
dass Scheiben mit der Einheitsdicke 1 vorliegen und dass sich der Riss in Richtung eines
bereits vorhandenen Risses ausbreitet [RS12].

G = −∂U

∂a
(2.16)

Energiefreisetzungsrate und Spannungsintensitätsfaktor können ineinander umgerechnet
werden, siehe Gleichung (2.17) am Beispiel einer reinen Mode I-Beanspruchung. Der
zustandsabhängige Elastizitätsmodul E ′ ergibt sich für den ebenen Spannungszustand
(ESZ) zu E ′ =E und für den ebenen Verzerrungszustand (EVZ) zu E ′ =E/(1 − ν2). Dabei
sind E der Elastizitätsmodul und ν die Querkontraktionszahl.

G = GI = K2
I

E ′ (2.17)

Treten alle drei Rissbeanspruchungsarten gleichzeitig auf, wird die Energiefreisetzungs-
rate G über Gleichung (2.18) ermittelt.

G = GI +GII +GIII = 1 − ν2

E

(
K2

I +K2
II + K2

III
1 − ν

)
(2.18)
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J-Integral

Das J-Integral ist ein Linienintegral mit geschlossenem Integrationsweg um die Rissspitze,
siehe Abbildung 2.7, und es beschreibt die Arbeit, welche notwendig ist, damit ein Riss
initiiert oder sich ausbreitet. Erste Ansätze zum J-Integral stammen u. a. von Rice [Ric68].
Die Berechnungsvorschrift ist in Gleichung (2.19) angeben.

J =
∫
C

U dy − ~σ · ∂~u
∂x

ds mit U =
εij∫

0

σij dεij (2.19)

Dabei bezeichnen U die elastische Energiedichte (Energie pro Volumeneinheit), σij den
Spannungstensor, εij den Dehnungstensor, ~σ den Spannungsvektor und ~u den Verschie-
bungsvektor auf dem Integrationsweg C sowie ds die Wegkoordinate. Gleichung (2.20) gibt
die Beziehung zwischen J-Integral und Spannungsintensitätsfaktor für Mode I (unter der
Annahme einer kleinen plastischen Zone) wieder. Der Parameter E ′ ist dabei analog zu den
Ausführungen bei der Energiefreisetzungsrate ein zustandsabhängiger Elastizitätsmodul.

J = K2
I

E ′ (2.20)

x

y

~u
ds

~σ

C

Abbildung 2.7: Schematische Darstellung des Integrationsgebietes um die Risspitze beim
J-Integral nach [RS12]

Rissschließungsintegral

Irwin propagiert, dass im Falle der Rissausbreitung die freigesetzte elastische Energie U
der zur Rissverlängerung um da erforderlichen Energie entspricht. Diese Energie kann als
Rissausbreitungsenergie interpretiert werden. Bei der Annahme rein elastischer Verformun-
gen entspricht die Rissausbreitungsenergie gleich der Arbeit, die notwendig wäre, um den
Riss virtuell wieder zu schließen, Abbildung 2.8.

Der Arbeitsanteil dW, der für das Schließen des Risses um das Teilstück dx notwendig wäre,
kann mit Hilfe der Spannung σy(x) und der Rissverschiebung v(x) ermittelt werden. Anstatt
der Spannung σy(x) wird eine auf die Rissflächen wirkende Druckkraft dFy = −σy(x) dx
angenommen. Für eine Scheibe (Dicke t= 1) gilt Gleichung (2.21) und Gleichung (2.22)
gibt die Arbeit W zum Schließen des Risses um die Risslänge da wieder.

dW = 2 · 1
2 · dFy · v(x) = −σy(x) · v(x) dx (2.21)
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W = −
da∫

0

σy(x) · v(x) dx (2.22)

a)

x

y

v(x)

σy(x)

dx

a da b)

x

y

v(x)

dFy = −σy dx

Scheibendicke t= 1

dx

a da

Abbildung 2.8: Rissschießungsintegral bei Mode I-Beanspruchung nach [RS12]:
a) Spannungsverteilung σy(x) und Rissöffnungsverschiebung v(x),
b) Arbeit zum Schließen des Risses KI über der Zeit t

Die Energiefreisetzungsraten ergeben sich mit W =U in Abhängigkeit von den Moden I, II
und III zu den Gleichungen (2.23) bis (2.25) [RS12]. Eine Umrechnung in die dazugehörigen
Spannungsintensitätsfaktoren KI, KII und KIII kann ebenso erfolgen [BP93]. Der Parame-
ter E ′ ist dabei analog zu den obigen Ausführungen (bei der Energiefreisetzungsrate) ein
zustandsabhängiger Elastizitätsmodul.

GI = −dU

da
= −dW

da
= 1
da

da∫
0

σy(x) · v(x) dx = 1
E ′ K

2
I (2.23)

GII = 1
da

da∫
0

τxy(x) · u(x) dx = K2
II

E ′ (2.24)

GIII = 1
da

da∫
0

τxz(x) · w(x) dx = 1 + ν

E
K2

III (2.25)

2.1.6 Bruchkriterien

Die folgenden Bruchkriterien gelten vorwiegend für homogene und isotrope Materiali-
en. Die Bruchbedingung ist erfüllt und es setzt instabiles Risswachstum ein, wenn die
Beanspruchungsgröße dem Materialgrenzwert entspricht.
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Bruchkriterium nach Griffith

Das Bruchkriterium nach Griffith [Gri21, Hah76] fußt auf einer Energiebetrachtung, bei der
sich die potenzielle Energie Π des Körpers aus den Anteilen Formänderungsenergie U , Riss-
oberflächenenergie S und Arbeit der äußeren Kräfte W zusammensetzt, Gleichung (2.26).
Die Formänderungsenergie U entsteht aufgrund wirkender Belastungen und wird im riss-
behafteten Körper gespeichert. Breitet sich ein Riss aus, so wird Formänderungsenergie U
freigesetzt und die Rissoberflächen werden erweitert, wodurch sich die Oberflächenenergie S
erhöht.

Π = U + S +W (2.26)

Die Rissausbreitung erfolgt instabil, wenn sich die gesamte potenziellen Energie Π verringert
und somit die Formänderungsenergie U die benötigte Oberflächenenenergie S übersteigt.
In Gleichung (2.27) ist das Instabilitätskriterium angegeben.

∂Π
∂a

= ∂

∂a
(U + S +W ) ≤ 0 (2.27)

K-Konzept

Das K-Konzept berücksichtigt Spannungsintensitätsfaktoren und setzt diese mit Mate-
rialkennwerten ins Verhältnis. Erreicht der beanspruchungsabhängige Spannungsinten-
sitätsfaktor einen kritischen Materialwert, z. B. die Risszähigkeit KIc, tritt instabiles
Risswachstum ein. Bei einachsiger Beanspruchung, z. B. Mode I, gilt Gleichung (2.28),
wohingegen bei Mixed-Mode-Beanspruchung ein Vergleichsspannungsintensitätsfaktor,
Gleichung (2.29), gegenübergestellt wird. Ansätze zur Berechnung sind z. B. in [Ric85] zu
finden.

KI = KIc (2.28)
KV = KIc (2.29)

Kriterium der maximalen Tangentialspannungen nach Erdogan und Sih

Das Kriterium der maximalen Tangentialspannungen (Kurzbezeichnung MTS) nach Erdo-
gan und Sih [ES63] ermöglicht Aussagen zur Rissausbreitungsrichtung und dem Beginn
des instabilen Risswachstums. Folgende Annahmen liegen zugrunde:

A1 Die Rissausbreitung erfolgt ausgehend von der Spitze unter einem Winkel ϕ0 in
radialer Richtung, die sich orthogonal zur maximalen Tangentialspannung σϕmax
befindet,

A2 Risswachstum findet statt, wenn die maximale Tangentialspannung σϕmax einen
Materialkennwert σc erreicht, der unter reiner Mode I-Beanspruchung auftritt, wenn
KI =KIc erfüllt ist, Gleichung (2.30).

KVmax = lim
r→0

(
σϕmax

√
2πr
)

= cos ϕ0

2

(
KI cos2 ϕ0

2 − 3
2KII sinϕ0

)
= KIc (2.30)

Über die Gleichung (2.31) kann der Abknickwinkel ϕ0 berechnet werden. Zur besseren
Unterscheidung wird dieser im Folgenden zusätzlich mit MTS indiziert, ϕ0, MTS. Abbil-
dung 2.9 zeigt einen Riss der Länge a und einen um dem Abknickwinkel ϕ0, MTS geneigten
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Riss der Länge a. In Abbildung 2.11b ist der Winkel bei einer Mode I-Beanspruchung
dargestellt (ϕ0,MTS,Mode I = 0◦).

ϕ0, MTS = − arccos
(

3K2
II +KI

√
K2

I + 8K2
II

K2
I + 9K2

II

)
(2.31)

a

a

ϕ0, MTS

Abbildung 2.9: Riss der Länge a mit abgeknicktem Zusatzriss der Länge a und dem
Winkel ϕ0, MTS

Bruchkriterium nach Richard
Inhalt des Bruchkriteriums nach Richard [Ric85] ist es, bei einer ebenen Mixed-Mode-
Beanspruchung (Mode I und II) einen Vergleichsspannungsintensitätsfaktor KV aus den
Spannungsintensitätsfaktoren KI und KII sowie dem Werkstoffparameter α1, welcher das
Verhältnis der Risszähigkeiten KIc und KIIc wiedergibt, zu ermitteln, Gleichung (2.32).

KV = KI

2 + 1
2

√
K2

I + 4(α1 ·KII)2 = KIc (2.32)

Mit Hilfe der Gleichung (2.33) kann der Rissabknickwinkel ϕ0 näherungsweise berechnet
werden, wobei A1 und A2 werkstoffspezifische Parameter sind.

ϕ0 = ∓

[
A1

|KII|
|KI| +|KII|

+ A2

(
|KII|

|KI| +|KII|

)2
]

(2.33)

Eine Erweiterung des Kriteriums auf räumliche Mixed-Mode-Beanspruchung ist in Glei-
chung (2.34) angegeben [RFS05].

KV = KI

2 + 1
2

√
K2

I + 4(α1 ·KII)2 + 4(α2 ·KIII)2 = KIc (2.34)

Dabei resultiert neben dem Rissabknickwinkel ϕ0, Gleichung (2.35), zudem ein Rissver-
drehwinkel ψ0 in Abhängigkeit von dem Spannungsintensitätsfaktor KIII, Gleichung (2.36).
Die Parameter B1 und B2 sowie B3 und B4 sind werkstoffspezifisch.

ϕ0 = ∓

[
B1

|KII|
|KI| +|KII| +|KIII|

−B2

(
|KII|

|KI| +|KII| +|KIII|

)2
]

(2.35)

ψ0 = ∓

[
B3

|KIII|
|KI| +|KII| +|KIII|

−B4

(
|KIII|

|KI| +|KII| +|KIII|

)2
]

(2.36)

Kriterium der maximalen Energiefreisetzungsrate

Ein Kriterium, das energetische Zusammenhänge beinhaltet, stammt von Hussain, Pu und
Underwood [HPU74]. Es wird ein abgeknickter Zusatzriss an der eigentlichen Rissspitze
unterstellt und es gelten folgende Annahmen:
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14 2 Bruchmechanische Grundlagen

A1 Der Zusatzriss bildet sich unter einem Winkel ϕ aus, für den die Energiefreisetzungs-
rate G= (K2

I + K2
II) /E ′ bei ebener Mixed-Mode-Beanspruchung ein Maximum

annimmt, Gleichung (2.37). Der Elastizitätsmodul E ′ ergibt sich für den ebenen
Spannungszustand (ESZ) zu E

′ =E und für den ebenen Verzerrungszustand (EVZ)
zu E

′ =E/(1 − ν2) mit der Querkontraktionszahl ν.

∂G

∂ϕ
= 0, ∂2G

∂ϕ2 < 0 (2.37)

A2 Rissausbreitung setzt ein, wenn die Energiefreisetzungsrate G den Materialgrenz-
wert GIc erreicht, Gleichung (2.38).

G = GIc (2.38)

Bruchkriterium nach Nuismer

Das Bruchkriterium nach Nuismer [Nui75] beinhaltet einen abgeknickten Risszweig a
(Abbildung 2.10) mit den dazugehörigen Spannungsintensitätsfaktoren KI und KII. Bei
Annahme einer sehr geringen Länge des Risszweiges (a → 0) entsprechen die Normal- und
Schubspannungen den Spannungen des Risses der Länge a und die Berechnung erfolgt mit
Hilfe der Gleichungen (2.39) und (2.40).

KI = 1
2 cos ϕ2

[
KI (1 + cosϕ) − 3KII sinϕ

]
(2.39)

KII = 1
2 cos ϕ2

[
KI sin +KII (3 cosϕ− 1)

]
(2.40)

a

a

ϕ

Abbildung 2.10: Riss der Länge a mit abgeknicktem Zusatzriss der Länge a und einem
Winkel ϕ

Mit Hilfe von Gleichung (2.41) wird die Energiefreisetzungsrate G ermittelt, wobei ein
ebener Verzerrungszustand angenommen wird. Weiterhin wird vorausgesetzt, dass die
Rissausbreitung unter einem Winkel ϕ0 in die Richtung der maximalen Energiefreisetzung
erfolgt. Die Bruchbedingung ist erfüllt, wenn die Energiefreisetzungsrate G infolge ebener
Mixed-Mode-Beanspruchung den Materialgrenzwert GIc erreicht, Gleichung (2.42). Dabei
bezeichnen ν die Querkontraktionszahl und E den Elastizitätsmodul.

G = 1 − ν2

E

(
K

2
I +K

2
II

)
(2.41)

G = GIc (2.42)

Bruchkriterium der Verzerrungsenergiedichte nach Sih

Das Bruchkriterium der Verzerrungsenergiedichte nach Sih [Sih74] nutzt einen Energie-
dichtefaktor S zur Beschreibung der Stärke des elastischen Energiefeldes in der Nähe
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2 Bruchmechanische Grundlagen 15

der Rissspitze, Gleichung (2.43). Die Funktionen a11, a12 und a22 sind z. B. in [Sih74]
angegeben.

S = a11 ·K2
I + 2 a12 ·KI ·KII + a22 ·K2

II (2.43)

Das Kriterium beruht auf der Annahme, dass die Rissausbreitung radial in Richtung des
minimalen Energiedichtefaktors Smin erfolgt, Gleichung (2.44).

∂S

∂ϕ
= 0, ∂2S

∂ϕ2 > 0 (2.44)

Instabiles Risswachstum findet statt, wenn der minimale Energiedichtefaktor Smin den
kritischen Wert Smin,c erreicht, Gleichung (2.45). Dabei sind ν die Querkontraktionszahl
und µ der Schubmodul.

Smin = Smin,c = 1 − 2ν
4π µ K2

Ic (2.45)

Weitere Bruchkriterien

Weitere Konzepte, die sich mit instabiler Rissausbreitung und der Ausbreitungsrichtung
befassen, sind u. a. in [Ric85] erläutert und zusammengefasst. Dazu zählen zum Beispiel
das Kriterium nach Amestoy, Bui und Dang Van [ABD80] sowie das J-Kriterium [Ric68].
Die vorgestellten Konzepte sind prinzipiell auf eine überlagerte ebene Beanspruchung der
Moden I und II limitiert. Eine Erweiterung des zweidimensionalen (2D) Kriteriums der
maximalen Tangetialspannungen nach Erdogan und Sih [ES63] auf drei Raumrichtungen
(3D) durch Schöllmann [Sch01] dient zur Bestimmung des Ausbreitungsverhaltens und
stellt ein Bruchkriterium für eine allgemeine Mixed-Mode-Beanspruchungssituation dar.

2.2 Linear-elastische Bruchmechanik inhomogener und
anisotroper Materialien

Eine Vielzahl von Materialien sind nicht homogen bzw. besitzen keine isotropen Eigen-
schaften. Dazu gehören beispielsweise Faserverbunde und metallische Werkstoffe mit
anisotroper Kristallstruktur. Diese Anisotropie muss bei der Bewertung Berücksichtigung
finden [Kun10].

2.2.1 Risse in anisotropen Körpern

Sih, Paris und Irwin [SPI65] nutzen komplexe Spannungsfunktionen, die in Funktionen
mit einer 1/

√
r-Abhängigkeit resultieren, um die Spannungsintensitätsfaktoren und Ener-

giefreisetzungsraten der jeweiligen Moden (siehe Kapitel 2.1.2) von transversal isotropen
Strukturen (siehe Kapitel 3.3.3) zu ermitteln. Betrachtet wird ein Innenriss der Länge 2a in
einer Scheibe mit anisotropen elastischen Eigenschaften. Als ein Sonderfall der Anisotropie
wird sich auf die Orthotropie beschränkt. Das Hooke’sche Gesetz für orthotropes Material
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16 2 Bruchmechanische Grundlagen

ist in Kapitel 3.3.3 angegeben. Die Lösung anisotroper elastischer ebener Randwertauf-
gaben kann mit Hilfe verallgemeinerter komplexer Spannungsfunktionen erfolgen. Die
Rissspitzenfelder (Spannungen und Verschiebungen) für die einzelnen Moden sind in den
Gleichungen (2.46) bis (2.58) mit Hilfe der Polarkoordinaten r und ϕ angegeben. Dabei
sind si (mit i = 1, 2, 3, 4) komplexe Konstanten, pi und qi (mit i = 1, 2) materialabhängige
Konstanten sowie cij (mit i, j = 4, 5) die elastischen Steifigkeiten des Materials.

Mode I:

σx = KI√
2πr

R

[
s1 · s2

s1 − s2

(
s2√

cosϕ+ s2 sinϕ − s1√
cosϕ+ s1 sinϕ

)]
(2.46)

σy = KI√
2πr

R

[
1

s1 − s2

(
s1√

cosϕ+ s2 sinϕ − s2√
cosϕ+ s1 sinϕ

)]
(2.47)

τxy = KI√
2πr

R

[
s1 · s2

s1 − s2

(
1√

cosϕ+ s1 sinϕ − 1√
cosϕ+ s2 sinϕ

)]
(2.48)

u = KI

√
2r
π
R

[
1

s1 − s2

(
s1 · p2

√
cosϕ+ s2 sinϕ− s2 · p1

√
cosϕ+ s1 sinϕ

)]
(2.49)

v = KI

√
2r
π
R

[
1

s1 − s2

(
s1 · q2

√
cosϕ+ s2 sinϕ− s2 · q1

√
cosϕ+ s1 sinϕ

)]
(2.50)

Mode II:

σx = KII√
2πr

R

 1
s1 − s2

(
s2

2√
cosϕ+ s2 sinϕ − s2

1√
cosϕ+ s1 sinϕ

) (2.51)

σy = KII√
2πr

R

[
1

s1 − s2

(
1√

cosϕ+ s2 sinϕ − 1√
cosϕ+ s1 sinϕ

)]
(2.52)

τxy = KII√
2πr

R

[
1

s1 − s2

(
s1√

cosϕ+ s1 sinϕ − s2√
cosϕ+ s2 sinϕ

)]
(2.53)

u = KII

√
2r
π
R

[
1

s1 − s2

(
p2
√

cosϕ+ s2 sinϕ− p1
√

cosϕ+ s1 sinϕ
)]

(2.54)

v = KII

√
2r
π
R

[
1

s1 − s2

(
q2
√

cosϕ+ s2 sinϕ− q1
√

cosϕ+ s1 sinϕ
)]

(2.55)

Mode III:

τxz = − KIII√
2πr

R

[
s3√

cosϕ+ s3 sinϕ

]
(2.56)

τyz = KIII√
2πr

R

[
1√

cosϕ+ s3 sinϕ

]
(2.57)
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w = KIII

√
2r
π
R

[√
cosϕ+ s3 sinϕ
(c45 + s3 · c44)

]
(2.58)

Die Spannungsintensitätsfaktoren weisen im orthotropen Fall die gleiche Zusammensetzung
auf wie im isotropen Fall, Gleichungen (2.59) bis (2.61). Die in einer gewissen Entfernung
wirkenden Spannungen sind mit dem Symbol ∞ gekennzeichnet. Die Beziehungen zwischen
den Spannungsintensitätsfaktoren und den Energiefreisetzungsraten sind in den Gleichun-
gen (2.62) bis (2.64) mit den elastischen Konstanten aij (mit i, j = 1, 2, 6) angegeben.

KI = σ∞
y

√
πa (2.59)

KII = τ∞
yx

√
πa (2.60)

KIII = τ∞
yz

√
πa (2.61)

GI = −a22

2 KI J

[
KI(s1 + s2) +KII

s1 · s2

]
(2.62)

GII = a11

2 KII J
[
KII(s1 + s2) +KI · s1 · s2

]
(2.63)

GIII = K2
II J

[
c45 + s3 · c44

2 c44 · c55

]
(2.64)

Die Gleichungen (2.65) bis (2.67) enthalten die reellen Ausdrücke, die auftreten, wenn
der Riss mit einer Symmetrieebene der Orthotropie zusammenfällt. Die gesamte Energie-
freisetzungsrate G ist die Summe aus den Energiefreisetzungsraten der einzelnen Moden,
Gleichung (2.68).

GI = K2
I

√
a11 · a22

2

[√
a22

a11
+ 2 a12 + a66

2 a11

]1/2

(2.65)

GII = K2
II
a11√

2

[√
a22

a11
+ 2 a12 + a66

2 a11

]1/2

(2.66)

GIII = K2
III

1
2√

c44 · c55
(2.67)

G = GI +GII +GIII (2.68)

2.2.2 Bruchkriterien

Die folgenden Bruchkriterien stellen teilweise Erweiterungen der Bruchkriterien (für homo-
gene und isotrope Materialien) aus Kapitel 2.1.6 für inhomogene und anisotrope Materialien
dar. Die Bruchbedingung ist erfüllt und es setzt instabiles Risswachstum ein, wenn die
Beanspruchungsgröße dem Materialgrenzwert entspricht.

Kriterium der Tangentialspannungen nach Schramm und Richard

Mit Hilfe des Kriteriums der Tangentialspannung nach Schramm und Richard (Kurz-
bezeichnung TSSR) [Sch14] ist die Vorhersage des Rissverhaltens in bruchmechanisch
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18 2 Bruchmechanische Grundlagen

gradierten Materialien unter statischer und zyklischer Belastung (mit positivem Span-
nungsverhältnis) möglich. Das Konzept beinhaltet Aussagen zum Beginn des stabilen
und instabilen Risswachstums sowie der eintretenden Rissausbreitungsrichtung. Bruchme-
chanisch gradiert bedeutet in diesem Zusammenhang, dass die Materialien verschiedene
ortsabhängige bruchmechanische Kennwerte aufweisen, die in bis zu drei Raumrichtungen
(diskret oder kontinuierlich) variieren, während die elastischen Materialeigenschaften in
der gesamten Struktur isotrop und homogen sein können. Da die bruchmechanischen
Eigenschaften von der Materialgradierung abhängig sind, werden in den Materialbereichen
anstelle von Kennwerten deswegen jeweils (konstante) Materialfunktionen verwendet. In
Gleichung (2.69) ist die winkelabhängige Risszähigkeit KIc(ϕ) angegeben. Dabei bezeichnen
KIc,M1 bzw. KIc,M2 die Risszähigkeit des Materials 1 bzw. 2 und ϕM den Gradierungswinkel.

KIc(ϕ) =
{
KIc,M1 für ϕM ≤ ϕ ≤ ϕM + 180◦

KIc,M2 für ϕM − 180◦ ≤ ϕ ≤ ϕM
(2.69)

Grundlage dieses Kriteriums bildet das Kriterium der maximalen Tangentialspan-
nungen nach Erdogan und Sih mit dem Abknickwinkel ϕ0, MTS (siehe Kapitel 2.1.6).
Abbildung 2.11a zeigt eine gradierte Struktur mit dem Gradierungswinkel ϕM, bei der
sich der Riss im Übergang der Materialien befindet. In Abbildung 2.11b sind potenzielle
Abknickwinkel dargestellt. Diese resultieren entweder aus der Rissbeanspruchungsart (mit
der dazugehörigen maximalen Tangentialspannung, z. B. ϕ0,MTS,Mode I bei Mode I) oder
aus der Materialgradierung (Gradierungswinkel ϕM).

a)

ϕM

Material 1 (M1)

Material 2 (M2)

a

σ

σ b)

M1

M2

ϕ0,MTS,Mode I

ϕMa

σ

σ

Abbildung 2.11: Gradierungswinkel und potentielle Abknickwinkel nach [Sch14]:
a) Riss der Länge a in einer gradierten Struktur mit dem
Gradierungswinkel ϕM,
b) Riss der Länge a in einer gradierten Struktur mit potentiellen
Abknickwinkeln

In Gleichung (2.70) ist der Abknickwinkel dieses Konzeptes entsprechend mit TSSR
indiziert, ϕTSSR.

ϕTSSR =
{
ϕ0, MTS

ϕM;ϕM ± 180◦ (2.70)
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Die Vorhersage der instabilen Rissausbreitung ist sowohl für statische als auch zyklische
Belastung möglich. Im statischen Fall wird eine statische Beanspruchungsfunktion σϕ

√
2πr

(σϕ bezeichnet die Tangentialspannung) mit einer statischen Bruchgrenzkurve KIc(ϕ),
Gleichung (2.69), gleichgesetzt. Der Parameter V gibt das Mixed-Mode-Verhältnis an,
V =KII / (KI +KII).

σϕ

√
2πr = KI

(
cos3 ϕ

2 − V

1 − V
· 3

2 · sinϕ · cos ϕ2

)
= KIc(ϕ) (2.71)

Die Beanspruchungsgrößen KC
I (ϕ) werden durch Umstellen von Gleichung (2.71) und

Einsetzen der möglichen Abknickwinkel (ϕ=ϕ0, MTS, ϕM bzw. ϕM ± 180◦) ermittelt, Glei-
chung (2.72).

KC
I (ϕ) = KIc(ϕ)

cos3 ϕ

2 − V

1 − V
· 3

2 · sinϕ · cos ϕ2

(2.72)

Der Minimalwert der Beanspruchungsgröße, Gleichung (2.73), definiert den Eintritt und
die Richtung der instabilen Rissausbreitung bei statischer Belastung. Übersteigt der Wert
des realen Spannungsintensitätsfaktors KI den Wert des normierten Spannungsintensitäts-
faktors KC,TSSR

I , breitet sich der Riss instabil aus, Gleichung (2.74).

KC,TSSR
I = Min

(
KC

I (ϕ = ϕ0, MTS), KC
I (ϕ = ϕM), KC

I (ϕ = ϕM ± 180◦)
)

(2.73)
KI ≥ KC,TSSR

I (2.74)

Das Rissverhalten bruchmechanisch gradierter Strukturen, u. a. bei verschiedenen Gradie-
rungswinkeln und Belastungssituationen, ist in [Sch14] detailliert beschrieben.

Kriterium nach Judt

Judt et al. [JZR+18] formulieren ein Rissausbreitungskriterium für Materialien mit ortho-
tropen elastischen Eigenschaften. Die Parameter des Kriterium sind richtungsabhängig,
wobei diese parallel und senkrecht zur Faserausrichtung ermittelt werden. Die Validierung
erfolgt an kurzfaserverstärkten Kunststoffen (Polypropylen mit Glas- bzw. Cellulosefa-
sern), welche im Spritzgussverfahren hergestellt werden. Das Kriterium verwendet die
Energiefreisetzungsrate und das J-Integral. Dabei werden Winkelfunktionen mit Werten des
J-Integrals in transversaler Richtung JTD

c (TD, engl. transverse direction) und senkrechter
Richtung JPD

c (PD, engl. predominant direction) ins Verhältnis gesetzt. Gleichung (2.75)
gibt die allgemeine Beziehung mit den Größen JPD

c und JPD
c wieder. Der Winkel ϕ∗ setzt

sich aus den Winkeln γ und ϕ zusammen (ϕ∗ =ϕ+ γ). Der Winkel γ beschreibt die Faser-
orientierung im globalen Koordinatensystem und der Winkel ϕ stellt die Winkelkoordinate
des Polarkoordinatensystems dar.

1
Jc (ϕ∗) = cos2 ϕ∗

JPD
c

+ sin2 ϕ∗

JTD
c

(2.75)

Der Wert Jc ist in Gleichung (2.76) mit Hilfe der richtungsabhängigen Parameter angegeben.

Jc (ϕ) = JPD
c · JTD

c
JTD

c cos2 (ϕ+ γ) + JPD
c sin2 (ϕ+ γ) (2.76)
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Gleichung (2.77) liefert die Bruchbedingung (mit der winkelabhängigen Gesamtenergie-
freisetzungsrate G(ϕ) = J1 cosϕ + J2 sinϕ und dem kritischen Wert des J-Integrals Jc)
und über die Gleichung (2.78) erfolgt die Ermittlung des Rissabknickwinkels ϕ. J1 und J2
bezeichnen dabei die Werte des J-Integrals in den Achsenrichtungen.

JR(ϕ)= G(ϕ)
Jc(ϕ) =(J1 cosϕ+ J2 sinϕ)

[
JTD

c cos2(ϕ+ γ) + JPD
c sin2(ϕ+ γ)

JPD
c · JTD

c

]
(2.77)

∂JR(ϕ)
∂ϕ

= 0, ∂2JR(ϕ)
∂ϕ2 < 0 (2.78)

Der Materialparameter χ quantifiziert das Verhältnis der Risszähigkeiten bzw. J-Integrale,
Gleichung (2.79). Dabei sind KTD

Ic und KPD
Ic die Risszähigkeiten in transversaler und

senkrechter Richtung.

χ = KT D
Ic

KP D
Ic

=

√
JTD

c
JPD

c
≥ 1 (2.79)

Für den Fall einer Mode I-Beanspruchung beträgt der Rissabknickwinkel ϕc = 0 für Verhält-
nisse χ ≤ 1,22 und für χ2 > 1,22 ergeben sich zwei potenzielle Winkel, Gleichung (2.80).

ϕ1/2
c = ± arcsin

√1
3

(
2 + 1

1 − χ2

) (2.80)
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3 Verbundwerkstoffe

3.1 Definition, Einteilung und Beispiele

Verbundwerkstoffe (engl. composites) bestehen aus mindestens zwei verschiedenen Werk-
stoffen bzw. Phasen, woraus Eigenschaften (z. B. Festigkeiten und Steifigkeiten) resultieren,
welche die Einzelkomponenten autark nicht erreichen [Sch07, HEW12].

Bezüglich ihres Aufbaus (Abbildung 3.1) werden Schicht-, Faser- und Teilchenverbunde
unterschieden. Schichtverbunde besitzen aufgrund der Zusammensetzung anisotrope Eigen-
schaften, wohingegen Teilchenverbunde bei gleichmäßig verteilten Partikeln isotrop sind.
Bei Faserverbunden, bestehend aus Faser- und Matrixkomponente, besteht die Möglichkeit,
die Materialeigenschaften von vollständig anisotrop bis isotrop einzustellen [RM15].

Beispiele für Schichtverbunde (Abbildung 3.1a) sind Sperrhölzer, Sicherheitsgläser und Bi-
metalle. Beton ist ein Vertreter der Teilchenverbunde (Abbildung 3.1c). Zusammengesetzt
mit Metall ergibt sich Stahlbeton, der wiederum den Faserverbunden (Abbildung 3.1b)
zugeordnet wird und eine höhere Zugfestigkeit als Beton aufweist. Bei Faserverbunden,
bestehend aus den Komponenten Faser und Matrix, können alle Werkstoffgruppen mitein-
ander kombiniert werden. Beispiele dafür befinden sich z. B. in [HEW12].

a) b) c)

Abbildung 3.1: Schematischer Aufbau der Verbundwerkstoffe:
a) Schichtverbund, b) Faserverbund, c) Teilchenverbund

3.2 Faserverbunde

Bei Faserverbunden werden Verstärkungsfasern in die Matrix eingebracht. Die Eigenschaf-
ten faserverstärkter Werkstoffe können über die Anzahl (Faser-Matrix-Verhältnis) und die
Orientierung der Fasern gezielt den Belastungen angepasst werden. Die Aufgabe der Faser
ist die Aufnahme der äußeren Lasten, die über die Matrix eingeleitet werden.
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Die Matrix hat im Verbund u. a. folgende Aufgaben [Sch07]:

A1 Fixieren der Fasern,

A2 Übertragen der äußeren Belastung auf die Fasern,

A3 Aufnahme der Lasten bei Beanspruchung quer zur Faserrichtung bzw. Druckbean-
spruchung und

A4 Schutz der Fasern vor Umgebungseinflüssen (z. B. mechanischem Abrieb und Me-
dieneinwirkung).

Für beide Komponenten können alle Werkstoffgruppen miteinander kombiniert werden.
Die Einteilung der Fasern kann in Natur- und Chemiefasern erfolgen. Die Gewinnung
der Naturfasern (z. B. Baumwolle und Flachs) erfolgt vorwiegend aus pflanzlichem oder
tierischem Material (siehe Abbildung 3.4). Chemiefasern, auch als Kunstfasern bezeich-
net, werden synthetisch produziert. Beispiele für synthetische Verstärkungsfasern sind
Kohlenstoff-, Glas-, Aramid- und Metallfasern [Fre11]. Faserverbunde mit einer Kunststoff-
matrix werden auch als Faser-Kunststoff-Verbunde bezeichnet. Weitere Kombinationen
wie z. B. faserverstärkte Metalle oder Keramiken sind u. a. in [HEW12] beschrieben.

Durch die Zusammensetzung aus zwei Komponenten ergeben sich zahlreiche Konstellationen
bezüglich der Eigenschaften, wobei die Faser hinsichtlich Art, Anzahl und Orientierung
den Verbund prägt. Zusätzlich können Additive zur Eigenschaftsmodifikation eingesetzt
werden. Damit die Spezifika der Einzelkomponenten im Verbund optimal genutzt werden
können, sollten drei Forderungen, (3.1) bis (3.3), erfüllt sein [Sch07]:

F1 Aufgrund des Haupttraganteils der Fasern bei Belastungen in Faserlängsrichtung
sollte der Elastizitätsmodul der Faser Ef größer sein als der Elastizitätsmodul der
Matrix Em.

Ef > Em (3.1)

F2 Eine Verstärkungswirkung wird nur erzielt, wenn die Festigkeit der Faser Rf größer
ist als die Festigkeit der Matrix Rm.

Rf > Rm (3.2)

F3 Die Bruchdehnung der Matrix εm muss größer sein als die Bruchdehnung der Faser εf ,
um ein vorzeitiges Versagen der Fasern zu verhindern.

εm > εf (3.3)

Der jeweilige Faser- und Matrixanteil eines Verbundes kann sowohl volumen- als auch
massebezogen angegeben werden. In Gleichung (3.4) ist der Faservolumenanteil ϕ, der das
Verhältnis zwischen Faservolumen Vf und Verbundvolumen Vv quantifiziert, angegeben. Der
Parameter Vm bezeichnet dabei das Matrixvolumen. Neben der dimensionslosen Angabe ist
auch die Angabe in Prozent (%) gebräuchlich. Der Fasermassenanteil Ψ ist das Verhältnis
zwischen Fasermasse mf und Masse des Verbundes mv, Ψ =mf/mv.

ϕ = Vf

Vv
= Vf

Vf + Vm
(3.4)
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Das Bestimmen des relativen Faservolumenanteils ϕ kann über verschiedene Methoden
erfolgen. Eine Methode ist die Vorgabe der Faser- und Matrixmassen, wobei in Vorversuchen
die ungetränkten und getränkten Fasern zu wiegen sind. Eine zuverlässigere und häufiger
angewandte Methode ist die experimentelle Ermittlung am ausgehärteten Verbund über
eine Trennung der Komponenten, wobei meist der Formstoff (z. B. das Verkoken der Matrix
bei glasfaserverstärkten Kunststoffen) eingesetzt wird. Durch das Wiegen vor und nach
der Separation kann mit Hilfe des Fasermasseanteils Ψ und der Dichten von Faser und
Matrix der Faservolumenanteil ϕ ermittelt werden, Gleichung (3.5).

ϕ = 1

1 + 1 − Ψ
Ψ · ρf

ρm

(3.5)

Bei Verbunden mit Polymerfaserverstärkung ist das Veraschen der Matrix ungeeignet, da
z. B. Aramidfasern auch an Masse verlieren. Die Volumenanteile von Naturfaser-Kunststoff-
Verbunden lassen sich ebenfalls nicht mit dieser Methode ermitteln, wodurch diese im
Rahmen der Materialografie (Plastografie) bestimmt werden, siehe Kapitel 4.3.1.

Elastizitätsmoduln einer unidirektionalen Schicht

Die Anzahl der Fasern im Verbund beeinflusst u. a. die mechanischen Eigenschaften. Die
Steifigkeiten des Verbundes (bzw. einer Einzelschicht) werden über Mischungsregeln (siehe
[Sch07]) berechnet. Die Ermittlung der Elastizitätsmoduln erfolgt mit Hilfe mikromechani-
scher Modelle. Im Folgenden wird anhand eines repräsentativen mechanischen Modells
die Verbundsteifigkeit in Faserlängsrichtung hergeleitet (vgl. [Sch07]). Das Modell besteht
aus einer Faser, die von einer Matrix umgeben ist, siehe Abbildung 3.2. Das dazugehö-
rige Federnmodell besteht aus zwei Federn für die jeweiligen Komponenten, die sich in
einer Parallelschaltung befinden. Die Lösung des Modells resultiert aus Gleichungen der
Elastostatik: Gleichgewichts- und kinematische Beziehungen sowie Stoffgesetzen.

F‖F‖

Abbildung 3.2: Mikromechanisches Modell zur Herleitung des Elastizitätsmoduls E‖ nach
[Sch07]

Bei der Gleichgewichtsbeziehung wird das Kräftegleichgewicht aufgestellt. Die außen
angreifende Kraft F‖ steht dabei im Gleichgewicht mit den in den Einzelkomponenten
wirkenden Kräften der Faser Ff bzw. Matrix Fm, Gleichung (3.6). Dabei sind σ‖ die
resultierende Spannung, σf die Spannung in der Faser und σm die Spannung in der Matrix.
Dem zugehörig sind die Querschnittsflächen des Verbunds Av, der Faser Af und der
Matrix Am.

F‖ = Ff + Fm → σ‖ · Av = σf · Af + σm · Am (3.6)

Die kinematische Beziehung ist, dass Faser und Matrix in Längsrichtung die gleiche
Längenänderung ∆l (Verschiebung) erfahren. Gleichung (3.7) gibt diese Beziehung in Form
gleicher Dehnungen wieder. Die Länge l bezeichnet dabei die (unbelastete) Ausgangslänge.
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Die Dehnung in Faserlängsrichtung ε‖ entspricht der Dehnung der Faser εf bzw. der
Matrix εm.

∆l
l

= ε‖ = εf = εm (3.7)

Die Stoffgesetze sind unter der vereinfachten Betrachtung einer einachsigen Belastung
mit gleichen Querkontraktionszahlen von Faser und Matrix formuliert und beinhalten das
Hooke’sche Gesetz für Faser und Matrix, Gleichung (3.8). Die Faserspannung σf ist das
Produkt aus Elastizitätsmodul der Faser in Längsrichtung Ef‖ und Faserdehnung εf . Die
analoge Beziehung ergibt sich für die Matrix mit der Spannung in der Matrix σm und dem
Matrixelastizitätsmodul Em.

σf = Ef‖ · εf und σm = Em · εm (3.8)

Werden die Spannungen in Gleichung (3.6) durch die Stoffgesetze aus Gleichung (3.8) ersetzt
und die Beziehung aus Gleichung (3.7) berücksichtigt, ergibt sich der Elastizitätsmodul in
Längsrichtung E‖, Gleichung (3.9).

E‖ = Ef‖
Af

Av
+ Em

Am

Av
(3.9)

Gleichung (3.4) gilt ebenso für die Querschnitte gleicher Dicke, woraus sich Af/Av =ϕ und
Am/Av = (1 − ϕ) ergeben. Für den Fall einer Zugbelastung in Längsrichtung der Fasern
gilt folglich Gleichung (3.10), die als Mischungsregel bezeichnet wird. Nach Festlegung der
beiden Komponenten ist nach dieser Gleichung die Steifigkeit des Verbundes E‖ lediglich
über den Faservolumenanteil ϕ einzustellen. In Abbildung 3.3 sind die linearen Verläufe
des Elastizitätsmoduls E‖ sowie die der Einzelkomponenten über den Faservolumenanteil ϕ
aufgetragen.

E‖ = Ef‖ · ϕ+ Em (1 − ϕ) (3.10)

Weitere Herleitungen, z. B. zum Elastizitätsmodul einer unidirektionalen Schicht quer zur
Faserrichtung E⊥, sind in [Sch07] beschrieben.

3.2.1 Verstärkungsfasern

Fasern können verschiedenen Ursprungs, u. a. aus Metall, Glas und Kohlenstoff, sein.
Tabelle 3.1 enthält Kennwerte ausgewählter Verstärkungsfasern. Bei den Keramiken
(Whiskern) sind Fasern aus Siliziumcarbid (SiC) mit der größten Dichte (ρf = 3, 18 g/cm3)
und einer hohen Zugfestigkeit (Rf‖ = 20000 MPa) vertreten. Die Borfaser weist eine ähnliche
Dichte wie die Glasfaser auf, hat allerdings mit Ef‖ = 380 GPa einen deutlich größeren
Elastizitätsmodul, welcher im Bereich der Kohlenstofffasern liegt.
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Abbildung 3.3: Elastizitätsmoduli in Abhängigkeit von dem Faservolumenanteil ϕ

Tabelle 3.1: Physikalische Eigenschaften ausgewählter Verstärkungsfasern nach [RM15]

Werkstoff Faser Dichte Zugfestigkeit Elastizitätsmodul
ρf / g/cm3 Rf‖ /MPa Ef‖ /GPa

Whisker SiC 3,18 20000 480
Metall Bor 2,36 3400 380
Polymer Aramid 1,45 3000 140
Glas E-Glas 2,55 3400 70

S-Glas 2,50 4500 85
Kohlenstoff HT 1,75 5700 275

HM 1,90 1900 530

Eine Vielzahl von Produkten beinhaltet Fasern aus Kohlenstoff und Glas als Komponente
zur Verstärkung bzw. zur Einstellung diverser Charakteristika. Die Glasfaser ist eine
anorganische Faser und besitzt isotrope elastische Eigenschaften. Zur Unterscheidung
verschiedener Arten wird bei der Bezeichnung ein Buchstabe vorangestellt, der auf eine
spezielle Eigenschaft hinweist, z. B. E-Glas (E für engl. electrical) oder S-Glas (S für engl.
strength), das eine höhere Festigkeit im Vergleich zu anderen Gläsern aufweist [Sch07].
Die chemische Zusammensetzung verschiedener Glasarten sind z. B. in [RM15] angegeben.

Die Kohlenstofffaser, auch Carbonfaser genannt, besitzt anisotrope mechanische und ther-
mische Eigenschaften. Die Fasern weisen (in Faserlängsrichtung) bessere Zugfestigkeiten
sowie Steifigkeiten als Glasfasern auf und haben zudem noch geringere Dichten, wodurch
sich auch vorteilhafte spezifische (dichtebezogene) Kennwerte ergeben. Je nach Anwen-
dungszweck gibt es verschiedene Faserarten, z. B. HT-Fasern (HT für engl. high tenacity,
hochfest) und HM-Fasern (HM für engl. high modulus, hoher Elastizitätsmodul) [Sch07].
Einsatzbereiche von Fasern in Kombination mit einem polymeren Matrixsystem sind in
Kapitel 3.3.2 angegeben. Im folgenden Abschnitt werden Verstärkungsfasern natürlichen
Ursprungs vorgestellt.

https://doi.org/10.51202/9783186354181 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:45:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186354181


26 3 Verbundwerkstoffe

3.2.2 Naturfasern

Einteilung

Naturfasern können aus pflanzlichen, tierischen und mineralischen Fasern bestehen [DIN69].
Abbildung 3.4 zeigt die Einteilung der Naturfasern nach deren Ursprung, dazugehörige
Untergruppen und Vertreter [Gri14]. Pflanzliche und tierische Fasern sind dabei organischer
Herkunft, wohingegen die mineralische Asbestfaser anorganisch ist. Der Hauptbestandteil
pflanzlicher Fasern ist Cellulose und Tierfasern sind aus Proteinen zusammengesetzt.

Naturfasern

pflanzlich tierisch mineralisch

Pflanzenhaare
• Baumwolle
• Kapok
• Akon
• Heimische

Pflanzenfasern

Bastfasern
• Flachs
• Hanf
• Jute
• Ramie
• Sonstige

Stängelfasern

Hartfasern
• Sisal (Agave)
• Abaca/

Bananenfasern
• Lilien und

Grasfasern
• Palm und

Bromeliafasern
• Kokos und

Torffasern

Wollen/Haare
• Wolle
• Kaninhaare
• Ziegenhaare
• Rosshaare

Seiden
• Maulbeerseide
• Wilde Seide

• Asbest

Abbildung 3.4: Einteilung der Naturfasern nach deren Ursprung nach [Gri14]

Des Weiteren kann eine Einteilung nach der Länge in Kurzfasern (z. B. Baumwolle) und
Langfasern (z. B. Flachs und Sisal) erfolgen [Fre11]. Naturfasern weisen eine endliche Länge
auf und die Faserquerschnitte können unrund und über die Faserlänge veränderlich sein
[Che11, DIN90].
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Aufbau

Den grundlegenden Aufbau einer pflanzlichen Naturfaser zeigt Abbildung 3.5. Neben der
Primärwand existieren u. a. drei Sekundärwände (S1, S2 und S3) sowie verschiedene An-
ordnungen der Cellulosefibrillen (spriralförmig zur Faserachse orientiert bzw. ungeordnet).
Dabei kann diese Struktur ebenfalls als Verbund, in dem die Fibrillen in der primär aus
Lignin und Hemicellulose bestehenden Matrix eingebettet sind, angesehen werden. Die
Hohlräume werden auch Lumen genannt [DDB+14].

Primärwand

Sekundärwand S1

Spiralwinkel

Sekundärwand S2

LumenSekundärwand S3

Spiralförmig
orientierte
kristalline
Cellulosefi-
brillen

Amorpher Be-
reich, primär
aus Lignin und
Hemicellulose

Netzwerke ungeordneter
kristalliner Cellulosemikro-
fibrillen

Abbildung 3.5: Schematischer Aufbau einer Naturfaser pflanzlichen Ursprungs [DDB+14]

Eigenschaften

Eine textilphysikalische Bezugsgröße zur Charakterisierung der Feinheit einer Faser beinhal-
tet die Länge und die Masse. Die Längennummerierung (metrische Nummer, Kurzbezeich-
nung Nm) quantifiziert das Verhältnis von der Länge l (Einheit: Meter) zu der Masse m
(Einheit: Gramm) [Che11, DIN85]. Garne werden beispielsweise mit dieser Nummerierung
angegeben, siehe Kapitel 4.1.1.

In Tabelle 3.2 ist die chemische Zusammensetzung ausgewählter Naturfasern dargestellt,
wobei die Angaben massebezogen sind. Die drei grundlegenden Bestandteile sind Cellulose,
Hemicellulose und Lignin, welche je nach Faser differieren. Tendenziell ist Cellulose der
Hauptbestandteil, gefolgt von Hemicellulose und Lignin. Ausgenommen davon ist z. B. die
Kokosfaser. Ein Vergleich zwischen Flachs und Hanf zeigt, dass beide Fasern etwa 70 %
Cellulose und ca. 20 % Hemicellulose aufweisen. Im Ligninanteil weist Flachs mit rund 2 %
deutlich geringere Anteile als Hanf mit 10 % auf.

Durch verschiedene Wachstumsbedingungen (z. B. Boden und Klima) und Einflüsse bei
der Verarbeitung (z. B. Ernte und Röste) zum textilen Faserstoff weisen Naturfasern
Schwankungen in deren physikalischen Eigenschaften auf (siehe auch Tabelle 3.4).

Halbzeuge

Um u. a. die Handhabbarkeit der Fasern bei der Verbundbauteilherstellung zu verbessern
und den Aufwand, der sich bei einer belastungsgerechten Anordnung der Fasern ergibt,
in Grenzen zu halten, werden verschiedene textile Halbzeuge verwendet. Garne sind
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aus textilen Fasern zusammengesetzte linienförmige Gebilde [DIN88]. Werden mehrere
Garne miteinander verdreht, entsteht ein Zwirn. Garne und Zwirne finden Anwendung
bei der Wickeltechnik und der Pultrusion. Ein Gewebe weist zwei orthogonal zueinander
orientierte Faserrichtungen (Kett- und Schussrichtung bzw. die Kurzbezeichnungen Kette
und Schuss) auf. In Abbildung 3.6a ist ein Gewebe mit einer Köperbindung dargestellt.
Die Kettrichtung verläuft vertikal und die Schussrichtung horizontal. Gewebe werden zur
Herstellung flächiger Bauteile verwendet.

Tabelle 3.2: Chemische Zusammensetzung ausgewählter Naturfasern nach [FBF+12]

Faser Cellulose / % Hemicellulose / % Lignin / %
Flachs 71 18,6-20,6 2,2
Hanf 68 15 10
Jute 61-71 14-20 12-13
Ramie 68,6-76,2 13-16 0,6-0,7
Sisal 65 12 9,9
Abaca 56-63 20-25 7-9
Bambus 26-43 30 21-31
Kokos 32-43 0,15-0,25 40-45

Multiaxialgelege bestehen aus einzelnen unidirektionalen Schichten, die mit Hilfe gewirkter
Maschen wellenfrei verbunden werden, Abbildung 3.6b. Verwendung finden diese Gele-
ge z. B. bei Rotorblättern von Windkraftanlagen. Ein weiteres Halbzeug ist die Matte
(Abbildung 3.6c), bei der die Fasern flächig und regellos wirr verteilt sind. Die Faser-
matte besteht aus Spinnfädenbündeln und findet Anwendung bei Verkleidungsbauteilen.
Maschenware eignet sich aufgrund der guten Drapierfähigkeit für die Herstellung von
Crashbauteilen [Sch07].

Die Feinheit kann mit Hilfe verschiedener Feinheitssysteme angegeben werden. Für Garne
ist z. B. die Längennummerierung (siehe Kapitel 4.1.1) möglich, wohingegen bei flächigen
textilen Gebilden (z. B. Geweben) die Angabe über ein Flächengewicht erfolgen kann.

a)

Kette

Schuss

b)

xy

Vlies 45◦-45◦ 90◦ 45◦ 90◦ 0◦

c)

Abbildung 3.6: Schematische Darstellung ausgewählter textiler Halbzeuge:
a) Gewebe [Sch07], b) Multiaxialgelege [Sch07], c) Matte [Sch07]

3.2.3 Polymere Matrixsysteme

Ein polymeres Matrixsystem ist ein makromolekularer Werkstoff, der aus einer Vielzahl an
Monomeren besteht. Die Makromoleküle werden durch chemische Reaktion der Monomere
gebildet. Die Formgebung kann über verschiedene Verfahren realisiert werden [RM15]:
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V1 Extrudieren: In einem Extruder wird das Polymer verdichtet und erwärmt und
somit fließfähig (plastischer Zustand) gemacht, um es anschließend durch eine Düse
in die Form zu pressen. Anwendung findet das Extrudieren z. B. bei Rohren und
Strangpressprofilen.

V2 Spritzgießen: Das erhitzte, geschmolzene oder sich im plastischen Zustand befindliche
Polymer wird in eine Form gespritzt. Nach dem Erkalten des Kunststoffs wird
die Form geöffnet und das Teil ausgeworfen. Hierbei können komplexe Geometrien
hergestellt werden.

V3 Blasformen: Ausgangsprodukt ist ein erwärmtes dickwandiges Rohr, welches vor
dem Blasformen an einer Seite verschlossen und anschließend mit Innendruck beauf-
schlagt wird, um die Formgebung zu erreichen. Das Verfahren wird zur Herstellung
dünnwandiger Behälter und Hohlkörper sowie dünner Folien genutzt.

V4 Kalandrieren: Das flüssige Polymer wird auf Walzenpaare, die sich gegenläufig drehen,
gegossen. Die Bauteildicke wird über das Spaltmaß am letzten Walzenpaar festgelegt.

V5 Pulvertechnik: Eine Pulvertechnik ist u. a. das Presssintern. Dabei wird ein Pulver in
eine Form gefüllt und anschließend unter Temperatur- und Druckeinfluss gesintert.

V6 Gießen: Das flüssige Polymer wird in eine Form gegossen und härtet in dieser aus.

V7 Schäumen: In eine Kunststoffschmelze kommt es durch das Einbringen von Gasen
zur Bildung von Gasblasen, die bei der Vernetzungsreaktion zu Hohlräumen im
festen Formstoff führen.

Bezüglich des Aufbaus können Thermoplaste, Duroplaste und Elastomere unterschieden
werden. Thermoplaste bestehen aus Makromelkülen, die räumlich nicht miteinander
vernetzt sind, wodurch diese bei Zunahme der Temperatur plastisch verformt werden
können. Dieser reversible Prozess (Schmelzen bzw. Erstarren) ermöglicht die Schweißbarkeit
dieser Polymerwerkstoffe. Thermoplaste werden weiterhin in amorph und teilkristallin
differenziert. Der strukturelle Aufbau ist in Abbildung 3.7a bzw. 3.7b dargestellt. Vertreter
thermoplastischer Matrixsysteme sind Polypropylen (PP), Polyethylenterephthalat (PET),
Polyamid (PA) und Polyphenylensulfid (PPS) [Sch07, Gri14, RM15].

Bei Duroplasten erfolgt die chemische Vernetzungsreaktion, sogenannte Härtung, zum
festen Formstoff mit einer Härterkomponente durch Polyaddition. Die Molekülketten
sind dabei engmaschig vernetzt, siehe Abbildung 3.7c. Ein anschließendes Aufschmelzen
bzw. Umformen ist aufgrund der vollständigen (unlöslichen) Vernetzung nicht gegeben.
Epoxidharze, Kurzbezeichnung EP, sind Reaktionsharze und gehören zur Gruppe der duro-
plastischen Matrixsysteme. Weitere Vertreter sind Vinylesterharze (VE) und Phenolharze
(PF) [Sch07].

Elastomere sind ebenso wie Duroplaste untereinander vernetzt. Der Vernetzungsgrad ist
jedoch geringer, d. h. weitmaschiger, wodurch diese elastisch verformbar, jedoch nicht
schmelzbar sind, Abbildung 3.7d [RM15]. Vertreter von Elastomeren sind z. B. Butadien-
Kautschuk (engl. butadiene rubber, BR) und Naturkautschuk (engl. natural rubber, NR).

Details zu Polymerwerkstoffen hinsichtlich deren Synthese und Kettenstruktur sowie
physikalischen und mechanischen Eigenschaften der genannten und weiteren Vertretern
sind z. B. in [RM15] zu finden. Als polymere Matrixsysteme können Thermo-, Duroplaste
und Elastomere für den Faser-Kunststoff-Verbund verwendet werden.
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a) b) c) d)

Abbildung 3.7: Schematische Darstellung der Kettenstruktur von Polymeren:
a) Linearer, amorpher Thermoplast [Sch07], b) Linearer, teilkristalliner
Thermoplast [Sch07], c) Duroplast [Sch07], d) Elastomer [Sch07]

Durch die Kombination von Fasern und Matrix ergeben sich für den Verbund u. a. folgende
Vorteile gegenüber metallischen Werkstoffen [Sch07]:

V1 hohe Festigkeiten,

V2 hohe Steifigkeiten,

V3 niedrige Dichten,

V4 freie Formgestaltung,

V5 einstellbare elektrische Eigenschaften (vom Isolator bis zum Leiter),

V6 gute Korrosionsbeständigkeit und

V7 hohe auf die Dichte bezogene Werte hinsichtlich des Energieaufnahmevermögens.

Des Weiteren können die Temperatur- und Oxidationsbeständigkeit, die Wärmedehnung
und -leitfähigkeit sowie die Risszähigkeit beeinflusst werden [RM15].

3.3 Faser-Kunststoff-Verbunde

3.3.1 Herstellungsverfahren

Bei der Herstellung von faserverstärkten Kunststoffen gibt es eine Vielzahl von Verfahren,
wobei auch bekannte Verfahren zur Fertigung von (unverstärkten) Polymerwerkstoffen
(Kapitel 3.2.3) genutzt werden. Im folgenden Abschnitt werden ausgewählte Herstellungs-
möglichkeiten beschrieben [RM15, Wil14]:

V1 Handlaminieren: Das herzustellende Bauteil bekommt in Formschalen oder auf
Kernformen seine geometrische Gestalt. Dazu werden z. B. Gewebe oder Matten
zugeschnitten und in die Form gelegt. Anschließend folgt die Tränkung der Halbzeuge
mit einem Polymer. Das Aushärten kann zudem unter der Einwirkung von Druck
und Temperatur, z. B. in einem Autoklaven, erfolgen.

V2 Wickeltechnik: Kontinuierliche Fasern bzw. linienförmige Halbzeuge werden auf einen
Dorn gewickelt. Davor erfolgt eine Tränkung in einem Harz-Härter-Bad.

V3 Aufspritzen: Die (kontinuierlichen) Fasern werden zerkleinert und zusammen mit
dem Harz-Härter-Gemisch mit Druckluft in eine Form gespritzt.
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V4 Spritzgießen: Das Verfahren ist analog zum Spritzgießen unverstärkter Polymere,
allerdings werden hier Kurzfasern beigemischt.

V5 Pultrusion: Herstellung von faserverstärkten Profilen durch Beimischung von Ver-
stärkungsfasern in einen plastifizierten Kunststoff, der durch eine Düse zu einem
Profil gezogen wird.

V6 Pressverfahren: Hierbei werden zugeschnittene Halbzeuge (z. B. Matten oder Gewebe)
mit Harz getränkt und in einer Presse folgt anschließend die Herstellung des Bauteils.

Weitere Fertigungsverfahren und deren Spezifika sind beispielsweise in [Wil14] beschrieben.

3.3.2 Einsatzbereiche und Anwendungsbeispiele

Faserverstärkte Kunststoffe finden aufgrund ihrer (einstellbaren) Eigenschaften in vielen
Industriezweigen Anwendung. Anhand der vier folgenden Bereiche werden die Vorteile
von Faser-Kunststoff-Verbunden gegenüber dem Einsatz von konventionellen Werkstoffen
beschrieben, [Sch07]:

B1 Maschinenbau: Reduktion der Massen bzw. Massenträgheitsmomente stark beschleu-
nigter Komponenten, z. B. bei Textilmaschinen und Robotern. Erhöhung kritischer
Eigenfrequenzen durch die dichtespezifischen Steifigkeiten, z. B. bei Werkzeugspindeln
oder Walzen in Druckmaschinen.

B2 Elektrotechnik: Verwendung von glasfaserverstärkten Kunststoffen aufgrund deren
hoher elektrischer Isolationsfähigkeit bei gleichzeitig hohen Steifigkeiten und Festig-
keiten, z. B. bei Leiterplatinen und Isolatoren.

B3 Fahrzeugbau: Hohe gestalterische Freiheit der Komponenten bezüglich ihrer Form in
Kombination mit Massenreduktion, hohen Festigkeiten und Energieabsorptionsraten,
z. B. Verkleidungsbauteile (Lkw-Fahrerkabinen, Innenverkleidungen und Sanitär-
zellen in Reisezugwagen) sowie auch hochbelastetere Strukturen wie Rennwagen-
Monocoques.

B4 Boots- und Schiffsbau: Eine hohe gestalterische Formfreiheit sowie die Korrosions-
beständigkeit und der daraus verminderte Wartungsaufwand werden genutzt. Die
Leichtbauweise bewirkt zudem einen geringeren Tiefgang, das bedeutet geringe-
re Widerstandskräfte und reduzierte Antriebsleistungen für gleiche bzw. höhere
Geschwindigkeiten.

Weitere Einsatzbereiche von Faser-Kunststoff-Verbunden sind u. a. im Apparate- und
Rohrleitungsbau, in der Luft- und Raumfahrt sowie im Bauwesen und beim Bau von
Sportgeräten. Im Folgenden wird ausschließlich auf Verbundwerkstoffe mit Naturfaserver-
stärkung eingegangen. Anwendungen für Verstärkungen mit Naturfasern aus Flachs und
Hanf sind in Tabelle 3.3 und Abbildung 3.8 enthalten.
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Tabelle 3.3: Beispiele für Anwendungen mit Naturfasern nach [PBP+16, PEL16]

Bereich Beispiele
Fahrzeugbau Verkleidungskomponenten: Türverkleidungen, Hutablagen,

Armaturenbretter, Sonnenblenden
Stukturkomponenten: Rückenlehnen

Bauwesen Tür- und Fensterrahmen, Zementbeigabe
Flugzeugbau Innenverkleidungen
Sportgeräte Surfbretter, Tennisschläger, Fahrräder, Angeln, Skistöcke
Sicherheitstechnik Fahrradhelme
Musik Lautsprecherboxen, Gitarrenkorpusse
Innenausstattung Stühle, Lampen

a) b) c)

Abbildung 3.8: Anwendungen mit Naturfasern:
a) Surfbrett [Not19] , b) Skistock [Kan19] , c) Fahrradhelm [Egi19]

3.3.3 Begriffe und Werkstoffgesetz

Ausgangspunkt für die Spannungs- und Verformungsanalyse von Mehrschichtverbunden
ist die Einzelschicht (Abbildung 3.9a), für die folgende Annahmen gelten [Sch07]:

A1 Die Fasern verlaufen parallel in einer Richtung,

A2 Die Fasern sind gleichmäßig über den Querschnitt verteilt,

A3 Die Fasern sind ideal gerade und verlaufen ohne Unterbrechung und

A4 Matrix und Fasern haften ideal aneinander, d. h. es treten bei Belastung keine
Verschiebungen an der Grenzfläche zwischen Faser und Matrix auf.

Eine Einzelschicht wird (bei Faser-Kunststoff-Verbunden) auch als unidirektionale Schicht
bezeichnet. Das Stapeln mehrerer Einzelschichten (mit unterschiedlichen Faserorientie-
rungen) ergibt einen Mehrschichtverbund (Abbildung 3.9b). Im folgenden Abschnitt wird
auf das (lineare) Werkstoffgesetz der unidirektionalen Schicht eingegangen. Ausführlichere
Erläuterungen sowie weitere Sonderfälle sind u. a. in [Sch07] zu finden.
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a)

x

y

z b)

x

z
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Abbildung 3.9: Schichten:
a) Unidirektionale Schicht,
b) Mehrschichtverbund aus mehreren Einzelschichten

Trikline Anisotropie

Die Formulierung des Werkstoffgesetzes, welches den Zusammenhang zwischen Spannungen
und Verformungen wiedergibt, erfolgt an einem Volumenelement. Allgemein wirken 3 Nor-
malspannungen σi und 6 Schubspannungen τij mit i, j = x, y, z. Der allgemeinste Fall wird
als trikline bzw. vollständige Anisotropie bezeichnet (siehe Abbildung 3.10 a). Die Schub-
spannungen sind paarweise einander zugeordnet (τij = τji), wodurch sich deren Anzahl auf 3
reduziert. Das Hooke’sche Gesetz für den räumlichen Spannungszustand ist im Gleichungs-
system (3.11) angegeben. Die Kurzschreibweise lautet {σ} = [C] · {ε}. Dabei bezeichnen
{σ} den Spannungsvektor, [C] die Steifigkeitsmatrix und {ε} den Verzerrungsvektor.

σx
σy
σz
τyz
τxz
τxy


=



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66


·



εx
εy
εz
γyz
γxz
γxy


(3.11)

Das Gleichungssystem (3.12) für den räumlichen Verzerrungszustand resultiert aus der
inversen Steifigkeitsmatrix

[
C−1], die als Nachgiebigkeitsmatrix [S] bezeichnet wird. Die

Kurzschreibweise lautet [ε] = [S] · [σ] mit [S] =
[
C−1]. Über Energiebetrachtungen kann

nachgewiesen werden, dass bei den Matrizen eine Symmetrie zur Hauptdiagonalen vorliegt,
woraus für die Elemente Cij =Cji bzw. Sij =Sji folgt. Im resultierenden Werkstoffgesetz
stellen 21 unabhängige Konstanten die Beziehung zwischen den Spannungen (3 Normalspan-
nungen und 3 Schubspannungen) und den Verzerrungen (3 Dehnungen und 3 Gleitungen)
dar. 

εx
εy
εz
γyz
γxz
γxy


=



S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66


·



σx
σy
σz
τyz
τxz
τxy


(3.12)
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Abbildung 3.10: Spannungen an einem Volumenelement:
a) Trikline Anisotropie, b) Orthotropie

Orthotropie
Durch das Vorliegen von Symmetrieebenen wird die Anzahl der unabhängigen Konstanten
verringert. Im Fall von drei vorkommenden Symmetrieebenen, die orthogonal zueinander
liegen, sind noch 9 Konstanten notwendig (siehe Abbildung 3.10 b). Diese Konstellati-
on wird als Orthotropie (bzw. rhombische Anisotropie) bezeichnet. Für den räumliche
Verzerrungszustand ergibt sich das Elastizitätsgesetz nach dem Gleichungssystem (3.13).

εx
εy
εz
γyz
γxz
γxy


=



S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66


·



εx
εy
εz
γyz
γxz
γxy


(3.13)

Dargestellt mit Ingenieurkonstanten (Querkontraktionszahlen sowie Elastizitäts- und
Schubmoduln) ergibt sich das Gleichungssystem (3.14).



εx
εy
εz
γyz
γxz
γxy


=



1
Ex

−νyx

Ey
−νzx

Ez
0 0 0

−νxy

Ex

1
Ey

−νzy

Ez
0 0 0

−νxz

Ex
−νyz

Ey

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gxz

0

0 0 0 0 0 1
Gxy



·



σx
σy
σz
τyz
τxz
τxy


(3.14)

In Gleichung (3.15) sind die Beziehungen aufgrund der Symmetrieeigenschaften (Sij =Sji)
angegeben.

νyx

Ey
= νxy

Ex
; νyz

Ey
= νzy

Ez
und νzx

Ez
= νxz

Ex
(3.15)
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Transversale Isotropie

Die transversale Isotropie ist ein Sonderfall der Orthotropie, bei der senkrecht zu einer
isotropen Ebene unendlich viele Symmetrieebenen vorliegen. Unidirektionale Schichten
sind transversal isotrop und die isotrope Ebene ist senkrecht zur Faserlängsrichtung
orientiert. Alle Schnitte normal zu der isotropen Ebenen weisen gleiche Eigenschaften auf
(vgl. Abbildung 3.11). Das Werkstoffgesetz für den räumlichen Verzerrungszustand ist im
Gleichungssystem (3.16) angegeben.

a)
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z
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σy

σz

τxz

τxy
τyz

τxy

τxz

τyz

b)
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y

z

Abbildung 3.11: Transversale Isotropie:
a) Spannungen an einem Volumenelement (undirektionale Schicht),
b) Ebenen normal zur isotropen Ebene



εx
εy
εz
γyz
γxz
γxy


=



S11 S12 S12 0 0 0
S12 S22 S23 0 0 0
S12 S23 S22 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S55


·



σx
σy
σz
τyz
τxz
τxy


(3.16)

Bei transversaler Isotropie genügen 5 unabhängige Konstanten, welche auch als Grund-
Elastizitätsgrößen bezeichnet werden, zur Beschreibung des Werkstoffgesetzes [Sch07]:

• 2 Elastizitätsmoduln: Ex, Ey =Ez,

• 1 Schubmodul: Gxy =Gxz und

• 2 Querkontraktionszahlen: νxy = νxz, νyz.

Das Gesetz mit Ingenieurskonstanten ist im Gleichungssystem (3.17) dargestellt. Die wei-
teren Größen werden mit Hilfe der Grund-Elastizitätsgrößen bestimmt, siehe z. B. [Sch07].
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

εx
εy
εz
γyz
γxz
γxy


=



1
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

·



σx
σy
σz
τyz
τxz
τxy


(3.17)

Isotropie

Ist das elastische Materialverhalten in alle Raumrichtungen identisch, liegt Isotropie
vor. Für die Beschreibung des Werkstoffgesetzes genügen 2 unabhängige Konstanten
(Elastizitätsmodul E und Querkontraktionszahl ν), siehe Steifigkeitsmatrix des Gleichungs-
systems (3.18).
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σy
σz
τyz
τxz
τxy


(3.18)

Der Schubmodul G wird über Gleichung (3.19) ermittelt.

G = E

2 (1 + ν) (3.19)

Erfolgt die Belastung schräg zur Faserlängsrichtung, sind die Verzerrungen und Spannun-
gen sowie die Steifigkeiten bzw. Nachgiebigkeiten zu transformieren. Die Umrechnungen
sind z. B. in [Sch07] beschrieben. Die Zusammensetzung von Einzelschichten verschiedener
Orientierung ergibt einen Mehrschichtverbund, für den die (transformierten) Werkstoffge-
setze verwendet werden. Bei der Analyse von Mehrschichtverbunden kommt die Klassische
Laminattheorie (engl. classical laminate theory, Kurzbezeichnung CLT) zur Anwendung.
Erläuterungen zu deren Annahmen, Anwendungsgrenzen und der (mechanischen) schich-
tenweisen Spannungs- und Verformungsanalyse sind z. B. in [Sch07] zu finden.

Im Folgenden werden wissenschaftliche Arbeiten anderer Autoren, die mechanische und
bruchmechanische Eigenschaften sowie Bruch- und Versagenserscheinungen von Faser-
Kunststoff-Verbunden zum Gegenstand haben und hinsichtlich der eigenen Untersuchungs-
schwerpunkte relevant sind, vorgestellt.
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3.3.4 Mechanische Eigenschaften

Es liegen zahlreiche Untersuchungen zur Charakterisierung der mechanischen Eigenschaften
von Naturfaser-Kunststoff-Verbunden vor. Faruk et al. [FBF+12] geben einen Rückblick
über verfügbare Naturfasern und Matrixsysteme (der Jahre 2000 bis 2010). Arbeiten zu
Verbunden mit Verstärkungsfasern wie z. B. Flachs, Hanf, Jute, Sisal und Kokos sind
zusammengefasst. Dabei werden verschiedene physikalische und chemische Verfahren
genannt, welche Eigenschaftsmodifikationen der Naturfasern und deren Interaktion mit der
Matrix bewirken. Da die Naturfaser hydrophil und das polymere Matrixsystem hydrophob
sind, liegt ein Schwerpunkt auf den Adhäsionseigenschaften der Komponenten.

Physikalische Verfahren, z. B. Strecken oder Wärmebehandlung, verändern dabei die
Struktur- und Oberflächeneigenschaften der Faser, wodurch die mechanischen Bindung
zwischen Faser und Matrix verbessert wird. Möglichkeiten zur Aktivierung der Oberflächen
(Erhöhung der Oberflächenspannung) beider Verbundkomponenten sind die Koronabehand-
lung und die Plasmabehandlung. Bei den chemischen Verfahren kann die Modifikation
der Fasern mit Silanen, Alkalien (z. B. Natriumhydroxid) oder durch Anlagerung von
Acetylgruppen (Acetylierung) erfolgen. Beispielweise werden bei der Alkalibehandlung an
der Faseroberfläche befindliche Lignin, Wachs- und Ölbestandteile entfernt, um bessere
Haftungseigenschaften zwischen Faser und Matrix zu erzielen. Die Verwendung von Male-
insäureanhydrid ermöglicht sowohl die Modifikation der Faser als auch der Matrix. Des
Weiteren kann die Faser enzymatisch behandelt werden.

Einflussfaktoren wie Feuchtigkeit, Art und Anteil der Fasern auf den Herstellungsprozess
und deren Wirkung auf den Verbund werden ebenfalls hervorgehoben sowie Verfahren
zur Herstellung von faserverstärkten Verbunden mit thermo- oder duroplastischen Matrix-
systemen aufgezeigt. Bei den mechanischen Eigenschaften wird speziell auf die Zug- und
Elastizitätseigenschaften sowie das Energieaufnahmevermögen (dynamisches Verhalten
bei Aufprall) eingegangen. In Tabelle 3.4 sind physikalische Eigenschaften ausgewählter
Naturfasern dargestellt.

Tabelle 3.4: Physikalische Eigenschaften ausgewählter Naturfasern nach [FBF+12]

Faser Dichte Zugfestigkeit Elastizitätsmodul Bruchdehnung
ρf / g/cm3 Rf‖ /MPa Ef‖ /GPa εf‖ /%

Flachs 1,5 345-1035 27,6 2,7-3,2
Hanf 1,48 690 70 1,6
Jute 1,3 393-773 26,5 1,5-1,8
Ramie 1,5 560 24,5 2,5
Sisal 1,5 511-635 9,4-22 2,0-2,5
Abaca 1,5 400 12 3-10
Bambus 0,6-1,1 140-230 11-17 –
Kokos 1,2 175 4-6 30

Die meisten Fasern haben eine Dichte ρf im Bereich von 1,3 bis 1,5 g/cm3. Flachs, Hanf und
Jute weisen die größten Zugfestigkeiten in Faserlängsrichtung Rf‖ auf, jedoch unterliegen
die Kennwerte Streuungen aufgrund ihres natürlichen Ursprungs. Hanf hat vergleichsweise
den größten Elastizitätsmodul (Ef‖ = 70 GPa). Bis auf Abaca und Kokos weisen die anderen
Fasern Bruchdehnungen bis ca. 3 % auf.
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Einen weiteren Überblick geben Dicker et al. [DDB+14], wobei neben den Komponenten
(Naturfasern und Biopolymere) auch verschiedene Merkmale der Verbunde wie Alterungs-
beständigkeit, biologische Abbaubarkeit, toxikologische Beurteilung und Emissionsbilanz
sowie energetische und wirtschaftliche Aspekte betrachtet werden. Bei den Naturfasern
pflanzlichen Ursprungs erfolgt bei dem Vergleich verschiedener Merkmale (physikalische
Eigenschaften, chemische Zusammensetzung sowie wirtschaftliche Aspekte) eine weitere
Unterteilung in vier Faserarten: Frucht (z. B. Kokos), Bast (z. B. Flachs), Blatt (z. B.
Sisal) und Gras (z. B. Bambus). Darüber hinaus sind Ashby-Diagramme, u. a. mechanische
Kennwerte (Elastizitätsmoduln und Zugfestigkeiten) über der Dichte bzw. den Kosten
zum Vergleich und zur grafischen Auswahl der Materialien dargestellt.
Aufgrund der Verwendung biologisch abbaubarer Materialien weisen biogene Verbunde
eine geringere Lebensdauer als synthetische Verbundwerkstoffe auf. Sind diese zusätzlichen
Umwelteinflüssen, z. B. erhöhter Feuchtigkeit, ausgesetzt, erfolgt die Degradation infolge
des Wachstums von Pilzen und Bakterien, resultierend in reduzierten Festigkeits- und
Steifigkeitseigenschaften. Neben den Naturfasern, die bereits aufgrund ihres Ursprung
natürlich abbaubar sind, sind auch biologisch abbaubare Kunststoffe verfügbar, wobei
der Nutzungszeitraum und die physikalischen Eigenschaften zwei Kriterien bei der Kom-
ponentenauswahl darstellen. Beispielsweise werden reine Polylactide innerhalb von zwei
Jahren in die Bestandteile Kohlenstoffdioxid, Wasser und Methan abgebaut, wohingegen
erdölbasierte Matrixsysteme mehrere Jahrhunderte benötigen.
Die Substitution von synthetischen Fasern durch Naturfasern spiegelt sich auch in der
toxikologischen Beurteilung wieder. Bezogen auf den gesamten Lebenszyklus resultieren
bei der Verwendung von Chinaschilf als Verstärkungsfasern Reduktionen der Giftstoffe
um 43 %, karzinogener Substanzen um 63 % und Schwermetallbestandteile um 71 % im
Vergleich zu Glasfasern. Im energetischen Bereich wird die graue Energie bilanziert, wobei
nur die Energie für die Herstellung der Verbundkomponenten berücksichtigt wird. Die
Produktionsenergie ist bei synthetischen Faser um den Faktor 10 größer als bei Naturfasern.
Liang et al. [LGG15] führen (quasistatische) Untersuchungen an Verbunden durch, wel-
che jeweils aus Flachsfasern und E-Glasfasern mit einem Epoxidharz kombiniert sind.
Schwerpunkte sind die Ermittlung der mechanischen Eigenschaften von uni- und multidirek-
tionalen Verbunden bei Zug-, Druck- und ebener Schubbelastung sowie die Beschreibung der
dabei auftretenden Versagensfälle. Bei annähernd gleichen Faservolumenanteilen (ϕ≈ 43 %)
weisen die glasfaserverstärkten Verbunde größere Steifigkeits- und Festigkeitseigenschaf-
ten als Verbunde mit Flachs auf. Mehrschichtverbunde, bei denen die Fasern parallel
zur Belastungsrichtung orientiert sind, weisen bei Druckbeanspruchung etwa 50 % der
Zugfestigkeitskennwerte auf. Als Gründe werden die geringeren Druckeigenschaften der
Fasern und ein knickstabähnliches Verhalten, bedingt durch die nicht vollständige parallele
Faseranordnung im Verbund (wellenförmig), genannt.
Des Weiteren wird anhand von unidirektionalen Flachsfaser-Epoxidharz-Verbunden fest-
gestellt, dass die bei einer Einzelfaser auftretenden Eigenschaftsstreuungen sich auf den
Verbund weniger stark auswirken, weil durch die Vielzahl an Einzelfasern eine Mittelung
(Homogenisierung) der Eigenschaften stattfindet. Die Bruchflächenanalyse zeigt bei Belas-
tungen parallel zu den Flachsfasern Faserbrüche mit Auszügen aus der Matrix. An den
Glasfasern haften mehr Matrixpartikel als an den Naturfasern, woraus auf eine schlechte
Adhäsionseigenschaften zwischen den Flachsfasern und der Matrix geschlossen werden
kann. Darüber hinaus sind Flachsfaserteilchen, teilweise getrennt von den Fasern, in den
fraktografischen Aufnahmen zu erkennen. Das Vorkommen von Flachsresten sowohl an
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der Matrix als auch an den Faseroberflächen lässt vermuten, dass die Adhäsion zwischen
Primär- und Sekundärzellwand der Faser vergleichbar mit den Grenzflächeneigenschaf-
ten von primärer Faserzellwand und Epoxidmatrix ist. Somit kann die Separation der
Zellwände als ein weiterer Versagensmechanismus (siehe Kapitel 3.3.6) betrachtet werden.

Baley et al. [BKL+16] stellen bei einer Studie fest, dass sich der niedrigere Schubmodul
von Flachsfasern im Vergleich zu Glasfasern vorteilhaft auf den Verbund auswirkt, da
die Kennwerte der Einzelkomponenten ähnlicher sind. Die Schubspannungs-Dehnungs-
Kurven zeigen bei glasfaserverstärkten Epoxidharzen ein nichtlineares Materialverhalten,
wohingegen Verbunde mit Flachsfaserverstärkung sich spröde verhalten. Experimentelle
und analytische Ergebnisse des (ebenen) Schubmoduls für verschiedene Faservolumenan-
teile ergeben, dass die Erhöhung der Faseranzahl bei Flachs einen linearen Anstieg des
Schubmoduls bewirkt und bei Glasfasern ein exponentieller Anstieg zu verzeichnen ist.
Der Schubmodul der Matrix beträgt dabei Gm = 1100 MPa. Bei gleichen Verzerrungen
(Gleitungen) und Faservolumenanteilen weisen Verbunde mit Glasfasern bessere Schubei-
genschaften (Steifigkeiten und Festigkeiten) als Flachsfaser-Epoxidharz-Verbunde auf. Die
fraktografische Analyse zeigt ebenfalls Ablösegebiete zwischen den einzelnen Zellwänden
der Flachsfasern.

Die Eigenschaften von Flachsfaser-Epoxidharz-Verbundwerkstoffen infolge von quasistati-
schen und Ermüdungsbelastungen werden von Bensadoun et al. [BVL+16] für verschiedene
Faserformen (u. a. Zwirn, Gewebe und Wirrfasermatte) gegenübergestellt. Bis auf die Ver-
bunde mit Wirrfasermatte, bei denen der Faservolumenanteil ϕ= 30 % beträgt, enthalten
die Verbunde der restlichen Faserkonfigurationen 40 % Fasern (ϕ= 40 %). Die größten
Steifigkeits- und Festigkeitswerte weisen dabei unidirektionale Schichten, gefolgt von Kreuz-
verbunden, Verbunden mit Gewebeverstärkung bis hin zu Wirrfaserverbunden auf. Die
Faserarchitektur hat dabei einen Einfluss auf die Ermüdungseigenschaften, wobei aus
größeren (statischen) Festigkeiten und Steifigkeiten ein besseres Ermüdungsverhalten (z. B.
hinsichtlich einer verzögerten Schadensinitiierung und einer größeren Anzahl ertragbarer
Lastwechselzahlen) resultiert.

Weitere Einflussfaktoren sind die Schichtreihenfolge (des Mehrschichtverbundes), die
Webarten der Fasergewebe (z. B. Köper oder Leinen) und die Faserorientierung. In den
Spannungs-Dehnungs-Diagrammen ergeben sich Hystereseschleifen, die mit steigenden
Lastwechselzahlen in Richtung größerer Dehnungen tendieren. Dieses Verhalten weist auf
sich akkumulierende, plastische Verformungen hin. Bei der Analyse versagter Probekörper
treten verschiedene Versagensmechanismen wie Versagen der Faser und/oder Matrix sowie
Faserauszüge und Ablösungen zwischen den Komponenten auf.

Meredith et al. [MEC+12] weisen in Untersuchungen zum Energieaufnahmevermögen von
faserverstärkten Kunststoffen (Flachs-, Jute-, Hanf- und Kohlenstofffasern als Verstärkungs-
komponente) nach, dass deren massenspezifische Energieabsorptionsraten im Vergleich
zu metallischen Strukturen prinzipiell größer sind. Die Energieumwandlung erfolgt auf-
grund der jeweiligen Grundkonstitution bei Verbunden und Metallen auf unterschiedliche
Arten, die mit den Versagensmechanismen gekoppelt sind. Während bei faserverstärkten
Kunststoffen Mechanismen wie Faser- bzw. Matrixbruch sowie Ablösungserscheinungen
der Komponenten und Delaminationen auftreten, erfolgt die Umwandlung bei Metallen
über plastische Verformungen. Einen entscheidenden Einfluss auf das Aufnahmevermögen
hat der relative Faservolumenanteil, wobei bei höheren Anteilen mehr Energie dissipiert
wird. Bei vergleichbaren Fasermengen absorbieren kohlenstoffaserverstärkte Verbunde
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(55,7 J/g) gefolgt von Verbunden mit Fasern aus Hanf (54,3 J/g), Flachs (48,5 J/g) und
Jute (32,6 J/g) die meiste (massebezogene) Energie.

3.3.5 Bruchmechanische Eigenschaften

Untersuchungen zu dem Rissverhalten und den Risszähigkeiten von Flachsfaser-Epoxidharz-
Verbunden (mit Faservolumenanteilen ϕ> 30 %) durch Liu und Hughes [LH08] zeigen,
dass die Orientierung der verwendeten Flachsfasergewebe – insbesondere das Verhält-
nis der Fasern in Kett- und Schussrichtung – einen signifikanten Einfluss bezüglich der
Risspfadentwicklung aufweist. Neben den Gewebekonstruktionen (Webarten) sind die
Faserfeinheit (in Schussrichtung) und die Schichtreihenfolge weitere Parameter. Die me-
chanischen Eigenschaften werden mit Hilfe von jeweils fünf Zugproben mit Belastungen
parallel bzw. senkrecht zur Kettrichtung bei einer Prüfgeschwindigkeit v= 10 mm/min
ermittelt. Die Variation der Schussfadenfeinheit hat die Auswirkung, dass feinere Fasern
(geringere Fasermengen) kleinere Steifigkeits- und Festigkeitswerte in die Schussrichtung
bedingen. Bei Belastung in Kettrichtung nehmen die Werte mit geringerer Fasermenge zu.
Als ein Grund dafür wird der Durchmesser des Schussfadens genannt. Eine Verringerung
des Durchmessers führt zu geringeren Welligkeiten (Ondulationen) im Gewebe, wodurch
die Eigenschaften (in Kettrichtung) besser ausgenutzt werden.

Die Verwendung unterschiedlicher Webarten (Verhältnisse der Kett- und Schussfäden)
hat keinen signifikanten Einfuss auf die Eigenschaften in Schussrichtung. In Kettrichtung
treten Erhöhungen der Steifigkeiten und Festigkeiten auf, wenn die Kettfäden weniger
Richtungsänderungen erfahren und somit das Gewebe infolgedessen eine geringere Anzahl
an Ondulationen aufweist. Wird die Schichtreihenfolge variiert, sind die Zugeigenschaften
(in Kettrichtung und vergleichbaren Faseranteilen) bei unidirektionalen Mehrschichtverbun-
den ([03]) etwas größer als bei Kreuzverbunden mit der Schichtreihenfolge [0/90/0]. Mit der
Kreuzverbundanordnung werden Eigenschaftsunterschiede in den jeweiligen Richtungen
(Anisotropiegrad) reduziert, wobei die Verbundeigenschaften nur geringfügig kleiner als
die Werte der vollständig unidirektionalen Ausrichtung sind.

Für die bruchmechanischen Untersuchungen dienen Kompaktzugproben (Kurzbezeichnung
CT-Probe, engl. compact tension specimen), bei denen der Initialriss jeweils über mehrere
Schritte erzeugt wird. Nach dem Fertigen einer Kerbe mit Hilfe eines Diamantsägeblattes
wird der Anfangsriss am Kerbgrund sägend mit einer Rasierklinge erzeugt (analog den
Beschreibungen nach Anderson [And95]). Die Fertigung der Proben erfolgt so, dass nach
Einbringen der Kerbe (bzw. des Initialrisses) eine parallele oder senkrechte Ausrichtung
(der Kerbe bzw. des Risses) zur Kettrichtung der äußersten Laminatschicht vorliegt.
Die Prüfgeschwindigkeit beträgt 0,4 mm/min. Befindet sich der Initialriss parallel zum
Kettfaden, wächst der Riss semistabil und im Kraft-Verschiebungs-Diagramm treten
zackenförmige Verläufe auf. Bei senkrechter Rissausgangskonfiguration (parallel zum
Schussfaden) findet eine stabile Rissausbreitung statt. Das Materialverhalten ist dabei
nichtlinear, wobei als Grund u. a. die Ausrichtung (Glättung) der (ondulierten) Schussfäden
während der Lasteinwirkung genannt wird. Bei parallel zur Kettrichtung orientierten
Anfangsrissen sind die Abweichungen von dem linearen Verhalten, auch bedingt durch
weniger ausgeprägte Ondulationen der Kettfasern, geringer.

Der Geometriefaktor wird in erster Näherung mit Hilfe der durch Srawley [Sra76] aufge-
stellten Gleichung (3.20) berechnet, welche für homogene und isotrope Kompaktzugproben
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konzipiert ist. Die Geometrie und Abmessungen der CT-Probe sind in Abbilung 3.12
dargestellt. Das Risslängenverhältnis a/w wird als Verhältnis der Risslänge a zur spezifi-
schen Probenbreite w definiert. Die Ermittlung über den Spannungsintensitätsfaktor KI,
die Probendicke t, die spezifische Probenbreite w und die Kraft F ist ebenso möglich,
Gleichung (3.21).

YI =
(
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w

)(
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w

) 3
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[
0, 886 + 4, 64 a
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(
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(
a
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]

(3.20)

YI = KI · t
√
w

F
(3.21)

Infolge der eingebrachten Gewebe (Fasern) resultieren größere Risszähigkeiten, sowohl in
Kett- als auch in Schussrichtung, im Vergleich zu den unverstärkten Polymeren. Bei der
Variation der Faserfeinheit in Schussrichtung (geringere Fasermengen) ist die Tendenz
höherer Risszähigkeiten bei schussparalleler Initialrisslage und kleinerer Werte bei kettpar-
alleler Initialrissausrichtung zu verzeichnen. Bei ähnlichen Faserfeinheiten in Kett- und
Schussrichtung wächst der Riss parallel zum eingebrachten Initialriss, wohingegen mit ab-
nehmenden Schussfasermengen die Rissausbreitung senkrecht zum Anfangsriss erfolgt. Als
Grund werden die unterschiedlichen Zugfestigkeiten in Kett- und Schussrichtung vermutet.
Die Webart hat keinen signifikanten Einfluss auf die Risszähigkeiten, wodurch propagiert
wird, dass die Eigenschaften der Verstärkungsfaser für das Bruchgeschehen dominierend
sind und weniger die Mikrostruktur des Gewebes.

F
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2w

0,
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Abbildung 3.12: Geometrie und Abmessungen der CT-Probe nach ASTM E 399 [AST12]

Die Schichtreihenfolge sowie die Ausrichtung des Initialrisses haben ebenfalls einen Einfluss
auf die Risszähigkeitswerte. Wird die Schichtreihenfolge variiert, sind die Risszähigkeiten bei
Kreuzverbunden mit der Schichtreihenfolge [0/90/0] kleiner (5 %) als bei unidirektionalen
Mehrschichtverbunden ([03]) (in Schussrichtung und vergleichbaren Faseranteilen) und 40 %
größer als bei Verbunden ([03]) in Kettrichtung. Mit der Kreuzverbundanordnung werden
Eigenschaftsunterschiede (Anisotropiegrad) in den jeweiligen Richtungen reduziert, wobei
die Risszähigkeiten (K ≈ 6 MPa

√
m) nur geringfügig kleiner als die Werte bei vollständig

unidirektionaler Ausrichtung sind.

In einer Studie von Khan et al. [KYI17] wird das Rissverhalten von Epoxidharzen mit
Verstärkungsfasern aus Bambus untersucht. Neben der Eigenschaftsmodifikation durch
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eine Vorbehandlung der Fasern (mit Natriumhydroxid) erfolgen eine Variation hinsichtlich
der Faserlängen sowie die Angabe der experimentell (Gleichung (3.20)) und numerisch
ermittelten Risszähigkeiten. Die Bambusfasern für den Einzelfaserzugversuch werden mit
Natriumhydroxid unterschiedlicher Konzentrationen (2, 6 und 10 %) behandelt. Aufnahmen
mittels Rasterelektronenmikroskop zeigen, dass die Natriumhydroxidkonzentration von
2 % unzureichend für eine verbesserte Faseroberfläche ist. Bei 6 % resultiert eine rauere
Oberfläche, die eine Erhöhung der Adhäsionseigenschaften zwischen Faser und Matrix
bewirkt. Ursache dafür ist, dass sich an der Faseroberfläche befindliche Wachsschichten
durch die Behandlung entfernt werden und somit eine bessere Tränkung der Faser mit
dem polymeren Matrixsystem ermöglicht wird. Bei Konzentration von 10 % kommt es zu
Schädigungen der Faser und folglich zu Festigkeitsreduktionen. Abbildung 3.13 zeigt die
ermittelten Zugfestigkeiten der Einzelfasern σf in Abhängigkeit von dem Faserdurchmes-
ser df über der Natriumhydroxidkonzentration. Die größten Festigkeiten treten bei der
Faservorbehandlung mit 6 % Natriumhydroxidlösung auf. Des Weiteren ist ein Einfluss
des Faserdurchmessers zu erkennen. Dabei nehmen tendenziell mit kleiner werdenden
Durchmessern die Festigkeiten zu.

0 2 6 10
0

50

100

150

200

250

300

350

400

Natriumhydroxidkonzentration /%

Zu
ge

fe
st

ig
ke

it
σ

f
/

M
Pa

Faserdurchmesser df = 0.39 mm
Faserdurchmesser df = 0.30 mm
Faserdurchmesser df = 0.18 mm
Faserdurchmesser df = 0.17 mm

Abbildung 3.13: Zugfestigkeiten der Einzelfasern σf in Abhängigkeit von dem
Faserdurchmesser df über der Natriumhydroxidkonzentration [KYI17]

Für die bruchmechanischen Untersuchungen werden die Fasern mit einer Natriumhydroxid-
lösung von 6 % vorbehandelt. Die verwendeten Faserlängen betragen 10, 20 und 25 mm,
wobei die Fasern im Verbund wirr orientiert sind. Es werden jeweils drei CT-Proben
mittels Wasserstrahlschneidmaschine pro Faserlänge gefertigt. Die Prüfgeschwindigkeit
beträgt 5 mm/min. Es treten verschiedene Versagensmechanismen auf und die Matrix
bricht spröde. In Abhängigkeit von der Faserlage zur Belastungsrichtung treten neben
Matrixrissen auch Faserbrüche, Faserauszüge sowie Ablösungserscheinungen innerhalb
der Faser oder zwischen den Verbundkomponenten auf. Darüber hinaus beeinflusst die
Einbringung von Faserverstärkungen das Rissverhalten, da der Riss, wenn er auf eine Faser
trifft, teilweise blockiert bzw. abgelenkt wird. Die eingebrachten Fasern bilden somit eine
Rissbarriere innerhalb der Matrix, wodurch Geschwindigkeit und Ausbreitungsrichtung
des Risses beeinflusst werden.
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In Tabelle 3.5 sind die arithmetischen Mittel der Risszähigkeiten KIc und deren Standard-
abweichungen für die unterschiedlichen Faserlängen angegeben. Die Kompaktzugproben
ertragen mit steigenden Faserlängen größere Lasten. Zur Berechnung der Risszähigkeiten
dient die nach der Risszähigkeit KI umgestellte Gleichung (3.21). Der Geometriefaktor
wird mit Hilfe der Gleichung (3.20) ermittelt.

Tabelle 3.5: Risszähigkeiten von Bambus-Epoxidharz-Verbunden mit unterschiedlichen
Faserlängen [KYI17]

Faserlänge Risszähigkeit
lf /mm KIc /MPa

√
m

10 1,61 ± 0,5
20 1,79 ± 0,5
25 2,67 ± 0,3

Des Weiteren werden die experimentell ermittelten Ergebnisse mit numerischen Simu-
lationen verglichen. Die Spannungsintensitätsfaktoren werden dabei mittels J-Integral
(Kapitel 2.1.5) berechnet. Tabelle 3.6 beinhaltet die Ergebnisse für zwei verschiedene
Faserlängen lf und Maximalzugkräfte Fmax.

Tabelle 3.6: Experimentelle und numerische Risszähigkeiten von
Bambus-Epoxidharz-Verbunden mit unterschiedlichen Faserlängen [KYI17]

Faser- Maximal- Risszähigkeit Risszähigkeit
länge zugkraft Experiment Simulation
lf /mm Fmax /N KIc /MPa

√
m KIc /MPa

√
m

10 260 1,61 ± 0,50 1,69 ± 0,05
25 410 2,67 ± 0,30 2,64 ± 0,05

Benaimeche et al. [BCM+18] untersuchen die (mechanischen und bruchmechanischen)
Eigenschaften sowie das Bruchverhalten des Verbundwerkstoffes Mörtel, dem zusätzlich
Fasern aus der Dattelpalme beigemischt sind. Der Mörtel ist aus Zement, Wasser, Sand und
einem Fließmittel zusammengesetzt. Es werden Dreipunktbiegeversuche an ungekerbten
und gekerbten Proben durchgeführt. Mit steigendem Faservolumenanteil werden sowohl
die Biegeeigenschaften als auch die Risszähigkeiten verringert. Ein Grund dafür sind
die geringeren mechanischen Eigenschaften der Fasern im Vergleich zum Mörtel und
die schwachen Bindungen an der Faser-Matrix-Grenzfläche. Das Einbringen von Fasern
führt allerdings zu einem duktileren Verhalten und verzögert das Versagen des Verbunds.
In Tabelle 3.7 sind die arithmetischen Mittel der Risszähigkeiten (ebene Mixed-Mode-
Beanspruchung) für Mörtel (unverstärkt und verstärkt) und deren Standardabweichungen
angegeben.

Judt et al. [JZR+18] validieren ein postuliertes Rissausbreitungskriterium für Materialien
mit orthotropen Eigenschaften (siehe Kapitel 2.2.2) an kurzfaserverstärkten Kunststoffen
(Polypropylen mit Glas- bzw. Cellulosefasern), welche im Spritzgussverfahren hergestellt
werden. Tabelle 3.8 beinhaltet Zusammensetzung und mechanische Eigenschaften der
Verbunde. Werden Cellulosefasern verwendet, sind die Steifigkeits- und Festigkeitskennwerte
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(bei ähnlichen Faservolumenanteilen) geringer als bei glasfaserverstärkten Kunststoffen,
die Bruchdehnungen sind allerdings etwa eine Größenordnung größer.

Tabelle 3.7: Risszähigkeiten von Mörtel mit Dattelpalmenfasern unterschiedlicher Menge
[BCM+18]

Faservolumen- Risszähigkeit
anteil ϕ/% KI, II, c /MPa

√
m

0 0,67 ± 0,11
2 0,60 ± 0,07
4 0,56 ± 0,10
6 0,38 ± 0,06
8 0,29 ± 0,09

10 0,22 ± 0,05

Tabelle 3.8: Zusammensetzung und mechanische Eigenschaften der Verbunde [ZMF+17]

Faser Matrix Faservolu- Zugfestig- Elastizitäts- Bruch-
menanteil keit modul dehnung

ϕ/% Rv /MPa E /MPa ε /%
Cellulose Polypropylen 13 48 3153 12,4
Cellulose Polypropylen 21 57 4025 10,5
Glas Polypropylen 13 58 6321 1,7

Innerhalb der Werkzeugform ergibt sich ein quadratischer Verlauf der Fließfront, wobei
sich die Fasern während des Herstellprozesses parallel zu dieser ausrichten. Die Kompakt-
zugproben werden mit drei verschiedenen Winkeln (0◦, 45◦ oder 90◦ bezüglich der Fasern
in der Probenmitte) aus der Platte gefräst. Bei allen Winkelkonstellationen sind die Fasern
im Bereich der Kerbe senkrecht zur Fließrichtung orientiert. Die Kerbe wird mit Hilfe eines
Kreissägeblattes gefertigt und anschließend wird der Initialriss (der Länge 1,5 mm) mit
einer Rasierklinge (Materialstärke 0,09 mm) am Kerbgrund erzeugt. Die Prüfgeschwindig-
keit beträgt 10 mm/min. Für die bruchmechanischen Bewertung wird das J-Integral (siehe
Kapitel 2.1.5) genutzt. Das Integral beschreibt die Arbeit, welche notwendig ist, damit ein
Riss initiiert oder sich ausbreitet und diese wird zur Charakterisierung der Risszähigkeit
von Materialien mit elastisch-plastischem Verhalten, wie es z. B. bei Thermoplasten auftritt,
angewendet.

In Tabelle 3.9 sind die arithmetischen Mittelwerte der kritischen Werte des J-Integrals JIc
und deren Standardabweichungen für die unterschiedlichen Verbunde und Winkel (zwischen
Kerbe und Fließrichtung) zusammengefasst. Bei allen Proben nehmen die J-Integralwerte
mit steigendem Winkel γ (Kerborientierung) ab, wobei die Werte bei der Verwendung von
Cellulosefasern rapider sinken. Eine parallele Ausrichtung der Kerbe zur Fließrichtung
resultiert in den größten Risszähigkeiten, wohingegen bei senkrechter Anordnung die
geringsten Ergebnisse auftreten. Die Verbunde mit Celluloseverstärkung weisen größere
Werte als glasfaserverstärkte Verbundwerkstoffe auf. Eine Erhöhung des Faservolumen-
anteils ϕ führt zu größeren Zahlenwerten. Die Werte des Integrals sind demzufolge von
der Faserart und -menge sowie der Kerborientierung abhängig. Für das Rissausbreitungs-
kriterium wird der Quotient der Maximal- und Minimalwerte, also das Verhältnis der
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senkrechten (90◦) und parallelen (0◦) Ausrichtung der Kerbe zur Fließrichtung bestimmt.
Die bruchmechanischen Größen werden bei senkrechter bzw. paralleler Kerborientierung
mit PD (engl. predominant direction) bzw. TD (engl. transverse direction) indiziert, siehe
Kapitel 2.2.2. Dabei betragen die Verhältnisse JTD

Ic /JPD
Ic = 2,14 bzw. 2,21 bei Cellulosefaser-

Polypropylen-Verbunden (Faservolumenanteil ϕ= 13 bzw. 21 %) und JTD
Ic /JPD

Ic = 1,31 bei
Glasfaser-Polypropylen-Verbunden (Faservolumenanteil ϕ= 13 %).
Sind die Fasern senkrecht zur Belastungsrichtung angeordnet, findet das Risswachstum
bevorzugt entlang der Faserrichtung (PD) infolge von Versagenserscheinungen zwischen
Faser und Matrix statt. Bei faserparalleler Belastung erfolgt das Risswachstum ebenfalls
senkrecht zur Belastungsrichtung (TD) und es treten dabei Faserbrüche und -auszüge als
Versagensursachen auf. Mit Hilfe des Rissausbreitungskriteriums sind Rissabknickwinkel
ermittelbar. Abhängig von dem Verhältnis der Kennwerte in senkrechter und paralleler
Richtung (Anisotropiegrad) sind zudem Rissbifurkationen möglich.

Tabelle 3.9: Kritische Werte des J-Integrals verschiedener Verbunde [JZR+18]

Faser Matrix Faservolu- Kerb- Kritischer Wert
menanteil orientierung des J-Integrals

ϕ/% γ / ◦ JIc /N/mm

Cellulose Polypropylen 13
0 35,5 ± 3,7

45 21,1 ± 1,6
90 16,6 ± 1,3

Cellulose Polypropylen 21
0 39,4 ± 4,5

45 23,1 ± 0,3
90 17,8 ± 0,9

Glas Polypropylen 13
0 12,5 ± 1,0

45 9,6 ± 0,8
90 9,5 ± 1,1

In Tabelle 3.10 sind die Ergebnisse aus Experiment und Simulation gegenübergestellt.
Allgemein gibt es eine gute Übereinstimmung der numerisch bzw. analytisch ermittelten
Rissabknickwinkel und Risspfadverläufe mit den experimentellen Ergebnissen.

Tabelle 3.10: Experimentell und numerisch ermittelte Rissabknickwinkel verschiedener
Verbunde [JZR+18]

Faser Matrix Faservolu- Kerborien- Rissabknickwinkel
menanteil tierung Experiment Simulation

ϕ/% γ / ◦ ϕc /
◦ ϕc /

◦

Cellulose Polypropylen 21
0 6 0

45 25 22,7
90 32 38,9

Glas Polypropylen 13
0 5 0

45 18 13,2
90 4 0

Über die statischen Belastungen hinaus existieren eine Vielzahl von Studien über das
Ermüdungsrissverhalten faserverstärkter Kunststoffe. Bei [TOY+16] wird anisotropes
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Material berücksichtigt. Tanaka et al. [TOY+16] untersuchen den Einfluss von kurzfaser-
verstärkten Kunststoffen (Polyphenylensulfid mit Kohlenstofffasern) auf das Risswachstum
bei zyklischen Belastungen. Die Fasermassenanteil Ψ beträgt 30 % und die R-Verhältnisse
sind mit R= 0, 1 und 0, 5 gewählt. Als Probekörper werden Dreipunktbiegeproben, die aus
drei Schichten aufgebaut sind, verwendet. Die Herstellung erfolgt durch Spritzgießen. Die
Faserausrichtung in der unteren und oberen Deckschicht ist nahezu parallel zu Fließrichtung
in der Werkzeugform, wohingegen die Fasern im Kern senkrecht dazu orientiert sind. Der
Faserwinkel wird von 0◦ bis 90◦ mit einer Schrittweite von 22,5◦ variiert und ist als Winkel
zwischen Faserrichtung in der Deckschicht und Lastrichtung definiert. Bei den Winkeln 0◦

und 90◦ wächst der Riss annähernd senkrecht zur Belastungsrichtung. Für andere Winkel
knickt der Riss (um einen Winkel ϕ) ab und es tritt eine Mixed-Mode-Beanspruchung
(Mode I und II) auf.

Die Risswachstumskurven sind u. a. in allgemeiner Form einer modifizierten Rissgeschwin-
digkeit dc/dN über dem zyklischen Spannungsintensitätsfaktor ∆KI dargestellt. Die
modifizierte Rissgeschwindigkeit dc/dN ist dabei über den Abknickwinkel ϕ mit der Riss-
geschwindigkeit da/dN verknüpft (dc/dN = (da/dN) / cosϕ). Bei gleicher Mikrostruktur
der Probekörper nimmt die Rissgeschwindigkeit dc/dN mit steigendem R-Verhältnis R
zu. Allgemein wirkt sich die Faserverstärkung positiv auf die Lebensdauer aus. Alle Ver-
bunde weisen geringere Rissgeschwindigkeiten dc/dN im Vergleich zum unverstärkten
Polyphenylensulfid auf. Fasern, die senkrecht zur Riss orientiert sind, stellen den größten
Risswiderstand dar und verzögern das Risswachstum stärker als andere Faserwinkel.

Eine weitere Darstellung der Rissfortschrittskurven erfolgt in modifizierter Form über
dem Quotienten aus zyklischer Energiefreisetzungsrate ∆G und faserwinkelabhängigem
Elastizitätsmodul E. Die Energiefreisetzungsraten der Moden I und II werden mit Hilfe der
modifizierten Rissschließungsintegralmethode (siehe Kapitel 5.2.1) berechnet. Die Gesamt-
energiefreisetzungsrate G setzt sich bei zyklischer Belastung analog zum statischen Fall aus
den Anteilen der einzelnen Moden zusammen. Für ebene Mixed-Mode-Beanspruchung gilt
∆G= ∆GI + ∆GII. Durch die modifizierte Darstellung sind die Rissgeschwindigkeitskur-
ven für das R-Verhältnis R= 0,1 nahezu deckungsgleich. Bei R= 0,5 tritt diese Tendenz
ebenfalls auf, wobei die Streuung etwas größer ist.

3.3.6 Versagensmechanismen

Ausgehend von den beiden Verbundkomponenten und deren Interaktion können drei
prinzipielle Versagensmechanismen unterschieden werden:

V1 Versagen der Faser,

V2 Versagen der Matrix und

V3 Versagen der Faser-Matrix-Grenzfläche.

Werden einzelne Fasern durchtrennt, treten Faserbrüche auf. Ein Bruch innerhalb der
Matrix und/oder an der Grenzfläche der Komponenten wird als Zwischenfaserbruch
bezeichnet. Abbildung 3.14 zeigt diese Versagens- bzw. Bruchmechanismen, wobei zusätzlich
Besonderheiten der Faser dargestellt sind. Hinsichtlich der Faser ist ein Auszug bzw.
Bruch möglich. Ebenso können die Fasern als Überbrückung fungieren. Des Weiteren
kann es zu Ablösungen der Faser-Matrix-Grenzfläche (engl. debonding) und der Bildung
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von Matrixrissen kommen [And95, Sch07]. Weitere Versagensmechanismen sind u. a. das
knickstabähnliche Verhalten von Einzelschichten bei Druckbelastung und die Delamination,
die bei Mehrschichtverbunden auftreten kann und sich in einer flächigen Trennung der
einzelnen Schichten äußert [And95, Sch07].

Faserauszug
Faserüberbrückung
Ablösungsbereich

Faserbruch

Matrixriss

Abbildung 3.14: Versagensmechanismen in Faser-Kunststoff-Verbunden nach [And95]

Madsen et al. [MAL16] differenzieren bei den Untersuchungen an ausgerichteten Flachs-
fasern, die mit einem Thermoplast (PET) den Verbund bilden, entsprechend der drei
Versagensmechanismen in Analysen der Fasern und Matrix sowie deren Grenzfläche. Die
fraktografische Auswertung ergibt, dass insbesondere die Zellwandmikrostruktur als auch
die Morphologie der Faseroberfläche Einfluss auf die Verbundeigenschaften nehmen. So
zeigen Aufnahmen im Nanobereich Mikrorauigkeiten der Faseroberfläche in Form von
Rillen parallel zur Längsrichtung und hinausragenden Nanofibrillen, die eine Bedeutung
für die mechanische Interaktion zwischen Faser und Matrix haben. Das Versagen innerhalb
einzelner Fasern erfolgt quer zur Faserlängsrichtung, wobei es zusätzlich zu faserparallelen
Trennungen kommen kann. Rissinitierung und -wachstum in und durch Matrix verlaufen in
Abhängigkeit von der Faseranzahl und der äußerer Belastung in Form von konzentrischen
Kreisen, beginnend an den Fasern, bei denen zusätzliche Auszüge (engl. pull-outs) mit
einhergehenden Faserbrüchen auftreten. Abbildung 3.15 zeigt die schematische Darstellung
der mikrostrukturellen Charakteristik eines Fasergarns in einer umgebenden Matrix.

Abbildung 3.15: Schematische Darstellung der Mikrostruktur eines Fasergarns mit
umgebender Matrix [MAL16]
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Die unmittelbar an der Faser befindlichen konzentrischen Kreise weisen eine relativ glatte
Oberfläche auf. Anschließend ergeben sich wiederholende Muster, bei denen eine Vielzahl
radial verlaufende Linien zu größeren Linien zusammenlaufen. Dieses Muster ist vergleichbar
mit Nebenflüssen, die sich zu einem Hauptfluss vereinigen.

Für die Beschreibung des Verhaltens an der Faser-Matrix-Grenzfläche wird das Model von
Cook und Gordon [CG64] verwendet. Trifft ein sich in der Matrix ausbreitender Riss auf
eine Faser, wächst dieser entweder durch die Faser (Faserbruch) oder wird in die Richtung
der Faser umgelenkt, woraus eine Ablösung der Faser-Matrix-Grenzfläche resultiert. Quer
zur Faser verlaufende Risse werden als Indikator für starke Bindungen zwischen Faser
und Matrix angesehen, wohingegen die Initiierung von Rissen in Faserlängsrichtung auf
schwache Adhäsionseigenschaften der beiden Komponenten hindeutet [MAL16].

Weitere Untersuchungen an Faser-Kunststoff-Verbunden, bei denen diese Versagensmecha-
nismen ebenso vorzufinden sind, stammen u. a. von Liang et al. [LGG15], siehe Kapitel 3.3.4.
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4 Experimentelle Untersuchungen

4.1 Materialien und Proben

4.1.1 Komponenten

Als Naturfaser wird Flachs in Form von Garn verwendet. Garne sind als linienförmige textile
Gebilde, die sich aus textilen Fasern zusammensetzen, definiert [DIN88]. In Abbildung 4.1
ist eine Lichtmikroskopaufnahme des Flachsgarns (Nm 12, siehe Kapitel 3.2.2) dargestellt,
bei dem die Fasern miteinander verdrillt sind und einzelne Faserabschnitte herausstehen.
Das duroplastische Matrixsystem ist ein Epoxidharz, welches aus den beiden Komponenten
Harz und Härter hergestellt wird.

100 µm

Abbildung 4.1: Flachsgarn

4.1.2 Herstellung und Präparation

Die Fasern werden mit Hilfe einer Maschine (Abbildung 4.2) auf einen Metallrahmen
gewickelt, um diese unidirektional anzuordnen. Der Maschinenantrieb besteht aus zwei
Gewindestangen, die über einen Kettentrieb (mit in Stufen wechselbarer Übersetzung) ver-
bunden sind. Auf der Abtriebsseite ist der Rahmen fixiert und antriebsseitig wird der Faden
(mit Hilfe der Mutter) geführt, wobei eine Fadenbremse (zwischen Garnrolle und Antriebs-
seite) eine gleichmäßige Vorspannung gewährleisten soll. Durch die Anzahl der Wicklungen
und die Wahl der Übersetzung kann der Faservolumenanteil eingestellt werden. Bedingt
durch die Geometrie des Rahmens entstehen während des Wickelprozesses um die Stege
des Metallrahmen zwei Faserlagen (vgl. Abbildung 4.3 mit der Wicklungsanzahl m= 1).
Die Lagenstärke nimmt mit steigender Wicklungsanzahl m (Faservolumenanteil ϕ) zu.

Die Flachsgarne (mit einer Feinheit von Nm 12) wurden (bei der Herstellung) nassgespon-
nen, wodurch diese aufgrund des geringeren Pektinanteils bessere Adhäsionseigenschaften
im Vergleich zu deren trockengesponnenen Pendants aufweisen [BVL+16]. Das Mischung-
verhältnis von Harz (Spezifikation: Epoxidharz L) und Härter (EPH 161) beträgt 100 : 40
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Gewichtsanteile. Die beiden Matrixkomponenten werden mit Hilfe eines Rührwerks (fünf
Minuten) vermischt und das Gemisch wird anschließend in einem Vakuumexsikkator
(45 Minuten) entgast. Es werden keine Additive (z. B. Entlüfteradditiv oder Füllstoffe)
verwendet und es finden keine weiteren Vorbehandlungen statt.

Rahmen
Abtriebsseite

Kettentrieb

Antriebsseite

Flachsgarn

Gestell

Fadenbremse

Garnführung

Abbildung 4.2: Komponenten der Wickelmaschine

Die Herstellung des Verbunds erfolgt, indem der Rahmen (mit den Fasern) mittig in
eine (halboffene) Metallform (Abbildung 4.3) abgelegt wird. Die Grundplatte ist mit
zwei Seitenleisten (aus Stahl) zur Einstellung der Plattenstärke verschraubt und im
Bereich der Stirnseiten werden Elastomerstreifen aufgeklebt, die zur Fließbehinderung des
Harz-Härter-Gemisches dienen. Damit die Elastomerstreifen die Fasern nicht vollständig
in eine Ebene drücken, werden zwischen die beiden Faserlagen Abstandsleisten (aus
Polypropylen, Dicke t= 2 mm) eingebracht, um eine regelmäßigere Faserverteilung im
Verbund zu gewährleisten. Anschließend werden die Fasern mit dem Harz-Härter-Gemisch
getränkt und die Deckplatte aufgesetzt. Mit einer Presse wird die gewünschte Plattenstärke
eingestellt. Aus einer Platte (Abmessungen 480 mm x 470 mm x 10 mm) werden jeweils
15 Flachzugproben und 25 Kompaktzugproben (CT-Proben) mit einer Laserschneidanlage
gefertigt. Abbildung 4.4 zeigt den Probenentnahmeplan.

Deckplatte

Elastomerstreifen

Elastomerstreifen

Fasern/Faserlage

Fasern/Faserlage

Seitenleiste
Abstandsleiste

Grundplatte

Abbildung 4.3: Schematische Darstellung des Werkzeugs zur Plattenherstellung
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Abbildung 4.4: Probenentnahmeplan

Abbildung 4.5 zeigt die Geometrien und Abmessungen der Proben. In Abbildung 4.5a ist
die Flachzugprobe, die einen rechteckigen Querschnitt aufweist, dargestellt. Dabei wird der
Faserwinkel α, der bei den CT-Proben (Abbildung 4.5b) den Winkel zwischen Initialriss
und Faserorientierung angibt, von 0◦ (Initialriss parallel zu den Fasern) bis 90◦ (Initialriss
senkrecht zur Faserorientierung) mit einer Schrittweite von 22,5◦ variiert, woraus sich fünf
unterschiedliche Winkelkonstellationen ergeben.

Parallel dazu werden Platten mit fünf verschiedenen Faservolumenanteilen ϕ hergestellt,
welche lediglich über die Wicklungsanzahl m (1 bis 5) festgelegt werden. Die Übersetzung
des Kettentriebs ist dabei konstant. Um die Ergebnisse statistisch abzusichern, werden
jeweils zwei Platten (A und B) produziert. Theoretisch resultieren demzufolge für die Pro-
benserien A und B pro Faservolumenanteil und Faserorientierung insgesamt 6 Flachproben
und 10 CT-Proben.

Zur vollständigen Aushärtung der Probekörper erfolgt eine Temperung (10 Stunden bei
einer Temperatur von 60◦C und 50 % relativer Luftfeuchtigkeit). In einer Vorrichtung
wird der Initialriss (der Länge a= 13 mm) sägend in die CT-Proben eingebracht. Die
Anrisserzeugung erfolgt in drei Schritten, um möglichst wenig Eigenspannungen in die
Proben einzubringen, in Anlehnung an Cayard [And95]: Im Anschluss an die maschinell
gefertigte Probe (mit Kerbe) wird diese mit einer Metallklinge (Materialdicke 0,5 mm)
erweitert und abschließend mit einer Rasierklinge (Dicke 0,15 mm) bearbeitet.
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Abbildung 4.5: Geometrien und Abmessungen: a) Flachzugprobe, b) CT-Probe

4.2 Versuche

Aufbau

Abbildung 4.6 zeigt die Universalprüfmaschine (Zwick/Roell Z250, Maximalbelastung
250 kN) mit der Vorrichtung und einer CT-Probe. Die Vorrichtung besteht aus Gabelköpfen
mit Bolzen, über welche die Last auf die Probe übertragen wird.

Abbildung 4.6: Versuchsaufbau der Universalprüfmaschine

Durchführung

Alle Proben werden im Vorfeld der experimentellen Untersuchungen bei einer Temperatur
von 23◦C und 50 % relativer Luftfeuchtigkeit konditioniert [DIN08]. Die mechanischen
Kennwerte (u. a. Elastizitätsmoduln E) werden durch quasistatische Zugversuche (Prüf-
geschwindigkeit v= 2 mm/min) bei Raumtemperatur ermittelt [DIN12]. Es stehen pro
Probeplatte 5 CT-Proben pro Faservolumenanteil ϕ und Faserwinkel α zur Verfügung.
Proben mit fertigungsbedingten Fehlern (z. B. makroskopisch sichtbaren Lufteinschlüssen)
werden nicht geprüft. Bei den CT-Proben wird die Prüfgeschwindigkeit v= 10 mm/min
[ISO00] gewählt, um ein erhöhtes Sprödbruchverhalten zu erreichen und die Auswertung
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im Rahmen der linear-elastischen Bruchmechanik vornehmen zu können. Die Belastung
erfolgt senkrecht zum Initialriss, siehe Abbildung 4.7.

Auswertung

Aufgrund der anisotropen Eigenschaften der Flachsfasern und deren paralleler Ausrichtung
weist der Verbund ebenso ein richtungsabhängiges Verhalten auf und kann als unidirektio-
nale Schicht mit transversal isotropen Eigenschaften (vgl. Kapitel 3.3.3) betrachtet werden.
Als Grundlage zur numerischen Ermittlung bruchmechanischer Größen (u. a. Spannungsin-
tensitätsfaktoren und Energiefreisetzungsraten) werden die mechanischen Materialdaten
der Naturfaser-Kunststoff-Verbunde benötigt.

Die Versuchsauswertung erfolgt u. a. hinsichtlich der Maximalbelastungen und Risspfade
sowie des Versagensverhaltens und der -mechanismen. Für die Analyse der Rissverläufe
werden drei Winkel betrachtet:

α : Winkel zwischen Initialriss (in der x-z-Ebene) und Faserorientierung

β1: Winkel zwischen Initialriss (in der x-z-Ebene) und Risspfadbeginn

β : Winkel zwischen Initialriss (in der x-z-Ebene) und Risspfadende

In Abbildung 4.7 sind die Winkel anhand eines potenziellen Risspfads dargestellt. Die
Winkel β1 und β werden mit Hilfe des Bildbearbeitungs- und Bildverarbeitungsprogramms
ImageJ [Ima12] ermittelt.

β1

β
α

F

F

x

y

z

Abbildung 4.7: Schematische Darstellung eines potenziellen Risspfads in einer CT-Probe

Die Ermittlung der Faservolumenanteile wird mit Hilfe eines Lichtmikroskops mit integrier-
tem Kamerasystem (Keyence VHX 500, Kurzbezeichnung LM) durchgeführt. Die frakto-
grafische Analyse der Bruchflächen erfolgt mit einem Lichtmikroskop (Keyence VHX 500)
und einem Rasterelektronenmikroskop (JEOL JSM-6510, Kurzbezeichnung REM).

4.3 Ergebnisse

4.3.1 Faservolumenanteile

Bedingt durch eine verminderte Anzahl an Möglichkeiten zur Bestimmung des Faservolu-
menanteils bei Verbunden mit Naturfaserverstärkung (siehe Kapitel 3.2) sowie Streuungen
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des Faserdurchmessers über die Länge (vgl. Kapitel 3.2.2), werden die Faservolumenanteile
im Anschluss an den Herstellungsprozess im Verbund ermittelt. Abbildung 4.8 zeigt die Fa-
serverteilung in einer CT-Probe mit der Wicklungszahl m= 4. Für eine genaue Bestimmung
der Faservolumenanteile ist eine materialografische Probenpräparation notwendig. Nach der
Probenherstellung mittels Nasstrennschleifen (Trenngerät Struers Discotom-6, Vorschubge-
schwindigkeit 1 mm/s, Trennscheibe 10S25) erfolgt die Bilderfassung der Proben durch ein
Lichtmikroskop (Durchlicht) mit integriertem Kamerasystem (Keyence VHX 500),wobei
die Fasern als dunkle Bereiche und die umgebende Matrix als heller Bereich sichtbar sind,
siehe Abbildung 4.9a.

250 µm

Abbildung 4.8: Faserverteilung in einer CT-Probe mit der Wicklungszahl m = 4

Ein Grauwertbild ist eine Bildmatrix (mit m Zeilen und n Spalten), wobei jedes Pixel
bei einer Speichertiefe von 8 Bit Werte von 0 (entspricht schwarz) bis 255 (entspricht
weiß) annehmen kann. Grauwerte können mit Hilfe von Skalierungsfunktionen modifiziert
werden. Dabei kann ein Bild über Punktoperationen, die nur einen Bildpunkt (Pixel)
verwenden, oder Filteroperationen, die zusätzlich benachbarte Pixel bei der Berechnung
inkludieren, bearbeitet werden.

Im Folgenden wird sich auf Punktoperationen im Grauwertbild beschränkt, die unabhängig
von der Postion des Pixels sind und ausschließlich die Zahlenwerte verändern. In Glei-
chung (4.1) ist diese Berechnungsvorschrift angegeben, wobei der modifizierte Grauwert
eines Pixels g∗

mn mit Hilfe einer Funktion f , die den ursprünglichen Grauwert gmn als
Variable enthält, ermittelt wird [Jäh05].

g∗
mn = f(gmn) (4.1)

Eine Option sind lineare Korrekturen, bei denen über mehrere Bereiche oder den gesam-
ten Wertebereich eine lineare Funktion g∗

mn = a1 · gmn + a2 zur Umrechnung genutzt wird.
Die Anpassung der Funktion erfolgt über die Parameter a1 und a2. Ein Spezialfall bei
der Grauwertkorrektur ist die Binarisierung eines Bildes in zwei Bereiche (Vorder- und
Hintergrundbereich) mit Hilfe eines Schwellenwertes gth [Erh08].

In Gleichung (4.2) ist die Berechnungsvorschrift (Punktoperation) für die Ermittlung der
modifizierten Grauwerte des Binärbilds (bmn = f(gmn)) angegeben. Dabei bezeichnen bmn
den jeweiligen Pixelwert des Binärbilds, gmn den jeweiligen Pixelwert des Grauwertbilds
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und gth den Schwellenpixelwert (Grauwertschwelle). Sind die Pixelwerte unterhalb des
Schwellenpixelwertes gth, wird der Wert 0 zugewiesen, andernfalls erhalten Sie den Wert
255. Die Schwelle des Pixelwertes wird für jedes Grauwertbild mit Hilfe des Histogramms
gewählt.

bmn =
{

0 für gmn < gth

255 für gmn ≥ gth
(4.2)

Für die Ermittlung der Faservolumenanteile erfolgt die Binarisierung der Grauwertbilder
in Binärbilder (Wert eines Pixels 0 oder 255). In Abbildung 4.9 sind ein Grauwertbild und
ein Binärbild exemplarisch anhand einer CT-Probe mit einer Wicklungszahl m= 5 (der
Probenserie B) dargestellt. Die weißen Bereiche stellen die Matrix dar und im Binärbild sind
die Fasern schwarz abgebildet. Die Grauwertschwelle gth = 180 ist anhand des Histogramms
gewählt. Der Faservolumenanteil resultiert aus dem Verhältnis von der Summe aller
schwarzen Pixel zur gesamten Pixelanzahl. Bereiche um die Fasern, welche den Wert bmn = 0
zugewiesen bekommen, erhöhen den Faservolumenanteil nur unwesentlich und werden
toleriert. In Tabelle 4.1 sind die Faservolumenanteile ϕ für die Probenserien A und B in
Abhängigkeit von der Wicklungszahl m angegeben.

a) b)

Abbildung 4.9: Ermittlung des Faservolumenanteiles ϕ an einem Schliffbild einer CT-Probe
der Probenserie B mit der Wicklungszahl m = 5:
a) Grauwertbild, b) Binärbild

Tabelle 4.1: Faservolumenanteile ϕ der Probenserien A und B in Abhängigkeit von der
Wicklungszahl m

Proben- Wicklungs- Faservolumenanteil
serie zahl m ϕ1 / % ϕ2 / % ϕ3 / % ϕ4 / % ϕ5 / % ϕ / %

A

1 2,7 2,6 2,5 3 2,2 2,6
2 4,7 4,9 4,7 4,7 4,9 4,8
3 7,6 6,2 7,4 6,8 6,8 7
4 10 10 10,3 10,5 9,5 10
5 13.1 11.5 11,3 11,9 12 12

B

1 2,3 1,9 1,8 2,1 2,5 2,1
2 6,9 6,6 4,9 5,1 5,1 5,7
3 8,4 8,3 7,2 6,6 6,1 7,4
4 10,4 9,7 9,6 9,6 9,6 9,8
5 14,2 12,5 11,3 12,1 13,2 12,7
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Um eine statistische Sicherheit zu gewährleisten, ist jeder Wert das arithmetische Mittel aus
jeweils fünf Bildern. Die beiden Probenserien weisen bei gleicher Wicklungszahl m ähnliche
Faservolumenanteile ϕ auf. Die maximale Differenz beträgt 0, 9 % (m= 2) und die minimale
Abweichung ist 0, 2 % (m= 4). Gründe können u. a. Schwankungen des Garndurchmessers
über die Länge (variierende Faserdurchmesser) sowie Einflüsse bei dem Wickelprozess (Spiel
des Garns in der Führung bzw. Faserablage bei mehreren Wicklungen) sein. Eine lokal
höhere Anzahl an Fasern kann ebenso aus einer Verschiebung der Fasern während deren
Tränkung durch die Fließrichtung des Harz-Härter-Gemisches beim Herstellungsprozess
des Verbundes bedingt sein. Hinzu kommt, dass die Ermittlung der Anteile bei kleinen
Wicklungszahlen (m = 1 bzw. 2) aufgrund der geringeren Faseranzahl mit einer größeren
Streuung behaftet sein kann.

4.3.2 Zugelastizitätsmoduln der Flachproben

Ein Vergleich der Probenserien zeigt, dass die Probekörper der Serie B weniger Luftein-
schlüsse als die Proben der Serie A enthalten. Aufgrund ähnlicher Tendenzen, jedoch
geringerer Streuungen, werden hier lediglich die Ergebnisse der Probenserie B verwendet.
In Abbildung 4.10 sind die arithmetischen Mittel der Zugelastizitätsmoduln E sowie
deren Standardabweichungen, basierend auf den experimentellen Daten (Tabelle 4.2), in
Abhängigkeit von dem Faservolumenanteil ϕ über den Faserwinkel α aufgetragen.
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Abbildung 4.10: Zugelastizitätsmoduln E in Abhängigkeit von dem Faservolumenanteil ϕ
über den Faserwinkel α

Als allgemeine Entwicklung ist erkennbar, dass mit steigendem Faserwinkel α die Elastizi-
tätskennwerte E zunehmen. Ebenso ist tendenziell bei einem größeren Faservolumenanteil ϕ
eine Steigerung zu verzeichnen. Dies ist z. B. für die Winkel α= 67,5◦ und 90◦ ersichtlich.
Bei α= 90◦ sind Faser- und Lastrichtung identisch und es treten die größten Werte auf.
Befinden sich die Fasern senkrecht zur Belastungsrichtung bzw. ein wenig dazu versetzt
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(α= 0◦ bzw. 22,5◦), sind die Werte annähernd gleich groß. Es ist jedoch bei der Auswertung
zu berücksichtigen, dass die geometrischen Abmessungen der Flachproben – insbesondere
bezüglich der Länge – von der Prüfnorm [DIN12] abweichen. Grund dafür ist, dass aus
einer Probeplatte sowohl Flach- als auch Bruchmechanikproben herausgeschnitten werden.

Tabelle 4.2: Zugelastizitätsmoduln E in Abhängigkeit von dem Faservolumenanteil ϕ und dem
Faserwinkel α

Faservol- Faser- Zugelastizitätsmoduln Standard-
umenan- winkel abweich-
teil ϕ / % α / ◦ E1 / MPa E2 / MPa E3 / MPa E / MPa ung s / MPa

2,1

0 2580 2550 2440 2523 74
22,5 2510 2370 2480 2453 74

45 2340 2370 2350 2353 15
67,5 2310 2310 2300 2307 6

90 2360 2320 2310 2330 26

5,7

0 2650 2500 2630 2593 81
22,5 2540 2500 2410 2483 67

45 2370 2360 2370 2367 6
67,5 2300 2310 2340 2317 21

90 2310 2300 2320 2310 10

7,4

0 2840 2810 2940 2863 68
22,5 2430 2600 2610 2547 101

45 2200 2220 2270 2230 36
67,5 2190 2180 2140 2170 26

90 2290 2260 2160 2237 68

9,8

0 2840 2960 2990 2930 79
22,5 2660 2530 2500 2563 85

45 2160 2270 2070 2167 100
67,5 2160 2050 2100 2103 55

90 2220 2230 2100 2183 72

12,7

0 3080 2970 3080 3043 64
22,5 2660 2710 2730 2700 36

45 2250 2310 2290 2283 31
67,5 2170 2230 2170 2190 35

90 2230 2200 2230 2220 17

4.3.3 Maximalzugkräfte der Kompaktzugproben

In den Abbildungen 4.11 bis 4.15 sind die Kraft-Verschiebungs-Kurven von ausgewählten
CT-Proben (der Probenserie A) für verschiedene Faserwinkel α und Faservolumenanteile ϕ
dargestellt. Beträgt der Winkel α= 0◦ bzw. 22,5◦, sind die Kurvenverläufe ähnlich und
die unterschiedlichen Faservolumenanteile ϕ haben keinen signifikanten Einfluss auf die
Maximalwerte, Abbildungen 4.11 und 4.12. Die Kurven sind dabei monoton steigend und
es tritt ein abruptes Versagensverhalten, wie es von spröden Materialien bekannt ist, bei
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ähnlichen Verschiebungen auf. Bei den CT-Proben mit dem Faserwinkel α= 45◦ ist dieses
Verhalten ebenfalls zu beobachten, allerdings kommt es bereits vor dem Erreichen des
Maximums partiell zu Kraftabfällen (siehe Verlauf mit dem Faservolumenanteil ϕ= 7 %
in Abbildung 4.13). Das Versagen erfolgt dabei nicht vollständig abrupt, sondern äußerst
sich in einem sukzessiven Versagensprozess.
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Abbildung 4.11: Kraft-Verschiebungs-Kurven von CT-Proben mit dem Faserwinkel α = 0◦
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Abbildung 4.12: Kraft-Verschiebungs-Kurven von CT-Proben mit dem Faserwinkel α = 22,5◦

Ein stärkerer Einfluss des Faservolumenanteils ϕ ist erst bei größeren Faserwinkeln α
erkennbar. Das zeigt sich in größeren Kräften F und Kräftedifferenzen zwischen den
Proben mit steigenden Faservolumenanteilen ϕ. Bei den Faserwinkeln α= 67,5◦ und 90◦

kommen die Kraftabfälle häufiger vor. Stellen, an denen die Kräfte kleiner werden, sind
ein Indikator für die Reduzierung der Probensteifigkeit. Das auftretende Versagensver-
halten hat dabei die Tendenz, schrittweise zu erfolgen und es kommt zu verschiedenen
Versagenserscheinungen. Somit kann sowohl eine Rissausbreitung in der Matrix als auch
ein Versagen der Faser zu Steifigkeitsverlusten führen. Eine weitere Möglichkeit ist das
Versagen der Grenzfläche zwischen den Komponenten. Die fraktografische Analyse und der
Einfluss der Faserorientierung und des Faservolumenanteils auf den Versagensmechanismus
sind in Kapitel 4.3.5 dargestellt. Die größten Kräfte F weisen die Proben mit dem Faser-
winkel α= 90◦ und dem Faservolumenanteil ϕ= 12 % auf. Mit zunehmendem Faseranteil ϕ
tritt wieder vermehrt ein abruptes Versagen, allerdings bei größeren Kräften F auf.
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Abbildung 4.13: Kraft-Verschiebungs-Kurven von CT-Proben mit dem Faserwinkel α = 45◦
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Abbildung 4.14: Kraft-Verschiebungs-Kurven von CT-Proben mit dem Faserwinkel α = 67,5◦
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Abbildung 4.15: Kraft-Verschiebungs-Kurven von CT-Proben mit dem Faserwinkel α = 90◦

Die Tabellen 4.3 und 4.4 beinhalten die Maximalzugkräfte der Kompaktzugproben Fmax,i
(Serie A bzw. B) sowie die arithmetischen Mittel Fmax und deren Standardabweichung.
Aufgrund von Lufteinschlüssen oder Abplatzungen der Matrix (an der Krafteinleitungsstel-
le) konnten teilweise nicht alle Probekörper geprüft werden. Nicht geprüfte Proben sind
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mit einem Querstrich (–) gekennzeichnet. In den Abbildungen 4.16 und 4.17 sind diese
Maximalzugkräfte Fmax der Probenserien A und B und deren Standardabweichungen in
Abhängigkeit von dem Faservolumenanteil ϕ über den Faserwinkel α dargestellt.

Tabelle 4.3: Maximalzugkräfte Fmax der Probenserie A

Faservol- Faser- Maximalzugkräfte Fmax,i / N Standard-
umenan- winkel i = 1 i = 2 i = 3 i = 4 i = 5 Fmax / abweich-
teil ϕ / % α / ◦ N ung s / N

2,6

0 304 478 – 358 – 380 89
22,5 – – 445 341 382 389 52

45 380 335 – 377 426 380 37
67,5 484 420 446 – 494 461 34

90 505 555 544 587 533 545 30

4,8

0 436 380 – 463 – 426 42
22,5 414 357 474 465 432 428 47

45 474 526 531 506 418 491 47
67,5 645 647 564 – 633 622 39

90 807 839 852 787 784 814 31

7

0 560 – 462 413 395 458 74
22,5 598 445 391 – 448 471 89

45 492 484 490 488 554 502 29
67,5 705 666 696 – 753 705 36

90 976 1207 – 912 969 1016 131

10

0 475 417 – 491 409 448 41
22,5 416 – 432 411 465 431 24

45 495 608 485 572 498 532 55
67,5 809 679 703 – 688 720 60

90 – 1020 1039 1052 973 1021 35

12

0 – 374 – 469 398 414 49
22,5 – 413 381 464 379 409 40

45 – 568 526 566 561 555 20
67,5 818 867 813 908 945 801 57

90 1373 1305 1387 1232 1293 1318 63

Als allgemeine Tendenz ist ersichtlich, dass mit steigendem Faserwinkel α die Maximal-
zugkräfte Fmax zunehmen. Befinden sich die Fasern parallel bzw. ein wenig versetzt zur
Initialrissebene (α= 0◦ bzw. 22,5◦), sind die Kräfte annähernd gleich groß. Die Verstär-
kungswirkung der Fasern in Form größerer Faservolumenanteile ϕ wird erst ab dem
Winkel α= 45◦ leicht und bei dem Faserwinkel α= 67,5◦ deutlicher erkennbar.

Die größten Werte treten auf, wenn sich die Fasern senkrecht zum Initialriss (in Belastungs-
richtung, α= 90◦) befinden und der Verbund einen hohen Faservolumenanteil ϕ aufweist.
Bei dieser Konstellation ist zudem der typisch lineare Verlauf bei der Einbringung von
einer erhöhten Faseranzahl zu erkennen (siehe Probenserie B, Abbildung 4.17).
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Abbildung 4.16: Maximalzugkräfte Fmax der Probenserie A

Tabelle 4.4: Maximalzugkräfte Fmax der Probenserie B

Faservol- Faser- Maximalzugkräfte Fmax,i / N Standard-
umenan- winkel i = 1 i = 2 i = 3 i = 4 i = 5 Fmax / abweich-
teil ϕ / % α / ◦ N ung s / N

2,1

0 432 377 – – 491 433 57
22,5 425 336 347 372 – 370 40

45 373 363 470 396 398 400 42
67,5 493 469 491 446 467 473 19

90 – 592 547 595 434 542 75

5,7

0 – 368 360 315 – 348 29
22,5 414 – 397 452 455 430 29

45 468 393 – 420 428 427 31
67,5 630 631 590 705 635 638 42

90 – 775 805 891 840 828 50

7,4

0 458 416 379 422 365 408 37
22,5 432 414 420 338 369 395 40

45 552 499 537 494 428 502 48
67,5 848 742 776 606 713 737 89

90 – 998 1099 1108 997 1051 61

9,8

0 557 383 555 406 436 467 83
22,5 406 463 362 464 374 414 48

45 500 558 518 560 512 530 28
67,5 729 800 838 866 – 808 59

90 1369 1376 1061 1163 1164 1227 140

12,7

0 616 378 516 396 433 468 98
22,5 495 435 469 425 411 447 34

45 554 518 538 506 580 539 29
67,5 784 809 743 838 765 788 37

90 – 1297 1560 1388 1342 1397 115
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Abbildung 4.17: Maximalzugkräfte Fmax der Probenserie B

4.3.4 Einfluss der Faserorientierung und des Faservolumenanteils auf
den Risspfad

Risspfadentwicklung bei verschiedenen Konstellationen

Abbildung 4.18 zeigt ausgewählte CT-Proben der Probenserie A mit deren Risspfadver-
läufen (weiß hervorgehoben) in Abhängigkeit von der Orientierung (Faserwinkel α) und
dem Faservolumenanteil ϕ. Der Abknickwinkel β1 zu Beginn der Rissinitiierung und der
(resultierende) Abknickwinkel β (vgl. Abbildung 4.7) sind ebenso angegeben. Es handelt
sich jeweils um durchgehende Risse, wobei die Winkel β1 und β an einer Probenoberflä-
che (mit Hilfe des Bildbearbeitungs- und Bildverarbeitungsprogramms ImageJ [Ima12])
bestimmt werden.

Es ist ersichtlich, dass sowohl der Faservolumenanteil als auch der Faserwinkel die Riss-
pfadentwicklung beeinflussen. Sind die Fasern parallel zum Initialriss angeordnet (α= 0◦),
wächst der Riss (nahezu vollständig) entlang der Fasern in dieser Richtung weiter. Diese
Ausbreitungsrichtung gleicht somit jener von homogenen und isotropen Materialien unter
reiner Mode I-Beanspruchung.

Sind die Fasern in einem Winkel α 6= 0◦ zum Anfangsriss orientiert, wächst der Riss nicht
mehr ausschließlich senkrecht zur Belastungsrichtung, sondern wird tendenziell in Richtung
der Fasern abgelenkt. Am Riss liegt eine Mixed-Mode-Beanspruchung vor. Bei CT-Proben
mit Faserwinkeln α= 22,5◦ wächst der Riss mit steigendem Faservolumina stärker direkt
in Faserrichtung. Bei Volumenanteilen ϕ≤ 4,8 % ist der resultierende Abknickwinkel β
kleiner als der Winkel α und bei höheren Anteilen (ϕ≥ 7 %) sind die beiden Winkel nahezu
gleich oder identisch (β=α).

Das Risswachstum bei Proben mit Faserwinkeln α= 45◦ und 67,5◦ erfolgt zunächst parallel
zur Initialrissebene. Anschließend wird der Riss in Faserrichtung abgelenkt, wobei die
Länge des Risses, der sich anfangs in der Initialrissebene ausbreitet, kürzer wird. Auch für
diese Faserwinkel scheint ein Faservolumenanteil zu existieren, bei dem das Risswachstum
ausschließlich entlang der Fasern erfolgt.
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Liegen die Fasern parallel zur Belastungsrichtung, senkrecht zum Anfangsriss (Faserwin-
kel α= 90◦), so resultieren zwei prinzipielle Risspfadkonstellationen. Bei Faservolumenantei-
len ϕ≤ 4,8 % findet eine sehr geringe Ablenkung des Risses von der Ausgangskonfiguration
statt und der Riss wächst anscheinend ungeachtet der Faserorientierung. Mit zunehmenden
Anteilen (ϕ≥ 7 %) breitet sich der Riss zunächst in der Initialrissebene aus und knickt
anschließend abrupt in Richtung der Fasern ab. Als besonderes Charakteristikum entstehen
Rissbifurkationen (Abknickwinkel β≈ ±α). Ebenso wie bei den anderen Faserwinkeln
verringert sich mit zunehmendem Faservolumenanteil die Länge des Risses, der anfangs in
der Initialrissebene weiterwächst.

ϕ / % 2,6 4,8 7 10 12
α= 0◦

β1 / ◦ 12 11 7 14 11
β / ◦ 4 -2 -2 -1 0
α= 22,5◦

β1 / ◦ 12 11 7 17 13
β / ◦ 24 24 21 21 23
α= 45◦

β1 / ◦ 25 11 12 11 24
β / ◦ 53 41 48 47 44
α= 67,5◦

β1 / ◦ 10 8 11 8 15
β / ◦ 50 70 71 65 68
α= 90◦

β1 / ◦ 8 6 10 -14 13
β / ◦ 16 13 -81 -84 -94/+91

Abbildung 4.18: Risspfade ausgewählter CT-Proben der Probenserie A mit unterschiedlichen
Faserorientierungen α und Faservolumenanteilen ϕ
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Die Risspfadverläufe in ausgewählten CT-Proben der Probenserie B sind in Abbildung 4.19
dargestellt. Die Ergebnisse bestätigen die Beobachtungen bei der Probenserie A (Abbil-
dung 4.18). Für Faserwinkel α≤ 67,5◦ sind die Rissverläufe bei ähnlichen Faservolumen-
anteilen ϕ nahezu identisch. Bei faserparalleler Belastung (α= 90◦) erfolgt das abrupte
Abknicken des Risses aus der Initialrisskonfiguration in Faserrichtung bereits bei Proben
mit zwei Wicklungen (m= 2, Faservolumenanteil ϕ= 5,7 %). Bei der Probenserie A ist
dieser Risspfadverlauf erst bei einem Faservolumenanteil ϕ= 7 % (Wicklungszahl m= 3)
über alle Proben zu sehen. Dieser Übergangsbereich wird u. a. im Folgenden detailliert
betrachtet.

ϕ / % 2,1 5,7 7,4 9,8 12,7
α= 0◦

β1 / ◦ 7 7 7 6 5
β / ◦ 2 0 0 1 1
α= 22,5◦

β1 / ◦ 7 7 7 12 13
β / ◦ 26 23 22 21 24
α= 45◦

β1 / ◦ 11 11 15 15 20
β / ◦ 49 46 44 45 46
α= 67,5◦

β1 / ◦ 11 11 13 13 13
β / ◦ 64 66 66 68 67
α= 90◦

β1 / ◦ 8 10 7 13 8
β / ◦ 12 87 -95/+95 -93/+94 -98/+94

Abbildung 4.19: Risspfade ausgewählter CT-Proben der Probenserie B mit unterschiedlichen
Faserorientierungen α und Faservolumenanteilen ϕ
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In Abbildung 4.20 sind die Rissabknickwinkel β für die Faservolumenanteile ϕ= 2,1,
5,7 und 12,7 % über den Faserwinkel α dargestellt. Bei CT-Proben mit dem Faservolumen-
anteil ϕ= 2,1 % gibt es bei dem Faserwinkel α= 90◦ große Unterschiede zwischen dem
Rissabknickwinkel β und dem Faserwinkel α, siehe Abbildung 4.20a. Für Faservolumenan-
teile ϕ≥ 5,7 % sind Rissabknickwinkel β und Faserwinkel α nahezu gleich und der Riss
breitet sich parallel zu den Fasern aus, siehe Abbildung 4.20b für den Faservolumen-
anteil ϕ= 5,7 % und Abbildung 4.20c für den Volumenanteil ϕ= 12,7 %.
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Abbildung 4.20: Rissabknickwinkel β in CT-Proben mit unterschiedlichen
Faservolumenanteilen ϕ über dem Faserwinkel α:
a) ϕ = 2,1 %, b) ϕ = 5,7 %, c) ϕ = 12,7 %
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Die Risspfadentwicklung in CT-Proben (aus Faser-Kunststoff-Verbunden) ist demzufolge
nicht allein von der äußeren Belastung und deren Richtung sowie Wirkung am Riss
(Beanspruchungsart) bestimmt, sondern wird zusätzlich von der Ausrichtung der Fasern
zum Initialriss (Faserwinkeln α) und der Faseranzahl im Verbund (Faservolumenanteil ϕ)
beeinflusst. Ein größerer Faservolumenanteil ϕ bedingt ein schnelleres Risswachstum in
Faserrichtung, wobei anscheinend winkel- und volumenabhängige Schwellenwerte existieren,
ab denen sich der Riss ausschließlich entlang der Fasern ausbreitet.

Risspfadentwicklung bei Belastung parallel zur Faser

Aufgrund stark unterschiedlicher Rissverläufe (Abknickwinkel β) bei der Wicklungs-
zahl m= 2, wird der Übergangsbereich anhand aller geprüften CT-Proben ausgewertet.
Dafür werden die Ergebnisse bei den Faservolumenanteilen ϕ= 4,8 % der Serie A und
ϕ= 5,7 % der Probenserie B sowie die Risspfade mit dem nächstgrößeren Faservolumen-
anteil ϕ= 7 % bei der Wicklungszahl m= 3 (Probenserie A) verglichen.

In Proben (der Serie A) mit gleichen Orientierungen (Winkel α= 90◦) und Faservolumenan-
teilen ϕ= 4,8 % breitet sich der Riss in vier von fünf Fällen nahezu in der Initialrissebene aus
und knickt nur einmal komplett (und abrupt) in Faserrichtung ab (siehe Abbildung 4.21).

Nummer 1 2 3 4 5
α= 90◦

β1 / ◦ 10 9 10 8 6
β / ◦ 16 7 -9 -82 13

Abbildung 4.21: Risspfade in CT-Proben mit dem Faserwinkel α = 90◦ und dem
Faservolumenanteil ϕ = 4,8 %

In Abbildung 4.22 sind die Risspfade in CT-Proben (der Probenserie B) mit dem Faser-
winkel α= 90◦ und dem Faservolumenanteil α= 5,7◦ dargestellt. Der Riss verläuft in allen
Proben am Anfang annähernd senkrecht zur Faserorientierung und knickt anschließend in
Faserrichtung ab. Zusätzlich treten in einer Probe Rissbifurkationen auf.

Nummer 2 3 4 5
α= 90◦

β1 / ◦ 10 13 7 8
β / ◦ 87 -91 84 -91

Abbildung 4.22: Risspfade in CT-Proben mit dem Faserwinkel α = 90◦ und dem
Faservolumenanteil ϕ = 5,7 %

Abbildung 4.23 zeigt die Risspfade in CT-Proben (der Serie A) mit gleicher Faserorientie-
rung (α= 90◦) und einheitlichem Faservolumenanteil ϕ= 7 %. In allen vier Proben knickt
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der Riss um ca. 90◦ in Richtung der Fasern – entweder in positiver oder negativer Richtung
(Abknickwinkel β≈ ±90◦) – ab. Des Weiteren kommt es zu Verzweigungen, an denen der
Riss sich zum einen nahezu in der Initialrissebene weiter ausbreitet und zum anderen in
die Faserrichtungen (Abknickwinkel β≈ ±90◦) wächst.

Nummer 1 2 4 5
α= 90◦

β1 / ◦ 10 5 7 8
β / ◦ -81 -90/+84 87 89

Abbildung 4.23: Risspfade in CT-Proben mit dem Faserwinkel α = 90◦ und dem
Faservolumenanteil ϕ = 7 %

4.3.5 Einfluss der Faserorientierung und des Faservolumenanteils auf
den Versagensmechanismus

Die fraktografische Analyse erfolgt mit Hilfe eines Lichtmikroskops (Keyence VHX 500)
und eines Rasterelektronenmikroskops (JEOL JSM-6510). Bei dem REM sind für alle
Aufnahmen eine Beschleunigungsspannung von 10 kV und ein Strahldurchmesser (engl. spot
size, Kurzbezeichnung SS) von 50 nm gewählt. Des Weiteren sind jeweils die Vergrößerung
(z. B. x50 in Abbildung 4.24b) und der Maßstab angegeben. Die grundlegenden Versagens-
mechanismen von Faser-Kunststoff-Verbunden sind im Kapitel 3.3.6 beschrieben. Aufgrund
der Zusammensetzung des Flachsgarns aus mehreren Flachsfasern (siehe Abbildung 4.1)
kann es neben Faserbrüchen (Kohäsionsbrüche) zusätzlich zur Trennung der mechanisch
verbundenen Einzelfasern kommen.

Versagensmechanismen bei Belastung senkrecht zur Faser

Sind die Fasern senkrecht zur Lastrichtung (parallel zum Initialriss) angeordnet, versagt
der Verbund durch Zwischenfaserbruch (Matrixbruch bzw. Faser-Matrix-Ablösungen) und
der Riss wächst entlang der Fasern in Richtung der ursprünglichen Rissebene weiter (siehe
Abbildung 4.24a).

Abbildung 4.24b zeigt eine REM-Aufnahme der Bruchfläche (aus Abbildung 4.24a) im
Bereich der Ablösung von Flachsgarn und Matrix. Es ist zu erkennen, dass eine Schwach-
stelle des Verbundes die Adhäsion zwischen Fasern und Matrix ist. Durch das Herauslösen
des Garns entsteht eine Art längliche, halbkreisförmige Vertiefung, wobei partiell einzelne
Fasern aus dem Flachsgarn herausgezogen werden und in der Matrix verbleiben. Zudem
werden Teile der Matrix herausgebrochen.
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Abbildung 4.24: Bruchflächen einer CT-Probe mit dem Faserwinkel α = 0◦ und dem
Faservolumenanteil ϕ = 2,6 %:
a) LM-Aufnahme, b) REM-Aufnahme des Ablösungsbereiches

Versagensmechanismen bei Belastung schräg zur Faser

Abbildung 4.25 zeigt exemplarisch für schräg orientierte Fasern (0<α< 90◦) Bruchflächen
einer CT-Probe mit dem Faserwinkel α= 45◦ und dem Faservolumenanteil ϕ= 5,7 %.
Die Ablenkung des Risses bei Faserwinkeln α 6= 0◦ bewirkt nicht nur einen Wechsel der
Rissbeanspruchungsart (siehe Kapitel 4.3.4), sondern resultiert auch in verschiedenen
Versagensmechanismen. Die anfängliche Rissausbreitung in der Initialrissebene führt bei
geringen Volumenanteilen (ϕ≤ 5,7 %) in Kombination mit einer schrägen Faserorientierung
(α 6= 0◦) zusätzlich zum Versagen der Fasern (Faserbrüche), vgl. Abbildung 4.25. Zudem
treten vereinzelt Faserauszüge auf. Nach dieser Phase wird der Riss in Faserrichtung abge-
lenkt (bzw. knickt mit zunehmenden Volumina abrupt ab) und breitet sich parallel zu den
Fasern aus. Dabei treten Übergangsbereiche mit Faserbrüchen und Ablösungen zwischen
Faser und Matrix auf. Das weitere Risswachstum erfolgt durch Versagenserscheinungen in
der Matrix bzw. an den Grenzflächen der Verbundkomponenten.

In den Abbildungen 4.25b und 4.25c sind REM-Aufnahmen an verschiedenen Stellen der
Bruchfläche (aus Abbildung 4.25a) dargestellt. Abbildung 4.25b zeigt eine REM-Aufnahme
im Bereich des Initialrisses, in welcher ebenfalls die Faserbrüche zu erkennen sind. In Ab-
bildung 4.25c ist der Übergangsbereich dargestellt, in welchem anfangs sowohl Faserbrüche
als auch Ablösungen zwischen Faser und Matrix auftreten. Die weitere Rissausbreitung
ist durch das Versagen der Matrix bzw. Faser-Matrix-Ablösungen charakterisiert, siehe
Abbildung 4.25a.
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Abbildung 4.25: Bruchflächen einer CT-Probe mit dem Faserwinkel α = 45◦ und dem
Faservolumenanteil ϕ = 5,7 %:
a) LM-Aufnahme, b) REM-Aufnahme des Initialrissbereiches,
c) REM-Aufnahme des Übergangsbereiches

Die auftretenden Faserbrüche, resultierend in reduzierten Steifigkeiten, sind eine mög-
liche Erklärung für die Kraft-Verschiebungs-Kurven mit den partiellen Kraftabfällen,
Kapitel 4.3.3.

Versagensmechanismen bei Belastung parallel zur Faser

Bei Faservolumenanteilen ϕ≤ 4,8 % wächst der Riss anscheinend ungeachtet der Faserori-
entierung nahezu parallel zur Ursprungsrissebene und durchtrennt dabei die Fasern, siehe
Abbildung 4.26. Faserauszüge treten bei dieser Konstellation ebenfalls auf.
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a)
Rissrichtung

Faserbruch

Matrix

1 mm

b)
Rissrichtung

Initialrissfläche
Faserbruch
Matrix

Abbildung 4.26: Bruchflächen einer CT-Probe mit dem Faserwinkel α = 90◦ und dem
Faservolumenanteil ϕ = 2,1 %:
a) LM-Aufnahme, b) REM-Aufnahme des Initialrissbereiches

Mit zunehmenden Anteilen (ϕ> 4,8 %) breitet sich der Riss ebenfalls zunächst in der
Initialrissebene aus und knickt anschließend abrupt in Richtung der Fasern ab. Dabei
findet ein Übergang von Faserbrüchen zum Bruch der Matrix mit Versagenserscheinungen
an den Grenzflächen statt. Exemplarisch dafür ist in Abbildung 4.27a die Bruchfläche
einer CT-Probe mit dem Faservolumenanteil ϕ= 10 % dargestellt.

Die Abbildungen 4.27b und 4.27c zeigen jeweils eine REM-Aufnahme an verschiedenen
Stellen der Bruchfläche. Abbildung 4.27b zeigt die erste Phase des Risswachstums, bei
dem die Rissausbreitung parallel zur Initialrissfläche erfolgt und Faserbrüche auftreten.
Stellenweise herausstehende Garne deuten auf Faserauszüge hin und die noch etwas
stärker herausragenden Fasern lassen auf eine Trennung der mechanischen verbunden
Einzelfasern schließen. Mit zunehmender Risslänge kommt es zum Abknicken des Risses.
In Abbildung 4.27c ist dieser Bereich zu erkennen. Anschließend wächst der Riss parallel
zu den Fasern und es versagt die Matrix bzw. treten Ablösungen zwischen Faser und
Matrix auf.

Der Riss wächst bei Belastungen parallel zur Faser und Volumenanteilen ϕ≤ 4,8 % nahezu
ungeachtet der Faserorientierung α in der Initialrissebene weiter. Mit zunehmenden Faser-
mengen (ϕ> 4,8 %) allerdings stellen die Fasern anscheinend einen größeren Widerstand
hinsichtlich der Ausbreitung dar und die Risswachstumsvorzugsrichtung orientiert sich
(schrittweise bzw. abrupt) parallel zu deren Längsachse.
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Abbildung 4.27: Bruchflächen einer CT-Probe mit dem Faserwinkel α = 90◦ und dem
Faservolumenanteil ϕ = 10 %:
a) LM-Aufnahme, b) REM-Aufnahme des Initialrissbereiches,
c) REM-Aufnahme des Abknickbereiches

4.3.6 Schlussfolgerungen

Sind die Faser nicht parallel zum Initialriss orientiert, erhöhen die Fasern somit sowohl
die mechanischen als auch die bruchmechanischen Eigenschaften der Verbunde. Folglich
sind auch bruchmechanische Größen (z. B. Risszähigkeiten) richtungsabhängig. Ab einem
bestimmten Faservolumenanteil ϕ in Kombination mit der Faserausrichtung (Winkel α)
findet ein Übergang der Hauptversagensmechanismen von Faserbrüchen zu Matrixbrüchen
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und Ablösungen der Faser-Matrix-Grenzfläche statt. Demzufolge scheinen faserwinkel- und
faservolumenabhängige Schwellenwerte zu existieren, die den Versagensmechanismus und
somit auch die Risswachstumsrichtung determinieren.

Bei zunehmenden Fasermengen (Faservolumenanteilen ϕ) ist die Rissausbreitung, bei der
Faserbrüche auftreten, erschwert, da die erhöhte Faseranzahl einen größeren Widerstand
hinsichtlich einer weiteren (ungehinderten) Ausbreitung darstellt und der Weg des gerin-
geren Widerstands dahingehend das Risswachstum entlang der Fasern zu sein scheint.
Unter der Voraussetzung, dass die Energie zur Schaffung neuer Oberflächen ausreicht, gibt
es an jeder Grenzfläche, auf die der Riss trifft, die Möglichkeit, dass dieser entweder die
Fasern durchtrennt und weiterwächst oder abgelenkt wird bzw. komplett in Faserrichtung
abknickt und sich parallel dazu ausbreitet.

Aufgrund der beobachteten anfänglichen Ausbreitung bei Faserwinkeln α 6= 0◦ schräg bzw.
senkrecht zur Faser, verbunden mit deren Versagen, und eines späteren Abknickens des Ris-
ses in Faserrichtung (insbesondere bei Faservolumenanteilen ϕ> 4,8 %) wird angenommen,
dass ein sofortiges Abknicken des Risses zu den Fasern erst in Verbunden mit größeren
Faservolumenanteilen (ϕ> 12,7 %) als den bisherigen stattfindet.

Basierend auf den experimentellen Ergebnissen wird mit Hilfe numerischer Simulationen
eruiert, ob ein ähnliches Risswachstum – insbesondere die Ausbreitungsrichtung – auftritt
bzw. beschrieben werden kann.
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5 Numerische Simulationen

5.1 Ablauf

Mit Hilfe von numerischen Programmen ist u. a. die Ermittlung von Größen der Mechanik
(z. B. Spannungen und Verformungen) sowie der Bruchmechanik (z. B. Energiefreisetzungs-
raten und Spannungsintensitätsfaktoren) in (komplex gearteten) Bauteilen und Strukturen
möglich. Ein praktikables numerisches Verfahren ist die Finite-Elemente-Methode (Kurz-
bezeichnung FEM). Bei der Methode der finiten Elemente erfolgt eine Unterteilung des
Bauteils bzw. der Struktur in endliche und berechenbare Teilgebiete, sogenannte finite
Elemente, die über Knotenpunkte miteinander verbunden sind [Kle10].

Die Gesamtlösung resultiert aus den Lösungen für die einzelnen Elemente unter Berück-
sichtigung von Kontinuitäts- und Gleichgewichtsbedingungen, die an den Knoten (Ele-
menträndern) formuliert werden [DD95]. Das resultierende Gleichungssystem für statische
Berechnungen ist in Gleichung (5.1) angegeben. Dabei bezeichnen [K] die Systemsteifig-
keitsmatrix, die aus den Elementsteifigkeitsmatrizen zusammengesetzt ist, {u} den Vektor
der Knotenpunktverschiebungen und {F} den Vektor der äußeren Kräfte [Kle10].

[K] · {u} = {F} (5.1)

Der Ablauf einer FE-Berechnung erfolgt in drei Schritten, nach [Kle10]:

S1 Preprocessing: Modellbildung, Vernetzung, Definition der Lasten, Randbedingungen
etc.,

S2 Solving: Lösung des Gleichungssystems mit Hilfe eines FE-Programms (Gleichungs-
löser) und

S3 Postprocessing: Ergebnisauswertung.

Im Preprocessing erfolgt die Modellbildung und Vernetzung sowie die Definition der Materi-
alkennwerte, Lasten und Randbedingungen. Bei der Vernetzung erfolgt die Diskretisierung
des Bauteils in eine endliche Anzahl finiter Elemente. Das Bauteil, welches eventuell bereits
als CAD-Modell vorliegt, wird in ein FE-Modell überführt. Die Zusammensetzung der
berechenbaren Elementansatzfunktionen ergibt ein Gleichungssystem, dessen Lösung eine
Näherung für das vorliegende Problem liefert. Die Lösung erfolgt numerisch mit Hilfe eines
FE-Programms (z. B. ABAQUS). Im Postprocessing erfolgt die Ausgabe der Ergebnisse
(grafisch bzw. tabellarisch) und deren Interpretation [Kle10, DD95].

https://doi.org/10.51202/9783186354181 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:45:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186354181
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5.2 Ermittlung bruchmechanischer Größen

5.2.1 Rissschließungsintegral

Das Rissschließungsintegral (Kapitel 2.1.5) kann für die numerische Ermittlung der Ener-
giefreisetzungsraten und Spannungsintensitätsfaktoren genutzt werden. Die Methode wird
modifizierte Rissschließungsintegralmethode (engl. modified virtual crack closure integral,
Kurzbezeichnung MVCCI) genannt. Dabei kann die Ermittlung der Rissschließungsar-
beit W mit Hilfe der Methode der finiten Elemente erfolgen, indem die Kräfte und
Verschiebungen der Knotenpunkte am Riss bzw. in der Rissumgebung verwendet werden
[RK77]. Abbildung 5.1 zeigt eine Risskonfiguration mit Hilfe der finiten Elemente.

∆tk

a ∆a

tk,k−1

tk+1,k

ii − 1 i + 1

k

k + 1

k − 1

xk

yi,k

zi

yi+1,k

zi+1

Abbildung 5.1: Anwendung der MVCCI-Methode auf finite Elemente nach [RS12]

In den Gleichungen (5.2) bis (5.4) werden mit Hilfe der numerisch ermittelten Knotenpunkt-
kräfte Fi und Knotenpunktverschiebungen ui in den entsprechenden Koordinatenrichtungen
(x, y, und z) die Energiefreisetzungsraten GI, GII und GIII berechnet. Die Umrechnung in
Spannungsintensitätsfaktoren erfolgt mit den Gleichungen (2.62) bis (2.64).

GI(a,∆tk)k = 1
∆tk · ∆a W

y
k mit W y

k = 1
2

[
F y

i,k(a) · ∆uy
i−1,k(a)

]
(5.2)

GII(a,∆tk)k = 1
∆tk · ∆a W

x
k mit W x

k = 1
2

[
F x

i,k(a) · ∆ux
i−1,k(a)

]
(5.3)

GIII(a,∆tk)k = 1
∆tk · ∆a W

z
k mit W z

k = 1
2

[
F z

i,k(a) · ∆uz
i−1,k(a)

]
(5.4)

Dabei bezeichnen W x
k ,W

y
k und W z

k die zur Rissschließung um die Länge ∆a notwen-
digen Arbeiten, F x

i,k, F
y
i,k und F z

i,k die Kraftkomponenten am Knotenpunkt (i, k) sowie
∆ux

i−1,k,∆u
y
i−1,k und ∆uz

i−1,k die Komponenten der relativen Rissuferverschiebung zwischen
den beiden Punkten (i−1, k). Die Gesamtenergiefreisetzungsrate G ergibt sich durch
Superposition der Energiefreisetzungsraten GI, GII und GIII, Gleichung (5.5).

G(a,∆tk) = GI(a,∆tk) +GII(a,∆tk) +GIII(a,∆tk) (5.5)
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Die Elementlänge ∆tk wird über Gleichung (5.6) ermittelt.

∆tk = tk+1,k + tk,k−1

2 (5.6)

5.2.2 Programmsystem ADAPCRACK3D

Für die bruchmechanische Berechnung wird das Programmsystem ADAPCRACK3D
[Ful03, SFR03], welches neben der Ausgabe bruchmechanischer Größen auch eine auto-
matische quasistatische Rissausbreitungssimulation in dreidimensionalen (3D) Strukturen
ermöglicht, verwendet. Das in ADAPCRACK3D implementierte Konzept (σ′

1-Kriterium
nach Schöllmann [Sch01]) ist eine dreidimensionale Erweiterung des zweidimensionales
Kriteriums der maximalen Tangentialspannungen von Erdogan und Sih (Kapitel 2.1.6).
Dafür werden zwei Richtungswinkel ϕ0 und ψ0 definiert. Der Rissabknickwinkel ϕ0 ergibt
sich aus der Lösung der Gleichung (5.7) [Sch01].

− 6KI tan
(
ϕ0

2

)
−KII

[
6 − 12 tan2

(
ϕ0

2

)]

+


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4KI − 12KII tan
(
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2

)]−6KI tan
(
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2

)
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[
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)]
−32K2
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)[
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(
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)]2
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·
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[

4KI − 12KII tan
(
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2

)]2

+ 64K2
III

[
1 + tan2

(
ϕ0

2

)]2


−1/2

= 0

(5.7)

Der Verdrehwinkel ψ0 ist in Gleichung (5.8) und der Vergleichsspannungsintensitätsfak-
tor KV in Gleichung (5.9) angegeben [Sch01]. Dabei bezeichnen τϕz die Schubspannung
und σϕ die Normalspannung.

ψ0 =1
2 arctan

(
2 τϕz(ϕ0)
σϕ(ϕ0)

)
(5.8)

KV =1
2 cos

(
ϕ0

2

)[
KI cos2

(
ϕ0

2

)
− 3

2 KII sin (ϕ0)

+

√√√√[KI cos2
(
ϕ0

2

)
− 3

2 KII sin (ϕ0)
]2

+ 4K2
III

 (5.9)

https://doi.org/10.51202/9783186354181 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:45:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186354181


76 5 Numerische Simulationen

Aufbau und Simulationsablauf

Prinzipieller Aufbau und Simulationsablauf des Programmsystems sind in Abbildung 5.2
anhand der drei Funktionsmodule (NETADAPT3D, ABAQUS, NETCRACK3D) darge-
stellt. Die Interaktion der im Wesentlichen voneinander unabhängige Module erfolgt über
Schnittstellen. Wegen des modularen Aufbaus können einzelne Komponenten des Pro-
gramms modifiziert oder gegebenenfalls komplett ersetzt werden, ohne in die grundlegende
Funktionalität des Programms eingreifen zu müssen [FSR00].

NETADAPT3D

Bauteilgeometrie
(3D-FE-Netz)

Rissgeometrie
(2D-FE-Netz)

Globales Modell
mit Riss

Submodell
mit Riss

Simulations-
parameter

Material-
parameter

ABAQUS

NETCRACK3D

neue Rissfrontkoordinaten

Bruchmechanische Auswertung

Abbildung 5.2: Aufbau und Simulationsablauf des Programmsystems ADAPCRACK3D nach
[Ful03, Sch14]

Die Rissfortschrittsberechnung ist in drei Simulationsabschnitte unterteilt [Ful03]:
S1 Im Modul NETADAPT3D werden die Eingabedateien eingelesen, die dreidimensiona-

le Netzadaption durchgeführt und den nachfolgenden Modulen die zur FE-Rechnung
aufbereiteten Dateien übergeben.

S2 Im FE-Programm ABAQUS erfolgt die Berechnung der mechanischer Größen (Span-
nungen und Verschiebungen), die für die bruchmechanische Auswertung benötigt
werden.

S3 Das Modul NETCRACK3D führt die bruchmechanische Auswertung durch und
liefert u. a. die neuen Rissfrontkoordinaten für den nächsten Simulationsschritt.

Programmschnittstellen

Die Module kommunizieren über Ein- und Ausgangsschnittstellen miteinander. Für die nu-
merische Simulation müssen verschiedene Dateien (durch den Nutzer) vor dem Programm-
start bereitgestellt werden. Neben drei Dateien, die jeweils einer Simulation zugehörig sind,
werden noch Materialparameter aus einer datenbankähnlichen Datei benötigt. Die Material-
daten enthalten mechanische und bruchmechanische Kennwerte. Für das Ausführen einer
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Simulation mit bruchmechanischer Auswertung sind mindestens 4 Eingangsschnittstellen
(Dateien) erforderlich [Ful03]:

E1 Die Datei mit der Geometrie des zu untersuchenden Objektes beinhaltet die Bau-
teilgeometrie ohne Riss. Das FE-Netz besteht aus Tetraederelementen mit linearen
bzw. quadratischen Ansatzfunktionen (3D-FE-Netz). Zudem sind die Lagerungen
und Kräfte für die nachfolgende FE-Rechnung enthalten.

E2 In der Datei mit der Geometrie des einzubringenden Risses liegt die vernetzte
Rissgeometrie vor. Als Elementtypen werden Dreieckselemente mit linearen Ansatz-
funktionen verwendet. Darüber hinaus ist die Möglichkeit zur Integration mehrerer
Risse in einem Bauteil gegeben.

E3 Die Datei mit den Materialdaten wird im Modul NETADAPT3D eingelesen und
dient zur Berechnung der bruchmechanischen Größen.

E4 Die Datei mit den Simulationsparametern fungiert als Steuerungsdatei für das Modul
NETCRACK3D und beinhaltet Parameter für die bruchmechanische Analyse (maxi-
males Rissinkrement pro Simulationsschritt, zu verwendendes bruchmechanisches
Konzept etc.).

Die Daten der Ausgangsschnittstellen können in Visualisierungs-, Simulationsinformations-
und Steuerungsdaten eingeteilt werden [Ful03]:

A1 Über den Postprocessor im FE-Programm ABAQUS können die Ergebnisse
(Spannungs- und Verschiebungsfelder) grafisch veranschaulicht werden. Des Weiteren
besteht die Möglichkeit, knoten- und elementspezifische Daten zu extrahieren.

A2 Die Simulationsinformationsdaten stellen eine Zusammenfassung aller Daten in Form
von Textdateien, die den Fortschritt der Simulation dokumentieren, dar.

A3 Die Steuerungsdaten dienen u. a. für die Lebensdauerabschätzung und zum Abbruch
der Simulation bei der Verletzung bruchmechanischer Grenzwerte.

Das Modul NETADAPT3D

Das Modul NETADAPT3D kann als zentrale Steuerungseinheit des Programms
ADAPCRACK3D aufgefasst werden, wobei es als Master-Modul die anderen Programm-
module als externe Funktionen aufruft und den Datenaustausch mit diesen Modulen über-
nimmt. Nach dem Einlesen der Eingangsdaten (siehe Abbildung 5.2) führt NETADAPT3D
eine automatische Netzanpassung durch und generiert ein globales Modell mit Riss und
ein Submodell, das die Rissfrontumgebung beschreibt. Dafür muss die Geometrie des
rissfreien Bauteils in Form eines 3D-FE-Netzes und die Geometrie des Risses als zweidi-
mensionales (2D) FE-Netz vorliegen. Die Verwaltung und Anpassung des Netzes erfolgt
kontinuierlich und für jeden Berechnungsschritt, sodass NETADAPT3D während des
gesamten Simulationsablaufs aktiv bleibt. Somit ist in jedem Simulationsschritt aufgrund
neuer Rissfrontkoordinaten eine Anpassung des FE-Netzes an diese Geometrie erforderlich.
Über die Geometrieanpassung hinaus ist das Modul für die Qualitätssicherung des FE-
Netzes verantwortlich, um u. a. die Fortführung der Simulation zu ermöglichen und eine
ausreichende Simulationsqualität zu gewährleisten [FSR00].

Die FE-Analyse für das rissbehaftete Bauteil und das Submodell (mit Riss) wird mit
Hilfe des FE-Programms ABAQUS durchgeführt [Ful03, Sch14]. Des Weiteren werden
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Simulationsparameter (Lastdaten, Anzahl der Iterationsschritte, Angabe der Rissfort-
schrittsgleichung etc.) sowie (mechanische und bruchmechanische) Kennwerte benötigt. Bei
den mechanischen Materialparametern kann orthotropes Verhalten berücksichtigt werden.
Im folgenden Abschnitt wird auf das Spezialnetz, welches an der Rissfront verwendet wird,
und die damit verbundene Submodelltechnik eingegangen.

Spezialnetz an der Rissfront mittels Submodelltechnik

Die Submodelltechnik ist eine Analysemethode, die es ermöglicht, Teilgebiete eines FE-
Modells mit einem feineren Netz differenzierter zu betrachten. Die Analyse erfolgt nach
folgendem Schema [Ful03]:

S1 Erstellen und Lösen eines groben, globalen FE-Modells der Gesamtstruktur,

S2 Vollständiges Neuvernetzen des zu betrachtetenden Teilgebiets,

S3 Aufbringen der Randbedingungen aus der Lösung des globalen Modells sowie zusätz-
licher Randbedingungen (z. B. Lasten) innerhalb des Teilgebiets und

S4 Lösen des Submodells.

Um eine automatische Berechnung der bruchmechanischen Größen zu ermöglichen, wird in
ADAPCRACK3D ein Spezialnetz in der Rissfrontumgebung verwendet. Damit wird eine
gleichbleibende Grundstruktur der Netzbeschaffenheit über die gesamte Simulationsdauer
erreicht. Das dreidimensionale Spezialnetz besteht aus 8-Knoten-Hexaederelementen mit
linearen Ansatzfunktionen. Den Querschnitt bilden mindestens 16 Elemente (Anordnung
vergleichbar mit einer 4-reihigen, quadratischen Matrix), wobei jedes Element idealisiert
einen quadratischen Querschnitt hat. Die Kantenlänge kann bei Programmstart definiert
werden und bei den nachfolgenden Programmiterationen erfolgt die Festlegung durch die
Größe des Rissinkrements. Das gesamte Spezialnetz wird als Submodell definiert. Die
bruchmechanische Auswertung im Programmmodul NETCRACK3D basiert allein auf
dem Submodell und somit dem Spezialnetz, wodurch die Vernetzung des globalen Modells
keinen unmittelbaren Einfluss ausübt [Ful03].

Das Modul NETCRACK3D

Im Modul NETCRACK3D erfolgt die bruchmechanische Auswertung. Mit Hilfe der mo-
difizierten virtuellen Rissschließungsintegralmethode (MVCCI-Methode, Kapitel 5.2.1)
werden entsprechend der Rissbeanspruchungsart die Energiefreisetzungsraten GI, GII und
GIII sowie die Spannungsintensitätsfaktoren KI, KII und KIII berechnet. Darüber hinaus
werden bei Simulationen des Ermüdungsrisswachstums u. a. die Lastwechselzahl N pro
Rissinkrement ∆a für den jeweiligen Iterationsschritt sowie die Koordinaten der neuen
Rissfront für die nächste Iteration berechnet. Eine umfassende Beschreibung des Moduls
NETCRACK3D ist in [Sch01] zu finden. Im Folgenden werden die vier grundlegenden
Auswerteschritte vorgestellt [Ful03]:

A1 Beanspruchungsanalyse: Die lokale Beanspruchung an der Rissfront wird über die
Energiefreisetzungsraten für die einzelnen Moden GI, GII und GIII ermittelt. Die
Energiefreisetzungraten werden mit Hilfe der MVCCI-Methode berechnet.

A2 Bestimmung der Rissausbreitungsrichtung: Die Ermittlung der Ausbreitungsrichtung
erfolgt unter Verwendung des dreidimensionalen Rissausbreitungskonzeptes. Für
jeden Rissfrontknoten werden die Gleichungen (5.7) und (5.8) mit den zugehörigen
Spannungsintensitätsfaktoren numerisch ausgewertet.
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A3 Lebensdauerabschätzung: Voraussetzung für die Abschätzung von Lebensdauern ist,
dass sich die Werte der Spannungsintensitätsfaktoren im Bereich der stabilen Riss-
ausbreitung (siehe Kapitel 2.1.4) befinden, andernfalls wird die Simulation beendet.
Die Lebensdauern werden auf Basis von Gleichung (2.15) für ein vorgegebenes Rissin-
krement ∆a, das den Rissfrontknoten mit dem größten Spannungsintensitätsfaktor
aufweist, berechnet.

A4 Ermittlung der neuen Rissfrontkoordinaten: Die neue Rissfront wird basierend auf
den bestehenden Rissfrontknoten berechnet, wobei jeweils eine Längen- und eine
Richtungsangabe zur Ermittlung der neuen Position benötigt wird.

Detaillierte Beschreibungen des Programmsystems ADAPCRACK3D, die Benennung und
Formate der Dateien und dessen Interaktion mit anderen Programmen sind z. B. in [Ful03]
zu finden. Zudem sind Erläuterungen der Programmmodule NETADAPT3D hinsichtlich
Charakterisierung und Bewertung von Algorithmen zur Risseinfügung und Netzverbesse-
rung sowie NETCRACK3D bezüglich Rissausbreitungsrichtung, Lebensdauerabschätzung
und Ermittlung der neuen Rissfrontkoordinaten enthalten.

5.3 Anwendung auf Flachsfaser-Kunststoff-Verbunde

5.3.1 Modellierung

Es existieren verschiedene Ansätze bei der Abstraktion des realen Körpers in ein Modell.
Die Modellierung erfolgt für homogenes und inhomogenes Material im FE-Programm
ABAQUS, wobei die Geometrie der CT-Probe in Anlehnung an Abbildung 4.5b gewählt
ist und das FE-Modell nach der Vernetzung als 3D-FE-Netz vorliegt. Als Elementtypen
sind dreidimensionale Hexaederelemente mit linearen Ansatzfunktionen gewählt.

Homogenes Material

Aufgrund der parallelen Ausrichtung der Fasern kann der Verbund als unidirektionale
Schicht, die transversal isotrope Eigenschaften aufweist (vgl. Kapitel 3.3.3), betrachtet
werden. Der makromechanische Ansatz resultiert in einem homogenen Material (mit
orthotropen Eigenschaften), Abbildung 5.3a.

Inhomogenes Material

Ein Ansatz bei der Modellierung des Verbundes als inhomogenes Material ist in Form
eines Schichtverbundes (vgl. Kapitel 3.1), welcher zwei Phasen (Faser und Matrix) enthält,
Abbildung 5.3b.

Der Faserwinkel α ist aufgrund der Symmetrie zum Initialriss (in der x-z-Ebene) in
mathematisch positiver Drehrichtung definiert. Die Dicke einer Faser- und Matrixschicht
ist insgesamt auf 5 mm gewählt, wobei die Faserschichtdicke sich durch Multiplikation
mit dem jeweiligen Faservolumenanteil ϕ (siehe Kapitel 5.3.2) ergibt. Ein FE-Modell wird
jeweils so generiert, dass sich die Rissspitze des Initialrisses am Übergang von einer Matrix-
und einer Faserschicht befindet.
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Abbildung 5.3: Modellierungen: a) homogen, b) inhomogen

5.3.2 Materialparameter

Vor der Ausführung einer numerischen Simulation, z. B. zur Ermittlung von Spannungen
und Verschiebungen, sind mechanische Materialparameter zu hinterlegen. Bei Faserverbun-
den, die nur aus einer unidirektionalen Schicht bestehen, liegt eine transversale Isotropie
vor und die Anzahl reduziert sich auf 5 Grund-Elastizitätsgrößen.

Die Elastizitätsmoduln werden mit Hilfe der Mischungsregel, Gleichung (3.10), bestimmt.
Die empirischen Kennwerte aus dem Zugversuch (Kapitel 4.3.2) bleiben aufgrund von nicht
der Norm entsprechenden Flachzugproben unberücksichtigt. Der Zugelastizitätsmodul des
Flachsgarns wird auf Ef‖ = 70000 MPa, vgl. [PEL16], festgelegt und die Matrixsteifigkeit
wird konservativ mit Em = 2000 MPa, nach [RM15], angenommen. In Tabelle 5.1 sind
die Steifigkeiten E‖ für fünf Faservolumenanteile ϕ= 3 bis 15 % aufgelistet. Die ersten
vier Werte sind so gewählt, dass diese im Bereich der ermittelten Faservolumenanteile
(vgl. Kapitel 4.3.1) liegen. Mit dem Volumenanteil ϕ= 15 % soll das Verhalten bei einem
größeren Wert als die experimentellen Ergebnisse untersucht werden.

Tabelle 5.1: Elastizitätsmoduln in Faserlängsrichtung E‖ in Abhängigkeit von dem
Faservolumenanteil ϕ nach Gleichung (3.10)

ϕ / % E‖ / MPa
3 4040
6 6080
9 8120

12 10160
15 12200

Für den Fall, dass die Fasern nicht in deren Längsrichtung belastet werden, ist eine
Transformation des Materialkoordinatensystems in die globalen Koordinatenrichtungen
notwendig (siehe Abbildung 5.4). Hierbei kommt ein vereinfachter Ansatz zum Einsatz,
bei dem lediglich die Elastizitätsmoduln Ex und Ey mit dem Winkel α veränderlich sind.
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Abbildung 5.4: Globales Koordinatensystem (x, y) und Materialkoordinatensystem (x∗, y∗)

Das Gleichungssystem (5.10) gibt die Beziehung mit der Transformationsmatrix T an. Dabei
sind Ei (mit i = x, y, z) die transformierten und E∗

i (mit i = x, y, z) die Verbundsteifigkeiten.
Der Parameter E∗

x entspricht dem Elastizitätsmodul in Faserlängsrichtung E‖ und die
Steifigkeiten E∗

y und E∗
z sind dem Elastizitätsmodul einer unidirektionalen Schicht quer zur

Faserrichtung E⊥ gleichzusetzen (E∗
x =E‖ und E∗

y =E∗
z =E⊥). Analog zur Matrix wird der

Elastizitätmodul E⊥ = 2000 MPa angenommen. Die in Abhängigkeit von dem Faserwinkel α
transformierten Elastizitäten E‖ (siehe Tabelle 5.1) sind in Tabelle 5.2 für die einzelnen
Faservolumenanteile ϕ dargestellt. Die Querkontraktionszahlen und Schubmoduln sind
bei Faser-Kunststoff-Verbunden experimentell sehr aufwendig zu bestimmen, sodass diese
Materialdaten in erster Näherung geschätzt und als konstant betrachtet werden (siehe
Tabelle 5.3).Ex

Ey
Ez


︸ ︷︷ ︸

E

=

cos2 α sin2 α 0
sin2 α cos2 α 0

0 0 1


︸ ︷︷ ︸

T

·

E∗
x

E∗
y

E∗
z


︸ ︷︷ ︸

E∗

(5.10)

Die Werte in den Tabellen 5.2 und 5.3 dienen als Materialparameter für die numerischen
Simulationen des homogenen Verbundes. Bei der inhomogenen Modellierung werden als ers-
ter Ansatz die beiden Phasen als isotrop angesehen (Ef = 70000 MPa und Em = 2000 MPa),
um u. a. einen größeren Unterschied (Anisotropiegrad) in den elastischen Eigenschaften
der Einzelkomponenten zu generieren.

Tabelle 5.2: Elastizitätsmoduln Ex und Ey in Abhängigkeit von dem Faservolumenanteil ϕ
und dem Faserwinkel α

α / ◦ 0 22,5 45 67,5 90
ϕ= 3 % Ex / MPa 4040 3741 3020 2299 2000

Ey / MPa 2000 2299 3020 3741 4040
ϕ= 6 % Ex / MPa 6080 5482 4040 2598 2000

Ey / MPa 2000 2598 4040 5482 6080
ϕ= 9 % Ex / MPa 8120 7224 5060 2896 2000

Ey / MPa 2000 2896 5060 7224 8120
ϕ= 12 % Ex / MPa 10160 8965 6080 3195 2000

Ey / MPa 2000 3195 6080 8965 10160
ϕ= 15 % Ex / MPa 12200 10706 7100 3494 2000

Ey / MPa 2000 3494 7100 10706 12200
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Tabelle 5.3: Parameter für die Materialdatei

Parameter Wert
νxy / - 0,3
νxz / - 0,3
νyz / - 0,3
Gxy / MPa 1000
Gxz / MPa 1000
Gyz / MPa 1000
Ez / MPa 2000

5.3.3 Belastungsparameter und Lagerung

Die Belastung und Lagerung der modellierten CT-Probe (Abbildung 5.5) geschieht in Anleh-
nung an die experimentellen Untersuchungen. Die Lasteinleitung erfolgt auf der Linie senk-
recht zur x-y-Ebene durch den Punkt P2 (12,5 | 18,25 | 5,0). Als Belastung ist eine konstante
Kraft F = 1100 N, die gleichmäßig entlang der Probendickenrichtung (z-Achse) verteilt wird,
gewählt. Bei einer Probendicke t= 10 mm und einer fest gewählten Elementgröße e= 1 mm
resultieren 11 Knoten (Kraftkomponente am Knotenpunkt Fk =F / 11). Für die statisch
bestimmte Lagerung sind 3 Knotenpunkte – P1 (12,5 | -18,25 | 5,0), P2 (12,5 | 18,25 | 5,0),
P3 (62,5 | 0,0 | 5,0) – mit einer unterschiedlichen Anzahl von unterbundenen translatorischen
Freiheitsgraden (Verschiebung ui = 0 mit i = x, y, z) festgelegt.

x
y

z

P1

ux =uy =uz = 0

P2

ux =uz = 0

P3

uz = 0
Fk

Abbildung 5.5: Belastung und Lagerung der CT-Probe mit angedeuteter Rissgeometrie

Dateien zur bruchmechanischen Auswertung mit ADAPCRACK3D

Die Risslänge ist entsprechend der Länge, bei dem der Riss aus der Initialrissebene
abgelenkt wird, definiert und die Rissgeometrie liegt nach der Vernetzung als 2D-FE-Netz
vor. Die dafür verwendeten Elementtypen sind ebene Dreieckselemente. Die Riss- und
Bauteilgeometrie sind u. a. Voraussetzung für die in Kombination mit der numerischen
Simulation durchgeführten bruchmechanischen Auswertung, siehe Kapitel 5.2.2. In der
Materialdatei des Programmsystems ADAPCRACK3D werden jeweils die Eigenschaften
hinterlegt.
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5.3.4 Ergebnisse

Für die numerischen Berechnungen werden für jede CT-Probe die Risslänge a, bei der ein
Abknicken des Risses aus der Initialrissebene stattfindet, aus den experimentellen Ergeb-
nissen ermittelt. Mit Hilfe des dreidimensionalen Rissausbreitungssimulationsprogramms
ADAPCRACK3D erfolgt die bruchmechanische Auswertung.

Homogene Modellierung

In Abbildung 5.6 sind exemplarisch die Verläufe der größten Hauptnormalspannung (S,
Max. Principal; S für engl. stress) in CT-Proben mit dem Faservolumenanteil ϕ= 12 %
und unterschiedlichen Faserwinkeln α bei homogener Modellierung veranschaulicht.

a) b)

c) d)

e)

Abbildung 5.6: Verläufe der größten Hauptnormalspannung in homogenen und transversal
isotropen CT-Proben mit unterschiedlichen Faserwinkeln α:
a) α = 0◦, b) α = 22,5◦, c) α = 45◦, d) α = 67,5◦, e) α = 90◦
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Die Proben weisen eine inhomogene Spannungsverteilung auf und in Rissspitzennähe liegen
Spannungskonzentrationen vor, die in der Ausprägung jeweils voneinander abweichen. Die
unterschiedlichen Spannungsfelder resultieren aufgrund der verschiedenen Faserwinkel α
und den damit verbundenen winkelabhängigen elastischen Eigenschaften, siehe Tabelle 5.2.
Für den Faserwinkel α= 0◦ ist zu erkennen, dass das Spannungsfeld sich entlang des größten
Elastizitätsmoduls (parallel zum Initialriss) erstreckt. Für die Faserwinkel α= 90◦ ist diese
Spannungsverteilung ebenfalls ersichtlich. Allgemein ergeben sich bei Belastungen senkrecht
zum Initialriss und orthotropen Verhalten faserwinkelabhängige Spannungsverläufe, die
durch die Eigenschaften der Faser (in Längsrichtung) geprägt sind. Das bedeutet, dass
sich mit dem Faserwinkel α das Spannungsfeld ausbildet, wobei aufgrund des gewählten
Ansatzes die Ausprägung für Winkel im Bereich α= 45◦ nicht hervorgeht.

Tabelle 5.4 enthält ausgewählte Daten einer numerischen Simulation für alle Knoten k an
der Rissfront und deren arithmetische Mittel bei homogener Modellierung und orthotropen
Materialeigenschaften (Faservolumenanteil ϕ= 3 %, Faserwinkel α= 90◦). Die Werte der
Spannungsintensitätsfaktoren für Mode I sind dabei deutlich größer als für Mode II.
Die Rissabknickwinkel ϕ0 sind im Bereich 0◦ und der Riss breitet sich senkrecht zur
Belastungsrichtung aus.

Tabelle 5.4: Ergebnisse der numerischen Simulation entlang einer Knotenrissfront bei
homogener Modellierung

k KI / N/mm3/2 KII / N/mm3/2 ϕ0 / ◦

1 88,88 -1,81 2,34
2 98,98 -1,33 1,70
3 94,66 -1,59 1,93
4 98,36 -2,56 2,98
5 99,45 -2,26 2,60
6 100,08 -0,14 0,16
7 101,39 0,66 -0,75
8 101,60 -0,23 0,25
9 102,62 0,54 -0,60

10 101,56 0,35 -0,39
11 101,45 -0,24 0,28
12 101,88 0,74 -0,83
13 100,59 0,63 -0,72
14 100,38 0,73 -0,83
15 100,09 -0,10 0,11
16 99,63 -0,26 0,29
17 97,01 0,76 -0,89
18 97,65 1,73 -2,03
19 94,57 1,42 -1,72
20 95,51 0,24 -0,29
21 96,75 -0,08 -0,09

98,72 -0,13 0,17
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In Tabelle 5.5 sind die Ergebnisse (aller Kombinationen aus Faservolumenanteil ϕ und
Faserwinkel α) für die homogene Modellierung in Form der SpannungsintensitätsfaktorenKI
und KII sowie des Abknickwinkels ϕ0 zusammengefasst.

Tabelle 5.5: Numerisch ermittelte Daten bei homogener Modellierung

α / ◦ 0 22,5 45 67,5 90
ϕ= 3 % a / mm 13 14 15 16 15

KI / N/mm3/2 77,9 82,6 89,5 99,5 98,7
KII / N/mm3/2 0,3 0,5 -0,2 0,7 -0,1
ϕ0 / ◦ -0,4 -0,7 0,2 -0,8 0,2

ϕ= 6 % a / mm 13 15 16 15 13
KI / N/mm3/2 77,9 86,3 96,4 113,4 103,0
KII / N/mm3/2 0,3 -0,2 0,7 0,5 0,3
ϕ0 / ◦ -0,3 0,3 -0,8 -0,5 -0,3

ϕ= 9 % a / mm 13 15 17 16 17
KI / N/mm3/2 78,3 87,0 105,3 114,1 133,8
KII / N/mm3/2 0,2 -0,2 0,5 0,7 0,5
ϕ0 / ◦ -0,3 0,3 -0,5 -0,7 -0,4

ϕ= 12 % a / mm 13 15 17 15 16
KI / N/mm3/2 79,0 87,8 98,1 117,4 138,8
KII / N/mm3/2 0,2 -0,3 -0,2 -0,1 1,0
ϕ0 / ◦ -0,3 0,4 0,2 0,1 -0,8

ϕ= 15 % a / mm 13 14 13 15 15
KI / N/mm3/2 79,7 85,3 94,6 125,1 150,7
KII / N/mm3/2 0,3 0,4 0,2 -0,1 -0,0
ϕ0 / ◦ -0,3 -0,5 -0,2 0,1 0,1

Unabhängig von der Orientierung (Faserwinkel α) und dem Faservolumenanteil ϕ wer-
den die Werte des Spannungsintensitätsfaktors KI mit zunehmender Risslänge a größer.
Die Mode I-Anteile sind deutlich größer als die Mode II-Anteile, welche um den Wert
Null liegen. Bei der Definition der Verstärkungseigenschaften parallel zum Riss der Län-
ge a (Faserwinkel α= 0◦) sind die Werte des Spannungsintensitätsfaktors KI nahezu
indifferent. Die unterschiedlichen mechanischen Eigenschaften spiegeln sich erst bei größe-
ren Faserwinkeln α≥ 67,5◦ in den Spannungsintensitätsfaktoren (insbesondere KI) wider
(KI = 98, 3 N/mm3/2 bei ϕ= 3 % bzw. KI = 150, 7 N/mm3/2 bei ϕ= 15 %, jeweils bei dem
Faserwinkel α= 90◦ und der Risslänge a= 15 mm). Der Abknickwinkel ϕ0 ist bei jeder
Konstellation nahezu 0◦.

In Abbildung 5.7 sind am Beispiel einer CT-Probe (Faserwinkel α= 90◦, Faservolumen-
anteil ϕ= 5,7 %) die Rissverläufe aus dem Experiment (weiß hervorgehoben) und der
numerischen Simulation (nach dem ersten Simulationsschritt) bei homogener Modellierung
und einem Faservolumenanteil ϕ= 6 % (orange gekennzeichnet) dargestellt.

Die homogene Modellierung ist somit nicht geeignet zur Ermittlung des Rissabknickwin-
kels β und im folgenden Abschnitt wird der inhomogener Ansatz betrachtet.
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Simulation
Experiment

Abbildung 5.7: Experimentell und numerisch ermittelte Risspfade in einer CT-Probe
(Faserwinkel α = 90◦, Faservolumenanteil ϕ = 5,7 %)

Inhomogene Modellierung

In Abbildung 5.8 sind exemplarisch die Verläufe der größten Hauptnormalspannung in
CT-Proben mit dem Faservolumenanteil ϕ= 12 % und unterschiedlichen Faserwinkeln α
bei inhomogener Modellierung (Schichtverbund) und isotropen Materialverhalten dar-
gestellt. Die Initialrissspitze befindet sich dabei jeweils in der Matrix am Übergang zur
Faserschicht. Aufgrund von Schwierigkeiten bei der Auswertung von CT-Proben mit dem
Faserwinkel α= 90◦ ist eine Faserorientierung α= 85◦ zum Initialriss gewählt.

Die Proben weisen eine inhomogene Spannungsverteilung auf und in Rissspitzennähe liegen
Spannungskonzentrationen vor, die in der Ausprägung jeweils voneinander abweichen. Die
unterschiedlichen Spannungsfelder resultieren aufgrund der verschiedenen Faserwinkel α
und somit der Lage des Initialrisses zu den Faser- und Matrixschichten. Demzufolge tre-
ten bei Belastungen senkrecht zum Initialriss mit unterschiedlichen Faserorientierungen
faserwinkelabhängige Spannungsverläufe auf. Das bedeutet, dass der Faserwinkel α das
Spannungsfeld beeinflusst. Im Vergleich zur Abbildung 5.6, wo diese Ausprägungen ins-
besondere bei paralleler und senkrechter Faserorientierung zum Initialriss festzustellen
sind, ergeben sich aufgrund der Modellierung als Schichtverbund für jede dargestellte
Winkelkonfiguration derartige Spannungsverteilungen. Des Weiteren ist ersichtlich, dass
die Faserschichten größere Spannungen aufweisen und dass deren Traganteil somit größer
im Vergleich zu den Matrixbereichen ist.

Tabelle 5.6 enthält die Spannungsintensitätsfaktoren KI und KII sowie die Rissabknickwin-
kel ϕ0 einer numerischen Simulation für alle Knoten k an der Rissfront bei inhomogener
Modellierung. Faser- und Matrixschicht sind jeweils isotrop angenommen und der Faser-
volumenanteil ϕ beträgt 3 %. Die Werte der Spannungsintensitätsfaktoren für Mode I sind
ebenfalls deutlich größer als für Mode II. Die Rissabknickwinkel ϕ0 sind betragsmäßig im
mittleren einstelligen Bereich (ϕ0 = −6 ... −1◦).

Tabelle 5.7 beinhaltet die Daten bei einer inhomogener Modellierung als Schichtverbund
mit isotropen Materialparametern der Komponenten. Die orthotropen Eigenschaften der
Fasern sind hierbei nicht berücksichtigt, um den Einfluss größerer Eigenschaftsunterschiede
der Schichten auf die bruchmechanischen Größen zu analysieren. Dabei befindet sich die
Rissspitze jeweils am Übergang von Matrix- und Faserschicht. Der Riss befindet sich somit
im nachgiebigeren der beiden Materialien und die Mode I-Spannungsintensitätsfaktoren
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sind im Vergleich zum homogenen FE-Modell kleiner.

a) b)

c) d)

e)

Abbildung 5.8: Verläufe der größten Hauptnormalspannung in inhomogenen und isotropen
CT-Proben mit unterschiedlichen Faserwinkeln α:
a) α = 0◦, b) α = 22,5◦, c) α = 45◦, d) α = 67,5◦, e) α = 90◦

Mit steigendem Faservolumenanteilen ϕ und folglich dickeren Faserlagen nehmen (im
Schichtverbund) die Spannungsintensitätsfaktoren KI bei vergleichbaren Risslängen a ab
(KI = 42, 5 N/mm3/2 bei ϕ= 3 % bzw. KI = 32, 6 N/mm3/2 bei ϕ= 15 %, jeweils bei dem
Faserwinkel α= 90◦ und der Risslänge a= 15 mm). Ursache ist die Lage des Risses in
der nachgiebigeren Matrixschicht an der Grenzfläche zur Faserschicht und die steigende
Tragwirkung der Faserschichten mit zunehmenden Faservolumenanteilen ϕ. Die Mode I-
Anteile sind ebenfalls größer als die Mode II-Anteile, wobei das Verhältnis der Moden
(KII/KI) größer als bei der homogenen Modellierung ist.
Der Abknickwinkel ϕ0 weist hierbei große Unterschiede bei verschiedenen Faserwinkeln α
und Faservolumenanteilen ϕ auf. Unabhängig von dem Vorzeichen treten die größten
Abknickwinkel ϕ0 bei den Faserwinkeln α= 45◦ und 67,5◦ auf.
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Tabelle 5.6: Ergebnisse der numerischen Simulation entlang einer Knotenrissfront bei
inhomogener Modellierung

k KI / N/mm3/2 KII / N/mm3/2 ϕ0 / ◦

1 38,20 1,28 -3,82
2 41,34 0,91 -2,52
3 41,48 1,01 -2,79
4 42,21 1,79 -4,83
5 42,61 2,43 -6,49
6 43,22 1,70 -4,49
7 42,89 0,84 -2,25
8 43,93 0,90 -2,34
9 44,48 0,89 -2,28

10 44,03 0,82 -2,13
11 43,22 1,04 -2,76
12 43,64 2,19 -5,71
13 43,65 1,40 -3,66
14 43,91 0,71 -1,86
15 43,96 0,68 -1,77
16 43,70 0,39 -1,02
17 43,48 0,37 -0,98
18 42,21 0,56 -1,51
19 41,97 0,32 -0,86
20 40,88 1,22 -3,42
21 38,01 1,04 -3,12

42,52 1,07 -2,89

In Abbildung 5.9 sind am Beispiel einer CT-Probe (Faserwinkel α= 90◦, Faservolumen-
anteil ϕ= 5,7 %) die Rissverläufe aus dem Experiment (weiß hervorgehoben) und der
numerischen Simulation (nach dem ersten Simulationsschritt) bei inhomogener Modellie-
rung und einem Faservolumenanteil ϕ= 6 % (orange gekennzeichnet) dargestellt.

Eine Tendenz, dass die Simulationsergebnisse den experimentellen Ergebnissen nahe kom-
men, ist nicht zu verzeichnen, sodass dieser Modellierungsansatz ebenso nicht ausreichend
ist. Lediglich bei der senkrechter Faserorientierung (α= 90◦) nimmt der Abknickwinkel ϕ0
mit steigendem Faservolumenanteil ϕ von ϕ0 = −2,9◦ (bei ϕ= 3 %) bis ϕ0 = −19,2◦ (bei
ϕ= 15 %) zu – allerdings nicht in der Größenordnung wie die experimentellen Rissabknick-
winkel β (siehe Kapitel 4.3).

Die diesbezüglich in Kapitel 2.2.2 beschriebenen Bruchkriterien für inhomogene und ani-
sotrope Materialien können für die Flachsfaser-Epoxidharz-Verbunde nicht verwendet
werden. Das Kriteriums der Tangentialspannung nach Schramm und Richard (TSSR)
[Sch14] ermöglicht die Vorhersage des Rissverhaltens in bruchmechanisch gradierten Mate-
rialien unter statischer und zyklischer Belastung (mit positivem Spannungsverhältnis). Die
Materialien weisen dabei verschiedene ortsabhängige bruchmechanische Kennwerte, die
diskret oder kontinuierlich von einem Material (M1) in das andere Material (M2) überge-
hen können. Des Weiteren sind mit dem Konzept Aussagen zum Beginn des stabilen und
instabilen Risswachstums sowie der eintretenden Rissausbreitungsrichtung möglich. Bei
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Faser-Kunststoff-Verbunden kann aufgrund der Fasern und deren umgebender Matrix keine
Trennung in zwei angrenzende Materialbereiche erfolgen und es sind mehrere Grenzflächen
in Form von Fasermantelflächen vorhanden. Der Riss kann sich innerhalb des Verbundes
in unterschiedliche Richtungen (zu verschiedenen Zeitpunkten) ausbreiten – ausgehend
von einem Wachstum senkrecht zu den unidirektionalen Fasern über ein Abknicken mit
schrägem Verlauf bis zu einem Fortschritt parallel zur Faserorientierung.

Tabelle 5.7: Numerisch ermittelte Daten bei inhomogener Modellierung

α / ◦ 0 22,5 45 67,5 90
ϕ= 3 % a / mm 13 14 15 16 15

KI / N/mm3/2 80,9 61,1 49,7 52,5 42,5
KII / N/mm3/2 6,6 8,9 7,6 4,5 1,1
ϕ0 / ◦ -8,8 -15,9 -16,5 -9,5 -2,9

ϕ= 6 % a / mm 13 15 16 15 13
KI / N/mm3/2 82,5 64,4 49,2 25,5 27,7
KII / N/mm3/2 -0,5 -1,6 8,19 -16,8 1,4
ϕ0 / ◦ 0,7 2,9 -17,9 32,5 -5,9

ϕ= 9 % a / mm 13 15 17 16 17
KI / N/mm3/2 68,6 66,7 46,7 39,3 31,8
KII / N/mm3/2 8,5 14,5 13,9 4,4 2,4
ϕ0 / ◦ -13,4 -22 -28,3 -12,5 -8,7

ϕ= 12 % a / mm 13 15 17 15 16
KI / N/mm3/2 86,9 66,2 44,1 31,8 33,4
KII / N/mm3/2 3,8 14,0 12,4 7,5 4,6
ϕ0 / ◦ -5,3 -21,9 -27,3 -24,3 -14,5

ϕ= 15 % a / mm 13 14 13 15 15
KI / N/mm3/2 88,8 91,0 31,6 32,3 32,6
KII / N/mm3/2 -5,8 10,2 12,3 7,2 6,0
ϕ0 / ◦ 6,9 -12,1 -34,7 -22,5 -19,2

Simulation
Experiment

Abbildung 5.9: Experimentell und numerisch ermittelte Risspfade in einer CT-Probe
(Faserwinkel α = 90◦, Faservolumenanteil ϕ = 5,7 %)
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Das Rissausbreitungskriterium nach Judt [JZR+18] ist für Materialien mit orthotropen
elastischen Eigenschaften postuliert. Die Validierung erfolgt an kurzfaserverstärkten Kunst-
stoffen (Polypropylen mit Glas- bzw. Cellulosefasern), welche im Spritzgussverfahren
hergestellt werden. Die Fasern sind im Verbund wirr orientiert und die CT-Proben weisen
ein elastisch-plastisches Verhalten auf. Aufgrund der Wahl von Langfasern, die im polyme-
ren Matrixsystem (Epoxidharz) unidirektional ausgerichtet sind und eines linear-elastischen
Materialverhaltens der Flachsfaser-Kunststoff-Verbunde wird dieses Kriterium ebenfalls
zur Vorhersage der Rissausbreitung ausgeschlossen.

Somit wird im nächsten Kapitel ein auf den empirischen Daten basierendes mathematisches
Modell generiert, welches die Vorhersage der Rissausbreitungsrichtung bei beliebigen
Faserwinkeln α und Faservolumenanteilen ϕ ermöglichen soll.
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6 Konzept zur Vorhersage der
Rissabknickwinkel

6.1 Erstellung des mathematischen Modells

6.1.1 Vorüberlegungen

Auf Basis der experimentellen Daten (Kapitel 4) wird im Folgenden ein mathematisches Mo-
dell erstellt, welches in Abhängigkeit von dem Faserwinkel α und dem Faservolumenanteil ϕ
den Rissabknickwinkel β ermittelt. Das Modell soll auf den gesamten Definitionsbereich
anwendbar sein. In Abbildung 6.1 sind die Punkte dargestellt. Bei Rissbifurkationen ist
jeweils der positive Rissabknickwinkel und bei negativen Winkeln der Betrag angegeben,
siehe Abbildung 4.7. Mit Hilfe einer Regressionsanalyse wird (unter Verwendung der
Methode der kleinsten Quadrate) eine Funktion zur Vorhersage der Rissabknickwinkel
ermittelt.
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Abbildung 6.1: Abknickwinkel β der Probenserien A und B in Abhängigkeit von dem
Faserwinkel α und dem Faservolumenanteil ϕ
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Die Datenpunkte scheinen gewissen Gesetzmäßigkeiten zu unterliegen:

G1 Punkte oberhalb des Faservolumenanteils ϕ≈ 6 % liegen annähernd in einer Ebene,

G2 Punkte unterhalb des Faservolumenanteils ϕ≈ 4 % können durch eine gekrümmte
Fläche beschrieben werden und

G3 zwischen G1 und G2 gibt es einen Übergangsbereich.

Folglich wird eine erste Einteilung in drei Bereiche für die nächstgelegenen Faservolumen-
anteile vorgenommen:

B1 Bereich 1 umfasst Faservolumenanteile ϕ≥ 5,7 %,

B2 Bereich 2 beinhaltet Faservolumenanteile ϕ≤ 4,8 % und

B3 im Bereich 3 soll ein Übergang zwischen den Bereichen 1 und 2 erfolgen.

Für die Bereiche 1 und 2 werden lineare Regressionsmodelle gewählt und die Beschreibung
erfolgt jeweils in Form von Linearkombinationen, siehe Gleichung (6.1). Die Indizierung der
Regressionsfunktionen β(α, ϕ) erfolgt entsprechend des Bereiches. Durch die Wahl eines
linearen Ansatzes sind die Regressionskoeffizienten λi bzw. λj relativ einfach bestimmbar.
Die Funktionen fi(α, ϕ) und fj(α, ϕ) sind dazugehörige Ansatzfunktionen, die sowohl linear
als auch nichtlinear sein können.

βI
1(α, ϕ) =

n∑
i=1

λi · fi(α, ϕ) und βI
2(α, ϕ) =

m∑
i=1

λj · fj(α, ϕ) (6.1)

Um die Wirksamkeit der Regressionsfunktionen auf den jeweiligen Bereich einzuschränken,
werden diese mit Bereichsfunktionen fb,k (k = 1, 2) multipliziert. Damit soll gewährleistet
werden, dass in Abhängigkeit von dem Faservolumenanteil ϕ der jeweilige Ansatz für
den entsprechenden Bereich verwendet wird. Die resultierenden Funktionen β1(α, ϕ) und
β2(α, ϕ) sind in Gleichung (6.2) angegeben. Die Bereichsfunktionen fb,1(ϕ) und fb,2(ϕ)
sollen somit als eine Art Schalter fungieren.

β1(α, ϕ) = βI
1(α, ϕ) · fb,1(ϕ) und β2(α, ϕ) = βI

2(α, ϕ) · fb,2(ϕ) (6.2)

Wegen der gleichen Grundstruktur der Linearkombinationen (Gleichung (6.2)) können
beide Regressionsfunktionen superponiert werden, β(α, ϕ) =β1(α, ϕ) +β2(α, ϕ), siehe Glei-
chung (6.3). Damit ergibt sich eine Funktion β(α, ϕ), die auf den gesamten Datenbereich
anwendbar ist und die gewünschten Eigenschaften liefert.

β(α, ϕ) =

 n∑
i=1

λi · fi(α, ϕ)

 fb,1(ϕ) +

 m∑
j=1

λj · fj(α, ϕ)

 fb,2(ϕ)

=
n∑

i=1

λi · fi(α, ϕ) · fb,1(ϕ) +
m∑

j=1

λj · fj(α, ϕ) · fb,2(ϕ)

(6.3)
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6.1.2 Wahl der Bereichsfunktionen

Die Bereichsfunktionen fb,1(ϕ) und fb,2(ϕ) sollen gewährleisten, dass die Regressionsfunkti-
on des entsprechenden Bereiches ausgewählt wird. Demzufolge soll z. B. zur Ermittlung des
Rissabknickwinkels β(α, ϕ) bei Faservolumenanteilen ϕ≥ϕth primär die Funktion β1(α, ϕ)
wirken. Der Parameter ϕth kann als Schwellenwert zur Abgrenzung der Bereiche angesehen
werden. Die Bereichsfunktionen sollen somit als Schalter fungieren, um die Wirkung auf
einen Bereich einzugrenzen.
In Gleichung (6.4) sind die näherungsweisen Eigenschaften der Funktionen fb,1(ϕ) und
fb,2(ϕ) unter Einbeziehung des Schwellenwertes ϕth,1 bzw. ϕth,2 angegeben. Die Funkti-
on fb,1(ϕ) soll für verhältnismäßig geringere Faservolumenanteile ϕ als der Schwellen-
wert ϕth,1 annähernd 0 und andernfalls 1 sein. Die Bereichsfunktion fb,2(ϕ) hingegen soll
sich umgekehrt dazu verhalten. Als weitere Eigenschaft sollen beide Funktionen monoton
sein. Der Übergang zwischen den Bereichen 1 und 2 soll nach Möglichkeit so erfolgen, dass
die Eigenschaften in diesem Bereich gut abgebildet werden.

fb,1(ϕ) =
{

0 für ϕ � ϕth,1

1 für ϕ � ϕth,1
und fb,2(ϕ) =

{
1 für ϕ � ϕth,2

0 für ϕ � ϕth,2
(6.4)

Die Funktionen werden in der Reihenfolge aufgestellt, dass im ersten Schritt Umschaltwir-
kung sowie Stetigkeit berücksichtigt werden und anschließend die Lage des Übergangsbe-
reiches einbezogen wird. Jeder Schritt bis zur fertigen Funktion wird mit römischen Zahlen
in aufsteigender Reihenfolge gekennzeichnet.
Die Bildung der Bereichsfunktionen wird am Beispiel der Funktion fb,1(ϕ) dargestellt. Als
Ausgangsfunktion f I

b,1(ϕ) wird eine Hyperbelfunktion (Tangens hyperbolicus) gewählt.
Diese ist in Gleichung (6.5) angegeben und in Abbildung 6.2 veranschaulicht. Die Funkti-
on f I

b,1(ϕ) wächst dabei für Argumente von −∞ bis ∞ monoton von -1 auf 1 an [BSM+06].

f I
b,1(ϕ) = tanhϕ = eϕ − e−ϕ

eϕ + e−ϕ
= e2ϕ − 1
e2ϕ + 1 (6.5)

−3 −2 −1 1 2 3

−1

1
f I

b,1(ϕ)

ϕ

f I
b,1(ϕ)

Abbildung 6.2: Tangens hyperbolicus

Die Funktion fb,1(ϕ) soll nur positive Funktionswerte aufweisen und auf den Wertebe-
reich [0, 1] beschränkt sein. Um nicht negative Funktionswerte zu erhalten, wird die
Ausgangsfunktion f I

b,1(ϕ) um 1 erhöht, Gleichung (6.6).

f II
b,1(ϕ) = f I

b,1(ϕ) + 1 = e2ϕ − 1
e2ϕ + 1 + 1 = 2e2ϕ

e2ϕ + 1 (6.6)
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Damit darüber hinaus 0 ≤ fb,1(ϕ) ≤ 1 gilt, wird im nächsten Schritt die Funktion f II
b,1(ϕ)

durch den Faktor 2 dividiert. Die Funktion f III
b,1(ϕ) ist in Gleichung (6.7) angegeben und

in Abbildung 6.3 dargestellt.

f III
b,1(ϕ) =

f II
b,1(ϕ)

2 = e2ϕ

e2ϕ + 1 (6.7)

−3 −2 −1 1 2 3

1

2
f III

b,1(ϕ)

ϕ

f III
b,1(ϕ)

Abbildung 6.3: Modifizierter Tangens hyperbolicus

Eine weitere Modifikation der Funktion kann durch Variation des Koeffizienten im Exponen-
ten erfolgen, wenn für den Faktor 2 andere Werte zugelassen werden. In Gleichung (6.8) ist
ein Exponentialkoeffizient λ0 berücksichtigt, welcher den Anstieg des Übergangsbereiches
und somit dessen Breite beeinflusst. Die Wirkung unterschiedlicher positiver Exponential-
koeffizienten λ0 veranschaulicht Abbildung 6.4.

f IV
b,1(ϕ) = eλ0ϕ

eλ0ϕ + 1 (6.8)

−3 −2 −1 1 2 3

1

2
f IV

b,1(ϕ), λ0 = 2
f IV

b,1(ϕ), λ0 = 4
f IV

b,1(ϕ), λ0 = 6

ϕ

f IV
b,1(ϕ)

Abbildung 6.4: Modifizierter Tangens hyperbolicus mit unterschiedlichen positiven
Exponentialkoeffizienten λ0

Eine Verschiebung entlang der Achse des Faservolumenanteils ϕ wird durch Ergänzung eines
Parameters (Schwellenwert ϕth,1) im Exponenten der Funktion erreicht, Gleichung (6.9).
Somit werden die Breite des Übergangsbereiches über den Exponentialkoeffizienten λ0
und die Lage mit Hilfe des Schwellenwertes ϕth,1 festgelegt. In Abbildung 6.5 ist die
Funktion fb,1(ϕ) mit den gleichen Exponentialkoeffizienten λ0 wie in Abbildung 6.4 und
dem Parameter ϕth,1 = 3 dargestellt.

fb,1(ϕ) = eλ0(ϕ−ϕth,1)

eλ0(ϕ−ϕth,1) + 1
(6.9)
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1 2 3 4 5 6

1

2
fb,1(ϕ), λ0 = 2, ϕth,1 = 3
fb,1(ϕ), λ0 = 4, ϕth,1 = 3
fb,1(ϕ), λ0 = 6, ϕth,1 = 3

ϕ

fb,1(ϕ)

Abbildung 6.5: Modifizierter Tangens hyperbolicus mit unterschiedlichen positiven
Exponentialkoeffizienten λ0 und dem Parameter ϕth,1 = 3

Die Bereichsfunktion fb,2(ϕ) kann durch Spiegelung (Umklappung) der Funktion fb,1(ϕ) an
einer Parallelen zur Ordinatenachse, die sich auf Höhe des Schwellenwertes ϕth,2 befindet,
erzeugt werden. Das erfolgt über das Vorzeichen des Exponentialkoeffizienten λ0. Die Funk-
tion fb,2(ϕ) ist in Gleichung (6.10) angegeben. Analog zu Abbildung 6.5 ist in Abbildung 6.6
die Wirkung verschiedener Exponentialkoeffizienten λ0 bei dem Schwellenwert ϕth,2 = 3
veranschaulicht. Die beiden Parameter führen ebenfalls eine Stauchung bzw. Streckung
des Übergangsbereiches sowie eine Verschiebung auf der Achse des Faservolumenanteils ϕ
herbei.

fb,2(ϕ) = e−λ0(ϕ−ϕth,2)

e−λ0(ϕ−ϕth,2) + 1
= eλ0(ϕth,2−ϕ)

eλ0(ϕth,2−ϕ) + 1
(6.10)
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2
fb,2(ϕ), λ0 = 2, ϕth,2 = 3
fb,2(ϕ), λ0 = 4, ϕth,2 = 3
fb,2(ϕ), λ0 = 6, ϕth,2 = 3

ϕ

fb,2(ϕ)

Abbildung 6.6: Modifizierter Tangens hyperbolicus mit unterschiedlichen
Exponentialkoeffizienten λ0 und dem Parameter ϕth,2 = 3

Die Bereichsfunktionen fb,1(ϕ) und fb,2(ϕ) weisen eine gleiche Grundstruktur auf. Lediglich
durch das Vorzeichen des Exponentialkoeffizienten λ0 ergibt sich in den Klammern der
Exponenten ein Tausch der Parameter. Die generalisierte Form ist in Gleichung (6.11)
angegeben. Prinzipiell besteht die Möglichkeit, für beide Funktionen einen gemeinsamen
Exponentialkoeffizienten λ0 und Schwellenwert ϕth festzulegen. Im Gegensatz dazu kann
für jede Ansatzfunktion auch eine separate Bereichsfunktion (mit jeweils unterschiedlichen
Parametern λ0 und ϕth) definiert werden.

fb,k(ϕ) = eλ0,k ϕk

eλ0,k ϕk + 1 mit ϕk = (−1)k+1(ϕ− ϕth,k) für k = 1, 2 (6.11)
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96 6 Konzept zur Vorhersage der Rissabknickwinkel

6.1.3 Wahl der Ansatzfunktionen

Die Wahl der Ansatzfunktionen erfolgt basierend auf den Ergebnissen aus den experimen-
tellen Untersuchungen. Die Datenpunkte der Rissabknickwinkel β (siehe Abbildung 6.1 und
Kapitel 4.3.4) scheinen für Faservolumenanteile ϕ≥ 5,7 % in sehr guter Näherung in einer
Ebene zu liegen, sodass ein entsprechender Ansatz für diesen Bereich gewählt wird. In Glei-
chung (6.12) sind Linearkombinationen für eine Ebene mit einer Bereichsfunktion fb,1(ϕ)
für die Regressionsfunktion β1(α, ϕ) angegeben.

β1(α, ϕ) =
[
λ1 + λ2 · α+ λ3 · ϕ

]
fb,1(ϕ) (6.12)

Für geringere Werte (ϕ< 5,7 %) wird ebenfalls ein Ebenenansatz verwendet, wobei weitere
Ansatzfunktionen zur Modellierung der Krümmung in Richtung der Achse des Faserwin-
kels α zu ergänzen sind. Nachfolgend werden drei potenzielle Ansatzfunktionen vorgestellt:

A1 fj(α, ϕ) = 1
(α− α1)2 ,

A2 fj(α, ϕ) = 1
(α+ α1)(α2 − α) und

A3 fj(α, ϕ) = ln(α1 − α).

Dabei sind α1 und α2 Parameter zur Anpassung der Krümmung. Es wird eine Ansatz-
funktion zur Krümmungsmodellierung hinzugefügt. Durch zwei einstellbare Parameter
ist eine bessere Anpassung möglich, sodass Funktion A2 gewählt wird. Die Regressions-
funktion β2(α, ϕ) in Gleichung (6.13) beinhaltet neben den Ansatzfunktionen für Ebene
und Krümmung noch eine Bereichsfunktion fb,2(ϕ), womit der zweite Bereich beschrieben
wird.

β2(α, ϕ) =
[
λ4 + λ5 · α+ λ6 · ϕ+ λ7

(α+ α1)(α2 − α)

]
fb,2(ϕ) (6.13)

Nach Gleichung (6.3) ergibt sich die Regressionsfunktion β(α, ϕ) aus der Superpostion
beider Ansätze. Es ist zudem ersichtlich, dass für jeden Bereich jeweils eine Funktion fb,k(ϕ)
(mit k = 1, 2) definiert wird. Des Weiteren sollen die Bereiche gleiche Exponentialkoef-
fizienten λ0 und Schwellenwerte ϕth haben. Die zusammengesetzte Funktion β(α, ϕ) ist
in Gleichung (6.14) dargestellt. Eine einfache Handhabbarkeit wird erreicht, indem alle
Größen dimensionslos eingesetzt werden.

β(α, ϕ) =
[
λ1 + λ2 · α+ λ3 · ϕ

]
eλ0(ϕ−ϕth)

eλ0(ϕ−ϕth) + 1

+
[
λ4 + λ5 · α+ λ6 · ϕ+ λ7

(α+ α1)(α2 − α)

]
eλ0(ϕth−ϕ)

eλ0(ϕth−ϕ) + 1

(6.14)

Bei der Regressionsanalyse werden Ausreißer wie z. B. der Abknickwinkel β= | − 82◦| bei
dem Faserwinkel α= 90◦ und dem Faservolumenanteil ϕ= 4,8 % (siehe Abbildung 6.1)
nicht berücksichtigt.
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6.2 Anwendung des Modells

Für die Regressionsanalyse werden die experimentellen Daten (Rissabknickwinkel β) ver-
wendet und den Parametern der Regressionsfunktionen β1(α, ϕ) und β2(α, ϕ) werden
Werte zugewiesen. Die Zuweisung erfolgt für die Parameter α1 und α2 der Ansatzfunkti-
on fj(α, ϕ) = 1 /

[
(α+ α1)(α2 − α)

]
und die Exponentialkoeffizienten λ0,1 und λ0,2 sowie

Schwellenwerte ϕth,1 und ϕth,2 der Bereichsfunktionen fb,1(ϕ) und fb,2(ϕ). Dabei werden
zur Vereinfachung gleiche Exponentialkoeffizienten λ0 und Schwellenwerte ϕth angenom-
men. Alle Werte werden zu Beginn manuell festgelegt bzw. bei nachfolgenden Iterationen
bis zum Erreichen eines Abbruchkriteriums angepasst. Die Regressionskoeffizienten λi bzw.
λj werden anschließend durch Aufstellen und Lösen eines Gleichungssystems (mit Hilfe
des Computeralgebrasystems Maxima) ermittelt.

6.2.1 Anwendung auf reduzierten Datensatz

Die Daten weisen stark differierende Rissabknickwinkel β im Übergangsbereich (Faservolu-
menanteile 4,8 % ≤ϕ≤ 7 %) auf. Zwischen diesem Bereich liegt nur eine Datenreihe der
Probenserie B (ϕ= 5,7 %). Als Grundlage für die Regressionsanalyse werden alle Daten
beider Serien bis auf Ausreißer und die Datenreihe der Probenserie B mit dem Faser-
volumenanteil ϕ= 5,7 % verwendet. Ziel ist eine Abschätzung der Rissabknickwinkel β im
Bereich dieser Datenreihe.
Die Parameter α1 und α2 zur Anpassung der Krümmung werden iterativ über die manuelle
Eingabe von Werten bestimmt. Als Startwerte sind α1 =α2 = 111◦ bei dem Exponenti-
alkoeffizienten λ0 = 2 und dem Schwellenwert ϕth = 5 % gewählt. In Tabelle 6.1 sind die
Iterationsergebnisse dargestellt. Das Abbruchkriterium ist in Gleichung (6.15) angegeben.
Beträgt die Abweichung ε≤ 0,5 % (Wert selbst festgelegt), wird die Iteration beendet.
Des Weiteren soll δrms, i ≤ δrms, i−1 gelten. Für α1 = 101◦ und α2 = 101◦ resultieren die
kleinsten mittleren quadratischen Fehler δrms (rms für engl. root mean square). Die Re-
gressionsfunktion β(α, ϕ) für die Parameter λ0 = 2 und ϕth = 5 % ist in Gleichung (6.16)
angeben. Dabei ist die Zusammensetzung aus beiden Ansätzen mit den Bereichsfunktionen
zu erkennen, vgl. Gleichung (6.14). Die dazugehörige Regressionsfläche ist in Abbildung 6.7
veranschaulicht.

ε = |δrms, i−1 − δrms, i|
δrms, i

≤ 0,5 % und δrms, i ≤ δrms, i−1 (6.15)

Tabelle 6.1: Einfluss der Parameter α1 und α2 auf den mittleren quadratischen Fehler δrms bei
dem Exponentialkoeffizienten λ0 = 2 und dem Schwellenwert ϕth = 5 %

Parameter Parameter Mittlerer quadratischer Fehler Abweichung
i α1 /

◦ α2 /
◦ δrms /

◦ ε /%
1 111 111 5,158 –
2 109 109 5,119 0,76
3 107 107 5,082 0,73
4 105 105 5,047 0,69
5 103 103 5,016 0,62
6 101 101 4,991 0,50
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β(α, ϕ) =
[
2,09 + 0,98α − 0,05ϕ

]
e 2 (ϕ − 5)

e 2 (ϕ − 5) + 1

+
[
38,29 + 1,17α − 5,04ϕ − 255360,82

(α+ 101)(101 − α)

]
e 2 (5 − ϕ)

e 2 (5 − ϕ) + 1

(6.16)
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Abbildung 6.7: Regressionsfläche mit Datenpunkten der Probenserien A und B

Der Einfluss des Exponentialkoeffizienten λ0 und des Schwellenwertes ϕth auf den mittleren
quadratischen Fehler δrms ist in Tabelle 6.2 (ohne die Laufvariable i) für ausgewählte
Wertepaare – unter Berücksichtigung der Parameter α1 =α2 = 101◦ – angegeben. Die
manuelle Iteration wird abgebrochen, sobald δrms, i ≤ δrms, i−1 nicht mehr erfüllt ist. Bei dem
Exponentialkoeffizient λ0 = 4 und dem Schwellenwert ϕth = 6 % tritt mit δrms = 3, 067◦ der
kleinste Fehler auf. Die vollständige Regressionsfunktion β(α, ϕ) wird mit Gleichung (6.17)
beschrieben. Die Regressionsfläche ist in Abbildung 6.8 zusammen mit den experimentellen
Daten dargestellt.

Tabelle 6.2: Einfluss des Exponentialkoeffizienten λ0 und des Schwellenwertes ϕth auf den
mittleren quadratischen Fehler δrms

Exponentialkoeffizient Schwellenwert Mittlerer quadratischer Fehler
λ0 ϕth /% δrms /

◦

2,0 5,0 4,991
2,0 5,5 3,660
4,0 5,5 3,187
4,0 6,0 3,067
6,0 6,0 3,088
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β(α, ϕ) =
[
0,78 + 0,99α + 8,48 · 10−3 ϕ

]
e 4 (ϕ − 6)

e 4 (ϕ − 6) + 1

+
[
24,63 + 1,17α − 0,61ϕ − 237080,89

(α+ 101)(101 − α)

]
e 4 (6 − ϕ)

e 4 (6 − ϕ) + 1

(6.17)
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Abbildung 6.8: Regressionsfläche mit Datenpunkten der Probenserien A und B

Tabelle 6.3 enthält analytisch und experimentell ermittelte Rissabknickwinkel β für ausge-
wählte Paarungen. Die experimentellen Ergebnisse sind jeweils das arithmetisches Mittel.
Für Faservolumenanteile ϕ≤ 4,8 % (Bereich 2) und ϕ≥ 7 % (Bereich 1) liegen die Wer-
te mehrheitlich dicht beieinander. Die maximale Differenz beträgt weniger als 10◦. Die
Funktion ist somit zur Vorhersage der Rissabknickwinkel in diesen Bereichen geeignet.

Tabelle 6.3: Funktionswerte des Rissabknickwinkels β in Abhängigkeit von dem Faserwinkel α
und dem Faservolumenanteil ϕ

α / ◦

ϕ/% 0 22,5 45 67,5 90
β(α, ϕ) / ◦ – Gleichung (6.17)

4,8 -1,5 23,5 45,3 58,7 14,7
5,7 -1,4 23,0 44,9 60,3 31,3
6,5 0,4 23,1 45,4 66,7 81,1
7,0 0,8 23,2 45,5 67,8 88,9

β(α, ϕ) / ◦ – experimentell
4,8 0,9 21,2 44,7 66,2 11,4
5,7 0,3 21,7 45,0 65,8 88,2
7,0 1,3 22,6 47,0 70,4 85,3

https://doi.org/10.51202/9783186354181 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:45:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186354181


100 6 Konzept zur Vorhersage der Rissabknickwinkel

Die Eigenschaften im Übergangsbereich werden allerdings für Faserwinkel α→ 90◦ un-
zureichend wiedergegeben. Bei einem Faservolumenanteil ϕ= 5, 7 % weisen berechneter
Rissabknickwinkel β= 31, 3◦ und experimenteller Winkel β= 88, 2◦ eine Differenz von über
50◦ auf.

6.2.2 Anwendung auf vollständigen Datensatz

Basierend auf dem Modell für die Ermittlung der Rissabknickwinkelfunktion β(α, ϕ) im
Kapitel 6.1 werden im Folgenden alle Datenpunkte beider Serien (bis auf Ausreißer) für
die Regressionsanalyse verwendet. Die Regressionsfunktion β(α, ϕ) dient zur Abschätzung
bzw. Vorhersage von Rissabknickwinkeln β für beliebige Faserwinkel α und Faservolumen-
anteile ϕ. Der Datensatz der Probenserie A bzw. B ist in Abbildung 6.1 dargestellt. Die
Vorgehensweise bei der manuellen Iteration erfolgt analog zu der bisherigen.

Anhand des geringsten mittleren quadratischen Fehlers δrms ergibt sich der Schwellen-
wert ϕth = 5,35 %, Tabelle 6.4. Zudem resultiert bei diesem iterativen Vorgehen der Expo-
nentialkoeffizient λ0 = 10, der den (rapiden) Anstieg des Rissabknickwinkels β bei großen
Faserwinkeln α im Übergangsbereich bewirkt. Die Parameter α1 = 101◦ und α2 = 101◦ sind
wieder iterativ gewählt. Gleichung (6.18) gibt die Regressionsfunktion β(α, ϕ) für den
vollständigen Datensatz an.

Tabelle 6.4: Einfluss des Exponentialkoeffizienten λ0 und des Schwellenwertes ϕth auf den
mittleren quadratischen Fehler δrms

Exponentialkoeffizient Schwellenwert Mittlerer quadratischer Fehler
λ0 ϕth /% δrms /

◦

4 5,25 3,578
6 5,25 3,138
8 5,25 3,040

10 5,25 3,019
10 5,30 3,012
10 5,35 3,010
10 5,40 3,080

β(α, ϕ) =
[

− 0,21 + 0,99α + 0,1ϕ
]

e 10 (ϕ − 5,35)

e 10 (ϕ − 5,35) + 1

+
[
24,52 + 1,17α − 0,59ϕ − 236616,86

(α+ 101)(101 − α)

]
e 10 (5,35 − ϕ)

e 10 (5,35 − ϕ) + 1

(6.18)

Tabelle 6.5 beinhaltet die analytisch und experimentell ermittelten Rissabknickwinkel β für
ausgewählte Paarungen (Faserwinkel α und Faservolumenanteil ϕ). Bei den experimentel-
len Werten sind die arithmetischen Mittel angegeben. Für Faservolumenanteile ϕ≤ 4,8 %
(Bereich 2) und ϕ≥ 5,7 % (Bereich 1) liegen die Werte mehrheitlich dicht beieinander und
es treten maximale Abweichungen von weniger als 10◦ auf. Die Eigenschaften im Übergangs-
bereich (4,8 % ≤ϕ≤ 5,7 %) werden für Faserwinkel α→ 90◦ deutlich besser als bei dem
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reduzierten Datensatz (Kapitel 6.2.1) wiedergegeben. Bei dem Faservolumenanteil ϕ= 5,7 %
und dem Faserwinkel α= 90◦ beträgt die Abweichung zwischen dem analytisch berechneten
Rissabknickwinkel β= 87, 5◦ und experimentellen Abknickwinkel β= 88, 2◦ (arithmetisches
Mittel) weniger als 1◦. Die Regressionsfläche für die Funktion β(α, ϕ) ist in Abbildung 6.9
zusammen mit dem vollständigen Datensatz veranschaulicht.

Tabelle 6.5: Funktionswerte des Rissabknickwinkels β in Abhängigkeit von dem Faserwinkel α
und dem Faservolumenanteil ϕ

α / ◦

ϕ/% 0 22,5 45 67,5 90
β(α, ϕ) / ◦ – Gleichung (6.18)

4,8 -1,5 23,6 45,3 58,7 14,5
5,2 -1,3 23,2 45,1 60,0 27,8
5,5 0,0 22,8 45,0 65,7 75,8
5,7 0,3 22,7 45,0 67,1 87,5
6,0 0,4 22,7 45,1 67,4 89,6
6,5 0,5 22,8 45,1 67,5 89,8
7,0 0,5 22,9 45,2 67,5 89,8

β(α, ϕ) / ◦ – experimentell
4,8 0,9 21,2 44,7 66,2 11,4
5,7 0,3 21,7 45,0 65,8 88,2
7,0 1,3 22,6 47,0 70,4 85,3
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Abbildung 6.9: Regressionsfläche mit Datenpunkten der Probenserien A und B
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102 6 Konzept zur Vorhersage der Rissabknickwinkel

Die analytisch und experimentell ermittelten Rissabknickwinkel β zeigen insgesamt eine
gute bis sehr gute Übereinstimmung. Somit kann das mathematischen Modell für alle
Bereiche angewendet werden. Wegen der Festlegung des Winkels α zwischen Initialriss
und Faserorientierung (Kapitel 4) ist es zusätzlich möglich, jede ermittelte Regressions-
funktion β(α, ϕ) zur Bestimmung der Rissabknickwinkel β bei negativen Faserwinkeln α
(−90◦ ≤α< 0◦) durch Betragsbildung zu nutzen. Mit Hilfe des analytischen Ansatzes ist
somit die Ermittlung der Rissabknickwinkel β für beliebige Faserwinkel (−90◦ ≤α≤ 90◦)
und Faservolumenanteile (2,1 % ≤ϕ≤ 12,7 %) möglich und das Konzept ist zur Vorhersage
der Rissausbreitungsrichtung in Flachsfaser-Epoxidharz-Verbunden mit unidirektionaler
Faserausrichtung (und orthogonaler Belastung des Initialrisses) geeignet.
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7 Zusammenfassung und Ausblick

Damit Bauteile und Komponenten über die gesamte Nutzungsdauer ihre Funktion erfüllen,
sind diese festigkeitsgerecht und bruchsicher auszulegen. Des Weiteren sind Leichtbaupoten-
zial, wirtschaftliche und ökologische Aspekte zu berücksichtigen sowie der gesamte Prozess
von der Entwicklung bis zum Recycling zu betrachten. Verbundwerkstoffe weisen aufgrund
ihrer Zusammensetzung (aus mindestens zwei Werkstoffen) ein besonderes Eigenschaftspro-
fils auf, wodurch vielfältige Anwendungen möglich sind. Insbesondere das Verhältnis der
mechanischen Eigenschafen (Festigkeiten bzw. Steifigikeiten) zur Dichte bildet ein Krite-
rium bei der Werkstoffauswahl. Faserverbunde haben ein hohes Leichtbaupotenzial und
bieten insbesondere bei der Verwendung von Naturfasern als Verstärkungskomponente
Möglichkeiten, die Umweltfreundlichkeit des Verbundes unter der Restriktion vergleichbarer
Eigenschaften (z. B. Steifigkeiten) zu erhöhen. In Abhängigkeit von der Matrixkomponente
stellt das Recycling eine Herausforderung dar, weil der Verbund nicht mehr bzw. nur
teilweise stofflich, sondern lediglich energetisch verwertet werden kann.
Eine Vielzahl von Verstärkungsfasern weist dabei stark ausgeprägte anisotrope Eigenschaf-
ten (z. B. mechanisch und physikalisch) auf, welche bei belastungsgerechter Anordnung
optimal eingesetzt werden können. Treten allerdings Belastungen quer zu den Fasern
auf, kann es zum frühzeitigen Ausfall des Bauteils bis hin zum kompletten Versagen
des technischen Gebildes kommen. In Bauteilen bzw. Komponenten vorhandene Risse
können sich festigkeits- und lebensdauermindernd auswirken, sodass eine bruchmechanische
Bewertung durchzuführen ist. Dabei sind u. a. Beanspruchungen an der Rissspitze, die
darüber entscheiden, ob ein Riss initiiert bzw. sich weiter ausbreitet zu ermitteln sowie der
potenzielle Rissverlauf (Rissausbreitungsrichtung, Rissgeschwindigkeit etc.) zu beschreiben.
Diese Arbeit leistet einen Beitrag zur bruchmechanischen Charakterisierung von Faser-
Kunststoff-Verbunden. Hierbei sind Naturfasern (Flachsgarne) mit einem duromeren
Matrixsystem (Epoxidharz) kombiniert. Die Flachsfasern weisen anisotrope mechanische
Eigenschaften auf und sind unidirektional orientiert, sodass der Verbund transversal
isotrope Eigenschaften besitzt. Die Bruchmechanikprobekörper sind CT-Proben, bei denen
die Belastung quasistatisch und die Lastrichtung orthogonal zum Initialriss erfolgt. Durch
Variation der Faserorientierung bezüglich der Belastungsrichtung in Kombination mit
unterschiedlichen Faservolumenanteilen ergeben sich verschiedene Risspfadkonstellationen.
Hinsichtlich der Faserausrichtung sind fünf Winkel α von 0◦ bis 90◦ mit einer Schrittweite
von 22,5◦ mit Faservolumenanteilen ϕ von 2 bis 13 % experimentell untersucht.
Bei Belastungen senkrecht zur Faserorientierung wächst der Riss in Faserrichtung. Sind
die Fasern und die Lastrichtung nicht orthogonal zueinander angeordnet und die Be-
lastung erfolgt schräg zur Faserlängsachse, wird der Riss tendenziell in Faserrichtung
abgelenkt. Einen entscheidenden Einfluss auf die Charakteristik des Risspfads hat dabei
der Faservolumenanteil ϕ.
Bei Belastungen parallel zu den Fasern, d. h. Initialriss und Garne sind orthogonal zuein-
ander orientiert, treten zwei prinzipielle Risspfadkonstellationen auf. Bei einer geringen
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104 7 Zusammenfassung und Ausblick

Anzahl an Fasern im Verbund findet eine geringfügige Rissablenkung statt und der Riss
breitet sich anscheinend ungeachtet der Faserorientierung aus. Mit zunehmenden Faseran-
teilen wächst der Riss zunächst in der Initialrissebene weiter und knickt anschließend
abrupt in die Faserrichtung ab. Zudem treten partiell Rissbifurkationen auf. Die eingebrach-
ten Fasern erhöhen dabei die Beanspruchbarkeit des Verbunds und bilden eine Barriere
innerhalb der Matrix, wodurch die Rissrichtung beeinflusst wird.

Die Rissausbreitung wird somit nicht ausschließlich von der Größe und Richtung der
äußeren Belastung sowie dessen Wirkung am Riss (Beanspruchungsart) gesteuert, sondern
zusätzlich von der Orientierung und Anzahl der Verstärkungsfasern diktiert. Es existie-
ren folglich faserwinkel- und faservolumenabhängige Schwellenwerte, ab denen sich der
Riss ausschließlich entlang der Faserlängsrichtung ausbreitet, wodurch konkrete Aussagen
zu dessen Wachstumsrichtung möglich sind. Die ebenfalls von Faserwinkel α und Faser-
volumenanteil ϕ bedingten Versagensmechanismen sind Versagenserscheinungen der Faser
und/oder der Matrix sowie an der Grenzfläche beider Komponenten.

Das im Programmsystem ADAPCRACK3D implementierte Kriterium zur Ermittlung der
Abknickwinkel für verschiedene Paarungen (Faserwinkel α und Faservolumenanteil ϕ) bei
unterschiedlichen Modellierungen und Materialeigenschaften – homogen und orthotrop
bzw. inhomogen (in Form von Schichtverbunden) und isotrop – ist nicht geeignet, die
Rissausbreitungsrichtungen in Faser-Kunststoff-Verbunden vorherzusagen. Zudem ist bei
beiden Modellierungsansätzen keine Tendenz hinsichtlich der Rissrichtung festzustellen
und die numerischen (Finite-Elemente-Methode) und experimentellen Daten zeigen bis
auf Belastungen senkrecht zu den Fasern keine Übereinstimmung.

Somit ist basierend auf den experimentellen Daten ein mathematisches Modell erstellt und
verifiziert sowie im ersten Schritt validiert worden, welches die Abschätzung der endgültigen
Rissabknickwinkel in Abhängigkeit von dem Faserwinkel und dem Faservolumenanteil
ermöglicht. Damit können Abknickwinkel für untersuchte und weitere Paarungen bestimmt
werden. Die analytisch und experimentell ermittelten Rissabknickwinkel zeigen eine gute
bis sehr gute Übereinstimmung. Die maximale Abweichung beträgt bei gleichen Faservolu-
menanteilen ϕ und Faserwinkeln α weniger als 10◦. Mit Hilfe des analytischen Ansatzes
ist somit die Ermittlung der Rissabknickwinkel für beliebige Faserwinkel (−90◦ ≤α≤ 90◦)
und Faservolumenanteile (2,1 % ≤ϕ≤ 12,7 %) möglich und das Konzept ist zur Vorhersage
der Rissausbreitungsrichtung in Flachsfaser-Epoxidharz-Verbunden mit unidirektionaler
Faserausrichtung (und orthogonaler Belastung des Initialrisses) geeignet.

Um den ganzheitlichen Gedanken bezüglich Umwelt-, Ressourcen- und Recyclingaspekten
Rechnung zu tragen, ist die Kombination von Naturfasern mit biobasierten Matrixsyste-
men, die vergleichbare Eigenschaften synthetischer Pendants aufweisen, angeraten. Da die
Haftung zwischen Faser und Matrix eine entscheidende Rolle für das Bruch- und Riss-
verhalten darstellt, sollten diesbezüglich weitere Analysen, z. B. durch physikalische und
chemische Verfahren zur Verbesserung der Adhäsionseigenschaften, durchgeführt werden.

Eine Expansion der experimentellen Untersuchungen hinsichtlich weiterer Konstellatio-
nen (Faserwinkel und/oder Faservolumenanteile) und Belastungsrichtungen generiert eine
größere Menge an Daten für die Regressionsanalyse. Des Weiteren bietet sich in die-
sem Zusammenhang eine noch genauere Betrachtung des Übergangsbereiches an, um
definierte faserrichtungs- und faservolumenabhängige Schwellenwerte zu ermitteln. Das
führt wiederum zu einem detaillierten Modell, das die Grundlage für ein Konzept zur
Vorhersage des Risswachstums in Faser-Kunststoff-Verbunden bildet. Um folglich ein
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7 Zusammenfassung und Ausblick 105

allgemein gültiges Bruchkriterium zu formulieren, sind weitere Faserhalbzeuge bzw. Fasern
vergleichbarer Orientierung und Anzahl im Verbund zu eruieren. Eine Implementierung in
ein Berechnungsprogramm ist ebenso denkbar.

Da sich die dargelegten Erkenntnisse auf statische und uniaxiale Belastungen von uni-
direktionalen Schichten beschränken, ist ein weiterer Untersuchungsschwerpunkt das
Ermüdungsrisswachstum derartiger Verbunde bei zeitlich veränderlichen Belastungen.
Zudem ist der Einfluss multiaxialer Belastungsrichtungen zu eruieren. In Abhängigkeit von
den zu erzeugenden Beanspruchungssituationen am Riss sind entsprechende Probekörper
und Belastungsvorrichtungen, welche für die Überlagerung der drei Moden eine räumliche
Mixed-Mode-Beanspruchung hervorrufen, zu verwenden. Darüber hinaus sind aus meh-
reren Einzelschichten zusammengesetzte Mehrschichtverbunde auf deren Rissverhalten
hinsichtlich verschiedener Lastfälle und (überlagerter) Belastungsrichtungen zu analysieren.
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