
5. Softwaregestaltung basiert auf Wissen 

und Kommunikation 

Um die beiden Forschungsfragen der Formen und Folgen von industriespezifischer Soft

waregestaltung zu beantworten, sind nicht nur die beiden oben genannten Kernproble

me der Softwaregestaltung entscheidend (softwaretechnische Interdisziplinarität und 
Gestaltungsmöglichkeiten). Genauso wichtig für die Praxis sind Kommunikation und 
Wissen: Software besteht vom Quellcode über die Softwarearchitektur, ihren Einstel

lungsmöglichkeiten bis zur Bedienoberfläche aus mehreren Schichten. Weil für die be

teiligten Menschen eine dieser Ebenen der primäre Arbeitsgegenstand ist (z.B. für die 
Programmierenden der Quellcode, für die Anwendenden die Bedienoberflächen), müs

sen sie sich über ihre unterschiedlichen Perspektiven verständigen und ihr Wissen ein

bringen. Das Wissen über die komplexe Welt aus Algorithmen, Daten, Einstellungsmög

lichkeiten, Schnittstellen, fachlichen Prozessen etc. vor und hinter der Softwareoberflä

che reicht aber nicht aus. Die Beteiligten müssen sich im Zuge der Softwaregestaltung 
kommunikativ austauschen können. Für die Softwaregestaltung ist neben der verbalen 
Kommunikation nonverbale Kommunikation als wissensbasierte Textarbeit in Form von 
Arbeit an Quelltext, Spezifikationen, Anforderungen, Konzepten oder Dokumentatio

nen notwendig. Wie das Kapitel zeigt, wurde Softwareentwicklung selbst im Laufe ihrer 
Geschichte in Forschung und betrieblicher Praxis mehr und mehr als Kommunikations

prozess verstanden. Somit ist nicht nur die Anwendung von Software sozial bedingt. Ihr 
gesamter Gestaltungsprozess ist es. Das Kapitel erläutert die Prämisse der vorliegenden 
Arbeit, dass anders als bei anderen sozialwissenschaftlichen Ansätzen zum Verhältnis 
von Mensch und Technik eine Arbeitsteilung zwischen Mensch und Software(entwick

lung) besteht: Der Mensch verfügt über das Wissen, kann kommunizieren und damit 
Software gestalten. Softwaregestaltung ist etwas genuin Menschliches, weil dafür ein 
sinnhafter Bezug zu Objekten notwendig ist. Damit legt dieses Kapitel die Basis für die 
darauffolgenden Ausführungen, auch um zu verstehen, warum Wissen und Kommuni

kation zwei zentrale Begriffe und Elemente der Softwaregestaltung sind. Es geht um die 
materielle Basis des Arbeitsprozesses. 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


58 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

5.1. Technische Grundlagen: Software als Ergebnis menschlicher Textarbeit 

5.1.1. Verarbeiten und verstehen: Arbeitsteilung zwischen Menschen 
und Maschinen 

Was die theoretische Sicht auf Technik anbelangt, geht diese Arbeit von einer klaren Ar

beitsteilung zwischen Menschen und Computern aus: 1. Nur der Mensch kann infor

miert sein, etwas wissen und kommunizieren. 2. Der Mensch ist das soziale Wesen und 
3. entwickelt die Software. Der Computer weiß weder etwas, noch ist er informiert, noch 
stellt er soziale Beziehungen her oder schreibt autonom industriespezifische Software. 

Zu 1.: Für die Person, die Daten eingibt, sind die Daten Informationen und sie 
braucht ein bestimmtes Wissen, um die Eingabe korrekt auszuführen. Informationen 
sind immer soziale Interpretationen von Daten, sie haben eine Bedeutung, sie haben 
Sinn. Wobei aus Informationen Wissen wird, wenn sie in einen bestimmten Erfahrungs

kontext eingebunden sind (vgl. Willke 1998: 162). Das ist etwas, dass ein Computer nicht 
kann, weil interpretieren nur Menschen können. Wie von Brödner (2014) analysiert, 
ist der Interpretationsmoment hervorzuheben, der zwischen maschinell ausgeführten 
Operationen und sozialen Handlungen eingebettet ist, zwischen zu interpretierenden 
Daten und maschinellen Verarbeitungen (Algorithmen). Wenn Maschinen Daten liefern 
und diese dann zur Steuerung und Kontrolle dieser Maschinen dienen, dann müssen 
diese Daten von den Beschäftigten interpretiert werden (wie bspw. von Zuboff 1988 
ausführlich beschrieben). 

Der Begriff des Wissens markiert den Übergang zum Handeln. Mit Wissen können 
Menschen Probleme lösen. Mit Wissen können sie in einem bestimmten Kontext han

deln und entscheiden. Somit ist es irreführend, davon zu reden, dass Computer handeln, 
entscheiden oder etwas wissen. Das können nur Menschen, die einem Zeichen eine Be

deutung beimessen können (s.o.) und dann der Bedeutung gemäß handeln. 
»Wissen als Erklärungszusammenhang für Informationen, als eine mit Erfahrung, 

Kontext, Interpretation und Reflexion angereicherte Form der Information, geeignet, 
Arbeitshandeln und Entscheidungen anzuleiten« (Jürgens 1999 nach Wilkesmann 2005: 
56). 

Also: Wenn ein Mensch Daten Sinn geben kann, sind es Informationen. Erst wenn 
dieser Mensch daraus Handlungen und Entscheidungen ableiten kann, wird es zu Wis

sen. Genau dieser Prozess, den eine Autorin als De- und Rekontextualisierung beschreibt 
(vgl. Degele 2000: 69), passiert täglich in den softwaregestützten Organisationen. So z.B. 
wenn jemand vor einer Eingabemaske steht, die er nicht versteht, weil ihm das Wissen 
fehlt, oder wenn der Rechnungsbeleg alle notwendigen Informationen enthält, die/der 
neue Sachbearbeitende aber nicht genau weiß, warum die Rechnung nun so und nicht 
anders aufgebaut ist. Für die Organisation ist es wichtig, dass die Software das richti

ge Rechnungsformular erzeugt. Womöglich ist die Umsetzung auch dokumentiert. Für 
neue Sachbearbeitende wäre es jetzt wichtig zu wissen, wo sie diese Dokumente finden 
oder wer ihnen sagen kann, warum etwas wie auf dem Rechnungsformular gestaltet ist. 
Selbst bei programmiertem Quellcode ist es wichtig zu wissen, warum etwas wie ent

wickelt wurde. Die Bedeutung ist sonst nicht ersichtlich. Selbst eine umfangreiche Do

kumentation reicht oft nicht aus, um das gesamte Wissen zu hinterlegen (vgl. D’Adderio 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 59 

2003: 326). Der Quellcode kann der Maschine eindeutige Befehle geben, liefert aber nicht 
automatisch seine Entstehungsgeschichte und seinen Sinn für den Kontext, für den er 
existiert. 

Um Daten, Informationen und Wissen unter Menschen auszutauschen, ist Kommu

nikation notwendig. Dadurch, dass der Computer Kommunikation von ihrem Kontext 
entkoppeln kann und wie ein Buch, ein Brief oder ein anderes Schriftstück vom Sen

denden abstrahiert, verändert sich das Verhältnis von Information, Mitteilung und Ver

ständnis durch Arbeiten via Software (vgl. Degele 2000: 65). Der Sinn der Kommunikati

on ergibt sich nicht mehr direkt aus der Mitteilung, sondern der/die Empfänger:in kann 
unabhängig davon interpretieren und der Mitteilung einen Sinn geben (vgl. Esposito 
1993: 351f.). Sie/er kann aber auch daran scheitern, weil er/sie z.B. einen Begriff nicht 
versteht. Das alles macht menschliche Kommunikation zum wesentlichen Bestandteil 
der Softwaregestaltung, die der Computer nicht vollständig ersetzen kann. Das zeigt 
sich, wie im Folgenden dargestellt, vor allem im Anforderungsmanagement. Letztlich 
sorgen die Beschäftigten in einem stetigen Kreislauf aus Daten, Information, Wissen 
und Kommunikation dafür, dass Organisationen Software anwenden, programmieren 
und gestalten. 

Zu 2.: Neben der interpretierenden Funktion des Menschen sind die von ihm verwen

deten Zeichen Teil einer sozialen Welt. Der vorliegenden Arbeit liegt eine klare Unter

scheidung zwischen Sozialem und Technischem zugrunde. Sie folgte dabei ausgehend 
von C. S. Peirce und Jürgen Habermas den Autor:innen Mingers und Willcocks (2014), die 
von drei Welten ausgehen: 

A) Der Welt der Person, welche Zeichen und Nachrichten erzeugt und interpretiert 
(Softwaregestaltende, -anwendende, -programmierende). 

B) Der materiellen Welt, in der die Zeichen verkörpert sind und übertragen werden 
(Software, Hardware). 

C) Der sozialen Welt, weil die individuelle Nutzung des Zeichens nicht über das Sozia

le hinausgehen kann (z.B. der kollektive Arbeitsprozess der Softwaregestaltung, die 
Arbeitsteilung zwischen Anwendung und Entwicklung). 

Für Mingers/Willcocks sind die oben aufgeführten drei Welten ontologisch und episte

mologisch getrennt. Wobei für sie das Individuum im Mittelpunkt steht: »communica

tions and information systems rest on individuals who create and send, or have sent, 
messages and data; then receive and interpret them; then act (or not act) upon them« 
(Mingers/Willcocks 2014: 50). Das Subjekt vermittelt zwischen materieller bzw. techni

scher und sozialer Welt, indem es Zeichen deutet. Damit grenzen sie sich von Ansätzen 
wie jenem der Sociomateriality ab, für den Soziales und Technisches nicht trennbar sind. 
Einer dieser Ansätze ist die Actor-Network-Theorie: Diese vernachlässigt für Mingers/ 
Willcocks sowohl die vermittelnde Funktion des Einzelnen als auch die ontologischen 
Unterschiede zwischen Technik (Software) und der sozialen Welt (bspw. einer Organisa

tion). Wie sehr die oder der Einzelne als Teil einer sozialen Welt bei der Softwaregestal

tung agiert, führt 5.2 weiter aus und ist zentraler Bestandteil dieser Untersuchung (vor 
allem beim Arbeitsprozess der Softwaregestaltung selbst). 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


60 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

Zu 3.: Wenn eine Verwaltung bestehende Formulare in Software übersetzt und nun 
papierlos arbeitet, ohne dass sich etwas am bürokratischen Ablauf oder den Formula

ren wesentlich verändert: Entstehen hier neue Informationen oder wird hier nur etwas 
in Software überführt? Informatisierung, wie den Begriff unterschiedliche Autor:innen 
verwenden (vgl. Baukrowitz et al. 2006, Boes et al. 2018, Ziegler 2020), unterscheidet die 
vorliegende Arbeit von jener Tätigkeit, bei der Menschen die reale, analoge Welt in digi

tale umwandeln: der Softwareentwicklung. 

5.1.2. Konkret und abstrakt: mehrere Schichten, sprachliche Strukturierung 

Das Besondere an der Softwaregestaltung ist, dass die Beschäftigten während des 
Arbeitsprozesses mit den verschiedenen technischen Schichten und sprachlichen 
Strukturierungen der Software arbeiten müssen. Daraus erklärt sich auch die große 
Bedeutung von Wissen und Kommunikation, weil sich die Beschäftigten über diese 
unterschiedlichen Schichten und Begriffe verständigen müssen. Im Unterschied zu 
anderen Technologien besteht Software komplett aus Zeichen. Mit den zugrundelie

genden 0en und 1en beschäftigt sich in den EVU niemand. An ihren unterschiedlichen 
Erscheinungsformen kommt aber keiner mehr vorbei. Aus Arbeitssicht sind vier Aspekte 
zentral: Die Programmierung von (1.) Algorithmen verlangt je nach (2.) Programmier

sprache unterschiedliche Fertigkeiten. Dazu gehört (3.) Softwarearbeit mit dem Medium 
der Sprache und Begriffen wie Architektur, Modelle oder Schnittstellen zu strukturie

ren. (4.) Es existiert eine Oberfläche als Medium zwischen Anwendenden, Daten und 
Algorithmen. 

Zu 1.: Da sind zum einen die in der Software eingeschriebenen Anleitungen zur 
Datenverarbeitung: die Algorithmen. Sie stellen klare Vorschriften dar. Jeden formali

sierbaren Sachverhalt kann die symbolische Maschine Computer ausführen. Dabei gibt 
es keinen Interpretationsspielraum und die Algorithmen sind durch ihre Schriftlichkeit 
klar definiert. Sie sind eindeutig, determiniert, unterscheidbar und allgemein (vgl. De

gele 2000: 62f.). In einem Programm können Tausende solcher Vorschriften enthalten 
sein. Es ist dann eine Frage des Fokus, ob man eine relevante Funktionsweise (bspw. 
den Suchalgorithmus von Google) oder die Struktur einer Software (Methoden, Klassen, 
Funktionen, Befehle etc.) zugrunde legt, wenn man von Algorithmus spricht. 

Zu 2.: Gebaut werden diese Vorschriften mithilfe von Programmiersprachen. Der Be

griff »Sprache« sollte nicht in die Irre führen. Sie werden nicht wie menschliche Spra

chen verwendet. Sie wurden als Medien entwickelt, um es den Menschen einfacher zu 
machen, der Maschine Befehle zu geben (anderes als bei der menschlichen Sprache gibt 
es keine Ambivalenz, Ironie oder Ambiguität). Softwarespezifische Sprachen wie ABAP 
(für SAP), funktionsspezifische wie R, objektorientierte wie C++ oder Low-Code-Ansät

ze zeigen, dass es genau darum geht: ABAP soll möglichst auch für Nicht-Programmie

rende leicht erlernbar sein. Einfache Abfragen und Ausgaben von Datenbanktabellen 
sollen bspw. auch für die in den Wirtschaftsorganisationen weitverbreiteten Betriebs

wirtschaftlern möglich sein. R wird für statistische Aufgaben verwendet und verfügt 
über die entsprechenden Befehle. Low-Code-Software (im Sinne von wenig programmie

ren) anbietende Unternehmen versprechen, dass jedes Mitglied einer Organisation ei

ne Software entwickeln kann, weil keine komplizierte Programmiersprache gelernt wer

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 61 

den muss (bspw. FrontPage von Microsoft, um Webseiten zu erstellen). Objektorientierte 
Sprachen wie C++ ermöglichen es Programmierenden, Bibliotheken mit Quellcodes auf

zubauen, die sie wie Bausteine in unterschiedlichen Kontexten verwenden können. Das 
erleichtert den für den Menschen sinnhaften Aufbau von Software und die sinnhafte Auf

teilung der einzelnen Bestandteile. Es gibt immer noch sogenannten »Spaghetti«-Code, 
bei dem Befehl an Befehl aneinandergereiht ist, bis mehrere Tausend Zeilen dastehen, 
die schwer wartbar sind. Der Maschine ist das egal, für den Menschen eine Qual. 

Zu 3.: Hier wurden schon einige analytische Sprünge gemacht, die für Software ty

pisch sind: von Programmiersprachen über deren Eigenarten und deren Folgen für grö

ßere Mengen an Quellcode und Methoden, diesen Quellcode zu organisieren (bspw. in 
Klassen, Funktionen etc.). Wie im weiteren Verlauf mehr und mehr klar wird, gibt es 
eine Vielzahl von Konzepten, Begriffen und Methoden, um die Arbeit mit und am Quell

code, aber auch den Quellcode selbst zu organisieren. Die Vielfalt an Entwicklungsmög

lichkeiten kontrollieren Modelle, damit die Programmierung nicht im Chaos endet. Be

stimmte Formen der Programmierung, die den Quellcode strukturieren, stellen bereits 
eine Form der Modellierung dar1. Sie machen Modellierung alltäglich (vgl. Mahr 2009: 
230f.). Modelle sind Ressourcen zum Speichern und Transportieren und sie sind Agen

ten »zur Konstruktion und Gestaltung neuer Realitäten« (ebd.). Sie spielen eine wichtige 
Rolle bei Erkenntnis- und Meinungsbildungsprozessen. Unterkategorien von Modellen 
sind bspw. Architekturen, Prinzipien der Systemgestaltung, Techniken der Abstraktion 
oder Prinzipien der Usability (vgl. ebd. 248). Vor allem der Modellbegriff der Architek

tur2 ist mittlerweile weitverbreitet. Es gibt viele Definitionen von Architektur und laut 
einigen Autoren ist eine richtige Definition auch nicht möglich (vgl. Vogel et al. 2009: 49). 
Sie schlagen trotzdem eine vor: 

»Die Software-Architektur eines Systems beschreibt dessen Software-Struktur re
spektive dessen -Strukturen, dessen Software-Bausteine sowie deren sichtbaren 
Eigenschaften und Beziehungen zueinander und zu ihrer Umwelt« (ebd.: 49). 

Für sie geht es darum, dass Software-Architektur »Komplexität überschaubar und hand

habbar […] [macht] in dem sie nur wesentliche Aspekte eines Systems zeigt« (ebd. 10). Es 
geht um die Fundamente und tragenden Säulen einer Software (vgl. ebd.). Ob eine Fir

ma intern etwas programmiert, es externen Programmierenden überlässt oder Baustei

ne aus der Cloud verwendet: Das wird schnell zu einer Frage der Architektur, weswegen 
auch Nicht-ITler außerhalb von IT-Abteilungen und -Unternehmen über sie sprechen. 
Weitere mittlerweile geläufige Begriffe wie Schnittstellen3 oder Softwarepakete zeigen, 
wie strukturierungsbedürftig die Sprache bei der Arbeit mit Software ist. 

1 Zum Beispiel die objektorientierte Programmierung. 
2 Viel wichtiger als ihre Rolle bei der Modellierung ist die Softwarearchitektur bei der Untersu

chung der Fallstudien im Empirie-Teil, weil sie die Organisation der Softwaregestaltung prägt. 
Darauf geht das nächste Kapitel gesondert ein und zeigt, welche konkreten Eigenschaften der 
Softwarearchitektur für die Analyse der Formen und Folgen der Softwaregestaltung relevant sind 
(6.4.2.2). 

3 Meist nur noch APIs (Application Programming Interface) genannt. 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


62 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

Zu 4.: Neben den Medien zum Programmieren der Maschine gibt es noch die Medi

en zur Ein- und Ausgabe von Daten und Algorithmen: ob Web-Oberflächen, Eingabe

masken, Computerspiele oder Textverarbeitungsprogramme. Anders als mechanische 
Maschinen wie Verbrennungsmotoren, Leichtbauroboter o. ä. erfordern sie per se keine 
mechanische Reaktion. Natürlich kann ein Programm so programmiert sein, dass eine 
Eingabe erforderlich ist oder nur eine bestimmte Zeit zur Eingabe bleibt. Software kann 
aber auch einfach nur Daten darstellen. Sie kann Arbeitsabläufe als Fließband darstel

len – muss sie aber nicht. So oder so bleibt Software ein Medium zur Darstellung oder 
Eingabe von Daten. Der Mediencharakter zeigt sich bei Webseiten wie Wikipedia oder 
einer digitalen Zeitung. Der Inhalt ist zwar der gleiche (die Daten), aber die Aufbereitung 
anders, was Folgen für das Leseverhalten oder die Verbreitungsmöglichkeiten hat. 

Wie die Fallstudien zeigen werden, spiegeln sich die verschiedenen technischen 
Schichten und sprachlichen Strukturierungen in der Arbeitsteilung zwischen Program

mierenden, IT-Projektleitenden, IT-Beratenden, Key User:innen etc. wieder. In ihrer 
Arbeit vermitteln sie zwischen verschiedenen technischen Schichten, Perspektiven und 
Begriffen, wobei jeder seine Schwerpunkte hat und sie letztendlich eine gemeinsame 
Sprache finden müssen. Es ist Kommunikation notwendig, um die jeweiligen Perspek

tiven auf die Software zu integrieren und sich zu verständigen. Damit geht es bei der 
softwaretechnischen Interdisziplinarität nicht nur um das jeweilige industriespezifi

sche und softwaretechnische Domänen-Wissen. 

5.1.3. Zwischen Text und Blackbox: Grenzen der Gestaltung und des Verstehens 

Für die Softwaregestaltung spielt es eine besondere Rolle, dass unterschiedliche Perso

nen und Organisationen unterschiedlichen Zugriff und Gestaltungsmöglichkeiten be

züglich der Software haben und sich die Software stetig ändert. Nicht jede:r kann den 
Quellcode oder eine Datenbank einsehen oder verstehen und verändern. Im Verlauf der 
Entwicklung einer Software verändert sich, was die Beschäftigten noch gestalten oder 
worüber sie noch reden können (vor allem bei Standardsoftware). Das ist insofern wich

tig, weil es Teil des Arbeitsprozesses der Softwaregestaltung ist, zu vermitteln: zwischen 
Teilen der Software, die als Blackbox erscheinen, und den analysierbaren; zwischen ge

staltbaren und nicht mehr gestaltbaren Teilen der Software; zwischen Softwareoberflä

chen und einem Quellcode, die oder den man kennt oder einem fremd ist; zwischen ei

ner Software und ihrem Umfeld, die sich beide stetig ändern und damit das Wissen über 
beide langfristig nicht gesichert ist. 

Anders als bei anderen Maschinen oder Werkzeugen gibt es die Möglichkeit, den 
Zugriff auf Software genau festzulegen. Dies geschieht häufig durch differenzierte 
Berechtigungsstrukturen, die unterschiedliche Zugriffe auf Software und damit Da

ten, Funktionalitäten bis hin zum Quellcode erlauben (bspw. bei SAP, Windows oder 
diversen Online-Plattformen). Mitarbeitende in einem Call-Center müssen mit der 
Software arbeiten, die ihnen ihre Firma zur Verfügung stellt. Wenn die Software genaue 
Vorgaben macht, wie ein Anruf abzuwickeln ist, und bestimmte Daten anzeigt, können 
die Mitarbeitenden das nicht ändern. Es können auch einzelne Eingabefelder für Mitar

beitende freigeschaltet oder gesperrt sein. Andererseits gibt es formalisierte Wege für 
den Zugriff auf die Gestaltung von Software. Viele Firmen haben (formale) Wege, um an 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 63 

bestimmte Berechtigungen zu kommen. Bei Schwierigkeiten oder Fehlern mit Software 
gibt es einen First-, Second-, Third-Level Support, der Anwendenden weiterhilft. 

Für die unterschiedlichen Stakeholder einer Software gibt es unterschiedliche Mög

lichkeiten der Gestaltung und des Verstehens. So entscheiden meist wenige über die 
Softwarearchitektur, die langfristig weitreichende Folgen hat. Manche Softwarelösun

gen bieten Einstellungs- oder Anpassungsmöglichkeiten an, die vom Festlegen des Farb

schemas bis hin zum Ersetzen einzelner Codestellen durch eigenen Quellcode reichen 
können. Neben der Architektur können die Anwendenden oftmals nichts mehr daran än

dern, wie die Programmierenden den Anwendungskontext modelliert haben, auch wenn 
das ihre Arbeit beeinflusst (vgl. Mahr 2009: 230). In Software ist ein »objektiviertes Mo

dell der organisatorischen Wirklichkeit« (Heidenreich/Kirch/Mattes 2008: 4) fixiert. Zu

dem ist das meiste Wissen, was in der Software steckt, nicht mehr außerhalb vorhan

den oder kann nur durch Fachexpertise oder über öffentlich zugängliche Spezifikatio

nen mühsam angeeignet werden. Der Computer ist für die meisten eine Blackbox (vgl. 
Zuboff 1988: 166). Das kann bedeuten, dass die Software Dinge tut, von denen die An

wendenden nichts wissen – wie z.B. unentdeckt überwacht zu werden, wie dies durch 
Software von Google oder Amazon passiert (vgl. Zuboff 2018). 

»Je umfassender und komplexer Maschinen werden, wandern Praktiken und Normen 
in die materielle Basis der Gesellschaft, allerdings black-boxed« (Joerges et al. 1998: 
372). 

Trotz beschränktem Zugriff auf eine Software und obwohl sie eine Blackbox sein kann, 
die nicht mehr änderbar ist, ist die oder der einzelne Beschäftigte für ihre/seine Arbeit 
auf das Wissen über die Software angewiesen. Das Wissen über den Anwendungskon

text allein reicht nicht. Denn der Anwendungskontext existiert nur noch als einer, den 
die Software bereits verändert hat. Eine Autorin spricht von einem reflexiven Strukturie

rungsprozess: Beim Einsatz von Technik in organisationalen Netzwerken (in dem kon

kreten Fall geht es um Call-Center) bedeutet dies, dass sich das Verhältnis von organi

sationalem Netzwerk und Technikverwendung als eines der zunehmenden Durchdrin

gung und wechselseitigen Gestaltung beschreiben lässt. Soziales und Technisches sind 
nur noch schwer zu trennen (vgl. Longen 2015: 120). In einer Studie zu einer ERP-Ein

führung ist von »durchwurstelt«, dem Eigenleben des Einführungsprojektes oder einer 
»unruly technology« die Rede: Es kann immer etwas Unvorhergesehenes passieren (vgl. 
Conrad 2017: 189f.). Das liegt für die Autorin daran, dass Organisation und Technik sich 
nicht mehr auseinanderhalten lassen. 

»Man hat es nicht mit zwei unterschiedlichen Entitäten zu tun – Organisation auf der 
einen Seite, Medien und Technologien auf der anderen –, sondern beide enthalten 
Elemente voneinander und haben sich in Abhängigkeit voneinander und in Abstim

mung aufeinander ausgebildet.« (Conrad 2017: 12) 

Die Beschäftigten denken immer nur noch im Angesicht der Software über ihre eigene 
Arbeit und Organisation nach. Über die Zeit (das können Jahrzehnte sein) findet eine 
Ko-Konstruktion von Organisation und Software durch die anwendenden Beschäftigten 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


64 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

und Softwaregestaltenden statt. Am Ende eines IT-Projektes existiert der Arbeitskontext 
nicht mehr, für den ursprünglich der Auftrag erteilt wurde, eine Software zu entwickeln: 

»Coevolution changes the context […] and building the system changes the context 
itself, a software development projects actively obsolesces its own contract« (Ralph 
2015: 38). 

Das Wissen über Anwendungskontext und Software ist nicht nur verschränkt. Es ändert 
sich auch stetig. Die softwareeinsetzende Organisation als solche hat mit einem per

manenten Anpassungsbedarf zu rechnen. Bereits in den 80er Jahren schreibt Lehman 
(1980), dass sich Software permanent ändert. Seine ersten zwei Gesetze der Programme

volution beziehen sich darauf: 1. kontinuierlicher Wandel und 2. zunehmende Komplexi

tät der Software. Mit dem Einsatz einer Software wird der oder die Anwendende Teil ih

res Lebenszyklus. Dabei geht es nicht nur um einen allgemeinen Zyklus der Softwareevo

lution: initiale Software, Entwicklung, Betreuung, Ausphasung, Abschaltung (vgl. Masak 
2006: 222). Wenn SAP auf die Cloud und die neue Version seiner ERP-Software S/4 um

stellt und die Wartung für die alte Version R/3 ausläuft, entsteht der Zwang, die Software 
auszutauschen. Dabei gilt besonders bei individuell entwickelter Software: Wenn An

wendende, Gestaltende oder Programmierende neu in einen Anwendungskontext kom

men, kennen sie die Vorgeschichte der nur für eine Organisation entwickelten Software 
nicht4. 

Letztendlich sind Anwendende, Gestaltende und Programmierende nicht nur Teil ei

ner modellierten Welt. Sie werden auch Teil eines Produktzyklus, auf den sie wenig Ein

fluss haben – und damit wenig Einfluss auf einen Teil des Wissens, den sie für ihre all

tägliche Arbeit brauchen und das sich stetig ändert. 

5.2. Softwareentwicklung: vom einsamen Nerd 
zum kollektiven Kommunikationsprozess 

Im Laufe der Zeit wurde Softwareentwicklung immer weniger zu einem rein technischen 
Problem, das Techniker:innen lösen. Wie bereits oben erwähnt, wurde es zu einer gro

ßen Herausforderung, die für den fremden Anwendungskontext nützliche Software zu 
programmieren. Dafür sind Methoden wie Scrum nützlich (Näheres weiter unten unter 
5.2.4), die den kontinuierlichen, geregelten sozialen Austausch mit klaren Rollen in den 
Mittelpunkt der Softwareentwicklung stellen. Trotzdem konnte in der Forschung kein 
Konsens hinsichtlich einer Best Practice gefunden werden, die als Orientierung für die 
Kontrolle von Softwaregestaltung in unterschiedlichen Kontexten der Energiewirtschaft 
nützlich sein könnte. Vielmehr scheinen unterschiedliche Methoden Softwaregestaltung 

4 Man spricht auch von Legacy einer Software (vgl. dazu Fischbach 2016: 395ff.). Manche individuell 
entwickelten Altsysteme von Firmen sind kompliziert, nicht wartungsfreundlich programmiert 
und man befürchtet unvorhersehbare Fehler bei Änderungen an ihnen. Verlassen Mitarbeitende 
das Unternehmen, die mit dem Altsystem gut vertraut waren (z.B. weil sie es selbst entwickelt 
haben), kann das der Anlass sein, stattdessen eine Standardlösung einzuführen. 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 65 

zu ermöglichen, solange sie die zentrale Rolle von Wissen und Kommunikation für den 
Arbeitsprozess berücksichtigen. 

5.2.1. Vom schnellen Reparieren zum iterativen, kollektiven 
Kommunikationsprozess 

Einerseits würde man aus dem bisher Gesagten vermuten, dass Kommunikation wich

tig in der Softwareentwicklung ist. Andererseits ist nicht verwunderlich, dass es bei 
einer neuen Technologie, die aus der Ingenieurs- und Mathematik-Tradition kommt, 
erst einmal um deren Erforschung und Entwicklung ging. Dafür waren komplexe 
Kommunikationsprozesse und kommunikative Fertigkeiten nicht entscheidend. Für 
die Programmierer hieß es in den 50ern noch »Engineer software like you engineer 
hardware.« (Boehm 2006: 13) Oftmals fand IT-Arbeit damals noch in Forschungs- 
und Entwicklungsabteilungen statt, wo die Techniker:innen unter sich waren. Unter 
seines/ihresgleichen sind die Wissensgrenzen geringer. Als einen extremen Typus 
sieht Weizenbaum die zwanghaft Programmierenden an, für die Programmieren ein 
Selbstzweck ist. Ihnen geht es vor allem darum, mit der Maschine zu interagieren (vgl. 
Weizenbaum 1978: 161). Sollen sie dann Software schreiben, die in anderen Kontexten 
als der Werkstatt oder dem Labor funktionieren soll, ändern sich die Anforderungen. 
Die Erfahrung der Beherrschbarkeit der Maschine durch Erteilen eindeutiger Befehle 
via Programmiersprache wird unreflektiert auf soziale Zusammenhänge übertragen, 
in der diese Software entsteht oder in der sie wirken soll (vgl. Klischewski 1996: 78). Die 
Widerständigkeit des Sozialen fand erst über die Jahrzehnte hinweg in den Methoden 
der Softwareentwicklung mehr und mehr Berücksichtigung. 

Hieß es in den 60ern »code-and-fix«, also einfach zu programmieren, schauen, ob 
es funktioniert, und dann zu verbessern (vgl. Boehm 2006: 14), wurden in den 70ern 
die getrennten Aufgabenschritte der Anforderungsanalyse und des Designs eingeführt 
(siehe auch Friedman/Cornford 1989). Das ursprünglich entwickelte Wasserfallmodell 
sah die erst mit Scrum weitverbreiteten Mechanismen der Iterationen, Prototypen und 
Feedbacks zwischen den Entwicklungsschritten vor. In der Praxis wurde das Wasserfall

modell aber erst einmal als rein sequenzieller Prozess ausgelegt (vgl. Boehm 2006: 15). 
Softwareentwicklung wurde zum Arbeitsvorgang, in dem streng abgetrennte Phasen der 
Spezifikation, Programmierung, Tests und Implementierung aufeinander folgen. Kri

tisch wird diese strikte Trennung vor allem, weil bei komplexen Anforderungen fehler

freies Arbeiten unmöglich ist. Eine vollständige Konzeption oder Spezifikation ist nicht 
möglich, weil sich u.a. die Anforderungen der Anwendenden im Projektverlauf ändern. 
Das kann an einem veränderten Umfeld liegen (Konkurrenzdruck, Markt verändert sich) 
oder daran, dass technische Möglichkeiten erst bewusst werden, dass es Kommunikati

onsprobleme gab oder dass erst in der Anwendung neue Ideen auftauchen (vgl. Funken 
2001: 30). In einem bekannten Artikel von 1980 schreibt Lehman, dass ein Programm nie 
korrekt sein kann, weil es die Umwelt nicht komplett beschreiben kann. Software ist im

mer nur ein Modell der Welt. Für ihn kann es bei Software deshalb nicht um absolute 
Korrektheit gehen (was eine mathematische Herangehensweise bedeuten würde), son

dern um die Relevanz der Ergebnisse oder die Anwendungsfreundlichkeit (vgl. Lehman 
1980: 1064). Er führt auch eine Unterscheidung verschiedener Programmtypen ein. Das 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


66 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

ist insofern wichtig, weil es darauf hinweist, dass es jenseits der hier behandelten indus

triespezifischen Softwareentwicklung selbstverständlich weiterhin Programme gibt, die 
einige wenige oder sogar eine programmierende Person allein nach einer klaren Spezifi

kation entwickeln kann (bspw. ein:e Physiker:in, die eine Software für ein physikalisches 
Experiment programmiert). 

Laut Lehman kann Programmierung zudem keine Fließbandarbeit sein, weil u.a. die 
Entwicklung nicht bereits im Vorhinein in einfach verbundene Untereinheiten zerteilt 
werden kann, ohne dass sie sich gegenseitig bei der Umsetzung beeinflussen (vgl. Leh

man 1980: 1065). Das liegt auch an der Abstimmung zwischen der fachlichen Domäne, 
in der die Software laufen soll, und den Programmierenden. Um die Nutzendenpartizi

pation und damit die Kommunikation zur Programmierung zu verbessern, wurde seit 
Mitte der 70er die Methode des Prototyping entwickelt. Sie entlastet die Anforderungs

aufnahme, weil das anschauliche Ergebnis als Kommunikationsgrundlage fungiert und 
Nutzende direkt an der Spezifikation beteiligt sind (vgl. Funken 2001: 32ff.). Wie weitge

hend sich das in der Praxis mit der Zeit durchgesetzt hat, wäre zu untersuchen. 
In den 80ern stellten Floyd/Keil eine Methode vor, die eine iterativ-inkrementelle 

Vorgehensweise und eine kontinuierliche Kommunikation zwischen programmieren

den und anwendenden Beschäftigten vorsieht. Vorteilhaft ist dabei auch die geteilte Ver

antwortung für die Weiterentwicklung – anstatt dass sie nur bei den Programmieren

den liegt, die gar nicht wissen, was die Anwendenden brauchen (vgl. Funken 2001: 36). 
Die/der Programmierer:in soll nicht mehr einfach Herstellende:r sein, sondern 

»Berater[:in] in Informationsangelegenheiten, welche Multiperspektivität anerkennt 
und umsetzt, Vielfalt und Rückkopplung sucht und zu Revisionen bereit ist« (Floyd/ 
Keil 1983: 36 zitiert nach ebd. 37). 

Das Agile Manifesto von 2001 (Scrum ist eine der agilen Methoden) führte diesen Ansatz 
weiter und stellte vier Kernforderungen auf: 

• »Individuals and interactions over processes and tools. 
• Working software over comprehensive documentation. 
• Customer collaboration over contract negotiation 
• Responding to change over following a plan.« (Beck et al. 2001) 

Letztendlich legt das Manifest einen klaren Fokus auf einen iterativen Arbeitsprozess 
mit direktem, regelmäßigem Feedback. Das Wasserfallmodell setzte sich auch deswegen 
nicht vollumfänglich durch, weil der Druck wuchs, Software möglichst schnell auf den 
Markt zu bringen, und es immer mehr Software gab, bei der die Benutzendeninteraktion 
im Vordergrund stand. Anforderungen waren schwerer im Vorhinein festzustellen. Sie 
wurden emergent und folgten dem IKIWISI-Syndrom – I know it when I see it: Die an

wendende Person konnte erst sagen, ob die Software den Anforderungen genügt, wenn 
sie das Programm selbst gesehen hat und testen konnte (vgl. Boehm 2006: 18). Deshalb 
war schon die Verwendung von Prototypen ein Fortschritt. Die agilen Methoden bewerk

stelligten das, indem in kurzen Zyklen (bspw. monatlich) ausführbare Software erstellt 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 67 

wird, die dann die zukünftigen Nutzenden oder die Fachleute testen und dazu Feedback 
geben können. 

5.2.2. Kommunikationskompetenz und -kern: Anforderungsmanagement 

Ohne auf alle agilen Ansätze5, geschweige denn alle anderen Methoden eingehen zu kön

nen, soll der obige kurze Abriss andeuten, dass die Softwareentwicklung sich selbst erst 
mit der Zeit methodisch mit ihrer sozialen Einbettung befasst hat. Umfangreiche Feld

studien in den 80ern haben festgestellt, dass nicht fehlende technische Fertigkeiten das 
Problem waren und sind. Die Softwareproduktivität und -qualität beeinflusst vor allem 

»zu geringe und zu wenig verbreitete Kenntnisse der Entwickler über das Anwen
dungsgebiet, sich verändernde und widersprüchliche Anforderungen an das Software- 
Design und Kommunikations- und Kooperationsprobleme zwischen Entwickler und 
Kunden« (Funken 2001: 46). 

Es wurde abgerückt davon, sich allein auf technische Fertigkeiten zu konzentrieren: 

»Software-Entwicklung und -gestaltung muß also […] in wesentlichen Teilen als ein 
Lern-, Kommunikations- und Aushandlungsprozeß verstanden werden, der hohe Ko
operations- und Kommunikationsanforderungen – mithin soziale Kompetenzen – an 
die Entwickler stellt.« (Funken 2001: 48) 

Mehrere Autor:innen weisen in den 80ern und 90ern drauf hin, dass das auch in der Aus

bildung von Informatiker:innen berücksichtigt werden sollte (vgl. Funken 2001: 46ff., 
Baukrowitz/Boes/Eckhardt 1994). 

»[D]rei Viertel ihrer Arbeitszeit benötigen Software-Entwickler für die Kommunikati

on mit verschiedenen Partnern: Auftraggebern, Benutzern, Kollegen, Management, 
Vertrieb usw.« (Funken 2001: 48) 

Christiane Floyd sprach 1992 von »software development as an insight-building pro

cess in terms of multiperspectivity, self-organization and dialogue« (Floyd 1992: 86) 
und eben nicht davon, dass Anforderungen fix auszumachen sind wie technische Ei

genschaften einer Maschine oder in einem kontrollierbaren, experimentellen Setting. 
Anders als bspw. bei einem Labor-Experiment ist der Entwicklungsprozess nicht durch 
innertechnische Rationalität vorgegeben, sondern ist ein Gestaltungsprozess, bei dem 
nicht nur ein technisches System, sondern auch »die sozialen Zusammenhänge seiner 
Verwendung modelliert werden müssen« (Schulz-Schaeffer 1996: 8). 

Der kommunikationsintensivste Teil der Softwareentwicklung, das Requirements 
Engineering (auf Deutsch meist: Anforderungsmanagement), entwickelt sich seit den 
70ern zu einem eigenständigen Forschungsfeld (vgl. Funken 2001: 52). Es stellt die kor

rekte und objektive Darstellung von Anforderungen in Frage. Es plädiert dafür, unter

schiedliche Meinungen, Perspektiven und Sichten zu berücksichtigen. Unter anderem 

5 Wie Extreme Programming, Kanban, Scrum etc. 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


68 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

sollen auch potenziell konfliktträchtige Perspektiven aufgenommen werden (vgl. Fun

ken 2001: 56f.). Das Schreiben von Anforderungen, die dann die Programmierenden um

setzen, hat etwas von einer Sozialforschung: Wer mit wem wie interagiert und wie die 
Arbeitsabläufe sind, muss erfragt und beobachtet werden. Die Anforderungsaufnahme 
kann Methoden wie Interviews, Ethnografie, Perspektivenübernahme oder diskursive 
Anforderungsanalyse verwenden. Die Anforderungsstrukturierung nutzt Skizzen, Use 
Cases, Diagramme etc. (vgl. Kaminski 2012: 112ff.). Im Prozess der Anforderungsauf

nahme treten IT-Fachkräfte als Kommunikations- und Übersetzungsexpert:innen auf, 
wobei die Programmiersprache einen Eindeutigkeitsdruck auf die Kommunikation des 
Anforderungsmanagements ausübt (vgl. Kaminski 2012: 89). Es muss Übersetzungsar

beit auf dem Weg zum Quellcode geleistet werden, weil Anwendende, Auftraggebende 
und Programmierende unterschiedliche Sprachen sprechen (vgl. Kaminski 2012: 91). So 
entscheidend ist die Sprache dabei, dass selbst sprachliches Framing relevant ist, um 
zu verstehen, wie Entwicklungsprozesse ablaufen und Expert:innen Autorität gewinnen 
(vgl. Alvarez 2002: 103). 

Die Kommunikation muss es den Systemfachleuten ermöglichen, sich mit dem fach

lichen Kontext vertraut zu machen, und den fachlichen Kontextexpert:innen, sich mit 
der Systemsprache vertraut zu machen. Nur so kann der Formalisierungs- und System

bildungsprozess funktionieren (vgl. Kaminski 2012: 121). Anforderungen aufzunehmen 
ist für einige Forschende vor allem ein Meinungsbildungs- und Verbalisierungsprozess: 

»Based on this vision, much of what occurs during the requirements process should 
be about opinion and will formation that is, the development of an understanding 
of, and the creation of meaning – about the organization and its goals and processes 
for achieving these goals, supported by new systems« (Ross/Chiasson 2011: 134). 
»[R]equirements elicitation takes on the form of a ›confessional‹ act where the indi
vidual verbalizes thoughts, intentions and consciousness« (Alvarez 2002: 85). 
»The RE process is a socio-technical activity. It requires intensive communication 
among stakeholders who have different backgrounds, skills, culture, knowledge, and 
behavior« (Alsanoosy et al. 2020: 356). 

Erfolgreicher Wissenstransfer, gegenseitiges Verständnis (gemeinsame Konventionen 
und Sprache) und Kommunikation sind wesentliche Faktoren für eine erfolgreiche Soft

wareentwicklung (vgl. Corvera Charaf et al. 2013: 117). 
Das gilt ebenso bei der Implementierung einer Standardsoftware. Es geht darum, 

inwiefern diese anzupassen oder wie sie einzustellen ist. Auch hier müssen die Anforde

rungen der Kundschaft erst aufgedeckt werden, weil sie für Beratende und Kundschaft 
nicht so klar auf der Hand liegen (vgl. Mormann 2016: 169). Dabei haben es die Bera

tenden in der Hand, welche Möglichkeiten der Software sie preisgeben oder bspw. aus 
Kostengründen die Gestaltungsmöglichkeiten einschränken (vgl. Mormann 2016: 186). 

Wie bereits oben aufgezeigt, sind Begriffe wie Funktionen, Architekturen, Modelle 
oder Schnittstellen Hilfsmittel, um über Software zu reden. Dabei können im Prozess 
des Anforderungsmanagements nicht nur einzelne Funktionalitäten eine Rolle spielen, 
sondern auch wie die Software aufgebaut ist. Modelle dienen dazu, um über Software zu 
diskutieren und sie zu dokumentieren. Sie spielen in unterschiedlichen Entwicklungs

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 69 

methoden jedoch eine unterschiedliche Rolle. Manche Methoden6 betrachten Modelle 
von vornherein als vorläufig und als fortlaufend anzupassen (vgl. Mahr 2009: 245). Agi

le Softwareentwicklung verwirft den »Gebrauch von Modellen zugunsten unmittelbarer 
Programmierung« (Mahr 2009: 246). Folglich wird das Programm selbst zur Referenz, 
um über die gedachten Modelle zu reden und sie anzupassen. Abhängig von der Me

thode unterscheidet sich dann die Kommunikation im Anforderungsmanagement und 
damit der Softwaregestaltung. 

5.2.3. Kommunikation und Wissen organisieren: Local Practice statt Best Practice 

Um die Softwareentwicklung so zu organisieren, damit sie »the right thing« (Friedman/ 
Cornford 1989: 204) tut, hat die Prüfung der Forschungsliteratur keine Best Practice zu

tage gefördert. Vielmehr existieren lokale Praktiken und widersprüchliche Vorgehens

weisen. Daraus ergeben sich Ansätze, aber noch keine Konzepte für die Beschreibung 
dessen, was bei industriespezifischer Softwareentwicklung in der Phase der Software

gestaltung in unterschiedlichen Kontexten zwischen Anwendung und Programmierung 
passiert. 

Unabhängig von einzelnen Methoden wie Scrum oder dem Anforderungsmanage

ment betrachten die Autor:innen der »general theory of software engineering« (Wohlin 
et al. 2015) bei der Softwareentwicklung Wissen und Kommunikation als zentral. Den 
Kern der Theorie bildet das intellektuelle Kapital, welches aus dem Wissen der Orga

nisation (organisationales Kapital wie Dokumentationen, Anleitungen oder der Quell

code selbst), der Fähigkeit von Individuen (Humankapital) und den Beziehungen zu den 
Kund:innen und Anwendenden besteht (soziales Kapital). Wobei soziales Kapital hilft, 
die zwei Kapitalsorten (Human, organisational) miteinander zu verbinden (u.a. um im

plizites Wissen – »tacit knowledge« – auszutauschen und voneinander zu lernen). Zen

tral ist für die Autorenschaft letztendlich die Kommunikation: 

»Software system development is more of a communication problem than a technical 
problem« (Wohlin/Smite/Moe 2015: 231) 

Wie eine Entwicklungsaufgabe umgesetzt wird, hängt vom intellektuellen Kapital und 
dem angestrebten Performance-Ziel ab. Das heißt, die Theorie sieht durchaus vor, dass 
bspw. das intellektuelle Kapital nicht ausreicht, um die Aufgabe umzusetzen. Aufgabe 
des Managements ist es dann, die Ziele zurückzuschrauben. Eine Best Practice oder spe

zifische Methode schlagen die Autor:innen nicht vor. Sie haben ein situatives Verständnis 
von Softwareentwicklung, wobei Wissen, die Kompetenzen der Mitarbeitenden, Kom

munikation und gute Beziehungen eine zentrale Rolle spielen. Diese Abkehr von ein

zelnen Methoden und die Hinwendung zu abstrakteren Zusammenhängen vollzieht be

reits ältere Literatur. In Bezug auf Managementstrategien zur Softwareentwicklung sei

en keine eindeutigen Best Practices auffindbar: 

6 In diesem Fall RUP (Rational Unified Process). 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


70 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

»Policies [of management strategies] pursued depended on the particular task at 
hand, and on the particular skills, experience levels and even personalities of the 
staff involved« (Friedman/Cornford 1989: 358). 

Die Autoren lehnen bspw. Aussagen von anderen Forschenden ab, die Dequalifizierung 
(»deskilling«) und direkte Kontrolle oder eine Mischung von »Slack« und direkter Kon

trolle allgemein als beste Strategie ansehen (vgl. ebd. 356). Andere Forscher stellen ebenso 
die 

»lokale Praxis einer inkrementellen Anpassung von Vorgaben, Zielen und Vorgehens
schritten an sich wandelnde oder erst spät erkennbare Erfordernisse« (Schulz-Schaef
fer 1996: 1) 

fest. Ein anderer Autor spricht bei Softwareentwicklung von »Zonen iterativer und kom

munikativer Verständigungsprozesse« (Peter 1993: 423), weil nicht vorweg geplant fest

gelegt werden kann, wann wer über was kommuniziert. Trotzdem seien Entwicklungs

methoden nicht überflüssig. Sie haben einen Wert für den Prozess, weil sie Sicherheit 
erzeugen. Sie helfen, den Planungsprozess erst einmal in Gang zu setzen und den Betei

ligten eine gewisse Handlungssicherheit zu geben (vgl. Schulz-Schaeffer 1996: 15). 
Es gibt Fälle, die bestimmten Managementstrategien klare Grenzen aufzeigen. 

Eine Studie zeigt, wie bei ausgelagerter Softwareentwicklung autoritäre Kontrolle 
verhindert, dass sich ein gemeinsames Verständnis entwickelt und eine ausreichende 
Kommunikation stattfindet. Beides wird erst wieder durch vertrauensvolle Beziehun

gen möglich (vgl. Gregory/Beck/Keil 2013: 1226). Auch frühe Autoren argumentieren, 
dass nicht einfach mehr Arbeitskräfte produktiver sind, sondern dass Kommunikation 
entscheidend ist und dass erst über diese nachgedacht werden sollte (vgl. Conway 1968: 
31). Bei einer Untersuchung von Softwareprojekten stellt die Autorin fest, dass Demokra

tisierung die Produktivität einer individualisierten, wissensspezialisierten Belegschaft 
steigern kann (vgl. Müller 2010: 52f.). Kooperatives Arbeiten sei vielversprechender – ob 
durch kooperative Planung, Eigeninitiative etc. (ebd. 281f.). Eine Studie zu globalen Soft

wareprojekten kommt zu dem Schluss, dass nicht mehr das Management das Wissen 
zentralisiert oder verwaltet, sondern die eingesetzten »[K]oordinationsmechanismen 
zu Wissensmanagementinstrumenten« (Kotlarsky/Van Fenema/Willcocks 2008: 99) 
werden. Wenn die Fachleute der Anwendungsbereiche und der Programmierung einer 
Software zusammenarbeiten sollen, sind statt einer vertikalen Integration oder Märk

ten Netzwerke die optimale Organisationsform. Das zeigt eine Studie zur Entwicklung 
eines digitalen Kontrollsystems für Flugzeugtriebwerke (vgl. Brusoni/Prencipe/Pavitt 
2001: 610). Setzt sich also das agile Arbeiten mit seinen Kernforderungen durch? 

»The most efficient and effective method of conveying information to and within a 
development team is face-to-face conversation. […] The best architectures, require
ments, and designs emerge from self-organizing teams.« (Beck et al. 2001) 

Empirisch existiert ein gemischtes Bild, was die Organisation der Softwareentwicklung 
anbelangt. Selbstorganisation und direkte und offene Kommunikation sind in effizienz

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 71 

getriebenen Organisationen nicht immer vorzufinden: Autoren sehen Fälle, in denen 
Softwareentwicklung so strukturiert und organisiert werden kann, dass sie »dem Ide

al eines strikt vorgeplant-arbeitsteiligen Arbeits- und Produktionsprozesses recht na

hekommt« (Schulz-Schaeffer/Bottel 2018: 102). Zugleich räumen sie ein, dass das nicht 
immer so ist und Softwareentwicklung auch in teamförmigen Abstimmungsprozessen à 
la Scrum stattfinden kann (vgl. ebd.). Andere Untersuchungen zeigen, dass Scrum nicht 
automatisch zur Selbstorganisation führt (vgl. Pfeiffer/Sauer/Ritter 2014, vgl. Boes et al. 
2018). Unterschiedliche Organisationsformen sind auch bei internationaler Software

entwicklung zu finden: Zwei Fallstudien stellen einmal eine Industrialisierung und fa

brikmäßige Arbeit fest und einmal eine wenig formalisierte, auf eigenverantwortliche 
Kommunikation setzende Arbeitsweise. Beides sind somit Beispiele für einmal direkte 
und einmal permissive Kontrolle in der Softwareentwicklung (vgl. Feuerstein 2012). Bei 
einer anderen Fallstudie hatte allein die Verlagerung der Softwareentwicklung inner

halb Deutschlands »ausgeprägte Tendenzen der Spezialisierung, Abschottung, Verlust 
an Aufgabenvielfalt und Zuname der Dokumentations- und Kontrollarbeiten« (Flecker/ 
Holtgrewe 2008: 321) zur Folge. Die geringe Formalisierung der geografisch verteilten 
Arbeit wurde zum Problem. Sie wurde dann stärker standardisiert (vgl. ebd.). Ganz zu 
schweigen davon, dass es unterschiedliche Vertragsverhältnissen für Programmieren

de inkl. Selbstständige gab (vgl. ebd. 316f.). Daneben wirken sich die Projektphase oder 
die Teamgröße auf die Arbeit in der Softwareentwicklung aus: Spätere Phasen in einem 
Projekt sind strukturierter (Heidenreich/Kirch/Mattes 2008: 13) und bei größeren Teams 
werden formale Organisation und Dokumentation wichtig (vgl. Ralph 2015: 35). Allein 
der Typ der Software kann weitreichende Folgen für ihre Entstehung haben, wie eine 
Gegenüberstellung von Carmel und Sawyer (1998) zeigt: Ob eine Softwarefirma entwi

ckelt oder intern in eine Firma selbst: Laut den Autoren besteht intern eine Matrixor

ganisation und es läuft bürokratischer ab. Die Softwarefirma arbeitet dahingehend u.a. 
selbstorganisierter und die Prozesse haben eine geringere Reife. Zudem ist die Realität 
vieler Softwareentwickelnde, dass sie bestehende Standardsoftware anpassen und des

halb viel Zeit damit verbringen, diese zu beurteilen, zu verändern und andere Lösungen 
zu integrieren (vgl. Boehm 2006: 21). 

Womit wir wieder am Anfang dieses Absatzes angekommen sind: Der Ansatz von 
Wohlin et al. (2015) ist insofern zielführend, weil er nicht auf feste Methoden oder Ma

nagementstrategien wie Standardisierung oder Selbstorganisation setzt, wenn es um 
die Analyse von Softwareentwicklung geht. Zudem geht es bei der Arbeit hier um jene 
Phase der Softwareentwicklung, bei der die verschiedenen Kontexte eine noch größe

re Rolle spielen dürften und ein Wissensaustausch schwieriger zu standardisieren und 
kontrollieren ist. Um in der Scrum-Begrifflichkeit zu sprechen, geht es hier um die Rolle 
Product Owner. Sie ist für das Schreiben von Anforderungen zuständig und wie sie an 
ihre Infos über die Anwendung (in unterschiedlichen Industrien, Firmen oder Abteilun

gen) kommt. Sie findet sich in unterschiedlichsten Kontexten wieder. 
Die Spezifikation einer Software kann auf unterschiedlichen Wegen gelingen. Aus

tausch von Wissen und Kommunikation sind flexibel. Ein Meeting, eine gut formulierte 
E-Mail, ein klärendes, persönliches Gespräch oder klare Abläufe via Ticketsystem sind al

lesamt Wege, Anforderungen zu spezifizieren (mehr dazu siehe unter 6.4.4). Es bleibt die 
Spannung zwischen offenem und direktem Wissensaustausch und Effizienz und Wett

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


72 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

bewerb, wie sie allgemein für Wissensarbeit typisch ist. Bei ihr basiert Effizienz darauf, 
»Wissen und Expertise als Rohstoff umzuformen« (Willke 1998: 166). Das Konzept des so

ziotechnischen Netzwerkes im nächsten Kapitel zeigt, wie Organisationen den Arbeits

prozess der Softwaregestaltung trotzdem kontrollieren können. 

Exkurs: Was sind die Bestandteile von Scrum? 

Scrum ist eine Methode zur Softwareentwicklung, bei der iterativ Konzepte an Program

mierende übergeben und von diesen abgearbeitet werden. Der Scrum-Prozess besteht 
aus Rollen, Artefakten und Meetings (vgl. Gloger 2009: 11ff.): 

Scrum-Prozess Beschreibung 
Rollen 
Product Owner:in für die Softwarelösung (das Produkt) verantwortlich; pflegt Anforderungen 

(Items) in eine Liste (Product Backlog) und priorisiert sie für die Programmie

renden 
Scrum Team Personen, die notwendig sind, um Anforderungen in Software zu verwandeln; 

managt sich selbst (inkl. Arbeitsmenge); den Standards und Prozessen von 
Scrum verpflichtet; für die Qualität verantwortlich 

Scrum Master:in beseitigt Schwierigkeiten, Blockaden und Probleme, die das Team aufhalten; 
nicht weisungsbefugt, sorgt für Einhaltung Scrum-Prozess; schult Teilnehmen

de in ihren Rollen 
Management für Ressourcen und Richtlinien zuständig, setzt Rahmen des Scrum-Prozesses, 

löst von Scrum Master:in identifizierte Probleme 
Artefakte 
Product Backlog Liste mit Anforderungen (Items), je Anforderung schätzt das Team den Aufwand 
Sprint ein Zyklus (z.B. 2 Wochen), in dem Team Items abarbeitet 
Sprint Backlog Liste mit abzuarbeitenden Aufgaben für einen Sprint, wird täglich überarbeitet 

und aktualisiert 
Meetings 
Daily Scrum Meeting (ca. 15 Minuten) im Team, bei dem Personen sagen: Was habe ich seit 

dem letzten Daily Scrum erreicht? Was will ich bis zum nächsten Daily Scrum 
erreichen? Welche Impediments (Hindernisse) stehen mir dabei im Weg? 

Sprint Plannings Treffen für anstehenden Sprint, über Anforderungen und Ziele des im Sprint 
entwickelten Softwareteils; wie wird Software aufgebaut und welche Architek
tur soll sie haben? 

Sprint Review Treffen, bei dem das Team Funktionalität am Ende des Sprints präsentiert; Fort
schritt wird anhand von »usable Software« demonstriert 

Retrospektive Treffen, in dem das Team die eigenen Arbeitsprozesse optimiert 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 73 

5.3. Zwischenfazit: Softwaregestaltung als soziologisches Problem 

Für die Untersuchung der Formen und Folgen von industriespezifischer Softwaregestal

tung hat Kapitel 4 dargestellt, warum Softwaregestaltung zum Kern der Digitalisierung 
von Wirtschaft und Gesellschaft gehört. Dies gilt auch für von Software durchdrungene 
Organisationen, die nicht mit Software ihr Geld verdienen. Softwaregestaltung kann in 
unterschiedlichen Kontexten stattfinden, die auch im weiteren Verlauf der Arbeit noch 
eine Rolle spielen werden: durch Softwarefirmen, in digitalen Start-ups, durch IT-DL, 
in den EVU selbst etc. Zudem hat Kapitel 4 für die weitere Analyse grundlegende Begrif

fe anhand eigener Überlegungen eingeführt, die für das hier vertretene soziotechnische 
Verständnis moderner Organisationen stehen: softwaretechnische Interdisziplinarität 
und softwaretechnische Gestaltungsmöglichkeiten (bestehend aus softwaretechnischer 
Ausrichtung und Zuschnitt). Eine Variante der Letzteren ist der Primat der Software

entwicklung, bei dem eine Organisation von Anfang an auf die Softwaregestaltung aus

gerichtet ist (softwaretechnische Ausrichtung) und für sich eine individuelle Software 
gestaltet (softwaretechnischer Zuschnitt). Eine andere Variante ist, dass sich eine Orga

nisation auf die Anwendung einer Standardsoftware konzentriert. 
Um begrifflich zu klären, was bei der Softwareentwicklung der Mensch macht und 

was die Maschine, hat Kapitel 5 zwischen den Begriffen Daten, Informationen, Wissen 
und Kommunikationen unterschieden. In Abgrenzung zu anderen Theorien über das 
Verhältnis von Menschen und Technik folgt die Untersuchung dem kritisch-realistischen 
Ansatz von Mingers/Willcocks (2014). Demnach unterscheiden sich die drei Welten von 
Person, Sozialem und Technik ontologisch und epistemologisch voneinander und zwi

schen Mensch und Technik besteht eine Arbeitsteilung: Der Mensch versteht, interpre

tiert und vermittelt zwischen Software und Umwelt und ist dabei in eine soziale Welt 
eingebunden. Kommunikation und Wissen sind seine Domänen. 

Um die Softwaregestaltung als Arbeitsprozess zu verstehen, hat Kapitel 5 gezeigt, 
dass sie und warum sie wesentlich auf Wissen und Kommunikation basiert. Das 
hat technologische (u.a. zeichenbasierte Technologie, mehrere technische Schichten, 
sprachliche Strukturierung u.a. durch Begriffe) und organisatorische Gründe (u.a. 
verstärkte Einbindung von Anwendenden). Es zeigt sich am historischen Wandel der 
Softwareentwicklung und ihrer Methoden über die Jahrzehnte hin zu einem in vielen 
Kontexten weitverzweigten, vernetzten, kollektiven Kommunikationsprozess. 

Die Mitarbeitenden an der Softwaregestaltung machen das, was der Computer 
nicht kann: Sie tragen ihr Wissen bei und kommunizieren. Das müssen sie tun, wenn 
sie die notwendige softwaretechnische Interdisziplinarität herstellen wollen. IT-Fach

leute wie Programmierende und fachliche Expert:innen wie Anwendende müssen sich 
austauschen. Dabei sind sie damit konfrontiert, dass Software unterschiedliche Schich

ten hat: Beispielsweise kennen die Programmierenden in erster Linie den Quellcode, 
während die Anwendenden die Bedienungsoberfläche der Software aus ihrer täglichen 
Arbeit kennen. Nicht jede:r hat die gleiche Perspektive auf die Software-Oberflächen 
bzw. spielt die Software die gleiche Rolle im Arbeitsalltag. Die Beteiligten der Soft

waregestaltung haben unterschiedlichen Einblick in die Algorithmen, verstehen nicht 
alle Programmiersprachen oder das Gleiche unter softwaretechnischen Begriffen wie 
Softwarearchitektur, Schnittstelle oder Modell. In der Softwaregestaltung kann es dazu 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


74 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

kommen, dass es für jede Perspektive eigene Spezialist:innen gibt: für die Programmie

rung, Softwarearchitektur, Datenbanken, den Anwendungsbereich Prozessteil A der zu 
gestaltenden Software und jenen von Prozessteil B usw. 

Im Zuge der Softwaregestaltung kann Software einerseits keine Blackbox bleiben 
und andererseits kann sich nicht jeder intensiv mit ihrem Innenleben beschäftigen. Bei

des wirkt sich auf Kommunikation und Wissen in der Softwaregestaltung aus. So kön

nen Berechtigungsstrukturen, die den Zugang zur gesamten Software oder einzelne ih

rer Funktionalitäten regeln, es erschweren, an das notwendige Wissen zu kommen, was 
in der Software steckt. Dann muss möglicherweise der/die Expert:in der Softwarefirma 
oder ein:e IT-Berater:in hinzugezogen werden. Zudem haben Beteiligte nicht immer die 
Möglichkeit, sich sämtliches Wissen über die Software und ihre Anwendung anzueig

nen, wenn sich die Software stetig verändert, der gewohnte Arbeitskontext sich durch 
eine neue Software oder ein Softwareupdate verändert hat oder die Software im Laufe 
der Zeit immer komplexer geworden ist. Software ändert sich oftmals stetig. Das Wissen 
über sie kann schnell veralten. Das liegt auch daran, dass eine Standardsoftware einen 
Lebenszyklus hat. Die anbietende Softwarefirma löst alte Versionen ab, ohne auf die Zu

stimmung sämtlicher Anwendenden zu warten. All das hat Folgen für den kommunikati

ven Austausch und Wissenstransfer: die verschiedenen Perspektiven und Wissensstände 
der Stakeholder:innen einer Software, welche Veränderungen durch wen überhaupt an 
der Software oder an der Organisation möglich sind, stetige Änderungen an der Software 
oder gar die Ablösung einer Software durch eine neue Version. 

Historisch betrachtet wurde es über die Jahrzehnte immer wichtiger zu berück

sichtigen, dass Softwareentwicklung kein rein technisches Problem ist (vgl. Friedman/ 
Cornford 1989, Funken 2001, Boehm 2006). Statt sie wie Fließbandarbeit zu struktu

rieren, haben die Autoren des agilen Manifests 2001 einen Gegenentwurf zu dieser 
Arbeitsorganisation veröffentlicht (vgl. Beck et al. 2001). Das Forschungsfeld des An

forderungsmanagements der Informatik zeigt, dass Kooperation, Kommunikation 
und soziale Kompetenzen wichtig für die Softwareentwicklung sind. Sprache, Über

setzungsfähigkeit zwischen IT- und energiewirtschaftlichen Fachleuten, intensive 
Kommunikation und gar die Anwendung sozialwissenschaftlicher Methoden zur An

forderungsaufnahme stehen im Vordergrund (vgl. Alvarez 2002, Ross/Chiasson 2011, 
Kaminski 2012, Corvera Charaf/Rosenkranz/Holten 2013, Alsanoosy/Spichkova/Harland 
2020). Diese Ergebnisse stellen eine erste Grundlage für den Arbeitsprozess der Soft

waregestaltung dar. Doch berücksichtigen sie keine arbeits- und organisationssoziolo

gische Literatur, die Softwareentwicklung in unterschiedlichen Kontexten untersucht. 
Eine kurze Aufarbeitung dieser Literatur konnte zeigen, dass es nicht die beste Methode 
oder Organisationsform für alle Fälle gibt. Stattdessen existieren lokale Praktiken und 
die Empirie zeigt unterschiedliche Organisationsformen der Softwareentwicklung. Ein 
allgemeines Konzept, um die Softwaregestaltung arbeitssoziologisch zu analysieren, 
wäre aber hilfreich. Die allgemeine Theorie der Softwareentwicklung ist der Versuch, 
ein solches allgemeines Konzept aufzustellen (vgl. Wohlin/Šmite/Moe 2015). Sie berück

sichtigt die Kontextabhängigkeit von Softwareentwicklung und legt sich nicht auf be

stimmte Organisationsstrukturen, Abläufe oder Managementmethoden fest. Indem sie 
aber organisationssoziologische und arbeitssoziologische Erkenntnisse unterschlägt, 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


5. Softwaregestaltung basiert auf Wissen und Kommunikation 75 

fehlt die Berücksichtigung von unterschiedlichen Arbeits- und Organisationskontexten 
und wie sich diese auf die Softwareentwicklung auswirken. 

Mit dem Konzept der softwaretechnischen Netzwerkarbeit, was das nächste Kapi

tel entwickelt, lässt sich der aus der Empirie der Fallstudien entwickelte Analyserahmen 
besser konzeptionell in die Forschungslandschaft einbetten. Das Konzept ist auf die Pha

se der Softwaregestaltung zugeschnitten, berücksichtigt die für die Softwaregestaltung 
wesentlichen Kontextfaktoren und ist zugleich so allgemein, dass es sowohl agile wie 
auch weniger agile Organisationsformen abdeckt. 

https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


https://doi.org/10.14361/9783839476888-010 - am 13.02.2026, 15:30:15. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

