5. Softwaregestaltung basiert auf Wissen
und Kommunikation

Um die beiden Forschungsfragen der Formen und Folgen von industriespezifischer Soft-
waregestaltung zu beantworten, sind nicht nur die beiden oben genannten Kernproble-
me der Softwaregestaltung entscheidend (softwaretechnische Interdisziplinaritit und
Gestaltungsmaglichkeiten). Genauso wichtig fiir die Praxis sind Kommunikation und
Wissen: Software besteht vom Quellcode tiber die Softwarearchitektur, ihren Einstel-
lungsmoglichkeiten bis zur Bedienoberfliche aus mehreren Schichten. Weil fiir die be-
teiligten Menschen eine dieser Ebenen der primire Arbeitsgegenstand ist (z.B. fiir die
Programmierenden der Quellcode, fiir die Anwendenden die Bedienoberflichen), miis-
sen sie sich iber ihre unterschiedlichen Perspektiven verstindigen und ihr Wissen ein-
bringen. Das Wissen iiber die komplexe Welt aus Algorithmen, Daten, Einstellungsmaog-
lichkeiten, Schnittstellen, fachlichen Prozessen etc. vor und hinter der Softwareoberfli-
che reicht aber nicht aus. Die Beteiligten miissen sich im Zuge der Softwaregestaltung
kommunikativ austauschen konnen. Fiir die Softwaregestaltung ist neben der verbalen
Kommunikation nonverbale Kommunikation als wissensbasierte Textarbeit in Form von
Arbeit an Quelltext, Spezifikationen, Anforderungen, Konzepten oder Dokumentatio-
nen notwendig. Wie das Kapitel zeigt, wurde Softwareentwicklung selbst im Laufe ihrer
Geschichte in Forschung und betrieblicher Praxis mehr und mehr als Kommunikations-
prozess verstanden. Somit ist nicht nur die Anwendung von Software sozial bedingt. Ihr
gesamter Gestaltungsprozess ist es. Das Kapitel erliutert die Primisse der vorliegenden
Arbeit, dass anders als bei anderen sozialwissenschaftlichen Ansitzen zum Verhiltnis
von Mensch und Technik eine Arbeitsteilung zwischen Mensch und Software(entwick-
lung) besteht: Der Mensch verfiigt iber das Wissen, kann kommunizieren und damit
Software gestalten. Softwaregestaltung ist etwas genuin Menschliches, weil dafiir ein
sinnhafter Bezug zu Objekten notwendig ist. Damit legt dieses Kapitel die Basis fiir die
darauffolgenden Ausfithrungen, auch um zu verstehen, warum Wissen und Kommuni-
kation zwei zentrale Begriffe und Elemente der Softwaregestaltung sind. Es geht um die
materielle Basis des Arbeitsprozesses.

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

58

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung
5.1. Technische Grundlagen: Software als Ergebnis menschlicher Textarbeit

5.1.1. Verarbeiten und verstehen: Arbeitsteilung zwischen Menschen
und Maschinen

Was die theoretische Sicht auf Technik anbelangt, geht diese Arbeit von einer klaren Ar-
beitsteilung zwischen Menschen und Computern aus: 1. Nur der Mensch kann infor-
miert sein, etwas wissen und kommunizieren. 2. Der Mensch ist das soziale Wesen und
3. entwickelt die Software. Der Computer weifd weder etwas, noch ist er informiert, noch
stellt er soziale Beziehungen her oder schreibt autonom industriespezifische Software.

Zu 1.: Fiir die Person, die Daten eingibt, sind die Daten Informationen und sie
braucht ein bestimmtes Wissen, um die Eingabe korrekt auszufiithren. Informationen
sind immer soziale Interpretationen von Daten, sie haben eine Bedeutung, sie haben
Sinn. Wobei aus Informationen Wissen wird, wenn sie in einen bestimmten Erfahrungs-
kontext eingebunden sind (vgl. Willke 1998: 162). Das ist etwas, dass ein Computer nicht
kann, weil interpretieren nur Menschen kénnen. Wie von Brédner (2014) analysiert,
ist der Interpretationsmoment hervorzuheben, der zwischen maschinell ausgefithrten
Operationen und sozialen Handlungen eingebettet ist, zwischen zu interpretierenden
Daten und maschinellen Verarbeitungen (Algorithmen). Wenn Maschinen Daten liefern
und diese dann zur Steuerung und Kontrolle dieser Maschinen dienen, dann miissen
diese Daten von den Beschiftigten interpretiert werden (wie bspw. von Zuboff 1988
ausfithrlich beschrieben).

Der Begriff des Wissens markiert den Ubergang zum Handeln. Mit Wissen kénnen
Menschen Probleme l6sen. Mit Wissen konnen sie in einem bestimmten Kontext han-
deln und entscheiden. Somitist es irrefithrend, davon zu reden, dass Computer handeln,
entscheiden oder etwas wissen. Das konnen nur Menschen, die einem Zeichen eine Be-
deutung beimessen konnen (s.0.) und dann der Bedeutung gemifd handeln.

»Wissen als Erklirungszusammenhang fiir Informationen, als eine mit Erfahrung,
Kontext, Interpretation und Reflexion angereicherte Form der Information, geeignet,
Arbeitshandeln und Entscheidungen anzuleiten« (Jirgens 1999 nach Wilkesmann 2005:
56).

Also: Wenn ein Mensch Daten Sinn geben kann, sind es Informationen. Erst wenn
dieser Mensch daraus Handlungen und Entscheidungen ableiten kann, wird es zu Wis-
sen. Genau dieser Prozess, den eine Autorin als De- und Rekontextualisierung beschreibt
(vgl. Degele 2000: 69), passiert tiglich in den softwaregestiitzten Organisationen. So z.B.
wenn jemand vor einer Eingabemaske steht, die er nicht versteht, weil ihm das Wissen
fehlt, oder wenn der Rechnungsbeleg alle notwendigen Informationen enthilt, die/der
neue Sachbearbeitende aber nicht genau weif3, warum die Rechnung nun so und nicht
anders aufgebaut ist. Fiir die Organisation ist es wichtig, dass die Software das richti-
ge Rechnungsformular erzeugt. Womoglich ist die Umsetzung auch dokumentiert. Fiir
neue Sachbearbeitende wire es jetzt wichtig zu wissen, wo sie diese Dokumente finden
oder wer ihnen sagen kann, warum etwas wie auf dem Rechnungsformular gestaltet ist.
Selbst bei programmiertem Quellcode ist es wichtig zu wissen, warum etwas wie ent-
wickelt wurde. Die Bedeutung ist sonst nicht ersichtlich. Selbst eine umfangreiche Do-
kumentation reicht oft nicht aus, um das gesamte Wissen zu hinterlegen (vgl. DAdderio

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation

2003:326). Der Quellcode kann der Maschine eindeutige Befehle geben, liefert aber nicht
automatisch seine Entstehungsgeschichte und seinen Sinn fiir den Kontext, fiir den er
existiert.

Um Daten, Informationen und Wissen unter Menschen auszutauschen, ist Kommu-
nikation notwendig. Dadurch, dass der Computer Kommunikation von ihrem Kontext
entkoppeln kann und wie ein Buch, ein Brief oder ein anderes Schriftstiick vom Sen-
denden abstrahiert, verindert sich das Verhiltnis von Information, Mitteilung und Ver-
stindnis durch Arbeiten via Software (vgl. Degele 2000: 65). Der Sinn der Kommunikati-
on ergibt sich nicht mehr direkt aus der Mitteilung, sondern der/die Empfinger:in kann
unabhingig davon interpretieren und der Mitteilung einen Sinn geben (vgl. Esposito
1993: 351f.). Sie/er kann aber auch daran scheitern, weil er/sie z.B. einen Begriff nicht
versteht. Das alles macht menschliche Kommunikation zum wesentlichen Bestandteil
der Softwaregestaltung, die der Computer nicht vollstindig ersetzen kann. Das zeigt
sich, wie im Folgenden dargestellt, vor allem im Anforderungsmanagement. Letztlich
sorgen die Beschiftigten in einem stetigen Kreislauf aus Daten, Information, Wissen
und Kommunikation dafiir, dass Organisationen Software anwenden, programmieren
und gestalten.

Zu2.:Neben derinterpretierenden Funktion des Menschen sind die von ihm verwen-
deten Zeichen Teil einer sozialen Welt. Der vorliegenden Arbeit liegt eine klare Unter-
scheidung zwischen Sozialem und Technischem zugrunde. Sie folgte dabei ausgehend
von C. S. Peirce und Jiirgen Habermas den Autor:innen Mingers und Willcocks (2014), die
von drei Welten ausgehen:

A) Der Welt der Person, welche Zeichen und Nachrichten erzeugt und interpretiert
(Softwaregestaltende, -anwendende, -programmierende).

B) Der materiellen Welt, in der die Zeichen verkérpert sind und tibertragen werden
(Software, Hardware).

C) Der sozialen Welt, weil die individuelle Nutzung des Zeichens nicht iiber das Sozia-
le hinausgehen kann (z.B. der kollektive Arbeitsprozess der Softwaregestaltung, die
Arbeitsteilung zwischen Anwendung und Entwicklung).

Fiir Mingers/Willcocks sind die oben aufgefithrten drei Welten ontologisch und episte-
mologisch getrennt. Wobei fiir sie das Individuum im Mittelpunkt steht: »communica-
tions and information systems rest on individuals who create and send, or have sent,
messages and data; then receive and interpret them; then act (or not act) upon them«
(Mingers/Willcocks 2014: 50). Das Subjekt vermittelt zwischen materieller bzw. techni-
scher und sozialer Welt, indem es Zeichen deutet. Damit grenzen sie sich von Ansitzen
wie jenem der Sociomateriality ab, fir den Soziales und Technisches nicht trennbar sind.
Einer dieser Ansitze ist die Actor-Network-Theorie: Diese vernachlissigt fiir Mingers/
Willcocks sowohl die vermittelnde Funktion des Einzelnen als auch die ontologischen
Unterschiede zwischen Technik (Software) und der sozialen Welt (bspw. einer Organisa-
tion). Wie sehr die oder der Einzelne als Teil einer sozialen Welt bei der Softwaregestal-
tung agiert, fithrt 5.2 weiter aus und ist zentraler Bestandteil dieser Untersuchung (vor
allem beim Arbeitsprozess der Softwaregestaltung selbst).

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

59

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

60

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Zu 3.: Wenn eine Verwaltung bestehende Formulare in Software iibersetzt und nun
papierlos arbeitet, ohne dass sich etwas am biirokratischen Ablauf oder den Formula-
ren wesentlich verandert: Entstehen hier neue Informationen oder wird hier nur etwas
in Software tiberfithrt? Informatisierung, wie den Begriff unterschiedliche Autor:innen
verwenden (vgl. Baukrowitz et al. 2006, Boes et al. 2018, Ziegler 2020), unterscheidet die
vorliegende Arbeit von jener Titigkeit, bei der Menschen die reale, analoge Welt in digi-
tale umwandeln: der Softwareentwicklung.

5.1.2. Konkret und abstrakt: mehrere Schichten, sprachliche Strukturierung

Das Besondere an der Softwaregestaltung ist, dass die Beschiftigten wihrend des
Arbeitsprozesses mit den verschiedenen technischen Schichten und sprachlichen
Strukturierungen der Software arbeiten miissen. Daraus erklart sich auch die grofie
Bedeutung von Wissen und Kommunikation, weil sich die Beschiftigten iiber diese
unterschiedlichen Schichten und Begriffe verstindigen miissen. Im Unterschied zu
anderen Technologien besteht Software komplett aus Zeichen. Mit den zugrundelie-
genden oen und 1en beschiftigt sich in den EVU niemand. An ihren unterschiedlichen
Erscheinungsformen kommt aber keiner mehr vorbei. Aus Arbeitssicht sind vier Aspekte
zentral: Die Programmierung von (1.) Algorithmen verlangt je nach (2.) Programmier-
sprache unterschiedliche Fertigkeiten. Dazu gehért (3.) Softwarearbeit mit dem Medium
der Sprache und Begriffen wie Architektur, Modelle oder Schnittstellen zu strukturie-
ren. (4.) Es existiert eine Oberfliche als Medium zwischen Anwendenden, Daten und
Algorithmen.

Zu 1.: Da sind zum einen die in der Software eingeschriebenen Anleitungen zur
Datenverarbeitung: die Algorithmen. Sie stellen klare Vorschriften dar. Jeden formali-
sierbaren Sachverhalt kann die symbolische Maschine Computer ausfithren. Dabei gibt
es keinen Interpretationsspielraum und die Algorithmen sind durch ihre Schriftlichkeit
klar definiert. Sie sind eindeutig, determiniert, unterscheidbar und allgemein (vgl. De-
gele 2000: 62f.). In einem Programm konnen Tausende solcher Vorschriften enthalten
sein. Es ist dann eine Frage des Fokus, ob man eine relevante Funktionsweise (bspw.
den Suchalgorithmus von Google) oder die Struktur einer Software (Methoden, Klassen,
Funktionen, Befehle etc.) zugrunde legt, wenn man von Algorithmus spricht.

Zu2.:Gebaut werden diese Vorschriften mithilfe von Programmiersprachen. Der Be-
griff »Sprache« sollte nicht in die Irre fithren. Sie werden nicht wie menschliche Spra-
chen verwendet. Sie wurden als Medien entwickelt, um es den Menschen einfacher zu
machen, der Maschine Befehle zu geben (anderes als bei der menschlichen Sprache gibt
es keine Ambivalenz, Ironie oder Ambiguitit). Softwarespezifische Sprachen wie ABAP
(fur SAP), funktionsspezifische wie R, objektorientierte wie C++ oder Low-Code-Ansit-
ze zeigen, dass es genau darum geht: ABAP soll méglichst auch fiir Nicht-Programmie-
rende leicht erlernbar sein. Einfache Abfragen und Ausgaben von Datenbanktabellen
sollen bspw. auch fiir die in den Wirtschaftsorganisationen weitverbreiteten Betriebs-
wirtschaftlern moglich sein. R wird fiir statistische Aufgaben verwendet und verfugt
tiber die entsprechenden Befehle. Low-Code-Software (im Sinne von wenig programmie-
ren) anbietende Unternehmen versprechen, dass jedes Mitglied einer Organisation ei-
ne Software entwickeln kann, weil keine komplizierte Programmiersprache gelernt wer-

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation

den muss (bspw. FrontPage von Microsoft, um Webseiten zu erstellen). Objektorientierte
Sprachen wie C++ ermdglichen es Programmierenden, Bibliotheken mit Quellcodes auf-
zubauen, die sie wie Bausteine in unterschiedlichen Kontexten verwenden kénnen. Das
erleichtert den fiir den Menschen sinnhaften Aufbauvon Software und die sinnhafte Auf-
teilung der einzelnen Bestandteile. Es gibt immer noch sogenannten »Spaghetti«-Code,
bei dem Befehl an Befehl aneinandergereiht ist, bis mehrere Tausend Zeilen dastehen,
die schwer wartbar sind. Der Maschine ist das egal, fiir den Menschen eine Qual.

Zu 3.: Hier wurden schon einige analytische Spriinge gemacht, die fiir Software ty-
pisch sind: von Programmiersprachen tiber deren Eigenarten und deren Folgen fir gro-
Rere Mengen an Quellcode und Methoden, diesen Quellcode zu organisieren (bspw. in
Klassen, Funktionen etc.). Wie im weiteren Verlauf mehr und mehr klar wird, gibt es
eine Vielzahl von Konzepten, Begriffen und Methoden, um die Arbeit mit und am Quell-
code, aber auch den Quellcode selbst zu organisieren. Die Vielfalt an Entwicklungsmég-
lichkeiten kontrollieren Modelle, damit die Programmierung nicht im Chaos endet. Be-
stimmte Formen der Programmierung, die den Quellcode strukturieren, stellen bereits
eine Form der Modellierung dar'. Sie machen Modellierung alltiglich (vgl. Mahr 2009:
230f.). Modelle sind Ressourcen zum Speichern und Transportieren und sie sind Agen-
ten »zur Konstruktion und Gestaltung neuer Realititen« (ebd.). Sie spielen eine wichtige
Rolle bei Erkenntnis- und Meinungsbildungsprozessen. Unterkategorien von Modellen
sind bspw. Architekturen, Prinzipien der Systemgestaltung, Techniken der Abstraktion
oder Prinzipien der Usability (vgl. ebd. 248). Vor allem der Modellbegriff der Architek-
tur” ist mittlerweile weitverbreitet. Es gibt viele Definitionen von Architektur und laut
einigen Autoren ist eine richtige Definition auch nicht méglich (vgl. Vogel et al. 2009: 49).
Sie schlagen trotzdem eine vor:

»Die Software-Architektur eines Systems beschreibt dessen Software-Struktur re-
spektive dessen -Strukturen, dessen Software-Bausteine sowie deren sichtbaren
Eigenschaften und Beziehungen zueinander und zu ihrer Umwelt« (ebd.: 49).

Fir sie geht es darum, dass Software-Architektur »Komplexitit iiberschaubar und hand-
habbar [...] [macht] in dem sie nur wesentliche Aspekte eines Systems zeigt« (ebd. 10). Es
geht um die Fundamente und tragenden Siulen einer Software (vgl. ebd.). Ob eine Fir-
ma intern etwas programmiert, es externen Programmierenden itberldsst oder Baustei-
ne aus der Cloud verwendet: Das wird schnell zu einer Frage der Architektur, weswegen
auch Nicht-ITler aufderhalb von IT-Abteilungen und -Unternehmen iiber sie sprechen.
Weitere mittlerweile geliufige Begriffe wie Schnittstellen® oder Softwarepakete zeigen,
wie strukturierungsbediirftig die Sprache bei der Arbeit mit Software ist.

1 Zum Beispiel die objektorientierte Programmierung.

2 Viel wichtiger als ihre Rolle bei der Modellierung ist die Softwarearchitektur bei der Untersu-
chung der Fallstudien im Empirie-Teil, weil sie die Organisation der Softwaregestaltung pragt.
Darauf geht das nichste Kapitel gesondert ein und zeigt, welche konkreten Eigenschaften der
Softwarearchitektur fiir die Analyse der Formen und Folgen der Softwaregestaltung relevant sind
(6.4.2.2).

3 Meist nur noch APIs (Application Programming Interface) genannt.

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

62

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Zu 4.: Neben den Medien zum Programmieren der Maschine gibt es noch die Medi-
en zur Ein- und Ausgabe von Daten und Algorithmen: ob Web-Oberflichen, Eingabe-
masken, Computerspiele oder Textverarbeitungsprogramme. Anders als mechanische
Maschinen wie Verbrennungsmotoren, Leichtbauroboter o. 4. erfordern sie per se keine
mechanische Reaktion. Natiirlich kann ein Programm so programmiert sein, dass eine
Eingabe erforderlich ist oder nur eine bestimmte Zeit zur Eingabe bleibt. Software kann
aber auch einfach nur Daten darstellen. Sie kann Arbeitsabliufe als Flief3band darstel-
len — muss sie aber nicht. So oder so bleibt Software ein Medium zur Darstellung oder
Eingabe von Daten. Der Mediencharakter zeigt sich bei Webseiten wie Wikipedia oder
einer digitalen Zeitung. Der Inhalt ist zwar der gleiche (die Daten), aber die Aufbereitung
anders, was Folgen fiir das Leseverhalten oder die Verbreitungsmoglichkeiten hat.

Wie die Fallstudien zeigen werden, spiegeln sich die verschiedenen technischen
Schichten und sprachlichen Strukturierungen in der Arbeitsteilung zwischen Program-
mierenden, IT-Projektleitenden, IT-Beratenden, Key User:innen etc. wieder. In ihrer
Arbeit vermitteln sie zwischen verschiedenen technischen Schichten, Perspektiven und
Begriffen, wobei jeder seine Schwerpunkte hat und sie letztendlich eine gemeinsame
Sprache finden miissen. Es ist Kommunikation notwendig, um die jeweiligen Perspek-
tiven auf die Software zu integrieren und sich zu verstindigen. Damit geht es bei der
softwaretechnischen Interdisziplinaritit nicht nur um das jeweilige industriespezifi-
sche und softwaretechnische Domanen-Wissen.

5.1.3. Zwischen Text und Blackbox: Grenzen der Gestaltung und des Verstehens

Fiir die Softwaregestaltung spielt es eine besondere Rolle, dass unterschiedliche Perso-
nen und Organisationen unterschiedlichen Zugriff und Gestaltungsmdoglichkeiten be-
ziiglich der Software haben und sich die Software stetig dndert. Nicht jede:r kann den
Quellcode oder eine Datenbank einsehen oder verstehen und verindern. Im Verlauf der
Entwicklung einer Software verindert sich, was die Beschiftigten noch gestalten oder
woriiber sie noch reden kénnen (vor allem bei Standardsoftware). Das ist insofern wich-
tig, weil es Teil des Arbeitsprozesses der Softwaregestaltung ist, zu vermitteln: zwischen
Teilen der Software, die als Blackbox erscheinen, und den analysierbaren; zwischen ge-
staltbaren und nicht mehr gestaltbaren Teilen der Software; zwischen Softwareoberfli-
chen und einem Quellcode, die oder den man kennt oder einem fremd ist; zwischen ei-
ner Software und ihrem Umfeld, die sich beide stetig andern und damit das Wissen iiber
beide langfristig nicht gesichert ist.

Anders als bei anderen Maschinen oder Werkzeugen gibt es die Méglichkeit, den
Zugrift auf Software genau festzulegen. Dies geschieht hiufig durch differenzierte
Berechtigungsstrukturen, die unterschiedliche Zugriffe auf Software und damit Da-
ten, Funktionalititen bis hin zum Quellcode erlauben (bspw. bei SAP, Windows oder
diversen Online-Plattformen). Mitarbeitende in einem Call-Center miissen mit der
Software arbeiten, die ihnen ihre Firma zur Verfiigung stellt. Wenn die Software genaue
Vorgaben macht, wie ein Anruf abzuwickeln ist, und bestimmte Daten anzeigt, konnen
die Mitarbeitenden das nicht dndern. Es konnen auch einzelne Eingabefelder fir Mitar-
beitende freigeschaltet oder gesperrt sein. Andererseits gibt es formalisierte Wege fiir
den Zugriff auf die Gestaltung von Software. Viele Firmen haben (formale) Wege, um an

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation

bestimmte Berechtigungen zu kommen. Bei Schwierigkeiten oder Fehlern mit Software
gibt es einen First-, Second-, Third-Level Support, der Anwendenden weiterhilft.

Fir die unterschiedlichen Stakeholder einer Software gibt es unterschiedliche Mog-
lichkeiten der Gestaltung und des Verstehens. So entscheiden meist wenige tiber die
Softwarearchitektur, die langfristig weitreichende Folgen hat. Manche Softwarelosun-
gen bieten Einstellungs- oder Anpassungsmoglichkeiten an, die vom Festlegen des Farb-
schemas bis hin zum Ersetzen einzelner Codestellen durch eigenen Quellcode reichen
konnen. Neben der Architektur kénnen die Anwendenden oftmals nichts mehr daran dn-
dern, wie die Programmierenden den Anwendungskontext modelliert haben, auch wenn
das ihre Arbeit beeinflusst (vgl. Mahr 2009: 230). In Software ist ein »objektiviertes Mo-
dell der organisatorischen Wirklichkeit« (Heidenreich/Kirch/Mattes 2008: 4) fixiert. Zu-
dem ist das meiste Wissen, was in der Software steckt, nicht mehr aufRerhalb vorhan-
den oder kann nur durch Fachexpertise oder iiber 6ffentlich zugingliche Spezifikatio-
nen mithsam angeeignet werden. Der Computer ist fiir die meisten eine Blackbox (vgl.
Zuboff 1988: 166). Das kann bedeuten, dass die Software Dinge tut, von denen die An-
wendenden nichts wissen — wie z.B. unentdeckt iiberwacht zu werden, wie dies durch
Software von Google oder Amazon passiert (vgl. Zuboff 2018).

»Je umfassender und komplexer Maschinen werden, wandern Praktiken und Normen
in die materielle Basis der Gesellschaft, allerdings black-boxed« (Joerges et al. 1998:
372).

Trotz beschranktem Zugriff auf eine Software und obwohl sie eine Blackbox sein kann,
die nicht mehr dnderbar ist, ist die oder der einzelne Beschiftigte fiir ihre/seine Arbeit
auf das Wissen iiber die Software angewiesen. Das Wissen iitber den Anwendungskon-
text allein reicht nicht. Denn der Anwendungskontext existiert nur noch als einer, den
die Software bereits verandert hat. Eine Autorin spricht von einem reflexiven Strukturie-
rungsprozess: Beim Einsatz von Technik in organisationalen Netzwerken (in dem kon-
kreten Fall geht es um Call-Center) bedeutet dies, dass sich das Verhaltnis von organi-
sationalem Netzwerk und Technikverwendung als eines der zunehmenden Durchdrin-
gung und wechselseitigen Gestaltung beschreiben lisst. Soziales und Technisches sind
nur noch schwer zu trennen (vgl. Longen 2015: 120). In einer Studie zu einer ERP-Ein-
fithrung ist von »durchwurstelt«, dem Eigenleben des Einfithrungsprojektes oder einer
»unruly technology« die Rede: Es kann immer etwas Unvorhergesehenes passieren (vgl.
Conrad 2017:189f.). Das liegt fiir die Autorin daran, dass Organisation und Technik sich
nicht mehr auseinanderhalten lassen.

»Man hat es nicht mit zwei unterschiedlichen Entitdten zu tun — Organisation auf der
einen Seite, Medien und Technologien auf der anderen —, sondern beide enthalten
Elemente voneinander und haben sich in Abhdngigkeit voneinander und in Abstim-
mung aufeinander ausgebildet.« (Conrad 2017: 12)

Die Beschiftigten denken immer nur noch im Angesicht der Software iiber ihre eigene

Arbeit und Organisation nach. Uber die Zeit (das kénnen Jahrzehnte sein) findet eine
Ko-Konstruktion von Organisation und Software durch die anwendenden Beschiftigten

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

63

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

64

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

und Softwaregestaltenden statt. Am Ende eines IT-Projektes existiert der Arbeitskontext
nicht mehr, fiir den urspriinglich der Auftrag erteilt wurde, eine Software zu entwickeln:

»Coevolution changes the context [..] and building the system changes the context
itself, a software development projects actively obsolesces its own contract« (Ralph
2015: 38).

Das Wissen tiber Anwendungskontext und Software ist nicht nur verschrankt. Es dndert
sich auch stetig. Die softwareeinsetzende Organisation als solche hat mit einem per-
manenten Anpassungsbedarf zu rechnen. Bereits in den 8cer Jahren schreibt Lehman
(1980), dass sich Software permanent dndert. Seine ersten zwei Gesetze der Programme-
volution beziehen sich darauf: 1. kontinuierlicher Wandel und 2. zunehmende Komplexi-
tit der Software. Mit dem Einsatz einer Software wird der oder die Anwendende Teil ih-
res Lebenszyklus. Dabei geht es nicht nur um einen allgemeinen Zyklus der Softwareevo-
lution:initiale Software, Entwicklung, Betreuung, Ausphasung, Abschaltung (vgl. Masak
2006: 222). Wenn SAP auf die Cloud und die neue Version seiner ERP-Software S/4 um-
stellt und die Wartung fiir die alte Version R/3 ausliuft, entsteht der Zwang, die Software
auszutauschen. Dabei gilt besonders bei individuell entwickelter Software: Wenn An-
wendende, Gestaltende oder Programmierende neu in einen Anwendungskontext kom-
men, kennen sie die Vorgeschichte der nur fiir eine Organisation entwickelten Software
nicht*.

Letztendlich sind Anwendende, Gestaltende und Programmierende nicht nur Teil ei-
ner modellierten Welt. Sie werden auch Teil eines Produktzyklus, auf den sie wenig Ein-
fluss haben — und damit wenig Einfluss auf einen Teil des Wissens, den sie fiir ihre all-
tagliche Arbeit brauchen und das sich stetig dndert.

5.2. Softwareentwicklung: vom einsamen Nerd
zum kollektiven Kommunikationsprozess

Im Laufe der Zeit wurde Softwareentwicklung immer weniger zu einem rein technischen
Problem, das Techniker:innen losen. Wie bereits oben erwihnt, wurde es zu einer gro-
Ren Herausforderung, die fir den fremden Anwendungskontext niitzliche Software zu
programmieren. Dafiir sind Methoden wie Scrum niitzlich (Niheres weiter unten unter
5.2.4), die den kontinuierlichen, geregelten sozialen Austausch mit klaren Rollen in den
Mittelpunkt der Softwareentwicklung stellen. Trotzdem konnte in der Forschung kein
Konsens hinsichtlich einer Best Practice gefunden werden, die als Orientierung fiir die
Kontrolle von Softwaregestaltung in unterschiedlichen Kontexten der Energiewirtschaft
niitzlich sein konnte. Vielmehr scheinen unterschiedliche Methoden Softwaregestaltung

4 Man spricht auch von Legacy einer Software (vgl. dazu Fischbach 2016: 395ff.). Manche individuell
entwickelten Altsysteme von Firmen sind kompliziert, nicht wartungsfreundlich programmiert
und man befiirchtet unvorhersehbare Fehler bei Anderungen an ihnen. Verlassen Mitarbeitende
das Unternehmen, die mit dem Altsystem gut vertraut waren (z.B. weil sie es selbst entwickelt
haben), kann das der Anlass sein, stattdessen eine Standardlosung einzufiihren.

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation

zu ermoglichen, solange sie die zentrale Rolle von Wissen und Kommunikation fiir den
Arbeitsprozess beriicksichtigen.

5.2.1. Vom schnellen Reparieren zum iterativen, kollektiven
Kommunikationsprozess

Einerseits wiirde man aus dem bisher Gesagten vermuten, dass Kommunikation wich-
tig in der Softwareentwicklung ist. Andererseits ist nicht verwunderlich, dass es bei
einer neuen Technologie, die aus der Ingenieurs- und Mathematik-Tradition kommt,
erst einmal um deren Erforschung und Entwicklung ging. Dafiir waren komplexe
Kommunikationsprozesse und kommunikative Fertigkeiten nicht entscheidend. Fiir
die Programmierer hief} es in den so0ern noch »Engineer software like you engineer
hardware.« (Boehm 2006: 13) Oftmals fand IT-Arbeit damals noch in Forschungs-
und Entwicklungsabteilungen statt, wo die Techniker:innen unter sich waren. Unter
seines/ihresgleichen sind die Wissensgrenzen geringer. Als einen extremen Typus
sieht Weizenbaum die zwanghaft Programmierenden an, fiir die Programmieren ein
Selbstzweck ist. IThnen geht es vor allem darum, mit der Maschine zu interagieren (vgl.
Weizenbaum 1978: 161). Sollen sie dann Software schreiben, die in anderen Kontexten
als der Werkstatt oder dem Labor funktionieren soll, dndern sich die Anforderungen.
Die Erfahrung der Beherrschbarkeit der Maschine durch Erteilen eindeutiger Befehle
via Programmiersprache wird unreflektiert auf soziale Zusammenhinge iibertragen,
in der diese Software entsteht oder in der sie wirken soll (vgl. Klischewski 1996: 78). Die
Widerstindigkeit des Sozialen fand erst iiber die Jahrzehnte hinweg in den Methoden
der Softwareentwicklung mehr und mehr Beriicksichtigung.

Hief} es in den 60ern »code-and-fix«, also einfach zu programmieren, schauen, ob
es funktioniert, und dann zu verbessern (vgl. Boehm 2006: 14), wurden in den 70ern
die getrennten Aufgabenschritte der Anforderungsanalyse und des Designs eingefiihrt
(siehe auch Friedman/Cornford 1989). Das urspriinglich entwickelte Wasserfallmodell
sah die erst mit Scrum weitverbreiteten Mechanismen der Iterationen, Prototypen und
Feedbacks zwischen den Entwicklungsschritten vor. In der Praxis wurde das Wasserfall-
modell aber erst einmal als rein sequenzieller Prozess ausgelegt (vgl. Boehm 2006: 15).
Softwareentwicklung wurde zum Arbeitsvorgang, in dem streng abgetrennte Phasen der
Spezifikation, Programmierung, Tests und Implementierung aufeinander folgen. Kri-
tisch wird diese strikte Trennung vor allem, weil bei komplexen Anforderungen fehler-
freies Arbeiten unmoglich ist. Eine vollstindige Konzeption oder Spezifikation ist nicht
moglich, weil sich u.a. die Anforderungen der Anwendenden im Projektverlauf dndern.
Daskann an einem verinderten Umfeld liegen (Konkurrenzdruck, Markt verandert sich)
oder daran, dass technische Moglichkeiten erst bewusst werden, dass es Kommunikati-
onsprobleme gab oder dass erst in der Anwendung neue Ideen auftauchen (vgl. Funken
2001: 30). In einem bekannten Artikel von 1980 schreibt Lehman, dass ein Programm nie
korrekt sein kann, weil es die Umwelt nicht komplett beschreiben kann. Software ist im-
mer nur ein Modell der Welt. Fiir ihn kann es bei Software deshalb nicht um absolute
Korrektheit gehen (was eine mathematische Herangehensweise bedeuten wiirde), son-
dern um die Relevanz der Ergebnisse oder die Anwendungsfreundlichkeit (vgl. Lehman
1980:1064). Er fithrt auch eine Unterscheidung verschiedener Programmtypen ein. Das

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

65

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

66

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ist insofern wichtig, weil es darauf hinweist, dass es jenseits der hier behandelten indus-
triespezifischen Softwareentwicklung selbstverstindlich weiterhin Programme gibt, die
einige wenige oder sogar eine programmierende Person allein nach einer klaren Spezifi-
kation entwickeln kann (bspw. ein:e Physiker:in, die eine Software fiir ein physikalisches
Experiment programmiert).

Laut Lehman kann Programmierung zudem keine FlieRbandarbeit sein, weil u.a. die
Entwicklung nicht bereits im Vorhinein in einfach verbundene Untereinheiten zerteilt
werden kann, ohne dass sie sich gegenseitig bei der Umsetzung beeinflussen (vgl. Leh-
man 1980: 1065). Das liegt auch an der Abstimmung zwischen der fachlichen Domaine,
in der die Software laufen soll, und den Programmierenden. Um die Nutzendenpartizi-
pation und damit die Kommunikation zur Programmierung zu verbessern, wurde seit
Mitte der 70er die Methode des Prototyping entwickelt. Sie entlastet die Anforderungs-
aufnahme, weil das anschauliche Ergebnis als Kommunikationsgrundlage fungiert und
Nutzende direkt an der Spezifikation beteiligt sind (vgl. Funken 2001: 321t.). Wie weitge-
hend sich das in der Praxis mit der Zeit durchgesetzt hat, wire zu untersuchen.

In den 8oern stellten Floyd/Keil eine Methode vor, die eine iterativ-inkrementelle
Vorgehensweise und eine kontinuierliche Kommunikation zwischen programmieren-
den und anwendenden Beschiftigten vorsieht. Vorteilhaft ist dabei auch die geteilte Ver-
antwortung fiir die Weiterentwicklung — anstatt dass sie nur bei den Programmieren-
den liegt, die gar nicht wissen, was die Anwendenden brauchen (vgl. Funken 2001: 36).
Die/der Programmierer:in soll nicht mehr einfach Herstellende:r sein, sondern

»Berater[:in] in Informationsangelegenheiten, welche Multiperspektivitat anerkennt
und umsetzt, Vielfalt und Rickkopplung sucht und zu Revisionen bereit ist« (Floyd/
Keil 1983: 36 zitiert nach ebd. 37).

Das Agile Manifesto von 2001 (Scrum ist eine der agilen Methoden) fithrte diesen Ansatz
weiter und stellte vier Kernforderungen auf:

« »Individuals and interactions over processes and tools.

- Working software over comprehensive documentation.

« Customer collaboration over contract negotiation

« Responding to change over following a plan.« (Beck et al. 2001)

Letztendlich legt das Manifest einen klaren Fokus auf einen iterativen Arbeitsprozess
mitdirektem, regelmifiigem Feedback. Das Wasserfallmodell setzte sich auch deswegen
nicht vollumfinglich durch, weil der Druck wuchs, Software moglichst schnell auf den
Markt zu bringen, und es immer mehr Software gab, bei der die Benutzendeninteraktion
im Vordergrund stand. Anforderungen waren schwerer im Vorhinein festzustellen. Sie
wurden emergent und folgten dem IKIWISI-Syndrom — I know it when I see it: Die an-
wendende Person konnte erst sagen, ob die Software den Anforderungen geniigt, wenn
sie das Programm selbst gesehen hat und testen konnte (vgl. Boehm 2006: 18). Deshalb
war schon die Verwendung von Prototypen ein Fortschritt. Die agilen Methoden bewerk-
stelligten das, indem in kurzen Zyklen (bspw. monatlich) ausfithrbare Software erstellt

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation

wird, die dann die zukiinftigen Nutzenden oder die Fachleute testen und dazu Feedback
geben konnen.

5.2.2. Kommunikationskompetenz und -kern: Anforderungsmanagement

Ohne aufalle agilen Ansitze®, geschweige denn alle anderen Methoden eingehen zu kon-
nen, soll der obige kurze Abriss andeuten, dass die Softwareentwicklung sich selbst erst
mit der Zeit methodisch mit ihrer sozialen Einbettung befasst hat. Umfangreiche Feld-
studien in den 8oern haben festgestellt, dass nicht fehlende technische Fertigkeiten das
Problem waren und sind. Die Softwareproduktivitit und -qualitit beeinflusst vor allem

»zu geringe und zu wenig verbreitete Kenntnisse der Entwickler iber das Anwen-
dungsgebiet, sich verandernde und widersprichliche Anforderungen an das Software-
Design und Kommunikations- und Kooperationsprobleme zwischen Entwickler und
Kunden« (Funken 2001: 46).

Es wurde abgeriickt davon, sich allein auf technische Fertigkeiten zu konzentrieren:

»Software-Entwicklung und -gestaltung mufS also [..] in wesentlichen Teilen als ein
Lern-, Kommunikations- und Aushandlungsprozef} verstanden werden, der hohe Ko-
operations- und Kommunikationsanforderungen — mithin soziale Kompetenzen — an
die Entwickler stellt.« (Funken 2001: 48)

Mehrere Autor:innen weisen in den 8oern und 9oern draufhin, dass das auch in der Aus-
bildung von Informatiker:innen beriicksichtigt werden sollte (vgl. Funken 2001: 46ft.,
Baukrowitz/Boes/Eckhardt 1994).

»[D]rei Viertel ihrer Arbeitszeit bendtigen Software-Entwickler fiir die Kommunikati-
on mit verschiedenen Partnern: Auftraggebern, Benutzern, Kollegen, Management,
Vertrieb usw.« (Funken 2001: 48)

Christiane Floyd sprach 1992 von »software development as an insight-building pro-
cess in terms of multiperspectivity, self-organization and dialogue« (Floyd 1992: 86)
und eben nicht davon, dass Anforderungen fix auszumachen sind wie technische Ei-
genschaften einer Maschine oder in einem kontrollierbaren, experimentellen Setting.
Anders als bspw. bei einem Labor-Experiment ist der Entwicklungsprozess nicht durch
innertechnische Rationalitit vorgegeben, sondern ist ein Gestaltungsprozess, bei dem
nicht nur ein technisches System, sondern auch »die sozialen Zusammenhinge seiner
Verwendung modelliert werden miissen« (Schulz-Schaeffer 1996: 8).

Der kommunikationsintensivste Teil der Softwareentwicklung, das Requirements
Engineering (auf Deutsch meist: Anforderungsmanagement), entwickelt sich seit den
70ern zu einem eigenstindigen Forschungsfeld (vgl. Funken 2001: 52). Es stellt die kor-
rekte und objektive Darstellung von Anforderungen in Frage. Es pladiert dafiir, unter-
schiedliche Meinungen, Perspektiven und Sichten zu beriicksichtigen. Unter anderem

5 Wie Extreme Programming, Kanban, Scrum etc.

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

67

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

68

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

sollen auch potenziell konflikttrichtige Perspektiven aufgenommen werden (vgl. Fun-
ken 2001:56f.). Das Schreiben von Anforderungen, die dann die Programmierenden um-
setzen, hat etwas von einer Sozialforschung: Wer mit wem wie interagiert und wie die
Arbeitsabliufe sind, muss erfragt und beobachtet werden. Die Anforderungsaufnahme
kann Methoden wie Interviews, Ethnografie, Perspektiveniibernahme oder diskursive
Anforderungsanalyse verwenden. Die Anforderungsstrukturierung nutzt Skizzen, Use
Cases, Diagramme etc. (vgl. Kaminski 2012: 112ff.). Im Prozess der Anforderungsauf-
nahme treten IT-Fachkrifte als Kommunikations- und Ubersetzungsexpert:innen auf,
wobei die Programmiersprache einen Eindeutigkeitsdruck auf die Kommunikation des
Anforderungsmanagements ausiibt (vgl. Kaminski 2012: 89). Es muss Ubersetzungsar-
beit auf dem Weg zum Quellcode geleistet werden, weil Anwendende, Auftraggebende
und Programmierende unterschiedliche Sprachen sprechen (vgl. Kaminski 2012: 91). So
entscheidend ist die Sprache dabei, dass selbst sprachliches Framing relevant ist, um
zuverstehen, wie Entwicklungsprozesse ablaufen und Expert:innen Autoritit gewinnen
(vgl. Alvarez 2002.:103).

Die Kommunikation muss es den Systemfachleuten erméglichen, sich mit dem fach-
lichen Kontext vertraut zu machen, und den fachlichen Kontextexpert:innen, sich mit
der Systemsprache vertraut zu machen. Nur so kann der Formalisierungs- und System-
bildungsprozess funktionieren (vgl. Kaminski 2012: 121). Anforderungen aufzunehmen
ist fiir einige Forschende vor allem ein Meinungsbildungs- und Verbalisierungsprozess:

»Based on this vision, much of what occurs during the requirements process should
be about opinion and will formation that is, the development of an understanding
of, and the creation of meaning — about the organization and its goals and processes
for achieving these goals, supported by new systems« (Ross/Chiasson 2011: 134).
»[R]equirements elicitation takes on the form of a >confessional< act where the indi-
vidual verbalizes thoughts, intentions and consciousness« (Alvarez 2002: 85).

»The RE process is a socio-technical activity. It requires intensive communication
among stakeholders who have different backgrounds, skills, culture, knowledge, and
behavior« (Alsanoosy et al. 2020: 356).

Erfolgreicher Wissenstransfer, gegenseitiges Verstindnis (gemeinsame Konventionen
und Sprache) und Kommunikation sind wesentliche Faktoren fiir eine erfolgreiche Soft-
wareentwicklung (vgl. Corvera Charaf et al. 2013: 117).

Das gilt ebenso bei der Implementierung einer Standardsoftware. Es geht darum,
inwiefern diese anzupassen oder wie sie einzustellen ist. Auch hier miissen die Anforde-
rungen der Kundschaft erst aufgedeckt werden, weil sie fiir Beratende und Kundschaft
nicht so klar auf der Hand liegen (vgl. Mormann 2016: 169). Dabei haben es die Bera-
tenden in der Hand, welche Moglichkeiten der Software sie preisgeben oder bspw. aus
Kostengriinden die Gestaltungsmdglichkeiten einschrinken (vgl. Mormann 2016: 186).

Wie bereits oben aufgezeigt, sind Begriffe wie Funktionen, Architekturen, Modelle
oder Schnittstellen Hilfsmittel, um iiber Software zu reden. Dabei kénnen im Prozess
des Anforderungsmanagements nicht nur einzelne Funktionalititen eine Rolle spielen,
sondern auch wie die Software aufgebaut ist. Modelle dienen dazu, um tiber Software zu
diskutieren und sie zu dokumentieren. Sie spielen in unterschiedlichen Entwicklungs-

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation

methoden jedoch eine unterschiedliche Rolle. Manche Methoden® betrachten Modelle
von vornherein als vorliufig und als fortlaufend anzupassen (vgl. Mahr 2009: 245). Agi-
le Softwareentwicklung verwirft den »Gebrauch von Modellen zugunsten unmittelbarer
Programmierung« (Mahr 2009: 246). Folglich wird das Programm selbst zur Referenz,
um tiber die gedachten Modelle zu reden und sie anzupassen. Abhingig von der Me-
thode unterscheidet sich dann die Kommunikation im Anforderungsmanagement und
damit der Softwaregestaltung.

5.2.3. Kommunikation und Wissen organisieren: Local Practice statt Best Practice

Um die Softwareentwicklung so zu organisieren, damit sie »the right thing« (Friedman/
Cornford 1989: 204) tut, hat die Prifung der Forschungsliteratur keine Best Practice zu-
tage gefordert. Vielmehr existieren lokale Praktiken und widerspriichliche Vorgehens-
weisen. Daraus ergeben sich Ansitze, aber noch keine Konzepte fiir die Beschreibung
dessen, was bei industriespezifischer Softwareentwicklung in der Phase der Software-
gestaltung in unterschiedlichen Kontexten zwischen Anwendung und Programmierung
passiert.

Unabhingig von einzelnen Methoden wie Scrum oder dem Anforderungsmanage-
ment betrachten die Autor:innen der »general theory of software engineering« (Wohlin
et al. 2015) bei der Softwareentwicklung Wissen und Kommunikation als zentral. Den
Kern der Theorie bildet das intellektuelle Kapital, welches aus dem Wissen der Orga-
nisation (organisationales Kapital wie Dokumentationen, Anleitungen oder der Quell-
code selbst), der Fihigkeit von Individuen (Humankapital) und den Beziehungen zu den
Kund:innen und Anwendenden besteht (soziales Kapital). Wobei soziales Kapital hilft,
die zwei Kapitalsorten (Human, organisational) miteinander zu verbinden (u.a. um im-
plizites Wissen — »tacit knowledge« — auszutauschen und voneinander zu lernen). Zen-
tral ist fiir die Autorenschaft letztendlich die Kommunikation:

»Software system development is more of a communication problem than a technical
problem« (Wohlin/Smite/Moe 2015: 231)

Wie eine Entwicklungsaufgabe umgesetzt wird, hingt vom intellektuellen Kapital und
dem angestrebten Performance-Ziel ab. Das heifdt, die Theorie sieht durchaus vor, dass
bspw. das intellektuelle Kapital nicht ausreicht, um die Aufgabe umzusetzen. Aufgabe
des Managements ist es dann, die Ziele zuriickzuschrauben. Eine Best Practice oder spe-
zifische Methode schlagen die Autor:innen nichtvor. Sie haben ein situatives Verstindnis
von Softwareentwicklung, wobei Wissen, die Kompetenzen der Mitarbeitenden, Kom-
munikation und gute Beziehungen eine zentrale Rolle spielen. Diese Abkehr von ein-
zelnen Methoden und die Hinwendung zu abstrakteren Zusammenhingen vollzieht be-
reits altere Literatur. In Bezug auf Managementstrategien zur Softwareentwicklung sei-
en keine eindeutigen Best Practices auffindbar:

6 In diesem Fall RUP (Rational Unified Process).

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

69

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

70

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

»Policies [of management strategies] pursued depended on the particular task at
hand, and on the particular skills, experience levels and even personalities of the
staff involved« (Friedman/Cornford 1989: 358).

Die Autoren lehnen bspw. Aussagen von anderen Forschenden ab, die Dequalifizierung
(»deskilling«) und direkte Kontrolle oder eine Mischung von »Slack« und direkter Kon-
trolle allgemein als beste Strategie ansehen (vgl. ebd. 356). Andere Forscher stellen ebenso
die

»lokale Praxis einer inkrementellen Anpassung von Vorgaben, Zielen und Vorgehens-
schritten an sich wandelnde oder erst spat erkennbare Erfordernisse« (Schulz-Schaef-
fer 1996: 1)

fest. Ein anderer Autor spricht bei Softwareentwicklung von »Zonen iterativer und kom-
munikativer Verstindigungsprozesse« (Peter 1993: 423), weil nicht vorweg geplant fest-
gelegt werden kann, wann wer iiber was kommuniziert. Trotzdem seien Entwicklungs-
methoden nicht tiberfliissig. Sie haben einen Wert fiir den Prozess, weil sie Sicherheit
erzeugen. Sie helfen, den Planungsprozess erst einmal in Gang zu setzen und den Betei-
ligten eine gewisse Handlungssicherheit zu geben (vgl. Schulz-Schaeffer 1996: 15).

Es gibt Fille, die bestimmten Managementstrategien klare Grenzen aufzeigen.
Eine Studie zeigt, wie bei ausgelagerter Softwareentwicklung autoritire Kontrolle
verhindert, dass sich ein gemeinsames Verstindnis entwickelt und eine ausreichende
Kommunikation stattfindet. Beides wird erst wieder durch vertrauensvolle Beziehun-
gen moglich (vgl. Gregory/Beck/Keil 2013: 1226). Auch frithe Autoren argumentieren,
dass nicht einfach mehr Arbeitskrifte produktiver sind, sondern dass Kommunikation
entscheidend ist und dass erst iber diese nachgedacht werden sollte (vgl. Conway 1968:
31). Bei einer Untersuchung von Softwareprojekten stellt die Autorin fest, dass Demokra-
tisierung die Produktivitit einer individualisierten, wissensspezialisierten Belegschaft
steigern kann (vgl. Miiller 2010: 52f.). Kooperatives Arbeiten sei vielversprechender — ob
durch kooperative Planung, Eigeninitiative etc. (ebd. 281f.). Eine Studie zu globalen Soft-
wareprojekten kommt zu dem Schluss, dass nicht mehr das Management das Wissen
zentralisiert oder verwaltet, sondern die eingesetzten »[KJoordinationsmechanismen
zu Wissensmanagementinstrumenten« (Kotlarsky/Van Fenema/Willcocks 2008: 99)
werden. Wenn die Fachleute der Anwendungsbereiche und der Programmierung einer
Software zusammenarbeiten sollen, sind statt einer vertikalen Integration oder Mark-
ten Netzwerke die optimale Organisationsform. Das zeigt eine Studie zur Entwicklung
eines digitalen Kontrollsystems fiir Flugzeugtriebwerke (vgl. Brusoni/Prencipe/Pavitt
2001: 610). Setzt sich also das agile Arbeiten mit seinen Kernforderungen durch?

»The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation. [..] The best architectures, require-
ments, and designs emerge from self-organizing teams.« (Beck et al. 2001)

Empirisch existiert ein gemischtes Bild, was die Organisation der Softwareentwicklung
anbelangt. Selbstorganisation und direkte und offene Kommunikation sind in effizienz-

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation

getriebenen Organisationen nicht immer vorzufinden: Autoren sehen Fille, in denen
Softwareentwicklung so strukturiert und organisiert werden kann, dass sie »dem Ide-
al eines strikt vorgeplant-arbeitsteiligen Arbeits- und Produktionsprozesses recht na-
hekommt« (Schulz-Schaeffer/Bottel 2018: 102). Zugleich riumen sie ein, dass das nicht
immer so ist und Softwareentwicklung auch in teamformigen Abstimmungsprozessen a
la Scrum stattfinden kann (vgl. ebd.). Andere Untersuchungen zeigen, dass Scrum nicht
automatisch zur Selbstorganisation fithrt (vgl. Pfeiffer/Sauer/Ritter 2014, vgl. Boes et al.
2018). Unterschiedliche Organisationsformen sind auch bei internationaler Software-
entwicklung zu finden: Zwei Fallstudien stellen einmal eine Industrialisierung und fa-
brikmifSige Arbeit fest und einmal eine wenig formalisierte, auf eigenverantwortliche
Kommunikation setzende Arbeitsweise. Beides sind somit Beispiele fiir einmal direkte
und einmal permissive Kontrolle in der Softwareentwicklung (vgl. Feuerstein 2012). Bei
einer anderen Fallstudie hatte allein die Verlagerung der Softwareentwicklung inner-
halb Deutschlands »ausgepragte Tendenzen der Spezialisierung, Abschottung, Verlust
an Aufgabenvielfalt und Zuname der Dokumentations- und Kontrollarbeiten« (Flecker/
Holtgrewe 2008: 321) zur Folge. Die geringe Formalisierung der geografisch verteilten
Arbeit wurde zum Problem. Sie wurde dann stirker standardisiert (vgl. ebd.). Ganz zu
schweigen davon, dass es unterschiedliche Vertragsverhiltnissen fiir Programmieren-
de inkl. Selbststindige gab (vgl. ebd. 316f.). Daneben wirken sich die Projektphase oder
die Teamgrofde auf die Arbeit in der Softwareentwicklung aus: Spitere Phasen in einem
Projekt sind strukturierter (Heidenreich/Kirch/Mattes 2008:13) und bei grofReren Teams
werden formale Organisation und Dokumentation wichtig (vgl. Ralph 2015: 35). Allein
der Typ der Software kann weitreichende Folgen fiir ihre Entstehung haben, wie eine
Gegeniiberstellung von Carmel und Sawyer (1998) zeigt: Ob eine Softwarefirma entwi-
ckelt oder intern in eine Firma selbst: Laut den Autoren besteht intern eine Matrixor-
ganisation und es liuft biirokratischer ab. Die Softwarefirma arbeitet dahingehend u.a.
selbstorganisierter und die Prozesse haben eine geringere Reife. Zudem ist die Realitit
vieler Softwareentwickelnde, dass sie bestehende Standardsoftware anpassen und des-
halb viel Zeit damit verbringen, diese zu beurteilen, zu verindern und andere Losungen
zu integrieren (vgl. Boehm 2006: 21).

Womit wir wieder am Anfang dieses Absatzes angekommen sind: Der Ansatz von
Wohlin et al. (2015) ist insofern zielfiihrend, weil er nicht auf feste Methoden oder Ma-
nagementstrategien wie Standardisierung oder Selbstorganisation setzt, wenn es um
die Analyse von Softwareentwicklung geht. Zudem geht es bei der Arbeit hier um jene
Phase der Softwareentwicklung, bei der die verschiedenen Kontexte eine noch grofie-
re Rolle spielen diirften und ein Wissensaustausch schwieriger zu standardisieren und
kontrollieren ist. Um in der Scrum-Begrifflichkeit zu sprechen, geht es hier um die Rolle
Product Owner. Sie ist fiir das Schreiben von Anforderungen zustindig und wie sie an
ihre Infos iiber die Anwendung (in unterschiedlichen Industrien, Firmen oder Abteilun-
gen) kommt. Sie findet sich in unterschiedlichsten Kontexten wieder.

Die Spezifikation einer Software kann auf unterschiedlichen Wegen gelingen. Aus-
tausch von Wissen und Kommunikation sind flexibel. Ein Meeting, eine gut formulierte
E-Mail, ein klirendes, personliches Gesprich oder klare Abliufe via Ticketsystem sind al-
lesamt Wege, Anforderungen zu spezifizieren (mehr dazu siehe unter 6.4.4). Es bleibt die
Spannung zwischen offenem und direktem Wissensaustausch und Effizienz und Wett-

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

72

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

bewerb, wie sie allgemein fiir Wissensarbeit typisch ist. Bei ihr basiert Effizienz darauf,
»Wissen und Expertise als Rohstoff umzuformen« (Willke 1998:166). Das Konzept des so-
ziotechnischen Netzwerkes im nichsten Kapitel zeigt, wie Organisationen den Arbeits-
prozess der Softwaregestaltung trotzdem kontrollieren kénnen.

Exkurs: Was sind die Bestandteile von Scrum?

Scrum ist eine Methode zur Softwareentwicklung, bei der iterativ Konzepte an Program-

mierende ibergeben und von diesen abgearbeitet werden. Der Scrum-Prozess besteht

aus Rollen, Artefakten und Meetings (vgl. Gloger 2009: 11ff.):

Scrum-Prozess

Beschreibung

Rollen

Product Owner:in

fir die Softwarelosung (das Produkt) verantwortlich; pflegt Anforderungen
(Items) in eine Liste (Product Backlog) und priorisiert sie fiir die Programmie-
renden

Scrum Team

Personen, die notwendig sind, um Anforderungen in Software zu verwandeln;
managt sich selbst (inkl. Arbeitsmenge); den Standards und Prozessen von
Scrum verpflichtet; fiir die Qualitit verantwortlich

Scrum Master:in

beseitigt Schwierigkeiten, Blockaden und Probleme, die das Team aufhalten;
nicht weisungsbefugt, sorgt fir Einhaltung Scrum-Prozess; schult Teilnehmen-
deinihrenRollen

Management fiir Ressourcen und Richtlinien zustandig, setzt Rahmen des Scrum-Prozesses,
16st von Scrum Master:in identifizierte Probleme

Artefakte

Product Backlog Liste mit Anforderungen (Items), je Anforderung schitzt das Team den Aufwand

Sprint ein Zyklus (z.B. 2 Wochen), in dem Team Items abarbeitet

Sprint Backlog

Liste mit abzuarbeitenden Aufgaben fiir einen Sprint, wird taglich iberarbeitet
und aktualisiert

Meetings

Daily Scrum

Meeting (ca. 15 Minuten) im Team, bei dem Personen sagen: Was habe ich seit
dem letzten Daily Scrum erreicht? Was will ich bis zum nichsten Daily Scrum
erreichen? Welche Impediments (Hindernisse) stehen mir dabei im Weg?

Sprint Plannings

Treffen flir anstehenden Sprint, iber Anforderungen und Ziele des im Sprint
entwickelten Softwareteils; wie wird Software aufgebaut und welche Architek-
tur soll sie haben?

Sprint Review

Treffen, bei dem das Team Funktionalitdt am Ende des Sprints prasentiert; Fort-
schritt wird anhand von »usable Software« demonstriert

Retrospektive

Treffen, in dem das Team die eigenen Arbeitsprozesse optimiert

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation
5.3. Zwischenfazit: Softwaregestaltung als soziologisches Problem

Fir die Untersuchung der Formen und Folgen von industriespezifischer Softwaregestal-
tung hat Kapitel 4 dargestellt, warum Softwaregestaltung zum Kern der Digitalisierung
von Wirtschaft und Gesellschaft gehort. Dies gilt auch fiir von Software durchdrungene
Organisationen, die nicht mit Software ihr Geld verdienen. Softwaregestaltung kann in
unterschiedlichen Kontexten stattfinden, die auch im weiteren Verlauf der Arbeit noch
eine Rolle spielen werden: durch Softwarefirmen, in digitalen Start-ups, durch IT-DL,
in den EVU selbst etc. Zudem hat Kapitel 4 fiir die weitere Analyse grundlegende Begrif-
fe anhand eigener Uberlegungen eingefiihrt, die fiir das hier vertretene soziotechnische
Verstindnis moderner Organisationen stehen: softwaretechnische Interdisziplinaritit
und softwaretechnische Gestaltungsmaoglichkeiten (bestehend aus softwaretechnischer
Ausrichtung und Zuschnitt). Eine Variante der Letzteren ist der Primat der Software-
entwicklung, bei dem eine Organisation von Anfang an auf die Softwaregestaltung aus-
gerichtet ist (softwaretechnische Ausrichtung) und fiir sich eine individuelle Software
gestaltet (softwaretechnischer Zuschnitt). Eine andere Variante ist, dass sich eine Orga-
nisation auf die Anwendung einer Standardsoftware konzentriert.

Um begrifflich zu kliren, was bei der Softwareentwicklung der Mensch macht und
was die Maschine, hat Kapitel 5 zwischen den Begriffen Daten, Informationen, Wissen
und Kommunikationen unterschieden. In Abgrenzung zu anderen Theorien iiber das
Verhiltnis von Menschen und Technik folgt die Untersuchung dem kritisch-realistischen
Ansatz von Mingers/Willcocks (2014). Demnach unterscheiden sich die drei Welten von
Person, Sozialem und Technik ontologisch und epistemologisch voneinander und zwi-
schen Mensch und Technik besteht eine Arbeitsteilung: Der Mensch versteht, interpre-
tiert und vermittelt zwischen Software und Umwelt und ist dabei in eine soziale Welt
eingebunden. Kommunikation und Wissen sind seine Doménen.

Um die Softwaregestaltung als Arbeitsprozess zu verstehen, hat Kapitel 5 gezeigt,
dass sie und warum sie wesentlich auf Wissen und Kommunikation basiert. Das
hat technologische (u.a. zeichenbasierte Technologie, mehrere technische Schichten,
sprachliche Strukturierung u.a. durch Begriffe) und organisatorische Griinde (u.a.
verstirkte Einbindung von Anwendenden). Es zeigt sich am historischen Wandel der
Softwareentwicklung und ihrer Methoden iiber die Jahrzehnte hin zu einem in vielen
Kontexten weitverzweigten, vernetzten, kollektiven Kommunikationsprozess.

Die Mitarbeitenden an der Softwaregestaltung machen das, was der Computer
nicht kann: Sie tragen ihr Wissen bei und kommunizieren. Das miissen sie tun, wenn
sie die notwendige softwaretechnische Interdisziplinaritit herstellen wollen. IT-Fach-
leute wie Programmierende und fachliche Expert:innen wie Anwendende miissen sich
austauschen. Dabei sind sie damit konfrontiert, dass Software unterschiedliche Schich-
ten hat: Beispielsweise kennen die Programmierenden in erster Linie den Quellcode,
wihrend die Anwendenden die Bedienungsoberfliche der Software aus ihrer tiglichen
Arbeit kennen. Nicht jede:r hat die gleiche Perspektive auf die Software-Oberflichen
bzw. spielt die Software die gleiche Rolle im Arbeitsalltag. Die Beteiligten der Soft-
waregestaltung haben unterschiedlichen Einblick in die Algorithmen, verstehen nicht
alle Programmiersprachen oder das Gleiche unter softwaretechnischen Begriffen wie
Softwarearchitektur, Schnittstelle oder Modell. In der Softwaregestaltung kann es dazu

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

73

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

14

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

kommen, dass es fiir jede Perspektive eigene Spezialist:innen gibt: fiir die Programmie-
rung, Softwarearchitektur, Datenbanken, den Anwendungsbereich Prozessteil A der zu
gestaltenden Software und jenen von Prozessteil B usw.

Im Zuge der Softwaregestaltung kann Software einerseits keine Blackbox bleiben
und andererseits kann sich nicht jeder intensiv mit ihrem Innenleben beschiftigen. Bei-
des wirkt sich auf Kommunikation und Wissen in der Softwaregestaltung aus. So kén-
nen Berechtigungsstrukturen, die den Zugang zur gesamten Software oder einzelne ih-
rer Funktionalititen regeln, es erschweren, an das notwendige Wissen zu kommen, was
in der Software steckt. Dann muss moglicherweise der/die Expert:in der Softwarefirma
oder ein:e IT-Berater:in hinzugezogen werden. Zudem haben Beteiligte nicht immer die
Moglichkeit, sich simtliches Wissen iiber die Software und ihre Anwendung anzueig-
nen, wenn sich die Software stetig verandert, der gewohnte Arbeitskontext sich durch
eine neue Software oder ein Softwareupdate verindert hat oder die Software im Laufe
der Zeitimmer komplexer geworden ist. Software dndert sich oftmals stetig. Das Wissen
tiber sie kann schnell veralten. Das liegt auch daran, dass eine Standardsoftware einen
Lebenszyklus hat. Die anbietende Softwarefirma lost alte Versionen ab, ohne auf die Zu-
stimmung simtlicher Anwendenden zu warten. All das hat Folgen fiir den kommunikati-
ven Austausch und Wissenstransfer: die verschiedenen Perspektiven und Wissensstinde
der Stakeholder:innen einer Software, welche Verinderungen durch wen iiberhaupt an
der Software oder an der Organisation méglich sind, stetige Anderungen an der Software
oder gar die Ablosung einer Software durch eine neue Version.

Historisch betrachtet wurde es iiber die Jahrzehnte immer wichtiger zu beriick-
sichtigen, dass Softwareentwicklung kein rein technisches Problem ist (vgl. Friedman/
Cornford 1989, Funken 2001, Boehm 2006). Statt sie wie FliefSbandarbeit zu struktu-
rieren, haben die Autoren des agilen Manifests 2001 einen Gegenentwurf zu dieser
Arbeitsorganisation verdffentlicht (vgl. Beck et al. 2001). Das Forschungsfeld des An-
forderungsmanagements der Informatik zeigt, dass Kooperation, Kommunikation
und soziale Kompetenzen wichtig fiir die Softwareentwicklung sind. Sprache, Uber-
setzungsfihigkeit zwischen IT- und energiewirtschaftlichen Fachleuten, intensive
Kommunikation und gar die Anwendung sozialwissenschaftlicher Methoden zur An-
forderungsaufnahme stehen im Vordergrund (vgl. Alvarez 2002, Ross/Chiasson 2011,
Kaminski 2012, Corvera Charaf/Rosenkranz/Holten 2013, Alsanoosy/Spichkova/Harland
2020). Diese Ergebnisse stellen eine erste Grundlage fiir den Arbeitsprozess der Soft-
waregestaltung dar. Doch beriicksichtigen sie keine arbeits- und organisationssoziolo-
gische Literatur, die Softwareentwicklung in unterschiedlichen Kontexten untersucht.
Eine kurze Aufarbeitung dieser Literatur konnte zeigen, dass es nicht die beste Methode
oder Organisationsform fiir alle Fille gibt. Stattdessen existieren lokale Praktiken und
die Empirie zeigt unterschiedliche Organisationsformen der Softwareentwicklung. Ein
allgemeines Konzept, um die Softwaregestaltung arbeitssoziologisch zu analysieren,
wire aber hilfreich. Die allgemeine Theorie der Softwareentwicklung ist der Versuch,
ein solches allgemeines Konzept aufzustellen (vgl. Wohlin/Smite/Moe 2015). Sie beriick-
sichtigt die Kontextabhingigkeit von Softwareentwicklung und legt sich nicht auf be-
stimmte Organisationsstrukturen, Abliufe oder Managementmethoden fest. Indem sie
aber organisationssoziologische und arbeitssoziologische Erkenntnisse unterschligt,

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

5. Softwaregestaltung basiert auf Wissen und Kommunikation

fehlt die Beriicksichtigung von unterschiedlichen Arbeits- und Organisationskontexten
und wie sich diese auf die Softwareentwicklung auswirken.

Mit dem Konzept der softwaretechnischen Netzwerkarbeit, was das nichste Kapi-
tel entwickelt, ldsst sich der aus der Empirie der Fallstudien entwickelte Analyserahmen
besser konzeptionellin die Forschungslandschaft einbetten. Das Konzeptist auf die Pha-
se der Softwaregestaltung zugeschnitten, beriicksichtigt die fiir die Softwaregestaltung
wesentlichen Kontextfaktoren und ist zugleich so allgemein, dass es sowohl agile wie
auch weniger agile Organisationsformen abdeckt.

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

75

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

https://dol.org/10:14361/9783839476888-010 - am 13.02.2026, 15:30:1:

https://doi.org/10.14361/9783839476888-010
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

