
Fortschritt-Berichte VDIFortschritt-Berichte VDI

Dipl.-Ing. Stephan Hensel
Dresden

Nr. 873Nr. 873

Informatik/
Kommunikation

Reihe 10Reihe 10

Semantische Revisions- Semantische Revisions-
kontrolle für kontrolle für
die Evolution von die Evolution von
Informations- und Informations- und
DatenmodellenDatenmodellen

H
en

se
l

 S
em

an
ti

sc
he

 R
ev

is
io

ns
ve

rw
al

tu
ng

S
em

an
ti

sc
he

 R
ev

is
io

ns
ve

rw
al

tu
ng

R
ei

he
 1

010
 ·

 N
r.

 8
7387
3

D ie Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-38731087310-4

Berichte aus der Professur für Prozess leit technik
und der Arbeitsgruppe Systemverfahrenstechnik
der TU Dresden, Prof. Dr.-Ing. habil. Leon Urbas (Hrsg.)

Cyan Magenta Yellow Black
Preflight Lx3 am Februar 19, 2021 | 07:56:22 | 350 mm x 250 mm

L_
21

01
35

_R
ei

he
_1

0_
87

3_
U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 1

L_210135_Reihe_10_873_Umschlag.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Mehr Meinung. Mehr Orientierung. Mehr Wissen.
Wesentliche Informationen zu neuen Technologien und Märkten.
Das bietet VDI nachrichten, Deutschlands meinungsbildende Wochenzeitung zu Technik,
Wirtschaft und Gesellschaft, den Ingenieuren. Sofort abonnieren und lesen.
Donnerstagabends als E-Paper oder freitags als Zeitung.

 Jetzt abonnieren: Leser-Service VDI nachrichten, 65341 Eltville
Telefon: +49 6123 9238-201, Telefax: +49 6123 9238-244, vdi-nachrichten@vuservice.de

Ingenieure wollen immer alles
ganz genau wissen. Wie wär‘s mit
einem E-Paper- oder Zeitungs-Abo?

www.vdi-nachrichten.com/abo

Cyan Magenta Yellow Black
Preflight Lx3 am Februar 19, 2021 | 07:56:22 | 350 mm x 250 mm

L_
21

01
35

_R
ei

he
_1

0_
87

3_
U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 2

L_210135_Reihe_10_873_Umschlag.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Semantische Revisionskontrolle für die Evolution
von Informations- und Datenmodellen

Semantic revision control for the evolution of information and
data models

Dipl.-Ing. Stephan Hensel

Der Fakultät Elektrotechnik und Informationstechnik
der Technischen Universität Dresden

zur Erlangung des akademischen Grades eines

Doktoringenieurs
(Dr.-Ing.)
genehmigte

Dissertation

Vorsitzender: Prof. Dr.-Ing. Dr. h.c. Frank H. P. Fitzek
Gutachter: Prof. Dr.-Ing. habil. Leon Urbas
Gutachter: Univ.-Prof. Dr.-Ing. Alexander Fay
Gutachter: Prof. Dr.-Ing. Christian Diedrich

Tag der Einreichung: 16.05.2019
Tag der Verteidigung: 20.11.2020

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

L_210135_Reihe_10_873_Innentitel.indd 1L_210135_Reihe_10_873_Innentitel.indd 1 19.02.2021 07:56:5119.02.2021 07:56:51

Fortschritt-Berichte VDIFortschritt-Berichte VDI

Semantische Revisions-Semantische Revisions-
kontrolle für die kontrolle für die
Evolution von Evolution von
Informations- und Informations- und
DatenmodellenDatenmodellen

Dipl.-Ing. Stephan Hensel,
Dresden

Informatik/
Kommunikation

Nr. 873Nr. 873

Reihe 10Reihe 10

Berichte aus der Professur für Prozess leit technik
und der Arbeitsgruppe Systemverfahrenstechnik
der TU Dresden, Prof. Dr.-Ing. habil. Leon Urbas (Hrsg.)

Black
Preflight Lx3 am Februar 19, 2021 | 07:57:23 | 148 mm x 210 mm

L_
21

01
35

_R
ei

he
_1

0_
87

3_
In

ne
nt

ite
l.p

df
 ·

S
ei

te
 1

L_210135_Reihe_10_873_Innentitel.pdf · Seite 1
1

1https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Keywords:

L_210135_Reihe_10_873_Innentitel.indd 2L_210135_Reihe_10_873_Innentitel.indd 2 19.02.2021 07:56:5119.02.2021 07:56:51

© VDI Verlag GmbH · Düsseldorf 2021
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9627
ISBN 978-3-18-387310-4

Hensel, Stephan
Semantische Revisionskontrolle für die Evolution von Informations-
und Datenmodellen
Fortschr.-Ber. VDI Reihe 10 Nr. 873. Düsseldorf: VDI Verlag 2021.
188 Seiten, 64 Bilder, 5 Tabellen.
ISBN 978-3-18-387310-4, ISSN 0178-9627,
€ 67,00/VDI-Mitgliederpreis € 60,30.
Keywords: Semantik – Revisionskontrolle – Evolution – Informationsmodelle – Datenmodelle
– Linked Data – R43ples – Co-Simulation – Modularisierung – Module Type Package

Im Rahmen dieser Dissertation wurde ein Revision Management System zur durchgängigen
Unterstützung der Evolution von Informations- und Datenmodellen entwickelt, das Revisions-
verwaltungs- und Evolutionsmechanismen integriert. Besonderheit ist hierbei die technolo-
gieunabhängige mathematische und semantische Beschreibung, die eine Überführung des
Konzepts in unterschiedliche Technologien ermöglicht. Beispielhaft wurde das Konzept für
das Semantic Web als Weiterentwicklung des Open-Source-Projektes R43ples umgesetzt.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

Black
Preflight Lx3 am Februar 19, 2021 | 07:57:23 | 148 mm x 210 mm

L_
21

01
35

_R
ei

he
_1

0_
87

3_
In

ne
nt

ite
l.p

df
 ·

S
ei

te
 2

L_210135_Reihe_10_873_Innentitel.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich in der Zeit als
wissenschaftlicher Mitarbeiter und Doktorand an der Professur für Prozessleittechnik
und Arbeitsgruppe Systemverfahrenstechnik fachlich und persönlich unterstützt haben.

Ein besonderer Dank gilt Herrn Prof. Dr.-Ing. habil. Leon Urbas, meinem Doktorvater,
für die Betreuung dieser Arbeit und die Bereitstellung der notwendigen Infrastruktur
für die Umsetzung der Arbeit in einem sehr spannenden Themenkomplex. Durch die
zahlreichen Projekte hat er mir viele Einblicke in die industrielle Praxis ermöglicht,
wodurch ich auch wichtige Kontakte für meine weitere berufliche Zukunft knüpfen konnte.
Seine kritischen Nachfragen und die gemeinsamen wissenschaftlichen Diskussionen haben
wesentlich zur Ideenfindung für diese Dissertation beigetragen.

Ich danke Herrn Univ.-Prof. Dr.-Ing. Alexander Fay für die sehr gute Zusammenar-
beit und die Übernahme der Zweitbegutachtung.

Meiner Familie möchte ich dafür danken, dass sie mich während all der Zeit so herzlich
unterstützt hat und immer verständnisvoll war, dass die Erstellung der Dissertation viel
Zeit in Anspruch genommen hat.

Weiterhin danke ich den zahlreichen Korrekturleserinnen und Korrekturlesern, die sehr
viel Zeit in die Überprüfung von Rechtschreibung, Kommasetzung und vielen sprachlichen
Kleinigkeiten investiert haben.

Außerdem möchte ich mich bei meinen Kollegen für die gute Zeit am Lehrstuhl, die vielen
gemeinsamen Dienstreisen und den intensiven wissenschaftlichen Diskurs bedanken.

Schließlich danke ich Dr. Jürgen Hambrecht und Eggert Voscherau, den Gründern der
HaVo-Stiftung, für die finanzielle Unterstützung im Rahmen eines HaVo-Stipendiums.

III

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

IV

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation . 1
1.2 Zielstellung und erwartete Ergebnisse 2

1.2.1 Kernthese . 2
1.2.2 Einzelthesen . 2

1.3 Einordnung und Abgrenzung der Arbeit 3
1.4 Anwendungsfälle . 4

1.4.1 Co-Simulation . 4
1.4.2 Modularisierung . 5

1.5 Gliederung der Arbeit . 6

2 Grundlagen 8
2.1 Aspekte der Veränderlichkeit . 8
2.2 Informationsmodellierung . 10

2.2.1 Terminologie . 10
2.2.1.1 Informationsmodell und Semantik 10
2.2.1.2 Informationsraum . 12
2.2.1.3 Arten von Informationsmodellen 13
2.2.1.4 Ontologie . 14

2.2.2 Lebenszyklus . 14
2.2.3 Vernetzung innerhalb eines Informationsraums 15

2.3 Evolution . 15
2.3.1 Terminologie . 15

2.3.1.1 Evolution . 16
2.3.1.2 Co-Evolution . 16
2.3.1.3 Evolvability . 18
2.3.1.4 Wartung und Wartbarkeit 19

2.3.2 Evolution in verwandten Themengebieten 19
2.3.2.1 Schema-Evolution . 20
2.3.2.2 Ontologie-Evolution 20
2.3.2.3 Schema-Evolution vs. Ontologie-Evolution 21

2.4 Revisionsverwaltung . 22
2.4.1 Terminologie . 23

2.4.1.1 Revisionsverwaltung vs. Versionsverwaltung 23
2.4.1.2 Basisbegriffe der Revisionsverwaltung 24
2.4.1.3 Arten von Revisionsverwaltung 24
2.4.1.4 Synchronisation und Replikation 25
2.4.1.5 Verfahren zur Konsistenzerhaltung 26

V

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.4.2 Erweiterte Revisionskontrolle für Modelldaten 26
2.5 Konsistenz . 27

2.5.1 Terminologie . 28
2.5.1.1 Konsistenz . 28
2.5.1.2 Klassifikation von Modellkonsistenz 30

2.5.2 CAP-Theorem . 31

3 Analyse 32
3.1 Anforderungsanalyse . 32

3.1.1 Prinzipien mit Einfluss auf Evolvability 32
3.1.1.1 P1 - Entwicklung von stabilen Zwischenergebnissen (X,-) 33
3.1.1.2 P2 - Nutzung von evolutionärer Entwicklung (X,$) . . 33
3.1.1.3 P3 - Verständnis des Unternehmens (X,$) 33
3.1.1.4 P4 - Bereitstellung von überprüfbaren Zuständen (x,$) 34
3.1.1.5 P5 - Nutzung von offenen Standards (x,-) 34
3.1.1.6 P6 - Identifizierung von Dingen, die sich wahrscheinlich

ändern (X,-) . 34
3.1.1.7 P7 - Design für Evolvability (X,$) 35

3.1.2 Technologische Sicht . 35
3.1.2.1 Nutzungskontext . 35
3.1.2.2 Änderungsmanagement 36
3.1.2.3 Evolution . 38
3.1.2.4 Semantische Modellbeschreibung 39
3.1.2.5 Qualitätsattribute . 39

3.1.3 Anwendungsfälle . 40
3.1.3.1 Co-Simulation . 40
3.1.3.2 Modularisierung . 44

3.1.4 Anforderungen . 47
3.2 Analyse bestehender Ansätze . 51

3.2.1 Dissertation Timo Kehrer [Keh15] 51
3.2.2 Dissertation Ljiljana Stojanovic [Sto04] 51
3.2.3 SecVolution . 52
3.2.4 Simantics . 53
3.2.5 Changes Tab . 53
3.2.6 R43ples . 55
3.2.7 Zusammenfassung . 56

3.3 Analyseergebnisse und Priorisierung . 58

4 Entwurf 59
4.1 Lebenszyklusmodell für Informationsmodelle 59
4.2 Revision Management System . 61

4.2.1 Komponentenübersicht . 61
4.2.2 Data Management . 63
4.2.3 Control . 65

VI

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.2.4 User Interface . 67
4.3 Formale Beschreibung verbindungsorientierter Modelle 67

4.3.1 Compound Graphs . 68
4.3.2 Compound Graphs Erweiterung 70
4.3.3 Semantische Beschreibung . 71

4.4 Änderungsmanagement . 72
4.4.1 Revisionskontrolle . 73

4.4.1.1 Revisionsgraph . 73
4.4.1.2 Vorgänger-/Nachfolgerbeziehungen 74
4.4.1.3 Pfadgenerierung und Deltawiederherstellung 75
4.4.1.4 Grundlegende Revisionskontrollfunktionalitäten 76
4.4.1.5 Semantische Beschreibung 80

4.4.2 Aggregation von High-Level-Changes 81
4.4.2.1 Mathematische Beschreibung 82
4.4.2.2 Semantische Beschreibung 82

4.4.3 Zusammenführung divergierter Entwicklungszweige 83
4.4.3.1 Methoden der Zusammenführung 83
4.4.3.2 Konflikterkennung und -behebung 86
4.4.3.3 Semantische Beschreibung 93

4.5 Evolutions- und Konsistenzmechanismen 96
4.5.1 Evolutionsmechanismen . 96

4.5.1.1 Integration in RMS . 96
4.5.1.2 Mathematische Beschreibung 98
4.5.1.3 Semantische Beschreibung 100

4.5.2 Konsistenzmechanismen . 101

5 Implementierung 103
5.1 Übersicht . 103
5.2 Änderungsmanagement . 106

5.2.1 Ontologie . 106
5.2.2 Basisrevisionskontrollfunktionalitäten 108
5.2.3 Aggregation von High-Level-Changes 110
5.2.4 Zusammenführung divergierter Entwicklungszweige 113

5.3 Evolutionsmechanismen . 116
5.4 Weitere Arbeiten in diesem Bereich . 118

6 Verifikation 119
6.1 Beispielhafte Nutzung der formalen Beschreibung 119
6.2 Nachweis der Erzeugung von beliebigen Revisionsinhalten 125
6.3 Abbildung verbindungsorientierter Modelle am Beispiel der Co-Simulation 127
6.4 Testfälle innerhalb der Implementierung 130

7 Diskussion 132
7.1 Methodikbewertung . 132

VII

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

7.2 Ergebnisdiskussion und Verifikation der Thesen 133

8 Zusammenfassung 136
8.1 Ergebniszusammenfassung . 136
8.2 Ausblick und Grenzen . 136

Anhang A Entwurf 141

Anhang B Implementierung 142
B.1 Basisrevisionskontrollfunktionalitäten 142
B.2 Aggregation von High-Level-Changes 146
B.3 Zusammenführung von divergierten Entwicklungszweigen 148
B.4 Co-Evolution . 150

Literaturverzeichnis 152

VIII

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Abkürzungs- und Symbolverzeichnis

Abkürzungen

ACID Atomicity, Consistency, Isolation, Durability

AERO Aggregation and Evolution Rules Ontology

AutomationML Automation Markup Language

BASE Basically Available, Soft state, Eventual consistency

BPMN Business Process Model and Notation

CAP Consistency, Availability, Partition Tolerance

CHAO Change and Annotation Ontology

CIF Continuous Integration Framework

CPS Cyber Physical Systems

CVS Concurrent Versions System

DIMA Dezentrale Intelligenz für modulare Anlagen

EMF Eclipse Modeling Framework

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

GLD Goverment Linked Data

IP Internetprotokoll

KAON Karlsruhe Ontology and Semantic Web framework

LDAP Lightweight Directory Access Protocol

LED Linked Enterprise Data

LOD Linked Open Data

MDE Model-driven Engineering

MMO Merge Management Ontology

IX

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

MOF Meta Object Facility

MTP Module Type Package

OPC UA Open Platform Communications Unified Architecture

OWL Web Ontology Language

PEA Process Equipment Assembly

PFE Prozessführungsebene

POL Process Orchestration Layer

PROV-O PROV Ontology

QUDT Quantities, Units, Dimensions, and Data Types

RCS Revision Control System

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RMO Revision Management Ontology

RMS Revision Management System

SCCS Source Code Control System

SHACL Shapes Constraint Language

SPARQL SPARQL Protocol And RDF Query Language

SPIN SPARQL Inferencing Notation

SVN Apache Subversion

TGG Tripel-Graph-Grammatik

UML Unified Modeling Language

URI Uniform Resource Identifier

USB Universal Serial Bus

VIBN Virtuelle Inbetriebnahme

XML Extensible Markup Language

X

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Symbole und Funktionen

Allgemein

N+ Menge der natürlichen Zahlen größer Null

N+
0 Menge der natürlichen Zahlen größer gleich Null

|X | Mächtigkeit der Menge X

P(M) Potenzmenge einer Menge M

Compound Graphs

G̃ Compound Graph

G̃′ Einfach gerichteter Graph innerhalb des Compound Graphs

T̃ ′ Baum innerhalb des Compond Graphs

Ĝ Einfach gerichteter Graph

T̂ Baum

V̂ Menge an Knoten

Ê Menge an Kanten

v̂,ŵ Knoten aus V̂

predĜ (v̂) Funktion zur Ermittlung von Vorgängern in Ĝ

succĜ (v̂) Funktion zur Ermittlung von Nachfolgern in Ĝ

B̃ Menge der Basisknoten (Blättern von T̃ ′)

S̃ Menge der Subgraphen (innere Knoten von T̃ ′)

Ṽ Menge der Knoten als Vereinigung von B̃ und S̃

b̃,s̃,ṽ,w̃ Knoten aus Ṽ

ẼG̃′ Adjazenzkanten

ẼT̃ ′ Inklusionskanten

ñv Eindeutiger Identifikator des Knotens

ñz Eindeutiger Identifikator zur Zuordnung der Semantik zum Knoten

XI

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Änderungsmanagement

S Menge aller Statements

G Revisionsgraph

R Menge aller möglichen Revisionen

C Menge aller möglichen Änderungen zwischen zwei Revisionen
(ChangeSets)

B Menge aller möglichen Entwicklungszweige (Branches)

T Menge aller möglichen Tags

Rg Menge der Revisionen innerhalb von G

Cg Menge der Änderungen zwischen zwei Revisionen (ChangeSets)
innerhalb von G

Bg Menge der Entwicklungszweige (Branches) innerhalb von G

Tg Menge der Tags innerhalb von G

ng Eindeutiger Identifikator eines Revisionsgraphen in der Menge der
Revisionsgraphen

C+ Menge der hinzugefügten Elemente

C− Menge der gelöschten Elemente

rl Blattrevision des Entwicklungszweiges

rx,ry,rt Revisionen aus R

Rb Menge der Revisionen eines Entwicklungszweiges

nb Eindeutiger Identifikator eines Branches im Revisionsgraphen

nt Eindeutiger Identifikator eines Tags im Revisionsgraphen

Υl Vollständiger Revisionsinhalt des Blattes des Entwicklungszweiges

Υt Vollständiger Revisionsinhalt eines Tags

predG (ry) Funktion zur Ermittlung von Vorgängerrevisionen in G

succG (rx) Funktion zur Ermittlung von Nachfolgerrevisionen in G

pathG (rx,ry) Funktion zur Ermittlung eines Revisionspfades in G

getContentG (rx) Funktion zur Wiederherstellung des vollständigen Revisionsinhalts

XII

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

strip (Υx,C+,C−) Funktion zur Berechnung von minimalen ChangeSets

Γ Menge der Revisionsgraphen

createΓ Funktion zur Erstellung eines neuen Revisionsgraphen

dropΓ Funktion zur Löschung eines bestehenden Revisionsgraphen

branchG Funktion zur Erstellung eines neuen Entwicklungszweiges

tagG Funktion zur Erstellung eines neuen Tags

Υx Vollständiger Revisionsinhalt einer spezifizierten Revision

r∗ Neu erstellte Revision

commitG Funktion zur Erstellung eines neuen Commits

revertG Funktion, um einen vorher erstellten Commit rückgängig zu machen

Aggregation von High-Level-Changes

hlcAggG Funktion zur Aggregation von atomaren Änderungen zu
High-Level-Changes

ΦG Funktion zur Berechnung von High-Level-Changes zwischen zwei
Revisionen

nz Eindeutiger Identifikator des High-Level-Changes

C+
r Menge der nicht zuzuordnenden hinzugefügten Elemente

C−
r Menge der nicht zuzuordnenden gelöschten Elemente

Zusammenführung divergierter Entwicklungszweige

mergeG Funktion zur Zusammenführung von divergierten Entwicklungszweigen
mittels eines 3-Wege-Merges

bs Quellentwicklungszweig

bt Zielentwicklungszweig

ΨG Funktion zur Berechnung der ChangeSets in Bezug auf die jeweiligen
Entwicklungszweige

pickG Funktion zur Wiederverwendung von bereits durchgeführten
Änderungen in Bezug auf eine Revision

rp Revision, die wiederverwendet werden soll

XIII

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

⇀

Rp Geordnete Liste von Revisionen

pickG

(
⇀

Rp,nb

)
Funktion zur Wiederverwendung einer Liste an bestehenden Revisonen

fastF orwardG Funktion zur Zusammenführung von divergierten
Entwicklungszweigen, wobei Revisionshistorie geglättet wird und nicht
notwendige 3-Wege-Merges vermieden werden

K Menge der möglichen Status von atomaren Änderungen

getCommonAncestorG (nbs ,nbt) Funktion zur Berechnung der gemeinsamen
Vorgängerrevision von zwei Entwicklungszweigen

rc Gemeinsame Vorgängerrevision von zwei Entwicklungszweigen

Cpaths Pfad von gemeinsamer Vorgängerrevision zum Blatt des
Quellentwicklungszweiges

Cpatht Pfad von gemeinsamer Vorgängerrevision zum Blatt des
Zielentwicklungszweiges

ΩStart Startmenge für das Nachvollziehen der Änderungen

add(Ω,s) Funktion zur Aktualisierung des Status eines Statements, wenn dieses
hinzugefügt wird

del(Ω,s) Funktion zur Aktualisierung des Status eines Statements, wenn dieses
gelöscht wird

s Einzelnes Statement

FCn(Ω) Funktion zu Anwendung der Aktualisierungen von einer Revision

ΩEnd Endmenge mit allen Status nach dem Nachvollziehen der Änderungen

Q Menge an Definitionen zur automatisierten Konfliktbehebung

ks Status Quellentwicklungszweig

kt Status Zielentwicklungszweig

q Boolesche Größe zur Spezifikation, ob es sich um einen Konflikt
handelt oder nicht

Ds Menge der Status auf dem Quellentwicklungszweig ohne gleiche Status
des Zielentwicklungszweiges

Dt Menge der Status auf dem Zielentwicklungszweig ohne gleiche Status
des Quellentwicklungszweiges

XIV

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

D̃s Menge der Status auf dem Quellentwicklungszweig mit gleicher
Kardinalität, wie Zielentwicklungszweig

D̃t Menge der Status auf dem Zielentwicklungszweig mit gleicher
Kardinalität, wie Quellentwicklungszweig

DDiff Zusammenführung der Mengen D̃s und D̃t zur Beschreibung der
Unterschiede

DQ Ergebnismenge der Konflikterkennung und -behebung mit
entsprechenden Status für eine automatisierte Konfliktbehebung

hlcP athAggG (Cpath) Funktion zur Aggregation von atomaren Änderungen zu
High-Level-Changes entlang eines Pfades

intersecG (Cpath) Funktion zur Berechnung von Abhängigkeiten von
High-Level-Changes

Evolutionsmechanismen

Ge Revisionsgraph zur semantischen Beschreibung von durchgeführten
Co-Evolutionen

hGs Ergebnis der High-Level-Change-Aggregation der zu co-evolvierenden
Änderungen

calcDepΓ (Gs,rxs ,rys ,hGs) Funktion zur Berechnung von Abhängigkeiten

Gs Quellrevisionsgraph

Gt Zielrevisionsgraph

coevolveΓ (hGs ,Gt,nbt) Funktion zur Erstellung von Co-Evolutionscommits auf
abhängige Entwicklungszweige

E (hGs ,Gt,nbt) Funktion zur Berechnung der Hinzufügungen und Löschen für die
Co-Evolution

coevolveAllΓ (Gs,rxs ,rys) Funktion zur Co-Evolution von allen abhängigen
Revisionsgraphen und Entwicklungszweigen

Z Menge zur temporären Speicherung der durchgeführten Änderungen

Ξ(Z) Funktion zur Überführung der durchgeführten Änderungen in
Hinzufügungen und Löschungen zur semantischen Beschreibung

XV

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Implementierung

L Menge aller Literale

U Menge aller Uniform Resource Identifiers

Verifikation

Ĩ Menge der Eingangsports

Õ Menge der Ausgangsports

d−
G̃′(ṽ) Eingangsgrad eines Knotens ṽ in G̃′

d+
G̃′(ṽ) Ausgangsgrad eines Knotens ṽ in G̃′

ẼG̃′
connection

Menge der Verbindungen über Komponenten hinweg

ẼG̃′
dependency

Menge der internen Abhängigkeiten innerhalb einer Komponente

XVI

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Kurzfassung

Semantische Revisionskontrolle für die Evolution von Informations- und
Datenmodellen

Stärker verteilte Systeme in der Planung und Produktion verbessern die Agilität und
Wartbarkeit von Einzelkomponenten, wobei gleichzeitig jedoch deren Vernetzung unterein-
ander steigt. Das stellt wiederum neue Anforderungen an die semantische Beschreibung
der Komponenten und deren Verbindungen, wofür Informations- und Datenmodelle
unabdingbar sind. Der Lebenszyklus dieser Modelle ist dabei von Änderungen geprägt,
mit denen umgegangen werden muss. Heutige Revisionsverwaltungssysteme, die die
industriell geforderte Nachvollziehbarkeit bereitstellen könnten, sind allerdings nicht
auf die speziellen Anforderungen der Informations- und Datenmodelle zugeschnitten,
wodurch Möglichkeiten einer konsistenten Evolution verringert werden.

Im Rahmen dieser Dissertation wurde ein Revision Management System zur durchgän-
gigen Unterstützung der Evolution von Informations- und Datenmodellen entwickelt, das
Revisionsverwaltungs- und Evolutionsmechanismen integriert. Besonderheit ist hierbei
die technologieunabhängige mathematische und semantische Beschreibung, die eine Über-
führung des Konzepts in unterschiedliche Technologien ermöglicht. Beispielhaft wurde
das Konzept für das Semantic Web als Weiterentwicklung des Open-Source-Projektes
R43ples umgesetzt.

XVII

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Abstract

Semantic revision control for the evolution of information and data models

The increased distribution of systems in planning and production leads to improved agility
and maintainability of individual components, whereas concurrently their cross-linking
increases. This causes new requirements for the semantic description of components and
links for which information and data models are indispensable. The life cycle of those
models is characterized by changes that must be dealt with. However, today’s revision
control systems would provide the required industrial traceability but are not enough for
the specific requirements of information and data models. As a result, possibilities for a
consistent evolution are reduced.

Within this thesis a revision management system was developed, integrating revision
control and evolution mechanisms to support the evolution of information and data
models. The key is the technology-independent mathematical and sematic description
allowing the application of the concept within different technologies. Exemplarily the
concept was implemented for the Semantic Web as an extension of the open source
project R43ples.

XVIII

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

1 Einleitung

1.1 Motivation

Begriffe wie Industrie 4.0, Cyber Physical Systems (CPS), Digital Twin [NFM17], Digital
Companion [Sie18], Modularisierung [NAM13] oder Smart Equipment [SUW18] prägen
die Industrie von heute. Grund hierfür sind neue Herausforderungen, die unter anderem
aus der Globalisierung der Märkte sowie einer Diversifizierung der Produktpalette resul-
tieren [Bie+16]. Mit all diesen Begriffen sind Lösungsmöglichkeiten verbunden, um diesen
Herausforderungen begegnen zu können. Jedoch geht mit deren Umsetzung auch eine
immer weiter fortschreitende Digitalisierung einher, die zu stärker verteilten Systemen
in der Planung und Produktion führt. Funktionen die neu hinzugefügt werden, werden
häufig in eigene Systeme ausgelagert, was eine lose Kopplung mit anderen Komponenten
ermöglicht. Dies hat den Vorteil, dass die Einzelkomponenten agil weiterentwickelt und
wartbar gestaltet werden können. Für die Kommunikation zwischen den Komponenten
aber auch zur semantischen Beschreibung der in den jeweiligen Systemen vorgehaltenen
Daten sind dabei Informationsmodelle unabdingbar. Diese Informationsmodelle unter-
liegen, ähnlich wie Produkte, einem Lebenszyklus, der dadurch geprägt ist, dass auf
Anforderungsänderungen reagiert werden muss und entsprechende Anpassungen an den
Modellen vorgenommen werden müssen. Insbesondere durch die immer kürzer werdenden
Produktlebenszyklen entstehen hieraus Änderungswünsche an den Modellen, mit denen
umgegangen werden muss. Dabei muss einer Architekturerosion vorgebeugt werden, da
diese zu einer Verschlechterung der Struktur führt und weitere Änderungen nur erschwert
oder nicht umgesetzt werden können [RB09]. Notwendige Änderungen an den zugehörigen
Informationsmodellen werden hierbei nicht abrupt durchgeführt, sondern erfolgen zumeist
in kleineren Schritten [Lev+10]. Beispiele für solche kontinuierlichen Evolutionen, die
durchaus über mehrere Jahre hinweg gegeben sein können, sind unter anderem Unified
Modeling Language (UML) und Business Process Model and Notation (BPMN) [HKB17].

Insbesondere in industriellen Anwendungen spielt jedoch die Dokumentation und
die damit verbundene Nachvollziehbarkeit der Änderungen eine wesentliche Rolle, da
die Unternehmen gesetzlichen Regularien und damit verbundenen Nachweispflichten
unterworfen sind. Ein Beispiel hierfür ist die Prozessindustrie, die sich mit neuen Heraus-
forderungen, wie hoch-volatile Märkte und kürzere Produktlebenszyklen, konfrontiert
sieht und mit der Modularisierung verfahrenstechnischer Anlagen auf die Anforderungs-
änderungen reagiert. Für die Beschreibung modularer Anlagen werden aber wiederum
Informationsmodelle benötigt, die die einzelnen Module1) und die Verbindungen zwi-
schen diesen beschreiben. Auch hier gilt, dass Veränderungen an Modellen nachvollzogen
sowie syntaktische und semantische Korrektheit überprüft werden müssen [Lev+10]. Zur
1)Der Begriff Modul wird in dieser Arbeit synonym zu Process Equipment Assembly (PEA) (definiert

in [VDI19]) verwendet.

1

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

1 Einleitung

Erreichung dieses Ziels ist eine Integration von Revisionsverwaltungs- und Evolutionsme-
chanismen, die Änderungen an verknüpfte Modelle propagieren können, unabdingbar
[NK04]. Bestehende Ansätze aus dem Bereich der Softwareentwicklung funktionieren
hierfür nur bedingt. Dies liegt auf der einen Seite an der zusätzlichen Flexibilisierung
aufgrund von Ansätzen wie Linked Enterprise Data (LED) [Gra16], aber auf der anderen
Seite auch an der Natur der Modelle, da diese als ein Graph interpretiert werden können
[Lev+10]. Bei der Verwendung von etablierten Werkzeugen aus der Softwareentwicklung
geht daher jedoch zumeist die Semantik der Änderungen verloren [GHU14]. An dieser
Stelle setzt diese Arbeit an, mit dem Ziel, die Semantik der durchgeführten Änderungen
zu erhalten, um damit die Grundlage für durchzuführende Evolutionen zu schaffen.

1.2 Zielstellung und erwartete Ergebnisse

Zielstellung dieser Arbeit ist die durchgängige Unterstützung der Evolution von Informa-
tions- und Datenmodellen über deren Lebenszyklus hinweg. Hierfür werden Funktio-
nalitäten der Revisionsverwaltung und Evolutionsmechanismen in einem gemeinsamen
semantischen Framework integriert, das als Revision Management System (RMS) bezeich-
net wird. Ergebnis der Arbeit sind die formalen, technologieunabhängigen Grundlagen für
die Umsetzung von Revisionsverwaltungsfunktionalitäten und Evolutionsmechanismen
für Informations- und Datenmodelle, die Konzeption eines RMS und eine prototypische
Implementierung im Semantic Web.

1.2.1 Kernthese

Der Arbeit wird folgende Kernthese zugrunde gelegt:

Ein Revision Management System unterstützt die Evolution von Informations-
und Datenmodellen über deren gesamten Lebenszyklus durch die Integration
von Revisionskontroll- und Evolutionsmechanismen.

1.2.2 Einzelthesen

Nachfolgend wird die Kernthese in Forschungsthesen zerlegt:

These 1: Neue Anforderungen an die Agilität von Produktlebenszyklen erfordern
Veränderungen im Lebenszyklus der zugrundeliegenden Informationsräume, vor allem im
Bereich der Revisionierung und Evolution der Informations- und Datenmodelle.

These 2: Die Anforderungen können durch etablierte Werkzeuge aus der Softwareent-
wicklung nicht vollständig erfüllt werden.

These 3: Die Integration von Revisionskontrollfunktionalitäten und Evolutionsmecha-
nismen in ein übergeordnetes Revision Management System bietet die Grundlage für die
Umsetzung der Anforderungen.

2

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

1.3 Einordnung und Abgrenzung der Arbeit

These 4: Die technologieunabhängige Beschreibung des Revision Management Systems
erlaubt eine Umsetzung in unterschiedlichen Anwendungsdomänen.

1.3 Einordnung und Abgrenzung der Arbeit

Allgemein ist diese Arbeit im Bereich der Informationsmodellierung angesiedelt. Konkret
beschäftigt sie sich mit der Revisionsverwaltung und der Evolution von Informations-
und Datenmodellen über den gesamten Lebenszyklus dieser Modelle hinweg. Hieraus
entstehen Querbezüge zu verwandten Themengebieten, wie Revisionsverswaltung und
Evolution in der Softwareentwicklung [Vog+15b] oder der Schemaevolution im Bereich
der Datenbanken [Lev+10]. Ebenso kann auf Vorarbeiten im Bereich des Semantic Webs,
wie [Pap+13] und [AM17], zurückgegriffen werden. Aus den aufgeführten Themengebieten
können einerseits Anforderungen aber andererseits auch Konzepte extrahiert werden, die
auf die speziellen Gegebenheiten von Informations- und Datenmodelle hin angepasst und
generalisiert werden. Dabei werden ebenfalls bereits existente Arbeiten wie [Sto04] und
[Keh15] aus dem Bereich der Evolution von Informations- und Datenmodelle einbezogen.
Eine wesentliche Unterscheidung im Vergleich zu existenten Ansätzen ist die Integration
von Revisionskontrollfunktionalitäten und Evolutionsmechanismen.

Insbesondere in integrierten Informationsräumen, wie zum Beispiel in [Gra16] vor-
gestellt, entsteht eine stärkere Vernetzung der Modelle. Aufgrund der Abhängigkeiten
zwischen den unterschiedlichen Modellen müssen durchgeführte Evolutionen an einem
Modell an abhängige Modelle coevolviert werden, um stets Konsistenz sicherzustellen.
Für die möglichst automatisierte Durchführung dieser Co-Evolutionen, unter Gewährleis-
tung einer durchgängigen Nachvollziehbarkeit der durchgeführten Änderungen, werden
innerhalb dieser Arbeit die formalen und technologieunabhängigen Grundlagen für die
Umsetzung von Revisionsverwaltungsfunktionalitäten und Evolutionsmechanismen gelegt.
Hierfür werden mathematische und semantische Beschreibungen verwendet, um die be-
reitzustellenden Funktionalitäten, wie zum Beispiel Commits, Zusammenführungen und
Co-Evolutionen, zu beschreiben. Diese orientieren sich dabei an Funktionalitäten aus der
Entwicklung von Softwaresystemen sowie technologieabhängigen Teillösungen und werden
innerhalb dieser Arbeit auf die spezifischen Anforderungen der Informations- und Daten-
modelle hin angepasst. Durch die Integration von Revisionsverwaltung und Evolution
wird ein RMS geschaffen. Dieses soll über den gesamten Lebenszyklus der Informations-
und Datenmodelle hinweg eingesetzt werden und die Evolution und Konsistenzsicherung
der enthaltenen Modelle unterstützen.

Bei den betrachteten Abhängigkeiten wird sich in dieser Arbeit auf die bereits vor-
handene Vernetzung der Modelle fokussiert. Diese ist entweder explizit in den Modellen
enthalten oder entsteht zum Beispiel durch Typ-Instanz-Beziehungen. Eine wissensba-
sierte Verknüpfung unterschiedlicher Modelle, wie sie unter anderem beim Round-Trip-
Engineering mittels Tripel-Graph-Grammatik (TGG) [RGU17] vorkommt, wird in dieser
Arbeit nicht behandelt. Sie bietet jedoch die Grundlage, um auch in diesem Bereich eine
Nachvollziehbarkeit der Änderungen zu ermöglichen.

Änderungen werden in dieser Arbeit vorrangig auf Ebene der Informations- und Daten-

3

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

1 Einleitung

modelle betrachtet, wodurch eine Abgrenzung zu Ansätzen im Bereich der Evolution von
Produktionssystemen, wie unter anderem in [Lad18] und [LFL16] vorgestellt, erfolgt. In
diesem Bereich werden Ein- und Ausgangssignale für die Detektion von Veränderungen
im Produktionssystem herangezogen, um daraus notwendige Reaktionen oder vorzu-
nehmende Dokumentationen abzuleiten. Die vorliegende Arbeit setzt dementsprechend
nachfolgend an, um beispielsweise die durchgeführten Dokumentationen innerhalb der
Planungsunterlagen nachvollziehbar zu speichern.

Ein wesentlicher Aspekt bei der Durchführung von Co-Evolutionen und der Speicherung
von Änderungen ist die Aggregation der durchgeführten Änderungen zu semantischen
Änderungen, die eine Aussage beinhalten, was der Zweck hinter den Änderungen gewesen
ist. In diesem Bereich existieren bereits verschiedene Arbeiten, die formale Regelsätze
für die Durchführung von Aggregationen bereitstellen. Beispiele hierfür sind unter an-
derem [Keh15] und [Pap+13]. Auf diese wird innerhalb dieser Arbeit in Bezug auf eine
prototypische Implementierung zurückgegriffen.

1.4 Anwendungsfälle

Die Entwicklung der Ansätze und Technologien innerhalb dieser Arbeit erfolgt unter
der Betrachtung von zwei Anwendungsfällen. Hierbei handelt es sich jeweils um kolla-
borative Anwendungen, die zum einen eine hohe Vernetzung und zum anderen hohes
Änderungspotential aufweisen. Im Folgenden werden diese jeweils kurz vorgestellt.

1.4.1 Co-Simulation

Im Lebenszyklus einer Prozessanlage spielen Simulationen bereits an vielen Stellen eine
wichtige Rolle [OWU14]. Oppelt et al. [OWU14] statuieren, dass zukünftig Simulationen
direkt in den Anlagenlebenszyklus und einen integrierten Engineeringprozess eingebunden
werden können. Notwendige Simulationsmodelle können beispielsweise automatisch aus
bestehenden Engineeringdaten generiert werden [Opp+14]. Resultierende Modelle können
dann unter anderem für die virtuelle Inbetriebnahme verwendet werden [OU14]. In diesem
Zusammenhang fordern Oppelt et al. [OWU14] die Spezifikation eines Standards für die
Co-Simulation, um die Wiederverwendung von bestehenden Simulationen zu ermöglichen
und zu vereinfachen. Neben der Wiederverwendung bietet die Co-Simulation auch Vorteile
in Bezug auf die Modellierungseffizienz, da Personen innerhalb eines Projektes zum
einen mit den jeweils am besten geeigneten (fachspezifischen) Werkzeugen arbeiten
können, zum anderen aber auch auf Basis von bestehenden Präferenzen und Erfahrungen
Entscheidungen über das zu verwendende Simulationswerkzeug getroffen werden können.
Ein weiterer Vorteil liegt in der Simulation von Wechselwirkungen und Rückkopplungen
zwischen den einzelnen Teilkomponenten, die durch eine reine Einzelsimulation nicht
erfassbar wären [Smo13]. Durch die Kombination der einzelnen Modelle wird somit eine
Gesamtsystemvorhersage ermöglicht. Überdies werden durch die Parallelisierung und
Verteilung Beschleunigungsvorteile gegenüber einer integrierten Simulation erwartet, da
in einer Co-Simulation die Simulation auf unterschiedliche Geräte verteilt werden kann
[Fuj99].

4

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

1.4 Anwendungsfälle

Ein Ansatz für eine Co-Simulationsplattform, die eine Wiederverwendung von beste-
henden Simulationen und eine Verschaltung von diesen ermöglicht, wird beispielsweise in
[Hen+16a; Hen+16b] vorgestellt. Die Simulationssteuerung erfolgt vereinheitlicht unab-
hängig vom verwendeten Simulator, um eine nahtlose Interoperabilität zu ermöglichen.
Die Co-Simulationsumgebung ist vollständig unter Nutzung von Open Platform Commu-
nications Unified Architecture (OPC UA) semantisch beschrieben. Abbildung 1.1 gibt
einen Überblick über die allgemeine Architektur des Ansatzes. Diese besteht aus einem
zentralen Aggregating Server und generischen Adaptern, die über eine simulatorspezifische
Schnittstelle an den zu koppelnden Simulator angeschlossen werden.

Abbildung 1.1: Architektur der auf OPC UA basierenden Co-Simulationsumgebung [Hen+16a,
S. 4]

Zur Durchführung einer Co-Simulation muss die entsprechende Umgebung konfiguriert
werden und die zu koppelnden Einzelsimulationen zu einer Gesamtsimulation verschaltet
werden. Hierbei muss mit Änderungen an Einzelsimulationen und an den Verschal-
tungen umgegangen werden, die zusammen mit den Simulationsergebnissen möglichst
nachvollziehbar gespeichert werden müssen.

1.4.2 Modularisierung

Neue Herausforderungen in der Prozessindustrie wie immer kürzer werdende Produktle-
benszyklen und volatile Märkte erfordern neue Konzepte, um wettbewerbsfähig zu bleiben
[LG11]. Die NE 148 [NAM13] formuliert hierfür Anforderungen, die realisiert werden
müssen, um diesen Veränderungen begegnen zu können. Insbesondere sind standardisierte
Schnittstellen erforderlich, die grundlegend eine modulare Produktion ermöglichen und
weiterhin die Wandlungsfähigkeit von modularen Anlagen unterstützen [Bie+16]. Ein we-
sentlicher Aspekt ist hierbei die Automatisierung einer modularen Prozessanlage. Hierfür
werden durch Anwender, Hersteller und Universitäten entsprechend der NE 148 Lösungen

5

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

1 Einleitung

entwickelt. Zentrales Element für die herstellerneutrale Beschreibung von Modulen ist
das Module Type Package (MTP). Dieses wurde initial im Dezentrale Intelligenz für
modulare Anlagen (DIMA)-Projekt [Hol+14] entwickelt und wird durch Arbeitskreise
von Namur, ZVEI und GMA weiterentwickelt und in die Standardisierung überführt
[Hen+17]. Abbildung 1.2 gibt einen Überblick, über den dabei verwendeten agilen Prozess
der Spezifikation.

Abbildung 1.2: Agiler Prozess der Spezifikation des MTP [BH17, S. 10]

Das MTP ist dabei in unterschiedliche Aspekte untergliedert, für die in sprintartigen
Iterationen Lösungsansätze untersucht und entwickelt werden. Grundlage bildet ein
übergeordnetes Lastenheft und konkretisierende Fallbeispiele. Die Ergebnisse der Sprints
werden parallel harmonisiert und in die Standardisierung überführt. Die gesammelten
Erfahrungen fließen vor der Durchführung der nächsten Iteration wieder in den agilen
Prozess zurück. Es handelt sich daher um einen sehr dynamischen Prozess, der davon
geprägt ist, dass Änderungen und Erweiterungen an der Spezifikation des MTP vorge-
nommen und dokumentiert werden müssen. In diesem Zusammenhang spielt auch die
Kompatibilität von unterschiedlichen Entwicklungsständen eine sehr große Rolle, da das
MTP eine herstellerübergreifende Beschreibung darstellt.

1.5 Gliederung der Arbeit

Die Dissertation gliedert sich im weiteren Verlauf in sieben übergeordnete Abschnitte, die
es ermöglichen, die der Arbeit zugrunde gelegten Thesen zu untersuchen. Im Abschnitt 2
erfolgt die Definition von Begrifflichkeiten, die in dieser Arbeit Verwendung finden. Des
Weiteren werden die notwendigen Theoriekenntnisse des Themengebiets zusammengefasst.

6

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

1.5 Gliederung der Arbeit

Im folgenden Abschnitt 3 werden ausgehend von einer Literaturrecherche Anforderungen
an das zu konzeptionierende System aufgestellt. Mit Hilfe der Anwendungsfälle werden die
Anforderungen bestätigt beziehungsweise erweitert, um ein möglichst vollständiges Bild
zu erhalten. Durch die Spiegelung der Anforderungen an bestehende Ansätze können die
Lücken aufgedeckt werden, die im weiteren Verlauf der Arbeit geschlossen werden sollen.
Die Zusammenfassung der Analyseergebnisse und eine entsprechende Priorisierung der
Anforderungen ermöglicht im folgenden Abschnitt 4 die Fokussierung auf die wesentlichen
zu entwickelnden Komponenten. Ausgehend vom Lebenszyklus werden die Anforderun-
gen in ein Konzept für ein RMS überführt. Die jeweiligen Komponenten dieses Systems
werden mathematisch und semantisch beschrieben, um ein technologieunabhängiges
Konzept zu erhalten, das sich auf unterschiedliche Technologien übertragen lässt. In der
Implementierung, vorgestellt in Abschnitt 5, wird das technologieunabhängige Konzept
beispielhaft für eine spezifische Technologie, das Semantic Web, umgesetzt. Durch diese
Umsetzung wird die Funktionsweise des theoretisch beschriebenen Konzeptes nachgewie-
sen und anschließend im Abschnitt 6 verifiziert. Die Verifikation erfolgt auf der einen
Seite anhand von Testfällen der Implementierung, aber auch durch den theoretischen
Nachweis der formalen Beschreibungen anhand von Beispielen und dem Anwendungsfall
der Co-Simulation. Schließlich werden die Ergebnisse der Arbeit in Abschnitt 7 kritisch
diskutiert und den aufgestellten Thesen gegenübergestellt. Die Zusammenfassung der
Dissertation erfolgt im Abschnitt 8, wobei ebenfalls ein Ausblick auf Anknüpfungspunkte
für Folgearbeiten gegeben wird.

7

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

In diesem Abschnitt werden zunächst die grundlegenden Begriffsdefinitionen und Theorie-
kenntnisse des Themengebietes zusammengefasst. Hierbei werden zu Beginn die Aspekte
der Veränderlichkeit auf einer allgemeinen Ebene dargestellt, bevor im nächsten Abschnitt
in die Informationsmodellierung eingeführt wird. Über ihren Lebenszyklus hinweg unter-
liegen diese Modelle einer natürlichen Evolution, deren Begrifflichkeiten im Folgenden
vorgestellt werden. Da während der Evolution eine Nachvollziehbarkeit der durchgeführ-
ten Änderungen gewährleistet werden muss, wird nachfolgend in die Grundlagen der
Revisionsverwaltung eingeführt. Abgeschlossen wird dieser Abschnitt mit einer Beschrei-
bung von Konsistenz, da diese sowohl während der Evolution, aber auch innerhalb der
Revisionsverwaltung von essenzieller Bedeutung ist.

2.1 Aspekte der Veränderlichkeit

Für zukünftige Systeme existieren nach Fricke und Schulz [FS05] drei Treiber. Hierzu
zählen die Dynamik der Märkte, die technologische Weiterentwicklung und die Vielfalt der
Umgebungen. Durch die immer größere Dynamik in den Märkten verringert sich die Zeit-
spanne zwischen dem Design Freeze und der Auslieferung der Systeme. Die Architekturen
müssen dabei auch nach einer Einführung veränderbar bleiben, da sich die Umgebung
weiterentwickelt und daraus wiederum neue Anforderungen an die Architekturen entste-
hen. Fricke und Schulz [FS05] stellen dabei fest, dass der Erfolg einer Architektur von der
Umsetzbarkeit der neuen Anforderungen abhängt. Ein weiterer Punkt der Dynamik ist
die immer weiter fortschreitende Individualisierung der Produkte. Unternehmen müssen
hierbei Standardkomponenten entwickeln und wiederverwenden, um die Wirtschaftlich-
keit und den Erfolg des Unternehmens sicherzustellen. Der zweite Treiber ist dadurch
gekennzeichnet, dass sich Systeme und deren Funktionen schnell weiterentwickeln müssen,
da sich die Lebensdauer der Produkte zunehmend verkürzt und die korrespondierenden
Systeme darauf reagieren müssen. Daraus resultiert, dass die Wettbewerbsfähigkeit der
Unternehmen stark von der Verwendung von neuen Technologien abhängt. Der letzte
von Fricke und Schulz [FS05] aufgeführte Treiber zielt auf die Vielfalt der Umgebungen
ab, da komplexe Systeme eine Komposition aus unterschiedlichen Technologien sind und
diese Systeme oft wiederum in höhere Systeme integriert sind. Die jeweils beteiligten
Komponenten stehen dabei in Wechselbeziehungen und beeinflussen sich gegenseitig.

Daraus resultieren die in Abbildung 2.1 dargestellten Aspekte der Veränderlichkeit.
Systemarchitekturen müssen nach [FS05] einerseits die Fähigkeit der einfachen und
schnellen Weiterentwicklung enthalten und andererseits auch die Fähigkeit besitzen, un-
empfindlich beziehungsweise anpassungsfähig auf sich ändernde Umgebungsbedingungen
zu reagieren.

8

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.1 Aspekte der Veränderlichkeit

Abbildung 2.1: Aspekte der Veränderlichkeit [FS05, S. 347]

Bei der Produktentwicklung werden Änderungen zumeist entweder verhindert oder
vorgezogen, da Änderungen in späteren Phasen der Entwicklung zu hohen Kosten führen
[FS05; Fri+00]. Jedoch lassen sich auch in späteren Phasen Änderungen nicht vermeiden
[FS05], weshalb eine Architektur benötigt wird, die mit Änderungen über den gesamten
Lebenszyklus hinweg umgehen kann. Bei einer solchen Architektur spielen aber wieder-
um auch die Kosten für die Weiterentwickelbarkeit im Vergleich zu den Kosten durch
zusätzliche Änderungen eine wesentliche Rolle. Abbildung 2.2 zeigt den Grad der Verän-
derlichkeit im Vergleich zu den Änderungskosten und die aufsummierten Gesamtkosten,
die am Schnittpunkt der beiden aufsummierten Kostenkurven ein Minimum besitzt, auf
das bei der Entwicklung von Systemarchitekturen abgezielt werden sollte.

9

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

Abbildung 2.2: Grad der Veränderlichkeit vs. Kosten [FS05, S. 356]

2.2 Informationsmodellierung

Informationsmodelle sind für eine durchgehende Digitalisierung und die Realisierung
von komplexen Systemen unabdingbar. Sie unterliegen wie die Systeme selbst einem
Lebenszyklus und müssen daher mit einhergehenden Änderungen umgehen können.
Informationsmodelle sind dabei für die Nutzer oft nicht einsehbar, da sie von den
Systemen nur im Hintergrund benutzt werden. In diesem Abschnitt werden die in der
Arbeit verwendeten Begrifflichkeiten in Bezug auf die Informationsmodellierung definiert
und es wird auf den Lebenszyklus von Modellen sowie deren Vernetzung eingegangen.

2.2.1 Terminologie

Ausgehend von Informationsmodell und Semantik erfolgt im Weiteren eine Definition
von wichtigen Begrifflichkeiten wie Informationsraum und Ontologie. Schließlich werden
Arten von Informationsmodellen sowie deren Einordnung in eine Metadatenarchitektur
vorgestellt.

2.2.1.1 Informationsmodell und Semantik

Beim Austausch von Daten zwischen unterschiedlichen Informationsträgern muss zum
einen ein gemeinsamer Übertragungsweg definiert und zum anderen festgelegt werden,
wie die Interpretation der Daten zu erfolgen hat [Gra16]. Hierfür sind die beiden Begriffe
Syntax und Semantik von wesentlicher Bedeutung. Durch die Syntax von Ausdrücken
wird deren formale Korrektheit definiert [Gra16]. Sie gibt demnach eine Menge von Regeln

10

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.2 Informationsmodellierung

vor, nach denen diese Ausdrücke gebildet werden dürfen [Tan06]. Durch die Semantik
hingegen wird den Ausdrücken eine entsprechende Bedeutung zugewiesen [Gra16].

Aus der Sprachwissenschaft heraus wird Semantik allgemein „als die Erforschung der
Bedeutung“[Lyo80, S. 15] definiert. Nach Lyons [Lyo80] wird die Bedeutung von Wörtern
sowie Sätzen durch den Gebrauch von Sprache in kommunikativen Situationen gelernt
beziehungsweise beibehalten. In diesem Zusammenhang spielen auch die Benennung und
die Referenz eine wesentliche Rolle. Die Benennung erfolgt dabei durch den Rückgriff auf
Zeichen oder Symbole, die zusammengesetzt ein Wort ergeben, dem dann wiederum eine
Bedeutung zugeordnet werden kann. Durch Referenzen kann dieses Wort dann wiederum
in einen Kontext eingebettet werden. Lyons [Lyo80] geht weiterhin auf die Bereiche
Klassenlogik, Referenz, Objekte mit deren Eigenschaften und Relationen sowie Sinnrela-
tionen, wie Opposition und Kontrast, Hierarchien oder Teil-Ganzes-Beziehungen ein, die
in einem engen Zusammenhang zur Bedeutung stehen und den Kontext bereitstellen,
in dem die Betrachtung der Bedeutung zu erfolgen hat. Diese Eigenschaften finden sich
auch in der Informationstechnik wieder, um die Semantik von Daten zu beschreiben, wie
beispielsweise in [She97] dargestellt. Im Rahmen dieser Arbeit werden für die formale
Beschreibung der Bedeutung von zugrundeliegenden Daten und für die Beschreibung des
zugehörigen Kontextes Informationsmodelle verwendet, wie im Folgenden definiert. Der
Kontext ergibt sich dabei unter anderem aus zugehörigen Eigenschaften, Relationen oder
Attributen. Die Repräsentation der Informationsmodelle und der sich daraus ergebenden
Beschreibung der Semantik erfolgt durch UML-Modelle und eine textuelle Beschreibung,
wie die Benennung zu interpretieren ist.

„Ein Modell ist eine Repräsentation eines Systems von Objekten, Beziehungen und/o-
der Abläufen. Ein Modell vereinfacht und abstrahiert dabei im allgemeinen [sic!] das
repräsentierte System.“[Kön12, S. 25] Kastens und Büning [KB14] definieren weiterhin,
dass jeweils nur spezielle Aspekte eines Originals durch ein Modell beschrieben werden.
Die wesentlichen Elemente hierbei sind die Struktur, die die Zusammensetzung aus
Bestandteilen kennzeichnet, die Eigenschaften, die Teile des Originals beschreiben, die
Beziehungen, die zwischen Teilen des Originals vorhanden sind und das Verhalten, das
das Original bei der Anwendung von Operationen zeigt. Die Formulierung der Modelle
soll nach [KB14] möglichst deklarativ oder deskriptiv erfolgen.

Majer [Maj10] formuliert nach [Her05], dass ein Informationsmodell einen Wirklichkeits-
ausschnitt formalisiert. In diesem entstehenden Diskursraum werden Einschränkungen in
Bezug auf die Semantik zu Zwecken der Kommunikation vorgenommen [Gra16]. Nachfol-
gend sind die Definitionen für den Begriff Informationsmodell nach Westerinen und Lee
aufgeführt, die zueinander ergänzend sind. So werden in [Lee99] die Einzelbestandteile
ausführlich aufgeschlüsselt und in [Wes+01] erfolgt die Ergänzung der unabhängigen
Beschreibung.

Ein Informationsmodell ist eine Repräsentation von Konzepten, Beziehungen,
Einschränkungen, Regeln und Operationen, um für eine gewählte Domäne des
Diskurses die Datensemantik zu spezifizieren. Der Vorteil für die Verwendung
eines Informationsmodells liegt darin, dass es eine gemeinsam nutzbare,
stabile und organisierte Struktur von Informationsanforderungen für den

11

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

Domänenkontext bereitstellen kann.1) (nach [Lee99, S. 1])

Ein Informationsmodell ist eine Abstraktion und Repräsentation von Enti-
täten in einer verwalteten Umgebung, ihrer Eigenschaften, Attribute und
Operationen sowie deren Beziehungen untereinander. Es ist unabhängig von
einem bestimmten Repository, Software-Nutzung, Protokoll oder Plattform.2)

(nach [Wes+01])

Auf Basis der vorangehenden Definitionen wird für diese Arbeit die nachfolgende
Definition abgeleitet, die die wesentlichen Aspekte der vorangehenden Definitionen
aufgreift und zusammenfasst. Grundlage bildet die Definition von Lee mit dem Zusatz
der Definition von Westerinen sowie die Formalisierung durch Majer nach Hermsdorfer.

Definition Informationsmodell:
Ein Informationsmodell formalisiert einen Wirklichkeitsausschnitt. Es handelt
sich dabei um eine Repräsentation von Konzepten, Beziehungen, Einschrän-
kungen, Regeln und Operationen, um für eine gewählte Domäne des Diskurses
die Datensemantik zu spezifizieren. Das Informationsmodell stellt dabei eine
gemeinsam nutzbare, stabile und organisierte Struktur von Informationsanfor-
derungen für den Domänenkontext bereit und ermöglicht eine von konkreten
Umsetzungen unabhängige Beschreibung.

2.2.1.2 Informationsraum

Ein weiterer wichtiger Begriff mit Bezug zu Informationsmodellen ist der Informations-
raum. In dieser Arbeit wird der von Graube [Gra16] gewählten Definition nach Hilbert
[Hil15] gefolgt. Diese fasst die semantische Beschreibung sowie die daraus resultierende
Möglichkeit der formalen Interpretation zusammen und beschreibt des Weiteren die
semantischen Verknüpfungen [Gra16], auf die im Abschnitt 2.2.3 detaillierter eingegangen
wird.

Definition Informationsraum:
Die Informationsmodelle bilden zusammen mit den Daten einen Informa-
tionsraum als „[...] semantisch beschriebene [...] Menge instanziierter oder
referenzierter Informationsressourcen sowie zugehöriger semantischer Ver-
knüpfungsinformationen" [Hil15, S. 63].

1)Übersetzung des Autors aus dem Englischen: „An information model is a representation of concepts,
relationships, constraints, rules, and operations to specify data semantics for a chosen domain of
discourse. The advantage of using an information model is that it can provide sharable, stable, and
organized structure of information requirements for the domain context.“[Lee99, S. 1]

2)Übersetzung des Autors aus dem Englischen: „An abstraction and representation of the entities in a
managed environment, their properties, attributes and operations, and the way that they relate to
each other. It is independent of any specific repository, software usage, protocol, or platform.“[Wes+01]

12

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.2 Informationsmodellierung

2.2.1.3 Arten von Informationsmodellen

Informationsmodelle können nach [VDI16] in zwei Arten unterschieden werden. Das
abstrakte Informationsmodell nimmt dabei eine Abstraktion eines relevanten Ausschnitts
der Realität vor, wobei dieses nicht notwendigerweise formalisiert sein muss. Es dient
damit vorrangig der Konzepterstellung und Dokumentation, da es von Systemen nicht
automatisiert auswertbar ist. Für eine solche automatisierte Auswertung muss erst eine
Abbildung auf eine konkrete Technologie erfolgen. Das daraus resultierende konkre-
te Informationsmodell ist dann formalisiert in einer Zieltechnologie beschrieben und
umgesetzt.

Neben den Informationsmodellen existieren des Weiteren Datenmodelle, die die durch
die Informationsmodelle bereitgestellte Semantik nutzen. Datenmodelle tragen daher
selbst keine Beschreibung der Semantik und werden nur für die Übertragung von Daten
genutzt. Durch die Referenzierung eines entsprechenden Informationsmodells durch das
Datenmodell können jedoch die Daten beim Empfänger semantisch korrekt interpretiert
werden. Die Entitäten der Datenmodelle stellen damit Instanzen von Konzepten dar,
die in korrespondierenden Informationsmodellen definiert werden. Im Gegensatz dazu
sind Informationsmodelle nicht auf die Definition von Konzepten beschränkt und können
darüber hinaus ebenso Instanzen enthalten.

Die Konzepte der Meta Object Facility (MOF) haben neben der allgemeinen Un-
terscheidung in abstrakte und konkrete Informationsmodelle eine weite Verbreitung
gefunden. Die zugehörige Metadatenarchitektur findet vorrangig im Model-driven Engi-
neering (MDE) Anwendung und besteht aus den nachfolgend aufgeführten vier Ebenen
[OMG02]:

• M0 – Konkrete Daten
Beschreiben die Instanz des Nutzermodells.

• M1 – Nutzermodell
Dieses Modell entspricht den Vorgaben des Metamodells.

• M2 – Metamodell
Hierdurch wird die „Sprache“ der Nutzermodelle spezifiziert. Ein Beispiel ist die
Unified Modeling Language (UML).

• M3 – Metametamodell
Spezifizieren wiederum die „Sprache“ der Metamodelle.

Die allgemeine Unterscheidung kann dabei ebenso in die Ebenen der MOF eingeordnet
werden. Das Datenmodell wird zur Bereitstellung der Instanzen auf der Ebene M0
verwendet. Sowohl für das abstrakte als auch für das konkrete Informationsmodell gilt,
dass diese der Ebene M1 zugeordnet werden können. Für das konkrete Informationsmodell
existieren über der Ebene M1 des Weiteren die Ebenen M2 und M3 mit Metamodell und
Metametamodell. Diese beiden Ebenen existieren für das abstrakte Informationsmodell
nur, wenn dieses in einer formalen Art und Weise vorliegt und mittels Metamodellen
beschrieben werden kann.

13

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.2.1.4 Ontologie

Ein Informationsmodell bietet nach Graube [Gra16] die Grundlage, um „[...] durch
eine formale und explizite Definition eine Ontologie erstellen [...]“[Gra16, S. 15] zu
können. Vereinfacht kann eine Ontologie als „[...] formale Definition von Begriffen und
deren Beziehungen als Grundlage für ein gemeinsames Verständnis“[Bus+14, S. 286–287]
beschrieben werden. Ontologien ermöglichen daher, dass die Semantik von Information in
einer maschinenlesbaren Art und Weise zwischen unterschiedlichen Akteuren (Maschinen
und Menschen) kommuniziert werden kann [Fen01].

Ontologien finden unter anderem im Semantic Web Anwendung. Die Semantic Web
Technologien sind dabei ein Teil der W3C Data Activity [W3C]. Nach [W3C] ist das Ziel
dieser Aktivität, dass Personen und Organisationen in die Lage versetzt werden, Daten
mithilfe ihrer vorhandenen Werkzeuge und aus bestehenden Arbeitsmethoden heraus
teilen zu können. Dabei liegt der Fokus darauf, dass dies in einer Art und Weise geschieht,
die es anderen ermöglicht, Werte abzuleiten und hinzuzufügen und diese entsprechend
zu nutzen. Es steht hierbei nicht nur die Interoperabilität von Daten, sondern auch
von Communities im Mittelpunkt. Basistechnologie des Semantic Web ist das Resource
Description Framework (RDF), das gleichzeitig das Datenmodell für das Semantic Web
darstellt. Für die Erstellung von Ontologien stehen wiederum als Basis das Resource
Description Framework Schema (RDFS)3) und die Web Ontology Language (OWL)4)

zur Verfügung [Gra16].

2.2.2 Lebenszyklus

Über den Lebenszyklus eines Systems hinweg unterliegen die verwendeten Modelle un-
terschiedlichen Änderungen. Dabei lässt sich die Faustregel anwenden, dass sich untere
Ebenen der MOF bedeutend häufiger ändern als überlagerte. Konkrete Daten (M0)
ändern sich daher oft bei jeder Interaktion mit den Modellen. Eine Erweiterung oder
Anpassung des Informationsmodells auf Ebene M1 wird jedoch nur auftreten, wenn sich
die Anforderungen an das System ändern, wodurch Funktionsanpassungen des Gesamt-
systems vorgenommen werden müssen. Ein Wechsel der Sprache (M2) wird dahingegen
ab einem bestimmten Reifegrad nur noch sehr selten vorkommen. Änderungen auf dieser
Ebene sind mit einem enorm hohen Aufwand verbunden, wobei die Notwendigkeit eines
solchen Wechsels aufgrund von hohen Abstraktionsmechanismen zumeist auch nicht
gegeben ist.

Bereits an dieser Stelle lässt sich feststellen, dass Modelle, ebenso wie Systeme und
Produkte im Allgemeinen, einen Lebenszyklus aufweisen. Die aus beispielsweise Wartung
und Pflege heraus entstehenden Änderungen müssen dabei wiederum nachvollziehbar
gespeichert werden, damit diese für folgende Wartungen als Grundlage bereitstehen.

3)https://www.w3.org/TR/rdf-schema/ (besucht am 29.11.2020)
4)https://www.w3.org/OWL/ (besucht am 29.11.2020)

14

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.3 Evolution

2.2.3 Vernetzung innerhalb eines Informationsraums

Informationsräume sind durch eine Vernetzung gekennzeichnet. Es bestehen auf der einen
Seite vertikale Beziehungen (in Bezug auf die Ebenen des MOF), wie unter anderem
Typ-Instanz-Beziehungen oder Abhängigkeiten zwischen Nutzer- und Metamodell. Auf
der anderen Seite bestehen aber auch Relationen innerhalb der konkreten Daten, die
durch ein Nutzermodell beschrieben werden, oder auch Abhängigkeiten, die zwischen den
unterschiedlichen Modellen auf höheren Ebenen des MOF auftreten können. Der damit
einhergehende Begriff der verbindungsorientierten Modelle wird vor allem im Bereich
von Netzwerken verwendet [Wal10; Van91]. Dabei werden Verbindungen zwischen un-
terschiedlichen Teilnehmern hergestellt, um im Folgenden Daten übertragen zu können.
Im Endeffekt handelt es sich dabei jeweils um die Beschreibung einer Topologie von
Komponenten und deren Verbindungen untereinander, wie beispielsweise in [ONF16;
Van91; Int+19] dargestellt. Neben dem Bereich der Netzwerke existieren weitere An-
wendungsgebiete, in denen diese Begrifflichkeit zumeist nicht explizit aufgeführt wird.
Beispiele hierfür sind untere anderem die Beschreibung von Bedienbildern in modularen
Anlagen [VDI18], Co-Simulationen [Hen+16b], Flowsheets, Matlab Simulink Projekte
und Kontaktpläne [DIN14].

Im weiteren Verlauf werden diese unterschiedlichen, bei der Modellierung und der
späteren Verwendung auftretenden Relationen allgemein als Vernetzung in den Informa-
tionsräumen bezeichnet. Der Begriff der Vernetzung geht dabei auch mit der Natur der
Modelle einher, da diese als Graph interpretiert werden können [Lev+10]. Sie lassen sich
demnach als eine Menge an Knoten und Kanten beschreiben.

2.3 Evolution

Informationsmodelle unterliegen einer natürlichen Evolution während ihres Lebenszyklus.
So werden beispielsweise Planungsdaten während des Engineerings stetig weiterentwickelt
oder müssen aufgrund von Anforderungsänderungen beziehungsweise durchzuführenden
Fehlerbehebungen angepasst werden [Vog+15b]. Im Folgenden werden die in dieser Arbeit
verwendeten Begrifflichkeiten definiert und die Verwendung von Evolution in verwandten
Themengebieten vorgestellt.

2.3.1 Terminologie

Die Begriffe Evolution, Evolvability und Wartbarkeit stehen in einem engen Zusammen-
hang [RB09], weshalb eine Unterscheidung und Definition der einzelnen Begrifflichkeiten
notwendig ist. In der Literatur werden die Begriffe jedoch oft ohne explizite Definition
verwendet, was aufgrund des Interpretationsspielraums zu Missverständnissen führen
kann. Für die weitere Arbeit werden daher an dieser Stelle Definitionen aus der bestehen-
den Literatur aufgegriffen und gegebenenfalls erweitert, sodass sie dieser Arbeit zugrunde
gelegt werden können.

15

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.3.1.1 Evolution

Evolution wird vor allem im Zusammenhang mit Softwaresystemen [RLL98], jedoch auch
in Bezug auf Produktionssysteme [Lad18], definiert. Die Definitionen, die beispielsweise in
[RLL98], [RB09] oder [Ruh+14] gegeben werden, haben stets gemein, dass schrittweise und
kontinuierliche Änderungen beschrieben werden. Davon ausgehend wird im Folgenden als
Basis die Definition von Ruhroth [Ruh+14] verwendet, da diese zusätzlich den Gedanken
der Transformation und der Begründung von Änderungen aufgreift.

Der Begriff der Evolution kann als anhaltende und schrittweise Änderung
von Entwicklungsartefakten definiert werden. Dabei behält jeder Schritt die
meisten Eigenschaften (Funktionalität und Sicherheit) des vorherigen Systems
bei und wird durch eine Begründung gerechtfertigt. Diese Evolutionsschritte
können als Transformation von Modellen aus ihrem aktuellen Status in einen
modifizierten betrachtet werden.5) (nach [Ruh+14, S. 1])

Des Weiteren beziehen Riebisch und Bode [RB09] nach Lehmann [Leh80] den Begriff
der Evolution auf den gesamten Lebenszyklus eines Softwaresystems. Dies bedeutet,
dass von der initialen Entwicklung über die Wartung bis zum Reengineering alle Phasen
eingeschlossen sind [RB09]. Diese Erweiterung fließt in die Definition von Ruhroth ein,
woraus die nachstehende Definition folgt, die im Weiteren der Arbeit zugrunde gelegt
wird.

Definition Evolution:
Der Begriff der Evolution kann als anhaltende und schrittweise Änderung
von Entwicklungsartefakten definiert werden, die während des gesamten Le-
benszyklus von Modellen stattfinden. Dabei behält jeder Schritt die meisten
Eigenschaften (Funktionalität und Sicherheit) des vorherigen Systems bei
und wird durch eine Begründung gerechtfertigt. Diese Evolutionsschritte kön-
nen als Transformation von Modellen aus ihrem aktuellen Status in einen
modifizierten betrachtet werden.

2.3.1.2 Co-Evolution

Von Evolution im Allgemeinen abgleitet existiert in der Literatur weiterhin der Begriff der
Co-Evolution (oder auch als Coupled-Evolution bezeichnet [HW14]), der unter anderem
im Bereich des MDE Verwendung findet. Hierunter wird die Anpassung eines Modells
auf Basis von Änderungen an einem korrespondierenden Modell verstanden. Beispiele für
Co-Evolutionen und die zugrunde liegenden Modellrelationen können zwischen Metamo-
dellen und Nutzermodellen [DIP11], zwischen Typ (Nutzermodell) und Instanz (konkrete

5)Übersetzung des Autors aus dem Englischen: „The term evolution can be defined as the ongoing
change of development artifacts in a stepwise manner, such that every step preserves most properties
(functionality and security) of the former system and is justified by a rationale. This evolution steps
can be seen as a transformation of models from their current state into a modified one.“[Ruh+14,
S. 1]

16

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.3 Evolution

Daten) [DIP11] oder Modell und Modell auf unterschiedlichen Abstraktionsniveaus (zum
Beispiel Nutzermodell und Nutzermodell) [HHH14; Ruh+14] bestehen. Je nach Art
der zugrunde liegenden Abhängigkeit und der Definition des konsistenten Gesamtzu-
stands (Begriff der Konsistenz wird in Abschnitt 2.5 erläutert) wird die Co-Evolution
unidirektional oder bidirektional durchgeführt. So werden Änderungen an Typmodellen
zumeist nur auf die Instanzdaten angewendet und nicht umgekehrt. Änderungen an
Modellen unterschiedlicher Abstraktion sollten jedoch zumeist wechselseitig angeglichen
werden, um einen konsistenten Gesamtzustand zu erhalten. Für Co-Evolution lässt sich
nachstehende Definition ableiten, die im weiteren Verlauf der Arbeit Anwendung findet.

Definition Co-Evolution:
Co-Evolution bezeichnet die Anpassung eines Modells auf Basis der Evolution
eines korrespondierenden Modells unter Nutzung von bestehenden Modellrela-
tionen. Je nach Art der zugrunde liegenden Abhängigkeit und der Definition
des konsistenten Gesamtzustands wird die Co-Evolution unidirektional oder
bidirektional durchgeführt.

Abbildung 2.3 stellt anhand eines Beispiels aus [Ruh+14] die Beziehung zwischen Evo-
lution und Co-Evolution dar. Durchgeführte Änderungen an dem aufgeführten Security
Maintenance Model haben Auswirkungen auf das zugehörige System Model. In einem
abstrakteren Beispiel könnte es sich dabei um ein Nutzermodell und konkrete Daten
handeln. Auf Basis der Evolution des Nutzermodells werden notwendige Evolutionen auf
den konkreten Daten abgeleitet, die dann mittels der Co-Evolution auf die konkreten
Daten angewendet werden.

Abbildung 2.3: Beispiel für die Beziehung zwischen Evolution und Co-Evolution [Ruh+14, S. 1]

17

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.3.1.3 Evolvability

Evolvability beschreibt allgemein den Zustand eines Systems, der dadurch gekennzeichnet
ist, dass er schnell und einfach Änderungen erlaubt. Evolvability lässt sich daher in
etwa mit Weiterentwickelbarkeit übersetzen [RB09]. Der Unterschied zur Changeability
(Veränderlichkeit), wie in Abschnitt 2.1 dargestellt, ist in der Literatur zumeist nicht
trennscharf und wird oft synonym verwendet. Es existieren jedoch auch Unterscheidungen,
wie in Beesemyer [Bee12] dargestellt. Beesemyer charakterisiert dabei Evolvability als ein
Subset der Changeability, wobei Evolvability die Fähigkeit einer Architektur beschreibt,
vererbt und über Generationen hinweg weiterentwickelt zu werden. Brinca [BBR09]
hingegen stellt Changeability als eine Verfeinerung der Evolvability dar. Ein von Rowe
et al. [RLL98] durchgeführter Vergleich von Definitionen kommt zu dem Schluss, dass
eine Definition von Evolvability nicht ausreichend ist und es sich bei Evolvability um
eine zusammengesetzte Qualität handelt.

Evolvability: Ein Attribut, das sich auf die Fähigkeit eines Systems bezieht,
über den gesamten Lebenszyklus hinweg Anforderungsänderungen aufnehmen
zu können, während die Kosten so gering wie möglich gehalten werden und
die architektonische Integrität erhalten bleibt.6) (nach [RLL98, S. 5])

Die Definition von Rowe kennzeichnet zum einen, dass die Architektur mit Änderungen
kosteneffektiv umgehen kann und zum anderen, dass die Integrität der Architektur dabei
gewährleistet ist. Dies wird auch durch [BCE07] bestätigt, wobei die Definition von
Breivold et al. expliziter auf die Stimuli von Änderungen in Softwaresystemen eingeht.
Ebenso bestätigen Bahill und Botta [BB08] nach Christian und Olds [CO05] die Definition
von Rowe. Die Basis für die in dieser Arbeit verwendeten Definition bildet demnach
Rowe mit der Ergänzung des Generationsgedankens von Beesemyer, wie nachfolgend
aufgeführt.

Definition Evolvability:
Evolvability kennzeichnet die Fähigkeit einer Architektur, mit möglichst ge-
ringen Kosten und unter Beibehaltung der architektonischen Integrität, auf
Anforderungsänderungen über den gesamten Lebenszyklus hinweg reagieren
zu können und über mehrere Generationen weiterentwickelt zu werden.

Riebisch [RB09] führt in diesem Zusammenhang Prinzipien auf, die die Evolvability
beeinflussen. Hierzu gehören einerseits positive Einflüsse wie Abstraktion und Modularität,
die es ermöglichen die Komplexität zu beherrschen, aber andererseits auch negative
Einflüsse wie Komplexität und Kopplungen. Negative Einflüsse können jedoch zumeist
nicht beeinflusst werden, wenn sich die Anforderungen nicht anderweitig umsetzen lassen.
Brcina et al. [BBR09] geben hierzu einen Überblick über die beinhalteten Prinzipien, deren
Zusammenhänge und Einflüsse aufeinander, sowie der Zuordnung zu Qualitätsattributen,
wie in Abbildung 2.4 dargestellt.
6)Übersetzung des Autors aus dem Englischen: „Evolvability: An attribute that bears on the ability of

a system to accommodate change in its requirements throughout the system’s lifespan with the least
possible cost while maintaining architectural integrity.“[RLL98, S. 5]

18

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.3 Evolution

Abbildung 2.4: Charakteristiken und Attribute mit Einfluss auf Evolvability (Ausschnitt aus
[BBR09, S. 198])

2.3.1.4 Wartung und Wartbarkeit

In der Softwareentwicklung kennzeichnet Wartung die Modifikation von Softwareproduk-
ten, um Anpassungen an veränderte Anforderungen vorzunehmen, nachdem die Software
ausgeliefert worden ist [RB09] nach [IEE98]. Bei der Wartung werden typischerweise
keine bedeutenden Änderungen an der Architektur vorgenommen. Evolution hingegen
schließt im Gegensatz dazu die Wartung sowie größere Änderungen über den gesamten
Lebenszyklus hinweg mit ein [Men17]. Wartbarkeit entspricht einem Qualitätsmerkmal
und wird durch die ISO-Norm 9126 [ISO01] definiert. Dabei bezieht sich Wartbarkeit auf
den Aufwand, der sich aus Änderungen ergibt [RB09].

2.3.2 Evolution in verwandten Themengebieten

Die Problemstellung der Evolution wird neben der Biologie auch in unterschiedlichen Soft-
waredomänen adressiert. Nachfolgend werden die Schema-Evolution und die Ontologie-
Evolution als bekannteste Vertreter vorgestellt und miteinander verglichen.

19

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.3.2.1 Schema-Evolution

Objektorientierte Datenbanken Die bekannteste Domäne für Evolution in Software-
systemen ist die objektorientierte Datenbank mit der sogenannten Schema-Evolution
[Lev+10]. Durch Änderungen an einem Schema kann die Funktionsweise von abhängigen
Objekten beeinträchtigt werden. Bei diesen Objekten handelt es sich beispielsweise um
Views der Datenbank, um Abfragen auf die Datenbank, zu erfüllende Bedingungen in
der Datenbank, auf das Schema referenzierende Programme oder im Allgemeinen die
Datenbank als Instanz des Schemas [BM07]. Änderungen am Schema müssen dement-
sprechend korrekt und effizient an die abhängigen Objekte propagiert werden [RB06].
Ansätze für den Umgang mit Schemaänderungen erstellen zumeist ein Mapping zwischen
den evolvierten Schemas und leiten daraus die durchzuführenden Modellmanagementope-
rationen zur Anpassung des Mappings zwischen abhängigen Objekten und evolviertem
Schema ab [BM07]. Resultierende Ansätze werden beispielsweise in [BM07; Ban+87;
RR97] beschrieben. Eine umfassende Sammlung und Kategorisierung von bestehenden
Veröffentlichungen in diesem Themenbereich wird in [RB06] vorgestellt.

Softwareengineering Im Softwareengineering lassen sich viele der Problemstellungen
der Schema-Evolution wiederfinden. Diese kommen vor allem dann zum Tragen, wenn
neue Softwareversionen erstellt werden. Durch die Abhängigkeiten und Beziehungen
zwischen einzelnen Programmteilen müssen bei einer Evolution von beispielsweise Pro-
grammschnittstellen oder Klassenhierarchien die Auswirkungen auf die abhängigen Teile
propagiert werden [RB06]. Viele der Veröffentlichungen in diesem Bereich beziehen sich
dabei auf objektorientierte Softwareentwicklung. In diesem Zusammenhang werden auch
Ansätze für Modell Evolution vorgestellt, wie beispielsweise in [Lev+10] präsentiert.
Weiterhin formulierten Lehmann und Belady für die Software-Evolution im Allgemeinen
eine Reihe von Gesetzmäßigkeiten, die über die Jahre selbst evolvierten und von Lehmann
weiterentwickelt wurden [Leh96; Leh80; LR03]. Des Weiteren werden Herausforderungen
für die Software-Evolution im Zusammenhang mit automatisierten Produktionssystemen
von Vogel-Heuser et al. in [VR15; Vog+15a; Vog+15b] dargestellt. Überdies werden auch
Ansätze in der Literatur beschrieben, die sich mit der Bewertung und dem Vergleich
von Softwaresystemen in Bezug auf Evolvability beschäftigen. Ein Beispiel hierfür ist in
[BCE08] dargestellt.

2.3.2.2 Ontologie-Evolution

Versionierung und Evolution spielt auch im Bereich der Ontologieerstellung eine wichtige
Rolle, da dies zumeist einen kollaborativen Prozess darstellt. Zwischen Schema-Evolution
und Ontologie-Evolution liegen dabei viele Ähnlichkeiten vor [NK04], es herrschen aber
auch wesentliche Unterschiede, wie die Verwendung von kontrollierten Vokabularen,
Taxonomien und regelbasierten Wissensrepräsentationen [RB06]. Daraus resultieren
unterschiedliche Änderungen, die während der Evolution vorgenommen werden können.
Da Ontologien oft schemaartige konzeptionelle Metadaten und Instanzdaten enthalten,
müssen die resultierenden Auswirkungen auf Meta- und Instanzdaten gemeinsam be-

20

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.3 Evolution

achtet werden [RB06]. Des Weiteren kann eine Domänenontologie in unterschiedlichen
Anwendungen wiederverwendet werden, woraus Abhängigkeiten zwischen verteilten Sys-
temen resultieren [RB06]. Eine traditionelle Trennung von Versionierung und Evolution
kann daher bei Ontologien nicht angewendet werden [NK04]. Resultierende Konzepte
zur Unterstützung von Ontologie-Evolution werden beispielsweise in [Sto04; Noy+06]
vorgestellt.

2.3.2.3 Schema-Evolution vs. Ontologie-Evolution

Djedidi und Aufaure [DA10] geben in ihrer Veröffentlichung einen Vergleich über die
Evolution von objektorientierten Datenbankschemas und Ontologien. In der folgenden
Tabelle 2.1 werden wesentliche Eigenschaften in Anlehnung an [DA10] gegenübergestellt.
Eine vollständige Auflistung ist in [DA10] zu finden.

Tabelle 2.1: Vergleich von Schema-Evolution und Ontologie-Evolution (basierend auf [DA10])

Eigenschaft Datenbankschema Ontologie

Häufigkeit der
Änderungen

Häufige Änderungsoperationen
über gesamten Datenbankle-
benszyklus

Häufigkeit von Änderungen be-
sonders hoch, wenn Änderungs-
anforderungen durch Nutzer er-
fasst werden

Struktur Spiegelt die Struktur von Daten
und Code wider, berücksichti-
gen auch Objektverhalten (z.B.
Methoden im Modell)

Spiegelt eine Domänenstruk-
tur unter Nutzung von Kon-
zepten, Beziehungen und Ein-
schränkungen wider

Instanzen Instanzen (Datenbankobjekte)
befinden sich nicht auf dem glei-
chen Niveau wie Klassen

Terminologieebene (Klassen
und Eigenschaften) und Aussa-
genebene (Instanzen) werden
nicht abgegrenzt, Klassen und
Instanzen können gemeinsam
in Anfragen manipuliert
werden

Wiederver-
wendung

Integration von einem Schema
in ein anderes ist nicht möglich

Ontologien können vollständig
oder teilweise wiederverwendet
werden, Änderungen können
auch die Hinzufügung oder Ent-
fernung einer Ontologie sein

21

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

Tabelle 2.1: Vergleich von Schema-Evolution und Ontologie-Evolution (basierend auf [DA10])
(Fortsetzung)

Eigenschaft Datenbankschema Ontologie

Konsistenz Durchführbare Änderungen
müssen explizit definiert
werden (auf dem Modell
selbst)

Neben der Darstellung von
Änderungen gemäß Ontologie
ist Änderungssemantik essenzi-
ell (überprüfbare Bedingungen
und Aktionen für Aufrechter-
haltung der Konsistenz)

Konsistenz-
prüfung

Schemasemantik ist nicht aus-
reichend explizit, um automa-
tisierte Schlussfolgerungen zu
ziehen

Ontologiesemantik ist explizit
und erlaubt die Anwendung
von automatisierten Schlussfol-
gerungsmechanismen, um In-
konsistenzen zu detektieren

Propagierung von
Änderungen

Änderungspropagierung auf In-
stanzen beschränkt

Änderungspropagierung auf al-
le Ontologie-abhängige Artefak-
te, wie Instanzen, Annotatio-
nen, Ontologien und Anwen-
dungen

2.4 Revisionsverwaltung

Wie in den vorangehenden Abschnitten dargestellt, besitzen Modelle einen Lebenszyklus,
der durch eine natürliche Evolution mit daraus resultierenden Änderungen gekennzeichnet
ist. Auftretende Änderungen, die beispielsweise aufgrund von Wartung und Pflege der
Modelle entstehen, müssen aus Gründen der Wartbarkeit und Nachvollziehbarkeit stets
gespeichert werden. Soll im Fall von Fehlern oder bei einer parallelen Entwicklung automa-
tisch auf einen funktionsfähigen Stand zurückgesprungen oder unabhängige Änderungen
zusammengefügt werden können, ist die Anwendung von Revisionskontrollmechanismen
sinnvoll. Insbesondere in verteilten und agilen Entwicklungsprozessen ist es hilfreich, wenn
diese auch dazu befähigen, dass die Auswirkung von Änderungen auf verknüpfte Modelle
automatisch erkannt werden, um stets ein konsistentes Gesamtgefüge an einzelnen Mo-
dellen zu gewährleisten. Versions- beziehungsweise Revisionsverwaltungssysteme stellen
die Funktionalität bereit, die Evolution von Informationsmodellen zu dokumentieren
und nachvollziehbar zu speichern. Beispielsweise kann hierdurch bei Defekten auf einen
vorangegangen funktionsfähigen Stand zurückgesprungen werden.

22

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.4 Revisionsverwaltung

2.4.1 Terminologie

Im Folgenden wird eine Einordnung der Begriffe Versions- beziehungsweise Revisionsver-
waltung vorgenommen und auf weitere wichtige Begrifflichkeiten in diesem Zusammen-
hang eingegangen.

2.4.1.1 Revisionsverwaltung vs. Versionsverwaltung

In der Literatur wird der Begriff Versionsverwaltung im Wesentlichen für ein System ver-
wendet, das Änderungen erfassen und verwalten kann. Die Erfassung und die Möglichkeit
der Rücknahme von vorgenommenen Änderungen kommt vor allem bei der Entwicklung
von komplexen Systemen zum Tragen, da in diesem Fall eine Koordination der beteiligten
Entwickler über einen längeren Zeitraum erfolgen muss [Bae05]. Die Definition von
Baerisch bezieht sich, wie die meisten in der Literatur vorhandenen, auf Softwaresysteme
und die Versionierung von Source Code und anderen Dateien. Sie kann aber auch in
dieser Arbeit verwendet werden, da sie sich allgemeingültig auf die beiden Hauptelemen-
te von Versionsverwaltung bezieht. Die Erweiterung von Versionsverwaltung in dieser
Arbeit betrifft die weitgehendere Nutzung von Versionierung für Informationsmodelle
und abgeleitete Instanzdaten. Diese ist mit etablierten Versionsverwaltungssystemen
wie git7) oder Apache Subversion (SVN)8) nicht möglich, da sie Änderungen auf einer
zeilenbasierten Ebene betrachten und nicht auf einer inhaltlichen. Die Zeilenordnung
spielt bei den in dieser Arbeit betrachteten Modellen keine Rolle. Diese kann sich ändern,
ohne dass sich der Modellinhalt ändert.

Unabhängig vom verwendeten Versionsverwaltungssystem muss zwischen den Begriffen
Version und Revision unterschieden werden. Eine Revision kennzeichnet jeweils einen
eindeutigen Versionsstand des gesamten Repositories [Bud09; Fog05]. Dieser ist durch
einen Identifier (Revisionsnummer) eindeutig bestimmt. Möglich sind beliebige Schemas,
wie zum Beispiel eine fortlaufende Nummerierung oder ein Hash. Für die Speicherung
der Revisionen wird zumeist eine Differenzspeicherung genutzt. Bei dieser werden nur
die Unterschiede zwischen den aufeinander aufbauenden Revisionen gespeichert, was in
einem verringerten Speicherplatzbedarf resultiert. Jedoch wird für die Wiederherstellung
der vollständigen Revisionsinformation wiederum mehr Rechenaufwand benötigt. Eine
Version bezieht sich auf eine bestimmte Veröffentlichung einer Revision, der eine eindeuti-
ge Versionsnummer zugeordnet ist [Bud09; Fog05]. Ein beispielhaftes Vergabeschema ist
durch Semantic Versioning 2.0.09) beschrieben. Dieses setzt sich aus Major.Minor.Patch
zusammen. Neben den Begriffen Revision und Version wird in der Literatur auch teilweise
der Begriff Variante verwendet. Varianten kennzeichnen dabei unterschiedliche Ausprä-
gungen eines Produktes mit unterschiedlichem Funktionsumfang [DB07]. Eine Variante
kann dabei beispielsweise von einer Version abgeleitet werden. Ein Beispiel hierfür ist
Microsoft Windows in der Version zehn, das sowohl als Home-, wie auch Pro-Edition
verfügbar ist. Eine interne Weiterentwicklung der Version zehn, die unter Umständen

7)https://git-scm.com/ (besucht am 29.11.2020)
8)https://subversion.apache.org/ (besucht am 29.11.2020)
9)http://semver.org/ (besucht am 29.11.2020)

23

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

nicht an den Kunden ausgeliefert wird, entspricht dabei einer Revision.
Die Begriffe Versionsverwaltung und Revisionsverwaltung werden in der Literatur

synonym verwendet, wobei Versionsverwaltung der etablierte Begriff ist und Revisi-
onsverwaltung den passenderen Begriff darstellt, da dieser feingranularer in Bezug auf
die Verwaltungsebene der Änderungen ist. Im Folgenden wird daher die Bezeichnung
Revisionsverwaltung verwendet.

2.4.1.2 Basisbegriffe der Revisionsverwaltung

An dieser Stelle erfolgt eine Definition von Basisbegrifflichkeiten der Revisionsverwaltung,
die im weiteren Verlauf der Arbeit verwendet werden. Zur Veranschaulichung wird das
in Abbildung 2.5 dargestellte Beispiel verwendet. Bei dem Repository handelt es sich um
eine Datenbank, in der die gesamte Revisionshistorie vorgehalten wird. Eine Revision
kennzeichnet, wie im vorangegangenen Abschnitt bereits eingeführt, einen eindeutigen
Versionsstand des gesamten Repositories. Sie resultiert aus der Durchführung eines
Commits, der durchzuführende Änderungen unter Angabe von Autor, Datum und einer
zugehörigen Nachricht spezifiziert. Innerhalb des Repositories kann der Revisionsgraph
aus mehreren Zweigen, sogenannten Branches, bestehen, die parallele Entwicklungen
ermöglichen. Der Masterzweig gibt dabei den Hauptentwicklungszweig an. Die Zusammen-
führung von divergierten Entwicklungszweigen findet mittels Merges statt. Hierdurch wird
die Revisionshistorie der beteiligten Zweige in eine neue Revision wieder zusammenge-
führt. Bei diesem Vorgehen können Konflikte auftreten, wenn auf den jeweiligen Branches
Änderungen durchgeführt wurden, die zueinander im Widerspruch stehen. Schließlich
gibt es die Möglichkeit einzelne Revisionen mit einem Tag zu versehen, wodurch diese
eine besondere Kennzeichnung erhalten.

Abbildung 2.5: Begrifflichkeiten in der Revisionsverwaltung

2.4.1.3 Arten von Revisionsverwaltung

Revisionsverwaltungssysteme lassen sich nach [Sin11] in drei Arten beziehungsweise auch
Generationen untergliedern. In der ersten Generation wird die Revisionierung vollständig

24

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.4 Revisionsverwaltung

lokal durchgeführt. Die Möglichkeit, gleichzeitig Änderungen durch unterschiedliche
Personen vorzunehmen, ist in diesem Fall nicht gegeben. Hierbei werden zudem meist
nur einzelne Dateien revisioniert. Beispiele für lokale Revisionsverwaltung sind Revision
Control System (RCS)10), Source Code Control System (SCCS)11), aber auch die Än-
derungsverfolgung in Microsoft Office. Die zweite Generation der Revisionsverwaltung
verwendet einen zentralisierten Ansatz. Es handelt sich dabei um eine Client-Server-
Architektur. Die Revisionsgeschichte wird im Repository auf dem Server vorgehalten,
wodurch ein Zugriff über ein Netzwerk möglich ist. Bei nebenläufigen Änderungen von
unterschiedlichen Personen müssen aber die bestehenden Änderungen zuerst in die eigene
Arbeit gemerged werden, bevor ein Commit der eigenen Änderungen möglich ist. Bei-
spiele für entsprechende Systeme sind SVN oder Concurrent Versions System (CVS)12).
Generation drei bezeichnet die verteilte Revisionsverwaltung. In diesen Systemen exis-
tiert kein zentrales Repository und jede Person besitzt ein lokales Repository mit der
gesamten Historie. Nebenläufige Änderungen können dementsprechend im jeweiligen
lokalen Repository commited werden und müssen erst beim Abgleich zusammengeführt
werden. Implementierungen für solche verteilten Systeme sind beispielsweise git, Bazaar13)

oder Mercurial14). Der Entwicklungsprozess über die Phasen hinweg zeigt eine stetige
Evolution der Revisionsverwaltung zu mehr Nebenläufigkeit und der damit verbunden
Möglichkeit von gleichzeitigen Änderungen der gleichen Datengrundlage.

2.4.1.4 Synchronisation und Replikation

Mutschler und Specht [MS04] definieren Replikation als die Einführung einer Redundanz
von Daten. Diese Redundanz wird auch bei der Verwendung eines zentralen oder verteilten
Revisionsverwaltunssystems hergestellt. Hierdurch ist eine Bearbeitung der Daten auch
in Offline-Phasen möglich, in denen keine Verbindung zu einem Abgleichpunkt besteht.
Änderungen werden dementsprechend an den replizierten Daten vorgenommen und
müssen in einer folgenden Online-Phase synchronisiert werden, um die Änderungen auch
anderen Teilnehmern in der Replikationsumgebung zur Verfügung stellen zu können
[MS04].

Bei der Synchronisation werden nach Mutschler und Specht [MS04] redundant vorhan-
dene Daten, an denen unterschiedliche Änderungen vorgenommen wurden, abgeglichen.
Dieser Abgleich kann entweder von einer Replikationssenke auf eine Replikationsquelle
(Reintegration) oder in umgekehrter Richtung (Rückübertragung) erfolgen. Hierbei wird
von einem unidirektionalen Synchronisierungsprozess gesprochen. Dem gegenüber wird
die direkte aufeinanderfolgende Ausführung von beiden Arten auch als bidirektionaler
Synchronisationsprozess bezeichnet [MS04].

10)https://www.gnu.org/software/rcs/ (besucht am 29.11.2020)
11)http://sccs.sourceforge.net/ (besucht am 29.11.2020)
12)https://savannah.nongnu.org/projects/cvs (besucht am 29.11.2020)
13)http://bazaar.canonical.com/en/ (besucht am 29.11.2020)
14)https://www.mercurial-scm.org/ (besucht am 29.11.2020)

25

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.4.1.5 Verfahren zur Konsistenzerhaltung

Innerhalb einer Replikationsumgebung muss Konsistenz zwischen den einzelnen Repliken
in dieser Umgebung gewahrt werden. Die hierfür zur Verfügung stehenden Verfahren wer-
den in optimistische und pessimistische Verfahren kategorisiert [MS04] und nachfolgend
anhand von [MS04] vorgestellt. Pessimistische Verfahren (Lock-Modify-Write/Unlock)
verwenden Sperren, um Inkonsistenzen auszuschließen. Hierbei werden die zu bearbei-
tenden Bereiche vor der Durchführung der Änderungen gesperrt und müssen nach der
Bearbeitung wieder freigegeben werden. Optimistische Verfahren (Copy-Modify-Merge)
erlauben hingegen die gleichzeitige Änderung durch mehrere Benutzer. Dies bedingt
eine nachträgliche Zusammenführung der Divergenzen. Die entsprechenden Synchronisie-
rungsverfahren werden unterteilt in konventionelle, die mittels einfacher Sperrverfahren
realisiert werden, in zeitstempelbasierte, die zeitbehaftete Information nutzen, um eine
Serialisierbarkeitsreihenfolge abzuleiten und in semantische Synchronisierungsverfahren,
die spezielles Anwendungswissen einbeziehen.

2.4.2 Erweiterte Revisionskontrolle für Modelldaten

Neben den etablierten Revisionsverwaltungssystemen wie git und SVN werden auch
neue Ansätze für die Revisionierung von Modelldaten entwickelt, die einen semantischen
Ansatz verfolgen. Beispiele hierfür sind unter anderem im Semantic Web zu finden, wie
SemVersion [VG06], R&W base [Van+13] oder R43ples [GHU14; GHU16].

Bestehende Systeme werden dabei meist auf technische oder funktionaler Ebene mit-
einander verglichen. Zum Beispiel analysieren Ekaputra et al. [Eka+15] die Eigenschaften
verschiedener Systeme in Bezug auf die Unterstützung des Wissensänderungsmanage-
ments in einer multidisziplinären Entwicklungsumgebung. Frommhold et al. [Fro+16]
führten ebenso einen Funktionsvergleich durch, um notwendige Anpassungen für den
eigenen Ansatz abzuleiten. Ferner haben Canova et al. [Can+15] vorhandene Lösungen
wie R&Wbase [Van+13] und R43ples [GHU14; GHU16] analysiert, um erforderliche
Schritte für die Revisionskontrolle kollaborativer offener Daten abzuleiten. Da sich die
formale Beschreibung zwischen den Ansätzen erheblich unterscheidet, ist die Wiederver-
wendung von Komponenten oder Eigenschaften schwierig, da Interpretationsspielräume
bestehen. In vielen der Fälle ist das Ergebnis der durchgeführten Analyse von bestehenden
Systemen ein neues System, das die fehlenden Eigenschaften bereitstellt und teilweise
auf den analysierten Systemen basiert. Neben der formalen Beschreibung ist ein weiterer
wichtiger Aspekt die Beschreibung des Revisionsverlaufs. In den meisten Fällen sind
diese Informationen nicht so transparent zugänglich, wie es beispielsweise von Klein und
Fensel [KF01] gefordert wird. Außerdem müssen Interaktionsmöglichkeiten festgelegt
werden, die es dem Benutzer ermöglichen, mit dem System zu interagieren.

Tabelle 2.2 stellt einen Vergleich von bestehenden Ansätzen hinsichtlich der bereitge-
stellten formalen Beschreibung (Formal), der Verwendung semantischer Beschreibungen
für Revisionsinformation (Semantik) und der angebotenen Interaktionsmöglichkeiten
(Interaktion) dar. Die analysierten Eigenschaften können vollständig (3) oder nicht
erfüllt (7) sein. Falls eine Eigenschaft nur teilweise umgesetzt ist oder aufgrund einer

26

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.5 Konsistenz

fehlenden Beschreibung der Funktionsumfang nicht abgeschätzt werden kann, dann ist
die entsprechende Wertung in der Tabelle in Klammern angegeben. Um eine Eigenschaft
vollständig zu erfüllen, müssen die bereitgestellten Beschreibungen grundlegende Revi-
sionskontrollfunktionen, wie zum Beispiel Revisionsverlauf, Verzweigungen und Tags,
und erweiterte Revisionskontrollfunktionen, wie die Zusammenführung von divergierten
Entwicklungszweigen, enthalten.

Tabelle 2.2: Vergleich von bestehenden Ansätzen in Bezug auf die bereitgestellte formale
Beschreibung

Ansatz Formal Semantik Interaktion
Hauptmann et al. [HBW15] 7 (7) 3

LUCID Endp. [Tra+15; Fro+16] 7 3 (7)
Quit Store [ARM16; AM17] 3 7 3

R&Wbase [Van+13] 7 3 3

R43ples [GHU14; GHU16] (3) 3 3

Hauptmann et al. [HBW15] stellen die Interaktion mit dem Revisionskontrollsystem
über SPARQL Protocol And RDF Query Language (SPARQL)-Anfragen bereit. Die
zugehörige Revisionsinformation sollte ebenso über SPARQL zugänglich sein, die zur
Beschreibung genutzte Ontologie wird jedoch nicht bereitgestellt. Des Weiteren existie-
ren keine formalen Definitionen der Revisionsfunktionalitäten. Der LUCID-Endpunkt
[Tra+15; Fro+16] verwendet eine Ontologie, um die grundlegende Revisionsinformation
zu beschreiben. Mathematische Formalismen oder Interaktionsmechanismen, um auf eine
bestimmte Revision zuzugreifen, werden jedoch nicht dargelegt. Der Quit Store [ARM16;
AM17] ist auf der Revisionsgraphebene bezüglich der grundlegenden und erweiterten
Revisionskontrollfunktionen formal definiert, der Revisionsgraph selbst jedoch nicht.
Die Revisionsinformation ist des Weiteren nicht semantisch beschrieben bereitgestellt,
da git als zugrunde liegendes Revisionskontrollsystem verwendet wird. Kollaborative
Interaktionen werden mit Hilfe von git-Befehlen realisiert, und Aktualisierungen können
durch SPARQL-Anfragen durchgeführt werden. R&Wbase [Van+13] verwendet eine
Ontologie, um dem Benutzer die Revisionsinformation bereitzustellen. Die Abfrageme-
chanismen, um auf Revisionen zuzugreifen, werden ebenfalls erläutert. Es existiert jedoch
keine formale Definition des gesamten Systems. R43ples [GHU14; GHU16] enthält nur
formale Definitionen in Bezug auf die automatisierte Anpassung von SPARQL-Anfragen,
um die Performance des Systems zu erhöhen. Die Revisionsinformation wird mithilfe
einer Ontologie beschrieben und die Interaktion mit dem System wird über erweiterte
SPARQL-Anfragen realisiert. Es werden nur grundlegende Revisionskontrollfunktionen
bereitgestellt.

2.5 Konsistenz

Während der Evolution von Modellen muss stets ein konsistenter Stand der Verbindungen
zwischen den Modellen, aber auch innerhalb einer Replikationsumgebung, hergestellt

27

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

werden. Da der Begriff Konsistenz in unterschiedlichen Wissenschaftsbereichen verschie-
dene Verwendung beziehungsweise auch Interpretation erfährt, wird in diesem Abschnitt
ein grundlegender Überblick der Begrifflichkeit und deren Verwendung gegeben.

2.5.1 Terminologie

Auf Basis von unterschiedlichen Definitionen des Konsistenzbegriffes wird eine Definition
für die weitere Arbeit abgeleitet. Des Weiteren wird eine Klassifikationsmöglichkeit von
Modellkonsistenz vorgestellt, was eine Unterscheidung von unterschiedlichen Typen von
Konsistenz ermöglicht.

2.5.1.1 Konsistenz

Dem Begriff Konsistenz werden im Duden drei verschiedene Bedeutungen zugeordnet.
So kennzeichnet dieser in der Fachsprache oft „Grad und Art des Zusammenhalts eines
Stoffes“[Dud]. Im bildungssprachlichen Gebrauch wird er in Form von „konsistente
Beschaffenheit“[Dud] verwendet. Schließlich erfolgt im Logikbereich die Verwendung
vor allem als „strenger gedanklicher Zusammenhang“[Dud]. Für diese Arbeit sind die
beiden letzteren Bedeutungen von Relevanz, die wiederum in unterschiedlichen Bereichen
Verwendung finden. Ausprägungen des Konsistenzbegriffs lassen sich beispielsweise im
Gebiet von Datenbanken vor allem in Bezug auf transaktionale Konsistenz [Fre06], im
Zusammenhang mit Modellen [LMT09; SZ01], in der Mathematik (auch unter dem
Begriff Widerspruchsfreiheit) [Glo06], in der Softwareentwicklung [ISO10], aber auch in
der Dialoggestaltung im Bereich der Erwartungskonformität [DIN06] finden.

Aus den unterschiedlichen Gebieten heraus ergeben sich Definitionen von Konsistenz.
Hofstadter [Hof79] beispielsweise definierte diese für formale Systeme wie folgt:

„Widerspruchsfreiheit [...] [ist keine] Eigenschaft eines formalen Systems
als [...] [solches], sondern [ist] von der dafür vorgeschlagenen Interpretation
abhängig [...].“[Hof06, S. 103] 15)

Widerspruchsfreiheit ist demnach nach Hofstadter [Hof06] von der für das formale
System vorgeschlagenen Interpretation abhängig und nicht eine Eigenschaft des Systems
an sich. Das bedeutet, dass bei Widerspruchsfreiheit gelten muss, dass jeder Satz des
formalen Systems bei seiner Interpretation eine wahre Aussage ergibt [Hof06].

Im Bereich der Modellkonsistenz hat beispielsweise Stevens [Ste08] folgende informelle
Definition von Konsistenz bei der Anwendung von bidirektionalen Transformationen
gegeben:

Zwei Modelle sind konsistent, wenn es für alle ihre Stakeholder akzeptabel
ist, mit diesen Modellen fortzufahren, ohne eines zu ändern.16) (nach [Ste08,
S. 411])

15)Übersetzung aus dem Englischen: „[...] consistency is not a property of a formal system per se, but
depends on the interpretation which is proposed for it.“[Hof79, S. 102]

16)Übersetzung des Autors aus dem Englischen: „[...] two models are consistent if it is acceptable to all
their stakeholders to proceed with these models, without modifying either.“[Ste08, S. 411]

28

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.5 Konsistenz

Weiterhin wird in Bezug auf Replikation und Synchronisation auch von Replikations-
korrektheit gesprochen. Mutschler und Specht [MS04] geben hierfür die nachfolgende
Definition, die den Konsistenzbegriff wiederum aufgreift.

„Replikationskorrektheit heisst [sic!], dass alle redundanten Kopien stets kon-
sistent im Sinne der jeweils definierten Korrektheitskriterien sind. [...]“[MS04,
S. 86]

In verteilten Systemen allgemein kommt nach Schmidt [Sch16] Konsistenz vor allem in
Bezug auf die Replikation zum Tragen. Hierbei verfolgt die Replikation zwei Ziele. Zum
einen kann die Verlässlichkeit von Diensten beziehungsweise die Verfügbarkeit von Daten
erhöht werden, zum anderen ist auch eine Leistungsfähigkeitssteigerung möglich, wenn auf
ein Datum zugegriffen wird. Die replizierten Daten müssen konsistent zueinander gehalten
werden, um daraus resultierende Fehler zu vermeiden. Hierfür kommen Konsistenzmodelle
zum Einsatz, die als eine Art Vertrag gesehen werden. Dieser Vertrag existiert zwischen
dem Datenspeicher und den Prozessoren, die Zugriff auf diesen haben. Je nach Sicht
wird dabei in Daten-zentrierte und Client-zentrierte Konsistenzmodelle unterschieden.
Davon abgeleitet existieren weitere Konsistenzarten, wie zum Beispiel strikte/atomare
oder sequentielle Konsistenz.

Die hier aufgeführten Definitionen lassen den Schluss zu, dass Konsistenz jeweils
abhängig von der Domäne der Anwendung und dem konkreten Anwendungsfall ist.
Konsistenz setzt demnach voraus, dass innerhalb der jeweiligen Umgebung, die konsistent
gehalten werden soll, eine Vereinbarung der beteiligten Parteien über den Nachweis von
Konsistenz herrscht. Dieser Nachweis lässt sich zumeist in einer Art Regelsatz festlegen,
der erfüllt werden muss. Demnach wird für die weitere Arbeit die nachfolgende Definition
von Konsistenz angenommen.

Definition Konsistenz:
Konsistenz innerhalb einer Umgebung tritt dann ein, wenn Vereinbarungen
der beteiligten Parteien über ihren Nachweis (zum Beispiel in Form von
Regelsätzen) erfüllt werden.

Bei der Nichteinhaltung beziehungsweise der Verletzung der vereinbarten Regeln
treten Inkonsistenzen auf. In [LMT09] werden nach [Huz+04] zwei Hauptgründe für das
Auftreten von Inkonsistenzen bei Modellen genannt. Einerseits werden Systeme durch
unterschiedliche Sichten beschrieben. Diese stellen jeweils bestimmte Details bereit und
die Gesamtheit der Einzelmodelle bildet dann das Gesamtsystem. Zwischen den einzelnen
Sichten besteht dabei auch die Möglichkeit der Überlappung. Andererseits werden Systeme
über mehrere Phasen beziehungsweise in mehreren Iterationen entwickelt. Jede erzeugt
dabei eine verfeinerte Beschreibung des Systems. Überdies wird ein weiterer Grund
aufgeführt, der aus der verteilten Entwicklung mit potenziell mehreren Entwicklern, die
auch geographisch verteilt sein können, resultiert. Hierdurch kann es zu unterschiedlichen
Interpretationen der Anforderungen oder der UML Notation an sich kommen.

29

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.5.1.2 Klassifikation von Modellkonsistenz

Während des Modelllebenszyklus und der damit einhergehenden Evolution können
Änderungen auf unterschiedlichen Ebenen und mit unterschiedlichen Auswirkungen
auftreten. Für die weitere Arbeit wird daher an dieser Stelle die Unterteilung der
Modellkonsistenz nach Lucas et al. [LMT09] vorgestellt. Hierbei greifen Lucas et al. auf
bestehende Definitionen von Engels et al. [Eng+01] und Huzar et al. [Huz+04] aus der
UML-Domäne zurück und unterteilen die Modellkonsistenz in die nachfolgenden vier
Typen.

Horizontal Horizontale Konsistenz wird nach [LMT09; Eng+01; Huz+04] auch als
intra-Modellkonsistenz bezeichnet. Es handelt sich hierbei um die Konsistenz zwischen
Modellen, die auf dem gleichen Level der Modellabstraktion liegen. Daraus resultierende
Konsistenzprobleme entstehen beispielsweise, wenn eine Spezifikation aus unterschiedli-
chen Teilen besteht, die jeweils unterschiedliche Aspekte fokussieren, wie die Beschreibung
der statischen und der dynamischen Sicht auf die modellierte Domäne. Die jeweils mo-
dellierten Sichten müssen zueinander konsistent und nicht widersprüchlich sein, um zum
Beispiel später eine korrekte Implementierung ableiten zu können.

Vertikal Im Gegensatz zur horizontalen Konsistenz bezieht sich die vertikale oder auch
inter-Modellkonsistenz nach [LMT09; Eng+01; Huz+04] auf die Konsistenz zwischen
Modellen, die auf unterschiedlichen Abstraktionsleveln aufbauen. Innerhalb der Ent-
wicklung unterliegen die Modelle einem stetigen Verfeinerungsprozess. Während dieses
Prozesses sollen die jeweils erzeugten Modelle aber mit dem Modell auf der höheren und
mehr abstrakteren Ebene vertikal konsistent sein. Ein Beispiel hierfür ist die Konsistenz
zwischen einem Analyse- und einem Designmodell.

Syntaktisch Nach [LMT09; Eng+01] muss zur Erreichung einer syntaktischen Kon-
sistenz gewährleistet sein, dass ein Modell mit der abstrakten Syntax übereinstimmt,
die durch das Metamodell definiert wird. Das bedeutet, dass das Gesamtmodell wohlge-
formt sein muss. Als Vergleichsbeispiel kann hier die Syntax in Programmiersprachen
herangezogen werden.

Semantisch Semantische Konsistenz ist nach [LMT09; Eng+01] sehr stark von der
zugrunde liegenden Semantik des Modells und dem Entwicklungsprozess abhängig,
setzt aber immer syntaktische Konsistenz voraus. Das Modellverhalten der zueinander
semantisch konsistenten Modelle muss daher jeweils semantisch kompatibel sein, was einer
Übereinstimmung auf der Bedeutungsebene entspricht. Beispielsweise muss demnach
für ein horizontales Konsistenzproblem gelten, dass die Modelle der unterschiedlichen
Sichten in Bezug auf die Aspekte des Systems, die in beiden Submodellen spezifiziert
werden, semantisch kompatibel sind. Ähnliches gilt für vertikale Konsistenzprobleme,
wobei hier das verfeinerte Modell semantisch kompatibel zum verfeinernden Modell sein
muss.

30

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

2.5 Konsistenz

2.5.2 CAP-Theorem

Wie in den vorangegangenen Abschnitten dargestellt, spielt Konsistenz eine wichtige Rolle
bei der Evolution von Systemen und den zugrunde liegenden Modellen. Insbesondere
in verteilten Systemen sind jedoch weitere Eigenschaften von Bedeutung, auf die neben
der Konsistenz (engl. „Consistency“), innerhalb des Consistency, Availability, Partition
Tolerance (CAP)-Theorems Bezug genommen wird. Das im Jahr 2000 von Brewer
vorgestellte CAP-Theorem (auch als Brewer-Theorem bezeichnet) sagt aus, dass ein
verteiltes System immer nur zwei der drei Eigenschaften (Consistency, Availability,
Partition Tolerance) erfüllen kann [Bre00]. Durch Gilbert und Lynch [GL02] erfolgte im
Jahr 2002 der Beweis des Theorems.

Nach Kolb [Kol14] werden im Folgenden die einzelnen Eigenschaften dargestellt. Im
Rahmen des CAP-Theorems sagt Consistency (Konsistenz) aus, dass innerhalb des
verteilten Systems alle Knoten zu jedem Zeitpunkt die gleiche Sicht auf die Daten
haben. Availability (Verfügbarkeit) ist dann gegeben, wenn das System alle Lese- und
Schreibanfragen beantwortet. Die Verfügbarkeit von funktionsfähigen Knoten wird dabei
durch den Ausfall von anderen Knoten nicht beeinflusst. Die Eigenschaft der Partition
Tolerance (Partitionstoleranz) gibt an, dass die Funktionsfähigkeit des Systems trotz
Kommunikationsunterbrechungen zwischen Knoten und damit einhergehenden Verlusten
von Nachrichten gewahrt bleibt.

Aus den gegebenen Definitionen lassen sich CAP-Fälle ableiten, die jeweils nur zwei der
drei Eigenschaften erfüllen und damit entweder keine Partitionstoleranz (CA-System),
keine Verfügbarkeit (CP-System) oder keine Konsistenz (AP-System) bereitstellen [Kol14].
Insbesondere bei CP- und AP-Systemen ist es jedoch auch möglich, Mischformen zu
etablieren, die je nach Situation zwischen der Verfügbarkeit und der Konsistenz auswählen.
Dies hat Brewer [Bre00] bereits legitimiert, da er beim Vergleich der beiden Hauptansätze
Atomicity, Consistency, Isolation, Durability (ACID) und Basically Available, Soft state,
Eventual consistency (BASE) diese als ein Spektrum bezeichnet hat. ACID stellt dabei
die Eigenschaften dar, die eine strenge Konsistenz bei der Ausführung von Transaktionen
ermöglicht [HR83; Bre00; Vos09]. Dies hat aber auch zur Folge, dass die Evolution,
beispielsweise von Datenbankschemas, erschwert wird. Im Gegensatz hierzu operiert
der BASE-Ansatz als ein sehr optimistischer Ansatz. Diesem wird der Grundsatz der
Eventual Consistency zugrunde gelegt, in dem die Konsistenz als ein Zustand zu verstehen
ist, der zu irgendeinem Zeitpunkt eingenommen wird. Inkonsistente Zustände werden für
die Erreichung von hoher Verfügbarkeit in Kauf genommen [SK09; Bre00].

31

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

In diesem Abschnitt werden ausgehend von einer Literaturrecherche Anforderungen an ein
System zur Unterstützung der Evolution von Informations- und Datenmodellen gestellt.
Die aufgenommenen Anforderungen werden durch die Analyse der Anwendungsfälle
erweitert beziehungsweise bestätigt. Auf dieser Basis werden bestehende Ansätze gegen die
aufgenommenen Anforderungen geprüft. Schließlich werden für die Umsetzung notwendige
Technologien auf deren Eignung hin geprüft und ausgewählt. Als letztes erfolgt eine
Zusammenfassung der Analyseergebnisse.

3.1 Anforderungsanalyse

Ausgangspunkt für die durchgeführte Literaturrecherche ist ein von Bahill und Botta
veröffentlichter Journalbeitrag [BB08]. In diesem werden fundamentale Prinzipien für
ein gutes Systemdesign aus unterschiedlichen Domänen abgeleitet, wozu unter anderem
Hardware-, Software-, System- und Testdesign zählen. Den Prinzipien werden in [BB08]
unterschiedliche Aspekte gegenübergestellt und gekennzeichnet, welches Prinzip auf
welchen Aspekt einen Einfluss hat.

In den folgenden Abschnitten werden zuerst die Prinzipien aus [BB08], die einen Ein-
fluss auf den Aspekt der Evolvability besitzen, näher beleuchtet, da in dieser Arbeit das
Zusammenspiel zwischen Evolutionsmechanismen und Revisionskontrolle untersucht wird.
Anschließend erfolgt eine Betrachtung von weiteren Anforderungen aus einer technologi-
schen Sicht heraus. Abschließend werden die Anforderungen mittels der Anwendungsfälle
erweitert beziehungsweise bestätigt und tabellarisch zusammengefasst.

3.1.1 Prinzipien mit Einfluss auf Evolvability

In den nachfolgenden Unterabschnitten wird jeweils ein Prinzip aus [BB08] eingeführt,
das einen Einfluss auf den Aspekt der Evolvability besitzt. Hierbei wird jeweils eine
kurze Beschreibung anhand von [BB08] vorgenommen und nachfolgend werden mögliche
Beiträge von Revisionskontrolle zur Erreichung des aufgeführten Prinzips erläutert. Die
Abschnittsüberschriften sind des Weiteren mit einem Tupel gekennzeichnet. Das erste
Element beschreibt hierbei den Einfluss des Prinzips auf die Evolvability (X steht für
einen bedeutenden Einfluss, x steht für einen weniger bedeutsamen aber immer noch
sehr großen Einfluss). Das zweite Element des Tupels gibt an, ob aus der Nutzung des
Prinzips zusätzliche Kosten entstehen. Dies wird durch ein $-Zeichen gekennzeichnet.
Wenn keine zusätzlichen Kosten entstehen, so wird dies durch einen waagerechten Strich
angegeben.

32

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

3.1.1.1 P1 - Entwicklung von stabilen Zwischenergebnissen (X,-)

Prinzipbeschreibung nach [BB08] Größere Änderungen sollen stets so erstellt werden,
dass diese wiederum aus einer Serie von kleineren gebildet werden. Diese kleineren
Änderungen sollen selbst wiederum so stabil sein, dass die Entwicklung an vordefinierten
Punkten gestoppt werden kann und trotzdem etwas Nützliches weiterbesteht.

Beitrag Revisionskontrolle Durch die Verwendung von Revisionskontrolle wird die
notwendige Infrastruktur bereitgestellt, die es ermöglicht, die Nachvollziehbarkeit der
Änderungen zu gewährleisten [Vog+15b]. Einzeländerungen können zu größeren Sinn-
einheiten gruppiert werden. Des Weiteren besteht die Möglichkeit der Verwendung von
Rücksprüngen auf vorherige Entwicklungen und die Verwendung von Entwicklungszwei-
gen. Dies geht einher mit der Notwendigkeit für die Zusammenführung von divergierten
Entwicklungszweigen. Die in der Prinzipbeschreibung angeführten kleinen Änderungen
können dementsprechend als Revisionen und die aggregierten Änderungen als eine Versi-
on bezeichnet werden [Bud09; Fog05]. Außerdem können Tags erstellt werden, die den
jeweiligen Entwicklungsstand kennzeichnen.

3.1.1.2 P2 - Nutzung von evolutionärer Entwicklung (X,$)

Prinzipbeschreibung nach [BB08] Der Start für die Evolution sollte immer ein nutz-
bares System sein. Erst im Folgenden können dann weitere Anforderungen hinzugefügt
und mit entsprechenden zusätzlichen finanziellen Mitteln umgesetzt werden. Hierdurch
kann dann wiederum ein komplexeres und nutzbares System erreicht werden.

Beitrag Revisionskontrolle Analog zu Prinzip P1 kann durch Revisionskontrolle wie-
derum die notwendige Infrastruktur bereitgestellt werden, um die Nachvollziehbarkeit
zu gewährleisten. Weiterhin können bereits durchgeführte Releases vorgehalten werden
und von diesen aus können wiederum Weiterentwicklungen stattfinden. Dabei wird der
aktuelle funktionsfähige Stand nicht gefährdet, da Entwicklungszweige und Tags benutzt
werden können.

3.1.1.3 P3 - Verständnis des Unternehmens (X,$)

Prinzipbeschreibung nach [BB08] Wichtig ist hierbei, ein Verständnis zu erlangen,
wie sich das zu designende System in das Unternehmen eingliedert, wozu Frameworks
benutzt werden können. Diese dienen zum einen zur Organisation und zum anderen kann
durch deren Nutzung auch die Vollständigkeit von existenten Modellen beurteilt werden.
Durch die Nutzung von Frameworks kann außerdem definiert werden, welche Aspekte
aus welcher Perspektive betrachtet werden sollen.

Beitrag Revisionskontrolle Revisionskontrolle erfüllt in diesem Zusammenhang vor-
wiegend einen Dokumentationsaspekt. Dadurch ist stets eine Nachvollziehbarkeit gegeben.

33

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

Aus dieser kann wiederum abgeleitet werden, welche Entscheidung welche technische
Umsetzung nach sich gezogen hat.

3.1.1.4 P4 - Bereitstellung von überprüfbaren Zuständen (x,$)

Prinzipbeschreibung nach [BB08] Für die Überprüfung von Systemäquivalenzen wird
das Zustandsverhalten für dynamische Systeme benötigt. Ein reines Ein-/Ausgangs-
verhalten ist dabei nicht ausreichend. Im Idealfall ist ein vollständiger Systemstatus
verfügbar, mindestens jedoch Resetzustände und Wiederherstellungspunkte. Durch die
Bereitstellung von Zuständen und dem damit einhergehenden Wissen über das Verhal-
ten können bestehende Systeme wiederverwendet, Systeme geupgradet, kommerzielle
Standardprodukte integriert, Feldausfälle repliziert und sich weiterentwickelnde Systeme
verifiziert werden.

Beitrag Revisionskontrolle Durch eine Revisionierung der Zustandsinhalte kann bei
der Durchführung von entsprechenden Up- beziehungsweise Downgrades gegen die revi-
sionierten Zustände geprüft werden.

3.1.1.5 P5 - Nutzung von offenen Standards (x,-)

Prinzipbeschreibung nach [BB08] Es sollten öffentlich verfügbare Spezifikationen
verwendet werden. Diese können von allen eingesehen und implementiert werden. Beispiele
hierfür sind unter anderem UML und Universal Serial Bus (USB). Im Gegensatz hierzu
operieren proprietäre Standards, die nur durch eine einzelne Entität kontrolliert werden.

Beitrag Revisionskontrolle In diesem Zusammenhang sollten auch bei der Revisions-
kontrolle offene und interoperable Technologien beziehungsweise Standards eingesetzt
werden. Die durch die Verwendung von offenen Standards bereitgestellte Informati-
on kann ebenso im Revisionkontrollsystem Verwendung finden, um beispielsweise die
Revisionsinformation zusätzlich semantisch anzureichern [GHU14].

3.1.1.6 P6 - Identifizierung von Dingen, die sich wahrscheinlich ändern (X,-)

Prinzipbeschreibung nach [BB08] Es sollte stets zwischen Aspekten unterschieden
werden, die eine hohe Wahrscheinlichkeit für Änderungen aufweisen und denen, die
eine hohe Wahrscheinlichkeit für die Beständigkeit besitzen. Bei den Aspekten, die
sich wahrscheinlich ändern werden, sollte zum einen eine zusätzliche Anstrengung in
die Schnittstellenentwicklung fließen und zum anderen sollen Möglichkeiten vorgesehen
werden, um korrespondierende Änderungen aufnehmen zu können.

Beitrag Revisionskontrolle Aufgrund der durch die Revisionskontrolle bereitgestellten
Änderungshistorie können Aspekte abgeleitet werden, die einem hohen Änderungspo-
tential unterliegen. Des Weiteren kann bei der Aufnahme von Änderungen unterstützt

34

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

werden. Hierfür sind jedoch weitreichendere Mechanismen vorzusehen, die beispielswei-
se Co-Evolutionen oder semantische Konflikterkennung und -behebung unterstützten
[Ruh+14].

3.1.1.7 P7 - Design für Evolvability (X,$)

Prinzipbeschreibung nach [BB08] Um mit Änderungen während des Lebenszyklus
umgehen zu können, wird eine hohe Flexibilität und Adaptivität benötigt. Auf Ände-
rungen kann unter anderem durch die Rekonfiguration von existenten Entitäten, der
Vergrößerung von Entitäten oder der Hinzufügung von neuen Entitäten reagiert werden.

Beitrag Revisionskontrolle Änderungen können durch das Revisionskontrollsystem
nachvollziehbar gespeichert werden. Auf dieser Basis besteht die Möglichkeit, semantische
Anreicherungen vorzunehmen beziehungsweise semantische Änderungen zu erkennen
[Keh15], um damit Co-Evolutionen [Ruh+14] oder semantische Konflikterkennung und
-behebung umzusetzen, was wiederum die Evolvability des Systems erhöht.

3.1.2 Technologische Sicht

Aus der in Abschnitt 3.1.1 durchgeführten Gegenüberstellung der Prinzipien aus [BB08]
und den möglichen Beiträgen von Revisionskontrolle ergibt sich bereits, dass etablierte
Revisionskontrollsysteme nicht alles leisten können, was zur Erreichung der Prinzipien
notwendig ist. Speziell für die Ontologieevolution wird durch Noy und Klein [NK04] aus-
gesagt, dass eine Trennung von Revisionierung und Evolution nicht anwendbar ist und es
sich hierbei vielmehr um das Management von Ontologienänderungen und deren Auswir-
kungen handelt. Dementsprechend werden im Folgenden Anforderungen zum Übergang
von getrennten Systemen für Revisionskontrolle und Evolution hin zu einem integrierten
Revision Management System aufgenommen. Hierfür wird die Literaturrecherche vor
allem in Bezug auf technologische Anforderungen vertieft, die ein solches System erfüllen
muss. Ausgangspunkt sind die im Abschnitt 2 bereits verwendeten Quellen, die den
Stand der Technik widerspiegeln.

3.1.2.1 Nutzungskontext

Für die Entwicklung eines Revision Management Systems muss als erstes der Nutzungs-
kontext untersucht werden, auf dem alle weiteren Anforderungen aufbauen. Im Zentrum
steht hierbei der Nutzer des Systems, der unterstützt werden soll und nur noch an den
Stellen manuell eingreifen muss, an denen dies zwingend notwendig ist. Die Verwaltung
von Änderungen soll für den Nutzer entsprechend vereinfacht werden, wobei das System
sowohl von Anfängern als auch Experten gleichermaßen benutzbar sein soll [Sto04].

Levendovszky et al. definieren weiterhin sechs verschiedene Rollen, die am Evoluti-
onsprozess eines Modells beteiligt sind. Hierzu zählen Model Designer, Model Evolver,
Language Evolver, Requirements Specifier und Requirements Evolver [Lev+10]. Vor
allem in größeren Projekten werden diese Rollen auf mehrere Personen aufgeteilt.

35

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

Da es sich hierbei um eine kollaborative Umgebung handelt, in der mehrere Personen
beteiligt sein können, müssen auch entsprechende Mechanismen vorhanden sein, um
Zugriffe einschränken zu können [Noy+06]. Dafür müssen Mechanismen zur Rechtevergabe
für bestimmte Nutzer beziehungsweise Nutzergruppen oder Nutzerrollen etabliert und
deren Einhaltung überprüft werden.

Wie bereits aus den Rollen von Levendovszky ersichtlich, müssen in den Unternehmen
bestimmte Prozesse eingehalten werden. Hierzu gehört auch die Freigabe von Änderungen
durch zum Beispiel einen Kurator [Noy+06]. Dieser ist für die Durchführung einer
Qualitätskontrolle verantwortlich, bevor beispielsweise eine neue Version ausgeliefert
wird. Nach Noy et al. [Noy+06] sind hierfür spezielle Sichten auf die Änderungen
notwendig, die es erlauben, einzelne oder Gruppen von Änderungen anzunehmen oder
abzulehnen. Wichtig sind hierbei Sichten auf konfliktbehaftete Änderungen, den Kontext
(Person, Zeit, Änderungen) und zugehörige Filtermöglichkeiten. Der Änderungsprozess
soll des Weiteren unterbrochen und zu einem späteren Zeitpunkt ohne Verluste von
bisher durchgeführten Reviews fortgesetzt werden können.

Anforderungen inklusive Kurzbeschreibung

• Selbstbeschreibungsfähigkeit des Systems
Die Nutzung des Systems soll unabhängig von Vorkenntnissen von unterschied-
lichen Nutzern genutzt werden können.

• Rollenmanagement für Nutzer
Das System unterstützt die Verwaltung und Nutzung von unterschiedlichen
Rollen, die am Evolutionsprozess beteiligt sind.

• Zugriffsmanagement mit Rechtevergabe
Beschränkung von Zugriffsrechten und Verwaltung von Rechten für Nutzer,
Nutzergruppen und Nutzerrollen.

• Umsetzung von Freigabeprozessen
Möglichkeit der Etablierung von Freigabeprozessen mit vorher durchzuführen-
den Reviews durch Kurator. Bereitstellung von zugehörigen Nutzerschnittstel-
len zur Unterstützung des Kurators und persistentem Reviewprozess mit der
Möglichkeit der zeitweisen Unterbrechung.

3.1.2.2 Änderungsmanagement

Für das Management von Änderungen ist stets eine Nachvollziehbarkeit der durchgeführ-
ten Änderungen zu garantieren und die Möglichkeit des Rücksprungs auf einen vorherigen
Stand bereitzustellen [Noy+06]. Wie bereits in Abschnitt 3.1.2.1 herausgestellt, sind
zumeist mehrere Nutzer an der Entwicklung beteiligt. Dies macht wiederum die Nutzung
von Entwicklungszweigen und die Erstellung von Releases notwendig, wie dies auch bei

36

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

etablierten Revisionsverwaltungssystemen umgesetzt wird. Die einzelnen Revisionen müs-
sen dabei miteinander vergleichbar sein, sodass abgeleitet werden kann, was hinzugefügt,
was gelöscht und was modifiziert wurde [Noy+06]. Diese gefundenen Unterschiede müssen
wiederum entsprechend für den Nutzer aufbereitet werden, sodass dieser diese Information
für die Zusammenführung von divergierten Entwicklungszweigen nutzen kann [Lev+10].
In diesem Zusammenhang entsteht auch die Forderung nach einer Möglichkeit, Konflikte
detektieren und auflösen zu können, die bei der Zusammenführung auftreten können.
Hierbei ist der Kontext der einzelnen zusammenzuführenden Revisionen essenziell. So
können nicht nur einzelne Elemente auf Konflikte untersucht werden, sondern es müssen
beispielsweise auch Vererbungsbeziehungen berücksichtigt werden [Noy+06]. Kehrer et
al. [Keh+12] beschreiben in diesem Zusammenhang auch die Notwendigkeit des Wissens
über den semantischen Effekt einer Evolution, um entsprechend auf diese reagieren zu
können. Hierfür muss die Semantik der Evolution extrahiert werden. Das wird auch
durch Ruhroth et al. [Ruh+14] bestätigt, die die Abstraktion von atomaren Änderungen
fordern, was in einer Beschreibung durch High-Level-Changes resultiert. Eine solche
Beschreibung wird beispielsweise auch durch Papavasileiou et al. [Pap+13] eingeführt.
High-Level-Changes entsprechen demnach der Aggregation von atomaren Änderungen zu
semantischen Änderungen. Diese semantischen Änderungen werden durch eine Gruppe
von atomaren Änderungen identifiziert und stellen die Bedeutung der Gruppe der durch-
geführten Änderung dar [Keh15]. High-Level-Changes repräsentieren daher in vielen
Fällen Editieroperationen, die beispielsweise durch Nutzer durchgeführt werden [Sto04;
Pap+13; Keh15; Hau+17; Pie+18].

Zur Erreichung der vorangegangenen Anforderungen ist eine semantische Beschreibung
des Revisionsmodells unablässig. So müssen nach Noy et al. [Noy+06] Änderungskommen-
tare, die den Beweggrund der Änderung angeben, beschrieben werden und Änderungen
zwischen zwei Revisionen abfragbar sein, was die Kenntnis der Revisionshistorie vor-
aussetzt. Des Weiteren müssen neue Revisionen erstellbar sein, wobei die zugehörige
Vorgängerrevision angegeben werden muss. Überdies müssen neue Revisionen in Bezug
auf den Vorgänger als abwärtskompatibel oder nicht abwärtskompatibel beschreibbar sein
und stets erkennbar sein, wer welche Änderung mit welcher semantischen Auswirkung
durchgeführt hat. Klein und Fensel [KF01] fordern weiterhin, dass Elemente eindeutig
in der Revisionshistorie identifizierbar sein müssen und Relationen zwischen Revisionen
explizit dargestellt werden müssen, um einen transparenten Zugriff zu ermöglichen.

Anforderungen inklusive Kurzbeschreibung

• Nachvollziehbarkeit von Änderungen
Änderungen müssen stets nachvollziehbar gespeichert werden und jeweils
zugreifbar sein. Mechanismen etablierter Revisionsverwaltungssysteme, wie
Entwicklungszweige und Releases, müssen unterstützt werden und einzelne
Revisionen miteinander vergleichbar sein.

37

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

• Zusammenführung divergierter Entwicklungszweige
Divergierte Entwicklungszweige müssen zusammengeführt werden können.
Dabei müssen Konflikterkennung und -lösung unterstützt werden.

• High-Level-Changes
Atomare Änderungen müssen zu High-Level-Changes abstrahiert werden kön-
nen, um die Semantik der Evolution darstellen zu können, sowie die Zusam-
menführung von divergierten Entwicklungszweigen zu unterstützen.

• Semantische Beschreibung des Revisionsmodells
Das Revisionsmodell muss vollständig semantisch beschrieben werden. Zu
Revisionen muss Metainformation anlegbar sein, wie zum Beispiel Kommentar,
Ersteller, Vorgängerrevision und Abwärtskompatibilität.

3.1.2.3 Evolution

Klein und Frenzel [KF01] beschreiben neben der reinen Revisionsverwaltung des Weite-
ren die Notwendigkeit des Managements von durchgeführten Änderungen, wobei eine
maximale Interoperabilität mit bestehenden Daten geschaffen werden soll. Hierfür kön-
nen Co-Evolutionsstrategien genutzt werden, wie bereits in Abschnitt 2.3.1 eingeführt.
Entsprechend müssen Modellrelationen zwischen Metamodellen und Modellen [DIP11],
zwischen Typ und Instanz [DIP11] und zwischen Modell und Modell auf unterschiedlichen
Abstraktionsniveaus [HHH14; Ruh+14] beachtet und Auswirkungen propagiert werden.
Hierfür müssen die notwendigen Evolutionsschritte aus der Historie extrahiert und ab-
strahiert werden, was mittels der im Abschnitt 3.1.2.2 eingeführten High-Level-Changes
möglich wird.

Die durchgeführten Evolutionsschritte müssen wiederum, ebenso wie jede andere
Änderung, dokumentiert und nachvollziehbar gespeichert werden. Daraus ergibt sich,
dass die Änderungen zwischen zwei Revisionen durch eine Reihe von Evolutionsschritten
beschreibbar sein müssen [Ruh+14]. Das bietet die Grundlage, um die Evolution eines
modellbasierten Systems zu verstehen [Keh+12].

Die möglichen Evolutionsschritte können beispielsweise über Regelsätze beschrieben
werden. Hier besteht jedoch die Möglichkeit, dass diese anzuwendenden Regelsätze
in Bezug auf die zugrunde liegende Revisionshistorie nicht vollständig sind. Daher
wird durch Ruhroth [Ruh+14] gefordert, dass es eine Überprüfung gibt, ob durch die
Anwendung der vorhandenen (Co-)Evolutionsschritte alle zugrunde liegenden Änderungen
der Revisionshistorie abgedeckt werden.

Anforderungen inklusive Kurzbeschreibung

• Umsetzung von (Co-)Evolutionsstrategien
(Co-)Evolutionsstrategien müssen so umgesetzt werden, dass Modellrelationen
beachtet und zugehörige Auswirkungen propagiert werden.

38

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

• Semantische Beschreibung der (Co-)Evolutionsstrategien
Angewendete (Co-)Evolutionsstrategien und deren zugrunde liegende Evoluti-
onsschritte mit den zugehörigen Regelsätzen müssen semantisch beschrieben
sein und in der Revisionshistorie referenziert werden.

• Vollständigkeitsprüfung der Evolutionsschritte
Vor der Anwendung von (Co-)Evolutionsstrategien muss überprüft werden, ob
alle zugrunde liegenden Änderungen der Revisionshistorie abgedeckt werden.

3.1.2.4 Semantische Modellbeschreibung

Für die im Abschnitt 3.1.2.2 beschriebenen High-Level-Changes muss das Informations-
modell beziehungsweise das Metamodell bekannt sein, um die Änderungen auf einer
abstrahierten Ebene beschreiben zu können, wie beispielsweise in [Pap+13]. Diese können
domänenübergreifend verwendet werden, wenn jeweils das gleiche Metamodell verwen-
det wird. Die zugrunde liegenden Regeln können aber auch so erweitert werden, dass
domänenspezifische High-Level-Changes erkannt werden können, wodurch Änderungen
für den Nutzer nachvollziehbarer werden. Als Grundlage hierfür kann die Semantik des
Informationsmodells benutzt werden. Diese ist nach Lucas et al. [LMT09] außerdem
wichtig, um bei der verteilten Entwicklung, die potenziell auch geografisch verteilt sein
kann, unterschiedliche Interpretationen zu vermeiden.

Änderungen an einem Modell können Auswirkungen auf verbundene Modelle haben
[RLL98; Lev+10]. Diese Auswirkungen müssen, wie in Abschnitt 3.1.2.3 aufgeführt,
propagiert werden können. Die hierfür notwendigen Modellrelationen müssen wiederum
semantisch beschrieben werden, damit diese bei der Evolution berücksichtigt werden
können.

Anforderungen inklusive Kurzbeschreibung

• Semantische Beschreibung der revisionierten Modelle
Die revisionierten Modelle müssen semantisch beschrieben sein. Hierfür kön-
nen Informations- und Metamodelle genutzt werden.

• Semantische Beschreibung von Modellrelationen
Verbindungen zwischen und innerhalb von Modellen müssen explizit dargestellt
und semantisch beschrieben sein.

3.1.2.5 Qualitätsattribute

Für eine Umsetzung der bisherigen Anforderungen müssen weitere Qualitätsattribute
beachtet werden. Ruhroth et al. [Ruh+14] sagen hierzu aus, dass die notwendigen Be-
rechnungen transparent und automatisch zu erfolgen haben. Das heißt, dass Nutzer

39

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

mögliche Reinterpretationen von eigenen Aktionen nicht bemerken sollen und bei Ent-
wicklungsarbeiten nicht unterbrochen werden, um durchgeführte Änderungen analysieren
zu müssen.

Bei der Anwendung von (Co-)Evolutionsstrategien müssen wiederum die daraus re-
sultierenden Änderungen verifiziert werden. Hierfür ist sicherzustellen, dass weitere
Qualitätsattribute integrierbar und prüfbar sind. Levendovszky et al. [Lev+10] führen
hierzu beispielsweise Prüfungen von Konsistenz und Vollständigkeit der Modelle auf,
wobei diese auch durch weiterführende Qualitätsattribute wie Lesbarkeit und Evolvability
ergänzt werden können. Noy und Klein [NK04] fügen hinzu, dass auch die Kompatibilität
zwischen Revisionen prüfbar und darstellbar sein muss, um entsprechende Abwärtskom-
patibilität sicherstellen zu können.

Anforderungen inklusive Kurzbeschreibung

• Transparente und automatische Berechnung
Die Umsetzung der Anforderungen soll transparent erfolgen, wobei die Nutzer
keine Reinterpretationen ihrer Aktionen bemerken sollen und nicht für die
Analyse von durchgeführten Änderungen unterbrochen werden.

• Unterstützung der Integration zusätzlicher Qualitätsattribute
Zusätzliche Qualitätsattribute von Modellen sollen integriert werden können,
um diese nach der Durchführung von Änderungen prüfen und auswerten zu
können. Beispiele sind Konsistenz, Kompatibilität und Vollständigkeit.

3.1.3 Anwendungsfälle

Für diese Arbeit wird die Co-Simulation und die Modularisierung, hierbei insbesondere
die Spezifikation des MTP, als Anwendungsfall genutzt. Eine allgemeine Einführung in
diese beiden Themenbereiche erfolgt in Abschnitt 1.4. Im Folgenden werden die beiden
Anwendungsfälle detaillierter auf ihre jeweiligen Problemstellungen in Bezug auf die
Evolution von Informationsmodellen analysiert.

3.1.3.1 Co-Simulation

Bei der kollaborativen Erstellung von Co-Simulationsensembles werden unterschiedliche
Simulationsmodelle zu einer Gesamtsimulation zusammengeschaltet. Ein wesentlicher
Aspekt bei der Erstellung und der anschließenden Pflege ist der Umgang mit Änderungen
an den Modellen und den Verschaltungen zwischen diesen. Auf Basis der Verschaltungen
können während der Laufzeit der Gesamtsimulation die Kommunikationswege zwischen
den Einzelsimulationen abgeleitet werden.

Modellierung eines Co-Simulationsensembles Ein Beispiel für einen Co-Simulations-
standard ist das Functional Mock-up Interface (FMI) [Mod10]. Dieser Standard spe-
zifiziert jedoch nur die Schnittstelle zu den Simulationseinheiten, die als Functional

40

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

Mock-up Unit (FMU) bezeichnet werden. Jede Einzelsimulation stellt entsprechend Ports
zur Verfügung, die dann miteinander verschaltet werden können. Der Nutzer ist selbst
sowohl dafür verantwortlich wie die Verbindungen zwischen den Einzelsimulationen defi-
niert und aufgebaut werden, als auch dafür, wie die Steuerung des Ensembles realisiert
wird [Gal+15]. Zur Erstellung eines geeigneten Masteralgorithmus, der die Steuerung
übernimmt, ist es notwendig, die Abhängigkeiten zwischen den Einzelsimulationen zu
analysieren [Cam+16]. Hierfür müssen diese entsprechend auswertbar vorliegen. Bas-
tian et al. fordern dafür einen gerichteten Graphen, in dem Knoten Simulatoren und
Kanten auszutauschende Daten darstellen [Bas+11]. Des Weiteren sollten auch interne
Abhängigkeiten zwischen Eingangs- und Ausgangsports modellierbar sein [Van+15]. FMI
definiert bereits die Attribute, die zur Beschreibung von Einzelsimulationen und deren
Ports notwendig sind. Datentypen und Einheiten werden ebenso durch FMI beschrieben.
Hier können aber auch andere Standards zum Einsatz kommen, wie beispielsweise die
semantische Beschreibung von Quantities, Units, Dimensions, and Data Types (QUDT)1).
Vor allem bei kontinuierlichen Prozesssimulationen beinhalten die Verbindungen zwi-
schen den Modellen nicht nur einen Wert, der ausgetauscht werden muss. So müssen
zum Beispiel zur Modellierung einer Rohrleitung Durchfluss und Energie zwischen den
Simulationen übertragen werden. Hierfür kann das Konzept der Bondgraphen [Bre11]
wiederverwendet werden. Bestehende Tools verwenden zumeist ein internes proprietäres
Modell zur Beschreibung des Ensembles [Cam+16]. Dieses ist nur durch das spezifische
Tool auswertbar, wodurch alternative Masteralgorithmen es nicht auswerten können.

Möglichkeiten der Verschaltung Die Verschaltung von Einzelsimulationen wird zu-
meist über einfache Konfigurationsdateien gelöst. Beispielsweise wird eine Textdatei zur
Konfiguration des Masters genutzt, in der auch die vorhandenen Simulationen und die
korrespondierenden Verschaltungen enthalten sind [Bas+11]. Das setzt wiederum voraus,
dass alle Simulatoren bereits verfügbar sind, alle Verschaltungen zu einem definierten
Zeitpunkt fest definiert sein müssen und auf Basis dieser Konfiguration alle Verschal-
tungen erzeugt werden. Abbildung 3.1 stellt das prinzipielle Vorgehen am Beispiel von
vier Simulatoren vor, die in Schritt 1 alle verfügbar sind und in Schritt 2 miteinander
verschaltet werden.

Abbildung 3.1: Verschaltung eines Co-Simulationsensembles mit bekannten Einzelsimulationen

1)http://www.qudt.org/ (besucht am 29.11.2020)

41

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

Im Gegensatz zu einer Gesamtkonfiguration des Ensembles besteht auch die Möglichkeit,
dass in einer kollaborativen Umgebung mehrere Nutzer jeweils ihren eigenen Simulator
mit anderen bereits verfügbaren Simulatoren verschalten möchten. Die Abbildung 3.2
gibt hierzu wiederum ein strukturiertes Beispiel, in dem die einzelnen Simulatoren nach-
einander verfügbar sind und jeweils nur Verschaltungen zu anderen bereits verfügbaren
Simulatoren definieren. In einer solchen kollaborativen Umgebung sind jedoch auch
weitere Möglichkeiten denkbar, bei denen bestehende Simulatoren neu hinzugekommene
verschalten oder Verschaltungen iterativ hinzugefügt und bearbeitet werden. In einem
solchen Szenario muss eine Nachvollziehbarkeit der durchgeführten Änderungen gegeben
sein und auch eine persistente Speicherung gewährleistet werden, um eine Konfiguration
später auch wiederherstellen zu können.

Abbildung 3.2: Kollaboratives Verschalten innerhalb eines Co-Simulationsensembles

Änderungen innerhalb des Co-Simulationsensembles Im vorherigen Abschnitt wurde
auf zwei Möglichkeiten der Verschaltung von Simulationen eingegangen. Insbesondere in
kollaborativen Umgebungen ist ein wesentlicher Aspekt bei der Erstellung und der Pflege
eines Co-Simulationsensembles der Umgang mit Änderungen an Einzelsimulationen und
den Verschaltungen zwischen diesen. Nachfolgend werden beispielhaft drei wesentliche
Möglichkeiten für Änderungen dargestellt. Es wird dabei jeweils auf die Auswirkungen
der durchgeführten Änderungen auf die Liste der durch die Einzelsimulation angebo-
tenen Ports (Portliste), die Verschaltungen zwischen den Ports (Portverschaltungen)
und die gekoppelte Simulation eingegangen. Bei den nachfolgenden Betrachtungen wir
immer von einem zumindest teilweise verschalteten Co-Simulationsensemble ausgegangen,
da Änderungen an nicht verschalteten Ports keine direkten Auswirkungen auf andere
Simulationen haben.

Abbildung 3.3 zeigt eine simple Änderung des Namens eines Ports. Port E von
Simulator B wird zu Z umbenannt. Diese Änderung wird innerhalb von Simulator B
vorgenommen und sollte automatisch von der Portliste von Simulator B übernommen
werden. Je nach Umsetzung der Co-Simulationsumgebung muss nachfolgend entweder die
Portverschaltung angepasst werden, da die Ports direkt über deren Namen identifiziert
werden, oder wenn eine zusätzliche eindeutige Identifizierung der Ports genutzt wird, so
muss keine Änderung an der Verschaltung vorgenommen werden. In jedem Fall hat die
Änderung keine Auswirkung auf den gekoppelten Simulator.

42

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

Abbildung 3.3: Beispiel für die Änderung einer
Portbezeichnung

Abbildung 3.4: Beispiel für die Auftrennung
eines Ports in mehrere Ports

Eine weitere Möglichkeit ist die Auftrennung eines Ports in mehrere Ports. Zum Beispiel
könnte ein Port, der ein Statuswort bereitstellt, in mehrere einzelne Ports aufgespalten
werden, wobei jeder Einzelport einen booleschen Wert beschreibt. In Abbildung 3.4 ist
ein Beispiel dargestellt, bei dem Port E von Simulator B in zwei Ports E.0 und E.1
aufgespalten wird. Diese Änderung sollte wiederum automatisch von der Portliste von
Simulator B übernommen werden, indem der alte Port durch zwei neue Ports ersetzt
wird. In diesem Fall muss auch die Verschaltung angepasst werden. In dem dargestellten
Beispiel wird sie durch zwei neue Verschaltungen ersetzt, die die Verschaltung zu neu
erstellten Ports in Simulator A beschreiben. Die Ports G.0 und G.1 werden aufgrund der
durchgeführten Änderungen in der Portliste erstellt und müssen dementsprechend auch in
die Simulation eingepflegt werden. Ebenso besteht die Möglichkeit des umgekehrten Falls,
bei dem mehrere Ports zu einem Port zusammengefasst werden oder das andere bereits
existente Ports für die neue Verschaltung genutzt werden können, ohne das zusätzliche
Ports erstellt werden müssen.

In den Abbildungen 3.5 und 3.6 ist die Änderung des Datentyps eines Ports anhand
von zwei möglichen Beispielen dargestellt. Ausgangspunkt ist jeweils die Änderung des
Datentyps von Port E von Simulator B. Im ersten Fall, dargestellt in 3.5, wird diese
Änderung an den verschalteten Port G von Simulator A propagiert. Es ist daher keine
Änderung an der Verschaltung notwendig, jedoch muss die Änderung in das Simulati-
onsmodell von Simulator A eingepflegt werden und danach die Portliste von Simulator
A mit dem neuen Datentyp von Port G aktualisiert werden. Abbildung 3.6 zeigt den
zweiten Fall, in dem keine Änderung am Simulationsmodell von Simulator A notwendig
ist, da aufgrund der Änderung eine Änderung an der Verschaltung vorgenommen wird.
Sie wird auf einen anderen Port von Simulator A bezogen, der den gleichen Wert in
einem anderen Datentyp darstellt.

43

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

Abbildung 3.5: Beispiel für die Änderung des
Datentyps eines Ports mit resultierender Än-
derung im verschalteten Simulator (veröf-
fentlicht in [HGU18, S. 46])

Abbildung 3.6: Beispiel für die Änderung des
Datentyps eines Ports mit Änderung des Ziel-
ports des verschalteten Simulators (veröffent-
licht in [HGU18, S. 46])

Schlussfolgerung In den vorangegangenen Abschnitten sind die wesentlichen Heraus-
forderungen bei der Konfiguration und der Pflege einer Co-Simulationsumgebung anhand
von Beispielen dargestellt. Es wird deutlich, dass ohne Unterstützung von zusätzlichen
Tools hohe manuelle Aufwände notwendig sind. So entstehen bei der Kopplung von
unterschiedlichen Applikationen und Softwaresystemen hohe Zeitaufwände [KVN12].
Erste Ansätze, wie [KVN12] und [Hen+16a; Hen+16b] nutzen Möglichkeiten der semanti-
schen Beschreibung, um die Integration von unterschiedlichen Modellen zu vereinfachen.
Weiterhin werden von Karhela et al. [KVN12] Revisionsverwaltungsmechanismen ge-
fordert, um Konfigurationen und Simulationsergebnisse nachvollziehbar zu speichern.
Der Umgang mit Änderungen und die Vermeidung von manuellen Aufwänden in diesem
Zusammenhang wird jedoch nicht betrachtet.

3.1.3.2 Modularisierung

Die Standardisierung des MTP erfolgt in der VDI/VDE/NAMUR-Richtlinienserie 2658,
die so aufgebaut ist, dass nach und nach neue Aspekte in neuen Blättern der Serie
spezifiziert werden. Dies ist dem agilen Ansatz der Spezifikation zuträglich, da nach
jeder Iteration die Ergebnisse bereits in die Standardisierung überführt werden können.
In einem solchen Ansatz muss jedoch auch mit Änderungen von bestehenden Blättern
und der Ergänzung von zusätzlichen Blättern umgegangen werden, um stets ein kon-
sistentes Gesamtgefüge der Richtlinien bereitstellen zu können. Gleiches gilt für die
informationstechnische Beschreibung der Aspekte in den Richtlinien.

Engineering Workflow Das Engineering von modularen Anlagen unterteilt sich nach
[VDI17] in zwei Bereiche, wie in Abbildung 3.7 dargestellt. Zum einen in ein projektunab-

44

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

hängiges Modulengineering, in dem Module entwickelt und hergestellt werden und zum
anderen in ein projektbezogenes Anlagenengineering, bei dem Module zu einer Gesamt-
anlage integriert werden. Der Modulhersteller liefert zu jedem Modul ein MTP mit, dass
aus den Engineeringdaten heraus erzeugt wird. Dieses MTP wird mit dem physikalischen
Modul ausgeliefert. Das Modul wird dann physikalisch und informationstechnisch in
die Gesamtanlage integriert. Für die informationstechnische Integration steht das MTP
zur Verfügung, das alle erforderlichen Aspekte für die Integration in eine übergeordnete
Prozessführungsebene (PFE)2) beschreibt, in der dann die Orchestrierung der modularen
Anlage erfolgen kann. Die Orchestrierung kann beispielsweise wie in [Blo+17] beschrieben
realisiert werden.

Abbildung 3.7: Engineering Workflow modularer Anlagen [VDI17, S. 6]

Aufbau des MTP Das MTP ist derzeit als eine Containerdatei realisiert, die die
einzelnen zu beschreibenden Aspekte zusammenfasst. Die Definition der notwendigen
Informationsmodelle erfolgt hierbei technologieunabhängig durch UML-Modelle, wobei
jeweils auch eine konkrete Umsetzung auf dem Extensible Markup Language (XML)
basierten Automation Markup Language (AutomationML) Standard (in Anlehnung an
[Hoe+16]) beschrieben wird. Blatt 1 [VDI17] der Serie definiert hierfür den allgemeinen
Aufbau und die notwendige Kommunikationsstruktur. Im ersten Schritt wird für die
Kommunikation jeweils OPC UA verwendet. Zentrales Element der Beschreibung ist
das sogenannte Manifest, das Verweise auf die einzelnen Aspekte im MTP enthält. Zur
Beschreibung der weiteren Aspekte werden jeweils UML-Diagramme, erklärender Text
2)Die Bezeichnung PFE wird in dieser Arbeit synonym zu Process Orchestration Layer (POL) (definiert

in [VDI17]) verwendet.

45

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

und Umsetzungsbeispiele in AutomationML verwendet. Ein Beispiel für einen weiteren
Aspekt ist die Bedienbildbeschreibung, die in Blatt 2 [VDI18] spezifiziert ist.

Mögliche zukünftige Entwicklungen Das MTP beschreibt einen Modultypen und
kann daher für unterschiedliche konkrete Instanzen eingesetzt werden, wobei der Anla-
genbetreiber das MTP vom Modulhersteller noch vor der Lieferung des Moduls fordern
kann, um es bereits in die PFE informationstechnisch zu integrieren. Es ist jedoch
auch denkbar, dass zukünftig der Anlagenbetreiber dem Modulhersteller ein MTP als
Spezifikation für ein herzustellendes Spezialmoduls übergibt. Im Fall, dass ein bereits in
einer Anlage integriertes Modul durch ein anderes ausgetauscht wird, was die gleiche
Funktionalität aber beispielsweise einen anderen Aufbau des OPC UA Servers besitzt,
muss in der zugehörigen Modulverwaltungssoftware eine weitere Abstraktion geschaffen
werden, um eine Abbildung zwischen unterschiedlichen MTPs zu ermöglichen.

Der durch das Modul bereitgestellte OPC UA Server kann zukünftig auch direkt das
Modell des Moduls bereitstellen, ohne das eine Offlinedatei, wie das MTP, ausgetauscht
werden muss. Die notwendige Information ist in diesem Fall dann direkt im OPC UA
Informationshaushalt abgebildet und kann durch eine PFE ausgelesen werden, sobald das
Modul physikalisch in die Anlage integriert wird. Eine zusätzliche Typbeschreibung kann
dann beispielsweise direkt aus der Typenbeschreibung in OPC UA abgeleitet werden.
Wird die Beschreibung bereits früher benötigt, so kann zum Beispiel ein ausführbarer
OPC UA Server oder ein entsprechendes Abbild geliefert werden.

Eine Virtuelle Inbetriebnahme (VIBN) benötigt ebenso Simulationsmodelle, um durch-
geführt werden zu können. Diese können wiederum als ein eigener Aspekt im MTP
beschrieben werden. Die Simulationsmodelle können dann beispielsweise direkt auf den
Modulen verfügbar sein oder die Simulationen werden über Clouddienste zur Verfügung
gestellt. In beiden Fällen müssen wiederum Möglichkeiten geschaffen werden, um die
Simulationen zu koppeln und auszuführen.

Schlussfolgerung Die Verfolgung eines solch agilen Ansatzes, wie er in der Standardisie-
rung des MTP Anwendung findet, hat Geschwindigkeitsvorteile und die Ergebnisse sind
belastbarer, da bereits Prototypen bestehen. Es muss jedoch mit Änderungen umgegan-
gen werden, die während der Iterationen und auch nachfolgend vorgenommen werden. Ziel
muss es daher sein, stets ein konsistentes Gesamtgefüge der einzelnen Richtlinienblätter
der Serie zu erreichen. Hierdurch entstehen mehrere Versionen eines MTP, die jeweils
einen Entwicklungsstand kennzeichnen und in denen unterschiedliche Aspekte bereits
verfügbar sind. Ebenso kann es vorkommen, dass nicht alle Hersteller mit der gleichen
Geschwindigkeit auf die Änderungen und Erweiterungen in den Richtlinien reagieren kön-
nen, wodurch es vorkommen kann, dass unterschiedliche Versionen des MTP am Markt
angeboten werden. Hierfür werden Migrationsstrategien benötigt, um beispielsweise ein
bestehendes MTP einer bestimmten Version auf eine aktuelle zu migrieren.

46

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

3.1.4 Anforderungen

Nachfolgend werden die in den vorangegangenen Abschnitten aufgenommenen Anfor-
derungen tabellarisch in Tabelle 3.1 dargestellt. Jeder Anforderung wird dabei ein
eindeutiger Identifikator zugeordnet. Dieser dient im weiteren Verlauf der Abkürzung
der Beschreibung und der Identifizierung innerhalb des Dokuments. Die Analyse der
beiden Anwendungsfälle zeigt, dass die allgemein aufgenommenen Anforderungen die
Problemstellungen der Anwendungsfälle bereits abdecken, wie in Tabelle 3.2 dargestellt.
Daher ist keine Erweiterung der Anforderungen notwendig.

In Tabelle 3.2 ist des Weiteren dargestellt, durch welchen Anwendungsfall welche
Anforderungen abgedeckt sind. Anforderungen, die direkt aus einem Anwendungsfall
abgeleitet werden können, sind mit 3 markiert und Anforderungen, die nicht auf den
Anwendungsfall zutreffen, sind mittels 7 beschrieben. In Klammern ist die Markierung
angegeben, wenn es sich bei der Anforderung um eine allgemeine Anforderung han-
delt, die jedoch nicht im ersten Schritt aus dem jeweiligen Anwendungsfall abgeleitet
beziehungsweise ausgeschlossen werden kann.

Zusammenfassend kann festgehalten werden, dass Anforderungen des Nutzungskontex-
tes vor allem in Bezug auf die Co-Simulation zutreffen, da es sich dabei überwiegend
um kollaborative Szenarien handelt, wohingegen sich die Migration von MTP-Versionen
im ersten Schritt auf die Migrationsmechanismen und weniger auf den Nutzungskontext
bezieht. Bei A-101 handelt es sich um eine generelle Anforderung, die beiden Anwen-
dungsfällen zugeordnet werden kann. Die restlichen Anforderungen treffen jeweils auf
beide Anwendungsfälle zu, wobei der Fokus bei der Durchführung von Evolutionen
bei der Co-Simulation vorrangig auf Verbindungen auf Instanzebene liegt und bei der
Modularisierung auf Typenmodelländerungen. Es ist jedoch nicht auszuschließen, dass
jeweils weitere Änderungen auf Instanz- beziehungsweise Typenebene auftreten.

Tabelle 3.1: Anforderungszusammenfassung

ID Anforderung Beschreibung

A-100 Nutzungskontext

A-101 Selbstbeschreibungs-
fähigkeit des Systems

Die Nutzung des Systems soll unabhängig
von Vorkenntnissen von unterschiedlichen
Nutzern genutzt werden können.

A-102 Rollenmanagement für
Nutzer

Das System unterstützt die Verwaltung und
Nutzung von unterschiedlichen Rollen, die
am Evolutionsprozess beteiligt sind.

A-103 Zugriffsmanagement mit
Rechtevergabe

Beschränkung von Zugriffsrechten und Ver-
waltung von Rechten für Nutzer, Nutzergrup-
pen und Nutzerrollen.

47

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

Tabelle 3.1: Anforderungszusammenfassung (Fortsetzung)

ID Anforderung Beschreibung

A-104 Umsetzung von Freigabe-
prozessen

Möglichkeit der Etablierung von Freigabepro-
zessen mit vorher durchzuführenden Reviews
durch Kurator. Bereitstellung von zugehöri-
gen Nutzerschnittstellen zur Unterstützung
des Kurators und persistentem Reviewpro-
zess mit der Möglichkeit der zeitweisen Un-
terbrechung.

A-200 Änderungsmanagement

A-201 Nachvollziehbarkeit von
Änderungen

Änderungen müssen stets nachvollziehbar
gespeichert werden und jeweils zugreifbar
sein. Mechanismen etablierter Revisionsver-
waltungssysteme, wie Entwicklungszweige
und Releases, müssen unterstützt werden
und einzelne Revisionen miteinander ver-
gleichbar sein.

A-202 Zusammenführung diver-
gierter Entwicklungszwei-
ge

Divergierte Entwicklungszweige müssen zu-
sammengeführt werden können. Dabei müs-
sen Konflikterkennung und -lösung unter-
stützt werden.

A-203 High-Level-Changes Atomare Änderungen müssen zu High-Level-
Changes abstrahiert werden können, um die
Semantik der Evolution darstellen zu können
sowie die Zusammenführung von divergierten
Entwicklungszweigen zu unterstützen.

A-204 Semantische Beschreibung
des Revisionsmodells

Das Revisionsmodell muss vollständig se-
mantisch beschrieben werden. Zu Revisio-
nen muss Metainformation anlegbar sein, wie
zum Beispiel Kommentar, Ersteller, Vorgän-
gerrevision und Abwärtskompatibilität.

A-300 Evolution

A-301 Umsetzung von (Co-)Evo-
lutionsstrategien

Die (Co-)Evolutionsstrategien müssen so um-
gesetzt werden, dass Modellrelationen beach-
tet und zugehörige Auswirkungen propagiert
werden.

48

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

Tabelle 3.1: Anforderungszusammenfassung (Fortsetzung)

ID Anforderung Beschreibung

A-302 Semantische Beschreibung
der (Co-)Evolutionsstrate-
gien

Angewendete (Co-)Evolutionsstrategien und
deren zugrunde liegende Evolutionsschritte
mit den zugehörigen Regelsätzen müssen se-
mantisch beschrieben sein und in der Revisi-
onshistorie referenziert werden.

A-303 Vollständigkeitsprüfung
der Evolutionsschritte

Vor der Anwendung von (Co-)Evolutionss-
trategien muss überprüft werden, ob alle zu-
grunde liegenden Änderungen der Revisions-
historie abgedeckt werden.

A-400 Semantische Modellbe-
schreibung

A-401 Semantische Beschreibung
der revisionierten Modelle

Die revisionierten Modelle müssen seman-
tisch beschrieben sein. Hierfür können
Informations- und Metamodelle genutzt wer-
den.

A-402 Semantische Beschreibung
von Modellrelationen

Verbindungen zwischen und innerhalb von
Modellen müssen explizit dargestellt und se-
mantisch beschrieben sein.

A-500 Qualitätsattribute

A-501 Transparente und automa-
tische Berechnung

Die Umsetzung der Anforderungen soll trans-
parent erfolgen, wobei die Nutzer keine Rein-
terpretationen ihrer Aktionen bemerken sol-
len und nicht für die Analyse von durchge-
führten Änderungen unterbrochen werden.

A-502 Unterstützung der Integra-
tion zusätzlicher Qualitäts-
attribute

Zusätzliche Qualitätsattribute von Modellen
sollen integriert werden können, um diese
nach der Durchführung von Änderungen prü-
fen und auswerten zu können. Beispiele sind
Konsistenz, Kompatibilität und Vollständig-
keit.

49

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

Tabelle 3.2: Abgedeckte Anforderungen pro Anwendungsfall

Anforderungen

Co-Simu-
lation

Modularisier-
ung

N
ut

zu
ng

s-
ko

nt
ex

t

A-101 Selbstbeschreibungsf. (3) (3)

A-102 Rollenmanagement 3 (7)

A-103 Zugriffsmanagement 3 (7)

A-104 Freigabeprozesse 3 (7)

Ä
nd

er
un

gs
-

m
an

ag
em

en
t A-201 Nachvollziehbarkeit 3 3

A-202 Zusammenführung 3 3

A-203 High-Level-Changes 3 3

A-204 Revisionsmodell (3) (3)

Ev
ol

ut
io

n A-301 Strategien 3 3

A-302 Sem. Beschr. (3) (3)

A-303 Vollständigkeitsp. 3 3

Se
m

.M
o-

de
llb

es
ch

r.

A-401 Rev. Modelle (3) (3)

A-402 Verbindungen 3 3

Q
ua

lit
ät

s-
at

tr
ib

ut
e

A-501 Berechnung (3) (3)

A-502 Integration 3 3

50

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.2 Analyse bestehender Ansätze

3.2 Analyse bestehender Ansätze

Im Folgenden werden bestehende Ansätze gegen die aufgenommenen Anforderungen
abgeglichen. Es werden dabei erste Ansätze für das Management von Evolution [Keh15;
Sto04; Ruh+14; Bür+14], für die Bereitstellung einer Integrationsplattform [KVN12]
und für die Revisionsverwaltung [Noy+06; GHU14] vorgestellt. Hierzu erfolgt zuerst eine
Kurzdarstellung der jeweiligen Ansätze. Anschließend werden die Ansätze in Tabelle 3.3
in Hinblick auf die Umsetzung der Anforderungen bewertet.

3.2.1 Dissertation Timo Kehrer [Keh15]

Kehrer [Keh15] stellt einen Ansatz zur Hebung von Modelldifferenzen auf ein Nutzerlevel
vor, um Modellierer beim Erkennen und Verwalten von Änderungen besser unterstützen
zu können. Kernelement sind sogenannte Editieroperationen, die in vielen Standardmo-
delleditoren oder Refactoringtools Verwendung finden. Grundlage für die Erkennung
dieser Editieroperationen ist eine formale Spezifikation der Operationen unter Nutzung
der Graphtransformationssprache Henshin3), die speziell für das Eclipse Modeling Frame-
work (EMF) entwickelt wurde. Des Weiteren werden die Low-Level-Changes benötigt,
anhand derer die Operationen erkannt werden. Diese Low-Level-Changes werden durch
Modellvergleich erzeugt. Der Ansatz wurde innerhalb von SiLift4) umgesetzt.

Der Ansatz bietet eine gute Übersicht zu den Grundlagen für die Erstellung von Re-
gelsätzen für die Erkennung von High-Level-Changes. Der Einbezug von Modellhistorien
für die Erkennung wird nur im Ausblick aufgeführt. Dies liegt auch daran, dass in dem
Konzept kein semantisches Revisionsverwaltungssystem vorgesehen ist. Es wird wiederum
im Ausblick darauf verwiesen, dass ein etabliertes System als Grundlage dienen soll. Hier-
durch würde jedoch die Semantik der Modelländerungen verloren gehen. Co-Evolutionen
werden ebenso nur in beschränktem Umfang betrachtet. Es werden nur Propagierungen
von Modelländerungen an andere Varianten eines Modells beachtet, was einem einfachen
Patchverfahren entspricht, bei dem erkannte Editieroperationen an einem Modell ebenso
auf ein anderes angewendet werden.

3.2.2 Dissertation Ljiljana Stojanovic [Sto04]

In [Sto04] werden von Stojanovic Methoden und Tools für die Evolution von Ontologien
entwickelt. Insbesondere wird ein Prozess beschrieben, der eine effiziente Ontologie-
evolution erlaubt. Dieser besteht aus der Handhabung von Ontologieänderungen, der
Absicherung der Konsistenz von Ontologien unter Beachtung von Abhängigkeiten und
unterstützt die Nutzer bei der Verwaltung von Änderungen. Des Weiteren werden dem
Nutzer Hinweise für ein kontinuierliches Ontologiereengineering gegeben. Besonderer
Wert wird auf die Anwendbarkeit der Ansätze im Semantic Web gelegt. Hierbei findet
vor allem die hohe Anzahl von Ontologien und deren physikalische Verteilung Beachtung.

3)https://www.eclipse.org/henshin/ (besucht am 29.11.2020)
4)http://pi.informatik.uni-siegen.de/Projekte/SiLift/ (besucht am 29.11.2020)

51

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

Die Implementierung erfolgt innerhalb vom Karlsruhe Ontology and Semantic Web
framework (KAON)5).

Diese Arbeit stellt neben sogenannten Elementaränderungen und daraus zusammen-
gesetzten Änderungen auch eine Evolutionsontologie dar, die die durchgeführten Än-
derungen semantisch für jede Ontologie beschreibt. Hierbei handelt es sich um Logs,
die gespeichert werden. Diese sind ähnlich zu einem Revisionsverwaltungssystem, wobei
grundlegende Funktionalitäten, wie die Zusammenführung von divergierten Zweigen
oder die Erstellung von Versionen, nicht betrachtet werden. Evolutionen sind nur auf
Ontologieebene umgesetzt, wenn es sich um Relationen zwischen Ontologien handelt.
Das Instanzniveau wird daher nicht weiter betrachtet. Die beschriebenen High-Level-
Änderungen sind insbesondere für das KAON umgesetzt, jedoch ist eine Abbildung der
Ansätze auf beispielsweise die OWL nicht realisiert. Die Implementierung kann aber mit
hohen Datenmengen umgehen. In Bezug auf die Anforderungen im Bereich des Nut-
zungskontext werden keine Nutzerrollen, keine Zugriffsrechte und keine Freigabeprozesse
betrachtet.

3.2.3 SecVolution

SecVolution [Ruh+14; Bür+14] ist ein modellbasierter Ansatz aus dem Bereich der
Sicherheit von Informationssystemen. Ziel ist es, die Sicherheit eines Informationssystems
stets zu gewährleisten, auch dann, wenn Änderungen in der Umgebung des Systems
die Sicherheit gefährden. Auf Basis der Änderungen und der Nutzung von internen und
externen Wissensquellen erfolgt eine Anpassung der entsprechenden Softwaremodelle des
Informationssystems, um das Sicherheitslevel des Systems wiederherzustellen. Hierfür
werden Mechanismen der Co-Evolution angewendet.

Der grundlegende Informationsfluss im SecVolution-Ansatz ist in Abbildung 3.8 darge-
stellt. Änderungen in der Umgebung werden verfolgt und daraus notwendige Anpassungen
an den Systemmodellen berechnet, die mittels Co-Evolutionen umgesetzt werden. Basis
bildet hierfür das Security Maintenance Model, da dieses zum einen beschreibt, wie
sich das sicherheitsrelevante Wissen weiterentwickeln kann und wie zum anderen die
Co-Evolution der auf diesem Wissen aufbauenden Modelle durchzuführen ist. Da die
Änderungen als gegeben angenommen werden, ist in diesem Ansatz kein Revisions-
verwaltungssystem integriert. Die durchzuführenden Co-Evolutionen beziehen sich auf
Typ-Instanz-Beziehungen, wobei Abhängigkeiten zwischen unterschiedlichen Modellen
keine Beachtung finden. Die durchgeführten Evolutionen sollen jedoch semantisch be-
schrieben werden. In Bezug auf die Anforderungen im Bereich des Nutzungskontext
werden Nutzerrollen aufgeführt, wie in Abbildung 3.8 dargestellt, jedoch werden Zugriffs-
rechte und notwendige Freigabeprozesse nicht explizit aufgeführt.

5)http://kaon2.semanticweb.org (besucht am 29.11.2020)

52

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.2 Analyse bestehender Ansätze

Abbildung 3.8: Informationsflussdiagramm des SecVolution-Ansatzes [Bür+14, S. 3]

3.2.4 Simantics

Das in [KVN12] vorgestellte Simantics6) ist eine offene Plattform die die Integration
von unterschiedlichen Tools ermöglicht. Ziel ist es, eine integrierte Umgebung für die
Modellierung und Simulation auf Basis einer vollständig semantischen Modellierung auf-
zubauen. Die Integration der spezifischen Applikationsmodelle erfolgt unter Verwendung
von ontologiebasierten Abbildungen und Transformationen, die jeweils innerhalb des
Frameworks definiert werden. Zum Einsatz kommt ein eigens entwickelter Triple Store,
der speziell auf die hohen Anforderungen an das Management von großen Datensätzen
und eine unterliegende Revisionskontrolle zugeschnitten ist.

Da es sich bei diesem Ansatz vorrangig um eine Integrationsplattform handelt, werden
keine Mechanismen zur Evolution der integrierten Modelle beschrieben. Die Nachvollzieh-
barkeit ist durch die in den Triple Store eingebauten Revisionsverwaltungsfunktionalitäten
gegeben, wobei jedoch keine High-Level-Changes beschrieben werden. Die Modellierung
basiert auf einer eigens entwickelten Beschreibungssprache für Ontologien, die Layer0
genannt wird und zu Teilen Gemeinsamkeiten mit OWL hat. Einzelne Modelle können
des Weiteren miteinander verlinkt werden. Besonderes Augenmerk wird auf die Definition
der Rollen gelegt, die die Plattform nutzen. Derzeit existieren jedoch keine Prozesse zur
Freigabe von Ontologien oder für die Einschränkung von Zugriffsrechten der jeweiligen
Rollen.

3.2.5 Changes Tab

Noy et al. [Noy+06] haben ein System für die Unterstützung der Ontologieevolution ent-
wickelt, dessen zugrunde liegende Architektur in Abbildung 3.9 dargestellt ist. Zentrales
Element ist die Change and Annotation Ontology (CHAO), mittels derer alle Änderungen
an einer Ontologie beschrieben werden können. Änderungen können entweder direkt
während der Bearbeitung oder durch den Vergleich von zwei Versionen aufgenommen

6)https://www.simantics.org/ (besucht am 29.11.2020)

53

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

werden. Das Framework ist als Plug-in mit dem Namen Changes Tab7) für die Ontolo-
gieentwicklungsumgebung Protégé8) realisiert und besteht aus zwei Teilen. Zum einen
aus einem Plug-in, um Änderungen verwalten zu können und mithilfe dessen die Listen
der Änderungen eingesehen, Annotationen vorgenommen und Änderungen innerhalb der
CHAO aufgenommen werden können. Zum anderen wird mittels des PROMPT Plug-ins
der Vergleich von zwei Versionen und die Akzeptierung und Ablehnung von einzelnen
Änderungen ermöglicht.

Bei diesem System handelt es sich um eine reine Änderungsverfolgung, die keine weitrei-
chenderen Revisionsverwaltungsfunktionalitäten, wie beispielsweise Entwicklungszweige,
unterstützt. Die aufgenommenen Änderungen werden jedoch vollständig semantisch
durch die CHAO beschrieben und können des Weiteren gruppiert werden. Hierdurch
entstehen, neben den bereits aus den Editieroperationen in Protégé abgeleiteten, weitere
High-Level-Changes, die wiederum auch annotiert werden können. Der Nutzer wird bei
seiner Arbeit unterstützt, da Bearbeitungsschritte unterbrechbar sind und der aktuelle
Stand jeweils mittels der CHAO beschrieben ist, was eine spätere Fortsetzung ermöglicht.
Weiterhin ist der Aufbau modular, wodurch eine Erweiterbarkeit gegeben ist. Als Beispiel
kann ein Kurator auf Basis der aufgenommenen und semantisch beschriebenen Ände-
rungen analysieren, welche Personen welche Änderungen wann vorgenommen hat. Die
Anwendung von (Co-)Evolutionsmechanismen ist in diesem Framework nicht umgesetzt.
Rollen- und Zugriffsmanagement sowie Freigabeprozesse werden ebenfalls nicht beachtet.

Abbildung 3.9: Komponenten des Frameworks zur Unterstützung der Ontologieevolution in
Protégé [Noy+06, S. 550]

7)https://protegewiki.stanford.edu/wiki/Changes_Tab (besucht am 29.11.2020)
8)https://protege.stanford.edu/ (besucht am 29.11.2020)

54

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.2 Analyse bestehender Ansätze

3.2.6 R43ples

Etablierte Revisionsverwaltungssysteme, wie git, SVN, CVS, Bazaar und Mercurial,
sind für die Revisionsverwaltung von Modellen nur bedingt nutzbar, da sie auf einer
Zeilenbasis beim Vergleich arbeiten. Die Beschreibung von Informationsmodellen erfolgt
hingegen meist in Sprachen, für die die interne Abfolge keine Rolle spielt. Beim zei-
lenbasierten Vergleich würden dann Änderungen erkannt werden, die keine Änderung
am Informationsmodell zur Folge haben. Als Beispiele können hierfür XML, OWL und
RDF aufgeführt werden. Für eine nachvollziehbare Speicherung von Änderungen an
Informationsmodellen müssen daher entsprechende Möglichkeiten geschaffen werden, die
diesen Herausforderungen begegnen können. Beispiele dafür sind bereits im Bereich des
Semantic Webs vorzufinden. Canova et al. [Can+15] gibt einen Überblick zu bestehenden
Ansätzen und Implementierungen. Nur zwei der verglichenen Ansätze erlauben dabei
die Revisionsverwaltung in einer verteilten und semantischen Art und Weise, wie sie
im Bereich des Semantic Web notwendig ist. R43ples [GHU14; GHU16] ist eines dieser
beiden Systeme, wobei dieses zusätzlich eine vollständige semantische Beschreibung der
Revisionsverwaltung umsetzt. Diese ist im Ansatz R&Wbase [Van+13] nicht durchgängig
gegeben.

R43ples wurde in vorangegangenen Arbeiten entwickelt [Hen13; GHU14; GHU16]
und ermöglicht eine Revisionsverwaltung im Semantic Web. Hierbei verfolgt es einen
vollständig semantischen Ansatz für die Beschreibung der Revisionsinformation in Linked
Data und basiert zu Teilen auf der Arbeit von Vander Sande et al. [Van+13]. Das System
agiert als ein Proxy, der vor bestehende Triple Stores geschaltet werden kann, um die
Revisionsverwaltungsfunktionalität den entsprechenden Triple Stores hinzuzufügen. Als
Interface für die Interaktion werden erweiterte SPARQL 1.1 Funktionalitäten verwendet.
Die grundlegende Architektur ist in Abbildung 3.10 dargestellt. In weiteren Arbeiten
wurde R43ples bereits um erste Ansätze für die Zusammenführung von divergierten
Zweigen erweitert [Hen14; HGU16], wobei derzeit keine Mechanismen zur Aggregation
von Änderungen zu semantischen High-Level-Changes angewendet werden. Da es sich
bei R43ples um ein reines Revisionsverwaltungssystem handelt, sind keine Mechanismen
zur (Co-)Evolution umgesetzt. Ebenso besitzt es derzeit kein Rollen- oder Zugriffsma-
nagement. Hier kann nur auf proprietäre Lösungen der angeschlossenen Triple Stores
zurückgegriffen werden. R43ples bietet neben dem bereitgestellten SPARQL-Endpoint
auch eine Weboberfläche zur Bedienung an.

Abbildung 3.10: Grundlegende Architektur des semantischen Revisonsverwaltungssystems
R43ples [GHU14, S. 5]

55

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

3.2.7 Zusammenfassung

Die in den vorangegangenen Abschnitten vorgestellten Ansätze werden in Tabelle 3.3
anhand der aufgenommenen Anforderungen gegenübergestellt. Die Bewertungskriterien
teilen sich in vollständige (33), teilweise (3) oder keine Erfüllung (7) der jeweiligen
Anforderung ein.

Zusammenfassend lässt sich feststellen, dass keiner der Ansätze alle Anforderungen
abdeckt. Im Bereich des Nutzungskontextes werden Zugriffe und Freigabeprozesse in
keinem der Ansätze beschrieben. Diese Problematiken werden meist nur im Ausblick
angesprochen. Hingegen bieten alle Ansätze ein Nutzerinterface, was den Nutzer bei
seiner Arbeit unterstützt und es werden auch teilweise die beteiligen Rollen definiert.
Im Bereich der Änderungsmanagements und der Evolution ist festzuhalten, dass zu-
meist entweder Anforderungen im Bereich der Revisionsverwaltung oder im Bereich der
Evolution umgesetzt werden. Eine integrierte Nutzung von Revisionsverwaltung und
Evolutionsmechanismen ist höchstens zu Teilen umgesetzt. Die Modelle werden in allen
Ansätzen semantisch beschrieben und auch zusätzliche Qualitätsattribute sind entweder
bereits umgesetzt oder können integriert werden. Im Bereich der Revisionsverwaltung
von Modellen lässt sich ein deutlicher Fortschritt von reiner Änderungsverfolgung zu
Systemen mit Revisionsverwaltungsfunktionalitäten erkennen, wie sie aus etablierten
Systemen bekannt sind.

56

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3.2 Analyse bestehender Ansätze

Tabelle 3.3: Spiegelung der Anforderungen an existente Ansätze

Anforderungen D
is

s.
K

eh
re

r

D
is

s.
St

oj
an

o.

Se
cV

ol
ut

io
n

Si
m

an
ti

cs

C
ha

ng
es

T
ab

R
43

pl
es

N
ut

zu
ng

s-
ko

nt
ex

t

A-101 Selbstbeschreibungsf. 33 33 3 33 3 3

A-102 Rollenmanagement 3 7 3 33 7 7

A-103 Zugriffsmanagement 7 7 7 7 7 7

A-104 Freigabeprozesse 7 7 7 7 7 7

Ä
nd

er
un

gs
-

m
an

ag
em

en
t A-201 Nachvollziehbarkeit 7 3 7 3 3 33

A-202 Zusammenführung 3 7 7 7 7 3

A-203 High-Level-Changes 33 3 3 7 3 7

A-204 Revisionsmodell 7 33 7 7 33 33

Ev
ol

ut
io

n A-301 Strategien 3 3 3 7 7 7

A-302 Sem. Beschr. 7 7 3 7 7 7

A-303 Vollständigkeitsp. 3 3 3 7 7 7

Se
m

.M
o-

de
llb

es
ch

r.

A-401 Rev. Modelle 33 3 33 3 33 3

A-402 Verbindungen 7 3 7 3 7 7

Q
ua

lit
ät

s-
at

tr
ib

ut
e

A-501 Berechnung 3 33 3 3 3 3

A-502 Integration 3 3 3 3 3 7

57

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

3 Analyse

3.3 Analyseergebnisse und Priorisierung

Die vorangegangene Analyse zeigt die notwendigen Anforderungen an ein System, um
mit Änderungen in einer kollaborativen Umgebung umgehen zu können und sowohl die
Änderungen nachvollziehbar zu dokumentieren wie auch die automatische Evolution
zu unterstützen. Es wird ersichtlich, dass nur eine integrierte Lösung aus Revisionsver-
waltungsfunktionalitäten und den Evolutionsmechanismen diese Anforderungen erfüllen
kann. Hierdurch können Nutzer bestmöglich bei ihrer Arbeit unterstützt werden und die
Möglichkeit, dass Fehler auftreten, wird verringert. Die Herausforderungen, die durch
die beiden Anwendungsfälle beschrieben werden, bestätigen die allgemein aufgenomme-
nen Anforderungen an ein solches System. Durch die Spiegelung der Anforderungen an
existente Ansätze wird des Weiteren die Notwendigkeit eines solches RMS nachgewiesen,
da keines der bestehenden Systeme alle Anforderungen erfüllt und die Integration von
Revisionsverwaltung und Evolution bisher nur wenig Betrachtung findet.

Für die Umsetzung eines RMS muss im ersten Schritt ein Rahmen geschaffen werden,
in dem die einzelnen Anforderungen umgesetzt werden können. Die zentrale Anforde-
rung ist die semantische Modellbeschreibung auf deren Basis wiederum weiterführende
Anforderungen umgesetzt werden können. So kann das Änderungsmanagement darauf
agieren, um Basisrevisionskontrollfunktionalitäten sowie weiterführende Mechanismen,
wie die semantische Aggregation zu High-Level-Changes und die Zusammenführung von
divergierten Entwicklungszweigen, anzubieten. Die Beschreibung der durchgeführten
Aktionen erfolgt dabei ebenfalls semantisch. Für die Etablierung von Evolutionsme-
chanismen spielt wiederum das Änderungsmanagement eine große Rolle, da auf dessen
Basis Änderungen detektiert und notwendige Evolutionen abgeleitet werden können.
Durchgeführte Evolutionsschritte können dann im Änderungsmanagement semantisch
beschrieben abgelegt werden. Alle weiteren Anforderungen, wie der Nutzungskontext
und weitere Qualitätsattribute, sind zusätzliche Funktionalitäten. Diese müssen ebenfalls
für die Realisierung eines RMS, das allen aufgeführten Anforderungen genügt, umgesetzt
werden. Im weiteren Verlauf dieser Arbeit spielen diese zusätzliche Funktionalitäten daher
eine untergeordnete Rolle, da sich auf die grundlegenden Mechanismen eines RMS be-
schränkt wird und die Zusatzfunktionen oft auch an eine technische Umsetzung gekoppelt
sind. Die grundlegenden Beschreibungen werden im Folgenden jedoch technologieunab-
hängig formuliert, um ein größtmögliches Einsatzspektrum und die Übertragbarkeit auf
unterschiedliche Einsatzszenarien zu ermöglichen.

58

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Auf Basis der erhobenen Anforderungen wird in diesem Abschnitt ausgehend vom Le-
benszyklus von Informationsmodellen ein Konzept für ein RMS vorgestellt. Mittels eines
Komponentendiagramms werden die notwendigen Komponenten und deren Interaktions-
punkte dargestellt. Im Folgenden werden, die für die einzelnen Komponenten notwendigen
mathematischen Definitionen und semantischen Beschreibungen technologieunabhängig
beschrieben, was wiederum die Grundlage für notwendige Algorithmen der Umsetzung
bildet.

4.1 Lebenszyklusmodell für Informationsmodelle

Informationsmodelle unterliegen, wie auch Software oder Produkte im Allgemeinen,
einem Lebenszyklus. Aus der Softwareentwicklung heraus sind bekannte Vertreter das
Wasserfallmodell oder agile Softwareentwicklungsmodelle. Ebenso stellt die DIN EN 62890
[DIN17] den Lebenszyklus von Produkten und Systemen dar, wobei hierbei der Fokus
auf der Mess-, Steuer- und Regelungstechnik im industriellen Umfeld liegt. Daraus ist
erkennbar, dass es sich bei Lebenszyklusmodellen meist um domänenspezifische Modelle
handelt. Im Bereich der Informationsmodelle existieren ebenso Ansätze wie unter anderem
im Bereich von Goverment Linked Data (GLD) [W3C12], Linked Open Data (LOD)
[Aue+12] oder dem Ontologie- beziehungsweise Wissensmanagements [Sur+08; SSS04].

Abbildung 4.1 zeigt ein aus den bestehenden Ansätzen heraus abgeleitetes verallgemei-
nertes Lebenszyklusmodell für Informationsmodelle, das bereits in [HGU18] veröffentlicht
ist. Dieses bildet auf der einen Seite die durchlebbaren Phasen eines Informationsmodells
ab. Auf der anderen Seite stellt es aber auch die Elemente der Revisionsverwaltung und
der Sicherheit dar, die ein Informationsmodell über den gesamten Lebenszyklus hinweg
begleiten.

Der Lebenszyklus beginnt, wie auch in der Software- oder Produktentwicklung, mit
einer Erhebung von Anforderungen, die in der anschließenden Erstellungsphase ent-
sprechend umgesetzt werden. Es folgt die Phase der Veröffentlichung, durch die die
Modelle für weitere Anwendungen nutzbar werden und beispielsweise Datenmodelle auf
Basis eines veröffentlichten Informationsmodells erzeugt werden können. In der Phase
der Nutzung wird das Informationsmodell produktiv eingesetzt, wobei aufgrund der
Nutzung oder auch durch äußere Einflüsse Anforderungsänderungen beziehungsweise
Erweiterungsbedarf entsteht. Beispiele hierfür sind unter anderem in [HKB17] für das
UML-Metamodell oder BPMN aufgeführt. Die notwendigen Änderungen resultieren dann
in einer Evolution des Informationsmodells, um eine semantische Erosion von beste-
henden Definitionen vorzubeugen. Der Evolutionsprozess kann sich in der Nutzungszeit
mehrfach wiederholen. Die Außerdienstsetzung ist die letzte Phase im Lebenszyklus eines
Informationsmodells und kann sich beispielsweise durch eine Archivierung der Daten-

59

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Abbildung 4.1: Allgemeines Lebenszyklusmodell von Informationsmodellen (veröffentlicht in
[HGU18, S. 49])

und Informationsmodelle oder eine vollständige Vernichtung der Inhalte auszeichnen. In
der Praxis werden Informationsmodelle jedoch vorrangig weiterentwickelt und an die
sich ändernden Anforderungen angepasst. Eine vollständige Außerdienstsetzung wird nur
im Zusammenhang mit sehr disruptiven Änderungen der Anforderungen eintreten. In
diesem Fall wird dann auf Basis der neuen Anforderungen ein neues Informationsmodell
entwickelt, wobei die Erfahrungen aus dem alten Modell in den meisten Fällen einfließen.

Sowohl die Revisionsverwaltung als auch die Sicherheit der Informationsmodelle sind
während aller Phasen von zentraler Bedeutung. So werden durch eine Revisionsverwaltung
Änderungen an den Modellen stets nachvollziehbar gespeichert, was die Möglichkeit des
Rücksprungs auf vorangehende Versionsstände ermöglicht. Ebenso können verschiedene
Versionen und Varianten gepflegt und kollaborativ weiterentwickelt werden. In diesem
Zusammenhang und auch während der Nutzung eines Modells spielt die Zugriffssicher-
heit eine wichtige Rolle. So müssen geeignete Maßnahmen ergriffen werden, um den
unerlaubten Zugriff auf beispielsweise abgeleitete Datenmodelle oder die zugehörigen In-
formationsmodelle einzuschränken. Dies ist notwendig, da in diesen sensible Kundendaten
oder das eigene Know-how enthalten sein können.

60

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.2 Revision Management System

4.2 Revision Management System

Die Umsetzung der aufgenommenen Anforderungen erfordert, wie bereits in Abschnitt
3.3 aufgeführt, die Konzeption eines Systems, das sowohl Änderungen nachvollziehbar
speichern kann, als auch die Evolution von Informations- und Datenmodellen unter-
stützt. Dieses System wird im Folgenden als RMS bezeichnet, da es über eine reine
Revisionsverwaltung hinausgeht und erweiterte Funktionen für den Umgang mit Anfor-
derungsänderungen in Informations- und Datenmodellen anbietet.

4.2.1 Komponentenübersicht

Das RMS besteht im Wesentlichen aus drei Komponenten, deren Aufteilung an das
Model-View-Controller-Prinzip aus der Softwareentwicklung angelehnt ist. Abbildung
4.2 zeigt die resultierenden grundlegenden Zusammenhänge zwischen den Komponenten.
Eine vollständige Darstellung aller Zusammenhänge ist in Abbildung A.1 dargestellt.

Die Komponente DataManagement besteht aus dem eigentlichen Datenspeicher und ei-
nem Revisionskontrollsystem, das auf diesen Datenspeicher zugreift und alle Änderungen
nachvollziehbar semantisch beschreibt. Durch diese Komponente werden die unter A-
200 zusammengefassten Anforderungen umgesetzt. Das Revisionskontrollsystem schließt
dabei sowohl die Basisrevisionskontrollfunktionalitäten wie die Erstellung von neuen Ent-
wicklungszweigen, neuen Tags und neuen Commits, als auch erweiterte Funktionen, wie
die Zusammenführung divergierter Entwicklungszweige und die semantische Aggregation
von Änderungen, ein. Innerhalb von DataManagement können sowohl Daten- als auch
Informationsmodelle revisioniert werden, was der Umsetzung von Anforderung A-401
entspricht. Control übernimmt auf Basis der Funktionalitäten von DataManagement den
Umgang mit den Änderungen in Bezug auf die Evolution von verbundenen Modellen, was
der Realisierung der unter A-300 kategorisierten Anforderungen entspricht. Die zugrunde
liegenden Verbindungen (siehe Anforderung A-402), auf deren Basis die Evolution ausge-
führt werden kann, werden durch den ConnectionManager beschrieben, wobei dessen
Datenhaushalt auch im DataManagement vorgehalten wird. Zur Einschränkung von
Zugriffsrechten auf die einzelnen Komponenten existiert des Weiteren der PermissionAnd-
ApprovalProcessManager, hiermit können die Anforderungen A-102 und A-103 umgesetzt
werden. Mit dessen Hilfe können außerdem Freigabeprozesse (Anforderung A-104) reali-
siert werden. Das UserInterface ermöglicht eine grafische Nutzung der Funktionalitäten
des RMS und stellt damit die Grundlage für die Realisierung von Anforderung A-101
bereit. Zusätzliche Qualitätsattribute, wie in der Anforderungssammlung A-500 gefordert,
können auf Basis des Gesamtsystems und der bereitgestellten semantischen Beschreibung
realisiert werden.

61

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf
Component2

«component»
RevisionManagementSystem

«component»
DataManagement

«component»
Control

«component»
UserInterface

«component»
EvolutionEngine

«component»
ConnectionManager

«component»
RevisionControl-

System

«component»
DataStorage

«component»
PermissionAndApproval-

ProcessManager

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

Abbildung 4.2: UML-Komponentendiagramm des RMS

62

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.2 Revision Management System

4.2.2 Data Management

Die DataManagement-Komponente setzt sich in der ersten Ebene aus zwei Komponen-
ten zusammen, wie in Abbildung 4.3 dargestellt. Hierzu gehören der DataStorage, der
den gesamten Datenhaushalt des RMS vorhält, und das RevisionControlSystem, das
die vollständige Revisionierung der Daten vornimmt. Diese Komponente ist wiederum
untergliedert in mehre Teilkomponenten, die die Basisrevisionskontrollfunktionalitäten
(BasicRevisionControl, Anforderung A-201), die Zusammenführung von divergierten
Entwicklungszweigen (MergeManagement, Anforderung A-202) und die Aggregation von
Änderungen auf eine semantisch nachvollziehbare Ebene (HighLevelChangeAggregation,
Anforderung A-203) realisieren. Die Basisfunktionalitäten der Revisionsverwaltung bilden
dabei die Grundlage für erweiterte Funktionalitäten wie die Zusammenführung von
divergierten Entwicklungszweigen und die Umsetzung von Aggregationsmechanismen.
Die Zusammenführung erfordert dabei einerseits die Analyse der Historie der zusam-
menzuführenden Zweige und andererseits muss das Ergebnis der Zusammenführung
wiederum semantisch beschrieben abgelegt werden. Gleiches gilt für die Aggregation, um
Änderungen über mehrere Revisionen hinweg nachzuvollziehen und semantisch zu aggre-
gieren. Dieser Mechanismus benötigt einen Regelsatz, auf dessen Basis die Aggregation
vollzogen werden kann. Dieser wird durch den HLCAggRuleManager bereitgestellt, wobei
der zugrunde liegende Datenhaushalt ebenfalls revisioniert abgelegt werden kann. Die
HLCAggMechanism-Komponente übernimmt die Auswertung der Regelsätze und wendet
diese auf die zu analysierenden Revisionsinformation an. Die Ergebnisse dieser Analyse
können entweder direkt im Datenspeicher semantisch und revisioniert abgelegt oder
anderen Komponenten zur Weiterverarbeitung zur Verfügung gestellt werden. Innerhalb
des DataManagements können diese für die Zusammenführung von Entwicklungszweigen
herangezogen werden, um beispielsweise eine detaillierte Konfliktanalyse beziehungsweise
-behebung vornehmen zu können.

Nach außen stellt die DataManagement-Komponente Schnittstellen für den revisionssi-
cheren Zugriff auf den Datenhaushalt, die Zusammenführung von Entwicklungszweigen
und die Aggregation von Änderungen bereit. Benötigt wird eine Schnittstelle an ein
Autorisierungssystem, um einen Zugriffsschutz auf die gespeicherten Daten umsetzen zu
können.

63

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

«component»
RevisionManagementSystem

«component»
DataManagement

BasicRCFunctionalities
Merge-

Functionalities
HLCAgg-

Functionalities
Authorization

«component»
RevisionControlSystem

BasicRC-
Functionalities

MergeFunctionalities

HLCAggFunctionalities

Authorization

«component»
DataStorage

«component»
MergeManagement

MergeFunctionalities

BasicRCFunctionalities

HLCAggFunctionalities

«component»
HighLevelChangeAggregation

HLCAggFunctionalities

BasicRCFunctionalities

«component»
HLCAggRuleManager

BasicRCFunctionalities

«component»
HLCAggMechanisms

BasicRCFunctionalities

HLCAggFunctionalities

«component»
BasicRevisionControl

BasicRCFunctionalities
DataStorageAccess

«delegate»

«delegate»

HLCAggRules

«delegate»

«delegate»

«delegate» «delegate»

«delegate»

DataStorageAccess

«delegate»

«delegate»
«delegate»

«delegate»

Abbildung 4.3: Ausschnitt der DataManagement-Komponente aus dem RMS

64

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.2 Revision Management System

4.2.3 Control

In der ersten Ebene setzt sich die Control-Komponente, dargestellt in Abbildung 4.4, aus
drei Teilkomponenten zusammen. Die EvolutionEngine (Anforderung A-301) ist dabei
für die Umsetzung von Co-Evolutionen mittels der CoEvolutionMechanisms-Komponente
verantwortlich. Für die Ausführung wird wiederum ein Regelsatz benötigt, der durch
eine entsprechende Komponente (EvoRuleManager) vorgehalten wird. Zusätzlich wer-
den Verbindungen innerhalb und zwischen Modellen durch eine separate Komponente
ConnectionManager (Anforderung A-402) bereitgestellt und zugreifbar gemacht, wodurch
sie der EvolutionEngine zur Verfügung stehen und für die Co-Evolutionen als Grund-
lage herangezogen werden können. Regelsätze und die Ergebnisse der Co-Evolutionen
werden revisonssicher und semantisch beschrieben im DataManagement abgelegt. Die
EvolutionEngine hat des Weiteren Zugriff auf alle weiteren angebotenen Schnittstellen
des DataManagements, um beispielsweise bei Bedarf Entwicklungszweige automatisiert
zusammenzuführen oder die aggregierten Änderungen als Grundlage für die Anwendung
der Regelsätze zu nutzen. Zugriffsbeschränkungen im RMS werden mittels des Permissio-
nAndApprovalProcessManagers realisiert. Dieser besitzt einen PermissionManager, der
für die Authentifizierung und Autorisierung von Nutzern verantwortlich ist. Dafür wird
eine Nutzerverwaltung benötigt, die entweder intern vorgehalten wird oder über eine
weitere Schnittstelle eingebunden werden kann. Weiterhin ist eine ApprovalProcessMana-
ger-Komponente integriert, die die Realisierung von Freigabeprozessen im RMS verwaltet.
So können in dieser Komponente Abläufe geplant und entsprechende verantwortliche
Nutzerrollen zugeordnet werden. Hierfür wird wiederum Zugriff auf den Datenspeicher
benötigt, um zum Beispiel Vorgehens- und Reviewprozesse für die Zusammenführung
von divergierten Entwicklungszweigen zu definieren.

Die Control-Komponente stellt nach außen Schnittstellen für Autorisierung, Authenti-
fizierung, Nutzerrollenverwaltung, Freigabeprozessmanagement sowie für die Verwaltung
von Verbindungen innerhalb und zwischen Modellen sowie für die Durchführung von
Co-Evolutionen zur Verfügung. Für die Realisierung dieser Schnittstellen werden Schnitt-
stellen auf die Funktionen und Daten des DataManagements benötigt.

65

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

«buildComponent»
Component2

«component»
Control

BasicRCFunctionalitiesMergeFunctionalities
HLCAgg-

Functionalities

Authentication
CoEvoFunctionalitiesConnectionManagement

ApprovalProcess-
ManagementUserAndRoleManagementAuthorization

«component»
EvolutionEngine

CoEvoFunctionalities

BasicRC-
Functionalities

HLCAgg-
Functionalities

AuthorizationMerge-
Functionalities

«component»
Connection-Manager

BasicRC-
Functionalities

Connection-
Management

«component»
EvoRuleManager

BasicRCFunctionalities

«component»
CoEvolutionMechanisms BasicRCFunctionalities

CoEvoFunctionalities

Connections

HLCAggFunctionalitiesMergeFunctionalities

«component»
PermissionAndApprovalProcessManager

Authorization ApprovalProcess-
Management

BasicRCFunctionalities

Authentication UserAndRole-
Management

«component»
ApprovalProcessManager

ApprovalProcessManagement

BasicRCFunctionalities

UserAndRoleManagement

«component»
PermissionManager

Authorization Authentication

UserAndRole-
Management

«delegate»

«delegate»

«delegate»

Connection-
Functionalities

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

EvoRules

«delegate»

«delegate»

«delegate»

Abbildung 4.4: Ausschnitt der Control-Komponente aus dem RMS

66

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.3 Formale Beschreibung verbindungsorientierter Modelle

4.2.4 User Interface

Das UserInterface, das in Abbildung 4.5 dargestellt ist, dient zur grafischen Konfiguration
des RMS. Für den Zugriff auf die RMS-Funktionalitäten muss sich ein Nutzer im ersten
Schritt authentifizieren. Je nach Nutzerrolle sind dann unterschiedliche Interaktionen mit
dem System möglich. Hierbei sind unterschiedliche Eingriffsarten und -tiefen für die Nutzer
vorgesehen. So ist es auf der einen Seite möglich, die Basisrevisionskontrollfunktionalitäten
zu nutzen, um beispielsweise Änderungen an Modellen an das System zu übertragen oder
Entwicklungszweige zusammenzuführen. Auf der anderen Seite können aber auch auf einer
abstrakteren Stufe Änderungen an den Modellen vorgenommen werden, um zum Beispiel
Verbindungen innerhalb oder zwischen Modellen grafisch zu editieren. Ebenso können
vorgenommene Änderungen an abhängige Modelle co-evolviert werden. Je nach Rechten
des Nutzers können ebenso die Nutzer und Rollen verwaltet oder Freigabeprozesse
definiert oder verändert werden. Durch eine grafische Repräsentation des Systems kann
der Nutzer das System zum einen an die gewünschten Anforderungen anpassen und
zum anderen automatisiert durchgeführte Aktionen überprüfen und bestätigen oder
rückgängig machen.

«component»
RevisionManagementSystem

«component»
DataManagement

BasicRCFunctionalitiesMergeFunctionalities

«component»
UserInterface

AuthenticationMerge-
Functionalities

BasicRC-
Functionalities

CoEvo-
Functionalities

Connection-
Management

ApprovalProcess-
Management

UserAndRole-
Management

«component»
RevisionControlSystem

BasicRCFunctionalities

MergeFunctionalities

HLCAggFunctionalities

Authorization

«component»
DataStorage

«component»
MergeManagement

MergeFunctionalities

BasicRCFunctionalities

HLCAggFunctionalities

«component»
HighLevelChangeAggregation

HLCAggFunctionalities

BasicRCFunctionalities

«component»
HLCAggRuleManager

BasicRCFunctionalities

«component»
HLCAggMechanisms

BasicRCFunctionalities

HLCAggFunctionalities

«component»
BasicRevisionControl

BasicRCFunctionalities

DataStorageAccess DataStorageAccess

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

HLCAggRules

«delegate»«delegate»

«delegate»

«delegate»

«delegate»

Abbildung 4.5: Ausschnitt der UserInterface-Komponente aus dem RMS

4.3 Formale Beschreibung verbindungsorientierter Modelle

Die Analyseergebnisse haben aufgezeigt, dass eine semantische Modellbeschreibung vorlie-
gen muss. Hierzu gehören einerseits Informations- und Metamodelle (Anforderung A-401),
um die Semantik des jeweiligen Modells zu beschreiben, andererseits aber auch die Rela-
tionen innerhalb eines Modells oder zwischen unterschiedlichen Modellen (Anforderung
A-402). Die resultierenden Beschreibungen werden innerhalb des RMS in der Connec-
tionManager-Komponente vorgehalten. Bestehende Ansätze fokussieren sich entweder
vorwiegend auf formale Beschreibungen in Richtung von UML-Klassendiagrammen oder
in Richtung von Diagrammen, die die Darstellung von Komponenten- oder Zustandsdia-
grammen erlauben. Beispiele hierfür sind unter anderem [Keh15], [Tap99] und [FMP99].
Im Folgenden wird eine abstrahierte formale Beschreibung auf Basis von Compound
Graphs eingeführt, die eine Übertragung der darauf aufbauenden Beschreibungen auf
unterschiedliche Anwendungsbereiche ermöglicht.

67

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

4.3.1 Compound Graphs

Compound Graphs werden vorwiegend unbemerkt in unterschiedlichen Domänen verwen-
det, wie beispielsweise in UML-Diagrammen (zum Beispiel UML-Zustandsdiagrammen)
oder Schaltkreisdiagrammen. In der Literatur wird diese Art von Graphen vorrangig
für den Zweck des automatischen Layouts der visuellen Repräsentation von Diagram-
men genutzt. Darüber hinaus eignet sich diese auch für die formale Beschreibung von
Zusammenhängen in Informations- und Datenmodellen. Nachfolgend werden hierzu die
grundlegenden formalen Definitionen auf Basis von Sander [San05] dargestellt.

Ein Compound Graph G̃ besteht aus einem einfach gerichteten Graphen G̃′ und einem
Baum T̃ ′, wie in Gleichung 4.1 dargestellt.

G̃ = (G̃′,T̃ ′) (4.1)

Allgemein gilt, dass ein einfach gerichteter Graph Ĝ aus einer Menge an Knoten V̂ und
einer Menge an Kanten Ê besteht, wobei gilt, dass Ê ⊆ V̂ × V̂ . Zusammengefasst lässt
sich Ĝ durch Ĝ = (V̂ ,Ê) beschreiben. Vorgänger und Nachfolger können in Ĝ mittels
den Funktionen in Gleichung 4.2 ermittelt werden. Des Weiteren gilt die in Gleichung
4.3 dargestellte Symbolik.

predĜ (v̂) :=
{
ŵ ∈ V̂

∣∣∣ (ŵ,v̂) ∈ Ê
}

succĜ (v̂) :=
{
ŵ ∈ V̂

∣∣∣ (v̂,ŵ) ∈ Ê
} (4.2)

v̂ −→̂
G

ŵ . . . Kante (v̂,ŵ) ∈ Ê

v̂ −→̂
G

∗ ŵ . . . Sequenz von Kanten/Pfad (eventuell leer)

v̂ −→̂
G

∗ v̂ . . . wenn nicht leer, dann Zyklus, ansonsten azyklisch

(4.3)

Bei einem Baum T̂ handelt es sich allgemein um einen azyklischen gerichteten Graphen
mit T̂ = (V̂ ,Ê). Dabei gilt, dass T̂ aus n̂ Knoten und n̂−1 Kanten besteht. Des Weiteren
existiert ein Wurzelknoten, für den Gleichung 4.4 erfüllt ist. Blätter innerhalb des Baums
besitzen keine Nachfolgeknoten, daher gilt, dass succĜ (v̂) = ∅. Alle anderen Knoten
werden als innere Knoten bezeichnet.

r̂ −→̂
T

∗ v̂, für alle v̂ ∈ V̂ (4.4)

Auf Basis der vorangegangenen allgemeinen Definitionen kann im Folgenden die
Definition von Compound Graphs aus Gleichung 4.1 weiter detailliert werden. Die
zugehörige Definition wird in Gleichung 4.5 gegeben. Hierbei besteht die Menge der
Knoten Ṽ aus der Menge der Basisknoten B̃ (Blättern von T̃ ′, B̃ = {b̃ ∈ Ṽ |succG̃(b̃) =

68

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.3 Formale Beschreibung verbindungsorientierter Modelle

∅}) und der Menge der Subgraphen S̃ (innere Knoten von T̃ ′, S̃ = {s̃ ∈ Ṽ |succG̃(s̃) 6= ∅}).
Daher gilt, dass Ṽ = B̃ ∪ S̃.

Die Verbindungsrelationen zwischen Basisknoten und Subgraphen werden mittels G̃′

beschrieben. Resultierende Kanten ẼG̃′ werden auch als Adjazenzkanten bezeichnet. Zu-
sätzlich repräsentiert T̃ ′ Verschachtelungsbeziehungen. So können Subgraphen wiederum
andere Subgraphen enthalten, was mit den Kanten ẼT̃ ′ beschrieben wird, die auch als
Hierarchie- oder Inklusionskanten bezeichnet werden.

G̃′ = (B̃ ∪ S̃, ẼG̃′)
T̃ ′ = (B̃ ∪ S̃, ẼT̃ ′)

(4.5)

Zur Visualisierung der vorangegangenen formalen Definitionen ist in Abbildung 4.6
ein Beispiel aus [San05] aufgeführt, das die Verwendung von G̃′ und T̃ ′ anschaulich
darstellt. G′ beziehungsweise T ′ in der Abbildung entsprechen dabei den hier aufgeführten
Definitionen G̃′ beziehungsweise T̃ ′.

Abbildung 4.6: Beispiel für die Nutzung von Compound Graphs [San05, S. 3]

69

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

4.3.2 Compound Graphs Erweiterung

Compound Graphs bieten durch die Vereinigung von unterschiedlichen Strukturierungs-
möglichkeiten, wie Hierarchiebildung, Relationsbeschreibung aber auch Gruppierungen,
eine gute Grundlage für unterschiedliche Anwendungsbereiche. In den einzelnen An-
wendungsbereichen werden diese Strukturierungsmöglichkeiten jedoch unterschiedlich
verwendet, was dazu führt, dass für die Spezialisierung der entsprechenden Ausprägung
eine Semantik zuordenbar sein muss. Abbildung 4.7 zeigt exemplarische Umsetzungsmög-
lichkeiten auf Basis von Compound Graphs in unterschiedlichen Anwendungsbereichen.
Die Knoten können dabei unterschiedliche Interpretationen annehmen, wie zum Bei-
spiel (Teil-)Modelle, Typenmodell, komplexe Objekte, Gruppen, Software Packages,
Komponenten oder auch Attribute, Ports und Zustände. Durch Adjazenzkanten können
unter anderem Typbeziehungen, Objektrelationen oder einfache Verbundenheitsbezie-
hungen und allgemeine Relationen ausgedrückt werden. Inklusionskanten wiederum
ermöglichen die Abbildung von hierarchischen Zusammenhängen, wie Beinhaltet- oder
Vererbungsbeziehungen.

Abbildung 4.7: Beispiele für Umsetzungsmöglichkeiten mit Compound Graphs

70

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.3 Formale Beschreibung verbindungsorientierter Modelle

Zur Beschreibung der Semantik müssen sowohl die Knoten als auch die Kanten um
ein entsprechendes Element erweitert werden. Dies resultiert in den Definitionen, die
in Gleichung 4.6 aufgeführt sind. Ein Knoten wird dadurch zu einem Tupel, bestehend
aus einem Identifikator ñv und einem Identifikator ñz, der die Semantik zuordnet.
Diese beiden sind jeweils aus der Menge der natürlichen Zahlen größer Null (N+). Die
natürlichen Zahlen werden hierbei zur vereinfachten Darstellung und Berechnung von
neuen Identifikatoren verwendet und können bei einer Umsetzung durch ein beliebiges
anderes eindeutiges Identifikationsschema beziehungsweise die Definitionen aus [Int+19]
ersetzt werden. Für die Kanten von G̃′ und T̃ ′ gilt ebenso, dass die Semantik über ein
weiteres Element ñz aus N+ zugeordnet wird, woraus sich für die Kanten jeweils Tripel
ergeben. Die vorangegangenen Definitionen aus Gleichung 4.2 bleiben bestehen, agieren
jedoch unabhängig von der Semantik der Kanten.

Ṽ :=
{
(ñv,ñz)

∣∣∣ ñv ∈ N+ ∧ ñz ∈ N+
}

ẼG̃′ :=
{
(ṽ,w̃,ñz)

∣∣∣ ṽ ∈ Ṽ ∧ w̃ ∈ Ṽ ∧ ñz ∈ N+
}

ẼT̃ ′ :=
{
(ṽ,w̃,ñz)

∣∣∣ ṽ ∈ Ṽ ∧ w̃ ∈ Ṽ ∧ ñz ∈ N+
} (4.6)

4.3.3 Semantische Beschreibung

Die in den Abschnitten 4.3.1 und 4.3.2 eingeführten formalen Beschreibungen lassen
sich ebenso in einem UML-Diagramm erfassen, wie in Abbildung 4.8 dargestellt. Die in
den vorangegangenen Abschnitten definierten Einschränkungen gelten dabei weiter, sind
jedoch nicht vollständig im Modell abgebildet. Ein CompoundGraph besteht aus einer
Menge an Knoten (Node) und einer Menge an Relationen (Relation). Relationen bilden
dabei die Verbindungen zwischen Knoten ab. Da diese in Compound Graphs gerichtet
sind, wird ein Start- (start) und ein Endknoten (target) zugeordnet. Die Relation wird
des Weiteren in die ConnectivityRelation und die NestingRelation spezialisiert. Für die
Knoten wird ebenfalls eine Spezialisierung, nach der Erweiterung aus Abschnitt 4.3.2, in
Leaf und Subgraph vorgenommen.

71

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Abbildung 4.8: Semantische Beschreibung von Compound Graphs als UML-Modell

4.4 Änderungsmanagement

In diesem Abschnitt erfolgt die mathematische und semantische Beschreibung eines tech-
nologieunabhängigen delta-basierten Revisionskontrollsystems. Dieses ist unabhängig von
internen Zeilenordnungen, was insbesondere eine Revisionierung von graphenbasierten
Modellen ermöglicht. Diese Beschreibungen sind notwendig, da sie die Grundlage für
alle weiteren Konzepte bilden, die auf die Revisionskomponente (BasicRevisionControl)
zugreifen und auf Basis dieser agieren. Die nachfolgenden Definitionen heben dabei die
in [AM17] vorgestellten Konzepte auf ein generelles Level, was eine technologieunab-
hängige Beschreibung ermöglicht, die dann wiederum für unterschiedliche Technologien
technologiespezifisch angewendet werden kann. Des Weiteren werden die Basisrevisions-
kontrollfunktionalitäten (BasicRevisionControl) um die semantische Aggregation der
Änderungen (HighLevelChangeAggregation) und die Zusammenführung von divergierten
Entwicklungszweigen (MergeManagement) erweitert.

Für die semantische Beschreibung werden UML-Modelle verwendet, die über die folgen-
den Abschnitte kontinuierlich erweitert werden. Elemente, die aus anderen UML-Modellen
erweitert oder referenziert werden, sind dabei jeweils grau markiert. Bestehende Asso-
ziationen und Aggregationen werden in neuen UML-Modellen zumeist nicht wiederholt,
sondern nur um neu hinzugekommene erweitert.

Da sich die nachfolgenden Beschreibungen vorrangig auf die Revisionierung von gra-
phenbasierten Modellen bezieht, wird davon ausgegangenen, dass der zu revisionierende
Modellinhalt jeweils aus einer Menge an Elementen besteht, die nicht weiter zerlegt
werden können und innerhalb des Modells eindeutig sind. Die daraus resultierende Menge
aller möglichen Elemente wird im Folgenden mit S bezeichnet.

72

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

4.4.1 Revisionskontrolle

Durch die im Folgenden beschrieben Funktionalitäten (Anforderung A-201) werden die
Basisfunktionen eines Revisionskontrollsystems, wie die Erstellung von neuen Commits,
Tags und Entwicklungszweigen, bereitgestellt. Grundlage bilden dafür die in [AM17]
vorgestellten Konzepte, die auf ein generelles technologieunabhängiges Level gehoben
werden.

4.4.1.1 Revisionsgraph

Ein Revisionsgraph beschreibt die gesamte Historie der angewendeten Änderungen.
Mathematisch lässt sich dieser als ein Quintupel G = (Rg,Cg,Bg,Tg,ng) beschreiben. Die
zugehörigen Definitionen der Einzelelemente Rg, Cg, Bg, Tg und ng werden in Gleichung
4.7 dargestellt. Dabei wird durch den Index g die Zugehörigkeit einer Menge zu einem
spezifischen Revisionsgraphen G gekennzeichnet.

R ⊆ N+

C :=


(
rx,ry,C+,C−

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rx ∈ R ∪ {0} ∧ ry ∈ R ∧ rx 6= ry ∧

C+ ⊆ S ∧ C− ⊆ S ∧ C+ ∩ C− = ∅ ∧

C+ ∪ C− 6= ∅


B :=

{
(Rb,rl,Υl,nb)

∣∣∣∣∣ Rb ⊆ R ∧ rl ∈ Rb ∧ Υl ⊆ S ∧ nb ∈ N+

}

T :=
{

(rt,Υt,nt)
∣∣∣∣∣ rt ∈ R ∧ Υt ⊆ S ∧ nt ∈ N+

}
Rg ⊆ R, Cg ⊆ C, Bg ⊆ B, Tg ⊆ T , ng ∈ N+

(4.7)

Mittels des Symbols Rg wird die Menge aller Revisionen in einem Revisionsgraphen
beschrieben. Es handelt sich dabei um eine Teilmenge der natürlichen Zahlen größer Null,
die im Folgenden mit N+ bezeichnet wird. Die Verwendung der natürlichen Zahlen dient
der vereinfachten Darstellung und Berechnung von neuen Identifikatoren, wobei stets eine
eineindeutige Zuordnung von Revisionsinhalt und Revisionsidentifikator gewährleistet ist.
Die natürlichen Zahlen können durch beliebige andere eindeutige Identifikationsschemata
ersetzt werden, wie beispielsweise die Generierung von entsprechenden eindeutigen
Hashes.

Die Menge Cg besteht aus Quadrupeln, die wiederum jeweils eine Änderung zwischen
zwei Revisionen in der Revisionshistorie beschreiben. Die Vorgängerrevision, auf der
die Änderungen aufbauen, wird mittels rx und die aus der Änderung resultierende
neue Revision mittels ry bezeichnet. Es ist per Definition ausgeschlossen, dass rx und
ry gleich sind und somit auf die gleiche Revision verweisen. Damit aber auch bei der
initialen Erstellung des Revisionsgraphen der erste Commit auf die gleiche Art und

73

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Weise abgebildet werden kann wie alle folgenden, wird eine Null-Revision eingeführt.
Diese kann nicht abgefragt werden und wird ausschließlich beim initialen Commit
verwendet. Neben der Vorgänger- und der Nachfolgerrevision wird das Delta zwischen
diesen beiden Revisionen durch C+ und C− beschrieben. Bei C+ handelt es sich um die
Menge der hinzugefügten Elemente zum Inhalt von rx, um ry zu erreichen. C− beschreibt
dementsprechend die Menge der Elemente, die gelöscht werden müssen, um vom Inhalt
von rx zum Inhalt von ry zu gelangen. Die Schnittmenge zwischen C+ und C− muss
immer die leere Menge ergeben, um eine Überschneidungsfreiheit zu gewährleisten. Im
Gegensatz dazu muss die Vereinigung der beiden Mengen immer ungleich der leeren
Menge sein. So ist jede Änderung durch mindestens eine Hinzufügung oder mindestens
eine Löschung gekennzeichnet.

Zur Beschreibung von unterschiedlichen Entwicklungszweigen (Branches) innerhalb
des Revisionsgraphen wird die Menge der verfügbaren Entwicklungszweige Bg wiederum
als eine Menge an Quadrupeln beschrieben. Die zu einem Entwicklungszweig zugehörigen
Revisionen werden mit der Menge Rb beschrieben. Die Revision eines Entwicklungszweiges,
die selbst keinen Nachfolger besitzt, wird als Blatt des Entwicklungszweigs bezeichnet
und mittels rl identifiziert. Die Revision rl muss daher auch immer in der Menge Rb

enthalten sein. Der vollständige Inhalt des Blattes des Entwicklungszweigs wird in
Υl vorgehalten. Auf dessen Basis kann im Folgenden dann eine Rekonstruktion von
Revisionen vorgenommen werden, zu denen nur die Deltainformation bekannt ist. Die
eindeutige Identifizierung des Entwicklungszweigs innerhalb des Revisionsgraphen wird in
diesem vereinfachten Fall wiederum mittels einer natürlichen Zahl aus N+ vorgenommen.

Das Symbol Tg beschreibt die Menge der Tags im Revisionsgraphen. Die Beschreibung
erfolgt ähnlich zu Bg, jedoch ohne die Menge an zugeordneten Revisionen. Jedes Tag
besteht daher aus einem Tripel, das wiederum aus der getaggten Revision rt, dem
vollständigen Revisionsinhalt Υt von rt und einem eindeutigen Identifikator nt besteht.

Die eindeutige Identifizierbarkeit eines Revisionsgraphen wird mittels ng sichergestellt.
Hierbei handelt es sich wiederum aus Gründen der Vereinfachung um eine natürliche
Zahl aus N+.

4.4.1.2 Vorgänger-/Nachfolgerbeziehungen

Die Berechnung von Vorgängern beziehungsweise Nachfolgern von Revisionen im Revisi-
onsgraphen kann auf Basis der Menge der angewendeten Änderungen Cg durchgeführt
werden. In Gleichung 4.8 sind die zugehörigen Funktionen für Vorgänger (predG (ry))
und Nachfolger (succG (rx)) definiert. Beide Funktionen geben als Ergebnis eine Menge
von Revisionen aus der Menge der verfügbaren Revisionen Rg zurück. Dies ist notwendig,
da eine Revision auf der einen Seite aufgrund von vorangegangener Zusammenführung
von divergierten Entwicklungszweigen mehrere Vorgänger haben kann, auf der anderen
Seite aber auch mehrere Nachfolger existieren können, da auf Basis der vorliegenden
Revision ein neuer Entwicklungszweig erzeugt wurde.

74

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

predG (ry) :=
{
rx ∈ Rg

∣∣∣ (
rx,ry,C+,C−

)
∈ Cg

}
succG (rx) :=

{
ry ∈ Rg

∣∣∣ (
rx,ry,C+,C−

)
∈ Cg

} (4.8)

4.4.1.3 Pfadgenerierung und Deltawiederherstellung

Der Zugriff auf die Inhalte einzelner Revisionen erfordert Möglichkeiten, um aus den
gespeicherten Deltas zwischen den Revisionen diesen Inhalt wiederherzustellen. Hierfür
sind Mechanismen für die Generierung von Pfaden notwendig, um die Wiederherstellung
durchführen zu können. Gleichung 4.9 stellt die zugehörigen mathematischen Beschrei-
bungen dar. Es handelt sich aufgrund der Technologieunabhängigkeit an dieser Stelle
vor allem um mögliche Interaktionen und die Definition von Rückgabewerten. Ein Pfad
innerhalb eines Revisionsgraphen ist dabei stets als eine Sequenz von Änderungen als
Subset von Cg beschrieben und kann mittels rx →∗ ry dargestellt werden, wobei →∗

angibt, dass eine beliebige Anzahl von Revisionen auf diesem Pfad liegen kann. Die zuge-
hörige Funktion pathG (rx,ry) gibt eine ungeordnete Liste an Elementen aus Cg zurück.
Die Elemente definieren den Pfad zwischen der Startrevision rx und der Zielrevision ry.
Für die Umsetzung können Algorithmen für die Identifizierung von kürzesten Wegen
angewendet werden, wie beispielsweise von Dijkstra [Dij59] beschrieben. Der generierte
Pfad kann anschließend verwendet werden, um die durchgeführten Änderungen nachzu-
verfolgen und den Inhalt einer Revision zurückzugeben, indem die Änderungen auf den
letzten vollständig vorhandenen Inhalt kontinuierlich angewendet werden. Im Folgenden
wird hierfür zur Abstraktion die Funktion getContentG (rx) verwendet.

rx →∗ ry = pathG (rx,ry) ⊆ Cg

pathG (rx,ry) . . . Sequenz von Änderungen von rx zu ry

getContentG (rx) . . . Inhalt von Revision rx

(4.9)

Die Wiederherstellung der Revisionsinhalte kann dabei in unterschiedlichen Richtungen
im Revisionsgraphen vorgenommen werden. So kann beispielsweise von einem Blatt
eines Entwicklungszweiges ausgehend eine vorangegangene Revision oder von der ersten
Revision ausgehend eine nachfolgende Revision wiederhergestellt werden. Ebenso ist
es denkbar, dass eine Kombination der beiden Richtungen auftritt, um eine Revision
wiederherzustellen, wenn divergierte Entwicklungszweige oder Zusammenführungen von
diesen stattgefunden haben. Damit immer eine eindeutige Wiederherstellung möglich
ist, müssen die Änderungen zwischen zwei Revisionen nur das Delta zwischen diesen
beschreiben und dürfen keine Elemente, die bereits existieren, noch einmal hinzufügen
oder bereits gelöschte Elemente noch einmal löschen. Formalisiert ist diese Einschränkung
in Gleichung 4.10 dargestellt. Sie gilt für alle Revisionen des Revisionsgraphen und für alle
Vorgänger-Nachfolger-Beziehungen in diesem Revisionsgraphen. Υx bezeichnet hierbei
den vollständigen Inhalt einer Revision rx, die direkter Vorgänger der Revision ry ist.
Die Änderungen zwischen rx und ry werden mittels (rx,ry,C+,C−) beschrieben.

75

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Υx ∩ C+ = ∅
Υx\C− = ∅

(4.10)

Mit Hilfe der Funktion strip, beschrieben in Gleichung 4.11, können die entsprechen-
den Elemente entfernt werden, bevor die Änderungen dem Revisionsgraphen hinzugefügt
werden, wenn Änderungen vorliegen, die der Definition aus Gleichung 4.10 nicht entspre-
chen. Die Rückgabe ist ein Tupel, bestehend aus den Hinzufügungen und Löschungen, die
der Definition aus Gleichung 4.10 genügen und damit dem Revisionsgraphen hinzugefügt
werden können.

strip
(
Υx,C+,C−

)
:=

(
C+\Υx, C− ∩ Υx

)
=

(
C+

stripped, C−
stripped

) (4.11)

4.4.1.4 Grundlegende Revisionskontrollfunktionalitäten

Für die Interaktion mit dem Revisionsgraphen werden weitere Funktionen benötigt, um
diesen zum einen initial erstellen zu können, jedoch auch, um Änderungen an diesem
durchzuführen. Die im Folgenden dargestellten Funktionen zur Interaktion mit dem
Revisionsgraphen werden direkt auf den gegebenen Revisionsgraphen G angewendet und
geben die modifizierte Instanz G bezeichnet mit G ′ zurück. Notwendige neue Bezeich-
ner werden generiert, indem die Kardinalität der bereits bestehenden Menge um eins
inkrementiert wird.

Initiale Erstellung und Löschung eines Revisionsgraphen Da innerhalb eines Re-
visionsverwaltungssystems mehrere Revisionsgraphen parallel existieren können, wird
zusätzlich eine übergeordnete Menge Γ eingeführt, die alle vorhanden Revisionsgra-
phen vorhält. Die Erstellung eines neuen Revisionsgraphen erfolgt mittels der Funktion
createΓ, wie in Gleichung 4.12 dargestellt. Für diesen initialen Commit können bereits
mögliche Hinzufügungen spezifiziert werden. Das Ergebnis der Funktion ist ein neuer
Revisionsgraph mit einer Revision, einer durchgeführten Änderung und einem neuen
Entwicklungszweig. Die Änderung beschreibt die etwaigen Hinzufügungen, die bei der
Erstellung angegeben werden. Der Entwicklungszweig stellt den master-Zweig dar, der
die erstellte Revision beinhaltet.

createΓ
(
C+

)
:= Γ ∪

{(
{1},

{
(0,1,C+,∅)

}
,
{
({1},1,C+,1)

}
, ∅, |Γ| + 1

)}
= Γ ∪ {(Rg,Cg,Bg,Tg,ng)} = Γ ∪ {G} = Γ′

(4.12)

Für den Fall, dass ein Revisionsgraph vollständig aus dem Revisionsverwaltungssystem
Γ entfernt werden soll, steht die Funktion dropΓ zur Verfügung. Gleichung 4.13 beschreibt
die zugehörige Funktionalität mathematisch. Der durch ng spezifizierte Revisionsgraph
G wird dabei aus der Menge Γ entfernt.

76

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

dropΓ (ng) := Γ \ {G} | G = (Rg,Cg,Bg,Tg,ng)
= Γ′ (4.13)

Erstellung eines neuen Entwicklungszweiges Ein neuer Entwicklungszweig wird er-
stellt, indem die Funktion branchG angewendet wird. Die Vorgehensweise hierfür ist in
Gleichung 4.14 beschrieben. Der neue Entwicklungszweig wird auf Basis der angegebenen
Revision erzeugt. In Bezug auf den Revisionsgraphen wird nur die Menge Bg verändert.
Dieser wird ein neues Quadrupel hinzugefügt, das aus der spezifizierten Revision rx und
dem vollständigen Inhalt Υx von rx besteht, da diese Revision gleichzeitig auch das Blatt
des Zweiges darstellt. Da es sich um das Anlegen eines neuen Zweiges handelt muss des
Weiteren ein neuer Bezeichner generiert werden.

branchG (rx) :=

Rg,

Cg,

Bg ∪
{

({rx},rx,Υx,|Bg| + 1)
}
,

Tg,

ng



∣∣∣∣∣∣∣∣∣
G = (Rg,Cg,Bg,Tg,ng);

Υx = getContentG (rx)

= (Rg,Cg,B′
g,Tg,ng) = G ′

(4.14)

Erstellung eines neuen Tags Analog zur Erstellung von neuen Entwicklungszweigen
können ebenfalls neue Tags mittels tagG erstellt werden. Gleichung 4.15 beschreibt die
notwendigen Änderungen am Revisionsgraphen. Diese beschränken sich auf die Menge
der Tags Tg, die um ein neues Tripel erweitert wird. Das Tripel enthält die spezifizierte
Revision rx, den vollständigen Inhalt Υx von rx und einen neuen Bezeichner für den Tag.

77

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

tagG (rx) :=

Rg,

Cg,

Bg,

Tg ∪
{
(rx,Υx,|Tg| + 1)

}
,

ng



∣∣∣∣∣∣∣∣∣
G = (Rg,Cg,Bg,Tg,ng);

Υx = getContentG (rx)

= (Rg,Cg,Bg,T ′
g,ng) = G ′

(4.15)

Erstellung eines neuen Commits Die Funktion commitG ist eine komplexe Operation,
die Auswirkungen auf die Mengen Rg, Cg und Bg hat. Die durchzuführenden Änderungen
(Hinzufügungen und Löschungen) werden in Bezug auf einen Entwicklungszweig und
damit bezogen auf das Blatt von diesem angegeben. Im Weiteren wird zur Vereinfachung
der Darstellung angenommen, dass diese Änderungen die Definition aus 4.10 erfüllen.
Andernfalls muss vorher die Funktion aus Gleichung 4.11 angewendet werden. Für die
Durchführung des Commits, wie in Gleichung 4.16 dargestellt, muss zuerst eine neue
Revision r∗ erstellt werden, die der Menge Rg hinzugefügt wird. Die Änderung mit den
spezifizierten Hinzufügungen C+ und Löschungen C− zwischen dem Blatt rl und der neuen
Revision r∗ wird der Menge Cg als neues Quadrupel hinzugefügt. Da r∗ dem angegebenen
Entwicklungszweig hinzugefügt werden muss, muss dieser entsprechend aktualisiert
werden. Das wiederum erfordert die Löschung des bestehenden Entwicklungszweiges aus
Bg und der anschließenden Hinzufügung des aktualisierten Quadrupels. Der Bezeichner
nb bleibt unverändert, da es sich um denselben Entwicklungszweig handelt. Die Revision
r∗ wird als neues Blatt hinzugefügt, was die Aktualisierung des vollständigen Inhalts Υl

mit den spezifizierten Änderungen erfordert.

78

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

commitG
(
nb,C

+,C−
)

:=

Rg ∪ {r∗} ,

Cg ∪
{
(rl,r

∗,C+,C−)
}
,

Bg\ {b} ∪
{
(Rb ∪ {r∗} , r∗,

(Υl ∪ C+)\C−, nb)
}
,

Tg,

ng



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

b ∈ Bg;

b = (Rb,rl,Υl,nb);

C+ ∩ C− = ∅;

C+ ∪ C− 6= ∅;

r∗ = |Rg| + 1

= (R′
g,C ′

g,B′
g,Tg,ng) = G ′

(4.16)

Revidieren eines Commits Mit Hilfe der Funktion revertG, wie in Gleichung 4.17
dargestellt, kann ein vorangegangener Commit rückgängig gemacht werden. Die Identi-
fizierung erfolgt mittels dem zugehörigen Entwicklungszweig, da immer nur der letzte
Commit des Entwicklungszweiges rückgängig gemacht werden kann. Da Revisionen zu
mehreren Entwicklungszweigen gehören und mehrere Vorgänger haben können, wird
die vorausgehende Revision rp aus der Menge der möglichen Revisionen Rp herausgefil-
tert. Diese Filterung wird mittels einer Prüfung vorgenommen, die sicherstellt, dass die
vorangehende Revision ebenfalls auf dem angegebenen Entwicklungszweig liegt. Beim
Revidieren erfolgt keine Löschung des vorangegangenen Commits. Die zugehörigen Hin-
zufügungen und Löschungen werden jedoch rückgängig gemacht, indem in einem neuen
Commit die Hinzufügungen gelöscht und die Löschungen hinzugefügt werden. Das erlaubt
auf der einen Seite, dass alle Änderungen weiterhin nachvollziehbar sind und auf der
anderen Seite kann diese Information durch Algorithmen zur Wiederherstellung von
vollständigen Revisionsinhalten genutzt werden. Dadurch kann dieser Wiederherstellungs-
prozess optimiert werden, indem eine Aufeinanderfolge von commitG und revertG im
Rekonstruktionsprozess übersprungen werden kann.

79

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

revertG (nb) :=



Rg ∪ {r∗} ,

Cg ∪
{
(rl,r

∗,C−,C+)
}
,

Bg\ {b} ∪
{
(Rb ∪ {r∗} , r∗,

(Υl ∪ C−)\C+, nb)
}
,

Tg,

ng



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

b ∈ Bg;

b = (Rb,rl,Υl,nb);

predG (rl) = Rp;

rp ∈ Rp ∩ Rb;

(rp,rl,C
+,C−) ∈ Cg;

r∗ = |Rg| + 1

= (R′
g,C ′

g,B′
g,Tg,ng) = G ′

(4.17)

4.4.1.5 Semantische Beschreibung

Die in den vorangegangenen Abschnitten eingeführten Revisionskontrollfunktionalitä-
ten werden im Folgenden semantisch beschrieben (Anforderung A-204). Hierfür werden
Konzepte aus der PROV Ontology (PROV-O) als Grundlage wiederverwendet. Das
zugehörige UML-Modell ist in Abbildung 4.9 dargestellt. Zentrales Element bildet dabei
wie bereits in der mathematischen Beschreibung der RevisionGraph, der einem Revision-
ControlSystem zugeordnet ist. Als zentrales Element hält der RevisionGraph alle Commit-
und Entity-Elemente vor. Einem Commit kann Metainformation zugeordnet werden, wie
beispielhaft mittels einer Nachricht, einem Zeitstempel und einem assoziierten Nutzer
dargestellt. Darüber hinaus ist es ebenfalls möglich, diesem Commit ein Attribut für
Abwärtskompatibilität zuzuordnen. Auf dieses wird innerhalb dieser Arbeit verzichtet, da
nach Heflin und Pan [HP04] die Kennzeichnung, dass eine Änderung abwärtskompatibel
ist, von zusätzlichem Wissen abhängt. Die einzelnen Spezialisierungen des Commits
ermöglichen die Beschreibung der durchgeführten Aktionen, die wiederum den in Ab-
schnitt 4.4.1.4 eingeführten grundlegenden Funktionalitäten entsprechen. Jeder dieser
Spezialisierungen besitzt dabei unterschiedliche assoziierte Elemente, die genutzt werden,
um die durchgeführte Änderung zu beschreiben. Ein used gibt dabei stets an, welche
Revision als Grundlage für die Aktion dient und mittels generated wird das korrespondie-
rende Resultat beschrieben. Entitäten im Revisionsgraphen unterteilen sich in Reference
und Revision. Referenzen beschreiben dabei sowohl Tags als auch Entwicklungszweige
und sind über einen Identifier eindeutig identifizierbar. Jeder Referenz ist außerdem
ein vollständiger Inhalt zugeordnet, der in diesem Fall als eine nicht näher spezifizierte
Menge an Elementen realisiert ist, um die Technologieunabhängigkeit zu gewährleisten.
Revisionen sind im Revisionsgraphen über einen eindeutigen Identifier referenzierbar.

80

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

Die Historie der Revisionen und dementsprechend auch die Vor- und Nachfolgebezie-
hung wird mittels der Assoziationen wasDerivedFrom angegeben. Weiterhin wird den
Commits, die Revisionen erzeugen, ein ChangeSet zugeordnet, das das Delta in Bezug
auf die vorangehende Revision beschreibt. Dieses setzt sich aus einer Referenz zu einem
Add- und einem Delete-Set zusammen, wobei es sich jeweils wiederum um eine nicht
näher spezifizierte Menge an Elementen (Statement) handelt. Das ChangeSet referenziert
außerdem die vorangegangene Revision und die erzeugte Revision, um die Historie zu
beschreiben.

Abbildung 4.9: Semantische Beschreibung der Revisionskontrollfunktionalitäten als UML-
Modell

4.4.2 Aggregation von High-Level-Changes

Mechanismen für die Aggregation von atomaren Änderungen zu High-Level-Changes
(Anforderung A-203) werden unter anderem in [Keh15] und [Pap+13] beschrieben. Im
Folgenden wird von diesen technologiespezifischen Konzepten abstrahiert, um auch
für die weiteren Arbeiten eine technologieunabhängige Grundlage zu schaffen. Hierfür
werden wiederum mathematische und semantische Beschreibungen entwickelt, die sich
in die für die Revisionskontrolle bereits beschriebenen eingliedern. In einer späteren
Umsetzung können dann die bestehenden Möglichkeiten, wie [Keh15] und [Pap+13], für
die Aggregation genutzt werden.

81

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

4.4.2.1 Mathematische Beschreibung

Die Aggregation von atomaren Änderungen zu High-Level-Changes erfolgt mittels der
Funktion hlcAggG, wie in Gleichung 4.18 dargestellt. Ausgangspunkt für die Berechnung
der zugehörigen High-Level-Changes sind die Änderungen zwischen zwei Revisionen rx

und ry. Auf Basis von diesen gibt die Funktion ΦG, beschrieben in Gleichung 4.19, die
High-Level-Changes zurück. Jede dieser Aggregationen besteht aus einem Tripel, das die
verwendeten hinzugefügten und gelöschten Elemente, sowie einen eindeutigen Identifikator
nz beschreibt. Mittels des Kennzeichnens nz kann der erkannten semantischen Änderung
des Weiteren die entsprechende Bedeutung zugeordnet werden. Dies kann beispielsweise
mittels eines Verweises auf den zugrunde liegenden Regelsatz erfolgen. Hierbei stellt
bereits Papavasileiou [Pap+13] nach Klein [Kle04] fest, dass es nicht möglich ist, eine
vollständige Liste an Regeln zu spezifizieren, da es keine allgemeingültige Menge an
Änderungsoperationen gibt, auf denen diese basieren könnte. Die technologiespezifische
Umsetzung von ΦG kann dementsprechend unterschiedliche Ausprägungen besitzen. Je
nach Güte des Regelsatzes ist es möglich, dass alle atomaren Änderungen zu High-Level-
Changes aggregiert werden können oder nach Anwendung der Regeln Elemente bestehen
bleiben, die nicht zuzuordnen sind. Diese verbleibenden Elemente werden in hlcAggG
mittels C+

r und C−
r beschrieben.

hlcAggG (rx,ry) :=

ΦG (rx,ry) ,

C+\
(⋃

C+
subnz

)
,

C−\
(⋃

C−
subnz

)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

∀
(
C+

subnz
,C−

subnz
,nz

)
∈ ΦG (rx,ry) ;

(rx, ry,C+,C−) ∈ Cg

= (ΦG (rx,ry) ,C+
r ,C−

r)

(4.18)

ΦG (rx,ry) =



(
C+

subnz
,C−

subnz
,nz

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

(rx, ry,C+,C−) ∈ Cg;

C+
subnz

⊆ C+; C−
subnz

⊆ C−;

nz ∈ N+


(4.19)

4.4.2.2 Semantische Beschreibung

Das in Abbildung 4.10 dargestellte UML-Modell erweitert die in Abbildung 4.9 ein-
geführte Klasse ChangeSet um die High-Level-Change-Aggregation und stellt damit
die semantische Beschreibung der mathematischen Grundlagen aus Abschnitt 4.4.2.1

82

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

sicher (Anforderung A-204). Es handelt sich dabei um eine Integrationsschnittstelle zur
Integration von Aggregationsmechanismen, wie in [Pap+13] oder [Keh15] präsentiert.
Jedem ChangeSet können beliebig viele SemanticChange-Elemente zugeordnet werden,
die wiederum aus einer Menge an additions und einer Menge an deletions besteht. Hier-
durch können die zugehörigen atomaren Änderungen beschrieben werden, die durch den
beschriebenen SemanticChange aggregiert werden. Die Menge der atomaren Änderungen,
die nicht einem SemanticChange zugeordnet werden können, wird nicht beschrieben, da
die atomaren Änderungen vollständig als Menge vorliegen und daher über Differenzbil-
dung der nicht zuzuordnende Rest berechnet werden kann. SemanticChanges, die sich
gegenseitig aufheben, können mittels der Relation inverts beschrieben werden. Die seman-
tische Beschreibung der einzelnen zu integrierenden Aggregationsmechanismen erfolgt als
Ableitung von SemanticChange, wodurch unterhalb von dieser Klasse die verschiedenen
Ausprägungen beschrieben werden können. Des Weiteren ist es auf der resultierenden
Ebene möglich, auf entsprechende Regelsätze zu verweisen, um die Verknüpfung zwischen
angewendeter Regel und entdecktem High-Level-Change herzustellen.

Abbildung 4.10: Erweiterung der semantischen Beschreibung um die Aggregation von High-
Level-Changes als UML-Modell

4.4.3 Zusammenführung divergierter Entwicklungszweige

Die Zusammenführung von divergierten Entwicklungszweigen (Anforderung A-202) spielt
insbesondere in kollaborativen Umgebungen mit parallelen Entwicklungen eine wichtige
Rolle, um beispielsweise die Ergebnisse vor einer Veröffentlichung wieder zusammen-
führen zu können. In den folgenden Abschnitten werden unterschiedliche Methoden der
Zusammenführung aber auch Lösungen für die Konflikterkennung und -behebung bei
der Zusammenführung beschrieben.

4.4.3.1 Methoden der Zusammenführung

Für die Zusammenführung von divergierten Entwicklungszweigen stehen in Systemen wie
git unterschiedliche Möglichkeiten zur Verfügung. Im Folgenden werden an git und [AM17]

83

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

angelehnte Möglichkeiten zur Zusammenführung technologieunabhängig beschrieben.
Basis bilden dabei die in Abschnitt 4.4.1 eingeführten mathematischen Beschreibungen
des Revisionsgraphen.

3-Wege-Merges Ein weit verbreitetes Szenario bei der Zusammenführung sind so-
genannte 3-Wege-Merges. Die zugehörige Funktion mergeG ist in Gleichung 4.20 be-
schrieben. Dabei wird der Quellentwicklungszweig (bs) in den Zielentwicklungszweig (bt)
zusammengeführt. Das Ergebnis ist eine neue Revision mit zwei Vorgängern, wobei diese
Revision den zusammengeführten Inhalt der beiden Entwicklungszweige darstellt, in dem
alle Konflikte behoben sind. Der Revisionsgraph G wird mittels der neuen Revision r∗

aktualisiert. Für beide betroffenen Entwicklungszweige müssen die notwendigen Änderun-
gen zwischen dem Blatt des Zweiges rls beziehungsweise rlt und r∗ beschrieben werden.
Hierfür wird jeweils ein neues Quadrupel in Cg angelegt. Der Inhalt der Änderungen
ist abhängig von der gewählten Strategie der Zusammenführung und wird an dieser
Stelle mittels der Funktion ΨG, beschrieben in Gleichung 4.21, abstrahiert. Die Funktion
gibt dabei die notwendigen Änderungen für beide Zweige als Tupel zurück, wobei diese
jeweils der Definition aus 4.10 genügen. Für die Realisierung stehen unterschiedliche
Ansätze, wie beispielsweise in [Fai+16] vorgestellt, zur Verfügung. Auf Möglichkeiten zur
Umsetzung wird in Abschnitt 4.4.3.2 eingegangen.

mergeG (nbs ,nbt) :=

Rg ∪ {r∗} ,

Cg ∪
{
(rls ,r

∗,C+
s ,C−

s), (rlt ,r
∗,C+

t ,C−
t)

}
,

Bg\ {bt} ∪
{
(Rbt ∪ {r∗} , r∗,

(Υlt ∪ C+
t)\C−

t , nbt)
}
,

Tg,

ng



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

bs ∈ Bg; bt ∈ Bg;

bs = (Rbs ,rls ,Υls ,nbs);

bt = (Rbt ,rlt ,Υlt ,nbt);

r∗ = |Rg| + 1;

ΨG (nbs ,nbt)

= (R′
g,C ′

g,B′
g,Tg,ng) = G ′

(4.20)

ΨG (nbs ,nbt) =
(
(C+

s ,C−
s),(C+

t ,C−
t)

)
(4.21)

Pick Bereits durchgeführte Änderungen können mittels der Funktion pickG, beschrie-
ben in Gleichung 4.22, wiederverwendet werden. Hierbei werden die bereits durchgeführten
Änderungen, die zu einer Revision rp geführt haben, genutzt und auf das Blatt eines
Entwicklungszweiges b angewendet. Durch die Anwendung der Funktion wird eine neue
Revision r∗ mit den zugehörigen Änderungen zwischen rl und r∗ erzeugt. Es handelt sich

84

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

dabei um eine Kopie der Hinzufügungen und Löschungen, die zur Revision rp geführt
haben. Zur Erfüllung der Definition aus Gleichung 4.10 muss jedoch vorher ein strip in
Bezug auf den vollständigen Inhalt des Blatts Υl durchgeführt werden. Des Weiteren
muss der Entwicklungszweig mit dem neuen Blatt aktualisiert werden. Ein Pick kann
nur durchgeführt werden, wenn die Kardinalität des Vorgängers von rp gleich eins ist.
Zusammengeführte Revisionen können dementsprechend nicht für einen Pick genutzt
werden, da eine zusätzliche Auswahl getroffen werden muss, welche der beiden möglichen
Änderungen genutzt werden sollen.

pickG (rp,nb) :=



Rg ∪ {r∗} ,

Cg ∪
{
(rl,r

∗,C+
s ,C−

s)
}
,

Bg\ {b} ∪
{
(Rb ∪ {r∗} , r∗,

(Υl ∪ C+
s)\C−

s , nb)
}
,

Tg,

ng



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

rp ∈ Rg; |predG (rp) | = 1;

(predG (rp) ,rp,C+,C−) ∈ Cg;

C+
s = C+\Υl;

C−
s = C− ∩ Υl;

b ∈ Bg; b = (Rb,rl,Υl,nb);

r∗ = |Rg| + 1

= (R′
g,C ′

g,B′
g,Tg,ng) = G ′

(4.22)

Das einfache Pick (siehe Gleichung 4.22) kann zu einem Pick erweitert werden, das es
erlaubt, mehrere Revisionen zu spezifizieren, wie in Gleichung 4.23 dargestellt. Als Einga-
begrößen sind hierbei eine geordnete Liste von Revisionen und der Zielentwicklungszweig
notwendig. Anschließend kann der einfache Pick aus Gleichung 4.22 in der durch die
Liste angegebenen Reihenfolge für die einzelnen Revisionen angewendet werden, wie es
in Gleichung 4.23 in Pseudocode angegeben ist.

G = (Rg,Cg,Bg,Tg,ng);
⇀

Rp := [rp1,rp2, . . . ,rpm] ; m ∈ N+;
b ∈ Bg; b = (Rb,rl,Υl,nb)

pickG

(
⇀

Rp,nb

)
:

1 : FOR rp IN
⇀

Rp :

2 : pickG (rp,nb) ;

(4.23)

85

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Fast Forward Die Funktion fastF orwardG ist eine weitere Möglichkeit der Zu-
sammenführung von divergierten Entwicklungszweigen. Sie wird eingesetzt, um die
Revisionshistorie zu glätten und nicht notwendige 3-Wege-Merges zu vermeiden. Ein
Fast Forward ändert dafür den Zeiger eines Entwicklungszweiges auf den Zeiger eines
anderen Entwicklungszweiges. Hierfür muss das Blatt des ersten Zweiges als Revision
auch im zweiten Entwicklungszweig enthalten sein. Gleichung 4.24 gibt hierzu die formale
Beschreibung der durchzuführenden Änderungen am Revisionsgraphen an. Die Mengen
Rg, Cg and Tg bleiben dabei unverändert, da nur der Zeiger angepasst wird. Der Zeiger
des Entwicklungszweigs bt wird dabei auf den Zeiger von bs vorgeschoben. Hierfür müs-
sen alle Revisionen auf dem Pfad vom Blatt rlt zu rls als zugehörige Revisionen zu bt

hinzugefügt, sowie das Blatt und der zugehörige vollständige Inhalt angepasst werden.

fastF orwardG (nbs ,nbt) :=



Rg,

Cg,

Bg\ {bt} ∪
{
(Rbt ∪ P, rls , Υls , nbt)

}
,

Tg,

ng



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

bs ∈ Bg; bt ∈ Bg;

bs = (Rbs ,rls ,Υls ,nbs);

bt = (Rbt ,rlt ,Υlt ,nbt);

rlt ∈ Rbs ;

P := {ry |(rx,ry,C+,C−)

∈ pathG (rlt ,rls)}

= (Rg,Cg,B′
g,Tg,ng) = G ′

(4.24)

4.4.3.2 Konflikterkennung und -behebung

Bei der Zusammenführung von divergierten Zweigen können Konflikte auftreten, die
entsprechend erkannt und behoben werden müssen. Technologiespezifische Lösungen
wurden bereits in vorangegangenen Arbeiten wie [Fai+16; HGU16; Keh15; Pap+13]
entwickelt. Auf Basis dieser Ansätze erfolgt an dieser Stelle die Beschreibung einer tech-
nologieunabhängigen Möglichkeit für die Umsetzung der Gleichung 4.21 zur Spezifikation
der Zusammenführung von zwei Entwicklungszweigen. Wie in [Keh15] und [HGU16]
gefordert, werden dabei auch transiente Effekte in der Revisionshistorie beachtet. Bei
diesen transienten Effekten handelt es sich um Lösch- und Hinzufügeoperationen in der
Revisionshistorie, die vorangegangene Änderungen wiederum rückgängig machen [Keh15].
Die hierfür notwendigen mathematischen Grundlagen basieren auf [HGU16] und werden
im Folgenden in das mathematische Gesamtgefüge dieser Arbeit eingegliedert.

86

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

Nachvollziehung von transienten Effekten auf atomarer Änderungsebene Beim
Vergleich der Revisionshistorien von zwei Entwicklungszweigen können die einzelnen
Elemente auf Ebene der atomaren Änderungen die in Gleichung 4.25 dargestellten Status
aufweisen. Dieser Status kann entweder gelöscht (−), hinzugefügt (+) oder keine Änderung
erfahren (0) sein. In K ist des Weiteren der Status nicht enthalten (∅) aufgeführt, dieser
kommt jedoch erst beim Vergleich von zwei Entwicklungszweigen zur Anwendung und
ist an dieser Stelle nur zur vereinfachten mathematischen Definition mit aufgeführt.

K := {− = “Gelöscht”,

0 = “Keine Änderung erfahren”,

+ = “Hinzugefügt”
∅ = “Nicht enthalten”}

(4.25)

Die Parameter von ΨG (nbs ,nbt) stellen die beiden Identifikatoren der zusammenzufüh-
renden Entwicklungszweige dar. Somit kann im Folgenden davon ausgegangen werden,
dass bs = (Rbs ,rls ,Υls ,nbs) und bt = (Rbt ,rlt ,Υlt ,nbt) gilt. Um die Änderungen zwischen
den beiden Entwicklungszweigen vergleichen zu können, muss im ersten Schritt eine
gemeinsame Vorgängerrevision gefunden werden. Zur Vereinfachung wird angenommen,
dass die in Gleichung 4.26 dargestellte Funktion die Revision rc ∈ Rg zurückgibt.

getCommonAncestorG (nbs ,nbt) = rc (4.26)

Mit dem berechneten rc kann im Anschluss die in Gleichung 4.9 beschriebene Funktion
zur Berechnung des Pfades zwischen zwei Revisionen wiederverwendet werden. Entspre-
chend wird diese Funktion für beide Entwicklungszweige angewendet, um die jeweilige
Sequenz an Änderungen zu erhalten. Das Ergebnis sind die beiden in Gleichung 4.27
dargestellten Mengen Cpaths und Cpatht .

pathG (rc,rls) = Cpaths ⊂ Cg

pathG (rc,rlt) = Cpatht ⊂ Cg

(4.27)

Zu Beginn des anschließenden Nachvollziehens der Änderungen muss auf Basis des
Inhaltes der gemeinsamen Revision rc eine Startmenge ΩStart für jeden Zweig gebildet
werden. Im Anschluss erfolgt auf diese Menge die Anwendung der einzelnen Änderun-
gen über den gebildeten Pfad hinweg. Die Startmenge setzt sich aus dem Inhalt von
enthaltenen Statements und dem initialen Zustand keine Änderung erfahren zusammen.
Dieser Zustand ist unabhängig von der vorangehenden Revisionsgeschichte, da rc den
Ausgangspunkt bildet. In Gleichung 4.28 ist die zugehörige mathematische Beschreibung
angegeben.

ΩStarts = ΩStartt = {(s,0) ∈ (S × K)|s ∈ getContentG (rc)} (4.28)

87

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Für die Aktualisierung der jeweiligen Zustände stehen die in Gleichung 4.29 dargestell-
ten Funktionen add(Ω,s) und del(Ω,s) zur Verfügung. Durch diese kann der Zustand
eines Statements aktualisiert werden. Basis bildet das vorangehende Ω auf dem Pfad be-
ziehungsweise der Revision. In Gleichung 4.30 ist hierfür das allgemeine Verfahren für die
Anwendung von allen Änderungen einer Revision ryn mittels der Funktion F dargestellt.
Im Folgenden gilt, dass N+

0 der Menge der natürlichen Zahlen größer gleich Null entspricht.
Die Änderungen werden durch ein entsprechendes Element Cn = (rxn ,ryn ,C+

n ,C−
n) aus

dem erstellten Pfad vorgenommen, wobei n ∈ N+
0 und im Bereich 0 ≤ n ≤ |Cpaths | − 1

beziehungsweise 0 ≤ n ≤ |Cpatht| − 1 liegt. Falls das C+
n beziehungsweise C−

n gleich
der leeren Menge ist, so wird die Anwendung von add(Ω,s) beziehungsweise del(Ω,s)
übersprungen. Die Anzahl der Funktionsaufrufe ergibt sich aus der Anzahl der Elemente
in C+

n und C−
n . Hierfür gilt für C+

n , dass ā = |C+
n |, s+

a ∈ C+
n im Bereich 0 ≤ a ≤ ā − 1,

wobei a ∈ N+
0 . Analog gilt für C−

n , dass d̄ = |C−
n |, s−

d ∈ C−
n im Bereich 0 ≤ d ≤ d̄ − 1,

wobei d ∈ N+
0 . Die Anwendung entlang des Pfades ist in Gleichung 4.31 beschrieben.

Die einzelnen Cn werden dabei entlang des Pfades, gestartet bei Revision rc, geordnet
verwendet, um die Historie entsprechend abbilden zu können. Dieses Vorgehen muss für
beide Entwicklungszweige mit Cpaths und Cpatht angewendet werden.

add(Ω,s) : P(S × K) × S → P(S × K) :
Ω 7→ (Ω\{(s,−),(s,0)}) ∪ {(s,+)}

del(Ω,s) : P(S × K) × S → P(S × K) :
Ω 7→ (Ω\{(s,+),(s,0)}) ∪ {(s,−)}

(4.29)

FCn
(Ω) = add(...(add(del(...(del(Ω,s−

0),...),s−
d̄−1),s

+
0),...),s+

ā−1) (4.30)

ΩEnd = (FCn−1 ◦ FCn−2 ◦ ... ◦ FC0)(ΩStart) (4.31)

Erkennung struktureller Konflikte Auf Basis, der im vorangegangenen Abschnitt be-
schriebenen Nachvollziehung der transienten Effekte können bereits Konflikte erkannt wer-
den. Hierfür müssen die beiden resultierenden ΩEnd von Quell- und Zielentwicklungszweig
miteinander verglichen werden. Je nach Anwendungsfall ist hierbei zu definieren, welche
gegenläufigen Änderungen einen Konflikt hervorrufen, wie beispielsweise in [HGU16]
dargestellt. Hieraus kann eine allgemeine Konfliktbeschreibungsmatrix abgeleitet werden,
die in Abbildung 4.11 dargestellt ist.

Die einzelnen Status von Quell- und Zielentwicklungszweig beziehen sich auf die
möglichen Status aus Gleichung 4.25. Durch die gegebenen Definitionen für die Erstellung
von ΩEnd und die allgemeinen Definitionen zur Beschreibung der Revisionskontrolle ist
es nicht möglich, dass die Kombination bestehend aus ∅ und 0 auftritt. Dies gilt, da
immer von einer gemeinsamen Revision der beiden zu vergleichenden Entwicklungszweige
ausgegangen wird und damit ein Element entweder in dieser Revision enthalten ist oder

88

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

Abbildung 4.11: Allgemeine Konfliktbeschreibungsmatrix (in Anlehnung an [HGU16, S. 7])

nicht. Bei der Nachvollziehung über die weitere Historie hinweg kann der Status nur durch
die Funktionen aus Gleichung 4.29 verändert werden. Dabei sind nur Aktualisierungen
auf die Status − und + möglich. Die Kombinationen, bei denen der jeweilige Status
eines Elementes gleich ist, geben an, dass bei diesen Elementen kein Unterschied vorliegt.
Insbesondere wenn die Status gleich ∅ beziehungsweise 0 sind, haben die Elemente
keinerlei Änderungen in der betrachteten Historie erfahren. Alle weiteren Kombinationen,
die in Abbildung 4.11 mit einem Fragezeichen gekennzeichnet sind, weisen hingegen
auf einen Unterschied zwischen Quell- und Zielentwicklungszweig hin. An dieser Stelle
kann je nach Anwendungsfall entschieden werden, was davon einen Konflikt darstellt.
Unter Umständen kann auch auf dieser Ebene definiert werden, wie der entsprechende
Konflikt behoben werden kann. Die folgende Gleichung 4.32 ermöglicht die Definition
dieser Regeln als ein Quadrupel. Mittels ks und kt können die Status für Quell- und
Zielentwicklungszweig angegeben werden. Die Angabe q ermöglicht die Spezifikation,
ob es sich um einen Konflikt handelt (q = 1), der eventuell manuell nachbearbeitet
werden muss, oder um einen Unterschied (q = 0), der automatisch behoben werden kann.
Für eine automatische Behebung wird des Weiteren der resultierende Status benötigt,
der durch kr beschrieben wird. Es handelt sich dabei um ein Subset von K, da für die
zusammengeführte Revision beschrieben werden muss, ob das Element enthalten sein
soll oder nicht. Dafür eignen sich die Status + beziehungsweise − aus K.

Q = {(ks, kt, q, kr)|ks, kt ∈ K; q ∈ {0,1}; kr ∈ {−,+} ⊂ K} (4.32)

Abbildung 4.12 zeigt ein Beispiel für eine Unterscheidung von reinen Unterschieden mit
der Möglichkeit einer automatischen Konfliktlösung und Konflikten, die einen manuellen
Eingriff erfordern. In dem aufgeführten Beispiel sind die resultierenden Status bei der
Detektion von Unterschieden vermerkt. Konflikte, die nicht automatisch behoben werden
können, sind mit einem Kreuz markiert. An dieser Stelle ist anzumerken, dass es ebenso

89

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

möglich wäre, an diesen Stellen einen resultierenden Status anzugeben, wenn dies der
jeweilige Anwendungsfall zulässt.

Abbildung 4.12: Beispiel für Umsetzung der Konfliktbeschreibungsmatrix mit Konfliktlösung
(in Anlehnung an [HGU16, S. 7])

In Anlehnung an [HGU16] kann auf Basis der vorangegangenen mathematischen
Definitionen die Erkennung von Unterschieden beziehungsweise Konflikten definiert
werden. Hierfür werden im ersten Schritt alle Elemente herausgefiltert, die in den beiden
zu vergleichenden Historien den gleichen Status aufweisen. Die resultierenden Mengen
Ds und Dt sowie deren Berechnungsvorschrift ist in Gleichung 4.33 beschrieben.

Ds = ΩEnds\(ΩEnds ∩ ΩEndt)
Dt = ΩEndt\(ΩEnds ∩ ΩEndt)

(4.33)

Die Kardinalität der beiden Mengen Ds und Dt kann unterschiedlich sein. Zur Verringe-
rung der Komplexität der notwendigen mathematischen Operationen werden daher beide
Mengen auf die gleiche Kardinalität erweitert. Dies ist möglich, indem jede der Mengen
um die Elemente erweitert wird, die nur in der anderen Menge enthalten sind. Als Status
wird dabei ∅ vergeben. Die formale Erweiterung ist in Gleichung 4.34 dargestellt.

D̃s = {(s,∅) ∈ (S × K)|(s,g) ∈ Dt ∧ (s,h) /∈ Ds; s ∈ S;
g ∈ K; h ∈ K; g beliebig; h beliebig} ∪ Ds

D̃t = {(s,∅) ∈ (S × K)|(s,g) ∈ Ds ∧ (s,h) /∈ Dt; s ∈ S;
g ∈ K; h ∈ K; g beliebig; h beliebig} ∪ Dt

(4.34)

Durch die Erweiterung der Mengen auf die gleiche Kardinalität kann im Folgenden die
Gleichung 4.35 angewendet werden. Bei dieser handelt es sich um die Zusammenführung
der Mengen D̃s und D̃t zu einer gemeinsamen Menge, die aus Tripeln besteht. Diese Tripel

90

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

beinhalten an erster Stelle das Element, gefolgt von den beiden Status des Elementes
auf dem Quell- und dem Zielentwicklungszweig. Auf dieser Ergebnismenge können
dann wiederum Regelsätze angewendet werden, wie sie bereits beispielhaft anhand der
Konfliktbeschreibungsmatrix aufgeführt wurden, um aus den Unterschieden entsprechende
Ergebnismengen für die Zusammenführung abzuleiten.

DDiff = {(s,ks,kt) ∈ (S × K × K)}|(s, ks) ∈ D̃s ∧ (s, kt) ∈ D̃t} (4.35)

Der in Gleichung 4.32 beschriebene Regelsatz kann im Folgenden auf die Ergebnis-
menge aus Gleichung 4.35 angewendet werden, um eine automatische Konflikterkennung
durchzuführen. Es resultiert die Menge DQ, die aus Quadrupeln besteht und in Gleichung
4.36 dargestellt ist. Diese beschreibt zu jedem Element s die zugehörigen Status, ob es
sich um einen Konflikt handelt und was der resultierende Status ist.

DQ = {(s, ks, kt, q, kr)|(ksQ
, ktQ

, q, krq) ∈ Q;
(s, ks, kt) ∈ DDiff ; ks = ksQ

; kt = ktQ
}

(4.36)

Nachvollziehung von transienten Effekten auf High-Level-Ebene Neben transienten
Effekten auf atomarer Änderungsebene können solche Effekte auch auf High-Level-
Ebene vorkommen. Unter anderem können auf Basis von High-Level-Änderungen in
vorangegangenen Revisionen wiederum Änderungen durchgeführt werden, die Einfluss
auf eine anschließende Konflikterkennung und -behebung haben können, da resultierende
Konflikte auf atomarer Ebene nicht festgestellt werden können. Für die Analyse der
High-Level-Changes müssen diese entlang der zusammenzuführenden Pfade im ersten
Schritt aus den atomaren Änderungen heraus aggregiert werden. Demzufolge ist es
wiederum notwendig, eine gemeinsame Vorgängerrevision und die resultierenden Pfade zu
generieren. Hierfür können die bereits in Gleichung 4.26 und Gleichung 4.27 eingeführten
Definitionen als Ausgangspunkt wiederverwendet werden.

Basierend auf den vorliegenden Pfaden Cpaths und Cpatht wird die Aggregation vor-
genommen. Gleichung 4.37 beschreibt das notwendige Vorgehen. Den in den Pfaden
beschriebenen Änderungen werden, wenn möglich, High-Level-Changes zugeordnet. Da
diese nach Gleichung 4.18 keine Zuordnung zu den korrespondierenden Revisionen mehr
besitzen, werden diese jeder Aggregation zugeordnet, was eine nachträgliche Identifikation
ermöglicht.

hlcP athAggG (Cpath) :=
(rxn , ryn ,hlcAggG (rxn ,ryn))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

n ∈ N+
0 ; 0 ≤ n ≤ |Cpath| − 1;

(rxn , ryn ,C+
n ,C−

n) ∈ Cpath


(4.37)

91

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Im Folgenden werden durch Nutzung der Gleichung 4.37 Überschneidungen zwischen
den erkannten High-Level-Changes detektiert. Gleichung 4.38 stellt die zugehörigen
Vorschriften dar. Eine Abhängigkeit beziehungsweise eine aufeinander aufbauende Weiter-
entwicklung zwischen zwei High-Level-Changes wird erkannt, wenn es eine Schnittmenge
zwischen der Menge der hinzugefügten Elemente und der Menge der gelöschten Elemente,
der zu prüfenden High-Level-Changes, gibt. Ergebnis der Funktion intersecG (Cpath)
ist eine Menge an Tupeln, die die aufgedeckten Abhängigkeiten der High-Level-Changes
beschreibt. Für die Beschreibung werden Tupelbeziehungen genutzt, aus denen wiederum
ein Abhängigkeitsbaum abgeleitet werden kann.

intersecG (Cpath) :=

((rxa , rya ,ha) ,

(rxb
, ryb

,hb))

∣∣∣

G = (Rg,Cg,Bg,Tg,ng);

a ∈ hlcP athAggG (Cpath) ;

b ∈ hlcP athAggG (Cpath) ; a 6= b;

a =
(
rxa ,rya ,

(
ΦG (rxa ,rya) ,C+

ra
,C−

ra

))
;

b =
(
rxb

,ryb
,
(
ΦG (rxb

,ryb
) ,C+

rb
,C−

rb

))
;

ha ∈ ΦG (rxa ,rya) ;

hb ∈ ΦG (rxb
,ryb

) ;

ha =
(
C+

subnza
,C−

subnza
,nza

)
;

hb =
(
C+

subnzb
,C−

subnzb
,nzb

)
;(

C+
subnza

∩ C−
subnzb

)
∪

(
C−

subnza
∩ C+

subnzb

)
6= ∅



(4.38)

Erkennung von High-Level-Konflikten Die Erkennung von High-Level-Konflikten ist
von dem verfügbaren Regelsatz für die Erkennung von High-Level-Changes und zusätzli-
chem Wissen über mögliche Konflikte beim Auftreten von Änderungen auf unterschiedli-
chen Entwicklungszweigen abhängig. Da es sich dabei um technologiespezifisches Wissen
handelt, wird an dieser Stelle nicht auf eine formale Beschreibung eingegangen. Auf Basis
der Aufbereitung der strukturellen Änderungen mithilfe der Gleichungen 4.18, 4.37 und
4.38 sind jedoch unterschiedliche Szenarien für die Konflikterkennung möglich, wie unter
anderem:

92

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

• Analyse entlang des Pfades hat keine Abhängigkeiten zwischen den High-Level-
Changes festgestellt:

– Konflikterkennung ist auf der Ebene der einzelnen High-Level-Changes möglich

• Analyse entlang des Pfades hat Abhängigkeiten zwischen den High-Level-Changes
festgestellt:

– Konflikterkennung ist auf der Ebene der einzelnen High-Level-Changes inner-
halb der Pfade möglich

– Konflikterkennung ist auf der Ebene von Sequenzen von abhängigen High-
Level-Changes innerhalb der Pfade möglich

– Konflikterkennung ist auf der Ebene von Sequenzen von abhängigen High-
Level-Changes und einzelnen High-Level-Changes innerhalb der Pfade möglich

– Konflikterkennung ist auf der Ebene der Gesamtpfade möglich.
Es existieren weitere Szenarien, die die Kombination der bereits aufgeführten Mög-

lichkeiten unterstützten. Hierzu gehört beispielsweise die Zusammenführung von einem
Entwicklungszweig, der keine Abhängigkeiten aufweist, mit einem Entwicklungszweig,
der mehrere Abhängigkeitspfade besitzt.

Bei dem Vergleich von Entwicklungszweigen auf einer High-Level-Ebene müssen Korre-
spondenzen zwischen den zu vergleichenden High-Level-Changes gefunden werden. Diese
Korrespondenzen sind einerseits aus den Abhängigkeitspfaden ableitbar, wobei ausgehend
von der gemeinsamen Ausgangsrevision eine Analyse entlang der Pfade durchgeführt
werden kann. Andererseits ist es ebenfalls möglich, ein charakteristisches Element für
eine jede High-Level-Change-Aggregationsregel zu definieren. Mit diesem Element kann
dann ein Vergleich von aggregierten High-Level-Changes vom gleichen Typ durchgeführt
werden. Beim Vergleich von Abhängigkeitssequenzen können des Weiteren Invertie-
rungsbeziehungen zwischen High-Level-Changes beachtet werden, wodurch zusätzliche
Konfliktmöglichkeiten ausgeschlossen werden können.

Konfliktbehebung Die Konfliktbehebung kann auf Basis, der in den vorangegangenen
Abschnitten beschriebenen Methoden zur Erkennung von Unterschieden und Konflikten
bei der Zusammenführung von Entwicklungszweigen durchgeführt werden. Im Wesentli-
chen bestehen zwei Möglichkeiten, um einen Konflikt zu beheben. Im ersten Fall muss
ein Nutzer den Konflikt auf Basis der vorliegenden Information beheben. Im zweiten Fall
kann durch die Analyse der Unterschiede und der bereitgestellten Regelsätze automa-
tisch eine Konfliktlösung abgeleitet werden. Für eine automatische Konfliktlösung kann
beispielsweise eine Priorisierung auf Nutzer- oder Entwicklungszweigebene erfolgen, um
daraus die resultierenden Schritte für die Zusammenführung abzuleiten.

4.4.3.3 Semantische Beschreibung

Die in Abbildung 4.9 aufgeführte semantische Beschreibung für die Basisrevisionskon-
trollfunktionalitäten wird im Folgenden um die Möglichkeiten der Zusammenführung
erweitert (Anforderung A-204). Abbildung 4.13 zeigt das zugehörige UML-Modell.

93

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Abbildung 4.13: Semantische Beschreibung der Mergefunktionalitäten als UML-Modell (erwei-
tert Abbildung 4.9)

Die semantische Beschreibung der im Abschnitt 4.4.3.1 eingeführten Methoden er-
folgt durch Ableitung vom bereits existierenden Commit. Jeder MergeCommit hat
dabei eine Referenz zu dem genutzten Zielentwicklungszweig (usedTargetBranch), auf
den die Änderungen angewendet werden. Des Weiteren wird jeweils eine Zielrevision
(usedTargetRevision) angegeben, die den Ausgangspunkt für die Anwendung der Ände-
rungen darstellt. Für 3-Wege-Merges und Fast Forwards wird jeweils eine Quellrevision
(usedSourceRevision) angegeben. Ebenso wird immer nur eine neue Revision mit dem
zusammengeführten Inhalt generiert. Bei einem Pick können hingegen mehrere Quellre-
visionen spezifiziert werden, wodurch demzufolge auch mehrere generierte Revisionen
entstehen. Hieraus resultiert gleichzeitig auch die Notwendigkeit, die Beziehung zwi-
schen der Ausgangsrevision und der erzeugten, kopierten Revision darzustellen. Dies
erfolgt mittels der Assoziation wasQuotedFrom. Für 3-Wege-Merges müssen aufgrund
der Zusammenführung von zwei Entwicklungszweigen auch zwei ChangeSets angelegt
werden, um die Historie entlang beider Zweige darstellen zu können. Ein Pick kann je
nach Anzahl der kopierten Revisionen mehrere ChangeSets referenzieren. Da ein Pick
auf Revisionen von unterschiedlichen Entwicklungszweigen zugreifen kann, besitzt dieses

94

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.4 Änderungsmanagement

keine Referenz auf den Quellentwicklungszweig (usedSourceBranch), wie Fast Forwards
und 3-Wege-Merges.

Abbildung 4.14 erweitert die bestehenden Abbildungen 4.9 und 4.10 um die semantische
Beschreibung der Konflikterkennung und -behebung. Hierfür wird eine neue Klasse Dif-
ference eingeführt, die kennzeichnet, ob es sich um einen konfliktbehafteten Unterschied
handelt oder nicht. Es stehen zwei mögliche Ausprägungen zur Verfügung. Struktu-
relle Unterschiede können mittels StructuralDifference und High-Level-Unterschiede
können mittels HighLevelDifference beschrieben werden. Strukturelle Unterschiede sind
durch sourceState (Status in Quellentwicklungszweig), targetState (Status in Zielent-
wicklungszweig), ResolutionState (Status für eine regelbasierte Konfliktlösung) und
correspondingStatement (Element auf das sich der Unterschied bezieht) gekennzeichnet.

Abbildung 4.14: Semantische Beschreibung der Konflikterkennung und -behebung als UML-
Modell (erweitert Abbildungen 4.9 und 4.10)

Die einzelnen Status beziehen sich auf eine Enumeration an Möglichkeiten, die die Sta-
tus aus Gleichung 4.25 widerspiegeln. High-Level-Unterschiede setzen sich aus einer Menge
von High-Level-Changes (HighLevelChange) in Bezug auf Quell- und Zielentwicklungs-
zweig zusammen. Des Weiteren kann eine Konfliktlösung spezifiziert werden, die unter
Umständen auch aus mehreren SemanticChanges bestehen kann. Jedem HighLevelChange
ist ein korrespondierender SemanticChange sowie eine Vorgänger- (priorRevision) und
eine Nachfolgerrevision (succeedingRevision) zugeordnet. Mittels der Assoziation updates
können die Abhängigkeiten zwischen den einzelnen HighLevelChanges innerhalb eines

95

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

Pfades beschrieben werden. Ein HighLevelChangePath besteht aus mindestens zwei
HighLevelChanges.

4.5 Evolutions- und Konsistenzmechanismen

In diesem Abschnitt erfolgt die Erweiterung des technologieunabhängigen Revisionskon-
trollsystems um Evolutions- und Konsistenzmechanismen, die für die Realisierung eines
RMS notwendig sind. Grundlage bilden hierfür die mathematischen und semantischen
Beschreibungen aus den vorangehenden Abschnitten. Insbesondere wird auf den Basisrevi-
sionskontrollfunktionalitäten, der Aggregation von High-Level-Changes und der formalen
Beschreibung verbindungsorientierter Modelle aufgesetzt. Die nachfolgenden Definitionen
beschreiben hierbei wiederum ein Integrationsschema, in das unterschiedliche technolo-
giespezifische Regelsätze und Algorithmen zur Durchführung von Evolutionen, wie zum
Beispiel in [Keh15], [Sto04], [Pap+13] oder [AH06] dargestellt, integriert werden können.
Für die semantische Beschreibung werden UML-Modelle verwendet, wobei bereits in
vorhergehenden Abschnitten definierte Elemente wiederum grau hervorgehoben werden.

4.5.1 Evolutionsmechanismen

Ausgehend von einem Beispiel der Co-Evolution innerhalb des RMS wird im Folgenden
die notwendige Revisionsgraphenstruktur vorgestellt. Anschließend werden die mathema-
tischen sowie semantischen Beschreibungen für die Co-Evolution dargelegt (Anforderung
A-301).

4.5.1.1 Integration in RMS

Für die Durchführung von Co-Evolutionen innerhalb des RMS wird auf die Basisre-
visionskontrollfunktionalitäten zurückgegriffen. Abbildung 4.15 zeigt ein Beispiel für
die Strukturierung der beteiligten Revisionsgraphen innerhalb des RMS. Darin wird
davon ausgegangen, dass zwei voneinander abhängige Modelle in unterschiedlichen Re-
visionsgraphen im Revisionsverwaltungssystem existieren. Die Verbindungen zwischen
den Modellen werden wiederum in einem weiteren Revisionsgraphen gespeichert. Des
Weiteren existiert ein Revisionsgraph, der durchgeführte Co-Evolutionen dokumentiert
und ein Revisionsgraph mit Regelsätzen, die zum Beispiel für die Aggregation von
High-Level-Changes oder die Anwendung von Co-Evolutionen verwendet werden können.

Durch die Evolution des Revisionsgraphen von Modell 1 wird automatisiert analysiert,
ob eine Co-Evolution erforderlich ist. Hierfür werden die im Revisionsgraph Verbindungen
vorgehaltenen Verbindungen analysiert, um abhängige Revisionsgraphen zu identifizieren.
In dem dargestellten Beispiel existieren Abhängigkeiten zwischen Modell 1 und Modell
2. Auf Basis der Aggregation der durchgeführten Änderungen am Modell 1 wird unter
Nutzung der Regelsätze eine notwendige Co-Evolution durchgeführt. Diese resultiert
in einer neuen Revision von Modell 2 und der Erzeugung einer neuen Revision im
Revisionsgraphen Co-Evolution, um die durchgeführten Änderungen semantisch zu
beschreiben. Hierzu gehören Referenzen auf die bisherigen sowie die neuen Stände von

96

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.5 Evolutions- und Konsistenzmechanismen

Abbildung 4.15: Beispiel für die Umsetzung einer Co-Evolution innerhalb des RMS

Modell 1 und Modell 2, die genutzten Verbindungen sowie die angewendeten Regelsätze
für Aggregation und Co-Evolution.

Generell können innerhalb des RMS unterschiedliche Strukturierungen der Revisions-
graphen vorgenommen werden. So können zum Beispiel Informations- und Datenmodelle
innerhalb eines oder in unterschiedlichen Revisionsgraphen vorgehalten werden. Für die
Beschreibung der Verbindungen kann entweder ein eigener Revisionsgraph verwendet
werden, wodurch zum Beispiel Abhängigkeiten zwischen unterschiedlichen Datenmodellen
gepflegt werden können. Es ist jedoch ebenso möglich, dass die Verbindungen direkt in den
Datenmodellen enthalten sind. So können unter anderem Typ-Instanzbeziehungen direkt
in den Datenmodellen abgebildet werden, indem auf die zugehörigen Informationsmodelle
referenziert wird. Die Co-Evolution wird innerhalb des RMS jeweils in einem eigenen
Revisionsgraphen dokumentiert, da hierdurch Eingriffe in die zu pflegenden Modelle
vermieden werden und die Co-Evolution eine eigene Revisionshistorie besitzt. Regelsätze
sollten mit einem Verweis auf den genutzten Stand ebenfalls semantisch referenzierbar
sein.

97

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

4.5.1.2 Mathematische Beschreibung

Für die im vorangegangenen Abschnitt eingeführte semantische Beschreibung der durch-
geführten Co-Evolution wird ein entsprechender Revisionsgraph Ge benötigt. Gleichung
4.39 gibt die zugehörige Vorschrift für die Erstellung an. Der resultierende Revisionsgraph
beinhaltet nur einen master-Zweig, auf dem die Historie der Co-Evolution beschrieben
wird.

createΓ (∅) = Γ ∪ {Ge} = Γ′ (4.39)

Grundlage für die Durchführung einer Co-Evolution sind Änderungen an einem Modell,
das Abhängigkeiten zu anderen Modellen aufweist. Daher wird im Folgenden angenom-
men, dass bereits ein oder mehrere Commits auf einen entsprechenden Revisionsgraphen
durchgeführt wurden. Darauf aufbauend kann die Funktion coevolveAllΓ (Gs,rxs ,rys)
genutzt werden, um die Änderungen in Form von Co-Evolutionen an alle abhängigen Mo-
delle in Γ zu propagieren. Bei dieser Funktion handelt es sich um eine aufeinanderfolgende
Ausführung von mehreren Funktionen. Zu den verwendeten Funktionen gehören auf der
einen Seite Basisrevisionskontrollfunktionalitäten, wie in den vorangehenden Abschnitten
beschrieben, aber auf der anderen Seite auch spezifische Funktionen der Co-Evolution. Des
Weiteren müssen Parameter für die Ausführung der Funktion spezifiziert werden. Dazu
zählen der Quellrevisionsgraph Gs und die Startrevision rxs und Endrevision rys , zwischen
denen die durchgeführten Änderungen untersucht werden sollen. Die zu co-evolvierenden
Änderungen werden im ersten Schritt zu High-Level-Changes aggregiert. Hierfür wird
die Funktion hlcAggG aus Gleichung 4.18 verwendet. Als Parameter erhält diese den
Quellrevisionsgraph sowie Start- und Endrevision. Das Ergebnis der Aggregation wird in
der Variablen hGs gespeichert. Die Abhängigkeit der durchgeführten Änderungen wird
unter Nutzung von hGs und den beschriebenen Verbindungen in Revisionsgraphen von
Γ abgeleitet. Die Funktion calcDepΓ (Gs,rxs ,rys ,hGs) stellt die dafür benötigte Funk-
tionalität bereit. Die Realisierung ist dabei wiederum vom konkreten Anwendungsfall
und den zugrunde liegenden Regelsätzen für die Erkennung von Abhängigkeiten abhän-
gig. Abhängigkeiten können dabei sowohl auf einer sehr abstrakten Ebene oder auf die
Domäne zugeschnitten spezifiziert werden. Die generelle Definition der Funktion mit
der zugehörigen Ergebnismenge ist in Gleichung 4.40 aufgeführt. Die Ergebnismenge
setzt sich aus Tupeln zusammen, die abhängige Entwicklungszweige und den zugehörigen
Revisionsgraphen angeben.

calcDepΓ (Gs,rxs ,rys ,hGs) :=


(Gt,nbt)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Gt ∈ Γ;

Gt = (Rgt ,Cgt ,Bgt ,Tgt ,ngt);

bt ∈ Bgt ;

bt = (Rbt ,rlt ,Υlt ,nbt)


(4.40)

98

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.5 Evolutions- und Konsistenzmechanismen

Die eigentliche Durchführung der Co-Evolution erfolgt mittels entsprechender Commits
auf die abhängigen Entwicklungszweige der jeweiligen Revisionsgraphen. Hierfür steht die
in Gleichung 4.41 definierte Funktion coevolveΓ (hGs ,Gt,nbt) zur Verfügung. Diese aktua-
lisiert den Zielrevisionsgraphen, indem eine neue Revision auf dem Zielentwicklungszweig
angelegt wird, in der die notwendigen Änderungen zur Umsetzung der Co-Evolution
durchgeführt werden. Die Berechnung der zugehörigen Hinzufügungen und Löschungen
wird mittels E (hGs ,Gt,nbt), beschrieben in Gleichung 4.42, vorgenommen. Die Realisierung
basiert dabei auf den Regelsätzen und Algorithmen der Co-Evolution, wie zum Beispiel
in [Keh15] oder [Sto04] beschrieben. Für die Integration in das Gesamtsystem werden
dabei die bereits detektierten High-Level-Changes als Grundlage für die Umsetzung der
Regelsätze verwendet.

coevolveΓ (hGs ,Gt,nbt) := (Γ\ {Gt}) ∪ {commitGt
(nbt ,E (hGs ,Gt,nbt))}

= Γ′ (4.41)

E (hGs ,Gt,nbt) = (C+,C−) (4.42)
Gleichung 4.43 fasst den Ablauf der Funktion coevolveAllΓ (Gs,rxs ,rys) zusammen.

Nach der High-Level-Change-Aggregation wird eine leere Menge Z definiert, die für
die temporäre Speicherung der durchgeführten Änderungen verantwortlich ist. In der
folgenden Schleife werden für alle gefundenen Abhängigkeiten Co-Evolutionen durchge-
führt und jeweils der entsprechende Revisionsgraph durch einen Commit aktualisiert. Die
durchgeführte Änderung mit allen genutzten Variablen wird dann zu Z hinzugefügt. Die
Variable rlt gibt hierbei die neu erstellte Revision an, die identisch zum Blatt des Ent-
wicklungszweiges bt ist. Der Entwicklungszweig bt wird mittels nbt identifiziert. Nachdem
die Co-Evolution für alle Abhängigkeiten durchgeführt wurde, wird Ge aktualisiert, wofür
Z die Grundlage bildet. Diese Menge der durchgeführten Änderungen wird mittels der
Funktion Ξ(Z) in die semantische Beschreibung mit den zugehörigen Hinzufügungen und
Löschungen überführt. Alle Änderungen werden dabei auf den master-Zweig geschrieben.

coevolveAllΓ (Gs,rxs ,rys) :

1 : hGs = hlcAggGs
(rxs ,rys) = (ΦGs

(rxs ,rys) ,C+
r ,C−

r);

2 : Z = ∅;

3 : FOR (Gt,nbt) IN calcDepΓ (Gs,rxs ,rys ,hGs) :

4 : Γ = coevolveΓ (hGs ,Gt,nbt) ;

5 : Z = Z ∪ {(Gs,rxs ,rys ,hGs ,Gt,nbt ,rlt)} ;

6 : Γ = (Γ\ {Ge}) ∪ {commitGe
(1,Ξ(Z))} ;

(4.43)

99

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

4.5.1.3 Semantische Beschreibung

Das in Abbildung 4.9 dargestellte UML-Modell zur Beschreibung der Revisionskontroll-
funktionalitäten bildet im Folgenden die Grundlage für die Beschreibung der durchgeführ-
ten Co-Evolutionen (Anforderung A-302). Im ersten Schritt wird zur Beschreibung der
Co-Evolutionsrevisionsgraphen und möglicher Revisionsgraphen für die Beschreibung von
Verbindungen jeweils eine Ableitung vom RevisionGraph angelegt. Alle Co-Evolutionen
in einem RevisionControlSystem werden dabei in einem Revisionsgraphen CoEvolutionRe-
visionGraph revisioniert. Des Weiteren kann eine beliebige Anzahl an Revisionsgraphen
für die Verbindungsbeschreibung ConnectionsRevisionGraph pro Revisionskontrollsystem
vorgehalten werden. Durch die explizite Beschreibung der Revisionsgraphtypen können
diese den entsprechenden Komponenten des RMS für die Auswertung zugeordnet werden.

Abbildung 4.16: Semantische Beschreibung der Revisionsgraphen für Co-Evolution und Ver-
bindungen

Die semantische Beschreibung der durchgeführten Co-Evolutionen erfolgt innerhalb
des Co-Evolutionsrevisionsgraphen mithilfe des in Abbildung 4.17 dargestellten UML-
Modells. Bei Änderungen an einem Modell innerhalb des Revisionsverwaltungssystems
wird eine neue Evolution angelegt, die Referenzen auf den Quellrevisionsgraph (used-
SourceRevisionGraph) und den zugehörigen Revisionsbereich, auf dem die Evolution
aufbaut, besitzt. Der Revisionsbereich wird durch eine Startrevision (startRevision) und
eine Endrevision (endRevision) beschrieben. Des Weiteren werden durch die Evolution
die bereits aggregierten High-Level-Changes (SemanticChange) referenziert, auf deren
Basis die späteren Co-Evolutionen durchgeführt werden (associatedSemanticChange). Die
einzelnen Co-Evolutionen, die aus einer Evolution resultieren, werden mittels CoEvolution
beschrieben (performedCoEvolution). Jede der Co-Evolutionen hat wiederum Referenzen
auf den Zielrevisionsgraphen (usedTargetRevisionGraph) sowie dessen Zielentwicklungs-
zweig (usedTargetBranch). Für die Identifikation dieses Ziels wurden eventuell explizit in
einem ConnectionsRevisionGraph beschriebene Verbindungen genutzt. Wenn dies der Fall

100

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4.5 Evolutions- und Konsistenzmechanismen

ist, so werden die entsprechenden Revisionsgraphen mittels usedConnectionsRevision-
Graph und den zugehörigen Revisionen (usedConnectionsRevision) referenziert, um eine
Nachvollziehbarkeit der analysierten Abhängigkeiten sicherzustellen. Im Fall, dass keine
Instanzen von ConnectionsRevisionGraph im Revisionskontrollsystem vorhanden sind,
werden nur die in den Modellen beinhalteten Abhängigkeiten analysiert. Die Nachvoll-
ziehbarkeit ist auch in diesem Fall gewährleistet, da auf den Zielentwicklungszweig und
die neu erstellte Revision (generated) verwiesen wird. Bei einer entsprechenden Analyse
der Co-Evolution kann dann die Vorgängerrevision der neu erstellten Revision genutzt
werden. Diese gibt den zugehörigen Stand an, der für die Co-Evolution als Grundlage
genutzt wurde.

Abbildung 4.17: Semantische Beschreibung der Evolution als UML-Modell

4.5.2 Konsistenzmechanismen

Innerhalb des RMS muss die Konsistenz zwischen aber auch innerhalb von Modellen
sichergestellt werden. Konsistenz liegt nach der in dieser Arbeit verwendeten Definition
immer dann vor, wenn entsprechende Regelsätze für die Sicherung der Konsistenz
eingehalten werden, was daher also auch im Fall einer Evolution sichergestellt werden
muss. Einen ersten Anhaltspunkt bieten hierfür die detektierten High-Level-Changes. So
kann bei Anwendung der Funktion hlcAggG aus Gleichung 4.18 überprüft werden, ob sich
die durchgeführten atomaren Änderungen vollständig zu High-Level-Changes aggregieren
lassen können (Anforderung A-303). Im Fall, dass C+

r oder C−
r ungleich der leeren Menge

ist, ist entweder die Güte der zugrunde liegenden Regelsätze nicht ausreichend oder es
wurden Änderungen vorgenommen, die zu Inkonsistenzen führen. Diese Inkonsistenzen
können in den unterschiedlichen Typen der Modellkonsistenz nach Lucas et al. [LMT09]

101

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

4 Entwurf

auftreten. Innerhalb des RMS sind daher nur Änderungen zugelassen, die konsistent zur
vorgegebenen Syntax sind. Eine entsprechende Prüfung kann direkt bei der Ausführung
des Commits mittels commitG durchgeführt und inkonsistente Anfragen können hieraus
direkt abgelehnt werden. Sowohl die horizontale als auch die vertikale Konsistenz werden
durch entsprechende Regelsätze zur Beschreibung von Verbindungen zwischen Modellen
auf gleicher oder unterschiedlicher Abstraktion sichergestellt. Darauf aufbauend werden
die Regelsätze zur Durchführung der Co-Evolution definiert. Hieraus ergibt sich, dass
falls eine semantische Beschreibung einer Co-Evolution innerhalb des RMS vorliegt, eine
Konsistenzsicherstellung zwischen den abhängigen Modellen stattgefunden hat. Diese
muss daher nicht im semantischen Modell explizit abgebildet werden. Aufbauend auf
den Regelsätzen zur Sicherstellung von vertikaler und horizontaler Konsistenz können
anschließend erweiterte Regelsätze für die Sicherstellung der semantischen Konsistenz
angewendet werden, die nach erfolgreicher Durchführung von Evolution und Co-Evolution
Konsistenz prüfen können.

102

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

Die Umsetzung des technologieunabhängigen Entwurfs erfolgt in diesem Abschnitt
beispielhaft für das Semantic Web, da hier auf der einen Seite bereits erste Vorarbeiten
existieren, um Revisionsverwaltung in diesem Bereich zu etablieren. Zum anderen ist
die Revisionierung von industriellen Informationsmodellen nach Graube [Gra16] unter
Bezugnahme auf Schmidt et al. [Sch+14] eine der Hauptanforderungen im Engineering
Prozess und spielt daher auch eine zentrale Rolle innerhalb von LED [Gra16].

Die Basistechnologie des Semantic Web ist das RDF. Dadurch kann die Menge S, die
in Abschnitt 4.4 eingeführt wurde, durch die Menge der Tripel ersetzt werden. Ein Tripel
besteht innerhalb des RDF jeweils aus Subjekt, Prädikat und Objekt. Mathematisch lässt
sich die resultierende Menge S durch S := U × U × (U ∪ L) beschreiben. Bei U und L
handelt es sich um zwei disjunkte unendliche Mengen, wobei U die Menge aller Uniform
Resource Identifier (URI)s und L die Menge aller Literale beschreibt. Ein RDF-Graph
ist des Weiteren definiert als eine Teilmenge der möglichen Tripel.

Grundlage für die Umsetzung bildet das semantische Revisionsverwaltungssystem
R43ples, das im Folgenden zu einem RMS weiterentwickelt wird. Zu Beginn wird ein
Überblick über die interne Architektur von R43ples und den zugehörigen notwendigen
Erweiterungen gegeben, bevor im Anschluss die umgesetzten Funktionalitäten detaillierter
beschrieben werden.

5.1 Übersicht

R43ples ist in vorangegangenen Arbeiten bereits konzeptionell entwickelt und proto-
typisch implementiert worden [Hen13; Hen14]. Durch das System werden Basisrevi-
sionsverwaltungsoperationen aber auch bereits erste Ansätze für die Zusammenfüh-
rung von divergierten Entwicklungszweigen bereitgestellt. Im Rahmen dieser Arbeit
erfolgt eine Weiterverwendung des existierenden Konzepts sowie der zugehörigen Im-
plementierung hin zu einem RMS. Für die Erreichung dieses Ziels wird R43ples so-
wohl konzeptionell als auch implementierungstechnisch erweitert. Insbesondere werden
die entwickelten formalen und semantischen Beschreibungen dieser Arbeit in R43ples
überführt. Die Implementierung erfolgt dabei Open Source auf GitHub und ist unter
https://github.com/plt-tud/r43ples abrufbar.

Innerhalb von R43ples wird ein objektorientierter Implementierungsansatz verfolgt.
Im Rahmen dieser Arbeit wird dieser weiter intensiviert. So wird die Kapselung und
die Wiederverwendbarkeit von Funktionalitäten durch zusätzliche Paketstrukturen und
die Schaffung von Interfaces unterstützt. Im Wesentlichen erfolgt eine Unterteilung in
Kernfunktionalitäten und darauf aufbauenden weiterführenden Funktionen. Die Kern-
funktionalitäten sind dabei innerhalb eines Pakets gekapselt und über ein Interface
abrufbar. Das in Abbildung 5.1 dargestellte UML-Diagramm zeigt einen Ausschnitt

103

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

aus der Struktur des core-Pakets, das die Funktionen unter anderem an den Webser-
viceendpunkt bereitstellt. Innerhalb des Kernpaketes werden vorrangig Entwürfe von
Objekten, wie beispielhaft in Abbildung 5.2 dargestellt, erzeugt, die dann mittels einer
entsprechenden Methode in eine semantische Beschreibung im angeschlossenen Triple
Store überführt werden.

Abbildung 5.1: Ausschnitt aus der Struktur des core-Pakets als UML-Modell

Für den Aufruf der entsprechenden Funktion innerhalb des R43plesCoreInterfaces
stehen in den meisten Fällen unterschiedliche Möglichkeiten bereit. So kann auf der einen
Seite direkt eine Anfrage (R43plesRequest), die an den Webserviceendpunkt gestellt
wurde, verarbeitet werden, beziehungsweise auf der anderen Seite ein parametrierter
Aufruf gestartet werden. Letzterer wird dabei sowohl in der ersten Variante genutzt,
wobei vorher eine Extraktion der Parameter aus der Anfrage vorgenommen wird, als auch
innerhalb von abhängigen Funktionen, wenn beispielsweise ein neuer Commit aufgrund
einer Co-Evolution erzeugt werden muss.

Für die leichtere Interaktion mit den semantischen Beschreibungen innerhalb des
Programmcodes werden die bestehenden semantischen Beschreibungen in Objekte im
Programmcode reflektiert. Hierbei ist zu beachten, dass der überwiegende Teil der
notwendigen Information zu den Objekten nicht direkt ab der Erzeugung der Objekte
vorgehalten wird, sondern bei Bedarf nachgeladen wird. Ein Ausschnitt der reflektierten
Objekte ist in Abbildung 5.3 dargestellt.

104

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5.1 Übersicht

Abbildung 5.2: Ausschnitt aus den Entwurfsobjekten des core-Pakets als UML-Modell

Abbildung 5.3: Ausschnitt der reflektierten Objekte als UML-Modell

105

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

5.2 Änderungsmanagement

Das Änderungsmanagement bildet, wie in Abschnitt 4.4 dargestellt, die Basis für den
Aufbau weiterer Funktionalitäten und befindet sich daher im Kern von R43ples. Im
Folgenden werden die Weiterentwicklung der semantischen Beschreibung innerhalb von
R43ples sowie die erweiterten Anfrage- und Interaktionsmechanismen dargestellt.

5.2.1 Ontologie

Die semantische Beschreibung innerhalb von R43ples erfolgt mittels der Revision Ma-
nagement Ontology (RMO). Die aus den vorangegangenen Arbeiten hervorgegangene
Beschreibung der Revisionsinformation ist in Abbildung 5.4 als UML-Modell der On-
tologie dargestellt. Als Grundlage für die Modellierung wird dabei PROV-O1), sowie
OWL und RDFS verwendet. Bei dieser Darstellung ist zu beachten, dass alle Attribute
der Klassen, die im Namensraum von PROV-O liegen, nicht in der RMO abgebildet,
aber für die Modellierung der Revisionsinformation verwendet werden. Die Beschreibung
beinhaltet die Basisklassen für die Modellierung von Graphen, Revisionen, Commits und
Referenzen. Commits werden dabei nicht weiter unterschieden. Die Zusammenführung
von divergierten Entwicklungszweigen wird nicht semantisch dargestellt und kann nur
auf Ebene des Zusammenhangs von Revisionen nachvollzogen werden. Die hinzugefügten
und gelöschten Tripel werden nur in Bezug auf die erzeugte Revision beschrieben. Dies ist
ausreichend, wenn davon ausgegangen wird, dass immer eine weiter in der Vergangenheit
liegende Revision als Ausgangspunkt verwendet wird, wie in [Hen14] vorgestellt.

Abbildung 5.4: Bisheriger Stand der semantischen Beschreibung mittels der RMO als UML-
Modell (in Anlehnung an [Hen13; Hen14; GHU14])

Im Fall, dass nur die letzte Revision eines Zweiges vollständig vorliegt und die bei-
den Revisionen vor der Zusammenführung wiederhergestellt werden sollen, ist es nicht
möglich mit der Beschreibung aus [Hen14] den Ausgangszustand wiederherzustellen.
Dies ist jedoch notwendig, wenn beispielsweise Algorithmen für die Optimierung der
1)http://www.qudt.org/ (besucht am 29.11.2020)

106

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5.2 Änderungsmanagement

Wiederherstellung von einzelnen Revisionen eingesetzt werden, da diese unterschiedliche
Pfade und Richtungen nutzen können, um den bestmöglichen Pfad zu finden.

Die RMO wird im Folgenden mittels den im Abschnitt 4.4 eingeführten semantischen
Beschreibungen erweitert und verändert, wobei PROV-O weiterhin die Grundlage für
die Modellierung bildet. Abbildung 5.5 zeigt die resultierende Ontologie als UML-Modell.
Attribute der Klassen sind vollständig in die RMO überführt, wodurch eine vollständige
semantische Beschreibung der Revisionsinformationsmodellierung vorliegt, ohne dass
zusätzliches Wissen über die Verwendung von weiteren Ontologien notwendig ist. Die
Attribute sind aber weiterhin zum großen Teil von PROV-O abgeleitet, was jedoch, wie
auch die Multiplizitäten, aus Gründen der Übersichtlichkeit in dieser UML-Darstellung
nicht abgebildet ist.

Abbildung 5.5: RMO nach der Erweiterung als UML-Modell

Für die unterschiedliche Commitarten existieren durch die Erweiterung separate Ablei-
tungen, wodurch die Semantik der durchgeführten Änderungen nachvollzogen werden
kann. Die Einführung des rmo:ChangeSets zwischen zwei Revisionen behebt außerdem
das im vorangegangenen Abschnitt erläuterte Problem bei der Wiederherstellung von
Revisionsinhalten, wenn eine Zusammenführung entlang der Wiederherstellung durchge-
führt wurde. Die in Abbildung 4.9 eingeführten Beschreibungen für das rmo:Set und die
darin enthaltenen rmo:Statements sind in der RMO nicht enthalten, da hierfür direkt
RDF-Graphen für die Speicherung der Tripel genutzt werden können. Entsprechend wird

107

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

mittels xsd:anyURI auf die zugehörigen URIs der Graphen verwiesen. In den folgenden
Abschnitten, werden die für die Aggregation und Co-Evolution notwendigen zusätzlichen
Erweiterungen schrittweise ergänzt.

5.2.2 Basisrevisionskontrollfunktionalitäten

Die Zugriffsmöglichkeiten werden, wie bereits in [GHU14] dargestellt, mittels einer
Erweiterung von SPARQL realisiert. Ausgangspunkt bilden die in Abschnitt 4.4.1.4 be-
schriebenen Funktionen. Im Folgenden werden die Basisrevisionskontrollfunktionalitäten
erläutert.

Innerhalb von R43ples kann auf Graphenebene revisioniert werden. Die jeweiligen
Graphen, aber auch die Revisionsinformation, werden dabei im angeschlossenen Triple
Store abgelegt, da es sich bei R43ples um einen Proxy vor einem bestehenden Triple
Store handelt. Es können dabei mehrere Graphen parallel innerhalb eines Triple Stores
revisioniert werden. Für die Realisierung dieser Funktionalität werden die Referenzen
auf die revisionierten Graphen in einem eigenen Graphen namens http://eatld.et.tu-
dresden.de/r43ples-revisions gespeichert. Dieser ist gleichzusetzen mit der Menge der
Revisionsgraphen Γ. Jeder der beinhalteten Graphen wird mittels rmo:RevisionGraph
beschrieben und hat eine Referenz auf einen zugehörigen Revisionsgraphen, wie in Abbil-
dung 5.5 dargestellt. In diesem Revisionsgraphen erfolgt die semantische Beschreibung
der Revisionsinformation unter Nutzung der RMO. Generell kann festgehalten werden,
dass alle Mengen, die in Gleichung 4.7 Teilmengen von S sind, als eigene Graphen im
Triple Store erzeugt werden, um die entsprechenden Tripel vorzuhalten. Alle anderen
Definitionen werden mittels der semantischen Beschreibung ausgedrückt. Bei den Identi-
fikatoren, in den gegebenen Gleichungen der Einfachheit halber mittels N+ angegeben,
wurden innerhalb von R43ples entweder ebenfalls natürliche Zahlen für die Revisions-
nummern verwendet. Des Weiteren wurden Zeichenketten für die Kennzeichnung von
Entwicklungszweigen und Tags sowie generierte URIs zur Identifizierung von Ressourcen
und anderen Graphen verwendet.

Initiale Erstellung und Löschung eines Revisionsgraphen Für die Erstellung eines
neuen Graphen nach Gleichung 4.12 muss neben dem Graphnamen der Nutzer sowie
eine Commitnachricht spezifiziert werden (Listing 1). Der neu erstellte Graph wird
direkt unter Revisionskontrolle gestellt, wie beispielhaft in Abbildung B.1 dargestellt.
Der master-Entwicklungszweig wird dabei automatisch erzeugt.
1 USER " bob " MESSAGE " Create a new graph "
2 CREATE GRAPH <tes t >

Listing 1: Anfrage für die Erstellung eines neuen Graphen

Ebenso ist es möglich einen bestehenden Revisionsgraphen zu löschen, wobei Gleichung
4.13 zur Anwendung kommt. Die Ausführung der Löschung wird durch die in Listing
2 dargestellte Anfrage ausgelöst und führt dazu, dass der Revisionsgraph mit aller
Information rückstandslos entfernt wird.

108

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5.2 Änderungsmanagement

1 DROP GRAPH <tes t >

Listing 2: Anfrage für die Löschung eines bestehenden Graphen

Erstellung eines Entwicklungszweiges Innerhalb des Graphen können neue Entwick-
lungszweige mittels der in Listing 3 angegebenen Anfrage erstellt werden. Ausgangspunkt
bildet dabei, wie in Gleichung 4.14 dargestellt, eine Revision in der Historie des Gra-
phen. Des Weiteren muss der Nutzer, eine Commitnachricht und ein Name für den
neuen Entwicklungszweig angegeben werden. Ein zugehöriges Beispiel der Abbildung im
Informationsraum ist in Abbildung B.2 aufgeführt.
1 USER " bob " MESSAGE " Create experiment branch "
2 BRANCH GRAPH <tes t > REVISION " 2 " TO " experiment "

Listing 3: Anfrage für die Erstellung eines neuen Entwicklungszweiges

Erstellung eines Tags Analog zu Entwicklungszweigen können neue Tags nach Glei-
chung 4.15 angelegt werden. Die Anfrage (Listing 4) unterscheidet sich im Wesentlichen
nur durch den Austausch des Schlüsselwortes Branch durch Tag sowie die die Beschrei-
bung im Informationsraum, wie in Abbildung B.3 beispielhaft dargestellt.
1 USER " bob " MESSAGE "Tag ve r s i on v1 . 0 "
2 TAG GRAPH <tes t > REVISION " 2 " TO " v1 . 0 "

Listing 4: Anfrage für die Erstellung eines neuen Tags

Erstellung und Revidierung eines Commits Auf Basis eines erstellten Graphen kön-
nen weitere Commits durchgeführt werden (Listing 5). Es muss wiederum Nutzer und
Commitnachricht angegeben werden, um den Commit zu kennzeichnen. Auf Basis eines
Entwicklungszweiges werden die Änderungen angegeben, die das Hinzufügen beziehungs-
weise das Löschen von Tripeln bewirken, wie in Gleichung 4.16 beschrieben. Ein visuelles
Beispiel ist in Abbildung B.4 dargestellt.
1 USER " bob " MESSAGE " Create update "
2 INSERT {
3 GRAPH <tes t > BRANCH " master " {
4 <c> <d> .
5 }
6 }
7 DELETE {
8 GRAPH <tes t > BRANCH " master " {
9 <e> <f> <g> .

10 }
11 }

Listing 5: Anfrage für die Erstellung eines neuen Commits

109

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

Die Revidierung eine Commits ist, wie auch in Gleichung 4.17, immer nur in Bezug auf
den letzten Commit eines Entwicklungszweiges möglich. Für die Durchführung steht die
in Listing 6 dargestellte Anfrage zur Verfügung. Durch diese erfolgt die entsprechende
Manipulation im Informationsraum, die an einem Beispiel in Abbildung B.5 dargestellt
ist.
1 USER " bob " MESSAGE " Revert l a s t commit "
2 REVERT GRAPH <tes t > BRANCH " master "

Listing 6: Anfrage für die Revidierung eines Commits

Zugriff auf Revisionsinhalte Für den Zugriff auf Revisionsinhalte werden SPARQL-
Anfragen verwendet, wobei jeweils durch ein zusätzliches Schlüsselwort namens REVI-
SION der Revisionsstand gekennzeichnet wird, der für die Abfrage genutzt werden soll.
Hierfür muss das Schlüsselwort nach einer Graphdefinition in der Anfrage folgen. Für die
Identifikation des Revisionsstandes können der Revisionsidentifikator oder ein Identifika-
tor von einem Entwicklungszweig beziehungsweise von einen Tag genutzt werden. Es ist
dabei auch möglich, unterschiedliche Graphen mit unterschiedlichen Revisionen gleichzei-
tig in einer Anfrage abzufragen. Neben SELECT, beispielhaft in Listing 7 dargestellt,
werden ebenso CONSTRUCT und ASK als Anfragearten unterstützt. Die Wiederher-
stellung der notwendigen Revisionsinhalte erfolgt nach den in [GHU16] vorgestellten
Verfahren.
1 SELECT ∗
2 WHERE {
3 GRAPH <graph> REVISION " 23 " {? s ?p ?o}
4 }
5
6 SELECT ∗
7 WHERE {
8 GRAPH <graph> REVISION " master " {? s ?p ?o}
9 }

Listing 7: Anfrage für den Zugriff auf Revisionsinhalte

5.2.3 Aggregation von High-Level-Changes

Für die Aggregation von atomaren Änderungen zu High-Level-Changes wird eine Teilkom-
ponente innerhalb des Kerns von R43ples angelegt, die die benötigten Funktionalitäten
zur Verfügung stellt. Für die Ausführung der Funktionalitäten steht eine neue Anfrage
zur Verfügung, die beispielhaft in Listing 8 dargestellt ist. Durch diese können Ände-
rungen, analog zu Gleichung 4.18, zwischen zwei aufeinanderfolgenden Revisionen zu
High-Level-Changes aggregiert werden.
1 AGG GRAPH <tes t > REVISION " 1 " TO REVISION " 2 "

Listing 8: Anfrage für die Aggregation

110

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5.2 Änderungsmanagement

Die technologiespezifische Umsetzung der Gleichung 4.19 erfolgt auf Grundlage der
durch Papavasileiou et al. [Pap+13] beschriebenen Regelsätze. Für die Integration der
Regelsätze in das semantische Gesamtgefüge von R43ples wird eine neue Ontologie namens
Aggregation and Evolution Rules Ontology (AERO) definiert, die sowohl die Aggregation
der atomaren Änderungen als auch die darauf aufbauenden Co-Evolutionen semantisch
beschreibt. Abbildung 5.6 zeigt den Ausschnitt der AERO, der die Beschreibung der
Aggregation ermöglicht, inklusive einiger Erweiterungen der RMO, um die detektierten
High-Level-Changes zu beschreiben.

Abbildung 5.6: Ausschnitt der AERO für die Aggregation als UML-Modell inklusive zusätzlicher
Erweiterungen der RMO

111

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

Grundidee für die Anwendung der Regelsätze ist die Nutzung von SPARQL-Anfragen.
Mittels dieser können die Matchings in den Änderungen detektiert werden. Für die Um-
setzung der Anfragen wird auf SPARQL Inferencing Notation (SPIN)2) zurückgegriffen.
Im Gegensatz zum Nachfolger namens Shapes Constraint Language (SHACL)3) erlaubt
SPIN die Referenzierung von einzelnen Elementen innerhalb einer SPARQL-Anfrage.
Dies wird im Folgenden für die Modellierung als wesentlicher Bestandteil verwendet.

Die grundlegenden Elemente für die Beschreibung der detektierten High-Level-Changes
wurden aus Abbildung 4.10 übernommen und in die RMO überführt. Durch die Aggrega-
tion werden einem rmo:ChangeSet die zugehörigen, detektierten rmo:SemanticChanges
zugeordnet. Mittels aero:usedRule wird zudem eine semantische Verbindung zu der zu-
grunde liegenden Regel hergestellt. Alle vorhandenen Regeln werden dabei innerhalb von
R43ples in einem RDF-Graphen vorgehalten und bei Bedarf von R43ples ausgewertet.
Eine aero:HLCAggRule besitzt, wie von Papavasileiou et al. [Pap+13] beschrieben, ein
Matching für die Menge der hinzugefügten Tripel (aero:addSetDetectionQuery), ein
Matching für die Menge der gelöschten Tripel (aero:deleteSetDetectionQuery), die Mög-
lichkeit der Spezifikation von weiteren Bedingungen (aero:conditionQuery) sowie einen
Typen (RuleType). Diese einzelnen Elemente sind dabei in einer SPIN-Anfrage gekapselt
(aero:spinQuery). Ein Beispiel für die zugehörige SPARQL-Anfrage ist im Anhang in
Listing 16 dargestellt. Darin enthalten sind Platzhalter für die RDF-Graphen, die abge-
fragt werden müssen. Diese Platzhalter werden zur Laufzeit von R43ples entsprechend
der getätigten Anfrage ersetzt. Dieser Ersetzungsprozess ist notwendig, da SPIN die
R43ples-spezifischen SPARQL-Erweiterungen nicht unterstützt.

Für die Detektion der Matchings werden im ersten Schritt die verfügbaren Regelsätze
durch R43ples ermittelt und dann nacheinander angewendet. Hierbei wird jeweils die ge-
samte SPIN-Anfrage zurück in eine SPARQL-Anfrage gewandelt, wobei die notwendigen
Ersetzungen vorgenommen werden. Anschließend erfolgt die Ausführung der Anfrage
auf dem Endpunkt von R43ples, der die R43ples-spezifischen SPARQL-Erweiterungen
unterstützt. Das Ergebnis wird dann direkt im Revisionsgraphen zum entsprechenden
rmo:ChangeSet gespeichert. Hierfür werden dann die Matchings der hinzugefügten und
der gelöschten Tripel nochmals einzeln ausgewertet und anschließend zusammen mit den
Ergebnissen der Gesamtanfrage gespeichert. Die Tripel werden dabei nicht in separaten
RDF-Graphen gespeichert, sondern semantisch als rdf:Statements unterteilt in Subjekt,
Prädikat und Objekt abgelegt, die den rmo:additions beziehungsweise rmo:deletions zuge-
ordnet sind. Die Ergebnisse der Gesamtabfrage werden in Form der SPARQL-Variablen
gespeichert. Da jede dieser Variablen eine Repräsentation in SPIN besitzt, wird auf die
entsprechende Ressource mittels aero:spinResource verwiesen. Durch die Bereitstellung
dieser Information kann dann zum Beispiel eine Visualisierungskomponente die detektier-
ten High-Level-Changes grafisch aufbereiten. Ein Beispiel für die im Revisionsgraphen
abgelegte Information ist in Abbildung B.6 dargestellt.

2)http://spinrdf.org/ (besucht am 29.11.2020)
3)https://www.w3.org/TR/shacl/ (besucht am 29.11.2020)

112

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5.2 Änderungsmanagement

5.2.4 Zusammenführung divergierter Entwicklungszweige

Die Zusammenführung von divergierten Entwicklungszweigen erfolgt wiederum mittels
einer Teilkomponente im Kern von R43ples. Für die unterschiedlichen Methoden der
Zusammenführung, wie in Abschnitt 4.4.3.1 eingeführt, stehen entsprechende neue Anfra-
gen zur Verfügung, die über jeweilige Schlüsselwörter verfügen. Hierbei wird grundlegend
in MERGE und PICK unterschieden.

3-Wege-Merges und Fast Forward Zwischen 3-Wege-Merges und Fast Forwards wird
in Bezug auf die Anfrage nicht unterschieden. So kommt als Basis jeweils eine Anfrage, wie
in Listing 9 dargestellt, zum Einsatz. Hierbei müssen der Nutzer und die Commitnachricht
angegeben werden, um den Commit für die Zusammenführung näher zu spezifizieren. Des
Weiteren werden die zusammenzuführenden Entwicklungszweige definiert und damit wird
gleichzeitig festgelegt, auf welchem Entwicklungszweig die resultierende Revision liegen
soll. Bei der Ausführung der Anfrage wird der Revisionsverlauf analysiert und darauf
basierend entschieden, ob ein Fast Forward entsprechend Gleichung 4.24 vorgenommen
werden kann oder ob ein 3-Wege-Merge, wie in Gleichung 4.20, durchgeführt werden muss.
Das Ergebnis wird dann wiederum semantisch mittels der RMO beschrieben. Beispiele
hierfür sind in Abbildung B.7 (3-Wege-Merge Commit) und Abbildung B.8 (Fast Forward
Commit) dargestellt.
1 USER " bob " MESSAGE "3−Way−Merge or Fast Forward "
2 MERGE GRAPH <tes t > BRANCH " experiment " INTO " master "

Listing 9: 3-Wege-Merge Anfrage

Die Berechnung der zu speichernden Änderungen zwischen den bestehenden Revisionen
und der neu erzeugten Revision, wie in Gleichung 4.21 eingeführt, erfolgt mittels dem
in Abschnitt 4.4.3.2 vorgestellten Vorgehen zur Erkennung von transienten Effekten
auf atomarer Änderungsebene und der Ableitung einer Konfliktlösung. Die Umsetzung
erfolgt dabei in Anlehnung an [Hen14] und [HGU16]. Die in diesen Arbeiten eingeführten
Ontologien werden in die Merge Management Ontology (MMO) zusammengeführt, wo-
durch redundante Definitionen in den Ontologien und zusätzliche Abbildungen zwischen
diesen in der Implementierung vermieden werden. Das UML-Modell der MMO ist in
Abbildung 5.7 dargestellt.

Die MMO ermöglicht einerseits die Abbildung einer Konfliktbeschreibungsmatrix, wie
in Abbildung 4.12 dargestellt, um mögliche Konflikte und deren automatisierte Auflösung
spezifisch oder allgemein für Revisionsgraphen festzulegen (mmo:hasDefaultSDG). Auf
der anderen Seite erlaubt diese Ontologie die Beschreibung der Änderungen entlang eines
Pfades (RevisionProgress) für die interne semantische Verarbeitung der Anwendung von
Gleichung 4.31. Schließlich kann mittels der MMO die Beschreibung einer möglichen
Konfliktlösung (DifferenceGroups), wie in Gleichung 4.36 eingeführt, durchgeführt werden,
um diese einem Client zur Verfügung stellen zu können.

113

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

Abbildung 5.7: MMO als UML-Modell

Für die Interaktion des Clients mit dem System stehen außerdem Erweiterungen der
Grundanfrage aus Listing 9 zur Verfügung. Im Fall, dass die in Listing 9 aufgeführte
Anfrage aufgrund von Konflikten nicht ausgeführt werden kann, erhält der Nutzer das
Modell der detektierten Konflikte entsprechend der MMO zurück und kann darauf basie-
rend dem System selbst eine Konfliktlösung bereitstellen. Dies wird mittels der Anfrage in
Listing 10 durchgeführt, da im WITH -Teil die entsprechenden Tripel angegeben werden
können, die aus der Menge der konfliktbehafteten Tripel in der zusammengeführten
Revision enthalten sein sollen.

114

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5.2 Änderungsmanagement

1 USER " bob " MESSAGE "3−Way−Merge with a WITH part "
2 MERGE GRAPH <tes t > BRANCH " experiment " INTO " master " WITH {
3 <http :// t e s t . com/ Carlos> <http :// t e s t . com/knows> <http :// t e s t

. com/Danny> .
4 <http :// t e s t . com/Franz> <http :// t e s t . com/knows> <http :// t e s t .

com/ S i l v i a > .
5 }

Listing 10: 3-Wege-Merge Anfrage mit nutzerdefinierter Konfliktlösung

Im Gegensatz dazu erlaubt die Anfrage in Listing 11 die automatisierte Auflösung
von Konflikten. Grundlage hierfür bilden die mittels mmo:hasDefaultSDG beschriebenen
Konfliktlösungen innerhalb der Konfliktmatrix.
1 USER " bob " MESSAGE "Commit message f o r automatic 3−Way−Merge "
2 MERGE AUTO GRAPH <tes t > BRANCH " experiment " INTO " master "

Listing 11: 3-Wege-Merge Anfrage mit automatisierter Konfliktlösung

Schließlich besteht die Möglichkeit, unabhängig von den bereits aufgeführten Anfragen
den Inhalt der neu erstellten Revision zu definieren. Dieser muss mittels der entsprechen-
den Tripel im WITH -Teil der Anfrage angegeben werden. Listing 12 stellt hierzu ein
Beispiel einer solchen Anfrage dar.
1 USER " bob " MESSAGE " Manual 3−Way−Merge "
2 MERGEMANUALGRAPH <tes t > BRANCH " experiment " INTO " master "

WITH {
3 <http :// t e s t . com/ Carlos> <http :// t e s t . com/knows> <http :// t e s t

. com/Danny> .
4 <http :// t e s t . com/Franz> <http :// t e s t . com/knows> <http :// t e s t .

com/ S i l v i a > .
5 }

Listing 12: Manuelle 3-Wege-Merge Anfrage

Pick Die in Gleichung 4.23 beschriebene Funktionalität wird durch die in Listing
13 dargestellte Anfrage realisiert. Dabei muss der Nutzer und eine Commitnachricht
angegeben werden. Das Pick wird für den angegebenen Bereich der Revisionen ausgeführt,
wobei Start- und Endrevision eingeschlossen sind. Die ausgewählten Änderungen werden
anschließend auf den spezifizierten Entwicklungszweig angewendet. Im Fall, dass nur
die Änderungen einer Revision wiederverwendet werden sollen, kann die in Listing 14
dargestellte Anfrage genutzt werden. Ein Beispiel für die semantische Beschreibung eines
Pick Commits ist in Abbildung B.9 dargestellt.

115

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

1 USER " bob " MESSAGE " Pick "
2 PICK GRAPH <tes t > REVISION " 2 " TO REVISION " 4 " INTO BRANCH "

master "

Listing 13: Pick Anfrage

1 USER " bob " MESSAGE " Simple p ick "
2 PICK GRAPH <tes t > REVISION " 2 " INTO BRANCH " master "

Listing 14: Vereinfachte Pick Anfrage

5.3 Evolutionsmechanismen

Auf Basis von aggregierten Änderungen können durch eine weitere Teilkomponente von
R43ples Co-Evolutionen durchgeführt werden. Die Ausführung der zugehörigen Funktio-
nalität, wie in Gleichung 4.43 definiert, erfolgt durch eine neue Anfrage, die beispielhaft
in Listing 15 dargestellt ist. Detektierte High-Level-Changes zwischen zwei Revisionen
in einem Revisionsgraphen können durch diese Anfrage an abhängige Revisionsgraphen
propagiert werden. In der vorliegenden Implementierung müssen die Revisionen direkt
aufeinander folgen. Des Weiteren werden keine expliziten Verbindungen innerhalb eines
separaten Graphen ausgewertet, sondern es werden nur Co-Evolutionen durchgeführt,
deren Abhängigkeit direkt aus den Inhalten heraus besteht.
1 USER " bob " MESSAGE " Coevolve "
2 COEVO GRAPH <tes t > REVISION " 1 " TO REVISION " 2 "

Listing 15: Anfrage für die Co-Evolution

Für die High-Level-Changes wird die Implementierung aus Abschnitt 5.2.3 als Grundla-
ge verwendet. Hierbei kann auch auf die bereits eingeführten Ontologien zurückgegriffen
werden, die jedoch um die Co-Evolutionsaspekte erweitert werden müssen. Die not-
wendigen Erweiterungen innerhalb der RMO und der AERO sind in Abbildung 5.8
dargestellt.

Ebenso wie in Abschnitt 5.2.3 wird bei der Beschreibung der Regelsätze auf SPIN
zurückgegriffen. Die Regeln (aero:CoEvoRule) sind dabei von aero:HLCAggRule abgelei-
tet und erweitern diese um den Co-Evolutionspart. Diese Erweiterung besteht aus einer
SPARQL-SELECT-Anfrage, mittels dieser identifiziert werden kann, ob eine Abhängig-
keit zu einem zu prüfenden Modell vorliegt. Die eigentliche Co-Evolution wird dann
mittels der spezifizierten Änderungen in Bezug auf die zu tätigenden Hinzufügungen
(aero:addSetInsertQuery) und die zu tätigenden Löschungen (aero:deleteSetInsertQuery)
durchgeführt. Hierbei handelt es sich im SPARQL-INSERT-Anfragen, die innerhalb von
SPIN mittels sp:Modify abgebildet werden. Als Variablen in den SPARQL-Anfragen
werden die gleichen verwendet wie bei der Aggregation zu High-Level-Changes, wodurch
direkt auf die Ergebnisse dieser Anfragen bei der Co-Evolution zurückgegriffen werden
kann. Im Anhang in Listing 17 sind beispielhaft die SPARQL-Anfragen dargestellt, die

116

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5.3 Evolutionsmechanismen

für die Regelbeschreibung verwendet werden. Dieses Beispiel erweitert die bereits vorge-
stellte Beispielanfrage aus Listing 16 um den Co-Evolutionsteil. Die darin enthaltenen
Platzhalter werden zur Laufzeit von R43ples mit den konkreten Werten ersetzt.

Abbildung 5.8: Erweiterung der AERO für die Co-Evolution als UML-Modell inklusive zusätz-
licher Erweiterungen der RMO

Die Elemente zur Beschreibung der Co-Evolution wurden aus Abbildung 4.17 übernom-
men und in die RMO überführt. Die Verknüpfung der rmo:CoEvolution mit den zugrunde
liegenden Regeln erfolgt mittels aero:appliedCoEvolutionRule und erlaubt nachzuvollzie-
hen, welche Regeln für die Co-Evolution verwendet wurden. Des Weiteren werden durch
das referenzierte Element aero:AppliedCoEvolutionRule die SPARQL-Variablen inklusive
deren Werte beschrieben, auf deren Basis die zu erzeugenden oder zu löschenden Tripel
in den abhängigen Modellen definiert werden. Da innerhalb eines Regelsatzes mehrere
Variablen verwendet werden können, aber auch potenziell mehrfache Matchings in den

117

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

5 Implementierung

abhängigen Modellen existieren können, werden die Variablen pro Matching mittels
aero:SPARQLVariableGroup gruppiert. Überdies wird der aero:AppliedCoEvolutionRule
ein rmo:SemanticChange mittels aero:usedSemanticChange zugeordnet, um den Auslöser
der Co-Evolution nachvollziehbar zu beschreiben.

Die Durchführung der Co-Evolutionen basiert auf dem in Gleichung 4.43 dargestell-
ten Verfahren. Dabei wird im ersten Schritt analysiert, ob bereits eine Aggregation
der atomaren Änderungen vorgenommen wurde. Für den Fall, dass diese Aggregation
noch nicht vorliegt, wird diese aus der Co-Evolution heraus angestoßen. Im Anschluss
werden auf Basis der bereits vorliegenden oder der neu durchgeführten Aggregation alle
Revisionsgraphen auf deren Abhängigkeit geprüft. Hierzu werden die Matchinganfragen
der anzuwendenden Regeln ausgeführt. Bei der Detektion von Matchings werden die
durchzuführenden Änderungen berechnet und aus diesen ein neuer Commit innerhalb
des abhängigen Revisionsgraphen erzeugt. Das Ergebnis der Co-Evolution wird in der
derzeitigen Implementierung immer nur für den master-Zweig durchgeführt. Nachdem
alle Co-Evolutionen durchgeführt wurden, wird die zugehörige semantische Beschreibung
innerhalb des Revisionsgraphen der Co-Evolution als neuer Commit gespeichert. Ein
Beispiel für die durch den Commit beschriebene Information ist in Abbildung B.10
dargestellt.

5.4 Weitere Arbeiten in diesem Bereich

In weiteren Arbeiten wurden bereits erste Visualisierungskonzepte für die Interaktion
mit R43ples entwickelt. Hierbei wurde auch teilweise auf niedrig priorisierte Anforde-
rungen an ein RMS eingegangen. Im Bereich der Zusammenführung von divergierten
Entwicklungszweigen wird in [Yan15] ein Ansatz für die Umsetzung von Mergeprozessen
vorgestellt. Bei diesem Ansatz wird der Nutzer schrittweise durch den Mergevorgang
geführt und erhält eine visuelle Darstellung von aufgetretenen strukturellen Konflikten,
die dann visuell gelöst werden können (Bezug zu Anforderungen A-101, A-202). Für die
Co-Evolution wird in [Fun17] ebenfalls ein geführter Prozess dargelegt, der die Visualisie-
rung von Abhängigkeiten innerhalb eine RMS ermöglicht und der Nutzer im Anschluss
die durchzuführenden Co-Evolutionen konfigurieren kann (Bezug zu Anforderungen
A-101, A-301, A-302). Zum Beispiel kann der Nutzer auswählen welche der abhängigen
Modelle co-evolviert werden sollen.

Ebenfalls existieren erste Ansätze für die Integration einer Benutzerverwaltung in
R43ples, wie in [Pha16] vorgestellt (Bezug zu Anforderungen A-102, A-103). Dabei wird
als Technologie für die Benutzerverwaltung auf Lightweight Directory Access Protocol
(LDAP) zurückgegriffen. In einer weiteren Arbeit wird ein Ansatz vorgestellt, um die
Integration und Synchronisation von OPC UA und Semantic Web Informationsmodellen
zu ermöglichen [Ahr18]. Durch diesen Ansatz können auch Änderungen innerhalb von
OPC UA mittels R43ples semantisch revisioniert werden, wodurch erste Rückschlüsse
auf die Übertragbarkeit der technologieunabhängigen Beschreibungen eines RMS gezogen
werden können.

118

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6 Verifikation

Mittels der Verifikation wird im Folgenden der Nachweis erbracht, dass das konzeptionier-
te und implementierte RMS funktionsfähig ist. Hierfür werden jeweils unterschiedliche
Strategien für den Nachweis angewendet. In Bezug auf die konzeptionierten formalen
mathematischen Definitionen ist eine vollständige Beweisführung für deren Korrekt-
heit nur bedingt möglich, da die zu beweisenden Sachverhalte überwiegend direkt in
den Definitionen als Randbedingungen angegeben sind und die notwendigen Beweise
daher trivial wären. Zur Sicherstellung, dass die mathematischen Definitionen auch in
Kombination anwendbar sind, wird im ersten Schritt deren Funktionsweise an einem
Beispiel, das die wesentlichen Funktionen abdeckt, nachvollzogen. Im Anschluss erfolgt
die Beweisführung, dass innerhalb eines Revisionsgraphen durch den Nutzer immer ein
beliebiger Revisionsinhalt erzeugt werden kann und der Nutzer dementsprechend nicht
durch die mathematischen Definitionen und deren Randbedingungen in der Erstellung
und Änderung von Revisionsinhalten eingeschränkt ist. Schließlich werden die allgemeinen
Definitionen für die Beschreibung von verbindungsorientierten Modellen auf die Anwen-
dung der Co-Simulation übertragen und somit ebenfalls an einem Beispiel verifiziert, dass
die getätigten Definitionen anwendbar sind. Durch die Verifikation der grundlegenden
Funktionalitäten wird sichergestellt, dass die Implementierung auf einer funktionsfä-
higen Spezifikation aufbaut. Die anschließende Verifikation der Software anhand von
verschiedenen Testfällen stellt die korrekte Funktionsweise der Implementierung sicher.
Hierbei werden neben den grundlegenden Funktionsweisen auch erweiterte Funktionen,
wie die Co-Evolution auf Typenebene überprüft. Dabei wird einerseits gezeigt, dass die
beschriebenen mathematischen Definitionen implementierbar sind und andererseits wird
ebenfalls die semantische Beschreibung innerhalb der Implementierung verwendet, um
die Funktionen umsetzen zu können, aber auch durch Testfälle die korrekte Erzeugung
der semantischen Beschreibung sichergestellt.

6.1 Beispielhafte Nutzung der formalen Beschreibung

Anhand eines Beispiels werden im Folgenden die formalen Definitionen der Basisrevisi-
onskontrollfunktionalitäten angewendet und schrittweise ein Revisionsgraph aufgebaut.
Als Grundlage dient hierfür die im Kapitel 5 zugrunde gelegte Definition der Menge
S := U × U × (U ∪ L). Zur vereinfachten Darstellung der konkreten Elemente wird
angenommen, dass U = L = {a,b,c,d,e,f,g,h,i} gilt.

Die Revisionsgraphen werden in der Menge Γ vorgehalten. Auf deren Basis kann im
ersten Schritt ein neuer Revisionsgraph erzeugt werden, wie in Gleichung 6.1 dargestellt.
In dem Beispiel wird ein neues Tripel abc (entspricht dem Statement (a,b,c)) direkt bei
der Erstellung angegeben. Der resultierende Revisionsgraph ist visuell in Abbildung 6.1
dargestellt. Die Revision 0 ist dabei die Revision, die automatisiert erstellt wird.

119

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6 Verifikation

Γ = createΓ ({abc}) = ∅ ∪ {({1}, (0,1,{abc},∅), ({1},1,{abc},1), ∅, 1)}
= {({1}, (0,1,{abc},∅), ({1},1,{abc},1), ∅, 1)}
= {G}

(6.1)

Abbildung 6.1: Revisiongraph nach der initialen Erstellung

Bei den folgenden Gleichungen wird nur die Aktualisierung von G dargestellt und aus
Gründen der Vereinfachung auf die Darstellung von Γ verzichtet, da diese Menge nur
G beinhaltet. Im nächsten Schritt wird ein neuer Commit auf den bestehenden Branch
1 vorgenommen. Dieser fügt ein weiteres Tripel ghi hinzu und löscht das bestehende
Tripel abc. Die Aktualisierung des Revisionsgraphen erfolgt mittels der in 4.16 definierten
Funktion, die das in Gleichung 6.2 dargestellte Ergebnis erzielt. Dieses ist visuell in
Abbildung 6.2 aufbereitet.

120

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6.1 Beispielhafte Nutzung der formalen Beschreibung

G = (Rg,Cg,Bg,Tg,ng)
Rg = {1}
Cg = {(0,1,{abc},∅)}
Bg = {({1},1,{abc},1)}
Tg = ∅
ng = 1

G ′ = commitG (1,{ghi},{abc}) = (R′
g,C ′

g,B′
g,Tg,ng)

C+ = {ghi}
C− = {abc}
nb = 1

Anwendung der Gleichung 4.16 ergibt:
R′

g = {1,2}
C ′

g = {(0,1,{abc},∅),(1,2,{ghi},{abc})}
B′

g = {({1,2},2,{ghi},1)}
Tg = ∅
ng = 1

(6.2)

Abbildung 6.2: Revisiongraph nach dem ersten Commit

Im Anschluss erfolgt die Erstellung eines neuen Entwicklungszweiges. Ausgangspunkt
bildet die Revision 1. Hierzu wird Gleichung 4.14 angewendet, die einen neuen Branch 2
erzeugt. Die Anwendung der Funktion ist in Gleichung 6.3 dargelegt und Abbildung 6.3
zeigt die schematische Darstellung des Revisionsgraphen. In dieser Darstellung ist der
neue Entwicklungszweig vorerst nur als neue Referenz auf Revision 1 dargestellt

121

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6 Verifikation

G = (Rg,Cg,Bg,Tg,ng)
Rg = {1,2}
Cg = {(0,1,{abc},∅),(1,2,{ghi},{abc})}
Bg = {({1,2},2,{ghi},1)}
Tg = ∅
ng = 1

G ′ = branchG (1) = (Rg,Cg,B′
g,Tg,ng)

rx = 1
Anwendung der Gleichung 4.14 ergibt:

Rg = {1,2}
Cg = {(0,1,{abc},∅),(1,2,{ghi},{abc})}
B′

g = {({1,2},2,{ghi},1),({1},1,{abc},2)}
Tg = ∅
ng = 1

(6.3)

Abbildung 6.3: Revisiongraph nach der Erstellung eines neuen Entwicklungszweiges

Nachdem der neue Entwicklungszweig erzeugt ist, wird ein neuer Commit auf diesen
Entwicklungszweig vorgenommen, der ein neues Tripel def hinzufügt. Die Anwendung der
Gleichung 4.16 erfolgt in Gleichung 6.4 und die zugehörige Visualisierung in Abbildung
6.4.

122

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6.1 Beispielhafte Nutzung der formalen Beschreibung

G = (Rg,Cg,Bg,Tg,ng)
Rg = {1,2}
Cg = {(0,1,{abc},∅),(1,2,{ghi},{abc})}
Bg = {({1,2},2,{ghi},1),({1},1,{abc},2)}
Tg = ∅
ng = 1

G ′ = commitG (2,{def},∅) = (R′
g,C ′

g,B′
g,Tg,ng)

C+ = {def}
C− = ∅
nb = 2

Anwendung der Gleichung 4.16 ergibt:
R′

g = {1,2,3}
C ′

g = {(0,1,{abc},∅),(1,2,{ghi},{abc}),(1,3,{def},∅)}
B′

g = {({1,2},2,{ghi},1),({1,3},3,{abc,def},2)}
Tg = ∅
ng = 1

(6.4)

Abbildung 6.4: Revisiongraph nach dem Commit auf dem neu erstellten Entwicklungszweig

Die Revision 1 wird nachfolgend mit einem Tag versehen. Hierzu erfolgt die Anwendung
der Gleichung 4.15, wie in Gleichung 6.5 beschrieben. Der resultierende Revisionsgraph
wird in Abbildung 6.5 gezeigt.

123

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6 Verifikation

G = (Rg,Cg,Bg,Tg,ng)
Rg = {1,2,3}
Cg = {(0,1,{abc},∅),(1,2,{ghi},{abc}),(1,3,{def},∅)}
Bg = {({1,2},2,{ghi},1),({1,3},3,{abc,def},2)}
Tg = ∅
ng = 1

G ′ = tagG (1) = (Rg,Cg,Bg,T ′
g,ng)

rx = 1
Anwendung der Gleichung 4.15 ergibt:

Rg = {1,2,3}
Cg = {(0,1,{abc},∅),(1,2,{ghi},{abc}),(1,3,{def},∅)}
Bg = {({1,2},2,{ghi},1),({1,3},3,{abc,def},2)}
T ′

g = {(1,{abc},1)}
ng = 1

(6.5)

Abbildung 6.5: Revisiongraph nach der Erstellung eines neuen Tags

Im letzten Schritt wird der letzte Commit auf Branch 1 rückgängig gemacht. Dies
erfolgt durch die Anwendung der Gleichung 4.17. Im resultierenden Ergebnis, beschrieben
in Gleichung 6.6, sind die Änderungen durch die Vertauschung von Hinzufügungen und
Löschungen rückgängig gemacht worden. Eine visuelle Aufbereitung der durchgeführten
Änderungen am Revisionsgraphen ist in Abbildung 6.6 zu finden.

124

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6.2 Nachweis der Erzeugung von beliebigen Revisionsinhalten

G = (Rg,Cg,Bg,Tg,ng)
Rg = {1,2,3}
Cg = {(0,1,{abc},∅),(1,2,{ghi},{abc}),(1,3,{def},∅)}
Bg = {({1,2},2,{ghi},1),({1,3},3,{abc,def},2)}
Tg = {(1,{abc},1)}
ng = 1

G ′ = revertG (1) = (R′
g,C ′

g,B′
g,Tg,ng)

nb = 1
Anwendung der Gleichung 4.17 ergibt:

R′
g = {1,2,3,4}

C ′
g = {(0,1,{abc},∅),(1,2,{ghi},{abc}),(1,3,{def},∅),(2,4,{abc},{ghi})}

B′
g = {({1,2,3},3,{abc},1),({1,3},3,{abc,def},2)}

Tg = {(1,{abc},1)}
ng = 1

(6.6)

Abbildung 6.6: Revisiongraph nach der Revidierung des letzten Commits auf Branch 1

6.2 Nachweis der Erzeugung von beliebigen Revisionsinhalten

Ein mit dem System interagierender Nutzer muss die Möglichkeit besitzen, einen belie-
bigen gewünschten Revisionsinhalt durch die aufeinander aufbauende Anwendung von
Commits zu erreichen. Nachfolgen wird dies formal nachgewiesen.

Ausgangspunkt ist ein beliebiger Revisionsgraph G = (Rg,Cg,Bg,Tg,ng). Dieser bein-
haltet bereits eine beliebige Struktur, auf deren Basis ein gewünschter Revisionsinhalt
erreicht werden soll. Aus der Menge Bg wird exemplarisch ein Entwicklungszweig für den

125

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6 Verifikation

Nachweis herangezogen. Für diesen Entwicklungszweig bi ∈ Bg mit bi = (Rbi
,rli ,Υli ,nbi

)
wird nachgewiesen, dass mittels eines Commits das Υli , das den vollständigen Revisions-
inhalt des Blattes des Entwicklungszweiges kennzeichnet, in ein beliebiges Υlj überführt
werden kann. Der Ansatz für die Erreichung dieses Ziels besteht darin, dass es immer mög-
lich ist, den letzten vollständigen Inhalt als Ganzes zu löschen und durch den gewünschten
neuen Inhalt zu ersetzen. Gleichung 6.7 gibt die hierfür notwendigen Definitionen an.
Hieraus ergibt sich die in Gleichung 6.8 dargestellte Annahme, dass durch die Anwendung
dieses Commits ein beliebiger Revisionsinhalt erzeugt werden kann.

G ′ = commitG
(
nb,C

+,C−
)

C+ = Υlj

C− = Υli

nb = nbi

(6.7)

G ′ = commitG
(
nbi

,Υlj ,Υli

)
∀υi : υi ∈ Υli ; ∀υj : υj ∈ Υlj (6.8)

Die in Gleichung 4.16 beschriebene Aktualisierung des vollständigen Revsionsinhalts
eines Entwicklungszweiges ist extrahiert in Gleichung 6.9 mittels Υ′

l dargestellt. In diesem
Fall muss vor der Ausführung Gleichung 4.11 auf die Hinzufügungen und Löschungen
ausgeführt werden, damit der korrekte Aufbau von Cg sichergestellt ist. Die Anwendung
ist in Gleichung 6.10 dargestellt.

Υ′
l = (Υl ∪ C+

stripped)\C−
stripped (6.9)

C+
stripped = C+\Υx

C−
stripped = C− ∩ Υx

Mit Υx = Υli , C+ = Υlj und C− = Υli ergibt sich:

C+
stripped = Υlj \Υli

C−
stripped = Υli ∩ Υli

= Υli

(6.10)

Die Ergebnisse aus Gleichung 6.10 können jetzt in Gleichung 6.9 mit Υl = Υli

eingesetzt werden. Hieraus ergibt sich, wie in Gleichung 6.11 dargestellt, dass Υ′
l = Υlj .

Das bedeutet, dass durch die Anwendung des in Gleichung 6.8 aufgeführten Commits
immer ein gewünschter Inhalt auf einem Entwicklungszweig erzeugt werden kann, der in
Bezug auf den Inhalt vollständig unabhängig von den vorangehenden Änderungen sein

126

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6.3 Abbildung verbindungsorientierter Modelle am Beispiel der Co-Simulation

kann. Für die Erreichung können beliebig viele vorangegangene Commits durchgeführt
worden sein.

Υ′
l = (Υli ∪ (Υlj \Υli))\Υli | Anwendung De Morgansche Gesetze
= (Υli ∪ Υlj)\Υli

= Υlj

(6.11)

6.3 Abbildung verbindungsorientierter Modelle am Beispiel der
Co-Simulation

Ein Beispiel für ein verbindungsorientiertes Modell ist, wie bereits in Abschnitt 3.1.3.1
eingeführt, die Co-Simulation. In Abbildung 6.7 ist ein schematisches Beispiel einer
Co-Simulation aufgeführt. Die Co-Simulation ist als Ganzes durch die Komponente
c dargestellt. Darin enthalten sind zwei Komponenten b1 und b2, die wiederum aus
Teilkomponenten a1 bis a4 aufgebaut sind. Der Typ der jeweiligen Komponenten ist
mittels <A>, beziehungsweise <C> angegeben. Die Ports der Komponenten sind
durch I beziehungsweise O gekennzeichnet. Dabei gilt, dass Ports von Teilkomponenten
auch in der übergeordneten Ebene zur Verfügung stehen. Ein Beispiel hierfür ist die
Verbindung zwischen den Ports b1.O2 und b2.I1.

Abbildung 6.7: Beispiel eines Blockdiagramms einer Co-Simulation

Das in Abbildung 6.7 aufgeführte Beispiel lässt sich in einen Compound Graph, wie in
Abschnitt 4.3 beschrieben, überführen. Die sich daraus ergebenden Strukturen von G̃′

und T̃ ′ sind in Abbildung 6.8 dargestellt. Das Wurzelelement bildet dabei der Graph c,
der die übergeordnete Komponente der Co-Simulation beschreibt. Die darauf basierenden
Zweige stellen dann wiederum die Subkomponenten dar und die Blätter des Baums
kennzeichnen die Ports. Die Verbindungen zwischen den Ports sind nur auf der Ebene
der Blätter beschrieben. Ports von übergeordneten Komponenten können, wie bereits
beschrieben, aus diesen unterlagerten Ports abgeleitet werden.

127

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6 Verifikation

Abbildung 6.8: Abbildung des Blockdiagramms aus Abbildung 6.7 auf einen Compound Graph
(gestrichelte Linien: Hierarchie-/Inklusionskanten, durchgezogene Linien: Adjazenzkanten)

Die Definitionen aus Abschnitt 4.3.1 können für den Anwendungsfall der Co-Simulation
und damit allgemeiner für hierarchische verbindungsorientierte Modelle spezialisiert wer-
den. Bei diesen Modellen können die Komponenten hierarchisch strukturiert sein und jede
Komponente kann wiederum Ports anbieten. Die Relationen zwischen den Komponenten
werden mittels Verbindungen zwischen den angebotenen Ports beschrieben. Die Ports
sind dabei zumeist in Ein- und Ausgangsports untergliedert. Diese Untergliederung kann
formal auch für die Menge der Basisknoten B̃ vorgenommen werden. Dies ist in Gleichung
6.12 dargestellt. Dabei beinhaltet Ĩ die Eingangsports und Õ die Ausgangsports.

B̃ = Ĩ ∪ Õ (6.12)

Für die Beschreibung der Port-Port-Relationen werden die Adjazenzkanten verwendet.
Da verbindungsorientierte Modelle im Allgemeinen einige Randbedingungen in Bezug
auf die möglichen zu verbindenden Ports besitzen, können diese Randbedingungen
analog zu den folgenden Gleichungen definiert werden. Gleichung 6.13 schränkt dabei
die Konnektivität insoweit ein, dass nur Verbindungen von Ausgangs- zu Eingangsports
möglich sind. Daraus folgt, dass G̃′ ein bipatiter Graph ist. Durch diese Einschränkung
wiederum ergibt sich, dass die resultierende Klasse des Graphen eine Subkategorie von
einem Compound Graph ist. Da in diesem nur Blätter mittels Adjazenzkanten verbunden
sein dürfen, wird dieser auch als Clustered Graph bezeichnet [Fuh12].

∀(v,w) ∈ EG′ : v ∈ O ∧ w ∈ I (6.13)

Weitere Bedingungen zwischen Knoten und Kanten in Bezug auf die Multiplizität der
möglichen Verbindungen können durch den Eingangsgrad d−

G̃′(ṽ) und den Ausgangsgrad

128

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6.3 Abbildung verbindungsorientierter Modelle am Beispiel der Co-Simulation

d+
G̃′(ṽ) eines Knotens ṽ beschrieben werden. Gleichung 6.14 restriktiert, dass jeder Aus-

gangsport nur ausgehende Verbindungen besitzt und Gleichung 6.15 schränkt ein, dass
jeder Eingangsport nur eine oder keine eingehende Verbindung besitzen darf.

∀ṽ ∈ Õ : (d−
G̃′(ṽ) = 0) ∧ (d+

G̃′(ṽ) ≥ 0) (6.14)

∀ṽ ∈ Ĩ : (0 ≤ d−
G̃′(ṽ) ≤ 1) ∧ (d+

G̃′(ṽ) = 0) (6.15)

In einigen Fällen ist es weiterhin notwendig, Abhängigkeiten zwischen Eingangs- und
Ausgangsports innerhalb einer Komponente zu beschreiben. Hierfür kann die Menge
der Adjazenzkanten ẼG̃′ in zwei Mengen unterteilt werden, wie in Gleichung 6.16 be-
schrieben. Im Falle einer solchen weiteren Untergliederung müssen dann wiederum die
Einschränkungen entsprechend erweitert werden.

ẼG̃′ = ẼG̃′
connection

∪ ẼG̃′
dependency

(6.16)

Für die semantische Beschreibung der Co-Simulation wird im Folgenden die Beschrei-
bung der Compound Graphs aus Abbildung 4.8 domänenspezifisch spezialisiert. Die
Spezialisierung basiert auf dem Modell von Van Acker et al. [Van+15]. Dabei wurden
die FMI-spezifischen Elemente durch generische Beschreibungen ersetzt sowie das Kon-
zept der Bondgraphen, wie in Abschnitt 3.1.3.1 vorgestellt, integriert. Das Ergebnis ist
in Abbildung 6.9 dargestellt. Von dem Blatt abgeleitet existiert der Port mit seinen
Ableitungen Sink (Senke, Eingangsport) und Source (Quelle, Ausgangsport). Bei den
Komponenten (Component) handelt es sich um Spezialisierungen von Subgraph, denen
des Weiteren die InternalDependencys zugeordnet sind, die die internen Abhängigkeiten
beschreiben und von ConnectivityRelation abgeleitet sind. Weiterhin existieren Signale
(Signal), die ebenfalls eine Spezialisierung von ConnectivityRelation sind. Diese können
überdies zu einem Bond gruppiert werden, der aus einem flow- und einem energy-Signal
besteht. Die CoSimulation, abgeleitet von CompoundGraph, aggregiert neben den be-
stehenden Definitionen auch die Bonds. Die Einschränkungen, wie zum Beispiel, dass
Signale eine Quelle und eine Senke miteinander verbinden, sind in der Abbildung nicht
dargestellt und ergeben sich aus den vorangegangenen mathematischen Definitionen.

Auf Basis der bereitgestellten Beschreibung der Verbindungen können wiederum domä-
nenspezifische Regelsätze für die Co-Evolution umgesetzt werden. Durch die Ableitung
von dem in Abschnitt 4.3.3 eingeführten UML-Modell lassen sich jedoch auch allgemeine-
re Regeln anwenden, die auf dieser Ebene definiert worden sind und ermöglichen damit
eine Wiederverwendung.

129

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6 Verifikation

Abbildung 6.9: Domänenspezifische Spezialisierung der Abbildung 4.8 auf die Co-Simulation

6.4 Testfälle innerhalb der Implementierung

Die Implementierung von R43ples erfolgt innerhalb eines Continuous Integration Fra-
mework (CIF). Basis bildet hierfür ein GitHub-Repository und Travis CI1). Innerhalb
dieser Umgebung sind der Quellcode aber auch Datenbestände wie Ontologien und Test-
datensätze vollständig revisioniert. Die umgesetzten Testfälle setzen sich aus Unit Tests,
Integration Tests und System Tests zusammen. Integration Tests sind unter anderem für
komplexe Anfragen in Bezug auf die Zusammenführung von divergierten Entwicklungs-
zweigen, aber auch für die automatisierte Erzeugung von Beispieldatensätzen umgesetzt.

Zu den Integration Tests gehören des Weiteren auch die Testfälle für die Aggregation
von High-Level-Changes und die zugehörige Co-Evolution. Grundlage hierfür bilden
zwei Beispieldatensätze (SampleDataSet.createSampleDataSetHLCAggregation() und
SampleDataSet.createSampleDataSetCoEvolution()). Das SampleDataSetHLCAggrega-
tion stellt einen Revisionsgraphen bereit, der aus einem initialen Commit und einem
1)https://travis-ci.com/ (besucht am 29.11.2020)

130

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

6.4 Testfälle innerhalb der Implementierung

weiteren Commit besteht. Darin ist exemplarisch die Umbenennung einer Klasse durch
die Änderungen von Revision 1 auf Revision 2 beschrieben. Innerhalb vom SampleData-
SetCoEvolution existiert nur ein initialer Commit. Dieser Commit verwendet jedoch die
Klassendefinition aus Revision 1 von SampleDataSetHLCAggregation zur Beschreibung
der enthaltenen Instanzen. Für die Aggregation beziehungsweise die Co-Evolution wird,
wie in den Abschnitten 5.2.3 und 5.3 beschrieben, jeweils ein Regelsatz benötigt. Hierfür
wurden die in Listing 16 und Listing 17 dargestellten SPARQL-Anfragen in semantische
Beschreibungen der Regelsätze überführt. Der Test AggregationDraftTest stellt die kor-
rekte Funktionsweise der durchgeführten Aggregation sicher indem die resultierenden
SemanticChanges geprüft werden. Im Test CoEvolutionDraftTest werden die durchge-
führten Co-Evolutionen überprüft. Dabei werden sowohl die semantische Beschreibung
der Co-Evolution als auch die Anpassungen am abhängigen Revisionsgraphen getestet.

Bei den Tests des Gesamtsystems kommt als Triple Store Jena TDB2) zum Einsatz.
Anfragen an R43ples werden in diesen Testfällen nicht über interne Schnittstellen gestellt,
sondern über die gleiche Schnittstelle, die später durch Nutzer verwendet werden.

2)https://jena.apache.org/documentation/tdb/ (besucht am 29.11.2020)

131

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

7 Diskussion

Im Rahmen dieser Arbeit wurde ein RMS zur Unterstützung der Evolution von Informa-
tions- und Datenmodellen entwickelt, das Revisionsverwaltungs- und Evolutionsmecha-
nismen integriert. Besonderheit ist hierbei die technologieunabhängige mathematische
und semantische Beschreibung, die eine Überführung des Konzepts in unterschiedliche
Technologien ermöglicht. Im Folgenden wird die Methodik der Arbeit bewertet und
anschließend werden die Ergebnisse den aufgestellten Thesen gegenübergestellt, um diese
zu verifizieren.

7.1 Methodikbewertung

Ausgangspunkt dieser Arbeit bildete eine detaillierte Anforderungsanalyse, die sich auf
einer Literaturrecherche stützt. Da mit diesem Vorgehen die Gefahr einhergeht, dass wich-
tige Quellen nicht betrachtet werden oder Anforderungen in der Realität nicht zum Tragen
kommen, wurde ein strukturiertes Vorgehen angewendet, um dem entgegenzuwirken.
Gleichwohl erhebt diese Arbeit keinen Anspruch auf Vollständigkeit der aufgenommenen
Anforderungen. Ein wesentliches Element war von Beginn an die gemeinsame Betrach-
tung von Evolution und Revisionsverwaltung. Ausgehend von allgemeinen Prinzipien mit
Einfluss auf Evolvability wurde festgestellt, dass etablierte Systeme in diesem Bereich
an ihre Grenzen stoßen und neue integrierte Mechanismen geschaffen werden müssen.
Die allgemeinen Prinzipien wurden dann im Anschluss auf eine technologische Sicht
gehoben und durch weitere Literatur untermauert. Die sich daraus ergebenden Kriterien
wurden wiederum den Anwendungsfällen der Arbeit gegenübergestellt, wodurch gezeigt
werden konnte, dass diese Anforderungen praktische Relevanz besitzen. Im Folgenden
wurden sie bestehenden Ansätzen gegenübergestellt, um bereits vorhandene Aspekte
zu identifizieren, die in einem integrierten Konzept wiederverwendet werden können.
Durch die anschließende Priorisierung wurde der Fokus der Arbeit auf die Kernanforde-
rungen gelegt, wodurch diese im Detail im Rahmen dieser Arbeit ausgearbeitet werden
konnten. Darauf aufbauende weiterführende Kriterien müssen in folgenden Arbeiten
weiter detailliert und in Konzepte überführt werden. Das in dieser Arbeit beschriebene
Konzept sieht demnach eine Struktur des RMS vor, die es ermöglicht, auch die niedriger
priorisierten Anforderungen in Folgearbeiten zu integrieren. Die im Entwurf dargestellten
technologieunabhängigen mathematischen und semantischen Beschreibungen wurden
innerhalb einer prototypischen Implementierung für das Semantic Web angewendet.
Durch die Weiterentwicklung von dem bestehenden semantischen Revisionskontrollsys-
tem R43ples zu einem RMS konnte die Funktionsweise des Konzeptes nachgewiesen
werden. Dies wurde in einer anschließenden Verifikation auch mittels theoretischer und
praktischer Tests nachgewiesen. Eine Übertragung auf andere Technologien, wie zum
Beispiel OPC UA, wurde im Rahmen dieser Arbeit nicht untersucht. Erste Arbeiten in

132

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

7.2 Ergebnisdiskussion und Verifikation der Thesen

diesem Bereich zeigen jedoch, dass eine bidirektionale Synchronisierung zwischen Seman-
tic Web und OPC UA möglich ist [Ahr18]. Hieraus kann abgeleitet werden, dass auch
die Mechanismen dieser Arbeit innerhalb von OPC UA anwendbar sind. Die Bestätigung
oder die Widerlegung dieser weiterführenden These muss jedoch in folgenden Arbeiten
detailliert untersucht werden. Bei der im Rahmen dieser Arbeit zur Verfügung gestellten
Implementierung handelt es sich um einen Prototypen eines RMS für das Semantic Web.
Trotz der Verwendung eines CIF und der Erstellung von Testfällen muss das System
eine Weiterentwicklung erfahren, bevor es in einen Produktiveinsatz überführt werden
kann. Auf der einen Seite muss hierfür die Testabdeckung weiter erhöht werden, aber auf
der anderen Seite müssen auch die visuellen Interaktionsmöglichkeiten mit dem System
ausgebaut werden, um die Nutzerakzeptanz zu erhöhen.

7.2 Ergebnisdiskussion und Verifikation der Thesen

Zielstellung dieser Arbeit war die durchgängige Unterstützung der Evolution von Informa-
tions- und Datenmodellen über deren Lebenszyklus hinweg. Dieses Ziel konnte durch
Lebenszyklusbetrachtungen und die Konzeption eines RMS erreicht werden. Das RMS
bildet die Grundlage, Evolutionen über den gesamten Lebenszyklus hinweg zu unter-
stützen. Kernergebnis dieser Arbeit ist dabei die technologieunabhängige integrierte
mathematische und semantische Beschreibung von Revisionsverwaltung und Evolution
für Informations- und Datenmodelle sowie das Konzept eines RMS. Die bereitgestellten
Funktionen für die Basisrevisionsverwaltung ermöglichen hierbei die Interaktion mit
dem Repository. Im Rahmen dieser Arbeit wurde insbesondere auf die Funktionen zur
Erstellung von Commits, Branches und Tags eingegangen. Mittels der Revert-Funktion
können Commits rückgängig gemacht werden, bleiben aber in der Revisionshistorie
weiterhin erhalten. Für Branches und Tags stehen Funktionen zur Löschung nicht bereit,
können aber als Umkehroperation aus den Funktionen für die Erstellung heraus abgeleitet
werden. Aufgrund der technologieunabhängigen Beschreibung mussten innerhalb von
den mathematischen Beschreibungen Schnittstellen geschaffen werden, die eine techno-
logieabhängige Umsetzung ermöglichen. Dies tritt unter anderem bei der Aggregation
von atomaren Änderungen hin zu High-Level-Changes auf. Regelsätze und Mechanismen
der Aggregation sind dabei weitestgehend technologieabhängig und dementsprechend
ausgegliedert worden. An diesen Stellen existieren jedoch zumeist bereits Lösungen, wie
unter anderem [Keh15] oder [Pap+13], auf die bei einer Umsetzung zurückgegriffen
werden kann. Für die Zusammenführung von divergierten Entwicklungszweigen stehen
im Rahmen dieser Arbeit drei unterschiedliche Möglichkeiten zur Verfügung. Da bei der
Zusammenführung Konflikte auftreten können, wurden hierfür Mechanismen entwickelt,
um diese Konflikte auf einer strukturellen Ebene zu lösen beziehungsweise transiente
Effekte auf der High-Level-Ebene zu detektieren. Im Rahmen der Implementierung
wurden jedoch nur die Mechanismen der strukturellen Analyse umgesetzt. Die Durchfüh-
rung von Co-Evolutionen basiert auf den aggregierten High-Level-Changes sowie den
Basisrevisionskontrollfunktionalitäten. Durch eine Analyse der Abhängigkeiten inner-
halb des RMS können dann entsprechende Co-Evolutionen vorgenommen werden. Diese

133

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

7 Diskussion

basieren innerhalb der Implementierung jedoch nur auf Typ-Instanz-Ebene und nicht
auf der Beschreibung von Verbindungsgraphen, die Abhängigkeiten zwischen Datenmo-
dellen abbilden. Die Modellierung der Compound Graphs wurde jedoch anhand des
Anwendungsfalls der Co-Simulation theoretisch verifiziert.

Rückblickend auf die der Arbeit zugrunde gelegten Thesen kann an dieser Stelle
festgestellt werden, dass diese im Rahmen der Arbeit positiv beantwortet werden konnten.
Nachfolgend werden die einzelnen wissenschaftlichen Forschungsthesen aus der Arbeit
heraus begründet:

These 1: Neue Anforderungen an die Agilität von Produktlebenszyklen erfordern Ver-
änderungen im Lebenszyklus der zugrundeliegenden Informationsräume, vor allem im
Bereich der Revisionierung und Evolution der Informations- und Datenmodelle.

Diese These konnte durch die durchgeführte Literaturrecherche und die Betrachtung
der Anwendungsfälle bestätigt werden. Individualisierung sowie kürzere Produktlebenszy-
klen führen zu Veränderungen in der Produktion, aber auch in der Standardisierung von
Schnittstellen. In diesen Bereichen stellen sich neue Herausforderungen an die Agilität,
mit der auf Anforderungsänderungen reagiert werden muss, um weiterhin wettbewerbs-
fähig zu bleiben. Neue Ansätze, wie zum Beispiel die Modularisierung und die damit
verbundenen Standardisierungsarbeiten, bieten hierfür Lösungen an. Sie stellen dabei
aber wiederum neue Anforderungen an die Revisionierung und Evolution von Informa-
tionsräumen, da sich aufgrund der Agilität der Standardisierung auch die zugehörigen
Schnittstellen weiterentwickeln und mit diesen Änderungen umgegangen werden muss.
Durch Ansätze wie [Gra16] wird des Weiteren eine semantische Integration von Infor-
mationsräumen ermöglicht, durch die unterschiedliche Modelle miteinander gekoppelt
werden können. Auch diese neu entstehenden Abhängigkeiten stellen neue Anforderungen
an die Revisionierung und die Evolution der Modelle.

These 2: Anforderungen können durch etablierte Werkzeuge aus der Softwareentwick-
lung nicht vollständig erfüllt werden.

Zur Bestätigung dieser These wurden die aufgenommenen Anforderungen gegen beste-
hende Ansätze verglichen, woraus sich ergeben hat, dass diese die Anforderungen nicht
vollständig erfüllen können und auch diese These als bestätigt angesehen werden kann.
Für die Revisionsverwaltung gibt es zwar etablierte Ansätze, die aber aufgrund der Struk-
tur und der Natur von Informations- und Datenmodellen nicht genutzt werden können.
Diese Systeme agieren nicht auf einer Inhaltsebene, sondern auf einer zeilenbasierten
Strukturebene, die für die Revisionierung von Modellen nicht zielführend ist. Ebenso
existieren Ansätze für die Evolution von Modellen, wobei diese jedoch überwiegend
den Aspekt der Revisionierung außen vorlassen, wodurch die Nachvollziehbarkeit der
durchgeführten Änderungen nicht mehr gewährleistet ist.

These 3: Die Integration von Revisionskontrollfunktionalitäten und Evolutionsmecha-
nismen in ein übergeordnetes Revision Management System bietet die Grundlage für die
Umsetzung der Anforderungen.

134

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

7.2 Ergebnisdiskussion und Verifikation der Thesen

Aus der Anforderungsanalyse heraus hat sich ergeben, dass die Integration von Revisi-
onskontrollfunktionalitäten und Evolutionsmechanismen notwendig ist, um die Anforde-
rungen umzusetzen. Hierfür wurde ein RMS konzeptioniert, das aus unterschiedlichen
Komponenten aufgebaut ist, die jeweils die Umsetzung von spezifischen aufgenomme-
nen Anforderungen erlauben. Dadurch kann diese These bestätigt werden. In dieser
Arbeit wurden die grundlegenden Komponenten im Detail ausspezifiziert, wobei die
mathematischen und semantischen Beschreibungen der jeweiligen Komponenten auf-
einander aufbauen. Ein wesentliches Merkmal ist dabei die semantische Beschreibung
über alle Komponenten hinweg. Dies ermöglicht es einerseits, auf Ergebnisse von ande-
ren Komponenten zuzugreifen, sowie andererseits die Möglichkeit der Umsetzung von
weiterführenden Komponenten und zukünftigen Erweiterungen.

These 4: Die technologieunabhängige Beschreibung des Revision Management Systems
erlaubt eine Umsetzung in unterschiedlichen Anwendungsdomänen.

Diese These wurde durch die Umsetzung der technologieunabhängigen Beschreibung
für das Semantic Web und die anschließende Verifikation bestätigt. Hierbei konnte
gezeigt werden, dass die technologieunabhängigen UML-Modelle in Ontologien für das
Semantic Web überführt werden konnten. Des Weiteren zeigen erste Arbeiten, dass
eine bidirektionale Synchronisation zwischen Semantic Web und OPC UA möglich ist,
woraus ableitbar ist, dass ein RMS ebenso für OPC UA umsetzbar ist. Hierbei müssen
die in UML beschriebenen Informationsmodelle in Typenmodelle von OPC UA überführt
werden.

Kernthese Ein Revision Management System unterstützt die Evolution von Informations-
und Datenmodellen über deren gesamten Lebenszyklus durch die Integration von Revisions-
kontroll- und Evolutionsmechanismen.

Durch die vorangegangene Bestätigung der Einzelthesen kann ebenso die Kernthe-
se dieser Arbeit als bestätigt angesehen werden. Innerhalb der Arbeit wurde ausge-
hend von einem Lebenszyklusmodell für Informationsmodelle ein RMS entwickelt, das
Revisionskontroll- und Evolutionsmechanismen integriert und damit die Grundlage für
eine durchgängige Lebenszyklusunterstützung von Informations- und Datenmodellen
schafft.

135

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

8 Zusammenfassung

Neben einer kurzen Ergebniszusammenfassung der Arbeit werden im Folgenden Anknüp-
fungspunkte aufgezeigt, an denen folgende Arbeiten ansetzen können.

8.1 Ergebniszusammenfassung

Ausgehend von einer Literaturrecherche und der daraus abgeleiteten Anforderungsanalyse
wurde innerhalb dieser Arbeit ein Lebenszyklusmodell für Informationsmodelle sowie
ein RMS entwickelt, das Revisionskontroll- und Evolutionsmechanismen technologieu-
nabhängig integriert. Dieses RMS bietet damit die Grundlage für eine durchgängige
Lebenszyklusunterstützung von Informations- und Datenmodellen in unterschiedlichen
Anwendungsdomänen. Durch eine Umsetzung des Konzeptes im Semantic Web als eine
Weiterentwicklung des Open-Source-Projektes R43ples und die anschließende Verifikation
konnte nachgewiesen werden, dass das Konzept funktionsfähig ist und die notwendigen
Funktionen für die Lebenszyklusunterstützung bereitstellt.

8.2 Ausblick und Grenzen

Die sich aus dieser Arbeit ergebenden Anknüpfungspunkte für folgende Arbeiten bezie-
hungsweise Fragestellungen, die in weiteren Arbeiten untersucht werden müssen, sind
nachfolgend in drei Kategorien unterteilt. Im ersten Schritt werden offene Punkte mit
Bezug zum vorgestellten Konzept aufgezeigt. Anschließend werden Weiterentwicklungs-
möglichkeiten skizziert, die sich aus der Implementierung im Semantic Web schlussfolgern
lassen. Schließlich werden offene Fragestellungen aufgeschlüsselt, die sich aus der gesam-
ten Arbeit heraus ergeben beziehungsweise innerhalb dieser Arbeit nicht mehr betrachtet
werden konnten.

Konzept In Bezug auf das Konzept bestehen offene Punkte vor allem in Hinblick auf
die vorgenommene Priorisierung und die damit verbundenen nicht im Detail beschrie-
benen Komponenten eines RMS. Hierzu gehört zum einen die Bereitstellung eines User
Interfaces für die nutzerfreundliche Interaktion mit dem System und zum anderen das
Zugriffsmanagement. Innerhalb dessen müssen unter anderem Freigabeprozesse für Infor-
mationsmodelle im Idealfall anhand industrieller Anwendungsszenarien näher untersucht
werden. Hierbei müssen weiterhin die Rollen innerhalb einer solchen Umgebung im Detail
erfasst werden und sichergestellt werden, welche Änderungen von wem nachverfolgt
werden müssen. Dabei wird außerdem Wissen benötigt, wo und von wem Informations-
modelle für die Beschreibung von Datenmodellen eingesetzt werden. Dies ist notwendig,

136

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

8.2 Ausblick und Grenzen

da diese Personengruppen bei einer möglichen Außerkraftsetzung entsprechend informiert
und daraus weiterführende Maßnahmen abgeleitet werden müssen.

Wie bereits in der Diskussion aufgeführt, werden weitere Funktionen als Umkehropera-
tionen der Erstellungsfunktionen benötigt, um zum Beispiel einen Branch oder einen Tag
rückgängig zu machen. Ebenso können in zukünftigen Arbeiten die Mechanismen der
High-Level-Change-Aggregation auf einen ganzen Revisionspfad ausgedehnt werden, um
entlang von diesem Pfad alle High-Level-Changes zu detektieren und auch Abhängigkeiten
zwischen diesen aufzulösen. Da in dieser Arbeit Schnittstellen zu technologiespezifischen
Lösungen geschaffen werden mussten, müssen diese Schnittstellen für die jeweiligen Tech-
nologien spezifisch umgesetzt werden. Hier könnte in Folgearbeiten ebenso untersucht
werden, ob es Überschneidungen zwischen unterschiedlichen Technologien gibt und Teile
der Realisierung auf eine unabhängige Ebene gehoben werden können.

Ein weiterer konzeptionell zu betrachtender Anwendungsfall besteht in der Wiederver-
wendbarkeit von Teilen von abgelösten Informationsmodellen in neu erstellten Informati-
onsmodellen und wie in diesem Szenario Migrationen durchgeführt werden können, um
Konsistenz sicherzustellen. Dabei tritt des Weiteren die Notwendigkeit der Referenzierung
zwischen unterschiedlichen Revisionen innerhalb der Informations- und Datenmodelle
auf. Diese wird durch die unterschiedlichen Ausprägungen der Beschreibung der Modelle
jedoch mit hoher Wahrscheinlichkeit technologiespezifisch ausfallen. Hierfür müssen die
notwendigen mathematischen und semantischen Grundlagen geschaffen werden.

Implementierung Die Implementierung ist eine prototypische Umsetzung des vorgestell-
ten Konzeptes, woraus sich ebenso offene Punkte ergeben, die zukünftig weiterentwickelt
beziehungsweise untersucht werden müssen. Innerhalb von R43ples wurden beispielsweise
die Aggregations- und Co-Evolutionsfunktionen nur für zwei direkt aufeinanderfolgende
Revisionen umgesetzt. An dieser Stelle muss eine Erweiterung hin zu der Aggregation
und Co-Evolution entlang eines Pfades von Revisionen stattfinden, um auch mehrere
durchgeführte Änderungen auf einmal co-evolvieren zu können. Im Fall, dass entlang
eines Pfades co-evolviert werden soll, der nur durch eine Start- und eine Zielrevision
gekennzeichnet ist, können potenziell unterschiedliche Pfade im Revisionsgraphen genutzt
werden. Hier muss untersucht werden, inwieweit bereitgestellte Regelsätze unabhängig
vom Pfad sind, oder ob der gewählte Pfad Einfluss auf die Co-Evolutionen hat. Ebenso ist
der bereitgestellte Regelsatz für Aggregation und Co-Evolution nur für eine Beispielregel
umgesetzt. Die Integration von weiteren Regeln ist essenziell für eine breite Anwendung
der Implementierung. Die Regeln beziehen sich außerdem auf Typ-Instanz-Beziehungen
und müssen mit weiteren Regeln in Bezug auf die noch umzusetzende Komponente eines
ConnectionManagers erweitert werden, wobei diese Regeln einerseits auf den allgemeinen
Definitionen von Compound Graphs aber auch auf anwendungsspezifischen Erweite-
rungen aufbauen sollten. Des Weiteren muss die Zusammenführung von divergierten
Entwicklungszweigen um die vorgestellten Möglichkeiten der semantischen Konfliktdetek-
tion erweitert werden. Verteilte Anfragen, die mehrere revisionierte Modelle auf einmal
ändern, werden von der aktuellen Implementierung nicht unterstützt. An dieser Stelle
muss in weiteren Arbeiten untersucht werden, wie sich gleichzeitige Änderungen auf die

137

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

8 Zusammenfassung

durchzuführenden Co-Evolutionen auswirken. Beispielsweise kann daraus die Notwen-
digkeit entstehen, dass eine semantische Verknüpfung zwischen den einzelnen erstellten
Commits beziehungsweise den erstellten Revisionen herzustellen ist. Schließlich sollte die
gesamte Performance der Implementierung gesteigert werden. Hierfür können beispiels-
weise Mechanismen untersucht werden, die eine Selbstoptimierung des Repositories in
Bezug auf kürzeste Wege und vollständig vorgehaltenen Revisionen ermöglichen.

R43ples verfügt aktuell über ein Webinterface, über das Anfragen an das System gestellt
werden können und das auch rudimentäre Information zu den revisionierten Modellen
bereitstellt. Jedoch fehlen Visualisierungsmöglichkeiten von zum Beispiel Differenzen
zwischen Revisionen und eine Aufbereitung der erkannten High-Level-Changes. Ebenso
sollte zukünftig die Durchführung von Co-Evolutionen visuell unterstützt werden. Erste
Ansätze wurden im Rahmen einer studentischen Arbeit [Fun17] entwickelt, die in die
prototypische Implementierung überführt werden könnten. Im Zusammenhang mit der
Co-Evolution müssen weiterhin die Verbindungen zwischen Modellen gepflegt werden.
Hierfür werden ebenfalls Benutzerschnittstellen benötigt, die bestehende Verbindungen
darstellen und eine nachträgliche Bearbeitung erlauben. Die Erstellung der Regelsätze
erfolgt im aktuellen Ansatz manuell, was mit einer Fehleranfälligkeit und hohen zeitlichen
Aufwänden verbunden ist. Diesem Problem könnte auch durch eine geeignete visuelle
Konfigurationsschnittstelle entgegengewirkt werden.

Offene Fragestellungen für weiterführende Arbeiten Die vorliegende Arbeit nutzt
zwei Anwendungsfälle mit praktischer Relevanz als Grundlage. Gleichwohl sollten sowohl
die Implementierung als auch das Konzept im Allgemeinen im industriellen Umfeld
anhand konkreter industrieller Anwendungsfälle weiter evaluiert werden. An dieser Stelle
könnte ebenso eine Übertragung des Konzeptes in eine andere Technologie wie zum
Beispiel OPC UA stattfinden. Darüber hinaus könnte das vorgestellte RMS auch die
Grundlage für ein CIF für Informations- und Datenmodelle bereitstellen. Innerhalb von
diesem wäre es dann zum Beispiel auch möglich, Analysen über Wiederverwendung oder
Qualität von Informationsmodellen durchzuführen, wodurch die semantische Beschreibung
innerhalb von Informationsräumen verbessert werden könnte. In diesem Zusammenhang
ist auch die Entwicklung eines semantischen Ticketsystems vorstellbar, das sich auf das
RMS bezieht.

Wie bereits angesprochen, müssen die Regelsätze derzeit mit hohem manuellem Auf-
wand erstellt werden. In weiterführenden Arbeiten könnte untersucht werden, inwieweit
wiederkehrende Änderungsmuster automatisiert erkannt werden können, um dann bei-
spielsweise nur noch durch einen Nutzer mit einer entsprechenden Semantik versehen
werden zu müssen. Darüber hinaus kann das vorgestellte RMS auch innerhalb von wissens-
basierten Systemen für das Round-Trip-Engineering als Grundlage für die Revisionierung
und Evolution genutzt werden. Hierbei müssen auch Methodiken entwickelt werden, um
Anfragen auf Modelle beziehungsweise Abbildungsvorschriften zwischen Modellen mit
den Modellen zu evolvieren.

Mit der Umsetzung im Semantic Web erfolgte ein erster Schritt für die durchgängige
Unterstützung der Evolution von vernetzten Modellen. Jedoch muss in folgenden Ar-

138

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

8.2 Ausblick und Grenzen

beiten auch die Evolution über Repository-Grenzen hinweg untersucht werden, da die
entsprechenden Modelle zwar Abhängigkeiten besitzen, aber nicht zwangsläufig inner-
halb einer Umgebung revisioniert werden, sondern potenziell global verteilt sein können.
Darüber hinaus sollten Bestrebungen aufgenommen werden, SPARQL-Erweiterungen
für die Revisionsverwaltung und die Evolution in eine Standardisierung zu überführen,
um einen einheitlichen Zugriff über Applikationen hinweg zu ermöglichen.

139

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Anhang

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

A Entwurf

«component»
RevisionManagementSystem

«component»
DataManagement

BasicRCFunctionalitiesMergeFunctionalities

«component»
Control

BasicRCFunctionalitiesMergeFunctionalities

AuthenticationCoEvoFunctionalities ConnectionManagement ApprovalProcessManagementUserAndRoleManagement

«component»
UserInterface

AuthenticationMergeFunctionalities BasicRCFunctionalities CoEvoFunctionalities ConnectionManagement ApprovalProcessManagementUserAndRoleManagement

«component»
EvolutionEngine

CoEvoFunctionalities

BasicRCFunctionalitiesHLCAggFunctionalities

Authorization

MergeFunctionalities

«component»
ConnectionManager

BasicRCFunctionalities

ConnectionManagement

«component»
EvoRuleManager

BasicRCFunctionalities

«component»
CoEvolutionMechanisms

BasicRCFunctionalities

CoEvoFunctionalities

Connections

HLCAggFunctionalitiesMergeFunctionalities

«component»
RevisionControlSystem

BasicRCFunctionalities

MergeFunctionalities

HLCAggFunctionalities

Authorization

«component»
DataStorage

«component»
MergeManagement

MergeFunctionalities

BasicRCFunctionalities

HLCAggFunctionalities

«component»
HighLevelChangeAggregation

HLCAggFunctionalities

BasicRCFunctionalities

«component»
PermissionAndApprovalProcessManagerAuthorization

ApprovalProcessManagement

BasicRCFunctionalities

Authentication UserAndRoleManagement

«component»
ApprovalProcessManager

ApprovalProcessManagement

BasicRCFunctionalities

UserAndRoleManagement

«component»
PermissionManager

Authorization

Authentication

UserAndRoleManagement

«component»
HLCAggRuleManager

BasicRCFunctionalities

«component»
HLCAggMechanisms

BasicRCFunctionalities

HLCAggFunctionalities

«component»
BasicRevisionControl

BasicRCFunctionalities

DataStorageAccess

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»
«delegate»

«delegate»

«delegate»

«delegate»

ConnectionFunctionalities

«delegate»

HLCAggRules

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

Authorization

«delegate»

HLCAggFunctionalities

«delegate»

«delegate»

«delegate»

«delegate»
«delegate»

«delegate»

DataStorageAccess

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

Abbildung A.1: Vollständiges Komponentendiagramm des RMS

141

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B Implementierung

Im Nachfolgenden wird anhand von konkreten Beispielen dargestellt, wie sich der Re-
visionsraum verändert, wenn bereitgestellte Funktionalitäten mittels der erweiterten
SPARQL-Syntax ausgeführt werden. In den Bildern stehen dünne Linien für bestehende
Information, dicke Linien für neu hinzugekommene Information und gepunktete Linien
kennzeichnen entfernte Information. Revisionen werden aus Gründen der Übersichtlichkeit
grau hervorgehoben.

B.1 Basisrevisionskontrollfunktionalitäten

Abbildung B.1: Beispiel für die Erstellung eines neuen Graphen

142

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B.1 Basisrevisionskontrollfunktionalitäten

Abbildung B.2: Beispiel für die Erstellung eines neuen Entwicklungszweiges

Abbildung B.3: Beispiel für die Erstellung eines neuen Tags

143

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B Implementierung

Abbildung B.4: Beispiel für die Erstellung eines neuen Commits

144

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B.1 Basisrevisionskontrollfunktionalitäten

Abbildung B.5: Beispiel für die Revidierung eines Commits

145

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B Implementierung

B.2 Aggregation von High-Level-Changes

Abbildung B.6: Beispiel für die Aggregation (Ausschnitt)

146

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B.2 Aggregation von High-Level-Changes

1 PREFIX r d f s :<http ://www. w3 . org /2000/01/ rdf−schema#>
2 PREFIX rd f :<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
3
4 SELECT ?b ? c ? r e s ou r c e
5 WHERE {
6 {
7 SELECT ?b ? c ? r e s ou r c e
8 WHERE {
9 GRAPH <http ://NAMEDGRAPH#ADDSET−1−2> { # Example : <h t t p ://

NAMEDGRAPH#ADDSET−1−2> w i l l be r ep l aced wi th <h t t p :// t e s t . com/
r43p les −datase t −hlc −aggrega t ion −addSet−1−2>

10 ? c a r d f s : Class .
11 ? c r d f s : subClassOf ? r e s ou r c e .
12 }
13 }
14 }
15 {
16 SELECT ?b ? c ? r e s ou r c e
17 WHERE {
18 GRAPH <http ://NAMEDGRAPH#DELETESET−1−2> { # Example : <h t t p ://

NAMEDGRAPH#DELETESET−1−2> w i l l be r ep l aced wi th <h t t p :// t e s t .
com/ r43p le s −datase t −hlc −aggrega t ion −d e l e t e S e t −1−2>

19 ?b a r d f s : Class .
20 ?b r d f s : subClassOf ? r e s ou r c e .
21 }
22 }
23 }
24 MINUS
25 {
26 SELECT ?b ? c
27 WHERE {
28 GRAPH <http ://NAMEDGRAPH#rev1> { # Example : <h t t p ://NAMEDGRAPH#

rev1> w i l l r ep l a ced wi th <h t t p :// t e s t . com/ r43p le s −datase t −hlc −
aggrega t ion > REVISION "1"

29 ? c ? s1 ?o1 .
30 }
31 GRAPH <http ://NAMEDGRAPH#rev2> { # Example : <h t t p ://NAMEDGRAPH#

rev2> w i l l r ep l a ced wi th <h t t p :// t e s t . com/ r43p le s −datase t −hlc −
aggrega t ion > REVISION "2"

32 ?b ? s2 ?o2 .
33 }
34 }
35 }
36 }

Listing 16: Beispiel für die in SPIN beschriebene Anfrage

147

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B Implementierung

B.3 Zusammenführung von divergierten Entwicklungszweigen

Abbildung B.7: Beispiel für einen 3-Wege-Merge Commit

148

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B.3 Zusammenführung von divergierten Entwicklungszweigen

Abbildung B.8: Beispiel für einen Fast Forward Commit

Abbildung B.9: Beispiel für einen Pick Commit

149

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B Implementierung

B.4 Co-Evolution

1 # Matching query :
2 SELECT ? sub j e c t
3 WHERE {
4 GRAPH <http ://NAMEDGRAPH#master> { # Example : <h t t p ://NAMEDGRAPH#

master> w i l l r ep l a ced wi th <h t t p :// t e s t . com/ r43p le s −datase t −1>
5 ? sub j e c t a ?b .
6 }
7 }
8
9 # ADD s e t update query :

10 INSERT
11 { GRAPH <http ://NAMEDGRAPH#ADDSET−NEW> { ? s u b j e c t a ?c } } # Example :

<h t t p ://NAMEDGRAPH#master> w i l l r ep l aced wi th <h t t p :// t e s t . com/
r43p les −datase t −1−addSet−4−5>

12 WHERE
13 { GRAPH <http ://NAMEDGRAPH#master> # Example : <h t t p ://NAMEDGRAPH#

master> w i l l r ep l a ced wi th <h t t p :// t e s t . com/ r43p le s −datase t −1>
14 { ? sub j e c t a ?b .
15 }
16 }
17
18 # DELETE s e t update query
19 INSERT
20 { GRAPH <http ://NAMEDGRAPH#DELETESET−NEW> { ? s u b j e c t a ?b } } #

Example : <h t t p ://NAMEDGRAPH#master> w i l l r ep l aced wi th <h t t p ://
t e s t . com/ r43p les −datase t −1−d e l e t e S e t −4−5>

21 WHERE
22 { GRAPH <http ://NAMEDGRAPH#master> # Example : <h t t p ://NAMEDGRAPH#

master> w i l l r ep l a ced wi th <h t t p :// t e s t . com/ r43p le s −datase t −1>
23 { ? sub j e c t a ?b .
24 }
25 }

Listing 17: Beispiel für die in SPIN beschriebenen Anfragen zur Detektion von Matchings und
zur Spezifikation der Co-Evolution

150

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

B.4 Co-Evolution

Abbildung B.10: Beispiel für die Co-Evolution (Ausschnitt)

151

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[AH06] Sören Auer und Heinrich Herre. „A Versioning and Evolution Framework for
RDF Knowledge Bases“. en. In: Perspectives of Systems Informatics. Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg, Juni 2006, S. 55–
69. isbn: 978-3-540-70880-3 978-3-540-70881-0. doi: 10.1007/978-3-540-
70881-0_8. url: https://link.springer.com/chapter/10.1007/978-
3-540-70881-0_8 (besucht am 29. 11. 2020) (siehe S. 96).

[Ahr18] Michael Ahrens. „Entwicklung einer Middleware zur Integration und Syn-
chronisation von OPC UA und Semantic Web Informationsmodellen“. Di-
plomarbeit. Dresden: TU Dresden, Nov. 2018 (siehe S. 118, 133).

[AM17] Natanael Arndt und Michael Martin. „Decentralized Evolution and Consoli-
dation of RDF Graphs“. In: 17th International Conference on Web Enginee-
ring (ICWE 2017). ICWE 2017. Rome, Italy, Juni 2017. doi: 10.1007/978-
3-319-60131-1_2. url: https://svn.aksw.org/papers/2017/ICWE_
DecentralizedEvolution/public.pdf (besucht am 29. 11. 2020) (siehe
S. 3, 27, 72, 73, 83).

[ARM16] Natanael Arndt, Norman Radtke und Michael Martin. „Distributed Collabo-
ration on RDF Datasets Using Git: Towards the Quit Store“. In: Proceedings
of the 12th International Conference on Semantic Systems. SEMANTiCS
2016. New York, NY, USA: ACM, 2016, S. 25–32. isbn: 978-1-4503-4752-5.
doi: 10.1145/2993318.2993328. url: http://doi.acm.org/10.1145/
2993318.2993328 (besucht am 29. 11. 2020) (siehe S. 27).

[Aue+12] Sören Auer, Lorenz Bühmann, Christian Dirschl, Orri Erling, Michael
Hausenblas, Robert Isele, Jens Lehmann, Michael Martin, Pablo N. Mendes,
Bert van Nuffelen, Claus Stadler, Sebastian Tramp und Hugh Williams.
„Managing the Life-Cycle of Linked Data with the LOD2 Stack“. en. In:
The Semantic Web – ISWC 2012. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, Nov. 2012, S. 1–16. isbn: 978-3-642-35172-3
978-3-642-35173-0. doi: 10.1007/978-3-642-35173-0_1. url: https:
//link.springer.com/chapter/10.1007/978- 3- 642- 35173- 0_1
(besucht am 29. 11. 2020) (siehe S. 59).

[Bae05] Stefan Baerisch. Versionskontrollsysteme in der Softwareentwicklung. Ar-
beitsbericht / Informationszentrum Sozialwissenschaften Nr. 36. Bonn: IZ
Sozialwissenschaften, 2005 (siehe S. 23).

152

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

[Ban+87] Jay Banerjee, Won Kim, Hyoung-Joo Kim und Henry F. Korth. „Semantics
and Implementation of Schema Evolution in Object-oriented Databases“.
In: Proceedings of the 1987 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’87. New York, NY, USA: ACM, 1987,
S. 311–322. isbn: 978-0-89791-236-5. doi: 10.1145/38713.38748. url:
http://doi.acm.org/10.1145/38713.38748 (besucht am 29. 11. 2020)
(siehe S. 20).

[Bas+11] Jens Bastian, Christoph Clauß, Susann Wolf und Peter Schneider. „Master
for Co-Simulation Using FMI“. In: Juni 2011, S. 115–120. doi: 10.3384/
ecp11063115. url: https://ep.liu.se/ecp/063/014/ecp11063014.pdf
(besucht am 29. 11. 2020) (siehe S. 41).

[BB08] A. Terry Bahill und Rick Botta. „Fundamental Principles of Good System
Design“. In: Engineering Management Journal 20.4 (Dez. 2008). url: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.8459&
rep=rep1&type=pdf (besucht am 29. 11. 2020) (siehe S. 18, 32–35).

[BBR09] Robert Brcina, Stephan Bode und Matthias Riebisch. „Optimisation Process
for Maintaining Evolvability during Software Evolution“. In: 2009 16th
Annual IEEE International Conference and Workshop on the Engineering
of Computer Based Systems. Apr. 2009, S. 196–205. doi: 10.1109/ECBS.
2009.20 (siehe S. 18, 19).

[BCE07] Hongyu Pei Breivold, Ivica Crnkovic und Peter Eriksson. „Evaluating
Software Evolvability“. In: Software Engineering Research and Practice in
Sweden (2007), S. 96 (siehe S. 18).

[BCE08] Hongyu Pei Breivold, Ivica Crnkovic und Peter J. Eriksson. „Analyzing
Software Evolvability“. In: 2008 32nd Annual IEEE International Computer
Software and Applications Conference. Juli 2008, S. 327–330. doi: 10.1109/
COMPSAC.2008.50. url: https://ieeexplore.ieee.org/document/
4591576 (besucht am 29. 11. 2020) (siehe S. 20).

[Bee12] Jay Clark Beesemyer. „Empirically characterizing evolvability and change-
ability in engineering systems“. en. Masterarbeit. Massachusetts Institute of
Technology, 2012. url: http://dspace.mit.edu/handle/1721.1/76092
(besucht am 29. 11. 2020) (siehe S. 18).

[BH17] Jens Bernshausen und Axel Haller. NAMUR MTP - Visualization and
Control of Modular Plants. Workshop. Bad Neuenahr, Nov. 2017 (siehe
S. 6).

[Bie+16] Thomas Bieringer, Christian Bramsiepe, Stefan Brand, Andreas Brodhagen,
Christian Dreiser, Christoph Fleischer-Trebes, Norbert Kockmann, Stefan
Lier, Dirk Schmalz, Christian Schwede, Armin Schweiger und Frank Stenger.

153

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

Modular Plants: Flexible chemical production by modularization and standar-
dization – status quo and future trends (ProcessNet White Paper). Frankfurt
am Main: Dechema e.V., Dez. 2016. isbn: 978-3-89746-191-2. url: http:
//dechema.de/dechema_media/ModularPlants_2016-p-20002425.pdf
(besucht am 29. 11. 2020) (siehe S. 1, 5).

[Blo+17] Henry Bloch, Stephan Hensel, Mario Hoernicke, Katharina Stark, Anna
Menschner, Leon Urbas, Alexander Fay, Torsten Knohl, Jens Bernshausen
und Axel Haller. „Zustandsbasierte Führung modularer Prozessanlagen“.
In: atp edition 59.10 (Okt. 2017), S. 34–45. issn: 2190-4111. url: http:
//ojs.di-verlag.de/index.php/atp_edition/article/view/1899
(besucht am 29. 11. 2020) (siehe S. 45).

[BM07] Philip A. Bernstein und Sergey Melnik. „Model Management 2.0: Manipu-
lating Richer Mappings“. In: Proceedings of the 2007 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’07. New York, NY,
USA: ACM, 2007, S. 1–12. isbn: 978-1-59593-686-8. doi: 10.1145/1247480.
1247482. url: http://doi.acm.org/10.1145/1247480.1247482 (besucht
am 29. 11. 2020) (siehe S. 20).

[Bre00] Eric A. Brewer. Towards Robust Distributed Systems. Keynote. Portland,
Oregon, USA, 2000. url: https://people.eecs.berkeley.edu/~brewer/
cs262b-2004/PODC-keynote.pdf (besucht am 29. 11. 2020) (siehe S. 31).

[Bre11] Peter C. Breedveld. „Concept-Oriented Modeling of Dynamic Behavior“. In:
Bond Graph Modelling of Engineering Systems: Theory, Applications and
Software Support. Hrsg. von Wolfgang Borutzky. New York, NY: Springer
New York, 2011, S. 3–52. isbn: 978-1-4419-9368-7. url: http://dx.doi.
org/10.1007/978-1-4419-9368-7_1 (besucht am 29. 11. 2020) (siehe
S. 41).

[Bud09] Frank Budszuhn. Subversion 1.5. Galileo Press, 2009 (siehe S. 23, 33).

[Bür+14] Jens Bürger, Jan Jürjens, Thomas Ruhroth, Stefan Gärtner und Kurt
Schneider. „Model-Based Security Engineering: Managed Co-evolution of
Security Knowledge and Software Models“. en. In: Foundations of Security
Analysis and Design VII. Lecture Notes in Computer Science. Springer,
Cham, 2014, S. 34–53. isbn: 978-3-319-10081-4 978-3-319-10082-1. doi:
10.1007/978-3-319-10082-1_2. url: https://link.springer.com/
chapter/10.1007/978-3-319-10082-1_2 (besucht am 29. 11. 2020) (siehe
S. 51–53).

[Bus+14] Johannes Busse, Bernhard Humm, Christoph Lübbert, Frank Moelter,
Anatol Reibold, Matthias Rewald, Veronika Schlüter, Bernhard Seiler, Erwin
Tegtmeier und Thomas Zeh. „Was bedeutet eigentlich Ontologie?“ de. In:
Informatik-Spektrum 37.4 (Aug. 2014), S. 286–297. issn: 0170-6012, 1432-

154

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

122X. doi: 10.1007/s00287-012-0619-2. url: https://link.springer.
com/article/10.1007/s00287-012-0619-2 (besucht am 29. 11. 2020)
(siehe S. 14).

[Cam+16] Dario Campagna, Carlos Kavka, Alessandro Turco, Besian Pogace und
Carlo Poloni. „Solving time-dependent coupled systems through FMI co-
simulation and BPMN process orchestration“. In: 2016 IEEE International
Symposium on Systems Engineering (ISSE). Okt. 2016, S. 1–8. doi: 10.
1109/SysEng.2016.7753140 (siehe S. 41).

[Can+15] Lorenzo Canova, Simone Basso, Raimondo Iemma und Federico Morando.
„Collaborative Open Data versioning: a pragmatic approach using Linked
Data“. In: CeDEM15 - Conference for E-Democracy and Open Governement.
Krems, 2015, S. 171–183 (siehe S. 26, 55).

[CO05] John Christian und John Olds. „A Quantitative Methodology for Identifying
Evolvable Space Systems“. In: 1st Space Exploration Conference: Continuing
the Voyage of Discovery. Space Exploration Conferences. American Institute
of Aeronautics und Astronautics, Jan. 2005. doi: 10.2514/6.2005-2543.
url: https://arc.aiaa.org/doi/10.2514/6.2005-2543 (besucht am
29. 11. 2020) (siehe S. 18).

[DA10] Rim Djedidi und Marie-Aude Aufaure. „Ontology Evolution: State of the Art
and Future Directions“. en. In: Ontology Theory, Management and Design:
Advanced Tools and Models (2010), S. 179–207. doi: 10.4018/978-1-61520-
859-3.ch008. url: https://www.igi-global.com/chapter/ontology-
evolution-state-art-future/42890 (besucht am 29. 11. 2020) (siehe
S. 21, 22).

[DB07] Mark Dalgarno und Danilo Beuche. „Variant Management“. In: 3rd British
Computer Society Configuration Management Specialist Group Conference
Variant Management. 2007. url: http : / / citeseerx . ist . psu . edu /
viewdoc/summary?doi=10.1.1.132.1820 (besucht am 29. 11. 2020) (siehe
S. 23).

[Dij59] Edsger W. Dijkstra. „A Note on Two Problems in Connexion with Graphs“.
In: Numerische Mathematik 1.1 (1959), S. 269–271 (siehe S. 75).

[DIN06] DIN EN ISO. Ergonomie der Mensch-System-Interaktion – Teil 110: Grund-
sätze der Dialoggestaltung (ISO 9241-110:2006); Deutsche Fassung EN ISO
9241-110:2006. Norm DIN EN ISO 9241-110. DIN EN ISO, Aug. 2006 (siehe
S. 28).

[DIN14] DIN EN. Speicherprogrammierbare Steuerungen Teil 3: Programmierspra-
chen. Norm DIN EN 61131-3. DIN EN, Juni 2014 (siehe S. 15).

155

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[DIN17] DIN EN. Life-cycle-Management von Systemen und Produkten der Mess-,
Steuer- und Regelungstechnik der Industrie (IEC 65/617/CDV:2016). Norm
DIN EN 62890:2017-04;VDE 0810-890:2017-04 - Entwurf. DIN EN, Apr.
2017 (siehe S. 59).

[DIP11] Davide Di Ruscio, Ludovico Iovino und Alfonso Pierantonio. „What is
Needed for Managing Co-evolution in MDE?“ In: Proceedings of the 2Nd
International Workshop on Model Comparison in Practice. IWMCP ’11.
New York, NY, USA: ACM, 2011, S. 30–38. isbn: 978-1-4503-0668-3. doi:
10 . 1145 / 2000410 . 2000416. url: http : / / doi . acm . org / 10 . 1145 /
2000410.2000416 (besucht am 29. 11. 2020) (siehe S. 16, 17, 38).

[Dud] Dudenredaktion. "Konsistenz" auf Duden online. url: http://www.duden.
de/node/684770/revisions/1616335/view (besucht am 29. 11. 2020)
(siehe S. 28).

[Eka+15] Fajar J. Ekaputra, Estefanía Serral, Marta Sabou und Stefan Biffl. „Know-
ledge Change Management and Analysis for Multi-Disciplinary Engineering
Environments.“ In: SEMANTiCS (Posters & Demos). 2015, S. 13–17. url:
https://pdfs.semanticscholar.org/2de2/75c1e716e54f5d3bfc48a87
55415d20ccbcf.pdf (besucht am 29. 11. 2020) (siehe S. 26).

[Eng+01] Gregor Engels, Jochem M. Küster, Reiko Heckel und Luuk Groenewegen. „A
Methodology for Specifying and Analyzing Consistency of Object-oriented
Behavioral Models“. In: Proceedings of the 8th European Software Engi-
neering Conference Held Jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ESEC/FSE-9. New
York, NY, USA: ACM, 2001, S. 186–195. isbn: 978-1-58113-390-5. doi:
10.1145/503209.503235. url: http://doi.acm.org/10.1145/503209.
503235 (besucht am 29. 11. 2020) (siehe S. 30).

[Fai+16] Sidra Faisal, Kemele M. Endris, Saeedeh Shekarpour, Sören Auer und Maria-
Esther Vidal. „Co-evolution of RDF Datasets“. en. In: Web Engineering.
Lecture Notes in Computer Science. Springer, Cham, Juni 2016, S. 225–243.
isbn: 978-3-319-38790-1 978-3-319-38791-8. doi: 10.1007/978-3-319-
38791-8_13. url: https://link.springer.com/chapter/10.1007/978-
3-319-38791-8_13 (besucht am 29. 11. 2020) (siehe S. 84, 86).

[Fen01] Dieter Fensel. Ontologies:: A Silver Bullet for Knowledge Management
and Electronic Commerce. en. Berlin Heidelberg: Springer-Verlag, 2001.
isbn: 978-3-662-04396-7. url: https://www.springer.com/de/book/
9783662043967 (besucht am 29. 11. 2020) (siehe S. 14).

[FMP99] Pascal Fradet, Daniel Le Métayer und Michaël Périn. „Consistency Checking
for Multiple View Software Architectures“. en. In: Software Engineering

— ESEC/FSE ’99. Springer, Berlin, Heidelberg, 1999, S. 410–428. doi:

156

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

10.1007/3- 540- 48166- 4_25. url: https://link.springer.com/
chapter/10.1007/3-540-48166-4_25 (besucht am 29. 11. 2020) (siehe
S. 67).

[Fog05] Karl Fogel. Producing open source software. en. Safari Books Online. Sebas-
topol, Calif.: O’Reilly, 2005. isbn: 978-0-596-00759-1 (siehe S. 23, 33).

[Fre06] Stefan Martin Frenz. „Zuverlässiger verteilter Speicher mit transaktionaler
Konsistenz“. de. Dissertation. Universität Ulm, Juni 2006. url: https:
/ / oparu . uni - ulm . de / xmlui / handle / 123456789 / 387 (besucht am
29. 11. 2020) (siehe S. 28).

[Fri+00] Ernst Fricke, Bernd Gebhard, Herbert Negele und Eduard Igenbergs. „Co-
ping with changes: Causes, findings, and strategies“. en. In: Systems Enginee-
ring 3.4 (2000), S. 169–179. issn: 1098-1241, 1520-6858. doi: 10.1002/1520-
6858(2000) 3 : 4<169 :: AID - SYS1 > 3 . 0 . CO ; 2 - W. url: http : / / doi .
wiley.com/10.1002/1520-6858%282000%293%3A4%3C169%3A%3AAID-
SYS1%3E3.0.CO%3B2-W (besucht am 29. 11. 2020) (siehe S. 9).

[Fro+16] Marvin Frommhold, Rubén Navarro Piris, Natanael Arndt, Sebastian Tramp,
Niklas Petersen und Michael Martin. „Towards Versioning of Arbitrary RDF
Data“. In: Proceedings of the 12th International Conference on Semantic
Systems. ACM, 2016, S. 33–40. url: http://dl.acm.org/citation.cfm?
id=2993327 (besucht am 29. 11. 2020) (siehe S. 26, 27).

[FS05] Ernst Fricke und Armin P. Schulz. „Design for changeability (DfC): Prin-
ciples to enable changes in systems throughout their entire lifecycle“. en.
In: Systems Engineering 8.4 (Jan. 2005), S. 342–359. issn: 1520-6858. doi:
10.1002/sys.20039. url: http://onlinelibrary.wiley.com/doi/10.
1002/sys.20039/abstract (besucht am 29. 11. 2020) (siehe S. 8–10).

[Fuh12] Insa Marie-Ann Fuhrmann. „Layout of Compound Graphs“. Diploma Thesis.
Kiel: Christian-Albrechts-Universität zu Kiel, Feb. 2012. url: https://
rtsys.informatik.uni- kiel.de/~biblio/downloads/theses/ima-
dt.pdf (besucht am 29. 11. 2020) (siehe S. 128).

[Fuj99] Richard M. Fujimoto. Parallel and Distribution Simulation Systems. 1st.
New York, NY, USA: John Wiley & Sons, Inc., 1999. isbn: 0-471-18383-0
(siehe S. 4).

[Fun17] Jan Funke. „Integration von Co-Evolutionsstrategien in ein Revision Ma-
nagement System“. Studienarbeit. Dresden: TU Dresden, Sep. 2017 (siehe
S. 118, 138).

[Gal+15] Virginie Galtier, Stephane Vialle, Cherifa Dad, Jean-Philippe Tavella, Jean-
Philippe Lam-Yee-Mui und Gilles Plessis. „FMI-based Distributed Multi-

157

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

simulation with DACCOSIM“. In: Proceedings of the Symposium on Theory
of Modeling & Simulation: DEVS Integrative M&S Symposium. DEVS ’15.
San Diego, CA, USA: Society for Computer Simulation International, 2015,
S. 39–46. isbn: 978-1-5108-0105-9. url: http://dl.acm.org/citation.
cfm?id=2872965.2872971 (besucht am 29. 11. 2020) (siehe S. 41).

[GHU14] Markus Graube, Stephan Hensel und Leon Urbas. „R43ples: Revisions for
Triples-An Approach for Version Control in the Semantic Web.“ In: LDQ@
SEMANTICS. 2014 (siehe S. 2, 26, 27, 34, 51, 55, 106, 108).

[GHU16] Markus Graube, Stephan Hensel und Leon Urbas. „Open Semantic Revision
Control with R43ples: Extending SPARQL to access revisions of Named
Graphs“. In: Proceedings of the 12th International Conference on Semantic
Systems. SEMANTiCS 2016. New York, NY, USA: ACM, 2016, S. 49–56.
isbn: 978-1-4503-4752-5. doi: 10.1145/2993318.2993336. url: http:
//doi.acm.org/10.1145/2993318.2993336 (besucht am 29. 11. 2020)
(siehe S. 26, 27, 55, 110).

[GL02] Seth Gilbert und Nancy Lynch. „Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services“. In: SIGACT News
33.2 (Juni 2002), S. 51–59. issn: 0163-5700. doi: 10.1145/564585.564601.
url: http : / / doi . acm . org / 10 . 1145 / 564585 . 564601 (besucht am
29. 11. 2020) (siehe S. 31).

[Glo06] Klaus Gloede. Skriptum zur Vorlesung Mathematische Logik. Vorlesungs-
skript. Heidelberg: Mathematisches Institut der Universität Heidelberg, 2006.
url: http://math.uni-heidelberg.de/logic/md/lehre/mathlogik.
pdf (besucht am 29. 11. 2020) (siehe S. 28).

[Gra16] Markus Graube. „Linked Enterprise Data als semantischer, integrierter
Informationsraum für die industrielle Datenhaltung“. Dissertation. Dresden:
TU Dresden, Nov. 2016 (siehe S. 2, 3, 10–12, 14, 103, 134).

[Hau+17] Christopher Haubeck, Alexander Pokahr, Winfried Lamersdorf, Abhishek
Chakraborty, Jan Ladiges und Alexander Fay. „Evolution of cyber-physical
production systems supported by community-enabled experiences“. In: 2017
IEEE 15th International Conference on Industrial Informatics (INDIN).
Juli 2017, S. 867–874. doi: 10.1109/INDIN.2017.8104886 (siehe S. 37).

[HBW15] Claudius Hauptmann, Michele Brocco und Wolfgang Wörndl. „Scalable
Semantic Version Control for Linked Data Management.“ In: LDQ@ ESWC.
2015. url: http://ceur-ws.org/Vol-1376/LDQ2015_paper_06.pdf
(besucht am 29. 11. 2020) (siehe S. 27).

158

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

[Hen+16a] Stephan Hensel, Markus Graube, Leon Urbas, Till Heinzerling und Mathias
Oppelt. „Co-Simulation mittels OPC UA“. In: Tagungsband Automation
2016. Baden-Baden, Juni 2016 (siehe S. 5, 44).

[Hen+16b] Stephan Hensel, Markus Graube, Leon Urbas, Till Heinzerling und Mathias
Oppelt. „Co-simulation with OPC UA“. In: 2016 IEEE 14th International
Conference on Industrial Informatics (INDIN). Juli 2016, S. 20–25. doi:
10.1109/INDIN.2016.7819127 (siehe S. 5, 15, 44).

[Hen+17] Stephan Hensel, Henry Bloch, Mario Hoernicke, Andreas Stutz, Christoph
Kotsch, Thomas Holm, Jens Bernshausen, Simon Kronemeier, Axel Haller
und Leon Urbas. „Beschreibung von Bedienbildern modularer Anlagen –
Ergebnisse der NAMUR/ZVEI-Arbeitskreise (1.12.1 und 2.9.1) sowie des
VDI/VDE-GMA FA 5.16“. In: Tagungsband Automation 2017. Baden-Baden,
Juni 2017 (siehe S. 6).

[Hen13] Stephan Hensel. „Untersuchung von Synchronisierungsmechanismen in Lin-
ked Data Netzwerken“. Studienarbeit. Dresden: TU Dresden, Sep. 2013
(siehe S. 55, 103, 106).

[Hen14] Stephan Hensel. „Konflikterkennung und -behebung bei der Zusammenfüh-
rung von revisionierten Graphen in Linked Data“. Diplomarbeit. Dresden:
TU Dresden, Nov. 2014 (siehe S. 55, 103, 106, 113).

[Her05] Dietmar Hermsdörfer. Generische Informationsmodellierung / semantische
Brücke zwischen Daten und Diensten. Heidelberg: Wichmann, 2005. isbn:
978-3-87907-426-6 (siehe S. 11).

[HGU16] Stephan Hensel, Markus Graube und Leon Urbas. Methodology for Conflict
Detection and Resolution in Semantic Revision Control Systems. Techn. Ber.
2016-08-A. Dresden: TU Dresden, Nov. 2016. url: http://nbn-resolving.
de/urn:nbn:de:bsz:14-qucosa-211244 (besucht am 29. 11. 2020) (siehe
S. 55, 86, 88–90, 113).

[HGU18] Stephan Hensel, Markus Graube und Leon Urbas. „Informationsmodelle
im Lebenszyklus“. de. In: atp edition 60.4-5 (2018), S. 40–51. doi: https:
//doi.org/10.17560/atp.v60i04- 05.2345. url: http://ojs.di-
verlag.de/index.php/atp_edition/article/view/2345 (besucht am
29. 11. 2020) (siehe S. 44, 59, 60).

[HHH14] Bernhard Hoisl, Zhenjiang Hu und Soichiro Hidaka. „Towards co-evolution
in model-driven development via bidirectional higher-order transformation“.
In: 2014 2nd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD). Jan. 2014, S. 466–471 (siehe
S. 17, 38).

159

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[Hil15] Frank Hilbert. „Kontextadaptive Informationsräume“. Dissertation. Dresden:
TU Dresden, Nov. 2015. url: https://nbn-resolving.org/urn:nbn:de:
bsz:14-qucosa-198802 (besucht am 29. 11. 2020) (siehe S. 12).

[HKB17] Regina Hebig, Djamel E. Khelladi und Reda Bendraou. „Approaches to
Co-Evolution of Metamodels and Models: A Survey“. In: IEEE Transactions
on Software Engineering 43.5 (Mai 2017), S. 396–414. issn: 0098-5589. doi:
10.1109/TSE.2016.2610424 (siehe S. 1, 59).

[Hoe+16] Mario Hoernicke, Christian Messinger, Esteban Arroyo und Alexander Fay.
„Topologiemodelle in AutomationML“. In: atp edition 58.05 (Mai 2016),
S. 28–41. issn: 2190-4111. url: http://ojs.di-verlag.de/index.php/
atp_edition/article/view/2300 (besucht am 29. 11. 2020) (siehe S. 45).

[Hof06] Douglas R. Hofstadter. Gödel, Escher, Bach: ein endloses geflochtenes Band.
de. Klett-Cotta, 2006. isbn: 978-3-608-94442-6 (siehe S. 28).

[Hof79] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. New
York, NY, USA: Basic Books, Inc., 1979. isbn: 978-0-465-02685-2 (siehe
S. 28).

[Hol+14] Thomas Holm, Michael Obst, Alexander Fay, Leon Urbas, Thomas Albers,
Sven Kreft und Ulrich Hempen. „Dezentrale Intelligenz für modulare Au-
tomation“. In: atp edition 56.11 (Nov. 2014), S. 34–43. issn: 2190-4111.
url: ojs.di-verlag.de/index.php/atp_edition/article/view/2223
(besucht am 29. 11. 2020) (siehe S. 6).

[HP04] Jeff Heflin und Zhengxiang Pan. „A Model Theoretic Semantics for Ontology
Versioning“. en. In: The Semantic Web – ISWC 2004. Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, Nov. 2004, S. 62–76. isbn:
978-3-540-23798-3 978-3-540-30475-3. doi: 10.1007/978-3-540-30475-
3_6. url: https://link.springer.com/chapter/10.1007/978-3-540-
30475-3_6 (besucht am 29. 11. 2020) (siehe S. 80).

[HR83] Theo Haerder und Andreas Reuter. „Principles of Transaction-oriented
Database Recovery“. In: ACM Comput. Surv. 15.4 (Dez. 1983), S. 287–317.
issn: 0360-0300. doi: 10.1145/289.291. url: http://doi.acm.org/10.
1145/289.291 (besucht am 29. 11. 2020) (siehe S. 31).

[Huz+04] Zbigniew Huzar, Ludwik Kuzniarz, Gianna Reggio und Jean Louis Sour-
rouille. „Consistency Problems in UML-Based Software Development“. en.
In: UML Modeling Languages and Applications. Springer, Berlin, Heidel-
berg, Okt. 2004, S. 1–12. doi: 10.1007/978-3-540-31797-5_1. url:
https://link.springer.com/chapter/10.1007/978-3-540-31797-5_1
(besucht am 29. 11. 2020) (siehe S. 29, 30).

160

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

[HW14] Markus Herrmannsdörfer und Guido Wachsmuth. „Coupled Evolution of
Software Metamodels and Models“. en. In: Evolving Software Systems. Hrsg.
von Tom Mens, Alexander Serebrenik und Anthony Cleve. Springer Berlin
Heidelberg, 2014, S. 33–63. isbn: 978-3-642-45397-7 978-3-642-45398-4. doi:
10.1007/978-3-642-45398-4_2. url: http://link.springer.com/
chapter/10.1007/978-3-642-45398-4_2 (besucht am 29. 11. 2020) (siehe
S. 16).

[IEE98] IEEE. IEEE Standard for Software Maintenance. Norm IEEE Std 1219-1998.
IEEE, 1998 (siehe S. 19).

[Int+19] Roberto Interdonato, Martin Atzmueller, Sabrina Gaito, Rushed Kanawati,
Christine Largeron und Alessandra Sala. „Feature-rich networks: going
beyond complex network topologies“. en. In: Applied Network Science 4.1
(Dez. 2019). issn: 2364-8228. doi: 10.1007/s41109-019-0111-x. url:
https://appliednetsci.springeropen.com/articles/10.1007/s4110
9-019-0111-x (besucht am 29. 11. 2020) (siehe S. 15, 71).

[ISO01] ISO. Software engineering - Product quality - Part 1: Quality model. Norm
ISO/IEC 9126-1:2001. ISO/IEC, Juni 2001 (siehe S. 19).

[ISO10] ISO IEC IEEE. Systems and software engineering – Vocabulary. Norm
ISO/IEC/IEEE 24765:2010(E). ISO IEC IEEE, Dez. 2010, S. 1–418. url:
https://www.iso.org/standard/50518.html (besucht am 29. 11. 2020)
(siehe S. 28).

[KB14] Uwe Kastens und Hans Kleine Büning. Modellierung: Grundlagen und
formale Methoden. de. Carl Hanser Verlag GmbH Co KG, Okt. 2014. isbn:
978-3-446-44249-8 (siehe S. 11).

[Keh+12] Timo Kehrer, Udo Kelter, Manuel Ohrndorf und Tim Sollbach. „Understan-
ding model evolution through semantically lifting model differences with
SiLift“. In: 2012 28th IEEE International Conference on Software Mainte-
nance (ICSM). Sep. 2012, S. 638–641. doi: 10.1109/ICSM.2012.6405342
(siehe S. 37, 38).

[Keh15] Timo Kehrer. „Calculation and propagation of model changes based on
user-level edit operations : a foundation for version and variant management
in model-driven engineering“. Dissertation. Siegen: Universität Siegen, Okt.
2015. url: https://nbn-resolving.org/urn:nbn:de:hbz:467-9633
(besucht am 29. 11. 2020) (siehe S. 3, 4, 35, 37, 51, 67, 81, 83, 86, 96, 99,
133).

[KF01] Michel Klein und Dieter Fensel. „Ontology Versioning on the Semantic
Web“. In: Proceedings of the First International Conference on Semantic
Web Working. SWWS’01. Aachen, Germany, Germany: CEUR-WS.org, 2001,

161

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

S. 75–91. url: http://dl.acm.org/citation.cfm?id=2956602.2956610
(besucht am 29. 11. 2020) (siehe S. 26, 37, 38).

[Kle04] Michel Klein. „Change Management for Distributed Ontologies“. Dissertati-
on. Vrije Universiteit, 2004 (siehe S. 82).

[Kol14] Lars Kolb. NoSQL-Datenbanken Kapitel 1: Einführung. Vorlesung. Univer-
sität Leipzig, 2014. url: https://dbs.uni-leipzig.de/file/NoSQL_
SS14_01_Intro.pdf (besucht am 29. 11. 2020) (siehe S. 31).

[Kön12] Barbara König. Vorlesung Modellierung - Modellierungsmethoden der Infor-
matik. Vorlesung. Essen, 2012 (siehe S. 11).

[KVN12] Tommi Karhela, Antti Villberg und Hannu Niemistö. „Open ontology-
based integration platform for modeling and simulation in engineering“. In:
International Journal of Modeling, Simulation, and Scientific Computing
03.02 (Mai 2012), S. 1250004. issn: 1793-9623. doi: 10.1142/S17939623
12500043. url: http://www.worldscientific.com/doi/abs/10.1142/
S1793962312500043 (besucht am 29. 11. 2020) (siehe S. 44, 51, 53).

[Lad18] Jan Ladiges. „Automatisierte Bestimmung von Eigenschaften industrieller
Produktionssysteme unter Einfluss evolutionärer Änderungen“. Dissertation.
Hamburg: Helmut-Schmidt-Universität, 2018 (siehe S. 4, 16).

[Lee99] Y. Tina Lee. „Information Modeling: From Design to Implementation“. In:
Proceedings of the Second World Manufacturing Congress. 1999, S. 315–321
(siehe S. 11, 12).

[Leh80] Meir M. Lehman. „Programs, life cycles, and laws of software evolution“.
In: Proceedings of the IEEE 68.9 (1980), S. 1060–1076. issn: 0018-9219.
doi: 10.1109/PROC.1980.11805. url: http://ieeexplore.ieee.org/
document/1456074/ (besucht am 29. 11. 2020) (siehe S. 16, 20).

[Leh96] Meir M. Lehman. „Laws of software evolution revisited“. en. In: Software
Process Technology. Springer, Berlin, Heidelberg, Okt. 1996, S. 108–124.
doi: 10.1007/BFb0017737. url: https://link.springer.com/chapter/
10.1007/BFb0017737 (besucht am 29. 11. 2020) (siehe S. 20).

[Lev+10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz und Jonathan
Sprinkle. „Model Evolution and Management“. In: MBEERTS: Model-
Based Engineering of Embedded Real-Time Systems. Bd. LNCS 6100. arXiv:
1409.2361. Dagstuhl Castle: Springer Berlin Heidelberg, Okt. 2010, S. 241–
270. url: http://arxiv.org/abs/1409.2361 (besucht am 29. 11. 2020)
(siehe S. 1–3, 15, 20, 35, 37, 39, 40).

[LFL16] Jan Ladiges, Alexander Fay und Winfried Lamersdorf. „Automated De-
termining of Manufacturing Properties and Their Evolutionary Changes

162

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

from Event Traces“. en. In: Intelligent Industrial Systems 2.2 (Juni 2016),
S. 163–178. issn: 2199-854X. doi: 10.1007/s40903-016-0048-7. url:
https://doi.org/10.1007/s40903-016-0048-7 (besucht am 29. 11. 2020)
(siehe S. 4).

[LG11] Stefan Lier und Marcus Grünewald. „Net Present Value Analysis of Modular
Chemical Production Plants“. en. In: Chemical Engineering & Technology
34.5 (Mai 2011), S. 809–816. issn: 1521-4125. doi: 10.1002/ceat.201
000380. url: http://onlinelibrary.wiley.com/doi/10.1002/ceat.
201000380/abstract (besucht am 29. 11. 2020) (siehe S. 5).

[LMT09] Francisco J. Lucas, Fernando Molina und Ambrosio Toval. „A systema-
tic review of UML model consistency management“. In: Information and
Software Technology. Quality of UML Models 51.12 (Dez. 2009), S. 1631–
1645. issn: 0950-5849. doi: 10.1016/j.infsof.2009.04.009. url: http:
//www.sciencedirect.com/science/article/pii/S0950584909000433
(besucht am 29. 11. 2020) (siehe S. 28–30, 39, 101).

[LR03] Meir M. Lehman und Juan F. Ramil. „Software evolution - Background,
theory, practice“. In: Information Processing Letters. To honour Professor
W.M. Turski’s Contribution to Computing Science on the Occasion of
his 65th Birthday 88.1 (Okt. 2003), S. 33–44. issn: 0020-0190. doi: 10.
1016 / S0020 - 0190(03) 00382 - X. url: http : / / www . sciencedirect .
com/science/article/pii/S002001900300382X (besucht am 29. 11. 2020)
(siehe S. 20).

[Lyo80] John Lyons. Semantik. Bd. 1. Beck’sche Elementarbücher. München: Beck,
1980. isbn: 978-3-406-05272-9. url: http://swbplus.bsz-bw.de/bsz010
616691inh.htm (besucht am 29. 11. 2020) (siehe S. 11).

[Maj10] Frederic Majer. „Semantisches Informationsmodell für die Betriebsunter-
stützung dienstorientierter Systeme“. de. Dissertation. Karlsruhe: Karls-
ruher Institut für Technologie, 2010. url: http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000017356 (besucht am 29. 11. 2020) (siehe
S. 11).

[Men17] Kim Mens. Software Maintenance and Evolution. Vorlesung im Kurs LIN-
GI2252. Louvain-la-Neuve, Jan. 2017. url: https: //de .slideshare.
net/kim.mens/software- maintenance- and- evolution (besucht am
29. 11. 2020) (siehe S. 19).

[Mod10] Modelisar. Functional Mock-up Interface for Co-Simulation. Techn. Ber.
MODELISAR (07006) 1.0. MODELISAR consortium, Okt. 2010. url:
https://svn.modelica.org/fmi/branches/public/specifications/
v1.0/FMI_for_CoSimulation_v1.0.pdf (besucht am 29. 11. 2020) (siehe
S. 40).

163

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[MS04] Bela Mutschler und Günther Specht. Mobile Datenbanksysteme. Xpert.press.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. isbn: 978-3-642-62266-
3 978-3-642-18731-5. doi: 10.1007/978- 3- 642- 18731- 5. url: http:
//link.springer.com/10.1007/978- 3- 642- 18731- 5 (besucht am
29. 11. 2020) (siehe S. 25, 26, 29).

[NAM13] NAMUR. Anforderungen an die Automatisierungstechnik durch die Mo-
dularisierung verfahrenstechnischer Anlagen. Namur Empfehlung NE 148.
NAMUR, Okt. 2013 (siehe S. 1, 5).

[NFM17] Elisa Negri, Luca Fumagalli und Marco Macchi. „A Review of the Roles of Di-
gital Twin in CPS-based Production Systems“. In: Procedia Manufacturing.
27th International Conference on Flexible Automation and Intelligent Manu-
facturing, FAIM2017, 27-30 June 2017, Modena, Italy 11 (Jan. 2017), S. 939–
948. issn: 2351-9789. doi: 10.1016/j.promfg.2017.07.198. url: http:
//www.sciencedirect.com/science/article/pii/S2351978917304067
(besucht am 29. 11. 2020) (siehe S. 1).

[NK04] Natalya F. Noy und Michel Klein. „Ontology Evolution: Not the Same as
Schema Evolution“. en. In: Knowledge and Information Systems 6.4 (Juli
2004), S. 428–440. issn: 0219-1377, 0219-3116. doi: 10.1007/s10115-003-
0137-2. url: https://link.springer.com/article/10.1007/s10115-
003-0137-2 (besucht am 29. 11. 2020) (siehe S. 2, 20, 21, 35, 40).

[Noy+06] Natalya F. Noy, Abhita Chugh, William Liu und Mark A. Musen. „A
Framework for Ontology Evolution in Collaborative Environments“. en. In:
The Semantic Web - ISWC 2006. Springer, Berlin, Heidelberg, Nov. 2006,
S. 544–558. doi: 10.1007/11926078_39. url: https://link.springer.
com/chapter/10.1007/11926078_39 (besucht am 29. 11. 2020) (siehe S. 21,
36, 37, 51, 53, 54).

[OMG02] OMG. Meta Object Facility (MOF) Specification. Norm Version 1.4. OMG,
Apr. 2002. url: https://www.omg.org/spec/MOF/1.4/ (besucht am
29. 11. 2020) (siehe S. 13).

[ONF16] ONF. Open Source SDN - NBI Information Model of Network Topology.
TR-1500 00. Open Networking Foundation, März 2016. url: https://
opennetworking.org/wp-content/uploads/2014/11/onf2014.314_NBI
_Information_Models_-_Topology.13-2.pdf (besucht am 29. 11. 2020)
(siehe S. 15).

[Opp+14] Mathias Oppelt, Gerrit Wolf, Oliver Drumm, Benjamin Lutz, Markus Stöß
und Leon Urbas. „Automatic Model Generation for Virtual Commissioning
based on Plant Engineering Data“. In: IFAC Proceedings Volumes. 19th
IFAC World Congress 47.3 (Jan. 2014), S. 11635–11640. issn: 1474-6670. doi:
10.3182/20140824-6-ZA-1003.01512. url: http://www.sciencedirect.

164

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

com/science/article/pii/S1474667016434671 (besucht am 29. 11. 2020)
(siehe S. 4).

[OU14] Mathias Oppelt und Leon Urbas. „Integrated virtual commissioning an
essential activity in the automation engineering process: From virtual com-
missioning to simulation supported engineering“. In: IECON 2014 - 40th
Annual Conference of the IEEE Industrial Electronics Society. Okt. 2014,
S. 2564–2570. doi: 10.1109/IECON.2014.7048867 (siehe S. 4).

[OWU14] Mathias Oppelt, Gerrit Wolf und Leon Urbas. „Capability-analysis of co-
simulation approaches for process industries“. In: 2014 IEEE Emerging
Technology and Factory Automation (ETFA). Sep. 2014, S. 1–4. doi: 10.
1109/ETFA.2014.7005292 (siehe S. 4).

[Pap+13] Vicky Papavasileiou, Giorgos Flouris, Irini Fundulaki, Dimitris Kotzinos
und Vassilis Christophides. „High-level Change Detection in RDF(S) KBs“.
In: ACM Trans. Database Syst. 38.1 (2013), 1:1–1:42. issn: 0362-5915.
doi: 10.1145/2445583.2445584. url: http://doi.acm.org/10.1145/
2445583.2445584 (besucht am 29. 11. 2020) (siehe S. 3, 4, 37, 39, 81–83,
86, 96, 111, 112, 133).

[Pha16] Tuyen Viet Pham. „Integration einer Benutzerverwaltung in das semantische
Revisionsverwaltungssystem R43ples“. Studienarbeit. Dresden: TU Dresden,
Sep. 2016 (siehe S. 118).

[Pie+18] Christopher Pietsch, Udo Kelter, Christopher Haubeck, Winfried Lamers-
dorf, Abhishek Chakraborty und Alexander Fay. „Using model differencing
to reason about observable behavior changes of manufacturing systems“.
In: at - Automatisierungstechnik 66.10 (2018), S. 795–805. issn: 0178-2312.
doi: 10.1515/auto-2018-0046. url: https://www.degruyter.com/
abstract/j/auto.2018.66.issue-10/auto-2018-0046/auto-2018-
0046.xml (besucht am 29. 11. 2020) (siehe S. 37).

[RB06] Erhard Rahm und Philip A. Bernstein. „An Online Bibliography on Schema
Evolution“. In: SIGMOD Rec. 35.4 (Dez. 2006), S. 30–31. issn: 0163-5808.
doi: 10.1145/1228268.1228273. url: http://doi.acm.org/10.1145/
1228268.1228273 (besucht am 29. 11. 2020) (siehe S. 20, 21).

[RB09] Matthias Riebisch und Stephan Bode. „Software-Evolvability“. de. In: Infor-
matik-Spektrum 32.4 (Mai 2009), S. 339–343. issn: 0170-6012, 1432-122X.
doi: 10.1007/s00287-009-0349-2. url: http://link.springer.com/
article/10.1007/s00287-009-0349-2 (besucht am 29. 11. 2020) (siehe
S. 1, 15, 16, 18, 19).

[RGU17] Julian Rahm, Markus Graube und Leon Urbas. „A roundtrip engineering
approach for data consistency in process industry environments“. In: 2017

165

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

IEEE 15th International Conference on Industrial Informatics (INDIN).
Juli 2017, S. 559–564. doi: 10.1109/INDIN.2017.8104833 (siehe S. 3).

[RLL98] David Rowe, John Leaney und David Lowe. „Defining systems evolvabili-
ty - a taxonomy of change“. In: International Conference and Workshop:
Engineering of Computer-Based Systems. Maale Hachamisha, Israel: IEEE
Computer Society, Apr. 1998, S. 45–52. url: http://www.researchgate.
net/publication/232627101_Defining_Systems_Evolvability_-_A_
Taxonomy_of_Change_(PDF) (besucht am 29. 11. 2020) (siehe S. 16, 18, 39).

[RR97] Young-Gook Ra und Elke A. Rundensteiner. „A transparent schema-evolution
system based on object-oriented view technology“. In: IEEE Transactions
on Knowledge and Data Engineering 9.4 (Juli 1997), S. 600–624. issn:
1041-4347. doi: 10.1109/69.617053 (siehe S. 20).

[Ruh+14] Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jens Jürjens und Kurt
Schneider. „Versioning and Evolution Requirements for Model-Based System
Development“. In: International Workshop on Comparison and Versioning
of Software Models (CVSM 2014). Kiel, 2014 (siehe S. 16, 17, 35, 37–39, 51,
52).

[San05] Georg Sander. Layout of compound directed graphs. Techn. Ber. A/03/96.
Universität des Saarlandes, Juni 2005. url: http://scidok.sulb.uni-
saarland.de/volltexte/2005/359/ (besucht am 29. 11. 2020) (siehe S. 68,
69).

[Sch+14] Nicole Schmidt, Arndt Lüder, Heinrich Steininger und Stefan Biffl. „Analy-
zing requirements on software tools according to the functional engineering
phase in the technical systems engineering process“. In: Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA). Sep.
2014, S. 1–8. doi: 10.1109/ETFA.2014.7005144 (siehe S. 103).

[Sch16] Thomas Schmidt. Verteilte Systeme - Replikation. Vorlesung. Hamburg,
2016. url: https://www.inet.haw-hamburg.de/teaching/ws-2016-
17/verteilte-systeme/09_Replikation.pdf (besucht am 29. 11. 2020)
(siehe S. 29).

[She97] A. Sheth. „Panel: Data Semantics: what, where and how?“ en. In: Database
Applications Semantics (1997). Publisher: Springer, Boston, MA, S. 601–610.
doi: 10.1007/978-0-387-34913-8_26. url: https://link.springer.
com/chapter/10.1007/978-0-387-34913-8_26 (besucht am 29. 11. 2020)
(siehe S. 11).

[Sie18] Siemens. Mein Name ist Companion – Digital Companion. de. Juli 2018.
url: https://new.siemens.com/global/de/unternehmen/stories
/forschung- technologien/kuenstliche- intelligenz/kuenstliche-

166

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

intelligenz-digital-companion.html (besucht am 29. 11. 2020) (siehe
S. 1).

[Sin11] Eric Sink. Version Control by Example. 2011. isbn: 978-0-9835079-1-8. url:
http://ericsink.com/vcbe/vcbe_a4_lo.pdf (besucht am 29. 11. 2020)
(siehe S. 24).

[SK09] Marc Shapiro und Bettina Kemme. „Eventual Consistency“. en. In: En-
cyclopedia of Database Systems. Hrsg. von Ling Liu und M. Tamer Özsu.
Springer US, 2009, S. 1071–1072. isbn: 978-0-387-35544-3 978-0-387-39940-9.
doi: 10.1007/978-0-387-39940-9_1366. url: http://link.springer.
com/referenceworkentry/10.1007/978-0-387-39940-9_1366 (besucht
am 29. 11. 2020) (siehe S. 31).

[Smo13] Peter Smolek. Objektorientierte Modellierung und dynamische Co-Simulation
mit CATIA V6 am Beispiel von Kraftfahrzeugsystemen. Diplomarbeit. TU
Wien, 2013. url: http://publik.tuwien.ac.at/files/PubDat_224793.
pdf (besucht am 29. 11. 2020) (siehe S. 4).

[SSS04] York Sure, Steffen Staab und Rudi Studer. „On-To-Knowledge Methodology
(OTKM)“. en. In: Handbook on Ontologies. International Handbooks on
Information Systems. Springer, Berlin, Heidelberg, 2004, S. 117–132. isbn:
978-3-662-11957-0 978-3-540-24750-0. doi: 10.1007/978-3-540-24750-
0_6. url: https://link.springer.com/chapter/10.1007/978-3-540-
24750-0_6 (besucht am 29. 11. 2020) (siehe S. 59).

[Ste08] Perdita Stevens. „A Landscape of Bidirectional Model Transformations“. en.
In: Generative and Transformational Techniques in Software Engineering
II. Hrsg. von Ralf Lämmel, Joost Visser und João Saraiva. Lecture Notes in
Computer Science 5235. Springer Berlin Heidelberg, 2008, S. 408–424. isbn:
978-3-540-88642-6 978-3-540-88643-3. doi: 10.1007/978-3-540-88643-
3_10. url: http://link.springer.com/chapter/10.1007/978-3-540-
88643-3_10 (besucht am 29. 11. 2020) (siehe S. 28).

[Sto04] Ljiljana Stojanovic. „Methods and tools for ontology evolution.“ Dissertation.
Karlsruhe: Universitaet Fridericiana zu Karlsruhe, 2004 (siehe S. 3, 21, 35,
37, 51, 96, 99).

[Sur+08] Pradorn Sureephong, Nopasit Chakpitak, Yacine Ouzrout und Abdelaziz
Bouras. „An Ontology-based Knowledge Management System for Industry
Clusters“. en. In: Global Design to Gain a Competitive Edge. Hrsg. von
Xiu-Tian Yan, William J. Ion und Benoit Eynard. Springer London, 2008,
S. 333–342. isbn: 978-1-84800-239-5 (siehe S. 59).

[SUW18] Frank Stenger, Leon Urbas und Ljuba Woppowa. „100 % Digital in der
Prozessindustrie“. In: CITplus 21.10 (Okt. 2018), S. 6–8. issn: 1436-2597.

167

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

url: https://www.chemanager-online.com/restricted-files/211803
(besucht am 29. 11. 2020) (siehe S. 1).

[SZ01] George Spanoudakis und Andrea Zisman. „Inconsistency management in
software engineering: Survey and open research issues“. In: Handbook of
Software Engineering and Knowledge Engineering. World Scientific, 2001,
S. 329–380 (siehe S. 28).

[Tan06] Till Tantau. Syntax versus Semantik Text und seine Bedeutung. Vorlesung
Logik für Informatiker. Lübeck, Okt. 2006. url: https : / / caligari .
dartmouth.edu/doc/texmf- dist/doc/latex/beamer/examples/a-
lecture/beamerexample- lecture- beamer- version.pdf (besucht am
29. 11. 2020) (siehe S. 11).

[Tap99] Josef Tapken. „Implementing Hierarchical Graph-Structures“. en. In: Fun-
damental Approaches to Software Engineering. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, März 1999, S. 219–233. isbn: 978-3-
540-65718-7 978-3-540-49020-3. doi: 10.1007/978-3-540-49020-3_15.
url: https://link.springer.com/chapter/10.1007/978- 3- 540-
49020-3_15 (besucht am 29. 11. 2020) (siehe S. 67).

[Tra+15] Sebastian Tramp, Ruben Navarro Piris, Timofey Ermilov, Niklas Petersen,
Marvin Frommhold und Sören Auer. „Distributed linked data business
communication networks: the LUCID endpoint“. In: European Semantic
Web Conference. Springer, 2015, S. 154–158. url: http://link.springer.
com/chapter/10.1007/978-3-319-25639-9_30 (besucht am 29. 11. 2020)
(siehe S. 27).

[Van+13] Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Sam Coppens, Erik
Mannens und Rik Van de Walle. „R&Wbase: git for triples.“ In: Proceedings
of the 6th Workshop on Linked Data on the Web. Mai 2013. url: http:
//ceur-ws.org/Vol-996/papers/ldow2013-paper-01.pdf (besucht am
29. 11. 2020) (siehe S. 26, 27, 55).

[Van+15] Bert Van Acker, Joachim Denil, Hans Vangheluwe und Paul De Meulenaere.
„Generation of an Optimised Master Algorithm for FMI Co-simulation“. In:
Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium. DEVS ’15. San Diego, CA, USA: Society for
Computer Simulation International, 2015, S. 205–212. isbn: 978-1-5108-
0105-9. url: http://dl.acm.org/citation.cfm?id=2872965.2872993
(besucht am 29. 11. 2020) (siehe S. 41, 129).

[Van91] Johan Vanslembrouck. „A connection-oriented model for service descripti-
on“. In: Global Telecommunications Conference, 1991. GLOBECOM ’91.
’Countdown to the New Millennium. Featuring a Mini-Theme on: Personal

168

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Communications Services. Dez. 1991, 802–806 vol.2. doi: 10.1109/GLOCOM.
1991.188493 (siehe S. 15).

[VDI16] VDI VDE. Middleware in der Automatisierungstechnik - Vorgehensmodell
für den Middleware Engineering Prozess. Norm VDI/VDE 2657-2. VDI,
2016 (siehe S. 13).

[VDI17] VDI VDE NAMUR. Automatisierungstechnisches Engineering modularer
Anlagen in der Prozessindustrie – Allgemeines Konzept und Schnittstellen.
Norm VDI/VDE/NAMUR-Richtlinie 2658 - Blatt 1 (Gründruck). VDI VDE
NAMUR, 2017 (siehe S. 44, 45).

[VDI18] VDI VDE NAMUR. Automatisierungstechnisches Engineering modularer
Anlagen in der Prozessindustrie – Modellierung von Bedienbildern. Norm
VDI/VDE/NAMUR-Richtlinie 2658 - Blatt 2 (Gründruck). VDI VDE
NAMUR, 2018 (siehe S. 15, 46).

[VDI19] VDI. Verfahrenstechnische Anlagen, Modulare Anlagen, Grundlagen. Norm
VDI 2776 - Blatt 1 (Entwurf). VDI, 2019 (siehe S. 1).

[VG06] Max Völkel und Tudor Groza. „SemVersion: An RDF-based Ontology Ver-
sioning System“. In: Proceedings of IADIS International Conference on
WWW/Internet. Bd. 1. Murcia, Spain: IADIS, 2006, S. 195–202 (siehe
S. 26).

[Vog+15a] Birgit Vogel-Heuser, Alexander Fay, Ina Schaefer und Matthias Tichy.
„Evolution of software in automated production systems: Challenges and
research directions“. In: Journal of Systems and Software 110 (Dez. 2015),
S. 54–84. issn: 0164-1212. doi: 10.1016/j.jss.2015.08.026. url: http:
//www.sciencedirect.com/science/article/pii/S0164121215001818
(besucht am 29. 11. 2020) (siehe S. 20).

[Vog+15b] Birgit Vogel-Heuser, Stefan Feldmann, Jens Folmer, Jan Ladiges, Alexander
Fay, Sascha Lity, Matthias Tichy, Matthias Kowal, Ina Schaefer, Christo-
pher Haubeck, Winfried Lamersdorf, Timo Kehrer, Sinem Getir, Mattias
Ulbrich, Vladimir Klebanov und Bernhard Beckert. „Selected challenges
of software evolution for automated production systems“. In: 2015 IEEE
13th International Conference on Industrial Informatics (INDIN). Juli 2015,
S. 314–321. doi: 10.1109/INDIN.2015.7281753 (siehe S. 3, 15, 20, 33).

[Vos09] Gottfried Vossen. „ACID Properties“. en. In: Encyclopedia of Database
Systems. Hrsg. von Ling Liu und M. Tamer Özsu. Springer US, 2009, S. 19–
21. isbn: 978-0-387-35544-3 978-0-387-39940-9. doi: 10.1007/978-0-387-
39940-9_831. url: http://link.springer.com/referenceworkentry/
10.1007/978-0-387-39940-9_831 (besucht am 29. 11. 2020) (siehe S. 31).

169

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[VR15] Birgit Vogel-Heuser und Susanne Rösch. „Applicability of Technical Debt as
a Concept to Understand Obstacles for Evolution of Automated Production
Systems“. In: 2015 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). Okt. 2015, S. 127–132. doi: 10.1109/SMC.2015.35
(siehe S. 20).

[W3C] W3C. W3C Data Activity - Building the Web of Data. url: https://www.
w3.org/2013/data/ (besucht am 29. 11. 2020) (siehe S. 14).

[W3C12] W3C. GLD Life cycle. Aug. 2012. url: https://www.w3.org/2011/gld/
wiki/GLD_Life_cycle (besucht am 29. 11. 2020) (siehe S. 59).

[Wal10] Krzysztof Walkowiak. „Anycasting in connection-oriented computer net-
works: Models, algorithms and results“. en. In: International Journal of
Applied Mathematics and Computer Science 20.1 (2010), S. 207–220. issn:
1641-876X. doi: 10.2478/v10006- 010- 0015- 5. url: http://pldml.
icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-
amcv20i1p207bwm (besucht am 29. 11. 2020) (siehe S. 15).

[Wes+01] Andrea Westerinen, John Schnizlein, John Strassner, Mark Scherling, Bob
Quinn, Shai Herzog, An-Ni Huynh und Mark Carlson. Terminology for
Policy-Based Management. 2001. url: https://tools.ietf.org/html/
rfc3198 (besucht am 29. 11. 2020) (siehe S. 11, 12).

[Yan15] Xinyu Yang. „Erweiterte Merging-Funktionalitäten für semantische Revisi-
onsverwaltungssysteme“. Studienarbeit. Dresden: TU Dresden, Aug. 2015
(siehe S. 118).

170

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Mehr Meinung. Mehr Orientierung. Mehr Wissen.
Wesentliche Informationen zu neuen Technologien und Märkten.
Das bietet VDI nachrichten, Deutschlands meinungsbildende Wochenzeitung zu Technik,
Wirtschaft und Gesellschaft, den Ingenieuren. Sofort abonnieren und lesen.
Donnerstagabends als E-Paper oder freitags als Zeitung.

 Jetzt abonnieren: Leser-Service VDI nachrichten, 65341 Eltville
Telefon: +49 6123 9238-201, Telefax: +49 6123 9238-244, vdi-nachrichten@vuservice.de

Ingenieure wollen immer alles
ganz genau wissen. Wie wär‘s mit
einem E-Paper- oder Zeitungs-Abo?

www.vdi-nachrichten.com/abo

Cyan Magenta Yellow Black
Preflight Lx3 am Februar 19, 2021 | 07:56:22 | 350 mm x 250 mm

L_
21

01
35

_R
ei

he
_1

0_
87

3_
U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 2

L_210135_Reihe_10_873_Umschlag.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

Fortschritt-Berichte VDIFortschritt-Berichte VDI

Dipl.-Ing. Stephan Hensel
Dresden

Nr. 873Nr. 873

Informatik/
Kommunikation

Reihe 10Reihe 10

Semantische Revisions- Semantische Revisions-
kontrolle für kontrolle für
die Evolution von die Evolution von
Informations- und Informations- und
DatenmodellenDatenmodellen

H
en

se
l

 S
em

an
ti

sc
he

 R
ev

is
io

ns
ve

rw
al

tu
ng

S
em

an
ti

sc
he

 R
ev

is
io

ns
ve

rw
al

tu
ng

R
ei

he
 1

010
 ·

 N
r.

 8
7387
3

D ie Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-38731087310-4

Berichte aus der Professur für Prozess leit technik
und der Arbeitsgruppe Systemverfahrenstechnik
der TU Dresden, Prof. Dr.-Ing. habil. Leon Urbas (Hrsg.)

Cyan Magenta Yellow Black
Preflight Lx3 am Februar 19, 2021 | 07:56:22 | 350 mm x 250 mm

L_
21

01
35

_R
ei

he
_1

0_
87

3_
U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 1

L_210135_Reihe_10_873_Umschlag.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186873101 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:46:48. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186873101

	Cover
	1 Einleitung
	1.1 Motivation
	1.2 Zielstellung und erwartete Ergebnisse
	1.2.1 Kernthese
	1.2.2 Einzelthesen

	1.3 Einordnung und Abgrenzung der Arbeit
	1.4 Anwendungsfälle
	1.4.1 Co-Simulation
	1.4.2 Modularisierung

	1.5 Gliederung der Arbeit

	2 Grundlagen
	2.1 Aspekte der Veränderlichkeit
	2.2 Informationsmodellierung
	2.2.1 Terminologie
	2.2.1.1 Informationsmodell und Semantik
	2.2.1.2 Informationsraum
	2.2.1.3 Arten von Informationsmodellen
	2.2.1.4 Ontologie

	2.2.2 Lebenszyklus
	2.2.3 Vernetzung innerhalb eines Informationsraums

	2.3 Evolution
	2.3.1 Terminologie
	2.3.1.1 Evolution
	2.3.1.2 Co-Evolution
	2.3.1.3 Evolvability
	2.3.1.4 Wartung und Wartbarkeit

	2.3.2 Evolution in verwandten Themengebieten
	2.3.2.1 Schema-Evolution
	2.3.2.2 Ontologie-Evolution
	2.3.2.3 Schema-Evolution vs. Ontologie-Evolution

	2.4 Revisionsverwaltung
	2.4.1 Terminologie
	2.4.1.1 Revisionsverwaltung vs. Versionsverwaltung
	2.4.1.2 Basisbegriffe der Revisionsverwaltung
	2.4.1.3 Arten von Revisionsverwaltung
	2.4.1.4 Synchronisation und Replikation
	2.4.1.5 Verfahren zur Konsistenzerhaltung

	2.4.2 Erweiterte Revisionskontrolle für Modelldaten

	2.5 Konsistenz
	2.5.1 Terminologie
	2.5.1.1 Konsistenz
	2.5.1.2 Klassifikation von Modellkonsistenz

	2.5.2 CAP-Theorem

	3 Analyse
	3.1 Anforderungsanalyse
	3.1.1 Prinzipien mit Einfluss auf Evolvability
	3.1.1.1 P1 - Entwicklung von stabilen Zwischenergebnissen (X,-)
	3.1.1.2 P2 - Nutzung von evolutionärer Entwicklung (X,$)
	3.1.1.3 P3 - Verständnis des Unternehmens (X,$)
	3.1.1.4 P4 - Bereitstellung von überprüfbaren Zuständen (x,$)
	3.1.1.5 P5 - Nutzung von offenen Standards (x,-)
	3.1.1.6 P6 - Identifizierung von Dingen, die sich wahrscheinlich ändern (X,-)
	3.1.1.7 P7 - Design für Evolvability (X,$)

	3.1.2 Technologische Sicht
	3.1.2.1 Nutzungskontext
	3.1.2.2 Änderungsmanagement
	3.1.2.3 Evolution
	3.1.2.4 Semantische Modellbeschreibung
	3.1.2.5 Qualitätsattribute

	3.1.3 Anwendungsfälle
	3.1.3.1 Co-Simulation
	3.1.3.2 Modularisierung

	3.1.4 Anforderungen

	3.2 Analyse bestehender Ansätze
	3.2.1 Dissertation Timo Kehrer [Keh15]
	3.2.2 Dissertation Ljiljana Stojanovic [Sto04]
	3.2.3 SecVolution
	3.2.4 Simantics
	3.2.5 Changes Tab
	3.2.6 R43ples
	3.2.7 Zusammenfassung

	3.3 Analyseergebnisse und Priorisierung

	4 Entwurf
	4.1 Lebenszyklusmodell für Informationsmodelle
	4.2 Revision Management System
	4.2.1 Komponentenübersicht
	4.2.2 Data Management
	4.2.3 Control
	4.2.4 User Interface

	4.3 Formale Beschreibung verbindungsorientierter Modelle
	4.3.1 Compound Graphs
	4.3.2 Compound Graphs Erweiterung
	4.3.3 Semantische Beschreibung

	4.4 Änderungsmanagement
	4.4.1 Revisionskontrolle
	4.4.1.1 Revisionsgraph
	4.4.1.2 Vorgänger-/Nachfolgerbeziehungen
	4.4.1.3 Pfadgenerierung und Deltawiederherstellung
	4.4.1.4 Grundlegende Revisionskontrollfunktionalitäten
	4.4.1.5 Semantische Beschreibung

	4.4.2 Aggregation von High-Level-Changes
	4.4.2.1 Mathematische Beschreibung
	4.4.2.2 Semantische Beschreibung

	4.4.3 Zusammenführung divergierter Entwicklungszweige
	4.4.3.1 Methoden der Zusammenführung
	4.4.3.2 Konflikterkennung und -behebung
	4.4.3.3 Semantische Beschreibung

	4.5 Evolutions- und Konsistenzmechanismen
	4.5.1 Evolutionsmechanismen
	4.5.1.1 Integration in RMS
	4.5.1.2 Mathematische Beschreibung
	4.5.1.3 Semantische Beschreibung

	4.5.2 Konsistenzmechanismen

	5 Implementierung
	5.1 Übersicht
	5.2 Änderungsmanagement
	5.2.1 Ontologie
	5.2.2 Basisrevisionskontrollfunktionalitäten
	5.2.3 Aggregation von High-Level-Changes
	5.2.4 Zusammenführung divergierter Entwicklungszweige

	5.3 Evolutionsmechanismen
	5.4 Weitere Arbeiten in diesem Bereich

	6 Verifikation
	6.1 Beispielhafte Nutzung der formalen Beschreibung
	6.2 Nachweis der Erzeugung von beliebigen Revisionsinhalten
	6.3 Abbildung verbindungsorientierter Modelle am Beispiel der Co-Simulation
	6.4 Testfälle innerhalb der Implementierung

	7 Diskussion
	7.1 Methodikbewertung
	7.2 Ergebnisdiskussion und Verifikation der Thesen

	8 Zusammenfassung
	8.1 Ergebniszusammenfassung
	8.2 Ausblick und Grenzen

	Anhang
	Anhang A Entwurf
	Anhang B Implementierung
	B.1 Basisrevisionskontrollfunktionalitäten
	B.2 Aggregation von High-Level-Changes
	B.3 Zusammenführung von divergierten Entwicklungszweigen
	B.4 Co-Evolution

	Literaturverzeichnis

