Fortschritt-Berichte VDI

Reihe 10

Informatik/
Kommunikation

Nr. 873

Dipl.-Ing. Stephan Hensel
Dresden

Semantische Revisions-
kontrolle fur

die Evolution von
Informations- und
Datenmodellen

Berichte aus der Professur fiir Prozessleittechnik
und der Arbeitsgruppe Systemverfahrenstechnik
der TU Dresden, Prof. Dr.-Ing. habil. Leon Urbas (Hrsg.)

AR e

DRESDEN

73.216.60, am 24.01.2026, 01:46:48. © geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

216.73.216.60, am 24.01.2026, 01:46:48. @ geschilzter Inhalt,
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

TECHNISCHE
UNIVERSITAT
DRESDEN

Fakultat Elektrotechnik und Informationstechnik

Institut fiir Automatisierungstechnik

Semantische Revisionskontrolle fiir die Evolution
von Informations- und Datenmodellen

Semantic revision control for the evolution of information and
data models

Dipl.-Ing. Stephan Hensel

Der Fakultit Elektrotechnik und Informationstechnik
der Technischen Universitat Dresden

zur Erlangung des akademischen Grades eines

Doktoringenieurs
(Dr.-Ing.)

genehmigte
Dissertation

Vorsitzender: Prof. Dr.-Ing. Dr. h.c. Frank H. P. Fitzek
Gutachter: Prof. Dr.-Ing. habil. Leon Urbas
Gutachter: Univ.-Prof. Dr.-Ing. Alexander Fay
Gutachter: Prof. Dr.-Ing. Christian Diedrich

Tag der Einreichung: 16.05.2019
Tag der Verteidigung: 20.11.2020

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

216.73.216.60, am 24.01.2026, 01:46:48. @ geschilzter Inhalt,
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Fortschritt-Berichte VDI

| Reihe 10

Informatik/
Kommunikation

'Nr. 873

Dipl.-Ing. Stephan Hensel,
Dresden

Semantische Revisions-
kontrolle fir die
Evolution von
Informations- und
Datenmodellen

Berichte aus der Professur fiir Prozessleittechnik
und der Arbeitsgruppe Systemverfahrenstechnik
der TU Dresden, Prof. Dr.-Ing. habil. Leon Urbas (Hrsg.)

vanfl” TECHNISCHE
=Ly PCS UNIVERSITAT
\, PSE DRESDEN

16.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Hensel, Stephan

Semantische Revisionskontrolle fiir die Evolution von Informations-
und Datenmodellen

Fortschr.-Ber. VDI Reihe 10 Nr. 873. Disseldorf: VDI Verlag 2021.
188 Seiten, 64 Bilder, 5 Tabellen.

ISBN 978-3-18-387310-4, ISSN 0178-9627,

€ 67,00/VDI-Mitgliederpreis € 60,30.

Keywords: Semantik — Revisionskontrolle — Evolution — Informationsmodelle — Datenmodelle
— Linked Data — R43ples — Co-Simulation — Modularisierung — Module Type Package

Im Rahmen dieser Dissertation wurde ein Revision Management System zur durchgéngigen
Unterstitzung der Evolution von Informations- und Datenmodellen entwickelt, das Revisions-
verwaltungs- und Evolutionsmechanismen integriert. Besonderheit ist hierbei die technolo-
gieunabhéngige mathematische und semantische Beschreibung, die eine Uberfihrung des
Konzepts in unterschiedliche Technologien erméglicht. Beispielhaft wurde das Konzept fur
das Semantic Web als Weiterentwicklung des Open-Source-Projektes R43ples umgesetzt.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

© VDI Verlag GmbH - Disseldorf 2021

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9627

ISBN 978-3-18-387310-4

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Danksagung

An dieser Stelle mochte ich mich bei all denjenigen bedanken, die mich in der Zeit als
wissenschaftlicher Mitarbeiter und Doktorand an der Professur fiir Prozessleittechnik
und Arbeitsgruppe Systemverfahrenstechnik fachlich und persénlich unterstiitzt haben.

Ein besonderer Dank gilt Herrn Prof. Dr.-Ing. habil. Leon Urbas, meinem Doktorvater,
fiir die Betreuung dieser Arbeit und die Bereitstellung der notwendigen Infrastruktur
fiir die Umsetzung der Arbeit in einem sehr spannenden Themenkomplex. Durch die
zahlreichen Projekte hat er mir viele Einblicke in die industrielle Praxis ermdglicht,
wodurch ich auch wichtige Kontakte fiir meine weitere berufliche Zukunft kniipfen konnte.
Seine kritischen Nachfragen und die gemeinsamen wissenschaftlichen Diskussionen haben
wesentlich zur Ideenfindung fiir diese Dissertation beigetragen.

Ich danke Herrn Univ.-Prof. Dr.-Ing. Alexander Fay fiir die sehr gute Zusammenar-
beit und die Ubernahme der Zweitbegutachtung.

Meiner Familie mochte ich dafiir danken, dass sie mich wihrend all der Zeit so herzlich
unterstiitzt hat und immer verstandnisvoll war, dass die Erstellung der Dissertation viel
Zeit in Anspruch genommen hat.

Weiterhin danke ich den zahlreichen Korrekturleserinnen und Korrekturlesern, die sehr
viel Zeit in die Uberpriifung von Rechtschreibung, Kommasetzung und vielen sprachlichen

Kleinigkeiten investiert haben.

Auflerdem mochte ich mich bei meinen Kollegen fiir die gute Zeit am Lehrstuhl, die vielen
gemeinsamen Dienstreisen und den intensiven wissenschaftlichen Diskurs bedanken.

Schliefllich danke ich Dr. Jiirgen Hambrecht und Eggert Voscherau, den Griindern der
HaVo-Stiftung, fiir die finanzielle Unterstiitzung im Rahmen eines HaVo-Stipendiums.

111

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

v

216.73.216.60, am 24.01.2026, 01:46:48. @
m

tr

geschitzter Inhalt.

mit, flir oder In KI-

https://doi.org/10.51202/9783186873101

Inhaltsverzeichnis

1 Einleitung
1.1 Motivation

1.2 Zielstellung und erwartete Ergebnisse

1.2.1 Kernthese
1.2.2 Einzelthesen

1.3 Einordnung und Abgrenzung der Arbeit

1.4 Anwendungsfille
1.4.1 Co-Simulation
1.4.2 Modularisierung . . .

1.5 Gliederung der Arbeit . . .

2 Grundlagen
2.1 Aspekte der Veranderlichkeit
2.2 Informationsmodellierung .
2.2.1 Terminologie

2.2.1.1 Informationsmodell und Semantik
2.2.1.2 Informationsraum
2.2.1.3 Arten von Informationsmodellen

2.2.1.4 Ontologie .
2.2.2 Lebenszyklus

2.2.3 Vernetzung innerhalb eines Informationsraums

2.3 Evolution
2.3.1 Terminologie
2.3.1.1 Evolution .

2.3.1.2 Co-Evolution

2.3.1.3 Evolvability

2.3.1.4 Wartung und Wartbarkeit

2.3.2 Evolution in verwandten Themengebieten
2.3.2.1 Schema-Evolution
2.3.2.2 Ontologie-Evolution

2.3.2.3 Schema-Evolution vs. Ontologie-Evolution

2.4 Revisionsverwaltung L oo
2.4.1 Terminologie
2.4.1.1 Revisionsverwaltung vs. Versionsverwaltung

2.4.1.2 Basisbegriffe

der Revisionsverwaltung

2.4.1.3 Arten von Revisionsverwaltung
2.4.1.4 Synchronisation und Replikation
2.4.1.5 Verfahren zur Konsistenzerhaltung

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

D UL = W N NN e

https://doi.org/10.51202/9783186873101

2.4.2 Erweiterte Revisionskontrolle fiir Modelldaten 26

2.5 Konsistenzo 27
2.5.1 Terminologie o 28
2.5.1.1 Konsistenz Lo 28

2.5.1.2 Klassifikation von Modellkonsistenz 30

252 CAP-Theorem 31

3 Analyse 32
3.1 Anforderungsanalyse L L. 32
3.1.1 Prinzipien mit Einfluss auf Evolvability 32

3.1.1.1 P1 - Entwicklung von stabilen Zwischenergebnissen (X,-) 33
3.1.1.2 P2 - Nutzung von evolutionirer Entwicklung (X,$) . . 33

3.1.1.3 P3 - Verstandnis des Unternehmens (X,$) 33
3.1.1.4 P4 - Bereitstellung von iiberpriifbaren Zustinden (x,$) 34
3.1.1.5 P5 - Nutzung von offenen Standards (x,-) 34

3.1.1.6 P6 - Identifizierung von Dingen, die sich wahrscheinlich
dandern (X,-)o 34
3.1.1.7 P7 - Design fiir Evolvability (X,$) 35
3.1.2 Technologische Sicht 35
3.1.2.1 Nutzungskontext 35
3.1.2.2 Anderungsmanagement 36
3.1.23 Evolution o 38
3.1.2.4 Semantische Modellbeschreibung 39
3.1.2.5 Qualitatsattributeo 39
3.1.3 Anwendungsfilleo 40
3.1.3.1 Co-Simulation L. 40
3.1.3.2 Modularisierung o000 44
3.1.4 Anforderungen Lo 47
3.2 Analyse bestehender Ansitze o L. 51
3.2.1 Dissertation Timo Kehrer [Keh15] 51
3.2.2 Dissertation Ljiljana Stojanovic [Sto04] 51
3.2.3 SecVolution 52
3.2.4 Simantics 53
3.25 Changes Tab 53
326 R43ples 55
3.2.7 Zusammenfassungo 56
3.3 Analyseergebnisse und Priorisierungo 58
4 Entwurf 59
4.1 Lebenszyklusmodell fiir Informationsmodelle 59
4.2 Revision Management System 61
4.2.1 Komponenteniibersichto 61
4.2.2 Data Management L. 63
4.2.3 Control 65

VI
087310 21&7121&60,-1;\"2&%2026,01:“:%:hwm"KI hmﬂﬂll[lnhlll.

https://doi.org/10.51202/9783186873101

4.2.4 User Interface 67

4.3 Formale Beschreibung verbindungsorientierter Modelle 67
4.3.1 Compound Graphs oL 68
4.3.2 Compound Graphs Erweiterung 70
4.3.3 Semantische Beschreibungo 71

4.4 Anderungsmanagement 72
4.4.1 Revisionskontrolle o000 73

4.4.1.1 Revisionsgraph 73
4.4.1.2 Vorginger-/Nachfolgerbeziechungen 4
4.4.1.3 Pfadgenerierung und Deltawiederherstellung 75
4.4.1.4 Grundlegende Revisionskontrollfunktionalitdten 76
4.4.1.5 Semantische Beschreibung 80
4.4.2 Aggregation von High-Level-Changes 81
4.4.2.1 Mathematische Beschreibung 82
4.4.2.2 Semantische Beschreibung 82
4.4.3 Zusammenfithrung divergierter Entwicklungszweige 83
4.4.3.1 Methoden der Zusammenfithrung 83
4.4.3.2 Konflikterkennung und -behebung 86
4.4.3.3 Semantische Beschreibung 93
4.5 Evolutions- und Konsistenzmechanismen 96
4.5.1 Evolutionsmechanismen 96
4.5.1.1 Integrationin RMS 96
4.5.1.2 Mathematische Beschreibung 98
4.5.1.3 Semantische Beschreibung 100
4.5.2 Konsistenzmechanismeno 101

Implementierung 103

51 Ubersicht 103

5.2 Anderungsmanagement 106
5.2.1 Ontologie 106
5.2.2 Basisrevisionskontrollfunktionalitdten 108
5.2.3 Aggregation von High-Level-Changes 110
5.2.4 Zusammenfithrung divergierter Entwicklungszweige 113

5.3 Evolutionsmechanismen 0000 116

5.4 Weitere Arbeiten in diesem Bereich 118

Verifikation 119

6.1 Beispielhafte Nutzung der formalen Beschreibung 119

6.2 Nachweis der Erzeugung von beliebigen Revisionsinhalten 125

6.3 Abbildung verbindungsorientierter Modelle am Beispiel der Co-Simulation 127

6.4 Testfille innerhalb der Implementierung 130

Diskussion 132

7.1 Methodikbewertung oL o 132

VIL
087310 21&7121&60,ll::km.mﬁ,ﬂ‘l:u:zrmw"l"KI huelmﬂﬂll[lnhlll.

https://doi.org/10.51202/9783186873101

7.2 Ergebnisdiskussion und Verifikation der Thesen 133

8 Zusammenfassung 136
8.1 Ergebniszusammenfassung 0000 L 136
8.2 Ausblick und Grenzeno Lo 136

Anhang A Entwurf 141

Anhang B Implementierung 142
B.1 Basisrevisionskontrollfunktionalitdaten 142
B.2 Aggregation von High-Level-Changes 146
B.3 Zusammenfihrung von divergierten Entwicklungszweigen 148
B4 Co-Evolution 150

Literaturverzeichnis 152

VIII

216.73.216.60, am 24.01.2026, 01:46:48. @ (geschitzter Inhalt.
tersagt, m 'mit, fiir oder in KI-Syster

https://doi.org/10.51202/9783186873101

Abkiirzungs- und Symbolverzeichnis

Abkiirzungen
ACID
AERO

Atomicity, Consistency, Isolation, Durability

Aggregation and Evolution Rules Ontology

AutomationML Automation Markup Language

BASE
BPMN
CAP
CHAO
CIF
CPS
CVS
DIMA
EMF
FMI
FMU
GLD
P
KAON
LDAP
LED
LOD
MDE
MMO

Basically Available, Soft state, Eventual consistency
Business Process Model and Notation
Consistency, Availability, Partition Tolerance
Change and Annotation Ontology

Continuous Integration Framework

Cyber Physical Systems

Concurrent Versions System

Dezentrale Intelligenz fiir modulare Anlagen
Eclipse Modeling Framework

Functional Mock-up Interface

Functional Mock-up Unit

Goverment Linked Data

Internetprotokoll

Karlsruhe Ontology and Semantic Web framework
Lightweight Directory Access Protocol

Linked Enterprise Data

Linked Open Data

Model-driven Engineering

Merge Management Ontology

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m tr

mit, flir oder In KI-

IX

https://doi.org/10.51202/9783186873101

MOF Meta Object Facility

MTP Module Type Package
OPC UA Open Platform Communications Unified Architecture
OWL Web Ontology Language
PEA Process Equipment Assembly
PFE Prozessfithrungsebene
POL Process Orchestration Layer
PROV-O PROV Ontology
QUDT Quantities, Units, Dimensions, and Data Types
RCS Revision Control System
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RMO Revision Management Ontology
RMS Revision Management System
SCCS Source Code Control System
SHACL Shapes Constraint Language
SPARQL SPARQL Protocol And RDF Query Language
SPIN SPARQL Inferencing Notation
SVN Apache Subversion
TGG Tripel-Graph-Grammatik
UML Unified Modeling Language
URI Uniform Resource Identifier
USB Universal Serial Bus
VIBN Virtuelle Inbetriebnahme
XML Extensible Markup Language
X
e 167321000, an 2401202, 014845, Utsbomacch ucizi

https://doi.org/10.51202/9783186873101

Symbole und Funktionen

Allgemein

N+
N
|X]
P(M)

Menge der natiirlichen Zahlen grofer Null
Menge der nattirlichen Zahlen groler gleich Null
Maéchtigkeit der Menge X

Potenzmenge einer Menge M

Compound Graphs

Compound Graph

Einfach gerichteter Graph innerhalb des Compound Graphs
Baum innerhalb des Compond Graphs

Einfach gerichteter Graph

Baum

Menge an Knoten

Menge an Kanten

Knoten aus V

Funktion zur Ermittlung von Vorgangern in G
Funktion zur Ermittlung von Nachfolgern in G
Menge der Basisknoten (Blittern von 77)
Menge der Subgraphen (innere Knoten von 77)
Menge der Knoten als Vereinigung von Bund §
Knoten aus V.

Adjazenzkanten

Inklusionskanten

Eindeutiger Identifikator des Knotens

Eindeutiger Identifikator zur Zuordnung der Semantik zum Knoten

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

XI

https://doi.org/10.51202/9783186873101

Anderungsmanagement

S

QO ® Q

S

<

QD

oy

g

C+

T

Tyl

Ry

ny

ng

T,

Ty

predg (r,)
suceg (ry)

pathg (ry.ry)

Menge aller Statements
Revisionsgraph
Menge aller moglichen Revisionen

Menge aller méglichen Anderungen zwischen zwei Revisionen
(ChangeSets)

Menge aller moglichen Entwicklungszweige (Branches)
Menge aller moglichen Tags
Menge der Revisionen innerhalb von G

Menge der Anderungen zwischen zwei Revisionen (ChangeSets)
innerhalb von G

Menge der Entwicklungszweige (Branches) innerhalb von G
Menge der Tags innerhalb von G

Eindeutiger Identifikator eines Revisionsgraphen in der Menge der
Revisionsgraphen

Menge der hinzugefiigten Elemente

Menge der geloschten Elemente

Blattrevision des Entwicklungszweiges

Revisionen aus R

Menge der Revisionen eines Entwicklungszweiges

Eindeutiger Identifikator eines Branches im Revisionsgraphen
Eindeutiger Identifikator eines Tags im Revisionsgraphen
Vollstandiger Revisionsinhalt des Blattes des Entwicklungszweiges
Vollsténdiger Revisionsinhalt eines Tags

Funktion zur Ermittlung von Vorgédngerrevisionen in G
Funktion zur Ermittlung von Nachfolgerrevisionen in G

Funktion zur Ermittlung eines Revisionspfades in G

getContentg (r;) Funktion zur Wiederherstellung des vollstandigen Revisionsinhalts

XII

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

strip (Y,,C*,C~) Funktion zur Berechnung von minimalen ChangeSets

r
creater
dropr
branchg

tagg
T,

¥

commitg

revertg

Menge der Revisionsgraphen

Funktion zur Erstellung eines neuen Revisionsgraphen
Funktion zur Loschung eines bestehenden Revisionsgraphen
Funktion zur Erstellung eines neuen Entwicklungszweiges
Funktion zur Erstellung eines neuen Tags

Vollstéandiger Revisionsinhalt einer spezifizierten Revision
Neu erstellte Revision

Funktion zur Erstellung eines neuen Commits

Funktion, um einen vorher erstellten Commit riickgéingig zu machen

Aggregation von High-Level-Changes

hlcAggg

&g

Funktion zur Aggregation von atomaren Anderungen zu
High-Level-Changes

Funktion zur Berechnung von High-Level-Changes zwischen zwei
Revisionen

Eindeutiger Identifikator des High-Level-Changes
Menge der nicht zuzuordnenden hinzugefiigten Elemente

Menge der nicht zuzuordnenden geldschten Elemente

Zusammenfiihrung divergierter Entwicklungszweige

mergeg

b
b
L 2¢]

pickg

p

Funktion zur Zusammenfithrung von divergierten Entwicklungszweigen
mittels eines 3-Wege-Merges

Quellentwicklungszweig
Zielentwicklungszweig

Funktion zur Berechnung der ChangeSets in Bezug auf die jeweiligen
Entwicklungszweige

Funktion zur Wiederverwendung von bereits durchgefithrten
Anderungen in Bezug auf eine Revision

Revision, die wiederverwendet werden soll

XIII

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

-

R,

Geordnete Liste von Revisionen

pickg (Rp,nb> Funktion zur Wiederverwendung einer Liste an bestehenden Revisonen

fastForwardg Funktion zur Zusammenfithrung von divergierten

K

Entwicklungszweigen, wobei Revisionshistorie gegléttet wird und nicht
notwendige 3-Wege-Merges vermieden werden

Menge der moglichen Status von atomaren Anderungen

getCommonAncestorg (ny,,m,) Funktion zur Berechnung der gemeinsamen

Te

Cpaths

CpaLht

QStart

add(Q,s)

del(,5)

D,

XIV

Vorgangerrevision von zwei Entwicklungszweigen
Gemeinsame Vorgéngerrevision von zwei Entwicklungszweigen

Pfad von gemeinsamer Vorgéngerrevision zum Blatt des
Quellentwicklungszweiges

Pfad von gemeinsamer Vorgéngerrevision zum Blatt des
Zielentwicklungszweiges

Startmenge fiir das Nachvollzichen der Anderungen

Funktion zur Aktualisierung des Status eines Statements, wenn dieses
hinzugefiugt wird

Funktion zur Aktualisierung des Status eines Statements, wenn dieses
geloscht wird

Einzelnes Statement

Funktion zu Anwendung der Aktualisierungen von einer Revision
Endmenge mit allen Status nach dem Nachvollziehen der Anderungen
Menge an Definitionen zur automatisierten Konfliktbehebung

Status Quellentwicklungszweig

Status Zielentwicklungszweig

Boolesche Grofie zur Spezifikation, ob es sich um einen Konflikt
handelt oder nicht

Menge der Status auf dem Quellentwicklungszweig ohne gleiche Status
des Zielentwicklungszweiges

Menge der Status auf dem Zielentwicklungszweig ohne gleiche Status
des Quellentwicklungszweiges

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

D, Menge der Status auf dem Quellentwicklungszweig mit gleicher
Kardinalitit, wie Zielentwicklungszweig

D, Menge der Status auf dem Zielentwicklungszweig mit gleicher
Kardinalitit, wie Quellentwicklungszweig

Dpifs Zusammenfithrung der Mengen D, und D, zur Beschreibung der
Unterschiede
Do Ergebnismenge der Konflikterkennung und -behebung mit

entsprechenden Status fiir eine automatisierte Konfliktbehebung

hlcPathAggg (Cpa) Funktion zur Aggregation von atomaren Anderungen zu
High-Level-Changes entlang eines Pfades

intersecg (Cpuy) Funktion zur Berechnung von Abhéngigkeiten von

High-Level-Changes

Evolutionsmechanismen

Ge Revisionsgraph zur semantischen Beschreibung von durchgefithrten
Co-Evolutionen

hg. Ergebnis der High-Level-Change-Aggregation der zu co-evolvierenden
Anderungen

calcDepr (G,rs,,ry, . hg,) Funktion zur Berechnung von Abhéngigkeiten
Gs Quellrevisionsgraph
G Zielrevisionsgraph

coevolver (hg,,G:,ny,) Funktion zur Erstellung von Co-Evolutionscommits auf
abhéngige Entwicklungszweige

& (hg,,.Ginw,) Funktion zur Berechnung der Hinzufiigungen und Loschen fiir die
Co-Evolution

coevolveAlly (G,ry,,ry.) Funktion zur Co-Evolution von allen abhangigen
Revisionsgraphen und Entwicklungszweigen

SN

Menge zur temporéren Speicherung der durchgefithrten Anderungen

ol
N

Funktion zur Uberfithrung der durchgefiihrten Anderungen in
Hinzufiigungen und Loschungen zur semantischen Beschreibung

XV

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Implementierung

L Menge aller Literale

u Menge aller Uniform Resource Identifiers
Verifikation

I Menge der Eingangsports

O Menge der Ausgangsports

dg, (D) Eingangsgrad eines Knotens o in G’
dg,(ﬁ) Ausgangsgrad eines Knotens ¢ in G/

!

Menge der Verbindungen tiber Komponenten hinweg

a2l
G’ connection

1

G dependoncy Menge der internen Abhéngigkeiten innerhalb einer Komponente

XVI

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Kurzfassung

Semantische Revisionskontrolle fiir die Evolution von Informations- und
Datenmodellen

Stéarker verteilte Systeme in der Planung und Produktion verbessern die Agilitdt und
Wartbarkeit von Einzelkomponenten, wobei gleichzeitig jedoch deren Vernetzung unterein-
ander steigt. Das stellt wiederum neue Anforderungen an die semantische Beschreibung
der Komponenten und deren Verbindungen, wofiir Informations- und Datenmodelle
unabdingbar sind. Der Lebenszyklus dieser Modelle ist dabei von Anderungen geprigt,
mit denen umgegangen werden muss. Heutige Revisionsverwaltungssysteme, die die
industriell geforderte Nachvollziehbarkeit bereitstellen konnten, sind allerdings nicht
auf die speziellen Anforderungen der Informations- und Datenmodelle zugeschnitten,
wodurch Moglichkeiten einer konsistenten Evolution verringert werden.

Evolutionsmechanismen

Evolutionsprozess

Informationsmodell

Evolutionsprozess

. Evolutionsprozess
Evolutionsprozess

Revision Management System

Datenmodell Datenmodell

Semantische Revisionskontrolle

Im Rahmen dieser Dissertation wurde ein Revision Management System zur durchgén-
gigen Unterstiitzung der Evolution von Informations- und Datenmodellen entwickelt, das
Revisionsverwaltungs- und Evolutionsmechanismen integriert. Besonderheit ist hierbei
die technologieunabhéngige mathematische und semantische Beschreibung, die eine Uber-
fiihrung des Konzepts in unterschiedliche Technologien ermoglicht. Beispielhaft wurde
das Konzept fiir das Semantic Web als Weiterentwicklung des Open-Source-Projektes
R43ples umgesetzt.

XVII

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Abstract

Semantic revision control for the evolution of information and data models

The increased distribution of systems in planning and production leads to improved agility
and maintainability of individual components, whereas concurrently their cross-linking
increases. This causes new requirements for the semantic description of components and
links for which information and data models are indispensable. The life cycle of those
models is characterized by changes that must be dealt with. However, today’s revision
control systems would provide the required industrial traceability but are not enough for
the specific requirements of information and data models. As a result, possibilities for a
consistent evolution are reduced.

Evolution Mechanisms

Evolution process
—

Information model

Evolution process
—

Evolution process
—y

Data model Data model

Revision Management System

Semantic Revision Control

Within this thesis a revision management system was developed, integrating revision
control and evolution mechanisms to support the evolution of information and data
models. The key is the technology-independent mathematical and sematic description
allowing the application of the concept within different technologies. Exemplarily the
concept was implemented for the Semantic Web as an extension of the open source
project R43ples.

XVIII

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

1 Einleitung

1.1 Motivation

Begriffe wie Industrie 4.0, Cyber Physical Systems (CPS), Digital Twin [NFM17], Digital
Companion [Siel8], Modularisierung [NAM13] oder Smart Equipment [SUW18] pragen
die Industrie von heute. Grund hierfir sind neue Herausforderungen, die unter anderem
aus der Globalisierung der Markte sowie einer Diversifizierung der Produktpalette resul-
tieren [Bie416]. Mit all diesen Begriffen sind Losungsmoglichkeiten verbunden, um diesen
Herausforderungen begegnen zu koénnen. Jedoch geht mit deren Umsetzung auch eine
immer weiter fortschreitende Digitalisierung einher, die zu stirker verteilten Systemen
in der Planung und Produktion fiihrt. Funktionen die neu hinzugefiigt werden, werden
héufig in eigene Systeme ausgelagert, was eine lose Kopplung mit anderen Komponenten
ermoglicht. Dies hat den Vorteil, dass die Einzelkomponenten agil weiterentwickelt und
wartbar gestaltet werden konnen. Fur die Kommunikation zwischen den Komponenten
aber auch zur semantischen Beschreibung der in den jeweiligen Systemen vorgehaltenen
Daten sind dabei Informationsmodelle unabdingbar. Diese Informationsmodelle unter-
liegen, dhnlich wie Produkte, einem Lebenszyklus, der dadurch geprégt ist, dass auf
Anforderungsinderungen reagiert werden muss und entsprechende Anpassungen an den
Modellen vorgenommen werden miissen. Insbesondere durch die immer kiirzer werdenden
Produktlebenszyklen entstehen hieraus Anderungswiinsche an den Modellen, mit denen
umgegangen werden muss. Dabei muss einer Architekturerosion vorgebeugt werden, da
diese zu einer Verschlechterung der Struktur fithrt und weitere Anderungen nur erschwert
oder nicht umgesetzt werden kénnen [RB09]. Notwendige Anderungen an den zugehorigen
Informationsmodellen werden hierbei nicht abrupt durchgefiihrt, sondern erfolgen zumeist
in kleineren Schritten [Lev+10]. Beispiele fiir solche kontinuierlichen Evolutionen, die
durchaus iiber mehrere Jahre hinweg gegeben sein kénnen, sind unter anderem Unified
Modeling Language (UML) und Business Process Model and Notation (BPMN) [HKB17].

Insbesondere in industriellen Anwendungen spielt jedoch die Dokumentation und
die damit verbundene Nachvollziehbarkeit der Anderungen eine wesentliche Rolle, da
die Unternehmen gesetzlichen Regularien und damit verbundenen Nachweispflichten
unterworfen sind. Ein Beispiel hierfiir ist die Prozessindustrie, die sich mit neuen Heraus-
forderungen, wie hoch-volatile Méarkte und kiirzere Produktlebenszyklen, konfrontiert
sieht und mit der Modularisierung verfahrenstechnischer Anlagen auf die Anforderungs-
dnderungen reagiert. Fiir die Beschreibung modularer Anlagen werden aber wiederum
Informationsmodelle benétigt, die die einzelnen Module") und die Verbindungen zwi-
schen diesen beschreiben. Auch hier gilt, dass Verdnderungen an Modellen nachvollzogen
sowie syntaktische und semantische Korrektheit iiberpriift werden missen [Lev+10]. Zur

DDer Begriff Modul wird in dieser Arbeit synonym zu Process Equipment Assembly (PEA) (definiert
in [VDI19]) verwendet.

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

1 Einleitung

Erreichung dieses Ziels ist eine Integration von Revisionsverwaltungs- und Evolutionsme-
chanismen, die Anderungen an verkniipfte Modelle propagieren kénnen, unabdingbar
[NK04]. Bestehende Ansétze aus dem Bereich der Softwareentwicklung funktionieren
hierfiir nur bedingt. Dies liegt auf der einen Seite an der zusétzlichen Flexibilisierung
aufgrund von Ansitzen wie Linked Enterprise Data (LED) [Gral6], aber auf der anderen
Seite auch an der Natur der Modelle, da diese als ein Graph interpretiert werden kénnen
[Lev+10]. Bei der Verwendung von etablierten Werkzeugen aus der Softwareentwicklung
geht daher jedoch zumeist die Semantik der Anderungen verloren [GHU14]. An dieser
Stelle setzt diese Arbeit an, mit dem Ziel, die Semantik der durchgefiihrten Anderungen
zu erhalten, um damit die Grundlage fiir durchzufithrende Evolutionen zu schaffen.

1.2 Zielstellung und erwartete Ergebnisse

Zielstellung dieser Arbeit ist die durchgiangige Unterstiitzung der Evolution von Informa-
tions- und Datenmodellen tiber deren Lebenszyklus hinweg. Hierfiir werden Funktio-
nalitdten der Revisionsverwaltung und Evolutionsmechanismen in einem gemeinsamen
semantischen Framework integriert, das als Revision Management System (RMS) bezeich-
net wird. Ergebnis der Arbeit sind die formalen, technologieunabhéangigen Grundlagen fiir
die Umsetzung von Revisionsverwaltungsfunktionalitédten und Evolutionsmechanismen
fiir Informations- und Datenmodelle, die Konzeption eines RMS und eine prototypische
Implementierung im Semantic Web.

1.2.1 Kernthese

Der Arbeit wird folgende Kernthese zugrunde gelegt:

Ein Revision Management System unterstitzt die Evolution von Informations-
und Datenmodellen tiber deren gesamten Lebenszyklus durch die Integration
von Revisionskontroll- und Evolutionsmechanismen.

1.2.2 Einzelthesen
Nachfolgend wird die Kernthese in Forschungsthesen zerlegt:
These 1: Neue Anforderungen an die Agilitdt von Produktlebenszyklen erfordern

Verénderungen im Lebenszyklus der zugrundeliegenden Informationsraume, vor allem im
Bereich der Revisionierung und Evolution der Informations- und Datenmodelle.

These 2: Die Anforderungen konnen durch etablierte Werkzeuge aus der Softwareent-
wicklung nicht vollstédndig erfiillt werden.

These 3: Die Integration von Revisionskontrollfunktionalitdten und Evolutionsmecha-
nismen in ein itbergeordnetes Revision Management System bietet die Grundlage fiir die
Umsetzung der Anforderungen.

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

1.3 Einordnung und Abgrenzung der Arbeit

These 4: Die technologieunabhéngige Beschreibung des Revision Management Systems
erlaubt eine Umsetzung in unterschiedlichen Anwendungsdoménen.

1.3 Einordnung und Abgrenzung der Arbeit

Allgemein ist diese Arbeit im Bereich der Informationsmodellierung angesiedelt. Konkret
beschéftigt sie sich mit der Revisionsverwaltung und der Evolution von Informations-
und Datenmodellen iber den gesamten Lebenszyklus dieser Modelle hinweg. Hieraus
entstehen Querbeziige zu verwandten Themengebieten, wie Revisionsverswaltung und
Evolution in der Softwareentwicklung [Vog+15b] oder der Schemaevolution im Bereich
der Datenbanken [Lev+10]. Ebenso kann auf Vorarbeiten im Bereich des Semantic Webs,
wie [Pap+13] und [AM17], zuriickgegriffen werden. Aus den aufgefithrten Themengebieten
konnen einerseits Anforderungen aber andererseits auch Konzepte extrahiert werden, die
auf die speziellen Gegebenheiten von Informations- und Datenmodelle hin angepasst und
generalisiert werden. Dabei werden ebenfalls bereits existente Arbeiten wie [Sto04] und
[Keh15] aus dem Bereich der Evolution von Informations- und Datenmodelle einbezogen.
Eine wesentliche Unterscheidung im Vergleich zu existenten Ansétzen ist die Integration
von Revisionskontrollfunktionalitdten und Evolutionsmechanismen.

Insbesondere in integrierten Informationsrdumen, wie zum Beispiel in [Gral6] vor-
gestellt, entsteht eine stiarkere Vernetzung der Modelle. Aufgrund der Abhéngigkeiten
zwischen den unterschiedlichen Modellen miissen durchgefiihrte Evolutionen an einem
Modell an abhéngige Modelle coevolviert werden, um stets Konsistenz sicherzustellen.
Fiir die moglichst automatisierte Durchfithrung dieser Co-Evolutionen, unter Gewéhrleis-
tung einer durchgingigen Nachvollziehbarkeit der durchgefithrten Anderungen, werden
innerhalb dieser Arbeit die formalen und technologieunabhéngigen Grundlagen fiir die
Umsetzung von Revisionsverwaltungsfunktionalitdten und Evolutionsmechanismen gelegt.
Hierfiir werden mathematische und semantische Beschreibungen verwendet, um die be-
reitzustellenden Funktionalitdten, wie zum Beispiel Commits, Zusammenfithrungen und
Co-Evolutionen, zu beschreiben. Diese orientieren sich dabei an Funktionalitdten aus der
Entwicklung von Softwaresystemen sowie technologieabhangigen Teillosungen und werden
innerhalb dieser Arbeit auf die spezifischen Anforderungen der Informations- und Daten-
modelle hin angepasst. Durch die Integration von Revisionsverwaltung und Evolution
wird ein RMS geschaffen. Dieses soll iiber den gesamten Lebenszyklus der Informations-
und Datenmodelle hinweg eingesetzt werden und die Evolution und Konsistenzsicherung
der enthaltenen Modelle unterstiitzen.

Bei den betrachteten Abhangigkeiten wird sich in dieser Arbeit auf die bereits vor-
handene Vernetzung der Modelle fokussiert. Diese ist entweder explizit in den Modellen
enthalten oder entsteht zum Beispiel durch Typ-Instanz-Beziehungen. Eine wissensba-
sierte Verkniipfung unterschiedlicher Modelle, wie sie unter anderem beim Round-Trip-
Engineering mittels Tripel-Graph-Grammatik (TGG) [RGU17] vorkommt, wird in dieser
Arbeit nicht behandelt. Sie bietet jedoch die Grundlage, um auch in diesem Bereich eine
Nachvollziechbarkeit der Anderungen zu ermdglichen.

Anderungen werden in dieser Arbeit vorrangig auf Ebene der Informations- und Daten-

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

1 Einleitung

modelle betrachtet, wodurch eine Abgrenzung zu Ansétzen im Bereich der Evolution von
Produktionssystemen, wie unter anderem in [Lad18] und [LFL16] vorgestellt, erfolgt. In
diesem Bereich werden Ein- und Ausgangssignale fiir die Detektion von Verdnderungen
im Produktionssystem herangezogen, um daraus notwendige Reaktionen oder vorzu-
nehmende Dokumentationen abzuleiten. Die vorliegende Arbeit setzt dementsprechend
nachfolgend an, um beispielsweise die durchgefithrten Dokumentationen innerhalb der
Planungsunterlagen nachvollziehbar zu speichern.

Ein wesentlicher Aspekt bei der Durchfithrung von Co-Evolutionen und der Speicherung
von Anderungen ist die Aggregation der durchgefiihrten Anderungen zu semantischen
Anderungen, die eine Aussage beinhalten, was der Zweck hinter den Anderungen gewesen
ist. In diesem Bereich existieren bereits verschiedene Arbeiten, die formale Regelsitze
fiir die Durchfithrung von Aggregationen bereitstellen. Beispiele hierfiir sind unter an-
derem [Kehl15] und [Pap+13]. Auf diese wird innerhalb dieser Arbeit in Bezug auf eine
prototypische Implementierung zuriickgegriffen.

1.4 Anwendungsfille

Die Entwicklung der Ansitze und Technologien innerhalb dieser Arbeit erfolgt unter
der Betrachtung von zwei Anwendungsféllen. Hierbei handelt es sich jeweils um kolla-
borative Anwendungen, die zum einen eine hohe Vernetzung und zum anderen hohes
Anderungspotential aufweisen. Im Folgenden werden diese jeweils kurz vorgestellt.

1.4.1 Co-Simulation

Im Lebenszyklus einer Prozessanlage spielen Simulationen bereits an vielen Stellen eine
wichtige Rolle [OWU14]. Oppelt et al. [OWU14] statuieren, dass zukiinftig Simulationen
direkt in den Anlagenlebenszyklus und einen integrierten Engineeringprozess eingebunden
werden kénnen. Notwendige Simulationsmodelle konnen beispielsweise automatisch aus
bestehenden Engineeringdaten generiert werden [Opp+14]. Resultierende Modelle konnen
dann unter anderem fiir die virtuelle Inbetriebnahme verwendet werden [OU14]. In diesem
Zusammenhang fordern Oppelt et al. [OWU14] die Spezifikation eines Standards fir die
Co-Simulation, um die Wiederverwendung von bestehenden Simulationen zu erméglichen
und zu vereinfachen. Neben der Wiederverwendung bietet die Co-Simulation auch Vorteile
in Bezug auf die Modellierungseffizienz, da Personen innerhalb eines Projektes zum
einen mit den jeweils am besten geeigneten (fachspezifischen) Werkzeugen arbeiten
konnen, zum anderen aber auch auf Basis von bestehenden Préferenzen und Erfahrungen
Entscheidungen iiber das zu verwendende Simulationswerkzeug getroffen werden konnen.
Ein weiterer Vorteil liegt in der Simulation von Wechselwirkungen und Rickkopplungen
zwischen den einzelnen Teilkomponenten, die durch eine reine Einzelsimulation nicht
erfassbar wéren [Smo13]. Durch die Kombination der einzelnen Modelle wird somit eine
Gesamtsystemvorhersage ermdglicht. Uberdies werden durch die Parallelisierung und
Verteilung Beschleunigungsvorteile gegentiber einer integrierten Simulation erwartet, da
in einer Co-Simulation die Simulation auf unterschiedliche Gerite verteilt werden kann
[Fujo9.

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

1.4 Anwendungsfille

Ein Ansatz fir eine Co-Simulationsplattform, die eine Wiederverwendung von beste-
henden Simulationen und eine Verschaltung von diesen ermoglicht, wird beispielsweise in
[Hen+16a; Hen+16b] vorgestellt. Die Simulationssteuerung erfolgt vereinheitlicht unab-
hangig vom verwendeten Simulator, um eine nahtlose Interoperabilitat zu ermoglichen.
Die Co-Simulationsumgebung ist vollstandig unter Nutzung von Open Platform Commu-
nications Unified Architecture (OPC UA) semantisch beschrieben. Abbildung 1.1 gibt
einen Uberblick iiber die allgemeine Architektur des Ansatzes. Diese besteht aus einem
zentralen Aggregating Server und generischen Adaptern, die iiber eine simulatorspezifische
Schnittstelle an den zu koppelnden Simulator angeschlossen werden.

Aggregating
OPC UA Client 8 OPC UA Server
Server | | |
1
____________ l ————————————
-
OPC UA :
Communication :
_______________ B e e
¥ 1
Generic OPC UA Server 8 I OPC UA Client

Adapter

— Interface Simulator A —_

Simulator-
specific @

interface

Simulator A

Abbildung 1.1: Architektur der auf OPC UA basierenden Co-Simulationsumgebung [Hen+16a,
S. 4]

Zur Durchfithrung einer Co-Simulation muss die entsprechende Umgebung konfiguriert
werden und die zu koppelnden Einzelsimulationen zu einer Gesamtsimulation verschaltet
werden. Hierbei muss mit Anderungen an Einzelsimulationen und an den Verschal-
tungen umgegangen werden, die zusammen mit den Simulationsergebnissen moglichst
nachvollziehbar gespeichert werden miissen.

1.4.2 Modularisierung

Neue Herausforderungen in der Prozessindustrie wie immer kiirzer werdende Produktle-
benszyklen und volatile Mérkte erfordern neue Konzepte, um wettbewerbsfihig zu bleiben
[LG11]. Die NE 148 [NAM13] formuliert hierfiir Anforderungen, die realisiert werden
miissen, um diesen Verdnderungen begegnen zu kénnen. Insbesondere sind standardisierte
Schnittstellen erforderlich, die grundlegend eine modulare Produktion ermoglichen und
weiterhin die Wandlungsfahigkeit von modularen Anlagen unterstiitzen [Bie+16]. Ein we-
sentlicher Aspekt ist hierbei die Automatisierung einer modularen Prozessanlage. Hierfiir
werden durch Anwender, Hersteller und Universitaten entsprechend der NE 148 Losungen

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

1 Einleitung

entwickelt. Zentrales Element fiir die herstellerneutrale Beschreibung von Modulen ist
das Module Type Package (MTP). Dieses wurde initial im Dezentrale Intelligenz fiir
modulare Anlagen (DIMA)-Projekt [Hol+14] entwickelt und wird durch Arbeitskreise
von Namur, ZVEI und GMA weiterentwickelt und in die Standardisierung tiberfiihrt
[Hen+17]. Abbildung 1.2 gibt einen Uberblick, iiber den dabei verwendeten agilen Prozess
der Spezifikation.

\
Requirementc:// Refinement

e within Sub-
specification AKs Standardi-
- zation
\
| A Ry
- - { H DE/ §
V/DIV/DE/ pr
L VDI/VDE/ i
Ve”:r‘:gt'on Function |Nam x i
i Definition g
refinement 2658-1
L »
& VDI/GVC
Demos
2776-11
L 7

Abbildung 1.2: Agiler Prozess der Spezifikation des MTP [BH17, S. 10]

Das MTP ist dabei in unterschiedliche Aspekte untergliedert, fiir die in sprintartigen
Iterationen Losungsansitze untersucht und entwickelt werden. Grundlage bildet ein
iibergeordnetes Lastenheft und konkretisierende Fallbeispiele. Die Ergebnisse der Sprints
werden parallel harmonisiert und in die Standardisierung iiberfithrt. Die gesammelten
Erfahrungen flieen vor der Durchfithrung der néchsten Iteration wieder in den agilen
Prozess zuriick. Es handelt sich daher um einen sehr dynamischen Prozess, der davon
geprégt ist, dass Anderungen und Erweiterungen an der Spezifikation des MTP vorge-
nommen und dokumentiert werden miissen. In diesem Zusammenhang spielt auch die
Kompatibilitdt von unterschiedlichen Entwicklungsstdanden eine sehr groBe Rolle, da das
MTP eine herstelleriibergreifende Beschreibung darstellt.

1.5 Gliederung der Arbeit

Die Dissertation gliedert sich im weiteren Verlauf in sieben tibergeordnete Abschnitte, die
es ermoglichen, die der Arbeit zugrunde gelegten Thesen zu untersuchen. Im Abschnitt 2
erfolgt die Definition von Begrifflichkeiten, die in dieser Arbeit Verwendung finden. Des
Weiteren werden die notwendigen Theoriekenntnisse des Themengebiets zusammengefasst.

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

1.5 Gliederung der Arbeit

Im folgenden Abschnitt 3 werden ausgehend von einer Literaturrecherche Anforderungen
an das zu konzeptionierende System aufgestellt. Mit Hilfe der Anwendungsfélle werden die
Anforderungen bestétigt beziehungsweise erweitert, um ein moglichst vollstandiges Bild
zu erhalten. Durch die Spiegelung der Anforderungen an bestehende Ansétze kénnen die
Liicken aufgedeckt werden, die im weiteren Verlauf der Arbeit geschlossen werden sollen.
Die Zusammenfassung der Analyseergebnisse und eine entsprechende Priorisierung der
Anforderungen ermoglicht im folgenden Abschnitt 4 die Fokussierung auf die wesentlichen
zu entwickelnden Komponenten. Ausgehend vom Lebenszyklus werden die Anforderun-
gen in ein Konzept fiir ein RMS iiberfiihrt. Die jeweiligen Komponenten dieses Systems
werden mathematisch und semantisch beschrieben, um ein technologieunabhéngiges
Konzept zu erhalten, das sich auf unterschiedliche Technologien tibertragen lésst. In der
Implementierung, vorgestellt in Abschnitt 5, wird das technologieunabhéngige Konzept
beispielhaft fir eine spezifische Technologie, das Semantic Web, umgesetzt. Durch diese
Umsetzung wird die Funktionsweise des theoretisch beschriebenen Konzeptes nachgewie-
sen und anschlieflend im Abschnitt 6 verifiziert. Die Verifikation erfolgt auf der einen
Seite anhand von Testfillen der Implementierung, aber auch durch den theoretischen
Nachweis der formalen Beschreibungen anhand von Beispielen und dem Anwendungsfall
der Co-Simulation. Schlieflich werden die Ergebnisse der Arbeit in Abschnitt 7 kritisch
diskutiert und den aufgestellten Thesen gegeniibergestellt. Die Zusammenfassung der
Dissertation erfolgt im Abschnitt 8, wobei ebenfalls ein Ausblick auf Ankniipfungspunkte
fiir Folgearbeiten gegeben wird.

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

In diesem Abschnitt werden zunéchst die grundlegenden Begriffsdefinitionen und Theorie-
kenntnisse des Themengebietes zusammengefasst. Hierbei werden zu Beginn die Aspekte
der Verdnderlichkeit auf einer allgemeinen Ebene dargestellt, bevor im nédchsten Abschnitt
in die Informationsmodellierung eingefiithrt wird. Uber ihren Lebenszyklus hinweg unter-
liegen diese Modelle einer natiirlichen Evolution, deren Begrifflichkeiten im Folgenden
vorgestellt werden. Da wahrend der Evolution eine Nachvollziehbarkeit der durchgefiihr-
ten Anderungen gewdhrleistet werden muss, wird nachfolgend in die Grundlagen der
Revisionsverwaltung eingefiihrt. Abgeschlossen wird dieser Abschnitt mit einer Beschrei-
bung von Konsistenz, da diese sowohl wiahrend der Evolution, aber auch innerhalb der
Revisionsverwaltung von essenzieller Bedeutung ist.

2.1 Aspekte der Veranderlichkeit

Fiir zukiinftige Systeme existieren nach Fricke und Schulz [FS05] drei Treiber. Hierzu
zéhlen die Dynamik der Mérkte, die technologische Weiterentwicklung und die Vielfalt der
Umgebungen. Durch die immer grofere Dynamik in den Mérkten verringert sich die Zeit-
spanne zwischen dem Design Freeze und der Auslieferung der Systeme. Die Architekturen
missen dabei auch nach einer Einfiihrung verdnderbar bleiben, da sich die Umgebung
weiterentwickelt und daraus wiederum neue Anforderungen an die Architekturen entste-
hen. Fricke und Schulz [FS05] stellen dabei fest, dass der Erfolg einer Architektur von der
Umsetzbarkeit der neuen Anforderungen abhéngt. Ein weiterer Punkt der Dynamik ist
die immer weiter fortschreitende Individualisierung der Produkte. Unternehmen miissen
hierbei Standardkomponenten entwickeln und wiederverwenden, um die Wirtschaftlich-
keit und den Erfolg des Unternehmens sicherzustellen. Der zweite Treiber ist dadurch
gekennzeichnet, dass sich Systeme und deren Funktionen schnell weiterentwickeln miissen,
da sich die Lebensdauer der Produkte zunehmend verkiirzt und die korrespondierenden
Systeme darauf reagieren miissen. Daraus resultiert, dass die Wettbewerbsféhigkeit der
Unternehmen stark von der Verwendung von neuen Technologien abhéngt. Der letzte
von Fricke und Schulz [FS05] aufgefithrte Treiber zielt auf die Vielfalt der Umgebungen
ab, da komplexe Systeme eine Komposition aus unterschiedlichen Technologien sind und
diese Systeme oft wiederum in hohere Systeme integriert sind. Die jeweils beteiligten
Komponenten stehen dabei in Wechselbeziehungen und beeinflussen sich gegenseitig.

Daraus resultieren die in Abbildung 2.1 dargestellten Aspekte der Verdnderlichkeit.
Systemarchitekturen miissen nach [FS05] einerseits die Fahigkeit der einfachen und
schnellen Weiterentwicklung enthalten und andererseits auch die Fahigkeit besitzen, un-
empfindlich beziehungsweise anpassungsfahig auf sich &ndernde Umgebungsbedingungen
Zu reagieren.

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.1 Aspekte der Verdanderlichkeit

system can be
changed rapidly

system adapts itself
without external actuation

Adaptability

system is insensitive system can be

towards changes within its Robustness Flexibility ;
environment changed easily
no implementation of implementation of
changes from external changes from

necessary external necessary

Abbildung 2.1: Aspekte der Verdnderlichkeit [FS05, S. 347]

Bei der Produktentwicklung werden Anderungen zumeist entweder verhindert oder
vorgezogen, da Anderungen in spiteren Phasen der Entwicklung zu hohen Kosten fithren
[FS05; Fri+00]. Jedoch lassen sich auch in spéteren Phasen Anderungen nicht vermeiden
[FS05], weshalb eine Architektur benétigt wird, die mit Anderungen iiber den gesamten
Lebenszyklus hinweg umgehen kann. Bei einer solchen Architektur spielen aber wieder-
um auch die Kosten fiir die Weiterentwickelbarkeit im Vergleich zu den Kosten durch
zusitzliche Anderungen eine wesentliche Rolle. Abbildung 2.2 zeigt den Grad der Verin-
derlichkeit im Vergleich zu den Anderungskosten und die aufsummierten Gesamtkosten,
die am Schnittpunkt der beiden aufsummierten Kostenkurven ein Minimum besitzt, auf
das bei der Entwicklung von Systemarchitekturen abgezielt werden sollte.

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

Cost

Total Cost

Cost of
Changeability

Cost of Changes

Degree of Changeability _

Abbildung 2.2: Grad der Verdnderlichkeit vs. Kosten [F'S05, S. 356]

2.2 Informationsmodellierung

Informationsmodelle sind fiir eine durchgehende Digitalisierung und die Realisierung
von komplexen Systemen unabdingbar. Sie unterliegen wie die Systeme selbst einem
Lebenszyklus und miissen daher mit einhergehenden Anderungen umgehen kénnen.
Informationsmodelle sind dabei fiir die Nutzer oft nicht einsehbar, da sie von den
Systemen nur im Hintergrund benutzt werden. In diesem Abschnitt werden die in der
Arbeit verwendeten Begrifflichkeiten in Bezug auf die Informationsmodellierung definiert
und es wird auf den Lebenszyklus von Modellen sowie deren Vernetzung eingegangen.

2.2.1 Terminologie

Ausgehend von Informationsmodell und Semantik erfolgt im Weiteren eine Definition
von wichtigen Begrifflichkeiten wie Informationsraum und Ontologie. SchlieBlich werden
Arten von Informationsmodellen sowie deren Einordnung in eine Metadatenarchitektur
vorgestellt.

2.2.1.1 Informationsmodell und Semantik

Beim Austausch von Daten zwischen unterschiedlichen Informationstragern muss zum
einen ein gemeinsamer Ubertragungsweg definiert und zum anderen festgelegt werden,
wie die Interpretation der Daten zu erfolgen hat [Gral6]. Hierfiir sind die beiden Begriffe
Syntax und Semantik von wesentlicher Bedeutung. Durch die Syntax von Ausdriicken
wird deren formale Korrektheit definiert [Gral6]. Sie gibt demnach eine Menge von Regeln

10

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.2 Informationsmodellierung

vor, nach denen diese Ausdriicke gebildet werden diirfen [Tan06]. Durch die Semantik
hingegen wird den Ausdriicken eine entsprechende Bedeutung zugewiesen [Gral6).

Aus der Sprachwissenschaft heraus wird Semantik allgemein ,als die Erforschung der
Bedeutung®[Lyo80, S. 15] definiert. Nach Lyons [Lyo80] wird die Bedeutung von Wortern
sowie Sitzen durch den Gebrauch von Sprache in kommunikativen Situationen gelernt
bezichungsweise beibehalten. In diesem Zusammenhang spielen auch die Benennung und
die Referenz eine wesentliche Rolle. Die Benennung erfolgt dabei durch den Riickgriff auf
Zeichen oder Symbole, die zusammengesetzt ein Wort ergeben, dem dann wiederum eine
Bedeutung zugeordnet werden kann. Durch Referenzen kann dieses Wort dann wiederum
in einen Kontext eingebettet werden. Lyons [Lyo80| geht weiterhin auf die Bereiche
Klassenlogik, Referenz, Objekte mit deren Eigenschaften und Relationen sowie Sinnrela-
tionen, wie Opposition und Kontrast, Hierarchien oder Teil-Ganzes-Beziehungen ein, die
in einem engen Zusammenhang zur Bedeutung stehen und den Kontext bereitstellen,
in dem die Betrachtung der Bedeutung zu erfolgen hat. Diese Eigenschaften finden sich
auch in der Informationstechnik wieder, um die Semantik von Daten zu beschreiben, wie
beispielsweise in [She97] dargestellt. Im Rahmen dieser Arbeit werden fiir die formale
Beschreibung der Bedeutung von zugrundeliegenden Daten und fiir die Beschreibung des
zugehorigen Kontextes Informationsmodelle verwendet, wie im Folgenden definiert. Der
Kontext ergibt sich dabei unter anderem aus zugehorigen Eigenschaften, Relationen oder
Attributen. Die Reprisentation der Informationsmodelle und der sich daraus ergebenden
Beschreibung der Semantik erfolgt durch UML-Modelle und eine textuelle Beschreibung,
wie die Benennung zu interpretieren ist.

»Ein Modell ist eine Repréasentation eines Systems von Objekten, Bezichungen und/o-
der Ablaufen. Ein Modell vereinfacht und abstrahiert dabei im allgemeinen [sic!] das
reprasentierte System.“[Konl2, S. 25] Kastens und Biining [KB14] definieren weiterhin,
dass jeweils nur spezielle Aspekte eines Originals durch ein Modell beschrieben werden.
Die wesentlichen Elemente hierbei sind die Struktur, die die Zusammensetzung aus
Bestandteilen kennzeichnet, die Eigenschaften, die Teile des Originals beschreiben, die
Beziehungen, die zwischen Teilen des Originals vorhanden sind und das Verhalten, das
das Original bei der Anwendung von Operationen zeigt. Die Formulierung der Modelle
soll nach [KB14] moglichst deklarativ oder deskriptiv erfolgen.

Majer [Maj10] formuliert nach [Her05], dass ein Informationsmodell einen Wirklichkeits-
ausschnitt formalisiert. In diesem entstehenden Diskursraum werden Einschrankungen in
Bezug auf die Semantik zu Zwecken der Kommunikation vorgenommen [Gral6]. Nachfol-
gend sind die Definitionen fiir den Begriff Informationsmodell nach Westerinen und Lee
aufgefiihrt, die zueinander erginzend sind. So werden in [Lee99] die Einzelbestandteile
ausfithrlich aufgeschliisselt und in [Wes+01] erfolgt die Erganzung der unabhingigen
Beschreibung.

Ein Informationsmodell ist eine Reprisentation von Konzepten, Beziehungen,
Einschrankungen, Regeln und Operationen, um fiir eine gewdahlte Doméne des
Diskurses die Datensemantik zu spezifizieren. Der Vorteil fiir die Verwendung
eines Informationsmodells liegt darin, dass es eine gemeinsam nutzbare,
stabile und organisierte Struktur von Informationsanforderungen fiir den

11

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

Dominenkontext bereitstellen kann.?) (nach [Lee99, S. 1])

Ein Informationsmodell ist eine Abstraktion und Représentation von Enti-
téten in einer verwalteten Umgebung, ihrer Eigenschaften, Attribute und
Operationen sowie deren Beziehungen untereinander. Es ist unabhéngig von
einem bestimmten Repository, Software-Nutzung, Protokoll oder Plattform.?
(nach [Wes+01])

Auf Basis der vorangehenden Definitionen wird fiir diese Arbeit die nachfolgende
Definition abgeleitet, die die wesentlichen Aspekte der vorangehenden Definitionen
aufgreift und zusammenfasst. Grundlage bildet die Definition von Lee mit dem Zusatz
der Definition von Westerinen sowie die Formalisierung durch Majer nach Hermsdorfer.

Definition Informationsmodell:

Ein Informationsmodell formalisiert einen Wirklichkeitsausschnitt. Es handelt
sich dabei um eine Reprasentation von Konzepten, Beziehungen, Einschrin-
kungen, Regeln und Operationen, um fir eine gewdhlte Domdne des Diskurses
die Datensemantik zu spezifizieren. Das Informationsmodell stellt dabei eine
gemeinsam nutzbare, stabile und organisierte Struktur von Informationsanfor-
derungen fir den Domdnenkontext bereit und ermdoglicht eine von konkreten
Umsetzungen unabhdingige Beschreibung.

2.2.1.2 Informationsraum

Ein weiterer wichtiger Begriff mit Bezug zu Informationsmodellen ist der Informations-
raum. In dieser Arbeit wird der von Graube [Gral6] gewéhlten Definition nach Hilbert
[Hil15] gefolgt. Diese fasst die semantische Beschreibung sowie die daraus resultierende
Moéglichkeit der formalen Interpretation zusammen und beschreibt des Weiteren die
semantischen Verkniipfungen [Gral6], auf die im Abschnitt 2.2.3 detaillierter eingegangen
wird.

Definition Informationsraum:

Die Informationsmodelle bilden zusammen mit den Daten einen Informa-
tionsraum als ,,[...] semantisch beschriebene [...] Menge instanziierter oder
referenzierter Informationsressourcen sowie zugehériger semantischer Ver-
knipfungsinformationen” [Hill5, S. 63].

DUbersetzung des Autors aus dem Englischen: ,,An information model is a representation of concepts,
relationships, constraints, rules, and operations to specify data semantics for a chosen domain of
discourse. The advantage of using an information model is that it can provide sharable, stable, and
organized structure of information requirements for the domain context.“[Lee99, S. 1]

2 Ubersetzung des Autors aus dem Englischen: ,An abstraction and representation of the entities in a
managed environment, their properties, attributes and operations, and the way that they relate to
cach other. It is independent of any specific repository, software usage, protocol, or platform.“[Wes+01]

12

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.2 Informationsmodellierung

2.2.1.3 Arten von Informationsmodellen

Informationsmodelle kénnen nach [VDI16] in zwei Arten unterschieden werden. Das
abstrakte Informationsmodell nimmt dabei eine Abstraktion eines relevanten Ausschnitts
der Realitat vor, wobei dieses nicht notwendigerweise formalisiert sein muss. Es dient
damit vorrangig der Konzepterstellung und Dokumentation, da es von Systemen nicht
automatisiert auswertbar ist. Fiir eine solche automatisierte Auswertung muss erst eine
Abbildung auf eine konkrete Technologie erfolgen. Das daraus resultierende konkre-
te Informationsmodell ist dann formalisiert in einer Zieltechnologie beschrieben und
umgesetzt.

Neben den Informationsmodellen existieren des Weiteren Datenmodelle, die die durch
die Informationsmodelle bereitgestellte Semantik nutzen. Datenmodelle tragen daher
selbst keine Beschreibung der Semantik und werden nur fiir die Ubertragung von Daten
genutzt. Durch die Referenzierung eines entsprechenden Informationsmodells durch das
Datenmodell konnen jedoch die Daten beim Empfanger semantisch korrekt interpretiert
werden. Die Entitaten der Datenmodelle stellen damit Instanzen von Konzepten dar,
die in korrespondierenden Informationsmodellen definiert werden. Im Gegensatz dazu
sind Informationsmodelle nicht auf die Definition von Konzepten beschrankt und kénnen
dariiber hinaus ebenso Instanzen enthalten.

Die Konzepte der Meta Object Facility (MOF) haben neben der allgemeinen Un-
terscheidung in abstrakte und konkrete Informationsmodelle eine weite Verbreitung
gefunden. Die zugehorige Metadatenarchitektur findet vorrangig im Model-driven Engi-
neering (MDE) Anwendung und besteht aus den nachfolgend aufgefithrten vier Ebenen
[OMGO2]:

¢ MO — Konkrete Daten
Beschreiben die Instanz des Nutzermodells.

e M1 — Nutzermodell
Dieses Modell entspricht den Vorgaben des Metamodells.

e M2 — Metamodell
Hierdurch wird die ,,Sprache® der Nutzermodelle spezifiziert. Ein Beispiel ist die
Unified Modeling Language (UML).

e M3 — Metametamodell
Spezifizieren wiederum die ,Sprache® der Metamodelle.

Die allgemeine Unterscheidung kann dabei ebenso in die Ebenen der MOF eingeordnet
werden. Das Datenmodell wird zur Bereitstellung der Instanzen auf der Ebene MO
verwendet. Sowohl fiir das abstrakte als auch fiir das konkrete Informationsmodell gilt,
dass diese der Ebene M1 zugeordnet werden kénnen. Fiir das konkrete Informationsmodell
existieren tiber der Ebene M1 des Weiteren die Ebenen M2 und M3 mit Metamodell und
Metametamodell. Diese beiden Ebenen existieren fiir das abstrakte Informationsmodell
nur, wenn dieses in einer formalen Art und Weise vorliegt und mittels Metamodellen
beschrieben werden kann.

13

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.2.1.4 Ontologie

Ein Informationsmodell bietet nach Graube [Gral6] die Grundlage, um ,[...] durch
eine formale und explizite Definition eine Ontologie erstellen [...]|Gral6, S. 15] zu
kénnen. Vereinfacht kann eine Ontologie als ,,]...] formale Definition von Begriffen und
deren Beziehungen als Grundlage fiir ein gemeinsames Verstandnis®[Bus+14, S. 286-287]
beschrieben werden. Ontologien ermdglichen daher, dass die Semantik von Information in
einer maschinenlesbaren Art und Weise zwischen unterschiedlichen Akteuren (Maschinen
und Menschen) kommuniziert werden kann [Fen01].

Ontologien finden unter anderem im Semantic Web Anwendung. Die Semantic Web
Technologien sind dabei ein Teil der W3C' Data Activity [W3C]. Nach [W3C] ist das Ziel
dieser Aktivitit, dass Personen und Organisationen in die Lage versetzt werden, Daten
mithilfe ihrer vorhandenen Werkzeuge und aus bestehenden Arbeitsmethoden heraus
teilen zu konnen. Dabei liegt der Fokus darauf, dass dies in einer Art und Weise geschieht,
die es anderen ermdglicht, Werte abzuleiten und hinzuzufiigen und diese entsprechend
zu nutzen. Es steht hierbei nicht nur die Interoperabilitdt von Daten, sondern auch
von Communities im Mittelpunkt. Basistechnologie des Semantic Web ist das Resource
Description Framework (RDF), das gleichzeitig das Datenmodell fiir das Semantic Web
darstellt. Fiir die Erstellung von Ontologien stehen wiederum als Basis das Resource
Description Framework Schema (RDFS)? und die Web Ontology Language (OWL)Y
zur Verfiigung [Gral6].

2.2.2 Lebenszyklus

Uber den Lebenszyklus eines Systems hinweg unterliegen die verwendeten Modelle un-
terschiedlichen Anderungen. Dabei lisst sich die Faustregel anwenden, dass sich untere
Ebenen der MOF bedeutend héufiger dndern als tiberlagerte. Konkrete Daten (MO)
dndern sich daher oft bei jeder Interaktion mit den Modellen. Eine Erweiterung oder
Anpassung des Informationsmodells auf Ebene M1 wird jedoch nur auftreten, wenn sich
die Anforderungen an das System dndern, wodurch Funktionsanpassungen des Gesamt-
systems vorgenommen werden miissen. Ein Wechsel der Sprache (M2) wird dahingegen
ab einem bestimmten Reifegrad nur noch sehr selten vorkommen. Anderungen auf dieser
Ebene sind mit einem enorm hohen Aufwand verbunden, wobei die Notwendigkeit eines
solchen Wechsels aufgrund von hohen Abstraktionsmechanismen zumeist auch nicht
gegeben ist.

Bereits an dieser Stelle lasst sich feststellen, dass Modelle, ebenso wie Systeme und
Produkte im Allgemeinen, einen Lebenszyklus aufweisen. Die aus beispielsweise Wartung
und Pflege heraus entstehenden Anderungen miissen dabei wiederum nachvollziehbar
gespeichert werden, damit diese fiir folgende Wartungen als Grundlage bereitstehen.

Dhttps://www.w3.org/ TR /rdf-schema/ (besucht am 29.11.2020)
Dhttps:/ /www.w3.org/OWL/ (besucht am 29.11.2020)

14

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.3 Evolution

2.2.3 Vernetzung innerhalb eines Informationsraums

Informationsraume sind durch eine Vernetzung gekennzeichnet. Es bestehen auf der einen
Seite vertikale Beziehungen (in Bezug auf die Ebenen des MOF), wie unter anderem
Typ-Instanz-Beziehungen oder Abhéangigkeiten zwischen Nutzer- und Metamodell. Auf
der anderen Seite bestehen aber auch Relationen innerhalb der konkreten Daten, die
durch ein Nutzermodell beschrieben werden, oder auch Abhéngigkeiten, die zwischen den
unterschiedlichen Modellen auf hoheren Ebenen des MOF auftreten kénnen. Der damit
einhergehende Begriff der verbindungsorientierten Modelle wird vor allem im Bereich
von Netzwerken verwendet [Wall0; Van91]. Dabei werden Verbindungen zwischen un-
terschiedlichen Teilnehmern hergestellt, um im Folgenden Daten iibertragen zu kénnen.
Im Endeffekt handelt es sich dabei jeweils um die Beschreibung einer Topologie von
Komponenten und deren Verbindungen untereinander, wie beispielsweise in [ONF16;
Van91; Int+19] dargestellt. Neben dem Bereich der Netzwerke existieren weitere An-
wendungsgebiete, in denen diese Begrifflichkeit zumeist nicht explizit aufgefithrt wird.
Beispiele hierfir sind untere anderem die Beschreibung von Bedienbildern in modularen
Anlagen [VDI18], Co-Simulationen [Hen+16b], Flowsheets, Matlab Simulink Projekte
und Kontaktplédne [DIN14].

Im weiteren Verlauf werden diese unterschiedlichen, bei der Modellierung und der
spateren Verwendung auftretenden Relationen allgemein als Vernetzung in den Informa-
tionsraumen bezeichnet. Der Begriff der Vernetzung geht dabei auch mit der Natur der
Modelle einher, da diese als Graph interpretiert werden konnen [Lev+10]. Sie lassen sich
demnach als eine Menge an Knoten und Kanten beschreiben.

2.3 Evolution

Informationsmodelle unterliegen einer natiirlichen Evolution wihrend ihres Lebenszyklus.
So werden beispielsweise Planungsdaten wihrend des Engineerings stetig weiterentwickelt
oder miissen aufgrund von Anforderungsinderungen beziehungsweise durchzufiihrenden
Fehlerbehebungen angepasst werden [Vog+15b]. Im Folgenden werden die in dieser Arbeit
verwendeten Begrifflichkeiten definiert und die Verwendung von Evolution in verwandten
Themengebieten vorgestellt.

2.3.1 Terminologie

Die Begriffe Evolution, Evolvability und Wartbarkeit stehen in einem engen Zusammen-
hang [RB09], weshalb eine Unterscheidung und Definition der einzelnen Begrifflichkeiten
notwendig ist. In der Literatur werden die Begriffe jedoch oft ohne explizite Definition
verwendet, was aufgrund des Interpretationsspielraums zu Missversténdnissen fithren
kann. Fir die weitere Arbeit werden daher an dieser Stelle Definitionen aus der bestehen-
den Literatur aufgegriffen und gegebenenfalls erweitert, sodass sie dieser Arbeit zugrunde
gelegt werden konnen.

15

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.3.1.1 Evolution

Evolution wird vor allem im Zusammenhang mit Softwaresystemen [RLLI8|, jedoch auch
in Bezug auf Produktionssysteme [Lad18], definiert. Die Definitionen, die beispielsweise in
[RLLIS], [RB09] oder [Ruh+14] gegeben werden, haben stets gemein, dass schrittweise und
kontinuierliche Anderungen beschrieben werden. Davon ausgehend wird im Folgenden als
Basis die Definition von Ruhroth [Ruh+14] verwendet, da diese zusétzlich den Gedanken

der Transformation und der Begriindung von Anderungen aufgreift.

Der Begriff der Evolution kann als anhaltende und schrittweise Anderung
von Entwicklungsartefakten definiert werden. Dabei behilt jeder Schritt die
meisten Eigenschaften (Funktionalitit und Sicherheit) des vorherigen Systems
bei und wird durch eine Begriindung gerechtfertigt. Diese Evolutionsschritte
konnen als Transformation von Modellen aus ihrem aktuellen Status in einen
modifizierten betrachtet werden.”) (nach [Ruh+14, S. 1])

Des Weiteren beziehen Riebisch und Bode [RB09] nach Lehmann [Leh80] den Begriff
der Evolution auf den gesamten Lebenszyklus eines Softwaresystems. Dies bedeutet,
dass von der initialen Entwicklung tiber die Wartung bis zum Reengineering alle Phasen
eingeschlossen sind [RB09]. Diese Erweiterung flieSt in die Definition von Ruhroth ein,
woraus die nachstehende Definition folgt, die im Weiteren der Arbeit zugrunde gelegt
wird.

Definition Evolution:

Der Begriff der Evolution kann als anhaltende und schrittweise Anderung
von Entwicklungsartefakten definiert werden, die waihrend des gesamten Le-
benszyklus von Modellen stattfinden. Dabei behdlt jeder Schritt die meisten
Figenschaften (Funktionalitit und Sicherheit) des vorherigen Systems bei
und wird durch eine Begrindung gerechtfertigt. Diese Evolutionsschritte kon-
nen als Transformation von Modellen aus ihrem aktuellen Status in einen
modifizierten betrachtet werden.

2.3.1.2 Co-Evolution

Von Evolution im Allgemeinen abgleitet existiert in der Literatur weiterhin der Begriff der
Co-Evolution (oder auch als Coupled-Evolution bezeichnet [HW14]), der unter anderem
im Bereich des MDE Verwendung findet. Hierunter wird die Anpassung eines Modells
auf Basis von Anderungen an einem korrespondierenden Modell verstanden. Beispiele fiir
Co-Evolutionen und die zugrunde liegenden Modellrelationen kénnen zwischen Metamo-
dellen und Nutzermodellen [DIP11], zwischen Typ (Nutzermodell) und Instanz (konkrete

5 Ubersetzung des Autors aus dem Englischen: ,The term evolution can be defined as the ongoing
change of development artifacts in a stepwise manner, such that every step preserves most properties
(functionality and security) of the former system and is justified by a rationale. This evolution steps
can be seen as a transformation of models from their current state into a modified one.“[Ruh+14,

S 1]

16

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.3 Evolution

Daten) [DIP11] oder Modell und Modell auf unterschiedlichen Abstraktionsniveaus (zum
Beispiel Nutzermodell und Nutzermodell) [HHH14; Ruh+14] bestehen. Je nach Art
der zugrunde liegenden Abhéngigkeit und der Definition des konsistenten Gesamtzu-
stands (Begriff der Konsistenz wird in Abschnitt 2.5 erldutert) wird die Co-Evolution
unidirektional oder bidirektional durchgefiihrt. So werden Anderungen an Typmodellen
zumeist nur auf die Instanzdaten angewendet und nicht umgekehrt. Anderungen an
Modellen unterschiedlicher Abstraktion sollten jedoch zumeist wechselseitig angeglichen
werden, um einen konsistenten Gesamtzustand zu erhalten. Fiir Co-Evolution ldsst sich
nachstehende Definition ableiten, die im weiteren Verlauf der Arbeit Anwendung findet.

Definition Co-Evolution:

Co-Evolution bezeichnet die Anpassung eines Modells auf Basis der Evolution
eines korrespondierenden Modells unter Nutzung von bestehenden Modellrela-
tionen. Je nach Art der zugrunde liegenden Abhdngigkeit und der Definition
des konsistenten Gesamtzustands wird die Co-Evolution unidirektional oder
bidirektional durchgefiihrt.

Abbildung 2.3 stellt anhand eines Beispiels aus [Ruh+14] die Beziehung zwischen Evo-
lution und Co-Evolution dar. Durchgefiihrte Anderungen an dem aufgefithrten Security
Maintenance Model haben Auswirkungen auf das zugehorige System Model. In einem
abstrakteren Beispiel konnte es sich dabei um ein Nutzermodell und konkrete Daten
handeln. Auf Basis der Evolution des Nutzermodells werden notwendige Evolutionen auf
den konkreten Daten abgeleitet, die dann mittels der Co-Evolution auf die konkreten
Daten angewendet werden.

Time

Security
Analysis

Security
Analysis

Co-Evolution

Abbildung 2.3: Beispiel fiir die Beziehung zwischen Evolution und Co-Evolution [Ruh+14, S. 1]

17

73.216.60, am 24.01.2026, 01:46:48. © geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.3.1.3 Evolvability

Evolvability beschreibt allgemein den Zustand eines Systems, der dadurch gekennzeichnet
ist, dass er schnell und einfach Anderungen erlaubt. Evolvability lisst sich daher in
etwa mit Weiterentwickelbarkeit tibersetzen [RB09]. Der Unterschied zur Changeability
(Veranderlichkeit), wie in Abschnitt 2.1 dargestellt, ist in der Literatur zumeist nicht
trennscharf und wird oft synonym verwendet. Es existieren jedoch auch Unterscheidungen,
wie in Beesemyer [Beel2] dargestellt. Beesemyer charakterisiert dabei Evolvability als ein
Subset der Changeability, wobei Evolvability die Féhigkeit einer Architektur beschreibt,
vererbt und iiber Generationen hinweg weiterentwickelt zu werden. Brinca [BBR09]
hingegen stellt Changeability als eine Verfeinerung der Evolvability dar. Ein von Rowe
et al. [RLLI8| durchgefithrter Vergleich von Definitionen kommt zu dem Schluss, dass
eine Definition von Evolvability nicht ausreichend ist und es sich bei Evolvability um
eine zusammengesetzte Qualitiat handelt.

Evolvability: Ein Attribut, das sich auf die Féhigkeit eines Systems bezieht,
iiber den gesamten Lebenszyklus hinweg Anforderungsianderungen aufnehmen
zu konnen, wahrend die Kosten so gering wie moglich gehalten werden und
die architektonische Integritit erhalten bleibt.®) (nach [RLL9S, S. 5])

Die Definition von Rowe kennzeichnet zum einen, dass die Architektur mit Anderungen
kosteneffektiv umgehen kann und zum anderen, dass die Integritat der Architektur dabei
gewdhrleistet ist. Dies wird auch durch [BCEOQ7] bestétigt, wobei die Definition von
Breivold et al. expliziter auf die Stimuli von Anderungen in Softwaresystemen eingeht.
Ebenso bestétigen Bahill und Botta [BB08] nach Christian und Olds [CO05] die Definition
von Rowe. Die Basis fiir die in dieser Arbeit verwendeten Definition bildet demnach
Rowe mit der Ergénzung des Generationsgedankens von Beesemyer, wie nachfolgend
aufgefithrt.

Definition Evolvability:

Evolvability kennzeichnet die Fahigkeit einer Architektur, mit maoglichst ge-
ringen Kosten und unter Beibehaltung der architektonischen Integritdt, auf
Anforderungsinderungen tiber den gesamten Lebenszyklus hinweq reagieren
zu konnen und iber mehrere Generationen weiterentwickelt zu werden.

Riebisch [RB09] fithrt in diesem Zusammenhang Prinzipien auf, die die Evolvability
beeinflussen. Hierzu gehoren einerseits positive Einfliisse wie Abstraktion und Modularitat,
die es ermoglichen die Komplexitat zu beherrschen, aber andererseits auch negative
Einfliisse wie Komplexitit und Kopplungen. Negative Einfliisse kénnen jedoch zumeist
nicht beeinflusst werden, wenn sich die Anforderungen nicht anderweitig umsetzen lassen.
Brcina et al. [BBR09] geben hierzu einen Uberblick iiber die beinhalteten Prinzipien, deren
Zusammenhénge und Einflisse aufeinander, sowie der Zuordnung zu Qualitatsattributen,
wie in Abbildung 2.4 dargestellt.

6 Ubersetzung des Autors aus dem Englischen: ,Evolvability: An attribute that bears on the ability of
a system to accommodate change in its requirements throughout the system’s lifespan with the least
possible cost while maintaining architectural integrity“[RLL9I8, S. 5]

18

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.3 Evolution

Root Characteristic Subcharacteristics Principles/Attributes

‘ —— Refinement — — Positive Influence - - - - Negative Influence ‘

Abbildung 2.4: Charakteristiken und Attribute mit Einfluss auf Evolvability (Ausschnitt aus
[BBRO9, S. 198])

2.3.1.4 Wartung und Wartbarkeit

In der Softwareentwicklung kennzeichnet Wartung die Modifikation von Softwareproduk-
ten, um Anpassungen an verdnderte Anforderungen vorzunehmen, nachdem die Software
ausgeliefert worden ist [RB09] nach [IEE98|. Bei der Wartung werden typischerweise
keine bedeutenden Anderungen an der Architektur vorgenommen. Evolution hingegen
schlieft im Gegensatz dazu die Wartung sowie grofiere Anderungen iiber den gesamten
Lebenszyklus hinweg mit ein [Men17]. Wartbarkeit entspricht einem Qualitdtsmerkmal
und wird durch die ISO-Norm 9126 [ISO01] definiert. Dabei bezieht sich Wartbarkeit auf
den Aufwand, der sich aus Anderungen ergibt [RB09)].

2.3.2 Evolution in verwandten Themengebieten

Die Problemstellung der Evolution wird neben der Biologie auch in unterschiedlichen Soft-
waredoménen adressiert. Nachfolgend werden die Schema-Evolution und die Ontologie-
Evolution als bekannteste Vertreter vorgestellt und miteinander verglichen.

19

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.3.2.1 Schema-Evolution

Objektorientierte Datenbanken Die bekannteste Doméne fiir Evolution in Software-
systemen ist die objektorientierte Datenbank mit der sogenannten Schema-Evolution
[Lev+10]. Durch Anderungen an einem Schema kann die Funktionsweise von abhingigen
Objekten beeintrachtigt werden. Bei diesen Objekten handelt es sich beispielsweise um
Views der Datenbank, um Abfragen auf die Datenbank, zu erfiillende Bedingungen in
der Datenbank, auf das Schema referenzierende Programme oder im Allgemeinen die
Datenbank als Instanz des Schemas [BM07]. Anderungen am Schema miissen dement-
sprechend korrekt und effizient an die abhéngigen Objekte propagiert werden [RBO0G6].
Ansétze fur den Umgang mit Schemadnderungen erstellen zumeist ein Mapping zwischen
den evolvierten Schemas und leiten daraus die durchzufithrenden Modellmanagementope-
rationen zur Anpassung des Mappings zwischen abhéngigen Objekten und evolviertem
Schema ab [BMO7]. Resultierende Ansitze werden beispielsweise in [BMO07; Ban+87;
RR97] beschrieben. Eine umfassende Sammlung und Kategorisierung von bestehenden
Veroffentlichungen in diesem Themenbereich wird in [RB06] vorgestellt.

Softwareengineering Im Softwareengineering lassen sich viele der Problemstellungen
der Schema-Evolution wiederfinden. Diese kommen vor allem dann zum Tragen, wenn
neue Softwareversionen erstellt werden. Durch die Abhéngigkeiten und Beziehungen
zwischen einzelnen Programmteilen miissen bei einer Evolution von beispielsweise Pro-
grammschnittstellen oder Klassenhierarchien die Auswirkungen auf die abhéngigen Teile
propagiert werden [RB06]. Viele der Veroffentlichungen in diesem Bereich beziehen sich
dabei auf objektorientierte Softwareentwicklung. In diesem Zusammenhang werden auch
Ansitze fiir Modell Evolution vorgestellt, wie beispielsweise in [Lev+10] préasentiert.
Weiterhin formulierten Lehmann und Belady fir die Software-Evolution im Allgemeinen
eine Reihe von GesetzméBigkeiten, die tiber die Jahre selbst evolvierten und von Lehmann
weiterentwickelt wurden [Leh96; Leh80; LR03]. Des Weiteren werden Herausforderungen
fiir die Software-Evolution im Zusammenhang mit automatisierten Produktionssystemen
von Vogel-Heuser et al. in [VR15; Vog+15a; Vog+15b] dargestellt. Uberdies werden auch
Ansétze in der Literatur beschrieben, die sich mit der Bewertung und dem Vergleich
von Softwaresystemen in Bezug auf Evolvability beschéftigen. Ein Beispiel hierfur ist in
[BCEO0S] dargestellt.

2.3.2.2 Ontologie-Evolution

Versionierung und Evolution spielt auch im Bereich der Ontologieerstellung eine wichtige
Rolle, da dies zumeist einen kollaborativen Prozess darstellt. Zwischen Schema-Evolution
und Ontologie-Evolution liegen dabei viele Ahnlichkeiten vor [NKO04], es herrschen aber
auch wesentliche Unterschiede, wie die Verwendung von kontrollierten Vokabularen,
Taxonomien und regelbasierten Wissensreprasentationen [RB06]. Daraus resultieren
unterschiedliche Anderungen, die wihrend der Evolution vorgenommen werden kénnen.
Da Ontologien oft schemaartige konzeptionelle Metadaten und Instanzdaten enthalten,
miussen die resultierenden Auswirkungen auf Meta- und Instanzdaten gemeinsam be-

20

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.3 Evolution

achtet werden [RB06]. Des Weiteren kann eine Doménenontologie in unterschiedlichen
Anwendungen wiederverwendet werden, woraus Abhéngigkeiten zwischen verteilten Sys-
temen resultieren [RB0G]. Eine traditionelle Trennung von Versionierung und Evolution
kann daher bei Ontologien nicht angewendet werden [NKO04]. Resultierende Konzepte
zur Unterstiitzung von Ontologie-Evolution werden beispielsweise in [Sto04; Noy+06]
vorgestellt.

2.3.2.3 Schema-Evolution vs. Ontologie-Evolution

Djedidi und Aufaure [DA10] geben in ihrer Veroffentlichung einen Vergleich tiber die
Evolution von objektorientierten Datenbankschemas und Ontologien. In der folgenden
Tabelle 2.1 werden wesentliche Eigenschaften in Anlehnung an [DA10] gegeniibergestellt.
Eine vollstandige Auflistung ist in [DA10] zu finden.

Tabelle 2.1: Vergleich von Schema-Evolution und Ontologie-Evolution (basierend auf [DA10])

Eigenschaft Datenbankschema Ontologie
Haufigkeit der Haufige Anderungsoperationen Héufigkeit von Anderungen be-
Anderungen iiber gesamten Datenbankle- sonders hoch, wenn Anderungs-
benszyklus anforderungen durch Nutzer er-
fasst werden
Struktur Spiegelt die Struktur von Daten Spiegelt eine Doménenstruk-
und Code wider, berticksichti- tur unter Nutzung von Kon-
gen auch Objektverhalten (z.B. zepten, Beziehungen und Ein-
Methoden im Modell) schréinkungen wider
Instanzen Instanzen (Datenbankobjekte) Terminologieebene —(Klassen
befinden sich nicht auf dem glei- und Eigenschaften) und Aussa-
chen Niveau wie Klassen genebene (Instanzen) werden
nicht abgegrenzt, Klassen und
Instanzen koénnen gemeinsam
in Anfragen manipuliert
werden
Wiederver- Integration von einem Schema Ontologien kénnen vollstéindig
wendung in ein anderes ist nicht moglich oder teilweise wiederverwendet

216.73.216.60, am 24.01.2026, 01:46:48. @
m

werden, Anderungen kénnen
auch die Hinzufiigung oder Ent-
fernung einer Ontologie sein

21

geschitzter Inhalt.

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

Tabelle 2.1: Vergleich von Schema-Evolution und Ontologie-Evolution (basierend auf [DA10])

(Fortsetzung)
Eigenschaft Datenbankschema Ontologie
Konsistenz Durchfiithrbare ~ Anderungen Neben der Darstellung von
miissen explizit definiert Anderungen gemif Ontologie
werden (auf dem Modell ist Anderungssemantik essenzi-
selbst) ell (iiberpriifbare Bedingungen
und Aktionen fiir Aufrechter-
haltung der Konsistenz)
Konsistenz- Schemasemantik ist nicht aus- Ontologiesemantik ist explizit
priffung reichend explizit, um automa- und erlaubt die Anwendung

tisierte Schlussfolgerungen zu
ziehen

von automatisierten Schlussfol-
gerungsmechanismen, um In-
konsistenzen zu detektieren

Propagierung von
Anderungen

Anderungspropagierung auf In-
stanzen beschrénkt

Anderungspropagierung auf al-
le Ontologie-abhingige Artefak-

te, wie Instanzen, Annotatio-
nen, Ontologien und Anwen-
dungen

2.4 Revisionsverwaltung

Wie in den vorangehenden Abschnitten dargestellt, besitzen Modelle einen Lebenszyklus,
der durch eine natiirliche Evolution mit daraus resultierenden Anderungen gekennzeichnet
ist. Auftretende Anderungen, die beispielsweise aufgrund von Wartung und Pflege der
Modelle entstehen, miissen aus Griinden der Wartbarkeit und Nachvollziehbarkeit stets
gespeichert werden. Soll im Fall von Fehlern oder bei einer parallelen Entwicklung automa-
tisch auf einen funktionsfihigen Stand zuriickgesprungen oder unabhingige Anderungen
zusammengefiigt werden konnen, ist die Anwendung von Revisionskontrollmechanismen
sinnvoll. Insbesondere in verteilten und agilen Entwicklungsprozessen ist es hilfreich, wenn
diese auch dazu befihigen, dass die Auswirkung von Anderungen auf verkniipfte Modelle
automatisch erkannt werden, um stets ein konsistentes Gesamtgefiige an einzelnen Mo-
dellen zu gewahrleisten. Versions- beziehungsweise Revisionsverwaltungssysteme stellen
die Funktionalitit bereit, die Evolution von Informationsmodellen zu dokumentieren
und nachvollziehbar zu speichern. Beispielsweise kann hierdurch bei Defekten auf einen
vorangegangen funktionsfihigen Stand zuriickgesprungen werden.

22

216.73.216.60, am 24.01.2026, 01:46:48. @
m mit, flr oder in Ki-Syster

geschitzter Inhalt.

https://doi.org/10.51202/9783186873101

2.4 Revisionsverwaltung

2.4.1 Terminologie

Im Folgenden wird eine Einordnung der Begriffe Versions- beziehungsweise Revisionsver-
waltung vorgenommen und auf weitere wichtige Begrifflichkeiten in diesem Zusammen-
hang eingegangen.

2.4.1.1 Revisionsverwaltung vs. Versionsverwaltung

In der Literatur wird der Begriff Versionsverwaltung im Wesentlichen fiir ein System ver-
wendet, das Anderungen erfassen und verwalten kann. Die Erfassung und die Moglichkeit
der Riicknahme von vorgenommenen Anderungen kommt vor allem bei der Entwicklung
von komplexen Systemen zum Tragen, da in diesem Fall eine Koordination der beteiligten
Entwickler iiber einen lingeren Zeitraum erfolgen muss [Bae05]. Die Definition von
Baerisch bezieht sich, wie die meisten in der Literatur vorhandenen, auf Softwaresysteme
und die Versionierung von Source Code und anderen Dateien. Sie kann aber auch in
dieser Arbeit verwendet werden, da sie sich allgemeingiiltig auf die beiden Hauptelemen-
te von Versionsverwaltung bezieht. Die Erweiterung von Versionsverwaltung in dieser
Arbeit betrifft die weitgehendere Nutzung von Versionierung fiir Informationsmodelle
und abgeleitete Instanzdaten. Diese ist mit etablierten Versionsverwaltungssystemen
wie git” oder Apache Subversion (SVN)® nicht méglich, da sie Anderungen auf einer
zeilenbasierten Ebene betrachten und nicht auf einer inhaltlichen. Die Zeilenordnung
spielt bei den in dieser Arbeit betrachteten Modellen keine Rolle. Diese kann sich dndern,
ohne dass sich der Modellinhalt dndert.

Unabhéngig vom verwendeten Versionsverwaltungssystem muss zwischen den Begriffen
Version und Revision unterschieden werden. Eine Revision kennzeichnet jeweils einen
eindeutigen Versionsstand des gesamten Repositories [Bud09; Fog05]. Dieser ist durch
einen Identifier (Revisionsnummer) eindeutig bestimmt. Moglich sind beliebige Schemas,
wie zum Beispiel eine fortlaufende Nummerierung oder ein Hash. Fir die Speicherung
der Revisionen wird zumeist eine Differenzspeicherung genutzt. Bei dieser werden nur
die Unterschiede zwischen den aufeinander aufbauenden Revisionen gespeichert, was in
einem verringerten Speicherplatzbedarf resultiert. Jedoch wird fiir die Wiederherstellung
der vollsténdigen Revisionsinformation wiederum mehr Rechenaufwand benotigt. Eine
Version bezieht sich auf eine bestimmte Verdffentlichung einer Revision, der eine eindeuti-
ge Versionsnummer zugeordnet ist [Bud09; Fog05]. Ein beispielhaftes Vergabeschema ist
durch Semantic Versioning 2.0.0°) beschrieben. Dieses setzt sich aus Major. Minor. Patch
zusammen. Neben den Begriffen Revision und Version wird in der Literatur auch teilweise
der Begriff Variante verwendet. Varianten kennzeichnen dabei unterschiedliche Auspré-
gungen eines Produktes mit unterschiedlichem Funktionsumfang [DB07]. Eine Variante
kann dabei beispielsweise von einer Version abgeleitet werden. Ein Beispiel hierfir ist
Microsoft Windows in der Version zehn, das sowohl als Home-, wie auch Pro-Edition
verfiigbar ist. Eine interne Weiterentwicklung der Version zehn, die unter Umstanden

Dhttps://git-scm.com/ (besucht am 29.11.2020)
Shttps://subversion.apache.org/ (besucht am 29.11.2020)
Dhttp://semver.org/ (besucht am 29.11.2020)

23

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

nicht an den Kunden ausgeliefert wird, entspricht dabei einer Revision.

Die Begriffe Versionsverwaltung und Revisionsverwaltung werden in der Literatur
synonym verwendet, wobei Versionsverwaltung der etablierte Begriff ist und Revisi-
onsverwaltung den passenderen Begriff darstellt, da dieser feingranularer in Bezug auf
die Verwaltungsebene der Anderungen ist. Im Folgenden wird daher die Bezeichnung
Revisionsverwaltung verwendet.

2.4.1.2 Basisbegriffe der Revisionsverwaltung

An dieser Stelle erfolgt eine Definition von Basisbegrifflichkeiten der Revisionsverwaltung,
die im weiteren Verlauf der Arbeit verwendet werden. Zur Veranschaulichung wird das
in Abbildung 2.5 dargestellte Beispiel verwendet. Bei dem Repository handelt es sich um
eine Datenbank, in der die gesamte Revisionshistorie vorgehalten wird. Eine Revision
kennzeichnet, wie im vorangegangenen Abschnitt bereits eingefithrt, einen eindeutigen
Versionsstand des gesamten Repositories. Sie resultiert aus der Durchfiihrung eines
Commits, der durchzufiihrende Anderungen unter Angabe von Autor, Datum und einer
zugehorigen Nachricht spezifiziert. Innerhalb des Repositories kann der Revisionsgraph
aus mehreren Zweigen, sogenannten Branches, bestehen, die parallele Entwicklungen
ermoglichen. Der Masterzweig gibt dabei den Hauptentwicklungszweig an. Die Zusammen-
fithrung von divergierten Entwicklungszweigen findet mittels Merges statt. Hierdurch wird
die Revisionshistorie der beteiligten Zweige in eine neue Revision wieder zusammenge-
fithrt. Bei diesem Vorgehen kénnen Konflikte auftreten, wenn auf den jeweiligen Branches
Anderungen durchgefithrt wurden, die zueinander im Widerspruch stehen. Schlieflich
gibt es die Moglichkeit einzelne Revisionen mit einem Tag zu versehen, wodurch diese
eine besondere Kennzeichnung erhalten.

developm

master

Revision

Committed
Changes

Repository

Abbildung 2.5: Begrifflichkeiten in der Revisionsverwaltung

2.4.1.3 Arten von Revisionsverwaltung

Revisionsverwaltungssysteme lassen sich nach [Sinl1] in drei Arten bezichungsweise auch
Generationen untergliedern. In der ersten Generation wird die Revisionierung vollstandig

24

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.4 Revisionsverwaltung

lokal durchgefiihrt. Die Moglichkeit, gleichzeitig Anderungen durch unterschiedliche
Personen vorzunehmen, ist in diesem Fall nicht gegeben. Hierbei werden zudem meist
nur einzelne Dateien revisioniert. Beispiele fiir lokale Revisionsverwaltung sind Revision
Control System (RCS)'%, Source Code Control System (SCCS)'), aber auch die An-
derungsverfolgung in Microsoft Office. Die zweite Generation der Revisionsverwaltung
verwendet einen zentralisierten Ansatz. Es handelt sich dabei um eine Client-Server-
Architektur. Die Revisionsgeschichte wird im Repository auf dem Server vorgehalten,
wodurch ein Zugriff iiber ein Netzwerk moglich ist. Bei nebenldufigen Anderungen von
unterschiedlichen Personen miissen aber die bestehenden Anderungen zuerst in die eigene
Arbeit gemerged werden, bevor ein Commit der eigenen Anderungen méglich ist. Bei-
spiele fiir entsprechende Systeme sind SVN oder Concurrent Versions System (CVS)IZ)A
Generation drei bezeichnet die verteilte Revisionsverwaltung. In diesen Systemen exis-
tiert kein zentrales Repository und jede Person besitzt ein lokales Repository mit der
gesamten Historie. Nebenldufige Anderungen kénnen dementsprechend im jeweiligen
lokalen Repository commited werden und miissen erst beim Abgleich zusammengefiihrt
werden. Implementierungen fiir solche verteilten Systeme sind beispielsweise git, Bazaar'®)
oder Mercurial'®. Der Entwicklungsprozess iiber die Phasen hinweg zeigt eine stetige
Evolution der Revisionsverwaltung zu mehr Nebenldufigkeit und der damit verbunden
Moglichkeit von gleichzeitigen Anderungen der gleichen Datengrundlage.

2.4.1.4 Synchronisation und Replikation

Mutschler und Specht [MS04] definieren Replikation als die Einfithrung einer Redundanz
von Daten. Diese Redundanz wird auch bei der Verwendung eines zentralen oder verteilten
Revisionsverwaltunssystems hergestellt. Hierdurch ist eine Bearbeitung der Daten auch
in Offline-Phasen moglich, in denen keine Verbindung zu einem Abgleichpunkt besteht.
Anderungen werden dementsprechend an den replizierten Daten vorgenommen und
miissen in einer folgenden Online-Phase synchronisiert werden, um die Anderungen auch
anderen Teilnehmern in der Replikationsumgebung zur Verfiigung stellen zu kénnen
[MS04].

Bei der Synchronisation werden nach Mutschler und Specht [MS04] redundant vorhan-
dene Daten, an denen unterschiedliche Anderungen vorgenommen wurden, abgeglichen.
Dieser Abgleich kann entweder von einer Replikationssenke auf eine Replikationsquelle
(Reintegration) oder in umgekehrter Richtung (Riickitbertragung) erfolgen. Hierbei wird
von einem unidirektionalen Synchronisierungsprozess gesprochen. Dem gegeniiber wird
die direkte aufeinanderfolgende Ausfithrung von beiden Arten auch als bidirektionaler
Synchronisationsprozess bezeichnet [MS04].

10 https:/ /www.gnu.org/software/rcs/ (besucht am 29.11.2020)
Whttp://sces.sourceforge.net/ (besucht am 29.11.2020)

2)https:/ /savannah.nongnu.org/projects/cvs (besucht am 29.11.2020)
13)http://bazaar.canonical.com/en/ (besucht am 29.11.2020)
https:/ /www.mercurial-sem.org/ (besucht am 29.11.2020)

25

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.4.1.5 Verfahren zur Konsistenzerhaltung

Innerhalb einer Replikationsumgebung muss Konsistenz zwischen den einzelnen Repliken
in dieser Umgebung gewahrt werden. Die hierfiir zur Verfiigung stehenden Verfahren wer-
den in optimistische und pessimistische Verfahren kategorisiert [MS04] und nachfolgend
anhand von [MS04] vorgestellt. Pessimistische Verfahren (Lock-Modify-Write/Unlock)
verwenden Sperren, um Inkonsistenzen auszuschlieBen. Hierbei werden die zu bearbei-
tenden Bereiche vor der Durchfithrung der Anderungen gesperrt und miissen nach der
Bearbeitung wieder freigegeben werden. Optimistische Verfahren (Copy-Modify-Merge)
erlauben hingegen die gleichzeitige Anderung durch mehrere Benutzer. Dies bedingt
eine nachtrégliche Zusammenfiithrung der Divergenzen. Die entsprechenden Synchronisie-
rungsverfahren werden unterteilt in konventionelle, die mittels einfacher Sperrverfahren
realisiert werden, in zeitstempelbasierte, die zeitbehaftete Information nutzen, um eine
Serialisierbarkeitsreihenfolge abzuleiten und in semantische Synchronisierungsverfahren,
die spezielles Anwendungswissen einbeziehen.

2.4.2 Erweiterte Revisionskontrolle fiir Modelldaten

Neben den etablierten Revisionsverwaltungssystemen wie git und SVN werden auch
neue Ansitze fiir die Revisionierung von Modelldaten entwickelt, die einen semantischen
Ansatz verfolgen. Beispiele hierfiir sind unter anderem im Semantic Web zu finden, wie
SemVersion [VGO06], R&W base [Van+13] oder R43ples (GHU14; GHU16].

Bestehende Systeme werden dabei meist auf technische oder funktionaler Ebene mit-
einander verglichen. Zum Beispiel analysieren Ekaputra et al. [Eka+15] die Eigenschaften
verschiedener Systeme in Bezug auf die Unterstiitzung des Wissensénderungsmanage-
ments in einer multidisziplindren Entwicklungsumgebung. Frommhold et al. [Fro+16]
fithrten ebenso einen Funktionsvergleich durch, um notwendige Anpassungen fiir den
eigenen Ansatz abzuleiten. Ferner haben Canova et al. [Can+15] vorhandene Losungen
wie R&Whbase [Van+13] und R43ples [GHU14; GHU16] analysiert, um erforderliche
Schritte fiir die Revisionskontrolle kollaborativer offener Daten abzuleiten. Da sich die
formale Beschreibung zwischen den Ansétzen erheblich unterscheidet, ist die Wiederver-
wendung von Komponenten oder Eigenschaften schwierig, da Interpretationsspielrdume
bestehen. In vielen der Félle ist das Ergebnis der durchgefithrten Analyse von bestehenden
Systemen ein neues System, das die fehlenden Eigenschaften bereitstellt und teilweise
auf den analysierten Systemen basiert. Neben der formalen Beschreibung ist ein weiterer
wichtiger Aspekt die Beschreibung des Revisionsverlaufs. In den meisten Féllen sind
diese Informationen nicht so transparent zugénglich, wie es beispielsweise von Klein und
Fensel [KF01] gefordert wird. AuBerdem miissen Interaktionsmoglichkeiten festgelegt
werden, die es dem Benutzer ermoglichen, mit dem System zu interagieren.

Tabelle 2.2 stellt einen Vergleich von bestehenden Anséitzen hinsichtlich der bereitge-
stellten formalen Beschreibung (Formal), der Verwendung semantischer Beschreibungen
fiir Revisionsinformation (Semantik) und der angebotenen Interaktionsmoglichkeiten
(Interaktion) dar. Die analysierten Eigenschaften konnen vollstandig (v/) oder nicht
erfiillt (X) sein. Falls eine Eigenschaft nur teilweise umgesetzt ist oder aufgrund einer

26

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.5 Konsistenz

fehlenden Beschreibung der Funktionsumfang nicht abgeschatzt werden kann, dann ist
die entsprechende Wertung in der Tabelle in Klammern angegeben. Um eine Eigenschaft
vollstandig zu erfiillen, missen die bereitgestellten Beschreibungen grundlegende Revi-
sionskontrollfunktionen, wie zum Beispiel Revisionsverlauf, Verzweigungen und Tags,
und erweiterte Revisionskontrollfunktionen, wie die Zusammenfithrung von divergierten
Entwicklungszweigen, enthalten.

Tabelle 2.2: Vergleich von bestehenden Ansétzen in Bezug auf die bereitgestellte formale
Beschreibung

Ansatz Formal Semantik Interaktion
Hauptmann et al. [HBW15] X (X) v/
LUCID Endp. [Tra+15; Fro+16] X 4 (X)
Quit Store [ARM16; AM17] v X v
R&Whase [Van+13] X v v
Rd3ples [GHU14; GHU16]) v v

Hauptmann et al. [HBW15] stellen die Interaktion mit dem Revisionskontrollsystem
iiber SPARQL Protocol And RDF Query Language (SPARQL)-Anfragen bereit. Die
zugehorige Revisionsinformation sollte ebenso iiber SPARQL zugénglich sein, die zur
Beschreibung genutzte Ontologie wird jedoch nicht bereitgestellt. Des Weiteren existie-
ren keine formalen Definitionen der Revisionsfunktionalitaten. Der LUCID-Endpunkt
[Tra-+15; Fro+16] verwendet eine Ontologie, um die grundlegende Revisionsinformation
zu beschreiben. Mathematische Formalismen oder Interaktionsmechanismen, um auf eine
bestimmte Revision zuzugreifen, werden jedoch nicht dargelegt. Der Quit Store [ARM16;
AM17] ist auf der Revisionsgraphebene beziiglich der grundlegenden und erweiterten
Revisionskontrollfunktionen formal definiert, der Revisionsgraph selbst jedoch nicht.
Die Revisionsinformation ist des Weiteren nicht semantisch beschrieben bereitgestellt,
da git als zugrunde liegendes Revisionskontrollsystem verwendet wird. Kollaborative
Interaktionen werden mit Hilfe von git-Befehlen realisiert, und Aktualisierungen kénnen
durch SPARQL-Anfragen durchgefiihrt werden. R&Whase [Van+13] verwendet eine
Ontologie, um dem Benutzer die Revisionsinformation bereitzustellen. Die Abfrageme-
chanismen, um auf Revisionen zuzugreifen, werden ebenfalls erlautert. Es existiert jedoch
keine formale Definition des gesamten Systems. R43ples [GHU14; GHU16] enthélt nur
formale Definitionen in Bezug auf die automatisierte Anpassung von SPARQL-Anfragen,
um die Performance des Systems zu erhohen. Die Revisionsinformation wird mithilfe
einer Ontologie beschrieben und die Interaktion mit dem System wird tiber erweiterte
SPARQL-Anfragen realisiert. Es werden nur grundlegende Revisionskontrollfunktionen
bereitgestellt.

2.5 Konsistenz

Wiihrend der Evolution von Modellen muss stets ein konsistenter Stand der Verbindungen
zwischen den Modellen, aber auch innerhalb einer Replikationsumgebung, hergestellt

27

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

werden. Da der Begriff Konsistenz in unterschiedlichen Wissenschaftsbereichen verschie-
dene Verwendung beziehungsweise auch Interpretation erfahrt, wird in diesem Abschnitt
ein grundlegender Uberblick der Begrifflichkeit und deren Verwendung gegeben.

2.5.1 Terminologie

Auf Basis von unterschiedlichen Definitionen des Konsistenzbegriffes wird eine Definition
fiir die weitere Arbeit abgeleitet. Des Weiteren wird eine Klassifikationsmdoglichkeit von
Modellkonsistenz vorgestellt, was eine Unterscheidung von unterschiedlichen Typen von
Konsistenz ermoglicht.

2.5.1.1 Konsistenz

Dem Begriff Konsistenz werden im Duden drei verschiedene Bedeutungen zugeordnet.
So kennzeichnet dieser in der Fachsprache oft ,Grad und Art des Zusammenhalts eines
Stoffes“[Dud]. Im bildungssprachlichen Gebrauch wird er in Form von ,konsistente
Beschaffenheit“[Dud] verwendet. Schlieflich erfolgt im Logikbereich die Verwendung
vor allem als ,strenger gedanklicher Zusammenhang®[Dud]. Fiir diese Arbeit sind die
beiden letzteren Bedeutungen von Relevanz, die wiederum in unterschiedlichen Bereichen
Verwendung finden. Auspriagungen des Konsistenzbegriffs lassen sich beispielsweise im
Gebiet von Datenbanken vor allem in Bezug auf transaktionale Konsistenz [Fre06], im
Zusammenhang mit Modellen [LMT09; SZ01], in der Mathematik (auch unter dem
Begriff Widerspruchsfreiheit) [Glo06], in der Softwareentwicklung [ISO10], aber auch in
der Dialoggestaltung im Bereich der Erwartungskonformitiat [DINOG] finden.

Aus den unterschiedlichen Gebieten heraus ergeben sich Definitionen von Konsistenz.
Hofstadter [Hof79] beispielsweise definierte diese fiir formale Systeme wie folgt:

»Widerspruchsfreiheit [...] [ist keine] Eigenschaft eines formalen Systems
als [...] [solches], sondern [ist] von der dafiir vorgeschlagenen Interpretation
abhingig [...]“[Hof06, S. 103] ¥

Widerspruchsfreiheit ist demnach nach Hofstadter [Hof06] von der fir das formale
System vorgeschlagenen Interpretation abhéngig und nicht eine Eigenschaft des Systems
an sich. Das bedeutet, dass bei Widerspruchsfreiheit gelten muss, dass jeder Satz des
formalen Systems bei seiner Interpretation eine wahre Aussage ergibt [Hof06].

Im Bereich der Modellkonsistenz hat beispielsweise Stevens [Ste08] folgende informelle
Definition von Konsistenz bei der Anwendung von bidirektionalen Transformationen
gegeben:

Zwei Modelle sind konsistent, wenn es fiir alle ihre Stakeholder akzeptabel
ist, mit diesen Modellen fortzufahren, ohne eines zu dndern.'® (nach [Ste08,
S. 411))

1%)Ubersetzung aus dem Englischen: ,|...] consistency is not a property of a formal system per se, but
depends on the interpretation which is proposed for it“[Hof79, S. 102]

16)Ubersetzung des Autors aus dem Englischen: »[...] two models are consistent if it is acceptable to all
their stakeholders to proceed with these models, without modifying either“[Ste08, S. 411]

28

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.5 Konsistenz

Weiterhin wird in Bezug auf Replikation und Synchronisation auch von Replikations-
korrektheit gesprochen. Mutschler und Specht [MS04] geben hierfir die nachfolgende
Definition, die den Konsistenzbegriff wiederum aufgreift.

»Replikationskorrektheit heisst [sic!], dass alle redundanten Kopien stets kon-
sistent im Sinne der jeweils definierten Korrektheitskriterien sind. [...]“[MS04,
S. 86]

In verteilten Systemen allgemein kommt nach Schmidt [Sch16] Konsistenz vor allem in
Bezug auf die Replikation zum Tragen. Hierbei verfolgt die Replikation zwei Ziele. Zum
einen kann die Verlésslichkeit von Diensten beziechungsweise die Verfiigbarkeit von Daten
erhoht werden, zum anderen ist auch eine Leistungsfahigkeitssteigerung moglich, wenn auf
ein Datum zugegriffen wird. Die replizierten Daten miissen konsistent zueinander gehalten
werden, um daraus resultierende Fehler zu vermeiden. Hierfiir kommen Konsistenzmodelle
zum Einsatz, die als eine Art Vertrag gesehen werden. Dieser Vertrag existiert zwischen
dem Datenspeicher und den Prozessoren, die Zugriff auf diesen haben. Je nach Sicht
wird dabei in Daten-zentrierte und Client-zentrierte Konsistenzmodelle unterschieden.
Davon abgeleitet existieren weitere Konsistenzarten, wie zum Beispiel strikte/atomare
oder sequentielle Konsistenz.

Die hier aufgefithrten Definitionen lassen den Schluss zu, dass Konsistenz jeweils
abhédngig von der Doméne der Anwendung und dem konkreten Anwendungsfall ist.
Konsistenz setzt demnach voraus, dass innerhalb der jeweiligen Umgebung, die konsistent
gehalten werden soll, eine Vereinbarung der beteiligten Parteien tiber den Nachweis von
Konsistenz herrscht. Dieser Nachweis ldsst sich zumeist in einer Art Regelsatz festlegen,
der erfiillt werden muss. Demnach wird fiir die weitere Arbeit die nachfolgende Definition
von Konsistenz angenommen.

Definition Konsistenz:
Konsistenz innerhalb einer Umgebung tritt dann ein, wenn Vereinbarungen
der beteiligten Parteien tber ihren Nachweis (zum Beispiel in Form von
Regelsdtzen) erfilll werden.

Bei der Nichteinhaltung beziehungsweise der Verletzung der vereinbarten Regeln
treten Inkonsistenzen auf. In [LMT09] werden nach [Huz+04] zwei Hauptgriinde fir das
Auftreten von Inkonsistenzen bei Modellen genannt. Einerseits werden Systeme durch
unterschiedliche Sichten beschrieben. Diese stellen jeweils bestimmte Details bereit und
die Gesamtheit der Einzelmodelle bildet dann das Gesamtsystem. Zwischen den einzelnen
Sichten besteht dabei auch die Moglichkeit der Uberlappung. Andererseits werden Systeme
iitber mehrere Phasen beziehungsweise in mehreren Iterationen entwickelt. Jede erzeugt
dabei eine verfeinerte Beschreibung des Systems. Uberdies wird ein weiterer Grund
aufgefithrt, der aus der verteilten Entwicklung mit potenziell mehreren Entwicklern, die
auch geographisch verteilt sein kénnen, resultiert. Hierdurch kann es zu unterschiedlichen
Interpretationen der Anforderungen oder der UML Notation an sich kommen.

29

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2 Grundlagen

2.5.1.2 Klassifikation von Modellkonsistenz

Wahrend des Modelllebenszyklus und der damit einhergehenden Evolution kénnen
Anderungen auf unterschiedlichen Ebenen und mit unterschiedlichen Auswirkungen
auftreten. Fiir die weitere Arbeit wird daher an dieser Stelle die Unterteilung der
Modellkonsistenz nach Lucas et al. [LMT09] vorgestellt. Hierbei greifen Lucas et al. auf
bestehende Definitionen von Engels et al. [Eng+01] und Huzar et al. [Huz+04] aus der
UML-Doméne zurtick und unterteilen die Modellkonsistenz in die nachfolgenden vier
Typen.

Horizontal Horizontale Konsistenz wird nach [LMT09; Eng+01; Huz+04] auch als
intra-Modellkonsistenz bezeichnet. Es handelt sich hierbei um die Konsistenz zwischen
Modellen, die auf dem gleichen Level der Modellabstraktion liegen. Daraus resultierende
Konsistenzprobleme entstehen beispielsweise, wenn eine Spezifikation aus unterschiedli-
chen Teilen besteht, die jeweils unterschiedliche Aspekte fokussieren, wie die Beschreibung
der statischen und der dynamischen Sicht auf die modellierte Doméne. Die jeweils mo-
dellierten Sichten miissen zueinander konsistent und nicht widerspriichlich sein, um zum
Beispiel spéter eine korrekte Implementierung ableiten zu konnen.

Vertikal Im Gegensatz zur horizontalen Konsistenz bezieht sich die vertikale oder auch
inter-Modellkonsistenz nach [LMT09; Eng+01; Huz+04] auf die Konsistenz zwischen
Modellen, die auf unterschiedlichen Abstraktionsleveln aufbauen. Innerhalb der Ent-
wicklung unterliegen die Modelle einem stetigen Verfeinerungsprozess. Wéahrend dieses
Prozesses sollen die jeweils erzeugten Modelle aber mit dem Modell auf der héheren und
mehr abstrakteren Ebene vertikal konsistent sein. Ein Beispiel hierfiir ist die Konsistenz
zwischen einem Analyse- und einem Designmodell.

Syntaktisch Nach [LMT09; Eng+01] muss zur Erreichung einer syntaktischen Kon-
sistenz gewéhrleistet sein, dass ein Modell mit der abstrakten Syntax iibereinstimmt,
die durch das Metamodell definiert wird. Das bedeutet, dass das Gesamtmodell wohlge-
formt sein muss. Als Vergleichsbeispiel kann hier die Syntax in Programmiersprachen
herangezogen werden.

Semantisch Semantische Konsistenz ist nach [LMT09; Eng+01] sehr stark von der
zugrunde liegenden Semantik des Modells und dem Entwicklungsprozess abhingig,
setzt aber immer syntaktische Konsistenz voraus. Das Modellverhalten der zueinander
semantisch konsistenten Modelle muss daher jeweils semantisch kompatibel sein, was einer
Ubereinstimmung auf der Bedeutungsebene entspricht. Beispielsweise muss demnach
fiir ein horizontales Konsistenzproblem gelten, dass die Modelle der unterschiedlichen
Sichten in Bezug auf die Aspekte des Systems, die in beiden Submodellen spezifiziert
werden, semantisch kompatibel sind. Ahnliches gilt fiir vertikale Konsistenzprobleme,
wobei hier das verfeinerte Modell semantisch kompatibel zum verfeinernden Modell sein
muss.

30

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

2.5 Konsistenz

2.5.2 CAP-Theorem

Wie in den vorangegangenen Abschnitten dargestellt, spielt Konsistenz eine wichtige Rolle
bei der Evolution von Systemen und den zugrunde liegenden Modellen. Insbesondere
in verteilten Systemen sind jedoch weitere Eigenschaften von Bedeutung, auf die neben
der Konsistenz (engl. ,Consistency*), innerhalb des Consistency, Availability, Partition
Tolerance (CAP)-Theorems Bezug genommen wird. Das im Jahr 2000 von Brewer
vorgestellte CAP-Theorem (auch als Brewer-Theorem bezeichnet) sagt aus, dass ein
verteiltes System immer nur zwei der drei Eigenschaften (Consistency, Availability,
Partition Tolerance) erfiilllen kann [Bre00]. Durch Gilbert und Lynch [GL02] erfolgte im
Jahr 2002 der Beweis des Theorems.

Nach Kolb [Kol14] werden im Folgenden die einzelnen Eigenschaften dargestellt. Im
Rahmen des CAP-Theorems sagt Consistency (Konsistenz) aus, dass innerhalb des
verteilten Systems alle Knoten zu jedem Zeitpunkt die gleiche Sicht auf die Daten
haben. Availability (Verfugbarkeit) ist dann gegeben, wenn das System alle Lese- und
Schreibanfragen beantwortet. Die Verfiigbarkeit von funktionsfdhigen Knoten wird dabei
durch den Ausfall von anderen Knoten nicht beeinflusst. Die Eigenschaft der Partition
Tolerance (Partitionstoleranz) gibt an, dass die Funktionsfihigkeit des Systems trotz
Kommunikationsunterbrechungen zwischen Knoten und damit einhergehenden Verlusten
von Nachrichten gewahrt bleibt.

Aus den gegebenen Definitionen lassen sich CAP-Fille ableiten, die jeweils nur zwei der
drei Eigenschaften erfiillen und damit entweder keine Partitionstoleranz (CA-System),
keine Verfiigbarkeit (CP-System) oder keine Konsistenz (AP-System) bereitstellen [Kol14].
Insbesondere bei CP- und AP-Systemen ist es jedoch auch moglich, Mischformen zu
etablieren, die je nach Situation zwischen der Verfiigbarkeit und der Konsistenz auswéhlen.
Dies hat Brewer [Bre00] bereits legitimiert, da er beim Vergleich der beiden Hauptansitze
Atomicity, Consistency, Isolation, Durability (ACID) und Basically Available, Soft state,
Eventual consistency (BASE) diese als ein Spektrum bezeichnet hat. ACID stellt dabei
die Eigenschaften dar, die eine strenge Konsistenz bei der Ausfiihrung von Transaktionen
ermoglicht [HR83; Bre00; Vos09]. Dies hat aber auch zur Folge, dass die Evolution,
beispielsweise von Datenbankschemas, erschwert wird. Im Gegensatz hierzu operiert
der BASE-Ansatz als ein sehr optimistischer Ansatz. Diesem wird der Grundsatz der
Eventual Consistency zugrunde gelegt, in dem die Konsistenz als ein Zustand zu verstehen
ist, der zu irgendeinem Zeitpunkt eingenommen wird. Inkonsistente Zustiande werden fiir
die Erreichung von hoher Verfiigbarkeit in Kauf genommen [SK09; Bre00].

31

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

In diesem Abschnitt werden ausgehend von einer Literaturrecherche Anforderungen an ein
System zur Unterstiitzung der Evolution von Informations- und Datenmodellen gestellt.
Die aufgenommenen Anforderungen werden durch die Analyse der Anwendungsfélle
erweitert beziehungsweise bestatigt. Auf dieser Basis werden bestehende Ansétze gegen die
aufgenommenen Anforderungen gepriift. Schlielich werden fir die Umsetzung notwendige
Technologien auf deren Eignung hin gepriift und ausgewahlt. Als letztes erfolgt eine
Zusammenfassung der Analyseergebnisse.

3.1 Anforderungsanalyse

Ausgangspunkt fir die durchgefiihrte Literaturrecherche ist ein von Bahill und Botta
veroffentlichter Journalbeitrag (BB0S]. In diesem werden fundamentale Prinzipien fiir
ein gutes Systemdesign aus unterschiedlichen Doménen abgeleitet, wozu unter anderem
Hardware-, Software-, System- und Testdesign zihlen. Den Prinzipien werden in [BB08|
unterschiedliche Aspekte gegeniibergestellt und gekennzeichnet, welches Prinzip auf
welchen Aspekt einen Einfluss hat.

In den folgenden Abschnitten werden zuerst die Prinzipien aus [BB08], die einen Ein-
fluss auf den Aspekt der Evolvability besitzen, ndher beleuchtet, da in dieser Arbeit das
Zusammenspiel zwischen Evolutionsmechanismen und Revisionskontrolle untersucht wird.
Anschliefend erfolgt eine Betrachtung von weiteren Anforderungen aus einer technologi-
schen Sicht heraus. Abschlieend werden die Anforderungen mittels der Anwendungsfille
erweitert bezichungsweise bestatigt und tabellarisch zusammengefasst.

3.1.1 Prinzipien mit Einfluss auf Evolvability

In den nachfolgenden Unterabschnitten wird jeweils ein Prinzip aus [BBO§| eingefiihrt,
das einen Einfluss auf den Aspekt der Evolvability besitzt. Hierbei wird jeweils eine
kurze Beschreibung anhand von [BB08] vorgenommen und nachfolgend werden mogliche
Beitrige von Revisionskontrolle zur Erreichung des aufgefithrten Prinzips erldutert. Die
Abschnittsiiberschriften sind des Weiteren mit einem Tupel gekennzeichnet. Das erste
Element beschreibt hierbei den Einfluss des Prinzips auf die Evolvability (X steht fiir
einen bedeutenden Einfluss, x steht fiir einen weniger bedeutsamen aber immer noch
sehr grofien Einfluss). Das zweite Element des Tupels gibt an, ob aus der Nutzung des
Prinzips zusétzliche Kosten entstehen. Dies wird durch ein $-Zeichen gekennzeichnet.
Wenn keine zusétzlichen Kosten entstehen, so wird dies durch einen waagerechten Strich
angegeben.

32

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

3.1.1.1 P1 - Entwicklung von stabilen Zwischenergebnissen (X,-)

Prinzipbeschreibung nach [BB08] Grélere Anderungen sollen stets so erstellt werden,
dass diese wiederum aus einer Serie von kleineren gebildet werden. Diese kleineren
Anderungen sollen selbst wiederum so stabil sein, dass die Entwicklung an vordefinierten
Punkten gestoppt werden kann und trotzdem etwas Niitzliches weiterbesteht.

Beitrag Revisionskontrolle Durch die Verwendung von Revisionskontrolle wird die
notwendige Infrastruktur bereitgestellt, die es erméglicht, die Nachvollziehbarkeit der
Anderungen zu gewihrleisten [Vog+15b]. Einzelinderungen kénnen zu gréfieren Sinn-
einheiten gruppiert werden. Des Weiteren besteht die Moglichkeit der Verwendung von
Riickspriingen auf vorherige Entwicklungen und die Verwendung von Entwicklungszwei-
gen. Dies geht einher mit der Notwendigkeit fiir die Zusammenfiithrung von divergierten
Entwicklungszweigen. Die in der Prinzipbeschreibung angefiihrten kleinen Anderungen
koénnen dementsprechend als Revisionen und die aggregierten Anderungen als eine Versi-
on bezeichnet werden [Bud09; Fog05]. AuBlerdem kénnen Tags erstellt werden, die den
jeweiligen Entwicklungsstand kennzeichnen.

3.1.1.2 P2 - Nutzung von evolutiondrer Entwicklung (X,$)

Prinzipbeschreibung nach [BB08] Der Start fir die Evolution sollte immer ein nutz-
bares System sein. Erst im Folgenden kénnen dann weitere Anforderungen hinzugefiigt
und mit entsprechenden zusétzlichen finanziellen Mitteln umgesetzt werden. Hierdurch
kann dann wiederum ein komplexeres und nutzbares System erreicht werden.

Beitrag Revisionskontrolle Analog zu Prinzip P1 kann durch Revisionskontrolle wie-
derum die notwendige Infrastruktur bereitgestellt werden, um die Nachvollziehbarkeit
zu gewdhrleisten. Weiterhin konnen bereits durchgefiihrte Releases vorgehalten werden
und von diesen aus kénnen wiederum Weiterentwicklungen stattfinden. Dabei wird der
aktuelle funktionsfidhige Stand nicht gefahrdet, da Entwicklungszweige und Tags benutzt
werden konnen.

3.1.1.3 P3 - Verstandnis des Unternehmens (X,$)

Prinzipbeschreibung nach [BB08] Wichtig ist hierbei, ein Verstindnis zu erlangen,
wie sich das zu designende System in das Unternehmen eingliedert, wozu Frameworks
benutzt werden konnen. Diese dienen zum einen zur Organisation und zum anderen kann
durch deren Nutzung auch die Vollstandigkeit von existenten Modellen beurteilt werden.
Durch die Nutzung von Frameworks kann auflerdem definiert werden, welche Aspekte
aus welcher Perspektive betrachtet werden sollen.

Beitrag Revisionskontrolle Revisionskontrolle erfiillt in diesem Zusammenhang vor-
wiegend einen Dokumentationsaspekt. Dadurch ist stets eine Nachvollziehbarkeit gegeben.

33

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

Aus dieser kann wiederum abgeleitet werden, welche Entscheidung welche technische
Umsetzung nach sich gezogen hat.

3.1.1.4 P4 - Bereitstellung von iiberpriifbaren Zustidnden (x,$)

Prinzipbeschreibung nach [BB08] Fiir die Uberpriifung von Systeméquivalenzen wird
das Zustandsverhalten fir dynamische Systeme benotigt. Ein reines Ein-/Ausgangs-
verhalten ist dabei nicht ausreichend. Im Idealfall ist ein vollstiandiger Systemstatus
verfiighar, mindestens jedoch Resetzustdnde und Wiederherstellungspunkte. Durch die
Bereitstellung von Zustédnden und dem damit einhergehenden Wissen tiber das Verhal-
ten konnen bestehende Systeme wiederverwendet, Systeme geupgradet, kommerzielle
Standardprodukte integriert, Feldausfille repliziert und sich weiterentwickelnde Systeme
verifiziert werden.

Beitrag Revisionskontrolle Durch eine Revisionierung der Zustandsinhalte kann bei
der Durchfithrung von entsprechenden Up- beziehungsweise Downgrades gegen die revi-
sionierten Zustédnde geprift werden.

3.1.1.5 P5 - Nutzung von offenen Standards (x,-)

Prinzipbeschreibung nach [BB08] Es sollten offentlich verfigbare Spezifikationen
verwendet werden. Diese kénnen von allen eingesehen und implementiert werden. Beispiele
hierfiir sind unter anderem UML und Universal Serial Bus (USB). Im Gegensatz hierzu
operieren proprietiare Standards, die nur durch eine einzelne Entitdt kontrolliert werden.

Beitrag Revisionskontrolle In diesem Zusammenhang sollten auch bei der Revisions-
kontrolle offene und interoperable Technologien bezichungsweise Standards eingesetzt
werden. Die durch die Verwendung von offenen Standards bereitgestellte Informati-
on kann ebenso im Revisionkontrollsystem Verwendung finden, um beispielsweise die
Revisionsinformation zusétzlich semantisch anzureichern [GHU14].

3.1.1.6 P6 - ldentifizierung von Dingen, die sich wahrscheinlich dndern (X,-)

Prinzipbeschreibung nach [BB08] Es sollte stets zwischen Aspekten unterschieden
werden, die eine hohe Wahrscheinlichkeit fiir Anderungen aufweisen und denen, die
eine hohe Wahrscheinlichkeit fiir die Bestédndigkeit besitzen. Bei den Aspekten, die
sich wahrscheinlich &ndern werden, sollte zum einen eine zusétzliche Anstrengung in
die Schnittstellenentwicklung flieBen und zum anderen sollen Moglichkeiten vorgesehen
werden, um korrespondierende Anderungen aufnehmen zu kénnen.

Beitrag Revisionskontrolle Aufgrund der durch die Revisionskontrolle bereitgestellten

Anderungshistorie kénnen Aspekte abgeleitet werden, die einem hohen Anderungspo-
tential unterliegen. Des Weiteren kann bei der Aufnahme von Anderungen unterstiitzt

34

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

werden. Hierfiir sind jedoch weitreichendere Mechanismen vorzusehen, die beispielswei-
se Co-Evolutionen oder semantische Konflikterkennung und -behebung unterstiitzten
[Ruh+14].

3.1.1.7 P7 - Design fiir Evolvability (X,$)

Prinzipbeschreibung nach [BB08] Um mit Anderungen wihrend des Lebenszyklus
umgehen zu kénnen, wird eine hohe Flexibilitdt und Adaptivitit benétigt. Auf Ande-
rungen kann unter anderem durch die Rekonfiguration von existenten Entitédten, der
Vergroerung von Entitdten oder der Hinzufligung von neuen Entitéten reagiert werden.

Beitrag Revisionskontrolle Anderungen konnen durch das Revisionskontrollsystem
nachvollziehbar gespeichert werden. Auf dieser Basis besteht die Méglichkeit, semantische
Anreicherungen vorzunehmen beziehungsweise semantische Anderungen zu erkennen
[Keh15], um damit Co-Evolutionen [Ruh+14] oder semantische Konflikterkennung und
-behebung umzusetzen, was wiederum die Evolvability des Systems erhéht.

3.1.2 Technologische Sicht

Aus der in Abschnitt 3.1.1 durchgefiihrten Gegentiberstellung der Prinzipien aus [BB0§]
und den moglichen Beitragen von Revisionskontrolle ergibt sich bereits, dass etablierte
Revisionskontrollsysteme nicht alles leisten kénnen, was zur Erreichung der Prinzipien
notwendig ist. Speziell fiir die Ontologieevolution wird durch Noy und Klein [NK04] aus-
gesagt, dass eine Trennung von Revisionierung und Evolution nicht anwendbar ist und es
sich hierbei vielmehr um das Management von Ontologienédnderungen und deren Auswir-
kungen handelt. Dementsprechend werden im Folgenden Anforderungen zum Ubergang
von getrennten Systemen fiir Revisionskontrolle und Evolution hin zu einem integrierten
Revision Management System aufgenommen. Hierfiir wird die Literaturrecherche vor
allem in Bezug auf technologische Anforderungen vertieft, die ein solches System erfiillen
muss. Ausgangspunkt sind die im Abschnitt 2 bereits verwendeten Quellen, die den
Stand der Technik widerspiegeln.

3.1.2.1 Nutzungskontext

Fiir die Entwicklung eines Revision Management Systems muss als erstes der Nutzungs-
kontext untersucht werden, auf dem alle weiteren Anforderungen aufbauen. Im Zentrum
steht hierbei der Nutzer des Systems, der unterstiitzt werden soll und nur noch an den
Stellen manuell eingreifen muss, an denen dies zwingend notwendig ist. Die Verwaltung
von Anderungen soll fiir den Nutzer entsprechend vereinfacht werden, wobei das System
sowohl von Anféngern als auch Experten gleichermaBen benutzbar sein soll [Sto04].
Levendovszky et al. definieren weiterhin sechs verschiedene Rollen, die am Evoluti-
onsprozess eines Modells beteiligt sind. Hierzu zdhlen Model Designer, Model Evolver,
Language Evolver, Requirements Specifier und Requirements Evolver [Lev+10]. Vor
allem in grofleren Projekten werden diese Rollen auf mehrere Personen aufgeteilt.

35

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

Da es sich hierbei um eine kollaborative Umgebung handelt, in der mehrere Personen
beteiligt sein konnen, miissen auch entsprechende Mechanismen vorhanden sein, um
Zugriffe einschrinken zu konnen [Noy+06]. Dafiir miissen Mechanismen zur Rechtevergabe
fiir bestimmte Nutzer beziehungsweise Nutzergruppen oder Nutzerrollen etabliert und
deren Einhaltung tiberprift werden.

Wie bereits aus den Rollen von Levendovszky ersichtlich, miissen in den Unternehmen
bestimmte Prozesse eingehalten werden. Hierzu gehért auch die Freigabe von Anderungen
durch zum Beispiel einen Kurator [Noy+06]. Dieser ist fiir die Durchfiihrung einer
Qualitéatskontrolle verantwortlich, bevor beispielsweise eine neue Version ausgeliefert
wird. Nach Noy et al. [Noy+06] sind hierfiir spezielle Sichten auf die Anderungen
notwendig, die es erlauben, einzelne oder Gruppen von Anderungen anzunehmen oder
abzulehnen. Wichtig sind hierbei Sichten auf konfliktbehaftete Anderungen, den Kontext
(Person, Zeit, Anderungen) und zugehorige Filterméglichkeiten. Der Anderungsprozess
soll des Weiteren unterbrochen und zu einem spéateren Zeitpunkt ohne Verluste von
bisher durchgefithrten Reviews fortgesetzt werden kénnen.

Anforderungen inklusive Kurzbeschreibung

o Selbstbeschreibungsfahigkeit des Systems
Die Nutzung des Systems soll unabhdingig von Vorkenntnissen von unterschied-
lichen Nutzern genutzt werden kénnen.

o Rollenmanagement fir Nutzer
Das System unterstiitzt die Verwaltung und Nutzung von unterschiedlichen
Rollen, die am Evolutionsprozess beteiligt sind.

o Zugriffsmanagement mit Rechtevergabe
Beschrankung von Zugriffsrechten und Verwaltung von Rechten fir Nutzer,
Nutzergruppen und Nutzerrollen.

o Umsetzung von Freigabeprozessen

Maglichkeit der Etablierung von Freigabeprozessen mit vorher durchzufihren-
den Reviews durch Kurator. Bereitstellung von zugehdrigen Nutzerschnittstel-
len zur Unterstitzung des Kurators und persistentem Reviewprozess mil der
Maglichkeit der zeitweisen Unterbrechung.

3.1.2.2 Anderungsmanagement

Fiir das Management von Anderungen ist stets eine Nachvollzichbarkeit der durchgefiihr-
ten Anderungen zu garantieren und die Méglichkeit des Riicksprungs auf einen vorherigen
Stand bereitzustellen [Noy+06]. Wie bereits in Abschnitt 3.1.2.1 herausgestellt, sind
zumeist mehrere Nutzer an der Entwicklung beteiligt. Dies macht wiederum die Nutzung
von Entwicklungszweigen und die Erstellung von Releases notwendig, wie dies auch bei

36

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

etablierten Revisionsverwaltungssystemen umgesetzt wird. Die einzelnen Revisionen miis-
sen dabei miteinander vergleichbar sein, sodass abgeleitet werden kann, was hinzugefigt,
was geloscht und was modifiziert wurde [Noy+06]. Diese gefundenen Unterschiede miissen
wiederum entsprechend fiir den Nutzer aufbereitet werden, sodass dieser diese Information
fir die Zusammenfiihrung von divergierten Entwicklungszweigen nutzen kann [Lev+10].
In diesem Zusammenhang entsteht auch die Forderung nach einer Méglichkeit, Konflikte
detektieren und auflésen zu kénnen, die bei der Zusammenfithrung auftreten kénnen.
Hierbei ist der Kontext der einzelnen zusammenzufithrenden Revisionen essenziell. So
koénnen nicht nur einzelne Elemente auf Konflikte untersucht werden, sondern es miissen
beispielsweise auch Vererbungsbeziehungen beriicksichtigt werden [Noy+06]. Kehrer et
al. [Keh+12] beschreiben in diesem Zusammenhang auch die Notwendigkeit des Wissens
iiber den semantischen Effekt einer Evolution, um entsprechend auf diese reagieren zu
konnen. Hierfiir muss die Semantik der Evolution extrahiert werden. Das wird auch
durch Ruhroth et al. [Ruh+14] bestétigt, die die Abstraktion von atomaren Anderungen
fordern, was in einer Beschreibung durch High-Level-Changes resultiert. Eine solche
Beschreibung wird beispielsweise auch durch Papavasileiou et al. [Pap+13] eingefiihrt.
High-Level-Changes entsprechen demnach der Aggregation von atomaren Anderungen zu
semantischen Anderungen. Diese semantischen Anderungen werden durch eine Gruppe
von atomaren Anderungen identifiziert und stellen die Bedeutung der Gruppe der durch-
gefithrten Anderung dar [Keh15]. High-Level-Changes reprisentieren daher in vielen
Fillen Editieroperationen, die beispielsweise durch Nutzer durchgefithrt werden [Sto04;
Pap+13; Keh15; Hau+17; Pie418].

Zur Erreichung der vorangegangenen Anforderungen ist eine semantische Beschreibung
des Revisionsmodells unabléssig. So miissen nach Noy et al. [Noy+06] Anderungskommen-
tare, die den Beweggrund der Anderung angeben, beschrieben werden und Anderungen
zwischen zwei Revisionen abfragbar sein, was die Kenntnis der Revisionshistorie vor-
aussetzt. Des Weiteren miissen neue Revisionen erstellbar sein, wobei die zugehorige
Vorgingerrevision angegeben werden muss. Uberdies miissen neue Revisionen in Bezug
auf den Vorgénger als abwértskompatibel oder nicht abwértskompatibel beschreibbar sein
und stets erkennbar sein, wer welche Anderung mit welcher semantischen Auswirkung
durchgefiithrt hat. Klein und Fensel [KF01] fordern weiterhin, dass Elemente eindeutig
in der Revisionshistorie identifizierbar sein mussen und Relationen zwischen Revisionen
explizit dargestellt werden miissen, um einen transparenten Zugriff zu ermoglichen.

Anforderungen inklusive Kurzbeschreibung

« Nachvollzichbarkeit von Anderungen

Anderungen miissen stets nachvollziehbar gespeichert werden und jeweils
zugreifbar sein. Mechanismen etablierter Revisionsverwaltungssysteme, wie
Entwicklungszweige und Releases, miissen unterstiitzt werden und einzelne
Revisionen miteinander vergleichbar sein.

37

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

o Zusammenfithrung divergierter Entwicklungszweige

Divergierte Entwicklungszweige miissen zusammengefihrt werden konnen.
Dabei miissen Konflikterkennung und -losung unterstitzt werden.

o High-Level-Changes

Atomare Anderungen miissen zu High-Level-Changes abstrahiert werden kon-
nen, um die Semantik der Evolution darstellen zu kénnen, sowie die Zusam-
menfiihrung von divergierten Entwicklungszweigen zu unterstitzen.

o Semantische Beschreibung des Revisionsmodells

Das Revisionsmodell muss vollstindig semantisch beschrieben werden. Zu
Revisionen muss Metainformation anlegbar sein, wie zum Beispiel Kommentar,
Ersteller, Vorgingerrevision und Abwdrtskompatibilitdt.

3.1.2.3 Evolution

Klein und Frenzel [KF01] beschreiben neben der reinen Revisionsverwaltung des Weite-
ren die Notwendigkeit des Managements von durchgefithrten Anderungen, wobei eine
maximale Interoperabilitédt mit bestehenden Daten geschaffen werden soll. Hierfir kon-
nen Co-Evolutionsstrategien genutzt werden, wie bereits in Abschnitt 2.3.1 eingefiihrt.
Entsprechend miissen Modellrelationen zwischen Metamodellen und Modellen [DIP11],
zwischen Typ und Instanz [DIP11] und zwischen Modell und Modell auf unterschiedlichen
Abstraktionsniveaus [HHH14; Ruh+14] beachtet und Auswirkungen propagiert werden.
Hierfiir missen die notwendigen Evolutionsschritte aus der Historie extrahiert und ab-
strahiert werden, was mittels der im Abschnitt 3.1.2.2 eingefiihrten High-Level-Changes
moglich wird.

Die durchgefiihrten Evolutionsschritte miissen wiederum, ebenso wie jede andere
Anderung, dokumentiert und nachvollziechbar gespeichert werden. Daraus ergibt sich,
dass die Anderungen zwischen zwei Revisionen durch eine Reihe von Evolutionsschritten
beschreibbar sein miissen [Ruh+14]. Das bietet die Grundlage, um die Evolution eines
modellbasierten Systems zu verstehen [Keh+12].

Die moglichen Evolutionsschritte konnen beispielsweise iiber Regelsétze beschrieben
werden. Hier besteht jedoch die Moglichkeit, dass diese anzuwendenden Regelsétze
in Bezug auf die zugrunde liegende Revisionshistorie nicht vollsténdig sind. Daher
wird durch Ruhroth [Ruh+14] gefordert, dass es eine Uberpriifung gibt, ob durch die
Anwendung der vorhandenen (Co-)Evolutionsschritte alle zugrunde liegenden Anderungen
der Revisionshistorie abgedeckt werden.

Anforderungen inklusive Kurzbeschreibung

o Umsetzung von (Co-)Evolutionsstrategien

(Co-)Evolutionsstrategien missen so umgesetzt werden, dass Modellrelationen
beachtet und zugehdrige Auswirkungen propagiert werden.

38

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

o Semantische Beschreibung der (Co-)Evolutionsstrategien

Angewendete (Co-)Evolutionsstrategien und deren zugrunde liegende Evoluti-
onsschritte mit den zugehorigen Regelsitzen missen semantisch beschrieben
sein und in der Revisionshistorie referenziert werden.

o Vollstandigkeitspriifung der Evolutionsschritte

Vor der Anwendung von (Co-)Evolutionsstrategien muss tiberprift werden, ob
alle zugrunde liegenden Anderungen der Revisionshistorie abgedeckt werden.

3.1.2.4 Semantische Modellbeschreibung

Fiir die im Abschnitt 3.1.2.2 beschriebenen High-Level-Changes muss das Informations-
modell bezichungsweise das Metamodell bekannt sein, um die Anderungen auf einer
abstrahierten Ebene beschreiben zu kénnen, wie beispielsweise in [Pap+13]. Diese konnen
doméneniibergreifend verwendet werden, wenn jeweils das gleiche Metamodell verwen-
det wird. Die zugrunde liegenden Regeln kénnen aber auch so erweitert werden, dass
doménenspezifische High-Level-Changes erkannt werden kénnen, wodurch Anderungen
fiir den Nutzer nachvollziehbarer werden. Als Grundlage hierfiir kann die Semantik des
Informationsmodells benutzt werden. Diese ist nach Lucas et al. [LMT09] auBerdem
wichtig, um bei der verteilten Entwicklung, die potenziell auch geografisch verteilt sein
kann, unterschiedliche Interpretationen zu vermeiden.

Anderungen an einem Modell kénnen Auswirkungen auf verbundene Modelle haben
[RLL9S; Lev+10]. Diese Auswirkungen miissen, wie in Abschnitt 3.1.2.3 aufgefiihrt,
propagiert werden konnen. Die hierfiir notwendigen Modellrelationen miissen wiederum
semantisch beschrieben werden, damit diese bei der Evolution beriicksichtigt werden
konnen.

Anforderungen inklusive Kurzbeschreibung

o Semantische Beschreibung der revisionierten Modelle
Die revisionierten Modelle miissen semantisch beschrieben sein. Hierfir kon-
nen Informations- und Metamodelle genutzt werden.

o Semantische Beschreibung von Modellrelationen

Verbindungen zwischen und innerhalb von Modellen missen explizit dargestellt
und semantisch beschrieben sein.
3.1.2.5 Qualitatsattribute

Fiir eine Umsetzung der bisherigen Anforderungen miissen weitere Qualitiatsattribute
beachtet werden. Ruhroth et al. [Ruh+14] sagen hierzu aus, dass die notwendigen Be-
rechnungen transparent und automatisch zu erfolgen haben. Das heifit, dass Nutzer

39

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

mogliche Reinterpretationen von eigenen Aktionen nicht bemerken sollen und bei Ent-
wicklungsarbeiten nicht unterbrochen werden, um durchgefiihrte Anderungen analysieren
zu missen.

Bei der Anwendung von (Co-)Evolutionsstrategien miissen wiederum die daraus re-
sultierenden Anderungen verifiziert werden. Hierfiir ist sicherzustellen, dass weitere
Qualitatsattribute integrierbar und priifbar sind. Levendovszky et al. [Lev+10] fithren
hierzu beispielsweise Priifungen von Konsistenz und Vollstandigkeit der Modelle auf,
wobei diese auch durch weiterfiihrende Qualitatsattribute wie Lesbarkeit und Evolvability
erginzt werden konnen. Noy und Klein [NK04] fiigen hinzu, dass auch die Kompatibilitit
zwischen Revisionen priifbar und darstellbar sein muss, um entsprechende Abwértskom-
patibilitdt sicherstellen zu kénnen.

Anforderungen inklusive Kurzbeschreibung

o Transparente und automatische Berechnung

Die Umsetzung der Anforderungen soll transparent erfolgen, wobei die Nutzer
keine Reinterpretationen ihrer Aktionen bemerken sollen und nicht fir die
Analyse von durchgefiihrten Anderungen unterbrochen werden.

o Unterstiitzung der Integration zusdtzlicher Qualitétsattribute

Zusdatzliche Qualitdtsattribute von Modellen sollen integriert werden konnen,
um diese nach der Durchfihrung von Anderungen priifen und auswerten zu
konnen. Beispiele sind Konsistenz, Kompatibilitdt und Vollstindigkeit.

3.1.3 Anwendungsfille

Fir diese Arbeit wird die Co-Simulation und die Modularisierung, hierbei insbesondere
die Spezifikation des MTP, als Anwendungsfall genutzt. Eine allgemeine Einfithrung in
diese beiden Themenbereiche erfolgt in Abschnitt 1.4. Im Folgenden werden die beiden
Anwendungsfille detaillierter auf ihre jeweiligen Problemstellungen in Bezug auf die
Evolution von Informationsmodellen analysiert.

3.1.3.1 Co-Simulation

Bei der kollaborativen Erstellung von Co-Simulationsensembles werden unterschiedliche
Simulationsmodelle zu einer Gesamtsimulation zusammengeschaltet. Ein wesentlicher
Aspekt bei der Erstellung und der anschlieBenden Pflege ist der Umgang mit Anderungen
an den Modellen und den Verschaltungen zwischen diesen. Auf Basis der Verschaltungen
koénnen wahrend der Laufzeit der Gesamtsimulation die Kommunikationswege zwischen
den Einzelsimulationen abgeleitet werden.

Modellierung eines Co-Simulationsensembles Ein Beispiel fiir einen Co-Simulations-
standard ist das Functional Mock-up Interface (FMI) [Mod10]. Dieser Standard spe-
zifiziert jedoch nur die Schnittstelle zu den Simulationseinheiten, die als Functional

40

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

Mock-up Unit (FMU) bezeichnet werden. Jede Einzelsimulation stellt entsprechend Ports
zur Verfiigung, die dann miteinander verschaltet werden kénnen. Der Nutzer ist selbst
sowohl dafiir verantwortlich wie die Verbindungen zwischen den Einzelsimulationen defi-
niert und aufgebaut werden, als auch dafiir, wie die Steuerung des Ensembles realisiert
wird [Gal+15]. Zur Erstellung eines geeigneten Masteralgorithmus, der die Steuerung
iibernimmt, ist es notwendig, die Abhéngigkeiten zwischen den Einzelsimulationen zu
analysieren [Cam+16]. Hierfiir miissen diese entsprechend auswertbar vorliegen. Bas-
tian et al. fordern dafiir einen gerichteten Graphen, in dem Knoten Simulatoren und
Kanten auszutauschende Daten darstellen [Bas+11]. Des Weiteren sollten auch interne
Abhéangigkeiten zwischen Eingangs- und Ausgangsports modellierbar sein [Van+15]. FMI
definiert bereits die Attribute, die zur Beschreibung von Einzelsimulationen und deren
Ports notwendig sind. Datentypen und Einheiten werden ebenso durch FMI beschrieben.
Hier konnen aber auch andere Standards zum Einsatz kommen, wie beispielsweise die
semantische Beschreibung von Quantities, Units, Dimensions, and Data Types (QUDT)U.
Vor allem bei kontinuierlichen Prozesssimulationen beinhalten die Verbindungen zwi-
schen den Modellen nicht nur einen Wert, der ausgetauscht werden muss. So miissen
zum Beispiel zur Modellierung einer Rohrleitung Durchfluss und Energie zwischen den
Simulationen tibertragen werden. Hierfiir kann das Konzept der Bondgraphen [Brell]
wiederverwendet werden. Bestehende Tools verwenden zumeist ein internes proprietares
Modell zur Beschreibung des Ensembles [Cam+16]. Dieses ist nur durch das spezifische
Tool auswertbar, wodurch alternative Masteralgorithmen es nicht auswerten kénnen.

Méoglichkeiten der Verschaltung Die Verschaltung von Einzelsimulationen wird zu-
meist tber einfache Konfigurationsdateien gelost. Beispielsweise wird eine Textdatei zur
Konfiguration des Masters genutzt, in der auch die vorhandenen Simulationen und die
korrespondierenden Verschaltungen enthalten sind [Bas+11]. Das setzt wiederum voraus,
dass alle Simulatoren bereits verfiighar sind, alle Verschaltungen zu einem definierten
Zeitpunkt fest definiert sein miissen und auf Basis dieser Konfiguration alle Verschal-
tungen erzeugt werden. Abbildung 3.1 stellt das prinzipielle Vorgehen am Beispiel von
vier Simulatoren vor, die in Schritt 1 alle verfiighar sind und in Schritt 2 miteinander
verschaltet werden.

| Simulator 1 | | Simulator 2 | | Simulator 1 I-—-I Simulator 2 |
| Simulator 3 | | Simulator 4 | | Simulator 3 I-—-I Simulator 4 |

> Schritt 1 > > Schritt 2 >

Abbildung 3.1: Verschaltung eines Co-Simulationsensembles mit bekannten Einzelsimulationen

Dhttp://www.qudt.org/ (besucht am 29.11.2020)

41

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

Im Gegensatz zu einer Gesamtkonfiguration des Ensembles besteht auch die Moglichkeit,
dass in einer kollaborativen Umgebung mehrere Nutzer jeweils ihren eigenen Simulator
mit anderen bereits verfiigharen Simulatoren verschalten méchten. Die Abbildung 3.2
gibt hierzu wiederum ein strukturiertes Beispiel, in dem die einzelnen Simulatoren nach-
einander verfiighar sind und jeweils nur Verschaltungen zu anderen bereits verfiigharen
Simulatoren definieren. In einer solchen kollaborativen Umgebung sind jedoch auch
weitere Moglichkeiten denkbar, bei denen bestehende Simulatoren neu hinzugekommene
verschalten oder Verschaltungen iterativ hinzugefiigt und bearbeitet werden. In einem
solchen Szenario muss eine Nachvollziehbarkeit der durchgefiihrten Anderungen gegeben
sein und auch eine persistente Speicherung gewéhrleistet werden, um eine Konfiguration
spéter auch wiederherstellen zu kénnen.

Simulator 1 I-—-I Simulator 2 |

| Simulator 1 I‘ ------- 'I Simulator 2 |

| Simulator 3 |‘—~I Simulator 4 |
> Schritt 3 >

> Schritt 2 >

Abbildung 3.2: Kollaboratives Verschalten innerhalb eines Co-Simulationsensembles

> Schritt 1 >

Anderungen innerhalb des Co-Simulationsensembles Im vorherigen Abschnitt wurde
auf zwei Moglichkeiten der Verschaltung von Simulationen eingegangen. Insbesondere in
kollaborativen Umgebungen ist ein wesentlicher Aspekt bei der Erstellung und der Pflege
eines Co-Simulationsensembles der Umgang mit Anderungen an Einzelsimulationen und
den Verschaltungen zwischen diesen. Nachfolgend werden beispielhaft drei wesentliche
Moglichkeiten fiir Anderungen dargestellt. Es wird dabei jeweils auf die Auswirkungen
der durchgefithrten Anderungen auf die Liste der durch die Einzelsimulation angebo-
tenen Ports (Portliste), die Verschaltungen zwischen den Ports (Portverschaltungen)
und die gekoppelte Simulation eingegangen. Bei den nachfolgenden Betrachtungen wir
immer von einem zumindest teilweise verschalteten Co-Simulationsensemble ausgegangen,
da Anderungen an nicht verschalteten Ports keine direkten Auswirkungen auf andere
Simulationen haben.

Abbildung 3.3 zeigt eine simple Anderung des Namens eines Ports. Port E von
Simulator B wird zu Z umbenannt. Diese Anderung wird innerhalb von Simulator B
vorgenommen und sollte automatisch von der Portliste von Simulator B iibernommen
werden. Je nach Umsetzung der Co-Simulationsumgebung muss nachfolgend entweder die
Portverschaltung angepasst werden, da die Ports direkt iiber deren Namen identifiziert
werden, oder wenn eine zuséitzliche eindeutige Identifizierung der Ports genutzt wird, so
muss keine Anderung an der Verschaltung vorgenommen werden. In jedem Fall hat die
Anderung keine Auswirkung auf den gekoppelten Simulator.

42

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

Simulator A E Simulator B Simulator A G _._E Simulator B
H H F

Simulator A Simulator B Simulator A Simulator B

G.0 E.O
Sl

Simulator A Simulator B Simulator A G.l_._E.l Simulator B
H F

Abbildung 3.3: Beispiel fiir die Anderung einer Abbildung 3.4: Beispiel fiir die Auftrennung
Portbezeichnung eines Ports in mehrere Ports

Eine weitere Moglichkeit ist die Auftrennung eines Ports in mehrere Ports. Zum Beispiel
konnte ein Port, der ein Statuswort bereitstellt, in mehrere einzelne Ports aufgespalten
werden, wobei jeder Einzelport einen booleschen Wert beschreibt. In Abbildung 3.4 ist
ein Beispiel dargestellt, bei dem Port E von Simulator B in zwei Ports E.0 und E.1
aufgespalten wird. Diese Anderung sollte wiederum automatisch von der Portliste von
Simulator B ibernommen werden, indem der alte Port durch zwei neue Ports ersetzt
wird. In diesem Fall muss auch die Verschaltung angepasst werden. In dem dargestellten
Beispiel wird sie durch zwei neue Verschaltungen ersetzt, die die Verschaltung zu neu
erstellten Ports in Simulator A beschreiben. Die Ports G.0 und G.1 werden aufgrund der
durchgefithrten Anderungen in der Portliste erstellt und miissen dementsprechend auch in
die Simulation eingepflegt werden. Ebenso besteht die Moglichkeit des umgekehrten Falls,
bei dem mehrere Ports zu einem Port zusammengefasst werden oder das andere bereits
existente Ports fiir die neue Verschaltung genutzt werden kénnen, ohne das zusétzliche
Ports erstellt werden miissen.

In den Abbildungen 3.5 und 3.6 ist die Anderung des Datentyps eines Ports anhand
von zwei moglichen Beispiclen dargestellt. Ausgangspunkt ist jeweils die Anderung des
Datentyps von Port E von Simulator B. Im ersten Fall, dargestellt in 3.5, wird diese
Anderung an den verschalteten Port G von Simulator A propagiert. Es ist daher keine
Anderung an der Verschaltung notwendig, jedoch muss die Anderung in das Simulati-
onsmodell von Simulator A eingepflegt werden und danach die Portliste von Simulator
A mit dem neuen Datentyp von Port G aktualisiert werden. Abbildung 3.6 zeigt den
zweiten Fall, in dem keine Anderung am Simulationsmodell von Simulator A notwendig
ist, da aufgrund der Anderung eine Anderung an der Verschaltung vorgenommen wird.
Sie wird auf einen anderen Port von Simulator A bezogen, der den gleichen Wert in
einem anderen Datentyp darstellt.

43

73.216.60, am 24.01.2026, 01:46:48. © geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

Simulator A G E Simulator B Simulator A Simulator B

Simulator A G E Simulator B Simulator A Simulator B

Simulator A G Simulator B Simulator A Simulator B

Abbildung 3.5: Beispiel fiir die Anderung des Abbildung 3.6: Beispiel fiir die Anderung des

Datentyps eines Ports mit resultierender An- Datentyps eines Ports mit Anderung des Ziel-
derung im verschalteten Simulator (ver6f- — ports des verschalteten Simulators (veroffent-
fentlicht in [HGU18, S. 46]) licht in [HGU18, S. 46])

Schlussfolgerung In den vorangegangenen Abschnitten sind die wesentlichen Heraus-
forderungen bei der Konfiguration und der Pflege einer Co-Simulationsumgebung anhand
von Beispielen dargestellt. Es wird deutlich, dass ohne Unterstiitzung von zusétzlichen
Tools hohe manuelle Aufwéande notwendig sind. So entstehen bei der Kopplung von
unterschiedlichen Applikationen und Softwaresystemen hohe Zeitaufwinde [KVN12].
Erste Ansétze, wie [KVN12] und [Hen+16a; Hen+16b] nutzen Méglichkeiten der semanti-
schen Beschreibung, um die Integration von unterschiedlichen Modellen zu vereinfachen.
Weiterhin werden von Karhela et al. [KVN12] Revisionsverwaltungsmechanismen ge-
fordert, um Konfigurationen und Simulationsergebnisse nachvollziehbar zu speichern.
Der Umgang mit Anderungen und die Vermeidung von manuellen Aufwinden in diesem
Zusammenhang wird jedoch nicht betrachtet.

3.1.3.2 Modularisierung

Die Standardisierung des MTP erfolgt in der VDI/VDE/NAMUR-Richtlinienserie 2658,
die so aufgebaut ist, dass nach und nach neue Aspekte in neuen Blittern der Serie
spezifiziert werden. Dies ist dem agilen Ansatz der Spezifikation zutriglich, da nach
jeder Iteration die Ergebnisse bereits in die Standardisierung tiberfithrt werden konnen.
In einem solchen Ansatz muss jedoch auch mit Anderungen von bestehenden Blittern
und der Ergédnzung von zuséitzlichen Bliattern umgegangen werden, um stets ein kon-
sistentes Gesamtgefiige der Richtlinien bereitstellen zu konnen. Gleiches gilt fir die
informationstechnische Beschreibung der Aspekte in den Richtlinien.

Engineering Workflow Das Engineering von modularen Anlagen unterteilt sich nach
[VDI17] in zwei Bereiche, wie in Abbildung 3.7 dargestellt. Zum einen in ein projektunab-

44

73.216.60, am 24.01.2026, 01:46:48. © geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

héngiges Modulengineering, in dem Module entwickelt und hergestellt werden und zum
anderen in ein projektbezogenes Anlagenengineering, bei dem Module zu einer Gesamt-
anlage integriert werden. Der Modulhersteller liefert zu jedem Modul ein MTP mit, dass
aus den Engineeringdaten heraus erzeugt wird. Dieses MTP wird mit dem physikalischen
Modul ausgeliefert. Das Modul wird dann physikalisch und informationstechnisch in
die Gesamtanlage integriert. Fir die informationstechnische Integration steht das MTP
zur Verfiigung, das alle erforderlichen Aspekte fiir die Integration in eine tibergeordnete
Prozessfithrungsebene (PFE)Z) beschreibt, in der dann die Orchestrierung der modularen
Anlage erfolgen kann. Die Orchestrierung kann beispielsweise wie in [Blo+17] beschrieben

realisiert werden.
I H J_H

4 —_—~

lanbdnes Backbone (PFE)
:]y
MODUL MODOL
i Abrufen
Kompilieren automgtlsches .
Generieren Integration der Module
& Laden [é MTP >:\L\Ll in den Backbone

projektunabhéngiges projektbezogenes
Modulengineering Anlagenengineering

Abbildung 3.7: Engineering Workflow modularer Anlagen [VDI17, S. 6]

Aufbau des MTP Das MTP ist derzeit als eine Containerdatei realisiert, die die
einzelnen zu beschreibenden Aspekte zusammenfasst. Die Definition der notwendigen
Informationsmodelle erfolgt hierbei technologieunabhéngig durch UML-Modelle, wobei
jeweils auch eine konkrete Umsetzung auf dem Extensible Markup Language (XML)
basierten Automation Markup Language (AutomationML) Standard (in Anlehnung an
[Hoe+16]) beschrieben wird. Blatt 1 [VDI17] der Serie definiert hierfiir den allgemeinen
Aufbau und die notwendige Kommunikationsstruktur. Im ersten Schritt wird fir die
Kommunikation jeweils OPC UA verwendet. Zentrales Element der Beschreibung ist
das sogenannte Manifest, das Verweise auf die einzelnen Aspekte im MTP enthilt. Zur
Beschreibung der weiteren Aspekte werden jeweils UML-Diagramme, erkldrender Text

2)Die Bezeichnung PFE wird in dieser Arbeit synonym zu Process Orchestration Layer (POL) (definiert
in [VDI17]) verwendet.

45

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

und Umsetzungsbeispiele in AutomationML verwendet. Ein Beispiel fiir einen weiteren
Aspekt ist die Bedienbildbeschreibung, die in Blatt 2 [VDI18] spezifiziert ist.

Mogliche zukiinftige Entwicklungen Das MTP beschreibt einen Modultypen und
kann daher fiir unterschiedliche konkrete Instanzen eingesetzt werden, wobei der Anla-
genbetreiber das MTP vom Modulhersteller noch vor der Lieferung des Moduls fordern
kann, um es bereits in die PFE informationstechnisch zu integrieren. Es ist jedoch
auch denkbar, dass zukiinftig der Anlagenbetreiber dem Modulhersteller ein MTP als
Spezifikation fiir ein herzustellendes Spezialmoduls iibergibt. Im Fall, dass ein bereits in
einer Anlage integriertes Modul durch ein anderes ausgetauscht wird, was die gleiche
Funktionalitat aber beispielsweise einen anderen Aufbau des OPC UA Servers besitzt,
muss in der zugehorigen Modulverwaltungssoftware eine weitere Abstraktion geschaffen
werden, um eine Abbildung zwischen unterschiedlichen MTPs zu erméglichen.

Der durch das Modul bereitgestellte OPC UA Server kann zukiinftig auch direkt das
Modell des Moduls bereitstellen, ohne das eine Offlinedatei, wie das MTP, ausgetauscht
werden muss. Die notwendige Information ist in diesem Fall dann direkt im OPC UA
Informationshaushalt abgebildet und kann durch eine PFE ausgelesen werden, sobald das
Modul physikalisch in die Anlage integriert wird. Eine zusatzliche Typbeschreibung kann
dann beispielsweise direkt aus der Typenbeschreibung in OPC UA abgeleitet werden.
Wird die Beschreibung bereits frither benotigt, so kann zum Beispiel ein ausfiihrbarer
OPC UA Server oder ein entsprechendes Abbild geliefert werden.

Eine Virtuelle Inbetriebnahme (VIBN) benétigt ebenso Simulationsmodelle, um durch-
gefiithrt werden zu koénnen. Diese konnen wiederum als ein eigener Aspekt im MTP
beschrieben werden. Die Simulationsmodelle kénnen dann beispielsweise direkt auf den
Modulen verfiighar sein oder die Simulationen werden tiber Clouddienste zur Verfiigung
gestellt. In beiden Féllen miissen wiederum Maoglichkeiten geschaffen werden, um die
Simulationen zu koppeln und auszufiithren.

Schlussfolgerung Die Verfolgung eines solch agilen Ansatzes, wie er in der Standardisie-
rung des MTP Anwendung findet, hat Geschwindigkeitsvorteile und die Ergebnisse sind
belastbarer, da bereits Prototypen bestehen. Es muss jedoch mit Anderungen umgegan-
gen werden, die wahrend der Iterationen und auch nachfolgend vorgenommen werden. Ziel
muss es daher sein, stets ein konsistentes Gesamtgefiige der einzelnen Richtlinienblétter
der Serie zu erreichen. Hierdurch entstehen mehrere Versionen eines MTP, die jeweils
einen Entwicklungsstand kennzeichnen und in denen unterschiedliche Aspekte bereits
verfiighar sind. Ebenso kann es vorkommen, dass nicht alle Hersteller mit der gleichen
Geschwindigkeit auf die Anderungen und Erweiterungen in den Richtlinien reagieren kén-
nen, wodurch es vorkommen kann, dass unterschiedliche Versionen des MTP am Markt
angeboten werden. Hierfiir werden Migrationsstrategien benotigt, um beispielsweise ein
bestehendes MTP einer bestimmten Version auf eine aktuelle zu migrieren.

46

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

3.1.4 Anforderungen

Nachfolgend werden die in den vorangegangenen Abschnitten aufgenommenen Anfor-
derungen tabellarisch in Tabelle 3.1 dargestellt. Jeder Anforderung wird dabei ein
eindeutiger Identifikator zugeordnet. Dieser dient im weiteren Verlauf der Abkiirzung
der Beschreibung und der Identifizierung innerhalb des Dokuments. Die Analyse der
beiden Anwendungsfille zeigt, dass die allgemein aufgenommenen Anforderungen die
Problemstellungen der Anwendungsfille bereits abdecken, wie in Tabelle 3.2 dargestellt.
Daher ist keine Erweiterung der Anforderungen notwendig.

In Tabelle 3.2 ist des Weiteren dargestellt, durch welchen Anwendungsfall welche
Anforderungen abgedeckt sind. Anforderungen, die direkt aus einem Anwendungsfall
abgeleitet werden konnen, sind mit v markiert und Anforderungen, die nicht auf den
Anwendungsfall zutreffen, sind mittels X beschriecben. In Klammern ist die Markierung
angegeben, wenn es sich bei der Anforderung um eine allgemeine Anforderung han-
delt, die jedoch nicht im ersten Schritt aus dem jeweiligen Anwendungsfall abgeleitet
beziehungsweise ausgeschlossen werden kann.

Zusammenfassend kann festgehalten werden, dass Anforderungen des Nutzungskontex-
tes vor allem in Bezug auf die Co-Simulation zutreffen, da es sich dabei iiberwiegend
um kollaborative Szenarien handelt, wohingegen sich die Migration von MTP-Versionen
im ersten Schritt auf die Migrationsmechanismen und weniger auf den Nutzungskontext
bezieht. Bei A-101 handelt es sich um eine generelle Anforderung, die beiden Anwen-
dungsfillen zugeordnet werden kann. Die restlichen Anforderungen treffen jeweils auf
beide Anwendungsfille zu, wobei der Fokus bei der Durchfiihrung von Evolutionen
bei der Co-Simulation vorrangig auf Verbindungen auf Instanzebene liegt und bei der
Modularisierung auf Typenmodellanderungen. Es ist jedoch nicht auszuschlieBen, dass
jeweils weitere Anderungen auf Instanz- beziehungsweise Typenebene auftreten.

Tabelle 3.1: Anforderungszusammenfassung

ID Anforderung Beschreibung

A-100 Nutzungskontext

A-101 Selbstbeschreibungs- Die Nutzung des Systems soll unabhéingig
féhigkeit des Systems von Vorkenntnissen von unterschiedlichen
Nutzern genutzt werden konnen.
A-102 Rollenmanagement fiir Das System unterstiitzt die Verwaltung und
Nutzer Nutzung von unterschiedlichen Rollen, die
am Evolutionsprozess beteiligt sind.
A-103 Zugriffsmanagement mit Beschrankung von Zugriffsrechten und Ver-
Rechtevergabe waltung von Rechten fiir Nutzer, Nutzergrup-

pen und Nutzerrollen.

47

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

Tabelle 3.1: Anforderungszusammenfassung (Fortsetzung)

ID

Anforderung

Beschreibung

A-104

Umsetzung von Freigabe-
prozessen

Moglichkeit der Etablierung von Freigabepro-
zessen mit vorher durchzufithrenden Reviews
durch Kurator. Bereitstellung von zugehori-
gen Nutzerschnittstellen zur Unterstiitzung
des Kurators und persistentem Reviewpro-
zess mit der Moglichkeit der zeitweisen Un-
terbrechung.

A-202

A-203

A-204

Anderungsmanagement

Nachvollziehbarkeit
Anderungen

von

Zusammenfithrung diver-
gierter Entwicklungszwei-

ge

High-Level-Changes

Semantische Beschreibung
des Revisionsmodells

Anderungen miissen stets nachvollziehbar
gespeichert werden und jeweils zugreifbar
sein. Mechanismen etablierter Revisionsver-
waltungssysteme, wie Entwicklungszweige
und Releases, missen unterstiitzt werden
und einzelne Revisionen miteinander ver-
gleichbar sein.

Divergierte Entwicklungszweige miissen zu-
sammengefithrt werden kénnen. Dabei miis-
sen Konflikterkennung und -l6sung unter-
stiitzt werden.

Atomare Anderungen miissen zu High-Level-
Changes abstrahiert werden kénnen, um die
Semantik der Evolution darstellen zu kénnen
sowie die Zusammenfithrung von divergierten
Entwicklungszweigen zu unterstiitzen.

Das Revisionsmodell muss vollsténdig se-
mantisch beschrieben werden. Zu Revisio-
nen muss Metainformation anlegbar sein, wie
zum Beispiel Kommentar, Ersteller, Vorgan-
gerrevision und Abwéartskompatibilitét.

48

Evolution

Umsetzung von (Co-)Evo-
lutionsstrategien

216.73.216.60, am 24.01.2026, 01:46:48. @
m

Die (Co-)Evolutionsstrategien miissen so um-
gesetzt werden, dass Modellrelationen beach-
tet und zugehorige Auswirkungen propagiert
werden.

geschitzter Inhalt.

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.1 Anforderungsanalyse

Tabelle 3.1: Anforderungszusammenfassung (Fortsetzung)

ID

Anforderung

Beschreibung

A-302

A-303

Semantische Beschreibung
der (Co-)Evolutionsstrate-
gien

Vollstandigkeitspriifung
der Evolutionsschritte

Angewendete (Co-)Evolutionsstrategien und
deren zugrunde liegende Evolutionsschritte
mit den zugehorigen Regelsétzen miissen se-
mantisch beschrieben sein und in der Revisi-
onshistorie referenziert werden.

Vor der Anwendung von (Co-)Evolutionss-
trategien muss tiberpriift werden, ob alle zu-
grunde liegenden Anderungen der Revisions-
historie abgedeckt werden.

A-402

Semantische ~ Modellbe-

Semantische Beschreibung
der revisionierten Modelle

Semantische Beschreibung
von Modellrelationen

Die revisionierten Modelle miissen seman-
tisch beschrieben sein. Hierfiir kénnen
Informations- und Metamodelle genutzt wer-
den.

Verbindungen zwischen und innerhalb von
Modellen miissen explizit dargestellt und se-
mantisch beschrieben sein.

A-502

Qualitatsattribute

Transparente und automa-
tische Berechnung

Unterstiitzung der Integra-
tion zusatzlicher Qualitits-
attribute

Die Umsetzung der Anforderungen soll trans-
parent erfolgen, wobei die Nutzer keine Rein-
terpretationen ihrer Aktionen bemerken sol-
len und nicht fiir die Analyse von durchge-
fithrten Anderungen unterbrochen werden.

Zuséatzliche Qualitatsattribute von Modellen
sollen integriert werden kénnen, um diese
nach der Durchfithrung von Anderungen prii-
fen und auswerten zu konnen. Beispiele sind
Konsistenz, Kompatibilitat und Vollstdndig-
keit.

216.73.216.60, am 24.01.2026, 01:46:48. @
m

49

geschitzter Inhalt.

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

Tabelle 3.2: Abgedeckte Anforderungen pro Anwendungsfall

Co-Simu- Modularisier-

Anforderungen lation ung
A-101 Selbstbeschreibungsf. 2)
éﬁ % A-102 Rollenmanagement v (X)
;; é A-103 Zugriffsmanagement v (X)
A-104 Freigabeprozesse 4 (X)
- A-201 Nachvollziehbarkeit v v
E bgp A-202 Zusammenfithrung v v
;% é A-203 High-Level-Changes v v
A-204 Revisionsmodell 2 ()
= A-301 Strategien v v
E A-302 Sem. Beschr. () ()
>
= A-303 Vollstéandigkeitsp. v v
§ ”E A-401 Rev. Modelle 2 ()
C% § A-402 Verbindungen v v
:% ;; A-501 Berechnung () 2
C% % A-502 Integration 4 4
50
e 167321000, an 2401202, 014845, Utsbomacch ucizi

https://doi.org/10.51202/9783186873101

3.2 Analyse bestehender Ansétze

3.2 Analyse bestehender Ansdtze

Im Folgenden werden bestehende Anséitze gegen die aufgenommenen Anforderungen
abgeglichen. Es werden dabei erste Ansétze fiir das Management von Evolution [Keh15;
Sto04; Ruh-+14; Biir+14], fir die Bereitstellung einer Integrationsplattform [KVN12]
und fir die Revisionsverwaltung [Noy+06; GHU14] vorgestellt. Hierzu erfolgt zuerst eine
Kurzdarstellung der jeweiligen Ansétze. Anschliefend werden die Ansétze in Tabelle 3.3

in Hinblick auf die Umsetzung der Anforderungen bewertet.

3.2.1 Dissertation Timo Kehrer [Keh15]

Kehrer [Keh15] stellt einen Ansatz zur Hebung von Modelldifferenzen auf ein Nutzerlevel
vor, um Modellierer beim Erkennen und Verwalten von Anderungen besser unterstiitzen
zu konnen. Kernelement sind sogenannte Editieroperationen, die in vielen Standardmo-
delleditoren oder Refactoringtools Verwendung finden. Grundlage fiir die Erkennung
dieser Editieroperationen ist eine formale Spezifikation der Operationen unter Nutzung
der Graphtransformationssprache Henshin® , die speziell fiir das Eclipse Modeling Frame-
work (EMF) entwickelt wurde. Des Weiteren werden die Low-Level-Changes benétigt,
anhand derer die Operationen erkannt werden. Diese Low-Level-Changes werden durch
Modellvergleich erzeugt. Der Ansatz wurde innerhalb von SiLift¥ umgesetzt.

Der Ansatz bietet eine gute Ubersicht zu den Grundlagen fiir die Erstellung von Re-
gelsitzen fir die Erkennung von High-Level-Changes. Der Einbezug von Modellhistorien
fiir die Erkennung wird nur im Ausblick aufgefithrt. Dies liegt auch daran, dass in dem
Konzept kein semantisches Revisionsverwaltungssystem vorgesehen ist. Es wird wiederum
im Ausblick darauf verwiesen, dass ein etabliertes System als Grundlage dienen soll. Hier-
durch wiirde jedoch die Semantik der Modellénderungen verloren gehen. Co-Evolutionen
werden ebenso nur in beschrénktem Umfang betrachtet. Es werden nur Propagierungen
von Modellanderungen an andere Varianten eines Modells beachtet, was einem einfachen
Patchverfahren entspricht, bei dem erkannte Editieroperationen an einem Modell ebenso
auf ein anderes angewendet werden.

3.2.2 Dissertation Ljiljana Stojanovic [Sto04]

In [Sto04] werden von Stojanovic Methoden und Tools fiir die Evolution von Ontologien
entwickelt. Insbesondere wird ein Prozess beschrieben, der eine effiziente Ontologie-
evolution erlaubt. Dieser besteht aus der Handhabung von Ontologiednderungen, der
Absicherung der Konsistenz von Ontologien unter Beachtung von Abhéngigkeiten und
unterstiitzt die Nutzer bei der Verwaltung von Anderungen. Des Weiteren werden dem
Nutzer Hinweise fiir ein kontinuierliches Ontologiereengineering gegeben. Besonderer
Wert wird auf die Anwendbarkeit der Ansétze im Semantic Web gelegt. Hierbei findet
vor allem die hohe Anzahl von Ontologien und deren physikalische Verteilung Beachtung.

Shttps://www.eclipse.org/henshin/ (besucht am 29.11.2020)
Dhttp://pi.informatik.uni-siegen.de/Projekte/SiLift/ (besucht am 29.11.2020)

51

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

Die Implementierung erfolgt innerhalb vom Karlsruhe Ontology and Semantic Web
framework (KAON)®).

Diese Arbeit stellt neben sogenannten Elementardanderungen und daraus zusammen-
gesetzten Anderungen auch eine Evolutionsontologie dar, die die durchgefithrten An-
derungen semantisch fiir jede Ontologie beschreibt. Hierbei handelt es sich um Logs,
die gespeichert werden. Diese sind dhnlich zu einem Revisionsverwaltungssystem, wobei
grundlegende Funktionalitaten, wie die Zusammenfithrung von divergierten Zweigen
oder die Erstellung von Versionen, nicht betrachtet werden. Evolutionen sind nur auf
Ontologieebene umgesetzt, wenn es sich um Relationen zwischen Ontologien handelt.
Das Instanzniveau wird daher nicht weiter betrachtet. Die beschriebenen High-Level-
Anderungen sind insbesondere fiir das KAON umgesetzt, jedoch ist eine Abbildung der
Ansétze auf beispielsweise die OWL nicht realisiert. Die Implementierung kann aber mit
hohen Datenmengen umgehen. In Bezug auf die Anforderungen im Bereich des Nut-
zungskontext werden keine Nutzerrollen, keine Zugriffsrechte und keine Freigabeprozesse
betrachtet.

3.2.3 SecVolution

SecVolution [Ruh+14; Biir+14] ist ein modellbasierter Ansatz aus dem Bereich der
Sicherheit von Informationssystemen. Ziel ist es, die Sicherheit eines Informationssystems
stets zu gewdhrleisten, auch dann, wenn Anderungen in der Umgebung des Systems
die Sicherheit gefihrden. Auf Basis der Anderungen und der Nutzung von internen und
externen Wissensquellen erfolgt eine Anpassung der entsprechenden Softwaremodelle des
Informationssystems, um das Sicherheitslevel des Systems wiederherzustellen. Hierfiir
werden Mechanismen der Co-Evolution angewendet.

Der grundlegende Informationsfluss im SecVolution-Ansatz ist in Abbildung 3.8 darge-
stellt. Anderungen in der Umgebung werden verfolgt und daraus notwendige Anpassungen
an den Systemmodellen berechnet, die mittels Co-Evolutionen umgesetzt werden. Basis
bildet hierfir das Security Maintenance Model, da dieses zum einen beschreibt, wie
sich das sicherheitsrelevante Wissen weiterentwickeln kann und wie zum anderen die
Co-Evolution der auf diesem Wissen aufbauenden Modelle durchzufithren ist. Da die
Anderungen als gegeben angenommen werden, ist in diesem Ansatz kein Revisions-
verwaltungssystem integriert. Die durchzufiihrenden Co-Evolutionen beziehen sich auf
Typ-Instanz-Beziehungen, wobei Abhéngigkeiten zwischen unterschiedlichen Modellen
keine Beachtung finden. Die durchgefiihrten Evolutionen sollen jedoch semantisch be-
schrieben werden. In Bezug auf die Anforderungen im Bereich des Nutzungskontext
werden Nutzerrollen aufgefithrt, wie in Abbildung 3.8 dargestellt, jedoch werden Zugriffs-
rechte und notwendige Freigabeprozesse nicht explizit aufgefiihrt.

5http://kaon2.semanticweb.org (besucht am 29.11.2020)

52

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.2 Analyse bestehender Ansétze

Security
Maintenance
Model (SMM)

Tws& N\, .o AModelsMM Ny - TT T
Regulations

oo

®,

) ‘74 Sec. Expert

'
1
v
'
)
1
'
'
\ ' '

Attackers “~. seq Soolt ' e
) \
(o0) '
=, ' g

Developers & ~~ - - White |

Monitor Change Security

N /,|W
i 4 = Change k-~
N = Evol s
- Evolution 71’ Maintenance Model SCK System Model
{0 0N .. - Elicitation & ESR Formalize Input ; Determine Co-Evol. & < |
{ I Classify Input & Compute Evolutions \‘ Model Sys. Wodel of
\\W ; \ B Secure
Stakeholders ESR Information
Ord. £ System

Operator

5 —>Reas
s Elicitation ; :
Specification Techniques (To Development & Maintenance) UMLsec

Abbildung 3.8: Informationsflussdiagramm des SecVolution-Ansatzes [Biir+14, S. 3]

3.2.4 Simantics

Das in [KVN12] vorgestellte Simantics® ist eine offene Plattform die die Integration
von unterschiedlichen Tools ermoglicht. Ziel ist es, eine integrierte Umgebung fiir die
Modellierung und Simulation auf Basis einer vollstiandig semantischen Modellierung auf-
zubauen. Die Integration der spezifischen Applikationsmodelle erfolgt unter Verwendung
von ontologiebasierten Abbildungen und Transformationen, die jeweils innerhalb des
Frameworks definiert werden. Zum Einsatz kommt ein eigens entwickelter Triple Store,
der speziell auf die hohen Anforderungen an das Management von groffen Datenséitzen
und eine unterliegende Revisionskontrolle zugeschnitten ist.

Da es sich bei diesem Ansatz vorrangig um eine Integrationsplattform handelt, werden
keine Mechanismen zur Evolution der integrierten Modelle beschrieben. Die Nachvollzieh-
barkeit ist durch die in den Triple Store eingebauten Revisionsverwaltungsfunktionalitaten
gegeben, wobei jedoch keine High-Level-Changes beschrieben werden. Die Modellierung
basiert auf einer eigens entwickelten Beschreibungssprache fiir Ontologien, die Layer0
genannt wird und zu Teilen Gemeinsamkeiten mit OWL hat. Einzelne Modelle kénnen
des Weiteren miteinander verlinkt werden. Besonderes Augenmerk wird auf die Definition
der Rollen gelegt, die die Plattform nutzen. Derzeit existieren jedoch keine Prozesse zur
Freigabe von Ontologien oder fiir die Einschrinkung von Zugriffsrechten der jeweiligen
Rollen.

3.2.5 Changes Tab

Noy et al. [Noy+06] haben ein System fiir die Unterstiitzung der Ontologieevolution ent-
wickelt, dessen zugrunde liegende Architektur in Abbildung 3.9 dargestellt ist. Zentrales
Element ist die Change and Annotation Ontology (CHAQO), mittels derer alle Anderungen
an einer Ontologie beschrieben werden kénnen. Anderungen kénnen entweder direkt
wahrend der Bearbeitung oder durch den Vergleich von zwei Versionen aufgenommen

S https://www.simantics.org/ (besucht am 29.11.2020)

53

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

werden. Das Framework ist als Plug-in mit dem Namen Changes Tab” fiir die Ontolo-
gieentwicklungsumgebung Protégé® realisiert und besteht aus zwei Teilen. Zum einen
aus einem Plug-in, um Anderungen verwalten zu kénnen und mithilfe dessen die Listen
der Anderungen eingesehen, Annotationen vorgenommen und Anderungen innerhalb der
CHAO aufgenommen werden konnen. Zum anderen wird mittels des PROMPT Plug-ins
der Vergleich von zwei Versionen und die Akzeptierung und Ablehnung von einzelnen
Anderungen ermoglicht.

Bei diesem System handelt es sich um eine reine Anderungsverfolgung, die keine weitrei-
chenderen Revisionsverwaltungsfunktionalitdten, wie beispielsweise Entwicklungszweige,
unterstiitzt. Die aufgenommenen Anderungen werden jedoch vollstindig semantisch
durch die CHAO beschrieben und koénnen des Weiteren gruppiert werden. Hierdurch
entstehen, neben den bereits aus den Editieroperationen in Protégé abgeleiteten, weitere
High-Level-Changes, die wiederum auch annotiert werden kénnen. Der Nutzer wird bei
seiner Arbeit unterstiitzt, da Bearbeitungsschritte unterbrechbar sind und der aktuelle
Stand jeweils mittels der CHAO beschrieben ist, was eine spétere Fortsetzung ermoglicht.
Weiterhin ist der Aufbau modular, wodurch eine Erweiterbarkeit gegeben ist. Als Beispiel
kann ein Kurator auf Basis der aufgenommenen und semantisch beschriebenen Ande-
rungen analysieren, welche Personen welche Anderungen wann vorgenommen hat. Die
Anwendung von (Co-)Evolutionsmechanismen ist in diesem Framework nicht umgesetzt.
Rollen- und Zugriffsmanagement sowie Freigabeprozesse werden ebenfalls nicht beachtet.

has subprocess

s

produces produces produces

.“ input

/) le]
4 PromptDif
AN algorithm

. \

\\ produces i produces
Text file with “w ¥ \
changes J¥=- oyt .. B

Version - input
comparison

Abbildung 3.9: Komponenten des Frameworks zur Unterstiitzung der Ontologieevolution in
Protégé [Noy+06, S. 550]

Thttps:/ /protegewiki.stanford.edu/wiki/Changes_Tab (besucht am 29.11.2020)
8https:/ /protege.stanford.edu/ (besucht am 29.11.2020)

54

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.2 Analyse bestehender Ansétze

3.2.6 R43ples

Etablierte Revisionsverwaltungssysteme, wie git, SVN, CVS, Bazaar und Mercurial,
sind fiir die Revisionsverwaltung von Modellen nur bedingt nutzbar, da sie auf einer
Zeilenbasis beim Vergleich arbeiten. Die Beschreibung von Informationsmodellen erfolgt
hingegen meist in Sprachen, fiir die die interne Abfolge keine Rolle spielt. Beim zei-
lenbasierten Vergleich wiirden dann Anderungen erkannt werden, die keine Anderung
am Informationsmodell zur Folge haben. Als Beispiele konnen hierfir XML, OWL und
RDF aufgefiihrt werden. Fiir eine nachvollzichbare Speicherung von Anderungen an
Informationsmodellen miissen daher entsprechende Moglichkeiten geschaffen werden, die
diesen Herausforderungen begegnen kénnen. Beispiele dafiir sind bereits im Bereich des
Semantic Webs vorzufinden. Canova et al. [Can+15] gibt einen Uberblick zu bestehenden
Ansétzen und Implementierungen. Nur zwei der verglichenen Ansétze erlauben dabei
die Revisionsverwaltung in einer verteilten und semantischen Art und Weise, wie sie
im Bereich des Semantic Web notwendig ist. R43ples [GHU14; GHU16] ist eines dieser
beiden Systeme, wobei dieses zusitzlich eine vollstdndige semantische Beschreibung der
Revisionsverwaltung umsetzt. Diese ist im Ansatz R&Wbase [Van+13] nicht durchgingig
gegeben.

R43ples wurde in vorangegangenen Arbeiten entwickelt [Henl3; GHU14; GHU16]
und ermoglicht eine Revisionsverwaltung im Semantic Web. Hierbei verfolgt es einen
vollsténdig semantischen Ansatz fiir die Beschreibung der Revisionsinformation in Linked
Data und basiert zu Teilen auf der Arbeit von Vander Sande et al. [Van+13]. Das System
agiert als ein Proxy, der vor bestehende Triple Stores geschaltet werden kann, um die
Revisionsverwaltungsfunktionalitét den entsprechenden Triple Stores hinzuzufiigen. Als
Interface fir die Interaktion werden erweiterte SPARQL 1.1 Funktionalititen verwendet.
Die grundlegende Architektur ist in Abbildung 3.10 dargestellt. In weiteren Arbeiten
wurde R43ples bereits um erste Ansatze fir die Zusammenfihrung von divergierten
Zweigen erweitert [Henl4; HGU16], wobei derzeit keine Mechanismen zur Aggregation
von Anderungen zu semantischen High-Level-Changes angewendet werden. Da es sich
bei R43ples um ein reines Revisionsverwaltungssystem handelt, sind keine Mechanismen
zur (Co-)Evolution umgesetzt. Ebenso besitzt es derzeit kein Rollen- oder Zugriffsma-
nagement. Hier kann nur auf proprietédre Losungen der angeschlossenen Triple Stores
zuriickgegriffen werden. R43ples bietet neben dem bereitgestellten SPARQL-Endpoint
auch eine Weboberflidche zur Bedienung an.

p—

SPARQL LD
R43ples [Endpoint l E Client
I

Abbildung 3.10: Grundlegende Architektur des semantischen Revisonsverwaltungssystems
R43ples [GHU14, S. 5]

55

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3 Analyse

3.2.7 Zusammenfassung

Die in den vorangegangenen Abschnitten vorgestellten Ansétze werden in Tabelle 3.3
anhand der aufgenommenen Anforderungen gegeniibergestellt. Die Bewertungskriterien
teilen sich in vollsténdige (v'v), teilweise (v/) oder keine Erfillung (X) der jeweiligen
Anforderung ein.

Zusammenfassend lédsst sich feststellen, dass keiner der Ansétze alle Anforderungen
abdeckt. Im Bereich des Nutzungskontextes werden Zugriffe und Freigabeprozesse in
keinem der Ansétze beschrieben. Diese Problematiken werden meist nur im Ausblick
angesprochen. Hingegen bieten alle Ansétze ein Nutzerinterface, was den Nutzer bei
seiner Arbeit unterstiitzt und es werden auch teilweise die beteiligen Rollen definiert.
Im Bereich der Anderungsmanagements und der Evolution ist festzuhalten, dass zu-
meist entweder Anforderungen im Bereich der Revisionsverwaltung oder im Bereich der
Evolution umgesetzt werden. Eine integrierte Nutzung von Revisionsverwaltung und
Evolutionsmechanismen ist hochstens zu Teilen umgesetzt. Die Modelle werden in allen
Anséatzen semantisch beschrieben und auch zusatzliche Qualitéitsattribute sind entweder
bereits umgesetzt oder konnen integriert werden. Im Bereich der Revisionsverwaltung
von Modellen ldsst sich ein deutlicher Fortschritt von reiner Anderungsverfolgung zu
Systemen mit Revisionsverwaltungsfunktionalititen erkennen, wie sie aus etablierten
Systemen bekannt sind.

56

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

3.2 Analyse bestehender Ansétze

Tabelle 3.3: Spiegelung der Anforderungen an existente Ansétze

216.73.216.60, am 24.01.2026, 01:46:
m

.) e
- &
= — o= 0
o 8 '; 2 a 0
X oo o3 2 05 £
g 4 > & 2 &
L2 & ¥ g 2 3J
Anforderungen A A ®» &% O g
A-101 Selbstbeschreibungsf. vv vv v VvV V /
é‘jg A-102 Rollenmanagement v X /WX X
ISl
= £ A-103 Zugriffsmanagement X X X X X X
A-104 Freigabeprozesse X X X X X X
~ A-201 Nachvollziehbarkeit X v X v v
.
?g A-202 Zusammenfithrung v X X X X v
o oD
g =
%5 é A-203 High-Level-Changes vv v V X / X
A-204 Revisionsmodell X v X X v v
o A-301 Strategien v v v X x X
:;: A-302 Sem. Beschr. X X v X X X
=
S|
A-303 Vollstandigkeitsp. v v v X X X
=< A-401 Rev. Modelle A A A A S
. DO
=
2 = A-402 Verbindungen X v X vV X X
z@;; A-501 Berechnung VA A Y
5)*5 A-502 Integration v v v v v X
:48. @ (geschitzter Inhalt.

mit, flr oder in Ki-Syster

57

https://doi.org/10.51202/9783186873101

3 Analyse

3.3 Analyseergebnisse und Priorisierung

Die vorangegangene Analyse zeigt die notwendigen Anforderungen an ein System, um
mit Anderungen in einer kollaborativen Umgebung umgehen zu kénnen und sowohl die
Anderungen nachvollziehbar zu dokumentieren wie auch die automatische Evolution
zu unterstiitzen. Es wird ersichtlich, dass nur eine integrierte Losung aus Revisionsver-
waltungsfunktionalititen und den Evolutionsmechanismen diese Anforderungen erfiillen
kann. Hierdurch kénnen Nutzer bestmdéglich bei ihrer Arbeit unterstiitzt werden und die
Moéglichkeit, dass Fehler auftreten, wird verringert. Die Herausforderungen, die durch
die beiden Anwendungsfille beschrieben werden, bestétigen die allgemein aufgenomme-
nen Anforderungen an ein solches System. Durch die Spiegelung der Anforderungen an
existente Ansitze wird des Weiteren die Notwendigkeit eines solches RMS nachgewiesen,
da keines der bestehenden Systeme alle Anforderungen erfiillt und die Integration von
Revisionsverwaltung und Evolution bisher nur wenig Betrachtung findet.

Fiir die Umsetzung eines RMS muss im ersten Schritt ein Rahmen geschaffen werden,
in dem die einzelnen Anforderungen umgesetzt werden kénnen. Die zentrale Anforde-
rung ist die semantische Modellbeschreibung auf deren Basis wiederum weiterfiihrende
Anforderungen umgesetzt werden kénnen. So kann das Anderungsmanagement darauf
agieren, um Basisrevisionskontrollfunktionalititen sowie weiterfiihrende Mechanismen,
wie die semantische Aggregation zu High-Level-Changes und die Zusammenfithrung von
divergierten Entwicklungszweigen, anzubieten. Die Beschreibung der durchgefiihrten
Aktionen erfolgt dabei ebenfalls semantisch. Fiir die Etablierung von Evolutionsme-
chanismen spielt wiederum das Anderungsmanagement eine groe Rolle, da auf dessen
Basis Anderungen detektiert und notwendige Evolutionen abgeleitet werden konnen.
Durchgefiihrte Evolutionsschritte kénnen dann im Anderungsmanagement semantisch
beschrieben abgelegt werden. Alle weiteren Anforderungen, wie der Nutzungskontext
und weitere Qualitatsattribute, sind zusatzliche Funktionalitdten. Diese miissen ebenfalls
fiir die Realisierung eines RMS, das allen aufgefithrten Anforderungen gentigt, umgesetzt
werden. Im weiteren Verlauf dieser Arbeit spielen diese zusitzliche Funktionalitdten daher
eine untergeordnete Rolle, da sich auf die grundlegenden Mechanismen eines RMS be-
schrénkt wird und die Zusatzfunktionen oft auch an eine technische Umsetzung gekoppelt
sind. Die grundlegenden Beschreibungen werden im Folgenden jedoch technologieunab-
hingig formuliert, um ein grotmégliches Einsatzspektrum und die Ubertragbarkeit auf
unterschiedliche Einsatzszenarien zu ermoglichen.

58

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Auf Basis der erhobenen Anforderungen wird in diesem Abschnitt ausgehend vom Le-
benszyklus von Informationsmodellen ein Konzept fir ein RMS vorgestellt. Mittels eines
Komponentendiagramms werden die notwendigen Komponenten und deren Interaktions-
punkte dargestellt. Im Folgenden werden, die fiir die einzelnen Komponenten notwendigen
mathematischen Definitionen und semantischen Beschreibungen technologieunabhangig
beschrieben, was wiederum die Grundlage fiir notwendige Algorithmen der Umsetzung
bildet.

4.1 Lebenszyklusmodell fiir Informationsmodelle

Informationsmodelle unterliegen, wie auch Software oder Produkte im Allgemeinen,
einem Lebenszyklus. Aus der Softwareentwicklung heraus sind bekannte Vertreter das
Wasserfallmodell oder agile Softwareentwicklungsmodelle. Ebenso stellt die DIN EN 62890
[DIN17] den Lebenszyklus von Produkten und Systemen dar, wobei hierbei der Fokus
auf der Mess-, Steuer- und Regelungstechnik im industriellen Umfeld liegt. Daraus ist
erkennbar, dass es sich bei Lebenszyklusmodellen meist um doménenspezifische Modelle
handelt. Im Bereich der Informationsmodelle existieren ebenso Ansétze wie unter anderem
im Bereich von Goverment Linked Data (GLD) [W3C12], Linked Open Data (LOD)
[Aue+12] oder dem Ontologie- bezichungsweise Wissensmanagements [Sur+08; SSS04].

Abbildung 4.1 zeigt ein aus den bestehenden Ansitzen heraus abgeleitetes verallgemei-
nertes Lebenszyklusmodell fiir Informationsmodelle, das bereits in [HGU18] veréffentlicht
ist. Dieses bildet auf der einen Seite die durchlebbaren Phasen eines Informationsmodells
ab. Auf der anderen Seite stellt es aber auch die Elemente der Revisionsverwaltung und
der Sicherheit dar, die ein Informationsmodell tiber den gesamten Lebenszyklus hinweg
begleiten.

Der Lebenszyklus beginnt, wie auch in der Software- oder Produktentwicklung, mit
einer Erhebung von Anforderungen, die in der anschliefenden Erstellungsphase ent-
sprechend umgesetzt werden. Es folgt die Phase der Veroffentlichung, durch die die
Modelle fir weitere Anwendungen nutzbar werden und beispielsweise Datenmodelle auf
Basis eines veroffentlichten Informationsmodells erzeugt werden kénnen. In der Phase
der Nutzung wird das Informationsmodell produktiv eingesetzt, wobei aufgrund der
Nutzung oder auch durch duflere Einfliisse Anforderungsinderungen beziehungsweise
Erweiterungsbedarf entsteht. Beispiele hierfiir sind unter anderem in [HKB17] fir das
UML-Metamodell oder BPMN aufgefiihrt. Die notwendigen Anderungen resultieren dann
in einer Evolution des Informationsmodells, um eine semantische Erosion von beste-
henden Definitionen vorzubeugen. Der Evolutionsprozess kann sich in der Nutzungszeit
mehrfach wiederholen. Die Auflerdienstsetzung ist die letzte Phase im Lebenszyklus eines
Informationsmodells und kann sich beispielsweise durch eine Archivierung der Daten-

59

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Archivierung /

Vernichtung Anforderungen

Revisions-

verwaltung /
Sicherheit

Nutzung Erstellung

Evolution

Veroffentlichung

Abbildung 4.1: Allgemeines Lebenszyklusmodell von Informationsmodellen (veréffentlicht in
[HGU18, S. 49])

und Informationsmodelle oder eine vollstandige Vernichtung der Inhalte auszeichnen. In
der Praxis werden Informationsmodelle jedoch vorrangig weiterentwickelt und an die
sich andernden Anforderungen angepasst. Eine vollstandige Auflerdienstsetzung wird nur
im Zusammenhang mit sehr disruptiven Anderungen der Anforderungen eintreten. In
diesem Fall wird dann auf Basis der neuen Anforderungen ein neues Informationsmodell
entwickelt, wobei die Erfahrungen aus dem alten Modell in den meisten Fallen einflieflen.

Sowohl die Revisionsverwaltung als auch die Sicherheit der Informationsmodelle sind
wéhrend aller Phasen von zentraler Bedeutung. So werden durch eine Revisionsverwaltung
Anderungen an den Modellen stets nachvollziehbar gespeichert, was die Moglichkeit des
Riicksprungs auf vorangehende Versionsstande ermoglicht. Ebenso kénnen verschiedene
Versionen und Varianten gepflegt und kollaborativ weiterentwickelt werden. In diesem
Zusammenhang und auch wihrend der Nutzung eines Modells spielt die Zugriffssicher-
heit eine wichtige Rolle. So miissen geeignete Mafinahmen ergriffen werden, um den
unerlaubten Zugriff auf beispielsweise abgeleitete Datenmodelle oder die zugehorigen In-
formationsmodelle einzuschrianken. Dies ist notwendig, da in diesen sensible Kundendaten
oder das eigene Know-how enthalten sein kénnen.

60

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.2 Revision Management System

4.2 Revision Management System

Die Umsetzung der aufgenommenen Anforderungen erfordert, wie bereits in Abschnitt
3.3 aufgefiihrt, die Konzeption eines Systems, das sowohl Anderungen nachvollzichbar
speichern kann, als auch die Evolution von Informations- und Datenmodellen unter-
stitzt. Dieses System wird im Folgenden als RMS bezeichnet, da es iiber eine reine
Revisionsverwaltung hinausgeht und erweiterte Funktionen fiir den Umgang mit Anfor-
derungsénderungen in Informations- und Datenmodellen anbietet.

4.2.1 Komponenteniibersicht

Das RMS besteht im Wesentlichen aus drei Komponenten, deren Aufteilung an das
Model-View-Controller-Prinzip aus der Softwareentwicklung angelehnt ist. Abbildung
4.2 zeigt die resultierenden grundlegenden Zusammenhange zwischen den Komponenten.
Eine vollstédndige Darstellung aller Zusammenhénge ist in Abbildung A.1 dargestellt.

Die Komponente DataManagement besteht aus dem eigentlichen Datenspeicher und ei-
nem Revisionskontrollsystem, das auf diesen Datenspeicher zugreift und alle Anderungen
nachvollzichbar semantisch beschreibt. Durch diese Komponente werden die unter A-
200 zusammengefassten Anforderungen umgesetzt. Das Revisionskontrollsystem schlief3t
dabei sowohl die Basisrevisionskontrollfunktionalitiaten wie die Erstellung von neuen Ent-
wicklungszweigen, neuen Tags und neuen Commits, als auch erweiterte Funktionen, wie
die Zusammenfiithrung divergierter Entwicklungszweige und die semantische Aggregation
von Anderungen, ein. Innerhalb von DataManagement kénnen sowohl Daten- als auch
Informationsmodelle revisioniert werden, was der Umsetzung von Anforderung A-401
entspricht. Control iibernimmt auf Basis der Funktionalitidten von DataManagement den
Umgang mit den Anderungen in Bezug auf die Evolution von verbundenen Modellen, was
der Realisierung der unter A-300 kategorisierten Anforderungen entspricht. Die zugrunde
liegenden Verbindungen (siehe Anforderung A-402), auf deren Basis die Evolution ausge-
fiihrt werden kann, werden durch den ConnectionManager beschrieben, wobei dessen
Datenhaushalt auch im DataManagement vorgehalten wird. Zur Einschrénkung von
Zugriffsrechten auf die einzelnen Komponenten existiert des Weiteren der PermissionAnd-
ApprovalProcessManager, hiermit konnen die Anforderungen A-102 und A-103 umgesetzt
werden. Mit dessen Hilfe konnen aulerdem Freigabeprozesse (Anforderung A-104) reali-
siert werden. Das Userlnterface ermoglicht eine grafische Nutzung der Funktionalitédten
des RMS und stellt damit die Grundlage fiir die Realisierung von Anforderung A-101
bereit. Zusatzliche Qualitatsattribute, wie in der Anforderungssammlung A-500 gefordert,
konnen auf Basis des Gesamtsystems und der bereitgestellten semantischen Beschreibung
realisiert werden.

61

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

«component»
RevisionManagementSystem

«component»
Userinterface

5
[]

«component»
Control

«delegaten «delegate»

Tcomponent»
EvolutionEngine

«component»
ConnectionManager

«delegate»
«delegate»

«delegate»

_C

«delegaten

«delegate»

«component»
PermissionAndApproval-
ProcessManager

D

=>0—

«component» $:|

DataManagement

«delegate»

«component» El

RevisionControl-

System
]

«component» E]

DataStorage

(|

T—0—

62

Abbildung 4.2: UML-Komponentendiagramm des RMS

216.73.216.60, am 24.01.2026, 01:46:48. @
m mit, flr oder in Ki-Syster

geschitzter Inhalt.

https://doi.org/10.51202/9783186873101

4.2 Revision Management System

4.2.2 Data Management

Die DataManagement-Komponente setzt sich in der ersten Ebene aus zwei Komponen-
ten zusammen, wie in Abbildung 4.3 dargestellt. Hierzu gehoren der DataStorage, der
den gesamten Datenhaushalt des RMS vorhélt, und das RevisionControlSystem, das
die vollstédndige Revisionierung der Daten vornimmt. Diese Komponente ist wiederum
untergliedert in mehre Teilkomponenten, die die Basisrevisionskontrollfunktionalitdten
(BasicRevisionControl, Anforderung A-201), die Zusammenfithrung von divergierten
Entwicklungszweigen (MergeManagement, Anforderung A-202) und die Aggregation von
Anderungen auf eine semantisch nachvollziehbare Ebene (HighLevelChangeAggregation,
Anforderung A-203) realisieren. Die Basisfunktionalitiaten der Revisionsverwaltung bilden
dabei die Grundlage fiir erweiterte Funktionalititen wie die Zusammenfithrung von
divergierten Entwicklungszweigen und die Umsetzung von Aggregationsmechanismen.
Die Zusammenfiihrung erfordert dabei einerseits die Analyse der Historie der zusam-
menzufithrenden Zweige und andererseits muss das Ergebnis der Zusammenfithrung
wiederum semantisch beschrieben abgelegt werden. Gleiches gilt fiir die Aggregation, um
Anderungen iiber mehrere Revisionen hinweg nachzuvollziehen und semantisch zu aggre-
gieren. Dieser Mechanismus bendotigt einen Regelsatz, auf dessen Basis die Aggregation
vollzogen werden kann. Dieser wird durch den HLCAggRuleManager bereitgestellt, wobei
der zugrunde liegende Datenhaushalt ebenfalls revisioniert abgelegt werden kann. Die
HLCAggMechanism-Komponente iibernimmt die Auswertung der Regelsétze und wendet
diese auf die zu analysierenden Revisionsinformation an. Die Ergebnisse dieser Analyse
koénnen entweder direkt im Datenspeicher semantisch und revisioniert abgelegt oder
anderen Komponenten zur Weiterverarbeitung zur Verfigung gestellt werden. Innerhalb
des DataManagements konnen diese fiir die Zusammenfithrung von Entwicklungszweigen
herangezogen werden, um beispielsweise eine detaillierte Konfliktanalyse beziehungsweise
-behebung vornehmen zu kénnen.

Nach auflen stellt die DataManagement-KKomponente Schnittstellen fiir den revisionssi-
cheren Zugriff auf den Datenhaushalt, die Zusammenfiihrung von Entwicklungszweigen
und die Aggregation von Anderungen bereit. Benétigt wird eine Schnittstelle an ein
Autorisierungssystem, um einen Zugriffsschutz auf die gespeicherten Daten umsetzen zu
konnen.

63

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Functiopalities Functipnalities | B3sICRCF

«delegate»

«component»
DataManagement
«delegate»

Authorization

DataStorage

BasicRC-
Functionalities

«deleg

gate»

BasicRCF

RevisionControlSystem

«component»

«delegate»

L

 «delegaten

MergeF:

DataStorageAccess

L

MergeFunctionalities

HLCAggFunctionalities

—————=0—T

«delegate

«delegate»

L

e
BasicRCFunctionalities
«component»
MergeManagement
HLCAggFunctionalities BasicRCFunctionalities
«component» El

HighLevelChangeAggregation
«delegate»
«component»

HLCAggRuleManager

BasicRCF;

o

«delegate
HLCAggRules

HLCAggF

L

»

HLCAggMechanisms

A «delegaten

|

«delegate»

HLCAggF:

BasicRCFunctionalities

Abbildung 4.3: Ausschnitt der DataManagement-Komponente aus dem RMS

64

216.73.216.60, am 24.01.2026, 01
m

146:48. @

geschitzter Inhalt.
tr

mit, flir oder In KI-

https://doi.org/10.51202/9783186873101

4.2 Revision Management System

4.2.3 Control

In der ersten Ebene setzt sich die Control-Komponente, dargestellt in Abbildung 4.4, aus
drei Teilkomponenten zusammen. Die EvolutionEngine (Anforderung A-301) ist dabei
fiir die Umsetzung von Co-Evolutionen mittels der CoFEvolutionMechanisms-Komponente
verantwortlich. Fiir die Ausfithrung wird wiederum ein Regelsatz benétigt, der durch
eine entsprechende Komponente (EvoRuleManager) vorgehalten wird. Zusétzlich wer-
den Verbindungen innerhalb und zwischen Modellen durch eine separate Komponente
ConnectionManager (Anforderung A-402) bereitgestellt und zugreifbar gemacht, wodurch
sie der EvolutionEngine zur Verfiigung stehen und fir die Co-Evolutionen als Grund-
lage herangezogen werden konnen. Regelsiatze und die Ergebnisse der Co-Evolutionen
werden revisonssicher und semantisch beschrieben im DataManagement abgelegt. Die
EvolutionEngine hat des Weiteren Zugriff auf alle weiteren angebotenen Schnittstellen
des DataManagements, um beispielsweise bei Bedarf Entwicklungszweige automatisiert
zusammenzufiithren oder die aggregierten Anderungen als Grundlage fiir die Anwendung
der Regelsitze zu nutzen. Zugriffsbeschrankungen im RMS werden mittels des Permissio-
nAndApproval ProcessManagers realisiert. Dieser besitzt einen PermissionManager, der
fiir die Authentifizierung und Autorisierung von Nutzern verantwortlich ist. Daftir wird
eine Nutzerverwaltung bendtigt, die entweder intern vorgehalten wird oder iiber eine
weitere Schnittstelle eingebunden werden kann. Weiterhin ist eine ApprovalProcessMana-
ger-Komponente integriert, die die Realisierung von Freigabeprozessen im RMS verwaltet.
So konnen in dieser Komponente Abldufe geplant und entsprechende verantwortliche
Nutzerrollen zugeordnet werden. Hierfir wird wiederum Zugriff auf den Datenspeicher
benotigt, um zum Beispiel Vorgehens- und Reviewprozesse fiir die Zusammenfithrung
von divergierten Entwicklungszweigen zu definieren.

Die Control-Komponente stellt nach auflen Schnittstellen fiir Autorisierung, Authenti-
fizierung, Nutzerrollenverwaltung, Freigabeprozessmanagement sowie fiir die Verwaltung
von Verbindungen innerhalb und zwischen Modellen sowie fiir die Durchfithrung von
Co-Evolutionen zur Verfligung. Fiir die Realisierung dieser Schnittstellen werden Schnitt-
stellen auf die Funktionen und Daten des DataManagements benotigt.

65

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

A

App$al?rocess-
M

N Authentication
ConnectionManagement CoEvoFunctionalities Authorization UserAnd
— L — L L
«component» $:|
«delegate» Control
«delegate»
CoEvoFunctionalities
«component» El
EvolutionEngine
«delegaten EvoRules «component»
EvoRuleManager
CoEvoFunctionalities BasicRCFunctionalities
¢ El BasicRCF:
«delegate»
«delegate»
MergeFunctignalities HLCAggFuhctionalities
«delegate»
«delegaten
delegate
«celegaten «delegate» §
-
Mg—F‘*' HLChee- BaSiIEFé' Authofization
F F
Connection- la) o)
Functionalities | {J\
Connection- «delegate»
Management
Authengcation UserAnfiRole- ApproyalProcess-
Management Mandgement

«componenty
Connection-Manager

BasicRC-
Functionalities

«delegate»

«delegate»

«delegate»

Authorization

«component»

|_|_|

«delegate»

«component»
PermissionManager

UserAndRoleManagement

«component»

«delegate»

UserAndRole-
O Management

«delegate»

BasicRCF

ApprovalProcessManagement

BasicRCFunctionalities

«delegate»

HLCAgg-

MergeFunctipnalities Functionalities

BasicRCFunctionalities

Abbildung 4.4: Ausschnitt der Control-Komponente aus dem RMS

66

:48. 0

216.73.216.60, am 24.01.2026, 01:46:
m mit, flr oder in Ki-Syster

geschitzter Inhalt.

https://doi.org/10.51202/9783186873101

4.3 Formale Beschreibung verbindungsorientierter Modelle

4.2.4 User Interface

Das UserInterface, das in Abbildung 4.5 dargestellt ist, dient zur grafischen Konfiguration
des RMS. Fiir den Zugriff auf die RMS-Funktionalitdten muss sich ein Nutzer im ersten
Schritt authentifizieren. Je nach Nutzerrolle sind dann unterschiedliche Interaktionen mit
dem System moglich. Hierbei sind unterschiedliche Eingriffsarten und -tiefen fir die Nutzer
vorgesehen. So ist es auf der einen Seite moglich, die Basisrevisionskontrollfunktionalitaten
zu nutzen, um beispielsweise Anderungen an Modellen an das System zu iibertragen oder
Entwicklungszweige zusammenzufithren. Auf der anderen Seite konnen aber auch auf einer
abstrakteren Stufe Anderungen an den Modellen vorgenommen werden, um zum Beispiel
Verbindungen innerhalb oder zwischen Modellen grafisch zu editieren. Ebenso kénnen
vorgenommene Anderungen an abhingige Modelle co-evolviert werden. Je nach Rechten
des Nutzers konnen ebenso die Nutzer und Rollen verwaltet oder Freigabeprozesse
definiert oder verdandert werden. Durch eine grafische Représentation des Systems kann
der Nutzer das System zum einen an die gewiinschten Anforderungen anpassen und
zum anderen automatisiert durchgefiihrte Aktionen tiberpriifen und bestétigen oder
riickgingig machen.

«component» E

Userlinterface

]]]]]]
M.e gei) BasifFRC- CoHvo- Conngction- Authentication UserApdRole- Approval|Process-
Functiopalities Functignalities Functignalities Management Management Managpment

Abbildung 4.5: Ausschnitt der UserInterface-Komponente aus dem RMS

4.3 Formale Beschreibung verbindungsorientierter Modelle

Die Analyseergebnisse haben aufgezeigt, dass eine semantische Modellbeschreibung vorlie-
gen muss. Hierzu gehoren einerseits Informations- und Metamodelle (Anforderung A-401),
um die Semantik des jeweiligen Modells zu beschreiben, andererseits aber auch die Rela-
tionen innerhalb eines Modells oder zwischen unterschiedlichen Modellen (Anforderung
A-402). Die resultierenden Beschreibungen werden innerhalb des RMS in der Connec-
tionManager-Komponente vorgehalten. Bestehende Ansétze fokussieren sich entweder
vorwiegend auf formale Beschreibungen in Richtung von UML-Klassendiagrammen oder
in Richtung von Diagrammen, die die Darstellung von Komponenten- oder Zustandsdia-
grammen erlauben. Beispiele hierfiir sind unter anderem [Keh15], [Tap99] und [FMP99].
Im Folgenden wird eine abstrahierte formale Beschreibung auf Basis von Compound
Graphs eingefiihrt, die eine Ubertragung der darauf aufbauenden Beschreibungen auf
unterschiedliche Anwendungsbereiche ermoglicht.

67

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

4.3.1 Compound Graphs

Compound Graphs werden vorwiegend unbemerkt in unterschiedlichen Doménen verwen-
det, wie beispielsweise in UML-Diagrammen (zum Beispiel UML-Zustandsdiagrammen)
oder Schaltkreisdiagrammen. In der Literatur wird diese Art von Graphen vorrangig
fiir den Zweck des automatischen Layouts der visuellen Repriasentation von Diagram-
men genutzt. Dariiber hinaus eignet sich diese auch fiir die formale Beschreibung von
Zusammenhdangen in Informations- und Datenmodellen. Nachfolgend werden hierzu die
grundlegenden formalen Definitionen auf Basis von Sander [San05] dargestellt.

Ein Compound Graph G besteht aus einem einfach gerichteten Graphen G und einem
Baum 77, wie in Gleichung 4.1 dargestellt.

G=(GT) (4.1)

Allgemein gilt, dass ein cinfach gerichteter Graph G aus einer Menge an Knoten V und
einer Menge an Kanten E Desteht, wobei gilt, dass £ C V x V. Zusammengefasst ldsst
sich G durch G = (V,E) beschreiben. Vorgéinger und Nachfolger kdnnen in G mittels
den Funktionen in Gleichung 4.2 ermittelt werden. Des Weiteren gilt die in Gleichung
4.3 dargestellte Symbolik.

predg (e V|woe E
={we V| 2 "
succe (0) {1 Vv | (0) € E}
0 — ... Kante(00) € E
. Sequenz von Kanten/P fad (eventuell leer) (4.3)

(S

IS =
&2 % o)
S>

. wenn nicht leer, dann Zyklus, ansonsten azyklisch

Bei einem Baum 7" handelt es sich allgemein um einen azyklischen gerichteten Graphen
mit 7" = (VE) Dabei gilt, dass 7" aus 7 Knoten und 7 — 1 Kanten besteht. Des Weiteren
existiert ein Wurzelknoten, fiir den Gleichung 4.4 erfiillt ist. Blatter innerhalb des Baums
besitzen keine Nachfolgeknoten, daher gilt, dass succg (0) = 0. Alle anderen Knoten
werden als innere Knoten bezeichnet.

P —* 0, fir alle v € V (4.4)
7

Auf Basis der vorangegangenen allgemeinen Definitionen kann im Folgenden die
Definition von Compound Graphs aus Gleichung 4.1 weiter detailliert werden. Die
zugehérige Definition wird in Gleichung 4.5 gegeben. Hierbei besteht die Menge der

Knoten V aus der Menge der Basisknoten B (Blittern von 77, B = {b € V|succg(h) =

68

2167321680, ok 24.01.2026, 01:46:48. @ geschilzter Inhalt,
tersagt, mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.3 Formale Beschreibung verbindungsorientierter Modelle

0}) und der Menge der Subgraphen S (innere Knoten von 77, S = {3 € V|succg(5) # 0}).
Daher gilt, dass V = BU S.

Die Verbindungsrelationen zwischen Basisknoten und Subgraphen werden mittels G
beschrieben. Resultierende Kanten Eg werden auch als Adjazenzkanten bezeichnet. Zu-
sitzlich reprasentiert 7" Verschachtelungsbeziehungen. So kénnen Subgraphen wiederum
andere Subgraphen enthalten, was mit den Kanten ET"' beschrieben wird, die auch als
Hierarchie- oder Inklusionskanten bezeichnet werden.

BU
~ y 4.5
BU (4.5)

Zur Visualisierung der vorangegangenen formalen Definitionen ist in Abbildung 4.6
ein Beispiel aus [San05] aufgefiihrt, das die Verwendung von G’ und T anschaulich
darstellt. G’ beziehungsweise 7" in der Abbildung entsprechen dabei den hier aufgefithrten
Definitionen G/ bezichungsweise T".

IGr 1
® OO p—

Graph 1.1.2

Graph 1.1.1 o
[Graph 1.1.1

/1

Connectivity relation G’ Eam 2
- ..
\'_ [Graph 1.2

4]

Nesting relation 7"’ Layout of the compound graph

Abbildung 4.6: Beispiel fiir die Nutzung von Compound Graphs [San05, S. 3]

69

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

4.3.2 Compound Graphs Erweiterung

Compound Graphs bieten durch die Vereinigung von unterschiedlichen Strukturierungs-
moglichkeiten, wie Hierarchiebildung, Relationsbeschreibung aber auch Gruppierungen,
eine gute Grundlage fir unterschiedliche Anwendungsbereiche. In den einzelnen An-
wendungsbereichen werden diese Strukturierungsmoglichkeiten jedoch unterschiedlich
verwendet, was dazu fiihrt, dass fir die Spezialisierung der entsprechenden Ausprigung
eine Semantik zuordenbar sein muss. Abbildung 4.7 zeigt exemplarische Umsetzungsmog-
lichkeiten auf Basis von Compound Graphs in unterschiedlichen Anwendungsbereichen.
Die Knoten konnen dabei unterschiedliche Interpretationen annehmen, wie zum Bei-
spiel (Teil-)Modelle, Typenmodell, komplexe Objekte, Gruppen, Software Packages,
Komponenten oder auch Attribute, Ports und Zustdnde. Durch Adjazenzkanten kénnen
unter anderem Typbeziehungen, Objektrelationen oder einfache Verbundenheitsbezie-
hungen und allgemeine Relationen ausgedriickt werden. Inklusionskanten wiederum
ermoglichen die Abbildung von hierarchischen Zusammenhéngen, wie Beinhaltet- oder
Vererbungsbeziehungen.

Teilmodell/
Typenmodell/
Komplexes Objekt/
Gruppe/
Package/
Komponente/

Typbeziehung/

Vererbung/
Objektrelation/

Beinhaltet/

. .) 2
Attribut/ ———
Port/
Zustand/
S

. Relation/
Verbunden/

A Adjazenzkanten

< |nklusionskanten

Abbildung 4.7: Beispiele fiir Umsetzungsmoglichkeiten mit Compound Graphs

70

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.3 Formale Beschreibung verbindungsorientierter Modelle

Zur Beschreibung der Semantik miissen sowohl die Knoten als auch die Kanten um
ein entsprechendes Element erweitert werden. Dies resultiert in den Definitionen, die
in Gleichung 4.6 aufgefiihrt sind. Ein Knoten wird dadurch zu einem Tupel, bestehend
aus einem Identifikator 7, und einem Identifikator 7., der die Semantik zuordnet.
Diese beiden sind jeweils aus der Menge der natiirlichen Zahlen grofer Null (N1). Die
natiirlichen Zahlen werden hierbei zur vereinfachten Darstellung und Berechnung von
neuen Identifikatoren verwendet und kénnen bei einer Umsetzung durch ein beliebiges
anderes eindeutiges Identifikationsschema beziehungsweise die Definitionen aus [Int+19]
ersetzt werden. Fiir die Kanten von G’ und 7" gilt ebenso, dass die Semantik tber ein
weiteres Element 7, aus N zugeordnet wird, woraus sich fiir die Kanten jeweils Tripel
ergeben. Die vorangegangenen Definitionen aus Gleichung 4.2 bleiben bestehen, agieren
jedoch unabhéngig von der Semantik der Kanten.

ﬁef//\zbef//\ﬁzel\ﬁ} (4.6)

4.3.3 Semantische Beschreibung

Die in den Abschnitten 4.3.1 und 4.3.2 eingefiihrten formalen Beschreibungen lassen
sich ebenso in einem UML-Diagramm erfassen, wie in Abbildung 4.8 dargestellt. Die in
den vorangegangenen Abschnitten definierten Einschrankungen gelten dabei weiter, sind
jedoch nicht vollstdndig im Modell abgebildet. Ein CompoundGraph besteht aus einer
Menge an Knoten (Node) und einer Menge an Relationen (Relation). Relationen bilden
dabei die Verbindungen zwischen Knoten ab. Da diese in Compound Graphs gerichtet
sind, wird ein Start- (start) und ein Endknoten (target) zugeordnet. Die Relation wird
des Weiteren in die ConnectivityRelation und die NestingRelation spezialisiert. Fiir die
Knoten wird ebenfalls eine Spezialisierung, nach der Erweiterung aus Abschnitt 4.3.2, in
Leaf und Subgraph vorgenommen.

71

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

CompoundGraph
0.* 0.*
1 .
Node Relation
target A
1|start
Leaf
ConnectivityRelation ||
Subgraph
NestingRelation [

Abbildung 4.8: Semantische Beschreibung von Compound Graphs als UML-Modell

4.4 Anderungsmanagement

In diesem Abschnitt erfolgt die mathematische und semantische Beschreibung eines tech-
nologieunabhéngigen delta-basierten Revisionskontrollsystems. Dieses ist unabhéngig von
internen Zeilenordnungen, was insbesondere eine Revisionierung von graphenbasierten
Modellen ermoglicht. Diese Beschreibungen sind notwendig, da sie die Grundlage fir
alle weiteren Konzepte bilden, die auf die Revisionskomponente (BasicRevisionControl)
zugreifen und auf Basis dieser agieren. Die nachfolgenden Definitionen heben dabei die
in [AM17] vorgestellten Konzepte auf ein generelles Level, was eine technologieunab-
hangige Beschreibung ermoglicht, die dann wiederum fiir unterschiedliche Technologien
technologiespezifisch angewendet werden kann. Des Weiteren werden die Basisrevisions-
kontrollfunktionalitiaten (BasicRevisionControl) um die semantische Aggregation der
Anderungen (HighLevelChangeAggregation) und die Zusammenfiihrung von divergierten
Entwicklungszweigen (MergeManagement) erweitert.

Fiir die semantische Beschreibung werden UML-Modelle verwendet, die tiber die folgen-
den Abschnitte kontinuierlich erweitert werden. Elemente, die aus anderen UML-Modellen
erweitert oder referenziert werden, sind dabei jeweils grau markiert. Bestehende Asso-
ziationen und Aggregationen werden in neuen UML-Modellen zumeist nicht wiederholt,
sondern nur um neu hinzugekommene erweitert.

Da sich die nachfolgenden Beschreibungen vorrangig auf die Revisionierung von gra-
phenbasierten Modellen bezieht, wird davon ausgegangenen, dass der zu revisionierende
Modellinhalt jeweils aus einer Menge an Elementen besteht, die nicht weiter zerlegt
werden konnen und innerhalb des Modells eindeutig sind. Die daraus resultierende Menge
aller moglichen Elemente wird im Folgenden mit S bezeichnet.

72

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

4.4.1 Revisionskontrolle

Durch die im Folgenden beschrieben Funktionalitdten (Anforderung A-201) werden die
Basisfunktionen eines Revisionskontrollsystems, wie die Erstellung von neuen Commits,
Tags und Entwicklungszweigen, bereitgestellt. Grundlage bilden dafir die in [AM17]
vorgestellten Konzepte, die auf ein generelles technologieunabhéngiges Level gehoben
werden.

4.4.1.1 Revisionsgraph

Ein Revisionsgraph beschreibt die gesamte Historie der angewendeten Anderungen.
Mathematisch lisst sich dieser als ein Quintupel G = (R,,Cy,By,Ty,ny) beschreiben. Die
zugehorigen Definitionen der Einzelelemente R,, C,, By, T, und n, werden in Gleichung
4.7 dargestellt. Dabei wird durch den Index g die Zugehorigkeit einer Menge zu einem
spezifischen Revisionsgraphen G gekennzeichnet.

R C Nt

e €ERU{0} A ry€R A 1oy A

(rery CT.C7) | v CSACCSACTAC =0A
Ctu C=#0 (4.7)

B =

{(Rbﬂ’l:Th”b) ' RRCRAMER, AN Y, C S A nyeNT }

T := {(thrta”t) neRANT CSAmneNF }
R,CR, C,CC, B,CB T,CT, ngeN

Mittels des Symbols R, wird die Menge aller Revisionen in einem Revisionsgraphen
beschrieben. Es handelt sich dabei um eine Teilmenge der natiirlichen Zahlen grofier Null,
die im Folgenden mit N* bezeichnet wird. Die Verwendung der natiirlichen Zahlen dient
der vereinfachten Darstellung und Berechnung von neuen Identifikatoren, wobei stets eine
eineindeutige Zuordnung von Revisionsinhalt und Revisionsidentifikator gewahrleistet ist.
Die nattirlichen Zahlen kénnen durch beliebige andere eindeutige Identifikationsschemata
ersetzt werden, wie beispielsweise die Generierung von entsprechenden eindeutigen
Hashes.

Die Menge C, besteht aus Quadrupeln, die wiederum jeweils eine Anderung zwischen
zwei Revisionen in der Revisionshistorie beschreiben. Die Vorgéngerrevision, auf der
die Anderungen aufbauen, wird mittels 7, und die aus der Anderung resultierende
neue Revision mittels 7, bezeichnet. Es ist per Definition ausgeschlossen, dass r, und
7y gleich sind und somit auf die gleiche Revision verweisen. Damit aber auch bei der
initialen Erstellung des Revisionsgraphen der erste Commit auf die gleiche Art und

73

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Weise abgebildet werden kann wie alle folgenden, wird eine Null-Revision eingefiihrt.
Diese kann nicht abgefragt werden und wird ausschliefilich beim initialen Commit
verwendet. Neben der Vorgidnger- und der Nachfolgerrevision wird das Delta zwischen
diesen beiden Revisionen durch C und C~ beschrieben. Bei C'* handelt es sich um die
Menge der hinzugefiigten Elemente zum Inhalt von 7, um 7, zu erreichen. C~ beschreibt
dementsprechend die Menge der Elemente, die geloscht werden miissen, um vom Inhalt
von 7, zum Inhalt von r, zu gelangen. Die Schnittmenge zwischen C'* und C~ muss
immer die leere Menge ergeben, um eine Uberschneidungsfreiheit zu gewihrleisten. Im
Gegensatz dazu muss die Vereinigung der beiden Mengen immer ungleich der leeren
Menge sein. So ist jede Anderung durch mindestens eine Hinzufiigung oder mindestens
eine Loschung gekennzeichnet.

Zur Beschreibung von unterschiedlichen Entwicklungszweigen (Branches) innerhalb
des Revisionsgraphen wird die Menge der verfiigharen Entwicklungszweige B, wiederum
als eine Menge an Quadrupeln beschrieben. Die zu einem Entwicklungszweig zugehorigen
Revisionen werden mit der Menge R?;, beschrieben. Die Revision eines Entwicklungszweiges,
die selbst keinen Nachfolger besitzt, wird als Blatt des Entwicklungszweigs bezeichnet
und mittels r; identifiziert. Die Revision r; muss daher auch immer in der Menge R,
enthalten sein. Der vollstandige Inhalt des Blattes des Entwicklungszweigs wird in
T, vorgehalten. Auf dessen Basis kann im Folgenden dann eine Rekonstruktion von
Revisionen vorgenommen werden, zu denen nur die Deltainformation bekannt ist. Die
eindeutige Identifizierung des Entwicklungszweigs innerhalb des Revisionsgraphen wird in
diesem vereinfachten Fall wiederum mittels einer natiirlichen Zahl aus N* vorgenommen.

Das Symbol T}, beschreibt die Menge der Tags im Revisionsgraphen. Die Beschreibung
erfolgt ahnlich zu By, jedoch ohne die Menge an zugeordneten Revisionen. Jedes Tag
besteht daher aus einem Tripel, das wiederum aus der getaggten Revision r;, dem
vollstédndigen Revisionsinhalt Y; von r, und einem eindeutigen Identifikator n, besteht.

Die eindeutige Identifizierbarkeit eines Revisionsgraphen wird mittels n, sichergestellt.
Hierbei handelt es sich wiederum aus Griinden der Vereinfachung um eine natiirliche
Zahl aus N*.

4.4.1.2 Vorgénger-/Nachfolgerbeziehungen

Die Berechnung von Vorgangern beziehungsweise Nachfolgern von Revisionen im Revisi-
onsgraphen kann auf Basis der Menge der angewendeten Anderungen Oy durchgefiihrt
werden. In Gleichung 4.8 sind die zugehorigen Funktionen fur Vorgénger (predg (1))
und Nachfolger (succg (r,)) definiert. Beide Funktionen geben als Ergebnis eine Menge
von Revisionen aus der Menge der verfiigbaren Revisionen R, zuriick. Dies ist notwendig,
da eine Revision auf der einen Seite aufgrund von vorangegangener Zusammenfiithrung
von divergierten Entwicklungszweigen mehrere Vorgénger haben kann, auf der anderen
Seite aber auch mehrere Nachfolger existieren konnen, da auf Basis der vorliegenden
Revision ein neuer Entwicklungszweig erzeugt wurde.

74

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

predg (r,) :== {rz € R, ‘ (rz,ry,CJr,C’) € Cq}
succg (r,) == {7'y € R, ‘ (rmry,CJr,C’) € Cg}

4.4.1.3 Pfadgenerierung und Deltawiederherstellung

Der Zugriff auf die Inhalte einzelner Revisionen erfordert Moglichkeiten, um aus den
gespeicherten Deltas zwischen den Revisionen diesen Inhalt wiederherzustellen. Hierfiir
sind Mechanismen fiir die Generierung von Pfaden notwendig, um die Wiederherstellung
durchfithren zu kénnen. Gleichung 4.9 stellt die zugehérigen mathematischen Beschrei-
bungen dar. Es handelt sich aufgrund der Technologieunabhéngigkeit an dieser Stelle
vor allem um mogliche Interaktionen und die Definition von Riickgabewerten. Ein Pfad
innerhalb eines Revisionsgraphen ist dabei stets als eine Sequenz von Anderungen als
Subset von C; beschrieben und kann mittels 7, —* r, dargestellt werden, wobei —*
angibt, dass eine beliebige Anzahl von Revisionen auf diesem Pfad liegen kann. Die zuge-
hérige Funktion pathg (r,,r,) gibt eine ungeordnete Liste an Elementen aus Cy zuriick.
Die Elemente definieren den Pfad zwischen der Startrevision r, und der Zielrevision 7.
Fir die Umsetzung kénnen Algorithmen fiir die Identifizierung von kiirzesten Wegen
angewendet werden, wie beispielsweise von Dijkstra [Dij59] beschrieben. Der generierte
Pfad kann anschlieBend verwendet werden, um die durchgefithrten Anderungen nachzu-
verfolgen und den Inhalt einer Revision zuriickzugeben, indem die Anderungen auf den
letzten vollstindig vorhandenen Inhalt kontinuierlich angewendet werden. Im Folgenden
wird hierfir zur Abstraktion die Funktion getContentg (r,) verwendet.

re =" 1y = pathg (r,,r,) C Cy
pathg (ry,ry) ... Sequenz von Anderungen von ry zu r, (4.9)

getContentg (r,) ... Inhalt von Revision r,

Die Wiederherstellung der Revisionsinhalte kann dabei in unterschiedlichen Richtungen
im Revisionsgraphen vorgenommen werden. So kann beispielsweise von einem Blatt
eines Entwicklungszweiges ausgehend eine vorangegangene Revision oder von der ersten
Revision ausgehend eine nachfolgende Revision wiederhergestellt werden. Ebenso ist
es denkbar, dass eine Kombination der beiden Richtungen auftritt, um eine Revision
wiederherzustellen, wenn divergierte Entwicklungszweige oder Zusammenfiihrungen von
diesen stattgefunden haben. Damit immer eine eindeutige Wiederherstellung moglich
ist, miissen die Anderungen zwischen zwei Revisionen nur das Delta zwischen diesen
beschreiben und diirfen keine Elemente, die bereits existieren, noch einmal hinzufiigen
oder bereits geloschte Elemente noch einmal 16schen. Formalisiert ist diese Einschrankung
in Gleichung 4.10 dargestellt. Sie gilt fiir alle Revisionen des Revisionsgraphen und fiir alle
Vorganger-Nachfolger-Beziehungen in diesem Revisionsgraphen. Y, bezeichnet hierbei
den vollstandigen Inhalt einer Revision r,, die direkter Vorganger der Revision r, ist.
Die Anderungen zwischen r, und r, werden mittels (r,r,,C*,C~) beschrieben.

75

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Y,NCT =0

TAC- =0 (4.10)

Mit Hilfe der Funktion strip, beschrieben in Gleichung 4.11, kénnen die entsprechen-
den Elemente entfernt werden, bevor die Anderungen dem Revisionsgraphen hinzugefiigt
werden, wenn Anderungen vorliegen, die der Definition aus Gleichung 4.10 nicht entspre-
chen. Die Riickgabe ist ein Tupel, bestehend aus den Hinzufiigungen und Léschungen, die
der Definition aus Gleichung 4.10 geniigen und damit dem Revisionsgraphen hinzugefiigt
werden kénnen.

strip (Tz,C+7C_) = (C+\Tzv ¢ n Tz) (4.11)
= (Cstripped? C\S;Tippsd> |

4.4.1.4 Grundlegende Revisionskontrollfunktionalititen

Fir die Interaktion mit dem Revisionsgraphen werden weitere Funktionen benotigt, um
diesen zum einen initial erstellen zu kénnen, jedoch auch, um Anderungen an diesem
durchzufithren. Die im Folgenden dargestellten Funktionen zur Interaktion mit dem
Revisionsgraphen werden direkt auf den gegebenen Revisionsgraphen G angewendet und
geben die modifizierte Instanz G bezeichnet mit G’ zurtick. Notwendige neue Bezeich-
ner werden generiert, indem die Kardinalitdt der bereits bestehenden Menge um eins
inkrementiert wird.

Initiale Erstellung und Loschung eines Revisionsgraphen Da innerhalb eines Re-
visionsverwaltungssystems mehrere Revisionsgraphen parallel existieren konnen, wird
zusétzlich eine tibergeordnete Menge I' eingefiihrt, die alle vorhanden Revisionsgra-
phen vorhélt. Die Erstellung eines neuen Revisionsgraphen erfolgt mittels der Funktion
creater, wie in Gleichung 4.12 dargestellt. Fiir diesen initialen Commit konnen bereits
mogliche Hinzufiigungen spezifiziert werden. Das Ergebnis der Funktion ist ein neuer
Revisionsgraph mit einer Revision, einer durchgefithrten Anderung und einem neuen
Entwicklungszweig. Die Anderung beschreibt die etwaigen Hinzufiigungen, die bei der
Erstellung angegeben werden. Der Entwicklungszweig stellt den master-Zweig dar, der
die erstellte Revision beinhaltet.

creater (C*) =T U {({1},{(0.1,c* 0} {({1}.1.c*1)},0,[0]+ 1)}

(4.12)
=T U{(Ry,Cy,By,Tyng)} =T U{G} =T"

Fiir den Fall, dass ein Revisionsgraph vollsténdig aus dem Revisionsverwaltungssystem
I" entfernt werden soll, steht die Funktion dropr zur Verfiigung. Gleichung 4.13 beschreibt
die zugehorige Funktionalitdt mathematisch. Der durch ng, spezifizierte Revisionsgraph
G wird dabei aus der Menge I' entfernt.

76

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

dropr (ng) =T\ {G} | G = (Ry,Cy,By.Ty.ng)

:r, (4.13)
Erstellung eines neuen Entwicklungszweiges Ein neuer Entwicklungszweig wird er-
stellt, indem die Funktion branchg angewendet wird. Die Vorgehensweise hierfiir ist in
Gleichung 4.14 beschrieben. Der neue Entwicklungszweig wird auf Basis der angegebenen
Revision erzeugt. In Bezug auf den Revisionsgraphen wird nur die Menge B, veréndert.
Dieser wird ein neues Quadrupel hinzugefiigt, das aus der spezifizierten Revision 7, und
dem vollstandigen Inhalt T, von r, besteht, da diese Revision gleichzeitig auch das Blatt
des Zweiges darstellt. Da es sich um das Anlegen eines neuen Zweiges handelt muss des
Weiteren ein neuer Bezeichner generiert werden.

branchg (r,) =
R,

Cy,
g= (RngvByaTg:”y)?

ByU{ ({ra} e sl Byl +1) }, (4.14)
T, = getContentg (r,)

T,

gs

g

= (Rg»cng;/;ng:ng) =g

Erstellung eines neuen Tags Analog zur Erstellung von neuen Entwicklungszweigen
konnen ebenfalls neue Tags mittels tagg erstellt werden. Gleichung 4.15 beschreibt die
notwendigen Anderungen am Revisionsgraphen. Diese beschriinken sich auf die Menge
der Tags T, die um ein neues Tripel erweitert wird. Das Tripel enthélt die spezifizierte
Revision 7,, den vollstdndigen Inhalt T, von r, und einen neuen Bezeichner fiir den Tag.

7

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

tagg (r.) :=

G = (Ry,Cy,By,Tyny): (4.15)
T, = getContentg (r,)
T,U {(Tszw=|Tg| + 1)}7

Ng

= (RngmBgng;vng) =g

Erstellung eines neuen Commits Die Funktion commitg ist eine komplexe Operation,
die Auswirkungen auf die Mengen R, Cy und B, hat. Die durchzufithrenden Anderungen
(Hinzuftigungen und Loschungen) werden in Bezug auf einen Entwicklungszweig und
damit bezogen auf das Blatt von diesem angegeben. Im Weiteren wird zur Vereinfachung
der Darstellung angenommen, dass diese Anderungen die Definition aus 4.10 erfiillen.
Andernfalls muss vorher die Funktion aus Gleichung 4.11 angewendet werden. Fiir die
Durchfiihrung des Commits, wie in Gleichung 4.16 dargestellt, muss zuerst eine neue
Revision 7* erstellt werden, die der Menge R, hinzugefiigt wird. Die Anderung mit den
spezifizierten Hinzufiigungen C'* und Loschungen C'~ zwischen dem Blatt r; und der neuen
Revision 7* wird der Menge Cy als neues Quadrupel hinzugefiigt. Da r* dem angegebenen
Entwicklungszweig hinzugefiigt werden muss, muss dieser entsprechend aktualisiert
werden. Das wiederum erfordert die Loschung des bestehenden Entwicklungszweiges aus
B, und der anschlieBenden Hinzuftigung des aktualisierten Quadrupels. Der Bezeichner
ny bleibt unverdndert, da es sich um denselben Entwicklungszweig handelt. Die Revision
r* wird als neues Blatt hinzugefiigt, was die Aktualisierung des vollstandigen Inhalts T,
mit den spezifizierten Anderungen erfordert.

78

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

commitg (nb,CJr,C’) =

R,U{r"}, G = (Ry,,Cy, By Tymy):
C,U {(n,r*,c+,0—)}, be B,
BA\{pyU{(Ryu {r} 7, b= (Ryr.Timy); @16)
(TUCH\C,m)}, || CHn Cm =0
Ty, Ctu O~ #0;
ng " =|Ry| +1

= (R;7C;]7B;7Tqang) = gl

Revidieren eines Commits Mit Hilfe der Funktion revertg, wie in Gleichung 4.17
dargestellt, kann ein vorangegangener Commit riickgéingig gemacht werden. Die Identi-
fizierung erfolgt mittels dem zugehorigen Entwicklungszweig, da immer nur der letzte
Commit des Entwicklungszweiges riickgangig gemacht werden kann. Da Revisionen zu
mehreren Entwicklungszweigen gehoren und mehrere Vorgédnger haben kénnen, wird
die vorausgehende Revision 7, aus der Menge der méglichen Revisionen R, herausgefil-
tert. Diese Filterung wird mittels einer Priiffung vorgenommen, die sicherstellt, dass die
vorangehende Revision ebenfalls auf dem angegebenen Entwicklungszweig liegt. Beim
Revidieren erfolgt keine Loschung des vorangegangenen Commits. Die zugehorigen Hin-
zufigungen und Loéschungen werden jedoch riickgéingig gemacht, indem in einem neuen
Commit die Hinzufligungen geloscht und die Léschungen hinzugefiigt werden. Das erlaubt
auf der einen Seite, dass alle Anderungen weiterhin nachvollzichbar sind und auf der
anderen Seite kann diese Information durch Algorithmen zur Wiederherstellung von
vollsténdigen Revisionsinhalten genutzt werden. Dadurch kann dieser Wiederherstellungs-
prozess optimiert werden, indem eine Aufeinanderfolge von commitg und revertg im
Rekonstruktionsprozess iibersprungen werden kann.

79

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

revertg (n,) :=

G = (Ry,Cy, By Ty.ny);
R!] U {7’*})
b e By;
Cy U {(r,r*,C~.CH)},

b= (Rb,n,'rl,nb);
BN\ {py U{(R, U {r} 17,

predg (1) = Ry; (4.17)
(MU CNCH,my)},
T € Rp N Ry;
T,
(rpyr,CT,C7) € Cy;
g

r* =|Ry| +1
= (R;;C;~,B;7Tysng) = g,

4.4.1.5 Semantische Beschreibung

Die in den vorangegangenen Abschnitten eingefiihrten Revisionskontrollfunktionalita-
ten werden im Folgenden semantisch beschrieben (Anforderung A-204). Hierfiir werden
Konzepte aus der PROV Ontology (PROV-0) als Grundlage wiederverwendet. Das
zugehorige UML-Modell ist in Abbildung 4.9 dargestellt. Zentrales Element bildet dabei
wie bereits in der mathematischen Beschreibung der RevisionGraph, der einem Revision-
ControlSystem zugeordnet ist. Als zentrales Element hélt der RevisionGraph alle Commit-
und Entity-Elemente vor. Einem Commit kann Metainformation zugeordnet werden, wie
beispielhaft mittels einer Nachricht, einem Zeitstempel und einem assoziierten Nutzer
dargestellt. Dartiber hinaus ist es ebenfalls moglich, diesem Commit ein Attribut fir
Abwértskompatibilitit zuzuordnen. Auf dieses wird innerhalb dieser Arbeit verzichtet, da
nach Heflin und Pan [HP04] die Kennzeichnung, dass eine Anderung abwirtskompatibel
ist, von zusétzlichem Wissen abhéngt. Die einzelnen Spezialisierungen des Commits
ermoglichen die Beschreibung der durchgefithrten Aktionen, die wiederum den in Ab-
schnitt 4.4.1.4 eingefithrten grundlegenden Funktionalititen entsprechen. Jeder dieser
Spezialisierungen besitzt dabei unterschiedliche assoziierte Elemente, die genutzt werden,
um die durchgefiithrte Anderung zu beschreiben. Ein used gibt dabei stets an, welche
Revision als Grundlage fiir die Aktion dient und mittels generated wird das korrespondie-
rende Resultat beschrieben. Entitdten im Revisionsgraphen unterteilen sich in Reference
und Revision. Referenzen beschreiben dabei sowohl Tags als auch Entwicklungszweige
und sind iiber einen Identifier eindeutig identifizierbar. Jeder Referenz ist auflerdem
ein vollstandiger Inhalt zugeordnet, der in diesem Fall als eine nicht ndher spezifizierte
Menge an Elementen realisiert ist, um die Technologieunabhéngigkeit zu gewéhrleisten.
Revisionen sind im Revisionsgraphen tiber einen eindeutigen Identifier referenzierbar.

80

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

Die Historie der Revisionen und dementsprechend auch die Vor- und Nachfolgebezie-
hung wird mittels der Assoziationen wasDerived From angegeben. Weiterhin wird den
Commits, die Revisionen erzeugen, ein ChangeSet zugeordnet, das das Delta in Bezug
auf die vorangehende Revision beschreibt. Dieses setzt sich aus einer Referenz zu einem
Add- und einem Delete-Set zusammen, wobei es sich jeweils wiederum um eine nicht
naher spezifizierte Menge an Elementen (Statement) handelt. Das ChangeSet referenziert
auBerdem die vorangegangene Revision und die erzeugte Revision, um die Historie zu
beschreiben.

RevisionControlSystem

1-‘

Commit P

commitMessage : string wasAssociatedWith :|

timeStamp : date

‘ Z‘P ‘ ‘ generated [1
Reference
UpdateCommit RevertCommit InitialCommit ReferenceCommit
referenceldentifier : string
‘ ‘ ‘ TagCommit
BranchCommit
generated
1|used 1|generated 1 |generated
1 1 1 |fullContent
Revision
v s
revisionldentifier : string 1 deleteSet
1
references 1 |addset
generated ChangeSet
4
0..* | statements

T

priorRevision
wasDerivedFrom| 1 1

Abbildung 4.9: Semantische Beschreibung der Revisionskontrollfunktionalitdten als UML-
Modell

hasChangeSet
9 Statement

4.4.2 Aggregation von High-Level-Changes

Mechanismen fiir die Aggregation von atomaren Anderungen zu High-Level-Changes
(Anforderung A-203) werden unter anderem in [Keh15] und [Pap+13] beschrieben. Im
Folgenden wird von diesen technologiespezifischen Konzepten abstrahiert, um auch
fiir die weiteren Arbeiten eine technologieunabhingige Grundlage zu schaffen. Hierfir
werden wiederum mathematische und semantische Beschreibungen entwickelt, die sich
in die fiir die Revisionskontrolle bereits beschriebenen eingliedern. In einer spéteren
Umsetzung konnen dann die bestehenden Moglichkeiten, wie [Keh15] und [Pap+13], fiir
die Aggregation genutzt werden.

81

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

4.4.2.1 Mathematische Beschreibung

Die Aggregation von atomaren Anderungen zu High-Level-Changes erfolgt mittels der
Funktion hlcAggg, wie in Gleichung 4.18 dargestellt. Ausgangspunkt fiir die Berechnung
der zugehorigen High-Level-Changes sind die Anderungen zwischen zwei Revisionen 7,
und r,. Auf Basis von diesen gibt die Funktion ®g, beschrieben in Gleichung 4.19, die
High-Level-Changes zuriick. Jede dieser Aggregationen besteht aus einem Tripel, das die
verwendeten hinzugefiigten und geloschten Elemente, sowie einen eindeutigen Identifikator
n. beschreibt. Mittels des Kennzeichnens n, kann der erkannten semantischen Anderung
des Weiteren die entsprechende Bedeutung zugeordnet werden. Dies kann beispielsweise
mittels eines Verweises auf den zugrunde liegenden Regelsatz erfolgen. Hierbei stellt
bereits Papavasileiou [Pap+13] nach Klein [Kle04] fest, dass es nicht méglich ist, eine
vollsténdige Liste an Regeln zu spezifizieren, da es keine allgemeingiiltige Menge an
Anderungsoperationen gibt, auf denen diese basieren kénnte. Die technologiespezifische
Umsetzung von ®¢g kann dementsprechend unterschiedliche Auspragungen besitzen. Je
nach Giite des Regelsatzes ist es méglich, dass alle atomaren Anderungen zu High-Level-
Changes aggregiert werden kénnen oder nach Anwendung der Regeln Elemente bestehen
bleiben, die nicht zuzuordnen sind. Diese verbleibenden Elemente werden in hlcAggg
mittels C;F und C; beschrieben.

hlcAggg (rz.ry) ==

Dg (reyry), G = (Ry,Cy.By,Tyny):
C\(UCs,.) || Y (Cha. Cop) € B (rimy) ; (4.18)

A\ (UCh,. (re,7,CT,C7) € C,
= (®g (r21) .C.CF)

G = (Ry,Cy,B,,Tyny);

(1, 7,CT,C7) € Cys

‘}g (”Jy) = (C:;b,,z 7Cs_ubnz anz) (419)
Clw,. SCT5 Chy, CC5
n, € N*

4.4.2.2 Semantische Beschreibung

Das in Abbildung 4.10 dargestellte UML-Modell erweitert die in Abbildung 4.9 ein-
gefithrte Klasse ChangeSet um die High-Level-Change-Aggregation und stellt damit
die semantische Beschreibung der mathematischen Grundlagen aus Abschnitt 4.4.2.1

82

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

sicher (Anforderung A-204). Es handelt sich dabei um eine Integrationsschnittstelle zur
Integration von Aggregationsmechanismen, wie in [Pap+13] oder [Keh15] préasentiert.
Jedem ChangeSet kénnen beliebig viele Semantic Change-Elemente zugeordnet werden,
die wiederum aus einer Menge an additions und einer Menge an deletions besteht. Hier-
durch kénnen die zugehérigen atomaren Anderungen beschrieben werden, die durch den
beschriebenen SemanticChange aggregiert werden. Die Menge der atomaren Anderungen,
die nicht einem SemanticChange zugeordnet werden kénnen, wird nicht beschrieben, da
die atomaren Anderungen vollstindig als Menge vorliegen und daher iiber Differenzbil-
dung der nicht zuzuordnende Rest berechnet werden kann. SemanticChanges, die sich
gegenseitig aufheben, kénnen mittels der Relation inverts beschrieben werden. Die seman-
tische Beschreibung der einzelnen zu integrierenden Aggregationsmechanismen erfolgt als
Ableitung von SemanticChange, wodurch unterhalb von dieser Klasse die verschiedenen
Auspriagungen beschrieben werden konnen. Des Weiteren ist es auf der resultierenden
Ebene moglich, auf entsprechende Regelsitze zu verweisen, um die Verkniipfung zwischen
angewendeter Regel und entdecktem High-Level-Change herzustellen.

ChangeSet

- SemanticChange lL
semanticChanges inverts
1| additions

1

Set
deletions

Abbildung 4.10: Erweiterung der semantischen Beschreibung um die Aggregation von High-
Level-Changes als UML-Modell

4.4.3 Zusammenfiihrung divergierter Entwicklungszweige

Die Zusammenfiihrung von divergierten Entwicklungszweigen (Anforderung A-202) spielt
insbesondere in kollaborativen Umgebungen mit parallelen Entwicklungen eine wichtige
Rolle, um beispielsweise die Ergebnisse vor einer Veroffentlichung wieder zusammen-
fithren zu konnen. In den folgenden Abschnitten werden unterschiedliche Methoden der
Zusammenfithrung aber auch Losungen fiir die Konflikterkennung und -behebung bei
der Zusammenfithrung beschrieben.

4.4.3.1 Methoden der Zusammenfiihrung

Fiir die Zusammenfithrung von divergierten Entwicklungszweigen stehen in Systemen wie
git unterschiedliche Moglichkeiten zur Verfigung. Im Folgenden werden an git und [AM17]

83

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

angelehnte Moglichkeiten zur Zusammenfithrung technologieunabhéngig beschrieben.
Basis bilden dabei die in Abschnitt 4.4.1 eingefithrten mathematischen Beschreibungen
des Revisionsgraphen.

3-Wege-Merges Ein weit verbreitetes Szenario bei der Zusammenfithrung sind so-
genannte 3-Wege-Merges. Die zugehorige Funktion mergeg ist in Gleichung 4.20 be-
schrieben. Dabei wird der Quellentwicklungszweig (b,) in den Zielentwicklungszweig (b;)
zusammengefithrt. Das Ergebnis ist eine neue Revision mit zwei Vorgingern, wobei diese
Revision den zusammengefiihrten Inhalt der beiden Entwicklungszweige darstellt, in dem
alle Konflikte behoben sind. Der Revisionsgraph G wird mittels der neuen Revision r*
aktualisiert. Fiir beide betroffenen Entwicklungszweige miissen die notwendigen Anderun-
gen zwischen dem Blatt des Zweiges r;, bezichungsweise 7, und r* beschrieben werden.
Hierfiir wird jeweils ein neues Quadrupel in C, angelegt. Der Inhalt der Anderungen
ist abhéngig von der gewéhlten Strategie der Zusammenfithrung und wird an dieser
Stelle mittels der Funktion W, beschrieben in Gleichung 4.21, abstrahiert. Die Funktion
gibt dabei die notwendigen Anderungen fiir beide Zweige als Tupel zuriick, wobei diese
jeweils der Definition aus 4.10 geniigen. Fiir die Realisierung stehen unterschiedliche
Ansitze, wie beispielsweise in [Fai-+16] vorgestellt, zur Verfigung. Auf Moglichkeiten zur
Umsetzung wird in Abschnitt 4.4.3.2 eingegangen.

mergeg (ny,,np,) =

Ryu{r}, G = (Ry,Cy,By,Tymy);
CH U {(Tlsvr*ac.z—ﬁcs_)v (rlt,r*,Cfr,Cf)}, bS € By? bt € B!];
B\ {bi} U {(Ry, U{r} .1, by = (Ry, 1., Vst)i
(4.20)
(Tlt U C;r)\cf~ nbz)}v bt = (Rbﬁrlt’Tlt’nbt);
Ty, = |Ry[+ 15
g Yg (np,,np,)
= (R;7CQ3B;7TII7ng) = gl
Wg (m,m,) = ((CF.C).(CF.C)) (4.21)

Pick Bereits durchgefiihrte Anderungen kénnen mittels der Funktion pickg, beschrie-
ben in Gleichung 4.22, wiederverwendet werden. Hierbei werden die bereits durchgefiihrten
Anderungen, die zu einer Revision r, gefiihrt haben, genutzt und auf das Blatt eines
Entwicklungszweiges b angewendet. Durch die Anwendung der Funktion wird eine neue
Revision 7* mit den zugehérigen Anderungen zwischen r; und 7* erzeugt. Es handelt sich

84

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

dabei um eine Kopie der Hinzuftigungen und Loschungen, die zur Revision r, gefiihrt
haben. Zur Erfiillung der Definition aus Gleichung 4.10 muss jedoch vorher ein strip in
Bezug auf den vollstandigen Inhalt des Blatts T; durchgefithrt werden. Des Weiteren
muss der Entwicklungszweig mit dem neuen Blatt aktualisiert werden. Ein Pick kann
nur durchgefithrt werden, wenn die Kardinalitét des Vorgéngers von r, gleich eins ist.
Zusammengefithrte Revisionen kénnen dementsprechend nicht fiir einen Pick genutzt
werden, da eine zusétzliche Auswahl getroffen werden muss, welche der beiden moglichen
Anderungen genutzt werden sollen.

pickg (rp.n) =

G = (Ry.Cy,ByTyng);
R, U {r*},
€ Ry; [predg (r,) | = 1;
Cyuf{(mr.ci e},
(predg (1) 7,C".C7) € Cy;
B\ {b}U{(RyU{r} 17,

Cf = CN\Ty; (4.22)
(YU CHNCY, le)}7
Co=0"NnTy
Ty,
be Bg; b= (R],,TI,T17TL}7);
g

™ =|Ry|+1
= (R;/C;B;Twng) = g/

Das einfache Pick (siche Gleichung 4.22) kann zu einem Pick erweitert werden, das es
erlaubt, mehrere Revisionen zu spezifizieren, wie in Gleichung 4.23 dargestellt. Als Einga-
begrofien sind hierbei eine geordnete Liste von Revisionen und der Zielentwicklungszweig
notwendig. Anschlieend kann der einfache Pick aus Gleichung 4.22 in der durch die
Liste angegebenen Reihenfolge fiir die einzelnen Revisionen angewendet werden, wie es
in Gleichung 4.23 in Pseudocode angegeben ist.

G = (Ry,Cy,By,Tymg); Ry = [Tp1sTp2, .-\ Tpm] ; m € NT;
b € By b= (Ry,r,T1myp)

pickg () :
(4.23)

1: FOR7, INR,:

2: pickg (rp,m);

85

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Fast Forward Die Funktion fastForwardg ist eine weitere Moglichkeit der Zu-
sammenfithrung von divergierten Entwicklungszweigen. Sie wird eingesetzt, um die
Revisionshistorie zu glatten und nicht notwendige 3-Wege-Merges zu vermeiden. Ein
Fast Forward dndert dafiir den Zeiger eines Entwicklungszweiges auf den Zeiger eines
anderen Entwicklungszweiges. Hierfiir muss das Blatt des ersten Zweiges als Revision
auch im zweiten Entwicklungszweig enthalten sein. Gleichung 4.24 gibt hierzu die formale
Beschreibung der durchzufithrenden Anderungen am Revisionsgraphen an. Die Mengen
R,, Cy and T, bleiben dabei unverdndert, da nur der Zeiger angepasst wird. Der Zeiger
des Entwicklungszweigs b, wird dabei auf den Zeiger von bg vorgeschoben. Hierfir miis-
sen alle Revisionen auf dem Pfad vom Blatt r;, zu r;, als zugehérige Revisionen zu by
hinzugefiigt, sowie das Blatt und der zugehorige vollstandige Inhalt angepasst werden.

fastForwardg (n,,.n,) =

G = (Ry,Cy,By.T,ny);
R, bs € By; by € By;
Co» bs = (Ro, 71, Y1,)3
B\ {b} U {(Rb/, U Py, Tl.,»v”bf)}v be = (Bp,r1,, Y1y,); (4.24)
T,, T, € Ry,;
ng P = {r,|(ryry,,CT,C7)
€ pathg (r,,r1,) }

= (RWCKHB;WTW”!]) =g

4.4.3.2 Konflikterkennung und -behebung

Bei der Zusammenfithrung von divergierten Zweigen konnen Konflikte auftreten, die
entsprechend erkannt und behoben werden miissen. Technologiespezifische Losungen
wurden bereits in vorangegangenen Arbeiten wie [Fai+16; HGU16; Keh15; Pap+13]
entwickelt. Auf Basis dieser Ansitze erfolgt an dieser Stelle die Beschreibung einer tech-
nologieunabhéngigen Moglichkeit fir die Umsetzung der Gleichung 4.21 zur Spezifikation
der Zusammenfithrung von zwei Entwicklungszweigen. Wie in [Keh15] und [HGU16]
gefordert, werden dabei auch transiente Effekte in der Revisionshistorie beachtet. Bei
diesen transienten Effekten handelt es sich um Losch- und Hinzufiigeoperationen in der
Revisionshistorie, die vorangegangene Anderungen wiederum riickgiingig machen [Keh15].
Die hierfiir notwendigen mathematischen Grundlagen basieren auf [HGU16] und werden
im Folgenden in das mathematische Gesamtgefiige dieser Arbeit eingegliedert.

86

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

Nachvollziehung von transienten Effekten auf atomarer Anderungsebene Beim
Vergleich der Revisionshistorien von zwei Entwicklungszweigen kénnen die einzelnen
Elemente auf Ebene der atomaren Anderungen die in Gleichung 4.25 dargestellten Status
aufweisen. Dieser Status kann entweder geldscht (=), hinzugefiigt (+) oder keine Anderung
erfahren (0) sein. In K ist des Weiteren der Status nicht enthalten () aufgefiihrt, dieser
kommt jedoch erst beim Vergleich von zwei Entwicklungszweigen zur Anwendung und
ist an dieser Stelle nur zur vereinfachten mathematischen Definition mit aufgefiihrt.

K :={— = “Geloscht”,

0 = “Keine Anderung erfahren”,
. . (4.25)
+ = “Hinzugefligt”

0 = “Nicht enthalten”}

Die Parameter von Wg (ny,,np,) stellen die beiden Identifikatoren der zusammenzufiih-
renden Entwicklungszweige dar. Somit kann im Folgenden davon ausgegangen werden,
dass by = (Ry, 7., 1.m.) und by = (Ry,,m,, Yy, ,mp,) gilt. Um die Anderungen zwischen
den beiden Entwicklungszweigen vergleichen zu kénnen, muss im ersten Schritt eine
gemeinsame Vorgingerrevision gefunden werden. Zur Vereinfachung wird angenommen,
dass die in Gleichung 4.26 dargestellte Funktion die Revision r. € R, zuriickgibt.

getCommonAncestorg (n,, . ms,) = Te (4.26)

Mit dem berechneten r, kann im Anschluss die in Gleichung 4.9 beschriebene Funktion
zur Berechnung des Pfades zwischen zwei Revisionen wiederverwendet werden. Entspre-
chend wird diese Funktion fiir beide Entwicklungszweige angewendet, um die jeweilige
Sequenz an Anderungen zu erhalten. Das Ergebnis sind die beiden in Gleichung 4.27
dargestellten Mengen Cpsn, und Cpayp, -

pathg (re;ri,) = Cpan, C G (4.27)
Pathg (rC7rlt) = Cputm C Cg
Zu Beginn des anschlieBenden Nachvollziechens der Anderungen muss auf Basis des
Inhaltes der gemeinsamen Revision 7. eine Startmenge g4+ fiir jeden Zweig gebildet
werden. Im Anschluss erfolgt auf diese Menge die Anwendung der einzelnen Anderun-
gen tiber den gebildeten Pfad hinweg. Die Startmenge setzt sich aus dem Inhalt von
enthaltenen Statements und dem initialen Zustand keine Anderung erfahren zusammen.
Dieser Zustand ist unabhéngig von der vorangehenden Revisionsgeschichte, da r. den
Ausgangspunkt bildet. In Gleichung 4.28 ist die zugehorige mathematische Beschreibung
angegeben.

Qstart, = Lsware, = {(5,0) € (S x K)|s € getContentg (r.)} (4.28)
87
216.73.216.60, am 24.01.2026, 01:46:48. @ (geschitzter Inhalt.
tersagt, m 'mit, fiir oder in KI- star

https://doi.org/10.51202/9783186873101

4 Entwurf

Fir die Aktualisierung der jeweiligen Zustiande stehen die in Gleichung 4.29 dargestell-
ten Funktionen add(f,s) und del(,s) zur Verfiigung. Durch diese kann der Zustand
eines Statements aktualisiert werden. Basis bildet das vorangehende 2 auf dem Pfad be-
ziehungsweise der Revision. In Gleichung 4.30 ist hierfiir das allgemeine Verfahren fiir die
Anwendung von allen Anderungen einer Revision ry, mittels der Funktion F* dargestellt.
Im Folgenden gilt, dass N§ der Menge der natiirlichen Zahlen grofier gleich Null entspricht.
Die Anderungen werden durch ein entsprechendes Element C, = (r,.ry,,C;f,C,) aus
dem erstellten Pfad vorgenommen, wobei n € N§ und im Bereich 0 < n < [Cpaun,| — 1
bezichungsweise 0 < n < [Cpaup,| — 1 liegt. Falls das CF beziehungsweise C;; gleich
der leeren Menge ist, so wird die Anwendung von add(f,s) beziehungsweise del(£2,s)
ibersprungen. Die Anzahl der Funktionsaufrufe ergibt sich aus der Anzahl der Elemente
in C;f und C,,. Hierfiir gilt far C)}, dass a = |C}}|, s} € C;f im Bereich 0 <a <a—1,
wobei a € Ny. Analog gilt fiir O, dass d = |C; |, s; € C7 im Bereich 0 < d < d — 1,
wobei d € N{. Die Anwendung entlang des Pfades ist in Gleichung 4.31 beschrieben.
Die einzelnen C,, werden dabei entlang des Pfades, gestartet bei Revision r., geordnet
verwendet, um die Historie entsprechend abbilden zu kénnen. Dieses Vorgehen muss fiir
beide Entwicklungszweige mit Cpap, und Cpqr, angewendet werden.

add(,5) : P(S x K) x § = P(S x K) :

Q= (N\{(s,7),(s,0)}) U{(s,+)}
del(2,5) : P(ExK) xS = P(SxK):
)

(4.29)

Q= (N {(s,4),(s,00H) U{(s,—)}
Fg, (Q) = add(...(add(del(...(del(Q,sy),...),57 1),50)s--)s5a_1) (4.30)
Qpna = (Fe,_, 0 Fg,_, 0...0 Fy) (Qstart) (4.31)

Erkennung struktureller Konflikte Auf Basis, der im vorangegangenen Abschnitt be-
schriebenen Nachvollziehung der transienten Effekte konnen bereits Konflikte erkannt wer-
den. Hierflir miissen die beiden resultierenden Qg4 von Quell- und Zielentwicklungszweig
miteinander verglichen werden. Je nach Anwendungsfall ist hierbei zu definieren, welche
gegenliufigen Anderungen einen Konflikt hervorrufen, wie beispielsweise in [HGU16]
dargestellt. Hieraus kann eine allgemeine Konfliktbeschreibungsmatrix abgeleitet werden,
die in Abbildung 4.11 dargestellt ist.

Die einzelnen Status von Quell- und Zielentwicklungszweig beziehen sich auf die
moglichen Status aus Gleichung 4.25. Durch die gegebenen Definitionen fiir die Erstellung
von Qp,g und die allgemeinen Definitionen zur Beschreibung der Revisionskontrolle ist
es nicht méglich, dass die Kombination bestehend aus) und 0 auftritt. Dies gilt, da
immer von einer gemeinsamen Revision der beiden zu vergleichenden Entwicklungszweige
ausgegangen wird und damit ein Element entweder in dieser Revision enthalten ist oder

38

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

Status
Zielentwicklungszweig
Stat - +
sus | 0 0 Legende:
m — —
-g 0) . ? .Komblnatlon durch Definitionen
g ausgeschlossen
b0
w S| - ? ? ? Status sind gleich
2=
o]
» 2l o ? ? ? |Unterschied erkannt
3
S|+ ? ? ?
o

Abbildung 4.11: Allgemeine Konfliktbeschreibungsmatrix (in Anlehnung an [HGU16, S. 7))

nicht. Bei der Nachvollziehung tiber die weitere Historie hinweg kann der Status nur durch
die Funktionen aus Gleichung 4.29 verandert werden. Dabei sind nur Aktualisierungen
auf die Status — und + moglich. Die Kombinationen, bei denen der jeweilige Status
eines Elementes gleich ist, geben an, dass bei diesen Elementen kein Unterschied vorliegt.
Insbesondere wenn die Status gleich () beziehungsweise 0 sind, haben die Elemente
keinerlei Anderungen in der betrachteten Historie erfahren. Alle weiteren Kombinationen,
die in Abbildung 4.11 mit einem Fragezeichen gekennzeichnet sind, weisen hingegen
auf einen Unterschied zwischen Quell- und Zielentwicklungszweig hin. An dieser Stelle
kann je nach Anwendungsfall entschieden werden, was davon einen Konflikt darstellt.
Unter Umstédnden kann auch auf dieser Ebene definiert werden, wie der entsprechende
Konflikt behoben werden kann. Die folgende Gleichung 4.32 ermdéglicht die Definition
dieser Regeln als ein Quadrupel. Mittels ks und k; kénnen die Status fiir Quell- und
Zielentwicklungszweig angegeben werden. Die Angabe ¢ ermoglicht die Spezifikation,
ob es sich um einen Konflikt handelt (¢ = 1), der eventuell manuell nachbearbeitet
werden muss, oder um einen Unterschied (¢ = 0), der automatisch behoben werden kann.
Fiir eine automatische Behebung wird des Weiteren der resultierende Status benotigt,
der durch k, beschrieben wird. Es handelt sich dabei um ein Subset von K, da fiir die
zusammengefithrte Revision beschrieben werden muss, ob das Element enthalten sein
soll oder nicht. Dafiir eignen sich die Status + beziehungsweise — aus K.

Q = {(ks, kt,q, k) ks, ke € K;q € {0,1}; k. € {—,+} C K} (4.32)

Abbildung 4.12 zeigt ein Beispiel fiir eine Unterscheidung von reinen Unterschieden mit
der Moglichkeit einer automatischen Konfliktlosung und Konflikten, die einen manuellen
Eingriff erfordern. In dem aufgefithrten Beispiel sind die resultierenden Status bei der
Detektion von Unterschieden vermerkt. Konflikte, die nicht automatisch behoben werden
konnen, sind mit einem Kreuz markiert. An dieser Stelle ist anzumerken, dass es ebenso

89

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

moglich wire, an diesen Stellen einen resultierenden Status anzugeben, wenn dies der
jeweilige Anwendungsfall zulasst.

Status
Zielentwicklungszweig

Status [0) - 0 +

0 . Kombination durch Definitionen
ausgeschlossen

- - - Status sind gleich

Status
Quellentwicklungszweig

0 - + Konflikt erkannt

+ + + +/- |Unterschied erkannt

Abbildung 4.12: Beispiel fir Umsetzung der Konfliktbeschreibungsmatrix mit Konfliktlosung
(in Anlehnung an [HGU16, S. 7))

In Anlehnung an [HGU16] kann auf Basis der vorangegangenen mathematischen
Definitionen die Erkennung von Unterschieden beziehungsweise Konflikten definiert
werden. Hierfir werden im ersten Schritt alle Elemente herausgefiltert, die in den beiden
zu vergleichenden Historien den gleichen Status aufweisen. Die resultierenden Mengen
D, und D, sowie deren Berechnungsvorschrift ist in Gleichung 4.33 beschrieben.

Ds = QErzds\(QEndg N QEndt)

4.33
Di = Qpna, \(LEna, N QEna,) ()

Die Kardinalitit der beiden Mengen D, und D; kann unterschiedlich sein. Zur Verringe-
rung der Komplexitat der notwendigen mathematischen Operationen werden daher beide
Mengen auf die gleiche Kardinalitat erweitert. Dies ist moglich, indem jede der Mengen
um die Elemente erweitert wird, die nur in der anderen Menge enthalten sind. Als Status
wird dabei () vergeben. Die formale Erweiterung ist in Gleichung 4.34 dargestellt.

D, = {(5,0) € (S x K)|(5,9) € Dy A (s,h) ¢ Dy; s € S;

g€ K; hek; gbeliebig; h beliebig} U Dy
Dy ={(s,0) € (SxK)|(5,9) € Dy A (5,h) ¢ Dy; s € S;

g €K; hek; gbeliebig; h beliebig} U D,

(4.34)

Durch die Erweiterung der Mengen auf die gleiche Kardinalitat kann im Folgenden die
Gleichung 4.35 angewendet werden. Bei dieser handelt es sich um die Zusammenfithrung
der Mengen D, und D, zu einer gemeinsamen Menge, die aus Tripeln besteht. Diese Tripel

90

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

beinhalten an erster Stelle das Element, gefolgt von den beiden Status des Elementes
auf dem Quell- und dem Zielentwicklungszweig. Auf dieser Ergebnismenge konnen
dann wiederum Regelsitze angewendet werden, wie sie bereits beispielhaft anhand der
Konfliktbeschreibungsmatrix aufgefiihrt wurden, um aus den Unterschieden entsprechende
Ergebnismengen fiir die Zusammenfithrung abzuleiten.

Dpiss = {(8,ks k) € (S x K x K)}|(s,ks) € Dy A (5,k:) € Dy} (4.35)

Der in Gleichung 4.32 beschriebene Regelsatz kann im Folgenden auf die Ergebnis-
menge aus Gleichung 4.35 angewendet werden, um eine automatische Konflikterkennung
durchzufiihren. Es resultiert die Menge Dy, die aus Quadrupeln besteht und in Gleichung
4.36 dargestellt ist. Diese beschreibt zu jedem Element s die zugehorigen Status, ob es
sich um einen Konflikt handelt und was der resultierende Status ist.

DQ = {(57 ks: kt: q, kr)‘(kSQa th7 q, qu) S Q (4 36)

(S;ks>kt)€DDiff; ks:kSQ:, kt:th} ’
Nachvollziehung von transienten Effekten auf High-Level-Ebene Neben transienten
Effekten auf atomarer Anderungsebene konnen solche Effekte auch auf High-Level-
Ebene vorkommen. Unter anderem kénnen auf Basis von High-Level-Anderungen in
vorangegangenen Revisionen wiederum Anderungen durchgefiihrt werden, die Einfluss
auf eine anschliefende Konflikterkennung und -behebung haben kénnen, da resultierende
Konflikte auf atomarer Ebene nicht festgestellt werden kénnen. Fiir die Analyse der
High-Level-Changes miissen diese entlang der zusammenzufithrenden Pfade im ersten
Schritt aus den atomaren Anderungen heraus aggregiert werden. Demzufolge ist es
wiederum notwendig, eine gemeinsame Vorgiangerrevision und die resultierenden Pfade zu
generieren. Hierfiir kénnen die bereits in Gleichung 4.26 und Gleichung 4.27 eingefiihrten
Definitionen als Ausgangspunkt wiederverwendet werden.

Basierend auf den vorliegenden Pfaden Cpi,, und Cpyyy, wird die Aggregation vor-
genommen. Gleichung 4.37 beschreibt das notwendige Vorgehen. Den in den Pfaden
beschriebenen Anderungen werden, wenn méglich, High-Level-Changes zugeordnet. Da
diese nach Gleichung 4.18 keine Zuordnung zu den korrespondierenden Revisionen mehr
besitzen, werden diese jeder Aggregation zugeordnet, was eine nachtriagliche Identifikation
ermoglicht.

hlcPathAggg (Cpun) ==
G = (Ry,Cy, By, T5.ng);
(4.37)
(Ts Ty e AGGg (12,,7y,)) | n € N30 < < [Cratn| — 1;

(sz Tyn,vC:zer?;) € Cpath

91

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Im Folgenden werden durch Nutzung der Gleichung 4.37 Uberschneidungen zwischen
den erkannten High-Level-Changes detektiert. Gleichung 4.38 stellt die zugehorigen
Vorschriften dar. Eine Abhéngigkeit beziehungsweise eine aufeinander aufbauende Weiter-
entwicklung zwischen zwei High-Level-Changes wird erkannt, wenn es eine Schnittmenge
zwischen der Menge der hinzugefiigten Elemente und der Menge der geldschten Elemente,
der zu priifenden High-Level-Changes, gibt. Ergebnis der Funktion intersecg (Cpu)
ist eine Menge an Tupeln, die die aufgedeckten Abhéngigkeiten der High-Level-Changes
beschreibt. Fiir die Beschreibung werden Tupelbeziechungen genutzt, aus denen wiederum
ein Abhéngigkeitsbaum abgeleitet werden kann.

intersecg (Cpun) =

G = (Ry,Cy,By.Ty,ny);

a € hlcPathAggg (Cpan) ;

b€ hlcPathAggg (Cpan); a # b;
a= (TzMrya., <<I>g (TasTya) 7C,,J.;,C,:a>) ;
(Pausyasha) | b= (ra,my,, (B () C.C)) 5 (4.38)
(Tays Typs0)) | ha € Rg (1a,7y,) ;

hy € ®g (re,ry,);

he = (C,jub,,,m L., Jl,m) ;

— + - .
hb - (Os'ubnzb7csubnzb7n25) ’

(C:rub N ,;ub,,z) U (C;Lb,m, n CL%) #0
Erkennung von High-Level-Konflikten Die Erkennung von High-Level-Konflikten ist
von dem verfiigbaren Regelsatz fir die Erkennung von High-Level-Changes und zusatzli-
chem Wissen iiber mogliche Konflikte beim Auftreten von Anderungen auf unterschiedli-
chen Entwicklungszweigen abhéngig. Da es sich dabei um technologiespezifisches Wissen
handelt, wird an dieser Stelle nicht auf eine formale Beschreibung eingegangen. Auf Basis
der Aufbereitung der strukturellen Anderungen mithilfe der Gleichungen 4.18, 4.37 und
4.38 sind jedoch unterschiedliche Szenarien fiir die Konflikterkennung méglich, wie unter
anderem:

92

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

e Analyse entlang des Pfades hat keine Abhingigkeiten zwischen den High-Level-
Changes festgestellt:

— Konflikterkennung ist auf der Ebene der einzelnen High-Level-Changes méglich
o Analyse entlang des Pfades hat Abhéngigkeiten zwischen den High-Level-Changes
festgestellt:
— Konflikterkennung ist auf der Ebene der einzelnen High-Level-Changes inner-
halb der Pfade moglich
— Konflikterkennung ist auf der Ebene von Sequenzen von abhingigen High-
Level-Changes innerhalb der Pfade moglich
— Konflikterkennung ist auf der Ebene von Sequenzen von abhéngigen High-
Level-Changes und einzelnen High-Level-Changes innerhalb der Pfade méglich

Konflikterkennung ist auf der Ebene der Gesamtpfade moglich.

Es existieren weitere Szenarien, die die Kombination der bereits aufgefiihrten Mog-
lichkeiten unterstiitzten. Hierzu gehort beispielsweise die Zusammenfiithrung von einem
Entwicklungszweig, der keine Abhéngigkeiten aufweist, mit einem Entwicklungszweig,
der mehrere Abhangigkeitspfade besitzt.

Bei dem Vergleich von Entwicklungszweigen auf einer High-Level-Ebene miissen Korre-
spondenzen zwischen den zu vergleichenden High-Level-Changes gefunden werden. Diese
Korrespondenzen sind einerseits aus den Abhéngigkeitspfaden ableitbar, wobei ausgehend
von der gemeinsamen Ausgangsrevision eine Analyse entlang der Pfade durchgefiihrt
werden kann. Andererseits ist es ebenfalls moglich, ein charakteristisches Element fiir
eine jede High-Level-Change-Aggregationsregel zu definieren. Mit diesem Element kann
dann ein Vergleich von aggregierten High-Level-Changes vom gleichen Typ durchgefiihrt
werden. Beim Vergleich von Abhédngigkeitssequenzen kénnen des Weiteren Invertie-
rungsbeziehungen zwischen High-Level-Changes beachtet werden, wodurch zusétzliche
Konfliktmoglichkeiten ausgeschlossen werden kénnen.

Konfliktbehebung Die Konflikthehebung kann auf Basis, der in den vorangegangenen
Abschnitten beschriebenen Methoden zur Erkennung von Unterschieden und Konflikten
bei der Zusammenfithrung von Entwicklungszweigen durchgefithrt werden. Im Wesentli-
chen bestehen zwei Méglichkeiten, um einen Konflikt zu beheben. Im ersten Fall muss
ein Nutzer den Konflikt auf Basis der vorliegenden Information beheben. Im zweiten Fall
kann durch die Analyse der Unterschiede und der bereitgestellten Regelsitze automa-
tisch eine Konfliktlosung abgeleitet werden. Fiir eine automatische Konfliktlésung kann
beispielsweise eine Priorisierung auf Nutzer- oder Entwicklungszweigebene erfolgen, um
daraus die resultierenden Schritte fir die Zusammenfithrung abzuleiten.

4.4.3.3 Semantische Beschreibung

Die in Abbildung 4.9 aufgefithrte semantische Beschreibung fiir die Basisrevisionskon-
trollfunktionalitdten wird im Folgenden um die Moglichkeiten der Zusammenfithrung
erweitert (Anforderung A-204). Abbildung 4.13 zeigt das zugehorige UML-Modell.

93

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Commit

commitMessage : string
timeStamp : date

s

MergeCommit

e
l l l

FastForwardCommit ‘ ’ThreeWayMergeCommit‘ ’ PickCommit ‘

2| hasChangeSet

1.x 1| usedTargetRevision
ChangeSet —— | 1.+
hasChangeSet —_ Revision
usedTargetBranch | 1 generated
1.% revisionldentifier : string
1 L -
—_— Branch usedSourceRevision
usedSourceBranch

usedSourceBranch | 1 generated
wasQuotedFrom | 0..1 usedSourceRevision | 1

Abbildung 4.13: Semantische Beschreibung der Mergefunktionalititen als UML-Modell (erwei-
tert Abbildung 4.9)

Die semantische Beschreibung der im Abschnitt 4.4.3.1 eingefiihrten Methoden er-
folgt durch Ableitung vom bereits existierenden Commit. Jeder MergeCommit hat
dabei eine Referenz zu dem genutzten Zielentwicklungszweig (used TargetBranch), auf
den die Anderungen angewendet werden. Des Weiteren wird jeweils eine Zielrevision
(used Target Revision) angegeben, die den Ausgangspunkt fiir die Anwendung der Ande-
rungen darstellt. Fir 3-Wege-Merges und Fast Forwards wird jeweils eine Quellrevision
(usedSourceRevision) angegeben. Ebenso wird immer nur eine neue Revision mit dem
zusammengefithrten Inhalt generiert. Bei einem Pick konnen hingegen mehrere Quellre-
visionen spezifiziert werden, wodurch demzufolge auch mehrere generierte Revisionen
entstehen. Hieraus resultiert gleichzeitig auch die Notwendigkeit, die Beziehung zwi-
schen der Ausgangsrevision und der erzeugten, kopierten Revision darzustellen. Dies
erfolgt mittels der Assoziation wasQuotedFrom. Fiir 3-Wege-Merges miissen aufgrund
der Zusammenfiihrung von zwei Entwicklungszweigen auch zwei ChangeSets angelegt
werden, um die Historie entlang beider Zweige darstellen zu kénnen. Ein Pick kann je
nach Anzahl der kopierten Revisionen mehrere ChangeSets referenzieren. Da ein Pick
auf Revisionen von unterschiedlichen Entwicklungszweigen zugreifen kann, besitzt dieses

94

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.4 Anderungsmanagement

keine Referenz auf den Quellentwicklungszweig (usedSourceBranch), wie Fast Forwards
und 3-Wege-Merges.

Abbildung 4.14 erweitert die bestehenden Abbildungen 4.9 und 4.10 um die semantische
Beschreibung der Konflikterkennung und -behebung. Hierfiir wird eine neue Klasse Dif-
ference eingefiihrt, die kennzeichnet, ob es sich um einen konfliktbehafteten Unterschied
handelt oder nicht. Es stehen zwei mogliche Auspragungen zur Verfiigung. Struktu-
relle Unterschiede konnen mittels StructuralDifference und High-Level-Unterschiede
konnen mittels HighLevelDifference beschrieben werden. Strukturelle Unterschiede sind
durch sourceState (Status in Quellentwicklungszweig), targetState (Status in Zielent-
wicklungszweig), ResolutionState (Status fiir eine regelbasierte Konfliktlosung) und
correspondingStatement (Element auf das sich der Unterschied bezieht) gekennzeichnet.

Difference

isConflicting

4{ HighLevelDifference

4{ StructuralDifference

HighLevelChangePath
1| sourceState
<<enumeration>>
1
State
tar 1..* [sourceChanges 1..* |targetChanges
DELETED o*
NOCHANGE 1 HighLevelChange -
ADDED changes
NOTINCLUDED resolutionState
a 1 0..*| updates

coorespondingStatement

1.*| resolutionChanges 1| priorRevision 1| succeedingRevision
1

SemanticChange Revision

associatedSemanticChange revisionldentifier : string

Abbildung 4.14: Semantische Beschreibung der Konflikterkennung und -behebung als UML-
Modell (erweitert Abbildungen 4.9 und 4.10)

Die einzelnen Status beziehen sich auf eine Enumeration an Moglichkeiten, die die Sta-
tus aus Gleichung 4.25 widerspiegeln. High-Level-Unterschiede setzen sich aus einer Menge
von High-Level-Changes (HighLevelChange) in Bezug auf Quell- und Zielentwicklungs-
zweig zusammen. Des Weiteren kann eine Konfliktlosung spezifiziert werden, die unter
Umsténden auch aus mehreren SemanticChanges bestehen kann. Jedem HighLevelChange
ist ein korrespondierender SemanticChange sowie eine Vorgénger- (priorRevision) und
eine Nachfolgerrevision (succeedingRevision) zugeordnet. Mittels der Assoziation updates
konnen die Abhéngigkeiten zwischen den einzelnen HighLevelChanges innerhalb eines

95

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

Pfades beschrieben werden. Ein HighLevelChangePath besteht aus mindestens zwei
HighLevelChanges.

4.5 Evolutions- und Konsistenzmechanismen

In diesem Abschnitt erfolgt die Erweiterung des technologieunabhéngigen Revisionskon-
trollsystems um Evolutions- und Konsistenzmechanismen, die fiir die Realisierung eines
RMS notwendig sind. Grundlage bilden hierfiir die mathematischen und semantischen
Beschreibungen aus den vorangehenden Abschnitten. Insbesondere wird auf den Basisrevi-
sionskontrollfunktionalititen, der Aggregation von High-Level-Changes und der formalen
Beschreibung verbindungsorientierter Modelle aufgesetzt. Die nachfolgenden Definitionen
beschreiben hierbei wiederum ein Integrationsschema, in das unterschiedliche technolo-
giespezifische Regelsitze und Algorithmen zur Durchfithrung von Evolutionen, wie zum
Beispiel in [Keh15], [Sto04], [Pap+13] oder [AHO6] dargestellt, integriert werden konnen.
Fiir die semantische Beschreibung werden UML-Modelle verwendet, wobei bereits in
vorhergehenden Abschnitten definierte Elemente wiederum grau hervorgehoben werden.

4.5.1 Evolutionsmechanismen

Ausgehend von einem Beispiel der Co-Evolution innerhalb des RMS wird im Folgenden
die notwendige Revisionsgraphenstruktur vorgestellt. Anschlieend werden die mathema-
tischen sowie semantischen Beschreibungen fiir die Co-Evolution dargelegt (Anforderung
A-301).

4.5.1.1 Integration in RMS

Fir die Durchfithrung von Co-Evolutionen innerhalb des RMS wird auf die Basisre-
visionskontrollfunktionalitdten zuriickgegriffen. Abbildung 4.15 zeigt ein Beispiel fir
die Strukturierung der beteiligten Revisionsgraphen innerhalb des RMS. Darin wird
davon ausgegangen, dass zwei voneinander abhangige Modelle in unterschiedlichen Re-
visionsgraphen im Revisionsverwaltungssystem existieren. Die Verbindungen zwischen
den Modellen werden wiederum in einem weiteren Revisionsgraphen gespeichert. Des
Weiteren existiert ein Revisionsgraph, der durchgefiihrte Co-Evolutionen dokumentiert
und ein Revisionsgraph mit Regelsitzen, die zum Beispiel fiir die Aggregation von
High-Level-Changes oder die Anwendung von Co-Evolutionen verwendet werden kénnen.

Durch die Evolution des Revisionsgraphen von Modell 1 wird automatisiert analysiert,
ob eine Co-Evolution erforderlich ist. Hierfiir werden die im Revisionsgraph Verbindungen
vorgehaltenen Verbindungen analysiert, um abhéingige Revisionsgraphen zu identifizieren.
In dem dargestellten Beispiel existieren Abhéngigkeiten zwischen Modell 1 und Modell
2. Auf Basis der Aggregation der durchgefiihrten Anderungen am Modell 1 wird unter
Nutzung der Regelsdtze eine notwendige Co-Evolution durchgefiihrt. Diese resultiert
in einer neuen Revision von Modell 2 und der Erzeugung einer neuen Revision im
Revisionsgraphen Co-Evolution, um die durchgefithrten Anderungen semantisch zu
beschreiben. Hierzu gehoren Referenzen auf die bisherigen sowie die neuen Stinde von

96

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.5 Evolutions- und Konsistenzmechanismen

Revisions-
graph 7 A olutio
Modell 1 ¢\ Evolution :
Revisions- | aerVerbind
graph O—(Y 4 5 U
Modell 2 olution \ 4 . .
Revisions-
graph Durch Co-Evolution
Verbindungen erzeugte Revision zur
semantischen
\\\ Beschreibung der
T durchgefiihrten Co-
Revisions- Evolution inklusive
graph OQ—OQ— —_—— o Referenz auf genutzte
Co-Evolution Information
Revisions- N\ Ve
woon | () U O
Regelsdtze
Revisionsverwaltungssystem

Abbildung 4.15: Beispiel fiir die Umsetzung einer Co-Evolution innerhalb des RMS

Modell 1 und Modell 2, die genutzten Verbindungen sowie die angewendeten Regelsitze
fiir Aggregation und Co-Evolution.

Generell konnen innerhalb des RMS unterschiedliche Strukturierungen der Revisions-
graphen vorgenommen werden. So kénnen zum Beispiel Informations- und Datenmodelle
innerhalb eines oder in unterschiedlichen Revisionsgraphen vorgehalten werden. Fir die
Beschreibung der Verbindungen kann entweder ein eigener Revisionsgraph verwendet
werden, wodurch zum Beispiel Abhéngigkeiten zwischen unterschiedlichen Datenmodellen
gepflegt werden kénnen. Es ist jedoch ebenso maoglich, dass die Verbindungen direkt in den
Datenmodellen enthalten sind. So kénnen unter anderem Typ-Instanzbeziehungen direkt
in den Datenmodellen abgebildet werden, indem auf die zugehorigen Informationsmodelle
referenziert wird. Die Co-Evolution wird innerhalb des RMS jeweils in einem eigenen
Revisionsgraphen dokumentiert, da hierdurch Eingriffe in die zu pflegenden Modelle
vermieden werden und die Co-Evolution eine eigene Revisionshistorie besitzt. Regelsitze
sollten mit einem Verweis auf den genutzten Stand ebenfalls semantisch referenzierbar
sein.

97

216.73.216.60, am 24.01.2026, 01:46:48. @
m mit, flr oder in Ki-Syster

geschitzter Inhalt.

https://doi.org/10.51202/9783186873101

4 Entwurf

4.5.1.2 Mathematische Beschreibung

Fiir die im vorangegangenen Abschnitt eingefiihrte semantische Beschreibung der durch-
gefithrten Co-Evolution wird ein entsprechender Revisionsgraph G. benétigt. Gleichung
4.39 gibt die zugehorige Vorschrift fiir die Erstellung an. Der resultierende Revisionsgraph
beinhaltet nur einen master-Zweig, auf dem die Historie der Co-Evolution beschrieben
wird.

creater (0) = TU{G.} =T" (4.39)

Grundlage fiir die Durchfiihrung einer Co-Evolution sind Anderungen an einem Modell,
das Abhédngigkeiten zu anderen Modellen aufweist. Daher wird im Folgenden angenom-
men, dass bereits ein oder mehrere Commits auf einen entsprechenden Revisionsgraphen
durchgefithrt wurden. Darauf aufbauend kann die Funktion coevolveAlly (G,,ry..1y.)
genutzt werden, um die Anderungen in Form von Co-Evolutionen an alle abhéngigen Mo-
delle in I" zu propagieren. Bei dieser Funktion handelt es sich um eine aufeinanderfolgende
Ausfithrung von mehreren Funktionen. Zu den verwendeten Funktionen gehoren auf der
einen Seite Basisrevisionskontrollfunktionalitéiten, wie in den vorangehenden Abschnitten
beschrieben, aber auf der anderen Seite auch spezifische Funktionen der Co-Evolution. Des
Weiteren miissen Parameter fiir die Ausfithrung der Funktion spezifiziert werden. Dazu
zéhlen der Quellrevisionsgraph G, und die Startrevision r,, und Endrevision 7, , zwischen
denen die durchgefithrten Anderungen untersucht werden sollen. Die zu co-evolvierenden
Anderungen werden im ersten Schritt zu High-Level-Changes aggregiert. Hierfiir wird
die Funktion hlcAggg aus Gleichung 4.18 verwendet. Als Parameter erhélt diese den
Quellrevisionsgraph sowie Start- und Endrevision. Das Ergebnis der Aggregation wird in
der Variablen hg, gespeichert. Die Abhingigkeit der durchgefiihrten Anderungen wird
unter Nutzung von hg, und den beschriebenen Verbindungen in Revisionsgraphen von
I abgeleitet. Die Funktion caleDepr (Gs. 1y, .1y, hg,) stellt die dafir benotigte Funk-
tionalitit bereit. Die Realisierung ist dabei wiederum vom konkreten Anwendungsfall
und den zugrunde liegenden Regelsitzen fiir die Erkennung von Abhéngigkeiten abhéin-
gig. Abhéngigkeiten konnen dabei sowohl auf einer sehr abstrakten Ebene oder auf die
Doméne zugeschnitten spezifiziert werden. Die generelle Definition der Funktion mit
der zugehorigen Ergebnismenge ist in Gleichung 4.40 aufgefithrt. Die Ergebnismenge
setzt sich aus Tupeln zusammen, die abhéngige Entwicklungszweige und den zugehorigen
Revisionsgraphen angeben.

Goely

g4 = (R /‘rC 1,7B L7T/,7n L);
calcDepr (G,,re, 1y, hg,) = (Ge.nw,) ' e (4.40)
bt (S Bgt'.,

bt = (Rbl, STl ‘,Tll, ‘,n’bl,)

98

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.5 Evolutions- und Konsistenzmechanismen

Die eigentliche Durchfiihrung der Co-Evolution erfolgt mittels entsprechender Commits
auf die abhéngigen Entwicklungszweige der jeweiligen Revisionsgraphen. Hierfiir steht die
in Gleichung 4.41 definierte Funktion coevolver (hg,,Gi,np,) zur Verfiigung. Diese aktua-
lisiert den Zielrevisionsgraphen, indem eine neue Revision auf dem Zielentwicklungszweig
angelegt wird, in der die notwendigen Anderungen zur Umsetzung der Co-Evolution
durchgefiihrt werden. Die Berechnung der zugehorigen Hinzuftigungen und Loschungen
wird mittels € (hg,,Gt,n,), beschrieben in Gleichung 4.42, vorgenommen. Die Realisierung
basiert dabei auf den Regelsatzen und Algorithmen der Co-Evolution, wie zum Beispiel
in [Kehl15] oder [Sto04] beschrieben. Fiir die Integration in das Gesamtsystem werden
dabei die bereits detektierten High-Level-Changes als Grundlage fiir die Umsetzung der
Regelsatze verwendet.

coevolver (hg,.Gyny,) = (T\{Gi}) U {commitg, (n,,€ (hg,.Gi.w,))} (1.41)
=TI ’

& (hgsﬁgtvnbt) = (C+707) (442)

Gleichung 4.43 fasst den Ablauf der Funktion coevolveAllr (Gs,ry. ,ry,) zusammen.
Nach der High-Level-Change-Aggregation wird eine leere Menge Z definiert, die fir
die temporire Speicherung der durchgefithrten Anderungen verantwortlich ist. In der
folgenden Schleife werden fiir alle gefundenen Abhéngigkeiten Co-Evolutionen durchge-
fithrt und jeweils der entsprechende Revisionsgraph durch einen Commit aktualisiert. Die
durchgefithrte Anderung mit allen genutzten Variablen wird dann zu Z hinzugefiigt. Die
Variable r;, gibt hierbei die neu erstellte Revision an, die identisch zum Blatt des Ent-
wicklungszweiges b; ist. Der Entwicklungszweig b; wird mittels n,, identifiziert. Nachdem
die Co-Evolution fiir alle Abhéngigkeiten durchgefiihrt wurde, wird G, aktualisiert, wofir
Z die Grundlage bildet. Diese Menge der durchgefiihrten Anderungen wird mittels der
Funktion E(Z) in die semantische Beschreibung mit den zugehérigen Hinzufiigungen und
Loschungen iiberfithrt. Alle Anderungen werden dabei auf den master-Zweig geschrieben.

coevolveAlly (G, ry.,ry,) :

1: h/gs = thAgggs (7‘zs~77'ys) = (‘bgs (TJCsvrys) 7C7+‘C;)

2: Z=10;

3: FOR (Gi,n,) IN caleDepr (Gs,rs,,ry. ha,) : (4.43)
4 I = coevolver (hg,,Gi,np,) ;

5: Z = ZU{(Gs.1a. Ty g G, 1)}

6: = (I\{G.}) U {commity, (1.E(2))};

99

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

4.5.1.3 Semantische Beschreibung

Das in Abbildung 4.9 dargestellte UML-Modell zur Beschreibung der Revisionskontroll-
funktionalitaten bildet im Folgenden die Grundlage fiir die Beschreibung der durchgefiihr-
ten Co-Evolutionen (Anforderung A-302). Im ersten Schritt wird zur Beschreibung der
Co-Evolutionsrevisionsgraphen und méglicher Revisionsgraphen fiir die Beschreibung von
Verbindungen jeweils eine Ableitung vom RevisionGraph angelegt. Alle Co-Evolutionen
in einem RevisionControlSystem werden dabei in einem Revisionsgraphen CoEvolutionRe-
visionGraph revisioniert. Des Weiteren kann eine beliebige Anzahl an Revisionsgraphen
fiir die Verbindungsbeschreibung ConnectionsRevisionGraph pro Revisionskontrollsystem
vorgehalten werden. Durch die explizite Beschreibung der Revisionsgraphtypen kénnen
diese den entsprechenden Komponenten des RMS fiir die Auswertung zugeordnet werden.

& RevisionControlSystem @

0.*
RevisionGraph
! CoEvolutionRevisionGraph ConnectionsRevisionGraph 0-.

Abbildung 4.16: Semantische Beschreibung der Revisionsgraphen fiir Co-Evolution und Ver-
bindungen

Die semantische Beschreibung der durchgefithrten Co-Evolutionen erfolgt innerhalb
des Co-Evolutionsrevisionsgraphen mithilfe des in Abbildung 4.17 dargestellten UML-
Modells. Bei Anderungen an einem Modell innerhalb des Revisionsverwaltungssystems
wird eine neue Evolution angelegt, die Referenzen auf den Quellrevisionsgraph (used-
SourceRevisionGraph) und den zugehorigen Revisionsbereich, auf dem die Evolution
aufbaut, besitzt. Der Revisionsbereich wird durch eine Startrevision (startRevision) und
eine Endrevision (endRevision) beschrieben. Des Weiteren werden durch die Evolution
die bereits aggregierten High-Level-Changes (SemanticChange) referenziert, auf deren
Basis die spéteren Co-Evolutionen durchgefithrt werden (associatedSemanticChange). Die
einzelnen Co-Evolutionen, die aus einer Evolution resultieren, werden mittels CoEvolution
beschrieben (performedCoEvolution). Jede der Co-Evolutionen hat wiederum Referenzen
auf den Zielrevisionsgraphen (used TargetRevisionGraph) sowie dessen Zielentwicklungs-
zweig (used TargetBranch). Fiir die Identifikation dieses Ziels wurden eventuell explizit in
einem ConnectionsRevisionGraph beschriebene Verbindungen genutzt. Wenn dies der Fall

100

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4.5 Evolutions- und Konsistenzmechanismen

ist, so werden die entsprechenden Revisionsgraphen mittels usedConnectionsRevision-
Graph und den zugehorigen Revisionen (usedConnectionsRevision) referenziert, um eine
Nachvollziehbarkeit der analysierten Abhéngigkeiten sicherzustellen. Im Fall, dass keine
Instanzen von ConnectionsRevisionGraph im Revisionskontrollsystem vorhanden sind,
werden nur die in den Modellen beinhalteten Abhingigkeiten analysiert. Die Nachvoll-
ziehbarkeit ist auch in diesem Fall gewéhrleistet, da auf den Zielentwicklungszweig und
die neu erstellte Revision (generated) verwiesen wird. Bei einer entsprechenden Analyse
der Co-Evolution kann dann die Vorgéngerrevision der neu erstellten Revision genutzt
werden. Diese gibt den zugehorigen Stand an, der fiir die Co-Evolution als Grundlage
genutzt wurde.

Evolution |

4 associatedSemanticChange

1.%

SemanticChange

performedCoEvolution | 0..* usedSourceRevisionGraph | 1

CoEvolution L RevisionGraph

usedTargetRevisionGraph

Branch

startRevision 1|endRevision usedTargetBranch

-

. 1
Revision ConnectionsRevisionGraph
generated

. . -
0..*| usedConnectionsRevision 0..* | usedConnectionsRevisionGraph

Abbildung 4.17: Semantische Beschreibung der Evolution als UML-Modell

4.5.2 Konsistenzmechanismen

Innerhalb des RMS muss die Konsistenz zwischen aber auch innerhalb von Modellen
sichergestellt werden. Konsistenz liegt nach der in dieser Arbeit verwendeten Definition
immer dann vor, wenn entsprechende Regelsitze fiir die Sicherung der Konsistenz
eingehalten werden, was daher also auch im Fall einer Evolution sichergestellt werden
muss. Einen ersten Anhaltspunkt bieten hierfir die detektierten High-Level-Changes. So
kann bei Anwendung der Funktion hlcAggg aus Gleichung 4.18 iiberpriift werden, ob sich
die durchgefiihrten atomaren Anderungen vollstandig zu High-Level-Changes aggregieren
lassen kénnen (Anforderung A-303). Im Fall, dass CF oder C, ungleich der leeren Menge
ist, ist entweder die Giite der zugrunde liegenden Regelsétze nicht ausreichend oder es
wurden Anderungen vorgenommen, die zu Inkonsistenzen fithren. Diese Inkonsistenzen
konnen in den unterschiedlichen Typen der Modellkonsistenz nach Lucas et al. [LMT09]

101

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

4 Entwurf

auftreten. Innerhalb des RMS sind daher nur Anderungen zugelassen, die konsistent zur
vorgegebenen Syntax sind. Eine entsprechende Priifung kann direkt bei der Ausfithrung
des Commits mittels commitg durchgefithrt und inkonsistente Anfragen konnen hieraus
direkt abgelehnt werden. Sowohl die horizontale als auch die vertikale Konsistenz werden
durch entsprechende Regelsitze zur Beschreibung von Verbindungen zwischen Modellen
auf gleicher oder unterschiedlicher Abstraktion sichergestellt. Darauf aufbauend werden
die Regelséitze zur Durchfithrung der Co-Evolution definiert. Hieraus ergibt sich, dass
falls eine semantische Beschreibung einer Co-Evolution innerhalb des RMS vorliegt, eine
Konsistenzsicherstellung zwischen den abhéangigen Modellen stattgefunden hat. Diese
muss daher nicht im semantischen Modell explizit abgebildet werden. Aufbauend auf
den Regelsétzen zur Sicherstellung von vertikaler und horizontaler Konsistenz kénnen
anschliefend erweiterte Regelsétze fir die Sicherstellung der semantischen Konsistenz
angewendet werden, die nach erfolgreicher Durchfithrung von Evolution und Co-Evolution
Konsistenz priifen kénnen.

102

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

Die Umsetzung des technologieunabhingigen Entwurfs erfolgt in diesem Abschnitt
beispielhaft fir das Semantic Web, da hier auf der einen Seite bereits erste Vorarbeiten
existieren, um Revisionsverwaltung in diesem Bereich zu etablieren. Zum anderen ist
die Revisionierung von industriellen Informationsmodellen nach Graube [Gral6] unter
Bezugnahme auf Schmidt et al. [Sch+14] eine der Hauptanforderungen im Engineering
Prozess und spielt daher auch eine zentrale Rolle innerhalb von LED [Gral6].

Die Basistechnologie des Semantic Web ist das RDF. Dadurch kann die Menge S, die
in Abschnitt 4.4 eingefithrt wurde, durch die Menge der Tripel ersetzt werden. Ein Tripel
besteht innerhalb des RDF jeweils aus Subjekt, Pradikat und Objekt. Mathematisch lasst
sich die resultierende Menge S durch & :=U x U x (U U L) beschreiben. Bei ¢ und £
handelt es sich um zwei disjunkte unendliche Mengen, wobei U die Menge aller Uniform
Resource Identifier (URI)s und £ die Menge aller Literale beschreibt. Ein RDF-Graph
ist des Weiteren definiert als eine Teilmenge der moglichen Tripel.

Grundlage fiir die Umsetzung bildet das semantische Revisionsverwaltungssystem
R43ples, das im Folgenden zu einem RMS weiterentwickelt wird. Zu Beginn wird ein
Uberblick iiber die interne Architektur von R43ples und den zugehérigen notwendigen
Erweiterungen gegeben, bevor im Anschluss die umgesetzten Funktionalititen detaillierter
beschrieben werden.

5.1 Ubersicht

R43ples ist in vorangegangenen Arbeiten bereits konzeptionell entwickelt und proto-
typisch implementiert worden [Henl3; Henl4]. Durch das System werden Basisrevi-
sionsverwaltungsoperationen aber auch bereits erste Ansitze fiir die Zusammenfiih-
rung von divergierten Entwicklungszweigen bereitgestellt. Im Rahmen dieser Arbeit
erfolgt eine Weiterverwendung des existierenden Konzepts sowie der zugehérigen Im-
plementierung hin zu einem RMS. Fur die Erreichung dieses Ziels wird R43ples so-
wohl konzeptionell als auch implementierungstechnisch erweitert. Insbesondere werden
die entwickelten formalen und semantischen Beschreibungen dieser Arbeit in R43ples
iberfiihrt. Die Implementierung erfolgt dabei Open Source auf GitHub und ist unter
https://github.com/plt-tud/r43ples abrufbar.

Innerhalb von R43ples wird ein objektorientierter Implementierungsansatz verfolgt.
Im Rahmen dieser Arbeit wird dieser weiter intensiviert. So wird die Kapselung und
die Wiederverwendbarkeit von Funktionalitdten durch zusatzliche Paketstrukturen und
die Schaffung von Interfaces unterstiitzt. Im Wesentlichen erfolgt eine Unterteilung in
Kernfunktionalitidten und darauf aufbauenden weiterfithrenden Funktionen. Die Kern-
funktionalitdten sind dabei innerhalb eines Pakets gekapselt und tiber ein Interface
abrufbar. Das in Abbildung 5.1 dargestellte UML-Diagramm zeigt einen Ausschnitt

103

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

aus der Struktur des core-Pakets, das die Funktionen unter anderem an den Webser-
viceendpunkt bereitstellt. Innerhalb des Kernpaketes werden vorrangig Entwiirfe von
Objekten, wie beispielhaft in Abbildung 5.2 dargestellt, erzeugt, die dann mittels einer
entsprechenden Methode in eine semantische Beschreibung im angeschlossenen Triple
Store iiberfithrt werden.

<<interface>>

R43plesCorelnterface

+ createlnitialCommit(request : R43plesRequest) : InitialCommit - r43plesCore
+ createlnitialCommit(graphName : String, addSet : String, deleteSet : String, S5
user : String, message : String) : InitialCommit 1

+ createUpdateCommit(request : R43plesRequest) : UpdateCommit
+ createUpdateCommit(graphName : String, addSet : String, deleteSet : String,

user : String, message : String, derivedFromIdentifier : String) : UpdateCommit R43plesCoreSingleton
A - logger : Logger

} - R43plesCoreSingleton() : R43plesCoreSingleton
! + getinstance() : R43plesCorelnterface
i
L

R43plesCore

logger : Logger

R43plesCore() : R43plesCore

+ createlnitialCommit(request : R43plesRequest) : InitialCommit

+ createlnitialCommit(graphName : String, addSet : String, deleteSet : String,
user : String, message : String) : InitialCommit

+ createUpdateCommit(request : R43plesRequest) : UpdateCommit

+ createUpdateCommit(graphName : String, addSet : String, deleteSet : String,
user : String, message : String, derivedFromldentifier : String) : UpdateCommit

Abbildung 5.1: Ausschnitt aus der Struktur des core-Pakets als UML-Modell

Fiir den Aufruf der entsprechenden Funktion innerhalb des R43plesCorelnterfaces
stehen in den meisten Féllen unterschiedliche Moglichkeiten bereit. So kann auf der einen
Seite direkt eine Anfrage (R43plesRequest), die an den Webserviceendpunkt gestellt
wurde, verarbeitet werden, beziehungsweise auf der anderen Seite ein parametrierter
Aufruf gestartet werden. Letzterer wird dabei sowohl in der ersten Variante genutzt,
wobei vorher eine Extraktion der Parameter aus der Anfrage vorgenommen wird, als auch
innerhalb von abhédngigen Funktionen, wenn beispielsweise ein neuer Commit aufgrund
einer Co-Evolution erzeugt werden muss.

Fir die leichtere Interaktion mit den semantischen Beschreibungen innerhalb des
Programmcodes werden die bestehenden semantischen Beschreibungen in Objekte im
Programmcode reflektiert. Hierbei ist zu beachten, dass der iiberwiegende Teil der
notwendigen Information zu den Objekten nicht direkt ab der Erzeugung der Objekte
vorgehalten wird, sondern bei Bedarf nachgeladen wird. Ein Ausschnitt der reflektierten
Objekte ist in Abbildung 5.3 dargestellt.

104

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

CommitDraft

- logger : Logger

- patterModifier : int

- patternUser : Pattern

- patternCommitMessage : Pattern
request: R43plesRequest

- extractUser() : String

- extractMessage() : String
setUser(user : String)

getTimeStamp() : String

UpdateCommitDraft ...CommitDraft
- logger : Logger
- patterModifier : int
- isCreatedWithRequest : boolean

UpdateCommitDraft(request: R43plesRequest) : UpdateCommitDraft

UpdateCommitDraft(graphName : String, addSet : String, deleteSet : String,
user : String, message : String, branch : Branch) : UpdateCommitDraft

createInTripleStore() : ArrayList<UpdateCommit>

- for

evision : Revision) : UpdateCommit

Abbildung 5.2: Ausschnitt aus den Entwurfsobjekten des core-Pakets als UML-Modell

Commit

- commitURI : String

- commitMessage : String

- commitTimeStamp : String

- revisionGraph : RevisionGraph

+ Commit(revisionGraph : RevisionGraph, commitURI : String) : Commit

+ Commit(revisionGraph : RevisionGraph, commitURI : String, user : String,
timeStamp : String, message : String) : Commit

+ getCommitURI() : String

+ getCommitMessage() : String

UpdateCommit ...Commit

- logger : Logger
- usedRevision : Revision

- generatedRevision : Revision

+ UpdateCommit(revision!

generatedRevision :

timeStamp : String, message : String, usedRevision : Revision,

+ getUsedRevision() : Revision
+ getGeneratedRevision() : Revision

Graph : RevisionGraph, commitURI : String, user : String,

Revision) : UpdateCommit

Abbildung 5.3:

Ausschnitt der reflektierten Objekte als UML-Modell

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

5.2 Anderungsmanagement

Das Anderungsmanagement bildet, wie in Abschnitt 4.4 dargestellt, die Basis fiir den
Aufbau weiterer Funktionalitidten und befindet sich daher im Kern von R43ples. Im
Folgenden werden die Weiterentwicklung der semantischen Beschreibung innerhalb von
R43ples sowie die erweiterten Anfrage- und Interaktionsmechanismen dargestellt.

5.2.1 Ontologie

Die semantische Beschreibung innerhalb von R43ples erfolgt mittels der Revision Ma-
nagement Ontology (RMO). Die aus den vorangegangenen Arbeiten hervorgegangene
Beschreibung der Revisionsinformation ist in Abbildung 5.4 als UML-Modell der On-
tologie dargestellt. Als Grundlage fiir die Modellierung wird dabei PROV-OY, sowie
OWL und RDFS verwendet. Bei dieser Darstellung ist zu beachten, dass alle Attribute
der Klassen, die im Namensraum von PROV-O liegen, nicht in der RMO abgebildet,
aber fiir die Modellierung der Revisionsinformation verwendet werden. Die Beschreibung
beinhaltet die Basisklassen fiir die Modellierung von Graphen, Revisionen, Commits und
Referenzen. Commits werden dabei nicht weiter unterschieden. Die Zusammenfiihrung
von divergierten Entwicklungszweigen wird nicht semantisch dargestellt und kann nur
auf Ebene des Zusammenhangs von Revisionen nachvollzogen werden. Die hinzugefiigten
und geloschten Tripel werden nur in Bezug auf die erzeugte Revision beschrieben. Dies ist
ausreichend, wenn davon ausgegangen wird, dass immer eine weiter in der Vergangenheit
liegende Revision als Ausgangspunkt verwendet wird, wie in [Hen14] vorgestellt.

RMO;

rmo:Commit

rmo:Master

provigenerated : rmo:Revision

proviused : rmo:Revision L] proviActivity
provwasAssociatedWith : prov:User

determs:title : rdfs:Literal
proviatTime : xsd:dateTime

rmo:Revision

rmo:revisionOf : rmo:Graph
rmo:revisionOfBranch : rmo:Branch
rmo:deltaAdded : xsd:string

rmo:deltaRemoved : xsd:string rmo:Graph
rmo: i .

| moreferences : mo:Revision | provwasDerivedFrom : rmo:Revision | imorreferencedSPIN : xsd:anyURI |

rmo:Reference

of roveniy |

prov: hittp://www.w3.org/ns/prové ; rmos hitp://eatid et tu-dresden.de/rmot ; ‘

‘ Namespaces: xsd: http://www.w3.0rg/2001/XMLSchema# ; dcterms: http://purl

Abbildung 5.4: Bisheriger Stand der semantischen Beschreibung mittels der RMO als UML-
Modell (in Anlehnung an [Hen13; Henl4; GHU14])

Im Fall, dass nur die letzte Revision eines Zweiges vollstandig vorliegt und die bei-
den Revisionen vor der Zusammenfiihrung wiederhergestellt werden sollen, ist es nicht
moglich mit der Beschreibung aus [Henl4] den Ausgangszustand wiederherzustellen.
Dies ist jedoch notwendig, wenn beispielsweise Algorithmen fiir die Optimierung der

Dhttp://www.qudt.org/ (besucht am 29.11.2020)

106

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5.2 Anderungsmanagement

Wiederherstellung von einzelnen Revisionen eingesetzt werden, da diese unterschiedliche
Pfade und Richtungen nutzen kénnen, um den bestmoglichen Pfad zu finden.

Die RMO wird im Folgenden mittels den im Abschnitt 4.4 eingefiihrten semantischen
Beschreibungen erweitert und verdndert, wobei PROV-O weiterhin die Grundlage fiir
die Modellierung bildet. Abbildung 5.5 zeigt die resultierende Ontologie als UML-Modell.
Attribute der Klassen sind vollstandig in die RMO iiberfithrt, wodurch eine vollstdndige
semantische Beschreibung der Revisionsinformationsmodellierung vorliegt, ohne dass
zusitzliches Wissen iiber die Verwendung von weiteren Ontologien notwendig ist. Die
Attribute sind aber weiterhin zum grofien Teil von PROV-O abgeleitet, was jedoch, wie
auch die Multiplizititen, aus Griinden der Ubersichtlichkeit in dieser UML-Darstellung
nicht abgebildet ist.

RMO;
mo:T mmit
- rmo:TagCommit rmo:BranchCommit‘
rmo:usedSourceRevision : rmo:Revision
rmo:generated : rmo:Revision mo:User rov:Person
rmo:hasChangeSet : rmo:ChangeSet) provd

rmo:ReferenceCommit

rmo:PickCommit rmo:generated : mo:Reference
rmo:used : rmo:Revision

rmo:ChangeSet

rmo:usedSourceRevision : rmo:Revision rmo:addSet : xsd:anyURI

rmoigenerated : rmo:Revision olotaSet - xodanyURI
rmo:FastForwardCommit rmo:deleteSet : xsd:any!
rmozhasChangeSet : rmo:ChangeSet Tmo-priorRevision « rmocRevision
rmousedSourceBranch : rmo:Branch rmossucceedingRevision: rmo:Revision
rmo:usedSourceRevision : rmo:Revision
rmo:InitialCommit -
rmo:UpdateCommit
rmo:MergeCommit : rmo:Revision rmo:generated : rmo:Revision
: rmo:Mast rmo:used : rmo:Revision
rmo:usedT: < rmo: rmochasChangeSet : mo:ChangeSet rmo:hasChangeSet : rmo:ChangeSet
rmo:usedTargetRevision : rmo:Revision

rmo:Commit

rmo:RevertCommit
rmo:generated : rmo:Revision rmo:timeStamp : xsd:dateTime

rmo:used : rmo:Revision rmo:wasAssociatedWith : rmo:User

rmo:hasChangeSet : rmo:ChangeSet
rmo:ConnectionsRevisionGraph
[—
rmo:Revision rmo:CoEvolutionRevi Graph
rmosrevisionidentifier : xsd:string X

rmo:wasDerivedFrom : rmo:Revision —
rmo:wasQuotedFrom : rmo:Revision rmo:RevisionGraph

Vv
N

rmo:fullContent : xsd:anyURI
rmorreferenceldentifier : xsd:string

rmorreferences : rmo:Revision
rmo:hasRevisionGraph : xsd:anyURI
‘pmv: htp:/h 3 ; rmo: hitp:/featid.et.tu-dresden.de/rmo# ; xsd: http:/A rg 7nn1/XMLscn9ma#‘

Abbildung 5.5: RMO nach der Erweiterung als UML-Modell

Fiir die unterschiedliche Commitarten existieren durch die Erweiterung separate Ablei-
tungen, wodurch die Semantik der durchgefithrten Anderungen nachvollzogen werden
kann. Die Einfithrung des rmo:ChangeSets zwischen zwei Revisionen behebt auflerdem
das im vorangegangenen Abschnitt erlauterte Problem bei der Wiederherstellung von
Revisionsinhalten, wenn eine Zusammenfithrung entlang der Wiederherstellung durchge-
fithrt wurde. Die in Abbildung 4.9 eingefithrten Beschreibungen fiir das rmo:Set und die
darin enthaltenen rmo:Statements sind in der RMO nicht enthalten, da hierfir direkt
RDF-Graphen fiir die Speicherung der Tripel genutzt werden kénnen. Entsprechend wird

107

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

mittels zsd:anyURI auf die zugehorigen URIs der Graphen verwiesen. In den folgenden
Abschnitten, werden die fiir die Aggregation und Co-Evolution notwendigen zusatzlichen
Erweiterungen schrittweise erginzt.

5.2.2 Basisrevisionskontrollfunktionalitaten

Die Zugriffsmoglichkeiten werden, wie bereits in [GHU14] dargestellt, mittels einer
Erweiterung von SPARQL realisiert. Ausgangspunkt bilden die in Abschnitt 4.4.1.4 be-
schriebenen Funktionen. Im Folgenden werden die Basisrevisionskontrollfunktionalitdten
erldutert.

Innerhalb von R43ples kann auf Graphenebene revisioniert werden. Die jeweiligen
Graphen, aber auch die Revisionsinformation, werden dabei im angeschlossenen Triple
Store abgelegt, da es sich bei R43ples um einen Proxy vor einem bestehenden Triple
Store handelt. Es konnen dabei mehrere Graphen parallel innerhalb eines Triple Stores
revisioniert werden. Fiir die Realisierung dieser Funktionalitit werden die Referenzen
auf die revisionierten Graphen in einem eigenen Graphen namens hitp://eatld.et.tu-
dresden.de/r{3ples-revisions gespeichert. Dieser ist gleichzusetzen mit der Menge der
Revisionsgraphen I'. Jeder der beinhalteten Graphen wird mittels rmo:RevisionGraph
beschrieben und hat eine Referenz auf einen zugehorigen Revisionsgraphen, wie in Abbil-
dung 5.5 dargestellt. In diesem Revisionsgraphen erfolgt die semantische Beschreibung
der Revisionsinformation unter Nutzung der RMO. Generell kann festgehalten werden,
dass alle Mengen, die in Gleichung 4.7 Teilmengen von S sind, als eigene Graphen im
Triple Store erzeugt werden, um die entsprechenden Tripel vorzuhalten. Alle anderen
Definitionen werden mittels der semantischen Beschreibung ausgedriickt. Bei den Identi-
fikatoren, in den gegebenen Gleichungen der Einfachheit halber mittels NT angegeben,
wurden innerhalb von R43ples entweder ebenfalls natiirliche Zahlen fiir die Revisions-
nummern verwendet. Des Weiteren wurden Zeichenketten fiir die Kennzeichnung von
Entwicklungszweigen und Tags sowie generierte URIs zur Identifizierung von Ressourcen
und anderen Graphen verwendet.

Initiale Erstellung und Loschung eines Revisionsgraphen Fiir die Erstellung eines
neuen Graphen nach Gleichung 4.12 muss neben dem Graphnamen der Nutzer sowie
eine Commitnachricht spezifiziert werden (Listing 1). Der neu erstellte Graph wird
direkt unter Revisionskontrolle gestellt, wie beispielhaft in Abbildung B.1 dargestellt.
Der master-Entwicklungszweig wird dabei automatisch erzeugt.

1 USER "bob" MESSAGE 'Create a new graph'
CREATE GRAPH <test >

Listing 1: Anfrage fiir die Erstellung eines neuen Graphen

Ebenso ist es moglich einen bestehenden Revisionsgraphen zu loschen, wobei Gleichung
4.13 zur Anwendung kommt. Die Ausfithrung der Loschung wird durch die in Listing
2 dargestellte Anfrage ausgelost und fithrt dazu, dass der Revisionsgraph mit aller
Information riickstandslos entfernt wird.

108

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5.2 Anderungsmanagement

1 DROP GRAPH <test >

Listing 2: Anfrage fiir die Loschung eines bestehenden Graphen

Erstellung eines Entwicklungszweiges Innerhalb des Graphen kénnen neue Entwick-
lungszweige mittels der in Listing 3 angegebenen Anfrage erstellt werden. Ausgangspunkt
bildet dabei, wie in Gleichung 4.14 dargestellt, eine Revision in der Historie des Gra-
phen. Des Weiteren muss der Nutzer, eine Commitnachricht und ein Name fiir den
neuen Entwicklungszweig angegeben werden. Ein zugehoriges Beispiel der Abbildung im
Informationsraum ist in Abbildung B.2 aufgefiihrt.

1 USER "bob" MESSAGE '"Create experiment branch"
2 BRANCH GRAPH <test> REVISION "2" TO "experiment"

Listing 3: Anfrage fiir die Erstellung eines neuen Entwicklungszweiges

Erstellung eines Tags Analog zu Entwicklungszweigen kénnen neue Tags nach Glei-
chung 4.15 angelegt werden. Die Anfrage (Listing 4) unterscheidet sich im Wesentlichen
nur durch den Austausch des Schliisselwortes Branch durch Tag sowie die die Beschrei-
bung im Informationsraum, wie in Abbildung B.3 beispiclhaft dargestellt.

1 USER "bob" MESSAGE "Tag version v1.0"
2 TAG GRAPH <test > REVISION "2" TO "v1.0"'

Listing 4: Anfrage fiir die Erstellung eines neuen Tags

Erstellung und Revidierung eines Commits Auf Basis eines erstellten Graphen kén-
nen weitere Commits durchgefithrt werden (Listing 5). Es muss wiederum Nutzer und
Commitnachricht angegeben werden, um den Commit zu kennzeichnen. Auf Basis eines
Entwicklungszweiges werden die Anderungen angegeben, die das Hinzufiigen beziehungs-
weise das Loschen von Tripeln bewirken, wie in Gleichung 4.16 beschrieben. Ein visuelles
Beispiel ist in Abbildung B.4 dargestellt.

1 USER "bob" MESSAGE "Create update"
2 INSERT {

3 GRAPH <test> BRANCH "master" {
4 <c> <d>

5 }
6| }

7| DELEIE {

8 GRAPH <test> BRANCH "master" {
9 <e> <f> <g>

10 }

Listing 5: Anfrage fiir die Erstellung eines neuen Commits

109

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

Die Revidierung eine Commits ist, wie auch in Gleichung 4.17, immer nur in Bezug auf
den letzten Commit eines Entwicklungszweiges moglich. Fiir die Durchfithrung steht die
in Listing 6 dargestellte Anfrage zur Verfiigung. Durch diese erfolgt die entsprechende
Manipulation im Informationsraum, die an einem Beispiel in Abbildung B.5 dargestellt
ist.

1 USER "bob" MESSAGE "Revert last commit"
REVERT GRAPH <test> BRANCH "master"

Listing 6: Anfrage fiir die Revidierung eines Commits

Zugriff auf Revisionsinhalte Fiir den Zugriff auf Revisionsinhalte werden SPARQL-
Anfragen verwendet, wobei jeweils durch ein zusétzliches Schliisselwort namens REVI-
SION der Revisionsstand gekennzeichnet wird, der fiir die Abfrage genutzt werden soll.
Hierfiir muss das Schliisselwort nach einer Graphdefinition in der Anfrage folgen. Fiir die
Identifikation des Revisionsstandes konnen der Revisionsidentifikator oder ein Identifika-
tor von einem Entwicklungszweig beziehungsweise von einen Tag genutzt werden. Es ist
dabei auch moglich, unterschiedliche Graphen mit unterschiedlichen Revisionen gleichzei-
tig in einer Anfrage abzufragen. Neben SELECT, beispielhaft in Listing 7 dargestellt,
werden ebenso CONSTRUCT und ASK als Anfragearten unterstiitzt. Die Wiederher-
stellung der notwendigen Revisionsinhalte erfolgt nach den in [GHU16] vorgestellten
Verfahren.

SELECT
WHERE {

GRAPH <graph> REVISION "23" {?s 7p 7o}
}

SELECT
WHERE {

GRAPH <graph> REVISION "master" {?s 7p 7o}
}

© 00~ D U= W

Listing 7: Anfrage fir den Zugriff auf Revisionsinhalte

5.2.3 Aggregation von High-Level-Changes

Fiir die Aggregation von atomaren Anderungen zu High-Level-Changes wird eine Teilkom-
ponente innerhalb des Kerns von R43ples angelegt, die die benétigten Funktionalitédten
zur Verfiigung stellt. Fiir die Ausfithrung der Funktionalitaten steht eine neue Anfrage
zur Verfiigung, die beispielhaft in Listing 8 dargestellt ist. Durch diese kénnen Ande-
rungen, analog zu Gleichung 4.18, zwischen zwei aufeinanderfolgenden Revisionen zu
High-Level-Changes aggregiert werden.

1 AGG GRAPH <test> REVISION "1" TO REVISION "2"

Listing 8: Anfrage fiir die Aggregation

110

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5.2 Anderungsmanagement

Die technologiespezifische Umsetzung der Gleichung 4.19 erfolgt auf Grundlage der
durch Papavasileiou et al. [Pap+13] beschriebenen Regelsitze. Fir die Integration der
Regelsétze in das semantische Gesamtgefiige von R43ples wird eine neue Ontologie namens
Aggregation and Evolution Rules Ontology (AERO) definiert, die sowohl die Aggregation
der atomaren Anderungen als auch die darauf aufbauenden Co-Evolutionen semantisch
beschreibt. Abbildung 5.6 zeigt den Ausschnitt der AERO, der die Beschreibung der
Aggregation ermoglicht, inklusive einiger Erweiterungen der RMO, um die detektierten
High-Level-Changes zu beschreiben.

aero:RuleSet

rdfs:label : xsd:string
rdfs:comment : xsd:string

0..* | aero:hasRules aero:RuleType

aero:Rule

rdfs:label : xsd:string

rdfs:comment : xsd:string aero:BasicRule
1 Zr aero:CompositeRule
= aero:HLCAggRule rmo:ChangeSet

aeroinverts

aero:HeuristicRule

rmo:semanticChanges | 0..*
aero:usedRule l 1

aero:addSetDetectionQuery sp:SubQuery
0.1

aero:deleteSetDetectionQuery sp:SubQuery
0.1

aero:conditionQuery sp:SubQuery
0..1

hange

[rmoinverts

rmo:additions rmo:deletions

aero:hasVariables | 1..* rmo:statements | 0..*
aero:spinQuery . aero:SPARQLVariable rdf:Statement
sp:Query
0.1 sp:varName : xsd:string rdf:subject : rdfs:Resource
aero:value : rdfs:Resource rdf:predicate : rdfs:Resource
aero:spinResource : xsd:anyURI rdf:object : rdfs:Resource

aero: http://eatld.et.tu-dresden.de/aero# ; rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns# ;
Namespaces: rdfs: http://www.w3.0rg/2000/01/rdf-schemat# ; rmo: http://eatld.et.tu-dresden.de/rmo# ;
sp: http://spinrdf.org/sp# ; xsd: http://www.w3.0rg/2001/XMLSchema#

Abbildung 5.6: Ausschnitt der AERO fiir die Aggregation als UML-Modell inklusive zusétzlicher
Erweiterungen der RMO

111

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

Grundidee fiir die Anwendung der Regelsitze ist die Nutzung von SPARQL-Anfragen.
Mittels dieser kénnen die Matchings in den Anderungen detektiert werden. Fiir die Um-
setzung der Anfragen wird auf SPARQL Inferencing Notation (SPIN)? zuriickgegriffen.
Im Gegensatz zum Nachfolger namens Shapes Constraint Language (SHACL)® erlaubt
SPIN die Referenzierung von einzelnen Elementen innerhalb einer SPARQL-Anfrage.
Dies wird im Folgenden fir die Modellierung als wesentlicher Bestandteil verwendet.

Die grundlegenden Elemente fiir die Beschreibung der detektierten High-Level-Changes
wurden aus Abbildung 4.10 iibernommen und in die RMO tberfiithrt. Durch die Aggrega-
tion werden einem rmo:ChangeSet die zugehorigen, detektierten rmo:SemanticChanges
zugeordnet. Mittels aero:usedRule wird zudem eine semantische Verbindung zu der zu-
grunde liegenden Regel hergestellt. Alle vorhandenen Regeln werden dabei innerhalb von
R43ples in einem RDF-Graphen vorgehalten und bei Bedarf von R43ples ausgewertet.
Eine aero:HLCAggRule besitzt, wie von Papavasileiou et al. [Pap+13] beschrieben, ein
Matching fiir die Menge der hinzugefiigten Tripel (aero:addSetDetectionQuery), ein
Matching fiir die Menge der geloschten Tripel (aero:deleteSetDetectionQuery), die Mog-
lichkeit der Spezifikation von weiteren Bedingungen (aero:conditionQuery) sowie einen
Typen (RuleType). Diese einzelnen Elemente sind dabei in einer SPIN-Anfrage gekapselt
(aero:spinQuery). Ein Beispiel fiir die zugehorige SPARQL-Anfrage ist im Anhang in
Listing 16 dargestellt. Darin enthalten sind Platzhalter fir die RDF-Graphen, die abge-
fragt werden miissen. Diese Platzhalter werden zur Laufzeit von R43ples entsprechend
der getatigten Anfrage ersetzt. Dieser Ersetzungsprozess ist notwendig, da SPIN die
R43ples-spezifischen SPARQL-Erweiterungen nicht unterstiitzt.

Fiir die Detektion der Matchings werden im ersten Schritt die verfiigharen Regelsitze
durch R43ples ermittelt und dann nacheinander angewendet. Hierbei wird jeweils die ge-
samte SPIN-Anfrage zuriick in eine SPARQL-Anfrage gewandelt, wobei die notwendigen
Ersetzungen vorgenommen werden. Anschliefend erfolgt die Ausfithrung der Anfrage
auf dem Endpunkt von R43ples, der die R43ples-spezifischen SPARQL-Erweiterungen
unterstiitzt. Das Ergebnis wird dann direkt im Revisionsgraphen zum entsprechenden
rmo:ChangeSet gespeichert. Hierfiir werden dann die Matchings der hinzugefiigten und
der geloschten Tripel nochmals einzeln ausgewertet und anschliefend zusammen mit den
Ergebnissen der Gesamtanfrage gespeichert. Die Tripel werden dabei nicht in separaten
RDF-Graphen gespeichert, sondern semantisch als rdf:Statements unterteilt in Subjekt,
Pradikat und Objekt abgelegt, die den rmo:additions beziehungsweise rmo:deletions zuge-
ordnet sind. Die Ergebnisse der Gesamtabfrage werden in Form der SPARQL-Variablen
gespeichert. Da jede dieser Variablen eine Reprasentation in SPIN besitzt, wird auf die
entsprechende Ressource mittels aero:spinResource verwiesen. Durch die Bereitstellung
dieser Information kann dann zum Beispiel eine Visualisierungskomponente die detektier-
ten High-Level-Changes grafisch aufbereiten. Ein Beispiel fir die im Revisionsgraphen
abgelegte Information ist in Abbildung B.6 dargestellt.

2http://spinrdf.org/ (besucht am 29.11.2020)
$https:/ /www.w3.org/TR/shacl/ (besucht am 29.11.2020)

112

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5.2 Anderungsmanagement

5.2.4 Zusammenfiihrung divergierter Entwicklungszweige

Die Zusammenfithrung von divergierten Entwicklungszweigen erfolgt wiederum mittels
einer Teilkomponente im Kern von R43ples. Fiir die unterschiedlichen Methoden der
Zusammenfiihrung, wie in Abschnitt 4.4.3.1 eingefiihrt, stehen entsprechende neue Anfra-
gen zur Verfiigung, die tiber jeweilige Schliisselworter verfiigen. Hierbei wird grundlegend
in MERGE und PICK unterschieden.

3-Wege-Merges und Fast Forward Zwischen 3-Wege-Merges und Fast Forwards wird
in Bezug auf die Anfrage nicht unterschieden. So kommt als Basis jeweils eine Anfrage, wie
in Listing 9 dargestellt, zum Einsatz. Hierbei miissen der Nutzer und die Commitnachricht
angegeben werden, um den Commit fiir die Zusammenfiihrung niher zu spezifizieren. Des
Weiteren werden die zusammenzufithrenden Entwicklungszweige definiert und damit wird
gleichzeitig festgelegt, auf welchem Entwicklungszweig die resultierende Revision liegen
soll. Bei der Ausfiihrung der Anfrage wird der Revisionsverlauf analysiert und darauf
basierend entschieden, ob ein Fast Forward entsprechend Gleichung 4.24 vorgenommen
werden kann oder ob ein 3-Wege-Merge, wie in Gleichung 4.20, durchgefiihrt werden muss.
Das Ergebnis wird dann wiederum semantisch mittels der RMO beschrieben. Beispiele
hierfir sind in Abbildung B.7 (3-Wege-Merge Commit) und Abbildung B.8 (Fast Forward
Commit) dargestellt.

1 USER "bob" MESSAGE "3—Way—Merge or Fast Forward'
2 MERGE GRAPH <test > BRANCH '"experiment" INTO "master"

Listing 9: 3-Wege-Merge Anfrage

Die Berechnung der zu speichernden Anderungen zwischen den bestehenden Revisionen
und der neu erzeugten Revision, wie in Gleichung 4.21 eingefiihrt, erfolgt mittels dem
in Abschnitt 4.4.3.2 vorgestellten Vorgehen zur Erkennung von transienten Effekten
auf atomarer Anderungsebene und der Ableitung einer Konfliktlosung. Die Umsetzung
erfolgt dabei in Anlehnung an [Hen14] und [HGU16]. Die in diesen Arbeiten eingefiithrten
Ontologien werden in die Merge Management Ontology (MMO) zusammengefiihrt, wo-
durch redundante Definitionen in den Ontologien und zusétzliche Abbildungen zwischen
diesen in der Implementierung vermieden werden. Das UML-Modell der MMO ist in
Abbildung 5.7 dargestellt.

Die MMO ermoglicht einerseits die Abbildung einer Konfliktbeschreibungsmatrix, wie
in Abbildung 4.12 dargestellt, um mogliche Konflikte und deren automatisierte Auflosung
spezifisch oder allgemein fiir Revisionsgraphen festzulegen (mmo:hasDefaultSDG). Auf
der anderen Seite erlaubt diese Ontologie die Beschreibung der Anderungen entlang eines
Pfades (RevisionProgress) fiir die interne semantische Verarbeitung der Anwendung von
Gleichung 4.31. Schlieflich kann mittels der MMO die Beschreibung einer moglichen
Konfliktlosung (Difference Groups), wie in Gleichung 4.36 eingefiihrt, durchgefithrt werden,
um diese einem Client zur Verfiigung stellen zu kénnen.

113

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

rmo:RevisionGraph —
mmo:added | 1 1| mmo:deleted
L
mmo:RevisionProgress| (XOR} mmo:Statement %7
mmo:original | 1 1 | mmo:notincluded rdf-Statement
rdf:subject : rdfs:Resource
rdf:predicate : rdfs:Resource
rdf:object : rdfs:Resource
rmo:references | 1 1|mmo:referencesA | mmo:hasTriple | 1

rmo:Revision 4| mmo:Difference
mmo:hasDefaultSDG | 1
1 [mmo:referencesB mmo:hasDifference | 0..* L
| mmo:StructuralDefinitionGroup

mmo:DifferenceGroup |@
mmo:hasStructuralDefinition | 0..*

mmo:StructuralDefinition

mmo:isConflicting : xsd:boolean

mmo:hasTripleStateA

| 1
| mmo:hasTripl B

mmo:hasTripleStateA | 1

mmo:Trip

A

. raute ticResoluti tat
mmo:Original mmo:Added mmo:automaticResolutionState
1
mmo:automaticResolutionState
mmo:Notincluded mmo:Deleted
1

mmo: http:/eatld.et.tu-dresden.de/mmo# ; rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns# ;
rmo: http://eatld.et.tu-dresden.de/rmo# ; xsd: http://www.w3.0rg/2001/XMLSchema#

3
|~

mo:hasTripl

{XOR}

Namespaces: |

Abbildung 5.7: MMO als UML-Modell

Fir die Interaktion des Clients mit dem System stehen auerdem Erweiterungen der
Grundanfrage aus Listing 9 zur Verfiigung. Im Fall, dass die in Listing 9 aufgefiihrte
Anfrage aufgrund von Konflikten nicht ausgefithrt werden kann, erhélt der Nutzer das
Modell der detektierten Konflikte entsprechend der MMO zurtick und kann darauf basie-
rend dem System selbst eine Konfliktlosung bereitstellen. Dies wird mittels der Anfrage in
Listing 10 durchgefihrt, da im WITH-Teil die entsprechenden Tripel angegeben werden
konnen, die aus der Menge der konfliktbehafteten Tripel in der zusammengefiihrten
Revision enthalten sein sollen.

114

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5.2 Anderungsmanagement

1 USER "bob" MESSAGE '3—Way—Merge with a WITH part'
MERGE GRAPH <test> BRANCH '"experiment" INTO "master" WITH {

3 <http://test.com/Carlos> <http://test.com/knows> <http://test
.com/Danny> .
4 <http://test.com/Franz> <http://test.com/knows> <http://test .

com/Silvia> .

Listing 10: 3-Wege-Merge Anfrage mit nutzerdefinierter Konfliktlosung

Im Gegensatz dazu erlaubt die Anfrage in Listing 11 die automatisierte Auflésung
von Konflikten. Grundlage hierfiir bilden die mittels mmo:hasDefaultSDG beschriebenen
Konfliktlosungen innerhalb der Konfliktmatrix.

1 USER "bob" MESSAGE "Commit message for automatic 3—Way—Merge"
2 MERGE AUTO GRAPH <test> BRANCH '"experiment' INTO "master"

Listing 11: 3-Wege-Merge Anfrage mit automatisierter Konfliktlosung

SchlieBlich besteht die Moglichkeit, unabhéngig von den bereits aufgefiihrten Anfragen
den Inhalt der neu erstellten Revision zu definieren. Dieser muss mittels der entsprechen-
den Tripel im WITH-Teil der Anfrage angegeben werden. Listing 12 stellt hierzu ein
Beispiel einer solchen Anfrage dar.

1 USER "bob" MESSAGE "Manual 3—Way—Merge"
MERGE MANUAL GRAPH <test > BRANCH "experiment" INTO "master"

WITH {
3 <http://test.com/Carlos> <http://test.com/knows> <http://test
.com/Danny> .
4 <http://test.com/Franz> <http://test.com/knows> <http://test.

com/Silvia> .

Listing 12: Manuelle 3-Wege-Merge Anfrage

Pick Die in Gleichung 4.23 beschriebene Funktionalitidt wird durch die in Listing
13 dargestellte Anfrage realisiert. Dabei muss der Nutzer und eine Commitnachricht
angegeben werden. Das Pick wird fiir den angegebenen Bereich der Revisionen ausgefiihrt,
wobei Start- und Endrevision eingeschlossen sind. Die ausgewihlten Anderungen werden
anschlieend auf den spezifizierten Entwicklungszweig angewendet. Im Fall, dass nur
die Anderungen einer Revision wiederverwendet werden sollen, kann die in Listing 14
dargestellte Anfrage genutzt werden. Ein Beispiel fiir die semantische Beschreibung eines
Pick Commits ist in Abbildung B.9 dargestellt.

115

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

1 USER "bob"' MESSAGE "Pick"
PICK GRAPH <test> REVISION "2" TO REVISION '"4" INTO BRANCH "
master"

Listing 13: Pick Anfrage

1 USER "bob" MESSAGE "Simple pick"”
PICK GRAPH <test> REVISION '"2" INTO BRANCH "master"

Listing 14: Vereinfachte Pick Anfrage

5.3 Evolutionsmechanismen

Auf Basis von aggregierten Anderungen kénnen durch eine weitere Teilkomponente von
R43ples Co-Evolutionen durchgefiihrt werden. Die Ausfithrung der zugehérigen Funktio-
nalitat, wie in Gleichung 4.43 definiert, erfolgt durch eine neue Anfrage, die beispielhaft
in Listing 15 dargestellt ist. Detektierte High-Level-Changes zwischen zwei Revisionen
in einem Revisionsgraphen konnen durch diese Anfrage an abhéingige Revisionsgraphen
propagiert werden. In der vorliegenden Implementierung miissen die Revisionen direkt
aufeinander folgen. Des Weiteren werden keine expliziten Verbindungen innerhalb eines
separaten Graphen ausgewertet, sondern es werden nur Co-Evolutionen durchgefiihrt,
deren Abhéngigkeit direkt aus den Inhalten heraus besteht.

1 USER "bob" MESSAGE ' Coevolve"
2 COEVO GRAPH <test> REVISION "1" TO REVISION "2"'

Listing 15: Anfrage fiir die Co-Evolution

Fiir die High-Level-Changes wird die Implementierung aus Abschnitt 5.2.3 als Grundla-
ge verwendet. Hierbei kann auch auf die bereits eingefiihrten Ontologien zurtickgegriffen
werden, die jedoch um die Co-Evolutionsaspekte erweitert werden miissen. Die not-
wendigen Erweiterungen innerhalb der RMO und der AERO sind in Abbildung 5.8
dargestellt.

Ebenso wie in Abschnitt 5.2.3 wird bei der Beschreibung der Regelsitze auf SPIN
zuriickgegriffen. Die Regeln (aero:CoEvoRule) sind dabei von aero:HLCAggRule abgelei-
tet und erweitern diese um den Co-Evolutionspart. Diese Erweiterung besteht aus einer
SPARQL-SELECT-Anfrage, mittels dieser identifiziert werden kann, ob eine Abhéngig-
keit zu einem zu priifenden Modell vorliegt. Die eigentliche Co-Evolution wird dann
mittels der spezifizierten Anderungen in Bezug auf die zu titigenden Hinzufiigungen
(aero:addSetInsertQuery) und die zu tatigenden Loschungen (aero:deleteSetInsertQuery)
durchgefiihrt. Hierbei handelt es sich im SPARQL-INSERT-Anfragen, die innerhalb von
SPIN mittels sp:Modify abgebildet werden. Als Variablen in den SPARQL-Anfragen
werden die gleichen verwendet wie bei der Aggregation zu High-Level-Changes, wodurch
direkt auf die Ergebnisse dieser Anfragen bei der Co-Evolution zuriickgegriffen werden
kann. Im Anhang in Listing 17 sind beispielhaft die SPARQL-Anfragen dargestellt, die

116

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5.3 Evolutionsmechanismen

fiir die Regelbeschreibung verwendet werden. Dieses Beispiel erweitert die bereits vorge-
stellte Beispielanfrage aus Listing 16 um den Co-Evolutionsteil. Die darin enthaltenen
Platzhalter werden zur Laufzeit von R43ples mit den konkreten Werten ersetzt.

rmo:Evolution
r | rmo:associatedSemanticChange | 1..*
rmo:SemanticChange
aero:usedSemanticChange | 1
1| rmo:startRevision 1 [rmo:endRevision 0..* [rmo:performedCoEvolution rmo:usedSourceRevisionGraph | 1
. 1 1 ..
rmo:Revision _@voluhon rmo:RevisionGraph
rmo:generated r | rmo:usedTargetRevisionGraph
0..* [rmo:usedConnectionsRevision
rmo:Branch
rmo:usedTargetBranch
rmo:usedConnectionsRevisionGraph | 0..*
aero:HLCAggRule rmo:ConnectionsRevisionGraph
A 1..* | aero:appliedCoEvolutionRule
aero:AppliedCoEvolutionRule
I
aero:hasVariableGroup | 1..*

aero:SPARQLVariableGroup

aero:CoEvoRule aerosedRule
1
aero:dependencyMatchingQuery sp:Select aero:hasVariables
1

aero:SPARQLVariable

aero:addSetInsertQuery .
sp:Modify sp:varName : xsd:string
0.1 aero:value : rdfs:Resource
aero:deleteSetinsertQuery - aero:spinResource : xsd:anyURI
sp:Modify
0..1

aero: http://eatld.et.tu-dresden.de/aero# ; rmo: http://eatld.et.tu-dresden.de/rmo# ;
sp: http://spinrdf.org/sp#

1.*

Namespaces:

Abbildung 5.8: Erweiterung der AERO fiir die Co-Evolution als UML-Modell inklusive zuséitz-
licher Erweiterungen der RMO

Die Elemente zur Beschreibung der Co-Evolution wurden aus Abbildung 4.17 iibernom-
men und in die RMO iiberfiithrt. Die Verkniipfung der rmo:CoFvolution mit den zugrunde
liegenden Regeln erfolgt mittels aero:appliedCoEvolutionRule und erlaubt nachzuvollzie-
hen, welche Regeln fiir die Co-Evolution verwendet wurden. Des Weiteren werden durch
das referenzierte Element aero:AppliedCoFEvolutionRule die SPARQL-Variablen inklusive
deren Werte beschrieben, auf deren Basis die zu erzeugenden oder zu loschenden Tripel
in den abhédngigen Modellen definiert werden. Da innerhalb eines Regelsatzes mehrere
Variablen verwendet werden konnen, aber auch potenziell mehrfache Matchings in den

117

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

5 Implementierung

abhéngigen Modellen existieren konnen, werden die Variablen pro Matching mittels
aero:SPARQLVariableGroup gruppiert. Uberdies wird der aero:AppliedCoEvolutionRule
ein rmo:SemanticChange mittels aero:usedSemanticChange zugeordnet, um den Ausloser
der Co-Evolution nachvollziehbar zu beschreiben.

Die Durchfithrung der Co-Evolutionen basiert auf dem in Gleichung 4.43 dargestell-
ten Verfahren. Dabei wird im ersten Schritt analysiert, ob bereits eine Aggregation
der atomaren Anderungen vorgenommen wurde. Fiir den Fall, dass diese Aggregation
noch nicht vorliegt, wird diese aus der Co-Evolution heraus angestofen. Im Anschluss
werden auf Basis der bereits vorliegenden oder der neu durchgefiihrten Aggregation alle
Revisionsgraphen auf deren Abhéngigkeit gepriift. Hierzu werden die Matchinganfragen
der anzuwendenden Regeln ausgefithrt. Bei der Detektion von Matchings werden die
durchzufithrenden Anderungen berechnet und aus diesen ein neuer Commit innerhalb
des abhéngigen Revisionsgraphen erzeugt. Das Ergebnis der Co-Evolution wird in der
derzeitigen Implementierung immer nur fir den master-Zweig durchgefiithrt. Nachdem
alle Co-Evolutionen durchgefithrt wurden, wird die zugehorige semantische Beschreibung
innerhalb des Revisionsgraphen der Co-Evolution als neuer Commit gespeichert. Ein
Beispiel fiir die durch den Commit beschriebene Information ist in Abbildung B.10
dargestellt.

5.4 Weitere Arbeiten in diesem Bereich

In weiteren Arbeiten wurden bereits erste Visualisierungskonzepte fir die Interaktion
mit R43ples entwickelt. Hierbei wurde auch teilweise auf niedrig priorisierte Anforde-
rungen an ein RMS eingegangen. Im Bereich der Zusammenfithrung von divergierten
Entwicklungszweigen wird in [Yan15] ein Ansatz fiir die Umsetzung von Mergeprozessen
vorgestellt. Bei diesem Ansatz wird der Nutzer schrittweise durch den Mergevorgang
gefithrt und erhélt eine visuelle Darstellung von aufgetretenen strukturellen Konflikten,
die dann visuell gelost werden konnen (Bezug zu Anforderungen A-101, A-202). Fir die
Co-Evolution wird in [Funl7] ebenfalls ein gefiihrter Prozess dargelegt, der die Visualisie-
rung von Abhéngigkeiten innerhalb eine RMS erméglicht und der Nutzer im Anschluss
die durchzufithrenden Co-Evolutionen konfigurieren kann (Bezug zu Anforderungen
A-101, A-301, A-302). Zum Beispiel kann der Nutzer auswéihlen welche der abhéngigen
Modelle co-evolviert werden sollen.

Ebenfalls existieren erste Ansitze fiir die Integration einer Benutzerverwaltung in
R43ples, wie in [Phal6] vorgestellt (Bezug zu Anforderungen A-102, A-103). Dabei wird
als Technologie fir die Benutzerverwaltung auf Lightweight Directory Access Protocol
(LDAP) zuriickgegriffen. In einer weiteren Arbeit wird ein Ansatz vorgestellt, um die
Integration und Synchronisation von OPC UA und Semantic Web Informationsmodellen
zu ermdglichen [Ahr18]. Durch diesen Ansatz kénnen auch Anderungen innerhalb von
OPC UA mittels R43ples semantisch revisioniert werden, wodurch erste Riickschliisse
auf die Ubertragbarkeit der technologieunabhéngigen Beschreibungen eines RMS gezogen
werden koénnen.

118

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6 Verifikation

Mittels der Verifikation wird im Folgenden der Nachweis erbracht, dass das konzeptionier-
te und implementierte RMS funktionsfihig ist. Hierfiir werden jeweils unterschiedliche
Strategien fiir den Nachweis angewendet. In Bezug auf die konzeptionierten formalen
mathematischen Definitionen ist eine vollstdndige Beweisfithrung fiir deren Korrekt-
heit nur bedingt moglich, da die zu beweisenden Sachverhalte tiberwiegend direkt in
den Definitionen als Randbedingungen angegeben sind und die notwendigen Beweise
daher trivial wiren. Zur Sicherstellung, dass die mathematischen Definitionen auch in
Kombination anwendbar sind, wird im ersten Schritt deren Funktionsweise an einem
Beispiel, das die wesentlichen Funktionen abdeckt, nachvollzogen. Im Anschluss erfolgt
die Beweisfiihrung, dass innerhalb eines Revisionsgraphen durch den Nutzer immer ein
beliebiger Revisionsinhalt erzeugt werden kann und der Nutzer dementsprechend nicht
durch die mathematischen Definitionen und deren Randbedingungen in der Erstellung
und Anderung von Revisionsinhalten eingeschrinkt ist. Schlieflich werden die allgemeinen
Definitionen fiir die Beschreibung von verbindungsorientierten Modellen auf die Anwen-
dung der Co-Simulation tibertragen und somit ebenfalls an einem Beispiel verifiziert, dass
die getétigten Definitionen anwendbar sind. Durch die Verifikation der grundlegenden
Funktionalititen wird sichergestellt, dass die Implementierung auf einer funktionsfé-
higen Spezifikation aufbaut. Die anschlieBende Verifikation der Software anhand von
verschiedenen Testféllen stellt die korrekte Funktionsweise der Implementierung sicher.
Hierbei werden neben den grundlegenden Funktionsweisen auch erweiterte Funktionen,
wie die Co-Evolution auf Typenebene iiberpriift. Dabei wird einerseits gezeigt, dass die
beschriebenen mathematischen Definitionen implementierbar sind und andererseits wird
ebenfalls die semantische Beschreibung innerhalb der Implementierung verwendet, um
die Funktionen umsetzen zu kénnen, aber auch durch Testfille die korrekte Erzeugung
der semantischen Beschreibung sichergestellt.

6.1 Beispielhafte Nutzung der formalen Beschreibung

Anhand eines Beispiels werden im Folgenden die formalen Definitionen der Basisrevisi-
onskontrollfunktionalitidten angewendet und schrittweise ein Revisionsgraph aufgebaut.
Als Grundlage dient hierfiir die im Kapitel 5 zugrunde gelegte Definition der Menge
S :=UxUx (UUL). Zur vereinfachten Darstellung der konkreten Elemente wird
angenommen, dass U = L = {a,b,c,de,f,g9,h,i} gilt.

Die Revisionsgraphen werden in der Menge I' vorgehalten. Auf deren Basis kann im
ersten Schritt ein neuer Revisionsgraph erzeugt werden, wie in Gleichung 6.1 dargestellt.
In dem Beispiel wird ein neues Tripel abe (entspricht dem Statement (a,b,c)) direkt bei
der Erstellung angegeben. Der resultierende Revisionsgraph ist visuell in Abbildung 6.1
dargestellt. Die Revision 0 ist dabei die Revision, die automatisiert erstellt wird.

119

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6 Verifikation

I' = creater ({abc}) = DU {({1}, (0,1,{abc},0), ({1},1,{abc},1),0,1)}
={({1},(0,1,{abc}.0), ({1},1.{abc},1),0,1)} (6.1)
{9}

Branch: 1

Abbildung 6.1: Revisiongraph nach der initialen Erstellung

Bei den folgenden Gleichungen wird nur die Aktualisierung von G dargestellt und aus
Griinden der Vereinfachung auf die Darstellung von I' verzichtet, da diese Menge nur
G beinhaltet. Im nachsten Schritt wird ein neuer Commit auf den bestehenden Branch
1 vorgenommen. Dieser fiigt ein weiteres Tripel ghi hinzu und l6scht das bestehende
Tripel abe. Die Aktualisierung des Revisionsgraphen erfolgt mittels der in 4.16 definierten
Funktion, die das in Gleichung 6.2 dargestellte Ergebnis erzielt. Dieses ist visuell in
Abbildung 6.2 aufbereitet.

120

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6.1 Beispielhafte Nutzung der formalen Beschreibung

G = (Ry,Cy,By,Tyny)
Ry = {1}

Cy = {(0.1.{abc}.0)}
B, = {({1},1.{abe}. 1)}
T,=0

ng =1

G' = commitg (1,{ghi},{abc}) = (R,,C;, By, T;n,)

C* = {ghi} (6.2)
C™ = {abc}
ny = 1

Anwendung der Gleichung 4.16 ergibt:
R, = {12}
Cy = {(0,1.{abc}0),(1,2 {ghi} {abc})}
B, = {({1,2}.2,{ghi}.1)}

T.u =0
ng =1
.~ .
t"~ S._ADD: abc ADD: ghi .
\~O’ DEL: - DEL : abc Branch: 1
G
r

Abbildung 6.2: Revisiongraph nach dem ersten Commit

Im Anschluss erfolgt die Erstellung eines neuen Entwicklungszweiges. Ausgangspunkt
bildet die Rewvision 1. Hierzu wird Gleichung 4.14 angewendet, die einen neuen Branch 2
erzeugt. Die Anwendung der Funktion ist in Gleichung 6.3 dargelegt und Abbildung 6.3
zeigt die schematische Darstellung des Revisionsgraphen. In dieser Darstellung ist der
neue Entwicklungszweig vorerst nur als neue Referenz auf Revision 1 dargestellt

121

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6 Verifikation

G = (Ry,Cy,By,T5.ng)
R, ={1,2}
Cy = {(0.L{abeh0).(1.2{ghi}.{abc})}
By = {({1.2}.2,{ghi} 1)}
T,=0

ng =1

G' = branchg (1) = (R,.Cy.B).T,m,) (63)
ry =1
Anwendung der Gleichung 4.14 ergibt:
R, ={1,2}
Cy = {(0,1.{abc}0),(1,2,{ghi} {abc})}
By = {({1,2}.2,{ghi}.1),({1},1{abc}.2)}
T,=0
ng =1
- Branch: 2
I\P,\" Dét - @‘ DEI‘. : ab‘l: @ Branch: 1
3 G
) r

Abbildung 6.3: Revisiongraph nach der Erstellung eines neuen Entwicklungszweiges

Nachdem der neue Entwicklungszweig erzeugt ist, wird ein neuer Commit auf diesen
Entwicklungszweig vorgenommen, der ein neues Tripel def hinzufiigt. Die Anwendung der
Gleichung 4.16 erfolgt in Gleichung 6.4 und die zugehorige Visualisierung in Abbildung

6.4.

122

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6.1 Beispielhafte Nutzung der formalen Beschreibung

G = (Ry,Cy,By,Tyny)
R, ={1,2}
C, = {(0.1.{abe}.0),(1.2{ghi}.{abe})}
By = {({1.2}.2,{ghi}.1),({1},1{abc} 2)}
T,=0
=1

Ng

G’ = commitg (2.{def},0) = (Ry,Cq, B, Tyn,)

O = {def} (6.4)
c =0
ny = 2

Anwendung der Gleichung 4.16 ergibt:
R, ={12,3}
Cy = {(0,1,{abc},0),(1,2,{ghi} {abc}),(1,3,{def},0)}
B, = {({1,2},2,{ghi},1),({1,3},3,{abc,def},2)}
T.u =0

ng =1

Branch: 2

Branch: 1

DEL : abc

G

r

Abbildung 6.4: Revisiongraph nach dem Commit auf dem neu erstellten Entwicklungszweig
Die Revision 1 wird nachfolgend mit einem Tag versehen. Hierzu erfolgt die Anwendung

der Gleichung 4.15, wie in Gleichung 6.5 beschrieben. Der resultierende Revisionsgraph
wird in Abbildung 6.5 gezeigt.

123

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6 Verifikation

G = (Ry.Cy,By.Tyny)
R, ={1,2,3}
Cy ={(0,1,{abc}0),(1,2,{ghi} {abc}),(1,3,{def}0)}
B, = {({1,2},2,{ghi}.1),({1,3},3,{abc.def},2)}
T,=10

ng =1

G =tagg (1) = (Ra=Cq=Bg:Tg;=”/g)

ry =1

Anwendung der Gleichung 4.15 ergibt:

R, = {123}
Cy = {(0,1.{abc}0),(1,2{ghi} {abc}),(1,3,{def}0)}
By ={({1,2}.2,{ghi},1),({1.3},3 {abc,def},2)}

T = {(1.4abe},1)}

ng =1

Branch: 2

‘.O,' DEL: - \%/‘ DEL : abc @Branch.1

Abbildung 6.5: Revisiongraph nach der Erstellung eines neuen Tags

Im letzten Schritt wird der letzte Commit auf Branch I riickgéngig gemacht. Dies
erfolgt durch die Anwendung der Gleichung 4.17. Im resultierenden Ergebnis, beschrieben
in Gleichung 6.6, sind die Anderungen durch die Vertauschung von Hinzufiigungen und
Loschungen riickgangig gemacht worden. Eine visuelle Aufbereitung der durchgefithrten

Anderungen am Revisionsgraphen ist in Abbildung 6.6 zu finden.

124

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6.2 Nachweis der Erzeugung von beliebigen Revisionsinhalten

G = (Ry,Cy,By,15.mg)
R, = {1,2,3}
Cy = {(0,1 {abek0),(1,2.{ghi} {abe}),(1,3.{def}.0)}
By = {({1.2}.,2,{ghi}1),({1,3} 3, {abc,def}.2)}
Ty = {(1.{abc} 1)}

ng =1
G = revertg (1) = (R,,C;,B;,T,,n,) (6.6)
ny = 1

Anwendung der Gleichung 4.17 ergibt:
R, = {1234}
Cy = {(0,1,{abc},0),(1,2,{ghi} {abc}),(1,3,{def}.0),(2,4,{abc},{ghi})}
B, ={({1,2,3},3,{abc},1),({1,3},3,{abc,def},2)}
T, = {(1,{abc},1)}

ng =1
Branch: 2
Tag: 1 ~

=~ .

1"~ M. _ADD: abc ADD: ghi ADD: abc 5

OB A\ U D abe \ &) oL g \A) Branch: 1
G

r

Abbildung 6.6: Revisiongraph nach der Revidierung des letzten Commits auf Branch 1

6.2 Nachweis der Erzeugung von beliebigen Revisionsinhalten

Ein mit dem System interagierender Nutzer muss die Moglichkeit besitzen, einen belie-
bigen gewiinschten Revisionsinhalt durch die aufeinander aufbauende Anwendung von
Commits zu erreichen. Nachfolgen wird dies formal nachgewiesen.

Ausgangspunkt ist ein beliebiger Revisionsgraph G = (R,,Cy,B,,T,,n4). Dieser bein-
haltet bereits eine beliebige Struktur, auf deren Basis ein gewtinschter Revisionsinhalt
erreicht werden soll. Aus der Menge B, wird exemplarisch ein Entwicklungszweig fiir den

125

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6 Verifikation

Nachweis herangezogen. Fiir diesen Entwicklungszweig b; € B, mit b; = (Ry,,ry,, Yi,.m,)
wird nachgewiesen, dass mittels eines Commits das T, das den vollstdndigen Revisions-
inhalt des Blattes des Entwicklungszweiges kennzeichnet, in ein beliebiges T, iiberfiihrt
werden kann. Der Ansatz fiir die Erreichung dieses Ziels besteht darin, dass es immer mog-
lich ist, den letzten vollsténdigen Inhalt als Ganzes zu léschen und durch den gewiinschten
neuen Inhalt zu ersetzen. Gleichung 6.7 gibt die hierfiir notwendigen Definitionen an.
Hieraus ergibt sich die in Gleichung 6.8 dargestellte Annahme, dass durch die Anwendung
dieses Commits ein beliebiger Revisionsinhalt erzeugt werden kann.

G' = commitg (nb,C+7C’)
ot =1,

(6.7)
cT =7,
np = Ny,
G = commitg (nbz,Tl],Tll) Vui s v € Tpps Yoy vy €1y, (6.8)

Die in Gleichung 4.16 beschriebene Aktualisierung des vollstdndigen Revsionsinhalts
eines Entwicklungszweiges ist extrahiert in Gleichung 6.9 mittels T dargestellt. In diesem
Fall muss vor der Ausfithrung Gleichung 4.11 auf die Hinzufiigungen und Loéschungen
ausgefithrt werden, damit der korrekte Aufbau von Cj sichergestellt ist. Die Anwendung
ist in Gleichung 6.10 dargestellt.

T; = (Tl U Ostripped)\ \;Tipped (69)
C:;ripped = OJr\TZ
;tripped =C™n Tw

Mit T, =71, ,Ct = le und C~ =Y, ergibt sich:

(6.10)
Cstripped = Tl]\le
Cs_tripped = Tlr, N Tln
= Tll

Die Ergebnisse aus Gleichung 6.10 konnen jetzt in Gleichung 6.9 mit T, = T,
eingesetzt werden. Hieraus ergibt sich, wie in Gleichung 6.11 dargestellt, dass Tj = ;.
Das bedeutet, dass durch die Anwendung des in Gleichung 6.8 aufgefiihrten Commits
immer ein gewiinschter Inhalt auf einem Entwicklungszweig erzeugt werden kann, der in
Bezug auf den Inhalt vollstindig unabhéngig von den vorangehenden Anderungen sein

126

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6.3 Abbildung verbindungsorientierter Modelle am Beispiel der Co-Simulation

kann. Fir die Erreichung kénnen beliebig viele vorangegangene Commits durchgefiihrt
worden sein.

1) = (Y, U (T, \Y,)\T, | Anwendung De Morgansche Gesetze
= (T, UT)\ Ty, (6.11)
=7,

6.3 Abbildung verbindungsorientierter Modelle am Beispiel der
Co-Simulation

Ein Beispiel fiir ein verbindungsorientiertes Modell ist, wie bereits in Abschnitt 3.1.3.1
eingefithrt, die Co-Simulation. In Abbildung 6.7 ist ein schematisches Beispiel einer
Co-Simulation aufgefithrt. Die Co-Simulation ist als Ganzes durch die Komponente
¢ dargestellt. Darin enthalten sind zwei Komponenten b7 und b2, die wiederum aus
Teilkomponenten al bis a4 aufgebaut sind. Der Typ der jeweiligen Komponenten ist
mittels <A>, beziechungsweise <C> angegeben. Die Ports der Komponenten sind
durch I beziehungsweise O gekennzeichnet. Dabei gilt, dass Ports von Teilkomponenten
auch in der tibergeordneten Ebene zur Verfiigung stehen. Ein Beispiel hierfiir ist die
Verbindung zwischen den Ports 61.02 und b02.11.

<C>

<A> <A>
<A> 11 01 <A> 11 01
p— p
11 01 a2 11 01 2
02 >OZ
al 02 a3 02
bl b2
[

Abbildung 6.7: Beispiel eines Blockdiagramms einer Co-Simulation

Das in Abbildung 6.7 aufgefithrte Beispiel lisst sich in einen Compound Graph, wie in
Abschnitt 4.3 beschrieben, tiberfithren. Die sich daraus ergebenden Strukturen von G
und 77 sind in Abbildung 6.8 dargestellt. Das Wurzelelement bildet dabei der Graph c,
der die iibergeordnete Komponente der Co-Simulation beschreibt. Die darauf basierenden
Zweige stellen dann wiederum die Subkomponenten dar und die Blitter des Baums
kennzeichnen die Ports. Die Verbindungen zwischen den Ports sind nur auf der Ebene
der Blatter beschrieben. Ports von iibergeordneten Komponenten kénnen, wie bereits
beschrieben, aus diesen unterlagerten Ports abgeleitet werden.

127

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6 Verifikation

T T e

PSRN
e .

- S e <.
e S e SN
.. - ~.

[com] [Gromnet]

T R~ 7T TN~
LN AN LN AN

- VN
~. e 1 1 ~
.. e] \

/
N Va
N,
/ N
” \‘ ; ‘ \‘

.

[N PRl BN
/ NN

S,

N J \

f’,
’

G"
Abbildung 6.8: Abbildung des Blockdiagramms aus Abbildung 6.7 auf einen Compound Graph
(gestrichelte Linien: Hierarchie-/Inklusionskanten, durchgezogene Linien: Adjazenzkanten)

Die Definitionen aus Abschnitt 4.3.1 konnen fiir den Anwendungsfall der Co-Simulation
und damit allgemeiner fiir hierarchische verbindungsorientierte Modelle spezialisiert wer-
den. Bei diesen Modellen kénnen die Komponenten hierarchisch strukturiert sein und jede
Komponente kann wiederum Ports anbieten. Die Relationen zwischen den Komponenten
werden mittels Verbindungen zwischen den angebotenen Ports beschrieben. Die Ports
sind dabei zumeist in Ein- und Ausgangsports untergliedert. Diese Untergliederung kann
formal auch fiir die Menge der Basisknoten B vorgenommen werden. Dies ist in Gleichung
6.12 dargestellt. Dabei beinhaltet I die Eingangsports und O die Ausgangsports.

B=ITUO (6.12)

Fiir die Beschreibung der Port-Port-Relationen werden die Adjazenzkanten verwendet.
Da verbindungsorientierte Modelle im Allgemeinen einige Randbedingungen in Bezug
auf die moglichen zu verbindenden Ports besitzen, konnen diese Randbedingungen
analog zu den folgenden Gleichungen definiert werden. Gleichung 6.13 schrénkt dabei
die Konnektivitat insoweit ein, dass nur Verbindungen von Ausgangs- zu Eingangsports
méglich sind. Daraus folgt, dass G/ ein bipatiter Graph ist. Durch diese Einschrankung
wiederum ergibt sich, dass die resultierende Klasse des Graphen eine Subkategorie von
einem Compound Graph ist. Da in diesem nur Bléatter mittels Adjazenzkanten verbunden
sein diirfen, wird dieser auch als Clustered Graph bezeichnet [Fuh12].

V(vw) € Egr:v e OANweT (6.13)

Weitere Bedingungen zwischen Knoten und Kanten in Bezug auf die Multiplizitat der
moglichen Verbindungen konnen durch den Eingangsgrad d(’;,,(ﬂ) und den Ausgangsgrad

128

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6.3 Abbildung verbindungsorientierter Modelle am Beispiel der Co-Simulation

dg,(f;) eines Knotens ¥ beschrieben werden. Gleichung 6.14 restriktiert, dass jeder Aus-
gangsport nur ausgehende Verbindungen besitzt und Gleichung 6.15 schrénkt ein, dass
jeder Eingangsport nur eine oder keine eingehende Verbindung besitzen darf.

Vi € O : (dg, () = 0) A (d, () > 0) (6.14)
Vo € 1:(0<dg(d) <1)A(df(5) =0) (6.15)

In einigen Féllen ist es weiterhin notwendig, Abhéngigkeiten zwischen Eingangs- und
Ausgangsports innerhalb einer Komponente zu beschreiben. Hierfiir kann die Menge
der Adjazenzkanten Eé, in zwei Mengen unterteilt werden, wie in Gleichung 6.16 be-
schrieben. Im Falle einer solchen weiteren Untergliederung miissen dann wiederum die
Einschrankungen entsprechend erweitert werden.

E@ = FEga UEs,) (6.16)

Fir die semantische Beschreibung der Co-Simulation wird im Folgenden die Beschrei-
bung der Compound Graphs aus Abbildung 4.8 doménenspezifisch spezialisiert. Die
Spezialisierung basiert auf dem Modell von Van Acker et al. [Van+15]. Dabei wurden
die FMI-spezifischen Elemente durch generische Beschreibungen ersetzt sowie das Kon-
zept der Bondgraphen, wie in Abschnitt 3.1.3.1 vorgestellt, integriert. Das Ergebnis ist
in Abbildung 6.9 dargestellt. Von dem Blatt abgeleitet existiert der Port mit seinen
Ableitungen Sink (Senke, Eingangsport) und Source (Quelle, Ausgangsport). Bei den
Komponenten (Component) handelt es sich um Spezialisierungen von Subgraph, denen
des Weiteren die InternalDependencys zugeordnet sind, die die internen Abhéngigkeiten
beschreiben und von ConnectivityRelation abgeleitet sind. Weiterhin existieren Signale
(Signal), die ebenfalls eine Spezialisierung von ConnectivityRelation sind. Diese konnen
iiberdies zu einem Bond gruppiert werden, der aus einem flow- und einem energy-Signal
besteht. Die CoSimulation, abgeleitet von CompoundGraph, aggregiert neben den be-
stehenden Definitionen auch die Bonds. Die Einschrankungen, wie zum Beispiel, dass
Signale eine Quelle und eine Senke miteinander verbinden, sind in der Abbildung nicht
dargestellt und ergeben sich aus den vorangegangenen mathematischen Definitionen.

Auf Basis der bereitgestellten Beschreibung der Verbindungen kénnen wiederum domé-
nenspezifische Regelsitze fiir die Co-Evolution umgesetzt werden. Durch die Ableitung
von dem in Abschnitt 4.3.3 eingefithrten UML-Modell lassen sich jedoch auch allgemeine-
re Regeln anwenden, die auf dieser Ebene definiert worden sind und ermoéglichen damit
eine Wiederverwendung.

129

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6 Verifikation

CompoundGraph <}——— CoSimulation

0..* 0..*
Node ' Relation
target A
1| start
—> Leaf
ConnectivityRelation | 0.”
Port Subgraph A Bond
A ZF NestingRelation—
Component 1
L1 Signal
flow
Sink 1| energy
Source L InternalDependency
0..*

Abbildung 6.9: Doménenspezifische Spezialisierung der Abbildung 4.8 auf die Co-Simulation

6.4 Testfalle innerhalb der Implementierung

Die Implementierung von R43ples erfolgt innerhalb eines Continuous Integration Fra-
mework (CIF). Basis bildet hierfiir ein GitHub-Repository und Travis CIY). ITnnerhalb
dieser Umgebung sind der Quellcode aber auch Datenbestiande wie Ontologien und Test-
datensitze vollstdndig revisioniert. Die umgesetzten Testfélle setzen sich aus Unit Tests,
Integration Tests und System Tests zusammen. Integration Tests sind unter anderem fiir
komplexe Anfragen in Bezug auf die Zusammenfithrung von divergierten Entwicklungs-
zweigen, aber auch fiir die automatisierte Erzeugung von Beispieldatensitzen umgesetzt.

Zu den Integration Tests gehoren des Weiteren auch die Testfille fur die Aggregation
von High-Level-Changes und die zugehorige Co-Evolution. Grundlage hierfiir bilden
zwel Beispieldatensétze (SampleDataSet.createSampleDataSetHLCAggregation() und
SampleDataSet.createSampleDataSetCoEvolution()). Das SampleDataSetHLCAggrega-
tion stellt einen Revisionsgraphen bereit, der aus einem initialen Commit und einem

Dhttps://travis-ci.com/ (besucht am 29.11.2020)

130

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

6.4 Testfille innerhalb der Implementierung

weiteren Commit besteht. Darin ist exemplarisch die Umbenennung einer Klasse durch
die Anderungen von Revision 1 auf Revision 2 beschrieben. Innerhalb vom SampleData-
SetCoFvolution existiert nur ein initialer Commit. Dieser Commit verwendet jedoch die
Klassendefinition aus Revision 1 von SampleDataSetHLCAggregation zur Beschreibung
der enthaltenen Instanzen. Fiir die Aggregation beziehungsweise die Co-Evolution wird,
wie in den Abschnitten 5.2.3 und 5.3 beschrieben, jeweils ein Regelsatz benotigt. Hierfiir
wurden die in Listing 16 und Listing 17 dargestellten SPARQL-Anfragen in semantische
Beschreibungen der Regelsétze tiberfithrt. Der Test AggregationDraftTest stellt die kor-
rekte Funktionsweise der durchgefithrten Aggregation sicher indem die resultierenden
SemanticChanges gepriift werden. Im Test CoFEvolutionDraftTest werden die durchge-
fithrten Co-Evolutionen tiberpriift. Dabei werden sowohl die semantische Beschreibung
der Co-Evolution als auch die Anpassungen am abhéngigen Revisionsgraphen getestet.
Bei den Tests des Gesamtsystems kommt als Triple Store Jena TDB? zum Einsatz.
Anfragen an R43ples werden in diesen Testféllen nicht tiber interne Schnittstellen gestellt,
sondern tiber die gleiche Schnittstelle, die spater durch Nutzer verwendet werden.

2https://jena.apache.org/documentation/tdb/ (besucht am 29.11.2020)

131

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

7 Diskussion

Im Rahmen dieser Arbeit wurde ein RMS zur Unterstiitzung der Evolution von Informa-
tions- und Datenmodellen entwickelt, das Revisionsverwaltungs- und Evolutionsmecha-
nismen integriert. Besonderheit ist hierbei die technologieunabhédngige mathematische
und semantische Beschreibung, die eine Uberfiihrung des Konzepts in unterschiedliche
Technologien ermoglicht. Im Folgenden wird die Methodik der Arbeit bewertet und
anschliefiend werden die Ergebnisse den aufgestellten Thesen gegentibergestellt, um diese
zu verifizieren.

7.1 Methodikbewertung

Ausgangspunkt dieser Arbeit bildete eine detaillierte Anforderungsanalyse, die sich auf
einer Literaturrecherche stiitzt. Da mit diesem Vorgehen die Gefahr einhergeht, dass wich-
tige Quellen nicht betrachtet werden oder Anforderungen in der Realitét nicht zum Tragen
kommen, wurde ein strukturiertes Vorgehen angewendet, um dem entgegenzuwirken.
Gleichwohl erhebt diese Arbeit keinen Anspruch auf Vollstandigkeit der aufgenommenen
Anforderungen. Ein wesentliches Element war von Beginn an die gemeinsame Betrach-
tung von Evolution und Revisionsverwaltung. Ausgehend von allgemeinen Prinzipien mit
Einfluss auf Evolvability wurde festgestellt, dass etablierte Systeme in diesem Bereich
an ihre Grenzen stofflen und neue integrierte Mechanismen geschaffen werden miissen.
Die allgemeinen Prinzipien wurden dann im Anschluss auf eine technologische Sicht
gehoben und durch weitere Literatur untermauert. Die sich daraus ergebenden Kriterien
wurden wiederum den Anwendungsfillen der Arbeit gegeniibergestellt, wodurch gezeigt
werden konnte, dass diese Anforderungen praktische Relevanz besitzen. Im Folgenden
wurden sie bestehenden Ansitzen gegeniibergestellt, um bereits vorhandene Aspekte
zu identifizieren, die in einem integrierten Konzept wiederverwendet werden koénnen.
Durch die anschliefiende Priorisierung wurde der Fokus der Arbeit auf die Kernanforde-
rungen gelegt, wodurch diese im Detail im Rahmen dieser Arbeit ausgearbeitet werden
konnten. Darauf aufbauende weiterfiihrende Kriterien miissen in folgenden Arbeiten
weiter detailliert und in Konzepte tiberfithrt werden. Das in dieser Arbeit beschriebene
Konzept sieht demnach eine Struktur des RMS vor, die es ermdglicht, auch die niedriger
priorisierten Anforderungen in Folgearbeiten zu integrieren. Die im Entwurf dargestellten
technologieunabhédngigen mathematischen und semantischen Beschreibungen wurden
innerhalb einer prototypischen Implementierung fiir das Semantic Web angewendet.
Durch die Weiterentwicklung von dem bestehenden semantischen Revisionskontrollsys-
tem R43ples zu einem RMS konnte die Funktionsweise des Konzeptes nachgewiesen
werden. Dies wurde in einer anschliefenden Verifikation auch mittels theoretischer und
praktischer Tests nachgewiesen. Eine Ubertragung auf andere Technologien, wie zum
Beispiel OPC UA, wurde im Rahmen dieser Arbeit nicht untersucht. Erste Arbeiten in

132

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

7.2 Ergebnisdiskussion und Verifikation der Thesen

diesem Bereich zeigen jedoch, dass eine bidirektionale Synchronisierung zwischen Seman-
tic Web und OPC UA moglich ist [Ahr18]. Hieraus kann abgeleitet werden, dass auch
die Mechanismen dieser Arbeit innerhalb von OPC UA anwendbar sind. Die Bestatigung
oder die Widerlegung dieser weiterfithrenden These muss jedoch in folgenden Arbeiten
detailliert untersucht werden. Bei der im Rahmen dieser Arbeit zur Verfiigung gestellten
Implementierung handelt es sich um einen Prototypen eines RMS fiir das Semantic Web.
Trotz der Verwendung eines CIF und der Erstellung von Testfillen muss das System
eine Weiterentwicklung erfahren, bevor es in einen Produktiveinsatz iiberfithrt werden
kann. Auf der einen Seite muss hierfiir die Testabdeckung weiter erhoht werden, aber auf
der anderen Seite miissen auch die visuellen Interaktionsmoglichkeiten mit dem System
ausgebaut werden, um die Nutzerakzeptanz zu erhéhen.

7.2 Ergebnisdiskussion und Verifikation der Thesen

Zielstellung dieser Arbeit war die durchgingige Unterstiitzung der Evolution von Informa-
tions- und Datenmodellen tiber deren Lebenszyklus hinweg. Dieses Ziel konnte durch
Lebenszyklusbetrachtungen und die Konzeption eines RMS erreicht werden. Das RMS
bildet die Grundlage, Evolutionen iiber den gesamten Lebenszyklus hinweg zu unter-
stiitzen. Kernergebnis dieser Arbeit ist dabei die technologieunabhéngige integrierte
mathematische und semantische Beschreibung von Revisionsverwaltung und Evolution
fiir Informations- und Datenmodelle sowie das Konzept eines RMS. Die bereitgestellten
Funktionen fiir die Basisrevisionsverwaltung ermoglichen hierbei die Interaktion mit
dem Repository. Im Rahmen dieser Arbeit wurde insbesondere auf die Funktionen zur
Erstellung von Commits, Branches und Tags eingegangen. Mittels der Revert-Funktion
konnen Commits riickgéngig gemacht werden, bleiben aber in der Revisionshistorie
weiterhin erhalten. Fiir Branches und Tags stehen Funktionen zur Loschung nicht bereit,
konnen aber als Umkehroperation aus den Funktionen fiir die Erstellung heraus abgeleitet
werden. Aufgrund der technologieunabhéngigen Beschreibung mussten innerhalb von
den mathematischen Beschreibungen Schnittstellen geschaffen werden, die eine techno-
logieabhéngige Umsetzung ermoglichen. Dies tritt unter anderem bei der Aggregation
von atomaren Anderungen hin zu High-Level-Changes auf. Regelsitze und Mechanismen
der Aggregation sind dabei weitestgehend technologieabhéngig und dementsprechend
ausgegliedert worden. An diesen Stellen existieren jedoch zumeist bereits Losungen, wie
unter anderem [Kehl15] oder [Pap+13], auf die bei einer Umsetzung zuriickgegriffen
werden kann. Fiir die Zusammenfithrung von divergierten Entwicklungszweigen stehen
im Rahmen dieser Arbeit drei unterschiedliche Méglichkeiten zur Verfiigung. Da bei der
Zusammenfithrung Konflikte auftreten konnen, wurden hierfiir Mechanismen entwickelt,
um diese Konflikte auf einer strukturellen Ebene zu lésen beziehungsweise transiente
Effekte auf der High-Level-Ebene zu detektieren. Im Rahmen der Implementierung
wurden jedoch nur die Mechanismen der strukturellen Analyse umgesetzt. Die Durchfiih-
rung von Co-Evolutionen basiert auf den aggregierten High-Level-Changes sowie den
Basisrevisionskontrollfunktionalitdten. Durch eine Analyse der Abhéngigkeiten inner-
halb des RMS kénnen dann entsprechende Co-Evolutionen vorgenommen werden. Diese

133

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

7 Diskussion

basieren innerhalb der Implementierung jedoch nur auf Typ-Instanz-Ebene und nicht
auf der Beschreibung von Verbindungsgraphen, die Abhéngigkeiten zwischen Datenmo-
dellen abbilden. Die Modellierung der Compound Graphs wurde jedoch anhand des
Anwendungsfalls der Co-Simulation theoretisch verifiziert.

Riickblickend auf die der Arbeit zugrunde gelegten Thesen kann an dieser Stelle
festgestellt werden, dass diese im Rahmen der Arbeit positiv beantwortet werden konnten.
Nachfolgend werden die einzelnen wissenschaftlichen Forschungsthesen aus der Arbeit
heraus begriindet:

These 1: Neue Anforderungen an die Agilitit von Produktlebenszyklen erfordern Ver-
anderungen im Lebenszyklus der zugrundeliegenden Informationsraume, vor allem im
Bereich der Revisionierung und Evolution der Informations- und Datenmodelle.

Diese These konnte durch die durchgefiihrte Literaturrecherche und die Betrachtung
der Anwendungsfille bestitigt werden. Individualisierung sowie kiirzere Produktlebenszy-
klen fithren zu Verédnderungen in der Produktion, aber auch in der Standardisierung von
Schnittstellen. In diesen Bereichen stellen sich neue Herausforderungen an die Agilitét,
mit der auf Anforderungsinderungen reagiert werden muss, um weiterhin wettbewerbs-
fahig zu bleiben. Neue Anséitze, wie zum Beispiel die Modularisierung und die damit
verbundenen Standardisierungsarbeiten, bieten hierfiir Losungen an. Sie stellen dabei
aber wiederum neue Anforderungen an die Revisionierung und Evolution von Informa-
tionsraumen, da sich aufgrund der Agilitdt der Standardisierung auch die zugehorigen
Schnittstellen weiterentwickeln und mit diesen Anderungen umgegangen werden muss.
Durch Ansatze wie [Gral6] wird des Weiteren eine semantische Integration von Infor-
mationsraumen ermoglicht, durch die unterschiedliche Modelle miteinander gekoppelt
werden konnen. Auch diese neu entstehenden Abhéangigkeiten stellen neue Anforderungen
an die Revisionierung und die Evolution der Modelle.

These 2: Anforderungen kénnen durch etablierte Werkzeuge aus der Softwareentwick-
lung nicht vollstandig erfillt werden.

Zur Bestatigung dieser These wurden die aufgenommenen Anforderungen gegen beste-
hende Ansétze verglichen, woraus sich ergeben hat, dass diese die Anforderungen nicht
vollstdndig erfillen kénnen und auch diese These als bestétigt angesehen werden kann.
Fiir die Revisionsverwaltung gibt es zwar etablierte Ansétze, die aber aufgrund der Struk-
tur und der Natur von Informations- und Datenmodellen nicht genutzt werden kénnen.
Diese Systeme agieren nicht auf einer Inhaltsebene, sondern auf einer zeilenbasierten
Strukturebene, die fiir die Revisionierung von Modellen nicht zielfithrend ist. Ebenso
existieren Anséitze fir die Evolution von Modellen, wobei diese jedoch iiberwiegend
den Aspekt der Revisionierung aufien vorlassen, wodurch die Nachvollziehbarkeit der
durchgefiihrten Anderungen nicht mehr gewihrleistet ist.

These 3: Die Integration von Revisionskontrollfunktionalititen und Evolutionsmecha-

nismen in ein ibergeordnetes Revision Management System bietet die Grundlage fir die
Umsetzung der Anforderungen.

134

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

7.2 Ergebnisdiskussion und Verifikation der Thesen

Aus der Anforderungsanalyse heraus hat sich ergeben, dass die Integration von Revisi-
onskontrollfunktionalitdten und Evolutionsmechanismen notwendig ist, um die Anforde-
rungen umzusetzen. Hierfir wurde ein RMS konzeptioniert, das aus unterschiedlichen
Komponenten aufgebaut ist, die jeweils die Umsetzung von spezifischen aufgenomme-
nen Anforderungen erlauben. Dadurch kann diese These bestétigt werden. In dieser
Arbeit wurden die grundlegenden Komponenten im Detail ausspezifiziert, wobei die
mathematischen und semantischen Beschreibungen der jeweiligen Komponenten auf-
einander aufbauen. Ein wesentliches Merkmal ist dabei die semantische Beschreibung
iiber alle Komponenten hinweg. Dies ermoglicht es einerseits, auf Ergebnisse von ande-
ren Komponenten zuzugreifen, sowie andererseits die Moglichkeit der Umsetzung von
weiterfithrenden Komponenten und zukiinftigen Erweiterungen.

These 4: Die technologieunabhdingige Beschreibung des Revision Management Systems
erlaubt eine Umsetzung in unterschiedlichen Anwendungsdomdnen.

Diese These wurde durch die Umsetzung der technologieunabhéngigen Beschreibung
fiir das Semantic Web und die anschlieflende Verifikation bestétigt. Hierbei konnte
gezeigt werden, dass die technologieunabhangigen UML-Modelle in Ontologien fiir das
Semantic Web iiberfithrt werden konnten. Des Weiteren zeigen erste Arbeiten, dass
eine bidirektionale Synchronisation zwischen Semantic Web und OPC UA moglich ist,
woraus ableitbar ist, dass ein RMS ebenso fir OPC UA umsetzbar ist. Hierbei miissen
die in UML beschriebenen Informationsmodelle in Typenmodelle von OPC UA tiberfiihrt
werden.

Kernthese FEin Revision Management System unterstitzt die Evolution von Informations-
und Datenmodellen tiber deren gesamten Lebenszyklus durch die Integration von Revisions-
kontroll- und Evolutionsmechanismen.

Durch die vorangegangene Bestatigung der Einzelthesen kann ebenso die Kernthe-
se dieser Arbeit als bestéitigt angesehen werden. Innerhalb der Arbeit wurde ausge-
hend von einem Lebenszyklusmodell fiir Informationsmodelle ein RMS entwickelt, das
Revisionskontroll- und Evolutionsmechanismen integriert und damit die Grundlage fiir
eine durchgéngige Lebenszyklusunterstiitzung von Informations- und Datenmodellen

schafft.

135

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

8 Zusammenfassung

Neben einer kurzen Ergebniszusammenfassung der Arbeit werden im Folgenden Ankniip-
fungspunkte aufgezeigt, an denen folgende Arbeiten ansetzen konnen.

8.1 Ergebniszusammenfassung

Ausgehend von einer Literaturrecherche und der daraus abgeleiteten Anforderungsanalyse
wurde innerhalb dieser Arbeit ein Lebenszyklusmodell fiir Informationsmodelle sowie
ein RMS entwickelt, das Revisionskontroll- und Evolutionsmechanismen technologieu-
nabhéngig integriert. Dieses RMS bietet damit die Grundlage fiir eine durchgingige
Lebenszyklusunterstiitzung von Informations- und Datenmodellen in unterschiedlichen
Anwendungsdoménen. Durch eine Umsetzung des Konzeptes im Semantic Web als eine
Weiterentwicklung des Open-Source-Projektes R43ples und die anschlieBende Verifikation
konnte nachgewiesen werden, dass das Konzept funktionsfihig ist und die notwendigen
Funktionen fir die Lebenszyklusunterstiitzung bereitstellt.

8.2 Ausblick und Grenzen

Die sich aus dieser Arbeit ergebenden Ankniipfungspunkte fir folgende Arbeiten bezie-
hungsweise Fragestellungen, die in weiteren Arbeiten untersucht werden missen, sind
nachfolgend in drei Kategorien unterteilt. Im ersten Schritt werden offene Punkte mit
Bezug zum vorgestellten Konzept aufgezeigt. Anschlieend werden Weiterentwicklungs-
moglichkeiten skizziert, die sich aus der Implementierung im Semantic Web schlussfolgern
lassen. Schliefllich werden offene Fragestellungen aufgeschliisselt, die sich aus der gesam-
ten Arbeit heraus ergeben beziehungsweise innerhalb dieser Arbeit nicht mehr betrachtet
werden konnten.

Konzept In Bezug auf das Konzept bestehen offene Punkte vor allem in Hinblick auf
die vorgenommene Priorisierung und die damit verbundenen nicht im Detail beschrie-
benen Komponenten eines RMS. Hierzu gehort zum einen die Bereitstellung eines User
Interfaces fir die nutzerfreundliche Interaktion mit dem System und zum anderen das
Zugriffsmanagement. Innerhalb dessen miissen unter anderem Freigabeprozesse fiir Infor-
mationsmodelle im Idealfall anhand industrieller Anwendungsszenarien naher untersucht
werden. Hierbei miissen weiterhin die Rollen innerhalb einer solchen Umgebung im Detail
erfasst werden und sichergestellt werden, welche Anderungen von wem nachverfolgt
werden miissen. Dabei wird auflerdem Wissen benotigt, wo und von wem Informations-
modelle fiir die Beschreibung von Datenmodellen eingesetzt werden. Dies ist notwendig,

136

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

8.2 Ausblick und Grenzen

da diese Personengruppen bei einer moglichen Auflerkraftsetzung entsprechend informiert
und daraus weiterfiihrende Mafinahmen abgeleitet werden miissen.

Wie bereits in der Diskussion aufgefithrt, werden weitere Funktionen als Umkehropera-
tionen der Erstellungsfunktionen bendtigt, um zum Beispiel einen Branch oder einen Tag
riickgéngig zu machen. Ebenso konnen in zukiinftigen Arbeiten die Mechanismen der
High-Level-Change-Aggregation auf einen ganzen Revisionspfad ausgedehnt werden, um
entlang von diesem Pfad alle High-Level-Changes zu detektieren und auch Abhéngigkeiten
zwischen diesen aufzulosen. Da in dieser Arbeit Schnittstellen zu technologiespezifischen
Loésungen geschaffen werden mussten, miissen diese Schnittstellen fir die jeweiligen Tech-
nologien spezifisch umgesetzt werden. Hier konnte in Folgearbeiten ebenso untersucht
werden, ob es Uberschneidungen zwischen unterschiedlichen Technologien gibt und Teile
der Realisierung auf eine unabhéngige Ebene gehoben werden kénnen.

Ein weiterer konzeptionell zu betrachtender Anwendungsfall besteht in der Wiederver-
wendbarkeit von Teilen von abgelosten Informationsmodellen in neu erstellten Informati-
onsmodellen und wie in diesem Szenario Migrationen durchgefithrt werden kénnen, um
Konsistenz sicherzustellen. Dabei tritt des Weiteren die Notwendigkeit der Referenzierung
zwischen unterschiedlichen Revisionen innerhalb der Informations- und Datenmodelle
auf. Diese wird durch die unterschiedlichen Ausprigungen der Beschreibung der Modelle
jedoch mit hoher Wahrscheinlichkeit technologiespezifisch ausfallen. Hierfiir miissen die
notwendigen mathematischen und semantischen Grundlagen geschaffen werden.

Implementierung Die Implementierung ist eine prototypische Umsetzung des vorgestell-
ten Konzeptes, woraus sich ebenso offene Punkte ergeben, die zukiinftig weiterentwickelt
beziehungsweise untersucht werden miissen. Innerhalb von R43ples wurden beispielsweise
die Aggregations- und Co-Evolutionsfunktionen nur fir zwei direkt aufeinanderfolgende
Revisionen umgesetzt. An dieser Stelle muss eine Erweiterung hin zu der Aggregation
und Co-Evolution entlang eines Pfades von Revisionen stattfinden, um auch mehrere
durchgefiihrte Anderungen auf einmal co-evolvieren zu kénnen. Im Fall, dass entlang
eines Pfades co-evolviert werden soll, der nur durch eine Start- und eine Zielrevision
gekennzeichnet ist, konnen potenziell unterschiedliche Pfade im Revisionsgraphen genutzt
werden. Hier muss untersucht werden, inwieweit bereitgestellte Regelsitze unabhangig
vom Pfad sind, oder ob der gewéhlte Pfad Einfluss auf die Co-Evolutionen hat. Ebenso ist
der bereitgestellte Regelsatz fiir Aggregation und Co-Evolution nur fiir eine Beispielregel
umgesetzt. Die Integration von weiteren Regeln ist essenziell fiir eine breite Anwendung
der Implementierung. Die Regeln beziehen sich auflerdem auf Typ-Instanz-Beziehungen
und miussen mit weiteren Regeln in Bezug auf die noch umzusetzende Komponente eines
ConnectionManagers erweitert werden, wobei diese Regeln einerseits auf den allgemeinen
Definitionen von Compound Graphs aber auch auf anwendungsspezifischen Erweite-
rungen aufbauen sollten. Des Weiteren muss die Zusammenfiithrung von divergierten
Entwicklungszweigen um die vorgestellten Moglichkeiten der semantischen Konfliktdetek-
tion erweitert werden. Verteilte Anfragen, die mehrere revisionierte Modelle auf einmal
dndern, werden von der aktuellen Implementierung nicht unterstiitzt. An dieser Stelle
muss in weiteren Arbeiten untersucht werden, wie sich gleichzeitige Anderungen auf die

137

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

8 Zusammenfassung

durchzufithrenden Co-Evolutionen auswirken. Beispielsweise kann daraus die Notwen-
digkeit entstehen, dass eine semantische Verkniipfung zwischen den einzelnen erstellten
Commits beziehungsweise den erstellten Revisionen herzustellen ist. Schliellich sollte die
gesamte Performance der Implementierung gesteigert werden. Hierfiir kénnen beispiels-
weise Mechanismen untersucht werden, die eine Selbstoptimierung des Repositories in
Bezug auf kiirzeste Wege und vollstiandig vorgehaltenen Revisionen ermoglichen.

R43ples verfiigt aktuell iiber ein Webinterface, tiber das Anfragen an das System gestellt
werden konnen und das auch rudimentére Information zu den revisionierten Modellen
bereitstellt. Jedoch fehlen Visualisierungsmoglichkeiten von zum Beispiel Differenzen
zwischen Revisionen und eine Aufbereitung der erkannten High-Level-Changes. Ebenso
sollte zukinftig die Durchfithrung von Co-Evolutionen visuell unterstiitzt werden. Erste
Ansatze wurden im Rahmen einer studentischen Arbeit [Funl7] entwickelt, die in die
prototypische Implementierung iiberfithrt werden kénnten. Im Zusammenhang mit der
Co-Evolution miissen weiterhin die Verbindungen zwischen Modellen gepflegt werden.
Hierfiir werden ebenfalls Benutzerschnittstellen benétigt, die bestehende Verbindungen
darstellen und eine nachtragliche Bearbeitung erlauben. Die Erstellung der Regelsétze
erfolgt im aktuellen Ansatz manuell, was mit einer Fehleranfélligkeit und hohen zeitlichen
Aufwénden verbunden ist. Diesem Problem koénnte auch durch eine geeignete visuelle
Konfigurationsschnittstelle entgegengewirkt werden.

Offene Fragestellungen fiir weiterfithrende Arbeiten Die vorliegende Arbeit nutzt
zwei Anwendungsfélle mit praktischer Relevanz als Grundlage. Gleichwohl sollten sowohl
die Implementierung als auch das Konzept im Allgemeinen im industriellen Umfeld
anhand konkreter industrieller Anwendungsfille weiter evaluiert werden. An dieser Stelle
konnte ebenso eine Ubertragung des Konzeptes in eine andere Technologie wie zum
Beispiel OPC UA stattfinden. Dariiber hinaus konnte das vorgestellte RMS auch die
Grundlage fiir ein CIF fiir Informations- und Datenmodelle bereitstellen. Innerhalb von
diesem wére es dann zum Beispiel auch maoglich, Analysen iiber Wiederverwendung oder
Qualitat von Informationsmodellen durchzufiithren, wodurch die semantische Beschreibung
innerhalb von Informationsraumen verbessert werden konnte. In diesem Zusammenhang
ist auch die Entwicklung eines semantischen Ticketsystems vorstellbar, das sich auf das
RMS bezieht.

Wie bereits angesprochen, miissen die Regelsitze derzeit mit hohem manuellem Auf-
wand erstellt werden. In weiterfithrenden Arbeiten konnte untersucht werden, inwieweit
wiederkehrende Anderungsmuster automatisiert erkannt werden kénnen, um dann bei-
spielsweise nur noch durch einen Nutzer mit einer entsprechenden Semantik versehen
werden zu missen. Dariiber hinaus kann das vorgestellte RMS auch innerhalb von wissens-
basierten Systemen fiir das Round-Trip-Engineering als Grundlage fiir die Revisionierung
und Evolution genutzt werden. Hierbei miissen auch Methodiken entwickelt werden, um
Anfragen auf Modelle beziehungsweise Abbildungsvorschriften zwischen Modellen mit
den Modellen zu evolvieren.

Mit der Umsetzung im Semantic Web erfolgte ein erster Schritt fiir die durchgiangige
Unterstitzung der Evolution von vernetzten Modellen. Jedoch muss in folgenden Ar-

138

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

8.2 Ausblick und Grenzen

beiten auch die Evolution iiber Repository-Grenzen hinweg untersucht werden, da die
entsprechenden Modelle zwar Abhangigkeiten besitzen, aber nicht zwangslaufig inner-
halb einer Umgebung revisioniert werden, sondern potenziell global verteilt sein kénnen.
Dartiber hinaus sollten Bestrebungen aufgenommen werden, SPARQL-Erweiterungen
fiir die Revisionsverwaltung und die Evolution in eine Standardisierung zu iiberfithren,
um einen einheitlichen Zugriff iiber Applikationen hinweg zu ermoglichen.

139

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Anhang

216.73.216.60, am 24.01.2026, geschlltzter Inhalt.
m

:48. 0
mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

A Entwurf

Abbildung A.1: Vollstandiges Komponentendiagramm des RMS

141

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

B Implementierung

Im Nachfolgenden wird anhand von konkreten Beispielen dargestellt, wie sich der Re-
visionsraum veréndert, wenn bereitgestellte Funktionalitdten mittels der erweiterten
SPARQL-Syntax ausgefiihrt werden. In den Bildern stehen diinne Linien fiir bestehende
Information, dicke Linien fiir neu hinzugekommene Information und gepunktete Linien
kennzeichnen entfernte Information. Revisionen werden aus CGriinden der Ubersichtlichkeit
grau hervorgehoben.

B.1 Basisrevisionskontrollfunktionalitaten

[T graphir43ples-revisionsi
I

graphitest
rmo:RevisionGraph

rmo:hasRevisionGraph

rmo:generated

“graphitestrevisiongraphl

ﬁ
I
|

I 2 I
I rmo:commitMessage: Commit message
I [for a new graph
: (?J.ip\hn.'..e;'cﬂfm'i) rmoctimeStamp®»] 2017-08-30T12:12:12 I
I user:bob /m I
(rmo:User) rmo:deleteSet»] DO I
I rmo:revisionldentifier 1
I ' rev:0 change:0 ’ ')l I
| rmo:generated . rmo:succeedingRevision o CrgeSo) rmo,laddSet A0
I morefrences |
| \ee oz generated branch:master |
I (rmo:Master) I 1
I > oo | I
e e)

Abbildung B.1: Beispiel fiir die Erstellung eines neuen Graphen

142

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

B.1 Basisrevisionskontrollfunktionalitdten

l graph-experiment

rmo:referenceldentifier

rmo:fullContent
branch:experiment
(rmo:Branch)

rmo:references

rmo:generated

user:bob
rmo:wasAssociatedWith (rmo:User)

rmo:commitMessage Commit message
for experiment branch
rmo:timeStamp 2017-08-30T12:12:12

rev:2
(rmo:Revision)

commit:branch-experiment
(rmo:BranchCommit)

Abbildung B.2: Beispiel fiir die Erstellung eines neuen Entwicklungszweiges

——
graph-v

1
L f -
rmo:referenceldentifier

rmo:fullContent

rmo:generated m—

user:bob

rmo:wasAssociatedWith N
(rmo:User)

rmo:references

Commit message
for version v1.0

rmo:commitM

\ 4

rev:2
(rmo:Revision)

commit:tag-v1.0

(rmo:TagCommit) rmo:timeStamp

Abbildung B.3: Beispiel fiir die Erstellung eines neuen Tags

143

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
tersagt, m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

B Implementierung

branch:master
(rmo:Master)

rmo:references rmo:references
.

rmo:revisionldentifier)-
rev:2
(rmo:Revision)

rmo:priorRevision rmo:succeedingRevision

rev:1

.. rmo:wasDerivedFrom
(rmo:Revision)

change:1-2
(rmo:ChangeSet

rmo:deleteSet rmo:addSet
— —
| o2 n |
— rmo:hasChangeSet —
rmo:used rmo:generated

commit: 1
rmo:UpdateCommit

P ' 10:WaSAsSOCIAtdWith useT:bob
(rmo:User)

N 110:cOMMIitMessage =y CO”}Q'L;‘;;?QS

N rmo:timeStampﬁI 2017-08-30T12:12:12 I

Abbildung B.4: Beispiel fiir die Erstellung eines neuen Commits

144

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
tersagt, m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

B.1 Basisrevisionskontrollfunktionalitdten

branch:master
(rmo:Master)

. rmo:revisionldentifier

rmo:references rmo:references
.
eyl rmo:wasDerivedFrom [y rmo:wasDerivedFrom T
(rmo:Revision)) (rmo:Revision)) (rmo:Revision)
A
rmo:priorRevision rmo:hasChangeSet rmo:priorRevision rmo:succeedingRevision
chang change:2-3
(rmo:ChangeSet) (rmo:ChangeSet
rmo:deleteSet
rmo:addSet
142
—_—— rmo:hasChangeSet
rmo:deleteSet
rmo-addSet rmo:generated
rmo:used
M, commit:1

evertCommit

(:Jr:ce)ri?:;) rmo:wasAssociatedWith et
Comfrg:tr:veesjage rmo:commilMessage—‘

—

rmo:timeStamp

Abbildung B.5: Beispiel fiir die Revidierung eines Commits

145

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
tersagt, m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

B Implementierung

B.2 Aggregation von High-Level-Changes

branch:master
(rmo:Master)

rmo:references 'mo:revisionldentifier

rev:1
(rmo:Revision)

rev:2

rmo:wasDerivedFrom P
(rmo:Revision)

rmo:priorRevision rmo:succeedingRevision

:_DZ :(— rmo:deleteSet I

rmo:addSet —)rAZ |

change:1-2
(rmo:ChangeSet)

rmo:statements

rmo:semanticChanges

d rmo:semanticChanges

semchange:1-2
(rmo:SemanticChange)

set:deletions
(rmo:Set
rmo:deletions

aero:usedRule

f &

rmo:additions rmo:statements

rule:rename-class
(aero:HLCAggRule,
aero:HeurisitcRule)

aero:hasVariables

set:additions

(rmo:Set)
rmo:statements

aero:hasVariables rdf:object

@(— rdf:predicate

spinresource:var-a

statement:add1
rdf:Statement

<http://example.com/house>

aero:value
aero:spinResource

var.a .
(aero:SPARQLVariable spivarName

Abbildung B.6: Beispiel fiir die Aggregation (Ausschnitt)

rdf:subject

<http://example.com/myhouse>

146

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
tersagt, m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

B.2 Aggregation von High-Level-Changes

© 00~ DU =W~

29
30
31

32

34

35
36

PREFIX rdfs:<http://www.w3.o0rg/2000/01/rdf—schemaz>
PREFIX rdf:<http://www.w3.org/1999/02/22—rdf—syntax—ns#>

SELECT ?b ?c¢ ?resource
'WHERE {

{
SELECT ?b 7c¢ ?resource
WHERE {

GRAPH <http://NAMEDGRAPHZADDSET-1-2> { # Ezample: <http://
NAMEDGRAPH#ADDSET-1-2> will be replaced with <http://test.com/
r43ples—dataset—hlc—aggregation—addSet—1—2>

?c¢ a rdfs:Class.
?¢ rdfs:subClassOf ?resource.

}

}
}

{
SELECT ?b 7c¢ ?resource
WHERE {

GRAPH <http://NAMEDGRAPHADELETESET—1-2> { # Example: <http://
NAMEDGRAPH#DELETESET—1-2> will be replaced with <http://test.
com/r4{3ples—dataset—hlc—aggregation—deleteSet —1-2>

?b a rdfs: Class.
?b rdfs:subClassOf ?resource.

}
}
}
MINUS
{
SELECT ?b ?7¢
WHERE {

GRAPH <http://NAMEDGRAPH#revl> { # Ezample: <http ://NAMEDGRAPH#
revi> will replaced with <http://test.com/r43ples—dataset—hlc—
aggregation> REVISION "1'

7¢ 7sl 7ol.

}

GRAPH <http://NAMEDGRAPH#rev2> { # FEzample: <http ://NAMEDGRAPH#
rev2> will replaced with <http://test.com/r43ples—dataset—hlc—
aggregation> REVISION '"2"

b 782 702.

}

}
}

}

Listing 16: Beispiel fiir die in SPIN beschriebene Anfrage

147

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

B Implementierung

B.3 Zusammenfiihrung von divergierten Entwicklungszweigen

rev:2
(rmo:Revision)

A

'mo:wasDerivedFrom

ID2-4I "y 1
_& A2-4

rmo:priorRevision
rmo:references

rmo:deleteSet

rmo:addSet

rmo:usedSourceRevision

rmo:wasDerivedFrom
branch:experiment
(rmo:Branch)

rmo:usedSourceBranch

chang
rmo:ChangeSet

rmo:succeedingRevision

rmo:hasChangeSet

rev:1

commit:1
(rmo:Revision)

(rmo:ThreeWayMergeCommit)

rmo:usedTargetBranch

branch:master
(rmo:Master)

rmo:hasChangeSet

rmo:usedTargetRevision rmo:generated

change:3-4
rmo:ChangeSet

rmo:wasDerivedFrom

rmo:deleteSet
rmo:priorRevision

rmo:addSet

ID3-4

rmo:succeedingRevision

IA3-4I
—

rmo:references
rev:3
(rmo:Revision)

R revi4
rmo:wasDerivedFron

(rmo:Revision)

Abbildung B.7: Beispiel fiir einen 3-Wege-Merge Commit

148

216.73.216.60, am 24.01.2026, 01:46:48.
tersagt, m

o geschitzter Inhalt.
mit, fOr oder in KI-Syster

https://doi.org/10.51202/9783186873101

B.3 Zusammenfiihrung von divergierten Entwicklungszweigen

rev:3
(rmo:Revision)

rev:2
(rmo:Revision)

rev:1 "
rmo:wasDerivedFrom

(rmo:Revision)

rmo:wasDerivedFrom

rmo:references rmo:references

rmo:references

rmo:usedTargetRevision

Commit message
for Fast Forward

rmo:commitMessage

branch:master
(rmo:Master)

branch:experiment
(rmo:Branch)

rmo:usedSourceRevision

rmo:usedTargetBranch

rmo:usedSourceBranch

commit:ff-1-3
(rmo:FastForwardCommit)

user:bob
rmo:wasAssociatedWith (rmo:User)

Abbildung B.8: Beispiel fiir einen Fast Forward Commit

rmo:timeStamp

user:bob
(rmo:User)

Commit message]
for pick rmo:commitMessage
2017-08-30T12:12:12 femmr

rev:4
(rmo:Revision)

rmo:usedTargetRevision

branch:master
(rmo:Master)
.
.

rmo:references
. rmo:references

rmo:wasAssociatedWith

commit:1
(rmo:PickCommit)

rmo:usedSourceRevision

rmo:usedTargetBranch

rev:2

e rmo:wasDerivedFrom
(rmo:Revision)

rmo:generated

rmo:references

branch:experiment
(rmo:Branch)

rmo:wasQuotedFrom

.
rev:5
(rmo:Revision)

=
I D5-2' N rmo:priorRevision

rmo:deleteSet

rmo:wasDerivedFrom

rmo:wasDerivedFrom

rev:3
(rmo:Revision)

rev:2'
(rmo:Revision)

rmo:wasDerivedFrom rmo:wasDerivedFrom

rmo:succeedingRevision

change:5-2

—
(rmo:ChangeSet) rmo:hasChangeSet

—_——
I A5-2' J(—rmo'addSet

Abbildung B.9: Beispiel fiir einen Pick Commit

149

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
tersagt, m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

B Implementierung

B.4 Co-Evolution

=W N

O © 0~ U

[E—

21
22

23
24
25

Listing 17: Beispiel fiir die in SPIN beschriebenen Anfragen zur Detektion von Matchings und

Matching query:
SELECT ?subject
'WHERE {

GRAPH <http://NAMEDGRAPH#master> { # Example: <http ://NAMEDGRAPH#
master> will replaced with <http://test.com/r43ples—dataset—1>

?7subject a 7b
}
}

ADD set update query:
INSERT

{ GRAPH <http://NAMEDGRAPH#ADDSET-NEW> { ?subject a ?c } } # Ezample:
<http ://NAMEDGRAPH#master> will replaced with <http://test.com/

r43ples—dataset —1—addSet—4—5>

'WHERE

{ GRAPH <http://NAMEDGRAPH#master> # Exzample: <http ://NAMEDGRAPH#
master> will replaced with <http://test.com/r43ples—dataset—1>

{ ?subject a ?b .
}
}

DELETE set update query
INSERT

{ GRAPH <http:/ /NAMEDGRAPHZDELETESET-NEWS { ?subject a ?b } } #
Ezample: <http ://NAMEDGRAPH#master> will replaced with <http://
test.com/r4{3ples—dataset —1—deleteSet —f—5>

'WHERE

{ GRAPH <http://NAMEDGRAPH#master> # Example: <http ://NAMEDGRAPH#
master> will replaced with <http://test.com/r43ples—dataset—1>

{ ?subject a ?b .
}
}

zur Spezifikation der Co-Evolution

150

216.73.216.60, am 24.01.2026, 01:46:
m

:48. 0

tr

geschitzter Inhalt.

mit, flir oder In KI-

https://doi.org/10.51202/9783186873101

B.4 Co-Evolution

rev:hlc-rev-1
(rmo:Revision)

rev:hlc-rev-1
(rmo:Revision)

revisiongraph:hlc
(rmo:RevisionGraph)

rmo:startRevision

rmo:usedSourceRevisionGraph rmo:endRevision

evolution:1
(rmo:Evolution)

rmo:associatedSemanticChange

branch:coevo-branch-master
(rmo:Branch)

semchange:1-2
(rmo:SemanticChange)

rev:coevo-rev-2
(rmo:Revision)

rmo:performedCoEvolution

rmo:usedTargetBranch
rmo:generated

aero:usedSemanticChange

coevolution:1
(rmo:CoEvolution)

aero:appliedCoEvolutionRule
rmo:usedTargetRevisionGraph

applcoevorule:rename-class
aero:AppliedCoEvolutionRule

revisiongraph:coevo

aero:usedRule (rmo:RevisionGraph)

coevorule:rename-class
(aero:CoEvoRule)

aero:hasVariableGroup

var:a
aero:SPARQLVariable;

vargroup:1

(aero:SPARQLVariableGroup) aerozhasVariables

sp:varName aero:spinResource

aero:value

spinresource:var-subject

<http://example-house.com/yellowhouse>

Abbildung B.10: Beispiel fiir die Co-Evolution (Ausschnitt)

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
tersagt, m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[AHOG]

[Ahr18]

[AM17]

[ARM16]

[Aue+12]

[Bae05]

152

Soren Auer und Heinrich Herre. ;A Versioning and Evolution Framework for
RDF Knowledge Bases®. en. In: Perspectives of Systems Informatics. Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg, Juni 2006, S. 55
69. 1SBN: 978-3-540-70880-3 978-3-540-70881-0. pOI1: 10.1007/978-3-540~
70881-0_8. URL: https://link.springer.com/chapter/10.1007/978-
3-540-70881-0_8 (besucht am 29.11.2020) (siche S. 96).

Michael Ahrens. ,Entwicklung einer Middleware zur Integration und Syn-
chronisation von OPC UA und Semantic Web Informationsmodellen*. Di-
plomarbeit. Dresden: TU Dresden, Nov. 2018 (siche S. 118, 133).

Natanael Arndt und Michael Martin. ,Decentralized Evolution and Consoli-
dation of RDF Graphs“. In: 17th International Conference on Web Enginee-
ring (ICWE 2017). ICWE 2017. Rome, Italy, Juni 2017. DOI: 10.1007/978-
3-319-60131-1_2. URL: https://svn.aksw.org/papers/2017/ICWE_
DecentralizedEvolution/public.pdf (besucht am 29.11.2020) (siche
S. 3,27, 72, 73, 83).

Natanael Arndt, Norman Radtke und Michael Martin. ,Distributed Collabo-
ration on RDF Datasets Using Git: Towards the Quit Store“. In: Proceedings
of the 12th International Conference on Semantic Systems. SEMANTICS
2016. New York, NY, USA: ACM, 2016, S. 25-32. 1sBN: 978-1-4503-4752-5.
DOI: 10.1145/2993318.2993328. URL: http://doi.acm.org/10.1145/
2993318.2993328 (besucht am 29. 11.2020) (siche S. 27).

Soren Auer, Lorenz Bithmann, Christian Dirschl, Orri Erling, Michael
Hausenblas, Robert Isele, Jens Lehmann, Michael Martin, Pablo N. Mendes,
Bert van Nuffelen, Claus Stadler, Sebastian Tramp und Hugh Williams.
»2Managing the Life-Cycle of Linked Data with the LOD2 Stack®. en. In:
The Semantic Web — ISWC 2012. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, Nov. 2012, S. 1-16. 1SBN: 978-3-642-35172-3
978-3-642-35173-0. DOI: 10.1007/978-3-642-35173-0_1. URL: https:
//1link . springer . com/chapter/10.1007/978-3-642-35173-0_1
(besucht am 29.11.2020) (siche S. 59).

Stefan Baerisch. Versionskontrollsysteme in der Softwareentwicklung. Ar-
beitsbericht / Informationszentrum Sozialwissenschaften Nr. 36. Bonn: 17
Sozialwissenschaften, 2005 (siehe S. 23).

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

[Ban+87]

[Bas+11]

[BBOS]

[BBRO9]

[BCEO7]

[BCE0S]

[Beel2]

[BH17]

[Bie+16]

Jay Banerjee, Won Kim, Hyoung-Joo Kim und Henry F. Korth. ,Semantics
and Implementation of Schema Evolution in Object-oriented Databases*.
In: Proceedings of the 1987 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’87. New York, NY, USA: ACM, 1987,
S. 311-322. 1SBN: 978-0-89791-236-5. DOI: 10.1145/38713.38748. URL:
http://doi.acm.org/10.1145/38713.38748 (besucht am 29.11.2020)
(siehe S. 20).

Jens Bastian, Christoph Clauf}, Susann Wolf und Peter Schneider. ,,Master
for Co-Simulation Using FMI“. In: Juni 2011, S. 115-120. po1: 10.3384/
ecpl1063115. URL: https://ep.liu.se/ecp/063/014/ecp11063014.pdf
(besucht am 29.11.2020) (siche S. 41).

A. Terry Bahill und Rick Botta. ,Fundamental Principles of Good System
Design®. In: Engineering Management Journal 20.4 (Dez. 2008). URL: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.8459&
rep=repl&type=pdf (besucht am 29.11.2020) (siche S. 18, 32-35).

Robert Breina, Stephan Bode und Matthias Riebisch. ,,Optimisation Process
for Maintaining Evolvability during Software Evolution“. In: 2009 16th
Annual IEEE International Conference and Workshop on the Engineering
of Computer Based Systems. Apr. 2009, S. 196-205. por1: 10.1109/ECBS.
2009.20 (siehe S. 18, 19).

Hongyu Pei Breivold, Ivica Crnkovic und Peter Eriksson. ,Evaluating
Software Evolvability“. In: Software Engineering Research and Practice in
Sweden (2007), S. 96 (siehe S. 18).

Hongyu Pei Breivold, Ivica Crnkovic und Peter J. Eriksson. ,,Analyzing
Software Evolvability“. In: 2008 32nd Annual IEEE International Computer
Software and Applications Conference. Juli 2008, S. 327-330. DOI: 10.1109/
COMPSAC . 2008 . 50. URL: https://ieeexplore. ieee . org/document /
4591576 (besucht am 29.11.2020) (siehe S. 20).

Jay Clark Beesemyer. ,Empirically characterizing evolvability and change-
ability in engineering systems®. en. Masterarbeit. Massachusetts Institute of
Technology, 2012. URL: http://dspace.mit.edu/handle/1721.1/76092
(besucht am 29.11.2020) (siche S. 18).

Jens Bernshausen und Axel Haller. NAMUR MTP - Visualization and
Control of Modular Plants. Workshop. Bad Neuenahr, Nov. 2017 (siehe
S. 6).

Thomas Bieringer, Christian Bramsiepe, Stefan Brand, Andreas Brodhagen,
Christian Dreiser, Christoph Fleischer-Trebes, Norbert Kockmann, Stefan
Lier, Dirk Schmalz, Christian Schwede, Armin Schweiger und Frank Stenger.

153

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[Blo+17]

[BMO7]

[Bre00]

[Brell]

[Budo9)]

[Biir+14]

[Bus+14]

154

Modular Plants: Flexible chemical production by modularization and standar-
dization — status quo and future trends (ProcessNet White Paper). Frankfurt
am Main: Dechema e.V., Dez. 2016. 1SBN: 978-3-89746-191-2. URL: http:
//dechema.de/dechema_media/ModularPlants_2016-p-20002425 . pdf
(besucht am 29.11.2020) (siehe S. 1, 5).

Henry Bloch, Stephan Hensel, Mario Hoernicke, Katharina Stark, Anna
Menschner, Leon Urbas, Alexander Fay, Torsten Knohl, Jens Bernshausen
und Axel Haller. ,Zustandsbasierte Fithrung modularer Prozessanlagen®.
In: alp edition 59.10 (Okt. 2017), S. 34-45. 1sSN: 2190-4111. URL: http:
//ojs.di-verlag.de/index.php/atp_edition/article/view/1899
(besucht am 29.11.2020) (siche S. 45).

Philip A. Bernstein und Sergey Melnik. ;Model Management 2.0: Manipu-
lating Richer Mappings®. In: Proceedings of the 2007 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’07. New York, NY,
USA: ACM, 2007, S. 1-12. 1SBN: 978-1-59593-686-8. DOI: 10.1145/1247480.
1247482. URL: http://doi.acm.org/10.1145/1247480.1247482 (besucht
am 29.11.2020) (siehe S. 20).

Eric A. Brewer. Towards Robust Distributed Systems. Keynote. Portland,
Oregon, USA, 2000. URL: https://people.eecs.berkeley.edu/~brewer/
€s262b-2004/PODC-keynote.pdf (besucht am 29.11.2020) (siehe S. 31).

Peter C. Breedveld. ,,Concept-Oriented Modeling of Dynamic Behavior®. In:
Bond Graph Modelling of Engineering Systems: Theory, Applications and
Software Support. Hrsg. von Wolfgang Borutzky. New York, NY: Springer
New York, 2011, S. 3-52. 1SBN: 978-1-4419-9368-7. URL: http://dx.doi.
org/10.1007/978-1-4419-9368-7_1 (besucht am 29.11.2020) (siche
S. 41).

Frank Budszuhn. Subversion 1.5. Galileo Press, 2009 (siehe S. 23, 33).

Jens Biirger, Jan Jirjens, Thomas Ruhroth, Stefan Gértner und Kurt
Schneider. ,Model-Based Security Engineering: Managed Co-evolution of
Security Knowledge and Software Models“. en. In: Foundations of Security
Analysis and Design VII. Lecture Notes in Computer Science. Springer,
Cham, 2014, S. 34-53. 1SBN: 978-3-319-10081-4 978-3-319-10082-1. pOI:
10.1007/978-3-319-10082-1_2. URL: https://link.springer.com/
chapter/10.1007/978-3-319-10082-1_2 (besucht am 29. 11.2020) (siehe
S. 51-53).

Johannes Busse, Bernhard Humm, Christoph Lubbert, Frank Moelter,
Anatol Reibold, Matthias Rewald, Veronika Schliiter, Bernhard Seiler, Erwin
Tegtmeier und Thomas Zeh. ,,Was bedeutet eigentlich Ontologie?“ de. In:
Informatik-Spektrum 37.4 (Aug. 2014), S. 286-297. 1sSN: 0170-6012, 1432-

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

[Cam+16]

[Can+15]

[CO05]

[DA10]

[DBO7]

[Dij59]

[DINOG]

[DIN14]

122X. por: 10.1007/s00287-012-0619-2. URL: https://link.springer.
com/article/10.1007/s00287-012-0619-2 (besucht am 29.11.2020)
(siehe S. 14).

Dario Campagna, Carlos Kavka, Alessandro Turco, Besian Pogace und
Carlo Poloni. ,Solving time-dependent coupled systems through FMI co-
simulation and BPMN process orchestration®. In: 2016 IEEE International
Symposium on Systems Engineering (ISSE). Okt. 2016, S. 1-8. poI: 10.
1109/SysEng.2016.7753140 (siehe S. 41).

Lorenzo Canova, Simone Basso, Raimondo Iemma und Federico Morando.

,Collaborative Open Data versioning: a pragmatic approach using Linked

Data“. In: CeDEM15 - Conference for E-Democracy and Open Governement.
Krems, 2015, S. 171-183 (siehe S. 26, 55).

John Christian und John Olds. ,A Quantitative Methodology for Identifying
Evolvable Space Systems®. In: 1st Space Exploration Conference: Continuing
the Voyage of Discovery. Space Exploration Conferences. American Institute
of Aeronautics und Astronautics, Jan. 2005. DOI: 10.2514/6.2005-2543.
URL: https://arc.aiaa.org/doi/10.2514/6.2005-2543 (besucht am
29.11.2020) (siche S. 18).

Rim Djedidi und Marie-Aude Aufaure. ,,Ontology Evolution: State of the Art
and Future Directions®. en. In: Ontology Theory, Management and Design:
Advanced Tools and Models (2010), S. 179-207. DoI: 10.4018/978-1-61520-
859-3.ch008. URL: https://www.igi-global.com/chapter/ontology-
evolution-state-art-future/42890 (besucht am 29.11.2020) (siche
S. 21, 22).

Mark Dalgarno und Danilo Beuche. , Variant Management*“. In: 3rd British
Computer Society Configuration Management Specialist Group Conference
Variant Management. 2007. URL: http://citeseerx . ist . psu.edu/
viewdoc/summary?doi=10.1.1.132.1820 (besucht am 29.11.2020) (siche
S. 23).

Edsger W. Dijkstra. ,,A Note on Two Problems in Connexion with Graphs*®.
In: Numerische Mathematik 1.1 (1959), S. 269-271 (siehe S. 75).

DIN EN ISO. Ergonomie der Mensch-System-Interaktion — Teil 110: Grund-
satze der Dialoggestaltung (I1SO 9241-110:2006); Deutsche Fassung EN ISO
92/1-110:2006. Norm DIN EN ISO 9241-110. DIN EN ISO, Aug. 2006 (siehe
S. 28).

DIN EN. Speicherprogrammierbare Steuerungen Teil 3: Programmierspra-
chen. Norm DIN EN 61131-3. DIN EN, Juni 2014 (siche S. 15).

155

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[DIN17]

[DIP11]

[Dud]

[Eka-+15]

[Eng+01]

[Fai+16]

[Fen01]

[FMP99]

156

DIN EN. Life-cycle-Management von Systemen und Produkten der Mess-,
Steuer- und Regelungstechnik der Industrie (IEC 65/617/CDV:2016). Norm
DIN EN 62890:2017-04;VDE 0810-890:2017-04 - Entwurf. DIN EN, Apr.
2017 (siehe S. 59).

Davide Di Ruscio, Ludovico Iovino und Alfonso Pierantonio. ,,What is
Needed for Managing Co-evolution in MDE?“ In: Proceedings of the 2Nd
International Workshop on Model Comparison in Practice. IWMCP ’11.
New York, NY, USA: ACM, 2011, S. 30-38. 1sBN: 978-1-4503-0668-3. DOL:
10.1145/2000410 . 2000416. URL: http://doi.acm.org/10.1145/
2000410.2000416 (besucht am 29.11.2020) (siehe S. 16, 17, 38).

Dudenredaktion. "Konsistenz" auf Duden online. URL: http://www.duden.
de/node /684770 /revisions/ 1616335/ view (besucht am 29.11.2020)
(siche S. 28).

Fajar J. Ekaputra, Estefania Serral, Marta Sabou und Stefan Biffl. ,, Know-
ledge Change Management and Analysis for Multi-Disciplinary Engineering
Environments.“ In: SEMANTiICS (Posters €& Demos). 2015, S. 13-17. URL:
https://pdfs.semanticscholar.org/2de2/75c1e716e54f5d3bf c48a87
55415d20ccbef . pdf (besucht am 29.11.2020) (siehe S. 26).

Gregor Engels, Jochem M. Kiister, Reiko Heckel und Luuk Groenewegen. , A
Methodology for Specifying and Analyzing Consistency of Object-oriented
Behavioral Models“. In: Proceedings of the 8th FEuropean Software Engi-
neering Conference Held Jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ESEC/FSE-9. New
York, NY, USA: ACM, 2001, S. 186-195. 1SBN: 978-1-58113-390-5. DOI:
10.1145/503209.503235. URL: http://doi.acm.org/10.1145/503209.
503235 (besucht am 29.11.2020) (siehe S. 30).

Sidra Faisal, Kemele M. Endris, Saeedeh Shekarpour, Séren Auer und Maria-
Esther Vidal. ,,Co-evolution of RDF Datasets®. en. In: Web Engineering.
Lecture Notes in Computer Science. Springer, Cham, Juni 2016, S. 225-243.
ISBN: 978-3-319-38790-1 978-3-319-38791-8. por: 10.1007/978-3-319-
38791-8_13. URL: https://link.springer.com/chapter/10.1007/978-
3-319-38791-8_13 (besucht am 29. 11.2020) (siche S. 84, 86).

Dieter Fensel. Ontologies:: A Silver Bullet for Knowledge Management
and Electronic Commerce. en. Berlin Heidelberg: Springer-Verlag, 2001.
ISBN: 978-3-662-04396-7. URL: https://www.springer . com/de/book/
9783662043967 (besucht am 29.11.2020) (siche S. 14).

Pascal Fradet, Daniel Le Métayer und Michaél Périn. ,,Consistency Checking
for Multiple View Software Architectures“. en. In: Software Engineering
— ESEC/FSE ’99. Springer, Berlin, Heidelberg, 1999, S. 410-428. por:

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

[Fog05]

[Fre06]

[Fri+-00]

[Fro+16]

[FS05]

[Fuh12]

[Fuj99]

[Funl7]

[Gal+15]

10.1007/3-540-48166-4 _25. URL: https://1link. springer . com/
chapter/10.1007/3-540-48166-4_25 (besucht am 29.11.2020) (siche
S. 67).

Karl Fogel. Producing open source software. en. Safari Books Online. Sebas-
topol, Calif.: O'Reilly, 2005. 1SBN: 978-0-596-00759-1 (siche S. 23, 33).

Stefan Martin Frenz. ,,Zuverléssiger verteilter Speicher mit transaktionaler
Konsistenz“. de. Dissertation. Universitat Ulm, Juni 2006. URL: https:
//oparu . uni-ulm.de/xmlui/handle/ 123456789 /387 (besucht am
29.11.2020) (siche S. 28).

Ernst Fricke, Bernd Gebhard, Herbert Negele und Eduard Igenbergs. ,,Co-
ping with changes: Causes, findings, and strategies®. en. In: Systems Enginee-
ring 3.4 (2000), S. 169-179. 15sN: 1098-1241, 1520-6858. DOI: 10.1002/1520-
6858(2000) 3 :4<169 :: AID-SYS1>3.0.C0;2-W. URL: http://doi.
wiley.com/10.1002/1520-6858%282000%2937%3A4%3C169%3A%3AAID~
SYS1%3E3.0.C0%3B2-W (besucht am 29.11.2020) (siche S. 9).

Marvin Frommhold, Rubén Navarro Piris, Natanael Arndt, Sebastian Tramp,
Niklas Petersen und Michael Martin. ,, Towards Versioning of Arbitrary RDF
Data“. In: Proceedings of the 12th International Conference on Semantic
Systems. ACM, 2016, S. 33-40. URL: http://dl.acm.org/citation.cfm?
1d=2993327 (besucht am 29.11.2020) (siehe S. 26, 27).

Ernst Fricke und Armin P. Schulz. ,,Design for changeability (DfC): Prin-
ciples to enable changes in systems throughout their entire lifecycle®. en.
In: Systems Engineering 8.4 (Jan. 2005), S. 342-359. 1SSN: 1520-6858. DOLI:
10.1002/sys.20039. URL: http://onlinelibrary.wiley.com/doi/10.
1002/sys.20039/abstract (besucht am 29.11.2020) (siche S. 8-10).

Insa Marie-Ann Fuhrmann. ,, Layout of Compound Graphs“. Diploma Thesis.
Kiel: Christian-Albrechts-Universitiat zu Kiel, Feb. 2012. URL: https://
rtsys. informatik . uni-kiel.de/~biblio/downloads/theses/ima-
dt.pdf (besucht am 29.11.2020) (siche S. 128).

Richard M. Fujimoto. Parallel and Distribution Simulation Systems. 1st.
New York, NY, USA: John Wiley & Sons, Inc., 1999. 1SBN: 0-471-18383-0
(siehe S. 4).

Jan Funke. Integration von Co-Evolutionsstrategien in ein Revision Ma-
nagement System“. Studienarbeit. Dresden: TU Dresden, Sep. 2017 (siehe
S. 118, 138).

Virginie Galtier, Stephane Vialle, Cherifa Dad, Jean-Philippe Tavella, Jean-
Philippe Lam-Yee-Mui und Gilles Plessis. ,,FMI-based Distributed Multi-

157

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[GHU14]

[GHU16]

(GL02]

[G1o06]

[Gral6]

[Hau+17]

[HBW15]

158

simulation with DACCOSIM®. In: Proceedings of the Symposium on Theory
of Modeling € Simulation: DEVS Integrative ME&S Symposium. DEVS "15.
San Diego, CA, USA: Society for Computer Simulation International, 2015,
S. 39-46. 1sBN: 978-1-5108-0105-9. URL: http://dl.acm.org/citation.
cfm?1d=2872965.2872971 (besucht am 29. 11.2020) (siehe S. 41).

Markus Graube, Stephan Hensel und Leon Urbas. ,,R43ples: Revisions for
Triples-An Approach for Version Control in the Semantic Web.“ In: LDQ@
SEMANTICS. 2014 (siche S. 2, 26, 27, 34, 51, 55, 106, 108).

Markus Graube, Stephan Hensel und Leon Urbas. ,,Open Semantic Revision
Control with R43ples: Extending SPARQL to access revisions of Named
Graphs“. In: Proceedings of the 12th International Conference on Semantic
Systems. SEMANTICS 2016. New York, NY, USA: ACM, 2016, S. 49-56.
ISBN: 978-1-4503-4752-5. DOI: 10 .1145/2993318.2993336. URL: http:
//doi.acm.org/10.1145/2993318.2993336 (besucht am 29.11.2020)
(siehe S. 26, 27, 55, 110).

Seth Gilbert und Nancy Lynch. ,Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services“. In: SIGACT News
33.2 (Juni 2()()2), S. 51-59. 18SN: 0163-5700. DOI: 10.1145/564585.564601.
URL: http://doi.acm.org/10. 1145 /564585 . 564601 (besucht am
29.11.2020) (siehe S. 31).

Klaus Gloede. Skriptum zur Vorlesung Mathematische Logik. Vorlesungs-
skript. Heidelberg: Mathematisches Institut der Universitat Heidelberg, 2006.
URL: http://math.uni-heidelberg.de/logic/md/lehre/mathlogik.
pdf (besucht am 29.11.2020) (siche S. 28).

Markus Graube. ,Linked Enterprise Data als semantischer, integrierter
Informationsraum fir die industrielle Datenhaltung®. Dissertation. Dresden:
TU Dresden, Nov. 2016 (siche S. 2, 3, 10-12, 14, 103, 134).

Christopher Haubeck, Alexander Pokahr, Winfried Lamersdorf, Abhishek
Chakraborty, Jan Ladiges und Alexander Fay. ,Evolution of cyber-physical
production systems supported by community-enabled experiences“. In: 2017
IEEE 15th International Conference on Industrial Informatics (INDIN).
Juli 2017, S. 867-874. DOI: 10.1109/INDIN.2017.8104886 (siche S. 37).

Claudius Hauptmann, Michele Brocco und Wolfgang Wérndl. | Scalable
Semantic Version Control for Linked Data Management.“ In: LDQ@ ESWC.
2015. URL: http://ceur-ws.org/Vol-1376/LDQ2015 _paper _06.pdf
(besucht am 29.11.2020) (siche S. 27).

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

[Hen+16a)]

[Hen+16b]

[Hen+17]

[Hen13]

[Hen14]

[Her05]

[HGU16]

[HGU18|

[HHH14]

Stephan Hensel, Markus Graube, Leon Urbas, Till Heinzerling und Mathias
Oppelt. ,,Co-Simulation mittels OPC UA“. In: Tagungsband Automation
2016. Baden-Baden, Juni 2016 (siche S. 5, 44).

Stephan Hensel, Markus Graube, Leon Urbas, Till Heinzerling und Mathias
Oppelt. ,,Co-simulation with OPC UA“. In: 2016 IEEE 1/th International
Conference on Industrial Informatics (INDIN). Juli 2016, S. 20-25. DOI:
10.1109/INDIN.2016.7819127 (siehe S. 5, 15, 44).

Stephan Hensel, Henry Bloch, Mario Hoernicke, Andreas Stutz, Christoph
Kotsch, Thomas Holm, Jens Bernshausen, Simon Kronemeier, Axel Haller
und Leon Urbas. ,Beschreibung von Bedienbildern modularer Anlagen
Ergebnisse der NAMUR/ZVEI-Arbeitskreise (1.12.1 und 2.9.1) sowie des
VDI/VDE-GMA FA 5.16%. In: Tagungsband Automation 2017. Baden-Baden,
Juni 2017 (siehe S. 6).

Stephan Hensel. ,,Untersuchung von Synchronisierungsmechanismen in Lin-
ked Data Netzwerken“. Studienarbeit. Dresden: TU Dresden, Sep. 2013
(siehe S. 55, 103, 106).

Stephan Hensel. ,Konflikterkennung und -behebung bei der Zusammenfiih-
rung von revisionierten Graphen in Linked Data®. Diplomarbeit. Dresden:
TU Dresden, Nov. 2014 (siche S. 55, 103, 106, 113).

Dietmar Hermsdorfer. Generische Informationsmodellierung / semantische
Briicke zwischen Daten und Diensten. Heidelberg: Wichmann, 2005. 1SBN:
978-3-87907-426-6 (siche S. 11).

Stephan Hensel, Markus Graube und Leon Urbas. Methodology for Conflict
Detection and Resolution in Semantic Revision Control Systems. Techn. Ber.
2016-08-A. Dresden: TU Dresden, Nov. 2016. URL: http://nbn-resolving.
de/urn:nbn:de:bsz:14-qucosa-211244 (besucht am 29.11.2020) (siche
S. 55, 86, 88-90, 113).

Stephan Hensel, Markus Graube und Leon Urbas. , Informationsmodelle
im Lebenszyklus“. de. In: atp edition 60.4-5 (2018), S. 40-51. DOL: https:
//doi.org/10.17560/atp.v60i04-05.2345. URL: http://ojs.di-
verlag.de/index.php/atp_edition/article/view/2345 (besucht am
29.11.2020) (siehe S. 44, 59, 60).

Bernhard Hoisl, Zhenjiang Hu und Soichiro Hidaka. , Towards co-evolution
in model-driven development via bidirectional higher-order transformation®.
In: 2014 2nd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD). Jan. 2014, S. 466-471 (siehe
S. 17, 38).

159

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[Hil15]

[HKB17]

[Hoe+16]

[Hof06]

[Hof79)

[Hol+14]

[HPO4]

[HR83)

[Huz+04]

160

Frank Hilbert. , Kontextadaptive Informationsraume*. Dissertation. Dresden:
TU Dresden, Nov. 2015. URL: https://nbn-resolving.org/urn:nbn:de:
bsz:14-qucosa-198802 (besucht am 29.11.2020) (siche S. 12).

Regina Hebig, Djamel E. Khelladi und Reda Bendraou. ,Approaches to
Co-Evolution of Metamodels and Models: A Survey*“. In: IEEE Transactions
on Software Engineering 43.5 (Mai 2017), S. 396-414. 1sSN: 0098-5589. DOI:
10.1109/TSE.2016.2610424 (siche S. 1, 59).

Mario Hoernicke, Christian Messinger, Esteban Arroyo und Alexander Fay.
,Topologiemodelle in AutomationML“. In: atp edition 58.05 (Mai 2016),
S. 28-41. 18SN: 2190-4111. URL: http://ojs.di-verlag.de/index.php/
atp_edition/article/view/2300 (besucht am 29.11.2020) (siche S. 45).

Douglas R. Hofstadter. Gddel, Escher, Bach: ein endloses geflochtenes Band.
de. Klett-Cotta, 2006. 1SBN: 978-3-608-94442-6 (siche S. 28).

Douglas R. Hofstadter. Gddel, Escher, Bach: An Eternal Golden Braid. New
York, NY, USA: Basic Books, Inc., 1979. 1sBN: 978-0-465-02685-2 (siehe
S. 28).

Thomas Holm, Michael Obst, Alexander Fay, Leon Urbas, Thomas Albers,
Sven Kreft und Ulrich Hempen. ,,Dezentrale Intelligenz fiir modulare Au-
tomation®. In: atp edition 56.11 (Nov. 2014), S. 34-43. 1sSN: 2190-4111.
URL: ojs.di-verlag.de/index.php/atp_edition/article/view/2223
(besucht am 29.11.2020) (siche S. 6).

Jeff Heflin und Zhengxiang Pan. ;A Model Theoretic Semantics for Ontology
Versioning®. en. In: The Semantic Web — ISWC 2004. Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, Nov. 2004, S. 62-76. ISBN:
978-3-540-23798-3 978-3-540-30475-3. DOI: 10.1007/978-3-540-30475~
3_6. URL: https://link.springer.com/chapter/10.1007/978-3-540-
30475-3_6 (besucht am 29.11.2020) (siche S. 80).

Theo Haerder und Andreas Reuter. ,Principles of Transaction-oriented
Database Recovery®. In: ACM Comput. Surv. 15.4 (Dez. 1983), S. 287-317.
1SSN: 0360-0300. DOI: 10.1145/289.291. URL: http://doi.acm.org/10.
1145/289.291 (besucht am 29.11.2020) (siehe S. 31).

Zbigniew Huzar, Ludwik Kuzniarz, Gianna Reggio und Jean Louis Sour-
rouille. ,,Consistency Problems in UML-Based Software Development®. en.
In: UML Modeling Languages and Applications. Springer, Berlin, Heidel-
berg, Okt. 2004, S. 1-12. por: 10.1007/978-3-540-31797-5_1. URL:
https://link.springer.com/chapter/10.1007/978-3-540-31797-5_1
(besucht am 29.11.2020) (siehe S. 29, 30).

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

[HW14]

[IEE9S]

[Int+19]

1S001]

[1SO10]

[KB14]

[Keh+12]

[Keh15]

[KFO1]

Markus Herrmannsdorfer und Guido Wachsmuth. ,Coupled Evolution of
Software Metamodels and Models“. en. In: Evolving Software Systems. Hrsg.
von Tom Mens, Alexander Serebrenik und Anthony Cleve. Springer Berlin
Heidelberg, 2014, S. 33-63. 1SBN: 978-3-642-45397-7 978-3-642-45398-4. DOI:
10.1007/978-3-642-45398-4_2. URL: http://link.springer . com/
chapter/10.1007/978-3-642-45398-4_2 (besucht am 29. 11.2020) (siche
S. 16).

IEEE. IEEFE Standard for Software Maintenance. Norm IEEE Std 1219-1998.
IEEE, 1998 (siehe S. 19).

Roberto Interdonato, Martin Atzmueller, Sabrina Gaito, Rushed Kanawati,
Christine Largeron und Alessandra Sala. ,Feature-rich networks: going
beyond complex network topologies®. en. In: Applied Network Science 4.1
(Dez. 2019). 1SSN: 2364-8228. DOI: 10.1007/s41109-019-0111-x. URL:
https://appliednetsci.springeropen.com/articles/10.1007/s4110
9-019-0111-x (besucht am 29.11.2020) (siehe S. 15, 71).

1SO. Software engineering - Product quality - Part 1: Quality model. Norm
ISO/IEC 9126-1:2001. ISO/IEC, Juni 2001 (siche S. 19).

ISO IEC IEEE. Systems and software engineering — Vocabulary. Norm
ISO/IEC/IEEE 24765:2010(E). ISO IEC IEEE, Dez. 2010, S. 1-418. URL:
https://www.iso.org/standard/50518.html (besucht am 29.11.2020)
(siche S. 28).

Uwe Kastens und Hans Kleine Biining. Modellierung: Grundlagen und
formale Methoden. de. Carl Hanser Verlag GmbH Co KG, Okt. 2014. 1SBN:
978-3-446-44249-8 (siche S. 11).

Timo Kehrer, Udo Kelter, Manuel Ohrndorf und Tim Sollbach. ,, Understan-
ding model evolution through semantically lifting model differences with
SiLift«. In: 2012 28th IEEE International Conference on Software Mainte-
nance (ICSM). Sep. 2012, S. 638-641. DOI: 10.1109/ICSM.2012.6405342
(siehe S. 37, 38).

Timo Kehrer. ,Calculation and propagation of model changes based on
user-level edit operations : a foundation for version and variant management
in model-driven engineering“. Dissertation. Siegen: Universitat Siegen, Okt.
2015. URL: https://nbn-resolving.org/urn:nbn:de:hbz:467-9633
(besucht am 29.11.2020) (siehe S. 3, 4, 35, 37, 51, 67, 81, 83, 86, 96, 99,
133).

Michel Klein und Dieter Fensel. ,,Ontology Versioning on the Semantic
Web*“. In: Proceedings of the First International Conference on Semantic
Web Working. SWWS’01. Aachen, Germany, Germany: CEUR-WS.org, 2001,

161

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[Kle04]

[Kol14]

[Kon12]

[KVN12]

[Lad18]

[Lee99]

[Lehs0]

[Leh96]

[Lev+10]

[LFL16)

162

S. 75-91. URL: http://dl.acm.org/citation.cfm?id=2956602.2956610
(besucht am 29.11.2020) (siche S. 26, 37, 38).

Michel Klein. ,,Change Management for Distributed Ontologies“. Dissertati-
on. Vrije Universiteit, 2004 (siehe S. 82).

Lars Kolb. NoSQL-Datenbanken Kapitel 1: Einfihrung. Vorlesung. Univer-
sitat Leipzig, 2014. URL: https://dbs.uni-1leipzig.de/file/NoSQL_
8514_01_Intro.pdf (besucht am 29.11.2020) (siche S. 31).

Barbara Konig. Vorlesung Modellierung - Modellierungsmethoden der Infor-
matik. Vorlesung. Essen, 2012 (siche S. 11).

Tommi Karhela, Antti Villberg und Hannu Niemisté. ,,Open ontology-
based integration platform for modeling and simulation in engineering®. In:
International Journal of Modeling, Simulation, and Scientific Computing
03.02 (Mai 2012), S. 1250004. 1sSN: 1793-9623. DOI: 10.1142/S17939623
12500043. URL: http://www.worldscientific.com/doi/abs/10.1142/
$1793962312500043 (besucht am 29.11.2020) (siehe S. 44, 51, 53).

Jan Ladiges. ,Automatisierte Bestimmung von Eigenschaften industrieller
Produktionssysteme unter Einfluss evolutiondrer Anderungen®. Dissertation.
Hamburg: Helmut-Schmidt-Universitét, 2018 (siche S. 4, 16).

Y. Tina Lee. ,Information Modeling: From Design to Implementation®. In:
Proceedings of the Second World Manufacturing Congress. 1999, S. 315-321
(siehe S. 11, 12).

Meir M. Lehman. ,Programs, life cycles, and laws of software evolution*.
In: Proceedings of the IEEE 68.9 (1980), S. 1060-1076. 1ssN: 0018-9219.

DOI: 10.1109/PROC.1980.11805. URL: http://ieeexplore.ieee.org/
document/1456074/ (besucht am 29.11.2020) (siche S. 16, 20).

Meir M. Lehman. ,Laws of software evolution revisited“. en. In: Software
Process Technology. Springer, Berlin, Heidelberg, Okt. 1996, S. 108-124.
DOI: 10.1007/BFb0017737. URL: https://link.springer.com/chapter/
10.1007/BFb0017737 (besucht am 29. 11.2020) (siehe S. 20).

Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schétz und Jonathan
Sprinkle. ,Model Evolution and Management®. In: MBEERTS: Model-
Based Engineering of Embedded Real-Time Systems. Bd. LNCS 6100. arXiv:
1409.2361. Dagstuhl Castle: Springer Berlin Heidelberg, Okt. 2010, S. 241-
270. URL: http://arxiv.org/abs/1409.2361 (besucht am 29.11.2020)
(siehe S. 1-3, 15, 20, 35, 37, 39, 40).

Jan Ladiges, Alexander Fay und Winfried Lamersdorf. ,,Automated De-
termining of Manufacturing Properties and Their Evolutionary Changes

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

[LG11]

[LMT09)

[LRO3]

[Lyo80]

[Maj10]

[Men17]

[Mod10]

from Event Traces“. en. In: Intelligent Industrial Systems 2.2 (Juni 2016),
S. 163-178. 1SSN: 2199-854X. pOI: 10.1007/s40903-016-0048-7. URL:
https://doi.org/10.1007/s40903-016-0048-7 (besucht am 29. 11.2020)
(siehe S. 4).

Stefan Lier und Marcus Griinewald. ,Net Present Value Analysis of Modular
Chemical Production Plants“. en. In: Chemical Engineering € Technology
345 (Mai 2011), S. 809-816. 18SN: 1521-4125. DOI: 10. 1002/ ceat . 201
000380. URL: http://onlinelibrary.wiley.com/doi/10.1002/ceat .
201000380/abstract (besucht am 29.11.2020) (siehe S. 5).

Francisco J. Lucas, Fernando Molina und Ambrosio Toval. ,A systema-
tic review of UML model consistency management®. In: Information and
Software Technology. Quality of UML Models 51.12 (Dez. 2009), S. 1631
1645. 18SN: 0950-5849. DOI: 10.1016/j.infsof.2009.04.009. URL: http:
//www.sciencedirect.com/science/article/pii/S0950584909000433
(besucht am 29.11.2020) (siehe S. 28-30, 39, 101).

Meir M. Lehman und Juan F. Ramil. ,Software evolution - Background,
theory, practice“. In: Information Processing Letters. To honour Professor
W.M. Turski’s Contribution to Computing Science on the Occasion of
his 65th Birthday 88.1 (Okt. 2003), S. 33-44. 1ssN: 0020-0190. por: 10.
1016 / 50020 - 0190(03) 00382 - X. URL: http://www . sciencedirect .
com/science/article/pii/S002001900300382X (besucht am 29.11.2020)
(siehe S. 20).

John Lyons. Semantik. Bd. 1. Beck’sche Elementarbiicher. Miinchen: Beck,
1980. 1SBN: 978-3-406-05272-9. URL: http://swbplus.bsz-bw.de/bsz010
616691inh.htm (besucht am 29.11.2020) (siehe S. 11).

Frederic Majer. ,Semantisches Informationsmodell fiir die Betriebsunter-
stiitzung dienstorientierter Systeme*. de. Dissertation. Karlsruhe: Karls-
ruher Institut fiir Technologie, 2010. URL: http://digbib . ubka . uni-
karlsruhe.de/volltexte/1000017356 (besucht am 29.11.2020) (siehe
S. 11).

Kim Mens. Software Maintenance and Evolution. Vorlesung im Kurs LIN-
GI2252. Louvain-la-Neuve, Jan. 2017. URL: https://de . slideshare .
net/kim.mens/software-maintenance-and-evolution (besucht am

29.11.2020) (siche S. 19).

Modelisar. Functional Mock-up Interface for Co-Simulation. Techn. Ber.
MODELISAR (07006) 1.0. MODELISAR consortium, Okt. 2010. URL:
https://svn.modelica.org/fmi/branches/public/specifications/
v1.0/FMI_for_CoSimulation_v1.0.pdf (besucht am 29.11.2020) (siche
S. 40).

163

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[MS04]

[NAM13]

[NFM17]

[NKO04]

[Noy+06]

[OMG02]

[ONF16]

[Opp-+14]

164

Bela Mutschler und Giinther Specht. Mobile Datenbanksysteme. Xpert.press.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. 1SBN: 978-3-642-62266-
3 978-3-642-18731-5. DOI: 10.1007/978-3-642-18731-5. URL: http:
//1link. springer . com/10.1007/978-3-642-18731-5 (besucht am
29.11.2020) (siehe S. 25, 26, 29).

NAMUR. Anforderungen an die Automatisierungstechnik durch die Mo-
dularisierung verfahrenstechnischer Anlagen. Namur Empfehlung NE 148.
NAMUR, Okt. 2013 (siehe S. 1, 5).

Elisa Negri, Luca Fumagalli und Marco Macchi. ,A Review of the Roles of Di-
gital Twin in CPS-based Production Systems®“. In: Procedia Manufacturing.
27th International Conference on Flexible Automation and Intelligent Manu-
facturing, FAIM2017, 27-30 June 2017, Modena, Italy 11 (Jan. 2017), S. 939
948. 18SN: 2351-9789. DOI: 10.1016/j.promfg.2017.07.198. URL: http:
//www.sciencedirect.com/science/article/pii/S2351978917304067
(besucht am 29.11.2020) (siche S. 1).

Natalya F. Noy und Michel Klein. ,Ontology Evolution: Not the Same as
Schema Evolution®. en. In: Knowledge and Information Systems 6.4 (Juli
2004), S. 428-440. 1ssN: 0219-1377, 0219-3116. DOL: 10.1007/s10115-003~
0137-2. URL: https://link.springer.com/article/10.1007/s10115-
003-0137-2 (besucht am 29.11.2020) (siehe S. 2, 20, 21, 35, 40).

Natalya F. Noy, Abhita Chugh, William Liu und Mark A. Musen. ,A
Framework for Ontology Evolution in Collaborative Environments“. en. In:
The Semantic Web - ISWC' 2006. Springer, Berlin, Heidelberg, Nov. 2006,
S. 544-558. DOI: 10.1007/11926078_39. URL: https://link.springer.
com/chapter/10.1007/11926078_39 (besucht am 29. 11.2020) (siehe S. 21,
36, 37, 51, 53, 54).

OMG. Meta Object Facility (MOF) Specification. Norm Version 1.4. OMG,
Apr. 2002. URL: https://www.omg.org/spec/MOF/1 .4/ (besucht am
29.11.2020) (siche S. 13).

ONF. Open Source SDN - NBI Information Model of Network Topology.
TR-1500 00. Open Networking Foundation, Mérz 2016. URL: https://
opennetworking.org/wp-content/uploads/2014/11/0onf2014.314_NBI
_Information_Models_-_Topology.13-2.pdf (besucht am 29.11.2020)
(siehe S. 15).

Mathias Oppelt, Gerrit Wolf, Oliver Drumm, Benjamin Lutz, Markus St68
und Leon Urbas. ,Automatic Model Generation for Virtual Commissioning
based on Plant Engineering Data“. In: IFAC' Proceedings Volumes. 19th
IFAC World Congress 47.3 (Jan. 2014), S. 11635-11640. 1sSN: 1474-6670. DOI:
10.3182/20140824-6-ZA-1003.01512. URL: http://www.sciencedirect.

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

(OU14]

[OWU14]

[Pap+13]

[Phal6]

[Pie+18]

[RBOG]

[RB0Y]

[RGU17]

com/science/article/pii/S1474667016434671 (besucht am 29.11.2020)
(siche S. 4).

Mathias Oppelt und Leon Urbas. ,Integrated virtual commissioning an
essential activity in the automation engineering process: From virtual com-
missioning to simulation supported engineering“. In: IECON 201/ - 40th
Annual Conference of the IEEE Industrial Electronics Society. Okt. 2014,
S. 2564-2570. DOI: 10.1109/IECON.2014.7048867 (siche S. 4).

Mathias Oppelt, Gerrit Wolf und Leon Urbas. ,,Capability-analysis of co-
simulation approaches for process industries“. In: 2014 IEEE Emerging
Technology and Factory Automation (ETFA). Sep. 2014, S. 1-4. DOIL: 10.
1109/ETFA.2014.7005292 (siehe S. 4).

Vicky Papavasileiou, Giorgos Flouris, Irini Fundulaki, Dimitris Kotzinos
und Vassilis Christophides. ,,High-level Change Detection in RDF(S) KBs*.
In: ACM Trans. Database Syst. 38.1 (2013), 1:1-1:42. 1SSN: 0362-5915.
DOIL: 10.1145/2445583.2445584. URL: http://doi.acm.org/10.1145/
2445583 .2445584 (besucht am 29.11.2020) (siehe S. 3, 4, 37, 39, 81-83,

86, 96, 111, 112, 133).

Tuyen Viet Pham. ,Integration einer Benutzerverwaltung in das semantische
Revisionsverwaltungssystem R43ples®. Studienarbeit. Dresden: TU Dresden,
Sep. 2016 (siehe S. 118).

Christopher Pietsch, Udo Kelter, Christopher Haubeck, Winfried Lamers-
dorf, Abhishek Chakraborty und Alexander Fay. ,Using model differencing
to reason about observable behavior changes of manufacturing systems*.
In: at - Automatisierungstechnik 66.10 (2018), S. 795-805. 1sSN: 0178-2312.
DOI: 10.1515/auto-2018-0046. URL: https://www.degruyter . com/
abstract/j/auto.2018.66.issue-10/auto-2018-0046/auto-2018-
0046.xml (besucht am 29.11.2020) (siehe S. 37).

Erhard Rahm und Philip A. Bernstein. ,An Online Bibliography on Schema
Evolution®. In: SIGMOD Rec. 35.4 (Dez. 2006), S. 30-31. 1sSN: 0163-5808.
DOIL: 10.1145/1228268.1228273. URL: http://doi.acm.org/10.1145/
1228268.1228273 (besucht am 29. 11.2020) (siehe S. 20, 21).

Matthias Riebisch und Stephan Bode. ,Software-Evolvability*. de. In: Infor-
matik-Spektrum 32.4 (Mai 2009), S. 339-343. 1ssN: 0170-6012, 1432-122X.
DOIL: 10.1007/s00287-009-0349-2. URL: http://link.springer.com/
article/10.1007/s00287-009-0349-2 (besucht am 29.11.2020) (siche
S. 1, 15, 16, 18, 19).

Julian Rahm, Markus Graube und Leon Urbas. ,A roundtrip engineering
approach for data consistency in process industry environments®. In: 2017

165

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[RLL9S]

[RR97]

[Ruh+14]

[San05]

[Sch+14]

[Sch16]

[She97]

[Siel8]

166

IEEE 15th International Conference on Industrial Informatics (INDIN).
Juli 2017, S. 559-564. por: 10.1109/INDIN.2017.8104833 (siche S. 3).

David Rowe, John Leaney und David Lowe. ,Defining systems evolvabili-
ty - a taxonomy of change®“. In: International Conference and Workshop:
Engineering of Computer-Based Systems. Maale Hachamisha, Israel: IEEE
Computer Society, Apr. 1998, S. 45-52. URL: http://www.researchgate.
net/publication/232627101_Defining_Systems_Evolvability_-_A_
Taxonomy_of_Change_(PDF) (besucht am 29.11.2020) (siehe S. 16, 18, 39).

Young-Gook Ra und Elke A. Rundensteiner. ,,A transparent schema-evolution
system based on object-oriented view technology“. In: IEEE Transactions
on Knowledge and Data Engineering 9.4 (Juli 1997), S. 600-624. 1SSN:
1041-4347. DOI: 10.1109/69.617053 (siehe S. 20).

Thomas Ruhroth, Stefan Géartner, Jens Biirger, Jens Jirjens und Kurt
Schneider. ,,Versioning and Evolution Requirements for Model-Based System
Development“. In: International Workshop on Comparison and Versioning
of Software Models (CVSM 2014). Kiel, 2014 (siche S. 16, 17, 35, 37-39, 51,
52).

Georg Sander. Layout of compound directed graphs. Techn. Ber. A/03/96.
Universitiat des Saarlandes, Juni 2005. URL: http://scidok.sulb.uni-
saarland.de/volltexte/2005/359/ (besucht am 29.11.2020) (siehe S. 68,
69).

Nicole Schmidt, Arndt Liider, Heinrich Steininger und Stefan Biffl. [Analy-
zing requirements on software tools according to the functional engineering
phase in the technical systems engineering process®. In: Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA). Sep.
2014, S. 1-8. DOI: 10.1109/ETFA.2014.7005144 (siehe S. 103).

Thomas Schmidt. Verteilte Systeme - Replikation. Vorlesung. Hamburg,
2016. URL: https://www.inet .haw-hamburg.de/teaching/ws-2016-
17/verteilte-systeme/09_Replikation.pdf (besucht am 29.11.2020)
(siehe S. 29).

A. Sheth. ,Panel: Data Semantics: what, where and how?* en. In: Database
Applications Semantics (1997). Publisher: Springer, Boston, MA, S. 601-610.
DOIL: 10.1007/978-0-387-34913-8_26. URL: https://link.springer.
com/chapter/10.1007/978-0-387-34913-8_26 (besucht am 29.11.2020)
(siehe S. 11).

Siemens. Mein Name ist Companion — Digital Companion. de. Juli 2018.
URL: https://new. siemens.com/global/de/unternehmen/stories
/forschung-technologien/kuenstliche-intelligenz/kuenstliche-

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

[Sin11]

[SK09]

[Smo13]

[SSS04]

[Ste08]

[Sto04]

[Sur+-08]

[SUW1S]

intelligenz-digital-companion.html (besucht am 29.11.2020) (siehe
S. 1).

Eric Sink. Version Control by Example. 2011. 1SBN: 978-0-9835079-1-8. URL:
http://ericsink.com/vcbe/vcbe_ad_lo.pdf (besucht am 29.11.2020)
(siehe S. 24).

Marc Shapiro und Bettina Kemme. ,Eventual Consistency®. en. In: En-
cyclopedia of Database Systems. Hrsg. von Ling Liu und M. Tamer Ozsu.
Springer US, 2009, S. 1071-1072. 1SBN: 978-0-387-35544-3 978-0-387-39940-9.
DOI: 10.1007/978-0-387-39940-9_1366. URL: http://link.springer.
com/referenceworkentry/10.1007/978-0-387-39940-9_1366 (besucht
am 29.11.2020) (siche S. 31).

Peter Smolek. Objektorientierte Modellierung und dynamische Co-Simulation
mit CATIA V6 am Beispiel von Kraftfahrzeugsystemen. Diplomarbeit. TU
Wien, 2013. URL: http://publik.tuwien.ac.at/files/PubDat_224793.
pdf (besucht am 29.11.2020) (siche S. 4).

York Sure, Steffen Staab und Rudi Studer. ,,On-To-Knowledge Methodology
(OTKM)“. en. In: Handbook on Ontologies. International Handbooks on
Information Systems. Springer, Berlin, Heidelberg, 2004, S. 117-132. 1SBN:
978-3-662-11957-0 978-3-540-24750-0. DOI: 10.1007/978-3-540-24750~
0_6. URL: https://link.springer.com/chapter/10.1007/978-3-540-
24750-0_6 (besucht am 29. 11.2020) (siche S. 59).

Perdita Stevens. ;A Landscape of Bidirectional Model Transformations®. en.
In: Generative and Transformational Techniques in Software Engineering
11. Hrsg. von Ralf Lammel, Joost Visser und Joao Saraiva. Lecture Notes in
Computer Science 5235. Springer Berlin Heidelberg, 2008, S. 408-424. 1SBN:
978-3-540-88642-6 978-3-540-88643-3. DOI: 10.1007/978-3-540-88643~
3_10. URL: http://link.springer.com/chapter/10.1007/978-3-540-
88643-3_10 (besucht am 29.11.2020) (siehe S. 28).

Ljiljana Stojanovic. ,Methods and tools for ontology evolution.* Dissertation.
Karlsruhe: Universitaet Fridericiana zu Karlsruhe, 2004 (siehe S. 3, 21, 35,
37, 51, 96, 99).

Pradorn Sureephong, Nopasit Chakpitak, Yacine Ouzrout und Abdelaziz
Bouras. ,,An Ontology-based Knowledge Management System for Industry
Clusters“. en. In: Global Design to Gain a Competitive Edge. Hrsg. von
Xiu-Tian Yan, William J. Ion und Benoit Eynard. Springer London, 2008,
S. 333-342. 1sBN: 978-1-84800-239-5 (siehe S. 59).

Frank Stenger, Leon Urbas und Ljuba Woppowa. ,100 % Digital in der
Prozessindustrie®. In: CITplus 21.10 (Okt. 2018), S. 6-8. 1SSN: 1436-2597.

167

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

S201]

[Tan06]

[Tap99]

[Tra+15]

[Van+13]

[Van+15]

[Van91]

168

URL: https://www.chemanager-online.com/restricted-files/211803
(besucht am 29.11.2020) (siche S. 1).

George Spanoudakis und Andrea Zisman. ,Inconsistency management in
software engineering: Survey and open research issues“. In: Handbook of
Software Engineering and Knowledge Engineering. World Scientific, 2001,
S. 329-380 (siche S. 28).

Till Tantau. Syntax versus Semantik Text und seine Bedeutung. Vorlesung
Logik fiir Informatiker. Liibeck, Okt. 2006. URL: https ://caligari .
dartmouth . edu/doc/texmf -dist/doc/latex /beamer /examples/a-
lecture/beamerexample-lecture - beamer - version. pdf (besucht am
29.11.2020) (siehe S. 11).

Josef Tapken. ,Implementing Hierarchical Graph-Structures“. en. In: Fun-
damental Approaches to Software Engineering. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, Mérz 1999, S. 219-233. 1SBN: 978-3-
540-65718-7 978-3-540-49020-3. DOT: 10.1007/978-3-540-49020-3 _15.
URL: https://link. springer . com/chapter/10.1007/978-3-540-
49020-3_15 (besucht am 29.11.2020) (siche S. 67).

Sebastian Tramp, Ruben Navarro Piris, Timofey Ermilov, Niklas Petersen,
Marvin Frommhold und Séren Auer. ,Distributed linked data business
communication networks: the LUCID endpoint“. In: Furopean Semantic
Web Conference. Springer, 2015, S. 154-158. URL: http://link.springer.
com/chapter/10.1007/978-3-319-25639-9_30 (besucht am 29. 11.2020)
(siehe S. 27).

Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Sam Coppens, Erik
Mannens und Rik Van de Walle. ,R&Whase: git for triples. In: Proceedings
of the 6th Workshop on Linked Data on the Web. Mai 2013. URL: http:
//ceur-ws.org/Vol-996/papers/ldow2013-paper-01.pdf (besucht am
29.11.2020) (siehe S. 26, 27, 55).

Bert Van Acker, Joachim Denil, Hans Vangheluwe und Paul De Meulenaere.
»Generation of an Optimised Master Algorithm for FMI Co-simulation®. In:
Proceedings of the Symposium on Theory of Modeling € Simulation: DEVS
Integrative MES Symposium. DEVS ’15. San Diego, CA, USA: Society for
Computer Simulation International, 2015, S. 205-212. 1SBN: 978-1-5108-
0105-9. URL: http://dl.acm.org/citation.cfm?id=2872965.2872993
(besucht am 29.11.2020) (siehe S. 41, 129).

Johan Vanslembrouck. ,A connection-oriented model for service descripti-
on“. In: Global Telecommunications Conference, 1991. GLOBECOM ’91.
"Countdown to the New Millennium. Featuring a Mini-Theme on: Personal

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

[VDI16]

[VDI17]

[VDI18]

[VDI19]

[VGO6]

[Vog+15a]

[Vog+15b]

[Vos09]

Communications Services. Dez. 1991, 802-806 vol.2. DO1: 10.1109/GLOCOM.
1991.188493 (siche S. 15).

VDI VDE. Middleware in der Automatisierungstechnik - Vorgehensmodell
fiir den Middleware Engineering Prozess. Norm VDI/VDE 2657-2. VDI,
2016 (siehe S. 13).

VDI VDE NAMUR. Automatisierungstechnisches Engineering modularer
Anlagen in der Prozessindustrie — Allgemeines Konzept und Schnittstellen.
Norm VDI/VDE/NAMUR-Richtlinie 2658 - Blatt 1 (Griindruck). VDI VDE
NAMUR, 2017 (siehe S. 44, 45).

VDI VDE NAMUR. Automatisierungstechnisches Engineering modularer
Anlagen in der Prozessindustrie — Modellierung von Bedienbildern. Norm
VDI/VDE/NAMUR-Richtlinie 2658 - Blatt 2 (Grindruck). VDI VDE
NAMUR, 2018 (siehe S. 15, 46).

VDI. Verfahrenstechnische Anlagen, Modulare Anlagen, Grundlagen. Norm
VDI 2776 - Blatt 1 (Entwurf). VDI, 2019 (siehe S. 1).

Max Vélkel und Tudor Groza. ,SemVersion: An RDF-based Ontology Ver-
sioning System®. In: Proceedings of IADIS International Conference on
WWW/Internet. Bd. 1. Murcia, Spain: IADIS, 2006, S. 195202 (siche
S. 26).

Birgit Vogel-Heuser, Alexander Fay, Ina Schaefer und Matthias Tichy.
,Evolution of software in automated production systems: Challenges and
research directions®. In: Journal of Systems and Software 110 (Dez. 2015),
S. 54-84. 18sN: 0164-1212. DOI: 10.1016/j. jss.2015.08.026. URL: http:
//www.sciencedirect.com/science/article/pii/S0164121215001818
(besucht am 29.11.2020) (siche S. 20).

Birgit Vogel-Heuser, Stefan Feldmann, Jens Folmer, Jan Ladiges, Alexander
Fay, Sascha Lity, Matthias Tichy, Matthias Kowal, Ina Schaefer, Christo-
pher Haubeck, Winfried Lamersdorf, Timo Kehrer, Sinem Getir, Mattias
Ulbrich, Vladimir Klebanov und Bernhard Beckert. ,,Selected challenges
of software evolution for automated production systems®. In: 2015 IEEE
15th International Conference on Industrial Informatics (INDIN). Juli 2015,
S. 314-321. por: 10.1109/INDIN.2015.7281753 (siche S. 3, 15, 20, 33).

Gottfried Vossen. ,,ACID Properties“. en. In: Encyclopedia of Database
Systems. Hrsg. von Ling Liu und M. Tamer Ozsu. Springer US, 2009, S. 19~
21. 1SBN: 978-0-387-35544-3 978-0-387-39940-9. DOI: 10.1007/978-0-387~
39940-9_831. URL: http://link.springer.com/referenceworkentry/
10.1007/978-0-387-39940-9_831 (besucht am 29. 11.2020) (siche S. 31).

169

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Literaturverzeichnis

[VR15]

(W3]

[W3C12]

[Wal10]

[Wes+01]

[Yan15]

170

Birgit Vogel-Heuser und Susanne Rosch. ,Applicability of Technical Debt as
a Concept to Understand Obstacles for Evolution of Automated Production
Systems“. In: 2015 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). Okt. 2015, S. 127-132. poI: 10.1109/SMC.2015.35
(siehe S. 20).

W3C. W3C Data Activity - Building the Web of Data. URL: https://wuw.
w3.org/2013/data/ (besucht am 29.11.2020) (siche S. 14).

W3C. GLD Life cycle. Aug. 2012. URL: https://www.w3.org/2011/gld/
wiki/GLD_Life_cycle (besucht am 29.11.2020) (siche S. 59).

Krzysztof Walkowiak. ,,Anycasting in connection-oriented computer net-
works: Models, algorithms and results“. en. In: International Journal of
Applied Mathematics and Computer Science 20.1 (2010), S. 207-220. ISSN:
1641-876X. DOI: 10.2478/v10006-010-00156-5. URL: http://pldml.
icm.edu.pl/pldml/element/bwmetal.element .bwnjournal-article-
amcv2011p207bwm (besucht am 29. 11.2020) (siehe S. 15).

Andrea Westerinen, John Schnizlein, John Strassner, Mark Scherling, Bob
Quinn, Shai Herzog, An-Ni Huynh und Mark Carlson. Terminology for
Policy-Based Management. 2001. URL: https://tools.ietf.org/html/
r£c3198 (besucht am 29.11.2020) (siche S. 11, 12).

Xinyu Yang. ,Erweiterte Merging-Funktionalitiaten fiir semantische Revisi-
onsverwaltungssysteme®. Studienarbeit. Dresden: TU Dresden, Aug. 2015
(siehe S. 118).

216.73.216.60, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Ingenieure wollen immer alles
ganz genau wissen. Wie war's mit
einem E-Paper- oder Zeitungs-Abo?

vpil nachrichtlen

to-X

aller Sektoren.

i erreicht seine Klimaziele nur mit einer

ENERGIEWENDE: Deutsc
VON STEPHAN W. EDER, PETER Fokussierun|

AR
e, | Schliisseltec} .
- KELLERHOFF UND BETTINA RECKTER . & 5 fehlt die Benennung von

»gien und konkreten Zielen

ie meisten Power-to-X-Anwen- nologien®, §
dungen, bei denen regenerative VDI-Fachbe g
Energie in Wasserstoff, Basis- ze miissten il : B
chemikalien, Wirme oder Kraft- auch tatsicH et

stoff umgewandelt wird, haben nenswerten,|

einen entscheidenden Haken: Sie stecken hd
immer noch im Forschungsstadium. Dabei
sind mit Blick auf die angestrebte CO,-Neu- igen. ,Im Vergleich zu inter-
tralitit groe Erwartungen an diese Schliis- e werbern wie Japan, Korea
seltechnologien verkniiptt. zeitiga eutlich groBere Anreize er-
tbewerbsfihige Industrien

hen zu ksnnen.*

Wir miissen heute die Weichen dafiir stel- ~ Eine Vorre
len, dass Deutschiand Deutscher Ei
bei s-Tech

le hat laut
-agentur (Dena) bei Power-
fen. In CO,-neutralem
Experten mittel-und lang-

Potenzial. Er gilt als einzig-

Mehr Meinung. Mehr Orientierung. Mehr Wissen.
Wesentliche Informationen zu neuen Technologien und Markten.
Das bietet VDI nachrichten, Deutschlands meinungsbildende Wochenzeitung zu Technik,

Wirtschaft und Gesellschaft, den Ingenieuren. Sofort abonnieren und lesen.
Donnerstagabends als E-Paper oder freitags als Zeitung.

Jetzt abonnieren: Leser-Service VDI nachrichten, 65341 Eltville
Telefon: +49 6123 9238-201, Telefax: +49 6123 9238-244, vdi-nachrichten@vuservice.de

100

JAHRE | vDI nachrichten

TECHNIK IN
SZENE GESETZT.

www.vdi-nachrichten.com/abo

geschitzter Inhalt.

216.73.216.60, am 24.01.2026, 01:46:48. @
m mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
7T Strémungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kaltetechnik

20 Rechnerunterstitzte Verfahren (CAD, CAM, CAE CAQ, CIM ...

21 Elektrotechnik
22 Mensch-Maschine-Systeme
23 Technische Gebaudeausristung

ISBN 978-3-18-387310-4

216.73.216.80, am 24.01.2026, 01:46:48. @ geschlltzter Inhalt.
m

mit, flr oder in Ki-Syster

https://doi.org/10.51202/9783186873101

	Cover
	1 Einleitung
	1.1 Motivation
	1.2 Zielstellung und erwartete Ergebnisse
	1.2.1 Kernthese
	1.2.2 Einzelthesen

	1.3 Einordnung und Abgrenzung der Arbeit
	1.4 Anwendungsfälle
	1.4.1 Co-Simulation
	1.4.2 Modularisierung

	1.5 Gliederung der Arbeit

	2 Grundlagen
	2.1 Aspekte der Veränderlichkeit
	2.2 Informationsmodellierung
	2.2.1 Terminologie
	2.2.1.1 Informationsmodell und Semantik
	2.2.1.2 Informationsraum
	2.2.1.3 Arten von Informationsmodellen
	2.2.1.4 Ontologie

	2.2.2 Lebenszyklus
	2.2.3 Vernetzung innerhalb eines Informationsraums

	2.3 Evolution
	2.3.1 Terminologie
	2.3.1.1 Evolution
	2.3.1.2 Co-Evolution
	2.3.1.3 Evolvability
	2.3.1.4 Wartung und Wartbarkeit

	2.3.2 Evolution in verwandten Themengebieten
	2.3.2.1 Schema-Evolution
	2.3.2.2 Ontologie-Evolution
	2.3.2.3 Schema-Evolution vs. Ontologie-Evolution

	2.4 Revisionsverwaltung
	2.4.1 Terminologie
	2.4.1.1 Revisionsverwaltung vs. Versionsverwaltung
	2.4.1.2 Basisbegriffe der Revisionsverwaltung
	2.4.1.3 Arten von Revisionsverwaltung
	2.4.1.4 Synchronisation und Replikation
	2.4.1.5 Verfahren zur Konsistenzerhaltung

	2.4.2 Erweiterte Revisionskontrolle für Modelldaten

	2.5 Konsistenz
	2.5.1 Terminologie
	2.5.1.1 Konsistenz
	2.5.1.2 Klassifikation von Modellkonsistenz

	2.5.2 CAP-Theorem

	3 Analyse
	3.1 Anforderungsanalyse
	3.1.1 Prinzipien mit Einfluss auf Evolvability
	3.1.1.1 P1 - Entwicklung von stabilen Zwischenergebnissen (X,-)
	3.1.1.2 P2 - Nutzung von evolutionärer Entwicklung (X,$)
	3.1.1.3 P3 - Verständnis des Unternehmens (X,$)
	3.1.1.4 P4 - Bereitstellung von überprüfbaren Zuständen (x,$)
	3.1.1.5 P5 - Nutzung von offenen Standards (x,-)
	3.1.1.6 P6 - Identifizierung von Dingen, die sich wahrscheinlich ändern (X,-)
	3.1.1.7 P7 - Design für Evolvability (X,$)

	3.1.2 Technologische Sicht
	3.1.2.1 Nutzungskontext
	3.1.2.2 Änderungsmanagement
	3.1.2.3 Evolution
	3.1.2.4 Semantische Modellbeschreibung
	3.1.2.5 Qualitätsattribute

	3.1.3 Anwendungsfälle
	3.1.3.1 Co-Simulation
	3.1.3.2 Modularisierung

	3.1.4 Anforderungen

	3.2 Analyse bestehender Ansätze
	3.2.1 Dissertation Timo Kehrer [Keh15]
	3.2.2 Dissertation Ljiljana Stojanovic [Sto04]
	3.2.3 SecVolution
	3.2.4 Simantics
	3.2.5 Changes Tab
	3.2.6 R43ples
	3.2.7 Zusammenfassung

	3.3 Analyseergebnisse und Priorisierung

	4 Entwurf
	4.1 Lebenszyklusmodell für Informationsmodelle
	4.2 Revision Management System
	4.2.1 Komponentenübersicht
	4.2.2 Data Management
	4.2.3 Control
	4.2.4 User Interface

	4.3 Formale Beschreibung verbindungsorientierter Modelle
	4.3.1 Compound Graphs
	4.3.2 Compound Graphs Erweiterung
	4.3.3 Semantische Beschreibung

	4.4 Änderungsmanagement
	4.4.1 Revisionskontrolle
	4.4.1.1 Revisionsgraph
	4.4.1.2 Vorgänger-/Nachfolgerbeziehungen
	4.4.1.3 Pfadgenerierung und Deltawiederherstellung
	4.4.1.4 Grundlegende Revisionskontrollfunktionalitäten
	4.4.1.5 Semantische Beschreibung

	4.4.2 Aggregation von High-Level-Changes
	4.4.2.1 Mathematische Beschreibung
	4.4.2.2 Semantische Beschreibung

	4.4.3 Zusammenführung divergierter Entwicklungszweige
	4.4.3.1 Methoden der Zusammenführung
	4.4.3.2 Konflikterkennung und -behebung
	4.4.3.3 Semantische Beschreibung

	4.5 Evolutions- und Konsistenzmechanismen
	4.5.1 Evolutionsmechanismen
	4.5.1.1 Integration in RMS
	4.5.1.2 Mathematische Beschreibung
	4.5.1.3 Semantische Beschreibung

	4.5.2 Konsistenzmechanismen

	5 Implementierung
	5.1 Übersicht
	5.2 Änderungsmanagement
	5.2.1 Ontologie
	5.2.2 Basisrevisionskontrollfunktionalitäten
	5.2.3 Aggregation von High-Level-Changes
	5.2.4 Zusammenführung divergierter Entwicklungszweige

	5.3 Evolutionsmechanismen
	5.4 Weitere Arbeiten in diesem Bereich

	6 Verifikation
	6.1 Beispielhafte Nutzung der formalen Beschreibung
	6.2 Nachweis der Erzeugung von beliebigen Revisionsinhalten
	6.3 Abbildung verbindungsorientierter Modelle am Beispiel der Co-Simulation
	6.4 Testfälle innerhalb der Implementierung

	7 Diskussion
	7.1 Methodikbewertung
	7.2 Ergebnisdiskussion und Verifikation der Thesen

	8 Zusammenfassung
	8.1 Ergebniszusammenfassung
	8.2 Ausblick und Grenzen

	Anhang
	Anhang A Entwurf
	Anhang B Implementierung
	B.1 Basisrevisionskontrollfunktionalitäten
	B.2 Aggregation von High-Level-Changes
	B.3 Zusammenführung von divergierten Entwicklungszweigen
	B.4 Co-Evolution

	Literaturverzeichnis

