
Fortschritt-
Berichte VDI

Virtualisierung prozess-
naher Steuerungen in der
Prozessautomatisierung

Mahyar Azarmipour, M. Sc.,
Aachen

BAND
1|1

VOLUME
1|1

NR. 1275

REIHE 08
MESS-,
STEUERUNGS-
UND REGELUNGS-
TECHNIK

BAND
1|1

VOLUME
1|1

NR. 1275

REIHE 08
MESS-,
STEUERUNGS-
UND REGELUNGS-
TECHNIK

Az
ar

m
ip

ou
r

Vi
rt

ua
lis

ie
ru

ng
 v

on
 S

te
ue

ru
ng

ss
ys

te
m

en
RE

IH
E

08

|
 N

R.
 1

27
5

ISBN 978-3-18-527508-1
E-ISBN 978-3-18-627508-0

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Cyan Magenta Black
Preflight Lx3 am März 31, 2022 | 09:22:28 | 350 mm x 250 mm

L_
22

03
08

_R
ei

he
_0

8_
12

75
_C

ov
er

.p
df

 ·
S

ei
te

 1

L_220308_Reihe_08_1275_Cover.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

So findet Sie Ihr Traumjob!

Best
Match

for
Best

talents

Cyan Magenta Yellow Black
Preflight Lx3 am März 31, 2022 | 09:22:28 | 350 mm x 250 mm

L_
22

03
08

_R
ei

he
_0

8_
12

75
_C

ov
er

.p
df

 ·
S

ei
te

 2

L_220308_Reihe_08_1275_Cover.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Virtualisierung prozessnaher Steuerungen in
der Prozessautomatisierung

Von der Fakultät für Georessourcen und Materialtechnik der
Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von

Mahyar Azarmipour, M. Sc.

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr.-Ing. Stefan Kowalewski
Univ.-Prof. Dr.-Ing. Tobias Kleinert

Tag der mündlichen Prüfung: 25.01.2022

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Virtualisierung prozess-
naher Steuerungen in der
Prozessautomatisierung

Mahyar Azarmipour, M. Sc.,
Aachen

NR. 1275

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

REIHE 08
MESS-,
STEUERUNGS-
UND REGELUNGS-
TECHNIK

BAND
1|1

VOLUME
1|1

Fortschritt-
Berichte VDI

Black
Preflight Lx3 am März 31, 2022 | 09:15:47 | 148 mm x 210 mm

L_
22

03
08

_R
ei

he
_0

8_
12

75
_I

nn
en

tit
el

.p
df

 ·
S

ei
te

 1

L_220308_Reihe_08_1275_Innentitel.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

© VDI Verlag GmbH | Düsseldorf 2022
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten. Als Manuskript gedruckt. Printed in Germany.
ISBN 978-3-18-527508-1, E-ISBN 978-3-18-627508-0, ISSN 0178-9546

Azarmipour, Mahyar
Virtualisierung prozessnaher Steuerungen in der Prozessautomatisierung
Fortschritt-Berichte VDI, Reihe 08, Nr. 1275. Düsseldorf: VDI Verlag 2022.
126 Seiten, 62 Bilder, 4 Tabellen.
ISBN 978-3-18-527508-1, E-ISBN 978-3-18-627508-0, ISSN 0178-9546
48,00 EUR/VDI-Mitgliederpreis: 43,20 EUR

Für die Dokumentation: Virtualisierung – Speicherprogrammierbare Steuerung – Informationsdiode –
Industrie 4.0 – Dynamisches Deployment – Automatisierungstechnik – IT/OT-Konvergenz

Keywords: Virtualization – Programmable logic controller – Information diode – Industry 4.0 – Dynamic
 deployment – Automation – IT/OT-Convergence

Die vorliegende Arbeit wendet sich an Ingenieur*innen und Wissenschaftler*innen aus der Prozessautomatisie-
rung. Ziel dieser Arbeit ist ein Architekturentwurf für die Steuerungsgeräte der prozessnahen Komponenten, um
diese mit einer höheren Vernetzung und Wandelbarkeit auszustatten. Die Architektur setzt Hypervisor-Virtualisie-
rung ein, um eine Trennung der Anwendungen mit unterschiedlichen Anforderungen auf der gleichen Hardware
zu ermöglichen. Die Anwendungen werden in vorkonfigurierten Partitionen gekapselt und betrieben. Um die
Modularisierung der Anwendungen zu erhöhen, werden Container als zusätzliche Virtualisierungskomponenten
eingesetzt. Für die Verwaltung der gesamten Komponentenhierarchie ist ein Verwaltungssystem vorgesehen, das
die erforderlichen Dienste zur Komponentenverwaltung zur Verfügung stellt.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek (German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

D82 (Diss. RWTH Aachen University, 2022)

Black
Preflight Lx3 am März 31, 2022 | 09:15:47 | 148 mm x 210 mm

L_
22

03
08

_R
ei

he
_0

8_
12

75
_I

nn
en

tit
el

.p
df

 ·
S

ei
te

 2

L_220308_Reihe_08_1275_Innentitel.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Vorwort

Die vorliegende Arbeit ist während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am
Lehrstuhl für Prozessleittechnik der RWTH Aachen University entstanden. An dieser Stel-
le möchte ich mich herzlich für die Unterstützung und die ermöglichten Chancen bedanken.

An erster Stelle gilt mein großer Dank Herrn Prof. Dr.-Ing. Ulrich Epple für die
Unterstützung meines Promotionsvorhabens. Die angenehme und konstruktive Arbeitsat-
mosphäre sowie der ausgezeichnete fachliche Austausch mit ihm haben zum erfolgreichen
Abschluss meiner Arbeit beigetragen.

Bei Herrn Prof. Dr.-Ing. Stefan Kowalewski, Inhaber des Lehrstuhls Informatik 11
– Embedded Software an der RWTH Aachen University, möchte ich mich für die
Übernahme der Rolle des Zweitgutachters bedanken.

Ich bedanke mich bei Herrn Prof. Dr.-Ing. Tobias Kleinert für seine Unterstützung
und die Fachdiskussionen, welche ebenfalls zum Gelingen der Arbeit beigetragen haben.

Ich danke meinen Kollegen und den studentischen Hilfskräften für die gute Zusam-
menarbeit und die interessanten Gespräche. Besonders hervorheben möchte ich (in
alphabetischer Reihenfolge) Haitham Elfaham, Julian Grothoff, Daniel Jakob, Lars
Nothdurft und Christian von Trotha. Bei Frau Milescu bedanke ich mich für die gute
Zusammenarbeit und organisatorische Hilfe.

Ein weiterer Dank gilt Afrooz Nazari für die Unterstützung und Motivation in den
vergangenen Jahren.

Besonderer Dank gilt auch meinen Eltern und meiner Schwester für die Unterstützung
während meiner gesamten Promotionszeit.

Warstein, im März 2022 Mahyar Azarmipour

III

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Vorwort

Wissenschaft: Es ist nicht ihr Ziel, der unendlichen Weisheit eine Tür zu
öffnen, sondern eine Grenze zu setzen dem unendlichen Irrtum.

Bertolt Brecht

IV

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Inhaltsverzeichnis

Vorwort III

List of Symbols VII

Kurzfassung IX

Abstract XI

1 Einleitung 1
1.1 Motivation . 1
1.2 Zielsetzung . 2
1.3 Struktur dieser Arbeit . 3

2 Grundlage und Stand der Technik 5
2.1 Virtualisierung . 5

2.1.1 Virtualisierungstypen . 5
2.1.2 Virtualisierung mit Hypervisoren 6
2.1.3 Virtualisierung mit Mikrokernels 7
2.1.4 Hypervisor und Mikrokernel-Technologien 8

2.2 Container-Technologien . 11
2.2.1 Virtualisierungsanwendungen in anderen industriellen Domänen . . 13
2.2.2 Virtualisierung in der Luftfahrt . 15
2.2.3 Industrielle Automatisierung . 15

2.3 NAMUR Open Architecture . 16
2.4 Speicherprogrammierbare Steuerungen . 17

2.4.1 Programmierung . 17
2.4.2 Entwicklung der speicherprogrammierbaren Steuerungen 18
2.4.3 Neue Architekturen für speicherprogrammierbare Steuerungen . . . 19

2.5 Digitale Zwillinge und Verwaltungsschalen 21
2.5.1 Digitaler Zwilling als Validierungskomponente 22
2.5.2 Digitaler Zwilling für Beobachtung und Optimierung 23

2.6 Laufzeitumgebungen . 23
2.6.1 Industrie-PCs und eingebettete Systeme 25
2.6.2 Betriebsmittel und Maßnahmenmodell 25

3 Anforderung an zukünftige Automatisierungssysteme 27
3.1 Anforderungen . 27
3.2 Leistungsfähige Übertragung von Feld- und Automatisierungsdaten an

überlagerte Anwendungen . 27
3.3 Prozessbegleitende Optimierung und Überwachung 28

V

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Inhaltsverzeichnis

3.4 Effiziente interne Kommunikation . 29
3.5 Lokale Komponentenverwaltung . 29
3.6 Dynamisches Komponentenmanagement 31
3.7 Explizite Verwaltung und Sicherstellung von QoS-Eigenschaften 31

4 Konzept 33
4.1 Allgemeine Architektur . 33
4.2 Komponentenhierarchie . 33

4.2.1 Kommunikation zwischen den Partitionen 34
4.3 Systempartitionen . 36

4.3.1 Verwaltungssystem . 37
4.3.2 Interface . 38

4.4 Verwaltungsdienste . 39
4.4.1 Interne Kommunikationsdienste . 39
4.4.2 Externe Kommunikationsdienste . 40
4.4.3 Konfigurationsdienste . 41
4.4.4 Ressourcenverwaltung . 42
4.4.5 Komponentenverwaltungsdienste 44

4.5 Anwendungspartitionen . 46
4.6 Evaluation anhand der Anforderungen an die Architektur 47

5 Anwendungsszenarien in der Automatisierungstechnik 50
5.1 Architektur der Automatisierungspyramide 50
5.2 Beispielhafte Anwendungspartitionen . 50

5.2.1 Control-Partition . 50
5.2.2 O&M-Partition . 53

6 Implementierung für eine Kaltwalzanlage 54
6.1 Logistik . 54
6.2 SMS-Demonstrator . 55
6.3 Aufbau . 57
6.4 Verification of Request . 57

6.4.1 Evaluation des VoR-Konzepts . 60

7 Validierung des Konzepts 65
7.1 Eingesetzte Technologien . 65

7.1.1 Portierung von ACPLT/RTE und PikeOS 65
7.2 Prozessführung . 66

7.2.1 Laufzeitanalyse in virtualisierten und nicht virtualisierten Umgebun-
gen . 70

7.2.2 Kommunikation . 70
7.2.3 Verwaltungssystem . 73

8 Fazit 77

A Anhang 80

Literatur 103

VI

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

List of Symbols

ASIL Automotive Safety Integrity Level

AUTOSAR AUTomotive Open System ARchitecture

CFC Continuous Function Charts

CPC Core Process Control

CPU Central Processing Unit

CPS Cyber Physical Systems

SFC Sequential Function Chart

DT Digital Twin

ESE Einzelsteuereinheiten

ECU Electronic Control Units

ERP Enterprise Resource Planning

EAL Evaluation Assurance Levels

FS File System

FB Funktionsbaustein

FIFO First In First Out

GSE Gruppensteuereinheiten

HMI Human Machine Interface

I40 Industrie 4.0

IIC Industrial Internet Consortium

IoT Internet of Things

IP Internet Protocol

IT Informationstechnik

IACS Industrial Automation and Control System

IPC Industrie-PC

VII

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

List of Symbols

KAS komponentenbasierte Architektur für Automatisierungssysteme

LWIP Light Weight Internet Protocol

M+O Monitoring and Optimization

MMU Memory Management Unit

MES Manufacturing Execution System

NOA NAMUR Open Architecture

OT Operational Technology

OPC UA Open Platform Communications Unified Architecture

OO Object Oriented

OS Betriebssystem

POSIX Portable Operating System Interface

PNK Prozessnahe Komponente

QoS Quality of Service

RTOS Real Time Operating System

ROM Read Only Memory

SSC Sequential State Charts

SFC Sequential Function Charts

SAP Service Access Points

SIL Safety Integrity Level

SPS Speicherprogrammierbare Steuerung

SOA Service Oriented Architecture

SCADA Supervisory control and data acquisition

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtuelle Maschine

VMM Virtual Machine Monitor

VoR Verification of Request

VIII

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Kurzfassung

Industrie 4.0 ist ein neues Paradigma, das eine zentrale Rolle in der Entwicklung der
zukünftigen Automatisierungssysteme spielt. Die neue Generation der industriellen Au-
tomatisierungstechnik zielt auf die Erhöhung der Wandelbarkeit der Automatisierungssy-
steme ab. Dabei ist die Vernetzung und die Kooperation mit der IT-Welt eine wichtige
Voraussetzung, um die angeforderte Wandelbarkeit zu erreichen. Daher müssen neue Ar-
chitekturen und Lösungen eingesetzt werden, um eine Kooperation zwischen den Automa-
tisierungssystemen und der IT zu realisieren. Ziel dieser Arbeit ist ein Architekturentwurf
für die Steuerungsgeräte der prozessnahen Komponenten, um diese mit einer höheren Ver-
netzung und Wandelbarkeit auszustatten. Die Hauptanforderungen, welche von der Archi-
tektur erfüllt werden, sind:

� Der parallele Betrieb von Anwendungen unterschiedlicher Kritikalität

� Das dynamische Deployment von neuen Anwendungen zur Laufzeit

� Die Realisierung eines sicheren Gateways für die Kommunikation zwischen Systemen
der Automatisierungsebene und übergeordneten IT-Systemen

� Die offene Kommunikation mit der IT-Welt

� Die Realisierung eines lokalen Software- und Zugriffsverwaltungssystems

Die vorgeschlagene Architektur besteht aus einem Mehrebenen-Komponentenmodell und
wird als komponentenbasierte Architektur für Automatisierungssysteme (KAS) bezeich-
net. Die unterste Ebene der KAS-Architektur ist die Ebene der Partitionen. Die KAS-
Architektur setzt Hypervisor-Virtualisierung ein, um eine Trennung der Anwendungen
mit unterschiedlichen Anforderungen auf der gleichen Hardware zu ermöglichen. Die An-
wendungen werden in vorkonfigurierten Partitionen gekapselt und betrieben. Um die Mo-
dularisierung der Anwendungen zu erhöhen werden Container als zusätzliche Virtuali-
sierungskomponenten eingesetzt. Containertechnologien ermöglichen die Kapselung und
Verwaltung der Anwendungen in unterschiedlichen Containern innerhalb einer Partition.
Dadurch können beispielsweise unterschiedliche Versionen der Anwendungen in einer Par-
tition verwaltet werden. Die Container bilden die zweite Komponentenebene in der KAS-
Architektur. Die letzte Komponentenebene stellt die Kapselung in die Funktionsbausteine
dar. Für die Verwaltung der gesamten Komponentenhierarchie ist in der KAS-Architektur
ein Verwaltungssystem vorgesehen, das die erforderlichen Dienste zur Komponentenver-
waltung zur Verfügung stellt. Das Verwaltungssystem ist eine Systemfunktionalität der
KAS-Architektur und in einer eigenen Partition gekapselt. Eine weitere Systemfunktion
der KAS-Architektur ist das Interface. Dieses wird ebenfalls in einer eigenen Partition ge-
kapselt. Diese Interface-Partition ist die einzige Partition, die mit externen Komponenten
außerhalb der Kernautomatisierung kommunizieren darf. In der Arbeit werden für die Va-
lidierung der KAS-Architektur beispielhaft Anwendungspartitionen für die Prozessführung

IX

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Kurzfassung

und die Simulation entwickelt. Mit Hilfe dieser Anwendungen können realistische Szenarien
der Automatisierungsebene prototypisch implementiert und getestet werden. Die Ergeb-
nisse zeigen, dass die KAS-Architektur eine leistungsfähige und übersichtlich verwaltbare
Systemumgebung darstellt, um für neue Anforderungen eine hohe Flexibilität zu bieten,
sowie der durchgängigen Interoperabilität der Automatisierungsebene zu genügen, ohne
die Integrität der Kernautomation zu gefährden.

X

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Abstract

Industry 4.0 is a new paradigm that plays a central role in the development of future
automation systems. The new generation of industrial automation aims to increase the
agility of the automation system. In this context, cooperation with the IT world is an
important prerequisite to achieve the requested agility. Therefore, new architectures and
solutions have to be developed to realize a cooperation between the automation systems
and the IT. The goal of this work is an architecture design for the control devices in order
to provide them with a higher level of connectivity and agility. The main features, which
are fulfilled by the architecture, are:

� The parallel operation of applications of different criticality

� The dynamic deployment of new applications at runtime

� The realization of a secure gateway for communication between automation level
systems and higher level IT systems

� The open communication with the IT world

� The realization of a local software and access management system

The proposed architecture consists of a multi-level component model and is referred to as a
component-based architecture for automation systems (KAS). The lowest level of the KAS
architecture is the partition level. The KAS architecture employs hypervisor virtualization
to enable separation of applications with different requirements on the same hardware. Ap-
plications are encapsulated in preconfigured partitions. Containers are used as additional
virtualization components to increase modularization of applications. Container techno-
logies enable the encapsulation and management of applications in different containers
within a partition. This means, for example, that different versions of the applications
can be managed in one partition. The containers are the second component level in the
KAS architecture. The last component level represents the encapsulation in the function
blocks. For the management of the entire component hierarchy in the KAS architecture
a management system is developed. The management system is a system functionality of
the KAS architecture and is encapsulated in its own partition. Another system function of
the KAS architecture is the interface. This is also encapsulated in its own partition. The
interface partition is the only partition that is allowed to communicate with outside of
the core automation domain. In this work, application partitions for process control and
simulation are developed as examples for the validation of the KAS architecture. These
applications can be used for a prototype implementation of automation level scenarios. The
results show that the KAS architecture provides a powerful and clearly manageable system
environment to meet the new requirements for agility as well as continuous interoperability
of the automation level without compromising the integrity of the core automation.

XI

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

1 Einleitung

Der zunehmende Bedarf nach agilen und dynamischen Produktionssystemen, im Kontext
von neuen Paradigmen wie Industrie 4.0 (I40) oder Industrial Internet Consortium (IIC),
ruft die Anforderung nach neuen Technologien und Informationsmodellen [56], [55] hervor.
Internet of Things (IoT) [116], Cyber Physical Systems (CPS) [48], Cloud Computing [84]
und Verwaltungsschale [28] sind einige Beispiele für diese neuen Technologien und Infor-
mationsmodelle. Sie werden entwickelt, um die Vernetzung, die Wandelbarkeit und den
Optimierungsgrad von Produktionssystemen durch das Vorantreiben der Digitalisierung
zu erhöhen. Die Digitalisierung der Produktion definiert neue Aufgaben und Funktionen
für die Komponenten der Automatisierungspyramide. Diese Komponenten müssen wieder-
um hinsichtlich Hardware- und Software-Aspekten modifiziert werden, um den genannten
Anforderungen gerecht zu werden. Prozessnahe Komponenten sind eine dieser Kompo-
nenten, die neue Funktionalitäten bereitstellen und neue Aufgaben und Anforderungen
erfüllen müssen, um die Wandelbarkeit des Produktionssystems zu erhöhen. Die in dieser
Arbeit vorgeschlagene Architektur zielt darauf ab, die Steuerungsgeräte der prozessnahen
Komponenten mit neuen Funktionen auszustatten, um sie an die Anforderungen durch die
zunehmende Prozessdigitalisierung anzupassen. Diese Funktionen müssen eine verbesserte
Zusammenarbeit zwischen der industriellen Automatisierung und der Informationstechnik
(IT) (z. B. Optimierungsfunktionen und Machine-Learning-Applikationen) ermöglichen.
Die klassischen Aufgaben eines Automatisierungssystems (Prozessführung) müssen jedoch
neben den neuen Funktionen weiterhin erfüllt werden. Darüber hinaus darf das Zusammen-
spiel von Industrieautomation und IT die Integrität des industriellen Automatisierungssy-
stems in keiner Weise beeinträchtigen.

1.1 Motivation

I40 strebt eine Förderung der Digitalisierung der Automatisierungssysteme an [102]. Dies
erfordert neue Technologien, die entweder in der Automatisierungstechnik entwickelt oder
aus der IT-Domäne in die Automatisierungsdomäne integriert werden müssen. Die Kon-
vergenz von IT und Operational Technology (OT) verfolgt in diesem Zusammenhang ein
ähnliches Ziel [73]. Einige Beispiele für IT-Technologien, die zur Erhöhung des Optimie-
rungsgrades und der Wandelbarkeit der industriellen Automatisierung eingesetzt werden,
sind IoT, Cloud Computing, CPS. [103]. Diese Technologien spielen eine entscheidende
Rolle für die Vernetzung, den Informationsaustausch, die Datenspeicherung usw. Eine der
Hauptanforderungen im Zusammenhang mit I40 ist die Agilität (Wandelbarkeit). Agilität
beschreibt die Fähigkeit eines Systems, sich auf ungeplante Veränderungen anzupassen
[88]. Diese Veränderungen können beispielsweise hinsichtlich der Produktionsmenge, der
Topologie und der Produkteigenschaften auftreten [105].
Die Erfüllung einer agilen Produktion erfordert Anpassungen und Neukonfigurationen in

verschiedenen Domänen und Ebenen der Automatisierungspyramide. Diese Modifikationen

1

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

1 Einleitung

betreffen sowohl Software-, als auch Hardware-Aspekte. Ein Beispiel für Modifikationen in
der Infrastruktur sind die aktuellen Entwicklungen im Bereich der Sensoren und Mess-
geräte, die als

”
Sensoren 4.0“ oder

”
intelligente Sensoren“ bezeichnet werden [90]. Zur

Realisierung dieser neuen Feldfunktionen ist eine direkte Verknüpfung der Sensoren mit
IT-Instandhaltungsfunktionen, der Geräteverwaltung und den Datenanalysefunktionen er-
forderlich. Im Zentrum der Entwicklung steht jedoch die Anpassung der Steuerungsgeräte.
Sie sind für die operative Prozessführung verantwortlich und verknüpfen die Feldebene mit
dem Rest der Welt. Die Modifikation von Steuerungsgeräten ist das Thema verschiedener
Forschungen in der industriellen Automatisierung. Diese Modifikationen zielen darauf ab,
Steuerungsgeräte zu entwerfen, die interaktiver mit IT-Technologien arbeiten können und
neue Funktionalitäten wie z. B. die Integration von Optimierungs- und Managementfunk-
tionen, Kommunikation mit externen Datenanalysesystemen, dynamisches Deployment
und Selfx-Technologien anbieten [62].
Deployment ermöglicht die Installation neuer Softwarekomponenten von einer dezentra-

len Plattform aus. Auf diese Weise kann das Produktionssystem durch die Nutzung der
flexiblen Automatisierungsplattformen dynamischer agieren. Einer der Hauptaspekte, der
bei der hohen Vernetzung und der Kommunikation mit der IT-Welt berücksichtigt werden
muss, ist die Integrität der Kernautomation. Die derzeitigen Automatisierungssysteme bie-
ten ein hohes Maß an Verfügbarkeit und Integrität, sind aber begrenzt miteinander und
im Wesentlichen nur untereinander vernetzt. Im Gegensatz zu den heutigen Automatisie-
rungssystemen müssen die zukünftigen Automatisierungssysteme in einer mit der IT-Welt
hoch vernetzten Umgebung agieren. Dies ermöglicht eine Vielzahl neuer Funktionen und
Geschäftsprozesse. Die hohe Vernetzung darf die Verfügbarkeit oder Integrität des Au-
tomatisierungssystems nicht gefährden. Ziel der Entwicklungen sind neue Architekturen,
welche die Vorteile heutiger und zukünftiger Automatisierungssysteme kombinieren.

1.2 Zielsetzung

In dieser Arbeit werden die neuen Anforderungen an Steuerungssysteme im Zuge der Di-
gitalisierung erörtert und eine Architektur zur Erfüllung dieser Anforderungen vorgestellt.
Die wichtigsten Anforderungen und Aufgaben, die von zukünftigen Steuerungssystemen
erfüllt werden müssen, sind:

� die offene Kommunikation mit der IT-Welt

� die Einbindung von Cloud-Mechanismen

� das dynamische Deployment

� das Ermöglichen eines sicheren und leistungsfähigen Datenkanals aus der Feld- und
Automatisierungsebene in die übergeordneten IT-Systeme

� Integration der operativen Funktionen aus der MES-Ebene

� der parallele Betrieb von Applikationen unterschiedlicher Kritikalität sowie neue Ap-
plikationen, die im Vorfeld nicht vorgesehen waren, auf derselben Hardware

� die Realisierung eines lokalen Software- und Zugriffsverwaltungssystems

2

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

1.3 Struktur dieser Arbeit

� die Realisierung einer Software-Abstraktion zur einfacheren Skalierbarkeit und zur
Verringerung der Abhängigkeit von spezieller Software und Hardware

Abb. 1.1 zeigt eine generische Architektur für zukünftige Steuerungssysteme. Um die ge-
nannten Anforderungen zu erfüllen wird ein neues Systemkonzept vorgestellt, das durch
seine Architektur die beschriebenen Anforderungen grundsätzlich unterstützt. Die vorge-
schlagene Architektur in dieser Arbeit bietet eine Trennung der Komponenten auf dersel-
ben Hardware mittels Virtualisierung. Die Komponenten werden gemäß ihrer Anforderun-
gen und Quality of Service (QoS) voneinander getrennt [8]. Sie setzt sowohl Container-
als auch Hypervisor-Virtualisierungsmethoden ein, um einerseits eine strikte Trennung der
Komponenten zu ermöglichen und andererseits ein dynamisches Deployment und Versions-
management zu realisieren. Die Komponenten können nur durch festgelegte Kommunikati-
onsschnittstellen miteinander kommunizieren. Die Kommunikationsverbindungen zwischen
unterschiedlichen Komponenten sind rückwirkungsfrei und gefährden die Anforderungen
der kritischen Anwendungen in keiner Weise. Ein weiteres Merkmal der Architektur ist
der Entwurf eines Verwaltungssystems, das lokale Komponentenverwaltungsdienste anbie-
tet. Die Architektur bietet ein dediziertes Interface zur offenen Umgebung. Durch dieses
Interface können Daten und Informationen mit externen Komponenten ausgetauscht oder
neue Funktionalitäten heruntergeladen werden. Die Partitionen werden gemäß der Anwen-
dungen, welche sie kapseln, konfiguriert und verfügen über entsprechende Fähigkeiten und
Zugriffsrechte.

Hypervisor

Hardware

Interface-
Partition

Verwaltungs-
system

Anwendung 1 Anwendung n

…

Überlagerte
Anwendungen

Anwendungspartitionen

Abbildung 1.1: Eine Architektur für Steuergeräte

1.3 Struktur dieser Arbeit

Diese Arbeit ist wie folgt strukturiert:

� In Kapitel 2 wird der Stand der Technik präsentiert. In diesem Kapitel werden rele-
vante Arbeiten und wichtige Konzepte diskutiert, die für die Zusammenstellung der
vorgeschlagenen Architektur notwendig sind.

3

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

1 Einleitung

� In Kapitel 3 werden die Anforderungen an die Architektur erläutert. Der Fokus der
Erläuterung liegt auf den Anforderungen, welche durch die neue Generation der Au-
tomatisierungssysteme hervorgerufen werden.

� In Kapiteln 4 und 5 wird eine Architektur vorgestellt, um die genannten Anforde-
rungen zu erfüllen. Für die Zusammenstellung der Architektur wird Virtualisierung
als eine Grundlage eingesetzt, um den Betrieb verschiedener Anwendungen auf der
gleichen Hardware zu ermöglichen.

� In Kapitel 6 wird das Anwendungsszenario und eingesetzte Hardware-Ressourcen für
die Implementierung erörtert.

� In Kapitel 7 werden die Implementierung der Architektur und die Implementierungs-
ergebnisse präsentiert.

� In Kapitel 8 wird die Arbeit zusammengefasst und in einem Ausblick bewertet.

4

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

In diesem Kapitel werden einige grundlegende Konzepte der IT und der Automatisie-
rungstechnik erläutert. Diese Konzepte werden für die Realisierung der in dieser Arbeit
vorgeschlagenen Architektur eingesetzt. Dieses Kapitel gibt auch einen Überblick über den
Stand der Technik dieser Konzepte.

2.1 Virtualisierung

Die Virtualisierung hat grundsätzlich das Ziel, die Ressourcen einer physischen Computer-
Hardware zwischen verschiedenen Betriebssystemen (OSs) und Anwendungen aufzuteilen
[19], [14], [22], [58]. Die OSs und Anwendungen sind in verschiedene Virtuelle Maschi-
nen (VMs) gekapselt. In der IT wird die Virtualisierung insbesondere in großen Daten-
zentren und Rechenclustern eingesetzt. Sie ist eine wichtige Grundlage für die Cloud-
Technologie [71], [78]. In feldnahen Automatisierungskomponenten und in den eingebet-
teten Systemen spielte die Virtualisierung in der Vergangenheit keine Rolle. Diese Syste-
me waren gezielt auf eine Anwendung ausgerichtet und optimiert. Mit den zunehmenden
Anforderungen an Flexibilität und Modularität findet die Virtualisierung jedoch auch zu-
nehmend Einzug in diesem Bereich. Darüber hinaus wird sie u.a. in der Avionik, der
Fahrzeugtechnik und der industriellen Automatisierungstechnik eingesetzt [3]. Der Einsatz
von Virtualisierung ermöglicht eine optimierte Hardware-Nutzung und verhindert unter-
ausgelastete Hardware und CPUs. Dies spielt eine wichtige Rolle für die Skalierbarkeit,
für die Reduzierung des Wartungsaufwands und der Kosten usw. [6]. Neben der traditio-
nellen Virtualisierungsmethode, bei der eine Softwareabstraktionsschicht verwendet wird,
um VMs auf einer Hardware zu verwalten, können auch Containertechnologien als Virtua-
lisierungsmethode in Betracht gezogen werden. Containertechnologien werden verwendet,
um Anwendungen in verschiedene Container zu kapseln. Dies erhöht die Modularität und
bietet eine Grundlage für das dynamische Deployment [64]. Allerdings bieten Container-
technologien eine Virtualisierung nur auf der Anwendungsebene an. Im Gegensatz zur
traditionellen Virtualisierung, die sich mit der Erstellung von VMs befasst, die ihre eige-
nen OSs enthalten, kapseln Container nur die Anwendungen und Bibliotheken, die für die
Ausführung benötigt werden [31].

2.1.1 Virtualisierungstypen

In der IT werden verschiedene Typen der Virtualisierung eingesetzt. Alle diese Typen
zielen darauf ab, die Hardwareressourcen der realen Hardware zu abstrahieren, umfassen
aber unterschiedliche Methoden und Spezifikationen, um dieses Ziel zu erreichen. Einige
dieser Virtualisierungstypen sind unten aufgeführt [107], [3]:

� Vollvirtualisierung: Bei der Vollvirtualisierung werden die Gast-Betriebssysteme
nicht für die Ausführung auf dem Hypervisor modifiziert. Dies führt zu dem Nachteil,

5

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

dass die privilegierten Operationen weiterhin unverändert an die Hardware gesendet
werden. Um die privilegierten Operationen abzuwickeln, bietet der Hypervisor eine
CPU-Emulation, welche Zeit und Ressourcen benötigt.

� Paravirtualisierung: Die Paravirtualisierung wird zur Überwindung des oben genann-
ten Problems eingesetzt. Bei der Paravirtualisierungsmethode sind die Gastbetriebs-
systeme über die Hardwarevirtualisierung informiert und werden so modifiziert, dass
sie nur noch auf Operationen zurückgreifen, die der Hypervisor standardmäßig zur
Verfügung stellt. Privilegierte Operationen werden ausgeführt, indem einzelne An-
fragen an den Hypervisor gesendet werden. Diese Anfragen oder Aufrufe werden als
Hypercalls bezeichnet. Ein Nachteil dieser Methode ist der erforderliche Overhead
für die Modifizierung der Gast-Betriebssysteme.

2.1.2 Virtualisierung mit Hypervisoren

Der Hypervisor oder auch Virtual Machine Monitor (VMM) fungiert als eine Middleware
zwischen Hardware und Anwendungen (die in VMs laufen) und ermöglicht die Kommuni-
kation zwischen diesen. Hypervisoren werden in zwei Gruppen unterteilt, nämlich Typ-1
und Typ-2. Der Hypervisor Typ-1 kann direkt auf einer Hardware installiert werden, ohne
dass ein OS erforderlich ist (siehe Abb. 2.1). Der Hypervisor Typ-2 kann hingegen nur auf
einem Host OS installiert werden [29]. Für letzteren können einige VMs generiert werden,
während andere Anwendungen parallel auf dem Host OS laufen. Das Konzept der Virtuali-

Container-Technologies

Container-
Verwaltung

HOST OS

App

App

Hardware

App

Hypervisor

HOST OS

APP

Hypervisor Typ-2

OS

App

Hardware

OS

App

Hardware

Hypervisor

Hypervisor Typ-1

VM 1 VM 2 VM 3

OS

App

OS

App

OS

App

VM 1 VM 2

Container 1 Container 2

Abbildung 2.1: Virtualisierungsmethoden

sierung mit Hilfe eines Hypervisors wurde zuerst von IBM eingeführt. Der Hypervisor von
IBM erstellt unabhängige Umgebungen auf der gleichen Hardware (virtuelle Maschine),
um Hardwareressourcen sowie Rechenressourcen, Speicher und Netzwerkkonnektivität zu
virtualisieren [40]. Die Virtualisierung sollte eine zum ursprünglichen System äquivalente

6

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.1 Virtualisierung

Umgebung zur Verfügung stellen. Darüber hinaus muss sie eine zuverlässige Kontrolle
über die virtualisierten Ressourcen bieten. Diese Bedingungen gewährleisten einerseits das
gleiche Verhalten der Anwendungen in der virtualisierten Umgebung und andererseits die
Sicherheit der VMs vor Bedrohungen und Konflikten, die durch die gemeinsame Nutzung
einer Hardware verursacht werden. Die Aufgabe der Bereitstellung solcher VMs wird neben
dem Hypervisor auch anderen Komponenten wie Mikrokernel zugewiesen. In den folgenden
Abschnitten werden diese Komponenten miteinander verglichen.

2.1.3 Virtualisierung mit Mikrokernels

Mikrokernels werden entwickelt, um die Komplexität des Hypervisors zu reduzieren. Die
Komplexitätsreduktion basiert auf der Modularisierung. Mikrokernel werden ebenfalls ver-
wendet, um Hardware zu virtualisieren und mehrere VMs auf der gleichen Hardware zu
betreiben. Sie unterscheiden sich jedoch in einigen ihrer Eigenschaften von den Hypervi-
soren. Die wichtigsten Unterschiede liegen in ihrer Abstraktionsebene. Die Hypervisoren
verwalten Hardwareressourcen wie Speicher und CPU in Bezug auf die VMs und OSs.
Sie befassen sich jedoch nicht mit den Prozessen innerhalb einer VM. Mikrokernels bieten
im Gegensatz zu Hypervisoren eine Abstraktion auch für höhere Ebenen wie Tasks und
Threads. Das High-Level-Management der Mikrokernels ist mit den folgenden Merkmalen
verbunden [3], [51]:

� Threads, Aufgaben und Prozesse: Der Mikrokernel kennt alle Threads, Aufgaben und
Prozesse eines OS. Der Hypervisor verwaltet nur die Gast-OSs.

� Speicher: Bei der Speicherverwaltung im Hypervisor werden die Speicherzuordnungen
auf Gültigkeit überprüft (die Speicherverwaltung kennt den jeder VM zugewiesenen
Anteil an Speicher). Ein Mikrokernel verwaltet den Speicher entsprechend den Auf-
gaben, die er unterstützt.

� Kommunikation: Hypervisoren bieten Low-Level-Kommunikationsmechanismen, wie
z.B. Shared Memory für die Kommunikation der OSs. Solche Low-Level-
Mechanismen werden jedoch vom Mikrokernel nicht bereitgestellt.

� Gerätetreiber: Die Hypervisoren enthalten die Kerntreiber, während sich periphere
Treiber in den OS befinden. Im Gegensatz zu den Hypervisoren verwalten Mikroker-
nel die Gerätetreiber als Mikrokernprozesse.

� VM-Management: Die Ausführung von Verwaltungsdiensten wie Create, Read, De-
lete auf den OSs der Gäste erfordert die Implementierung dieser Dienste auf dem
Mikrokernel. Dadurch wird dem Mikrokernel ein Speicher-Overhead hinzugefügt.

Sicherheitskonzepte

Wie bereits erwähnt, wird der Hypervisor im IT-Bereich verwendet, um die Trennung
von OSs auf einer Hardware (beispielsweise VirtualBox und VmWare) zu ermöglichen.
Diese Trennung bietet keine zertifizierbare Sicherheit. Daher können solche Hypervisoren
nicht in sicherheitskritischen Domänen eingesetzt werden, weil sie keine strikte Trennung
der Anwendungen verschiedener Kritikalität gewährleisten können. Um die Sicherheit in

7

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

solchen Domänen zu gewährleisten, wird eine Kombination von Hypervisoren und Mi-
krokerneln verwendet [59]. Diese Kombination (wie z. B. PikeOS) wird für Safety- oder
Securityanwendungen verwendet (Seperationskernel [117]). Das Sicherheitsniveau solcher
Separationskernel orientiert sich an verschiedenen Standards. Die Software-Zertifizierung in
verschiedenen Industriebereichen orientiert sich an bestimmten Sicherheitsstandards. Die-
se definieren verschiedene Kritikalitätsebenen, die in den jeweiligen technischen Domänen
unterschiedliche Notationen haben. Zum Beispiel sind bei EN-50128 und IEC 61508 die
Safety Integrity Level (SIL) von 0 bis 4 eingestuft, während die Stufen in ISO 26262 von
A bis E unterteilt sind. Das Safety-Konzept umfasst die Trennung der Anwendungen mit
unterschiedlichen Kritikalitätsstufen sowie die Überwachung des Informationsflusses zwi-
schen diesen. Das Echtzeitverhalten der OS ist ebenfalls ein safetyrelevanter Aspekt. Den
safetykritischen Anwendungen muss ein detailliertes Schedulingschema zugeordnet werden,
damit diese zuverlässig arbeiten können [59].

Die Security befasst sich mit dem Schutz des Systems vor ungewollten Manipulationen
oder Datenzugriffen z.B. durch Cyberangriffe. Analog zu den Safetyanforderungen, ba-
sieren auch die Securityanforderungen auf Standards in verschiedenen Bereichen. Bei der
Security geht es sowohl um die Trennung von Anwendungen auf derselben Hardware als
auch um die Kontrolle des Informationsflusses zwischen diesen. IEC 15408 (gemeinsame
Kriterien) und IEC 62443 sind zwei Beispiele für Securitystandards. Gemeinsame Krite-
rien beschreiben Securityanforderungen für allgemeine Zwecke und IEC 62443 beschreibt
Securityanforderungen von Industrial Automation and Control System (IACS)s. Die Com-
putersysteme haben unterschiedliche Prozessphasen. Spezifikation, Implementierung und
Evaluation sind drei wichtige Phasen bei der Entwicklung von Computersystemen. Ge-
meinsame Kriterien stellen sicher, dass all diese Phasen gemäß dieser Normen durchgeführt
werden. Dieser Standard definiert mehrere Evaluation Assurance Levels (EAL)s von 1 bis
7. Separationskernels (je nach Technologie) bieten eine höhere Sicherheit (EAL6) als All-
zweckrechenplattformen (EAL4) [59].

Es werden verschiedene Technologien und Konzepte entwickelt, um Separationskernel zu
entwerfen, welche die Anforderungen bestimmter Domänen erfüllen. Zum Beispiel definier-
ten Chung-Wei, BaekGyu und Shinichi [65] einen Ansatz zur Hardware-Virtualisierung
und Aufgabenzuweisung für Automobilsysteme und die Autoren in [81] definierten eine
Architektur für leistungsarme eingebettete Echtzeitsysteme. Im nächsten Abschnitt wer-
den einige Hypervisor- und Mikrokerneltechnologien gemeinsam mit der in dieser Arbeit
verwendeten Technologie vorgestellt.

2.1.4 Hypervisor und Mikrokernel-Technologien

Im Folgenden werden einige Hypervisoren (Typ-1 und Typ-2) und Mikrokernel, die in der
Industrie eingesetzt werden, präsentiert.

VirtualBox

VirtualBox ist ein Hypervisor vom Typ-2. Sie kann auf verschiedenen Host OSs wie Win-
dows, Linux, Solaris installiert werden und unterstützt dabei eine unterschiedliche Anzahl
von Guest OSs. Es handelt sich um eine von der US-amerikanischen Firma Oracle ent-
wickelte Virtualisierungssoftware [76].

8

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.1 Virtualisierung

Xen Hypervisor

Xen ist ein Open-Source-Hypervisor. Xen umfasst eine Softwareschicht, die virtuelle Res-
sourcen implementiert und auch den I/O-Zugriff kontrolliert. Die VMs werden in Xen
Domänen genannt. Xen besitzt eine Domäne null VM, die andere VMs erzeugen und
löschen kann und die I/O-Geräte den VMs zuordnet [13].

PikeOS

PikeOS ist ein mikrokernelbasierter Hypervisor, der von der SYSGO GmbH entwickelt
wurde. Es besteht aus einem Real Time Operating System (RTOS), einer Virtualisierungs-
plattform und einer Eclipse-basierten Entwicklungsumgebung. Dieser Hypervisor wird für
Sicherheitskritische Anwendungen in den Bereichen der Luft- und Raumfahrt, der Ver-
teidigung, der Fahrzeugtechnik, der industriellen Automatisierung, etc eingesetzt [96]. Er
ermöglicht die Ausführung verschiedener Anwendungen, mit unterschiedlichen Sicherheits-
stufen, auf derselben Hardware in verschiedenen Partitionen. Die Partitionen bieten un-
terschiedliche Portierungsmöglichkeiten. Diese Möglichkeiten werden als Personalities be-
zeichnet:

� Native ist eine direkte Verknüpfung der Anwendung mit PikeOS-Service-
Schnittstellen. Diese erfordern eine minimale Anpassung der Anwendung. Da es sich
jedoch um eine proprietäre Anwendung von PikeOS handelt, müssen andere Anwen-
dungen, die nicht für PikeOS entwickelt wurden, modifiziert werden, um mit PikeOS
kompatibel zu werden.

� Die Portable Operating System Interface (POSIX)-Personality verwendet
das Standard Portable Operating System Interface POSIX. Viele UNIX OSs sind
konform zu diesem Standard. POSIX wurde in der ISO/IEC 9945 normiert. Die
POSIX-Personality für PikeOS entspricht dem PSE52-Profil des IEEE Std 1003.13-
1998 mit zusätzlichen Echtzeit-Erweiterungen.

� ElinOS ist eine paravirtualisierte Linux-Distribution. Diese Personality kann durch
die Installation von Softwarepaketen erweitert werden. Es ist der einfachste Weg, An-
wendungen, die für Linux implementiert sind, zu portieren. Aber diese Schnittstelle
ist wegen des Overheads auf einem eingebetteten System vergleichsweise langsam.

Das PikeOS RTOS basiert auf einem modularen Ansatz. Es besteht aus einem Mikro-
kernel, der die folgenden Dienste zur Verfügung stellt [80], [44]:

� Hardware-Abstraktion

� prioritätsbasiertes Echtzeit-Scheduling

� Ausführungseinheiten (Threads)

� getrennte Adressräume (Aufgaben)

� Kommunikationsprimitive

� Timer und Ausnahme- und Interruptbehandlung.

9

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

Scheduling und Zeitpartitionierung

Der PikeOS-Scheduler basiert auf dem Prinzip der Zeitpartitionen. Zeitpartition stellt da-
bei einen Mechanismus zur Verteilung von Rechenzeit auf Anwendungen (Partitionen) dar.
Die getrennten Anwendungen in den Partitionen müssen, mit den für ihre Ausführung er-
forderlichen Ressourcen, versorgt werden. Dabei garantiert die Zeitpartitionierung, dass al-
le Partitionen einen bestimmten Anteil an Ausführungszeit erhalten. Die Ausführungszeit
ist vordefiniert und kann während der Laufzeit nicht dynamisch verändert werden.
Die Zeitpartitionierung ist in Abb. 2.2 dargestellt. Die Aufteilung der Rechenzeit er-

folgt in zwei Schritten. Im ersten Schritt werden die entsprechenden Partitionen einer
Zeitpartition zugeordnet. Dann werden diese Partitionen einem oder mehreren Fenstern
zugeordnet, wobei jedes Fenster eine eigene Dauer hat. Der Zeitplan setzt sich aus diesen
vordefinierten Fenstern zusammen. Die Fenster können auf verschiedenen Central Proces-
sing Unit (CPU)-Kernen laufen. Aber an jedem Punkt ist auf jedem Kern nur ein Fenster
aktiv. Die vorhandenen Threads innerhalb einer Partition können mit unterschiedlichen
Prioritäten zugewiesen werden. Unter allen Threads wird jedes Mal der Thread mit der
höchsten Priorität ausgeführt. Ein Thread enthält auch andere Informationen.

1

2

3

4

5

ZP1

ZP2

ZP3

Zeitfenster 1

Zeitfenster 2

Zeitfenster 3

Zeitfenster 4

Zeitfenster 5

Partitionen den
Zeitpartitionen zuordnen

Zeitpartitionen zu Fenstern
zuordnen und Dauern einstellen

Abbildung 2.2: PikeOS-Zeitpartitionierung

Kommunikationen zwischen den Partitionen in PikeOS

PikeOS bietet verschiedene Möglichkeiten für die Kommunikation zwischen Partitionen.
Die folgende Liste enthält die relevanten Kommunikationsmedien:

� Queuing Ports: Diese fungieren als First In First Out (FIFO)-Kommunikation,
bei der Ports den Endpunkt der Kommunikation darstellen. Die Kommunikation
mit Hilfe von Queuing Ports ist eine unidirektionale Kommunikation. Queueing
ports ermöglichen Service Access Points (SAP) und eine paketbasierte Echtzeit-
Kommunikation wie User Datagram Protocol (UDP)/Internet Protocol (IP).

� Shared memory: Dieser Kommunikationstyp bietet einen physischen Speicher für
den Datenaustausch zwischen Partitionen. Die Zugriffsrechte auf den gemeinsamen
Speicher müssen in der Engineering-Phase statisch zugewiesen werden.

10

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.2 Container-Technologien

� File System (FS): Diese Methode wird verwendet, um die aktuellen Daten auf einem
Speichergerät abzubilden. Sie kann auch außerhalb einer Partition als Schnittstelle
zum Lesen/Schreiben von Daten verwendet werden. Read Only Memory (ROM) und
FS sind Beispiele für ein eingebautes Dateisystem.

WindRiver Hypervisor

Wie der Name schon suggeriert, besteht im WindRiver-Hypervisor die Integration mit
WindRiver Linux. Er unterstützt auch andere OSs wie Windows 7 (32-bit und 64-bit
Single-Core und Multi-Core) und Red Hat Linux. Es ist auch möglich, andere Betriebs-
systeme hinzuzufügen. Die unterstützten Prozessorarchitekturen sind Intel Atom, ARM
und PowerPC. Die Zeitplanung kann prioritätsbasiert, zeitlich partitioniert oder benutzer-
definiert sein [112]. Einige Funktionen von WindRiver Hypervisor sind unten aufgeführt
[113]:

� Virtual Board Management: Virtual Board Management ermöglicht die Verwal-
tung virtueller Boards, indem es Funktionen wie Create, Delete, Read zur Verfügung
stellt.

� Core Scheduling: Priorität- und zeitbasiertes Scheduling.

� Safety Profile: Zertifizierung nach Normen, wie IEC 61508 (bis zu SIL 3).

Tabelle 2.1 gibt einen Überblick der Eigenschaften von PikeOS, Windriver und Xen
Hypervisor.

Tabelle 2.1: Vergleich der Eigenschaften

PikeOS WindRiver Xen
CC EAL 3+ No CC EAL 3+ No certification
Certified Posix No Certified Posix No Certified Posix
Health Monitor Health Monitor no Health Monitor
Certifiable Hypervisor Only ARMv8 und x86 no certification

Neben den genannten Technologien werden auch andere Separationskernel wie VxWorks
653, LynxSecure, INTEGRITY-178B und LynxOS-178 in verschiedenen Bereichen, wie
der Fahrzeugtechnik und der Luft- und Raumfahrt eingesetzt. Einige Technologien haben
Security- und Safetyfunktionalitäten in denselben Separationskernel integriert, wie z.B.
PikeOS und LynxSecure.

2.2 Container-Technologien

Containertechnologien befassen sich mit der Isolierung und Kapselung von Anwendungen
und notwendiger Bibliotheken in verschiedenen Containern. Das Ziel dieser Technologien
ist, leichtgewichtige Container zu erzeugen, die wie Daten transportiert werden können.
Aus diesem Grund enthalten Container keine OS und sie laufen alle auf dem Host OS. Dies
kann auch als eine Virtualisierungsmethode angesehen werden. Der Vorteil von Container-
technologien besteht darin, dass die leichtgewichtigen Container und Container-Images

11

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

einfach von einem System auf ein anderes übertragen werden können. Dies reduziert den
Aufwand für die Installation und Aktualisierung einer Software. Container verhalten sich
ähnlich wie eine VM. Die in Abb. 2.1 dargestellte Container-Management-Einheit erlaubt
eine Hardware-Abstraktion auf der Anwendungsebene. Dezentralisierung, Skalierbarkeit
und dynamisches Deployment sind die Hauptvorteile der Containertechnologien [72].

Docker-Container

Docker ist eine Open-Source Plattform für die Ausführung und Entwicklung von Applika-
tionen. Dort werden Applikationen in so genannte Container gekapselt. Docker-Container
sind ein Beispiel für Containertechnologien [31]. Die Dockertechnologie ermöglicht das Kon-
zept der Containerisierung auf dem Server. Applikationen können nach der Kapselung den
anderen Anwendern zur Verfügung gestellt werden. Darüber hinaus stellen die Container
Test-Umgebungen für die Applikationen bereit [85], [16]. Die Struktur der Dockertechno-
logie ist in Abb. 2.3 dargestellt. Docker besteht aus folgenden Hauptkomponenten [100]:

� Docker Server und Klient: Der Docker Server (Daemon) und Klient kommunizie-
ren über ein RESTful API. Der Klient sendet Anfragen an den Server, um beispiels-
weise einen bestimmten Container herunterzuladen.

� Docker Images: Docker Images sind die Applikationen, die in Docker Containern
gekapselt werden.

� Docker Registry: Die Docker Registry ist ähnlich, wie ein Repository. Images
können beispielsweise durch Push, Pull und Build Befehle verwaltet werden.

� Docker Container: Docker Container beinhalten die Anforderungen und
Abhängigkeiten für die Ausführung der Applikationen.

Diese Art der Virtualisierung spielt eine wichtige Rolle für das Cloud Computing [101].

Image 1

Image 2

…

Image n

RegistryDocker-Host

Docker Daemon

Container 1

Container 2

…

Image 1

Image 2

…

Klient

Docker Build

Docker run

Docker pull

Abbildung 2.3: Docker-Technologie [32]

12

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.2 Container-Technologien

2.2.1 Virtualisierungsanwendungen in anderen industriellen Domänen

Echtzeit-Hypervisor werden in verschiedenen Bereichen wie der Avionik und der Fahr-
zeugtechnik eingesetzt [25], [83], [104]. Echtzeitfähigkeit, Verfügbarkeit, Safety/Security
usw. sind wichtige Anforderungen, die den Hypervisor zu einer geeigneten Lösung in die-
sen Domänen machen. Nach der Entwicklung von AUTomotive Open System ARchitec-
ture (AUTOSAR) und dem autonomen Fahren hat auch die Automobilindustrie begon-
nen, den Hypervisor für verschiedene Zwecke wie Safety und Security einzusetzen [66],
[7]. Ähnlich wie die Controller in Automatisierungsdomänen (Speicherprogrammierbare
Steuerung (SPS)en) muss auch der Bordcomputer der Fahrzeuge an die Cloud angeschlos-
sen werden. Somit ist die Vernetzung auch eine Anforderung bei der Automatisierung
von Fahrzeugen. In den nächsten Abschnitten wird die Anwendung des Hypervisors im
Automobil- und Avionikbereich diskutiert.

Automotive Open System Architecture

AUTOSAR zielt darauf ab, eine hardwareunabhängige und standardisierte Anwendungs-
software für Electronic Control Units (ECU)s bereitzustellen. Bei den ECUs handelt es
sich um Steuergeräte für die Fahrzeuge. AUTOSAR wurde 2003 gegründet und das erste
Release des entsprechenden AUTOSAR-Konzepts wurde 2005 entwickelt. Seit 2005 wur-
de AUTOSAR kontinuierlich weiterentwickelt und an die unterschiedlichen Anforderungen
in der Automobilindustrie angepasst (beispielsweise die Entwicklung der AUTOSAR Ad-
aptive Platform [37]). Es besteht aus einer Basissoftware, einer Laufzeitumgebung und
einer Anwendungssoftware. Abb. 2.4 zeigt die Architektur von AUTOSAR. Das Ziel dieser
Architektur ist die Hardwareunabhängigkeit der Anwendungssoftware.

I/O Hardware-
Abstraktion

Applikationsebene

Laufzeitumgebung

Hardware

Betriebssysteme Memory
Services

Abstraktionsebene

Geräte-Treiber

Basic Software

Kommunikations-
dienste

Abbildung 2.4: AUTOSAR-Architektur

Sie besteht aus:

� einer hardwareunabhängigen Anwendungsschicht

� einer Laufzeitumgebung, welche die Schnittstellen für die Anwendungen bereitstellt

13

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

� einer Basissoftware, welche Dienste und die Abstraktionsschicht enthält.

Kürzlich wurden einige neue Anforderungen für die AUTOSAR-Architektur definiert, die
beim Entwurf der initialen Architektur nicht berücksichtigt wurden. Diese Architektur
sollte auf derselben ECU-Hardware auch verschiedene Funktionen mit unterschiedlichem
Sicherheitsniveau erfüllen. Dies entspricht einer Kombination verschiedener Automotive
Safety Integrity Level (ASIL)-Ebenen auf derselben Hardware. Sie muss auch eine sichere
Integration von Software verschiedener Anbieter ermöglichen. PharOS ist eine Lösung, die
in [63] diskutiert wird, um eine Software-Partitionierung zur Bewältigung dieses Problems
bereitzustellen. Wegen des zunehmenden Interesses am Betrieb von Anwendungen mit un-
terschiedlicher Kritikalität und Anforderungen auf derselben Hardware werden Hyperviso-
ren in verschiedenen Domänen eingesetzt [27], [81]. Es gibt verschiedene Ansätze, um den
Betrieb und die Trennung von Anwendungen unterschiedlicher Kritikalität sicherzustellen.
Darüber hinaus können verschiedene Arten von Hypervisoren eingesetzt werden, um diese
Trennung und die Ressourcenzuweisung zu gewährleisten. Als Beispiel wird in Abb. 2.5 der
Betrieb von Anwendungen mit unterschiedlichem ASIL-Level auf derselben Hardware auf
der Basis von VOSYSmonitor dargestellt [66]. Die dargestellte Architektur priorisiert die
sicherheitskritischen (ASIL) Anwendungen, während nicht-kritische Anwendungen (keine
ASIL) parallel auf derselben Hardware laufen.

Hardware

Hypervisor

Nicht kritische OS Guest OS Native OS

VOSYSmonitor

ASIL

AUTOSAR

Safety kritische
OS

Infotainment
OS

No ASILNo ASIL

Rich
OS

Normal World Secure World

Abbildung 2.5: VOSYSmonitor

Den sicherheitskritischen Anwendungen sind bestimmte Ressourcen zuzuordnen. Diese
Ressourcen sind für eine Nutzung anderer Anwendungen gesperrt, bis der VOSYSmonitor
wieder eine Freigabe für diese erteilt. Anforderungen an ECUs und industrielle Steue-
rungsgeräte überschneiden sich in zentralen Aspekten. Beide erfordern die Integration von
Anwendungen mit unterschiedlichen Anforderungen auf der gleichen Steuerungshardware,
unter Berücksichtigung der Safety und Security. Die Safety und Security in beiden Berei-
chen orientiert sich an bestimmten Standards.

14

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.2 Container-Technologien

2.2.2 Virtualisierung in der Luftfahrt

Virtualisierung wird auch in der Luftfahrt eingesetzt, um eine sichere Trennung von An-
wendungen zu gewährleisten. Abb. 2.6 zeigt ein Beispiel für eine solche Trennung zwischen
Anwendungen. ARINC 653 ist ein Hypervisor, der für diese Trennung eingesetzt wurde.

Abbildung 2.6: Virtualisierung in der Luftfahrt

2.2.3 Industrielle Automatisierung

Die Automatisierungspyramide bietet ein hierarchisches Ebenenmodell zur Kategorisierung
der Aufgaben und Funktionalitäten innerhalb eines Produktionssystems von den Feld- bis
zu den Geschäftsprozessen.

Die unterste Ebene stellt die Schnittstelle zu den Feldgeräten (Sensoren und Aktoren)
dar. Die zweite Ebene wird als Prozessleitebene bezeichnet. Sie umfasst die SPS-Systeme,
welche zur Implementierung der Prozessführungsanwendungen verwendet werden. Die drit-
te Ebene stellt Produktionsrezepte zur Verfügung und bietet Dienste, wie Scheduling, Pre-
dictive Maintenance und Ressourcenverwaltung an. Abschließend enthält die Enterprise
Resource Planning (ERP)-Ebene die Geschäftsprozesse. Die Kommunikation in der Auto-
matisierungspyramide erfolgt nur über definierte Schnittstellen zwischen den Ebenen [52],
[57].

Zukünftige Automatisierungssysteme erfordern jedoch eine hohe Vernetzung, um Ziele
wie Agilität zu erreichen. Aus diesem Grund wird die hierarchische Struktur der Automa-
tisierungspyramide in eine hoch vernetzte Architektur aufgelöst, so dass alle Komponen-
ten unabhängig von ihrem Automatisierungsgrad miteinander kommunizieren können. Die
Auflösung betrifft nur die Kommunikationsperspektive. Das bedeutet, dass die klassischen
Automatisierungsebenen weiter bestehen, während die Kommunikationsbeschränkungen
aufgehoben werden [15], [43], [108]. Das bedeutet, dass alle beteiligten Komponenten di-
rekt miteinander kommunizieren können. Die Vernetzung birgt neue Anforderungen an
prozessnahe Komponenten.

Die zukünftigen Automatisierungssysteme müssen kooperativer mit IT-Systemen agie-
ren. Die IT bietet Dienste zur Datenanalyse, Optimierung usw. an, während die Auto-
matisierungstechnik weiterhin ihre klassischen Aufgaben beibehält. Ein wichtiger Aspekt

15

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

dieser Kooperation ist die Überwachung des Informationsflusses. Hierzu stellte NAMUR
das Konzept einer Informationsdiode vor (NAMUR-Diode).

2.3 NAMUR Open Architecture

In der NAMUR Open Architecture (NOA) werden die Funktionen den Clustern Monitoring
and Optimization (M+O) und Core Process Control (CPC) zugeteilt [74]. CPC enthält
die klassischen Automatisierungsfunktionen. Sie sind direkt für die korrekte und sichere
Steuerung der Prozesse zuständig und dürfen nicht durch externe Einflüsse gestört wer-
den. M+O enthält alle Funktionen, die zur Optimierung und zum Management ergänzend
angeboten werden. Das NOA-Konzept ist in Abb. 2.7 dargestellt.

Central M+O

Engineering

HMI

DCS/PLC

Core Process ControlPlant Specific M+O

Alarm
Management

Advanced
Process
Control

Dispatching

…

Central
HMI

Scheduling
Advanced
Analytics

…

Verification of
Request

Fieldbus/Remote IO

OPC UA

Production Plant

Abbildung 2.7: NAMUR Open Architecture [74]

Das CPC in der NOA enthält die zentralen Automatisierungskomponenten der ersten
und zweiten Automatisierungsebene (wie SPSen, HMIs, DCS, Sensoren und Aktoren). Die
Anlagenspezifische M+O enthält IPCs, Edge-Devices und M+O Sensoren. In ihr werden
Informationen gespeichert, aggregiert, vorverarbeitet. Die Weiterverarbeitung der Infor-
mationen erfolgt in der zentralen M+O.
CPC und M+O kommunizieren über zwei verschiedenen Kommunikationsverbindun-

gen, die jeweils unterschiedliche Anforderungen haben. Diese Kommunikationsverbindun-
gen sind in Abb. 2.8 dargestellt.
Bei der Kommunikation zwischen der Automatisierung und der IT dürfen die Infor-

mationen in der Richtung von CPC nach M+O ungehindert fließen. Dies wird durch die
Einführung des Konzepts der NAMUR-Diode realisiert. Die Anforderungen an die Diode
wurden in [75] vorgestellt. Sie lauten wie folgt:

� Keine direkte Verbindung zwischen CPC und M+O

16

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.4 Speicherprogrammierbare Steuerungen

Core Process Control

Monitoring and Optimization

NAMUR-
Diode

Verification of
Request

Abbildung 2.8: Kommunikation zwischen CPC und M+O

� Informationsfluss nur von CPC zu M+O und nicht umgekehrt

� Keine Rückwirkung auf die CPC-Parameter

� Keine Konfiguration oder Parameter-Manipulation des CPC aus der M+O-Domäne
über die NAMUR-Diode

Nach dem Abruf und Verarbeitung der Daten in der M+O-Ebene wird ein Feedback
erzeugt. Dieses kann in einem eigenen streng überwachten Kanal in die CPC-Ebene
zurückgespielt werden (Verification of Request (VoR) in der Abb. 2.8). Die Integration
des Feedbacks muss auf sichere Weise durchgeführt werden. Die zurückgeführten Daten
müssen auf Plausibilität und Authentizität geprüft werden. Beispielsweise darf das Feed-
back keine Interlocks triggern. In [24] ist eine Komponente entworfen worden, welche das
Feedback vor der Integration validiert. Diese Validierung findet nicht nur beim Feedback
sondern auch darüber hinaus bei der deployten Komponenten statt.

2.4 Speicherprogrammierbare Steuerungen

Die SPS ist ein Gerät zur Steuerung eines Produktionssystems. Die Geschichte der SPSen
lässt sich bis auf das Jahr 1968 zurückverfolgen. Fest verdrahtete Relaistafeln wurden zu
diesem Zeitpunkt durch halbleiterbasierte sequentielle Logiksysteme ersetzt. SPSen beste-
hen jeweils aus Eingängen, Ausgängen und einem Betriebssystem (Abb. 2.9). Anwendungen
bestimmen die Beziehung zwischen den Eingängen und Ausgängen. Sie können über eine
Schnittstelle geladen werden. Darüber hinaus können sie hardwareunabhängig manipuliert,
programmiert und umprogrammiert werden. Abgesehen von der Prozessführung kann eine
SPS Laufzeitdaten überwachen, um je nach Anwendung die erforderlichen Maßnahmen zu
ergreifen, wie z.B. Alarmgenerierungen oder Starten und Stoppen anderer Prozesse [111],
[97].

2.4.1 Programmierung

Für SPSen wurden im Laufe der Zeit eine Vielzahl von Programmiersprachen entwickelt.
Anweisungslisten, Kontaktpläne, Funktionsbausteinsprachen, Ablaufsprachen und Struk-

17

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

ApplikationPC

SPS

CPU

Memory

Analog
Input

Module

Digital
Input

Module

Analog
Output
Module

Digital
Output
Module

Abbildung 2.9: SPS-Struktur

turierte Texte sind ein paar Beispiele für diese Programmiersprachen. Die genannten
Sprachtypen sind in IEC 61131-3 genormt, um eine standardisierte Programmierung für
SPSen zu ermöglichen. SPSen werden je nach Anwendungsgebiet mit unterschiedlicher An-
zahl von I/Os (binär oder analog), und zusätzlichen Funktionen, wie PID-Regler, Timer,
Zähler angeboten. Je nach Anzahl der I/Os und internen Fähigkeiten werden sie als Micro
SPS, Small, Medium und Large kategorisiert. SPSen, Industrie-PC (IPC)s und eingebettete
Systeme werden alle in der industriellen Automatisierung eingesetzt. Ihre Basisstrukturen
sind analog zueinander (Eingang, Ausgang und eine Logik). Im nächsten Abschnitt werden
diese miteinander verglichen.

2.4.2 Entwicklung der speicherprogrammierbaren Steuerungen

SPSen wurden entwickelt, um fest verdrahtete Regelkreise zu ersetzen. Die Änderung der
Steuerungsanwendung in solchen Regelkreisen erforderte zeitintensive Verfahren. Dies rief
die Entwicklung softwarebasierter Steuerungsprogrammierung hervor, so dass die Steue-
rung unabhängig von der Hardware manipuliert werden kann. SPSen ermöglichen dies
durch ihre Programmiersprachen wie Continuous Function Charts (CFC)s oder Sequential
Function Charts (SFC)s. Die SPSen wurden im Laufe der Jahre kontinuierlich weiterent-
wickelt, und an die ständig wachsenden Anforderungen der Produktionssysteme angepasst.
Die ersten Entwurfskriterien für SPSen wurden von der General Motors Corporation spe-

zifiziert. Diese Spezifikationen, die im Zusammenhang mit I3.0 betrachtet werden können,
sind nachstehend aufgeführt [91]:

� Einfach zu programmieren und umzuprogrammieren

� Niedriger Wartungsaufwand

� Betriebsfähig in der Anlagenumgebung

� Kompakt

� Kommunikationsfähig mit höheren Automatisierungsebenen

18

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.4 Speicherprogrammierbare Steuerungen

� Niedrige Kosten

Im Jahr 1980 haben viele Unternehmen damit begonnen, SPSen für ihre Anwendungsfälle
einzusetzen. In der Anfangszeit waren sie proprietäre und lokale Geräte. In den 90er Jah-
ren begann die Standardisierung von SPSen. Ethernet-Netzwerke und die Entwicklung von
Flash-Speichern waren die nächste Evolution der SPS-Systeme. Seit 1968 bis heute haben
sich die Anforderungen und Spezifikationen von SPSen geändert und die Hersteller von
SPSen haben versucht, die Technologie an die Fertigungsanforderungen dementsprechend
anzupassen. Darüber hinaus wurden im Laufe der Jahre auch die Programmiersprachen
der SPSen von der Leiterlogik zu den IEC 61131-3 Funktionsbaustein (FB)s und deren
Erweiterung IEC 61499 weiterentwickelt. Eins der wichtigsten Ziele in der SPS-Evolution
ist Flexibilität. Verschiedene Automatisierungsanforderungen haben im Laufe der Zeit eine
neue Flexibilitätsniveau von SPSen gefordert. Anforderungen wie die Optimierung von Fer-
tigungsprozessen, die Verkürzung der Time-To-Markt, die Massenproduktion in der dritten
Automatisierungsrevolution und die hohe Agilität in I4.0 haben alle im Laufe der Zeit zu
Neuinterpretationen des Begriffs Flexibilität geführt. Anfangs bezog sich Flexibilität auf
die Entwicklung von Methoden zur softwarebasierten Manipulation der Steuerung. Im Zu-
sammenhang mit I40 haben sich die Anforderungen an die Flexibilität drastisch geändert.
Flexibilität wurde durch Agilität ersetzt. Ein agiles Produktionssystem muss in der Lage
sein, auf Änderungen zu reagieren, die in der Entwurfsphase nicht berücksichtigt wurden.
Dies unterscheidet die Agilität von der Flexibilität. Die Anforderungen und die Spezifika-
tion von SPSen im Kontext von I4.0 werden im folgenden Abschnitt erörtert.

2.4.3 Neue Architekturen für speicherprogrammierbare Steuerungen

Aktuell werden einige neue Konzepte und Architekturen für SPSen definiert. Diese Ar-
chitekturen zielen darauf ab, die Flexibilität der SPSen zu erhöhen. Die Ansätze besitzen
unterschiedliche Schwerpunkte. Der Schwerpunkt kann zum Beispiel auf der Entwicklung
neuer Software-Architekturen, der Integration neuer Hardwarekomponenten, strukturellen
Änderungen des Programmierungsmodells (beispielsweise der Ansatz in [92]) oder der Ent-
wicklung von real-time Betriebssystemen für die eingebetteten Systemen liegen [54], [4].
Einer dieser Ansätze ist die virtuelle SPS (vPLC) [39]. Das Konzept der vPLCs wird in [26],
[38] erörtert. vPLCs werden als Anwendungen in einer Cloud implementiert und steuern die
physische SPS-Hardware mit Hilfe von Cloud-Diensten. vPLCs liefern die Steuerungsfunk-
tionen als Dienste an die Feldebene und steuern diese über das Netzwerk. Bei den vPLCs
im Netzwerk handelt es sich um unterschiedliche Steuerungslogiken, die mit der Hardware-
SPS kommunizieren. Dieses Konzept ist in Abb. 2.10 dargestellt. Beim Betrieb einer vPLC
ist die Security ein entscheidender Faktor, der berücksichtigt werden muss. Um die Secu-
rity des Produktionssystems zu gewährleisten und unberechtigte Zugriffe zu verhindern,
wird eine private Cloud eingesetzt. Die Anbindung einer SPS an eine öffentliche Cloud
kann zu Bedrohungen und unberechtigten Zugriffen führen. Ein ähnlicher Ansatz wurde in
[49] unter Verwendung von AMAZON-Diensten realisiert. Cloud-basierte Ansätze werden
auch im Bereich der Robotik verwendet. [23] setzt eine Cloud ein, um Steuerungsdienste
für Roboter bereitzustellen. [114] bietet einen Überblick über den Stand der Technik der
cloudbasierten Fertigung. Die Vor- und Nachteile der Cloud-basierten Strategie werden
in [2] diskutiert. Kosteneffizienz, unbegrenzter Speicherplatz, einfacher Zugang sind einige
Vorteile dieser Strategie. Die Security ist bei diesem Ansatz ebenfalls ein wichtiges Thema.

19

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

Virtual
PLC 1

Virtual
PLC n

Virtual Switch (vSwitch)

…

Virtual Interface

Private Cloud

PLC 1

I/O Devices

Sensor Actuator

…
I/O Devices

Sensor Actuator

Technical Process

Control Level

Field Level

Abbildung 2.10: Control as a Service [39]

Die vPLCs und Cloud-as-a-service Applikationen haben allerdings hohe Latenzen. Dieses
Problem wird in [82] geschildert. Eine Architektur basierend auf Miroservices wurde in
[33] vorgestellt. In ihr werden Container-Technologien für die Kapselung der Applikatio-
nen eingesetzt. Die vorgestellte Architektur in [36] stellt ein Gateway bereit, das die Geräte
mit der Cloud verbindet und die Rolle einer SPS spielt. Die Verbindung mit der Cloud
erfolgt über MQTT-Nachrichten oder virtuellen Instanzen. Eine cloudbasierte Architektur
namens soft-PLC wurde in [42] vorgestellt. Bei soft-PLC läuft die SPS als eine Software
in einer Cloud und empfängt Prozessdaten mittels OPC UA. Die Architektur ermöglicht
eine horizontale Skalierbarkeit. Der Nachteil dieser Methode ist die hohe Latenz zwischen
der Cloud und den Feldgeräten. Die in dieser Arbeit vorgeschlagene Architektur ist im
Gegensatz zu vPLCs keine cloudbasierte Architektur.

Eine weitere Strategie ist der Einsatz von Virtualisierungstechnologien. Die Herausfor-
derungen beim Einsatz von der Virtualisierung und Hypervisoren im Bereich der eingebet-
teten Echtzeitsysteme und Legacy-Systeme werden in [86], [20] diskutiert. Die Hypervisor-
Technologie bietet eine begrenzte Granularität [50]. Zukünftige Automatisierungssysteme
müssen so gestaltet werden, dass sie eine höhere Granularität bieten. Um dieses Problem
zu überwinden, wurde in [41] ein Ansatz zur Erhöhung der Flexibilität von SPSen auf der
Grundlage der Container-Technologien vorgestellt. Dabei werden Container-Technologien
eingesetzt, um neue Funktionen auf die SPS herunterzuladen. Der Schwerpunkt der Ar-
chitektur liegt auf der Containerisierung und dem Containermanagement, sowie dem
Container-Deployment (Funktionalitäten). Die Virtualisierung mit Hilfe von Container-
Technologien ist eine Grundlage für diese. Abb. 2.11 stellt die diskutierte Architektur dar.
Wie gezeigt, können verschiedene Anwendungen wie z.B. IEC 61131-Anwendungen von
einem Container-Deployer auf die SPS heruntergeladen werden. Ein Container-Registry
stellt eine Liste aller Container bereit. Die Ressourcen werden vor dem Deployment von
einem Deployment-Koordinator auf Verfügbarkeit analysiert.

20

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.5 Digitale Zwillinge und Verwaltungsschalen

Sensors &
Actuators

Other
Devices

System Resource

PB 61113 …

System Device Access

Container
Deployer

Configuration
Manager

Resource
Manager

Deployment
Coordinator

Container Registry

Abbildung 2.11: Multi Purpose Controller

Vorgeschlagene Architektur in dieser Arbeit und eigene Vorarbeiten

Die Grundlage der vorgeschlagenen Architektur wurde in [8] vorgestellt. Diese Architek-
tur kombiniert Container- und Hypervisor-Virtualisierungsmethoden zur Erreichung der
beiden wesentlichen Aspekte: strikte Trennung und dynamisches Deployment der Anwen-
dungen zur Laufzeit. Ein weiteres Merkmal der Architektur ist der Entwurf eines Verwal-
tungssystems, das lokale Komponentenverwaltungsdienste anbietet. Diese Dienste bestehen
unter anderem aus Kommunikationsdiensten (beispielsweise zwischen Anwendungen un-
terschiedlicher Kritikalität), Deploymentdiensten und Ressourcenzuteilungsdiensten. Die
genannten Dienste und ihre relevanten Konzepte wurden in folgenden Veröffentlichungen
erläutert. In [69] und [11] wurde die Realisierung einer rückwirkungsfreien Kommunikation
basierend auf dem NAMUR-Diode-Konzept diskutiert. Dabei wurde eine unidirektionale
FIFO-Kommunikation (Queue) für die Realisierung der rückwirkungsfreien Kommunika-
tion eingesetzt. In [11] wurde die Validierung der deployten Komponenten vor Inbetrieb-
nahme in den Fokus gestellt. Die vorhandenen Anwendungen können einen dynamischen
Bedarf an Hardwareressourcen haben. Daher wurde in [10] eine dynamische Ressourcen-
zuteilung für die vorhandenen Anwendungen erläutert.

2.5 Digitale Zwillinge und Verwaltungsschalen

Simulationen haben sich im Laufe der Zeit zu Systemassistenten für den ganzen Lebens-
zyklus der Anlage entwickelt (Abb. 2.12). Das Konzept eines Digital Twin (DT)s wurde
erstmals durch die Technologie-Roadmap der NASA vorgestellt [93]. Das Ziel von DT
ist die Abbildung der verschiedenen Aspekte des Automatisierungssystems in die Infor-
mationswelt. Ein DT beinhaltet die Simulationsmodelle, Interaktionen und Schnittstellen
eines Assets [5], [60]. Das DT-Konzept besteht aus drei Teilen, nämlich der physischen
Welt, der virtuellen Welt und einer echtzeitfähigen Kommunikation zwischen diesen. Ein

21

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

DT kann für die Datenanalyse, die Optimierung und Fehlerdiagnose verwendet werden
[45], [67]. Um die Vorteile eines DT nutzen zu können, muss ein Interaktionsmodell zwi-
schen der Prozessführung und dem DT entwickelt werden. Die Entwicklung der Paradigmen
der Herstellungsprozesse, sowie des proaktiven Manufacturing ist in [115], [119] diskutiert.
Proaktives Manufacturing entspricht einem neuen Nutzungsgrad der Daten im Fertigungs-
system. Die erste Stufe in dieser Entwicklung war die passive Strategie. In dieser Stufe
wurden die Daten manuell gesammelt. Für die Verwaltung der Daten wurden die tradi-
tionellen Datenbanken eingesetzt. Traditionelle Datenbanken konnten die Anforderungen
der kleinen Datenmengen erfüllen. In der zweiten Stufe wurde die Echtzeitdatenerfassung
mittels RFID (Radio Frequency Identifikation), Barcodes, Ethernet, drahtloser Netzwer-
ke usw. realisiert. In der nächsten Stufe wurden die Machine-Learning-Applikationen und
künstliche Intelligenz (beispielsweise data mining, cloud computing und neuronale Netz-
werke) eingesetzt, um das Systemverhalten vorhersagen zu können. Beispielsweise für diese
sind predictive maintanence und predictive quality. In der aktuellen Stufe ist das Ferti-
gungssystem in der Lage, anhand zur Verfügung stehender prädikativer Informationen,
autonome Entscheidungen zu treffen. In der aktuellen Stufen spielt DT eine sehr wichtige
Rolle. Er wird eingesetzt, um eine ausführliche Beschreibung (Verhalten, Eigenschaften,
Funktionen usw.) der physischen Entitäten bereitzustellen. In den folgenden Abschnitten

Individual
Application

Simulation is limited to
very specific topics by

experts, e.g. mechanics
1960+

Simulation
Tools

Simulation is a standard
Tool to answer specific
design and engineering

questions, e.g. fluid
dynamics 1985+

Simulation-based
System Design

Simulation allows a

systematic approach to
multi-level and

disciplinary systems
with enhanced range
of applications, e.g.

model based systems
engineering

2000+

Digital Twin

Simulation is a core
functionality of systems
by means of seamless
assistance along the
entire life cycle, e.g.
supporting operation
and service with direct
linkage to operation data

2015++

Abbildung 2.12: Entwicklung der Simulation [17]

werden verschiedene Anwendungen eines DT erläutert.

2.5.1 Digitaler Zwilling als Validierungskomponente

Die Validierung der Prozessführung kann in vier verschiedenen Systemkonfigurationen er-
folgen:

Reale Anlage und reales Steuerungssystem Dabei handelt es sich um die traditionellen
Automatisierungssysteme. Test und Verifikation werden in diesen Systemen während des
realen Prozesses durchgeführt.

22

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.6 Laufzeitumgebungen

Hardware-in-the-Loop Bei der Hardware in the Loop-Technologie wird ein reales einge-
bettetes System über seine I/Os mit einer Nachbildung der realen Umgebung des Systems
verbunden. Damit soll eine Plattform für Tests des Automatisierungssystems bereitgestellt
werden. Dies ermöglicht das Austesten der entwickelten Software auf der Zielhardware mit-
tels eines Hardware-Emulators [89], [12], [99].

Software-in-the-Loop Im Gegensatz zu Hardware-in-the-Loop wird bei der Software in
the Loop-Technologie keine bestimmte Hardware verwendet [87]. Das bedeutet, dass die
entwickelte Software nicht auf der Zielhardware, sondern auf einem Entwicklungsrechner
getestet wird.

In dieser Arbeit wird, für die Validierung der deployten Komponenten und Optimie-
rungsvorgänge eine Umgebung für Software-in-the-Loop-Tests eingesetzt. Die Software in
the loop Applikation läuft auf der gleichen Hardware, wie die Prozessführungsapplikation.

2.5.2 Digitaler Zwilling für Beobachtung und Optimierung

Der Begriff des Beobachters ist aus der Regelungstechnik bekannt. Eine der Beobach-
tungsmethoden in der Regelungstechnik wird von Luenberger vorgestellt. Der so genannte
Luenberger Beobachter besteht aus der Parallelschaltung eines Beobachters und eines Sy-
stemmodells. Dabei wird die Differenz der Zustandswerte an das Systemmodell geschickt.
In dieser Arbeit zielt der Beobachter darauf ab, die Abweichung zwischen den Prozesswer-
ten und den erwarteten Werten zu erkennen. Der Beobachter läuft parallel zum Prozess
und überwacht sein Verhalten. Dies benötigt ein Simulationsmodell das prozessparallel
laufen kann. Stehen solche Prozessmodelle zur Verfügung, dann können sie auch für eine
prozessbegleitende Optimierung eingesetzt werden.

Verwaltungsschale

Die Verwaltungsschale (standardisiert in [30]) ist eine digitale Darstellung eines Assets
während seines Lebenszyklus [109], [18], [77]. Das Ziel der Verwaltungsschale ist es konsi-
stente Informationen über das Asset bereitzustellen. Beispielsweise kann die Verwaltungs-
schale einer Bohrmaschine u.a. Informationen über Hersteller, Drehgeschwindigkeit, Bohr-
tiefe enthalten. Die Verwaltungsschale ermöglicht sowohl eine einheitliche Informations-
modellierung als auch eine einheitliche Schnittstelle für den Zugriff auf die Daten. Verwal-
tungsschale und Asset bilden zusammen eine I40 Komponente. Der Begriff überlagert sich
heute in weiten Bereichen mit dem Begriff des DT [110].

2.6 Laufzeitumgebungen

Laufzeitumgebungen sind die Grundlage für die Entwicklung und Ausführung von Mo-
dellen und Anwendungen in der Prozessautomatisierung. Eine der Hauptkomponenten
der Laufzeitumgebungen in automatisierungstechnischen Anwendungen sind die FBs. Ein
anwendungs- und herstellerneutraler Ansatz zur Modellierung und Beschreibung von Lauf-
zeitumgebungen wird in [47] vorgestellt.

23

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

Dynamische Laufzeitumgebungen

Der Automatisierungsprozess ist in zwei Phasen unterteilt, nämlich der Entwicklung und
dem Engineering. Diese Phasen sind in Abb. 2.13 dargestellt. In der Entwicklungsphase
werden neue FB-Typen implementiert [118]. Die Implementierung kann dabei in verschie-
denen Programmiersprachen durchgeführt werden. Die Engineering-Phase umfasst die In-
stanziierung, Konfigurierung und Verbindung von FBs zum Aufbau von Sequential State
Charts (SSC)s und CFCs. Dynamische Laufzeitumgebungen bieten die Möglichkeit, die
Prozessführungsanwendung auch während der Laufzeit zu manipulieren. Im Folgenden
werden einige Technologien für Laufzeitumgebungen besprochen.

Laufzeit

• C

• Skript

• Sprachen

• ST

• …

Offline

Entwicklungsumgebung Laufzeitumgebung

.

. c
Typen

Entwicklung Engineering

Abbildung 2.13: Dynamische Laufzeitumgebungen [34]

ACPLT/RTE

Die Open-Source-Laufzeitumgebung ACPLT/RTE (Aachener Prozessleittechnik Runtime
Environment) wird am Lehrstuhl für Prozessleittechnik der RWTH Aachen entwickelt.
Sie wird bereits in diversen Forschungs- und Industrieprojekten eingesetzt. Sie verfügt
über ein eigenes Objektmanagementsystem und ein Metamodell, mit dessen Hilfe Objek-
te innerhalb des Systems erstellt werden können [70]. Die Kommunikation von Objekten
und Metadaten wird durch das Kommunikationsprotokoll ACPLT/KS (Kommunikations-
system) oder Open Platform Communications Unified Architecture (OPC UA) realisiert
[1], [53]. Das Objektmanagementsystem bietet ein, in ANSI C implementiertes, Object
Oriented (OO)-Framework. Bekannte Features der OO-Programmierung wie Vererbung,
Aggregation, Klasse werden von ACPLT/OV zur Verfügung gestellt. OV stellt eine Ba-
sisklasse von Objekten, die von Benutzern erweitert werden können, bereit. Jede Klasse
gehört zu einer Bibliothek und besteht aus Variablen und Operationen. Die während der
Entwicklungsphase in ACPLT/OV definierten Klassen können im OV-Laufzeitsystem in-
stanziiert werden. Die instanziierten Klassen können verwendet werden, um gewünschte
Anwendungen zu implementieren. Der ausführbare Code enthält die Metainformationen.
Dies ermöglicht den Zugriff auf die Klassenschnittstellen während der Laufzeit, so dass
eine Manipulation von Objekten während der Laufzeit möglich ist.

24

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2.6 Laufzeitumgebungen

ACPLT/KS ACPLT/KS ist das Kommunikationssystem von ACPLT/RTE. Dieses Kom-
munikationssystem verwendet Transmission Control Protocol (TCP)/IP als Grundlage und
bietet zusätzlich Dienste wie getVar (um einen Wert aufzurufen), setVar (um einen Wert
zu definieren).

4DIAC FORTE

4Diac (The Framework for Distributed Industrial Automation and Control) ist ein Eclipse-
Projekt, das eine Open-Source-Entwicklungs- und Laufzeitumgebung hervorgebracht hat.
Diese Laufzeitumgebung ist IEC 61499-kompatibel [95]. Der modulare Aufbau von 4diac
ermöglicht das Laden von Add-ons als Bibliotheken. Es unterstützt diverse OSs wie eCos,
Cygwin und Linux und bietet eine ereignisbasierte Anwendungsentwicklung. Außerdem
bietet 4diac eine erweiterbare Kommunikationsschicht zur Bereitstellung einer flexiblen
Kommunikationsinfrastruktur. Es unterstützt verschiedene Kommunikationsprotokolle wie
Ethernet, OPC UA und MQTT.

2.6.1 Industrie-PCs und eingebettete Systeme

Die eingebetteten Systeme und IPCs werden zunehmend im industriellen Bereich einge-
setzt. Sie bringen viele Vorteile wie Robustheit, niedrige Preise, Effizienz etc. mit sich.
Ähnlich wie eine SPS bestehen auch sie jeweils aus einer CPU, Speicher, Kommunikations-
modulen und I/O-Modulen. Es bestehen jedoch einige Unterschiede zwischen ihnen. Die
Unterschiede sind unten aufgeführt [79]:

� Modularität: SPSen sind modular aufgebaut. Die Module einer SPS können nach
Bedarf durch andere Module ersetzt werden.

� Programmiersprache: Die Programmiersprachen der SPSen basieren auf FBs. Ein-
gebettete Systeme werden in höheren Programmiersprachen wie C oder C++ pro-
grammiert.

� Safety: SPSen bieten Kommunikationskanäle zur Überwachung der Vorgänge.

� Robustheit: SPSen haben keine beweglichen Komponenten. Dies ermöglicht den
dauerhaften Betrieb in der Anlagenumgebung.

� Operation: SPSen besitzen ein eingebettetes RTOS. Sie erfüllen die Echtzeitanfor-
derungen der Prozessführung. Sie sind für die Prozessautomatisierung konzipiert und
laufen ohne weitere Dienstprogramme oder System-Updates.

� Kosten: SPSen sind kostenintensiver als eingebettete Systeme und IPCs.

� Zertifizierung: Ein weiterer Faktor betrifft die Zertifizierung. In vielen Projekten
wird zertifizierte Hardware benötigt. In diesen Fällen haben SPSen gegenüber einge-
betteten Systemen einen Vorteil.

2.6.2 Betriebsmittel und Maßnahmenmodell

Das Betriebsmittel und Maßnahmanmodell wurde in [68] vorgestellt. Dieses Modell be-
schreibt eine hierarchische Prozesssteuerung, bei der jede Ebene eine bestimmte Funktio-
nalität aufweist. Die Hierarchie besteht aus folgenden Ebenen (Abb. 2.14):

25

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

Einzelsteuereinheiten enthalten die Steuerlogik einzelner Aktoren wie Ventile und Pum-
pen.

Gruppensteuereinheiten werden benutzt, um Einzelsteuereinheiten (ESE)s gemäß Re-
zepten zu orchestrieren.

Maßnahmen sind Produktionsrezepte.

M MM
Einzelsteuer-
einheiten

Gruppensteuer-
einheiten

Maßnahmen

Warten In Bearbeitung Fertig

Maßnahme 3 Maßnahme 2 Maßnahme 1

Abbildung 2.14: Steuerungshierarchie

Die Flexibilität in dieser Architektur basiert auf den Maßnahmen, welche dynamisch
instanziiert und ausgeführt werden können.

26

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

3 Anforderung an zukünftige
Automatisierungssysteme

3.1 Anforderungen

In diesem Kapitel werden die Anforderungen der zukünftigen Automatisierungssysteme,
die in der vorgeschlagenen Architektur berücksichtigt werden, vorgestellt. Diese Anforde-
rungen zielen darauf ab, die Vernetzung und Agilität der Steuerungssysteme zu erhöhen.
Im Zuge der Digitalisierung müssen auch die SPS-Systeme in das I4.0 Produktionsumfeld
integriert werden [61]. Die Vernetzung und das Zusammenspiel von IT und OT ändern auch
die Anforderungen an SPS-Systeme. Diese Anforderungen können allgemein, wie folgt auf-
gelistet werden:

� Leistungsfähige Übertragung von Feld- und Automatisierungsdaten an überlagerte
Anwendungen

� Prozessbegleitende Optimierung und Überwachung

� Effiziente interne Kommunikation

� Lokale Komponentenverwaltung

� Dynamisches Komponentenmanagement

� Explizite Verwaltung und Sicherstellung von QoS-Eigenschaften

Unabhängig von diesen zusätzlichen Aufgaben müssen die prozessbezogenen Komponenten
ihre klassischen Management- und Prozessführungsaufgaben weiterhin zuverlässig und si-
cher erfüllen. Auch die für sie eingeführten Engineering- und Instandhaltungsmaßnahmen
sollen in gewohnter Weise weiter möglich sein. Die aufgelisteten Anforderungen werden in
den nächsten Abschnitten ausführlicher erörtert.

3.2 Leistungsfähige Übertragung von Feld- und
Automatisierungsdaten an überlagerte Anwendungen

Die Übertragung von Feldinformationen in die Cloud (z. B. eine zentrale Optimierungs-
einheit) stellt eine Basis für weitere Optimierungen und datenbasierte Entscheidungen in
Automatisierungssystemen bereit. Allerdings muss dies mit einer sicheren Methode er-
folgen. Das bedeutet, dass durch diese Kommunikation keine Konfiguration- oder Para-
meteränderungen in der Prozessführung möglich werden darf. Die Informationen dürfen
nur in eine Richtung, nämlich von Applikationen höherer Kritikalität (Prozessführung) zu

27

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

3 Anforderung an zukünftige Automatisierungssysteme

Applikationen niedrigerer Kritikalität (IT) fließen. Für diese Kommunikation gelten die
Anforderungen der NAMUR-Diode. Abb. 3.1 stellt den unidirektionalen Informationsaus-
tausch zwischen der Automatisierungstechnik und einer Cloud auf Basis der NAMUR-
Diode dar [69], [11]. Die Realisierung dieses Konzeptes wird im weiteren Verlauf dieser
Arbeit erläutert. Diese Kommunikation muss bestimmte Anforderungen erfüllen:

Prozessführung

Process
optimization

Predictive
Maintenance

Predictive
Quality

…

…

Cloud-Interface

Abbildung 3.1: Übertragen von Feldinformationen

� Rückwirkungsfrei: Die Kommunikation darf die Echtzeitfähigkeit, Verfügbarkeit
und weitere wichtige Anforderungen des Systems nicht beeinflussen.

� Bandbreitig: Die Kommunikation muss die Übertragung einer großen Menge an
Daten ermöglichen.

� QoS-Eigenschaften: Die Kommunikation muss verschiedene QoS-Eigenschaften,
beispielsweise Publish/Subscriber oder eine zyklische Übertragung der Daten, anbie-
ten können.

3.3 Prozessbegleitende Optimierung und Überwachung

Während früher Simulation extern in speziellen Systemen realisiert wurde, geht heute der
Trend dahin, Simulationsaufgaben modular in der Prozessumgebung zu realisieren. Die
DT-Architektur unterstützt diese Vorgehensweise. Die Entwicklungen auf dem Gebiet der
Simulation wurden in Kap. 2 erwähnt. Die neueste Generation von Simulationen wird
digitaler Zwilling (DT) genannt. DT kann als eine Basis für Prozessoptimierungen, pre-
dictive maintenance und Fehlerdiagnosen verwendet werden. Dafür muss jedoch die Pro-
zessführung mit dem DT interagieren können. Die Interaktion benötigt eine Infrastruktur,
die eine sichere und echtzeitfähige Kommunikation mit dem DT erlaubt. Darüber hin-
aus muss eine modulare Infrastruktur für diverse Simulationsmodelle ermöglicht werden,
welche zusammen agieren und Co-Simulationen realisieren. Die Anforderungen für eine
Interaktion mit einer prozessparallelen Simulation können wie folgt gelistet werden:

� Eine strikte Trennung zwischen der Prozessführungsapplikation und der parallelen
Simulation

28

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

3.4 Effiziente interne Kommunikation

� Eine echtzeitfähige Kommunikation zwischen der Prozessführungsapplikation und der
parallelen Simulation

� Eine Infrastruktur für die Verwaltung und Ausführung von Simulationsmodellen.

3.4 Effiziente interne Kommunikation

Neue Anwendungen zur Datenanalyse, Optimierung, predictive maintenance erfordern eine
breitbandige Anbindung an die Messung und Prozessführung. Mit der KAS-Architektur
ergibt sich die Möglichkeit, diese Module – oder zumindest die notwendigen breitbandig
anzubindenden Vorverarbeitungsmodule – auf einer Hardware zu konzentrieren. Damit
steht die Effizienz der KAS-internen Komponenten-Komponenten-Kommunikation im Fo-
kus. Diese Kommunikation muss einen minimalen Bedarf an Infrastruktur aufweisen, damit
die Skalierbarkeit nicht eingeschränkt wird.

3.5 Lokale Komponentenverwaltung

Eine wesentliche Grundlage zur Erhöhung der Flexibilität und Agilität einer Automatisie-
rungslösung ist die Möglichkeit das Komponentensystem in der Betriebsphase zu modifizie-
ren. Dazu wird ein aktives Komponentenverwaltungssystem in der Betriebsphase benötigt.
Aus Sicherheits- und aus Standardisierungsgründen (Zielsystemunabhängigkeit) fordert die
KAS-Architektur ein lokales Verwaltungssystem, das die Komponentenverwaltungsdien-
ste als Standarddienste anbietet. Darüber hinaus benötigt die Realisierung verschiedener
Vorgänge wie das Deployment, die Kommunikation, die Ressourcenverwaltung eine ent-
sprechende Orchestrierung der beteiligten Komponenten. Diese wird ebenfalls vom lokalen
Verwaltungssystem durchgeführt. Komponenten haben je nach Anwendungsfall und Rol-
le unterschiedliche Mächtigkeit. Der Begriff Komponente umfasst in der I40-Terminologie
sowohl physische Komponenten, als auch nicht-physische Komponenten wie z. B. Soft-
warekomponenten. Technische Komponenten sind vordefinierte, in sich geschlossene und
individuell handhabbare Einheiten, die eine konkrete Rolle in einem technischen System
erfüllen [94]. In der KAS Architektur versteht man unter Komponenten die nicht physi-
schen Komponenten der Komponentenhierarchie:

� Funktionsbaustein und Prozessführung als Komponente

� Container als Komponente

� Partition als Komponente

Funktionsbaustein und Prozessführung als eine Komponente

Funktionsbausteine wurden in IEC 61131-3 und IEC 61499 standardisiert. Sie bestehen
aus Eingängen, Ausgängen und einer internen Funktion (Logik), die das Verhalten des FB
bestimmt. Sie können miteinander verbunden werden, um komplexe Funktionsblockdia-
gramme zu erstellen. In klassischen Leitsystemen sind die FBs gekapselt und können als
Komponenten gehandhabt werden.

29

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

3 Anforderung an zukünftige Automatisierungssysteme

Im letzten Kapitel wurde eine komponentenbasierte Hierarchie für die Prozessführung
vorgestellt. Diese Steuerungshierarchie besteht aus ESEs und Gruppensteuereinheiten
(GSE)s, die wiederum als Prozessführungskomponenten betrachtet werden. Diese Kom-
ponenten bieten unterschiedliche Fähigkeiten und nehmen unterschiedliche Rollen ein.
Sie können entsprechend den erforderlichen Rollen und Fähigkeiten erstellt und mitein-
ander verknüpft werden. Wenn die Rolle in der Prozessführung nicht mehr erforderlich
ist, wird die Komponente gelöscht. Abb. 3.2 zeigt die interne Architektur einer Pro-
zessführungskomponente. Die interne Architektur enthält unterschiedliche Fahrweisen und
Fähigkeiten sowie vier verschiedene Zustände.

Kommandoeingang

Zustände Fahrweisen

Abbildung 3.2: Prozessführungskomponente [46]

Container als eine Komponente

Containertechnologien wurden im Abschnitt 2 vorgestellt. Die Container müssen ebenfalls
verwaltet werden, um das Produktionsziel zu erfüllen. Es existieren bereits einige Softwares
zur Verwaltung von Containern, wie z.B. Kubernetes [21].

Partition als eine Komponente

Neben Docker-Containern müssen auch Hypervisor-Partitionen verwaltet werden. Diese
werden ebenfalls als Komponenten betrachtet. Die Hypervisor Partitionen hosten die Con-
tainer und FBs und bilden auf dieser Weise die unterste Ebene der Komponenten.

Zusammenfassung

Das Ziel ist ein Verwaltungssystem zu konzipieren, das diese Komponente verwaltet und
orchestriert. Die Anforderungen an dieses Verwaltungssystem können wie folgt aufgelistet
werden. Das Verwaltungssystem muss:

30

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

3.6 Dynamisches Komponentenmanagement

� lokale Komponentenverwaltungsdienste (create, read, update und delete),

� Dienste für die Verwaltung der Kommunikation zwischen Komponenten,

� Dienste für das Deployment neuer Komponenten und

� Dienste für die Ressourcenverwaltung anbieten.

3.6 Dynamisches Komponentenmanagement

Das dynamische Deployment zur Laufzeit erhöht die Fähigkeit des Systems, dynamisch
auf Veränderungen und Anforderungen zu reagieren. Es ist dabei wichtig zwischen den
folgenden Begriffen zu unterscheiden:

� Deployment: Als Deployment wird der Vorgang der Zuweisung einer Software-
Einheit an einen Rechenknoten bezeichnet.

� Redeployment: Das Redeployment ist die Verlagerung einer Software von einem
Rechenknoten auf einen anderen.

Die Ausstattung der Prozessführungsapplikation mit einem dynamischen Deploymentssy-
stem erhöht die Agilität und Anpassbarkeit des Systems. In der KAS-Architektur können
sowohl Container als auch FBs dynamisch deployt werden. Die Partitionen werden in der
Engineeringphase statisch angelegt.
Für den Deploymentvorgang müssen die folgenden Vorbedingungen erfüllt sein:

� ID: Die Komponenten müssen eindeutig identifizierbar sein.

� Erforderliche Ressourcen: Die Ressourcen zur Ausführung der Komponente
müssen auf der Hardware vorhanden und verfügbar sein.

� Validierung: Die deployten Komponenten müssen vor der Integration in die opera-
tive Ausführung validiert werden.

3.7 Explizite Verwaltung und Sicherstellung von
QoS-Eigenschaften

Die Komponenten haben gemäß ihrer Aufgaben verschiedene Anforderungen an ihren
QoS. Dazu zählen z.B. Anforderung an Verfügbarkeit, Echtzeit, Integrität. Beispielsweise
haben die Komponenten, die in der Prozessführung (ähnlich wie CPC in der NAMUR-
Architektur) eingesetzt sind, eine sehr hohe Anforderung an Verfügbarkeit. Bei einer Op-
timierungsapplikation hingegen ist dies nicht der Fall. Die Partitionen besitzen gemäß der
Anwendungen, welche sie kapseln, unterschiedliche Fähigkeiten, Eigenschaften und Zu-
griffsrechte. Diese können in die folgenden Kategorien unterteilt werden:

� Integrität: Die Anwendungen können unterschiedliche Safety oder Securitynive-
aus haben. Im Safetybereich können die Anforderungen z. B. unterschiedlichen SIL-
Ebenen entsprechen.

31

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

3 Anforderung an zukünftige Automatisierungssysteme

� Echtzeitfähigkeit: Die Anwendungen, die eine Anforderung an Echtzeit haben,
können in einer Partition gekapselt werden, die mit einem echtzeitfähigen Betriebs-
system ausgestattet ist. Echtzeitfähigkeit kann sowohl für die Ausführung der Pro-
zesse als auch für die Kommunikation zwischen den Komponenten definiert werden.
Dafür können die angeforderten Jitter-Bereiche für die Ausführung der Prozesse oder
Deadlines für die Übertragung der Daten definiert werden.

� Zugriffsrechte: Die Partitionen haben gemäß ihrer Anwendungen unterschiedliche
Zugriffsrechte und Treiber. Die Zugriffsrechte beinhalten u.a. den Zugriff auf:

– I/O-Geräte (Bus-System): Nur die Partitionen, die ein Zugriffsrecht auf
I/O-Geräte haben, können auf diese zugreifen.

– Scheduling-Tabelle und Memory Management Unit (MMU): Die Par-
titionen, die einen Zugriff auf Scheduling-Tabelle und MMU haben, können das
Schedulingsschema der Hardware-Ressourcen ändern.

– Kommunikationsverwaltungschnittstelle: Die Partitionen, die einen Zu-
griff auf die Kommunikationsverwaltungschnittstelle haben, können die Kom-
munikationsverbindungen zwischen vorhandenen Komponenten verwalten.

– Kommponentenverwaltungsschnittstelle: Die Partitionen, die einen Zu-
griff auf die Kommponentenverwaltungschnittstelle haben, können die vorhan-
denen Komponenten verwalten (beispielsweise, aktivieren und deaktivieren).

Dabei können auch weitere Zugriffsrechte, wie der Zugriff auf GPU, zusätzlichen
Speicher, Speicherdirektzugriff, Cloud-Schnittstelle im Betracht gezogen werden.

� Fähigkeiten: Die Partitionen können unterschiedliche Fähigkeiten besitzen. Die
Fähigkeiten umfassen Read/Write-Rechte auf andere Partitionen, das Neustarten,
die Aktualisierung und die Ausschaltung anderer Partitionen.

Alle Komponenten müssen den für sie relevanten QoS-Eigenschaften als Standardattribut
zugeordnet sein. Die Partitionen müssen zeigen, welche QoS-Eigenschaften sie unterstützen
können.

32

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

4.1 Allgemeine Architektur

In diesem Kapitel wird eine Architektur vorgestellt, die als komponentenbasierte Archi-
tektur für Automatisierungssysteme (KAS) bezeichnet wird. In der KAS-Architektur wer-
den die Anwendungen in Komponenten gemäß ihrer Anforderungen, Quality of Service
(QoS)-Eigenschaften und Abhängigkeiten gekapselt. Die Architektur erlaubt eine strikte
Trennung der Komponenten in verschiedenen virtuellen Umgebungen, so dass das Aktua-
lisieren, Zurücksetzen oder auch Modifizieren einer Anwendung den Betrieb anderer An-
wendungen in anderen Komponenten nicht beeinflussen kann. Die KAS-Architektur sieht
eine Kapselung durch Komponenten auf drei unterschiedlichen Ebenen vor:

� der Kapselung in Partitionen

� der Kapselung in Containern

� der Kapselung in FBs

4.2 Komponentenhierarchie

Abb. 4.1 stellt die KAS Komponentenhierarchie formal dar. Die unterste und für das KAS-
System wesentliche Kapselung ist die Kapselung in Partitionen. Eine Partitionen kann eine
Anwendung beinhalten oder diverse Container (z. B. Docker Container), die jeweils wie-
der eine Anwendung oder ein FB-System kapseln. Die Kapselung in Containern bildet
die nächste Komponentenebene. Die Container können eine Anwendung beinhalten oder
diverse FBen, welche zusammen die Anwendung bilden. Die FBen bilden die nächste Kom-
ponentenebene. Alle drei Varianten können beliebig gemischt auf einer Hardwareplattform
betrieben werden. Abb. 4.2 stellt diese Aufbaumöglichkeiten dar.
Die KAS-Architektur besteht grundsätzlich aus einem Verwaltungspartition, einer

Interface-Partition und diversen Anwendungspartitionen. Die Verwaltungspartition bein-
haltet ein Verwaltungssystem, das die Komponenten (Funktionsbausteine (FB), Pro-
zessführungskomponenten (PF), Container und Partitionen) gemäß den Anforderungen
orchestriert. Die Interface-Partition ist die einzige Partition, die mit überlagerten Anwen-
dungen kommunizieren darf. Die KAS-Architektur kann eine beliebige Anzahl an Anwen-
dungen beinhalten. Diese Anwendungen können, abhängig von der industriellen Domäne,
unterschiedliche Funktionalitäten anbieten. Das Verwaltungssystem und die Interface-
Partition werden in den nächsten Abschnitten detaillierter erläutert.
Der Hypervisor stellt eine Abstraktionsschicht zwischen der Hardware und den Partitio-

nen bereit. Auf diese Weise reduziert er die Abhängigkeit zwischen Software und Hardware.

33

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

Hardware

Hypervisor

1

1..*

Partitionen

Anwendung

Container

1..*

PF FB

* ** * *
Komponenten

Ebene 3

Komponenten
Ebene 2

Komponenten
Ebene 1

Verwaltungspartition

Container
Manager

Partition
Manager

FB-Manager

1

1

1

Verwaltet

Verwaltet

Verwaltet

Verwaltet

enthält

Abbildung 4.1: Metamodell der Komponentenhierarchie

Partitionen stellen den übergeordneten Komponentensystemen und Anwendungen eine vir-
tuelle Umgebung (VM) zur Verfügung. Diese ist gekennzeichnet durch ihre QoS und ihre
Abhängigkeiten:

� QoS: wie beispielsweise Verfügbarkeit, Echtzeitfähigkeit und Sicherheitsanforderun-
gen

� Abhängigkeiten: wie beispielsweise Betriebssystem, Bibliotheken, Treiber und Zu-
griffsrechte auf I/Os.

4.2.1 Kommunikation zwischen den Partitionen

Das KAS-System sieht eine strenge Regulierung und Überwachung der Kommunikations-
kanäle zwischen den Partitionen vor. Prinzipiell stehen folgende Kommunikationsformen
zur Verfügung:

34

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4.2 Komponentenhierarchie

Partition 1

OS

Hypervisor

Hardware

Container Container

Partition 2

OS

App

Partition 3

OS

…

FB

App

FB

AppFB

App

App

Abbildung 4.2: Interner Aufbau der Partitionen

Kommunikationsform 1: Unidirektionale echtzeitfähige Übertragung von Telegrammen
von einem Senderport an einen Empfängerport. Diese Kommunikationsart ist eine syn-
chrone Kommunikation, die aus folgenden Komponenten besteht:

� Senderports: Die Senderports können nur für das Senden der Daten verwendet wer-
den.

� Empfängerports: Die Empfängerports werden eingesetzt, um Daten zu empfangen.

� Verbindungen: Die Verbindungen realisieren Kommunikationskanäle zwischen
Sender- und Empfängerports für den Datenaustausch.

Partition 1 Partition 2

Senderport 1

Senderport 2

Empfängerport 1

Empfängerport 2

Abbildung 4.3: Unidirektionale Kommunikation

Abb. 4.3 stellt zwei Partitionen, die mittels Ports kommunizieren dar. In dieser Dar-
stellung hat die Partition 1 zwei Senderports und die Partitionen 2 zwei Empfängerports.
Diese sind durch Verbindung 1 und 2 miteinander verbunden.

Kommunikationsform 2: Die Komponenten schreiben ihre Nachrichten und Anfragen in
einen geteilten Speicherbereich, auf welchen die anderen Partitionen Lese-Recht haben und
diese Nachrichten abholen können. Diese Kommunikationsart ist in Abb. 4.4 dargestellt.

35

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

Partition 1 Partition 2
Antrag 1

Antrag 2
Antrag 3

Antrag 4

Liest

Abbildung 4.4: Kommunikationsform 2

Partition 1 schreibt ihre Anfragen in ihren Kommunikationsport. Partition 2 liest und
bearbeitet die Anfragen der Reihenfolge nach. Diese Kommunikationsart ist eine asyn-
chrone Kommunikation. Eine Synchronisierung der Komponenten ist nicht erforderlich.
Diese Kommunikationsart ist besonders in einem Fall interessant, in dem eine Komponen-
te niedrigerer Kritikalität mit einer Komponente höherer Kritikalität kommunizieren soll.
Aufbau der Verbindungsarchitektur:

� Die statische Phase (Engineering-Phase): In dieser Phase wird die Anzahl der Parti-
tionen festgelegt. Darüber hinaus werden die Kommunikationsports und die Verbin-
dungen generiert. Diese können zur Laufzeit nicht mehr gelöscht oder erzeugt werden.
Die Rechte und Fähigkeiten der Partitionen (Read/Write auf andere Partitionen oder
Zugriffsrechte auf externe Geräte (z. B. I/Os)) werden ebenfalls in dieser Phase zu-
geordnet. Die zugewiesenen Rechte und Fähigkeiten sind prinzipiell vorhanden, aber
nicht zwangsläufig alle aktiviert.

� Die dynamische Phase: In der dynamischen Phase können beispielsweise Verbindun-
gen aktiviert oder deaktiviert werden.

4.3 Systempartitionen

In der KAS-Architektur wird ein Verwaltungssystem für die Verwaltung sämtlicher Kom-
ponenten und Kommunikationskanäle eingesetzt. Dieses Verwaltungssystem bietet Verwal-
tungsdienste an. Das Verwaltungssystem darf durch eine sichere Schnittstelle mit einem
Planungssystem kommunizieren. Ziel dieser Kommunikation ist die Orchestrierung der Ver-
waltungsdienste [9]. Die Dienste und die Fähigkeiten, die durch das Verwaltungssystem zur
Verfügung gestellt werden, werden im nächsten Abschnitt erläutert. Die Kommunikation
kann entweder direkt zwischen den anderen Komponenten aufgebaut werden oder indirekt
über das Verwaltungssystem abgewickelt werden. Im zweiten Fall, werden die Informatio-
nen zunächst an das Verwaltungssystem gesendet. Daraufhin leitet das Verwaltungssystem
die Daten an den Empfänger weiter. Die andere Systempartition der KAS-Architektur ist
das Interface. Die Interface-Partition ist die einzige Partition, die nach außen (den un-
geschützten Bereich) kommunizieren darf. Die Partition stellt eine Möglichkeit für den Da-
tenaustausch mit überlagerten Anwendungen bereit. Die KAS-Architektur beinhaltet auch

36

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4.3 Systempartitionen

eine beliebige Anzahl an Anwendungspartitionen. Diese können unterschiedliche Aufgaben
und Anforderungen haben. KAS stellt eine Infrastruktur für den Betrieb dieser Anwen-
dungen, sowie deren Kommunikation mit anderen Komponenten bereit.

4.3.1 Verwaltungssystem

Das Verwaltungssystem überwacht und verwaltet die Operationen und die Komponenten
in der KAS-Architektur. Sie bietet Verwaltungsdienste an, welche für die Komponentenver-
waltung eingesetzt werden. Die Verwaltungsdienste können auch von Klienten (überlagerte
Anwendungen) aufgerufen werden, um bestimmte Funktionalitäten auf dem System aus-
zuführen. Die Kommunikation zwischen dem Verwaltungssystem und dem Planungssystem
erfolgt über eine sichere Schnittstelle. Abb. 4.5 präsentiert das Verwaltungssystem. Die
Verwaltungsdienste werden in diesem Abschnitt detaillierter erläutert.

Kommunikationsdienste (Intern)

Konfigurationsdienste

Verwaltungssystem

Kommunikationsdienste (Extern)

Komponentenverwaltungsdienste

Planungssystem

Ressourcenverwaltungsdienste

Abbildung 4.5: Interne Struktur des Verwaltungssystems

Das Verwaltungssystem umfasst folgende Konzepte:

� Kommunikationsdienste (Intern): werden zur Verwaltung der Kommunikationsver-
bindungen zwischen den Komponenten eingesetzt

� Kommunikationsdienste (Extern): verwalten die Kommunikation mit externen Kom-
ponenten. Das Verwaltungssystem agiert wie ein Gateway zwischen hoch kritischen
Applikationen und Applikationen geringerer Kritikalität (NAMUR-Diode)

� Konfigurationsdienste: werden zur Validierung und Integration der deployten Kom-
ponenten eingesetzt

� Komponentenverwaltungsdienste: befassen sich mit Dienstleistungen für die Kompo-
nentenverwaltung. Es handelt sich dabei um Dienste wie Create, Delete, Copy und
Update

37

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

� Ressourcenverwaltungsdienste: teilen die Hardware-Ressourcen einzelnen Anwendun-
gen/Partitionen zu

Das Verwaltungssystem hat eine Eingangsschnittstelle für den Empfang von Komman-
dos. Wie zuvor beschrieben können diese Kommandos beispielsweise von einem Planungs-
system stammen. Die Semantik der Kommandos lautet wie folgt:

[Command1];[PARAMETER1=VALUE1,PARAMETER2=VALUE2,. . .]

Tabelle 4.1 präsentiert einige Beispiele dieser Dienste.

Tabelle 4.1: Dienste der Komponentenverwaltung

Command Parameter1 Parameter2
deploy component name docker container
upload component name docker container
create communication link input port output port
delete communication link input port output port
update resource allocation aktivate scheduling schema X
aktivate container container X
deaktivate container container Y

Das Verwaltungssystem hat das Recht auf die Interface-Partition sowie andere Partitio-
nen zuzugreifen und Veränderungen vorzunehmen. Außerdem hat es das Zugriffsrecht zu
den Hardware-Ressourcenverwaltungsdienste, um die Ressourcen den Komponenten opti-
mal zuzuteilen.

4.3.2 Interface

Die interne Struktur der Interface-Partition ist in Abb. 4.6 dargestellt. Die Interface-
Partition ist die einzige Partition, die mit externen Komponenten (z. B. Cloud) kommu-
nizieren darf. Die Kommunikation aller lokalen Partitionen mit externen Komponenten
erfolgt über das Interface. Darüber hinaus hostet die Interface-Partition die lokal gela-
denen Komponenten (Prozessführungskomponenten, Funktionsbausteine, Anwendungen)
bevor diese schließlich in die anderen Partitionen integriert werden. Das Übersenden der
Prozessdaten zu den externen Komponenten erfolgt durch das Interface. Die Interface
Partition besitzt eine Schnittstelle, um Befehle zum Deployment neuer Komponenten zu
erhalten. Vor der Kommunikation mit externen Komponenten authentifiziert die Interface-
Partition den Kommunikationspartner. Danach wird die Komponente deployt. Die Kom-
ponente ist dann in der Liste der geladenen Komponenten der Interface-Partition vorhan-
den. Das Interface beinhaltet außerdem eine Schnittstelle für die Datenübertragung. Daten
müssen durch die Interface-Partition zu den externen Komponenten gesendet werden. Die
Übertragung kann einmalig oder zyklisch erfolgen. Die zyklische Übertragung wird über
das Pub/Sub-Schema durchgeführt.

38

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4.4 Verwaltungsdienste

AuthentifizierungPub/Sub

Lokal geladene
Komponente

Organisationsport
(Deployment)

Interface-Partition

Verwaltung

Werte

Verwaltung

Abbildung 4.6: Interne Struktur der Interface-Partition

4.4 Verwaltungsdienste

Zur Realisierung der Konzepte stellt die Verwaltungskomponente entsprechende Dienste
und Ablaufprozeduren zur Verfügung.

4.4.1 Interne Kommunikationsdienste

Die Kommunikation zwischen den Komponenten wird durch das Verwaltungssystem ge-
steuert. Falls keine direkte Kommunikation zwischen den Komponenten erlaubt ist, agiert
das Verwaltungssystem als Gateway und leitet die Daten an den Empfänger weiter. Da-
zu verfügt es über verschiedene Kommunikationsprotokolle mit unterschiedlichen QoS-
Eigenschaften. Bei der Weiterleitung der Daten können diese auch vom Verwaltungssystem
modifiziert oder gefiltert werden. Wenn eine direkte Kommunikation erlaubt ist, baut das
Verwaltungssystem eine direkte Kommunikationsverbindung zwischen den Komponenten
auf. Diese werden zur Laufzeit den Komponenten, die eine Kommunikationsverbindung
benötigen, zugeordnet. Aktuelle Kommunikationsverbindungen und Kommunikationsports
werden vom Hypervisor verwaltet. Der Hypervisor besitzt eine Liste der zur Verfügung ste-
henden Kommunikationsports. Das Verwaltungssystem ist mit einer Schnittstelle zu dieser
Liste ausgestattet und kann die Kommunikationsverbindungen aktivieren oder deaktivie-
ren (Abb. 4.7).

Quality of Services

Die QoSs, die für die Kommunikation zwischen Komponenten in KAS eingesetzt werden
können, sind:

� History: Diese QoS wird eingesetzt, um frühere Daten zu erhalten

� Realtime: Diese QoS wird für eine Realtime-Kommunikation zwischen den Kompo-
nenten eingesetzt

39

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

Kommunikations-
dienste

Hypervisor

Senderport Empfängerport Verbindung Zustand

Port A Port B

Typ

V_AB Aktiv Zyklisch

Port C Port D V_CD Nicht Aktiv Nicht Zyklisch

Verwaltungssystem

… … … … …

Abbildung 4.7: Verwaltung der Kommunikationsverbindungen

� Filter: Diese QoS wird für die Steuerung des Datenflusses eingesetzt.

Die Dienste, die für die Steuerung der Kommunikation eingesetzt werden, sind:

� Kommunikationsport freischalten:
Dieser Dienst ermöglicht den Zugriff von Komponenten zu einem Port für die Kom-
munikation.

� Kommunikationsport sperren:
Dieser Dienst sperrt den Zugriff einer Komponente zu einem Port.

Durch diese Dienste wird die Kommunikation zwischen verschieden Komponenten gesteu-
ert.

4.4.2 Externe Kommunikationsdienste

Die Datenverarbeitung kann lokal oder zentral (durch eine überlagerte Anwendung z. B.
Cloud) durchgeführt werden. Bei der zentralen Verarbeitung der Daten fordert zunächst
die Cloud Informationen aus der Anwendung (z. B. einer hoch kritischen Partition) an.
Aus Sicherheitsgründen läuft diese Anfrage durch die Interface-Partition. Diese schreibt
die Liste der angeforderten Informationen in ihre Ports, wodurch dem Verwaltungssystem
der Zugriff auf diese Liste ermöglicht wird. Das Verwaltungssystem liest daraufhin die An-
forderungen und stellt die Daten der Interface-Partition zur Verfügung. Sollte es über die
angeforderten Informationen nicht verfügen, fordert es diese von der entsprechenden Par-
tition (Beispielsweise Anwendung 1 in Abb. 4.8) an. Die Anwendung sendet daraufhin die

40

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4.4 Verwaltungsdienste

angeforderten Informationen über eine unidirektionale Kommunikationsverbindung zum
Verwaltungssystem.

Anwendung 1 Verwaltungs-
system

Interface

Überlagerte Anwendung

Wert x

Liste der
Werte

Wert x

Wert x

liest

Wert x

liest

……

Abbildung 4.8: Verwaltung der Kommunikationsverbindungen

4.4.3 Konfigurationsdienste

Die Konfigurationsdienste beschäftigen sich mit dem Deployment und der Inbetriebnahme
neuer Komponenten. Die neuen Komponenten werden deployt, um sich ändernden Anfor-
derungen des Systems gerecht zu werden. Konfigurationsdienste bestehen aus zwei Schrit-
ten, nämlich dem Deployment und der Inbetriebnahme. Beim Vorgang des Deployments
werden erforderliche Komponenten heruntergeladen. Dabei umfasst die Inbetriebnahme die
Überprüfung und Synchronisation der deployten Komponenten. Das Verwaltungssystem
ist in der Lage die Komponenten in jeder Partition zu deployen. Aus Sicherheitsgründen
ist aber ein direktes Deployment der Komponenten in den Partitionen nicht erlaubt. Das
Deployment läuft über das Interface. Das Verwaltungssystem triggert den Deploymentvor-
gang einer Komponente in das Interface. Folgende Komponenten können auf diese Weise
deployt werden:

� FBs

� Prozessführungskomponenten

� Container

Die Konfigurationsdienste werden zur Integration der deployten Komponenten eingesetzt.
Diese überprüfen deployte Komponenten vor der Integration ins System auf Plausibilität.
Der Konfigurationsprozess besteht aus den folgenden Schritten:

� Die Komponente wird deployt. Dieser Vorgang wird vom Verwaltungssystem initiiert.
Die Komponente wird aus der Cloud in die Interface-Partition geladen.

� Die Komponente wird auf Plausibilität getestet.

� Die Komponente wird in die Ressourcen der Zielpartition integriert.

41

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

� Die Komponente wird aktiviert und synchronisiert.

Das Diagramm des behandelten Vorgangs ist in Abb. 4.9 dargestellt. Das Verwaltungssy-
stem triggert den Deploymentvorgang der Komponente X aus der Quelle Y. Die Kompo-
nente wird in der Interface-Partition deployt und in der Liste der lokal geladenen Kom-
ponenten abgelegt. Die geladene Komponente wird in einer Testplattform redeployt, um
überprüft zu werden. Die Ergebnisse der Überprüfung werden daraufhin vom Verwaltungs-
system analysiert. Schließlich wird die Komponente in die Zielpartition integriert.
Das Ressourcenmodell dieses Vorgangs ist in Abb. 4.10 dargestellt. Außer Deployment-

dienste bietet die Verwaltungskomponente auch Redeploymentdienste zur Übertragung von
Komponenten aus einer Partition in eine andere Partition an.

4.4.4 Ressourcenverwaltung

Die Verwaltungskomponente analysiert den aktuellen Ressourcenbedarf der Partitionen
und ändert das Scheduling-Schema, um die Anforderungen dieser zu erfüllen. Dabei muss
die jeweilige Priorität der Applikationen betrachtet werden. Abb. 4.12 präsentiert das Klas-
sendiagramm der Ressourcenverwaltung für eine Anwendung auf Partitionsebene. Das Ver-
waltungssystem bietet Dienste zur Kommunikation, Speicherverwaltung und Aktivierung
neuer Scheduling-Schemata an.

Ablaufprozedur und zur Verfügung stehende Dienste

Anwendungen, die mehr Ressourcen für die Ausführung benötigen, als ihnen zugewie-
sen wurde, müssen diese zur Laufzeit beim Verwaltungssystem beantragen. Abb. 4.11
präsentiert diese Prozedur für zwei Partitionen. Die Partitionen schreiben ihre Anfrage
an längere Zeitpartitionierung (tp) in ihre Kommunikationsports. Das Verwaltungssystem
liest die Anfragen und ordnet ihnen die Ressourcen zu. Die Partitionen können zur Laufzeit
mehr Rechenzeit, mehr (Arbeits-)Speicher und Kommunikationsverbindungen anfordern:

� Request(tp):
Durch diese Anfrage kann eine neue Zeitpartitionierungsdauer gefordert werden.

� Request(Arbeitsspeicher):
Durch diese Anfrage kann ein größerer Anteil des Arbeitsspeichers gefordert werden.

� Request(Kommunikationsverbindung):
Durch diese Anfrage kann eine Kommunikationsverbindung zu anderen Komponen-
ten gefordert werden.

Die Ressourcen werden nur dann zugeteilt, wenn sie die Funktionsweise der Anwendun-
gen höherer Kritikalität oder Priorität nicht beeinträchtigen und vom Verwaltungssystem
genehmigt wurden. Folgende Dienste stehen zur Verfügung:

� Scheduling-Schema generieren:
Dieser Dienst generiert ein neues Scheduling-Schema entsprechend der neuen Anfor-
derungen.

� Scheduling-Schema aktivieren:
Dieser Dienst aktiviert ein neues Schedulingschema

42

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4.4 Verwaltungsdienste

Konfigurationsdienste

Verwaltungssystem Interface-Partition Testplattform Zielpartition

Triggert den
Deploymentvorgang von
der Komponente X aus

der Quelle Y

Komponente wird in
Interface deployt und

in der Liste der
geladenen

Komponenten
abgelegt

Komponente
wird in einer

Testplattform
deployt

Verwaltungskompone
nte analysiert die

Simulationsergebnisse

validiert?

Ende

Nein

Die
Komponente

wird integriert
Ja

Start

Die Komponente
wird synchronisiert

und aktiviert

Interface
Partition

authentifiziert
die Quelle

authentifiziert?

Ja

Nein

Abbildung 4.9: Deployment und Inbetriebnahme einer FB-Komponente

43

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

Partition Container Komponenteist Ressource für ist Ressource für

ist Ressource für

Abbildung 4.10: Ressourcenmodell

Hardware

Hypervisor

Partition 1 Verwaltungssystem Partition 2

Scheduler
Sharedmemory

Request(tp)

Sharedmemory

Request(tp)

Liest Liest

Abbildung 4.11: Ressourcenverwaltung

� Speicherzuordnung aktualisieren:
Dieser Dienst aktualisiert die Speicherzuordnung entsprechend der neuen Anforde-
rungen.

� Kommunikationsverbindungen:
Diese sind bereits in Kap. 4.4.1 erläutert.

Die Ressourcenverwaltung wird vom Hypervisor verwaltet. Das Verwaltungssystem besitzt
eine Schnittstelle zu den Schedulingschemata und kann gemäß der Anforderungen diese
anpassen.

4.4.5 Komponentenverwaltungsdienste

Die Komponentenverwaltungsdienste bieten grundlegende Funktionen, um die Komponen-
ten anzulegen und zu verwalten. Die zur Verfügung stehenden Dienste für die Komponen-
tenverwaltung können wie folgt aufgelistet werden:

� create:
Der create-Dienst wird zur Erstellung von Komponenten eingesetzt. FBs, Pro-
zessführungskomponenten und Container sind die Komponenten, die dadurch erstellt
werden können.

� read:
Der read-Dienst wird für das Lesen der Zustände, Werte und Informationen der
Komponenten eingesetzt.

44

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4.4 Verwaltungsdienste

Partition Verwaltungssystem
1 1

Ressourcenverwaltungs-
dienste

Applikationen

Ressourcen

benötigt

CPU Speicher Kommunikation

Abbildung 4.12: Klassendiagramm der Ressourcenverwaltung

� delete:
Der delete-Dienst wird für das Löschen der FBs, Prozessführungskomponenten und
Container eingesetzt. Die Partitionen können hingegen nach der Erstellung (in der
statischen Phase) nicht mehr in der dynamischen Phase gelöscht werden.

� update:
Der update-Dienst kann für die Aktualisierung der Komponenten eingesetzt werden.

� reset:
Der reset-Dienst wird für den Neustart der Komponenten eingesetzt.

� copy:
Der copy-Dienst wird zum Kopieren der Komponenten eingesetzt. Er kann für alle
Komponenten mit Ausnahme der Partitionen eingesetzt werden.

� aktivate:
Der aktivate-Dienst wird zur Aktivierung der Komponenten eingesetzt.

� deaktivate:
Der deaktivate-Dienst wird zur Deaktivierung der Komponenten eingesetzt.

Die Komponenten registrieren sich beim Registrysystem des Hypervisors. Die Verwal-
tungskomponente hat Zugriff auf das Registrysystem und kann die Komponenten mit-
hilfe von Diensten verwalten. Diese Dienste können für die Verwaltung von FBs, Pro-
zessführungskomponenten und Containern eingesetzt werden. Allerdings können die drei
Dienste create, read und copy nicht für die Verwaltung der Partitionen eingesetzt werden,
da die Anzahl der Partitionen in der Engineering-Phase festgelegt wird.

45

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

Ressourcenverwaltungs-
dienste

Hypervisor

Partition Start Duration TimePartitionID

1 0 20 1

2 20 40 2

Verwaltungssystem

… … … …

Abbildung 4.13: Verwaltung der Ressourcenverwaltung

4.5 Anwendungspartitionen

In diesem Kapitel wird auf Grundlage der KAS-Architektur eine Systemarchitektur für
virtualisierte Steuerungsgeräte entworfen, um eine Plattform zur Erfüllung der in Kapi-
tel 3 genannten Anforderungen bereitzustellen. Der Kern der Architektur besteht, wie in
Abb. 4.15 dargestellt, aus unterschiedlichen Partitionen. Deren Trennung wird durch einen
Hypervisor durchgeführt. Darüber hinaus überwacht der Hypervisor den Zugriff verschie-
dener Anwendungen aus den Partitionen auf Geräte, I/Os, andere Partitionen usw. sowie
die Kommunikation zwischen den verschiedenen Partitionen. In Bild 4.15 ist beispielhaft
ein System mit zwei Anwendungspartitionen dargestellt. Es handelt sich um die Anwen-
dungsarten Control und Optimization and Management (O&M). Die Art der Anwendung
einer Partition bestimmt ihre Zugriffsrechte (Zugriff auf andere Partitionen, Geräte und
I/Os), Kommunikationskanäle, den internen Aufbau, QoS usw.

Die Anwendungen müssen, trotz unterschiedlicher Kritikalität, miteinander kommuni-
zieren können. Hierfür wird ein Kommunikationsschema benötigt, das systemseitig die An-
forderungen der Applikationen hoher Kritikalität sicherstellt. Das KAS-Konzept sieht vor,
dass die Kommunikation nur über definierte Kommunikationskanäle stattfindet und dass
der Abgriff der Daten zu keinerlei Störungen im abgegriffenen System (Zustandsänderung,
Laufzeitverhalten, Integrität ...) führt. Abb. 4.16 präsentiert ein Beispiel für ein solches
Kommunikationsschema für das in Bild 4.15 dargestelltes System. Die Control-Partition
beinhaltet die klassische Prozessführungsanwendung. Sie ist eine kritische Anwendung und
darf daher nicht durch unautorisierte Anwendungen verändert werden. Die Informationen
aus der Control-Partition müssen trotzdem für die weiteren Verarbeitungen zu anderen
Einheiten (beispielsweise Cloud und O&M) geschickt werden. Die Control-Partition darf
nur mit dem Verwaltungssystem kommunizieren. Die Informationen werden über eine un-
idirektionale Kommunikation zum Verwaltungssystem geschickt und dieses leitet jene an
die anderen Anwendungen weiter. Dabei dient die Interface-Partition der Anbindung ex-

46

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4.6 Evaluation anhand der Anforderungen an die Architektur

Komponenten-
verwaltungsdienste

Hypervisor

Komponente Quelle Verbindungen Zustand

Komponente A Partition X V_AC Aktiv

Komponente B Partition Y V_BD Nicht Aktiv

Verwaltungssystem

… … … …

Abbildung 4.14: Komponentenverwaltung

terner Komponenten (z .B. Cloud). Da das Interface und die O&M-Partition unterschied-
liche Kritikalitätsniveaus haben, werden zwei verschiedene Informationsdioden für diese
Kommunikation eingesetzt. Die Anfragen der Applikationen mit einem niedrigeren Kri-
tikalitätsniveau an Applikationen mit einem höheren Kritikalitätsniveau erfolgen durch
den Typ 2-Kommunikationsport. Die Control-Partition hat eine Lese-Berechtigung für das
Verwaltungssystem, um die Anfragen von diesem zu lesen. Das Verwaltungssystem hat wie-
derum eine Lese-Berechtigung für die O&M-Partition und das Interface. Dies verhindert
die direkte Kommunikation von Applikationen unterschiedlicher Kritikalität. Das Kommu-
nikationsschema ist in Abb. 4.16 dargestellt. In diesem Schema erfolgt die Kommunikation
zwischen der Control-Partition und anderen Partitionen über das Verwaltungssystem.

Abb. 4.17 zeigt die Kommunikation zwischen der Interface-Partition und der O&M-
Partition. Die Kommunikation erfolgt direkt zwischen diesen Partitionen.

4.6 Evaluation anhand der Anforderungen an die
Architektur

In Kapitel 3 wurde eine Reihe von Anforderungen an die Architektur definiert. Im folgenden
Abschnitt wird diskutiert, inwieweit diese durch das KAS erfüllt werden.

� Sichere Übertragung von Feldinformationen in die Cloud: Dank des
Hypervisors wird eine Trennung der Komponenten ermöglicht, die über eine
rückwirkungsfreie Kommunikationsverbindung miteinander kommunizieren können.
Dies verhindert eine direkte Kommunikation der kritischen Komponenten mit
überlagerten Anwendungen.

47

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4 Konzept

Betriebssystem

Prozessführungs-
applikation

Verwaltungsdienste

Betriebssystem

Beobachter

BetriebssystemBetriebssystem

Deployment-Plattform

Hypervisor

Hardware

ControlVerwaltungssystemInterface O&M

Zentrales
Optimierungssystem

…

Abbildung 4.15: Systemarchitektur

� Sichere Kommunikation zwischen Anwendungen mit unterschiedlicher
Kritikalitätsstufe: Die Kommunikation läuft über festgelegte Kommunikations-
ports und wird von einem Verwaltungssystem überwacht.

� Implementierung zusätzlicher Funktionalitäten zur Analyse und
Optimierung während der Laufzeit: Neue Komponenten (FBs, Pro-
zessführungskomponenten) können zur Laufzeit mittels der Kommunikation
mit überlagerten Anwendungen heruntergeladen werden. Der Vorgang wird vom
Verwaltungssystem getriggert.

� Parallele Ausführung von zusätzlichen Applikationen auf der gleichen
Hardware, wie z. B. lokalen Simulationsaufgaben: Zusätzliche Komponenten
mit unterschiedlichen Anforderungen können mittels Hypervisor und Virtualisierung
auf der Hardware betrieben werden.

� Unterstützung der lokalen Verwaltung und Überwachung der untergeord-
neten Komponenten: Das Verwaltungssystem bietet Dienste für die Orchestrie-
rung und Verwaltung der Komponenten an.

48

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

4.6 Evaluation anhand der Anforderungen an die Architektur

Control-
Partition

Verwaltungs-
system

Interface

Überlagerte Anwendung

O&M

Antrag 1
Antrag 2
Antrag 3
Antrag 4

Liest

Antrag 1
Antrag 2
Antrag 3
Antrag 4

Liest

Antrag 1
Antrag 2
Antrag 3
Antrag 4

Liest

Abbildung 4.16: Indirekte Kommunikation zwischen der Control-Partition, der Interface-
Partition und der O&M-Partition

Interface

Überlagerte Anwendung

O&M

Antrag 1

Antrag 2

Antrag 3

Antrag 4

Liest

Abbildung 4.17: Direkte Kommunikation zwischen der O&M-Partition und der Interface-
Partition

49

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

5 Anwendungsszenarien in der
Automatisierungstechnik

In diesem Kapitel wird gezeigt, wie sich typische Anwendungsszenarien der Automatisie-
rungstechnik auf die KAS-Struktur abbilden lassen.

5.1 Architektur der Automatisierungspyramide

Zur Gliederung der Automatisierungsaufgabe wird gerne das Bild der Automatisierungs-
pyramide herangezogen. In klassischer Form hat die Pyramide sowohl einen funktionalen
als auch einen hardwaretechnischen Aspekt. Der funktionale Aspekt ist im linken Teil
von Abb. 5.1 dargestellt, der hardwaretechnische Aspekt im linken Teil von Abb. 5.2.
Die Rechte Seite der Abbildungen hingegen präsentiert die funktionale und hardware-
technischen Aspekt im Kontext von I4.0 [106]. Die Funktionalitäten (Abb. 5.1) lassen
sich in zwei Hauptkategorien unterteilen, nämlich der O&M-Ebene und der Automati-
sierungsebene. Die O&M-Ebene beinhaltet Funktionalitäten wie Assetverwaltung, Daten-
analyse. Die Funktionen, die operativ für die Prozessführung benötigt werden, gehören
zur Automatisierungsebene. Abb. 5.2 (links) zeigt die klassische Hardware-Struktur in
der Automatisierungstechnik. In dieser Architektur laufen die Anwendungen auf unter-
schiedlichen Hardware-Komponenten. In der virtualisierten Architektur hingegen (Abb. 5.2
rechts) besteht die Möglichkeit unterschiedliche Anwendungen auf der gleichen Hardware
zu betreiben. Dabei kann eine Anwendung in eine prozessnahe und eine prozessferne An-
wendungskomponente aufgeteilt werden. Beispielsweise kann, wie in Abb. 5.1 dargestellt,
eine prozessnahe O&M-Anwendung definiert werden, die auf der gleichen Hardware, auf
der Prozessführungsebene läuft und lokale Optimierungsfunktionen anbietet, während eine
globale O&M-Anwendung auf der überlagerten Ebene betrieben wird. Eine solche virtua-
lisierte Architektur kann auf unterschiedlichen Ebenen (beispielsweise Prozessführung und
MES) eingesetzt werden, um verschiedene Anwendungen auf derselben Hardware vonein-
ander zu trennen (beispielsweise globale O&M und Informationsmanagement (IM)).

5.2 Beispielhafte Anwendungspartitionen

In diesem Abschnitt werden einige typische automatisierungstechnische Anwendungen
erläutert, die sich für die Kapselung in einer eigenen Partition anbieten.

5.2.1 Control-Partition

Die zu einer Anlage oder Teilanlage gehörenden Prozessführungskomponenten werden
geeigneterweise in einer eigenen Partition zusammengefasst. Eine solche Partition wird

50

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

5.2 Beispielhafte Anwendungspartitionen

ER
P

-
Sy

st
em

M
ES

-
Sy

st
em

A
u

to
m

at
is

ie
ru

n
g

s-
sy

st
em

(P
N
K
,S
P
S,
…
)

Fe
ld

ge
rä

t

Sa
fe

ty
-

Sy
st

em

P
ro

d
u

kt
io

n
sp

la
n

u
n

g
In

st
an

d
h

al
tu

n
gs

m
an

ag
em

e
n

t
G

er
ät

ev
er

w
al

tu
n

g

R
ez

ep
tm

an
ag

em
e

n
t

R
ez

ep
t/

M
aß

n
ah

m
en

st
eu

er
n

O
p

ti
m

ie
ru

n
g

D
ia

gn
o

se
P

ro
d

u
kt

io
n

sp
la

n
u

n
g

R
eg

el
n

St
eu

er
n

Ü
b

er
w

ac
h

e
n

M
es

sd
at

en
b

er
ei

ts
te

lle
n

M
es

se
n

St
eu

er
n

K
la

ss
is

ch
I4

.0

M
&

O
-

Eb
en

e

St
ra

te
gi

sc
h

e
O

p
ti

m
ie

ru
n

gs
ei

n
h

ei
te

n
In

st
an

d
h

al
tu

n
gs

m
an

ag
em

e
n

t
A

ss
et

ve
rw

al
tu

n
g

R
ez

ep
tm

an
ag

em
en

t
D

at
en

an
al

ys
e

…

A
u

to
m

at
is

ie
ru

n
gs

-
an

w
en

d
u

n
g

Sa
fe

ty
-

A
n

w
en

d
u

n
g

Fe
ld

ge
rä

te

R
eg

el
n

, S
te

u
er

n
Ü

b
er

w
ac

h
e

n
Lo

ka
le

 O
p

ti
m

ie
ru

n
g

Lo
gi

st
ik

R
ez

ep
t/

M
aß

n
ah

m
en

st
eu

er
n

Abbildung 5.1: Funktionale Struktur des Automatisierungssystems

51

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

5 Anwendungsszenarien in der Automatisierungstechnik

IT-System

MES Spezielle
IM-Systeme

Safety-
System

SPS IPC

Hypervisor

Rezept Logistik IM

Hypervisor

Safety-
System

Lokal
O&M

SPS

Klassische Hardware-Struktur Hardware-Virtualisierung

Global
O&M

IPC

Abbildung 5.2: Hardwaretechnischer Aufbau des Automatisierungssystems

als Control-Partition bezeichnet. Diese muss hohe Anforderungen in Bezug auf Echt-
zeitfähigkeit, Robustheit, Handhabbarkeit und Sicherheit erfüllen. Die Prozessführung
basiert beispielsweise auf dem in Kapitel 2 vorgestellten Betriebsmittel- und Maßnah-
menmodell. Die Prozessführungsapplikationen werden beispielsweise in den Sprachen der
IEC 61131-3 oder der IEC 61499 implementiert. Die Prozessführungsapplikation ist in ei-
ner Laufzeitumgebung implementiert, die für die Ausführung der Applikation zuständig
ist. Diese muss von der umgebenden Partition oder einem umgebenden Container zur
Verfügung gestellt werden. Die Control-Partition ist die einzige, die Zugriff auf die I/Os
hat (Read/Write). Wie bereits beschrieben, bestehen einerseits die Möglichkeit des con-
tainerbasierten Aufbaus und andererseits die Möglichkeit der Verwendung von dedizierten
Applikationen für die interne Struktur der Partition. Eine wandelbare Produktion ist das

OS

Container-Management

Anwendung A
IEC 61131

Anwendung B
IEC 61499

Container

…

Abbildung 5.3: Struktur der Control-Partition

Ziel verschiedener Initiativen für zukünftige Automatisierungssysteme. Die vorgeschlage-
ne Architektur stellt eine Basis für eine wandelbare Produktion bereit, in dem sie eine
Verwaltung unterschiedlicher Prozessführungsapplikationen, sowie das Deployment neuer
Applikationen, entsprechend der Anwendungsszenarien zulässt. Deployment zur Laufzeit

52

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

5.2 Beispielhafte Anwendungspartitionen

ermöglicht die Anpassung des Systems an die neuen Anforderungen und die Ausführung
neuer Steuerungs- oder Verwaltungsaufgaben. Gemeinsam führen diese Eigenschaften zu
einer erhöhten Dynamik des Systemverhaltens und bilden daher eine Basis für die Wan-
delbarkeit. Außerdem bieten die Partitionen eine hardwareunabhängige Umgebung zur
Ausführung diverser Applikationen. Dies erhöht die Betriebsmöglichkeit von Applikation
auf der selben Hardware und die Portabilität.

5.2.2 O&M-Partition

Die KAS-Architektur stellt eine Infrastruktur für den Betrieb einer prozessparallelen Si-
mulation bereit. Dazu kann ein Simulationssystem in einer Partition realisiert werden. In
vielen Fällen liegt das zu simulierende Modell in einer modularen Struktur vor, die nicht
aufgelöst, sondern gemeinsam in einer Co-Simulation realisiert wird. Hier bietet es sich an,
die Simulationsfragmente in eigenen Containern zu kapseln. Die Container-Technologie
und die Orchestrierung dienen zur dynamischen Gestaltung der Simulationsapplikation.
Verschiedene Simulationsmodelle sind in Form von Docker-Containern in O&M-Partition
gehostet. Die Simulationsfragmente werden durch das Verwaltungssystem verwaltet, um
Co-Simulationen zu konfigurieren (Abb. 5.4).

Simulationsfragmente
(Bibliothek)

Verwaltungssystem Co-SimulationenKonfiguriert

Abbildung 5.4: Konfigurationen von Co-Simulationen

53

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6 Implementierung für eine
Kaltwalzanlage

Als Anwendungsszenario dient die Optimierung des logistischen Durchlaufs von Paletten in
einer Kaltwalzanlage. Dieses Szenario erfordert für die Durchführung von Optimierungs-
aufgaben und Deployment, dass das KAS zwischen der Prozessführung, der Simulation
(O&M) und einer externen Cloud kooperiert.

6.1 Logistik

Die KAS-Architektur bietet eine Plattform zur Durchführung, Optimierung und
Überwachung von Logistiksystemen. In dem hier verfolgten Kontext interessiert insbe-
sondere die operative Steuerung von Intra-Logistiksystemen. Diese müssen eine effiziente
Routen- und Ressourcenplanung anbieten. Die Routen- und Ressourcenplanung benötigt
unter anderem die Zustände und Positionen der Logistikgeräte sowie die aktuelle Ver-
kehrssituation, um eine effiziente Planung durchzuführen. Nach der Bearbeitung der
Zustände werden Pläne generiert, die ins Logistiksystem integriert werden müssen. Abb. 6.1
präsentiert die Abbildung der Anwendungen auf die KAS-Architektur. Die Verwaltungs-

Tourenplanung
und

Optimierung

Prozessführungskomponenten
für die Steuerung des

Logistiksystems

Betriebssystem

Prozessführungs-
applikationVerwaltungsdienste

Betriebssystem

Beobachter
Optimierung

BetriebssystemBetriebssystem

Deployment-Plattform

Hypervisor

Hardware

ControlVerwaltungssystemInterface O&M

Abbildung 6.1: Logistiksystem

und Interface-Partition aus Abb. 6.1 entsprechen den zwei Systempartitionen der KAS-
Architektur. Die Steuerung bildet die Control-Partition ab, die Tourenplanungs- und

54

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6.2 SMS-Demonstrator

Optimierungs-Partition bildet hingegen die O&M-Partition ab. Für die Optimierung und
das Deployment sind die folgenden Schritten nötig:

� Optimierung

– Abrufen der Informationen aus der Steuerung

– Durchführung lokaler Optimierungen in der Tourenplanungs- und
Optimierungs-Partition

� Deployment

– Deployment in die Interface-Partition

– Validierung

– Integration in die Steuerung

6.2 SMS-Demonstrator

Die KAS-Architektur wird für die Steuerung des SMS-Demonstrators eingesetzt. Der SMS-
Demonstrator simuliert das gesamte Transportsystem einer Kaltwalzanlage. Der Demon-
strator besteht aus einem IPC für die Profibus-Anbindung, einem Embedded-System und
einem Server für die MATLAB-Simulationsmodelle. Die Aktor- und Sensordaten werden
über ein emuliertes Feldbussystem (Profibus) zwischen Simulator und Automatisierungs-
system ausgetauscht (Abb. 6.2).

Komponentenbasiertes
Automatisierungssystem

Simulator

Aktor
Signale

Profibus
Sensor
Signale

Abbildung 6.2: Aufbau

Die Hardwarekomponenten und der Aufbau der Anlage sind in Abb. 6.11 und 6.12 dar-
gestellt. Ziel dieser Anlage ist die Realisierung einer virtuellen Inbetriebnahme. Sämtliche
Anlagenfunktionen werden über einen Hybrid-Simulator simuliert. Der Simulator stellt alle
Anlagensignale mit den Rechenschritten von 100µs bereit. Diese werden über emulierte
Feldbussysteme an die Automatisierung übertragen.

55

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6 Implementierung für eine Kaltwalzanlage

Bestandteile

Abb. 6.3 zeigt das vom Demonstrator simulierte SMS-Kaltwalzwerk. Dieses besteht aus
drei Hauptkomponenten [98], [35]:

� Rollgänge: Die Rollgänge bilden ein Förderband, um die Coils entlang der Anlage zu
transportieren. Sie sind die einzigen aktiven Komponenten in der Anlage und werden
mit Motoren angetrieben. Jeder Rollgang ist mit fünf Sensoren ausgestattet. Einer
der Sensoren wird zur Erkennung der Palette eingesetzt, während die restlichen vier
Sensoren die Aufgabe der Positionserkennung übernehmen. Das Simulationsmodell
beinhaltet drei Arten von Rollgängen:

– Verschieber Wagen: Sie können sich entlang der Y-Achse bewegen.

– Drehteller: Sie können sich um die Z-Achse rotieren.

– Ofen: Sie dienen zur Erwärmung der Coils.

� Palette: Sie werden zum Transport der Coils eingesetzt.

� Coil: Sie stellen die Aluminium-Coils dar.

PE011PE010 PE012 PE013

PE004PE003 PE005 PE013

PE009 PE014
Palette

Verschieber Wagen Drehteller

Oven

Coil

Verschieber Wagen

Abbildung 6.3: SMS-Demonstrator

Die Steuerungshierarchie dieser Anlage basiert auf dem in Kapitel 2 diskutierten
Betriebsmittel- und Maßnahmenmodell. Die Rollgänge bilden die ESE-Ebene. Die Pa-
letten orchestrieren diese, um die Produktionsaufträge umzusetzen. Das bedeutet, dass die
Paletten in der Steuerungshierarchie die Rolle der GSEs übernehmen. Jede Palette ist einer
GSE zugewiesen, um die ESEs (Rollgänge) entsprechend des derzeitigen Rezepts zu orche-
strieren. Die Paletten können auch die entsprechenden ESEs belegen, um eine Kollision
zu verhindern. Darüber hinaus bilden die Coils die Maßnahmen-Ebene. Diese Hierarchie
ist in Abb. 6.4 dargestellt. Die GSEs agieren wie Klienten. Sie können auf verschiedenen
Embedded-Systemen oder Hardware-Komponenten installiert werden, um die Anlage zu
steuern. In dieser Arbeit wurden GSEs auf einem IMX6-Board implementiert.

56

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6.3 Aufbau

ESE

GSE
1

GSE
2

Aktive
Verbindung

Passive
Verbindung

Maßsnahmen

Abbildung 6.4: SMS-Demonstrator

6.3 Aufbau

Abb. 6.5 zeigt den Aufbau der Implementierung. Die linke Seite stellt das IMX6-Board
und die darauf implementierte KAS-Architektur dar. Diese kommuniziert mit dem SMS-
Demonstrator über eine TCP/IP-Kommunikationsschnittstelle. In diesem Aufbau sind die
ESEs auf dem eingebetteten System des SMS-Demonstrators und die GSEs auf dem IMX6-
Board implementiert.

6.4 Verification of Request

Für die prototypische Umsetzung des VoR werden fünf Partitionen auf einem IMX6-Board
erstellt. Diese Partitionen (Verwaltungssystem, Control-Partition 1 und 2, Interface und
O&M) beinhalten die in Kapitel 4 genannten Anwendungstypen. Darüber hinaus werden
sie mit den in Kapitel 4 ebenfalls genannten Rechten, Eigenschaften und Kommunikati-
onsports ausgestattet. Die Konfiguration der Partitionen für diesen Anwendungsfall ist im
Anhang A dargestellt. Für die Implementierung wird angenommen, dass während des Be-
triebs eine neue Produktionslinie (Abb. 6.6) zur aktuellen Anlage (Abb. 6.4) hinzugefügt
wird. Die neue Anlagenstruktur erfordert eine neue Prozessführungsanwendung. Das De-
ployment, die Integration und die Aktivierung der Prozessführung wird in diesem Abschnitt
erläutert. Die Implementierung erfordert die folgenden Partitionen:

� Das Interface: Die Interface-Partition wird für das Deployment der Komponenten
benötigt.

� Die O&M-Partition: Eine Simulationsanwendung validiert das Feedback, bevor es
in die Prozessführung integriert wird.

57

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6 Implementierung für eine Kaltwalzanlage

RFM

Embedded

Field

OV
FBs

ACPLT/RTE

TCP/IP

Hypervisor

IMX6-Board

O&M Verwaltungs-
system

Interface

Deployment
Platform

Prozessführungs-
anwendung

Control-Partition 1

Simulations-
modelle

Interface

Prozessführungs-
anwendung

Control-Partition 2

Steuerung des LogistiksystemsValidierung der deployten Komponenten

Abbildung 6.5: Aufbau

� Das Verwaltungssystem: Das Verwaltungssystem triggert die oben genannten
Vorgänge.

� Die Control-Partition: Die Control-Partitionen werden für die Prozessführung
benötigt. Die zweite Control-Partition wird für die Aktualisierung der Prozessführung
eingesetzt.

Interface und Deployment

Das Verwaltungssystem triggert das Deployment der neuen Prozessführungsanwendung
in der Interface-Partition. Abb. 6.7 präsentiert den Deployment- und Redeployment-FB.
Er ermöglicht das Deployment von neuen Komponenten auf dem IMX6-Board. Darüber
hinaus führt er das Redeployment von Komponenten durch. Für die Durchführung des
Deployments und Redeployments werden die Ziel- und Quell-Informationen benötigt (Ser-
vername und Pfad zu den Komponenten) [34]. Dieser FB besteht aus einer getvar- und
einer setvar-Funktion (Abb. 6.8, Abb. 6.9).

Validierung und Inbetriebnahme

Für die Inbetriebnahme werden zwei Control-Partitionen eingesetzt, zwischen denen ge-
wechselt werden kann. Eine Partition beinhaltet die aktuelle Prozessführungsanwendung
für die Steuerung der Anlage. Die zweite Partition wird für die Aktualisierung der Pro-
zessführungsanwendung eingesetzt. Nach der Aktualisierung und Synchronisation der Pro-

58

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6.4 Verification of Request

Abbildung 6.6: Die erweiterte Produktionsanlage

zessführungsanwendung in der zweiten Partition werden die Partitionen gewechselt, damit
die zweite Partition die Steuerung der Anlage übernimmt. Dieser Prozess besteht aus den
folgenden Schritten:

� Die neue Prozessführungsanwendung wird durch O&M-Partition validiert.

� Die neue Prozessführungsanwendung wird in der zweiten Control-Partition (deakti-
vierte Partition) implementiert.

� Wesentlichen Zustände der Anlage (z. B. die aktuelle Position der Paletten, die
Zustände der Prozessführungskomponenten) werden in beiden Partitionen synchro-
nisiert.

� Die aktuelle Prozessführung (Control-Partition) wird deaktiviert.

� Die neue Partition wird aktiviert.

Nach diesen Schritten übernehmen die neue Prozesssteuerungsanwendung und die neue
Control-Partition die Steuerung der Anlage. Dies erfordert auch ein neues Schedulingsche-
ma. Die Ressourcen der aktuellen Partition müssen der neuen Partition zugeteilt werden.
Da die aktuelle Control-Partition deaktiviert wurde, benötigt sie keine Ressourcen mehr.
Abb. 6.10 zeigt die Ressourcenverwaltung.

59

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6 Implementierung für eine Kaltwalzanlage

Abbildung 6.7: Deployment-Funktionsbaustein

6.4.1 Evaluation des VoR-Konzepts

Für VoR müssen die folgenden Schritte durchgeführt werden:

� Authentifizierung und Verifizierung des Feedbacks

� Plausibilitätscheck

In der NAMUR dürfen nur dann Änderungen in der CPC vorgenommen werden, wenn
diese von einer VoR-Komponente stammen. In [24] werden die Anforderungen an VoR
definiert. Die wichtigsten Anforderungen können wie folgt aufgelistet werden:

� Die Vertraulichkeit des Antrags: Der Antrag darf nicht für Drittparteien lesbar sein.

� Die Integrität des Antrags: Eine Änderung des Antrags während der Übertragung
von der App in die VOR-Komponente muss erkannt werden.

� Verfügbarkeit der CPC-Domäne: Die VOR-Komponente darf die Verfügbarkeit des
DCS/PCS nicht beeinträchtigen.

� Die Authentizität des Antrags: Nur beglaubigte und vertrauenswürdige Anwendun-
gen dürfen Anfragen in die CPC-Domäne weiterleiten.

� Datenschutz der CPC: Keine internen Informationen von der CPC sollten durch die
VoR-Komponente exponiert werden.

60

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6.4 Verification of Request

Abbildung 6.8: Deployment-Funktionsbaustein

Die VoR-Komponente entspricht der Validierungskomponente in der vorgeschlagenen Ar-
chitektur. Einige Strategien zur Erfüllung der Anforderungen werden in den folgenden
Punkten erläutert:

� Die Vertraulichkeit des Antrags: Der Antrag wird durch das Interface zum Verwal-
tungssystem weitergeleitet. Dieser kann nur gelesen werden, wenn die Applikationen
ein Zugriffsrecht darauf haben. Allerdings muss die Kommunikation zwischen den
externen Komponenten und dem Interface gesichert werden.

� Verfügbarkeit der CPC-Domäne: Die Anträge werden in die Prozessführung inte-
griert, nach dem sie überprüft worden sind. Darüber hinaus ist die Prozessführung
völlig isoliert und kann von anderen Partitionen nicht zugegriffen werden.

� Die Authentizität des Antrags: In der vorgeschlagenen Architektur schreibt das Ver-
waltungssystem die Anträge in seinen Kommunikationsport. Der Control-Partition
ist es möglich auf diesen zuzugreifen. Dies verhindert eine direkte Verbindung zwi-
schen der Control-Partition und den anderen Applikationen. Durch diesen Vorgang
wird keine Anfrage an die Control-Partition weitergeleitet.

� Datenschutz der CPC: Die Kommunikationsverbindung der Validierungskomponente
zum Verwaltungssystem ist nur mit einem Read-Recht ausgestattet. Durch diesen
können nur Anträge im Verwaltungssystem-Kommunikationsport gelesen werden.

61

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6 Implementierung für eine Kaltwalzanlage

Abbildung 6.9: Deployment-Funktionsbaustein

Abbildung 6.10: Aktuelle Ressourcenallokation

62

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6.4 Verification of Request

Abbildung 6.11: SMS-Demonstrator

63

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

6 Implementierung für eine Kaltwalzanlage

Abbildung 6.12: Struktur des Demonstrators

64

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

7.1 Eingesetzte Technologien

Für die Implementierung werden ACPLT/RTE und ein PikeOS-Hypervisor verwendet.
Zunächst ist eine Portierung von ACPLT/RTE auf das Echtzeit-OS (POSIX) des PikeOS-
Hypervisors erforderlich. Die Portierung ermöglicht den Betrieb der Prozessführung auf
einer virtualisierten Umgebung. Die Portierung von ACPLT/RTE und PikeOS wird im
nächsten Abschnitt erläutert.
In diesem Abschnitt werden die Aufbaumöglichkeiten im Bezug auf existierende An-

wendungen diskutiert. Diese sind in Abb. 7.1 grafisch dargestellt. Die erste Variante
setzt Container-Technologien (z.B. Docker) ein, um eine Versions- und Variantenver-
waltung sowie dynamisches Deployment mittels Containern zuzulassen. Abb. 7.1 (links)
präsentiert einen Aufbau, in welchem Versionierung und Deployment von Applikationen
mittels Container-Technologien umgesetzt sind. In diesem Fall kann zum Beispiel Linux als
Betriebssystem in der Partition verwendet werden, um den Betrieb von Docker-Containern
zu ermöglichen. Die überlagerte Ebene ist ein Container-Managementsystem zur Verwal-
tung der Container (beispielsweise Start und Stoppen). Die nächste Ebene beinhaltet Ap-
plikationen, die in mehreren Containern gekapselt sind.
Die zweite Variante ist in Abb. 7.1 (rechts) dargestellt. Sie präsentiert eine Möglichkeit,

in der, im Kontrast zur ersten Variante, keine Container-Technologie eingesetzt wird. Im
vorliegenden Fall können unterschiedliche Betriebssysteme benutzt werden (beispielsweise
bietet POSIX-Interface den Vorteil leichtgewichtig und echtzeitfähig zu sein). Auf dem
Betriebssystem werden die Anwendungen implementiert. Das Deployment neuer Kompo-
nenten kann mittels Serialisierung der Anwendungen und nötigen Bibliotheken auf POSIX
erfolgen.

7.1.1 Portierung von ACPLT/RTE und PikeOS

ACPLT/RTE besteht aus einer Kernbibliothek (libov), die das Metamodell des Objekt-
verwaltungssystems enthält, sowie aus zusätzlichen Bibliotheken, die bei Bedarf gelinkt
werden können. Diese sind unten aufgeführt:

� fb: Die fb-Bibliothek beschreibt das Metamodell der FBs.

� cshmi: Die cshmi-Bibliothek enthält ein HMI-Modell für eine grafische Oberfläche.

� TCPbind: Die TCPbind-Bibliothek bietet eine Schnittstelle zum Netzwerk.

� ksbase, ksxdr, kshttp: Diese Bibliotheken stellen die Klassen und Funktionalitäten
für die Kommunikation bereit.

Neben den genannten Bibliotheken gibt es außerdem noch einige zusätzliche Bibliotheken,
die je nach Bedarf geladen werden können:

65

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

POSIXLinux

Container-Management

…
App App

Container Container

Hardware

Hypervisor

Hardware

Hypervisor

Applikationsebene

Abbildung 7.1: Interne Struktur der Partitionen

� IEC61131stdfb: Die IEC61131stdfb-Bibliothek enthält FBs nach der Norm IEC
61131.

� vdivde3696: Die vdivde3696-Bibliothek enthält FBs nach der Norm VDI.

� Smrcs: Die Smrcs-Bibliothek enthält Funktionen für die Interaktion mit dem SMS-
Demonstrator.

ACPLT/RTE wurde in ANSI C implementiert und kann unter Linux und Windows aus-
geführt werden. Die Liste der in ACPLT/RTE verwendeten libc-Funktionen sind in der Ta-
belle 7.1 aufgelistet. ACPLT/RTE kann sowohl auf Elinos (das einen vollständigen Linux-
Kernel bereitstellt), als auch auf POSIX portiert werden. Die Tabelle 7.2 zeigt das Mapping
und die Portierung von benötigten ACPLT/RTE-libc- und PikOS-libc-Funktionen.
Wie präsentiert sind die meisten Modifikationen für die Kommunikation, die Speicherzu-

teilung und die shared Objekte erforderlich. In dieser Arbeit wurden die in der Tabelle 7.2
präsentierten Modifikationen durchgeführt, damit ACPLT/RTE auf der Posix-Personality
(Echtzeit OS) des PikeOS Hypervisors ausgeführt werden kann. Für eine Portierung auf
ElinOS sind keine größeren Modifikationen erforderlich.

7.2 Prozessführung

Abb. 7.2 stellt das hierarchische Steuerungsmodell dar. Die unterste Ebene beinhaltet
die auf dem eingebetteten System des SMS-Demonstrators implementierten ESEs. Die
nächste Ebene präsentiert die auf dem IMX6-Board implementierten GSEs. Sie fungieren
als Orchestrator und orchetrieren die ESEs.
Die Prozessführung ist nicht auf eine Partition beschränkt. Es können mehrere Parti-

tionen erstellt werden, welche die Prozessführungsrolle übernehmen. Zu jedem Zeitpunkt
kann nur eine davon aktiv sein. Die anderen Partitionen können für weitere Varianten und
Versionen der Prozessführungsanwendungen eingesetzt werden. Wenn die verschiedenen

66

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7.2 Prozessführung

Tabelle 7.1: libc-Funktionen (ACPLT/RTE)

String/memory utility functions atoi, atoll, memcmp,
memcpy, memset
snprintf, sprintf,
strchr, strcmp, strc-
py, strdup, strerror,
strftime, strlen, strn-
cmp, strncpy, strstr,
strtod, strtol, strtoul,
strtoull, tolower,
toupper, vsnprintf

stdin/stdout perror, stderr, stdout,
puts

Socket/network IO accept, bind, connect,
freeaddrinfo, getad-
drinfo, getnameinfo,
getpeername, getsock-
name, listen, recv,
setsockopt, socket,
send

File handle API close, lseek, open,
read, select, write

Streams close, clearerr, fclose,
feof, ferror, fflush,
fgets, flock, fopen,
fprintf, fseek, fwrite

Memory allocation calloc, free, malloc, re-
alloc

Memory mapping mmap, msync, mun-
map

Shared objects dlclose, dlerror, dlo-
pen, dlsym,

Time-related gettimeofday, gmtime,
localtime, mktime, na-
nosleep, setitimer, , ti-
me, timegm

Threads pthread create,
pthread join,

67

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Tabelle 7.2: Portierung von benötigten ACPLT/RTE-libc- und PikOS-libc-Funktionen

String/memory utility functions These functions can
be replaced by PikeOS
libc

stdin/stdout PikeOS supports stan-
dard streams

Socket/network IO POSIX specifies a
Light Weight Internet
Protocol (LWIP) so-
me function should be
modified. ACPLT/R-
TE should be provi-
ded by an interface to
LWIP for the commu-
nication. LWIP is also
TCP/IP compatible
protocol.

File handle API these funtions are sup-
ported

Streams these functions are
supported

Memory allocation memory allocation is
supported

Memory mapping memory mapping
functions must be
modified.

Shared objects shared libraries are
not supported (*.so).
The build process of
ACPLT/RTE should
modified to build all
required libraries sta-
tically (*.a).

Time-related important functions
are supported

Threads threads are supported

68

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7.2 Prozessführung

Embedded System
(SMS-Demonstrator)

Anlage

Feld

Steuerung

GSEs

ESEs

Hypervisor

Hardware

RTE

O&M Verwaltungs-
system

Interface

Deployment
Platform

Control

Simulations-
modelle

Interface

IMX6-Board

Abbildung 7.2: Prozessführungsebenen

69

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Versionen sich nur in der Anwendungsebene unterscheiden, können sie auch in Docker-
Containern innerhalb einer Partition gehostet werden. Wenn sie jedoch verschiedene Be-
triebssysteme benötigen, müssen sie in verschiedene Partitionen gekapselt werden. Zum
Beispiel muss für den Wechsel zwischen Linux und POSIX die Partition gewechselt wer-
den.

7.2.1 Laufzeitanalyse in virtualisierten und nicht virtualisierten
Umgebungen

Eine Test-Applikation wurde erstellt, um die Prozessführung in verschiedenen Umgebun-
gen zu vergleichen. In diesem Vergleich laufen die POSIX- und Linux-Prozesse auf einer
virtualisierten Umgebung (IMX6-Board), wobei der Windows-Prozess auf einem PC aus-
geführt wird. Wie in Abb. 7.3 präsentiert hat die Ausführung in POSIX keinen Jitter. Der
Prozess in Linux (ElinOS Personality) hat einen geringen Jitter und der Windows-Prozess
hat den höchsten Jitter.
In der nächsten Phase wurde die gleiche Analyse unter Hardwarebelastung durchgeführt.

Der Prozess in POSIX hat einen bestimmten Anteil an Hardware-Ressourcen, welche nicht
den anderen Applikationen zugeordnet werden können. Daher hat die Hardware-Belastung
keinen Einfluss auf diesen Prozess und der Verlauf bleibt unverändert. Der Prozess in
Windows hingegen weist einen erhöhten Jitter auf. Abb. 7.4 präsentiert den Vergleich
zwischen POSIX und Windows.

-1.500

-1.000

-500

0

500

1.000

1 2 3 4 5 6 7 8 9

Ji
tt

er
 (
µ

s)

Urtask-Takte

Laufzeitanalyse

POSIX Linux Windows

Abbildung 7.3: Laufzeitanalyse in POSIX, Linux und Windows

7.2.2 Kommunikation

Verschiedene Methoden zur Kommunikation zwischen Partitionen (die von PikeOS bereit-
gestellt werden) wurden in Kapitel 2 vorgestellt. Um diese Kommunikation echtzeitfähig
und unidirektional zu gestalten, wurden bei der Implementierung Queueing-Ports verwen-
det. Die Queueing-Ports dienen auch als eine Basis für die NAMUR-Diode.

70

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7.2 Prozessführung

-1000

-500

0

500

1000

1500

2000

1 2 3 4 5 6 7

Ji
tt

er
 (
µ

s)

Urtask-Takte

Laufzeitanalyse

POSIX Windows

Abbildung 7.4: Laufzeitanalyse mit Hardware-Belastung in POSIX und Windows

Abb. 7.5 stellt ein Beispiel für die Implementierung der NAMUR-Diode dar. Die Imple-
mentierung besteht aus drei Partitionen, nämlich der CPC, der Simulation (ähnlich wie
M+O) und dem Gateway. Die CPC und die Simulation kommunizieren miteinander indi-
rekt durch das Gateway. Der Informationsfluss zwischen der CPC und dem Gateway findet

Abbildung 7.5: Kommunikationsports Zwischen der Partitionen

nur in einer Richtung statt, während die Simulation und das Gateway miteinander in beide
Richtungen kommunizieren können. Die zweite Kommunikationsverbindung zwischen der
Simulation und dem Gateway dient zur Sendung der Anfragen an das Gateway.
Die Queueing-Ports werden hauptsächlich für die Kommunikation zwischen Partitionen

eingesetzt. Allerdings müssen diese für das vorgestellte Anwendungsszenario als ein Kom-
munikationsprotokoll zwischen FBs (in verschiedenen Partitionen) agieren. Aus diesem
Grund ist auf dem ACPLT/RTE eine Schnittstelle zu Queueing-Ports implementiert, so
dass die Kommunikation zwischen verschiedenen FBs über Queueing-Ports erfolgen kann.
Um eine unidirektionale Kommunikation in ACPLT/RTE zu bewerkstelligen, müssen die
Eingangs- und Ausgangsports entsprechend der Richtung des Informationsflusses definiert
werden. Abb. 7.6 zeigt ein Beispiel für die Ports in ACPLT/RTE.
Die Kommunikation zwischen verschiedenen Servern in ACPLT/RTE erfolgte ur-

sprünglich über fbcomlib. Abb. 7.7 präsentiert die fbcomlib-Latenzen in LINUX und
POSIX. Die Ausführung in POSIX hatte eine konstante Latenz und keinen Jitter. Die

71

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Abbildung 7.6: Unidirektional Kommunikation in ACPLT/RTE

Ausführung in LINUX hatte im Gegensatz zu POSIX einen Jitter und eine durchschnitt-
liche Latenz von 3.410.054 µs (für die Analyse wurde urtask = 1 gesetzt). In einer virtua-

Abbildung 7.7: fbcomlib-Latenzen in POSIX und LINUX

lisierten Umgebung mit PikeOS werden jedoch Queueing-Ports für diese Kommunikation
verwendet. Abb. 7.8 zeigt die Latenz dieser beiden Methoden (Zeit ist in µs gegeben,
urtask = 0.15).
Die fbcomlib ist im Kern asynchron. Die Reduzierung des Urtask-Takts kann zum

Packetverlust bei fbcomlib führen. Die durch beide Kommunikationsprotokolle empfange-
nen Daten (bei urtask = 0.1) sind in der folgenden Datei dargestellt. Eine Wertereihe von
4961 bis 4969 wurde durch beide Kommunikationsprotokolle gesendet. Wie präsentiert war
der fbcomlib-Kommunikationsempfänger nicht in der Lage alle Werte zu empfangen (die
Werte 4962, 4966 wurden nicht empfangen). Im Gegensatz zu fbcomlib hat der Queueing-
Port-Empfänger alle Werte empfangen.

72

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7.2 Prozessführung

Abbildung 7.8: fbcomlib und Queueing Ports

fbcomlib:

[ACPLT/OV Info] Receiver: t=3699.719136; value=4961.000000

[ACPLT/OV Info] Receiver: t=3699.819136; value=4963.000000

[ACPLT/OV Info] Receiver: t=3699.919136; value=4964.000000

[ACPLT/OV Info] Receiver: t=3700.119136; value=4965.000000

[ACPLT/OV Info] Receiver: t=3700.219136; value=4967.000000

[ACPLT/OV Info] Receiver: t=3700.319136; value=4968.000000

[ACPLT/OV Info] Receiver: t=3700.519136; value=4969.000000

Queueing-Ports:

[ACPLT/OV Info] Receiver: t=4598.612313; value=4961.000000

[ACPLT/OV Info] Receiver: t=4598.712313; value=4962.000000

[ACPLT/OV Info] Receiver: t=4598.812313; value=4963.000000

[ACPLT/OV Info] Receiver: t=4598.912313; value=4964.000000

[ACPLT/OV Info] Receiver: t=4599.012313; value=4965.000000

[ACPLT/OV Info] Receiver: t=4599.112313; value=4966.000000

[ACPLT/OV Info] Receiver: t=4599.212313; value=4967.000000

[ACPLT/OV Info] Receiver: t=4599.312313; value=4968.000000

[ACPLT/OV Info] Receiver: t=4599.412313; value=4969.000000

7.2.3 Verwaltungssystem

Das Verwaltungssystem dient zur Überwachung der Ressourcenzuweisung, der Kommuni-
kation und dem Deployment. Zudem bietet er Komponentenverwaltungsdienste an.

73

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Ressourcenverwaltung

Die Hardware-Ressourcenzuweisung kann vom Verwaltungssystem den Anforderungen ent-
sprechend geändert werden. Abb. 7.9 zeigt zwei verschiedene, vom Verwaltungssystem

Abbildung 7.9: Scheduling Schema

generierte Schedulingschemata, welche zur Laufzeit angewendet werden können. Die Be-
dingungen für eine Änderung des Schedulingschemas werden erfüllt wenn:

� Partitionen 2, 3 und 4 mehr CPU-Zeit benötigen als ihnen ursprünglich zugewiesen
wurde und Partition 1 weniger CPU-Zeit als vorgesehen benötigt.

� die Anwendungen in den Partitionen 2, 3 und 4 eine höhere Priorität als Partition 1
besitzen.

Verwaltungssystem als Gateway

Abb. 7.10 stellt die Kommunikationsports zwischen der Control-Partition, dem Verwal-
tungssystem und dem Interface dar.
Wenn die vom Interface benötigten Informationen nicht an dieses weitergeleitet werden

dürfen, wird die Kommunikation verweigert. Dieser Vorgang ist in der folgenden Datei
dargestellt. Die Meldung

”
Permission denied“ wird erzeugt, wenn die Daten nicht weiter-

geleitet werden dürfen, andernfalls findet die Kommunikation statt.

[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data

74

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7.2 Prozessführung

[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:37.360041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:37.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:38.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:39.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:40.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:41.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:42.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:43.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:44.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:45.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:46.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:47.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:48.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:49.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:50.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:51.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:52.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:04:53.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:54.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:55.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:56.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:57.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:58.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:59.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:00.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:01.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:02.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:03.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:04.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:05.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:06.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:07.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:08.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:09.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:10.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:11.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:12.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:13.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:14.840041] [INFO] Man: transferred 8 bytes of data

[1970/01/01 00:05:15.840041] [INFO] Man: transferred 8 bytes of data

Der Gateway-FB und seine Eingangs- (Prozessführung) und Ausgangsports (Interface)
sind in Abb. 7.11 dargestellt.

75

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Abbildung 7.10: Kommunikationsports zwischen der Control-Partition und dem Interface

Abbildung 7.11: Verwaltungssystem als ein Gateway zwischen der Control-Partition und dem
Interface

76

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

8 Fazit

Industrie 4.0 konfrontiert die industriellen Domänen mit neuen Herausforderungen. Die
Geräte kommunizieren miteinander für eine erhöhte Effizienz, Optimierungsgrad und Wan-
delbarkeit. Wichtig ist, dass diese Vernetzung keinerlei Auswirkungen auf die Anforderun-
gen der kritischen Anwendungen, wie z. B. die Verfügbarkeit, haben darf. Abgesehen von
der Vernetzung, werden Analysefunktionen und KI-Algorithmen zunehmend in der Indu-
strie Domänen eingesetzt. Die Anwendungen haben unterschiedliche Anforderungen an
Echtzeit und Verfügbarkeit im Vergleich zu kritischen Anwendungen, müssen aber mit
diesen kommunizieren. Die Vorteile des Betriebs dieser Anwendungen auf der gleichen
Hardware können wie folgt aufgelistet werden:

� Skalierbarkeit: Durch die Verwaltung von Applikationen mit unterschiedlichen An-
forderungen auf derselben Hardware reduziert sich die Anzahl der erforderlichen
Hardware-Ressourcen. In der virtualisierten Architektur können sich mehrere An-
wendungen eine Hardwareressource teilen. Dies führt zu einer besseren Skalierbar-
keit.

� Freie Zuordnung auf die Hardwareressourcen: Die Partitionen können frei auf die
zur Verfügung stehenden Hardware-Ressourcen übertragen werden. Dies erlaubt ein
dynamisches Deployment und die Wiederverwendbarkeit der Partitionen.

� Vereinfachte Kommunikationsinfrastruktur: Innerhalb der Umgebung eines Hypervi-
sors kann die Kommunikation zwischen den Partitionen einfach und effizient gestaltet
werden. Der gesamte Netzwerk-Overhead entfällt.

� Reduzierung der Abhängigkeit zwischen Software und Hardware: Die Software wird
auf dem OS des Hypervisors spezifiziert und kann auf beliebigen Instanzen des Hy-
pervisors realisiert werden.

� Implementierung von Security-Aspekten auf der Systemebene: Security-Aspekte, wie
Zugriffsrechte, Kommunikation, Ressource-Allokation können auf der Systemebene
definiert werden.

In dieser Dissertation wurde ein Architekturkonzept für Steuerungsgeräte, bezeichnet als
Komponentenbasierte Architektur für Automatisierungssysteme, vorgestellt. Die vorge-
stellte Architektur verwendet eine Hardware-Virtualisierung, um verschiedene Anwendun-
gen auf Steuerungsgeräten zu trennen und zu integrieren. Die Systemfunktionen, die in die-
ser virtualisierten Umgebung implementiert wurden, bilden ein Verwaltungssystem und ein
Interface. Diese beiden Systemfunktionen bilden den Kern der KAS-Architektur und wur-
den jeweils in eigenen Partitionen implementiert. Anwendungen können je nach QoS oder
Strukturierungsanforderungen in gemeinsamen oder getrennten Partitionen oder Contai-
nern realisiert werden. Das KAS-System stellt ein leistungsfähiges internes Kommunikati-
onssystem für den Datenaustausch zwischen den Partitionen und Containern einer Ressour-
ce bereit. Die KAS-Mechanismen erlauben eine effiziente und übersichtliche Überwachung

77

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

8 Fazit

des Informationsflusses zwischen den internen Komponenten. Die Kommunikation zwi-
schen den Anwendungen soll jedoch sowohl hinsichtlich der Kommunikationsrichtung als
auch des Informationsflusses überwacht werden. Die Überwachung und Steuerung des Infor-
mationsflusses wird durch das Verwaltungssystem durchgeführt. Darüber hinaus bietet das
Verwaltungssystem sowohl Dienste für das Ressourcen- und Komponentenmanagement als
auch Konfigurationsdienste (Deployment und Inbetriebnahme) an. Durch Virtualisierung
und Hypervisor-Technologie werden unabhängige Umgebungen (VMs) generiert, die gemäß
der Anforderungen der Anwendungen konfiguriert werden können. Beispielsweise haben die
Datenanalysefunktionen andere Anforderungen an Echtzeit und Verfügbarkeit im Vergleich
zu Prozessführungsanwendungen. Daher müssen die Partitionen, welche diese Anwendun-
gen kapseln auch unterschiedlich konfiguriert sein. Die KAS-Architektur ermöglicht den
Betrieb, die Kooperation und die Vernetzung von Geräten in dem Industrie 4.0 Umfeld,
ohne die Anforderungen der kritischen Applikationen zu gefährden.
KAS implementiert eine neue Architektur eines hierarchischen Komponentensystems.

KAS vereinfacht und strukturiert die Implementierung von modularen wandelbaren An-
wendungsstrukturen unter Berücksichtigung der jeweiligen QoS. Es erscheint erstrebens-
wert, ein solches Konzept zu verallgemeinern und als neue generische Struktur für die Au-
tomatisierungsarchitektur zu standardisieren. Die Partitionen kapseln Anwendungen mit
unterschiedlichen Anforderungen. Standardisierte Konfigurationen der Partitionen gemäß
der Anwendungen wird auch als eine zukünftige Arbeit betrachtet. Diese Konfigurationen
beinhalten die Fähigkeiten der Partitionen, die Zugriffsrechte, die QoS-Eigenschaften, die
Kommunikationsports usw. Dies ermöglicht auch eine Wiederverwendbarkeit dieser Parti-
tionen.
Im bisherigen System werden die Daten direkt zwischen den Partitionen 1:1 übertragen.

Für zukünftige Anwendungen erscheint es hilfreich im Verwaltungssystem eine Datenhal-
tung, in Form eines Publisher/Subscriber-Systems, zu implementieren. Abb. 8.1 illustriert
die Kommunikation zwischen verschiedenen Anwendungen. Für die Kommunikation wird
eine Methode zur Identifikation, sowie der Speicherung der Daten benötigt. Die Informatio-
nen müssen dazu mit einem Topic versehen werden. Dies inkludiert auch die Verwaltung der
historischen Daten. Zustände, die von der Verwaltungskomponente abgerufen werden, wer-
den in diesem System unter diversen Topics gespeichert. Die anderen Partitionen können
diese Topics nach Bedarf abonnieren.

78

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Manager

Interface

Publisher/
Subscriber

Topics

Topics Topics

O&M

Subscriber

Subscriber

Subscriber

Publisher/
Subscriber

Publisher/
Subscriber

Control

Operating system:POSIX

ACPLT/RTE

Topics

…

Abbildung 8.1: Aufrüstung mit einem Publisher/Subscriber-System

79

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

Dieser Anhang stellt die Partition-Konfigurationen dar.

1 <?xml version ="1.0" encoding ="us -ascii" standalone ="no"?>

2 <Project xmlns="http :// www.sysgo.com/xsd/prj/project -4.8. xsd" xmlns:xsi="

http :// www.w3.org /2001/ XMLSchema -instance" productversion="4.2">

3 <Integration name="posix -devel" profile="integration"

4 target="arm_v7hf">

5 <PathTable >

6 <Path id="PIKEOS" location="F:\ SYSGO\opt\pikeos -4.2\" />

7 <Path id="PIKEOS_POOL"

8 location="F:\SYSGO\opt\pikeos -4.2\ target\arm\v7hf\" />

9 <Path id="CUSTOM_POOL" location="F:\ SYSGO\POSIX4\POOL" />

10 </PathTable >

11 <ConfigurationDomainTable >

12 <!--start here -->

13 <!--use CTRL + SPACE for suggestions -->

14 <!--use ’validate ’ from the right click menu to validate your code

-->

15 <Group name="Build">

16 <ComponentInstance name="Compilation Parameters"

17 ref="Compilation Parameters" />

18 </Group >

19 <Group name="Application">

20 <ComponentInstance name="POSIX Partition"

21 ref="POSIX Partition">

22 <ParameterValue name="PARTNAME" value="Manager" />

23 <VmitConfigurationTable >

24 <VmitConfiguration condition="true"

25 isReference="true">

26 <Partition

27 Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE VM_AB_PSP_RESET

VM_AB_MONITOR VM_AB_MEM_CREATE VM_AB_PSP_CONSOLE

VM_AB_HM_INJECT_OTHER" CpuMask=" -1"

28 Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="

20"

29 MaxPrio="62" MultiPartitionHMTableID="0" Name="$(PARTNAME

)"

30 SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

31 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"

>

32 <FileAccessTable >

33 <FileAccess

34 FileName="rfs:ov_server_manager.conf"

35 AccessMode="VM_O_RD VM_O_MAP">

36 </FileAccess >

37
38 <FileAccess

39 FileName="shm:MandO_SHAREDMEMORY"

80

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

40 AccessMode="VM_O_RD VM_O_WR VM_O_MAP">

41 </FileAccess >

42 <FileAccess

43 FileName="shm:INTERFACE_SHAREDMEMORY"

44 AccessMode="VM_O_RD VM_O_WR VM_O_MAP">

45 </FileAccess >

46
47 <ComponentReference

48 ref="POSIX Process" />

49 </FileAccessTable >

50 <MemoryRequirementTable >

51 <ComponentReference

52 ref="POSIX Process" />

53 </MemoryRequirementTable >

54 <ProcessTable >

55 <ComponentReference

56 ref="POSIX Process" />

57 </ProcessTable >

58 <QueuingPortTable >

59 <QueuingPort Name="INTERFACE_OUT"

60 MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_SOURCE">

61 </QueuingPort >

62 <QueuingPort Name="CONTROL_IN"

63 MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_DESTINATION">

64 </QueuingPort >

65 <QueuingPort Name="MandO_OUT"

66 MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_SOURCE">

67 </QueuingPort >

68 <ComponentReference

69 ref="POSIX Process" />

70 </QueuingPortTable >

71 <SamplingPortTable >

72 <ComponentReference

73 ref="POSIX Process" />

74 </SamplingPortTable >

75 <HMTable >

76 <DefaultSwitch >

77 <Default Action="P4_HM_PAC_IDLE"

78 Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />

79 </DefaultSwitch >

80 </HMTable >

81 </Partition >

82 </VmitConfiguration >

83 </VmitConfigurationTable >

84 </ComponentInstance >

85 <ComponentInstance name="POSIX Process"

86 ref="POSIX Process">

87 <ParameterValue name="LWIP_CONFIG" value="true" />

88 <ParameterValue name="LWIP_TARGETIP_IF1"

89 value="134.130.125.60" />

90 <ParameterValue name="RAMSIZE" value="0x04000000" />

91 <ParameterValue name="FILE"

92 value="CUSTOM_POOL/ov_runtimeserver" />

81

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

93 <ParameterValue name="MUXA_ALL" value="true" />

94 <ParameterValue name="LWIP_GATEWAY_IF1"

95 value="192.168.0.11" />

96 <ParameterValue name="DESTNAME" value="Manager" />

97 <ParameterValue name="POSIX_TUNE" value="true"/><ParameterValue

name="POSIX_TUNE_VM" value="true"/><ParameterValue name="

POSIX_TUNE_ARCH" value="true"/><ParameterValue name="

POSIX_TUNE_FS" value="true"/><ParameterValue name="

POSIX_TUNE_HEAP" value="true"/><ParameterValue name="

POSIX_TUNE_P4_PRIO" value="true"/><ParameterValue name="

POSIX_TUNE_SCHED" value="true"/><ParameterValue name="

POSIX_TUNE_PTHREAD" value="true"/><ParameterValue name="

POSIX_TUNE_MQ" value="true"/><ParameterValue name="

POSIX_TUNE_PARAMS" value="true"/><ParameterValue name="

POSIX_TUNE_TTY" value="true"/><AssignedDependencyTable >

98
99 <AssignedDependency cmp="imx_fec -vchan1"

100 provideId="channel" dependId="LWIP_DEVICE_IF1" />

101 <AssignedDependency cmp="muxa"

102 provideId="CHANNEL_02" dependId="IOFILE" />

103 </AssignedDependencyTable >

104 </ComponentInstance >

105 </Group >

106 <Group filename="driver/misc/devel.dom" name="devel"

107 path_id="PIKEOS_POOL">

108 <ComponentInstance name="monitor" ref="monitor">

109 <AssignedDependencyTable >

110 <AssignedDependency cmp="muxa" dependId="MONBIN"

111 provideId="monitor" />

112 <AssignedDependency cmp="muxa" dependId="MONCON"

113 provideId="mon_con" />

114 <AssignedDependency cmp="Monitor Master"

115 dependId="MON_MASTER" provideId="imon -master" />

116 </AssignedDependencyTable >

117 </ComponentInstance >

118 <ComponentInstance name="traceserver" ref="traceserver">

119 <AssignedDependencyTable >

120 <AssignedDependency cmp="muxa"

121 dependId="MUXA Channel" provideId="traceserver" />

122 </AssignedDependencyTable >

123 </ComponentInstance >

124 <ComponentInstance name="muxa" ref="muxa">

125 <ParameterValue name="HostIP" value="134.130.125.53" />

126 <ParameterValue name="TargetIP"

127 value="134.130.125.90" />

128 <ParameterValue name="GatewayIP"

129 value="134.130.125.126" />

130 <ParameterValue name="Netmask" value="255.255.255.0" />

131 <ParameterValue name="Channel2_Protocol"

132 value="telnet" />

133 <AssignedDependencyTable >

134 <AssignedDependency cmp="imx_fec -vchan0"

135 provideId="channel" dependId="FILE" />

136 </AssignedDependencyTable >

137 </ComponentInstance >

138 </Group >

82

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

139 <Group name="Default">

140 <ComponentInstance name="service.partition"

141 ref="service.partition">

142 <VmitConfigurationTable >

143 <VmitConfiguration condition="true"

144 isReference="true">

145 <Partition

146 Abilities="VM_AB_TIMEPART_CHANGE VM_AB_MONITOR

VM_AB_PSP_CONSOLE VM_AB_TIMEPART_SETUP

VM_AB_HM_INJECT_OTHER VM_AB_PART_SET_MODE

VM_AB_MEM_CREATE VM_AB_PSP_RESET VM_AB_CACHE_CHANGE

VM_AB_TRACE"

147 CpuMask="-1" Identifier="1" MaxChildTaskCount="20"

148 MaxFDCount="128" MaxPrio="102" MultiPartitionHMTableID="0

"

149 Name="service" SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

150 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"

>

151 <FileAccessTable >

152 <FileAccess

153 AccessMode="VM_O_RD VM_O_WR" FileName="con:" />

154 <ComponentReference ref="monitor" />

155 <ComponentReference ref="traceserver" />

156 <ComponentReference ref="muxa" />

157 <ComponentReference

158 ref="imx_uart -base" />

159 <ComponentReference

160 ref="imx_fec -base" />

161 </FileAccessTable >

162 <MemoryRequirementTable >

163 <MemoryRequirement

164 AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR

VM_MEM_ACCESS_EXEC"

165 Alignment=" -1" CacheMode="VM_MEM_CACHE_CB" Contiguous

="false"

166 IsPool="true" MemRegionID="-1" MemRegionPartition="-1

"

167 Name="_RAM_" PhysicalAddress="-1" Size="0x200000"

168 Type="VM_MEM_TYPE_RAM" ZeroCount="0" />

169 <MemoryRequirement

170 AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR

VM_MEM_ACCESS_EXEC"

171 Alignment=" -1" CacheMode="VM_MEM_CACHE_CB" Contiguous

="false"

172 IsPool="false" MemRegionID="-1" MemRegionPartition="

-1"

173 Name="_KMEM_" PhysicalAddress="-1" Size="0x320000"

174 Type="VM_MEM_TYPE_KMEM" ZeroCount="0" />

175 <ComponentReference ref="monitor" />

176 <ComponentReference ref="traceserver" />

177 <ComponentReference ref="muxa" />

178 <ComponentReference

179 ref="imx_uart -base" />

180 <ComponentReference

181 ref="imx_fec -base" />

182 </MemoryRequirementTable >

83

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

183 <ProcessTable >

184 <ComponentReference ref="monitor" />

185 <ComponentReference ref="traceserver" />

186 <ComponentReference ref="muxa" />

187 <ComponentReference

188 ref="imx_uart -base" />

189 <ComponentReference

190 ref="imx_fec -base" />

191 </ProcessTable >

192 <QueuingPortTable >

193 <ComponentReference ref="monitor" />

194 <ComponentReference ref="traceserver" />

195 <ComponentReference ref="muxa" />

196 <ComponentReference

197 ref="imx_uart -base" />

198 <ComponentReference

199 ref="imx_fec -base" />

200 </QueuingPortTable >

201 <SamplingPortTable >

202 <ComponentReference ref="monitor" />

203 <ComponentReference ref="traceserver" />

204 <ComponentReference ref="muxa" />

205 <ComponentReference

206 ref="imx_uart -base" />

207 <ComponentReference

208 ref="imx_fec -base" />

209 </SamplingPortTable >

210 <HMTable >

211 <DefaultSwitch >

212 <Default Action="P4_HM_PAC_IDLE"

213 Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />

214 </DefaultSwitch >

215 </HMTable >

216 </Partition >

217 </VmitConfiguration >

218 </VmitConfigurationTable >

219 </ComponentInstance >

220 </Group >

221 <Bsp align="0x00001000" arch="arm" boot="uboot"

222 bootstrats="uboot ,uboot_unc ,raw" endian="little"

223 filename="board/imx6q_sabrelite.bsp.dom" name="imx6q_sabrelite"

224 path_id="PIKEOS_POOL" proc="v7hf" wrdsz="32">

225 <Description >

226 Boundary Devices BD-SL-i.MX6 (formerly the Freescale

227 SABRE Lite board).

228 </Description >

229 <Group name="Monitor Kernel Drivers">

230 <ComponentInstance name="Monitor Master"

231 ref="imon -master" />

232 <ComponentInstance name="Monitor PSSW" ref="imon -ssw" />

233 <ComponentInstance name="Monitor APEX"

234 ref="imon -apex" />

235 </Group >

236 <Group name="iMX6 Serial User Level Driver">

237 <Description >i.MX Serial Driver </ Description >

238 <ComponentInstance name="imx_uart -base"

84

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

239 ref="imx_uart -fp_ext">

240 <ParameterValue name="MAX_FD_COUNT" value="5" />

241 <ParameterValue name="PROVIDER" value="ser0" />

242 <ParameterValue name="USE_CLK_MGR" value="true" />

243 <ParameterValue name="HEAP_SIZE" value="0x00300000"/><

AssignedDependencyTable >

244 <AssignedDependency cmp="iMX Clock Manager"

245 dependId="CLKMNGR" provideId="driver" />

246 </AssignedDependencyTable >

247 </ComponentInstance >

248 <ComponentInstance name="imx_uart -port0"

249 ref="imx_uart -device">

250 <ParameterValue name="IOADDR_LINK" value="UART1" />

251 <ParameterValue name="IRQ_LINK" value="UART1" />

252 <ParameterValue name="CLOCK_SPEED"

253 value="80000000" />

254 <ParameterValue name="CLK_NAME"

255 value="uart_serial_clk_gate" />

256 <ParameterValue name="CLK_FREQ" value="80000000" />

257 <ParameterValue name="FILE_NAME" value="0" />

258 <ParameterValue name="IO_ID" value="0" />

259 <AssignedDependencyTable >

260 <AssignedDependency cmp="imx_uart -base"

261 dependId="PROVIDER" provideId="driver" />

262 <AssignedDependency cmp="imx_uart -base"

263 dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />

264 </AssignedDependencyTable >

265 </ComponentInstance >

266 <ComponentInstance name="imx_uart -port1"

267 ref="imx_uart -device">

268 <ParameterValue name="IOADDR_LINK" value="UART2" />

269 <ParameterValue name="DEVICE" value="1" />

270 <ParameterValue name="IRQ_LINK" value="UART2" />

271 <ParameterValue name="CLOCK_SPEED"

272 value="80000000" />

273 <ParameterValue name="CLK_NAME"

274 value="uart_serial_clk_gate" />

275 <ParameterValue name="CLK_FREQ" value="80000000" />

276 <ParameterValue name="FILE_NAME" value="1" />

277 <ParameterValue name="IO_ID" value="1" />

278 <AssignedDependencyTable >

279 <AssignedDependency cmp="imx_uart -base"

280 dependId="PROVIDER" provideId="driver" />

281 <AssignedDependency cmp="imx_uart -base"

282 dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />

283 </AssignedDependencyTable >

284 </ComponentInstance >

285 <ComponentInstance name="imx_uart -port2"

286 ref="imx_uart -device">

287 <ParameterValue name="IOADDR_LINK" value="UART3" />

288 <ParameterValue name="DEVICE" value="2" />

289 <ParameterValue name="IRQ_LINK" value="UART3" />

290 <ParameterValue name="CLOCK_SPEED"

291 value="80000000" />

292 <ParameterValue name="CLK_NAME"

293 value="uart_serial_clk_gate" />

85

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

294 <ParameterValue name="CLK_FREQ" value="80000000" />

295 <ParameterValue name="FILE_NAME" value="2" />

296 <ParameterValue name="IO_ID" value="2" />

297 <AssignedDependencyTable >

298 <AssignedDependency cmp="imx_uart -base"

299 dependId="PROVIDER" provideId="driver" />

300 <AssignedDependency cmp="imx_uart -base"

301 dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />

302 </AssignedDependencyTable >

303 </ComponentInstance >

304 <ComponentInstance name="imx_uart -port3"

305 ref="imx_uart -device">

306 <ParameterValue name="IOADDR_LINK" value="UART4" />

307 <ParameterValue name="DEVICE" value="3" />

308 <ParameterValue name="IRQ_LINK" value="UART4" />

309 <ParameterValue name="CLOCK_SPEED"

310 value="80000000" />

311 <ParameterValue name="CLK_NAME"

312 value="uart_serial_clk_gate" />

313 <ParameterValue name="CLK_FREQ" value="80000000" />

314 <ParameterValue name="FILE_NAME" value="3" />

315 <ParameterValue name="IO_ID" value="3" />

316 <AssignedDependencyTable >

317 <AssignedDependency cmp="imx_uart -base"

318 dependId="PROVIDER" provideId="driver" />

319 <AssignedDependency cmp="imx_uart -base"

320 dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />

321 </AssignedDependencyTable >

322 </ComponentInstance >

323 <ComponentInstance name="imx_uart -port4"

324 ref="imx_uart -device">

325 <ParameterValue name="IOADDR_LINK" value="UART5" />

326 <ParameterValue name="DEVICE" value="4" />

327 <ParameterValue name="IRQ_LINK" value="UART5" />

328 <ParameterValue name="CLOCK_SPEED"

329 value="80000000" />

330 <ParameterValue name="CLK_NAME"

331 value="uart_serial_clk_gate" />

332 <ParameterValue name="CLK_FREQ" value="80000000" />

333 <ParameterValue name="FILE_NAME" value="4" />

334 <ParameterValue name="IO_ID" value="4" />

335 <AssignedDependencyTable >

336 <AssignedDependency cmp="imx_uart -base"

337 dependId="PROVIDER" provideId="driver" />

338 <AssignedDependency cmp="imx_uart -base"

339 dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />

340 </AssignedDependencyTable >

341 </ComponentInstance >

342 </Group >

343 <Group name="iMX6_FEC Ethernet User Level Driver">

344 <ComponentInstance name="imx_fec -base"

345 ref="imx_fec -fp_ext">

346 <ParameterValue name="MAX_FD_COUNT" value="6" />

347 <ParameterValue name="PROVIDER" value="eth0" />

348 <ParameterValue name="MAX_TRANSFER_SIZE"

349 value="1522" />

86

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

350 <ParameterValue name="MAX_FILE_COUNT" value="6" />

351 <ParameterValue name="USE_CLK_MGR" value="true" />

352 <AssignedDependencyTable >

353 <AssignedDependency cmp="iMX Clock Manager"

354 dependId="CLKMNGR" provideId="driver" />

355 </AssignedDependencyTable >

356 </ComponentInstance >

357 <ComponentInstance name="imx_fec -device"

358 ref="imx_fec -device">

359 <ParameterValue name="USE_PSP_NODE" value="false" />

360 <ParameterValue name="IO_ADDR" value="0x02188000" />

361 <ParameterValue name="IO_OFFSET" value="0" />

362 <ParameterValue name="IO_IRQ" value="150" />

363 <ParameterValue name="CLK_FREQ" value="66000000" />

364 <ParameterValue name="CLK_NAME"

365 value="enet_clk_gate" />

366 <ParameterValue name="FILE_NAME" value="dev0" />

367 <ParameterValue name="IO_SIZE" value="0x400" />

368 <AssignedDependencyTable >

369 <AssignedDependency cmp="imx_fec -base"

370 dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />

371 <AssignedDependency cmp="imx_fec -base"

372 dependId="PROVIDER" provideId="driver" />

373 </AssignedDependencyTable >

374 </ComponentInstance >

375 <ComponentInstance name="imx_fec -vchan0"

376 ref="hlnet -vchan">

377 <ParameterValue name="VCHAN" value="0" />

378 <ParameterValue name="FILE_NAME" value="0" />

379 <AssignedDependencyTable >

380 <AssignedDependency cmp="imx_fec -device"

381 dependId="DEVICE" provideId="file" />

382 <AssignedDependency cmp="imx_fec -base"

383 dependId="PROVIDER" provideId="driver" />

384 </AssignedDependencyTable >

385 </ComponentInstance >

386 <ComponentInstance name="imx_fec -vchan1"

387 ref="hlnet -vchan">

388 <ParameterValue name="VCHAN" value="1" />

389 <ParameterValue name="FILE_NAME" value="1" />

390 <AssignedDependencyTable >

391 <AssignedDependency cmp="imx_fec -device"

392 dependId="DEVICE" provideId="file" />

393 <AssignedDependency cmp="imx_fec -base"

394 dependId="PROVIDER" provideId="driver" />

395 </AssignedDependencyTable >

396 </ComponentInstance >

397 <ComponentInstance name="imx_fec -vchan2"

398 ref="hlnet -vchan">

399 <ParameterValue name="VCHAN" value="2" />

400 <ParameterValue name="FILE_NAME" value="2" />

401 <AssignedDependencyTable >

402 <AssignedDependency cmp="imx_fec -device"

403 dependId="DEVICE" provideId="file" />

404 <AssignedDependency cmp="imx_fec -base"

405 dependId="PROVIDER" provideId="driver" />

87

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

406 </AssignedDependencyTable >

407 </ComponentInstance >

408 <ComponentInstance name="imx_fec -vchan3"

409 ref="hlnet -vchan">

410 <ParameterValue name="VCHAN" value="3" />

411 <ParameterValue name="FILE_NAME" value="3" />

412 <AssignedDependencyTable >

413 <AssignedDependency cmp="imx_fec -device"

414 dependId="DEVICE" provideId="file" />

415 <AssignedDependency cmp="imx_fec -base"

416 dependId="PROVIDER" provideId="driver" />

417 </AssignedDependencyTable >

418 </ComponentInstance >

419 <ComponentInstance name="imx_fec -vchan4"

420 ref="hlnet -vchan">

421 <ParameterValue name="VCHAN" value="4" />

422 <ParameterValue name="FILE_NAME" value="4" />

423 <AssignedDependencyTable >

424 <AssignedDependency cmp="imx_fec -device"

425 dependId="DEVICE" provideId="file" />

426 <AssignedDependency cmp="imx_fec -base"

427 dependId="PROVIDER" provideId="driver" />

428 </AssignedDependencyTable >

429 </ComponentInstance ></Group >

430 <ComponentInstance name="PikeOS Kernel"

431 ref="PikeOS Kernel">

432 <ParameterValue name="PIKEOS_KERNEL_DIR"

433 value="PIKEOS_POOL/object/bsp/imx6" />

434 </ComponentInstance >

435 <ComponentInstance name="System Software"

436 ref="generic -pssw">

437 <ParameterValue name="PIKEOS_PSSW_BIN"

438 value="PIKEOS_POOL/pssw/object/standard/pssw.elf" />

439 </ComponentInstance >

440 <ComponentInstance name="sabrelite -config"

441 ref="sabrelite -config" />

442 <ComponentInstance name="imx6.psp" ref="imx6.psp">

443 <ParameterValue name="PSP_CONSOLE_PORT" value="2" />

444 <ParameterValue name="GPU_VOLT" value="false" />

445 </ComponentInstance >

446 <ComponentInstance name="PCI Manager"

447 ref="PCI Manager KDEV" />

448 <ComponentInstance name="HM Event Subscription"

449 ref="hmev" />

450 <ComponentInstance name="Standard Console"

451 ref="Standard Console" />

452 <ComponentInstance name="iMX Clock Manager"

453 ref="i.MX Clock Manager" />

454 <Info >

455 <Cpu name="i.MX6DL , i.MX6Q" />

456 <Vendor data="Boundary Devices" />

457 <Platman

458 manual="documentation/platform/platform -manual -ARM.pdf" />

459 <Uri

460 link="http :// boundarydevices.com/products/sabre -lite -imx6 -sbc

" />

88

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

461 <Project label="PSSW Fusion Project"

462 profile="fusion -pssw" template="standard" variable="

FUSION_PSSW" />

463 <Project label="Kernel Fusion Project"

464 profile="fusion -kernel" template="imx6" variable="

FUSION_KERNEL" />

465 <Project label="PSP Project" profile="psp"

466 template="imx6" variable="PSP" />

467 </Info >

468 </Bsp >

469 <Group name="Application2">

470 <ComponentInstance name="POSIX Partition2"

471 ref="POSIX Partition">

472 <ParameterValue name="PARTNAME" value="Control" />

473 <ParameterValue name="PARTID" value="3" />

474 <VmitConfigurationTable >

475 <VmitConfiguration condition="true"

476 isReference="true">

477 <Partition

478 Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE VM_AB_PSP_RESET

VM_AB_PSP_CONSOLE VM_AB_HM_INJECT_OTHER

VM_AB_MEM_CREATE" CpuMask="-1"

479 Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="

20"

480 MaxPrio="62" MultiPartitionHMTableID="0" Name="$(PARTNAME

)"

481 SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

482 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"

>

483 <FileAccessTable >

484 <FileAccess

485 AccessMode="VM_O_RD VM_O_MAP" FileName="rfs:

ov_server_manager2.conf" />

486 <FileAccess FileName="shm:MANAGER_SHAREDMEMORY"

487 AccessMode="VM_O_RD VM_O_WR VM_O_MAP">

488 </FileAccess >

489 <ComponentReference

490 ref="POSIX Process2" />

491 </FileAccessTable >

492 <MemoryRequirementTable >

493 <ComponentReference

494 ref="POSIX Process2" />

495 </MemoryRequirementTable >

496 <ProcessTable >

497 <ComponentReference

498 ref="POSIX Process2" />

499 </ProcessTable >

500 <QueuingPortTable >

501 <QueuingPort Name="MANAGER_OUT"

502 MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_SOURCE">

503 </QueuingPort >

504 <ComponentReference

505 ref="POSIX Process2" />

506 </QueuingPortTable >

507 <SamplingPortTable >

89

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

508 <ComponentReference

509 ref="POSIX Process2" />

510 </SamplingPortTable >

511 <HMTable >

512 <DefaultSwitch >

513 <Default Action="P4_HM_PAC_IDLE"

514 Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />

515 </DefaultSwitch >

516 </HMTable >

517 </Partition >

518 </VmitConfiguration >

519 </VmitConfigurationTable >

520 </ComponentInstance >

521 <ComponentInstance name="POSIX Process2"

522 ref="POSIX Process">

523 <ParameterValue name="LWIP_CONFIG" value="true" />

524 <ParameterValue name="LWIP_TARGETIP_IF1"

525 value="134.130.125.61" />

526 <ParameterValue name="RAMSIZE" value="0x04000000" />

527 <ParameterValue name="FILE"

528 value="CUSTOM_POOL/ov_runtimeserver" />

529 <ParameterValue name="MUXA_ALL" value="true" />

530 <ParameterValue name="LWIP_GATEWAY_IF1"

531 value="192.168.0.11" />

532 <ParameterValue name="DESTNAME" value="Control" />

533 <AssignedDependencyTable >

534
535
536
537 <AssignedDependency cmp="imx_fec -vchan2"

538 provideId="channel" dependId="LWIP_DEVICE_IF1" />

539 <AssignedDependency cmp="muxa"

540 provideId="CHANNEL_03" dependId="IOFILE" />

541 </AssignedDependencyTable >

542 </ComponentInstance >

543 </Group >

544 <Group name="Application3">

545 <ComponentInstance name="POSIX Partition3"

546 ref="POSIX Partition">

547 <ParameterValue name="PARTNAME" value="MandO" />

548 <ParameterValue name="PARTID" value="4" />

549 <VmitConfigurationTable >

550 <VmitConfiguration condition="true"

551 isReference="true">

552 <Partition

553 Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE" CpuMask=" -1"

554 Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="

20"

555 MaxPrio="62" MultiPartitionHMTableID="0" Name="$(PARTNAME

)"

556 SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

557 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"

>

558 <FileAccessTable >

559 <FileAccess

560 AccessMode="VM_O_RD VM_O_MAP"

90

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

561 FileName="rfs:ov_server_manager3.conf" />

562 <FileAccess FileName="shm:INTERFACE_SHAREDMEMORY"

563 AccessMode="VM_O_RD VM_O_WR">

564 </FileAccess >

565 <ComponentReference

566 ref="POSIX Process3" />

567 </FileAccessTable >

568 <MemoryRequirementTable >

569 <ComponentReference

570 ref="POSIX Process3" />

571 </MemoryRequirementTable >

572 <ProcessTable >

573 <ComponentReference

574 ref="POSIX Process3" />

575 </ProcessTable >

576 <QueuingPortTable >

577 <QueuingPort Name="MANAGER_IN"

578 MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_DESTINATION">

579 </QueuingPort >

580 <ComponentReference

581 ref="POSIX Process3" />

582 </QueuingPortTable >

583 <SamplingPortTable >

584 <ComponentReference

585 ref="POSIX Process3" />

586 </SamplingPortTable >

587 <HMTable >

588 <DefaultSwitch >

589 <Default Action="P4_HM_PAC_IDLE"

590 Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />

591 </DefaultSwitch >

592 </HMTable >

593 </Partition >

594 </VmitConfiguration >

595 </VmitConfigurationTable >

596 </ComponentInstance >

597 <ComponentInstance name="POSIX Process3"

598 ref="POSIX Process">

599 <ParameterValue name="LWIP_CONFIG" value="true" />

600 <ParameterValue name="LWIP_TARGETIP_IF1"

601 value="134.130.125.64" />

602 <ParameterValue name="RAMSIZE" value="0x04000000" />

603 <ParameterValue name="FILE"

604 value="CUSTOM_POOL/ov_runtimeserver" />

605 <ParameterValue name="MUXA_ALL" value="true" />

606 <ParameterValue name="LWIP_GATEWAY_IF1"

607 value="192.168.0.11" />

608 <ParameterValue name="DESTNAME" value="MandO" />

609 <ParameterValue name="POSIX_TUNE" value="false"/><

AssignedDependencyTable >

610
611
612
613
614

91

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

615 <AssignedDependency cmp="muxa"

616 provideId="CHANNEL_07" dependId="IOFILE" /><

AssignedDependency

617 cmp="imx_fec -vchan3" provideId="channel"

618 dependId="LWIP_DEVICE_IF1" /></AssignedDependencyTable >

619 </ComponentInstance >

620 </Group >

621 <Group name="Application4">

622 <ComponentInstance name="POSIX Partition4"

623 ref="POSIX Partition">

624 <ParameterValue name="PARTNAME" value="Interface" />

625 <ParameterValue name="PARTID" value="5" />

626 <VmitConfigurationTable >

627 <VmitConfiguration condition="true"

628 isReference="true">

629 <Partition

630 Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE" CpuMask=" -1"

631 Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="

20"

632 MaxPrio="62" MultiPartitionHMTableID="0" Name="$(PARTNAME

)"

633 SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

634 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"

>

635 <FileAccessTable >

636 <FileAccess

637 AccessMode="VM_O_RD VM_O_MAP"

638 FileName="rfs:ov_server_manager4.conf" />

639 <ComponentReference

640 ref="POSIX Process4" />

641 </FileAccessTable >

642 <MemoryRequirementTable >

643 <ComponentReference

644 ref="POSIX Process4" />

645 </MemoryRequirementTable >

646 <ProcessTable >

647 <ComponentReference

648 ref="POSIX Process4" />

649 </ProcessTable >

650 <QueuingPortTable >

651 <QueuingPort Name="MANAGER_IN"

652 MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_DESTINATION">

653 </QueuingPort >

654 <ComponentReference

655 ref="POSIX Process4" />

656 </QueuingPortTable >

657 <SamplingPortTable >

658
659 <ComponentReference

660 ref="POSIX Process4" />

661 </SamplingPortTable >

662 <HMTable >

663 <DefaultSwitch >

664 <Default Action="P4_HM_PAC_IDLE"

665 Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />

92

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

666 </DefaultSwitch >

667 </HMTable >

668 </Partition >

669 </VmitConfiguration >

670 </VmitConfigurationTable >

671 </ComponentInstance >

672 <ComponentInstance name="POSIX Process4"

673 ref="POSIX Process">

674 <ParameterValue name="LWIP_CONFIG" value="true" />

675 <ParameterValue name="LWIP_TARGETIP_IF1"

676 value="134.130.125.66" />

677 <ParameterValue name="RAMSIZE" value="0x04000000" />

678 <ParameterValue name="FILE"

679 value="CUSTOM_POOL/ov_runtimeserver" />

680 <ParameterValue name="MUXA_ALL" value="true" />

681 <ParameterValue name="LWIP_GATEWAY_IF1"

682 value="192.168.0.11" />

683 <ParameterValue name="DESTNAME" value="Interface" />

684 <AssignedDependencyTable >

685
686
687
688
689
690
691
692 <AssignedDependency cmp="imx_fec -vchan4"

693 provideId="channel" dependId="LWIP_DEVICE_IF1" /><

AssignedDependency

694 cmp="muxa" provideId="CHANNEL_01" dependId="IOFILE" /></

AssignedDependencyTable >

695 </ComponentInstance >

696 </Group ></ ConfigurationDomainTable >

697 <Vmit >

698 <!--the master VMIT -->

699 <Configuration PartitionID="0"

700 Version="VM_VMIT_VERSION_CURRENT">

701 <ConnectionTable >

702 <PartitionChannelTable >

703 <Channel PortType="VM_PORT_QUEUING">

704 <DestinationPortRef PortName="MANAGER_IN"

705 PartitionID="5">

706 </DestinationPortRef >

707 <SourcePortRef PortName="INTERFACE_OUT" PartitionID="2"></

SourcePortRef ></Channel >

708 <Channel PortType="VM_PORT_QUEUING">

709 <DestinationPortRef PortName="CONTROL_IN"

710 PartitionID="2">

711 </DestinationPortRef >

712 <SourcePortRef PortName="MANAGER_OUT" PartitionID="3"></

SourcePortRef ></Channel >

713 <Channel PortType="VM_PORT_QUEUING">

714 <DestinationPortRef PortName="MANAGER_IN"

715 PartitionID="4">

716 </DestinationPortRef >

717 <SourcePortRef PortName="MandO_OUT" PartitionID="2"></

93

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

SourcePortRef ></Channel >

718 <ComponentReference ref="PikeOS Kernel" />

719 <ComponentReference ref="System Software" />

720 <ComponentReference ref="sabrelite -config" />

721 <ComponentReference ref="imx6.psp" />

722 <ComponentReference ref="PCI Manager" />

723 <ComponentReference ref="Monitor Master" />

724 <ComponentReference ref="Monitor PSSW" />

725 <ComponentReference ref="Monitor APEX" />

726 <ComponentReference ref="HM Event Subscription" />

727 <ComponentReference ref="Standard Console" />

728 <ComponentReference ref="imx_uart -base" />

729 <ComponentReference ref="imx_uart -port0" />

730 <ComponentReference ref="imx_uart -port1" />

731 <ComponentReference ref="imx_uart -port2" />

732 <ComponentReference ref="imx_uart -port3" />

733 <ComponentReference ref="imx_uart -port4" />

734 <ComponentReference ref="imx_fec -base" />

735 <ComponentReference ref="imx_fec -device" />

736 <ComponentReference ref="imx_fec -vchan0" />

737 <ComponentReference ref="imx_fec -vchan1" />

738 <ComponentReference ref="imx_fec -vchan2" />

739 <ComponentReference ref="imx_fec -vchan3" />

740 <ComponentReference ref="iMX Clock Manager" />

741 <ComponentReference ref="POSIX Partition2" />

742 <ComponentReference ref="POSIX Process2" />

743 <ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="POSIX Process3"/><ComponentReference ref="imx_fec -

vchan4"/><ComponentReference ref="POSIX Partition4"/><

ComponentReference ref="POSIX Process4"/></

PartitionChannelTable >

744 <ExtensionChannelTable >

745 <ComponentReference ref="PikeOS Kernel" />

746 <ComponentReference ref="System Software" />

747 <ComponentReference ref="sabrelite -config" />

748 <ComponentReference ref="imx6.psp" />

749 <ComponentReference ref="PCI Manager" />

750 <ComponentReference ref="Monitor Master" />

751 <ComponentReference ref="Monitor PSSW" />

752 <ComponentReference ref="Monitor APEX" />

753 <ComponentReference ref="HM Event Subscription" />

754 <ComponentReference ref="Standard Console" />

755 <ComponentReference ref="imx_uart -base" />

756 <ComponentReference ref="imx_uart -port0" />

757 <ComponentReference ref="imx_uart -port1" />

758 <ComponentReference ref="imx_uart -port2" />

759 <ComponentReference ref="imx_uart -port3" />

760 <ComponentReference ref="imx_uart -port4" />

761 <ComponentReference ref="imx_fec -base" />

762 <ComponentReference ref="imx_fec -device" />

763 <ComponentReference ref="imx_fec -vchan0" />

764 <ComponentReference ref="imx_fec -vchan1" />

765 <ComponentReference ref="imx_fec -vchan2" />

766 <ComponentReference ref="imx_fec -vchan3" />

767 <ComponentReference ref="iMX Clock Manager" />

768 <ComponentReference ref="POSIX Partition2" />

94

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

769 <ComponentReference ref="POSIX Process2" />

770 <ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="POSIX Process3"/><ComponentReference ref="imx_fec -

vchan4"/><ComponentReference ref="POSIX Partition4"/><

ComponentReference ref="POSIX Process4"/></

ExtensionChannelTable >

771 <GateChannelTable >

772 <ComponentReference ref="PikeOS Kernel" />

773 <ComponentReference ref="System Software" />

774 <ComponentReference ref="sabrelite -config" />

775 <ComponentReference ref="imx6.psp" />

776 <ComponentReference ref="PCI Manager" />

777 <ComponentReference ref="Monitor Master" />

778 <ComponentReference ref="Monitor PSSW" />

779 <ComponentReference ref="Monitor APEX" />

780 <ComponentReference ref="HM Event Subscription" />

781 <ComponentReference ref="Standard Console" />

782 <ComponentReference ref="imx_uart -base" />

783 <ComponentReference ref="imx_uart -port0" />

784 <ComponentReference ref="imx_uart -port1" />

785 <ComponentReference ref="imx_uart -port2" />

786 <ComponentReference ref="imx_uart -port3" />

787 <ComponentReference ref="imx_uart -port4" />

788 <ComponentReference ref="imx_fec -base" />

789 <ComponentReference ref="imx_fec -device" />

790 <ComponentReference ref="imx_fec -vchan0" />

791 <ComponentReference ref="imx_fec -vchan1" />

792 <ComponentReference ref="imx_fec -vchan2" />

793 <ComponentReference ref="imx_fec -vchan3" />

794 <ComponentReference ref="iMX Clock Manager" />

795 <ComponentReference ref="POSIX Partition2" />

796 <ComponentReference ref="POSIX Process2" />

797 <ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="POSIX Process3"/><ComponentReference ref="imx_fec -

vchan4"/><ComponentReference ref="POSIX Partition4"/><

ComponentReference ref="POSIX Process4"/></GateChannelTable

>

798 </ConnectionTable >

799 <PartitionTable >

800 <ComponentReference ref="POSIX Partition" />

801 <ComponentReference ref="service.partition" />

802 <ComponentReference ref="POSIX Partition2" />

803 <ComponentReference ref="POSIX Partition3" /><

ComponentReference

804 ref="POSIX Partition4" /></PartitionTable >

805 <ScheduleTable >

806 <ScheduleScheme Name="Scheme1">

807 <WindowTable >

808 <Window Identifier="1" Start="0" Duration="60"

809 TimePartitionID="1" Flags="VM_SCF_PERIOD">

810 </Window >

811 <Window Identifier="2" Start="60" Duration="20"

812 TimePartitionID="2" Flags="VM_SCF_PERIOD">

813 </Window >

814 <Window Identifier="3" Start="80" Duration="20"

815 TimePartitionID="3" Flags="VM_SCF_PERIOD">

95

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

816 </Window >

817 <Window Identifier="4" Start="100" Duration="20"

818 TimePartitionID="4" Flags="VM_SCF_PERIOD">

819 </Window ></WindowTable ></ScheduleScheme >

820 <ScheduleScheme Name="Scheme2">

821 <WindowTable >

822 <Window Identifier="1" Start="40" Duration="30"

823 TimePartitionID="1" Flags="VM_SCF_PERIOD">

824 </Window >

825 <Window Identifier="2" Start="70" Duration="40"

826 TimePartitionID="2" Flags="VM_SCF_PERIOD">

827 </Window >

828 <Window Identifier="3" Start="0" Duration="40"

829 TimePartitionID="3" Flags="VM_SCF_PERIOD">

830 </Window >

831 <Window Identifier="4" Start="110" Duration="10"

832 TimePartitionID="1" Flags="VM_SCF_PERIOD">

833 </Window ></WindowTable ></ScheduleScheme >

834 <ComponentReference ref="PikeOS Kernel" />

835 <ComponentReference ref="System Software" />

836 <ComponentReference ref="sabrelite -config" />

837 <ComponentReference ref="imx6.psp" />

838 <ComponentReference ref="PCI Manager" />

839 <ComponentReference ref="Monitor Master" />

840 <ComponentReference ref="Monitor PSSW" />

841 <ComponentReference ref="Monitor APEX" />

842 <ComponentReference ref="HM Event Subscription" />

843 <ComponentReference ref="Standard Console" />

844 <ComponentReference ref="imx_uart -base" />

845 <ComponentReference ref="imx_uart -port0" />

846 <ComponentReference ref="imx_uart -port1" />

847 <ComponentReference ref="imx_uart -port2" />

848 <ComponentReference ref="imx_uart -port3" />

849 <ComponentReference ref="imx_uart -port4" />

850 <ComponentReference ref="imx_fec -base" />

851 <ComponentReference ref="imx_fec -device" />

852 <ComponentReference ref="imx_fec -vchan0" />

853 <ComponentReference ref="imx_fec -vchan1" />

854 <ComponentReference ref="imx_fec -vchan2" />

855 <ComponentReference ref="imx_fec -vchan3" />

856 <ComponentReference ref="iMX Clock Manager" />

857 <ComponentReference ref="POSIX Partition2" />

858 <ComponentReference ref="POSIX Process2" />

859 <ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="POSIX Process3"/><ComponentReference ref="imx_fec -vchan4

"/><ComponentReference ref="POSIX Partition4"/><

ComponentReference ref="POSIX Process4"/></ScheduleTable >

860 <SharedMemoryTable >

861 <MemoryRequirement Name="MANAGER_SHAREDMEMORY" Size="0x00001000

"

862 Alignment="-1" PhysicalAddress=" -1" Contiguous="false"

863 IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="

VM_MEM_CACHE_CB"

864 AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR

VM_MEM_ACCESS_EXEC">

865 </MemoryRequirement >

96

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

866 <MemoryRequirement Name="MandO_SHAREDMEMORY" Size="0x00001000"

867 Alignment=" -1" PhysicalAddress=" -1" Contiguous="false"

868 IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="

VM_MEM_CACHE_CB"

869 AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR

VM_MEM_ACCESS_EXEC">

870 </MemoryRequirement >

871 <MemoryRequirement Name="INTERFACE_SHAREDMEMORY" Size="0

x00001000"

872 Alignment=" -1" PhysicalAddress=" -1" Contiguous="false"

873 IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="

VM_MEM_CACHE_CB"

874 AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR

VM_MEM_ACCESS_EXEC">

875 </MemoryRequirement >

876 <ComponentReference ref="POSIX Process" />

877 <ComponentReference ref="PikeOS Kernel" />

878 <ComponentReference ref="System Software" />

879 <ComponentReference ref="sabrelite -config" />

880 <ComponentReference ref="imx6.psp" />

881 <ComponentReference ref="PCI Manager" />

882 <ComponentReference ref="Monitor Master" />

883 <ComponentReference ref="Monitor PSSW" />

884 <ComponentReference ref="Monitor APEX" />

885 <ComponentReference ref="HM Event Subscription" />

886 <ComponentReference ref="Standard Console" />

887 <ComponentReference ref="imx_uart -base" />

888 <ComponentReference ref="imx_uart -port0" />

889 <ComponentReference ref="imx_uart -port1" />

890 <ComponentReference ref="imx_uart -port2" />

891 <ComponentReference ref="imx_uart -port3" />

892 <ComponentReference ref="imx_uart -port4" />

893 <ComponentReference ref="imx_fec -base" />

894 <ComponentReference ref="imx_fec -device" />

895 <ComponentReference ref="imx_fec -vchan0" />

896 <ComponentReference ref="imx_fec -vchan1" />

897 <ComponentReference ref="imx_fec -vchan2" />

898 <ComponentReference ref="imx_fec -vchan3" />

899 <ComponentReference ref="iMX Clock Manager" />

900 <ComponentReference ref="POSIX Partition2" />

901 <ComponentReference ref="POSIX Process2" />

902 <ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="POSIX Process3"/><ComponentReference ref="imx_fec -vchan4

"/><ComponentReference ref="POSIX Partition4"/><

ComponentReference ref="POSIX Process4"/></SharedMemoryTable >

903 <SystemExtensionTable >

904 <FileProviderTable />

905 <GateProviderTable >

906 <ComponentReference ref="PCI Manager" />

907 <ComponentReference ref="Monitor Master" />

908 <ComponentReference ref="Monitor PSSW" />

909 <ComponentReference ref="Monitor APEX" />

910 <ComponentReference ref="HM Event Subscription" />

911 <ComponentReference ref="Standard Console" />

912 <ComponentReference ref="iMX Clock Manager" />

913 </GateProviderTable >

97

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

914 <PortProviderTable />

915 </SystemExtensionTable >

916 <ModuleHMTable >

917 <DefaultSwitch >

918 <Default Action="P4_HM_MAC_SHUTDOWN" Notify="0" />

919 </DefaultSwitch >

920 </ModuleHMTable >

921 <MultiPartitionHMTable >

922 <Table Identifier="0" Name="Default">

923 <DefaultSwitch >

924 <Default Action="P4_HM_MAC_SHUTDOWN"

925 Level="P4_HM_LEVEL_PARTITION" Notify="0" />

926 </DefaultSwitch >

927 </Table >

928 </MultiPartitionHMTable >

929 </Configuration >

930 </Vmit >

931
932 <Romimage >

933 <properties >

934 <prop_dir name="app/Manager/Manager">

935 <prop_dir name="args">

936 <prop_string name="argv1" data="-c" />

937 <prop_string name="argv2"

938 data="/rfs/ov_server_manager.conf" />

939 <prop_uint32 name="numargs" data="2" />

940 </prop_dir >

941 </prop_dir >

942 <prop_dir name="app/Control/Control">

943
944 <prop_dir name="args">

945 <prop_string name="argv1" data="-c" />

946 <prop_string name="argv2"

947 data="/rfs/ov_server_manager2.conf" />

948 <prop_uint32 name="numargs" data="2" />

949 </prop_dir >

950 </prop_dir >

951
952 <prop_dir name="app/Interface/Interface">

953 <prop_dir name="args">

954 <prop_string name="argv1" data="-c" />

955 <prop_string name="argv2"

956 data="/rfs/ov_server_manager4.conf" />

957 <prop_uint32 name="numargs" data="2" />

958 </prop_dir >

959 </prop_dir >

960 <prop_dir name="app/MandO/MandO">

961 <prop_dir name="args">

962
963 <prop_string name="argv1" data="-c" />

964 <prop_string name="argv2" data="/rfs/ov_server_manager3.conf"

/><prop_uint32

965 name="numargs" data="2" /></prop_dir ></prop_dir ></

properties >

966 <files >

967

98

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

968 <file name="ov_server_manager.conf" resource="/cygdrive/f/SYSGO/

POSIX4/POOL/ov_server_manager.conf" /><file

969 name="ov_server_manager2.conf" resource="/cygdrive/f/SYSGO/POSIX4

/POOL/ov_server_manager2.conf" /><file

970 name="ov_server_manager2.conf" resource="/cygdrive/f/SYSGO/

POSIX4/POOL/ov_server_manager2.conf" /><file

971 name="ov_server_manager3.conf" resource="/cygdrive/f/SYSGO/

POSIX4/POOL/ov_server_manager.conf" /><file

972 name="ov_server_manager4.conf" resource="/cygdrive/f/SYSGO/

POSIX4/POOL/ov_server_manager.conf" /></files ></Romimage >

973 <DefinitionTable >

974 <Definition filename="build/fusion -integration -parameters.cmp"

975 name="Compilation Parameters" path_id="PIKEOS_POOL" />

976 <Definition filename="partition/service_partition.cmp"

977 name="service.partition" path_id="PIKEOS_POOL" />

978 <Definition filename="driver/misc/monitor.cmp" name="monitor"

979 path_id="PIKEOS_POOL" />

980 <Definition filename="driver/misc/traceserver.cmp"

981 name="traceserver" path_id="PIKEOS_POOL" />

982 <Definition filename="driver/misc/muxa.cmp" name="muxa"

983 path_id="PIKEOS_POOL" />

984 <Definition filename="posix/posix_partition_default.cmp"

985 name="POSIX Partition" path_id="PIKEOS_POOL" />

986 <Definition filename="posix/posix_process_default.cmp"

987 name="POSIX Process" path_id="PIKEOS_POOL" />

988 <Definition filename="kernel/kernel.cmp" name="PikeOS Kernel"

989 path_id="PIKEOS_POOL" />

990 <Definition filename="pssw/pssw.cmp" name="generic -pssw"

991 path_id="PIKEOS_POOL" />

992 <Definition filename="board/imx6/imx6q_sabrelite -config.cmp"

993 name="sabrelite -config" path_id="PIKEOS_POOL" />

994 <Definition filename="psp/imx6.psp.cmp" name="imx6.psp"

995 path_id="PIKEOS_POOL" />

996 <Definition filename="kerneldriver/pci_manager.cmp"

997 name="PCI Manager KDEV" path_id="PIKEOS_POOL" />

998 <Definition filename="kerneldriver/imon/imon -master.cmp"

999 name="imon -master" path_id="PIKEOS_POOL" />

1000 <Definition filename="kerneldriver/imon/imon -ssw.cmp"

1001 name="imon -ssw" path_id="PIKEOS_POOL" />

1002 <Definition filename="kerneldriver/imon/imon -apex.cmp"

1003 name="imon -apex" path_id="PIKEOS_POOL" />

1004 <Definition filename="kerneldriver/hmev.cmp" name="hmev"

1005 path_id="PIKEOS_POOL" />

1006 <Definition filename="kerneldriver/stdcon.cmp"

1007 name="Standard Console" path_id="PIKEOS_POOL" />

1008 <Definition

1009 filename="driver/serial/imx_uart/imx_uart -fp_ext.cmp"

1010 name="imx_uart -fp_ext" path_id="PIKEOS_POOL" />

1011 <Definition

1012 filename="driver/serial/imx_uart/imx_uart -device.cmp"

1013 name="imx_uart -device" path_id="PIKEOS_POOL" />

1014 <Definition

1015 filename="driver/ethernet/imx_fec/imx_fec -fp_ext.cmp"

1016 name="imx_fec -fp_ext" path_id="PIKEOS_POOL" />

1017 <Definition

1018 filename="driver/ethernet/imx_fec/imx_fec -device.cmp"

99

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

1019 name="imx_fec -device" path_id="PIKEOS_POOL" />

1020 <Definition filename="driver/config/hlnet/hlnet -vchan.cmp"

1021 name="hlnet -vchan" path_id="PIKEOS_POOL" />

1022 <Definition

1023 filename="driver/clock/imx_clk/imx_clk -prov_kdev.cmp"

1024 name="i.MX Clock Manager" path_id="PIKEOS_POOL" />

1025 </DefinitionTable >

1026 </Integration >

1027 </Project >

100

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Nach der Konfiguration der Partitionen wird eine Binary erzeugt, die über Ethernet auf
das Board übertragen wird.

=> dhcp 134.130.125.53:Control-Software

DHCP client bound to address 134.130.125.64 (1007 ms)

Using FEC device

TFTP from server 134.130.125.53; our IP address is 134.130.125.64

Filename ’test’.

Load address: 0x12000000

Loading: ###

###

###

###

###

###

###

###

###

###

###

#########

46.9 KiB/s

done

Bytes transferred = 10615003 (a1f8db hex)

=> bootm

Booting kernel from Legacy Image at 12000000 ...

Image Name: PikeOS Boot Image

Image Type: ARM Linux Kernel Image (gzip compressed)

Data Size: 10614939 Bytes = 10.1 MiB

Load Address: 10020000

Entry Point: 10020000

Verifying Checksum ... OK

Uncompressing Kernel Image ... OK

Starting kernel ...

P4 kernel will start ...

PikeOS (C) Copyright SYSGO AG, Germany

ROM image build: devel-@Achernar-090821-09:24

Kernel build: 4.2-1784, type: noassert tracesys smp v7

ASP: "arm_v7hf" ARM v7, endian: little, VFP: d0-31

PSP build: 4.2-246

PSP: "imx6x" Freescale i.MX 6 (SMP - L2C)

Features: RETAIL TRACER-SYSCALL OPT SMP(4/32)

Configuration limits:

respart: 63

task: 256

101

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

A Anhang

thread: 511

timepart: 63

priority: 256

kprio: 32

interrupts: 1024

TP windows: 256

thr sstack: 4096 B

Resource partition 0 kernel memory refill strategy: dynamic (on demand)

Time stamp counter clock: 1000000 kHz, via system call

System ticker: periodic mode, resolution 10000000 ns

Time partition switch: 10000000 ns, watchdog timeout: 10000000 ns

Time partition synchronization: default

Free memory: 1011256 KiB

PikeOS PCI Manager KDEV, Build: 4.2-186

PCIMGR: message: PSP returned empty PCI device list

PSSW +Ext. FPs +Messages (Production), Build: 4.2-3668

PIKEOS_MON: Started, version: 4.2-325

Trace Server: version: 4.2-25

imx_uart: Provider "ser0" started, Build: 4.2-87 Production

MUXA: Version: 4.2-289

<DRV INFO> eth0: fec_mii_info: FEC: PHY identify @ 0x7 = 0x00221611

<DRV INFO> eth0: Registered MAC address(02:70:34:03:a9:88) for channel ’4’

<DRV INFO> eth0: Registered MAC address(06:70:34:03:a9:88) for channel ’3’

<DRV INFO> eth0: Registered MAC address(0a:70:34:03:a9:88) for channel ’2’

<DRV INFO> eth0: Registered MAC address(0e:70:34:03:a9:88) for channel ’1’

<DRV INFO> eth0: Registered MAC address(12:70:34:03:a9:88) for channel ’0’

imx_fec: Provider "eth0" started, Build: 4.2-82 Production

102

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

1. ALBRECHT, Harald. On meta-modeling for communication in operational pro-
cess control engineering: Zugl.: Aachen, Techn. Univ., Diss., 2002. Als Ms. gedr.
Düsseldorf: VDI-Verl., 2003. Fortschritt-Berichte VDI Reihe 8, Meß-, Steuerungs-
und Regelungstechnik. isbn 3183975084.

2. ANCA APOSTU; FLORINA PUICAN; GEANINA ULARU; GEORGE SUCIU;
GYORGY. Study on advantages and disadvantages of Cloud Computing – the
advantages of Telemetry Applications in the Cloud. [o.D.]. Nr. 978-1-61804-179-
1. Auch verfügbar unter: https : / / pdfs . semanticscholar . org / ada5 /

876e216130cdd7ad6e44539849049dd2de39.pdf.

3. ARMAND, Francois; GIEN, Michel. A Practical Look at Micro-Kernels and Virtual
Machine Monitors. 2009. Abger. unter doi: 10.1109/CCNC.2009.4784874.

4. ARMOUSH, A.; FRANKE, D.; KALKOV, I.; KOWALEWSKI, S. An Approach for
Using Mobile Devices in Industrial Safety-Critical Embedded Systems. In: Mem-
mi G., Blanke U. (eds) Mobile Computing, Applications, and Services. MobiCASE
2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. 2014. Abger. unter doi: 10.1109/ETFA.2016.
7733669.

5. ASHTARI TALKHESTANI, Behrang; JUNG, Tobias; LINDEMANN, Benjamin;
SAHLAB, Nada; JAZDI, Nasser; SCHLOEGL, Wolfgang; WEYRICH, Michael. An
architecture of an Intelligent Digital Twin in a Cyber-Physical Production System.
2019. Abger. unter doi: 10.1515/auto-2019-0039.

6. ATTELE, Kapila Rohan; KUMAR, Amit; SANKAR, V.; RAO, N. V.; SARMA,
T. Hitendra (Hrsg.). Emerging Trends in Electrical, Communications and Informa-
tion Technologies: Proceedings of ICECIT-2015. Singapore und s.l.: Springer Singa-
pore, 2017. Lecture Notes in Electrical Engineering. isbn 978-981-10-1538-0. Abger.
unter doi: 10.1007/978-981-10-1540-3.

7. AUTOSAR, Specifications (Release 4.2). [o.D.].

8. AZARMIPOUR, Mahyar; ELFAHAM, Haitham; GRIES, Caspar; EPPLE, Ulrich.
PLC 4.0: A Control System for Industry 4.0. In: IECON 2019 - 45th Annual Confe-
rence of the IEEE Industrial Electronics Society. 2019, Bd. 1, S. 5513–5518. Abger.
unter doi: 10.1109/IECON.2019.8927026.

9. AZARMIPOUR, Mahyar; ELFAHAM, Haitham; GRIES, Caspar; KLEINERT, To-
bias; EPPLE, Ulrich. A Service-based Architecture for the Interaction of Control
and MES Systems in Industry 4.0 Environment. In: 2020 IEEE 18th International
Conference on Industrial Informatics (INDIN). 2020, Bd. 1, S. 217–222. Abger. unter
doi: 10.1109/INDIN45582.2020.9442083.

103

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

10. AZARMIPOUR, Mahyar; ELFAHAM, Haitham; GROTHOFF, Julian; TROTHA,
Christian von; GRIES, Caspar; EPPLE, Ulrich. Dynamic Resource Management for
Virtualization in Industrial Automation. In: IECON 2018 - 44th Annual Conference
of the IEEE Industrial Electronics Society. 2018, S. 2878–2883. Abger. unter doi:
10.1109/IECON.2018.8591622.

11. AZARMIPOUR, Mahyar; TROTHA, Christian von; GRIES, Caspar; KLEINERT,
Tobias; EPPLE, Ulrich. A Secure Gateway for the Cooperation of Information Tech-
nologies and Industrial Automation Systems. In: IECON 2020 The 46th Annual
Conference of the IEEE Industrial Electronics Society. 2020, S. 53–58. Abger. unter
doi: 10.1109/IECON43393.2020.9254634.

12. BACIC, M. On hardware-in-the-loop simulation. 2005, S. 3194–3198. Abger. unter
doi: 10.1109/CDC.2005.1582653.

13. BARHAM, Paul; DRAGOVIC, Boris; FRASER, Keir; HAND, Steven; HARRIS,
Tim; HO, Alex; NEUGEBAUER, Rolf; PRATT, Ian; WARFIELD, Andrew. Xen
and the Art of Virtualization. 2003.

14. BARRETT, Diane; KIPPER, Gregory. Virtualization and Forensics. 1 - How Vir-
tualization Happens. Hrsg. von BARRETT, Diane; KIPPER, Gregory. Boston: Syn-
gress, 2010. isbn 978-1-59749-557-8. Abger. unter doi: https://doi.org/10.1016/
B978-1-59749-557-8.00001-1.

15. BARTODZIEJ, Christoph Jan. The concept Industry 4.0. BestMasters. Springer
Gabler, 2017. isbn 978-3-658-16501-7.

16. BASHARI RAD, Babak; BHATTI, Harrison; AHMADI, Mohammad. An Introduc-
tion to Docker and Analysis of its Performance. IJCSNS International Journal of
Computer Science and Network Security. 2017, Jg. 173, S. 8.

17. BOSCHERT, Stefan; ROSEN, Roland. Digital Twin—The Simulation Aspect. 2016.
Abger. unter doi: https://doi.org/10.1007/978-3-319-32156-1_5.

18. BOSS, B.; BADER, S.; A., Orzelski; HOFFMEISTER, M.; HOMPEL, M. ten;
VOGEL-HEUSER, Birgit; BAUERNHAUSL, T. Verwaltungsschale. in Handbuch
Industrie 4.0: Produktion, Automatisierung und Logistik. 2019.

19. BREIVOLD, Hongyu Pei; JANSEN, Anton; SANDSTRÖM, Kristian; CRNKOVIC,
Ivica. Virtualize for Architecture Sustainability in Industrial Automation. In: 2013
IEEE 16th International Conference on Computational Science and Engineering.
2013, S. 409–415. Abger. unter doi: 10.1109/CSE.2013.69.

20. BREIVOLD, Hongyu Pei; SANDSTRÖM, Kristian. Virtualize for test environment
in industrial automation. In: Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation (ETFA). 2014, S. 1–8. Abger. unter doi: 10.1109/ETFA.
2014.7005089.

21. BRENDAN, Burns; JOE, Beda; KALSEY, Hightower; THOMAS, Demmig. Kuber-
netes: Eine kompakte Einführung. 2020. isbn 978-3864908033.

104

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

22. BUYYA, Rajkumar; VECCHIOLA, Christian; SELVI, S. Thamarai. Mastering
Cloud Computing. Chapter 3 - Virtualization. Hrsg. von BUYYA, Rajkumar; VEC-
CHIOLA, Christian; SELVI, S. Thamarai. Boston: Morgan Kaufmann, 2013. isbn
978-0-12-411454-8. Abger. unter doi: https://doi.org/10.1016/B978-0-12-
411454-8.00003-6.

23. CHEN, Yinong; DU, Zhihui; GARCIA-ACOSTA, Marcos. Robot as a Service in
Cloud Computing. In: 2010, S. 151–158. Abger. unter doi: 10.1109/SOSE.2010.44.

24. CHRIS PAUL IATROU; MARKUS GRAUBE; LEON URBAS; TIM-PETER HEN-
RICHS, Stefan Erben. NOA Verification of Request: Reintegrating insights of cloud
based added value service. Atp - Magazine. 2018.

25. CRESPO, A.; RIPOLL, I.; MASMANO, M. Partitioned Embedded Architecture
Based on Hypervisor: The XtratuM Approach. In: 2010 European Dependable Com-
puting Conference. 2010, S. 67–72. Abger. unter doi: 10.1109/EDCC.2010.18.

26. CRUZ, Tiago; SIMÕES, Paulo; MONTEIRO, Edmundo. Virtualizing Programmable
Logic Controllers: Toward a Convergent Approach. IEEE Embedded Systems Letters.
2016, Jg. 8, Nr. 4, S. 69–72. Abger. unter doi: 10.1109/LES.2016.2608418.

27. D., Juergens; D., Reinhardt; R., Schneider; G., Hofstteter. Implementing mixed cri-
ticality software integration on multicore - a cost model and the lessons learned.
2015.

28. Details of the Asset Administration Shell: Part 1 - The exchange of information
between partners in the value chain of Industrie 4.0. [o.D.]. Auch verfügbar unter:
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/

2018-verwaltungsschale-im-detail.html.

29. DILLE, Nicholas; GROTE, Marc; KACZENSKI, Nils; KAPPEN, Jan. Microsoft
Hyper-V. Das Handbuch für Administratoren. Rheinwerk-Verlag, 2017. isbn 978-3-
8362-4327-8.

30. DIN SPEC 91345:2016-04 - Referenzarchitekturmodell Industrie 4.0 (RAMI4.0).
[o.D.].

31. DOCKER. [o.D.]. Auch verfügbar unter: https://www.docker.com/.

32. DOCKER. Documentation of Docker. 2018.

33. DOLUI, Koustabh; KIRALY, Csaba. Towards Multi-Container Deployment on IoT
Gateways. 2018, S. 1–7. Abger. unter doi: 10.1109/GLOCOM.2018.8647688.

34. ELFAHAAM, Haitham. A Runtime Adaptation Concept to reinforce Versatility in
Industrial Automation. 2019. isbn 978-3-18-526708-6.

35. ELFAHAM, Haitham; EPPLE, Ulrich. Meta models for intralogistics. at - Automa-
tisierungstechnik. 2020, Jg. 68, Nr. 3, S. 208–221. Abger. unter doi: doi:10.1515/
auto-2019-0083.

36. FERRER, Borja Ramis; MOHAMMED, Wael M.; CHEN, Enbo; LASTRA, Jose
L. Martinez. Connecting web-based IoT devices to a cloud-based manufacturing plat-
form. In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics
Society. 2017, S. 8628–8633. Abger. unter doi: 10.1109/IECON.2017.8217516.

105

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

37. FÜRST, Simon; BECHTER, Markus. 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshop (DSN-W). AUTOSAR
for Connected and Autonomous Vehicles: The AUTOSAR Adaptive Platform. [o.D.].
Abger. unter doi: 10.1109/DSN-W.2016.24.

38. GILANI, Syed Shiraz; JUNGBLUTH, Florian; FLATT, Holger; WENDT, Verena;
JASPERNEITE, Jürgen. Alternative controls for soft real-time industrial control
services in case of broken cloud links. 2016. Abger. unter doi: 10.1109/ETFA.2016.
7733669.

39. GIVEHCHI, Omid; IMTIAZ, Jahanzaib; TRSEK, H.; JASPERNEITE, J. Control-
as-a-service from the cloud: A case study for using virtualized PLCs. 2014 10th
IEEE Workshop on Factory Communication Systems (WFCS 2014). 2014, S. 1–4.
Abger. unter doi: 10.1109/WFCS.2014.6837587.

40. GOLDBERG, Robert P. Survey of virtual machine research. Computer. 1974, Jg. 7,
Nr. 6, S. 34–45. Abger. unter doi: 10.1109/MC.1974.6323581.

41. GOLDSCHMIDT, Thomas; HAUCK-STATTELMANN, Stefan; MALAKUTI, So-
mayeh; GRÜNER, Sten. Container-based architecture for flexible industrial control
applications. Journal of Systems Architecture. 2018, Jg. 84, S. 28–36. issn 1383-7621.
Auch verfügbar unter: https://www.sciencedirect.com/science/article/pii/
S1383762117304988.

42. GOLDSCHMIDT, Thomas; MURUGAIAH, Mahesh Kumar; SONNTAG, Christian;
SCHLICH, Bastian; BIALLAS, Sebastian; WEBER, Peter. Cloud-Based Control:
A Multi-tenant, Horizontally Scalable Soft-PLC. In: 2015 IEEE 8th International
Conference on Cloud Computing. 2015, S. 909–916. Abger. unter doi: 10.1109/
CLOUD.2015.124.

43. GÖLZER, Philipp. Big Data in Industrie 4.0 - Eine strukturierte Aufarbeitung von
Anforderungen, Anwendungsfällen und deren Umsetzung. 2017.

44. GRIES CASPAR AND WENGER MONIKA AND AZARMIPOUR MAHYAR.
PC2.5 Concept for the Software Abstraction Layer between PikeOS and the Ge-
neric Application Container. Hrsg. von BASYS4.0-PROJECT, Foerderkennzeichen
01IS16022. [o.D.].

45. GRIEVES M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emer-
gent Behavior in Complex Systems, In: Kahlen FJ., Flumerfelt S., Alves A. (eds)
Transdisciplinary Perspectives on Complex Systems. Springer. 2017. isbn 978-3-319-
38754-3.

46. GROTHOFF, Julian Alexander; WAGNER, Constantin August; EPPLE, Ulrich.
BaSys 4.0: Metamodell der Komponenten und Ihres Aufbaus; 1st ed. RWTH Aachen
University, 2018. Abger. unter doi: 10.18154/RWTH-2018-225880.

47. GRÜNER, Sten; EPPLE, Ulrich. Paradigms for unified runtime systems in industri-
al automation. In: 2013 European Control Conference (ECC). 2013, S. 3925–3930.
Abger. unter doi: 10.23919/ECC.2013.6669313.

48. GUO, SONG AND ZENG, DEZE. Cyber-Physical Systems: Architecture, Securi-
ty and Application. Cham: Springer International Publishing, 2019. EAI/Springer
Innovations in Communication and Computing. isbn 978-3-319-92564-6.

106

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

49. HEGAZY, Tamir; HEFEEDA, Mohamed. Industrial Automation as a Cloud Service.
2015, Nr. 10. Abger. unter doi: 10.1109/TPDS.2014.2359894.

50. HEISER, Gernot. The role of virtualization in embedded systems. 2008, S. 11–16.
isbn 978-1-60558-126-2. Abger. unter doi: 10.1145/1435458.1435461.

51. HEISER, Gernot; LESLIE, Ben. The OKL4 Microvisor: Convergence point of mi-
crokernels and hypervisors. 2010, S. 19–24.

52. IEC 62264, Integration von Unternehmens-EDV und Leitsystemen. [o.D.].

53. IEC 62541. OPC Unified Architecture: Part 1 - 10. 2010.

54. IGOR, Kalkov. A Real-time Capable, Open-Source-based Platform for Off-the-Shelf
Embedded Devices. 2018. issn 0935-3232.

55. Industrial Internet Consortium. [o.D.]. Auch verfügbar unter: https : / / www .

iiconsortium.org/.

56. Industrie 4.0. [o.D.]. Auch verfügbar unter: https://www.plattform-i40.de/
PI40/Navigation/DE/Home/home.html.

57. ISA-95, Enterprise-Control System Integration Part 1: Models and Terminology.
[o.D.].

58. J. POPEK, Gerald; P. GOLBERG, Robert. Formal Requirements for Virtualizable
Third Generation Architectures. 1974.

59. JACQUES BRYGIER; MEMET OEZER. Safety and Security for the Internet of
Things. 2016. Auch verfügbar unter: https://hal.archives-ouvertes.fr/hal-
01292301/.

60. KOBRYN, Pamela A; TUEGEL, Eric J; BRANCH, Structural Mechanics.
Condition-based Maintenance Plus Structural Integrity (CBM+ SI) & the Airframe
Digital Twin. USAF Air Force Research Laboratory, 88ABW-201101428. 2011.

61. LANGMANN, Reinhard; ROJAS-PEÑA, Leandro F. A PLC as an Industry 4.0 com-
ponent. In: 2016 13th International Conference on Remote Engineering and Virtual
Instrumentation (REV). 2016, S. 10–15. Abger. unter doi: 10.1109/REV.2016.
7444433.

62. LANGMANN, Reinhard; STILLER, Michael. The PLC as a Smart Service in Indu-
stry 4.0 Production Systems. Applied Sciences. 2019, Jg. 9, Nr. 18. issn 2076-3417.
Abger. unter doi: 10.3390/app9183815.

63. LEMERRE, Matthieu; OHAYON, Emmanuel; CHABROL, Damien; JAN, Ma-
thieu; JACQUES, Marie-Bénédicte. Method and Tools for Mixed-Criticality Real-
Time Applications within PharOS. 2012 IEEE 15th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops.
2011, Jg. 0, S. 41–48. isbn 978-0-7695-4377-2. Abger. unter doi: 10.1109/ISORCW.
2011.15.

64. LI, Zheng; KIHL, Maria; LU, Qinghua; ANDERSSON, Jens A. Performance over-
head comparison between hypervisor and container based virtualization. In: Procee-
dings - 31st IEEE International Conference on Advanced Information Networking
and Applications, AINA 2017. Institute of Electrical und Electronics Engineers Inc.,
2017, S. 955–962. isbn 9781509060283. Abger. unter doi: 10.1109/AINA.2017.79.

107

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

65. LIN, Chung-Wei; KIM, BaekGyu; SHIRAISHI, Shinichi. Hardware Virtualization
and Task Allocation for Plug-and-Play Automotive Systems. IEEE Design Test.
2019, S. 1–1. Abger. unter doi: 10.1109/MDAT.2019.2932936.

66. LUCAS, Pierre; CHAPPUIS, Kevin; BOUTIN, Benjamin; VETTER, Julian; RAHO,
Daniel. VOSYSmonitor, a TrustZone-based Hypervisor for ISO 26262 Mixed-critical
System. In: 2018 23rd Conference of Open Innovations Association (FRUCT). 2018,
S. 231–238. Abger. unter doi: 10.23919/FRUCT.2018.8588018.

67. M, Grieves. Digital twin: manufacturing excellence through virtual factory replicati-
on. 2014. Auch verfügbar unter: www.apriso.com/library/Whitepaper_%20Dr_
Grieves_DigitalTwin_ManufacturingExcellence.php.

68. M. POLKE. Prozeßleittechnik: Mit 8 Tabellen. 2., völlig überarb. und stark erw.
Aufl. München: Oldenbourg, 1994. isbn 3-486-22549-9.

69. MAHYAR, Azarmipour; TROTHA CHRISTIAN, von; ULRICH, Epple; ZEESHAN,
Ansar; CASPAR, Gries. Realisierung der NAMUR-Diode mittels Virtualisierung. In:
atp magazin 5/2020. 2020, S. 2878–2883. Abger. unter doi: https://doi.org/10.
17560/atp.v62i5.2472.

70. MEYER, Dirk. Objektverwaltungskonzept für die operative Prozeßleittechnik: Zugl.:
Aachen, Techn. Hochsch., Diss. Als Ms. gedr. Düsseldorf: VDI-Verl., 2002.
Fortschritt-Berichte VDI Reihe 8 Meß-, Steuerungs- und Regelungstechnik. isbn
3183940086.

71. MOHAN RAJ, V.K.; SHRIRAM, R. A study on server Sleep state transition to re-
duce power consumption in a virtualized server cluster environment. In: 2012 Fourth
International Conference on Communication Systems and Networks (COMSNETS
2012). 2012, S. 1–6. Abger. unter doi: 10.1109/COMSNETS.2012.6151371.

72. MORABITO, Roberto. Virtualization on Internet of Things Edge Devices With
Container Technologies: A Performance Evaluation. 2017. Abger. unter doi: 10.
1109/ACCESS.2017.2704444.

73. MURRAY, Glenn; JOHNSTONE, Michael N.; VALLI, Craig. The convergence
of IT and OT in critical infrastructure. 2017. Abger. unter doi: 10.4225/75/
5a84f7b595b4e.

74. NE 175. Namur Open Architechture - NOA Concept. [o.D.]. Auch verfügbar unter:
https://www.namur.net/de/fokusthemen/namur-open-architecture.html.

75. NE177. NAMUR Open Architecture - NOA Security Architecture and Security Ga-
teway. [o.D.].

76. ORACLE. Virtualbox. [o.D.]. Auch verfügbar unter: www . oracle . com / de /

virtualization/virtualbox.

77. PALM, Florian; EPPLE, Ulrich. openAAS - Die offene Entwicklung der Verwal-
tungsschale. Tagungsband Automation. 2017.

78. PETRUCCI, Vinicius; CARRERA, Enrique V.; LOQUES, Orlando; LEITE, Juli-
us C.B.; MOSSÉ, Daniel. Optimized Management of Power and Performance for
Virtualized Heterogeneous Server Clusters. In: 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. 2011, S. 23–32. Abger. unter
doi: 10.1109/CCGrid.2011.15.

108

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

79. PHILLIP LIPSON, GEERT VAN DER ZALM. PC vs. PLC: Comparing Control
Options. 2011. Auch verfügbar unter: http://www.msalah.com/A/PCvsPLC.pdf.

80. PikeOS User Manual. 2009.

81. POGGI, Tomaso; ONAINDIA, Peio; AZKARATE-ASKATSUA, Mikel;
GRÜTTNER, Kim; FAKIH, Maher; PEIRÓ, Salvador; BALBASTRE, Patri-
cia. A Hypervisor Architecture for Low-Power Real-Time Embedded Systems. In:
2018 21st Euromicro Conference on Digital System Design (DSD). 2018, S. 252–259.
Abger. unter doi: 10.1109/DSD.2018.00054.

82. POPOVIC, I. T.; RAKIC, A. Z. The Fog-Based Framework for Design of Real-Time
Control Systems in Internet of Things Environment. 2018, S. 1–6. Abger. unter doi:
10.1109/INDEL.2018.8637639.

83. REINHARDT, Dominik; MORGAN, Gary. An embedded hypervisor for safety-
relevant automotive E/E-systems. In: Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems (SIES 2014). 2014, S. 189–198. Abger.
unter doi: 10.1109/SIES.2014.6871203.

84. REPSCHLAEGER, Jonas; PANNICKE, Danny; ZARNEKOW, Rüdiger. Cloud
Computing: Definitionen, Geschäftsmodelle und Entwicklungspotenziale. 2010, Nr.
5. Abger. unter doi: 10.1007/BF03340507.

85. RUSSELL, B. Passive Benchmarking with docker LXC, KVM and OpenStack. 2015.

86. SANDSTROM, Kristian; VULGARAKIS, Aneta; LINDGREN, Markus; NOLTE,
Thomas. Virtualization technologies in embedded real-time systems. [o.D.]. Abger.
unter doi: 10.1109/ETFA.2013.6648012.

87. SCHÄUFFELE, Jörg; ZURAWKA, Thomas. Automotive Software Engineering.
2010. Abger. unter doi: 10.1007/978-3-8348-9368-0.

88. SCHENK, Michael; WIRTH, Siegfried; MÜLLER, Egon (Hrsg.). Fabrikplanung und
Fabrikbetrieb: Methoden für die wandlungsfähige, vernetzte und ressourceneffiziente
Fabrik. 2., vollständig überarbeitete und erweiterte Auflage 2014. Berlin: Springer
Vieweg, 2014. isbn 978-3-642-05458-7.

89. SCHLAGER, Martin. Hardware-in-the-loop simulation. 2008.

90. SCHÜTZE, Andreas; HELWIG, Nikolai; SCHNEIDER, Tizian. Sensors 4.0: smart
sensors and measurement technology enable Industry 4.0. [o.D.]. Auch verfügbar
unter: https://doi.org/10.5194/jsss-7-359-2018.

91. SEGOVIA, Vanessa Romero; THEORIN, Alfred. History of Control: History of
PLC and DCS. 2013. Auch verfügbar unter: http : / / archive . control . lth .
se/media/Education/DoctorateProgram/2012/HistoryOfControl/Vanessa_

Alfred_report.pdf.

92. SEHR, Martin A.; LOHSTROH, Marten; WEBER, Matthew; UGALDE, Ines; WIT-
TE, Martin; NEIDIG, Joerg; HOEME, Stephan; NIKNAMI, Mehrdad; LEE, Edward
A. Programmable Logic Controllers in the Context of Industry 4.0. IEEE Transac-
tions on Industrial Informatics. 2021, Jg. 17, Nr. 5, S. 3523–3533. Abger. unter doi:
10.1109/TII.2020.3007764.

109

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

93. SHAFTO, Mike; CONROY, Mike; DOYLE, Rich; GLAESSGEN, Ed; KEMP, Chris;
LEMOIGNE, Jacqueline; WANG, Lui. Modeling, simulation, information technology
& processing roadmap. National Aeronautics and Space Administration. 2012, Jg. 32,
Nr. 2012, S. 1–38.

94. SPEZIFIKATION DIN SPEC 40912. Kernmodelle - Beschreibung und Beispiele.
2014.

95. STRASSER, Thomas; ZOITL, ALOIS : EBENHOFER, GERHARD. 4DIAC - Ein
Open Source Framework für verteilte industrielle Automatisierungs- und Steue-
rungssysteme. In: Informatik 2010. Bonn: Ges. für Informatik, 2010, S. 435–440.
GI-Edition lecture notes in informatics P, Proceedings. isbn 978-3-88579-269-7.

96. SYSGO EMBEDDING INNOVATIONS. [o.D.]. Auch verfügbar unter: https://
www.sysgo.com/.

97. TAUCHNITZ, Thomas; UWE, Maier. Speicherprogrammierbare Steuerungen.
Handbuch der Prozessautimatisierung, Oldenbourg Industrieverlag, 2009. isbn
383563142X 2.2.3, isbn 2.2.3.

98. TERZIMEHIC, Tarik; WENGER, Monika; ZOITL, Alois; BAYHA, Andreas;
BECKER, Klaus; MÜLLER, Thorsten; SCHAUERTE, Hubertus. Towards an in-
dustry 4.0 compliant control software architecture using IEC 61499 amp; OPC UA.
In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). 2017, S. 1–4. Abger. unter doi: 10.1109/ETFA.2017.8247718.

99. THÖNNESSEN, David. Hardware-in-the-Loop testing of industrial automation sy-
stems using PLC languages. Aachen: RWTH Aachen University, 2021. Abger. unter
doi: 10.18154/RWTH-2021-08705. Diss. RWTH Aachen University.

100. TURNBULL, J. The Docker Book: Containerization is the new virtualization. 2014.
isbn 9780988820203.

101. U. GURAV, R. Shaikh. Virtualization: a key feature of cloud computing. [o.D.]. Auch
verfügbar unter: https://doi.org/10.1145/1741906.1741957.

102. USTUNDAG, Alp; CEVIKCAN, Emre (Hrsg.). Industry 4.0: Managing the digital
transformation. Cham: Springer, 2018. Springer series in advanced manufacturing.
isbn 978-3-319-57869-9.

103. VAIDYA, Saurabh; AMBAD, Prashant; BHOSLE, Santosh. Industry 4.0 – A Glimp-
se. 2018. Abger. unter doi: 10.1016/j.promfg.2018.02.034.

104. VANDERLEEST, Steven H.; WHITE, Dagan. MPSoC hypervisor: The safe and
secure future of avionics. [o.D.]. Abger. unter doi: 10.1109/DASC.2015.7311448.

105. VDI Richtlinien 5201, Wandlungsfaehigkeit Beschreibung und Messung der
Wandlungsfaehigkeit produzierender Unternehmen Beispiel Medizintechnik. VDI-
Gesellschaft Technologies of Life Sciences, [o.D.].

106. Virtualisierung in der Automatisierungstechnik am Beispiel des SIMATIC S Soft-
ware, https://silo.tips/download/virtualisierung-in-der-automatisierungstechnik-
am-beispiel-des-simatic-s-softwar. [o.D.].

107. VMWARE. Understanding Full Virtualization, Paravirtualization, and Hardware
Assist. 2008. Auch verfügbar unter: https://www.vmware.com/de/techpapers/
2007/understanding-full-virtualization-paravirtualizat-1008.html.

110

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Literatur

108. VOGEL-HEUSER, Birgit. Die Auflösung der Automatisierungspyramide: Die Ma-
schinenkommunikation in der Smarten Fabrik. 2016.

109. W., Dorst. Umsetzungsstrategie Industrie 4.0: Ergebnisbericht der Plattform Indu-
strie 4.0. 2015.

110. WAGNER, Constantin; GROTHOFF, Julian; EPPLE, Ulrich; DRATH, Rainer;
MALAKUTI, Somayeh; GRÜNER, Sten; HOFFMEISTER, Michael; ZIMER-
MANN, Patrick. The role of the Industry 4.0 asset administration shell and the
digital twin during the life cycle of a plant. In: 2017 22nd IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA). 2017, S. 1–8.
Abger. unter doi: 10.1109/ETFA.2017.8247583.

111. WEBB, John W.; REIS, Ronald A. (Hrsg.). Programmable logic controllers: Prin-
ciples and applications. 5. ed. Upper Saddle River, NJ: Prentice Hall, 2003. isbn
978-0-13-041672-8.

112. WIND RIVER. Wind River Hypervisor. [o.D.]. Auch verfügbar unter: https://
www.windriver.com/products/.

113. WIND RIVER.Wind River Hypervisor. [o.D.]. Auch verfügbar unter: https://www.
windriver.com/products/product-notes/wind-river-hypervisor-product-

note.pdf.

114. WU, Dazhong; GREER, Matthew John; ROSEN, David W.; SCHAEFER, Dirk.
Cloud manufacturing: Strategic vision and state-of-the-art. 2013, Nr. 4. Abger. unter
doi: 10.1016/j.jmsy.2013.04.008.

115. XF, Yao; JJ, Zhou; CJ, Zhang; M, Liu. Proactive manufacturing: a big-data based
emerging manufacturing paradigm. Comput Integr Manuf Syst 23(1):172–185. 2017.

116. XU, Li Da; HE, Wu; LI, Shancang (Hrsg.). Internet of Things in Industries: A
Survey. 2014. Abger. unter doi: 10.1109/TII.2014.2300753.

117. YONGWANG, Zhao; ZHIBIN, Yangi; MA, Dianfu. A survey on formal specification
and verification of separation kernels. In: 2017, S. 585–607. Abger. unter doi: DOI10.
1007/s11704-016-4226-2.

118. YU, Liyong; GRÜNER, Sten; EPPLE, Ulrich. An engineerable procedure description
method for industrial automation. In: 2013 IEEE 18th Conference on Emerging
Technologies Factory Automation (ETFA). 2013, S. 1–8. Abger. unter doi: 10 .
1109/ETFA.2013.6648002.

119. ZHUANG, C.; LIU, J.; XIONG, H. Digital twin-based smart production mana-
gement and control framework for the complex product assembly shop-floor. The
International Journal of Advanced Manufacturing Technology. 2018. Abger. unter
doi: doi.org/10.1007/s00170-018-1617-6.

111

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Alle 23 Reihen der „Fortschritt-Berichte VDI“
in der Übersicht – bequem recherchieren unter:
elibrary.vdi-verlag.de

Und direkt bestellen unter:
www.vdi-nachrichten.com/shop

Reihe 01 Konstruktionstechnik/
 Maschinenelemente
Reihe 02 Fertigungstechnik
Reihe 03 Verfahrenstechnik
Reihe 04 Bauingenieurwesen
Reihe 05	 Grund-	und	Werkstoffe/Kunststoffe
Reihe 06 Energietechnik
Reihe 07 Strömungstechnik
Reihe 08 Mess-, Steuerungs- und Regelungstechnik
Reihe 09 Elektronik/Mikro- und Nanotechnik
Reihe 10 Informatik/Kommunikation
Reihe 11 Schwingungstechnik
Reihe 12 Verkehrstechnik/Fahrzeugtechnik
Reihe 13 Fördertechnik/Logistik
Reihe 14 Landtechnik/Lebensmitteltechnik
Reihe 15 Umwelttechnik
Reihe 16 Technik und Wirtschaft
Reihe 17 Biotechnik/Medizintechnik
Reihe 18 Mechanik/Bruchmechanik
Reihe 19 Wärmetechnik/Kältetechnik
Reihe 20 Rechnergestützte Verfahren
Reihe 21 Elektrotechnik
Reihe 22 Mensch-Maschine-Systeme
Reihe 23 Technische Gebäudeausrüstung

Black
Preflight Lx3 am März 29, 2022 | 12:16:29 | 148 mm x 210 mm

L_
22

03
08

_R
ei

he
_0

8_
12

75
_l

et
zt

eS
ei

te
_r

ec
ht

s_
A

5.
pd

f ·
 S

ei
te

 1

L_220308_Reihe_08_1275_letzteSeite_rechts_A5.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Preflight Lx3 am März 29, 2022 | 12:16:29 | 148 mm x 210 mm

L_
22

03
08

_R
ei

he
_0

8_
12

75
_l

et
zt

eS
ei

te
_r

ec
ht

s_
A

5.
pd

f ·
 S

ei
te

 2

L_220308_Reihe_08_1275_letzteSeite_rechts_A5.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

So findet Sie Ihr Traumjob!

Best
Match

for
Best

talents

Cyan Magenta Yellow Black
Preflight Lx3 am März 31, 2022 | 09:22:28 | 350 mm x 250 mm

L_
22

03
08

_R
ei

he
_0

8_
12

75
_C

ov
er

.p
df

 ·
S

ei
te

 2

L_220308_Reihe_08_1275_Cover.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

Fortschritt-
Berichte VDI

Virtualisierung prozess-
naher Steuerungen in der
Prozessautomatisierung

Mahyar Azarmipour, M. Sc.,
Aachen

BAND
1|1

VOLUME
1|1

NR. 1275

REIHE 08
MESS-,
STEUERUNGS-
UND REGELUNGS-
TECHNIK

BAND
1|1

VOLUME
1|1

NR. 1275

REIHE 08
MESS-,
STEUERUNGS-
UND REGELUNGS-
TECHNIK

Az
ar

m
ip

ou
r

Vi
rt

ua
lis

ie
ru

ng
 v

on
 S

te
ue

ru
ng

ss
ys

te
m

en
RE

IH
E

08

|
 N

R.
 1

27
5

ISBN 978-3-18-527508-1
E-ISBN 978-3-18-627508-0

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Cyan Magenta Black
Preflight Lx3 am März 31, 2022 | 09:22:28 | 350 mm x 250 mm

L_
22

03
08

_R
ei

he
_0

8_
12

75
_C

ov
er

.p
df

 ·
S

ei
te

 1

L_220308_Reihe_08_1275_Cover.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186275080

	Cover
	1 Einleitung
	1.1 Motivation
	1.2 Zielsetzung
	1.3 Struktur dieser Arbeit

	2 Grundlage und Stand der Technik
	2.1 Virtualisierung
	2.1.1 Virtualisierungstypen
	2.1.2 Virtualisierung mit Hypervisoren
	2.1.3 Virtualisierung mit Mikrokernels
	2.1.4 Hypervisor und Mikrokernel-Technologien

	2.2 Container-Technologien
	2.2.1 Virtualisierungsanwendungen in anderen industriellen Domänen
	2.2.2 Virtualisierung in der Luftfahrt
	2.2.3 Industrielle Automatisierung

	2.3 NAMUR Open Architecture
	2.4 Speicherprogrammierbare Steuerungen
	2.4.1 Programmierung
	2.4.2 Entwicklung der speicherprogrammierbaren Steuerungen
	2.4.3 Neue Architekturen für speicherprogrammierbare Steuerungen

	2.5 Digitale Zwillinge und Verwaltungsschalen
	2.5.1 Digitaler Zwilling als Validierungskomponente
	2.5.2 Digitaler Zwilling für Beobachtung und Optimierung

	2.6 Laufzeitumgebungen
	2.6.1 Industrie-PCs und eingebettete Systeme
	2.6.2 Betriebsmittel und Maßnahmenmodell

	3 Anforderung an zukünftige Automatisierungssysteme
	3.1 Anforderungen
	3.2 Leistungsfähige übertragung von Feld- und Automatisierungsdaten an überlagerte Anwendungen
	3.3 Prozessbegleitende Optimierung und überwachung
	3.4 Effiziente interne Kommunikation
	3.5 Lokale Komponentenverwaltung
	3.6 Dynamisches Komponentenmanagement
	3.7 Explizite Verwaltung und Sicherstellung von QoS-Eigenschaften

	4 Konzept
	4.1 Allgemeine Architektur
	4.2 Komponentenhierarchie
	4.2.1 Kommunikation zwischen den Partitionen

	4.3 Systempartitionen
	4.3.1 Verwaltungssystem
	4.3.2 Interface

	4.4 Verwaltungsdienste
	4.4.1 Interne Kommunikationsdienste
	4.4.2 Externe Kommunikationsdienste
	4.4.3 Konfigurationsdienste
	4.4.4 Ressourcenverwaltung
	4.4.5 Komponentenverwaltungsdienste

	4.5 Anwendungspartitionen
	4.6 Evaluation anhand der Anforderungen an die Architektur

	5 Anwendungsszenarien in der Automatisierungstechnik
	5.1 Architektur der Automatisierungspyramide
	5.2 Beispielhafte Anwendungspartitionen
	5.2.1 Control-Partition
	5.2.2 O&M-Partition

	6 Implementierung für eine Kaltwalzanlage
	6.1 Logistik
	6.2 SMS-Demonstrator
	6.3 Aufbau
	6.4 Verification of Request
	6.4.1 Evaluation des VoR-Konzepts

	7 Validierung des Konzepts
	7.1 Eingesetzte Technologien
	7.1.1 Portierung von ACPLT/RTE und PikeOS

	7.2 Prozessführung
	7.2.1 Laufzeitanalyse in virtualisierten und nicht virtualisierten Umgebungen
	7.2.2 Kommunikation
	7.2.3 Verwaltungssystem

	8 Fazit
	A Anhang

	Literatur

