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Kurzfassung

Industrie 4.0 ist ein neues Paradigma, das eine zentrale Rolle in der Entwicklung der
zukiinftigen Automatisierungssysteme spielt. Die neue Generation der industriellen Au-
tomatisierungstechnik zielt auf die Erhthung der Wandelbarkeit der Automatisierungssy-
steme ab. Dabei ist die Vernetzung und die Kooperation mit der IT-Welt eine wichtige
Voraussetzung, um die angeforderte Wandelbarkeit zu erreichen. Daher miissen neue Ar-
chitekturen und Losungen eingesetzt werden, um eine Kooperation zwischen den Automa-
tisierungssystemen und der I'T zu realisieren. Ziel dieser Arbeit ist ein Architekturentwurf
fiir die Steuerungsgerite der prozessnahen Komponenten, um diese mit einer hoheren Ver-
netzung und Wandelbarkeit auszustatten. Die Hauptanforderungen, welche von der Archi-
tektur erfiillt werden, sind:

e Der parallele Betrieb von Anwendungen unterschiedlicher Kritikalitéit

e Das dynamische Deployment von neuen Anwendungen zur Laufzeit

Die Realisierung eines sicheren Gateways fiir die Kommunikation zwischen Systemen
der Automatisierungsebene und iibergeordneten I'T-Systemen

e Die offene Kommunikation mit der I'T-Welt
e Die Realisierung eines lokalen Software- und Zugriffsverwaltungssystems

Die vorgeschlagene Architektur besteht aus einem Mehrebenen-Komponentenmodell und
wird als komponentenbasierte Architektur fiir Automatisierungssysteme (KAS) bezeich-
net. Die unterste Ebene der KAS-Architektur ist die Ebene der Partitionen. Die KAS-
Architektur setzt Hypervisor-Virtualisierung ein, um eine Trennung der Anwendungen
mit unterschiedlichen Anforderungen auf der gleichen Hardware zu ermdoglichen. Die An-
wendungen werden in vorkonfigurierten Partitionen gekapselt und betrieben. Um die Mo-
dularisierung der Anwendungen zu erhchen werden Container als zusétzliche Virtuali-
sierungskomponenten eingesetzt. Containertechnologien ermoglichen die Kapselung und
Verwaltung der Anwendungen in unterschiedlichen Containern innerhalb einer Partition.
Dadurch kénnen beispielsweise unterschiedliche Versionen der Anwendungen in einer Par-
tition verwaltet werden. Die Container bilden die zweite Komponentenebene in der KAS-
Architektur. Die letzte Komponentenebene stellt die Kapselung in die Funktionsbausteine
dar. Fiir die Verwaltung der gesamten Komponentenhierarchie ist in der KAS-Architektur
ein Verwaltungssystem vorgesehen, das die erforderlichen Dienste zur Komponentenver-
waltung zur Verfiigung stellt. Das Verwaltungssystem ist eine Systemfunktionalitit der
KAS-Architektur und in einer eigenen Partition gekapselt. Eine weitere Systemfunktion
der KAS-Architektur ist das Interface. Dieses wird ebenfalls in einer eigenen Partition ge-
kapselt. Diese Interface-Partition ist die einzige Partition, die mit externen Komponenten
auBlerhalb der Kernautomatisierung kommunizieren darf. In der Arbeit werden fiir die Va-
lidierung der KAS-Architektur beispielhaft Anwendungspartitionen fiir die Prozessfithrung
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und die Simulation entwickelt. Mit Hilfe dieser Anwendungen kénnen realistische Szenarien
der Automatisierungsebene prototypisch implementiert und getestet werden. Die Ergeb-
nisse zeigen, dass die KAS-Architektur eine leistungsfihige und iibersichtlich verwaltbare
Systemumgebung darstellt, um fiir neue Anforderungen eine hohe Flexibilitét zu bieten,
sowie der durchgéingigen Interoperabilitdt der Automatisierungsebene zu geniigen, ohne
die Integritat der Kernautomation zu gefihrden.
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Abstract

Industry 4.0 is a new paradigm that plays a central role in the development of future
automation systems. The new generation of industrial automation aims to increase the
agility of the automation system. In this context, cooperation with the IT world is an
important prerequisite to achieve the requested agility. Therefore, new architectures and
solutions have to be developed to realize a cooperation between the automation systems
and the IT. The goal of this work is an architecture design for the control devices in order
to provide them with a higher level of connectivity and agility. The main features, which
are fulfilled by the architecture, are:

e The parallel operation of applications of different criticality

e The dynamic deployment of new applications at runtime

The realization of a secure gateway for communication between automation level
systems and higher level I'T systems

The open communication with the I'T world
e The realization of a local software and access management system

The proposed architecture consists of a multi-level component model and is referred to as a
component-based architecture for automation systems (KAS). The lowest level of the KAS
architecture is the partition level. The KAS architecture employs hypervisor virtualization
to enable separation of applications with different requirements on the same hardware. Ap-
plications are encapsulated in preconfigured partitions. Containers are used as additional
virtualization components to increase modularization of applications. Container techno-
logies enable the encapsulation and management of applications in different containers
within a partition. This means, for example, that different versions of the applications
can be managed in one partition. The containers are the second component level in the
KAS architecture. The last component level represents the encapsulation in the function
blocks. For the management of the entire component hierarchy in the KAS architecture
a management system is developed. The management system is a system functionality of
the KAS architecture and is encapsulated in its own partition. Another system function of
the KAS architecture is the interface. This is also encapsulated in its own partition. The
interface partition is the only partition that is allowed to communicate with outside of
the core automation domain. In this work, application partitions for process control and
simulation are developed as examples for the validation of the KAS architecture. These
applications can be used for a prototype implementation of automation level scenarios. The
results show that the KAS architecture provides a powerful and clearly manageable system
environment to meet the new requirements for agility as well as continuous interoperability
of the automation level without compromising the integrity of the core automation.
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1 Einleitung

Der zunehmende Bedarf nach agilen und dynamischen Produktionssystemen, im Kontext
von neuen Paradigmen wie Industrie 4.0 (I140) oder Industrial Internet Consortium (IIC),
ruft die Anforderung nach neuen Technologien und Informationsmodellen [56], [55] hervor.
Internet of Things (IoT) [116], Cyber Physical Systems (CPS) [48], Cloud Computing [84]
und Verwaltungsschale [28] sind einige Beispiele fiir diese neuen Technologien und Infor-
mationsmodelle. Sie werden entwickelt, um die Vernetzung, die Wandelbarkeit und den
Optimierungsgrad von Produktionssystemen durch das Vorantreiben der Digitalisierung
zu erhohen. Die Digitalisierung der Produktion definiert neue Aufgaben und Funktionen
fiir die Komponenten der Automatisierungspyramide. Diese Komponenten miissen wieder-
um hinsichtlich Hardware- und Software-Aspekten modifiziert werden, um den genannten
Anforderungen gerecht zu werden. Prozessnahe Komponenten sind eine dieser Kompo-
nenten, die neue Funktionalitdten bereitstellen und neue Aufgaben und Anforderungen
erfiilllen miissen, um die Wandelbarkeit des Produktionssystems zu erhchen. Die in dieser
Arbeit vorgeschlagene Architektur zielt darauf ab, die Steuerungsgeréte der prozessnahen
Komponenten mit neuen Funktionen auszustatten, um sie an die Anforderungen durch die
zunehmende Prozessdigitalisierung anzupassen. Diese Funktionen miissen eine verbesserte
Zusammenarbeit zwischen der industriellen Automatisierung und der Informationstechnik
(IT) (z. B. Optimierungsfunktionen und Machine-Learning-Applikationen) erméglichen.
Die klassischen Aufgaben eines Automatisierungssystems (Prozessfiihrung) miissen jedoch
neben den neuen Funktionen weiterhin erfiillt werden. Dariiber hinaus darf das Zusammen-
spiel von Industrieautomation und IT die Integritéat des industriellen Automatisierungssy-
stems in keiner Weise beeintréchtigen.

1.1 Motivation

140 strebt eine Forderung der Digitalisierung der Automatisierungssysteme an [102]. Dies
erfordert neue Technologien, die entweder in der Automatisierungstechnik entwickelt oder
aus der IT-Doméne in die Automatisierungsdoméne integriert werden miissen. Die Kon-
vergenz von IT und Operational Technology (OT) verfolgt in diesem Zusammenhang ein
dhnliches Ziel [73]. Einige Beispiele fiir IT-Technologien, die zur Erhéhung des Optimie-
rungsgrades und der Wandelbarkeit der industriellen Automatisierung eingesetzt werden,
sind IoT, Cloud Computing, CPS. [103]. Diese Technologien spielen eine entscheidende
Rolle fiir die Vernetzung, den Informationsaustausch, die Datenspeicherung usw. Eine der
Hauptanforderungen im Zusammenhang mit 140 ist die Agilitdt (Wandelbarkeit). Agilitét
beschreibt die Fihigkeit eines Systems, sich auf ungeplante Verdnderungen anzupassen
[88]. Diese Verinderungen kénnen beispielsweise hinsichtlich der Produktionsmenge, der
Topologie und der Produkteigenschaften auftreten [105].

Die Erfiillung einer agilen Produktion erfordert Anpassungen und Neukonfigurationen in
verschiedenen Doménen und Ebenen der Automatisierungspyramide. Diese Modifikationen
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betreffen sowohl Software-, als auch Hardware-Aspekte. Ein Beispiel fiir Modifikationen in
der Infrastruktur sind die aktuellen Entwicklungen im Bereich der Sensoren und Mess-
geriite, die als ,,Sensoren 4.0% oder ,intelligente Sensoren® bezeichnet werden [90]. Zur
Realisierung dieser neuen Feldfunktionen ist eine direkte Verkniipfung der Sensoren mit
IT-Instandhaltungsfunktionen, der Geréteverwaltung und den Datenanalysefunktionen er-
forderlich. Im Zentrum der Entwicklung steht jedoch die Anpassung der Steuerungsgerite.
Sie sind fiir die operative Prozessfiihrung verantwortlich und verkniipfen die Feldebene mit
dem Rest der Welt. Die Modifikation von Steuerungsgeriten ist das Thema verschiedener
Forschungen in der industriellen Automatisierung. Diese Modifikationen zielen darauf ab,
Steuerungsgerite zu entwerfen, die interaktiver mit I'T-Technologien arbeiten kénnen und
neue Funktionalititen wie z. B. die Integration von Optimierungs- und Managementfunk-
tionen, Kommunikation mit externen Datenanalysesystemen, dynamisches Deployment
und Selfx-Technologien anbieten [62].

Deployment erméglicht die Installation neuer Softwarekomponenten von einer dezentra-
len Plattform aus. Auf diese Weise kann das Produktionssystem durch die Nutzung der
flexiblen Automatisierungsplattformen dynamischer agieren. Einer der Hauptaspekte, der
bei der hohen Vernetzung und der Kommunikation mit der IT-Welt beriicksichtigt werden
muss, ist die Integritét der Kernautomation. Die derzeitigen Automatisierungssysteme bie-
ten ein hohes Mafl an Verfiigharkeit und Integritéit, sind aber begrenzt miteinander und
im Wesentlichen nur untereinander vernetzt. Im Gegensatz zu den heutigen Automatisie-
rungssystemen miissen die zukiinftigen Automatisierungssysteme in einer mit der I'T-Welt
hoch vernetzten Umgebung agieren. Dies ermdoglicht eine Vielzahl neuer Funktionen und
Geschéftsprozesse. Die hohe Vernetzung darf die Verfiigbarkeit oder Integritit des Au-
tomatisierungssystems nicht gefdhrden. Ziel der Entwicklungen sind neue Architekturen,
welche die Vorteile heutiger und zukiinftiger Automatisierungssysteme kombinieren.

1.2 Zielsetzung

In dieser Arbeit werden die neuen Anforderungen an Steuerungssysteme im Zuge der Di-
gitalisierung erortert und eine Architektur zur Erfiillung dieser Anforderungen vorgestellt.
Die wichtigsten Anforderungen und Aufgaben, die von zukiinftigen Steuerungssystemen
erfiillt werden miissen, sind:

e die offene Kommunikation mit der IT-Welt
e die Einbindung von Cloud-Mechanismen
e das dynamische Deployment

e das Ermoglichen eines sicheren und leistungsfihigen Datenkanals aus der Feld- und
Automatisierungsebene in die iibergeordneten IT-Systeme

e Integration der operativen Funktionen aus der MES-Ebene

e der parallele Betrieb von Applikationen unterschiedlicher Kritikalitéat sowie neue Ap-
plikationen, die im Vorfeld nicht vorgesehen waren, auf derselben Hardware

o die Realisierung eines lokalen Software- und Zugriffsverwaltungssystems
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e die Realisierung einer Software-Abstraktion zur einfacheren Skalierbarkeit und zur
Verringerung der Abhéngigkeit von spezieller Software und Hardware

Abb. 1.1 zeigt eine generische Architektur fiir zukiinftige Steuerungssysteme. Um die ge-
nannten Anforderungen zu erfiillen wird ein neues Systemkonzept vorgestellt, das durch
seine Architektur die beschriebenen Anforderungen grundsétzlich unterstiitzt. Die vorge-
schlagene Architektur in dieser Arbeit bietet eine Trennung der Komponenten auf dersel-
ben Hardware mittels Virtualisierung. Die Komponenten werden geméfl ihrer Anforderun-
gen und Quality of Service (QoS) voneinander getrennt [8]. Sie setzt sowohl Container-
als auch Hypervisor-Virtualisierungsmethoden ein, um einerseits eine strikte Trennung der
Komponenten zu ermoglichen und andererseits ein dynamisches Deployment und Versions-
management zu realisieren. Die Komponenten kénnen nur durch festgelegte Kommunikati-
onsschnittstellen miteinander kommunizieren. Die Kommunikationsverbindungen zwischen
unterschiedlichen Komponenten sind riickwirkungsfrei und gefdhrden die Anforderungen
der kritischen Anwendungen in keiner Weise. Ein weiteres Merkmal der Architektur ist
der Entwurf eines Verwaltungssystems, das lokale Komponentenverwaltungsdienste anbie-
tet. Die Architektur bietet ein dediziertes Interface zur offenen Umgebung. Durch dieses
Interface konnen Daten und Informationen mit externen Komponenten ausgetauscht oder
neue Funktionalitéten heruntergeladen werden. Die Partitionen werden geméfi der Anwen-
dungen, welche sie kapseln, konfiguriert und verfiigen tiber entsprechende Fahigkeiten und
Zugriffsrechte.

Uberlagerte
Anwendungen
Anwendungspartitionen
N
4 N
Interface- Verwaltungs- Anwendung 1 Anwendung n
Partition system

Hypervisor

Hardware

Abbildung 1.1: Eine Architektur fiir Steuergerate

1.3 Struktur dieser Arbeit

Diese Arbeit ist wie folgt strukturiert:

e In Kapitel 2 wird der Stand der Technik présentiert. In diesem Kapitel werden rele-
vante Arbeiten und wichtige Konzepte diskutiert, die fiir die Zusammenstellung der
vorgeschlagenen Architektur notwendig sind.
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1 Einleitung

In Kapitel 3 werden die Anforderungen an die Architektur erldutert. Der Fokus der
Erlauterung liegt auf den Anforderungen, welche durch die neue Generation der Au-
tomatisierungssysteme hervorgerufen werden.

In Kapiteln 4 und 5 wird eine Architektur vorgestellt, um die genannten Anforde-
rungen zu erfiillen. Fiir die Zusammenstellung der Architektur wird Virtualisierung
als eine Grundlage eingesetzt, um den Betrieb verschiedener Anwendungen auf der
gleichen Hardware zu ermdglichen.

In Kapitel 6 wird das Anwendungsszenario und eingesetzte Hardware-Ressourcen fiir
die Implementierung erortert.

In Kapitel 7 werden die Implementierung der Architektur und die Implementierungs-
ergebnisse prasentiert.

In Kapitel 8 wird die Arbeit zusammengefasst und in einem Ausblick bewertet.
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2 Grundlage und Stand der Technik

In diesem Kapitel werden einige grundlegende Konzepte der IT und der Automatisie-
rungstechnik erldutert. Diese Konzepte werden fiir die Realisierung der in dieser Arbeit
vorgeschlagenen Architektur eingesetzt. Dieses Kapitel gibt auch einen Uberblick iiber den
Stand der Technik dieser Konzepte.

2.1 Virtualisierung

Die Virtualisierung hat grundsétzlich das Ziel, die Ressourcen einer physischen Computer-
Hardware zwischen verschiedenen Betriebssystemen (OSs) und Anwendungen aufzuteilen
[19], [14], [22], [58]. Die OSs und Anwendungen sind in verschiedene Virtuelle Maschi-
nen (VMs) gekapselt. In der IT wird die Virtualisierung insbesondere in grofien Daten-
zentren und Rechenclustern eingesetzt. Sie ist eine wichtige Grundlage fiir die Cloud-
Technologie [71], [78]. In feldnahen Automatisierungskomponenten und in den eingebet-
teten Systemen spielte die Virtualisierung in der Vergangenheit keine Rolle. Diese Syste-
me waren gezielt auf eine Anwendung ausgerichtet und optimiert. Mit den zunehmenden
Anforderungen an Flexibilitdt und Modularitét findet die Virtualisierung jedoch auch zu-
nehmend Einzug in diesem Bereich. Dariiber hinaus wird sie u.a. in der Avionik, der
Fahrzeugtechnik und der industriellen Automatisierungstechnik eingesetzt [3]. Der Einsatz
von Virtualisierung ermoglicht eine optimierte Hardware-Nutzung und verhindert unter-
ausgelastete Hardware und CPUs. Dies spielt eine wichtige Rolle fiir die Skalierbarkeit,
fiir die Reduzierung des Wartungsaufwands und der Kosten usw. [6]. Neben der traditio-
nellen Virtualisierungsmethode, bei der eine Softwareabstraktionsschicht verwendet wird,
um VMs auf einer Hardware zu verwalten, konnen auch Containertechnologien als Virtua-
lisierungsmethode in Betracht gezogen werden. Containertechnologien werden verwendet,
um Anwendungen in verschiedene Container zu kapseln. Dies erhoht die Modularitéit und
bietet eine Grundlage fiir das dynamische Deployment [64]. Allerdings bieten Container-
technologien eine Virtualisierung nur auf der Anwendungsebene an. Im Gegensatz zur
traditionellen Virtualisierung, die sich mit der Erstellung von VMs befasst, die ihre eige-
nen OSs enthalten, kapseln Container nur die Anwendungen und Bibliotheken, die fiir die
Ausfithrung benétigt werden [31].

2.1.1 Virtualisierungstypen

In der IT werden verschiedene Typen der Virtualisierung eingesetzt. Alle diese Typen
zielen darauf ab, die Hardwareressourcen der realen Hardware zu abstrahieren, umfassen
aber unterschiedliche Methoden und Spezifikationen, um dieses Ziel zu erreichen. Einige
dieser Virtualisierungstypen sind unten aufgefiihrt [107], [3]:

e Vollvirtualisierung: Bei der Vollvirtualisierung werden die Gast-Betriebssysteme
nicht fiir die Ausfithrung auf dem Hypervisor modifiziert. Dies fiihrt zu dem Nachteil,
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dass die privilegierten Operationen weiterhin unveréndert an die Hardware gesendet
werden. Um die privilegierten Operationen abzuwickeln, bietet der Hypervisor eine
CPU-Emulation, welche Zeit und Ressourcen benétigt.

Paravirtualisierung: Die Paravirtualisierung wird zur Uberwindung des oben genann-
ten Problems eingesetzt. Bei der Paravirtualisierungsmethode sind die Gastbetriebs-
systeme iiber die Hardwarevirtualisierung informiert und werden so modifiziert, dass
sie nur noch auf Operationen zuriickgreifen, die der Hypervisor standardméfig zur
Verfiigung stellt. Privilegierte Operationen werden ausgefiihrt, indem einzelne An-
fragen an den Hypervisor gesendet werden. Diese Anfragen oder Aufrufe werden als
Hypercalls bezeichnet. Ein Nachteil dieser Methode ist der erforderliche Overhead
fiir die Modifizierung der Gast-Betriebssysteme.

2.1.2 Virtualisierung mit Hypervisoren

Der Hypervisor oder auch Virtual Machine Monitor (VMM) fungiert als eine Middleware
zwischen Hardware und Anwendungen (die in VMs laufen) und erméglicht die Kommuni-
kation zwischen diesen. Hypervisoren werden in zwei Gruppen unterteilt, nimlich Typ-1
und Typ-2. Der Hypervisor Typ-1 kann direkt auf einer Hardware installiert werden, ohne
dass ein OS erforderlich ist (siehe Abb. 2.1). Der Hypervisor Typ-2 kann hingegen nur auf
einem Host OS installiert werden [29]. Fiir letzteren konnen einige VMs generiert werden,
wahrend andere Anwendungen parallel auf dem Host OS laufen. Das Konzept der Virtuali-

YML, M2

VM1 VM2 VM3 App App |:
App |4 App F] App E 0S 0s |
1 OS OS k] OS APP Hypervisor
Hypervisor HOST OS
Hardware Hardware
Hypervisor Typ-1 Hypervisor Typ-2

Container 1 Container 2
{aop | [ap §
Container-
App Verwaltung
HOST OS
Hardware
Container-Technologies

Abbildung 2.1: Virtualisierungsmethoden

sierung mit Hilfe eines Hypervisors wurde zuerst von IBM eingefiihrt. Der Hypervisor von
IBM erstellt unabhiingige Umgebungen auf der gleichen Hardware (virtuelle Maschine),
um Hardwareressourcen sowie Rechenressourcen, Speicher und Netzwerkkonnektivitit zu
virtualisieren [40]. Die Virtualisierung sollte eine zum urspriinglichen System dquivalente
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2.1 Virtualisierung

Umgebung zur Verfiigung stellen. Dariiber hinaus muss sie eine zuverldssige Kontrolle
iiber die virtualisierten Ressourcen bieten. Diese Bedingungen gewéhrleisten einerseits das
gleiche Verhalten der Anwendungen in der virtualisierten Umgebung und andererseits die
Sicherheit der VMs vor Bedrohungen und Konflikten, die durch die gemeinsame Nutzung
einer Hardware verursacht werden. Die Aufgabe der Bereitstellung solcher VMs wird neben
dem Hypervisor auch anderen Komponenten wie Mikrokernel zugewiesen. In den folgenden
Abschnitten werden diese Komponenten miteinander verglichen.

2.1.3 Virtualisierung mit Mikrokernels

Mikrokernels werden entwickelt, um die Komplexitit des Hypervisors zu reduzieren. Die
Komplexitétsreduktion basiert auf der Modularisierung. Mikrokernel werden ebenfalls ver-
wendet, um Hardware zu virtualisieren und mehrere VMs auf der gleichen Hardware zu
betreiben. Sie unterscheiden sich jedoch in einigen ihrer Eigenschaften von den Hypervi-
soren. Die wichtigsten Unterschiede liegen in ihrer Abstraktionsebene. Die Hypervisoren
verwalten Hardwareressourcen wie Speicher und CPU in Bezug auf die VMs und OSs.
Sie befassen sich jedoch nicht mit den Prozessen innerhalb einer VM. Mikrokernels bieten
im Gegensatz zu Hypervisoren eine Abstraktion auch fiir hohere Ebenen wie Tasks und
Threads. Das High-Level-Management der Mikrokernels ist mit den folgenden Merkmalen
verbunden (3], [51]:

e Threads, Aufgaben und Prozesse: Der Mikrokernel kennt alle Threads, Aufgaben und
Prozesse eines OS. Der Hypervisor verwaltet nur die Gast-OSs.

e Speicher: Bei der Speicherverwaltung im Hypervisor werden die Speicherzuordnungen
auf Giiltigkeit tiberpriift (die Speicherverwaltung kennt den jeder VM zugewiesenen
Anteil an Speicher). Ein Mikrokernel verwaltet den Speicher entsprechend den Auf-
gaben, die er unterstiitzt.

e Kommunikation: Hypervisoren bieten Low-Level-Kommunikationsmechanismen, wie
z.B. Shared Memory fiir die Kommunikation der OSs. Solche Low-Level-
Mechanismen werden jedoch vom Mikrokernel nicht bereitgestellt.

e Geriitetreiber: Die Hypervisoren enthalten die Kerntreiber, wihrend sich periphere
Treiber in den OS befinden. Im Gegensatz zu den Hypervisoren verwalten Mikroker-
nel die Geritetreiber als Mikrokernprozesse.

e VM-Management: Die Ausfithrung von Verwaltungsdiensten wie Create, Read, De-
lete auf den OSs der Géste erfordert die Implementierung dieser Dienste auf dem
Mikrokernel. Dadurch wird dem Mikrokernel ein Speicher-Overhead hinzugefiigt.

Sicherheitskonzepte

Wie bereits erwéhnt, wird der Hypervisor im IT-Bereich verwendet, um die Trennung
von OSs auf einer Hardware (beispielsweise VirtualBox und VmWare) zu ermdoglichen.
Diese Trennung bietet keine zertifizierbare Sicherheit. Daher kénnen solche Hypervisoren
nicht in sicherheitskritischen Doménen eingesetzt werden, weil sie keine strikte Trennung
der Anwendungen verschiedener Kritikalitit gewihrleisten konnen. Um die Sicherheit in
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solchen Doménen zu gewéhrleisten, wird eine Kombination von Hypervisoren und Mi-
krokerneln verwendet [59]. Diese Kombination (wie z.B. PikeOS) wird fiir Safety- oder
Securityanwendungen verwendet (Seperationskernel [117]). Das Sicherheitsniveau solcher
Separationskernel orientiert sich an verschiedenen Standards. Die Software-Zertifizierung in
verschiedenen Industriebereichen orientiert sich an bestimmten Sicherheitsstandards. Die-
se definieren verschiedene Kritikalitdtsebenen, die in den jeweiligen technischen Doménen
unterschiedliche Notationen haben. Zum Beispiel sind bei EN-50128 und IEC 61508 die
Safety Integrity Level (SIL) von 0 bis 4 eingestuft, wihrend die Stufen in ISO 26262 von
A bis E unterteilt sind. Das Safety-Konzept umfasst die Trennung der Anwendungen mit
unterschiedlichen Kritikalitétsstufen sowie die Uberwachung des Informationsflusses zwi-
schen diesen. Das Echtzeitverhalten der OS ist ebenfalls ein safetyrelevanter Aspekt. Den
safetykritischen Anwendungen muss ein detailliertes Schedulingschema zugeordnet werden,
damit diese zuverldssig arbeiten kénnen [59].

Die Security befasst sich mit dem Schutz des Systems vor ungewollten Manipulationen
oder Datenzugriffen z.B. durch Cyberangriffe. Analog zu den Safetyanforderungen, ba-
sieren auch die Securityanforderungen auf Standards in verschiedenen Bereichen. Bei der
Security geht es sowohl um die Trennung von Anwendungen auf derselben Hardware als
auch um die Kontrolle des Informationsflusses zwischen diesen. IEC 15408 (gemeinsame
Kriterien) und IEC 62443 sind zwei Beispiele fiir Securitystandards. Gemeinsame Krite-
rien beschreiben Securityanforderungen fiir allgemeine Zwecke und IEC 62443 beschreibt
Securityanforderungen von Industrial Automation and Control System (IACS)s. Die Com-
putersysteme haben unterschiedliche Prozessphasen. Spezifikation, Implementierung und
Evaluation sind drei wichtige Phasen bei der Entwicklung von Computersystemen. Ge-
meinsame Kriterien stellen sicher, dass all diese Phasen geméaf dieser Normen durchgefiihrt
werden. Dieser Standard definiert mehrere Evaluation Assurance Levels (EAL)s von 1 bis
7. Separationskernels (je nach Technologie) bieten eine hohere Sicherheit (EALG) als All-
zweckrechenplattformen (EAL4) [59].

Es werden verschiedene Technologien und Konzepte entwickelt, um Separationskernel zu
entwerfen, welche die Anforderungen bestimmter Doménen erfiillen. Zum Beispiel definier-
ten Chung-Wei, BaekGyu und Shinichi [65] einen Ansatz zur Hardware-Virtualisierung
und Aufgabenzuweisung fiir Automobilsysteme und die Autoren in [81] definierten eine
Architektur fiir leistungsarme eingebettete Echtzeitsysteme. Im néchsten Abschnitt wer-
den einige Hypervisor- und Mikrokerneltechnologien gemeinsam mit der in dieser Arbeit
verwendeten Technologie vorgestellt.

2.1.4 Hypervisor und Mikrokernel-Technologien

Im Folgenden werden einige Hypervisoren (Typ-1 und Typ-2) und Mikrokernel, die in der
Industrie eingesetzt werden, présentiert.

VirtualBox

VirtualBox ist ein Hypervisor vom Typ-2. Sie kann auf verschiedenen Host OSs wie Win-
dows, Linux, Solaris installiert werden und unterstiitzt dabei eine unterschiedliche Anzahl
von Guest OSs. Es handelt sich um eine von der US-amerikanischen Firma Oracle ent-
wickelte Virtualisierungssoftware [76].
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Xen Hypervisor

Xen ist ein Open-Source-Hypervisor. Xen umfasst eine Softwareschicht, die virtuelle Res-
sourcen implementiert und auch den I/O-Zugriff kontrolliert. Die VMs werden in Xen
Doménen genannt. Xen besitzt eine Doméne null VM, die andere VMs erzeugen und
1oschen kann und die I/O-Geriite den VMs zuordnet [13].

PikeOS

PikeOS ist ein mikrokernelbasierter Hypervisor, der von der SYSGO GmbH entwickelt
wurde. Es besteht aus einem Real Time Operating System (RTOS), einer Virtualisierungs-
plattform und einer Eclipse-basierten Entwicklungsumgebung. Dieser Hypervisor wird fiir
Sicherheitskritische Anwendungen in den Bereichen der Luft- und Raumfahrt, der Ver-
teidigung, der Fahrzeugtechnik, der industriellen Automatisierung, etc eingesetzt [96]. Er
ermoglicht die Ausfithrung verschiedener Anwendungen, mit unterschiedlichen Sicherheits-
stufen, auf derselben Hardware in verschiedenen Partitionen. Die Partitionen bieten un-
terschiedliche Portierungsmoglichkeiten. Diese Moglichkeiten werden als Personalities be-
zeichnet:

e Native ist eine direkte Verkniipfung der Anwendung mit PikeOS-Service-
Schnittstellen. Diese erfordern eine minimale Anpassung der Anwendung. Da es sich
jedoch um eine proprietire Anwendung von PikeOS handelt, miissen andere Anwen-
dungen, die nicht fiir PikeOS entwickelt wurden, modifiziert werden, um mit PikeOS
kompatibel zu werden.

e Die Portable Operating System Interface (POSIX)-Personality verwendet
das Standard Portable Operating System Interface POSIX. Viele UNIX OSs sind
konform zu diesem Standard. POSIX wurde in der ISO/IEC 9945 normiert. Die
POSIX-Personality fiir PikeOS entspricht dem PSE52-Profil des IEEE Std 1003.13-
1998 mit zusdtzlichen Echtzeit-Erweiterungen.

e ElinOS ist eine paravirtualisierte Linux-Distribution. Diese Personality kann durch
die Installation von Softwarepaketen erweitert werden. Es ist der einfachste Weg, An-
wendungen, die fiir Linux implementiert sind, zu portieren. Aber diese Schnittstelle
ist wegen des Overheads auf einem eingebetteten System vergleichsweise langsam.

Das PikeOS RTOS basiert auf einem modularen Ansatz. Es besteht aus einem Mikro-
kernel, der die folgenden Dienste zur Verfiigung stellt [80], [44]:

e Hardware-Abstraktion

e prioritiitsbasiertes Echtzeit-Scheduling
e Ausfiihrungseinheiten (Threads)

e getrennte Adressriume (Aufgaben)

e Kommunikationsprimitive

e Timer und Ausnahme- und Interruptbehandlung.
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Scheduling und Zeitpartitionierung

Der PikeOS-Scheduler basiert auf dem Prinzip der Zeitpartitionen. Zeitpartition stellt da-
bei einen Mechanismus zur Verteilung von Rechenzeit auf Anwendungen (Partitionen) dar.
Die getrennten Anwendungen in den Partitionen miissen, mit den fiir ihre Ausfithrung er-
forderlichen Ressourcen, versorgt werden. Dabei garantiert die Zeitpartitionierung, dass al-
le Partitionen einen bestimmten Anteil an Ausfiihrungszeit erhalten. Die Ausfiihrungszeit
ist vordefiniert und kann wahrend der Laufzeit nicht dynamisch verdndert werden.

Die Zeitpartitionierung ist in Abb. 2.2 dargestellt. Die Aufteilung der Rechenzeit er-
folgt in zwei Schritten. Im ersten Schritt werden die entsprechenden Partitionen einer
Zeitpartition zugeordnet. Dann werden diese Partitionen einem oder mehreren Fenstern
zugeordnet, wobei jedes Fenster eine eigene Dauer hat. Der Zeitplan setzt sich aus diesen
vordefinierten Fenstern zusammen. Die Fenster konnen auf verschiedenen Central Proces-
sing Unit (CPU)-Kernen laufen. Aber an jedem Punkt ist auf jedem Kern nur ein Fenster
aktiv. Die vorhandenen Threads innerhalb einer Partition kénnen mit unterschiedlichen
Prioritédten zugewiesen werden. Unter allen Threads wird jedes Mal der Thread mit der
hochsten Prioritét ausgefithrt. Ein Thread enthélt auch andere Informationen.

Partitionen den Zeitpartitionen zu Fenstern
Zeitpartitionen zuordnen zuordnen und Dauern einstellen

E =W =I Zeitfenster 1 |

Abbildung 2.2: PikeOS-Zeitpartitionierung

Kommunikationen zwischen den Partitionen in PikeOS

PikeOS bietet verschiedene Moglichkeiten fiir die Kommunikation zwischen Partitionen.
Die folgende Liste enthélt die relevanten Kommunikationsmedien:

e Queuing Ports: Diese fungieren als First In First Out (FIFO)-Kommunikation,
bei der Ports den Endpunkt der Kommunikation darstellen. Die Kommunikation
mit Hilfe von Queuing Ports ist eine unidirektionale Kommunikation. Queueing
ports ermoglichen Service Access Points (SAP) und eine paketbasierte Echtzeit-
Kommunikation wie User Datagram Protocol (UDP)/Internet Protocol (IP).

e Shared memory: Dieser Kommunikationstyp bietet einen physischen Speicher fiir
den Datenaustausch zwischen Partitionen. Die Zugriffsrechte auf den gemeinsamen
Speicher miissen in der Engineering-Phase statisch zugewiesen werden.
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e File System (FS): Diese Methode wird verwendet, um die aktuellen Daten auf einem
Speichergerit abzubilden. Sie kann auch aufierhalb einer Partition als Schnittstelle
zum Lesen/Schreiben von Daten verwendet werden. Read Only Memory (ROM) und
FS sind Beispiele fiir ein eingebautes Dateisystem.

WindRiver Hypervisor

Wie der Name schon suggeriert, besteht im WindRiver-Hypervisor die Integration mit
WindRiver Linux. Er unterstiitzt auch andere OSs wie Windows 7 (32-bit und 64-bit
Single-Core und Multi-Core) und Red Hat Linux. Es ist auch moglich, andere Betriebs-
systeme hinzuzufiigen. Die unterstiitzten Prozessorarchitekturen sind Intel Atom, ARM
und PowerPC. Die Zeitplanung kann priorititsbasiert, zeitlich partitioniert oder benutzer-
definiert sein [112]. Einige Funktionen von WindRiver Hypervisor sind unten aufgefiihrt
[113]:

e Virtual Board Management: Virtual Board Management erméglicht die Verwal-
tung virtueller Boards, indem es Funktionen wie Create, Delete, Read zur Verfiigung
stellt.

e Core Scheduling: Prioritdt- und zeitbasiertes Scheduling.

e Safety Profile: Zertifizierung nach Normen, wie IEC 61508 (bis zu SIL 3).

Tabelle 2.1 gibt einen Uberblick der Eigenschaften von PikeOS, Windriver und Xen
Hypervisor.

Tabelle 2.1: Vergleich der Eigenschaften

PikeOS WindRiver Xen

CC EAL 3+ No CC EAL 3+ No certification
Certified Posix No Certified Posix No Certified Posix
Health Monitor Health Monitor no Health Monitor
Certifiable Hypervisor | Only ARMv8 und x86 | no certification

Neben den genannten Technologien werden auch andere Separationskernel wie VxWorks
653, LynxSecure, INTEGRITY-178B und LynxOS-178 in verschiedenen Bereichen, wie
der Fahrzeugtechnik und der Luft- und Raumfahrt eingesetzt. Einige Technologien haben
Security- und Safetyfunktionalititen in denselben Separationskernel integriert, wie z.B.
PikeOS und LynxSecure.

2.2 Container-Technologien

Containertechnologien befassen sich mit der Isolierung und Kapselung von Anwendungen
und notwendiger Bibliotheken in verschiedenen Containern. Das Ziel dieser Technologien
ist, leichtgewichtige Container zu erzeugen, die wie Daten transportiert werden kénnen.
Aus diesem Grund enthalten Container keine OS und sie laufen alle auf dem Host OS. Dies
kann auch als eine Virtualisierungsmethode angesehen werden. Der Vorteil von Container-
technologien besteht darin, dass die leichtgewichtigen Container und Container-Images
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einfach von einem System auf ein anderes iibertragen werden kénnen. Dies reduziert den
Aufwand fiir die Installation und Aktualisierung einer Software. Container verhalten sich
dhnlich wie eine VM. Die in Abb. 2.1 dargestellte Container-Management-Einheit erlaubt
eine Hardware-Abstraktion auf der Anwendungsebene. Dezentralisierung, Skalierbarkeit
und dynamisches Deployment sind die Hauptvorteile der Containertechnologien [72].

Docker-Container

Docker ist eine Open-Source Plattform fiir die Ausfithrung und Entwicklung von Applika-
tionen. Dort werden Applikationen in so genannte Container gekapselt. Docker-Container
sind ein Beispiel fiir Containertechnologien [31]. Die Dockertechnologie erméglicht das Kon-
zept der Containerisierung auf dem Server. Applikationen kénnen nach der Kapselung den
anderen Anwendern zur Verfiigung gestellt werden. Dariiber hinaus stellen die Container
Test-Umgebungen fiir die Applikationen bereit [85], [16]. Die Struktur der Dockertechno-
logie ist in Abb. 2.3 dargestellt. Docker besteht aus folgenden Hauptkomponenten [100]:

e Docker Server und Klient: Der Docker Server (Daemon) und Klient kommunizie-
ren iiber ein RESTful API. Der Klient sendet Anfragen an den Server, um beispiels-
weise einen bestimmten Container herunterzuladen.

e Docker Images: Docker Images sind die Applikationen, die in Docker Containern
gekapselt werden.

e Docker Registry: Die Docker Registry ist dhnlich, wie ein Repository. Images
konnen beispielsweise durch Push, Pull und Build Befehle verwaltet werden.

e Docker Container: Docker Container beinhalten die Anforderungen und
Abhéngigkeiten fiir die Ausfithrung der Applikationen.

Diese Art der Virtualisierung spielt eine wichtige Rolle fiir das Cloud Computing [101].

Klient ﬂ)ocker»Host \ / Registry \

Docker Build Docker Daemon Image 1
Docker run Container 1 Image 1 Image 2
Docker pull Container 2 Image 2

Image n

\ AN Y

Abbildung 2.3: Docker-Technologie [32]
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2.2 Container-Technologien

2.2.1 Virtualisierungsanwendungen in anderen industriellen Doménen

Echtzeit-Hypervisor werden in verschiedenen Bereichen wie der Avionik und der Fahr-
zeugtechnik eingesetzt [25], [83], [104]. Echtzeitfihigkeit, Verfiigharkeit, Safety/Security
usw. sind wichtige Anforderungen, die den Hypervisor zu einer geeigneten Losung in die-
sen Doménen machen. Nach der Entwicklung von AUTomotive Open System ARchitec-
ture (AUTOSAR) und dem autonomen Fahren hat auch die Automobilindustrie begon-
nen, den Hypervisor fiir verschiedene Zwecke wie Safety und Security einzusetzen [66],
[7). Ahnlich wie die Controller in Automatisierungsdoménen (Speicherprogrammierbare
Steuerung (SPS)en) muss auch der Bordcomputer der Fahrzeuge an die Cloud angeschlos-
sen werden. Somit ist die Vernetzung auch eine Anforderung bei der Automatisierung
von Fahrzeugen. In den néchsten Abschnitten wird die Anwendung des Hypervisors im
Automobil- und Avionikbereich diskutiert.

Automotive Open System Architecture

AUTOSAR zielt darauf ab, eine hardwareunabhéngige und standardisierte Anwendungs-
software fiir Electronic Control Units (ECU)s bereitzustellen. Bei den ECUs handelt es
sich um Steuergeréte fiir die Fahrzeuge. AUTOSAR wurde 2003 gegriindet und das erste
Release des entsprechenden AUTOSAR-Konzepts wurde 2005 entwickelt. Seit 2005 wur-
de AUTOSAR kontinuierlich weiterentwickelt und an die unterschiedlichen Anforderungen
in der Automobilindustrie angepasst (beispielsweise die Entwicklung der AUTOSAR Ad-
aptive Platform [37]). Es besteht aus einer Basissoftware, einer Laufzeitumgebung und
einer Anwendungssoftware. Abb. 2.4 zeigt die Architektur von AUTOSAR. Das Ziel dieser
Architektur ist die Hardwareunabhéngigkeit der Anwendungssoftware.

| Applikationsebene |

| Laufzeitumgebung

Betriebssysteme Memory Kommunikations- Gerdte-Treiber
Services dienste 1/0 Hardware-

Abstraktion
Abstraktionsebene

| Hardware

Abbildung 2.4: AUTOSAR-Architektur

Sie besteht aus:
e ciner hardwareunabhingigen Anwendungsschicht

e ciner Laufzeitumgebung, welche die Schnittstellen fiir die Anwendungen bereitstellt
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e ciner Basissoftware, welche Dienste und die Abstraktionsschicht enthalt.

Kiirzlich wurden einige neue Anforderungen fiir die AUTOSAR-Architektur definiert, die
beim Entwurf der initialen Architektur nicht beriicksichtigt wurden. Diese Architektur
sollte auf derselben ECU-Hardware auch verschiedene Funktionen mit unterschiedlichem
Sicherheitsniveau erfiillen. Dies entspricht einer Kombination verschiedener Automotive
Safety Integrity Level (ASIL)-Ebenen auf derselben Hardware. Sie muss auch eine sichere
Integration von Software verschiedener Anbieter ermoglichen. PharOS ist eine Losung, die
in [63] diskutiert wird, um eine Software-Partitionierung zur Bewéltigung dieses Problems
bereitzustellen. Wegen des zunehmenden Interesses am Betrieb von Anwendungen mit un-
terschiedlicher Kritikalitdt und Anforderungen auf derselben Hardware werden Hyperviso-
ren in verschiedenen Doménen eingesetzt [27], [81]. Es gibt verschiedene Ansitze, um den
Betrieb und die Trennung von Anwendungen unterschiedlicher Kritikalitéit sicherzustellen.
Dariiber hinaus kénnen verschiedene Arten von Hypervisoren eingesetzt werden, um diese
Trennung und die Ressourcenzuweisung zu gewéhrleisten. Als Beispiel wird in Abb. 2.5 der
Betrieb von Anwendungen mit unterschiedlichem ASIL-Level auf derselben Hardware auf
der Basis von VOSYSmonitor dargestellt [66]. Die dargestellte Architektur priorisiert die
sicherheitskritischen (ASIL) Anwendungen, withrend nicht-kritische Anwendungen (keine
ASIL) parallel auf derselben Hardware laufen.

Nicht kritische OS5~ GuestOS |  Native OS
Infotainment Rich : Safety kritische
0os 0s ! 0s
i AUTOSAR
No ASIL No ASIL ' ASIL
Hypervisor '
VOSYSmonitor |
Hardware E |
Normal World ! Secure World

Abbildung 2.5: VOSYSmonitor

Den sicherheitskritischen Anwendungen sind bestimmte Ressourcen zuzuordnen. Diese
Ressourcen sind fiir eine Nutzung anderer Anwendungen gesperrt, bis der VOSYSmonitor
wieder eine Freigabe fiir diese erteilt. Anforderungen an ECUs und industrielle Steue-
rungsgerate iiberschneiden sich in zentralen Aspekten. Beide erfordern die Integration von
Anwendungen mit unterschiedlichen Anforderungen auf der gleichen Steuerungshardware,
unter Beriicksichtigung der Safety und Security. Die Safety und Security in beiden Berei-
chen orientiert sich an bestimmten Standards.
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2.2 Container-Technologien

2.2.2 Virtualisierung in der Luftfahrt

Virtualisierung wird auch in der Luftfahrt eingesetzt, um eine sichere Trennung von An-
wendungen zu gewahrleisten. Abb. 2.6 zeigt ein Beispiel fiir eine solche Trennung zwischen
Anwendungen. ARINC 653 ist ein Hypervisor, der fiir diese Trennung eingesetzt wurde.

Master Subsystem1 Subsystem?2 Shared
Control Control Control Display
Application Application Application Application
Partition 05 Partition 05 Partition OS Partition 05

Core OS ARINC 653

BSP & XML Configuration

OSA HW

Abbildung 2.6: Virtualisierung in der Luftfahrt

2.2.3 Industrielle Automatisierung

Die Automatisierungspyramide bietet ein hierarchisches Ebenenmodell zur Kategorisierung
der Aufgaben und Funktionalitdten innerhalb eines Produktionssystems von den Feld- bis
zu den Geschiftsprozessen.

Die unterste Ebene stellt die Schnittstelle zu den Feldgeriten (Sensoren und Aktoren)
dar. Die zweite Ebene wird als Prozessleitebene bezeichnet. Sie umfasst die SPS-Systeme,
welche zur Implementierung der Prozessfithrungsanwendungen verwendet werden. Die drit-
te Ebene stellt Produktionsrezepte zur Verfiigung und bietet Dienste, wie Scheduling, Pre-
dictive Maintenance und Ressourcenverwaltung an. Abschliefend enthélt die Enterprise
Resource Planning (ERP)-Ebene die Geschiftsprozesse. Die Kommunikation in der Auto-
matisierungspyramide erfolgt nur iiber definierte Schnittstellen zwischen den Ebenen [52],
[57].

Zukiinftige Automatisierungssysteme erfordern jedoch eine hohe Vernetzung, um Ziele
wie Agilitidt zu erreichen. Aus diesem Grund wird die hierarchische Struktur der Automa-
tisierungspyramide in eine hoch vernetzte Architektur aufgelost, so dass alle Komponen-
ten unabhéngig von ihrem Automatisierungsgrad miteinander kommunizieren kénnen. Die
Auflosung betrifft nur die Kommunikationsperspektive. Das bedeutet, dass die klassischen
Automatisierungsebenen weiter bestehen, wéhrend die Kommunikationsbeschrankungen
aufgehoben werden [15], [43], [108]. Das bedeutet, dass alle beteiligten Komponenten di-
rekt miteinander kommunizieren kénnen. Die Vernetzung birgt neue Anforderungen an
prozessnahe Komponenten.

Die zukiinftigen Automatisierungssysteme miissen kooperativer mit I'T-Systemen agie-
ren. Die IT bietet Dienste zur Datenanalyse, Optimierung usw. an, wiahrend die Auto-
matisierungstechnik weiterhin ihre klassischen Aufgaben beibehilt. Ein wichtiger Aspekt
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dieser Kooperation ist die Uberwachung des Informationsflusses. Hierzu stellte NAMUR
das Konzept einer Informationsdiode vor (NAMUR-Diode).

2.3 NAMUR Open Architecture

In der NAMUR Open Architecture (NOA) werden die Funktionen den Clustern Monitoring
and Optimization (M+O) und Core Process Control (CPC) zugeteilt [74]. CPC enthélt
die klassischen Automatisierungsfunktionen. Sie sind direkt fiir die korrekte und sichere
Steuerung der Prozesse zustindig und diirfen nicht durch externe Einfliisse gestort wer-
den. M+O enthiilt alle Funktionen, die zur Optimierung und zum Management ergénzend
angeboten werden. Das NOA-Konzept ist in Abb. 2.7 dargestellt.

Central M+0

Central N Advanced
HMI [ scheduiing | Analytics

l'> Verification of
‘ Request

Plant Specific M+O Core Process Control
— ] ] Engineering -
9 OPC UA
e =] o
Advanced

Control oospe
Control

Dispatching

Fieldbus/Remote 10
Production Plant I:I

Abbildung 2.7: NAMUR Open Architecture [74]

Das CPC in der NOA enthilt die zentralen Automatisierungskomponenten der ersten
und zweiten Automatisierungsebene (wie SPSen, HMIs, DCS, Sensoren und Aktoren). Die
Anlagenspezifische M+0 enthélt IPCs, Edge-Devices und M+O Sensoren. In ihr werden
Informationen gespeichert, aggregiert, vorverarbeitet. Die Weiterverarbeitung der Infor-
mationen erfolgt in der zentralen M+-O.

CPC und M+O kommunizieren iiber zwei verschiedenen Kommunikationsverbindun-
gen, die jeweils unterschiedliche Anforderungen haben. Diese Kommunikationsverbindun-
gen sind in Abb. 2.8 dargestellt.

Bei der Kommunikation zwischen der Automatisierung und der IT diirfen die Infor-
mationen in der Richtung von CPC nach M+O ungehindert fliefen. Dies wird durch die
Einfithrung des Konzepts der NAMUR-Diode realisiert. Die Anforderungen an die Diode
wurden in [75] vorgestellt. Sie lauten wie folgt:

e Keine direkte Verbindung zwischen CPC und M+0O
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Core Process Control

NAMUR- \ / Verification of
Diode _\/ Request

Monitoring and Optimization

Abbildung 2.8: Kommunikation zwischen CPC und M+0O

e Informationsfluss nur von CPC zu M+O und nicht umgekehrt
e Keine Riickwirkung auf die CPC-Parameter

e Keine Konfiguration oder Parameter-Manipulation des CPC aus der M+O-Doméine
iiber die NAMUR-Diode

Nach dem Abruf und Verarbeitung der Daten in der M+O-Ebene wird ein Feedback
erzeugt. Dieses kann in einem eigenen streng iiberwachten Kanal in die CPC-Ebene
zuriickgespielt werden (Verification of Request (VoR) in der Abb. 2.8). Die Integration
des Feedbacks muss auf sichere Weise durchgefiithrt werden. Die zuriickgefiihrten Daten
miissen auf Plausibilitdt und Authentizitét gepriift werden. Beispielsweise darf das Feed-
back keine Interlocks triggern. In [24] ist eine Komponente entworfen worden, welche das
Feedback vor der Integration validiert. Diese Validierung findet nicht nur beim Feedback
sondern auch dariiber hinaus bei der deployten Komponenten statt.

2.4 Speicherprogrammierbare Steuerungen

Die SPS ist ein Gerit zur Steuerung eines Produktionssystems. Die Geschichte der SPSen
lasst sich bis auf das Jahr 1968 zuriickverfolgen. Fest verdrahtete Relaistafeln wurden zu
diesem Zeitpunkt durch halbleiterbasierte sequentielle Logiksysteme ersetzt. SPSen beste-
hen jeweils aus Eingéingen, Ausgéngen und einem Betriebssystem (Abb. 2.9). Anwendungen
bestimmen die Beziehung zwischen den Eingéngen und Ausgingen. Sie kénnen iiber eine
Schnittstelle geladen werden. Dariiber hinaus kénnen sie hardwareunabhiingig manipuliert,
programmiert und umprogrammiert werden. Abgesehen von der Prozessfithrung kann eine
SPS Laufzeitdaten iiberwachen, um je nach Anwendung die erforderlichen Mafinahmen zu
ergreifen, wie z.B. Alarmgenerierungen oder Starten und Stoppen anderer Prozesse [111],
[97].

2.4.1 Programmierung

Fiir SPSen wurden im Laufe der Zeit eine Vielzahl von Programmiersprachen entwickelt.
Anweisungslisten, Kontaktpldne, Funktionsbausteinsprachen, Ablaufsprachen und Struk-
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PC Applikation

A

SPS

Analog Analog

Input Output
Module Module

 CPU [—>

Digital Digital

Input Output
Module Module

Memory

Abbildung 2.9: SPS-Struktur

turierte Texte sind ein paar Beispiele fiir diese Programmiersprachen. Die genannten
Sprachtypen sind in IEC 61131-3 genormt, um eine standardisierte Programmierung fiir
SPSen zu ermoglichen. SPSen werden je nach Anwendungsgebiet mit unterschiedlicher An-
zahl von I/Os (binér oder analog), und zusitzlichen Funktionen, wie PID-Regler, Timer,
Zahler angeboten. Je nach Anzahl der I/Os und internen Fihigkeiten werden sie als Micro
SPS, Small, Medium und Large kategorisiert. SPSen, Industrie-PC (IPC)s und eingebettete
Systeme werden alle in der industriellen Automatisierung eingesetzt. Ihre Basisstrukturen
sind analog zueinander (Eingang, Ausgang und eine Logik). Im néchsten Abschnitt werden
diese miteinander verglichen.

2.4.2 Entwicklung der speicherprogrammierbaren Steuerungen

SPSen wurden entwickelt, um fest verdrahtete Regelkreise zu ersetzen. Die Anderung der
Steuerungsanwendung in solchen Regelkreisen erforderte zeitintensive Verfahren. Dies rief
die Entwicklung softwarebasierter Steuerungsprogrammierung hervor, so dass die Steue-
rung unabhéngig von der Hardware manipuliert werden kann. SPSen ermdglichen dies
durch ihre Programmiersprachen wie Continuous Function Charts (CFC)s oder Sequential
Function Charts (SFC)s. Die SPSen wurden im Laufe der Jahre kontinuierlich weiterent-
wickelt, und an die sténdig wachsenden Anforderungen der Produktionssysteme angepasst.

Die ersten Entwurfskriterien fiir SPSen wurden von der General Motors Corporation spe-
zifiziert. Diese Spezifikationen, die im Zusammenhang mit 13.0 betrachtet werden koénnen,
sind nachstehend aufgefiihrt [91]:

e Einfach zu programmieren und umzuprogrammieren
e Niedriger Wartungsaufwand

e Betriebsfihig in der Anlagenumgebung

o Kompakt

o Kommunikationsfahig mit hoheren Automatisierungsebenen
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e Niedrige Kosten

Tm Jahr 1980 haben viele Unternehmen damit begonnen, SPSen fiir ihre Anwendungsfille
einzusetzen. In der Anfangszeit waren sie proprietére und lokale Gerite. In den 90er Jah-
ren begann die Standardisierung von SPSen. Ethernet-Netzwerke und die Entwicklung von
Flash-Speichern waren die néchste Evolution der SPS-Systeme. Seit 1968 bis heute haben
sich die Anforderungen und Spezifikationen von SPSen geindert und die Hersteller von
SPSen haben versucht, die Technologie an die Fertigungsanforderungen dementsprechend
anzupassen. Dariiber hinaus wurden im Laufe der Jahre auch die Programmiersprachen
der SPSen von der Leiterlogik zu den IEC 61131-3 Funktionsbaustein (FB)s und deren
Erweiterung IEC 61499 weiterentwickelt. Fins der wichtigsten Ziele in der SPS-Evolution
ist Flexibilitédt. Verschiedene Automatisierungsanforderungen haben im Laufe der Zeit eine
neue Flexibilitdtsniveau von SPSen gefordert. Anforderungen wie die Optimierung von Fer-
tigungsprozessen, die Verkiirzung der Time-To-Markt, die Massenproduktion in der dritten
Automatisierungsrevolution und die hohe Agilitdt in 14.0 haben alle im Laufe der Zeit zu
Neuinterpretationen des Begriffs Flexibilitédt gefithrt. Anfangs bezog sich Flexibilitat auf
die Entwicklung von Methoden zur softwarebasierten Manipulation der Steuerung. Im Zu-
sammenhang mit 140 haben sich die Anforderungen an die Flexibilitdt drastisch gedndert.
Flexibilitiat wurde durch Agilitat ersetzt. Ein agiles Produktionssystem muss in der Lage
sein, auf Anderungen zu reagieren, die in der Entwurfsphase nicht beriicksichtigt wurden.
Dies unterscheidet die Agilitéit von der Flexibilitdt. Die Anforderungen und die Spezifika-
tion von SPSen im Kontext von 14.0 werden im folgenden Abschnitt errtert.

2.4.3 Neue Architekturen fiir speicherprogrammierbare Steuerungen

Aktuell werden einige neue Konzepte und Architekturen fiir SPSen definiert. Diese Ar-
chitekturen zielen darauf ab, die Flexibilitdt der SPSen zu erhéhen. Die Ansétze besitzen
unterschiedliche Schwerpunkte. Der Schwerpunkt kann zum Beispiel auf der Entwicklung
neuer Software-Architekturen, der Integration neuer Hardwarekomponenten, strukturellen
Anderungen des Programmierungsmodells (beispielsweise der Ansatz in [92]) oder der Ent-
wicklung von real-time Betriebssystemen fiir die eingebetteten Systemen liegen [54], [4].
Einer dieser Ansitze ist die virtuelle SPS (vPLC) [39]. Das Konzept der vPLCs wird in [26],
[38] ervrtert. vPLCs werden als Anwendungen in einer Cloud implementiert und steuern die
physische SPS-Hardware mit Hilfe von Cloud-Diensten. vPLCs liefern die Steuerungsfunk-
tionen als Dienste an die Feldebene und steuern diese iiber das Netzwerk. Bei den vPLCs
im Netzwerk handelt es sich um unterschiedliche Steuerungslogiken, die mit der Hardware-
SPS kommunizieren. Dieses Konzept ist in Abb. 2.10 dargestellt. Beim Betrieb einer vPLC
ist die Security ein entscheidender Faktor, der beriicksichtigt werden muss. Um die Secu-
rity des Produktionssystems zu gewéhrleisten und unberechtigte Zugriffe zu verhindern,
wird eine private Cloud eingesetzt. Die Anbindung einer SPS an eine offentliche Cloud
kann zu Bedrohungen und unberechtigten Zugriffen fiithren. Ein dhnlicher Ansatz wurde in
[49] unter Verwendung von AMAZON-Diensten realisiert. Cloud-basierte Ansétze werden
auch im Bereich der Robotik verwendet. [23] setzt eine Cloud ein, um Steuerungsdienste
fiir Roboter bereitzustellen. [114] bietet einen Uberblick iiber den Stand der Technik der
cloudbasierten Fertigung. Die Vor- und Nachteile der Cloud-basierten Strategie werden
in [2] diskutiert. Kosteneffizienz, unbegrenzter Speicherplatz, einfacher Zugang sind einige
Vorteile dieser Strategie. Die Security ist bei diesem Ansatz ebenfalls ein wichtiges Thema.
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Abbildung 2.10: Control as a Service [39]

Die vPLCs und Cloud-as-a-service Applikationen haben allerdings hohe Latenzen. Dieses
Problem wird in [82] geschildert. Eine Architektur basierend auf Miroservices wurde in
[33] vorgestellt. In ihr werden Container-Technologien fiir die Kapselung der Applikatio-
nen eingesetzt. Die vorgestellte Architektur in [36] stellt ein Gateway bereit, das die Gerite
mit der Cloud verbindet und die Rolle einer SPS spielt. Die Verbindung mit der Cloud
erfolgt iiber MQTT-Nachrichten oder virtuellen Instanzen. Eine cloudbasierte Architektur
namens soft-PLC wurde in [42] vorgestellt. Bei soft-PLC lauft die SPS als eine Software
in einer Cloud und empfangt Prozessdaten mittels OPC UA. Die Architektur erméglicht
eine horizontale Skalierbarkeit. Der Nachteil dieser Methode ist die hohe Latenz zwischen
der Cloud und den Feldgerdten. Die in dieser Arbeit vorgeschlagene Architektur ist im
Gegensatz zu vPLCs keine cloudbasierte Architektur.

Eine weitere Strategie ist der Einsatz von Virtualisierungstechnologien. Die Herausfor-
derungen beim Einsatz von der Virtualisierung und Hypervisoren im Bereich der eingebet-
teten Echtzeitsysteme und Legacy-Systeme werden in [86], [20] diskutiert. Die Hypervisor-
Technologie bietet eine begrenzte Granularitéit [50]. Zukiinftige Automatisierungssysteme
miissen so gestaltet werden, dass sie eine héhere Granularitét bieten. Um dieses Problem
zu iiberwinden, wurde in [41] ein Ansatz zur Erhohung der Flexibilitét von SPSen auf der
Grundlage der Container-Technologien vorgestellt. Dabei werden Container-Technologien
eingesetzt, um neue Funktionen auf die SPS herunterzuladen. Der Schwerpunkt der Ar-
chitektur liegt auf der Containerisierung und dem Containermanagement, sowie dem
Container-Deployment (Funktionalitéiten). Die Virtualisierung mit Hilfe von Container-
Technologien ist eine Grundlage fiir diese. Abb. 2.11 stellt die diskutierte Architektur dar.
Wie gezeigt, konnen verschiedene Anwendungen wie z.B. IEC 61131-Anwendungen von
einem Container-Deployer auf die SPS heruntergeladen werden. Ein Container-Registry
stellt eine Liste aller Container bereit. Die Ressourcen werden vor dem Deployment von
einem Deployment-Koordinator auf Verfiigharkeit analysiert.
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2.5 Digitale Zwillinge und Verwaltungsschalen
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Abbildung 2.11: Multi Purpose Controller

Vorgeschlagene Architektur in dieser Arbeit und eigene Vorarbeiten

Die Grundlage der vorgeschlagenen Architektur wurde in [8] vorgestellt. Diese Architek-
tur kombiniert Container- und Hypervisor-Virtualisierungsmethoden zur Erreichung der
beiden wesentlichen Aspekte: strikte Trennung und dynamisches Deployment der Anwen-
dungen zur Laufzeit. Ein weiteres Merkmal der Architektur ist der Entwurf eines Verwal-
tungssystems, das lokale Komponentenverwaltungsdienste anbietet. Diese Dienste bestehen
unter anderem aus Kommunikationsdiensten (beispielsweise zwischen Anwendungen un-
terschiedlicher Kritikalitit), Deploymentdiensten und Ressourcenzuteilungsdiensten. Die
genannten Dienste und ihre relevanten Konzepte wurden in folgenden Veréffentlichungen
erldutert. In [69] und [11] wurde die Realisierung einer riickwirkungsfreien Kommunikation
basierend auf dem NAMUR-Diode-Konzept diskutiert. Dabei wurde eine unidirektionale
FIFO-Kommunikation (Queue) fiir die Realisierung der riickwirkungsfreien Kommunika-
tion eingesetzt. In [11] wurde die Validierung der deployten Komponenten vor Inbetrieb-
nahme in den Fokus gestellt. Die vorhandenen Anwendungen konnen einen dynamischen
Bedarf an Hardwareressourcen haben. Daher wurde in [10] eine dynamische Ressourcen-
zuteilung fiir die vorhandenen Anwendungen erldutert.

2.5 Digitale Zwillinge und Verwaltungsschalen

Simulationen haben sich im Laufe der Zeit zu Systemassistenten fiir den ganzen Lebens-
zyklus der Anlage entwickelt (Abb. 2.12). Das Konzept eines Digital Twin (DT)s wurde
erstmals durch die Technologie-Roadmap der NASA vorgestellt [93]. Das Ziel von DT
ist die Abbildung der verschiedenen Aspekte des Automatisierungssystems in die Infor-
mationswelt. Ein DT beinhaltet die Simulationsmodelle, Interaktionen und Schnittstellen
eines Assets [5], [60]. Das DT-Konzept besteht aus drei Teilen, ndmlich der physischen
Welt, der virtuellen Welt und einer echtzeitfihigen Kommunikation zwischen diesen. Ein
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2 Grundlage und Stand der Technik

DT kann fiir die Datenanalyse, die Optimierung und Fehlerdiagnose verwendet werden
[45], [67]. Um die Vorteile eines DT nutzen zu konnen, muss ein Interaktionsmodell zwi-
schen der Prozessfithrung und dem DT entwickelt werden. Die Entwicklung der Paradigmen
der Herstellungsprozesse, sowie des proaktiven Manufacturing ist in [115], [119] diskutiert.
Proaktives Manufacturing entspricht einem neuen Nutzungsgrad der Daten im Fertigungs-
system. Die erste Stufe in dieser Entwicklung war die passive Strategie. In dieser Stufe
wurden die Daten manuell gesammelt. Fiir die Verwaltung der Daten wurden die tradi-
tionellen Datenbanken eingesetzt. Traditionelle Datenbanken konnten die Anforderungen
der kleinen Datenmengen erfiillen. In der zweiten Stufe wurde die Echtzeitdatenerfassung
mittels RFID (Radio Frequency Identifikation), Barcodes, Ethernet, drahtloser Netzwer-
ke usw. realisiert. In der niichsten Stufe wurden die Machine-Learning-Applikationen und
kiinstliche Intelligenz (beispielsweise data mining, cloud computing und neuronale Netz-
werke) eingesetzt, um das Systemverhalten vorhersagen zu kénnen. Beispielsweise fiir diese
sind predictive maintanence und predictive quality. In der aktuellen Stufe ist das Ferti-
gungssystem in der Lage, anhand zur Verfiigung stehender pradikativer Informationen,
autonome Entscheidungen zu treffen. In der aktuellen Stufen spielt DT eine sehr wichtige
Rolle. Er wird eingesetzt, um eine ausfiihrliche Beschreibung (Verhalten, Eigenschaften,
Funktionen usw.) der physischen Entitdten bereitzustellen. In den folgenden Abschnitten

Digital Twin

Simulation-based
System Design Simulation is a core
functionality of systems

by means of seamless

Simulation allows a

Individual
Application

Simulation is limited to
very specific topics by
experts, e.g. mechanics

Simulation
Tools

Simulation is a standard
Tool to answer specific
design and engineering
questions, e.g. fluid
dynamics 1985+

systematic approach to
multi-level and
disciplinary systems
with enhanced range
of applications, e.g.
model based systems
engineering
2000+

assistance along the
entire life cycle, e.g.
supporting operation
and service with direct
linkage to operation data

2015+

1960+

Abbildung 2.12: Entwicklung der Simulation [17]

werden verschiedene Anwendungen eines DT erldutert.

2.5.1 Digitaler Zwilling als Validierungskomponente
Die Validierung der Prozessfithrung kann in vier verschiedenen Systemkonfigurationen er-

folgen:

Reale Anlage und reales Steuerungssystem Dabei handelt es sich um die traditionellen
Automatisierungssysteme. Test und Verifikation werden in diesen Systemen wihrend des
realen Prozesses durchgefiihrt.
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2.6 Laufzeitumgebungen

Hardware-in-the-Loop Bei der Hardware in the Loop-Technologie wird ein reales einge-
bettetes System iiber seine I/Os mit einer Nachbildung der realen Umgebung des Systems
verbunden. Damit soll eine Plattform fiir Tests des Automatisierungssystems bereitgestellt
werden. Dies ermdoglicht das Austesten der entwickelten Software auf der Zielhardware mit-
tels eines Hardware-Emulators [89], [12], [99].

Software-in-the-Loop Im Gegensatz zu Hardware-in-the-Loop wird bei der Software in
the Loop-Technologie keine bestimmte Hardware verwendet [87]. Das bedeutet, dass die
entwickelte Software nicht auf der Zielhardware, sondern auf einem Entwicklungsrechner
getestet wird.

In dieser Arbeit wird, fiir die Validierung der deployten Komponenten und Optimie-
rungsvorgéinge eine Umgebung fiir Software-in-the-Loop-Tests eingesetzt. Die Software in
the loop Applikation lauft auf der gleichen Hardware, wie die Prozessfithrungsapplikation.

2.5.2 Digitaler Zwilling fiir Beobachtung und Optimierung

Der Begriff des Beobachters ist aus der Regelungstechnik bekannt. Eine der Beobach-
tungsmethoden in der Regelungstechnik wird von Luenberger vorgestellt. Der so genannte
Luenberger Beobachter besteht aus der Parallelschaltung eines Beobachters und eines Sy-
stemmodells. Dabei wird die Differenz der Zustandswerte an das Systemmodell geschickt.
In dieser Arbeit zielt der Beobachter darauf ab, die Abweichung zwischen den Prozesswer-
ten und den erwarteten Werten zu erkennen. Der Beobachter lauft parallel zum Prozess
und {iberwacht sein Verhalten. Dies bendtigt ein Simulationsmodell das prozessparallel
laufen kann. Stehen solche Prozessmodelle zur Verfiigung, dann kénnen sie auch fiir eine
prozessbegleitende Optimierung eingesetzt werden.

Verwaltungsschale

Die Verwaltungsschale (standardisiert in [30]) ist eine digitale Darstellung eines Assets
withrend seines Lebenszyklus [109], [18], [77]. Das Ziel der Verwaltungsschale ist es konsi-
stente Informationen iiber das Asset bereitzustellen. Beispielsweise kann die Verwaltungs-
schale einer Bohrmaschine u.a. Informationen iiber Hersteller, Drehgeschwindigkeit, Bohr-
tiefe enthalten. Die Verwaltungsschale ermoglicht sowohl eine einheitliche Informations-
modellierung als auch eine einheitliche Schnittstelle fiir den Zugriff auf die Daten. Verwal-
tungsschale und Asset bilden zusammen eine 140 Komponente. Der Begriff iiberlagert sich
heute in weiten Bereichen mit dem Begriff des DT [110].

2.6 Laufzeitumgebungen

Laufzeitumgebungen sind die Grundlage fiir die Entwicklung und Ausfithrung von Mo-
dellen und Anwendungen in der Prozessautomatisierung. Eine der Hauptkomponenten
der Laufzeitumgebungen in automatisierungstechnischen Anwendungen sind die FBs. Ein
anwendungs- und herstellerneutraler Ansatz zur Modellierung und Beschreibung von Lauf-
zeitumgebungen wird in [47] vorgestellt.
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2 Grundlage und Stand der Technik

Dynamische Laufzeitumgebungen

Der Automatisierungsprozess ist in zwei Phasen unterteilt, ndmlich der Entwicklung und
dem Engineering. Diese Phasen sind in Abb. 2.13 dargestellt. In der Entwicklungsphase
werden neue FB-Typen implementiert [118]. Die Implementierung kann dabei in verschie-
denen Programmiersprachen durchgefiihrt werden. Die Engineering-Phase umfasst die In-
stanziierung, Konfigurierung und Verbindung von FBs zum Aufbau von Sequential State
Charts (SSC)s und CFCs. Dynamische Laufzeitumgebungen bieten die Moglichkeit, die
Prozessfiihrungsanwendung auch wihrend der Laufzeit zu manipulieren. Im Folgenden
werden einige Technologien fiir Laufzeitumgebungen besprochen.

Entwicklung Engineering

c L

s ([ ™) D > 0
i

)3 Offline > Laufzeit >
Entwicklungsumgebung Laufzeitumgebung

Abbildung 2.13: Dynamische Laufzeitumgebungen [34]

ACPLT/RTE

Die Open-Source-Laufzeitumgebung ACPLT/RTE (Aachener Prozessleittechnik Runtime
Environment) wird am Lehrstuhl fiir Prozessleittechnik der RWTH Aachen entwickelt.
Sie wird bereits in diversen Forschungs- und Industrieprojekten eingesetzt. Sie verfiigt
iiber ein eigenes Objektmanagementsystem und ein Metamodell, mit dessen Hilfe Objek-
te innerhalb des Systems erstellt werden konnen [70]. Die Kommunikation von Objekten
und Metadaten wird durch das Kommunikationsprotokoll ACPLT/KS (Kommunikations-
system) oder Open Platform Communications Unified Architecture (OPC UA) realisiert
[1], [53]. Das Objektmanagementsystem bietet ein, in ANSI C implementiertes, Object
Oriented (OO)-Framework. Bekannte Features der OO-Programmierung wie Vererbung,
Aggregation, Klasse werden von ACPLT/OV zur Verfiigung gestellt. OV stellt eine Ba-
sisklasse von Objekten, die von Benutzern erweitert werden konnen, bereit. Jede Klasse
gehort zu einer Bibliothek und besteht aus Variablen und Operationen. Die wéhrend der
Entwicklungsphase in ACPLT/OV definierten Klassen konnen im OV-Laufzeitsystem in-
stanziiert werden. Die instanziierten Klassen konnen verwendet werden, um gewiinschte
Anwendungen zu implementieren. Der ausfithrbare Code enthiilt die Metainformationen.
Dies ermoglicht den Zugriff auf die Klassenschnittstellen wahrend der Laufzeit, so dass
eine Manipulation von Objekten wihrend der Laufzeit moglich ist.
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2.6 Laufzeitumgebungen

ACPLT/KS ACPLT/KS ist das Kommunikationssystem von ACPLT/RTE. Dieses Kom-
munikationssystem verwendet Transmission Control Protocol (TCP)/IP als Grundlage und
bietet zusitzlich Dienste wie getVar (um einen Wert aufzurufen), setVar (um einen Wert
zu definieren).

4DIAC FORTE

4Diac (The Framework for Distributed Industrial Automation and Control) ist ein Eclipse-
Projekt, das eine Open-Source-Entwicklungs- und Laufzeitumgebung hervorgebracht hat.
Diese Laufzeitumgebung ist IEC 61499-kompatibel [95]. Der modulare Aufbau von 4diac
ermoglicht das Laden von Add-ons als Bibliotheken. Es unterstiitzt diverse OSs wie eCos,
Cygwin und Linux und bietet eine ereignisbasierte Anwendungsentwicklung. Auflerdem
bietet 4diac eine erweiterbare Kommunikationsschicht zur Bereitstellung einer flexiblen
Kommunikationsinfrastruktur. Es unterstiitzt verschiedene Kommunikationsprotokolle wie
Ethernet, OPC UA und MQTT.

2.6.1 Industrie-PCs und eingebettete Systeme

Die eingebetteten Systeme und IPCs werden zunehmend im industriellen Bereich einge-
setzt. Sie bringen viele Vorteile wie Robustheit, niedrige Preise, Effizienz etc. mit sich.
Ahnlich wie eine SPS bestehen auch sie jeweils aus einer CPU, Speicher, Kommunikations-
modulen und I/O-Modulen. Es bestehen jedoch einige Unterschiede zwischen ihnen. Die
Unterschiede sind unten aufgefiihrt [79]:
e Modularitdt: SPSen sind modular aufgebaut. Die Module einer SPS kénnen nach
Bedarf durch andere Module ersetzt werden.

e Programmiersprache: Die Programmiersprachen der SPSen basieren auf FBs. Ein-
gebettete Systeme werden in hoheren Programmiersprachen wie C oder C++ pro-
grammiert.

e Safety: SPSen bicten Kommunikationskaniile zur Uberwachung der Vorgénge.

e Robustheit: SPSen haben keine beweglichen Komponenten. Dies ermdglicht den
dauerhaften Betrieb in der Anlagenumgebung.

e Operation: SPSen besitzen ein eingebettetes RTOS. Sie erfiillen die Echtzeitanfor-
derungen der Prozessfithrung. Sie sind fiir die Prozessautomatisierung konzipiert und
laufen ohne weitere Dienstprogramme oder System-Updates.

e Kosten: SPSen sind kostenintensiver als eingebettete Systeme und IPCs.

e Zertifizierung: Ein weiterer Faktor betrifft die Zertifizierung. In vielen Projekten
wird zertifizierte Hardware bendotigt. In diesen Fillen haben SPSen gegeniiber einge-
betteten Systemen einen Vorteil.

2.6.2 Betriebsmittel und MaBnahmenmodell

Das Betriebsmittel und Mafinahmanmodell wurde in [68] vorgestellt. Dieses Modell be-
schreibt eine hierarchische Prozesssteuerung, bei der jede Ebene eine bestimmte Funktio-
nalitidt aufweist. Die Hierarchie besteht aus folgenden Ebenen (Abb. 2.14):
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Einzelsteuereinheiten enthalten die Steuerlogik einzelner Aktoren wie Ventile und Pum-

pen.

Gruppensteuereinheiten werden benutzt, um Einzelsteuereinheiten (ESE)s geméif Re-

zepten zu orchestrieren.

MaBnahmen sind Produktionsrezepte.

Warten In Bearbeitung Fertig

MaRnahmen MaRnahme 3 MaBnahme 2 MaBnahme 1
[ ]

Gruppensteuer-
einheiten

Einzelsteuer-
einheiten

Abbildung 2.14: Steuerungshierarchie

Die Flexibilitat in dieser Architektur basiert auf den Mafinahmen, welche dynamisch
instanziiert und ausgefithrt werden kénnen.
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3 Anforderung an zukiinftige
Automatisierungssysteme

3.1 Anforderungen

In diesem Kapitel werden die Anforderungen der zukiinftigen Automatisierungssysteme,
die in der vorgeschlagenen Architektur berticksichtigt werden, vorgestellt. Diese Anforde-
rungen zielen darauf ab, die Vernetzung und Agilitét der Steuerungssysteme zu erhohen.
Im Zuge der Digitalisierung miissen auch die SPS-Systeme in das 14.0 Produktionsumfeld
integriert werden [61]. Die Vernetzung und das Zusammenspiel von I'T und OT &ndern auch
die Anforderungen an SPS-Systeme. Diese Anforderungen kénnen allgemein, wie folgt auf-
gelistet werden:

e Leistungsfihige Ubertragung von Feld- und Automatisierungsdaten an iiberlagerte
Anwendungen

e Prozessbegleitende Optimierung und Uberwachung
e Effiziente interne Kommunikation

e Lokale Komponentenverwaltung

e Dynamisches Komponentenmanagement

e Explizite Verwaltung und Sicherstellung von QoS-Eigenschaften

Unabhéngig von diesen zusiitzlichen Aufgaben miissen die prozessbezogenen Komponenten
ihre klassischen Management- und Prozessfiihrungsaufgaben weiterhin zuverlissig und si-
cher erfiillen. Auch die fiir sie eingefiihrten Engineering- und Instandhaltungsmafinahmen
sollen in gewohnter Weise weiter moglich sein. Die aufgelisteten Anforderungen werden in
den néchsten Abschnitten ausfiihrlicher erortert.

3.2 Leistungsfihige Ubertragung von Feld- und
Automatisierungsdaten an iiberlagerte Anwendungen

Die Ubertragung von Feldinformationen in die Cloud (z.B. eine zentrale Optimierungs-
einheit) stellt eine Basis fiir weitere Optimierungen und datenbasierte Entscheidungen in
Automatisierungssystemen bereit. Allerdings muss dies mit einer sicheren Methode er-
folgen. Das bedeutet, dass durch diese Kommunikation keine Konfiguration- oder Para-
meterdinderungen in der Prozessfithrung moglich werden darf. Die Informationen diirfen
nur in eine Richtung, ndmlich von Applikationen hoherer Kritikalitéit (Prozessfithrung) zu
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3 Anforderung an zukiinftige Automatisierungssysteme

Applikationen niedrigerer Kritikalitdt (IT) flieBen. Fiir diese Kommunikation gelten die
Anforderungen der NAMUR-Diode. Abb. 3.1 stellt den unidirektionalen Informationsaus-
tausch zwischen der Automatisierungstechnik und einer Cloud auf Basis der NAMUR-
Diode dar [69], [11]. Die Realisierung dieses Konzeptes wird im weiteren Verlauf dieser
Arbeit erldutert. Diese Kommunikation muss bestimmte Anforderungen erfiillen:

Predictive Predictive Process
Maintenance Quality optimization

1l

| Cloud-Interface H<l—| Prozessfiihrung |

Abbildung 3.1: Ubertragen von Feldinformationen

e Riickwirkungsfrei: Die Kommunikation darf die Echtzeitfahigkeit, Verfiigharkeit
und weitere wichtige Anforderungen des Systems nicht beeinflussen.

¢ Bandbreitig: Die Kommunikation muss die Ubertragung einer grofien Menge an
Daten erméglichen.

e QoS-Eigenschaften: Die Kommunikation muss verschiedene QoS-Eigenschaften,
beispielsweise Publish/Subscriber oder eine zyklische Ubertragung der Daten, anbie-
ten konnen.

3.3 Prozessbegleitende Optimierung und Uberwachung

Wihrend frither Simulation extern in speziellen Systemen realisiert wurde, geht heute der
Trend dahin, Simulationsaufgaben modular in der Prozessumgebung zu realisieren. Die
DT-Architektur unterstiitzt diese Vorgehensweise. Die Entwicklungen auf dem Gebiet der
Simulation wurden in Kap. 2 erwahnt. Die neueste Generation von Simulationen wird
digitaler Zwilling (DT) genannt. DT kann als eine Basis fiir Prozessoptimierungen, pre-
dictive maintenance und Fehlerdiagnosen verwendet werden. Dafiir muss jedoch die Pro-
zessfithrung mit dem DT interagieren konnen. Die Interaktion benotigt eine Infrastruktur,
die eine sichere und echtzeitfihige Kommunikation mit dem DT erlaubt. Dariiber hin-
aus muss eine modulare Infrastruktur fiir diverse Simulationsmodelle erméglicht werden,
welche zusammen agieren und Co-Simulationen realisieren. Die Anforderungen fiir eine
Interaktion mit einer prozessparallelen Simulation konnen wie folgt gelistet werden:

e Eine strikte Trennung zwischen der Prozessfithrungsapplikation und der parallelen
Simulation
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3.4 Effiziente interne Kommunikation

e Fine echtzeitfahige Kommunikation zwischen der Prozessfithrungsapplikation und der
parallelen Simulation

e Eine Infrastruktur fiir die Verwaltung und Ausfithrung von Simulationsmodellen.

3.4 Effiziente interne Kommunikation

Neue Anwendungen zur Datenanalyse, Optimierung, predictive maintenance erfordern eine
breitbandige Anbindung an die Messung und Prozessfithrung. Mit der KAS-Architektur
ergibt sich die Moglichkeit, diese Module — oder zumindest die notwendigen breitbandig
anzubindenden Vorverarbeitungsmodule — auf einer Hardware zu konzentrieren. Damit
steht die Effizienz der KAS-internen Komponenten-Komponenten-Kommunikation im Fo-
kus. Diese Kommunikation muss einen minimalen Bedarf an Infrastruktur aufweisen, damit
die Skalierbarkeit nicht eingeschrinkt wird.

3.5 Lokale Komponentenverwaltung

Eine wesentliche Grundlage zur Erhohung der Flexibilitéit und Agilitit einer Automatisie-
rungslosung ist die Moglichkeit das Komponentensystem in der Betriebsphase zu modifizie-
ren. Dazu wird ein aktives Komponentenverwaltungssystem in der Betriebsphase benétigt.
Aus Sicherheits- und aus Standardisierungsgriinden (Zielsystemunabhingigkeit) fordert die
KAS-Architektur ein lokales Verwaltungssystem, das die Komponentenverwaltungsdien-
ste als Standarddienste anbietet. Dariiber hinaus benétigt die Realisierung verschiedener
Vorginge wie das Deployment, die Kommunikation, die Ressourcenverwaltung eine ent-
sprechende Orchestrierung der beteiligten Komponenten. Diese wird ebenfalls vom lokalen
Verwaltungssystem durchgefiithrt. Komponenten haben je nach Anwendungsfall und Rol-
le unterschiedliche Méchtigkeit. Der Begriff Komponente umfasst in der 140-Terminologie
sowohl physische Komponenten, als auch nicht-physische Komponenten wie z. B. Soft-
warekomponenten. Technische Komponenten sind vordefinierte, in sich geschlossene und
individuell handhabbare Einheiten, die eine konkrete Rolle in einem technischen System
erfiillen [94]. In der KAS Architektur versteht man unter Komponenten die nicht physi-
schen Komponenten der Komponentenhierarchie:

e Funktionsbaustein und Prozessfiihrung als Komponente
e Container als Komponente

e Partition als Komponente

Funktionsbaustein und Prozessfiihrung als eine Komponente

Funktionsbausteine wurden in IEC 61131-3 und IEC 61499 standardisiert. Sie bestehen
aus Eingingen, Ausgingen und einer internen Funktion (Logik), die das Verhalten des FB
bestimmt. Sie konnen miteinander verbunden werden, um komplexe Funktionsblockdia-
gramme zu erstellen. In klassischen Leitsystemen sind die FBs gekapselt und konnen als
Komponenten gehandhabt werden.
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3 Anforderung an zukiinftige Automatisierungssysteme

Im letzten Kapitel wurde eine komponentenbasierte Hierarchie fiir die Prozessfithrung
vorgestellt. Diese Steuerungshierarchie besteht aus ESEs und Gruppensteuereinheiten
(GSE)s, die wiederum als Prozessfiihrungskomponenten betrachtet werden. Diese Kom-
ponenten bieten unterschiedliche Féhigkeiten und nehmen unterschiedliche Rollen ein.
Sie kénnen entsprechend den erforderlichen Rollen und Fahigkeiten erstellt und mitein-
ander verkniipft werden. Wenn die Rolle in der Prozessfiihrung nicht mehr erforderlich
ist, wird die Komponente geloscht. Abb. 3.2 zeigt die interne Architektur einer Pro-
zessfithrungskomponente. Die interne Architektur enthélt unterschiedliche Fahrweisen und
Fihigkeiten sowie vier verschiedene Zusténde.

Kommandoeingang

| Zustdande || Fahrweisen |
1 1
+ Qv

AR S
EREN

Abbildung 3.2: Prozessfiihrungskomponente [46]

Container als eine Komponente

Containertechnologien wurden im Abschnitt 2 vorgestellt. Die Container miissen ebenfalls
verwaltet werden, um das Produktionsziel zu erfiillen. Es existieren bereits einige Softwares
zur Verwaltung von Containern, wie z.B. Kubernetes [21].

Partition als eine Komponente

Neben Docker-Containern miissen auch Hypervisor-Partitionen verwaltet werden. Diese
werden ebenfalls als Komponenten betrachtet. Die Hypervisor Partitionen hosten die Con-
tainer und FBs und bilden auf dieser Weise die unterste Ebene der Komponenten.

Zusammenfassung

Das Ziel ist ein Verwaltungssystem zu konzipieren, das diese Komponente verwaltet und
orchestriert. Die Anforderungen an dieses Verwaltungssystem koénnen wie folgt aufgelistet
werden. Das Verwaltungssystem muss:
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3.6 Dynamisches Komponentenmanagement

e lokale Komponentenverwaltungsdienste (create, read, update und delete),

Dienste fiir die Verwaltung der Kommunikation zwischen Komponenten,

Dienste fiir das Deployment neuer Komponenten und

Dienste fiir die Ressourcenverwaltung anbieten.

3.6 Dynamisches Komponentenmanagement

Das dynamische Deployment zur Laufzeit erhoht die Féhigkeit des Systems, dynamisch
auf Verdnderungen und Anforderungen zu reagieren. Es ist dabei wichtig zwischen den
folgenden Begriffen zu unterscheiden:

e Deployment: Als Deployment wird der Vorgang der Zuweisung einer Software-
Finheit an einen Rechenknoten bezeichnet.

e Redeployment: Das Redeployment ist die Verlagerung einer Software von einem
Rechenknoten auf einen anderen.

Die Ausstattung der Prozessfithrungsapplikation mit einem dynamischen Deploymentssy-
stem erhoht die Agilitdt und Anpassbarkeit des Systems. In der KAS-Architektur kénnen
sowohl Container als auch FBs dynamisch deployt werden. Die Partitionen werden in der
Engineeringphase statisch angelegt.

Fiir den Deploymentvorgang miissen die folgenden Vorbedingungen erfiillt sein:

e ID: Die Komponenten miissen eindeutig identifizierbar sein.

e Erforderliche Ressourcen: Die Ressourcen zur Ausfithrung der Komponente
miissen auf der Hardware vorhanden und verfiighar sein.

e Validierung: Die deployten Komponenten miissen vor der Integration in die opera-
tive Ausfithrung validiert werden.

3.7 Explizite Verwaltung und Sicherstellung von
QoS-Eigenschaften

Die Komponenten haben gemifl ihrer Aufgaben verschiedene Anforderungen an ihren
QoS. Dazu zihlen z.B. Anforderung an Verfiigharkeit, Echtzeit, Integritat. Beispielsweise
haben die Komponenten, die in der Prozessfithrung (dhnlich wie CPC in der NAMUR-
Architektur) eingesetzt sind, eine sehr hohe Anforderung an Verfiigbarkeit. Bei einer Op-
timierungsapplikation hingegen ist dies nicht der Fall. Die Partitionen besitzen gemif der
Anwendungen, welche sie kapseln, unterschiedliche Fihigkeiten, Eigenschaften und Zu-
griffsrechte. Diese konnen in die folgenden Kategorien unterteilt werden:

e Integritit: Die Anwendungen konnen unterschiedliche Safety oder Securitynive-
aus haben. Im Safetybereich kénnen die Anforderungen z. B. unterschiedlichen SIL-
Ebenen entsprechen.
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o Echtzeitfihigkeit: Die Anwendungen, die eine Anforderung an Echtzeit haben,
konnen in einer Partition gekapselt werden, die mit einem echtzeitfihigen Betriebs-
system ausgestattet ist. Echtzeitfahigkeit kann sowohl fiir die Ausfithrung der Pro-
zesse als auch fiir die Kommunikation zwischen den Komponenten definiert werden.
Dafiir konnen die angeforderten Jitter-Bereiche fiir die Ausfithrung der Prozesse oder
Deadlines fiir die Ubertragung der Daten definiert werden.

e Zugriffsrechte: Die Partitionen haben gemifl ihrer Anwendungen unterschiedliche
Zugriffsrechte und Treiber. Die Zugriffsrechte beinhalten u.a. den Zugriff auf:

— I/O-Geriite (Bus-System): Nur die Partitionen, die ein Zugriffsrecht auf
I/O-Geriite haben, kénnen auf diese zugreifen.

— Scheduling-Tabelle und Memory Management Unit (MMU): Die Par-
titionen, die einen Zugriff auf Scheduling-Tabelle und MMU haben, kénnen das
Schedulingsschema der Hardware-Ressourcen dndern.

— Kommunikationsverwaltungschnittstelle: Die Partitionen, die einen Zu-
griff auf die Kommunikationsverwaltungschnittstelle haben, kénnen die Kom-
munikationsverbindungen zwischen vorhandenen Komponenten verwalten.

— Kommponentenverwaltungsschnittstelle: Die Partitionen, die einen Zu-
griff auf die Kommponentenverwaltungschnittstelle haben, kénnen die vorhan-
denen Komponenten verwalten (beispielsweise, aktivieren und deaktivieren).

Dabei konnen auch weitere Zugriffsrechte, wie der Zugriff auf GPU, zusétzlichen
Speicher, Speicherdirektzugriff, Cloud-Schnittstelle im Betracht gezogen werden.

o Fihigkeiten: Die Partitionen kénnen unterschiedliche Féhigkeiten besitzen. Die
Fihigkeiten umfassen Read/Write-Rechte auf andere Partitionen, das Neustarten,
die Aktualisierung und die Ausschaltung anderer Partitionen.

Alle Komponenten miissen den fiir sie relevanten QoS-Eigenschaften als Standardattribut
zugeordnet sein. Die Partitionen miissen zeigen, welche QoS-Eigenschaften sie unterstiitzen
konnen.
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4.1 Aligemeine Architektur

In diesem Kapitel wird eine Architektur vorgestellt, die als komponentenbasierte Archi-
tektur fiir Automatisierungssysteme (KAS) bezeichnet wird. In der KAS-Architektur wer-
den die Anwendungen in Komponenten geméfl ihrer Anforderungen, Quality of Service
(QoS)-Eigenschaften und Abhéngigkeiten gekapselt. Die Architektur erlaubt eine strikte
Trennung der Komponenten in verschiedenen virtuellen Umgebungen, so dass das Aktua-
lisieren, Zuriicksetzen oder auch Modifizieren einer Anwendung den Betrieb anderer An-
wendungen in anderen Komponenten nicht beeinflussen kann. Die KAS-Architektur sieht
eine Kapselung durch Komponenten auf drei unterschiedlichen Ebenen vor:

e der Kapselung in Partitionen
e der Kapselung in Containern

e der Kapselung in FBs

4.2 Komponentenhierarchie

Abb. 4.1 stellt die KAS Komponentenhierarchie formal dar. Die unterste und fiir das KAS-
System wesentliche Kapselung ist die Kapselung in Partitionen. Eine Partitionen kann eine
Anwendung beinhalten oder diverse Container (z.B. Docker Container), die jeweils wie-
der eine Anwendung oder ein FB-System kapseln. Die Kapselung in Containern bildet
die ndchste Komponentenebene. Die Container konnen eine Anwendung beinhalten oder
diverse FBen, welche zusammen die Anwendung bilden. Die FBen bilden die nichste Kom-
ponentenebene. Alle drei Varianten konnen beliebig gemischt auf einer Hardwareplattform
betrieben werden. Abb. 4.2 stellt diese Aufbauméglichkeiten dar.

Die KAS-Architektur besteht grundsitzlich aus einem Verwaltungspartition, einer
Interface-Partition und diversen Anwendungspartitionen. Die Verwaltungspartition bein-
haltet ein Verwaltungssystem, das die Komponenten (Funktionsbausteine (FB), Pro-
zessfithrungskomponenten (PF), Container und Partitionen) gemif den Anforderungen
orchestriert. Die Interface-Partition ist die einzige Partition, die mit iiberlagerten Anwen-
dungen kommunizieren darf. Die KAS-Architektur kann eine beliebige Anzahl an Anwen-
dungen beinhalten. Diese Anwendungen konnen, abhéngig von der industriellen Doméne,
unterschiedliche Funktionalititen anbieten. Das Verwaltungssystem und die Interface-
Partition werden in den néchsten Abschnitten detaillierter erldutert.

Der Hypervisor stellt eine Abstraktionsschicht zwischen der Hardware und den Partitio-
nen bereit. Auf diese Weise reduziert er die Abhéingigkeit zwischen Software und Hardware.
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Abbildung 4.1: Metamodell der Komponentenhierarchie

Partitionen stellen den iibergeordneten Komponentensystemen und Anwendungen eine vir-
tuelle Umgebung (VM) zur Verfiigung. Diese ist gekennzeichnet durch ihre QoS und ihre
Abhingigkeiten:

e QoS: wie beispielsweise Verfiigharkeit, Echtzeitfihigkeit und Sicherheitsanforderun-
gen

e Abhingigkeiten: wie beispielsweise Betriebssystem, Bibliotheken, Treiber und Zu-

griffsrechte auf I/Os.

4.2.1 Kommunikation zwischen den Partitionen

Das KAS-System sieht eine strenge Regulierung und Uberwachung der Kommunikations-
kanile zwischen den Partitionen vor. Prinzipiell stehen folgende Kommunikationsformen
zur Verfligung:

34

Il 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186275080

4.2 Komponentenhierarchie

Partition 1 Partition 2 Partition 3
Container Container B B
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App
0s 0s oS
Hypervisor
Hardware

Abbildung 4.2: Interner Aufbau der Partitionen

Kommunikationsform 1: Unidirektionale echtzeitfihige Ubertragung von Telegrammen
von einem Senderport an einen Empfangerport. Diese Kommunikationsart ist eine syn-
chrone Kommunikation, die aus folgenden Komponenten besteht:

e Senderports: Die Senderports konnen nur fiir das Senden der Daten verwendet wer-
den.

e Empfiangerports: Die Empfiangerports werden eingesetzt, um Daten zu empfangen.

e Verbindungen: Die Verbindungen realisieren Kommunikationskanile zwischen
Sender- und Empfingerports fiir den Datenaustausch.

Partition 1 Partition 2

Senderport1 L 1 Empfangerport 1

Senderport2 L[ 1 Empfangerport 2

Abbildung 4.3: Unidirektionale Kommunikation

Abb. 4.3 stellt zwei Partitionen, die mittels Ports kommunizieren dar. In dieser Dar-
stellung hat die Partition 1 zwei Senderports und die Partitionen 2 zwei Empféngerports.
Diese sind durch Verbindung 1 und 2 miteinander verbunden.

Kommunikationsform 2: Die Komponenten schreiben ihre Nachrichten und Anfragen in
einen geteilten Speicherbereich, auf welchen die anderen Partitionen Lese-Recht haben und
diese Nachrichten abholen konnen. Diese Kommunikationsart ist in Abb. 4.4 dargestellt.
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Abbildung 4.4: Kommunikationsform 2

Partition 1 schreibt ihre Anfragen in ihren Kommunikationsport. Partition 2 liest und
bearbeitet die Anfragen der Reihenfolge nach. Diese Kommunikationsart ist eine asyn-
chrone Kommunikation. Eine Synchronisierung der Komponenten ist nicht erforderlich.
Diese Kommunikationsart ist besonders in einem Fall interessant, in dem eine Komponen-
te niedrigerer Kritikalitdt mit einer Komponente héherer Kritikalitdt kommunizieren soll.
Aufbau der Verbindungsarchitektur:

e Die statische Phase (Engineering-Phase): In dieser Phase wird die Anzahl der Parti-
tionen festgelegt. Dariiber hinaus werden die Kommunikationsports und die Verbin-
dungen generiert. Diese konnen zur Laufzeit nicht mehr geloscht oder erzeugt werden.
Die Rechte und Fihigkeiten der Partitionen (Read/Write auf andere Partitionen oder
Zugriffsrechte auf externe Geréte (z.B. I/Os)) werden ebenfalls in dieser Phase zu-
geordnet. Die zugewiesenen Rechte und Féhigkeiten sind prinzipiell vorhanden, aber
nicht zwangslaufig alle aktiviert.

e Die dynamische Phase: In der dynamischen Phase konnen beispielsweise Verbindun-
gen aktiviert oder deaktiviert werden.

4.3 Systempartitionen

In der KAS-Architektur wird ein Verwaltungssystem fiir die Verwaltung sémtlicher Kom-
ponenten und Kommunikationskanéle eingesetzt. Dieses Verwaltungssystem bietet Verwal-
tungsdienste an. Das Verwaltungssystem darf durch eine sichere Schnittstelle mit einem
Planungssystem kommunizieren. Ziel dieser Kommunikation ist die Orchestrierung der Ver-
waltungsdienste [9]. Die Dienste und die Fihigkeiten, die durch das Verwaltungssystem zur
Verfiigung gestellt werden, werden im néichsten Abschnitt erldutert. Die Kommunikation
kann entweder direkt zwischen den anderen Komponenten aufgebaut werden oder indirekt
iiber das Verwaltungssystem abgewickelt werden. Im zweiten Fall, werden die Informatio-
nen zunéchst an das Verwaltungssystem gesendet. Darauthin leitet das Verwaltungssystem
die Daten an den Empfanger weiter. Die andere Systempartition der KAS-Architektur ist
das Interface. Die Interface-Partition ist die einzige Partition, die nach aufen (den un-
geschiitzten Bereich) kommunizieren darf. Die Partition stellt eine Méglichkeit fiir den Da-
tenaustausch mit tiberlagerten Anwendungen bereit. Die KAS-Architektur beinhaltet auch
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eine beliebige Anzahl an Anwendungspartitionen. Diese kénnen unterschiedliche Aufgaben
und Anforderungen haben. KAS stellt eine Infrastruktur fiir den Betrieb dieser Anwen-
dungen, sowie deren Kommunikation mit anderen Komponenten bereit.

4.3.1 Verwaltungssystem

Das Verwaltungssystem iiberwacht und verwaltet die Operationen und die Komponenten
in der KAS-Architektur. Sie bietet Verwaltungsdienste an, welche fiir die Komponentenver-
waltung eingesetzt werden. Die Verwaltungsdienste konnen auch von Klienten (iiberlagerte
Anwendungen) aufgerufen werden, um bestimmte Funktionalitdten auf dem System aus-
zufithren. Die Kommunikation zwischen dem Verwaltungssystem und dem Planungssystem
erfolgt iiber eine sichere Schnittstelle. Abb. 4.5 présentiert das Verwaltungssystem. Die
Verwaltungsdienste werden in diesem Abschnitt detaillierter erldutert.

Planungssystem

|

Verwaltungssystem T

Konfigurationsdienste

Kommunikationsdienste (Extern)

Kommunikationsdienste (Intern)

Komponentenverwaltungsdienste

Ressourcenverwaltungsdienste

Abbildung 4.5: Interne Struktur des Verwaltungssystems

Das Verwaltungssystem umfasst folgende Konzepte:

e Kommunikationsdienste (Intern): werden zur Verwaltung der Kommunikationsver-
bindungen zwischen den Komponenten eingesetzt

e Kommunikationsdienste (Extern): verwalten die Kommunikation mit externen Kom-
ponenten. Das Verwaltungssystem agiert wie ein Gateway zwischen hoch kritischen
Applikationen und Applikationen geringerer Kritikalitéit (NAMUR-Diode)

e Konfigurationsdienste: werden zur Validierung und Integration der deployten Kom-
ponenten eingesetzt

e Komponentenverwaltungsdienste: befassen sich mit Dienstleistungen fiir die Kompo-
nentenverwaltung. Es handelt sich dabei um Dienste wie Create, Delete, Copy und
Update
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e Ressourcenverwaltungsdienste: teilen die Hardware-Ressourcen einzelnen Anwendun-
gen/Partitionen zu

Das Verwaltungssystem hat eine Eingangsschnittstelle fiir den Empfang von Komman-
dos. Wie zuvor beschrieben kénnen diese Kommandos beispielsweise von einem Planungs-
system stammen. Die Semantik der Kommandos lautet wie folgt:

[Command1];[PARAMETER1=VALUE1,PARAMETER2=VALUE2,. . . |

Tabelle 4.1 présentiert einige Beispiele dieser Dienste.

Tabelle 4.1: Dienste der Komponentenverwaltung

Command Parameterl Parameter2
deploy component name docker container
upload component name docker container
create communication link | input port output port
delete communication link | input port output port
update resource allocation | aktivate scheduling schema X

aktivate container container X

deaktivate container container Y

Das Verwaltungssystem hat das Recht auf die Interface-Partition sowie andere Partitio-
nen zuzugreifen und Verdnderungen vorzunehmen. Auflerdem hat es das Zugriffsrecht zu
den Hardware-Ressourcenverwaltungsdienste, um die Ressourcen den Komponenten opti-
mal zuzuteilen.

4.3.2 Interface

Die interne Struktur der Interface-Partition ist in Abb. 4.6 dargestellt. Die Interface-
Partition ist die einzige Partition, die mit externen Komponenten (z.B. Cloud) kommu-
nizieren darf. Die Kommunikation aller lokalen Partitionen mit externen Komponenten
erfolgt iiber das Interface. Dariiber hinaus hostet die Interface-Partition die lokal gela-
denen Komponenten (Prozessfithrungskomponenten, Funktionsbausteine, Anwendungen)
bevor diese schlieBlich in die anderen Partitionen integriert werden. Das Ubersenden der
Prozessdaten zu den externen Komponenten erfolgt durch das Interface. Die Interface
Partition besitzt eine Schnittstelle, um Befehle zum Deployment neuer Komponenten zu
erhalten. Vor der Kommunikation mit externen Komponenten authentifiziert die Interface-
Partition den Kommunikationspartner. Danach wird die Komponente deployt. Die Kom-
ponente ist dann in der Liste der geladenen Komponenten der Interface-Partition vorhan-
den. Das Interface beinhaltet auflerdem eine Schnittstelle fiir die Dateniibertragung. Daten
miissen durch die Interface-Partition zu den externen Komponenten gesendet werden. Die
Ubertragung kann einmalig oder zyklisch erfolgen. Die zyklische Ubertragung wird iiber
das Pub/Sub-Schema durchgefiihrt.
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Authentifizierung
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¢ (Deployment) Komponente AT—' Verwaltung

Abbildung 4.6: Interne Struktur der Interface-Partition

4.4 Verwaltungsdienste

Zur Realisierung der Konzepte stellt die Verwaltungskomponente entsprechende Dienste
und Ablaufprozeduren zur Verfiigung.

4.4.1 Interne Kommunikationsdienste

Die Kommunikation zwischen den Komponenten wird durch das Verwaltungssystem ge-
steuert. Falls keine direkte Kommunikation zwischen den Komponenten erlaubt ist, agiert
das Verwaltungssystem als Gateway und leitet die Daten an den Empfinger weiter. Da-
zu verfiigt es iiber verschiedene Kommunikationsprotokolle mit unterschiedlichen QoS-
Eigenschaften. Bei der Weiterleitung der Daten kénnen diese auch vom Verwaltungssystem
modifiziert oder gefiltert werden. Wenn eine direkte Kommunikation erlaubt ist, baut das
Verwaltungssystem eine direkte Kommunikationsverbindung zwischen den Komponenten
auf. Diese werden zur Laufzeit den Komponenten, die eine Kommunikationsverbindung
benotigen, zugeordnet. Aktuelle Kommunikationsverbindungen und Kommunikationsports
werden vom Hypervisor verwaltet. Der Hypervisor besitzt eine Liste der zur Verfiigung ste-
henden Kommunikationsports. Das Verwaltungssystem ist mit einer Schnittstelle zu dieser
Liste ausgestattet und kann die Kommunikationsverbindungen aktivieren oder deaktivie-

ren (Abb. 4.7).

Quality of Services

Die QoSs, die fir die Kommunikation zwischen Komponenten in KAS eingesetzt werden
konnen, sind:

e History: Diese QoS wird eingesetzt, um frithere Daten zu erhalten

e Realtime: Diese QoS wird fiir eine Realtime-Kommunikation zwischen den Kompo-
nenten eingesetzt
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I

Verwaltungssystem

Kommunikations-

dienste
Hypervisor
Senderport | Empfangerport | Verbindung Zustand Typ
Port A PortB V_AB Aktiv Zyklisch
L] Port C Port D V_CD Nicht Aktiv | Nicht Zyklisch

Abbildung 4.7: Verwaltung der Kommunikationsverbindungen

e Filter: Diese QoS wird fiir die Steuerung des Datenflusses eingesetzt.
Die Dienste, die fiir die Steuerung der Kommunikation eingesetzt werden, sind:

o Kommunikationsport freischalten:
Dieser Dienst ermdglicht den Zugriff von Komponenten zu einem Port fiir die Kom-
munikation.

e Kommunikationsport sperren:
Dieser Dienst sperrt den Zugriff einer Komponente zu einem Port.

Durch diese Dienste wird die Kommunikation zwischen verschieden Komponenten gesteu-
ert.

4.4.2 Externe Kommunikationsdienste

Die Datenverarbeitung kann lokal oder zentral (durch eine iiberlagerte Anwendung z. B.
Cloud) durchgefiihrt werden. Bei der zentralen Verarbeitung der Daten fordert zunichst
die Cloud Informationen aus der Anwendung (z.B. einer hoch kritischen Partition) an.
Aus Sicherheitsgriinden lduft diese Anfrage durch die Interface-Partition. Diese schreibt
die Liste der angeforderten Informationen in ihre Ports, wodurch dem Verwaltungssystem
der Zugriff auf diese Liste ermoglicht wird. Das Verwaltungssystem liest daraufhin die An-
forderungen und stellt die Daten der Interface-Partition zur Verfiigung. Sollte es iiber die
angeforderten Informationen nicht verfiigen, fordert es diese von der entsprechenden Par-
tition (Beispielsweise Anwendung 1 in Abb. 4.8) an. Die Anwendung sendet daraufhin die
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angeforderten Informationen iiber eine unidirektionale Kommunikationsverbindung zum
Verwaltungssystem.

Uberlagerte Anwendung

Anwendung 1 Verwaltungs- Interface
system

Liste der
Werte

Abbildung 4.8: Verwaltung der Kommunikationsverbindungen

4.4.3 Konfigurationsdienste

Die Konfigurationsdienste beschéftigen sich mit dem Deployment und der Inbetriebnahme
neuer Komponenten. Die neuen Komponenten werden deployt, um sich d&ndernden Anfor-
derungen des Systems gerecht zu werden. Konfigurationsdienste bestehen aus zwei Schrit-
ten, ndmlich dem Deployment und der Inbetriebnahme. Beim Vorgang des Deployments
werden erforderliche Komponenten heruntergeladen. Dabei umfasst die Inbetriebnahme die
Uberpriifung und Synchronisation der deployten Komponenten. Das Verwaltungssystem
ist in der Lage die Komponenten in jeder Partition zu deployen. Aus Sicherheitsgriinden
ist aber ein direktes Deployment der Komponenten in den Partitionen nicht erlaubt. Das
Deployment lauft iiber das Interface. Das Verwaltungssystem triggert den Deploymentvor-
gang einer Komponente in das Interface. Folgende Komponenten kénnen auf diese Weise
deployt werden:

o I'Bs
e Prozessfithrungskomponenten
e Container

Die Konfigurationsdienste werden zur Integration der deployten Komponenten eingesetzt.
Diese iiberpriifen deployte Komponenten vor der Integration ins System auf Plausibilitét.
Der Konfigurationsprozess besteht aus den folgenden Schritten:

e Die Komponente wird deployt. Dieser Vorgang wird vom Verwaltungssystem initiiert.
Die Komponente wird aus der Cloud in die Interface-Partition geladen.

e Die Komponente wird auf Plausibilitéit getestet.

e Die Komponente wird in die Ressourcen der Zielpartition integriert.
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e Die Komponente wird aktiviert und synchronisiert.

Das Diagramm des behandelten Vorgangs ist in Abb. 4.9 dargestellt. Das Verwaltungssy-
stem triggert den Deploymentvorgang der Komponente X aus der Quelle Y. Die Kompo-
nente wird in der Interface-Partition deployt und in der Liste der lokal geladenen Kom-
ponenten abgelegt. Die geladene Komponente wird in einer Testplattform redeployt, um
iiberpriift zu werden. Die Ergebnisse der Uberpriifung werden daraufhin vom Verwaltungs-
system analysiert. Schliellich wird die Komponente in die Zielpartition integriert.

Das Ressourcenmodell dieses Vorgangs ist in Abb. 4.10 dargestellt. Aufler Deployment-
dienste bietet die Verwaltungskomponente auch Redeploymentdienste zur Ubertragung von
Komponenten aus einer Partition in eine andere Partition an.

4.4.4 Ressourcenverwaltung

Die Verwaltungskomponente analysiert den aktuellen Ressourcenbedarf der Partitionen
und #dndert das Scheduling-Schema, um die Anforderungen dieser zu erfiillen. Dabei muss
die jeweilige Prioritét der Applikationen betrachtet werden. Abb. 4.12 prisentiert das Klas-
sendiagramm der Ressourcenverwaltung fiir eine Anwendung auf Partitionsebene. Das Ver-
waltungssystem bietet Dienste zur Kommunikation, Speicherverwaltung und Aktivierung
neuer Scheduling-Schemata an.

Ablaufprozedur und zur Verfiigung stehende Dienste

Anwendungen, die mehr Ressourcen fiir die Ausfithrung bendtigen, als ihnen zugewie-
sen wurde, miissen diese zur Laufzeit beim Verwaltungssystem beantragen. Abb. 4.11
prisentiert diese Prozedur fiir zwei Partitionen. Die Partitionen schreiben ihre Anfrage
an ldngere Zeitpartitionierung (tp) in ihre Kommunikationsports. Das Verwaltungssystem
liest die Anfragen und ordnet ihnen die Ressourcen zu. Die Partitionen konnen zur Laufzeit
mehr Rechenzeit, mehr (Arbeits-)Speicher und Kommunikationsverbindungen anfordern:

e Request(tp):
Durch diese Anfrage kann eine neue Zeitpartitionierungsdauer gefordert werden.

e Request(Arbeitsspeicher):
Durch diese Anfrage kann ein groflerer Anteil des Arbeitsspeichers gefordert werden.

e Request(Kommunikationsverbindung):
Durch diese Anfrage kann eine Kommunikationsverbindung zu anderen Komponen-
ten gefordert werden.

Die Ressourcen werden nur dann zugeteilt, wenn sie die Funktionsweise der Anwendun-
gen hoherer Kritikalitdt oder Prioritéit nicht beeintrichtigen und vom Verwaltungssystem
genehmigt wurden. Folgende Dienste stehen zur Verfligung:

e Scheduling-Schema generieren:
Dieser Dienst generiert ein neues Scheduling-Schema entsprechend der neuen Anfor-
derungen.

e Scheduling-Schema aktivieren:
Dieser Dienst aktiviert ein neues Schedulingschema
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4.4 Verwaltungsdienste

Konfigurationsdienste
Verwaltungssystem Interface-Partition Testplattform Zielpartition
Triggert den
Deploymentvorgang von __ |
der Komponente X aus ;
der Quelle Y Interface
Partition
authentifiziert
die Quelle
r authentifiziert?
Ja
Komponente wird in
Interface deployt und
inder Liste der
geladenen
Komponenten
abgelegt ;
Komponente
Verwaltungskompone  pqin wird in einer
nte analysiert die 4~ Testplattform
Simulationsergebnisse dzployt
Die
validiert? \ Ja » Komponente
wird integriert
Nein l
Die Komponente
Ende < wird synchronisiert
und aktiviert

Abbildung 4.9: Deployment und Inbetriebnahme einer FB-Komponente
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4 Konzept

Partition ist Ressource fiir »| container ist Ressource fiir

» Komponente

ist Ressource flr

Abbildung 4.10: Ressourcenmodell

Partition 1 Verwaltungssystem Partition 2
Sharedmemory . . Sharedmemory
Liest [ Liest
< | Scheduler >
Request(tp) Request(tp)
Hypervisor
Hardware

Abbildung 4.11: Ressourcenverwaltung

e Speicherzuordnung aktualisieren:
Dieser Dienst aktualisiert die Speicherzuordnung entsprechend der neuen Anforde-
rungen.

o Kommunikationsverbindungen:
Diese sind bereits in Kap. 4.4.1 erldutert.

Die Ressourcenverwaltung wird vom Hypervisor verwaltet. Das Verwaltungssystem besitzt
eine Schnittstelle zu den Schedulingschemata und kann geméfl der Anforderungen diese
anpasser.

4.4.5 Komponentenverwaltungsdienste

Die Komponentenverwaltungsdienste bieten grundlegende Funktionen, um die Komponen-
ten anzulegen und zu verwalten. Die zur Verfiigung stehenden Dienste fiir die Komponen-
tenverwaltung konnen wie folgt aufgelistet werden:

e create:
Der create-Dienst wird zur Erstellung von Komponenten eingesetzt. FBs, Pro-
zessfithrungskomponenten und Container sind die Komponenten, die dadurch erstellt
werden konnen.

e read:
Der read-Dienst wird fiir das Lesen der Zustdnde, Werte und Informationen der
Komponenten eingesetzt.
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4.4 Verwaltungsdienste

Partition |<> Verwaltungssystem

’I
[y
[y

Ressourcenverwaltungs-

Applikationen

dienste
1
| benotigt
:
I |
| CPU | | Speicher | | Kommunikation |

Abbildung 4.12: Klassendiagramm der Ressourcenverwaltung

delete:

Der delete-Dienst wird fiir das Loschen der FBs, Prozessfithrungskomponenten und
Container eingesetzt. Die Partitionen koénnen hingegen nach der Erstellung (in der
statischen Phase) nicht mehr in der dynamischen Phase gelscht werden.

update:
Der update-Dienst kann fiir die Aktualisierung der Komponenten eingesetzt werden.

reset:
Der reset-Dienst wird fiir den Neustart der Komponenten eingesetzt.

copy:
Der copy-Dienst wird zum Kopieren der Komponenten eingesetzt. Er kann fiir alle
Komponenten mit Ausnahme der Partitionen eingesetzt werden.

aktivate:
Der aktivate-Dienst wird zur Aktivierung der Komponenten eingesetzt.

deaktivate:
Der deaktivate-Dienst wird zur Deaktivierung der Komponenten eingesetzt.

Die Komponenten registrieren sich beim Registrysystem des Hypervisors. Die Verwal-
tungskomponente hat Zugriff auf das Registrysystem und kann die Komponenten mit-
hilfe von Diensten verwalten. Diese Dienste kénnen fiir die Verwaltung von FBs, Pro-
zessfithrungskomponenten und Containern eingesetzt werden. Allerdings konnen die drei
Dienste create, read und copy nicht fiir die Verwaltung der Partitionen eingesetzt werden,
da die Anzahl der Partitionen in der Engineering-Phase festgelegt wird.
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4 Konzept

I

Verwaltungssystem

Ressourcenverwaltungs-

dienste
Hypervisor
Partition Start Duration TimePartitionID
1 0 20 1
1] 2 20 40 2

Abbildung 4.13: Verwaltung der Ressourcenverwaltung

4.5 Anwendungspartitionen

In diesem Kapitel wird auf Grundlage der KAS-Architektur eine Systemarchitektur fiir
virtualisierte Steuerungsgerite entworfen, um eine Plattform zur Erfiillung der in Kapi-
tel 3 genannten Anforderungen bereitzustellen. Der Kern der Architektur besteht, wie in
Abb. 4.15 dargestellt, aus unterschiedlichen Partitionen. Deren Trennung wird durch einen
Hypervisor durchgefiihrt. Dariiber hinaus iiberwacht der Hypervisor den Zugriff verschie-
dener Anwendungen aus den Partitionen auf Geriite, I/Os, andere Partitionen usw. sowie
die Kommunikation zwischen den verschiedenen Partitionen. In Bild 4.15 ist beispielhaft
ein System mit zwei Anwendungspartitionen dargestellt. Es handelt sich um die Anwen-
dungsarten Control und Optimization and Management (O&M). Die Art der Anwendung
einer Partition bestimmt ihre Zugriffsrechte (Zugriff auf andere Partitionen, Geréite und
I/0s), Kommunikationskanile, den internen Aufbau, QoS usw.

Die Anwendungen miissen, trotz unterschiedlicher Kritikalitit, miteinander kommuni-
zieren konnen. Hierfiir wird ein Kommunikationsschema benotigt, das systemseitig die An-
forderungen der Applikationen hoher Kritikalitét sicherstellt. Das KAS-Konzept sieht vor,
dass die Kommunikation nur iiber definierte Kommunikationskanéle stattfindet und dass
der Abgriff der Daten zu keinerlei Stérungen im abgegriffenen System (Zustandsinderung,
Laufzeitverhalten, Integritdt ...) fiihrt. Abb. 4.16 présentiert ein Beispiel fiir ein solches
Kommunikationsschema fiir das in Bild 4.15 dargestelltes System. Die Control-Partition
beinhaltet die klassische Prozessfithrungsanwendung. Sie ist eine kritische Anwendung und
darf daher nicht durch unautorisierte Anwendungen veréndert werden. Die Informationen
aus der Control-Partition miissen trotzdem fiir die weiteren Verarbeitungen zu anderen
Einheiten (beispielsweise Cloud und O&M) geschickt werden. Die Control-Partition darf
nur mit dem Verwaltungssystem kommunizieren. Die Informationen werden iiber eine un-
idirektionale Kommunikation zum Verwaltungssystem geschickt und dieses leitet jene an
die anderen Anwendungen weiter. Dabei dient die Interface-Partition der Anbindung ex-
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4.6 Evaluation anhand der Anforderungen an die Architektur

I

Verwaltungssystem

Komponenten-
verwaltungsdienste
Hypervisor
Komponente Quelle Verbindungen Zustand
Komponente A Partition X V_AC Aktiv
L7 Komponente B Partition Y V_BD Nicht Aktiv

Abbildung 4.14: Komponentenverwaltung

terner Komponenten (z.B. Cloud). Da das Interface und die O&M-Partition unterschied-
liche Kritikalitdtsniveaus haben, werden zwei verschiedene Informationsdioden fiir diese
Kommunikation eingesetzt. Die Anfragen der Applikationen mit einem niedrigeren Kri-
tikalitdtsniveau an Applikationen mit einem hoheren Kritikalitéitsniveau erfolgen durch
den Typ 2-Kommunikationsport. Die Control-Partition hat eine Lese-Berechtigung fiir das
Verwaltungssystem, um die Anfragen von diesem zu lesen. Das Verwaltungssystem hat wie-
derum eine Lese-Berechtigung fiir die O&M-Partition und das Interface. Dies verhindert
die direkte Kommunikation von Applikationen unterschiedlicher Kritikalitat. Das Kommu-
nikationsschema ist in Abb. 4.16 dargestellt. In diesem Schema erfolgt die Kommunikation
zwischen der Control-Partition und anderen Partitionen iiber das Verwaltungssystem.

Abb. 4.17 zeigt die Kommunikation zwischen der Interface-Partition und der O&M-
Partition. Die Kommunikation erfolgt direkt zwischen diesen Partitionen.

4.6 Evaluation anhand der Anforderungen an die
Architektur

In Kapitel 3 wurde eine Reihe von Anforderungen an die Architektur definiert. Im folgenden
Abschnitt wird diskutiert, inwieweit diese durch das KAS erfiillt werden.

e Sichere Ubertragung von Feldinformationen in die Cloud: Dank des
Hypervisors wird eine Trennung der Komponenten ermoglicht, die {iiber eine
riickwirkungsfreie Kommunikationsverbindung miteinander kommunizieren kénnen.
Dies verhindert eine direkte Kommunikation der kritischen Komponenten mit
iiberlagerten Anwendungen.
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Abbildung 4.15: Systemarchitektur

Sichere Kommunikation zwischen Anwendungen mit unterschiedlicher
Kritikalitadtsstufe: Die Kommunikation lauft iiber festgelegte Kommunikations-
ports und wird von einem Verwaltungssystem iiberwacht.

Implementierung zusitzlicher Funktionalititen zur Analyse und
Optimierung wihrend der Laufzeit: Neue Komponenten (FBs, Pro-
zessfuhrungskomponenten) koénnen zur Laufzeit mittels der Kommunikation
mit iiberlagerten Anwendungen heruntergeladen werden. Der Vorgang wird vom
Verwaltungssystem getriggert.

Parallele Ausfithrung von zusétzlichen Applikationen auf der gleichen
Hardware, wie z. B. lokalen Simulationsaufgaben: Zusétzliche Komponenten
mit unterschiedlichen Anforderungen kénnen mittels Hypervisor und Virtualisierung
auf der Hardware betrieben werden.

Unterstiitzung der lokalen Verwaltung und Uberwachung der untergeord-
neten Komponenten: Das Verwaltungssystem bietet Dienste fiir die Orchestrie-
rung und Verwaltung der Komponenten an.
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4.6 Evaluation anhand der Anforderungen an die Architektur

Uberlagerte Anwendung

Interface
Verwaltungs-
system Control-
Partition
O Antrag 1 C
3 Antrag 2 L
O Antrag 3
3 Antrag 4 L
0&M Antrag 1
Antrag 2
. Antrag 3
Liest L Antrag 4
3 Antrag 1
O Antrag 2
rO Antrag 3
O Antrag 4

Abbildung 4.16: Indirekte Kommunikation zwischen der Control-Partition, der Interface-
Partition und der O&M-Partition

Uberlagerte Anwendung

Interface 0&M

v
Antrag 1
Antrag 2
Antrag 3
Antrag 4

Abbildung 4.17: Direkte Kommunikation zwischen der O&M-Partition und der Interface-
Partition
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5 Anwendungsszenarien in der
Automatisierungstechnik

In diesem Kapitel wird gezeigt, wie sich typische Anwendungsszenarien der Automatisie-
rungstechnik auf die KAS-Struktur abbilden lassen.

5.1 Architektur der Automatisierungspyramide

Zur Gliederung der Automatisierungsaufgabe wird gerne das Bild der Automatisierungs-
pyramide herangezogen. In klassischer Form hat die Pyramide sowohl einen funktionalen
als auch einen hardwaretechnischen Aspekt. Der funktionale Aspekt ist im linken Teil
von Abb. 5.1 dargestellt, der hardwaretechnische Aspekt im linken Teil von Abb. 5.2.
Die Rechte Seite der Abbildungen hingegen prisentiert die funktionale und hardware-
technischen Aspekt im Kontext von 14.0 [106]. Die Funktionalitéiten (Abb. 5.1) lassen
sich in zwei Hauptkategorien unterteilen, namlich der O&M-Ebene und der Automati-
sierungsebene. Die O&M-Ebene beinhaltet Funktionalitdten wie Assetverwaltung, Daten-
analyse. Die Funktionen, die operativ fiir die Prozessfiihrung benétigt werden, gehoren
zur Automatisierungsebene. Abb. 5.2 (links) zeigt die klassische Hardware-Struktur in
der Automatisierungstechnik. In dieser Architektur laufen die Anwendungen auf unter-
schiedlichen Hardware-Komponenten. In der virtualisierten Architektur hingegen (Abb. 5.2
rechts) besteht die Moglichkeit unterschiedliche Anwendungen auf der gleichen Hardware
zu betreiben. Dabei kann eine Anwendung in eine prozessnahe und eine prozessferne An-
wendungskomponente aufgeteilt werden. Beispielsweise kann, wie in Abb. 5.1 dargestellt,
eine prozessnahe O&M-Anwendung definiert werden, die auf der gleichen Hardware, auf
der Prozessfiihrungsebene lduft und lokale Optimierungsfunktionen anbietet, wihrend eine
globale O&M-Anwendung auf der iiberlagerten Ebene betrieben wird. Eine solche virtua-
lisierte Architektur kann auf unterschiedlichen Ebenen (beispielsweise Prozessfithrung und
MES) eingesetzt werden, um verschiedene Anwendungen auf derselben Hardware vonein-
ander zu trennen (beispielsweise globale O&M und Informationsmanagement (IM)).

5.2 Beispielhafte Anwendungspartitionen

In diesem Abschnitt werden einige typische automatisierungstechnische Anwendungen
erlautert, die sich fiir die Kapselung in einer eigenen Partition anbieten.

5.2.1 Control-Partition

Die zu einer Anlage oder Teilanlage gehorenden Prozessfithrungskomponenten werden
geeigneterweise in einer eigenen Partition zusammengefasst. Eine solche Partition wird
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5 Anwendungsszenarien in der Automatisierungstechnik

Klassische Hardware-Struktur Hardware-Virtualisierung

1
1
1
! Global
1 Rezept Logistik IM
1 0o&M
1
1
MES Spezielle I
IM-Systeme 1 Safety- Lokal

: System 0&M I HE

Safety- SPS IPC |

System ! Hypervisor

Abbildung 5.2: Hardwaretechnischer Aufbau des Automatisierungssystems

als Control-Partition bezeichnet. Diese muss hohe Anforderungen in Bezug auf Echt-
zeitfihigkeit, Robustheit, Handhabbarkeit und Sicherheit erfiillen. Die Prozessfithrung
basiert beispielsweise auf dem in Kapitel 2 vorgestellten Betriebsmittel- und Mafinah-
menmodell. Die Prozessfithrungsapplikationen werden beispielsweise in den Sprachen der
IEC 61131-3 oder der IEC 61499 implementiert. Die Prozessfithrungsapplikation ist in ei-
ner Laufzeitumgebung implementiert, die fiir die Ausfithrung der Applikation zusténdig
ist. Diese muss von der umgebenden Partition oder einem umgebenden Container zur
Verfiigung gestellt werden. Die Control-Partition ist die einzige, die Zugriff auf die 1/Os
hat (Read/Write). Wie bereits beschrieben, bestehen einerseits die Moglichkeit des con-
tainerbasierten Aufbaus und andererseits die Moglichkeit der Verwendung von dedizierten
Applikationen fiir die interne Struktur der Partition. Eine wandelbare Produktion ist das

Anwendung A Anwendung B
IEC 61131 IEC 61499

Container-Management

0s

Abbildung 5.3: Struktur der Control-Partition

Ziel verschiedener Initiativen fiir zukiinftige Automatisierungssysteme. Die vorgeschlage-
ne Architektur stellt eine Basis fiir eine wandelbare Produktion bereit, in dem sie eine
Verwaltung unterschiedlicher Prozessfiihrungsapplikationen, sowie das Deployment neuer
Applikationen, entsprechend der Anwendungsszenarien zulisst. Deployment zur Laufzeit
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5.2 Beispielhafte Anwendungspartitionen

ermoglicht die Anpassung des Systems an die neuen Anforderungen und die Ausfithrung
neuer Steuerungs- oder Verwaltungsaufgaben. Gemeinsam fithren diese Eigenschaften zu
einer erhohten Dynamik des Systemverhaltens und bilden daher eine Basis fiir die Wan-
delbarkeit. Auflerdem bieten die Partitionen eine hardwareunabhéngige Umgebung zur
Ausfithrung diverser Applikationen. Dies erhoht die Betriebsméglichkeit von Applikation
auf der selben Hardware und die Portabilitit.

5.2.2 O&M-Partition

Die KAS-Architektur stellt eine Infrastruktur fiir den Betrieb einer prozessparallelen Si-
mulation bereit. Dazu kann ein Simulationssystem in einer Partition realisiert werden. In
vielen Fillen liegt das zu simulierende Modell in einer modularen Struktur vor, die nicht
aufgelost, sondern gemeinsam in einer Co-Simulation realisiert wird. Hier bietet es sich an,
die Simulationsfragmente in eigenen Containern zu kapseln. Die Container-Technologie
und die Orchestrierung dienen zur dynamischen Gestaltung der Simulationsapplikation.
Verschiedene Simulationsmodelle sind in Form von Docker-Containern in O&M-Partition
gehostet. Die Simulationsfragmente werden durch das Verwaltungssystem verwaltet, um
Co-Simulationen zu konfigurieren (Abb. 5.4).

Simulationsfragmente Verwaltungssystem | _ Konfiguriert _ N Co-Simulationen
(Bibliothek)

Abbildung 5.4: Konfigurationen von Co-Simulationen
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6 Implementierung fiir eine
Kaltwalzanlage

Als Anwendungsszenario dient die Optimierung des logistischen Durchlaufs von Paletten in
einer Kaltwalzanlage. Dieses Szenario erfordert fiir die Durchfithrung von Optimierungs-
aufgaben und Deployment, dass das KAS zwischen der Prozessfiihrung, der Simulation
(O&M) und einer externen Cloud kooperiert.

6.1 Logistik

Die KAS-Architektur bietet eine Plattform zur Durchfithrung, Optimierung und
Uberwachung von Logistiksystemen. In dem hier verfolgten Kontext interessiert insbe-
sondere die operative Steuerung von Intra-Logistiksystemen. Diese miissen eine effiziente
Routen- und Ressourcenplanung anbieten. Die Routen- und Ressourcenplanung benotigt
unter anderem die Zustédnde und Positionen der Logistikgerite sowie die aktuelle Ver-
kehrssituation, um eine effiziente Planung durchzufithren. Nach der Bearbeitung der
Zusténde werden Plédne generiert, die ins Logistiksystem integriert werden miissen. Abb. 6.1
prisentiert die Abbildung der Anwendungen auf die KAS-Architektur. Die Verwaltungs-

Tourenplanung Prozessfiihrungskomponenten
und fir die Steuerung des
Optimierung Logistiksystems
Interface 0&M | Verwaltungssystem Control
Depl t-Plattf Beobachter Vi Itungsdienst Prozess'ﬂ]hrungs-
eployment-Plattform Optimierung erwaltungsdienste applikation

Betriebssystem Betriebssystem Betriebssystem Betriebssystem

[ Hypervisor |

[ Hardware |

Abbildung 6.1: Logistiksystem

und Interface-Partition aus Abb. 6.1 entsprechen den zwei Systempartitionen der KAS-
Architektur. Die Steuerung bildet die Control-Partition ab, die Tourenplanungs- und
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6.2 SMS-Demonstrator

Optimierungs-Partition bildet hingegen die O&M-Partition ab. Fiir die Optimierung und
das Deployment sind die folgenden Schritten notig:
e Optimierung
— Abrufen der Informationen aus der Steuerung
— Durchfithrung  lokaler ~ Optimierungen in der Tourenplanungs- und
Optimierungs-Partition
e Deployment
— Deployment in die Interface-Partition
— Validierung

— Integration in die Steuerung

6.2 SMS-Demonstrator

Die KAS-Architektur wird fiir die Steuerung des SMS-Demonstrators eingesetzt. Der SMS-
Demonstrator simuliert das gesamte Transportsystem einer Kaltwalzanlage. Der Demon-
strator besteht aus einem IPC fiir die Profibus-Anbindung, einem Embedded-System und
einem Server fiir die MATLAB-Simulationsmodelle. Die Aktor- und Sensordaten werden
iiber ein emuliertes Feldbussystem (Profibus) zwischen Simulator und Automatisierungs-
system ausgetauscht (Abb. 6.2).

Komponentenbasiertes
Automatisierungssystem

Aktor " Sensor
Signale mem Signale

Simulator

Abbildung 6.2: Aufbau

Die Hardwarekomponenten und der Aufbau der Anlage sind in Abb. 6.11 und 6.12 dar-
gestellt. Ziel dieser Anlage ist die Realisierung einer virtuellen Inbetriebnahme. Sémtliche
Anlagenfunktionen werden iiber einen Hybrid-Simulator simuliert. Der Simulator stellt alle
Anlagensignale mit den Rechenschritten von 100 ps bereit. Diese werden iiber emulierte
Feldbussysteme an die Automatisierung iibertragen.
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Bestandteile
Abb. 6.3 zeigt das vom Demonstrator simulierte SMS-Kaltwalzwerk. Dieses besteht aus
drei Hauptkomponenten [98], [35]:

e Rollginge: Die Rollgénge bilden ein Forderband, um die Coils entlang der Anlage zu
transportieren. Sie sind die einzigen aktiven Komponenten in der Anlage und werden
mit Motoren angetrieben. Jeder Rollgang ist mit fiinf Sensoren ausgestattet. Einer
der Sensoren wird zur Erkennung der Palette eingesetzt, wiahrend die restlichen vier
Sensoren die Aufgabe der Positionserkennung iibernehmen. Das Simulationsmodell
beinhaltet drei Arten von Rollgédngen:

— Verschieber Wagen: Sie kénnen sich entlang der Y-Achse bewegen.
— Drehteller: Sie konnen sich um die Z-Achse rotieren.
— Ofen: Sie dienen zur Erwarmung der Coils.

e Palette: Sie werden zum Transport der Coils eingesetzt.

e Coil: Sie stellen die Aluminium-Coils dar.

Verschieber Wagen Drehteller Verschieber Wagen

Abbildung 6.3: SMS-Demonstrator

Die Steuerungshierarchie dieser Anlage basiert auf dem in Kapitel 2 diskutierten
Betriebsmittel- und Mafinahmenmodell. Die Rollgénge bilden die ESE-Ebene. Die Pa-
letten orchestrieren diese, um die Produktionsauftrige umzusetzen. Das bedeutet, dass die
Paletten in der Steuerungshierarchie die Rolle der GSEs iibernehmen. Jede Palette ist einer
GSE zugewiesen, um die ESEs (Rollgéinge) entsprechend des derzeitigen Rezepts zu orche-
strieren. Die Paletten kénnen auch die entsprechenden ESEs belegen, um eine Kollision
zu verhindern. Dariiber hinaus bilden die Coils die Mainahmen-Ebene. Diese Hierarchie
ist in Abb. 6.4 dargestellt. Die GSEs agieren wie Klienten. Sie kénnen auf verschiedenen
Embedded-Systemen oder Hardware-Komponenten installiert werden, um die Anlage zu
steuern. In dieser Arbeit wurden GSEs auf einem IMX6-Board implementiert.
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Abbildung 6.4: SMS-Demonstrator

6.3 Aufbau

Abb. 6.5 zeigt den Aufbau der Implementierung. Die linke Seite stellt das IMX6-Board
und die darauf implementierte KAS-Architektur dar. Diese kommuniziert mit dem SMS-
Demonstrator iiber eine TCP /IP-Kommunikationsschnittstelle. In diesem Aufbau sind die
ESEs auf dem eingebetteten System des SMS-Demonstrators und die GSEs auf dem IMX6-
Board implementiert.

6.4 Verification of Request

Fiir die prototypische Umsetzung des VoR werden fiinf Partitionen auf einem IMX6-Board
erstellt. Diese Partitionen (Verwaltungssystem, Control-Partition 1 und 2, Interface und
O&M) beinhalten die in Kapitel 4 genannten Anwendungstypen. Dariiber hinaus werden
sie mit den in Kapitel 4 ebenfalls genannten Rechten, Eigenschaften und Kommunikati-
onsports ausgestattet. Die Konfiguration der Partitionen fiir diesen Anwendungsfall ist im
Anhang A dargestellt. Fiir die Implementierung wird angenommen, dass wiahrend des Be-
triebs eine neue Produktionslinie (Abb. 6.6) zur aktuellen Anlage (Abb. 6.4) hinzugefiigt
wird. Die neue Anlagenstruktur erfordert eine neue Prozessfithrungsanwendung. Das De-
ployment, die Integration und die Aktivierung der Prozessfiihrung wird in diesem Abschnitt
erlautert. Die Implementierung erfordert die folgenden Partitionen:

e Das Interface: Die Interface-Partition wird fiir das Deployment der Komponenten
benotigt.

e Die O&M-Partition: Eine Simulationsanwendung validiert das Feedback, bevor es
in die Prozessfithrung integriert wird.
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Abbildung 6.5: Aufbau

e Das Verwaltungssystem: Das Verwaltungssystem triggert die oben genannten
Vorgénge.

e Die Control-Partition: Die Control-Partitionen werden fiir die Prozessfithrung
benttigt. Die zweite Control-Partition wird fiir die Aktualisierung der Prozessfiihrung
cingesetzt.

Interface und Deployment

Das Verwaltungssystem triggert das Deployment der neuen Prozessfithrungsanwendung
in der Interface-Partition. Abb. 6.7 prisentiert den Deployment- und Redeployment-FB.
Er ermoglicht das Deployment von neuen Komponenten auf dem IMX6-Board. Dariiber
hinaus fiithrt er das Redeployment von Komponenten durch. Fiir die Durchfithrung des
Deployments und Redeployments werden die Ziel- und Quell-Informationen benétigt (Ser-
vername und Pfad zu den Komponenten) [34]. Dieser FB besteht aus einer getvar- und
einer setvar-Funktion (Abb. 6.8, Abb. 6.9).

Validierung und Inbetriebnahme

Fiir die Inbetriebnahme werden zwei Control-Partitionen eingesetzt, zwischen denen ge-
wechselt werden kann. Eine Partition beinhaltet die aktuelle Prozessfiihrungsanwendung
fiir die Steuerung der Anlage. Die zweite Partition wird fiir die Aktualisierung der Pro-
zessfithrungsanwendung eingesetzt. Nach der Aktualisierung und Synchronisation der Pro-
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Abbildung 6.6: Die erweiterte Produktionsanlage

zessfiihrungsanwendung in der zweiten Partition werden die Partitionen gewechselt, damit
die zweite Partition die Steuerung der Anlage iibernimmt. Dieser Prozess besteht aus den
folgenden Schritten:

e Die neue Prozessfithrungsanwendung wird durch O&M-Partition validiert.

e Die neue Prozessfilhrungsanwendung wird in der zweiten Control-Partition (deakti-
vierte Partition) implementiert.

e Wesentlichen Zustinde der Anlage (z. B. die aktuelle Position der Paletten, die
Zusténde der Prozessfithrungskomponenten) werden in beiden Partitionen synchro-
nisiert.

e Die aktuelle Prozessfithrung (Control-Partition) wird deaktiviert.
e Die neue Partition wird aktiviert.
Nach diesen Schritten iibernehmen die neue Prozesssteuerungsanwendung und die neue
Control-Partition die Steuerung der Anlage. Dies erfordert auch ein neues Schedulingsche-
ma. Die Ressourcen der aktuellen Partition miissen der neuen Partition zugeteilt werden.

Da die aktuelle Control-Partition deaktiviert wurde, benéotigt sie keine Ressourcen mehr.
Abb. 6.10 zeigt die Ressourcenverwaltung.

59

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186275080

6 Implementierung fiir eine Kaltwalzanlage

74 iFBSpro V2.7 Engineering
Host Datenbasis Bibliothek Tosk Instanz Verbindung Einstellungen _Hife

&l .5
28
T

B 2134.130.125.60:7509
) manacer
3£ acpit
-6 vendor Instance name: | /TechUnits/Dep
3£ communication

;| .. eproymentcrTreetranster
)»gaam Instance type:
€3 kshttp Task parent : | /Tasks/UrTask
Task chila
1 actimode cexreq Errstate 0
wootornosss = | cutorine || oown
= 0000000 oyotine methcount
TRUE 30

a i)u.):n.)zﬁ.s)ﬂﬁna
) manacer 0000000 maxcalotine
b6 acprt
-6 vendor Inputs outputs
3£ communication

a TRUE trigger

“TechUnits" scur

“TechUnits" targetFB substate

"134130.125 S3/MAN. 0

"134130.125 61/ MAN.

o

0

artonier
p—
g =
oo
[ = ]

1974 1aL

Abbildung 6.7: Deployment-Funktionsbaustein

6.4.1 Evaluation des VoR-Konzepts

Fiir VoR miissen die folgenden Schritte durchgefiihrt werden:
e Authentifizierung und Verifizierung des Feedbacks
e Plausibilitdtscheck

In der NAMUR diirfen nur dann Anderungen in der CPC vorgenommen werden, wenn
diese von einer VoR-Komponente stammen. In [24] werden die Anforderungen an VoR
definiert. Die wichtigsten Anforderungen kénnen wie folgt aufgelistet werden:

e Die Vertraulichkeit des Antrags: Der Antrag darf nicht fiir Drittparteien lesbar sein.

e Die Integritiit des Antrags: Eine Anderung des Antrags wihrend der Ubertragung
von der App in die VOR-Komponente muss erkannt werden.

e Verfiigharkeit der CPC-Doméne: Die VOR-Komponente darf die Verfiigharkeit des
DCS/PCS nicht beeintriachtigen.

e Die Authentizitidt des Antrags: Nur beglaubigte und vertrauenswiirdige Anwendun-
gen diirfen Anfragen in die CPC-Domiine weiterleiten.

e Datenschutz der CPC: Keine internen Informationen von der CPC sollten durch die
VoR-Komponente exponiert werden.
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Abbildung 6.8: Deployment-Funktionsbaustein

Die VoR-Komponente entspricht der Validierungskomponente in der vorgeschlagenen Ar-
chitektur. Einige Strategien zur Erfiillung der Anforderungen werden in den folgenden
Punkten erldutert:

e Die Vertraulichkeit des Antrags: Der Antrag wird durch das Interface zum Verwal-
tungssystem weitergeleitet. Dieser kann nur gelesen werden, wenn die Applikationen
ein Zugriffsrecht darauf haben. Allerdings muss die Kommunikation zwischen den
externen Komponenten und dem Interface gesichert werden.

e Verfiigbarkeit der CPC-Domiéne: Die Antrige werden in die Prozessfithrung inte-
griert, nach dem sie tiberpriift worden sind. Dariiber hinaus ist die Prozessfithrung
vollig isoliert und kann von anderen Partitionen nicht zugegriffen werden.

e Die Authentizitdt des Antrags: In der vorgeschlagenen Architektur schreibt das Ver-
waltungssystem die Antriige in seinen Kommunikationsport. Der Control-Partition
ist es moglich auf diesen zuzugreifen. Dies verhindert eine direkte Verbindung zwi-
schen der Control-Partition und den anderen Applikationen. Durch diesen Vorgang
wird keine Anfrage an die Control-Partition weitergeleitet.

e Datenschutz der CPC: Die Kommunikationsverbindung der Validierungskomponente
zum Verwaltungssystem ist nur mit einem Read-Recht ausgestattet. Durch diesen
konnen nur Antriage im Verwaltungssystem-Kommunikationsport gelesen werden.
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7.1 Eingesetzte Technologien

Fiir die Implementierung werden ACPLT/RTE und ein PikeOS-Hypervisor verwendet.
Zuniichst ist eine Portierung von ACPLT/RTE auf das Echtzeit-OS (POSIX) des PikeOS-
Hypervisors erforderlich. Die Portierung erméglicht den Betrieb der Prozessfithrung auf
einer virtualisierten Umgebung. Die Portierung von ACPLT/RTE und PikeOS wird im
nichsten Abschnitt erlautert.

In diesem Abschnitt werden die Aufbauméglichkeiten im Bezug auf existierende An-
wendungen diskutiert. Diese sind in Abb. 7.1 grafisch dargestellt. Die erste Variante
setzt Container-Technologien (z.B. Docker ) ein, um eine Versions- und Variantenver-
waltung sowie dynamisches Deployment mittels Containern zuzulassen. Abb. 7.1 (links)
prisentiert einen Aufbau, in welchem Versionierung und Deployment von Applikationen
mittels Container-Technologien umgesetzt sind. In diesem Fall kann zum Beispiel Linux als
Betriebssystem in der Partition verwendet werden, um den Betrieb von Docker-Containern
zu ermoglichen. Die iiberlagerte Ebene ist ein Container-Managementsystem zur Verwal-
tung der Container (beispielsweise Start und Stoppen). Die nichste Ebene beinhaltet Ap-
plikationen, die in mehreren Containern gekapselt sind.

Die zweite Variante ist in Abb. 7.1 (rechts) dargestellt. Sie prisentiert eine Moglichkeit,
in der, im Kontrast zur ersten Variante, keine Container-Technologie eingesetzt wird. Im
vorliegenden Fall kénnen unterschiedliche Betriebssysteme benutzt werden (beispielsweise
bietet POSIX-Interface den Vorteil leichtgewichtig und echtzeitfihig zu sein). Auf dem
Betriebssystem werden die Anwendungen implementiert. Das Deployment neuer Kompo-
nenten kann mittels Serialisierung der Anwendungen und nétigen Bibliotheken auf POSIX
erfolgen.

7.1.1 Portierung von ACPLT/RTE und PikeOS

ACPLT/RTE besteht aus einer Kernbibliothek (libov), die das Metamodell des Objekt-
verwaltungssystems enthiilt, sowie aus zuséitzlichen Bibliotheken, die bei Bedarf gelinkt
werden konnen. Diese sind unten aufgefiihrt:

e fb: Die fb-Bibliothek beschreibt das Metamodell der FBs.
e cshmi: Die cshmi-Bibliothek enthélt ein HMI-Modell fiir eine grafische Oberfliche.
e TCPbind: Die TCPbind-Bibliothek bietet eine Schnittstelle zum Netzwerk.

e ksbase, ksxdr, kshttp: Diese Bibliotheken stellen die Klassen und Funktionalitdten
fiir die Kommunikation bereit.

Neben den genannten Bibliotheken gibt es aulerdem noch einige zusétzliche Bibliotheken,
die je nach Bedarf geladen werden kénnen:
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Abbildung 7.1: Interne Struktur der Partitionen

e TEC61131stdfb: Die IEC61131stdfb-Bibliothek enthélt FBs nach der Norm IEC
61131.

e vdivde3696: Die vdivde3696-Bibliothek enthéilt FBs nach der Norm VDI.

e Smrcs: Die Smres-Bibliothek enthélt Funktionen fiir die Interaktion mit dem SMS-
Demonstrator.

ACPLT/RTE wurde in ANSI C implementiert und kann unter Linux und Windows aus-
gefiihrt werden. Die Liste der in ACPLT/RTE verwendeten libc-Funktionen sind in der Ta-
belle 7.1 aufgelistet. ACPLT/RTE kann sowohl auf Elinos (das einen vollstindigen Linux-
Kernel bereitstellt), als auch auf POSIX portiert werden. Die Tabelle 7.2 zeigt das Mapping
und die Portierung von benétigten ACPLT/RTE-libe- und PikOS-libe-Funktionen.

Wie prisentiert sind die meisten Modifikationen fiir die Kommunikation, die Speicherzu-
teilung und die shared Objekte erforderlich. In dieser Arbeit wurden die in der Tabelle 7.2
prisentierten Modifikationen durchgefiihrt, damit ACPLT/RTE auf der Posix-Personality
(Echtzeit OS) des PikeOS Hypervisors ausgefiihrt werden kann. Fiir eine Portierung auf
ElinOS sind keine groferen Modifikationen erforderlich.

7.2 Prozessfithrung

Abb. 7.2 stellt das hierarchische Steuerungsmodell dar. Die unterste Ebene beinhaltet
die auf dem eingebetteten System des SMS-Demonstrators implementierten ESEs. Die
néchste Ebene prisentiert die auf dem IMX6-Board implementierten GSEs. Sie fungieren
als Orchestrator und orchetrieren die ESEs.

Die Prozessfithrung ist nicht auf eine Partition beschrankt. Es kénnen mehrere Parti-
tionen erstellt werden, welche die Prozessfithrungsrolle iibernehmen. Zu jedem Zeitpunkt
kann nur eine davon aktiv sein. Die anderen Partitionen kénnen fiir weitere Varianten und
Versionen der Prozessfiihrungsanwendungen eingesetzt werden. Wenn die verschiedenen
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Tabelle 7.1: libc-Funktionen (ACPLT/RTE)

String/memory utility functions | atoi, atoll, memcmp,
memcpy, memset
snprintf, sprintf,
strchr, strcmp, stre-
py, strdup, strerror,
strftime, strlen, strn-
cmp, strncpy, strstr,
strtod, strtol, strtoul,

strtoull, tolower,
toupper, vsnprintf
stdin/stdout perror, stderr, stdout,
puts
Socket /network 1O accept, bind, connect,

freeaddrinfo,  getad-
drinfo, getnameinfo,
getpeername, getsock-
name, listen, recv,

setsockopt, socket,
send
File handle API close, lseek, open,
read, select, write
Streams close, clearerr, fclose,

feof, ferror, fflush,
fgets, flock, fopen,
fprintf, fseek, fwrite

Memory allocation calloc, free, malloc, re-
alloc

Memory mapping mmap, msync, mun-
map

Shared objects dlclose, dlerror, dlo-
pen, dlsym,

Time-related gettimeofday, gmtime,

localtime, mktime, na-
nosleep, setitimer, , ti-
me, timegm

Threads pthread_create,
pthread_join,
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Tabelle 7.2: Portierung von bendtigten ACPLT /RTE-libc- und PikOS-libc-Funktionen

String/memory utility functions

These functions can
be replaced by PikeOS
libc

stdin/stdout

PikeOS supports stan-
dard streams

Socket /network IO

POSIX  specifies a
Light Weight Internet
Protocol (LWIP) so-
me function should be
modified. ACPLT/R-
TE should be provi-
ded by an interface to
LWIP for the commu-
nication. LWIP is also
TCP/IP  compatible
protocol.

File handle API

these funtions are sup-
ported

Streams

these functions are
supported

Memory allocation

memory allocation is
supported

Memory mapping

memory mapping
functions must be

modified.

Shared objects

shared libraries are
not supported (*.s0).
The build process of
ACPLT/RTE should
modified to build all
required libraries sta-
tically (*.a).

Time-related

important  functions
are supported

Threads

threads are supported
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Versionen sich nur in der Anwendungsebene unterscheiden, kénnen sie auch in Docker-
Containern innerhalb einer Partition gehostet werden. Wenn sie jedoch verschiedene Be-
triebssysteme bendotigen, miissen sie in verschiedene Partitionen gekapselt werden. Zum
Beispiel muss fiir den Wechsel zwischen Linux und POSIX die Partition gewechselt wer-
den.

7.2.1 Laufzeitanalyse in virtualisierten und nicht virtualisierten
Umgebungen

Eine Test-Applikation wurde erstellt, um die Prozessfiihrung in verschiedenen Umgebun-
gen zu vergleichen. In diesem Vergleich laufen die POSIX- und Linux-Prozesse auf einer
virtualisierten Umgebung (IMX6-Board), wobei der Windows-Prozess auf einem PC aus-
gefiihrt wird. Wie in Abb. 7.3 présentiert hat die Ausfithrung in POSIX keinen Jitter. Der
Prozess in Linux (ElinOS Personality) hat einen geringen Jitter und der Windows-Prozess
hat den hochsten Jitter.

In der néachsten Phase wurde die gleiche Analyse unter Hardwarebelastung durchgefiihrt.
Der Prozess in POSIX hat einen bestimmten Anteil an Hardware-Ressourcen, welche nicht
den anderen Applikationen zugeordnet werden kénnen. Daher hat die Hardware-Belastung
keinen Einfluss auf diesen Prozess und der Verlauf bleibt unveréndert. Der Prozess in
Windows hingegen weist einen erhhten Jitter auf. Abb. 7.4 priisentiert den Vergleich
zwischen POSIX und Windows.
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Abbildung 7.3: Laufzeitanalyse in POSIX, Linux und Windows

7.2.2 Kommunikation

Verschiedene Methoden zur Kommunikation zwischen Partitionen (die von PikeOS bereit-
gestellt werden) wurden in Kapitel 2 vorgestellt. Um diese Kommunikation echtzeitfihig
und unidirektional zu gestalten, wurden bei der Implementierung Queueing-Ports verwen-
det. Die Queueing-Ports dienen auch als eine Basis fiir die NAMUR-Diode.
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Abbildung 7.4: Laufzeitanalyse mit Hardware-Belastung in POSIX und Windows

Abb. 7.5 stellt ein Beispiel fiir die Implementierung der NAMUR-Diode dar. Die Imple-
mentierung besteht aus drei Partitionen, nidmlich der CPC, der Simulation (dhnlich wie
M+0) und dem Gateway. Die CPC und die Simulation kommunizieren miteinander indi-
rekt durch das Gateway. Der Informationsfluss zwischen der CPC und dem Gateway findet

© Simulation

@ Qlin

Abbildung 7.5: Kommunikationsports Zwischen der Partitionen

nur in einer Richtung statt, wihrend die Simulation und das Gateway miteinander in beide
Richtungen kommunizieren konnen. Die zweite Kommunikationsverbindung zwischen der
Simulation und dem Gateway dient zur Sendung der Anfragen an das Gateway.

Die Queueing-Ports werden hauptséchlich fiir die Kommunikation zwischen Partitionen
eingesetzt. Allerdings miissen diese fiir das vorgestellte Anwendungsszenario als ein Kom-
munikationsprotokoll zwischen FBs (in verschiedenen Partitionen) agieren. Aus diesem
Grund ist auf dem ACPLT/RTE eine Schnittstelle zu Queueing-Ports implementiert, so
dass die Kommunikation zwischen verschiedenen FBs iiber Queueing-Ports erfolgen kann.
Um eine unidirektionale Kommunikation in ACPLT/RTE zu bewerkstelligen, miissen die
Eingangs- und Ausgangsports entsprechend der Richtung des Informationsflusses definiert
werden. Abb. 7.6 zeigt ein Beispiel fiir die Ports in ACPLT/RTE.

Die Kommunikation zwischen verschiedenen Servern in ACPLT/RTE erfolgte ur-
spriinglich iiber fbcomlib. Abb. 7.7 présentiert die fbcomlib-Latenzen in LINUX und
POSIX. Die Ausfiihrung in POSIX hatte eine konstante Latenz und keinen Jitter. Die
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Znstance name: | /TechUni ts/Incontng Instance name: | /TechUnits/Outgoing
Tnstance type: | -+ -/posil/QPortlinkin Instance type: | -:/Posil/QPortLinkont
e Task parent : | /Tasks/UrTask
G iCAED : Task child i
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Fas | tearea o
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0000 | maxcalctime
Tapata iaden outpats
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TRUE connectionva RUE comnectionva TRUE

Abbildung 7.6: Unidirektional Kommunikation in ACPLT/RTE

Ausfiithrung in LINUX hatte im Gegensatz zu POSIX einen Jitter und eine durchschnitt-
liche Latenz von 3.410.054 us (fiir die Analyse wurde urtask = 1 gesetzt). In einer virtua-

fbcomlib-Latenzen

3.500.000

3.400.000
3.300.000
3.200.000
3.100.000
3.000.000
2.900.000
2.800.000

2.700.000
Linux Posix

Abbildung 7.7: fbcomlib-Latenzen in POSIX und LINUX

lisierten Umgebung mit PikeOS werden jedoch Queueing-Ports fiir diese Kommunikation
verwendet. Abb. 7.8 zeigt die Latenz dieser beiden Methoden (Zeit ist in ups gegeben,
urtask = 0.15).

Die fbcomlib ist im Kern asynchron. Die Reduzierung des Urtask-Takts kann zum
Packetverlust bei fbecomlib fithren. Die durch beide Kommunikationsprotokolle empfange-
nen Daten (bei urtask = 0.1) sind in der folgenden Datei dargestellt. Eine Wertereihe von
4961 bis 4969 wurde durch beide Kommunikationsprotokolle gesendet. Wie présentiert war
der fbecomlib-Kommunikationsempfinger nicht in der Lage alle Werte zu empfangen (die
Werte 4962, 4966 wurden nicht empfangen). Im Gegensatz zu fbcomlib hat der Queueing-
Port-Empfianger alle Werte empfangen.
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Abbildung 7.8: fbcomlib und Queueing Ports
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7.2.3 Verwaltungssystem
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Das Verwaltungssystem dient zur Uberwachung der Ressourcenzuweisung, der Kommuni-
kation und dem Deployment. Zudem bietet er Komponentenverwaltungsdienste an.
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Ressourcenverwaltung

Die Hardware-Ressourcenzuweisung kann vom Verwaltungssystem den Anforderungen ent-
sprechend geéindert werden. Abb. 7.9 zeigt zwei verschiedene, vom Verwaltungssystem

ST =
(0 Manager | O service | () Control | () MandO | (J Interface
Bl & &, Scheme1
O 5 1 15 20 25 30 35 40 45 50 55 60 65 YO 75 80 85 90 95 100 105 110 115 120
Livtabuna b b b s b L b b oo e koo beees Lo b b oo
wl w2 w3 we
w1 2 3 ps
B &, =, Scheme2
0 5 10 15 20 25 30 35 40 45 30 55 60 65 70O 75 8 85 90 95 100 105 110 115 120
[ P T TP TP T P TN TPTO FOY FPPY FETET FOURT PP FPPY TETIY FOPY FOPPLERTRT IETRY DAY AT
w3 wi w2 wd
3 tp1 tp2 tp
Windows
Scheme: | Schemel ~| WindowTable: |0 ~| | Create
Identifier Start Duration TimePartition|D Flags Delete
1 0 60 1 WM_SCF_PERIOD
2 60 20 2 WM_SCF_PERIOD
3 80 20 3 WM_SCF_PERIOD
4 100 20 4 WM_SCF_PERIOD

Abbildung 7.9: Scheduling Schema

generierte Schedulingschemata, welche zur Laufzeit angewendet werden kénnen. Die Be-
dingungen fiir eine Anderung des Schedulingschemas werden erfiillt wenn:

e Partitionen 2, 3 und 4 mehr CPU-Zeit benotigen als ihnen urspriinglich zugewiesen
wurde und Partition 1 weniger CPU-Zeit als vorgesehen benotigt.

e die Anwendungen in den Partitionen 2, 3 und 4 eine hohere Prioritit als Partition 1
besitzen.

Verwaltungssystem als Gateway

Abb. 7.10 stellt die Kommunikationsports zwischen der Control-Partition, dem Verwal-
tungssystem und dem Interface dar.

Wenn die vom Interface benétigten Informationen nicht an dieses weitergeleitet werden
diirfen, wird die Kommunikation verweigert. Dieser Vorgang ist in der folgenden Datei
dargestellt. Die Meldung ,,Permission denied “ wird erzeugt, wenn die Daten nicht weiter-
geleitet werden diirfen, andernfalls findet die Kommunikation statt.

[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data
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[1970/01/01 00:04:37.340041] [INFO] Man: transferred
[1970/01/01 00:04:37.360041] [INFO] Man: transferred
[1970/01/01 00:04:37.840041] [INFO] Man: transferred
[1970/01/01 00:04:38.840041] [INFO] Man: transferred
[1970/01/01 00:04:39.840041] [INFO] Man: transferred
[1970/01/01 00:04:40.840041] [INFO] Man: transferred
[1970/01/01 00:04:41.840041] [INFQ] Man: transferred
[1970/01/01 00:04:42.840041] [INFO] Man: transferred
[1970/01/01 00:04:43.840041] [INFO] Man: transferred
[1970/01/01 00:04:44.840041] [INFO] Man: transferred
[1970/01/01 00:04:45.840041] [INFO] Man: transferred
[1970/01/01 00:04:46.840041] [INFO] Man: transferred
[1970/01/01 00:04:47.840041] [INFO] Man: transferred
[1970/01/01 00:04:48.840041] [INFQ] Man: transferred
[1970/01/01 00:04:49.840041] [INFO] Man: transferred
[1970/01/01 00:04:50.840041] [INFO] Man: transferred
[1970/01/01 00:04:51.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:52.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:53.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:54.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:55.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:56.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:57.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:58.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:59.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:00.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:01.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:02.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:03.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:04.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:05.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:06.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:07.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:08.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:09.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:10.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:11.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:12.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:13.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:14.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:15.840041] [INFO] Man: transferred 8 bytes of data

bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data

0 00 C 00 0 00 0 00 0 o 0 0 0 0 00 0 0o
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8
8
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Der Gateway-FB und seine Eingangs- (Prozessfithrung) und Ausgangsports (Interface)
sind in Abb. 7.11 dargestellt.
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Abbildung 7.10: Kommunikationsports zwischen der Control-Partition und dem Interface
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Abbildung 7.11: Verwaltungssystem als ein Gateway zwischen der Control-Partition und dem
Interface
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8 Fazit

Industrie 4.0 konfrontiert die industriellen Doménen mit neuen Herausforderungen. Die
Gerite kommunizieren miteinander fiir eine erhohte Effizienz, Optimierungsgrad und Wan-
delbarkeit. Wichtig ist, dass diese Vernetzung keinerlei Auswirkungen auf die Anforderun-
gen der kritischen Anwendungen, wie z. B. die Verfiigbarkeit, haben darf. Abgesehen von
der Vernetzung, werden Analysefunktionen und KI-Algorithmen zunehmend in der Indu-
strie Doménen eingesetzt. Die Anwendungen haben unterschiedliche Anforderungen an
Echtzeit und Verfiigharkeit im Vergleich zu kritischen Anwendungen, miissen aber mit
diesen kommunizieren. Die Vorteile des Betriebs dieser Anwendungen auf der gleichen
Hardware konnen wie folgt aufgelistet werden:

e Skalierbarkeit: Durch die Verwaltung von Applikationen mit unterschiedlichen An-
forderungen auf derselben Hardware reduziert sich die Anzahl der erforderlichen
Hardware-Ressourcen. In der virtualisierten Architektur kénnen sich mehrere An-
wendungen eine Hardwareressource teilen. Dies fiihrt zu einer besseren Skalierbar-
keit.

e Freie Zuordnung auf die Hardwareressourcen: Die Partitionen kénnen frei auf die
zur Verfligung stehenden Hardware-Ressourcen iibertragen werden. Dies erlaubt ein
dynamisches Deployment und die Wiederverwendbarkeit der Partitionen.

e Vereinfachte Kommunikationsinfrastruktur: Innerhalb der Umgebung eines Hypervi-
sors kann die Kommunikation zwischen den Partitionen einfach und effizient gestaltet
werden. Der gesamte Netzwerk-Overhead entfillt.

e Reduzierung der Abhéngigkeit zwischen Software und Hardware: Die Software wird
auf dem OS des Hypervisors spezifiziert und kann auf beliebigen Instanzen des Hy-
pervisors realisiert werden.

e Implementierung von Security-Aspekten auf der Systemebene: Security-Aspekte, wie
Zugriffsrechte, Kommunikation, Ressource-Allokation kénnen auf der Systemebene
definiert werden.

In dieser Dissertation wurde ein Architekturkonzept fiir Steuerungsgerite, bezeichnet als
Komponentenbasierte Architektur fiir Automatisierungssysteme, vorgestellt. Die vorge-
stellte Architektur verwendet eine Hardware-Virtualisierung, um verschiedene Anwendun-
gen auf Steuerungsgeriten zu trennen und zu integrieren. Die Systemfunktionen, die in die-
ser virtualisierten Umgebung implementiert wurden, bilden ein Verwaltungssystem und ein
Interface. Diese beiden Systemfunktionen bilden den Kern der KAS-Architektur und wur-
den jeweils in eigenen Partitionen implementiert. Anwendungen kénnen je nach QoS oder
Strukturierungsanforderungen in gemeinsamen oder getrennten Partitionen oder Contai-
nern realisiert werden. Das KAS-System stellt ein leistungsfiihiges internes Kommunikati-
onssystem fiir den Datenaustausch zwischen den Partitionen und Containern einer Ressour-
ce bereit. Die KAS-Mechanismen erlauben eine effiziente und iibersichtliche Uberwachung
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des Informationsflusses zwischen den internen Komponenten. Die Kommunikation zwi-
schen den Anwendungen soll jedoch sowohl hinsichtlich der Kommunikationsrichtung als
auch des Informationsflusses itberwacht werden. Die Uberwachung und Steuerung des Infor-
mationsflusses wird durch das Verwaltungssystem durchgefiihrt. Dariiber hinaus bietet das
Verwaltungssystem sowohl Dienste fiir das Ressourcen- und Komponentenmanagement als
auch Konfigurationsdienste (Deployment und Inbetriebnahme) an. Durch Virtualisierung
und Hypervisor-Technologie werden unabhéngige Umgebungen (VMs) generiert, die geméif
der Anforderungen der Anwendungen konfiguriert werden konnen. Beispielsweise haben die
Datenanalysefunktionen andere Anforderungen an Echtzeit und Verfiigbarkeit im Vergleich
zu Prozessfithrungsanwendungen. Daher miissen die Partitionen, welche diese Anwendun-
gen kapseln auch unterschiedlich konfiguriert sein. Die KAS-Architektur ermoglicht den
Betrieb, die Kooperation und die Vernetzung von Geriten in dem Industrie 4.0 Umfeld,
ohne die Anforderungen der kritischen Applikationen zu gefihrden.

KAS implementiert eine neue Architektur eines hierarchischen Komponentensystems.
KAS vereinfacht und strukturiert die Implementierung von modularen wandelbaren An-
wendungsstrukturen unter Beriicksichtigung der jeweiligen QoS. Es erscheint erstrebens-
wert, ein solches Konzept zu verallgemeinern und als neue generische Struktur fiir die Au-
tomatisierungsarchitektur zu standardisieren. Die Partitionen kapseln Anwendungen mit
unterschiedlichen Anforderungen. Standardisierte Konfigurationen der Partitionen gem#f
der Anwendungen wird auch als eine zukiinftige Arbeit betrachtet. Diese Konfigurationen
beinhalten die Fihigkeiten der Partitionen, die Zugriffsrechte, die QoS-Eigenschaften, die
Kommunikationsports usw. Dies ermoglicht auch eine Wiederverwendbarkeit dieser Parti-
tionen.

Im bisherigen System werden die Daten direkt zwischen den Partitionen 1:1 {ibertragen.
Fiir zukiinftige Anwendungen erscheint es hilfreich im Verwaltungssystem eine Datenhal-
tung, in Form eines Publisher/Subscriber-Systems, zu implementieren. Abb. 8.1 illustriert
die Kommunikation zwischen verschiedenen Anwendungen. Fiir die Kommunikation wird
eine Methode zur Identifikation, sowie der Speicherung der Daten bendtigt. Die Informatio-
nen miissen dazu mit einem Topic versehen werden. Dies inkludiert auch die Verwaltung der
historischen Daten. Zustéinde, die von der Verwaltungskomponente abgerufen werden, wer-
den in diesem System unter diversen Topics gespeichert. Die anderen Partitionen kénnen
diese Topics nach Bedarf abonnieren.
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Abbildung 8.1: Aufriistung mit einem Publisher/Subscriber-System

1312:05. 0

tersagt, m mit, flir oder in Ki-Syster

79


https://doi.org/10.51202/9783186275080

A Anhang

Dieser Anhang stellt die Partition-Konfigurationen dar.

1 | <?xml version="1.0" encoding="us-ascii" standalone="no"?7>

2 |<Project xmlns="http://www.sysgo.com/xsd/prj/project-4.8.xsd" xmlns:xsi="
http://www.w3.0rg/2001/XMLSchema-instance" productversion="4.2">

3 <Integration name="posix-devel" profile="integration"

4 target="arm_v7hf">

5 <PathTable>

6 <Path id="PIKEOS" location="F:\SYSGO\opt\pikeos-4.2\" />

7 <Path id="PIKEOS_POOL"

8 location="F:\SYSGO\opt\pikeos-4.2\target\arm\v7hf\" />

9 <Path id="CUSTOM_POOL" location="F:\SYSGO\POSIX4\POOL" />

10 </PathTable>

11 <ConfigurationDomainTable>

12 <!--start here-->

13 <!--use CTRL + SPACE for suggestions-->

14 <l--use ’validate’ from the right click menu to validate your code
-->

15 <Group name="Build">

16 <ComponentInstance name="Compilation Parameters"

17 ref="Compilation Parameters" />

18 </Group>

19 <Group name="Application">

20 <ComponentInstance name="POSIX Partition"

21 ref="POSIX Partition">

22 <ParameterValue name="PARTNAME" value="Manager" />

23 <VmitConfigurationTable>

24 <VmitConfiguration condition="true"

25 isReference="true">

26 <Partition

27 Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE VM_AB_PSP_RESET

VM_AB_MONITOR VM_AB_MEM_CREATE VM_AB_PSP_CONSOLE
VM_AB_HM_INJECT_OTHER" CpuMask="-1"

28 Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="
20"

29 MaxPrio="62" MultiPartitionHMTableID="0" Name="$ (PARTNAME
) "

30 SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

31 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>

32 <FileAccessTable>

33 <FileAccess

34 FileName="rfs:ov_server_manager.conf"

35 AccessMode="VM_0O_RD VM_O_MAP">

36 </FileAccess>

37

38 <FileAccess

39 FileName="shm:MandO_SHAREDMEMORY"
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AccessMode="VM_O_RD VM_O_WR VM_O_MAP">
</FileAccess>
<FileAccess

FileName="shm: INTERFACE_SHAREDMEMORY"

AccessMode="VM_0O_RD VM_O_WR VM_O_MAP">
</FileAccess>

<ComponentReference
ref="P0OSIX Process" />
</FileAccessTable>
<MemoryRequirementTable >
<ComponentReference
ref="P0SIX Process" />
</MemoryRequirementTable >
<ProcessTable>
<ComponentReference
ref="P0SIX Process" />
</ProcessTable>
<QueuingPortTable>
<QueuingPort Name="INTERFACE_OUT"

MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_SOURCE">
</QueuingPort >
<QueuingPort Name="CONTROL_IN"

MaxMessageCount="4294900000" MaxMessageSize="
4294900000" Direction="VM_PORT_DESTINATION">

</QueuingPort >
<QueuingPort Name="MandO_OUT"

MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_SOURCE">
</QueuingPort >
<ComponentReference
ref="P0SIX Process" />
</QueuingPortTable >
<SamplingPortTable >
<ComponentReference
ref="P0SIX Process" />
</SamplingPortTable >
<HMTable >
<DefaultSwitch>
<Default Action="P4_HM_PAC_IDLE"

Code="0" Level="P4_HM_LEVEL_USER" Notify="0"

</DefaultSwitch>
</HMTable >
</Partition>
</VmitConfiguration>
</VmitConfigurationTable >
</ComponentInstance>
<ComponentInstance name="POSIX Process"
ref="P0OSIX Process">
<ParameterValue name="LWIP_CONFIG" value="true" />
<ParameterValue name="LWIP_TARGETIP_IF1"
value="134.130.125.60" />
<ParameterValue name="RAMSIZE" value="0x04000000" />
<ParameterValue name="FILE"
value="CUSTOM_POOL/ov_runtimeserver" />
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93 <ParameterValue name="MUXA_ALL" value="true" />

94 <ParameterValue name="LWIP_GATEWAY_IF1"

95 value="192.168.0.11" />

96 <ParameterValue name="DESTNAME" value="Manager" />

97 <ParameterValue name="POSIX_TUNE" value="true"/><ParameterValue
name="POSIX_TUNE_VM" value="true"/><ParameterValue name="
POSIX_TUNE_ARCH" value="true"/><ParameterValue name="
POSIX_TUNE_FS" value="true"/><ParameterValue name="
POSIX_TUNE_HEAP" value="true"/><ParameterValue name="
POSIX_TUNE_P4_PRIO" value="true"/><ParameterValue name="
POSIX_TUNE_SCHED" value="true"/><ParameterValue name="
POSIX_TUNE_PTHREAD" value="true"/><ParameterValue name="
POSIX_TUNE_MQ" value="true"/><ParameterValue name="
POSIX_TUNE_PARAMS" value="true"/><ParameterValue name="
POSIX_TUNE_TTY" value="true"/><AssignedDependencyTable>

98

99 <AssignedDependency cmp="imx_fec-vchanl"

100 provideId="channel" dependId="LWIP_DEVICE_IF1" />

101 <AssignedDependency cmp="muxa"

102 provideId="CHANNEL_02" dependId="IOFILE" />

103 </AssignedDependencyTable>

104 </ComponentInstance >

105 </Group >

106 <Group filename="driver/misc/devel.dom" name="devel"

107 path_id="PIKEOS_POOL">

108 <ComponentInstance name="monitor" ref="monitor">

109 <AssignedDependencyTable>

110 <AssignedDependency cmp="muxa" dependId="MONBIN"

111 provideId="monitor" />

112 <AssignedDependency cmp="muxa" dependId="MONCON"

113 provideId="mon_con" />

114 <AssignedDependency cmp="Monitor Master"

115 dependId="MON_MASTER" provideId="imon-master" />

116 </AssignedDependencyTable>

117 </ComponentInstance >

118 <ComponentInstance name="traceserver" ref="traceserver">

119 <AssignedDependencyTable >

120 <AssignedDependency cmp="muxa"

121 dependId="MUXA Channel" provideId="traceserver" />

122 </AssignedDependencyTable>

123 </ComponentInstance >

124 <ComponentInstance name="muxa" ref="muxa">

125 <ParameterValue name="HostIP" value="134.130.125.53" />

126 <ParameterValue name="TargetIP"

127 value="134.130.125.90" />

128 <ParameterValue name="GatewayIP"

129 value="134.130.125.126" />

130 <ParameterValue name="Netmask" value="255.255.255.0" />

131 <ParameterValue name="Channel2_Protocol"

132 value="telnet" />

133 <AssignedDependencyTable >

134 <AssignedDependency cmp="imx_fec-vchanO"

135 provideId="channel" dependId="FILE" />

136 </AssignedDependencyTable >

137 </ComponentInstance >

138 </Group>
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<Group name="Default">
<ComponentInstance name="service.partition"
ref="service.partition">
<VmitConfigurationTable>
<VmitConfiguration condition="true"
isReference="true">
<Partition
Abilities="VM_AB_TIMEPART_CHANGE VM_AB_MONITOR
VM_AB_PSP_CONSOLE VM_AB_TIMEPART_SETUP
VM_AB_HM_INJECT_OTHER VM_AB_PART_SET_MODE
VM_AB_MEM_CREATE VM_AB_PSP_RESET VM_AB_CACHE_CHANGE
VM_AB_TRACE"
CpuMask="-1" Identifier="1" MaxChildTaskCount="20"
MaxFDCount="128" MaxPrio="102" MultiPartitionHMTableID="0
Name="service" SchedChangeAction="VM_SCHED_CHANGE_IGNORE"
StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>
<FileAccessTable>
<FileAccess
AccessMode="VM_0O_RD VM_O_WR" FileName="con:" />
<ComponentReference ref="monitor" />
<ComponentReference ref="traceserver" />
<ComponentReference ref="muxa" />
<ComponentReference
ref="imx_uart-base" />
<ComponentReference
ref="imx_fec-base" />
</FileAccessTable>
<MemoryRequirementTable >
<MemoryRequirement
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC"
Alignment="-1" CacheMode="VM_MEM_CACHE_CB" Contiguous
="false"
IsPool="true" MemRegionID="-1" MemRegionPartition="-1
"
Name="_RAM_" PhysicalAddress="-1" Size="0x200000"
Type="VM_MEM_TYPE_RAM" ZeroCount="0" />
<MemoryRequirement
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC"
Alignment="-1" CacheMode="VM_MEM_CACHE_CB" Contiguous
="false"
IsPool="false" MemRegionID="-1" MemRegionPartition="
_1||
Name="_KMEM_" PhysicalAddress="-1" Size="0x320000"
Type="VM_MEM_TYPE_KMEM" ZeroCount="0" />
<ComponentReference ref="monitor" />
<ComponentReference ref="traceserver" />
<ComponentReference ref="muxa" />
<ComponentReference
ref="imx_uart-base" />
<ComponentReference
ref="imx_fec-base" />
</MemoryRequirementTable >
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183 <ProcessTable>
184 <ComponentReference ref="monitor" />
185 <ComponentReference ref="traceserver" />
186 <ComponentReference ref="muxa" />
187 <ComponentReference
188 ref="imx_uart -base" />
189 <ComponentReference
190 ref="imx_fec-base" />
191 </ProcessTable>
192 <QueuingPortTable >
193 <ComponentReference ref="monitor" />
194 <ComponentReference ref="traceserver" />
195 <ComponentReference ref="muxa" />
196 <ComponentReference
197 ref="imx_uart-base" />
198 <ComponentReference
199 ref="imx_fec-base" />
200 </QueuingPortTable >
201 <SamplingPortTable >
202 <ComponentReference ref="monitor" />
203 <ComponentReference ref="traceserver" />
204 <ComponentReference ref="muxa" />
205 <ComponentReference
206 ref="imx_uart-base" />
207 <ComponentReference
208 ref="imx_fec-base" />
209 </SamplingPortTable>
210 <HMTable>
211 <DefaultSwitch>
212 <Default Action="P4_HM_PAC_IDLE"
213 Code="0" Level="P4_HM_LEVEL_USER" Notify="O0" />
214 </DefaultSwitch>
215 </HMTable >
216 </Partition>
217 </VmitConfiguration>
218 </VmitConfigurationTable >
219 </ComponentInstance>
220 </Group>
221 <Bsp align="0x00001000" arch="arm" boot="uboot"
222 bootstrats="uboot ,uboot_unc,raw" endian="1little"
223 filename="board/imx6q_sabrelite.bsp.dom" name="imx6q_sabrelite"
224 path_id="PIKEOS_POOL" proc="v7hf" wrdsz="32">
225 <Description>
226 Boundary Devices BD-SL-i.MX6 (formerly the Freescale
227 SABRE Lite board).
228 </Description>
229 <Group name="Monitor Kernel Drivers">
230 <ComponentInstance name="Monitor Master"
231 ref="imon-master" />
232 <ComponentInstance name="Monitor PSSW" ref="imon-ssw" />
233 <ComponentInstance name="Monitor APEX"
234 ref="imon-apex" />
235 </Group >
236 <Group name="iMX6 Serial User Level Driver">
237 <Description>i.MX Serial Driver</Description>
238 <ComponentInstance name="imx_uart-base"
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ref="imx_uart-fp_ext">
<ParameterValue name="MAX_FD_COUNT" value="5" />
<ParameterValue name="PROVIDER" value="ser0" />
<ParameterValue name="USE_CLK_MGR" value="true" />
<ParameterValue name="HEAP_SIZE" value="0x00300000"
AssignedDependencyTable >
<AssignedDependency cmp="iMX Clock Manager"
dependId="CLKMNGR" providelId="driver" />
</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_uart-port0"
ref="imx_uart-device">
<ParameterValue name="IOADDR_LINK" value="UART1" />
<ParameterValue name="IRQ_LINK" value="UART1" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="0" />
<ParameterValue name="I0_ID" value="0" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR"
</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_uart-portl"
ref="imx_uart-device">
<ParameterValue name="IOADDR_LINK" value="UART2" />
<ParameterValue name="DEVICE" value="1" />
<ParameterValue name="IRQ_LINK" value="UART2" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="1" />
<ParameterValue name="I0_ID" value="1" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR"
</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_uart-port2"
ref="imx_uart-device">
<ParameterValue name="IOADDR_LINK" value="UART3" />
<ParameterValue name="DEVICE" value="2" />
<ParameterValue name="IRQ_LINK" value="UART3" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
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86

<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="2" />
<ParameterValue name="I0_ID" value="2" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_uart-port3"
ref="imx_uart-device">
<ParameterValue name="I0OADDR_LINK" value="UART4" />
<ParameterValue name="DEVICE" value="3" />
<ParameterValue name="IRQ_LINK" value="UART4" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="3" />
<ParameterValue name="I0_ID" value="3" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_uart-port4"
ref="imx_uart-device">
<ParameterValue name="I0OADDR_LINK" value="UART5" />
<ParameterValue name="DEVICE" value="4" />
<ParameterValue name="IRQ_LINK" value="UART5" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="4" />
<ParameterValue name="I0_ID" value="4" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />
</AssignedDependencyTable >
</ComponentInstance>
</Group >
<Group name="iMX6_FEC Ethernet User Level Driver">
<ComponentInstance name="imx_fec-base"
ref="imx_fec-fp_ext">
<ParameterValue name="MAX_FD_COUNT" value="6" />
<ParameterValue name="PROVIDER" value="ethO0" />
<ParameterValue name="MAX_TRANSFER_SIZE"
value="1522" />
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<ParameterValue name="MAX_FILE_COUNT" value="6" />
<ParameterValue name="USE_CLK_MGR" value="true" />

<AssignedDependencyTable >
<AssignedDependency cmp="iMX Clock Manager"
dependId="CLKMNGR" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_fec-device"
ref="imx_fec-device">
<ParameterValue name="USE_PSP_NODE" value="false"
<ParameterValue name="IO_ADDR" value="0x02188000"
<ParameterValue name="I0O_OFFSET" value="0" />
<ParameterValue name="I0_IRQ" value="150" />

/>
/>

<ParameterValue name="CLK_FREQ" value="66000000" />

<ParameterValue name="CLK_NAME"
value="enet_clk_gate" />
<ParameterValue name="FILE_NAME" value="dev0" />
<ParameterValue name="I0O_SIZE" value="0x400" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR"
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_fec-vchanO"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="0" />
<ParameterValue name="FILE_NAME" value="0" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_fec-vchanl"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="1" />
<ParameterValue name="FILE_NAME" value="1" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_fec-vchan2"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="2" />
<ParameterValue name="FILE_NAME" value="2" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
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</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_fec-vchan3"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="3" />
<ParameterValue name="FILE_NAME" value="3" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable>
</ComponentInstance >
<ComponentInstance name="imx_fec-vchan4d"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="4" />
<ParameterValue name="FILE_NAME" value="4" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance ></Group>
<ComponentInstance name="PikeOS Kernel"
ref="Pike0S Kernel">
<ParameterValue name="PIKEOS_KERNEL_DIR"
value="PIKEOS_POOL/object/bsp/imx6" />
</ComponentInstance>
<ComponentInstance name="System Software"
ref="generic-pssw">
<ParameterValue name="PIKEOS_PSSW_BIN"
value="PIKEOS_POOL/pssw/object/standard/pssw.elf" />
</ComponentInstance >
<ComponentInstance name="sabrelite-config"
ref="sabrelite-config" />
<ComponentInstance name="imx6.psp" ref="imx6.psp">
<ParameterValue name="PSP_CONSOLE_PORT" value="2" />
<ParameterValue name="GPU_VOLT" value="false" />
</ComponentInstance>
<ComponentInstance name="PCI Manager"
ref="PCI Manager KDEV" />
<ComponentInstance name="HM Event Subscription"
ref="hmev" />
<ComponentInstance name="Standard Console"
ref="Standard Console" />
<ComponentInstance name="iMX Clock Manager"
ref="i.MX Clock Manager" />
<Info>
<Cpu name="i.MX6DL, i.MX6Q" />
<Vendor data="Boundary Devices" />

<Platman
manual="documentation/platform/platform-manual -ARM.pdf" />
<Uri
link="http://boundarydevices.com/products/sabre-lite-imx6-sbc
n />
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<Project label="PSSW Fusion Project"
profile="fusion-pssw" template="standard" variable="
FUSION_PSSW" />
<Project label="Kernel Fusion Project"
profile="fusion-kernel" template="imx6" variable="
FUSION_KERNEL" />
<Project label="PSP Project" profile="psp"
template="imx6" variable="PSP" />
</Info>
</Bsp>
<Group name="Application2">
<ComponentInstance name="POSIX Partition2"
ref="P0OSIX Partition">
<ParameterValue name="PARTNAME" value="Control" />
<ParameterValue name="PARTID" value="3" />
<VmitConfigurationTable>
<VmitConfiguration condition="true"
isReference="true">
<Partition
Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE VM_AB_PSP_RESET
VM_AB_PSP_CONSOLE VM_AB_HM_INJECT_OTHER
VM_AB_MEM_CREATE" CpuMask="-1"
Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="
20"
MaxPrio="62" MultiPartitionHMTableID="0" Name="$ (PARTNAME
)n
SchedChangeAction="VM_SCHED_CHANGE_IGNORE"
StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>
<FileAccessTable>
<FileAccess
AccessMode="VM_O_RD VM_O_MAP" FileName="rfs:
ov_server_manager2.conf" />
<FileAccess FileName="shm:MANAGER_SHAREDMEMORY"
AccessMode="VM_O_RD VM_O_WR VM_O_MAP">
</FileAccess>
<ComponentReference
ref="P0SIX Process2" />
</FileAccessTable>
<MemoryRequirementTable >
<ComponentReference
ref="P0SIX Process2" />
</MemoryRequirementTable >
<ProcessTable >
<ComponentReference
ref="P0SIX Process2" />
</ProcessTable>
<QueuingPortTable>
<QueuingPort Name="MANAGER_OUT"
MaxMessageCount="4294900000" MaxMessageSize="
4294900000" Direction="VM_PORT_SOURCE">
</QueuingPort>
<ComponentReference
ref="P0SIX Process2" />
</QueuingPortTable >
<SamplingPortTable>
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508 <ComponentReference

509 ref="P0SIX Process2" />

510 </SamplingPortTable>

511 <HMTable>

512 <DefaultSwitch>

513 <Default Action="P4_HM_PAC_IDLE"

514 Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />

515 </DefaultSwitch>

516 </HMTable >

517 </Partition>

518 </VmitConfiguration>

519 </VmitConfigurationTable>

520 </ComponentInstance>

521 <ComponentInstance name="POSIX Process2"

522 ref="P0OSIX Process">

523 <ParameterValue name="LWIP_CONFIG" value="true" />

524 <ParameterValue name="LWIP_TARGETIP_IF1"

525 value="134.130.125.61" />

526 <ParameterValue name="RAMSIZE" value="0x04000000" />

527 <ParameterValue name="FILE"

528 value="CUSTOM_POOL/ov_runtimeserver" />

529 <ParameterValue name="MUXA_ALL" value="true" />

530 <ParameterValue name="LWIP_GATEWAY_IF1"

531 value="192.168.0.11" />

532 <ParameterValue name="DESTNAME" value="Control" />

533 <AssignedDependencyTable>

534

535

536

537 <AssignedDependency cmp="imx_fec-vchan2"

538 provideId="channel" dependId="LWIP_DEVICE_IF1" />

539 <AssignedDependency cmp="muxa"

540 provideId="CHANNEL_03" dependId="IOFILE" />

541 </AssignedDependencyTable>

542 </ComponentInstance >

543 </Group>

544 <Group name="Application3">

545 <ComponentInstance name="POSIX Partition3"

546 ref="POSIX Partition">

547 <ParameterValue name="PARTNAME" value="MandO" />

548 <ParameterValue name="PARTID" value="4" />

549 <VmitConfigurationTable >

550 <VmitConfiguration condition="true"

551 isReference="true">

552 <Partition

553 Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE" CpuMask="-1"

554 Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="
20"

555 MaxPrio="62" MultiPartitionHMTableID="0" Name="$ (PARTNAME
)||

556 SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

557 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>

558 <FileAccessTable>

559 <FileAccess

560 AccessMode="VM_O_RD VM_O_MAP"
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FileName="rfs:ov_server_manager3.conf" />

<FileAccess FileName="shm:INTERFACE_SHAREDMEMORY"

AccessMode="VM_O_RD VM_O_WR">
</FileAccess>
<ComponentReference

ref="P0SIX Process3" />

</FileAccessTable>
<MemoryRequirementTable >
<ComponentReference

ref="P0OSIX Process3" />

</MemoryRequirementTable >
<ProcessTable>
<ComponentReference

ref="P0SIX Process3" />

</ProcessTable>
<QueuingPortTable>
<QueuingPort Name="MANAGER_IN"
MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_DESTINATION">

</QueuingPort >
<ComponentReference
ref="P0SIX Process3" />
</QueuingPortTable >
<SamplingPortTable>
<ComponentReference
ref="P0SIX Process3" />
</SamplingPortTable >
<HMTable>
<DefaultSwitch>
<Default Action="P4_HM_PAC_IDLE"
Code="0" Level="P4_HM_LEVEL_USER" Notify="0"
</DefaultSwitch>
</HMTable >
</Partition>
</VmitConfiguration>
</VmitConfigurationTable >
</ComponentInstance>
<ComponentInstance name="POSIX Process3"
ref="POSIX Process">
<ParameterValue name="LWIP_CONFIG" value="true" />
<ParameterValue name="LWIP_TARGETIP_IF1"
value="134.130.125.64" />
<ParameterValue name="RAMSIZE" value="0x04000000" />
<ParameterValue name="FILE"
value="CUSTOM_POOL/ov_runtimeserver" />
<ParameterValue name="MUXA_ALL" value="true" />
<ParameterValue name="LWIP_GATEWAY_IF1"
value="192.168.0.11" />
<ParameterValue name="DESTNAME" value="MandO" />
<ParameterValue name="POSIX_TUNE" value="false"/><
AssignedDependencyTable >
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<AssignedDependency cmp="muxa"
provideId="CHANNEL_07" dependId="IOFILE" /><
AssignedDependency
cmp="imx_fec-vchan3" provideId="channel"
dependId="LWIP_DEVICE_IF1" /></AssignedDependencyTable>
</ComponentInstance >
</Group>
<Group name="Application4d">
<ComponentInstance name="POSIX Partitiond"
ref="POSIX Partition">
<ParameterValue name="PARTNAME" value="Interface" />
<ParameterValue name="PARTID" value="5" />
<VmitConfigurationTable>
<VmitConfiguration condition="true"
isReference="true">
<Partition
Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE" CpuMask="-1"
Identifier="$ (PARTID)" MaxChildTaskCount="1" MaxFDCount="
20"
MaxPrio="62" MultiPartitionHMTableID="0" Name="$ (PARTNAME
)u
SchedChangeAction="VM_SCHED_CHANGE_IGNORE"
StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>
<FileAccessTable>
<FileAccess
AccessMode="VM_O_RD VM_O_MAP"
FileName="rfs:ov_server_manager4.conf" />
<ComponentReference
ref="P0SIX Process4" />
</FileAccessTable>
<MemoryRequirementTable >
<ComponentReference
ref="P0SIX Process4" />
</MemoryRequirementTable >
<ProcessTable>
<ComponentReference
ref="P0SIX Process4" />
</ProcessTable>
<QueuingPortTable >
<QueuingPort Name="MANAGER_IN"
MaxMessageCount="4294900000" MaxMessageSize="
4294900000" Direction="VM_PORT_DESTINATION">
</QueuingPort >
<ComponentReference
ref="P0SIX Process4" />
</QueuingPortTable >
<SamplingPortTable>

<ComponentReference
ref="P0SIX Process4" />
</SamplingPortTable>
<HMTable>
<DefaultSwitch>
<Default Action="P4_HM_PAC_IDLE"
Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />
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</DefaultSwitch>
</HMTable >
</Partition>
</VmitConfiguration>
</VmitConfigurationTable >
</ComponentInstance>
<ComponentInstance name="POSIX Process4"
ref="P0OSIX Process">
<ParameterValue name="LWIP_CONFIG" value="true" />
<ParameterValue name="LWIP_TARGETIP_IF1"
value="134.130.125.66" />
<ParameterValue name="RAMSIZE" value="0x04000000" />
<ParameterValue name="FILE"
value="CUSTOM_POOL/ov_runtimeserver" />
<ParameterValue name="MUXA_ALL" value="true" />
<ParameterValue name="LWIP_GATEWAY_IF1"
value="192.168.0.11" />
<ParameterValue name="DESTNAME" value="Interface" />
<AssignedDependencyTable >

<AssignedDependency cmp="imx_fec-vchand"
provideId="channel" dependId="LWIP_DEVICE_IF1" /><
AssignedDependency
cmp="muxa" provideId="CHANNEL_01" dependId="IOFILE" /></
AssignedDependencyTable >
</ComponentInstance >
</Group></ConfigurationDomainTable >
<Vmit >
<!--the master VMIT-->
<Configuration PartitionID="0"
Version="VM_VMIT_VERSION_CURRENT">
<ConnectionTable>
<PartitionChannelTable >
<Channel PortType="VM_PORT_QUEUING">
<DestinationPortRef PortName="MANAGER_IN"
PartitionID="5">
</DestinationPortRef >
<SourcePortRef PortName="INTERFACE_QUT" PartitionID="2"></
SourcePortRef ></Channel >
<Channel PortType="VM_PORT_QUEUING">
<DestinationPortRef PortName="CONTROL_IN"
PartitionID="2">
</DestinationPortRef >
<SourcePortRef PortName="MANAGER_OUT" PartitionID="3"></
SourcePortRef ></Channel >
<Channel PortType="VM_PORT_QUEUING">
<DestinationPortRef PortName="MANAGER_IN"
PartitionID="4">
</DestinationPortRef >
<SourcePortRef PortName="Mand0_OUT" PartitionID="2"></
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94

SourcePortRef ></Channel >

<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

ref="Pike0S Kernel" />
ref="System Software" />
ref="sabrelite-config" />
ref="imx6.psp" />
ref="PCI Manager" />
ref="Monitor Master" />
ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription"
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-portl" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-portd" />

ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchan0" />
ref="imx_fec-vchanl" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="POSIX Partition2" />
ref="POSIX Process2" />

/>

<ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="P0OSIX Process3"/><ComponentReference ref="imx_fec-
vchan4"/><ComponentReference ref="POSIX Partition4"/><
ComponentReference ref="POSIX Process4"/></
PartitionChannelTable>

<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

<ExtensionChannelTable>

ref="Pike0S Kernel" />
ref="System Software" />
ref="sabrelite-config" />
ref="imx6.psp" />
ref="PCI Manager" />
ref="Monitor Master" />
ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription"
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-portl" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-portd" />
ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchanO" />
ref="imx_fec-vchanl" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="P0SIX Partition2" />
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<ComponentReference ref="POSIX Process2" />

<ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="POSIX Process3"/><ComponentReference ref="imx_fec-
vchan4"/><ComponentReference ref="POSIX Partitiond"/><
ComponentReference ref="POSIX Process4"/></

ExtensionChannelTable >

<GateChannelTable >
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

ref="Pike0S Kernel" />
ref="System Software" />
ref="sabrelite-config" />
ref="imx6.psp" />
ref="PCI Manager" />
ref="Monitor Master" />
ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription"
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-porti" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-port4" />
ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchanO" />
ref="imx_fec-vchanl" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="P0SIX Partition2" />
ref="P0SIX Process2" />

/>

<ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="P0OSIX ProcessS"/><ComponentReference ref="imx_fec-
vchan4”/><ComponentReference ref="P0SIX Partitiond4"/><
ComponentReference ref="POSIX Process4"/></GateChannelTable

>
</ConnectionTable >
<PartitionTable>
<ComponentReference ref="POSIX Partition" />
<ComponentReference ref="service.partition" />
<ComponentReference ref="POSIX Partition2" />
<ComponentReference ref="POSIX Partition3" /><
ComponentReference
ref="P0OSIX Partition4" /></PartitionTable>
<ScheduleTable >
<ScheduleScheme Name="Schemel">
<WindowTable>
<Window Identifier="1" Start="0" Duration="60"
TimePartitionID="1" Flags="VM_SCF_PERIOD">
</Window >
<Window Identifier="2" Start="60" Duration="20"
TimePartitionID="2" Flags="VM_SCF_PERIOD">
</Window >
<Window Identifier="3" Start="80" Duration="20"
TimePartitionID="3" Flags="VM_SCF_PERIOD">
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</Window>

<Window Identifier="4"
TimePartitionID="4"

</Window></WindowTable

Start="100" Duration="20"
Flags="VM_SCF_PERIOD">
></ScheduleScheme >

<ScheduleScheme Name="Scheme2">

<WindowTable >

<Window Identifier="1"
TimePartitionID="1"

</Window>

<Window Identifier="2"
TimePartitionID="2"

</Window >

<Window Identifier="3"
TimePartitionID="3"

</Window >

<Window Identifier="4"
TimePartitionID="1"

Start="40" Duration="30"
Flags="VM_SCF_PERIOD">

Start="70" Duration="40"
Flags="VM_SCF_PERIOD">

Start="0" Duration="40"
Flags="VM_SCF_PERIOD">

Start="110" Duration="10"
Flags="VM_SCF_PERIOD">

</Window></WindowTable ></ScheduleScheme >

<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

ref="Pike0S Kernel" />
ref="System Software" />
ref="sabrelite-config" />
ref="imx6.psp" />
ref="PCI Manager" />
ref="Monitor Master" />
ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription" />
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-portl" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-port4" />
ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchanO" />
ref="imx_fec-vchanl" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="P0SIX Partition2" />
ref="POSIX Process2" />

<ComponentReference ref="POSIX Partition3"/><ComponentReference
ref="P0OSIX ProcessS"/><ComponentReference ref="imx_fec-vchan4
"/><ComponentReference ref="POSIX Partitiond"/><
ComponentReference ref="POSIX Process4"/></ScheduleTable>
<SharedMemoryTable >
<MemoryRequirement Name="MANAGER_SHAREDMEMORY"

Size="0x00001000

Alignment="-1" PhysicalAddress="-1" Contiguous="false"
IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="
VM_MEM_CACHE_CB"
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC">
</MemoryRequirement >
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<MemoryRequirement Name="MandO_SHAREDMEMORY" Size="0x00001000"
Alignment="-1" PhysicalAddress="-1" Contiguous="false"
IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="
VM_MEM_CACHE_CB"
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC">
</MemoryRequirement >
<MemoryRequirement Name="INTERFACE_SHAREDMEMORY" Size="0
x00001000"
Alignment="-1" PhysicalAddress="-1" Contiguous="false"
IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="
VM_MEM_CACHE_CB"
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC">
</MemoryRequirement >
<ComponentReference ref="POSIX Process" />
<ComponentReference ref="Pike0S Kernel" />
<ComponentReference ref="System Software" />
<ComponentReference ref="sabrelite-config" />
<ComponentReference ref="imx6.psp" />
<ComponentReference ref="PCI Manager" />

<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

ref="Monitor Master"

/>

ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription" />
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-portl" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-port4" />
ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchanO" />
ref="imx_fec-vchani" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="POSIX Partition2" />

ref="POSIX Process2"

/>

<ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="P0OSIX ProcessS"/><ComponentReference ref="imx_fec-vchan4
"/><ComponentReference ref="POSIX Partitiond"/><
ComponentReference ref="POSIX Process4"/></SharedMemoryTable>

<SystemExtensionTable >

<FileProviderTable />

<GateProviderTable>
<ComponentReference ref="PCI Manager" />
<ComponentReference ref="Monitor Master" />
<ComponentReference ref="Monitor PSSW" />
<ComponentReference ref="Monitor APEX" />
<ComponentReference ref="HM Event Subscription" />
<ComponentReference ref="Standard Console" />
<ComponentReference ref="iMX Clock Manager" />

</GateProviderTable >

97

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186275080

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

965

966
967

A Anhang

<PortProviderTable />
</SystemExtensionTable>
<ModuleHMTable >
<DefaultSwitch>
<Default Action="P4_HM_MAC_SHUTDOWN" Notify="0" />
</DefaultSwitch>
</ModuleHMTable >
<MultiPartitionHMTable >
<Table Identifier="0" Name="Default">
<DefaultSwitch>
<Default Action="P4_HM_MAC_SHUTDOWN"
Level="P4_HM_LEVEL_PARTITION" Notify="O0" />
</DefaultSwitch>
</Table>
</MultiPartitionHMTable >
</Configuration>
</Vmit>

<Romimage >
<properties>
<prop_dir name="app/Manager/Manager">
<prop_dir name="args">
<prop_string name="argvl" data="-c" />
<prop_string name="argv2"
data="/rfs/ov_server_manager.conf" />
<prop_uint32 name="numargs" data="2" />
</prop_dir>
</prop_dir>
<prop_dir name="app/Control/Control">

<prop_dir name="args">
<prop_string name="argvl" data="-c" />
<prop_string name="argv2"
data="/rfs/ov_server_manager2.conf" />
<prop_uint32 name="numargs" data="2" />
</prop_dir>
</prop_dir>

<prop_dir name="app/Interface/Interface">
<prop_dir name="args">
<prop_string name="argvl" data="-c" />
<prop_string name="argv2"
data="/rfs/ov_server_manager4.conf" />
<prop_uint32 name="numargs" data="2" />
</prop_dir>
</prop_dir>
<prop_dir name="app/Mand0/Mand0">
<prop_dir name="args">

<prop_string name="argvl" data="-c" />
<prop_string name="argv2" data="/rfs/ov_server_managerS
/><prop_uint32
name="numargs" data="2" /></prop_dir></prop_dir></
properties>
<files>
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<file name="ov_server_manager.conf" resource="/cygdrive/f/SYSGO/
P0SIX4/P00L/ov_server_manager.conf" /><file
name="ov_server_manager2.conf" resource="/cygdrive/f/SYSGO/POSIX4
/POOL/ov_server_manager2.conf" /><file
name="ov_server_manager2.conf" resource="/cygdrive/f/SYSGO/
POSIX4/P0O0L/ov_server_manager2.conf" /><file
name="ov_server_manager3.conf" resource="/cygdrive/f/SYSGO/
POSIX4/P0O0L/ov_server_manager.conf" /><file
name="ov_server_manager4.conf" resource="/cygdrive/f/SYSGO/
POSIX4/P00L/ov_server_manager.conf" /></files></Romimage>
<DefinitionTable >
<Definition filename="build/fusion-integration-parameters.cmp"
name="Compilation Parameters" path_id="PIKEOS_POOL" />
<Definition filename="partition/service_partition.cmp"
name="service.partition" path_id="PIKEOS_POOL" />
<Definition filename="driver/misc/monitor.cmp“ name="monitor"
path_id="PIKEOS_POOL" />
<Definition filename="driver/misc/traceserver.cmp"
name="traceserver" path_id="PIKEOS_POOL" />
<Definition filename="driver/misc/muxa.cmp" name="muxa"
path_id="PIKEOS_POOL" />
<Definition filename="posix/posix_partition_default.cmp"
name="POSIX Partition" path_id="PIKEOS_POOL" />
<Definition filename="posix/posix_process_default.cmp"
name="P0OSIX Process" path_id="PIKEOS_POOL" />
<Definition filename="kerne1/kerne1.cmp” name="Pike0S Kernel"
path_id="PIKEOS_POOL" />
<Definition filename="pssw/pssw.cmp" name="generic-pssw"
path_id="PIKEOS_POOL" />
<Definition filename="board/imx6/imx6q_sabrelite-config.cmp
name="sabrelite-config" path_id="PIKEOS_POOL" />
<Definition filename="psp/imx6.psp.cmp" name="imx6.psp"
path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/pci_manager.cmp"
name="PCI Manager KDEV" path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/imon/imon-master. cmp"
name="imon-master" path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/imon/imon-ssw.cmp"
name="imon-ssw" path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/imon/imon-apex.cmp"
name="imon-apex" path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/hmev.cmp" name="hmev"
path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/stdcon.cmp“
name="Standard Console" path_id="PIKEOS_POOL" />
<Definition
filename="driver/serial/imx_uart/imx_uart-fp_ext.cmp
name="imx_uart-fp_ext" path_id="PIKEOS_POOL" />
<Definition
filename="driver/serial/imx_uart/imx_uart-device.cmp"
name="imx_uart-device" path_id="PIKEOS_POOL" />
<Definition
filename="driver/ethernet/imx_fec/imx_fec-fp_ext.cmp"
name="imx_fec-fp_ext" path_id="PIKEOS_POOL" />
<Definition
filename="driver/ethernet/imx_fec/imx_fec-device.cmp
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name="imx_fec-device" path_id="PIKEOS_POOL" />

<Definition filename="driver/config/hlnet/hlnet-vchan.cmp"
name="hlnet-vchan" path_id="PIKEOS_POOL" />

<Definition
filename="driver/clock/imx_clk/imx_clk-prov_kdev.cmp"
name="1i.MX Clock Manager" path_id="PIKEOS_POOL" />

</DefinitionTable>
</Integration>
</Project>
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Nach der Konfiguration der Partitionen wird eine Binary erzeugt, die iiber Ethernet auf
das Board iibertragen wird.

=> dhcp 134.130.125.53:Control-Software

DHCP client bound to address 134.130.125.64 (1007 ms)

Using FEC device

TFTP from server 134.130.125.53; our IP address is 134.130.125.64
Filename ’test’.

Load address: 0x12000000

Loading: R R

SRR B L D S R R L R S R L S B R s S
B G G S S S 2
B S S e s

HEH HE
B S s s s S s s s s s s s

T,

B S S g S S S s S s s s
S e e e e e e e
B S S s s s
S
46.9 KiB/s
done
Bytes transferred = 10615003 (alf8db hex)
=> bootm
## Booting kernel from Legacy Image at 12000000 ...
Image Name: PikeOS Boot Image
Image Type:  ARM Linux Kernel Image (gzip compressed)
Data Size: 10614939 Bytes = 10.1 MiB
Load Address: 10020000
Entry Point: 10020000
Verifying Checksum ... OK
Uncompressing Kernel Image ... OK

Starting kernel ...

P4 kernel will start ...
PikeOS (C) Copyright SYSGO AG, Germany
ROM image build: devel-@Achernar-090821-09:24
Kernel build: 4.2-1784, type: noassert tracesys smp v7
ASP: "arm_v7hf" ARM v7, endian: little, VFP: d0-31
PSP build: 4.2-246
PSP: "imx6x" Freescale i.MX 6 (SMP - L2C)
Features: RETAIL TRACER-SYSCALL OPT SMP(4/32)
Configuration limits:

respart: 63

task: 256
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thread: 511
timepart: 63
priority: 256
kprio: 32

interrupts: 1024

TP windows: 256

thr sstack: 4096 B
Resource partition O kernel memory refill strategy: dynamic (on demand)
Time stamp counter clock: 1000000 kHz, via system call
System ticker: periodic mode, resolution 10000000 ns
Time partition switch: 10000000 ns, watchdog timeout: 10000000 ns
Time partition synchronization: default
Free memory: 1011256 KiB
Pike0S PCI Manager KDEV, Build: 4.2-186
PCIMGR: message: PSP returned empty PCI device list
PSSW +Ext. FPs +Messages (Production), Build: 4.2-3668
PIKEOS_MON: Started, version: 4.2-325
Trace Server: version: 4.2-25
imx_uart: Provider "serQO" started, Build: 4.2-87 Production
MUXA: Version: 4.2-289
<DRV INFO> ethO: fec_mii_info: FEC: PHY identify @ 0x7 = 0x00221611
<DRV INFO> ethO: Registered MAC address(02:70:34:03:a9:88) for channel
<DRV INFO> ethO: Registered MAC address(06:70:34:03:a9:88) for channel
<DRV INFO> ethO: Registered MAC address(0a:70:34:03:a9:88) for channel
<DRV INFO> ethO: Registered MAC address(0e:70:34:03:29:88) for channel
<DRV INFO> ethO: Registered MAC address(12:70:34:03:29:88) for channel
imx_fec: Provider "ethO" started, Build: 4.2-82 Production
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