REIHE 08
MESS-,
STEUERUNGS-

UND REGELUNGS-

TECHNIK

<

NR. 1275

BAND
11

VOLUME
11

Fortschritt-
Berichte VDI

Mahyar Azarmipour, M. Sc.,
Aachen

Virtualisierung prozess-
naher Steuerungen in der
Prozessautomatisierung

https://doi.org/10.51202/9783186275080

216.73.216.36, am 20.01.2026, 13:12:05. ©
m

tar

mit, fir oder In KI-

https://doi.org/10.51202/9783186275080

Virtualisierung prozessnaher Steuerungen in
der Prozessautomatisierung

Von der Fakultat fiir Georessourcen und Materialtechnik der
Rheinisch-Westfalischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
genehmigte Dissertation

vorgelegt von

Mahyar Azarmipour, M. Sc.

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr.-Ing. Stefan Kowalewski
Univ.-Prof. Dr.-Ing. Tobias Kleinert

Tag der miindlichen Priifung: 25.01.2022

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

216.73.216.36, am 20.01.2026, 13:12:05. ©
m

tar

mit, fir oder In KI-

https://doi.org/10.51202/9783186275080

REIHE 08 .
Fortschritt-
STEUERUNGS- .
werenes Bearichte VDI
a Mahyar Azarmipour, M. Sc.,
Aachen
NR. 1275 Virtualisierung prozess-
naher Steuerungen in der
Prozessautomatisierung
BAND
I
s m Lehrstuhl for
Prozessleittechnik
VOLUME

11

AACHENTER der RWTH Aachen

https://doi.org/10.51202/9783186275080

Azarmipour, Mahyar

Virtualisierung prozessnaher Steuerungen in der Prozessautomatisierung
Fortschritt-Berichte VDI, Reihe 08, Nr. 1275. Dusseldorf: VDI Verlag 2022.

126 Seiten, 62 Bilder, 4 Tabellen.

ISBN 978-3-18-527508-1, E-ISBN 978-3-18-627508-0, ISSN 0178-9546

48,00 EUR/VDI-Mitgliederpreis: 43,20 EUR

Fiir die Dokumentation: Virtualisierung - Speicherprogrammierbare Steuerung - Informationsdiode -
Industrie 4.0 - Dynamisches Deployment - Automatisierungstechnik - IT/OT-Konvergenz

Keywords: Virtualization - Programmable logic controller - Information diode - Industry 4.0 - Dynamic
deployment - Automation - IT/OT-Convergence

Die vorliegende Arbeit wendet sich an Ingenieur*innen und Wissenschaftler*innen aus der Prozessautomatisie-
rung. Ziel dieser Arbeit ist ein Architekturentwurf fur die Steuerungsgerate der prozessnahen Komponenten, um
diese mit einer hoheren Vernetzung und Wandelbarkeit auszustatten. Die Architektur setzt Hypervisor-Virtualisie-
rung ein, um eine Trennung der Anwendungen mit unterschiedlichen Anforderungen auf der gleichen Hardware
zu ermdglichen. Die Anwendungen werden in vorkonfigurierten Partitionen gekapselt und betrieben. Um die
Modularisierung der Anwendungen zu erhéhen, werden Container als zusétzliche Virtualisierungskomponenten
eingesetzt. FUr die Verwaltung der gesamten Komponentenhierarchie ist ein Verwaltungssystem vorgesehen, das
die erforderlichen Dienste zur Komponentenverwaltung zur Verfligung stellt.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek (German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

D82 (Diss. RWTH Aachen University, 2022)

© VDI Verlag GmbH | Diisseldorf 2022

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Ubersetzung,
vorbehalten. Als Manuskript gedruckt. Printed in Germany.

ISBN 978-3-18-527508-1, E-ISBN 978-3-18-627508-0, ISSN 0178-9546

Il 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Vorwort

Die vorliegende Arbeit ist wihrend meiner Tétigkeit als wissenschaftlicher Mitarbeiter am
Lehrstuhl fiir Prozessleittechnik der RWTH Aachen University entstanden. An dieser Stel-
le mochte ich mich herzlich fiir die Unterstiitzung und die ermoglichten Chancen bedanken.

An erster Stelle gilt mein grofier Dank Herrn Prof. Dr.-Ing. Ulrich Epple fiir die
Unterstiitzung meines Promotionsvorhabens. Die angenehme und konstruktive Arbeitsat-
mosphére sowie der ausgezeichnete fachliche Austausch mit ihm haben zum erfolgreichen
Abschluss meiner Arbeit beigetragen.

Bei Herrn Prof. Dr.-Ing. Stefan Kowalewski, Inhaber des Lehrstuhls Informatik 11
— Embedded Software an der RWTH Aachen University, méchte ich mich fir die
Ubernahme der Rolle des Zweitgutachters bedanken.

Ich bedanke mich bei Herrn Prof. Dr.-Ing. Tobias Kleinert fiir seine Unterstiitzung
und die Fachdiskussionen, welche ebenfalls zum Gelingen der Arbeit beigetragen haben.

Ich danke meinen Kollegen und den studentischen Hilfskréften fiir die gute Zusam-
menarbeit und die interessanten Gespriache. Besonders hervorheben mdochte ich (in
alphabetischer Reihenfolge) Haitham Elfaham, Julian Grothoff, Daniel Jakob, Lars
Nothdurft und Christian von Trotha. Bei Frau Milescu bedanke ich mich fiir die gute
Zusammenarbeit und organisatorische Hilfe.

Ein weiterer Dank gilt Afrooz Nazari fiir die Unterstiitzung und Motivation in den
vergangenen Jahren.

Besonderer Dank gilt auch meinen Eltern und meiner Schwester fiir die Unterstiitzung
wihrend meiner gesamten Promotionszeit.

Warstein, im Mérz 2022 Mahyar Azarmipour

111

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Vorwort

Wissenschaft: Es ist nicht ihr Ziel, der unendlichen Weisheit eine Tiir zu
offnen, sondern eine Grenze zu setzen dem unendlichen Irrtum.

Bertolt Brecht

v

/e 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Inhaltsverzeichnis

Vorwort 1]
List of Symbols Vil
Kurzfassung IX
Abstract X1
1 Einleitung 1
1.1 Motivation 1
1.2 Zielsetzung 2
1.3 Struktur dieser Arbeito o oo 3
2 Grundlage und Stand der Technik 5
2.1 Virtualisierungo 5
2.1.1 Virtualisierungstypen L oL 5
2.1.2 Virtualisierung mit Hypervisoren 6
2.1.3 Virtualisierung mit Mikrokernels 7
2.1.4 Hypervisor und Mikrokernel-Technologien 8
2.2 Container-Technologien 11
2.2.1 Virtualisierungsanwendungen in anderen industriellen Doménen . . 13
2.2.2 Virtualisierung in der Luftfahrt 15
2.2.3 Industrielle Automatisierung 15
2.3 NAMUR Open Architecture 16
2.4 Speicherprogrammierbare Steuerungen L 17
2.4.1 Programmierung 17
2.4.2 Entwicklung der speicherprogrammierbaren Steuerungen 18
2.4.3 Neue Architekturen fiir speicherprogrammierbare Steuerungen . . . 19
2.5 Digitale Zwillinge und Verwaltungsschalen 21
2.5.1 Digitaler Zwilling als Validierungskomponente 22
2.5.2 Digitaler Zwilling fiir Beobachtung und Optimierung 23
2.6 Laufzeitumgebungen oL 23
2.6.1 Industrie-PCs und eingebettete Systeme 25
2.6.2 Betriebsmittel und MaBnahmenmodell 25
3 Anforderung an zukiinftige Automatisierungssysteme 27
3.1 Anforderungen 27

3.2 Leistungsfihige Ubertragung von Feld- und Automatisierungsdaten an
iiberlagerte Anwendungeno 27
3.3 Prozesshegleitende Optimierung und Uberwachung 28
\Y%

216.73.216.36, am 20.01.2026, 13:12:05. © Inhalt.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Inhaltsverzeichnis

3.4 Effiziente interne Kommunikationo 0000 29

3.5 Lokale Komponentenverwaltung 29

3.6 Dynamisches Komponentenmanagement 31

3.7 Explizite Verwaltung und Sicherstellung von QoS-Eigenschaften 31

4 Konzept 33

4.1 Allgemeine Architekturo 33

4.2 Komponentenhierarchie. L. 33

4.2.1 Kommunikation zwischen den Partitionen 34

4.3 Systempartitionen oo oL 36

4.3.1 Verwaltungssystem oo oo 37

4.3.2 Interface 38

4.4 Verwaltungsdienste L o 39

4.4.1 Interne Kommunikationsdienste 39

4.4.2 Externe Kommunikationsdienste 40

4.4.3 Konfigurationsdienste oL 41

4.4.4 Ressourcenverwaltungo 42

4.4.5 Komponentenverwaltungsdienste 44

4.5 Anwendungspartitionen 46

4.6 Evaluation anhand der Anforderungen an die Architektur 47

5 Anwendungsszenarien in der Automatisierungstechnik 50

5.1 Architektur der Automatisierungspyramide 50

5.2 Beispielhafte Anwendungspartitionen 50

5.2.1 Control-Partition L 50

522 O&M-Partition 53

6 Implementierung fiir eine Kaltwalzanlage 54

6.1 Logistik 54

6.2 SMS-Demonstrator 55

6.3 Aufbau. 57

6.4 Verification of Request 57

6.4.1 Evaluation des VoR-Konzepts 60

7 Validierung des Konzepts 65

7.1 Eingesetzte Technologien L. 65

7.1.1 Portierung von ACPLT/RTE und PikeOS 65

7.2 Prozessfihrung 66
7.2.1 Laufzeitanalyse in virtualisierten und nicht virtualisierten Umgebun-

S 70

7.2.2 Kommunikation 70

7.2.3 Verwaltungssystem 73

8 Fazit 77

A Anhang 80

Literatur 103

VI
216.73.216.36, am 20.01.2026, 13:12:05. © Inhalt.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

List of Symbols

ASIL Automotive Safety Integrity Level
AUTOSAR AUTomotive Open System ARchitecture
CFC Continuous Function Charts

CPC Core Process Control

CPU Central Processing Unit

CPS Cyber Physical Systems

SFC Sequential Function Chart

DT Digital Twin

ESE Einzelsteuereinheiten

ECU Electronic Control Units

ERP Enterprise Resource Planning
EAL Evaluation Assurance Levels

FS File System

FB Funktionsbaustein

FIFO First In First Out

GSE Gruppensteuereinheiten

HMI Human Machine Interface

140 Industrie 4.0

IC Industrial Internet Consortium

loT Internet of Things

IP Internet Protocol

IT Informationstechnik

IACS Industrial Automation and Control System

IPC Industrie-PC

216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, fir oder In KI-

VII

https://doi.org/10.51202/9783186275080

List of Symbols

KAS komponentenbasierte Architektur fiir Automatisierungssysteme
LWIP Light Weight Internet Protocol

M40 Monitoring and Optimization

MMU Memory Management Unit

MES Manufacturing Execution System

NOA NAMUR Open Architecture

OT Operational Technology

OPC UA Open Platform Communications Unified Architecture
00 Object Oriented

OS Betriebssystem

POSIX Portable Operating System Interface
PNK Prozessnahe Komponente

QoS Quality of Service

RTOS Real Time Operating System

ROM Read Only Memory

SSC Sequential State Charts

SFC Sequential Function Charts

SAP Service Access Points

SIL Safety Integrity Level

SPS Speicherprogrammierbare Steuerung

SOA Service Oriented Architecture

SCADA Supervisory control and data acquisition
TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtuelle Maschine

VMM Virtual Machine Monitor

VoR Verification of Request

VIII

216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Kurzfassung

Industrie 4.0 ist ein neues Paradigma, das eine zentrale Rolle in der Entwicklung der
zukiinftigen Automatisierungssysteme spielt. Die neue Generation der industriellen Au-
tomatisierungstechnik zielt auf die Erhthung der Wandelbarkeit der Automatisierungssy-
steme ab. Dabei ist die Vernetzung und die Kooperation mit der IT-Welt eine wichtige
Voraussetzung, um die angeforderte Wandelbarkeit zu erreichen. Daher miissen neue Ar-
chitekturen und Losungen eingesetzt werden, um eine Kooperation zwischen den Automa-
tisierungssystemen und der I'T zu realisieren. Ziel dieser Arbeit ist ein Architekturentwurf
fiir die Steuerungsgerite der prozessnahen Komponenten, um diese mit einer hoheren Ver-
netzung und Wandelbarkeit auszustatten. Die Hauptanforderungen, welche von der Archi-
tektur erfiillt werden, sind:

e Der parallele Betrieb von Anwendungen unterschiedlicher Kritikalitéit

e Das dynamische Deployment von neuen Anwendungen zur Laufzeit

Die Realisierung eines sicheren Gateways fiir die Kommunikation zwischen Systemen
der Automatisierungsebene und iibergeordneten I'T-Systemen

e Die offene Kommunikation mit der I'T-Welt
e Die Realisierung eines lokalen Software- und Zugriffsverwaltungssystems

Die vorgeschlagene Architektur besteht aus einem Mehrebenen-Komponentenmodell und
wird als komponentenbasierte Architektur fiir Automatisierungssysteme (KAS) bezeich-
net. Die unterste Ebene der KAS-Architektur ist die Ebene der Partitionen. Die KAS-
Architektur setzt Hypervisor-Virtualisierung ein, um eine Trennung der Anwendungen
mit unterschiedlichen Anforderungen auf der gleichen Hardware zu ermdoglichen. Die An-
wendungen werden in vorkonfigurierten Partitionen gekapselt und betrieben. Um die Mo-
dularisierung der Anwendungen zu erhchen werden Container als zusétzliche Virtuali-
sierungskomponenten eingesetzt. Containertechnologien ermoglichen die Kapselung und
Verwaltung der Anwendungen in unterschiedlichen Containern innerhalb einer Partition.
Dadurch kénnen beispielsweise unterschiedliche Versionen der Anwendungen in einer Par-
tition verwaltet werden. Die Container bilden die zweite Komponentenebene in der KAS-
Architektur. Die letzte Komponentenebene stellt die Kapselung in die Funktionsbausteine
dar. Fiir die Verwaltung der gesamten Komponentenhierarchie ist in der KAS-Architektur
ein Verwaltungssystem vorgesehen, das die erforderlichen Dienste zur Komponentenver-
waltung zur Verfiigung stellt. Das Verwaltungssystem ist eine Systemfunktionalitit der
KAS-Architektur und in einer eigenen Partition gekapselt. Eine weitere Systemfunktion
der KAS-Architektur ist das Interface. Dieses wird ebenfalls in einer eigenen Partition ge-
kapselt. Diese Interface-Partition ist die einzige Partition, die mit externen Komponenten
auBlerhalb der Kernautomatisierung kommunizieren darf. In der Arbeit werden fiir die Va-
lidierung der KAS-Architektur beispielhaft Anwendungspartitionen fiir die Prozessfithrung

IX

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Kurzfassung

und die Simulation entwickelt. Mit Hilfe dieser Anwendungen kénnen realistische Szenarien
der Automatisierungsebene prototypisch implementiert und getestet werden. Die Ergeb-
nisse zeigen, dass die KAS-Architektur eine leistungsfihige und iibersichtlich verwaltbare
Systemumgebung darstellt, um fiir neue Anforderungen eine hohe Flexibilitét zu bieten,
sowie der durchgéingigen Interoperabilitdt der Automatisierungsebene zu geniigen, ohne
die Integritat der Kernautomation zu gefihrden.

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Abstract

Industry 4.0 is a new paradigm that plays a central role in the development of future
automation systems. The new generation of industrial automation aims to increase the
agility of the automation system. In this context, cooperation with the IT world is an
important prerequisite to achieve the requested agility. Therefore, new architectures and
solutions have to be developed to realize a cooperation between the automation systems
and the IT. The goal of this work is an architecture design for the control devices in order
to provide them with a higher level of connectivity and agility. The main features, which
are fulfilled by the architecture, are:

e The parallel operation of applications of different criticality

e The dynamic deployment of new applications at runtime

The realization of a secure gateway for communication between automation level
systems and higher level I'T systems

The open communication with the I'T world
e The realization of a local software and access management system

The proposed architecture consists of a multi-level component model and is referred to as a
component-based architecture for automation systems (KAS). The lowest level of the KAS
architecture is the partition level. The KAS architecture employs hypervisor virtualization
to enable separation of applications with different requirements on the same hardware. Ap-
plications are encapsulated in preconfigured partitions. Containers are used as additional
virtualization components to increase modularization of applications. Container techno-
logies enable the encapsulation and management of applications in different containers
within a partition. This means, for example, that different versions of the applications
can be managed in one partition. The containers are the second component level in the
KAS architecture. The last component level represents the encapsulation in the function
blocks. For the management of the entire component hierarchy in the KAS architecture
a management system is developed. The management system is a system functionality of
the KAS architecture and is encapsulated in its own partition. Another system function of
the KAS architecture is the interface. This is also encapsulated in its own partition. The
interface partition is the only partition that is allowed to communicate with outside of
the core automation domain. In this work, application partitions for process control and
simulation are developed as examples for the validation of the KAS architecture. These
applications can be used for a prototype implementation of automation level scenarios. The
results show that the KAS architecture provides a powerful and clearly manageable system
environment to meet the new requirements for agility as well as continuous interoperability
of the automation level without compromising the integrity of the core automation.

XI

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

216.73.216.36, am 20.01.2026, 13:12:05. ©
m

tar

mit, fir oder In KI-

https://doi.org/10.51202/9783186275080

1 Einleitung

Der zunehmende Bedarf nach agilen und dynamischen Produktionssystemen, im Kontext
von neuen Paradigmen wie Industrie 4.0 (I140) oder Industrial Internet Consortium (IIC),
ruft die Anforderung nach neuen Technologien und Informationsmodellen [56], [55] hervor.
Internet of Things (IoT) [116], Cyber Physical Systems (CPS) [48], Cloud Computing [84]
und Verwaltungsschale [28] sind einige Beispiele fiir diese neuen Technologien und Infor-
mationsmodelle. Sie werden entwickelt, um die Vernetzung, die Wandelbarkeit und den
Optimierungsgrad von Produktionssystemen durch das Vorantreiben der Digitalisierung
zu erhohen. Die Digitalisierung der Produktion definiert neue Aufgaben und Funktionen
fiir die Komponenten der Automatisierungspyramide. Diese Komponenten miissen wieder-
um hinsichtlich Hardware- und Software-Aspekten modifiziert werden, um den genannten
Anforderungen gerecht zu werden. Prozessnahe Komponenten sind eine dieser Kompo-
nenten, die neue Funktionalitdten bereitstellen und neue Aufgaben und Anforderungen
erfiilllen miissen, um die Wandelbarkeit des Produktionssystems zu erhchen. Die in dieser
Arbeit vorgeschlagene Architektur zielt darauf ab, die Steuerungsgeréte der prozessnahen
Komponenten mit neuen Funktionen auszustatten, um sie an die Anforderungen durch die
zunehmende Prozessdigitalisierung anzupassen. Diese Funktionen miissen eine verbesserte
Zusammenarbeit zwischen der industriellen Automatisierung und der Informationstechnik
(IT) (z. B. Optimierungsfunktionen und Machine-Learning-Applikationen) erméglichen.
Die klassischen Aufgaben eines Automatisierungssystems (Prozessfiihrung) miissen jedoch
neben den neuen Funktionen weiterhin erfiillt werden. Dariiber hinaus darf das Zusammen-
spiel von Industrieautomation und IT die Integritéat des industriellen Automatisierungssy-
stems in keiner Weise beeintréchtigen.

1.1 Motivation

140 strebt eine Forderung der Digitalisierung der Automatisierungssysteme an [102]. Dies
erfordert neue Technologien, die entweder in der Automatisierungstechnik entwickelt oder
aus der IT-Doméne in die Automatisierungsdoméne integriert werden miissen. Die Kon-
vergenz von IT und Operational Technology (OT) verfolgt in diesem Zusammenhang ein
dhnliches Ziel [73]. Einige Beispiele fiir IT-Technologien, die zur Erhéhung des Optimie-
rungsgrades und der Wandelbarkeit der industriellen Automatisierung eingesetzt werden,
sind IoT, Cloud Computing, CPS. [103]. Diese Technologien spielen eine entscheidende
Rolle fiir die Vernetzung, den Informationsaustausch, die Datenspeicherung usw. Eine der
Hauptanforderungen im Zusammenhang mit 140 ist die Agilitdt (Wandelbarkeit). Agilitét
beschreibt die Fihigkeit eines Systems, sich auf ungeplante Verdnderungen anzupassen
[88]. Diese Verinderungen kénnen beispielsweise hinsichtlich der Produktionsmenge, der
Topologie und der Produkteigenschaften auftreten [105].

Die Erfiillung einer agilen Produktion erfordert Anpassungen und Neukonfigurationen in
verschiedenen Doménen und Ebenen der Automatisierungspyramide. Diese Modifikationen

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

1 Einleitung

betreffen sowohl Software-, als auch Hardware-Aspekte. Ein Beispiel fiir Modifikationen in
der Infrastruktur sind die aktuellen Entwicklungen im Bereich der Sensoren und Mess-
geriite, die als ,,Sensoren 4.0% oder ,intelligente Sensoren® bezeichnet werden [90]. Zur
Realisierung dieser neuen Feldfunktionen ist eine direkte Verkniipfung der Sensoren mit
IT-Instandhaltungsfunktionen, der Geréteverwaltung und den Datenanalysefunktionen er-
forderlich. Im Zentrum der Entwicklung steht jedoch die Anpassung der Steuerungsgerite.
Sie sind fiir die operative Prozessfiihrung verantwortlich und verkniipfen die Feldebene mit
dem Rest der Welt. Die Modifikation von Steuerungsgeriten ist das Thema verschiedener
Forschungen in der industriellen Automatisierung. Diese Modifikationen zielen darauf ab,
Steuerungsgerite zu entwerfen, die interaktiver mit I'T-Technologien arbeiten kénnen und
neue Funktionalititen wie z. B. die Integration von Optimierungs- und Managementfunk-
tionen, Kommunikation mit externen Datenanalysesystemen, dynamisches Deployment
und Selfx-Technologien anbieten [62].

Deployment erméglicht die Installation neuer Softwarekomponenten von einer dezentra-
len Plattform aus. Auf diese Weise kann das Produktionssystem durch die Nutzung der
flexiblen Automatisierungsplattformen dynamischer agieren. Einer der Hauptaspekte, der
bei der hohen Vernetzung und der Kommunikation mit der IT-Welt beriicksichtigt werden
muss, ist die Integritét der Kernautomation. Die derzeitigen Automatisierungssysteme bie-
ten ein hohes Mafl an Verfiigharkeit und Integritéit, sind aber begrenzt miteinander und
im Wesentlichen nur untereinander vernetzt. Im Gegensatz zu den heutigen Automatisie-
rungssystemen miissen die zukiinftigen Automatisierungssysteme in einer mit der I'T-Welt
hoch vernetzten Umgebung agieren. Dies ermdoglicht eine Vielzahl neuer Funktionen und
Geschéftsprozesse. Die hohe Vernetzung darf die Verfiigbarkeit oder Integritit des Au-
tomatisierungssystems nicht gefdhrden. Ziel der Entwicklungen sind neue Architekturen,
welche die Vorteile heutiger und zukiinftiger Automatisierungssysteme kombinieren.

1.2 Zielsetzung

In dieser Arbeit werden die neuen Anforderungen an Steuerungssysteme im Zuge der Di-
gitalisierung erortert und eine Architektur zur Erfiillung dieser Anforderungen vorgestellt.
Die wichtigsten Anforderungen und Aufgaben, die von zukiinftigen Steuerungssystemen
erfiillt werden miissen, sind:

e die offene Kommunikation mit der IT-Welt
e die Einbindung von Cloud-Mechanismen
e das dynamische Deployment

e das Ermoglichen eines sicheren und leistungsfihigen Datenkanals aus der Feld- und
Automatisierungsebene in die iibergeordneten IT-Systeme

e Integration der operativen Funktionen aus der MES-Ebene

e der parallele Betrieb von Applikationen unterschiedlicher Kritikalitéat sowie neue Ap-
plikationen, die im Vorfeld nicht vorgesehen waren, auf derselben Hardware

o die Realisierung eines lokalen Software- und Zugriffsverwaltungssystems

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

1.3 Struktur dieser Arbeit

e die Realisierung einer Software-Abstraktion zur einfacheren Skalierbarkeit und zur
Verringerung der Abhéngigkeit von spezieller Software und Hardware

Abb. 1.1 zeigt eine generische Architektur fiir zukiinftige Steuerungssysteme. Um die ge-
nannten Anforderungen zu erfiillen wird ein neues Systemkonzept vorgestellt, das durch
seine Architektur die beschriebenen Anforderungen grundsétzlich unterstiitzt. Die vorge-
schlagene Architektur in dieser Arbeit bietet eine Trennung der Komponenten auf dersel-
ben Hardware mittels Virtualisierung. Die Komponenten werden geméfl ihrer Anforderun-
gen und Quality of Service (QoS) voneinander getrennt [8]. Sie setzt sowohl Container-
als auch Hypervisor-Virtualisierungsmethoden ein, um einerseits eine strikte Trennung der
Komponenten zu ermoglichen und andererseits ein dynamisches Deployment und Versions-
management zu realisieren. Die Komponenten kénnen nur durch festgelegte Kommunikati-
onsschnittstellen miteinander kommunizieren. Die Kommunikationsverbindungen zwischen
unterschiedlichen Komponenten sind riickwirkungsfrei und gefdhrden die Anforderungen
der kritischen Anwendungen in keiner Weise. Ein weiteres Merkmal der Architektur ist
der Entwurf eines Verwaltungssystems, das lokale Komponentenverwaltungsdienste anbie-
tet. Die Architektur bietet ein dediziertes Interface zur offenen Umgebung. Durch dieses
Interface konnen Daten und Informationen mit externen Komponenten ausgetauscht oder
neue Funktionalitéten heruntergeladen werden. Die Partitionen werden geméfi der Anwen-
dungen, welche sie kapseln, konfiguriert und verfiigen tiber entsprechende Fahigkeiten und
Zugriffsrechte.

Uberlagerte
Anwendungen
Anwendungspartitionen
N
4 N
Interface- Verwaltungs- Anwendung 1 Anwendung n
Partition system

Hypervisor

Hardware

Abbildung 1.1: Eine Architektur fiir Steuergerate

1.3 Struktur dieser Arbeit

Diese Arbeit ist wie folgt strukturiert:

e In Kapitel 2 wird der Stand der Technik présentiert. In diesem Kapitel werden rele-
vante Arbeiten und wichtige Konzepte diskutiert, die fiir die Zusammenstellung der
vorgeschlagenen Architektur notwendig sind.

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

1 Einleitung

In Kapitel 3 werden die Anforderungen an die Architektur erldutert. Der Fokus der
Erlauterung liegt auf den Anforderungen, welche durch die neue Generation der Au-
tomatisierungssysteme hervorgerufen werden.

In Kapiteln 4 und 5 wird eine Architektur vorgestellt, um die genannten Anforde-
rungen zu erfiillen. Fiir die Zusammenstellung der Architektur wird Virtualisierung
als eine Grundlage eingesetzt, um den Betrieb verschiedener Anwendungen auf der
gleichen Hardware zu ermdglichen.

In Kapitel 6 wird das Anwendungsszenario und eingesetzte Hardware-Ressourcen fiir
die Implementierung erortert.

In Kapitel 7 werden die Implementierung der Architektur und die Implementierungs-
ergebnisse prasentiert.

In Kapitel 8 wird die Arbeit zusammengefasst und in einem Ausblick bewertet.

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

In diesem Kapitel werden einige grundlegende Konzepte der IT und der Automatisie-
rungstechnik erldutert. Diese Konzepte werden fiir die Realisierung der in dieser Arbeit
vorgeschlagenen Architektur eingesetzt. Dieses Kapitel gibt auch einen Uberblick iiber den
Stand der Technik dieser Konzepte.

2.1 Virtualisierung

Die Virtualisierung hat grundsétzlich das Ziel, die Ressourcen einer physischen Computer-
Hardware zwischen verschiedenen Betriebssystemen (OSs) und Anwendungen aufzuteilen
[19], [14], [22], [58]. Die OSs und Anwendungen sind in verschiedene Virtuelle Maschi-
nen (VMs) gekapselt. In der IT wird die Virtualisierung insbesondere in grofien Daten-
zentren und Rechenclustern eingesetzt. Sie ist eine wichtige Grundlage fiir die Cloud-
Technologie [71], [78]. In feldnahen Automatisierungskomponenten und in den eingebet-
teten Systemen spielte die Virtualisierung in der Vergangenheit keine Rolle. Diese Syste-
me waren gezielt auf eine Anwendung ausgerichtet und optimiert. Mit den zunehmenden
Anforderungen an Flexibilitdt und Modularitét findet die Virtualisierung jedoch auch zu-
nehmend Einzug in diesem Bereich. Dariiber hinaus wird sie u.a. in der Avionik, der
Fahrzeugtechnik und der industriellen Automatisierungstechnik eingesetzt [3]. Der Einsatz
von Virtualisierung ermoglicht eine optimierte Hardware-Nutzung und verhindert unter-
ausgelastete Hardware und CPUs. Dies spielt eine wichtige Rolle fiir die Skalierbarkeit,
fiir die Reduzierung des Wartungsaufwands und der Kosten usw. [6]. Neben der traditio-
nellen Virtualisierungsmethode, bei der eine Softwareabstraktionsschicht verwendet wird,
um VMs auf einer Hardware zu verwalten, konnen auch Containertechnologien als Virtua-
lisierungsmethode in Betracht gezogen werden. Containertechnologien werden verwendet,
um Anwendungen in verschiedene Container zu kapseln. Dies erhoht die Modularitéit und
bietet eine Grundlage fiir das dynamische Deployment [64]. Allerdings bieten Container-
technologien eine Virtualisierung nur auf der Anwendungsebene an. Im Gegensatz zur
traditionellen Virtualisierung, die sich mit der Erstellung von VMs befasst, die ihre eige-
nen OSs enthalten, kapseln Container nur die Anwendungen und Bibliotheken, die fiir die
Ausfithrung benétigt werden [31].

2.1.1 Virtualisierungstypen

In der IT werden verschiedene Typen der Virtualisierung eingesetzt. Alle diese Typen
zielen darauf ab, die Hardwareressourcen der realen Hardware zu abstrahieren, umfassen
aber unterschiedliche Methoden und Spezifikationen, um dieses Ziel zu erreichen. Einige
dieser Virtualisierungstypen sind unten aufgefiihrt [107], [3]:

e Vollvirtualisierung: Bei der Vollvirtualisierung werden die Gast-Betriebssysteme
nicht fiir die Ausfithrung auf dem Hypervisor modifiziert. Dies fiihrt zu dem Nachteil,

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

dass die privilegierten Operationen weiterhin unveréndert an die Hardware gesendet
werden. Um die privilegierten Operationen abzuwickeln, bietet der Hypervisor eine
CPU-Emulation, welche Zeit und Ressourcen benétigt.

Paravirtualisierung: Die Paravirtualisierung wird zur Uberwindung des oben genann-
ten Problems eingesetzt. Bei der Paravirtualisierungsmethode sind die Gastbetriebs-
systeme iiber die Hardwarevirtualisierung informiert und werden so modifiziert, dass
sie nur noch auf Operationen zuriickgreifen, die der Hypervisor standardméfig zur
Verfiigung stellt. Privilegierte Operationen werden ausgefiihrt, indem einzelne An-
fragen an den Hypervisor gesendet werden. Diese Anfragen oder Aufrufe werden als
Hypercalls bezeichnet. Ein Nachteil dieser Methode ist der erforderliche Overhead
fiir die Modifizierung der Gast-Betriebssysteme.

2.1.2 Virtualisierung mit Hypervisoren

Der Hypervisor oder auch Virtual Machine Monitor (VMM) fungiert als eine Middleware
zwischen Hardware und Anwendungen (die in VMs laufen) und erméglicht die Kommuni-
kation zwischen diesen. Hypervisoren werden in zwei Gruppen unterteilt, nimlich Typ-1
und Typ-2. Der Hypervisor Typ-1 kann direkt auf einer Hardware installiert werden, ohne
dass ein OS erforderlich ist (siehe Abb. 2.1). Der Hypervisor Typ-2 kann hingegen nur auf
einem Host OS installiert werden [29]. Fiir letzteren konnen einige VMs generiert werden,
wahrend andere Anwendungen parallel auf dem Host OS laufen. Das Konzept der Virtuali-

YML, M2

VM1 VM2 VM3 App App |:
App |4 App F] App E 0S 0s |
1 OS OS k] OS APP Hypervisor
Hypervisor HOST OS
Hardware Hardware
Hypervisor Typ-1 Hypervisor Typ-2

Container 1 Container 2
{aop | [ap §
Container-
App Verwaltung
HOST OS
Hardware
Container-Technologies

Abbildung 2.1: Virtualisierungsmethoden

sierung mit Hilfe eines Hypervisors wurde zuerst von IBM eingefiihrt. Der Hypervisor von
IBM erstellt unabhiingige Umgebungen auf der gleichen Hardware (virtuelle Maschine),
um Hardwareressourcen sowie Rechenressourcen, Speicher und Netzwerkkonnektivitit zu
virtualisieren [40]. Die Virtualisierung sollte eine zum urspriinglichen System dquivalente

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.1 Virtualisierung

Umgebung zur Verfiigung stellen. Dariiber hinaus muss sie eine zuverldssige Kontrolle
iiber die virtualisierten Ressourcen bieten. Diese Bedingungen gewéhrleisten einerseits das
gleiche Verhalten der Anwendungen in der virtualisierten Umgebung und andererseits die
Sicherheit der VMs vor Bedrohungen und Konflikten, die durch die gemeinsame Nutzung
einer Hardware verursacht werden. Die Aufgabe der Bereitstellung solcher VMs wird neben
dem Hypervisor auch anderen Komponenten wie Mikrokernel zugewiesen. In den folgenden
Abschnitten werden diese Komponenten miteinander verglichen.

2.1.3 Virtualisierung mit Mikrokernels

Mikrokernels werden entwickelt, um die Komplexitit des Hypervisors zu reduzieren. Die
Komplexitétsreduktion basiert auf der Modularisierung. Mikrokernel werden ebenfalls ver-
wendet, um Hardware zu virtualisieren und mehrere VMs auf der gleichen Hardware zu
betreiben. Sie unterscheiden sich jedoch in einigen ihrer Eigenschaften von den Hypervi-
soren. Die wichtigsten Unterschiede liegen in ihrer Abstraktionsebene. Die Hypervisoren
verwalten Hardwareressourcen wie Speicher und CPU in Bezug auf die VMs und OSs.
Sie befassen sich jedoch nicht mit den Prozessen innerhalb einer VM. Mikrokernels bieten
im Gegensatz zu Hypervisoren eine Abstraktion auch fiir hohere Ebenen wie Tasks und
Threads. Das High-Level-Management der Mikrokernels ist mit den folgenden Merkmalen
verbunden (3], [51]:

e Threads, Aufgaben und Prozesse: Der Mikrokernel kennt alle Threads, Aufgaben und
Prozesse eines OS. Der Hypervisor verwaltet nur die Gast-OSs.

e Speicher: Bei der Speicherverwaltung im Hypervisor werden die Speicherzuordnungen
auf Giiltigkeit tiberpriift (die Speicherverwaltung kennt den jeder VM zugewiesenen
Anteil an Speicher). Ein Mikrokernel verwaltet den Speicher entsprechend den Auf-
gaben, die er unterstiitzt.

e Kommunikation: Hypervisoren bieten Low-Level-Kommunikationsmechanismen, wie
z.B. Shared Memory fiir die Kommunikation der OSs. Solche Low-Level-
Mechanismen werden jedoch vom Mikrokernel nicht bereitgestellt.

e Geriitetreiber: Die Hypervisoren enthalten die Kerntreiber, wihrend sich periphere
Treiber in den OS befinden. Im Gegensatz zu den Hypervisoren verwalten Mikroker-
nel die Geritetreiber als Mikrokernprozesse.

e VM-Management: Die Ausfithrung von Verwaltungsdiensten wie Create, Read, De-
lete auf den OSs der Géste erfordert die Implementierung dieser Dienste auf dem
Mikrokernel. Dadurch wird dem Mikrokernel ein Speicher-Overhead hinzugefiigt.

Sicherheitskonzepte

Wie bereits erwéhnt, wird der Hypervisor im IT-Bereich verwendet, um die Trennung
von OSs auf einer Hardware (beispielsweise VirtualBox und VmWare) zu ermdoglichen.
Diese Trennung bietet keine zertifizierbare Sicherheit. Daher kénnen solche Hypervisoren
nicht in sicherheitskritischen Doménen eingesetzt werden, weil sie keine strikte Trennung
der Anwendungen verschiedener Kritikalitit gewihrleisten konnen. Um die Sicherheit in

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

solchen Doménen zu gewéhrleisten, wird eine Kombination von Hypervisoren und Mi-
krokerneln verwendet [59]. Diese Kombination (wie z.B. PikeOS) wird fiir Safety- oder
Securityanwendungen verwendet (Seperationskernel [117]). Das Sicherheitsniveau solcher
Separationskernel orientiert sich an verschiedenen Standards. Die Software-Zertifizierung in
verschiedenen Industriebereichen orientiert sich an bestimmten Sicherheitsstandards. Die-
se definieren verschiedene Kritikalitdtsebenen, die in den jeweiligen technischen Doménen
unterschiedliche Notationen haben. Zum Beispiel sind bei EN-50128 und IEC 61508 die
Safety Integrity Level (SIL) von 0 bis 4 eingestuft, wihrend die Stufen in ISO 26262 von
A bis E unterteilt sind. Das Safety-Konzept umfasst die Trennung der Anwendungen mit
unterschiedlichen Kritikalitétsstufen sowie die Uberwachung des Informationsflusses zwi-
schen diesen. Das Echtzeitverhalten der OS ist ebenfalls ein safetyrelevanter Aspekt. Den
safetykritischen Anwendungen muss ein detailliertes Schedulingschema zugeordnet werden,
damit diese zuverldssig arbeiten kénnen [59].

Die Security befasst sich mit dem Schutz des Systems vor ungewollten Manipulationen
oder Datenzugriffen z.B. durch Cyberangriffe. Analog zu den Safetyanforderungen, ba-
sieren auch die Securityanforderungen auf Standards in verschiedenen Bereichen. Bei der
Security geht es sowohl um die Trennung von Anwendungen auf derselben Hardware als
auch um die Kontrolle des Informationsflusses zwischen diesen. IEC 15408 (gemeinsame
Kriterien) und IEC 62443 sind zwei Beispiele fiir Securitystandards. Gemeinsame Krite-
rien beschreiben Securityanforderungen fiir allgemeine Zwecke und IEC 62443 beschreibt
Securityanforderungen von Industrial Automation and Control System (IACS)s. Die Com-
putersysteme haben unterschiedliche Prozessphasen. Spezifikation, Implementierung und
Evaluation sind drei wichtige Phasen bei der Entwicklung von Computersystemen. Ge-
meinsame Kriterien stellen sicher, dass all diese Phasen geméaf dieser Normen durchgefiihrt
werden. Dieser Standard definiert mehrere Evaluation Assurance Levels (EAL)s von 1 bis
7. Separationskernels (je nach Technologie) bieten eine hohere Sicherheit (EALG) als All-
zweckrechenplattformen (EAL4) [59].

Es werden verschiedene Technologien und Konzepte entwickelt, um Separationskernel zu
entwerfen, welche die Anforderungen bestimmter Doménen erfiillen. Zum Beispiel definier-
ten Chung-Wei, BaekGyu und Shinichi [65] einen Ansatz zur Hardware-Virtualisierung
und Aufgabenzuweisung fiir Automobilsysteme und die Autoren in [81] definierten eine
Architektur fiir leistungsarme eingebettete Echtzeitsysteme. Im néchsten Abschnitt wer-
den einige Hypervisor- und Mikrokerneltechnologien gemeinsam mit der in dieser Arbeit
verwendeten Technologie vorgestellt.

2.1.4 Hypervisor und Mikrokernel-Technologien

Im Folgenden werden einige Hypervisoren (Typ-1 und Typ-2) und Mikrokernel, die in der
Industrie eingesetzt werden, présentiert.

VirtualBox

VirtualBox ist ein Hypervisor vom Typ-2. Sie kann auf verschiedenen Host OSs wie Win-
dows, Linux, Solaris installiert werden und unterstiitzt dabei eine unterschiedliche Anzahl
von Guest OSs. Es handelt sich um eine von der US-amerikanischen Firma Oracle ent-
wickelte Virtualisierungssoftware [76].

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.1 Virtualisierung

Xen Hypervisor

Xen ist ein Open-Source-Hypervisor. Xen umfasst eine Softwareschicht, die virtuelle Res-
sourcen implementiert und auch den I/O-Zugriff kontrolliert. Die VMs werden in Xen
Doménen genannt. Xen besitzt eine Doméne null VM, die andere VMs erzeugen und
1oschen kann und die I/O-Geriite den VMs zuordnet [13].

PikeOS

PikeOS ist ein mikrokernelbasierter Hypervisor, der von der SYSGO GmbH entwickelt
wurde. Es besteht aus einem Real Time Operating System (RTOS), einer Virtualisierungs-
plattform und einer Eclipse-basierten Entwicklungsumgebung. Dieser Hypervisor wird fiir
Sicherheitskritische Anwendungen in den Bereichen der Luft- und Raumfahrt, der Ver-
teidigung, der Fahrzeugtechnik, der industriellen Automatisierung, etc eingesetzt [96]. Er
ermoglicht die Ausfithrung verschiedener Anwendungen, mit unterschiedlichen Sicherheits-
stufen, auf derselben Hardware in verschiedenen Partitionen. Die Partitionen bieten un-
terschiedliche Portierungsmoglichkeiten. Diese Moglichkeiten werden als Personalities be-
zeichnet:

e Native ist eine direkte Verkniipfung der Anwendung mit PikeOS-Service-
Schnittstellen. Diese erfordern eine minimale Anpassung der Anwendung. Da es sich
jedoch um eine proprietire Anwendung von PikeOS handelt, miissen andere Anwen-
dungen, die nicht fiir PikeOS entwickelt wurden, modifiziert werden, um mit PikeOS
kompatibel zu werden.

e Die Portable Operating System Interface (POSIX)-Personality verwendet
das Standard Portable Operating System Interface POSIX. Viele UNIX OSs sind
konform zu diesem Standard. POSIX wurde in der ISO/IEC 9945 normiert. Die
POSIX-Personality fiir PikeOS entspricht dem PSE52-Profil des IEEE Std 1003.13-
1998 mit zusdtzlichen Echtzeit-Erweiterungen.

e ElinOS ist eine paravirtualisierte Linux-Distribution. Diese Personality kann durch
die Installation von Softwarepaketen erweitert werden. Es ist der einfachste Weg, An-
wendungen, die fiir Linux implementiert sind, zu portieren. Aber diese Schnittstelle
ist wegen des Overheads auf einem eingebetteten System vergleichsweise langsam.

Das PikeOS RTOS basiert auf einem modularen Ansatz. Es besteht aus einem Mikro-
kernel, der die folgenden Dienste zur Verfiigung stellt [80], [44]:

e Hardware-Abstraktion

e prioritiitsbasiertes Echtzeit-Scheduling
e Ausfiihrungseinheiten (Threads)

e getrennte Adressriume (Aufgaben)

e Kommunikationsprimitive

e Timer und Ausnahme- und Interruptbehandlung.

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

Scheduling und Zeitpartitionierung

Der PikeOS-Scheduler basiert auf dem Prinzip der Zeitpartitionen. Zeitpartition stellt da-
bei einen Mechanismus zur Verteilung von Rechenzeit auf Anwendungen (Partitionen) dar.
Die getrennten Anwendungen in den Partitionen miissen, mit den fiir ihre Ausfithrung er-
forderlichen Ressourcen, versorgt werden. Dabei garantiert die Zeitpartitionierung, dass al-
le Partitionen einen bestimmten Anteil an Ausfiihrungszeit erhalten. Die Ausfiihrungszeit
ist vordefiniert und kann wahrend der Laufzeit nicht dynamisch verdndert werden.

Die Zeitpartitionierung ist in Abb. 2.2 dargestellt. Die Aufteilung der Rechenzeit er-
folgt in zwei Schritten. Im ersten Schritt werden die entsprechenden Partitionen einer
Zeitpartition zugeordnet. Dann werden diese Partitionen einem oder mehreren Fenstern
zugeordnet, wobei jedes Fenster eine eigene Dauer hat. Der Zeitplan setzt sich aus diesen
vordefinierten Fenstern zusammen. Die Fenster konnen auf verschiedenen Central Proces-
sing Unit (CPU)-Kernen laufen. Aber an jedem Punkt ist auf jedem Kern nur ein Fenster
aktiv. Die vorhandenen Threads innerhalb einer Partition kénnen mit unterschiedlichen
Prioritédten zugewiesen werden. Unter allen Threads wird jedes Mal der Thread mit der
hochsten Prioritét ausgefithrt. Ein Thread enthélt auch andere Informationen.

Partitionen den Zeitpartitionen zu Fenstern
Zeitpartitionen zuordnen zuordnen und Dauern einstellen

E =W =I Zeitfenster 1 |

Abbildung 2.2: PikeOS-Zeitpartitionierung

Kommunikationen zwischen den Partitionen in PikeOS

PikeOS bietet verschiedene Moglichkeiten fiir die Kommunikation zwischen Partitionen.
Die folgende Liste enthélt die relevanten Kommunikationsmedien:

e Queuing Ports: Diese fungieren als First In First Out (FIFO)-Kommunikation,
bei der Ports den Endpunkt der Kommunikation darstellen. Die Kommunikation
mit Hilfe von Queuing Ports ist eine unidirektionale Kommunikation. Queueing
ports ermoglichen Service Access Points (SAP) und eine paketbasierte Echtzeit-
Kommunikation wie User Datagram Protocol (UDP)/Internet Protocol (IP).

e Shared memory: Dieser Kommunikationstyp bietet einen physischen Speicher fiir
den Datenaustausch zwischen Partitionen. Die Zugriffsrechte auf den gemeinsamen
Speicher miissen in der Engineering-Phase statisch zugewiesen werden.

10

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.2 Container-Technologien

e File System (FS): Diese Methode wird verwendet, um die aktuellen Daten auf einem
Speichergerit abzubilden. Sie kann auch aufierhalb einer Partition als Schnittstelle
zum Lesen/Schreiben von Daten verwendet werden. Read Only Memory (ROM) und
FS sind Beispiele fiir ein eingebautes Dateisystem.

WindRiver Hypervisor

Wie der Name schon suggeriert, besteht im WindRiver-Hypervisor die Integration mit
WindRiver Linux. Er unterstiitzt auch andere OSs wie Windows 7 (32-bit und 64-bit
Single-Core und Multi-Core) und Red Hat Linux. Es ist auch moglich, andere Betriebs-
systeme hinzuzufiigen. Die unterstiitzten Prozessorarchitekturen sind Intel Atom, ARM
und PowerPC. Die Zeitplanung kann priorititsbasiert, zeitlich partitioniert oder benutzer-
definiert sein [112]. Einige Funktionen von WindRiver Hypervisor sind unten aufgefiihrt
[113]:

e Virtual Board Management: Virtual Board Management erméglicht die Verwal-
tung virtueller Boards, indem es Funktionen wie Create, Delete, Read zur Verfiigung
stellt.

e Core Scheduling: Prioritdt- und zeitbasiertes Scheduling.

e Safety Profile: Zertifizierung nach Normen, wie IEC 61508 (bis zu SIL 3).

Tabelle 2.1 gibt einen Uberblick der Eigenschaften von PikeOS, Windriver und Xen
Hypervisor.

Tabelle 2.1: Vergleich der Eigenschaften

PikeOS WindRiver Xen

CC EAL 3+ No CC EAL 3+ No certification
Certified Posix No Certified Posix No Certified Posix
Health Monitor Health Monitor no Health Monitor
Certifiable Hypervisor | Only ARMv8 und x86 | no certification

Neben den genannten Technologien werden auch andere Separationskernel wie VxWorks
653, LynxSecure, INTEGRITY-178B und LynxOS-178 in verschiedenen Bereichen, wie
der Fahrzeugtechnik und der Luft- und Raumfahrt eingesetzt. Einige Technologien haben
Security- und Safetyfunktionalititen in denselben Separationskernel integriert, wie z.B.
PikeOS und LynxSecure.

2.2 Container-Technologien

Containertechnologien befassen sich mit der Isolierung und Kapselung von Anwendungen
und notwendiger Bibliotheken in verschiedenen Containern. Das Ziel dieser Technologien
ist, leichtgewichtige Container zu erzeugen, die wie Daten transportiert werden kénnen.
Aus diesem Grund enthalten Container keine OS und sie laufen alle auf dem Host OS. Dies
kann auch als eine Virtualisierungsmethode angesehen werden. Der Vorteil von Container-
technologien besteht darin, dass die leichtgewichtigen Container und Container-Images

11

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

einfach von einem System auf ein anderes iibertragen werden kénnen. Dies reduziert den
Aufwand fiir die Installation und Aktualisierung einer Software. Container verhalten sich
dhnlich wie eine VM. Die in Abb. 2.1 dargestellte Container-Management-Einheit erlaubt
eine Hardware-Abstraktion auf der Anwendungsebene. Dezentralisierung, Skalierbarkeit
und dynamisches Deployment sind die Hauptvorteile der Containertechnologien [72].

Docker-Container

Docker ist eine Open-Source Plattform fiir die Ausfithrung und Entwicklung von Applika-
tionen. Dort werden Applikationen in so genannte Container gekapselt. Docker-Container
sind ein Beispiel fiir Containertechnologien [31]. Die Dockertechnologie erméglicht das Kon-
zept der Containerisierung auf dem Server. Applikationen kénnen nach der Kapselung den
anderen Anwendern zur Verfiigung gestellt werden. Dariiber hinaus stellen die Container
Test-Umgebungen fiir die Applikationen bereit [85], [16]. Die Struktur der Dockertechno-
logie ist in Abb. 2.3 dargestellt. Docker besteht aus folgenden Hauptkomponenten [100]:

e Docker Server und Klient: Der Docker Server (Daemon) und Klient kommunizie-
ren iiber ein RESTful API. Der Klient sendet Anfragen an den Server, um beispiels-
weise einen bestimmten Container herunterzuladen.

e Docker Images: Docker Images sind die Applikationen, die in Docker Containern
gekapselt werden.

e Docker Registry: Die Docker Registry ist dhnlich, wie ein Repository. Images
konnen beispielsweise durch Push, Pull und Build Befehle verwaltet werden.

e Docker Container: Docker Container beinhalten die Anforderungen und
Abhéngigkeiten fiir die Ausfithrung der Applikationen.

Diese Art der Virtualisierung spielt eine wichtige Rolle fiir das Cloud Computing [101].

Klient ﬂ)ocker»Host \ / Registry \

Docker Build Docker Daemon Image 1
Docker run Container 1 Image 1 Image 2
Docker pull Container 2 Image 2

Image n

\ AN Y

Abbildung 2.3: Docker-Technologie [32]

12

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.2 Container-Technologien

2.2.1 Virtualisierungsanwendungen in anderen industriellen Doménen

Echtzeit-Hypervisor werden in verschiedenen Bereichen wie der Avionik und der Fahr-
zeugtechnik eingesetzt [25], [83], [104]. Echtzeitfihigkeit, Verfiigharkeit, Safety/Security
usw. sind wichtige Anforderungen, die den Hypervisor zu einer geeigneten Losung in die-
sen Doménen machen. Nach der Entwicklung von AUTomotive Open System ARchitec-
ture (AUTOSAR) und dem autonomen Fahren hat auch die Automobilindustrie begon-
nen, den Hypervisor fiir verschiedene Zwecke wie Safety und Security einzusetzen [66],
[7). Ahnlich wie die Controller in Automatisierungsdoménen (Speicherprogrammierbare
Steuerung (SPS)en) muss auch der Bordcomputer der Fahrzeuge an die Cloud angeschlos-
sen werden. Somit ist die Vernetzung auch eine Anforderung bei der Automatisierung
von Fahrzeugen. In den néchsten Abschnitten wird die Anwendung des Hypervisors im
Automobil- und Avionikbereich diskutiert.

Automotive Open System Architecture

AUTOSAR zielt darauf ab, eine hardwareunabhéngige und standardisierte Anwendungs-
software fiir Electronic Control Units (ECU)s bereitzustellen. Bei den ECUs handelt es
sich um Steuergeréte fiir die Fahrzeuge. AUTOSAR wurde 2003 gegriindet und das erste
Release des entsprechenden AUTOSAR-Konzepts wurde 2005 entwickelt. Seit 2005 wur-
de AUTOSAR kontinuierlich weiterentwickelt und an die unterschiedlichen Anforderungen
in der Automobilindustrie angepasst (beispielsweise die Entwicklung der AUTOSAR Ad-
aptive Platform [37]). Es besteht aus einer Basissoftware, einer Laufzeitumgebung und
einer Anwendungssoftware. Abb. 2.4 zeigt die Architektur von AUTOSAR. Das Ziel dieser
Architektur ist die Hardwareunabhéngigkeit der Anwendungssoftware.

| Applikationsebene |

| Laufzeitumgebung

Betriebssysteme Memory Kommunikations- Gerdte-Treiber
Services dienste 1/0 Hardware-

Abstraktion
Abstraktionsebene

| Hardware

Abbildung 2.4: AUTOSAR-Architektur

Sie besteht aus:
e ciner hardwareunabhingigen Anwendungsschicht

e ciner Laufzeitumgebung, welche die Schnittstellen fiir die Anwendungen bereitstellt

13

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

e ciner Basissoftware, welche Dienste und die Abstraktionsschicht enthalt.

Kiirzlich wurden einige neue Anforderungen fiir die AUTOSAR-Architektur definiert, die
beim Entwurf der initialen Architektur nicht beriicksichtigt wurden. Diese Architektur
sollte auf derselben ECU-Hardware auch verschiedene Funktionen mit unterschiedlichem
Sicherheitsniveau erfiillen. Dies entspricht einer Kombination verschiedener Automotive
Safety Integrity Level (ASIL)-Ebenen auf derselben Hardware. Sie muss auch eine sichere
Integration von Software verschiedener Anbieter ermoglichen. PharOS ist eine Losung, die
in [63] diskutiert wird, um eine Software-Partitionierung zur Bewéltigung dieses Problems
bereitzustellen. Wegen des zunehmenden Interesses am Betrieb von Anwendungen mit un-
terschiedlicher Kritikalitdt und Anforderungen auf derselben Hardware werden Hyperviso-
ren in verschiedenen Doménen eingesetzt [27], [81]. Es gibt verschiedene Ansitze, um den
Betrieb und die Trennung von Anwendungen unterschiedlicher Kritikalitéit sicherzustellen.
Dariiber hinaus kénnen verschiedene Arten von Hypervisoren eingesetzt werden, um diese
Trennung und die Ressourcenzuweisung zu gewéhrleisten. Als Beispiel wird in Abb. 2.5 der
Betrieb von Anwendungen mit unterschiedlichem ASIL-Level auf derselben Hardware auf
der Basis von VOSYSmonitor dargestellt [66]. Die dargestellte Architektur priorisiert die
sicherheitskritischen (ASIL) Anwendungen, withrend nicht-kritische Anwendungen (keine
ASIL) parallel auf derselben Hardware laufen.

Nicht kritische OS5~ GuestOS | Native OS
Infotainment Rich : Safety kritische
0os 0s ! 0s
i AUTOSAR
No ASIL No ASIL ' ASIL
Hypervisor '
VOSYSmonitor |
Hardware E |
Normal World ! Secure World

Abbildung 2.5: VOSYSmonitor

Den sicherheitskritischen Anwendungen sind bestimmte Ressourcen zuzuordnen. Diese
Ressourcen sind fiir eine Nutzung anderer Anwendungen gesperrt, bis der VOSYSmonitor
wieder eine Freigabe fiir diese erteilt. Anforderungen an ECUs und industrielle Steue-
rungsgerate iiberschneiden sich in zentralen Aspekten. Beide erfordern die Integration von
Anwendungen mit unterschiedlichen Anforderungen auf der gleichen Steuerungshardware,
unter Beriicksichtigung der Safety und Security. Die Safety und Security in beiden Berei-
chen orientiert sich an bestimmten Standards.

14

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.2 Container-Technologien

2.2.2 Virtualisierung in der Luftfahrt

Virtualisierung wird auch in der Luftfahrt eingesetzt, um eine sichere Trennung von An-
wendungen zu gewahrleisten. Abb. 2.6 zeigt ein Beispiel fiir eine solche Trennung zwischen
Anwendungen. ARINC 653 ist ein Hypervisor, der fiir diese Trennung eingesetzt wurde.

Master Subsystem1 Subsystem?2 Shared
Control Control Control Display
Application Application Application Application
Partition 05 Partition 05 Partition OS Partition 05

Core OS ARINC 653

BSP & XML Configuration

OSA HW

Abbildung 2.6: Virtualisierung in der Luftfahrt

2.2.3 Industrielle Automatisierung

Die Automatisierungspyramide bietet ein hierarchisches Ebenenmodell zur Kategorisierung
der Aufgaben und Funktionalitdten innerhalb eines Produktionssystems von den Feld- bis
zu den Geschiftsprozessen.

Die unterste Ebene stellt die Schnittstelle zu den Feldgeriten (Sensoren und Aktoren)
dar. Die zweite Ebene wird als Prozessleitebene bezeichnet. Sie umfasst die SPS-Systeme,
welche zur Implementierung der Prozessfithrungsanwendungen verwendet werden. Die drit-
te Ebene stellt Produktionsrezepte zur Verfiigung und bietet Dienste, wie Scheduling, Pre-
dictive Maintenance und Ressourcenverwaltung an. Abschliefend enthélt die Enterprise
Resource Planning (ERP)-Ebene die Geschiftsprozesse. Die Kommunikation in der Auto-
matisierungspyramide erfolgt nur iiber definierte Schnittstellen zwischen den Ebenen [52],
[57].

Zukiinftige Automatisierungssysteme erfordern jedoch eine hohe Vernetzung, um Ziele
wie Agilitidt zu erreichen. Aus diesem Grund wird die hierarchische Struktur der Automa-
tisierungspyramide in eine hoch vernetzte Architektur aufgelost, so dass alle Komponen-
ten unabhéngig von ihrem Automatisierungsgrad miteinander kommunizieren kénnen. Die
Auflosung betrifft nur die Kommunikationsperspektive. Das bedeutet, dass die klassischen
Automatisierungsebenen weiter bestehen, wéhrend die Kommunikationsbeschrankungen
aufgehoben werden [15], [43], [108]. Das bedeutet, dass alle beteiligten Komponenten di-
rekt miteinander kommunizieren kénnen. Die Vernetzung birgt neue Anforderungen an
prozessnahe Komponenten.

Die zukiinftigen Automatisierungssysteme miissen kooperativer mit I'T-Systemen agie-
ren. Die IT bietet Dienste zur Datenanalyse, Optimierung usw. an, wiahrend die Auto-
matisierungstechnik weiterhin ihre klassischen Aufgaben beibehilt. Ein wichtiger Aspekt

15

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

dieser Kooperation ist die Uberwachung des Informationsflusses. Hierzu stellte NAMUR
das Konzept einer Informationsdiode vor (NAMUR-Diode).

2.3 NAMUR Open Architecture

In der NAMUR Open Architecture (NOA) werden die Funktionen den Clustern Monitoring
and Optimization (M+O) und Core Process Control (CPC) zugeteilt [74]. CPC enthélt
die klassischen Automatisierungsfunktionen. Sie sind direkt fiir die korrekte und sichere
Steuerung der Prozesse zustindig und diirfen nicht durch externe Einfliisse gestort wer-
den. M+O enthiilt alle Funktionen, die zur Optimierung und zum Management ergénzend
angeboten werden. Das NOA-Konzept ist in Abb. 2.7 dargestellt.

Central M+0

Central N Advanced
HMI [scheduiing | Analytics

l'> Verification of
‘ Request

Plant Specific M+O Core Process Control
—]] Engineering -
9 OPC UA
e =] o
Advanced

Control oospe
Control

Dispatching

Fieldbus/Remote 10
Production Plant I:I

Abbildung 2.7: NAMUR Open Architecture [74]

Das CPC in der NOA enthilt die zentralen Automatisierungskomponenten der ersten
und zweiten Automatisierungsebene (wie SPSen, HMIs, DCS, Sensoren und Aktoren). Die
Anlagenspezifische M+0 enthélt IPCs, Edge-Devices und M+O Sensoren. In ihr werden
Informationen gespeichert, aggregiert, vorverarbeitet. Die Weiterverarbeitung der Infor-
mationen erfolgt in der zentralen M+-O.

CPC und M+O kommunizieren iiber zwei verschiedenen Kommunikationsverbindun-
gen, die jeweils unterschiedliche Anforderungen haben. Diese Kommunikationsverbindun-
gen sind in Abb. 2.8 dargestellt.

Bei der Kommunikation zwischen der Automatisierung und der IT diirfen die Infor-
mationen in der Richtung von CPC nach M+O ungehindert fliefen. Dies wird durch die
Einfithrung des Konzepts der NAMUR-Diode realisiert. Die Anforderungen an die Diode
wurden in [75] vorgestellt. Sie lauten wie folgt:

e Keine direkte Verbindung zwischen CPC und M+0O

16

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.4 Speicherprogrammierbare Steuerungen

Core Process Control

NAMUR- \ / Verification of
Diode _\/ Request

Monitoring and Optimization

Abbildung 2.8: Kommunikation zwischen CPC und M+0O

e Informationsfluss nur von CPC zu M+O und nicht umgekehrt
e Keine Riickwirkung auf die CPC-Parameter

e Keine Konfiguration oder Parameter-Manipulation des CPC aus der M+O-Doméine
iiber die NAMUR-Diode

Nach dem Abruf und Verarbeitung der Daten in der M+O-Ebene wird ein Feedback
erzeugt. Dieses kann in einem eigenen streng iiberwachten Kanal in die CPC-Ebene
zuriickgespielt werden (Verification of Request (VoR) in der Abb. 2.8). Die Integration
des Feedbacks muss auf sichere Weise durchgefiithrt werden. Die zuriickgefiihrten Daten
miissen auf Plausibilitdt und Authentizitét gepriift werden. Beispielsweise darf das Feed-
back keine Interlocks triggern. In [24] ist eine Komponente entworfen worden, welche das
Feedback vor der Integration validiert. Diese Validierung findet nicht nur beim Feedback
sondern auch dariiber hinaus bei der deployten Komponenten statt.

2.4 Speicherprogrammierbare Steuerungen

Die SPS ist ein Gerit zur Steuerung eines Produktionssystems. Die Geschichte der SPSen
lasst sich bis auf das Jahr 1968 zuriickverfolgen. Fest verdrahtete Relaistafeln wurden zu
diesem Zeitpunkt durch halbleiterbasierte sequentielle Logiksysteme ersetzt. SPSen beste-
hen jeweils aus Eingéingen, Ausgéngen und einem Betriebssystem (Abb. 2.9). Anwendungen
bestimmen die Beziehung zwischen den Eingéngen und Ausgingen. Sie kénnen iiber eine
Schnittstelle geladen werden. Dariiber hinaus kénnen sie hardwareunabhiingig manipuliert,
programmiert und umprogrammiert werden. Abgesehen von der Prozessfithrung kann eine
SPS Laufzeitdaten iiberwachen, um je nach Anwendung die erforderlichen Mafinahmen zu
ergreifen, wie z.B. Alarmgenerierungen oder Starten und Stoppen anderer Prozesse [111],
[97].

2.4.1 Programmierung

Fiir SPSen wurden im Laufe der Zeit eine Vielzahl von Programmiersprachen entwickelt.
Anweisungslisten, Kontaktpldne, Funktionsbausteinsprachen, Ablaufsprachen und Struk-

17

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

PC Applikation

A

SPS

Analog Analog

Input Output
Module Module

 CPU [—>

Digital Digital

Input Output
Module Module

Memory

Abbildung 2.9: SPS-Struktur

turierte Texte sind ein paar Beispiele fiir diese Programmiersprachen. Die genannten
Sprachtypen sind in IEC 61131-3 genormt, um eine standardisierte Programmierung fiir
SPSen zu ermoglichen. SPSen werden je nach Anwendungsgebiet mit unterschiedlicher An-
zahl von I/Os (binér oder analog), und zusitzlichen Funktionen, wie PID-Regler, Timer,
Zahler angeboten. Je nach Anzahl der I/Os und internen Fihigkeiten werden sie als Micro
SPS, Small, Medium und Large kategorisiert. SPSen, Industrie-PC (IPC)s und eingebettete
Systeme werden alle in der industriellen Automatisierung eingesetzt. Ihre Basisstrukturen
sind analog zueinander (Eingang, Ausgang und eine Logik). Im néchsten Abschnitt werden
diese miteinander verglichen.

2.4.2 Entwicklung der speicherprogrammierbaren Steuerungen

SPSen wurden entwickelt, um fest verdrahtete Regelkreise zu ersetzen. Die Anderung der
Steuerungsanwendung in solchen Regelkreisen erforderte zeitintensive Verfahren. Dies rief
die Entwicklung softwarebasierter Steuerungsprogrammierung hervor, so dass die Steue-
rung unabhéngig von der Hardware manipuliert werden kann. SPSen ermdglichen dies
durch ihre Programmiersprachen wie Continuous Function Charts (CFC)s oder Sequential
Function Charts (SFC)s. Die SPSen wurden im Laufe der Jahre kontinuierlich weiterent-
wickelt, und an die sténdig wachsenden Anforderungen der Produktionssysteme angepasst.

Die ersten Entwurfskriterien fiir SPSen wurden von der General Motors Corporation spe-
zifiziert. Diese Spezifikationen, die im Zusammenhang mit 13.0 betrachtet werden koénnen,
sind nachstehend aufgefiihrt [91]:

e Einfach zu programmieren und umzuprogrammieren
e Niedriger Wartungsaufwand

e Betriebsfihig in der Anlagenumgebung

o Kompakt

o Kommunikationsfahig mit hoheren Automatisierungsebenen

18

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.4 Speicherprogrammierbare Steuerungen

e Niedrige Kosten

Tm Jahr 1980 haben viele Unternehmen damit begonnen, SPSen fiir ihre Anwendungsfille
einzusetzen. In der Anfangszeit waren sie proprietére und lokale Gerite. In den 90er Jah-
ren begann die Standardisierung von SPSen. Ethernet-Netzwerke und die Entwicklung von
Flash-Speichern waren die néchste Evolution der SPS-Systeme. Seit 1968 bis heute haben
sich die Anforderungen und Spezifikationen von SPSen geindert und die Hersteller von
SPSen haben versucht, die Technologie an die Fertigungsanforderungen dementsprechend
anzupassen. Dariiber hinaus wurden im Laufe der Jahre auch die Programmiersprachen
der SPSen von der Leiterlogik zu den IEC 61131-3 Funktionsbaustein (FB)s und deren
Erweiterung IEC 61499 weiterentwickelt. Fins der wichtigsten Ziele in der SPS-Evolution
ist Flexibilitédt. Verschiedene Automatisierungsanforderungen haben im Laufe der Zeit eine
neue Flexibilitdtsniveau von SPSen gefordert. Anforderungen wie die Optimierung von Fer-
tigungsprozessen, die Verkiirzung der Time-To-Markt, die Massenproduktion in der dritten
Automatisierungsrevolution und die hohe Agilitdt in 14.0 haben alle im Laufe der Zeit zu
Neuinterpretationen des Begriffs Flexibilitédt gefithrt. Anfangs bezog sich Flexibilitat auf
die Entwicklung von Methoden zur softwarebasierten Manipulation der Steuerung. Im Zu-
sammenhang mit 140 haben sich die Anforderungen an die Flexibilitdt drastisch gedndert.
Flexibilitiat wurde durch Agilitat ersetzt. Ein agiles Produktionssystem muss in der Lage
sein, auf Anderungen zu reagieren, die in der Entwurfsphase nicht beriicksichtigt wurden.
Dies unterscheidet die Agilitéit von der Flexibilitdt. Die Anforderungen und die Spezifika-
tion von SPSen im Kontext von 14.0 werden im folgenden Abschnitt errtert.

2.4.3 Neue Architekturen fiir speicherprogrammierbare Steuerungen

Aktuell werden einige neue Konzepte und Architekturen fiir SPSen definiert. Diese Ar-
chitekturen zielen darauf ab, die Flexibilitdt der SPSen zu erhéhen. Die Ansétze besitzen
unterschiedliche Schwerpunkte. Der Schwerpunkt kann zum Beispiel auf der Entwicklung
neuer Software-Architekturen, der Integration neuer Hardwarekomponenten, strukturellen
Anderungen des Programmierungsmodells (beispielsweise der Ansatz in [92]) oder der Ent-
wicklung von real-time Betriebssystemen fiir die eingebetteten Systemen liegen [54], [4].
Einer dieser Ansitze ist die virtuelle SPS (vPLC) [39]. Das Konzept der vPLCs wird in [26],
[38] ervrtert. vPLCs werden als Anwendungen in einer Cloud implementiert und steuern die
physische SPS-Hardware mit Hilfe von Cloud-Diensten. vPLCs liefern die Steuerungsfunk-
tionen als Dienste an die Feldebene und steuern diese iiber das Netzwerk. Bei den vPLCs
im Netzwerk handelt es sich um unterschiedliche Steuerungslogiken, die mit der Hardware-
SPS kommunizieren. Dieses Konzept ist in Abb. 2.10 dargestellt. Beim Betrieb einer vPLC
ist die Security ein entscheidender Faktor, der beriicksichtigt werden muss. Um die Secu-
rity des Produktionssystems zu gewéhrleisten und unberechtigte Zugriffe zu verhindern,
wird eine private Cloud eingesetzt. Die Anbindung einer SPS an eine offentliche Cloud
kann zu Bedrohungen und unberechtigten Zugriffen fiithren. Ein dhnlicher Ansatz wurde in
[49] unter Verwendung von AMAZON-Diensten realisiert. Cloud-basierte Ansétze werden
auch im Bereich der Robotik verwendet. [23] setzt eine Cloud ein, um Steuerungsdienste
fiir Roboter bereitzustellen. [114] bietet einen Uberblick iiber den Stand der Technik der
cloudbasierten Fertigung. Die Vor- und Nachteile der Cloud-basierten Strategie werden
in [2] diskutiert. Kosteneffizienz, unbegrenzter Speicherplatz, einfacher Zugang sind einige
Vorteile dieser Strategie. Die Security ist bei diesem Ansatz ebenfalls ein wichtiges Thema.

19

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

Private Cloud

Virtual
PLC1 PLCn

l Virtual Interface
I Virtual Switch (vSwitch)

I
1/0 Devices 1/0 Devices

[Sensor] [Actuator] [Sensor] [Actuator]

Control Level

Field Level

Technical Process |

Abbildung 2.10: Control as a Service [39]

Die vPLCs und Cloud-as-a-service Applikationen haben allerdings hohe Latenzen. Dieses
Problem wird in [82] geschildert. Eine Architektur basierend auf Miroservices wurde in
[33] vorgestellt. In ihr werden Container-Technologien fiir die Kapselung der Applikatio-
nen eingesetzt. Die vorgestellte Architektur in [36] stellt ein Gateway bereit, das die Gerite
mit der Cloud verbindet und die Rolle einer SPS spielt. Die Verbindung mit der Cloud
erfolgt iiber MQTT-Nachrichten oder virtuellen Instanzen. Eine cloudbasierte Architektur
namens soft-PLC wurde in [42] vorgestellt. Bei soft-PLC lauft die SPS als eine Software
in einer Cloud und empfangt Prozessdaten mittels OPC UA. Die Architektur erméglicht
eine horizontale Skalierbarkeit. Der Nachteil dieser Methode ist die hohe Latenz zwischen
der Cloud und den Feldgerdten. Die in dieser Arbeit vorgeschlagene Architektur ist im
Gegensatz zu vPLCs keine cloudbasierte Architektur.

Eine weitere Strategie ist der Einsatz von Virtualisierungstechnologien. Die Herausfor-
derungen beim Einsatz von der Virtualisierung und Hypervisoren im Bereich der eingebet-
teten Echtzeitsysteme und Legacy-Systeme werden in [86], [20] diskutiert. Die Hypervisor-
Technologie bietet eine begrenzte Granularitéit [50]. Zukiinftige Automatisierungssysteme
miissen so gestaltet werden, dass sie eine héhere Granularitét bieten. Um dieses Problem
zu iiberwinden, wurde in [41] ein Ansatz zur Erhohung der Flexibilitét von SPSen auf der
Grundlage der Container-Technologien vorgestellt. Dabei werden Container-Technologien
eingesetzt, um neue Funktionen auf die SPS herunterzuladen. Der Schwerpunkt der Ar-
chitektur liegt auf der Containerisierung und dem Containermanagement, sowie dem
Container-Deployment (Funktionalitéiten). Die Virtualisierung mit Hilfe von Container-
Technologien ist eine Grundlage fiir diese. Abb. 2.11 stellt die diskutierte Architektur dar.
Wie gezeigt, konnen verschiedene Anwendungen wie z.B. IEC 61131-Anwendungen von
einem Container-Deployer auf die SPS heruntergeladen werden. Ein Container-Registry
stellt eine Liste aller Container bereit. Die Ressourcen werden vor dem Deployment von
einem Deployment-Koordinator auf Verfiigharkeit analysiert.

20

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.5 Digitale Zwillinge und Verwaltungsschalen

Sensors & Other

Actuators Devices I Container Registry
A A T
e il
System Device Access |
\ Container | | Deployment
: :/ Deployer Coordinator
: 61113 __ Configuration
i ! Manager
é Resource -
System Resource (O | Manager

Abbildung 2.11: Multi Purpose Controller

Vorgeschlagene Architektur in dieser Arbeit und eigene Vorarbeiten

Die Grundlage der vorgeschlagenen Architektur wurde in [8] vorgestellt. Diese Architek-
tur kombiniert Container- und Hypervisor-Virtualisierungsmethoden zur Erreichung der
beiden wesentlichen Aspekte: strikte Trennung und dynamisches Deployment der Anwen-
dungen zur Laufzeit. Ein weiteres Merkmal der Architektur ist der Entwurf eines Verwal-
tungssystems, das lokale Komponentenverwaltungsdienste anbietet. Diese Dienste bestehen
unter anderem aus Kommunikationsdiensten (beispielsweise zwischen Anwendungen un-
terschiedlicher Kritikalitit), Deploymentdiensten und Ressourcenzuteilungsdiensten. Die
genannten Dienste und ihre relevanten Konzepte wurden in folgenden Veréffentlichungen
erldutert. In [69] und [11] wurde die Realisierung einer riickwirkungsfreien Kommunikation
basierend auf dem NAMUR-Diode-Konzept diskutiert. Dabei wurde eine unidirektionale
FIFO-Kommunikation (Queue) fiir die Realisierung der riickwirkungsfreien Kommunika-
tion eingesetzt. In [11] wurde die Validierung der deployten Komponenten vor Inbetrieb-
nahme in den Fokus gestellt. Die vorhandenen Anwendungen konnen einen dynamischen
Bedarf an Hardwareressourcen haben. Daher wurde in [10] eine dynamische Ressourcen-
zuteilung fiir die vorhandenen Anwendungen erldutert.

2.5 Digitale Zwillinge und Verwaltungsschalen

Simulationen haben sich im Laufe der Zeit zu Systemassistenten fiir den ganzen Lebens-
zyklus der Anlage entwickelt (Abb. 2.12). Das Konzept eines Digital Twin (DT)s wurde
erstmals durch die Technologie-Roadmap der NASA vorgestellt [93]. Das Ziel von DT
ist die Abbildung der verschiedenen Aspekte des Automatisierungssystems in die Infor-
mationswelt. Ein DT beinhaltet die Simulationsmodelle, Interaktionen und Schnittstellen
eines Assets [5], [60]. Das DT-Konzept besteht aus drei Teilen, ndmlich der physischen
Welt, der virtuellen Welt und einer echtzeitfihigen Kommunikation zwischen diesen. Ein

21

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

DT kann fiir die Datenanalyse, die Optimierung und Fehlerdiagnose verwendet werden
[45], [67]. Um die Vorteile eines DT nutzen zu konnen, muss ein Interaktionsmodell zwi-
schen der Prozessfithrung und dem DT entwickelt werden. Die Entwicklung der Paradigmen
der Herstellungsprozesse, sowie des proaktiven Manufacturing ist in [115], [119] diskutiert.
Proaktives Manufacturing entspricht einem neuen Nutzungsgrad der Daten im Fertigungs-
system. Die erste Stufe in dieser Entwicklung war die passive Strategie. In dieser Stufe
wurden die Daten manuell gesammelt. Fiir die Verwaltung der Daten wurden die tradi-
tionellen Datenbanken eingesetzt. Traditionelle Datenbanken konnten die Anforderungen
der kleinen Datenmengen erfiillen. In der zweiten Stufe wurde die Echtzeitdatenerfassung
mittels RFID (Radio Frequency Identifikation), Barcodes, Ethernet, drahtloser Netzwer-
ke usw. realisiert. In der niichsten Stufe wurden die Machine-Learning-Applikationen und
kiinstliche Intelligenz (beispielsweise data mining, cloud computing und neuronale Netz-
werke) eingesetzt, um das Systemverhalten vorhersagen zu kénnen. Beispielsweise fiir diese
sind predictive maintanence und predictive quality. In der aktuellen Stufe ist das Ferti-
gungssystem in der Lage, anhand zur Verfiigung stehender pradikativer Informationen,
autonome Entscheidungen zu treffen. In der aktuellen Stufen spielt DT eine sehr wichtige
Rolle. Er wird eingesetzt, um eine ausfiihrliche Beschreibung (Verhalten, Eigenschaften,
Funktionen usw.) der physischen Entitdten bereitzustellen. In den folgenden Abschnitten

Digital Twin

Simulation-based
System Design Simulation is a core
functionality of systems

by means of seamless

Simulation allows a

Individual
Application

Simulation is limited to
very specific topics by
experts, e.g. mechanics

Simulation
Tools

Simulation is a standard
Tool to answer specific
design and engineering
questions, e.g. fluid
dynamics 1985+

systematic approach to
multi-level and
disciplinary systems
with enhanced range
of applications, e.g.
model based systems
engineering
2000+

assistance along the
entire life cycle, e.g.
supporting operation
and service with direct
linkage to operation data

2015+

1960+

Abbildung 2.12: Entwicklung der Simulation [17]

werden verschiedene Anwendungen eines DT erldutert.

2.5.1 Digitaler Zwilling als Validierungskomponente
Die Validierung der Prozessfithrung kann in vier verschiedenen Systemkonfigurationen er-

folgen:

Reale Anlage und reales Steuerungssystem Dabei handelt es sich um die traditionellen
Automatisierungssysteme. Test und Verifikation werden in diesen Systemen wihrend des
realen Prozesses durchgefiihrt.

22

Il 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.6 Laufzeitumgebungen

Hardware-in-the-Loop Bei der Hardware in the Loop-Technologie wird ein reales einge-
bettetes System iiber seine I/Os mit einer Nachbildung der realen Umgebung des Systems
verbunden. Damit soll eine Plattform fiir Tests des Automatisierungssystems bereitgestellt
werden. Dies ermdoglicht das Austesten der entwickelten Software auf der Zielhardware mit-
tels eines Hardware-Emulators [89], [12], [99].

Software-in-the-Loop Im Gegensatz zu Hardware-in-the-Loop wird bei der Software in
the Loop-Technologie keine bestimmte Hardware verwendet [87]. Das bedeutet, dass die
entwickelte Software nicht auf der Zielhardware, sondern auf einem Entwicklungsrechner
getestet wird.

In dieser Arbeit wird, fiir die Validierung der deployten Komponenten und Optimie-
rungsvorgéinge eine Umgebung fiir Software-in-the-Loop-Tests eingesetzt. Die Software in
the loop Applikation lauft auf der gleichen Hardware, wie die Prozessfithrungsapplikation.

2.5.2 Digitaler Zwilling fiir Beobachtung und Optimierung

Der Begriff des Beobachters ist aus der Regelungstechnik bekannt. Eine der Beobach-
tungsmethoden in der Regelungstechnik wird von Luenberger vorgestellt. Der so genannte
Luenberger Beobachter besteht aus der Parallelschaltung eines Beobachters und eines Sy-
stemmodells. Dabei wird die Differenz der Zustandswerte an das Systemmodell geschickt.
In dieser Arbeit zielt der Beobachter darauf ab, die Abweichung zwischen den Prozesswer-
ten und den erwarteten Werten zu erkennen. Der Beobachter lauft parallel zum Prozess
und {iberwacht sein Verhalten. Dies bendtigt ein Simulationsmodell das prozessparallel
laufen kann. Stehen solche Prozessmodelle zur Verfiigung, dann kénnen sie auch fiir eine
prozessbegleitende Optimierung eingesetzt werden.

Verwaltungsschale

Die Verwaltungsschale (standardisiert in [30]) ist eine digitale Darstellung eines Assets
withrend seines Lebenszyklus [109], [18], [77]. Das Ziel der Verwaltungsschale ist es konsi-
stente Informationen iiber das Asset bereitzustellen. Beispielsweise kann die Verwaltungs-
schale einer Bohrmaschine u.a. Informationen iiber Hersteller, Drehgeschwindigkeit, Bohr-
tiefe enthalten. Die Verwaltungsschale ermoglicht sowohl eine einheitliche Informations-
modellierung als auch eine einheitliche Schnittstelle fiir den Zugriff auf die Daten. Verwal-
tungsschale und Asset bilden zusammen eine 140 Komponente. Der Begriff iiberlagert sich
heute in weiten Bereichen mit dem Begriff des DT [110].

2.6 Laufzeitumgebungen

Laufzeitumgebungen sind die Grundlage fiir die Entwicklung und Ausfithrung von Mo-
dellen und Anwendungen in der Prozessautomatisierung. Eine der Hauptkomponenten
der Laufzeitumgebungen in automatisierungstechnischen Anwendungen sind die FBs. Ein
anwendungs- und herstellerneutraler Ansatz zur Modellierung und Beschreibung von Lauf-
zeitumgebungen wird in [47] vorgestellt.

23

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

Dynamische Laufzeitumgebungen

Der Automatisierungsprozess ist in zwei Phasen unterteilt, ndmlich der Entwicklung und
dem Engineering. Diese Phasen sind in Abb. 2.13 dargestellt. In der Entwicklungsphase
werden neue FB-Typen implementiert [118]. Die Implementierung kann dabei in verschie-
denen Programmiersprachen durchgefiihrt werden. Die Engineering-Phase umfasst die In-
stanziierung, Konfigurierung und Verbindung von FBs zum Aufbau von Sequential State
Charts (SSC)s und CFCs. Dynamische Laufzeitumgebungen bieten die Moglichkeit, die
Prozessfiihrungsanwendung auch wihrend der Laufzeit zu manipulieren. Im Folgenden
werden einige Technologien fiir Laufzeitumgebungen besprochen.

Entwicklung Engineering

c L

s ([™) D > 0
i

)3 Offline > Laufzeit >
Entwicklungsumgebung Laufzeitumgebung

Abbildung 2.13: Dynamische Laufzeitumgebungen [34]

ACPLT/RTE

Die Open-Source-Laufzeitumgebung ACPLT/RTE (Aachener Prozessleittechnik Runtime
Environment) wird am Lehrstuhl fiir Prozessleittechnik der RWTH Aachen entwickelt.
Sie wird bereits in diversen Forschungs- und Industrieprojekten eingesetzt. Sie verfiigt
iiber ein eigenes Objektmanagementsystem und ein Metamodell, mit dessen Hilfe Objek-
te innerhalb des Systems erstellt werden konnen [70]. Die Kommunikation von Objekten
und Metadaten wird durch das Kommunikationsprotokoll ACPLT/KS (Kommunikations-
system) oder Open Platform Communications Unified Architecture (OPC UA) realisiert
[1], [53]. Das Objektmanagementsystem bietet ein, in ANSI C implementiertes, Object
Oriented (OO)-Framework. Bekannte Features der OO-Programmierung wie Vererbung,
Aggregation, Klasse werden von ACPLT/OV zur Verfiigung gestellt. OV stellt eine Ba-
sisklasse von Objekten, die von Benutzern erweitert werden konnen, bereit. Jede Klasse
gehort zu einer Bibliothek und besteht aus Variablen und Operationen. Die wéhrend der
Entwicklungsphase in ACPLT/OV definierten Klassen konnen im OV-Laufzeitsystem in-
stanziiert werden. Die instanziierten Klassen konnen verwendet werden, um gewiinschte
Anwendungen zu implementieren. Der ausfithrbare Code enthiilt die Metainformationen.
Dies ermoglicht den Zugriff auf die Klassenschnittstellen wahrend der Laufzeit, so dass
eine Manipulation von Objekten wihrend der Laufzeit moglich ist.

24

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2.6 Laufzeitumgebungen

ACPLT/KS ACPLT/KS ist das Kommunikationssystem von ACPLT/RTE. Dieses Kom-
munikationssystem verwendet Transmission Control Protocol (TCP)/IP als Grundlage und
bietet zusitzlich Dienste wie getVar (um einen Wert aufzurufen), setVar (um einen Wert
zu definieren).

4DIAC FORTE

4Diac (The Framework for Distributed Industrial Automation and Control) ist ein Eclipse-
Projekt, das eine Open-Source-Entwicklungs- und Laufzeitumgebung hervorgebracht hat.
Diese Laufzeitumgebung ist IEC 61499-kompatibel [95]. Der modulare Aufbau von 4diac
ermoglicht das Laden von Add-ons als Bibliotheken. Es unterstiitzt diverse OSs wie eCos,
Cygwin und Linux und bietet eine ereignisbasierte Anwendungsentwicklung. Auflerdem
bietet 4diac eine erweiterbare Kommunikationsschicht zur Bereitstellung einer flexiblen
Kommunikationsinfrastruktur. Es unterstiitzt verschiedene Kommunikationsprotokolle wie
Ethernet, OPC UA und MQTT.

2.6.1 Industrie-PCs und eingebettete Systeme

Die eingebetteten Systeme und IPCs werden zunehmend im industriellen Bereich einge-
setzt. Sie bringen viele Vorteile wie Robustheit, niedrige Preise, Effizienz etc. mit sich.
Ahnlich wie eine SPS bestehen auch sie jeweils aus einer CPU, Speicher, Kommunikations-
modulen und I/O-Modulen. Es bestehen jedoch einige Unterschiede zwischen ihnen. Die
Unterschiede sind unten aufgefiihrt [79]:
e Modularitdt: SPSen sind modular aufgebaut. Die Module einer SPS kénnen nach
Bedarf durch andere Module ersetzt werden.

e Programmiersprache: Die Programmiersprachen der SPSen basieren auf FBs. Ein-
gebettete Systeme werden in hoheren Programmiersprachen wie C oder C++ pro-
grammiert.

e Safety: SPSen bicten Kommunikationskaniile zur Uberwachung der Vorgénge.

e Robustheit: SPSen haben keine beweglichen Komponenten. Dies ermdglicht den
dauerhaften Betrieb in der Anlagenumgebung.

e Operation: SPSen besitzen ein eingebettetes RTOS. Sie erfiillen die Echtzeitanfor-
derungen der Prozessfithrung. Sie sind fiir die Prozessautomatisierung konzipiert und
laufen ohne weitere Dienstprogramme oder System-Updates.

e Kosten: SPSen sind kostenintensiver als eingebettete Systeme und IPCs.

e Zertifizierung: Ein weiterer Faktor betrifft die Zertifizierung. In vielen Projekten
wird zertifizierte Hardware bendotigt. In diesen Fillen haben SPSen gegeniiber einge-
betteten Systemen einen Vorteil.

2.6.2 Betriebsmittel und MaBnahmenmodell

Das Betriebsmittel und Mafinahmanmodell wurde in [68] vorgestellt. Dieses Modell be-
schreibt eine hierarchische Prozesssteuerung, bei der jede Ebene eine bestimmte Funktio-
nalitidt aufweist. Die Hierarchie besteht aus folgenden Ebenen (Abb. 2.14):

25

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

2 Grundlage und Stand der Technik

Einzelsteuereinheiten enthalten die Steuerlogik einzelner Aktoren wie Ventile und Pum-

pen.

Gruppensteuereinheiten werden benutzt, um Einzelsteuereinheiten (ESE)s geméif Re-

zepten zu orchestrieren.

MaBnahmen sind Produktionsrezepte.

Warten In Bearbeitung Fertig

MaRnahmen MaRnahme 3 MaBnahme 2 MaBnahme 1
[]

Gruppensteuer-
einheiten

Einzelsteuer-
einheiten

Abbildung 2.14: Steuerungshierarchie

Die Flexibilitat in dieser Architektur basiert auf den Mafinahmen, welche dynamisch
instanziiert und ausgefithrt werden kénnen.

26

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

3 Anforderung an zukiinftige
Automatisierungssysteme

3.1 Anforderungen

In diesem Kapitel werden die Anforderungen der zukiinftigen Automatisierungssysteme,
die in der vorgeschlagenen Architektur berticksichtigt werden, vorgestellt. Diese Anforde-
rungen zielen darauf ab, die Vernetzung und Agilitét der Steuerungssysteme zu erhohen.
Im Zuge der Digitalisierung miissen auch die SPS-Systeme in das 14.0 Produktionsumfeld
integriert werden [61]. Die Vernetzung und das Zusammenspiel von I'T und OT &ndern auch
die Anforderungen an SPS-Systeme. Diese Anforderungen kénnen allgemein, wie folgt auf-
gelistet werden:

e Leistungsfihige Ubertragung von Feld- und Automatisierungsdaten an iiberlagerte
Anwendungen

e Prozessbegleitende Optimierung und Uberwachung
e Effiziente interne Kommunikation

e Lokale Komponentenverwaltung

e Dynamisches Komponentenmanagement

e Explizite Verwaltung und Sicherstellung von QoS-Eigenschaften

Unabhéngig von diesen zusiitzlichen Aufgaben miissen die prozessbezogenen Komponenten
ihre klassischen Management- und Prozessfiihrungsaufgaben weiterhin zuverlissig und si-
cher erfiillen. Auch die fiir sie eingefiihrten Engineering- und Instandhaltungsmafinahmen
sollen in gewohnter Weise weiter moglich sein. Die aufgelisteten Anforderungen werden in
den néchsten Abschnitten ausfiihrlicher erortert.

3.2 Leistungsfihige Ubertragung von Feld- und
Automatisierungsdaten an iiberlagerte Anwendungen

Die Ubertragung von Feldinformationen in die Cloud (z.B. eine zentrale Optimierungs-
einheit) stellt eine Basis fiir weitere Optimierungen und datenbasierte Entscheidungen in
Automatisierungssystemen bereit. Allerdings muss dies mit einer sicheren Methode er-
folgen. Das bedeutet, dass durch diese Kommunikation keine Konfiguration- oder Para-
meterdinderungen in der Prozessfithrung moglich werden darf. Die Informationen diirfen
nur in eine Richtung, ndmlich von Applikationen hoherer Kritikalitéit (Prozessfithrung) zu

27

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

3 Anforderung an zukiinftige Automatisierungssysteme

Applikationen niedrigerer Kritikalitdt (IT) flieBen. Fiir diese Kommunikation gelten die
Anforderungen der NAMUR-Diode. Abb. 3.1 stellt den unidirektionalen Informationsaus-
tausch zwischen der Automatisierungstechnik und einer Cloud auf Basis der NAMUR-
Diode dar [69], [11]. Die Realisierung dieses Konzeptes wird im weiteren Verlauf dieser
Arbeit erldutert. Diese Kommunikation muss bestimmte Anforderungen erfiillen:

Predictive Predictive Process
Maintenance Quality optimization

1l

| Cloud-Interface H<l—| Prozessfiihrung |

Abbildung 3.1: Ubertragen von Feldinformationen

e Riickwirkungsfrei: Die Kommunikation darf die Echtzeitfahigkeit, Verfiigharkeit
und weitere wichtige Anforderungen des Systems nicht beeinflussen.

¢ Bandbreitig: Die Kommunikation muss die Ubertragung einer grofien Menge an
Daten erméglichen.

e QoS-Eigenschaften: Die Kommunikation muss verschiedene QoS-Eigenschaften,
beispielsweise Publish/Subscriber oder eine zyklische Ubertragung der Daten, anbie-
ten konnen.

3.3 Prozessbegleitende Optimierung und Uberwachung

Wihrend frither Simulation extern in speziellen Systemen realisiert wurde, geht heute der
Trend dahin, Simulationsaufgaben modular in der Prozessumgebung zu realisieren. Die
DT-Architektur unterstiitzt diese Vorgehensweise. Die Entwicklungen auf dem Gebiet der
Simulation wurden in Kap. 2 erwahnt. Die neueste Generation von Simulationen wird
digitaler Zwilling (DT) genannt. DT kann als eine Basis fiir Prozessoptimierungen, pre-
dictive maintenance und Fehlerdiagnosen verwendet werden. Dafiir muss jedoch die Pro-
zessfithrung mit dem DT interagieren konnen. Die Interaktion benotigt eine Infrastruktur,
die eine sichere und echtzeitfihige Kommunikation mit dem DT erlaubt. Dariiber hin-
aus muss eine modulare Infrastruktur fiir diverse Simulationsmodelle erméglicht werden,
welche zusammen agieren und Co-Simulationen realisieren. Die Anforderungen fiir eine
Interaktion mit einer prozessparallelen Simulation konnen wie folgt gelistet werden:

e Eine strikte Trennung zwischen der Prozessfithrungsapplikation und der parallelen
Simulation

28

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

3.4 Effiziente interne Kommunikation

e Fine echtzeitfahige Kommunikation zwischen der Prozessfithrungsapplikation und der
parallelen Simulation

e Eine Infrastruktur fiir die Verwaltung und Ausfithrung von Simulationsmodellen.

3.4 Effiziente interne Kommunikation

Neue Anwendungen zur Datenanalyse, Optimierung, predictive maintenance erfordern eine
breitbandige Anbindung an die Messung und Prozessfithrung. Mit der KAS-Architektur
ergibt sich die Moglichkeit, diese Module — oder zumindest die notwendigen breitbandig
anzubindenden Vorverarbeitungsmodule — auf einer Hardware zu konzentrieren. Damit
steht die Effizienz der KAS-internen Komponenten-Komponenten-Kommunikation im Fo-
kus. Diese Kommunikation muss einen minimalen Bedarf an Infrastruktur aufweisen, damit
die Skalierbarkeit nicht eingeschrinkt wird.

3.5 Lokale Komponentenverwaltung

Eine wesentliche Grundlage zur Erhohung der Flexibilitéit und Agilitit einer Automatisie-
rungslosung ist die Moglichkeit das Komponentensystem in der Betriebsphase zu modifizie-
ren. Dazu wird ein aktives Komponentenverwaltungssystem in der Betriebsphase benétigt.
Aus Sicherheits- und aus Standardisierungsgriinden (Zielsystemunabhingigkeit) fordert die
KAS-Architektur ein lokales Verwaltungssystem, das die Komponentenverwaltungsdien-
ste als Standarddienste anbietet. Dariiber hinaus benétigt die Realisierung verschiedener
Vorginge wie das Deployment, die Kommunikation, die Ressourcenverwaltung eine ent-
sprechende Orchestrierung der beteiligten Komponenten. Diese wird ebenfalls vom lokalen
Verwaltungssystem durchgefiithrt. Komponenten haben je nach Anwendungsfall und Rol-
le unterschiedliche Méchtigkeit. Der Begriff Komponente umfasst in der 140-Terminologie
sowohl physische Komponenten, als auch nicht-physische Komponenten wie z. B. Soft-
warekomponenten. Technische Komponenten sind vordefinierte, in sich geschlossene und
individuell handhabbare Einheiten, die eine konkrete Rolle in einem technischen System
erfiillen [94]. In der KAS Architektur versteht man unter Komponenten die nicht physi-
schen Komponenten der Komponentenhierarchie:

e Funktionsbaustein und Prozessfiihrung als Komponente
e Container als Komponente

e Partition als Komponente

Funktionsbaustein und Prozessfiihrung als eine Komponente

Funktionsbausteine wurden in IEC 61131-3 und IEC 61499 standardisiert. Sie bestehen
aus Eingingen, Ausgingen und einer internen Funktion (Logik), die das Verhalten des FB
bestimmt. Sie konnen miteinander verbunden werden, um komplexe Funktionsblockdia-
gramme zu erstellen. In klassischen Leitsystemen sind die FBs gekapselt und konnen als
Komponenten gehandhabt werden.

29

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

3 Anforderung an zukiinftige Automatisierungssysteme

Im letzten Kapitel wurde eine komponentenbasierte Hierarchie fiir die Prozessfithrung
vorgestellt. Diese Steuerungshierarchie besteht aus ESEs und Gruppensteuereinheiten
(GSE)s, die wiederum als Prozessfiihrungskomponenten betrachtet werden. Diese Kom-
ponenten bieten unterschiedliche Féhigkeiten und nehmen unterschiedliche Rollen ein.
Sie kénnen entsprechend den erforderlichen Rollen und Fahigkeiten erstellt und mitein-
ander verkniipft werden. Wenn die Rolle in der Prozessfiihrung nicht mehr erforderlich
ist, wird die Komponente geloscht. Abb. 3.2 zeigt die interne Architektur einer Pro-
zessfithrungskomponente. Die interne Architektur enthélt unterschiedliche Fahrweisen und
Fihigkeiten sowie vier verschiedene Zusténde.

Kommandoeingang

| Zustdande || Fahrweisen |
1 1
+ Qv

AR S
EREN

Abbildung 3.2: Prozessfiihrungskomponente [46]

Container als eine Komponente

Containertechnologien wurden im Abschnitt 2 vorgestellt. Die Container miissen ebenfalls
verwaltet werden, um das Produktionsziel zu erfiillen. Es existieren bereits einige Softwares
zur Verwaltung von Containern, wie z.B. Kubernetes [21].

Partition als eine Komponente

Neben Docker-Containern miissen auch Hypervisor-Partitionen verwaltet werden. Diese
werden ebenfalls als Komponenten betrachtet. Die Hypervisor Partitionen hosten die Con-
tainer und FBs und bilden auf dieser Weise die unterste Ebene der Komponenten.

Zusammenfassung

Das Ziel ist ein Verwaltungssystem zu konzipieren, das diese Komponente verwaltet und
orchestriert. Die Anforderungen an dieses Verwaltungssystem koénnen wie folgt aufgelistet
werden. Das Verwaltungssystem muss:

30

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

3.6 Dynamisches Komponentenmanagement

e lokale Komponentenverwaltungsdienste (create, read, update und delete),

Dienste fiir die Verwaltung der Kommunikation zwischen Komponenten,

Dienste fiir das Deployment neuer Komponenten und

Dienste fiir die Ressourcenverwaltung anbieten.

3.6 Dynamisches Komponentenmanagement

Das dynamische Deployment zur Laufzeit erhoht die Féhigkeit des Systems, dynamisch
auf Verdnderungen und Anforderungen zu reagieren. Es ist dabei wichtig zwischen den
folgenden Begriffen zu unterscheiden:

e Deployment: Als Deployment wird der Vorgang der Zuweisung einer Software-
Finheit an einen Rechenknoten bezeichnet.

e Redeployment: Das Redeployment ist die Verlagerung einer Software von einem
Rechenknoten auf einen anderen.

Die Ausstattung der Prozessfithrungsapplikation mit einem dynamischen Deploymentssy-
stem erhoht die Agilitdt und Anpassbarkeit des Systems. In der KAS-Architektur kénnen
sowohl Container als auch FBs dynamisch deployt werden. Die Partitionen werden in der
Engineeringphase statisch angelegt.

Fiir den Deploymentvorgang miissen die folgenden Vorbedingungen erfiillt sein:

e ID: Die Komponenten miissen eindeutig identifizierbar sein.

e Erforderliche Ressourcen: Die Ressourcen zur Ausfithrung der Komponente
miissen auf der Hardware vorhanden und verfiighar sein.

e Validierung: Die deployten Komponenten miissen vor der Integration in die opera-
tive Ausfithrung validiert werden.

3.7 Explizite Verwaltung und Sicherstellung von
QoS-Eigenschaften

Die Komponenten haben gemifl ihrer Aufgaben verschiedene Anforderungen an ihren
QoS. Dazu zihlen z.B. Anforderung an Verfiigharkeit, Echtzeit, Integritat. Beispielsweise
haben die Komponenten, die in der Prozessfithrung (dhnlich wie CPC in der NAMUR-
Architektur) eingesetzt sind, eine sehr hohe Anforderung an Verfiigbarkeit. Bei einer Op-
timierungsapplikation hingegen ist dies nicht der Fall. Die Partitionen besitzen gemif der
Anwendungen, welche sie kapseln, unterschiedliche Fihigkeiten, Eigenschaften und Zu-
griffsrechte. Diese konnen in die folgenden Kategorien unterteilt werden:

e Integritit: Die Anwendungen konnen unterschiedliche Safety oder Securitynive-
aus haben. Im Safetybereich kénnen die Anforderungen z. B. unterschiedlichen SIL-
Ebenen entsprechen.

31

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

3 Anforderung an zukiinftige Automatisierungssysteme

o Echtzeitfihigkeit: Die Anwendungen, die eine Anforderung an Echtzeit haben,
konnen in einer Partition gekapselt werden, die mit einem echtzeitfihigen Betriebs-
system ausgestattet ist. Echtzeitfahigkeit kann sowohl fiir die Ausfithrung der Pro-
zesse als auch fiir die Kommunikation zwischen den Komponenten definiert werden.
Dafiir konnen die angeforderten Jitter-Bereiche fiir die Ausfithrung der Prozesse oder
Deadlines fiir die Ubertragung der Daten definiert werden.

e Zugriffsrechte: Die Partitionen haben gemifl ihrer Anwendungen unterschiedliche
Zugriffsrechte und Treiber. Die Zugriffsrechte beinhalten u.a. den Zugriff auf:

— I/O-Geriite (Bus-System): Nur die Partitionen, die ein Zugriffsrecht auf
I/O-Geriite haben, kénnen auf diese zugreifen.

— Scheduling-Tabelle und Memory Management Unit (MMU): Die Par-
titionen, die einen Zugriff auf Scheduling-Tabelle und MMU haben, kénnen das
Schedulingsschema der Hardware-Ressourcen dndern.

— Kommunikationsverwaltungschnittstelle: Die Partitionen, die einen Zu-
griff auf die Kommunikationsverwaltungschnittstelle haben, kénnen die Kom-
munikationsverbindungen zwischen vorhandenen Komponenten verwalten.

— Kommponentenverwaltungsschnittstelle: Die Partitionen, die einen Zu-
griff auf die Kommponentenverwaltungschnittstelle haben, kénnen die vorhan-
denen Komponenten verwalten (beispielsweise, aktivieren und deaktivieren).

Dabei konnen auch weitere Zugriffsrechte, wie der Zugriff auf GPU, zusétzlichen
Speicher, Speicherdirektzugriff, Cloud-Schnittstelle im Betracht gezogen werden.

o Fihigkeiten: Die Partitionen kénnen unterschiedliche Féhigkeiten besitzen. Die
Fihigkeiten umfassen Read/Write-Rechte auf andere Partitionen, das Neustarten,
die Aktualisierung und die Ausschaltung anderer Partitionen.

Alle Komponenten miissen den fiir sie relevanten QoS-Eigenschaften als Standardattribut
zugeordnet sein. Die Partitionen miissen zeigen, welche QoS-Eigenschaften sie unterstiitzen
konnen.

32

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

4.1 Aligemeine Architektur

In diesem Kapitel wird eine Architektur vorgestellt, die als komponentenbasierte Archi-
tektur fiir Automatisierungssysteme (KAS) bezeichnet wird. In der KAS-Architektur wer-
den die Anwendungen in Komponenten geméfl ihrer Anforderungen, Quality of Service
(QoS)-Eigenschaften und Abhéngigkeiten gekapselt. Die Architektur erlaubt eine strikte
Trennung der Komponenten in verschiedenen virtuellen Umgebungen, so dass das Aktua-
lisieren, Zuriicksetzen oder auch Modifizieren einer Anwendung den Betrieb anderer An-
wendungen in anderen Komponenten nicht beeinflussen kann. Die KAS-Architektur sieht
eine Kapselung durch Komponenten auf drei unterschiedlichen Ebenen vor:

e der Kapselung in Partitionen
e der Kapselung in Containern

e der Kapselung in FBs

4.2 Komponentenhierarchie

Abb. 4.1 stellt die KAS Komponentenhierarchie formal dar. Die unterste und fiir das KAS-
System wesentliche Kapselung ist die Kapselung in Partitionen. Eine Partitionen kann eine
Anwendung beinhalten oder diverse Container (z.B. Docker Container), die jeweils wie-
der eine Anwendung oder ein FB-System kapseln. Die Kapselung in Containern bildet
die ndchste Komponentenebene. Die Container konnen eine Anwendung beinhalten oder
diverse FBen, welche zusammen die Anwendung bilden. Die FBen bilden die nichste Kom-
ponentenebene. Alle drei Varianten konnen beliebig gemischt auf einer Hardwareplattform
betrieben werden. Abb. 4.2 stellt diese Aufbauméglichkeiten dar.

Die KAS-Architektur besteht grundsitzlich aus einem Verwaltungspartition, einer
Interface-Partition und diversen Anwendungspartitionen. Die Verwaltungspartition bein-
haltet ein Verwaltungssystem, das die Komponenten (Funktionsbausteine (FB), Pro-
zessfithrungskomponenten (PF), Container und Partitionen) gemif den Anforderungen
orchestriert. Die Interface-Partition ist die einzige Partition, die mit iiberlagerten Anwen-
dungen kommunizieren darf. Die KAS-Architektur kann eine beliebige Anzahl an Anwen-
dungen beinhalten. Diese Anwendungen konnen, abhéngig von der industriellen Doméne,
unterschiedliche Funktionalititen anbieten. Das Verwaltungssystem und die Interface-
Partition werden in den néchsten Abschnitten detaillierter erldutert.

Der Hypervisor stellt eine Abstraktionsschicht zwischen der Hardware und den Partitio-
nen bereit. Auf diese Weise reduziert er die Abhéingigkeit zwischen Software und Hardware.

33

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

Anwendung
enthalt
e Verwaltet _____ s PF [l FB
1 1
H = " ' T = Komponenten
H ! Ebene 3
Verwal i
FB-Manager }____e_r\ivg_tgt______________ -—---
1
Q
pomemeee N Container
I
i 1.%
! Verwaltet
! Komponenten
L Ebene 2
Container
1 Manager
Q g
| Verwaltungspartition li
[S
. e/ D: _ Partitionen |
Partition | _Verwaltet _: 1*
Manager l - Komponenten
Ebene 1
| Hypervisor |
l1
| Hardware |

Abbildung 4.1: Metamodell der Komponentenhierarchie

Partitionen stellen den iibergeordneten Komponentensystemen und Anwendungen eine vir-
tuelle Umgebung (VM) zur Verfiigung. Diese ist gekennzeichnet durch ihre QoS und ihre
Abhingigkeiten:

e QoS: wie beispielsweise Verfiigharkeit, Echtzeitfihigkeit und Sicherheitsanforderun-
gen

e Abhingigkeiten: wie beispielsweise Betriebssystem, Bibliotheken, Treiber und Zu-

griffsrechte auf I/Os.

4.2.1 Kommunikation zwischen den Partitionen

Das KAS-System sieht eine strenge Regulierung und Uberwachung der Kommunikations-
kanile zwischen den Partitionen vor. Prinzipiell stehen folgende Kommunikationsformen
zur Verfligung:

34

Il 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4.2 Komponentenhierarchie

Partition 1 Partition 2 Partition 3
Container Container B B
FB App App App App
App
0s 0s oS
Hypervisor
Hardware

Abbildung 4.2: Interner Aufbau der Partitionen

Kommunikationsform 1: Unidirektionale echtzeitfihige Ubertragung von Telegrammen
von einem Senderport an einen Empfangerport. Diese Kommunikationsart ist eine syn-
chrone Kommunikation, die aus folgenden Komponenten besteht:

e Senderports: Die Senderports konnen nur fiir das Senden der Daten verwendet wer-
den.

e Empfiangerports: Die Empfiangerports werden eingesetzt, um Daten zu empfangen.

e Verbindungen: Die Verbindungen realisieren Kommunikationskanile zwischen
Sender- und Empfingerports fiir den Datenaustausch.

Partition 1 Partition 2

Senderport1 L 1 Empfangerport 1

Senderport2 L[1 Empfangerport 2

Abbildung 4.3: Unidirektionale Kommunikation

Abb. 4.3 stellt zwei Partitionen, die mittels Ports kommunizieren dar. In dieser Dar-
stellung hat die Partition 1 zwei Senderports und die Partitionen 2 zwei Empféngerports.
Diese sind durch Verbindung 1 und 2 miteinander verbunden.

Kommunikationsform 2: Die Komponenten schreiben ihre Nachrichten und Anfragen in
einen geteilten Speicherbereich, auf welchen die anderen Partitionen Lese-Recht haben und
diese Nachrichten abholen konnen. Diese Kommunikationsart ist in Abb. 4.4 dargestellt.

35

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

Liest

L v

Antrag 1
Partition 1 Antrag 2 Partition 2
Antrag 3
Antrag 4

Abbildung 4.4: Kommunikationsform 2

Partition 1 schreibt ihre Anfragen in ihren Kommunikationsport. Partition 2 liest und
bearbeitet die Anfragen der Reihenfolge nach. Diese Kommunikationsart ist eine asyn-
chrone Kommunikation. Eine Synchronisierung der Komponenten ist nicht erforderlich.
Diese Kommunikationsart ist besonders in einem Fall interessant, in dem eine Komponen-
te niedrigerer Kritikalitdt mit einer Komponente héherer Kritikalitdt kommunizieren soll.
Aufbau der Verbindungsarchitektur:

e Die statische Phase (Engineering-Phase): In dieser Phase wird die Anzahl der Parti-
tionen festgelegt. Dariiber hinaus werden die Kommunikationsports und die Verbin-
dungen generiert. Diese konnen zur Laufzeit nicht mehr geloscht oder erzeugt werden.
Die Rechte und Fihigkeiten der Partitionen (Read/Write auf andere Partitionen oder
Zugriffsrechte auf externe Geréte (z.B. I/Os)) werden ebenfalls in dieser Phase zu-
geordnet. Die zugewiesenen Rechte und Féhigkeiten sind prinzipiell vorhanden, aber
nicht zwangslaufig alle aktiviert.

e Die dynamische Phase: In der dynamischen Phase konnen beispielsweise Verbindun-
gen aktiviert oder deaktiviert werden.

4.3 Systempartitionen

In der KAS-Architektur wird ein Verwaltungssystem fiir die Verwaltung sémtlicher Kom-
ponenten und Kommunikationskanéle eingesetzt. Dieses Verwaltungssystem bietet Verwal-
tungsdienste an. Das Verwaltungssystem darf durch eine sichere Schnittstelle mit einem
Planungssystem kommunizieren. Ziel dieser Kommunikation ist die Orchestrierung der Ver-
waltungsdienste [9]. Die Dienste und die Fihigkeiten, die durch das Verwaltungssystem zur
Verfiigung gestellt werden, werden im néichsten Abschnitt erldutert. Die Kommunikation
kann entweder direkt zwischen den anderen Komponenten aufgebaut werden oder indirekt
iiber das Verwaltungssystem abgewickelt werden. Im zweiten Fall, werden die Informatio-
nen zunéchst an das Verwaltungssystem gesendet. Darauthin leitet das Verwaltungssystem
die Daten an den Empfanger weiter. Die andere Systempartition der KAS-Architektur ist
das Interface. Die Interface-Partition ist die einzige Partition, die nach aufen (den un-
geschiitzten Bereich) kommunizieren darf. Die Partition stellt eine Méglichkeit fiir den Da-
tenaustausch mit tiberlagerten Anwendungen bereit. Die KAS-Architektur beinhaltet auch

36

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4.3 Systempartitionen

eine beliebige Anzahl an Anwendungspartitionen. Diese kénnen unterschiedliche Aufgaben
und Anforderungen haben. KAS stellt eine Infrastruktur fiir den Betrieb dieser Anwen-
dungen, sowie deren Kommunikation mit anderen Komponenten bereit.

4.3.1 Verwaltungssystem

Das Verwaltungssystem iiberwacht und verwaltet die Operationen und die Komponenten
in der KAS-Architektur. Sie bietet Verwaltungsdienste an, welche fiir die Komponentenver-
waltung eingesetzt werden. Die Verwaltungsdienste konnen auch von Klienten (iiberlagerte
Anwendungen) aufgerufen werden, um bestimmte Funktionalitdten auf dem System aus-
zufithren. Die Kommunikation zwischen dem Verwaltungssystem und dem Planungssystem
erfolgt iiber eine sichere Schnittstelle. Abb. 4.5 présentiert das Verwaltungssystem. Die
Verwaltungsdienste werden in diesem Abschnitt detaillierter erldutert.

Planungssystem

|

Verwaltungssystem T

Konfigurationsdienste

Kommunikationsdienste (Extern)

Kommunikationsdienste (Intern)

Komponentenverwaltungsdienste

Ressourcenverwaltungsdienste

Abbildung 4.5: Interne Struktur des Verwaltungssystems

Das Verwaltungssystem umfasst folgende Konzepte:

e Kommunikationsdienste (Intern): werden zur Verwaltung der Kommunikationsver-
bindungen zwischen den Komponenten eingesetzt

e Kommunikationsdienste (Extern): verwalten die Kommunikation mit externen Kom-
ponenten. Das Verwaltungssystem agiert wie ein Gateway zwischen hoch kritischen
Applikationen und Applikationen geringerer Kritikalitéit (NAMUR-Diode)

e Konfigurationsdienste: werden zur Validierung und Integration der deployten Kom-
ponenten eingesetzt

e Komponentenverwaltungsdienste: befassen sich mit Dienstleistungen fiir die Kompo-
nentenverwaltung. Es handelt sich dabei um Dienste wie Create, Delete, Copy und
Update

37

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

e Ressourcenverwaltungsdienste: teilen die Hardware-Ressourcen einzelnen Anwendun-
gen/Partitionen zu

Das Verwaltungssystem hat eine Eingangsschnittstelle fiir den Empfang von Komman-
dos. Wie zuvor beschrieben kénnen diese Kommandos beispielsweise von einem Planungs-
system stammen. Die Semantik der Kommandos lautet wie folgt:

[Command1];[PARAMETER1=VALUE1,PARAMETER2=VALUE2,. . . |

Tabelle 4.1 présentiert einige Beispiele dieser Dienste.

Tabelle 4.1: Dienste der Komponentenverwaltung

Command Parameterl Parameter2
deploy component name docker container
upload component name docker container
create communication link | input port output port
delete communication link | input port output port
update resource allocation | aktivate scheduling schema X

aktivate container container X

deaktivate container container Y

Das Verwaltungssystem hat das Recht auf die Interface-Partition sowie andere Partitio-
nen zuzugreifen und Verdnderungen vorzunehmen. Auflerdem hat es das Zugriffsrecht zu
den Hardware-Ressourcenverwaltungsdienste, um die Ressourcen den Komponenten opti-
mal zuzuteilen.

4.3.2 Interface

Die interne Struktur der Interface-Partition ist in Abb. 4.6 dargestellt. Die Interface-
Partition ist die einzige Partition, die mit externen Komponenten (z.B. Cloud) kommu-
nizieren darf. Die Kommunikation aller lokalen Partitionen mit externen Komponenten
erfolgt iiber das Interface. Dariiber hinaus hostet die Interface-Partition die lokal gela-
denen Komponenten (Prozessfithrungskomponenten, Funktionsbausteine, Anwendungen)
bevor diese schlieBlich in die anderen Partitionen integriert werden. Das Ubersenden der
Prozessdaten zu den externen Komponenten erfolgt durch das Interface. Die Interface
Partition besitzt eine Schnittstelle, um Befehle zum Deployment neuer Komponenten zu
erhalten. Vor der Kommunikation mit externen Komponenten authentifiziert die Interface-
Partition den Kommunikationspartner. Danach wird die Komponente deployt. Die Kom-
ponente ist dann in der Liste der geladenen Komponenten der Interface-Partition vorhan-
den. Das Interface beinhaltet auflerdem eine Schnittstelle fiir die Dateniibertragung. Daten
miissen durch die Interface-Partition zu den externen Komponenten gesendet werden. Die
Ubertragung kann einmalig oder zyklisch erfolgen. Die zyklische Ubertragung wird iiber
das Pub/Sub-Schema durchgefiihrt.

38

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4.4 Verwaltungsdienste

Interface-Partition

Y

Pub/Sub

L4

Authentifizierung

Werte L}

Organisationsport Lokal geladene

Verwaltun ||
¢ (Deployment) Komponente AT—' Verwaltung

Abbildung 4.6: Interne Struktur der Interface-Partition

4.4 Verwaltungsdienste

Zur Realisierung der Konzepte stellt die Verwaltungskomponente entsprechende Dienste
und Ablaufprozeduren zur Verfiigung.

4.4.1 Interne Kommunikationsdienste

Die Kommunikation zwischen den Komponenten wird durch das Verwaltungssystem ge-
steuert. Falls keine direkte Kommunikation zwischen den Komponenten erlaubt ist, agiert
das Verwaltungssystem als Gateway und leitet die Daten an den Empfinger weiter. Da-
zu verfiigt es iiber verschiedene Kommunikationsprotokolle mit unterschiedlichen QoS-
Eigenschaften. Bei der Weiterleitung der Daten kénnen diese auch vom Verwaltungssystem
modifiziert oder gefiltert werden. Wenn eine direkte Kommunikation erlaubt ist, baut das
Verwaltungssystem eine direkte Kommunikationsverbindung zwischen den Komponenten
auf. Diese werden zur Laufzeit den Komponenten, die eine Kommunikationsverbindung
benotigen, zugeordnet. Aktuelle Kommunikationsverbindungen und Kommunikationsports
werden vom Hypervisor verwaltet. Der Hypervisor besitzt eine Liste der zur Verfiigung ste-
henden Kommunikationsports. Das Verwaltungssystem ist mit einer Schnittstelle zu dieser
Liste ausgestattet und kann die Kommunikationsverbindungen aktivieren oder deaktivie-

ren (Abb. 4.7).

Quality of Services

Die QoSs, die fir die Kommunikation zwischen Komponenten in KAS eingesetzt werden
konnen, sind:

e History: Diese QoS wird eingesetzt, um frithere Daten zu erhalten

e Realtime: Diese QoS wird fiir eine Realtime-Kommunikation zwischen den Kompo-
nenten eingesetzt

39

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

I

Verwaltungssystem

Kommunikations-

dienste
Hypervisor
Senderport | Empfangerport | Verbindung Zustand Typ
Port A PortB V_AB Aktiv Zyklisch
L] Port C Port D V_CD Nicht Aktiv | Nicht Zyklisch

Abbildung 4.7: Verwaltung der Kommunikationsverbindungen

e Filter: Diese QoS wird fiir die Steuerung des Datenflusses eingesetzt.
Die Dienste, die fiir die Steuerung der Kommunikation eingesetzt werden, sind:

o Kommunikationsport freischalten:
Dieser Dienst ermdglicht den Zugriff von Komponenten zu einem Port fiir die Kom-
munikation.

e Kommunikationsport sperren:
Dieser Dienst sperrt den Zugriff einer Komponente zu einem Port.

Durch diese Dienste wird die Kommunikation zwischen verschieden Komponenten gesteu-
ert.

4.4.2 Externe Kommunikationsdienste

Die Datenverarbeitung kann lokal oder zentral (durch eine iiberlagerte Anwendung z. B.
Cloud) durchgefiihrt werden. Bei der zentralen Verarbeitung der Daten fordert zunichst
die Cloud Informationen aus der Anwendung (z.B. einer hoch kritischen Partition) an.
Aus Sicherheitsgriinden lduft diese Anfrage durch die Interface-Partition. Diese schreibt
die Liste der angeforderten Informationen in ihre Ports, wodurch dem Verwaltungssystem
der Zugriff auf diese Liste ermoglicht wird. Das Verwaltungssystem liest daraufhin die An-
forderungen und stellt die Daten der Interface-Partition zur Verfiigung. Sollte es iiber die
angeforderten Informationen nicht verfiigen, fordert es diese von der entsprechenden Par-
tition (Beispielsweise Anwendung 1 in Abb. 4.8) an. Die Anwendung sendet daraufhin die

40

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4.4 Verwaltungsdienste

angeforderten Informationen iiber eine unidirektionale Kommunikationsverbindung zum
Verwaltungssystem.

Uberlagerte Anwendung

Anwendung 1 Verwaltungs- Interface
system

Liste der
Werte

Abbildung 4.8: Verwaltung der Kommunikationsverbindungen

4.4.3 Konfigurationsdienste

Die Konfigurationsdienste beschéftigen sich mit dem Deployment und der Inbetriebnahme
neuer Komponenten. Die neuen Komponenten werden deployt, um sich d&ndernden Anfor-
derungen des Systems gerecht zu werden. Konfigurationsdienste bestehen aus zwei Schrit-
ten, ndmlich dem Deployment und der Inbetriebnahme. Beim Vorgang des Deployments
werden erforderliche Komponenten heruntergeladen. Dabei umfasst die Inbetriebnahme die
Uberpriifung und Synchronisation der deployten Komponenten. Das Verwaltungssystem
ist in der Lage die Komponenten in jeder Partition zu deployen. Aus Sicherheitsgriinden
ist aber ein direktes Deployment der Komponenten in den Partitionen nicht erlaubt. Das
Deployment lauft iiber das Interface. Das Verwaltungssystem triggert den Deploymentvor-
gang einer Komponente in das Interface. Folgende Komponenten kénnen auf diese Weise
deployt werden:

o I'Bs
e Prozessfithrungskomponenten
e Container

Die Konfigurationsdienste werden zur Integration der deployten Komponenten eingesetzt.
Diese iiberpriifen deployte Komponenten vor der Integration ins System auf Plausibilitét.
Der Konfigurationsprozess besteht aus den folgenden Schritten:

e Die Komponente wird deployt. Dieser Vorgang wird vom Verwaltungssystem initiiert.
Die Komponente wird aus der Cloud in die Interface-Partition geladen.

e Die Komponente wird auf Plausibilitéit getestet.

e Die Komponente wird in die Ressourcen der Zielpartition integriert.

41

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

e Die Komponente wird aktiviert und synchronisiert.

Das Diagramm des behandelten Vorgangs ist in Abb. 4.9 dargestellt. Das Verwaltungssy-
stem triggert den Deploymentvorgang der Komponente X aus der Quelle Y. Die Kompo-
nente wird in der Interface-Partition deployt und in der Liste der lokal geladenen Kom-
ponenten abgelegt. Die geladene Komponente wird in einer Testplattform redeployt, um
iiberpriift zu werden. Die Ergebnisse der Uberpriifung werden daraufhin vom Verwaltungs-
system analysiert. Schliellich wird die Komponente in die Zielpartition integriert.

Das Ressourcenmodell dieses Vorgangs ist in Abb. 4.10 dargestellt. Aufler Deployment-
dienste bietet die Verwaltungskomponente auch Redeploymentdienste zur Ubertragung von
Komponenten aus einer Partition in eine andere Partition an.

4.4.4 Ressourcenverwaltung

Die Verwaltungskomponente analysiert den aktuellen Ressourcenbedarf der Partitionen
und #dndert das Scheduling-Schema, um die Anforderungen dieser zu erfiillen. Dabei muss
die jeweilige Prioritét der Applikationen betrachtet werden. Abb. 4.12 prisentiert das Klas-
sendiagramm der Ressourcenverwaltung fiir eine Anwendung auf Partitionsebene. Das Ver-
waltungssystem bietet Dienste zur Kommunikation, Speicherverwaltung und Aktivierung
neuer Scheduling-Schemata an.

Ablaufprozedur und zur Verfiigung stehende Dienste

Anwendungen, die mehr Ressourcen fiir die Ausfithrung bendtigen, als ihnen zugewie-
sen wurde, miissen diese zur Laufzeit beim Verwaltungssystem beantragen. Abb. 4.11
prisentiert diese Prozedur fiir zwei Partitionen. Die Partitionen schreiben ihre Anfrage
an ldngere Zeitpartitionierung (tp) in ihre Kommunikationsports. Das Verwaltungssystem
liest die Anfragen und ordnet ihnen die Ressourcen zu. Die Partitionen konnen zur Laufzeit
mehr Rechenzeit, mehr (Arbeits-)Speicher und Kommunikationsverbindungen anfordern:

e Request(tp):
Durch diese Anfrage kann eine neue Zeitpartitionierungsdauer gefordert werden.

e Request(Arbeitsspeicher):
Durch diese Anfrage kann ein groflerer Anteil des Arbeitsspeichers gefordert werden.

e Request(Kommunikationsverbindung):
Durch diese Anfrage kann eine Kommunikationsverbindung zu anderen Komponen-
ten gefordert werden.

Die Ressourcen werden nur dann zugeteilt, wenn sie die Funktionsweise der Anwendun-
gen hoherer Kritikalitdt oder Prioritéit nicht beeintrichtigen und vom Verwaltungssystem
genehmigt wurden. Folgende Dienste stehen zur Verfligung:

e Scheduling-Schema generieren:
Dieser Dienst generiert ein neues Scheduling-Schema entsprechend der neuen Anfor-
derungen.

e Scheduling-Schema aktivieren:
Dieser Dienst aktiviert ein neues Schedulingschema

42

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4.4 Verwaltungsdienste

Konfigurationsdienste
Verwaltungssystem Interface-Partition Testplattform Zielpartition
Triggert den
Deploymentvorgang von __ |
der Komponente X aus ;
der Quelle Y Interface
Partition
authentifiziert
die Quelle
r authentifiziert?
Ja
Komponente wird in
Interface deployt und
inder Liste der
geladenen
Komponenten
abgelegt ;
Komponente
Verwaltungskompone pqin wird in einer
nte analysiert die 4~ Testplattform
Simulationsergebnisse dzployt
Die
validiert? \ Ja » Komponente
wird integriert
Nein l
Die Komponente
Ende < wird synchronisiert
und aktiviert

Abbildung 4.9: Deployment und Inbetriebnahme einer FB-Komponente

43

216.73.216.36, am 20.01.2026, 13:12:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

Partition ist Ressource fiir »| container ist Ressource fiir

» Komponente

ist Ressource flr

Abbildung 4.10: Ressourcenmodell

Partition 1 Verwaltungssystem Partition 2
Sharedmemory . . Sharedmemory
Liest [Liest
< | Scheduler >
Request(tp) Request(tp)
Hypervisor
Hardware

Abbildung 4.11: Ressourcenverwaltung

e Speicherzuordnung aktualisieren:
Dieser Dienst aktualisiert die Speicherzuordnung entsprechend der neuen Anforde-
rungen.

o Kommunikationsverbindungen:
Diese sind bereits in Kap. 4.4.1 erldutert.

Die Ressourcenverwaltung wird vom Hypervisor verwaltet. Das Verwaltungssystem besitzt
eine Schnittstelle zu den Schedulingschemata und kann geméfl der Anforderungen diese
anpasser.

4.4.5 Komponentenverwaltungsdienste

Die Komponentenverwaltungsdienste bieten grundlegende Funktionen, um die Komponen-
ten anzulegen und zu verwalten. Die zur Verfiigung stehenden Dienste fiir die Komponen-
tenverwaltung konnen wie folgt aufgelistet werden:

e create:
Der create-Dienst wird zur Erstellung von Komponenten eingesetzt. FBs, Pro-
zessfithrungskomponenten und Container sind die Komponenten, die dadurch erstellt
werden konnen.

e read:
Der read-Dienst wird fiir das Lesen der Zustdnde, Werte und Informationen der
Komponenten eingesetzt.

44

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4.4 Verwaltungsdienste

Partition |<> Verwaltungssystem

’I
[y
[y

Ressourcenverwaltungs-

Applikationen

dienste
1
| benotigt
:
I |
| CPU | | Speicher | | Kommunikation |

Abbildung 4.12: Klassendiagramm der Ressourcenverwaltung

delete:

Der delete-Dienst wird fiir das Loschen der FBs, Prozessfithrungskomponenten und
Container eingesetzt. Die Partitionen koénnen hingegen nach der Erstellung (in der
statischen Phase) nicht mehr in der dynamischen Phase gelscht werden.

update:
Der update-Dienst kann fiir die Aktualisierung der Komponenten eingesetzt werden.

reset:
Der reset-Dienst wird fiir den Neustart der Komponenten eingesetzt.

copy:
Der copy-Dienst wird zum Kopieren der Komponenten eingesetzt. Er kann fiir alle
Komponenten mit Ausnahme der Partitionen eingesetzt werden.

aktivate:
Der aktivate-Dienst wird zur Aktivierung der Komponenten eingesetzt.

deaktivate:
Der deaktivate-Dienst wird zur Deaktivierung der Komponenten eingesetzt.

Die Komponenten registrieren sich beim Registrysystem des Hypervisors. Die Verwal-
tungskomponente hat Zugriff auf das Registrysystem und kann die Komponenten mit-
hilfe von Diensten verwalten. Diese Dienste kénnen fiir die Verwaltung von FBs, Pro-
zessfithrungskomponenten und Containern eingesetzt werden. Allerdings konnen die drei
Dienste create, read und copy nicht fiir die Verwaltung der Partitionen eingesetzt werden,
da die Anzahl der Partitionen in der Engineering-Phase festgelegt wird.

45

216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

I

Verwaltungssystem

Ressourcenverwaltungs-

dienste
Hypervisor
Partition Start Duration TimePartitionID
1 0 20 1
1] 2 20 40 2

Abbildung 4.13: Verwaltung der Ressourcenverwaltung

4.5 Anwendungspartitionen

In diesem Kapitel wird auf Grundlage der KAS-Architektur eine Systemarchitektur fiir
virtualisierte Steuerungsgerite entworfen, um eine Plattform zur Erfiillung der in Kapi-
tel 3 genannten Anforderungen bereitzustellen. Der Kern der Architektur besteht, wie in
Abb. 4.15 dargestellt, aus unterschiedlichen Partitionen. Deren Trennung wird durch einen
Hypervisor durchgefiihrt. Dariiber hinaus iiberwacht der Hypervisor den Zugriff verschie-
dener Anwendungen aus den Partitionen auf Geriite, I/Os, andere Partitionen usw. sowie
die Kommunikation zwischen den verschiedenen Partitionen. In Bild 4.15 ist beispielhaft
ein System mit zwei Anwendungspartitionen dargestellt. Es handelt sich um die Anwen-
dungsarten Control und Optimization and Management (O&M). Die Art der Anwendung
einer Partition bestimmt ihre Zugriffsrechte (Zugriff auf andere Partitionen, Geréite und
I/0s), Kommunikationskanile, den internen Aufbau, QoS usw.

Die Anwendungen miissen, trotz unterschiedlicher Kritikalitit, miteinander kommuni-
zieren konnen. Hierfiir wird ein Kommunikationsschema benotigt, das systemseitig die An-
forderungen der Applikationen hoher Kritikalitét sicherstellt. Das KAS-Konzept sieht vor,
dass die Kommunikation nur iiber definierte Kommunikationskanéle stattfindet und dass
der Abgriff der Daten zu keinerlei Stérungen im abgegriffenen System (Zustandsinderung,
Laufzeitverhalten, Integritdt ...) fiihrt. Abb. 4.16 présentiert ein Beispiel fiir ein solches
Kommunikationsschema fiir das in Bild 4.15 dargestelltes System. Die Control-Partition
beinhaltet die klassische Prozessfithrungsanwendung. Sie ist eine kritische Anwendung und
darf daher nicht durch unautorisierte Anwendungen veréndert werden. Die Informationen
aus der Control-Partition miissen trotzdem fiir die weiteren Verarbeitungen zu anderen
Einheiten (beispielsweise Cloud und O&M) geschickt werden. Die Control-Partition darf
nur mit dem Verwaltungssystem kommunizieren. Die Informationen werden iiber eine un-
idirektionale Kommunikation zum Verwaltungssystem geschickt und dieses leitet jene an
die anderen Anwendungen weiter. Dabei dient die Interface-Partition der Anbindung ex-

46

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4.6 Evaluation anhand der Anforderungen an die Architektur

I

Verwaltungssystem

Komponenten-
verwaltungsdienste
Hypervisor
Komponente Quelle Verbindungen Zustand
Komponente A Partition X V_AC Aktiv
L7 Komponente B Partition Y V_BD Nicht Aktiv

Abbildung 4.14: Komponentenverwaltung

terner Komponenten (z.B. Cloud). Da das Interface und die O&M-Partition unterschied-
liche Kritikalitdtsniveaus haben, werden zwei verschiedene Informationsdioden fiir diese
Kommunikation eingesetzt. Die Anfragen der Applikationen mit einem niedrigeren Kri-
tikalitdtsniveau an Applikationen mit einem hoheren Kritikalitéitsniveau erfolgen durch
den Typ 2-Kommunikationsport. Die Control-Partition hat eine Lese-Berechtigung fiir das
Verwaltungssystem, um die Anfragen von diesem zu lesen. Das Verwaltungssystem hat wie-
derum eine Lese-Berechtigung fiir die O&M-Partition und das Interface. Dies verhindert
die direkte Kommunikation von Applikationen unterschiedlicher Kritikalitat. Das Kommu-
nikationsschema ist in Abb. 4.16 dargestellt. In diesem Schema erfolgt die Kommunikation
zwischen der Control-Partition und anderen Partitionen iiber das Verwaltungssystem.

Abb. 4.17 zeigt die Kommunikation zwischen der Interface-Partition und der O&M-
Partition. Die Kommunikation erfolgt direkt zwischen diesen Partitionen.

4.6 Evaluation anhand der Anforderungen an die
Architektur

In Kapitel 3 wurde eine Reihe von Anforderungen an die Architektur definiert. Im folgenden
Abschnitt wird diskutiert, inwieweit diese durch das KAS erfiillt werden.

e Sichere Ubertragung von Feldinformationen in die Cloud: Dank des
Hypervisors wird eine Trennung der Komponenten ermoglicht, die {iiber eine
riickwirkungsfreie Kommunikationsverbindung miteinander kommunizieren kénnen.
Dies verhindert eine direkte Kommunikation der kritischen Komponenten mit
iiberlagerten Anwendungen.

47

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4 Konzept

Zentrales
Optimierungssystem
Interface 0o&m Verwaltungssystem Control
. Prozessfuhrungs-
Deployment-Plattform Beobachter Verwaltungsdienste applikation
Betriebssystem Betriebssystem Betriebssystem Betriebssystem
Hypervisor
Hardware

48

Abbildung 4.15: Systemarchitektur

Sichere Kommunikation zwischen Anwendungen mit unterschiedlicher
Kritikalitadtsstufe: Die Kommunikation lauft iiber festgelegte Kommunikations-
ports und wird von einem Verwaltungssystem iiberwacht.

Implementierung zusitzlicher Funktionalititen zur Analyse und
Optimierung wihrend der Laufzeit: Neue Komponenten (FBs, Pro-
zessfuhrungskomponenten) koénnen zur Laufzeit mittels der Kommunikation
mit iiberlagerten Anwendungen heruntergeladen werden. Der Vorgang wird vom
Verwaltungssystem getriggert.

Parallele Ausfithrung von zusétzlichen Applikationen auf der gleichen
Hardware, wie z. B. lokalen Simulationsaufgaben: Zusétzliche Komponenten
mit unterschiedlichen Anforderungen kénnen mittels Hypervisor und Virtualisierung
auf der Hardware betrieben werden.

Unterstiitzung der lokalen Verwaltung und Uberwachung der untergeord-
neten Komponenten: Das Verwaltungssystem bietet Dienste fiir die Orchestrie-
rung und Verwaltung der Komponenten an.

/e 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

4.6 Evaluation anhand der Anforderungen an die Architektur

Uberlagerte Anwendung

Interface
Verwaltungs-
system Control-
Partition
O Antrag 1 C
3 Antrag 2 L
O Antrag 3
3 Antrag 4 L
0&M Antrag 1
Antrag 2
. Antrag 3
Liest L Antrag 4
3 Antrag 1
O Antrag 2
rO Antrag 3
O Antrag 4

Abbildung 4.16: Indirekte Kommunikation zwischen der Control-Partition, der Interface-
Partition und der O&M-Partition

Uberlagerte Anwendung

Interface 0&M

v
Antrag 1
Antrag 2
Antrag 3
Antrag 4

Abbildung 4.17: Direkte Kommunikation zwischen der O&M-Partition und der Interface-
Partition

49

/e 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

5 Anwendungsszenarien in der
Automatisierungstechnik

In diesem Kapitel wird gezeigt, wie sich typische Anwendungsszenarien der Automatisie-
rungstechnik auf die KAS-Struktur abbilden lassen.

5.1 Architektur der Automatisierungspyramide

Zur Gliederung der Automatisierungsaufgabe wird gerne das Bild der Automatisierungs-
pyramide herangezogen. In klassischer Form hat die Pyramide sowohl einen funktionalen
als auch einen hardwaretechnischen Aspekt. Der funktionale Aspekt ist im linken Teil
von Abb. 5.1 dargestellt, der hardwaretechnische Aspekt im linken Teil von Abb. 5.2.
Die Rechte Seite der Abbildungen hingegen prisentiert die funktionale und hardware-
technischen Aspekt im Kontext von 14.0 [106]. Die Funktionalitéiten (Abb. 5.1) lassen
sich in zwei Hauptkategorien unterteilen, namlich der O&M-Ebene und der Automati-
sierungsebene. Die O&M-Ebene beinhaltet Funktionalitdten wie Assetverwaltung, Daten-
analyse. Die Funktionen, die operativ fiir die Prozessfiihrung benétigt werden, gehoren
zur Automatisierungsebene. Abb. 5.2 (links) zeigt die klassische Hardware-Struktur in
der Automatisierungstechnik. In dieser Architektur laufen die Anwendungen auf unter-
schiedlichen Hardware-Komponenten. In der virtualisierten Architektur hingegen (Abb. 5.2
rechts) besteht die Moglichkeit unterschiedliche Anwendungen auf der gleichen Hardware
zu betreiben. Dabei kann eine Anwendung in eine prozessnahe und eine prozessferne An-
wendungskomponente aufgeteilt werden. Beispielsweise kann, wie in Abb. 5.1 dargestellt,
eine prozessnahe O&M-Anwendung definiert werden, die auf der gleichen Hardware, auf
der Prozessfiihrungsebene lduft und lokale Optimierungsfunktionen anbietet, wihrend eine
globale O&M-Anwendung auf der iiberlagerten Ebene betrieben wird. Eine solche virtua-
lisierte Architektur kann auf unterschiedlichen Ebenen (beispielsweise Prozessfithrung und
MES) eingesetzt werden, um verschiedene Anwendungen auf derselben Hardware vonein-
ander zu trennen (beispielsweise globale O&M und Informationsmanagement (IM)).

5.2 Beispielhafte Anwendungspartitionen

In diesem Abschnitt werden einige typische automatisierungstechnische Anwendungen
erlautert, die sich fiir die Kapselung in einer eigenen Partition anbieten.

5.2.1 Control-Partition

Die zu einer Anlage oder Teilanlage gehorenden Prozessfithrungskomponenten werden
geeigneterweise in einer eigenen Partition zusammengefasst. Eine solche Partition wird

50

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

5.2 Beispielhafte Anwendungspartitionen

usanajsuawyeuse|p /1dazay
A1sido]

SunuaiwndQ s|exoq
uaydemiaqn

uJana)s ‘ujP8ay

91e193p|24

Sunpuamue Sunpuamuy
-s8unJaisizewoiny -AyajeS

asAjeueualeq

jJuswaseuewydazay

gunyemianiassy
juawaseuewssunyjeypuelsu| auaq3
uajydyulasgunJial

ndo -OBN
ayasidalens

-——— o e e d e e e e e -

uJanals
uassal

U3|[93531249GUSIEPSSIIN
uaydemiaqn

uianals

uja8ay

Sunue|dsuoipnpouid
asoudelq
SunJaiwndo

ulanajsuawyeuge|n/1dazay

jJuswadeuewidazay
Sunjemianalesan

juawadeuews3unyeypueisu|

Sunue|dsuoipnpo.id

esa3p|a4

A 4

wa1sAs
-A1ajes

("+SdS™INd)
wia1sAs-s
Suniaisnewoliny

wa1sAg
eE

wialsAs
-d43

yosissery

Funktionale Struktur des Automatisierungssystems

Abbildung 5.1

tar

mit, fir oder In KI-

216.73.216.36, am 20.01.2026, 13:12:05. ©
m

https://doi.org/10.51202/9783186275080

5 Anwendungsszenarien in der Automatisierungstechnik

Klassische Hardware-Struktur Hardware-Virtualisierung

1
1
1
! Global
1 Rezept Logistik IM
1 0o&M
1
1
MES Spezielle I
IM-Systeme 1 Safety- Lokal

: System 0&M I HE

Safety- SPS IPC |

System ! Hypervisor

Abbildung 5.2: Hardwaretechnischer Aufbau des Automatisierungssystems

als Control-Partition bezeichnet. Diese muss hohe Anforderungen in Bezug auf Echt-
zeitfihigkeit, Robustheit, Handhabbarkeit und Sicherheit erfiillen. Die Prozessfithrung
basiert beispielsweise auf dem in Kapitel 2 vorgestellten Betriebsmittel- und Mafinah-
menmodell. Die Prozessfithrungsapplikationen werden beispielsweise in den Sprachen der
IEC 61131-3 oder der IEC 61499 implementiert. Die Prozessfithrungsapplikation ist in ei-
ner Laufzeitumgebung implementiert, die fiir die Ausfithrung der Applikation zusténdig
ist. Diese muss von der umgebenden Partition oder einem umgebenden Container zur
Verfiigung gestellt werden. Die Control-Partition ist die einzige, die Zugriff auf die 1/Os
hat (Read/Write). Wie bereits beschrieben, bestehen einerseits die Moglichkeit des con-
tainerbasierten Aufbaus und andererseits die Moglichkeit der Verwendung von dedizierten
Applikationen fiir die interne Struktur der Partition. Eine wandelbare Produktion ist das

Anwendung A Anwendung B
IEC 61131 IEC 61499

Container-Management

0s

Abbildung 5.3: Struktur der Control-Partition

Ziel verschiedener Initiativen fiir zukiinftige Automatisierungssysteme. Die vorgeschlage-
ne Architektur stellt eine Basis fiir eine wandelbare Produktion bereit, in dem sie eine
Verwaltung unterschiedlicher Prozessfiihrungsapplikationen, sowie das Deployment neuer
Applikationen, entsprechend der Anwendungsszenarien zulisst. Deployment zur Laufzeit

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

5.2 Beispielhafte Anwendungspartitionen

ermoglicht die Anpassung des Systems an die neuen Anforderungen und die Ausfithrung
neuer Steuerungs- oder Verwaltungsaufgaben. Gemeinsam fithren diese Eigenschaften zu
einer erhohten Dynamik des Systemverhaltens und bilden daher eine Basis fiir die Wan-
delbarkeit. Auflerdem bieten die Partitionen eine hardwareunabhéngige Umgebung zur
Ausfithrung diverser Applikationen. Dies erhoht die Betriebsméglichkeit von Applikation
auf der selben Hardware und die Portabilitit.

5.2.2 O&M-Partition

Die KAS-Architektur stellt eine Infrastruktur fiir den Betrieb einer prozessparallelen Si-
mulation bereit. Dazu kann ein Simulationssystem in einer Partition realisiert werden. In
vielen Fillen liegt das zu simulierende Modell in einer modularen Struktur vor, die nicht
aufgelost, sondern gemeinsam in einer Co-Simulation realisiert wird. Hier bietet es sich an,
die Simulationsfragmente in eigenen Containern zu kapseln. Die Container-Technologie
und die Orchestrierung dienen zur dynamischen Gestaltung der Simulationsapplikation.
Verschiedene Simulationsmodelle sind in Form von Docker-Containern in O&M-Partition
gehostet. Die Simulationsfragmente werden durch das Verwaltungssystem verwaltet, um
Co-Simulationen zu konfigurieren (Abb. 5.4).

Simulationsfragmente Verwaltungssystem | _ Konfiguriert _ N Co-Simulationen
(Bibliothek)

Abbildung 5.4: Konfigurationen von Co-Simulationen

53

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6 Implementierung fiir eine
Kaltwalzanlage

Als Anwendungsszenario dient die Optimierung des logistischen Durchlaufs von Paletten in
einer Kaltwalzanlage. Dieses Szenario erfordert fiir die Durchfithrung von Optimierungs-
aufgaben und Deployment, dass das KAS zwischen der Prozessfiihrung, der Simulation
(O&M) und einer externen Cloud kooperiert.

6.1 Logistik

Die KAS-Architektur bietet eine Plattform zur Durchfithrung, Optimierung und
Uberwachung von Logistiksystemen. In dem hier verfolgten Kontext interessiert insbe-
sondere die operative Steuerung von Intra-Logistiksystemen. Diese miissen eine effiziente
Routen- und Ressourcenplanung anbieten. Die Routen- und Ressourcenplanung benotigt
unter anderem die Zustédnde und Positionen der Logistikgerite sowie die aktuelle Ver-
kehrssituation, um eine effiziente Planung durchzufithren. Nach der Bearbeitung der
Zusténde werden Plédne generiert, die ins Logistiksystem integriert werden miissen. Abb. 6.1
prisentiert die Abbildung der Anwendungen auf die KAS-Architektur. Die Verwaltungs-

Tourenplanung Prozessfiihrungskomponenten
und fir die Steuerung des
Optimierung Logistiksystems
Interface 0&M | Verwaltungssystem Control
Depl t-Plattf Beobachter Vi Itungsdienst Prozess'ﬂ]hrungs-
eployment-Plattform Optimierung erwaltungsdienste applikation

Betriebssystem Betriebssystem Betriebssystem Betriebssystem

[Hypervisor |

[Hardware |

Abbildung 6.1: Logistiksystem

und Interface-Partition aus Abb. 6.1 entsprechen den zwei Systempartitionen der KAS-
Architektur. Die Steuerung bildet die Control-Partition ab, die Tourenplanungs- und

54

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6.2 SMS-Demonstrator

Optimierungs-Partition bildet hingegen die O&M-Partition ab. Fiir die Optimierung und
das Deployment sind die folgenden Schritten notig:
e Optimierung
— Abrufen der Informationen aus der Steuerung
— Durchfithrung lokaler ~ Optimierungen in der Tourenplanungs- und
Optimierungs-Partition
e Deployment
— Deployment in die Interface-Partition
— Validierung

— Integration in die Steuerung

6.2 SMS-Demonstrator

Die KAS-Architektur wird fiir die Steuerung des SMS-Demonstrators eingesetzt. Der SMS-
Demonstrator simuliert das gesamte Transportsystem einer Kaltwalzanlage. Der Demon-
strator besteht aus einem IPC fiir die Profibus-Anbindung, einem Embedded-System und
einem Server fiir die MATLAB-Simulationsmodelle. Die Aktor- und Sensordaten werden
iiber ein emuliertes Feldbussystem (Profibus) zwischen Simulator und Automatisierungs-
system ausgetauscht (Abb. 6.2).

Komponentenbasiertes
Automatisierungssystem

Aktor " Sensor
Signale mem Signale

Simulator

Abbildung 6.2: Aufbau

Die Hardwarekomponenten und der Aufbau der Anlage sind in Abb. 6.11 und 6.12 dar-
gestellt. Ziel dieser Anlage ist die Realisierung einer virtuellen Inbetriebnahme. Sémtliche
Anlagenfunktionen werden iiber einen Hybrid-Simulator simuliert. Der Simulator stellt alle
Anlagensignale mit den Rechenschritten von 100 ps bereit. Diese werden iiber emulierte
Feldbussysteme an die Automatisierung iibertragen.

55

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6 Implementierung fiir eine Kaltwalzanlage

Bestandteile
Abb. 6.3 zeigt das vom Demonstrator simulierte SMS-Kaltwalzwerk. Dieses besteht aus
drei Hauptkomponenten [98], [35]:

e Rollginge: Die Rollgénge bilden ein Forderband, um die Coils entlang der Anlage zu
transportieren. Sie sind die einzigen aktiven Komponenten in der Anlage und werden
mit Motoren angetrieben. Jeder Rollgang ist mit fiinf Sensoren ausgestattet. Einer
der Sensoren wird zur Erkennung der Palette eingesetzt, wiahrend die restlichen vier
Sensoren die Aufgabe der Positionserkennung iibernehmen. Das Simulationsmodell
beinhaltet drei Arten von Rollgédngen:

— Verschieber Wagen: Sie kénnen sich entlang der Y-Achse bewegen.
— Drehteller: Sie konnen sich um die Z-Achse rotieren.
— Ofen: Sie dienen zur Erwarmung der Coils.

e Palette: Sie werden zum Transport der Coils eingesetzt.

e Coil: Sie stellen die Aluminium-Coils dar.

Verschieber Wagen Drehteller Verschieber Wagen

Abbildung 6.3: SMS-Demonstrator

Die Steuerungshierarchie dieser Anlage basiert auf dem in Kapitel 2 diskutierten
Betriebsmittel- und Mafinahmenmodell. Die Rollgénge bilden die ESE-Ebene. Die Pa-
letten orchestrieren diese, um die Produktionsauftrige umzusetzen. Das bedeutet, dass die
Paletten in der Steuerungshierarchie die Rolle der GSEs iibernehmen. Jede Palette ist einer
GSE zugewiesen, um die ESEs (Rollgéinge) entsprechend des derzeitigen Rezepts zu orche-
strieren. Die Paletten kénnen auch die entsprechenden ESEs belegen, um eine Kollision
zu verhindern. Dariiber hinaus bilden die Coils die Mainahmen-Ebene. Diese Hierarchie
ist in Abb. 6.4 dargestellt. Die GSEs agieren wie Klienten. Sie kénnen auf verschiedenen
Embedded-Systemen oder Hardware-Komponenten installiert werden, um die Anlage zu
steuern. In dieser Arbeit wurden GSEs auf einem IMX6-Board implementiert.

56

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6.3 Aufbau

| MaRsnahmen |

D] 'I ,
R Passive /l Aktive M JU

1 Verbindung,’ Verbindung ([0
7

-v _______________ e it P 5 > ——— ,‘I-

Abbildung 6.4: SMS-Demonstrator

6.3 Aufbau

Abb. 6.5 zeigt den Aufbau der Implementierung. Die linke Seite stellt das IMX6-Board
und die darauf implementierte KAS-Architektur dar. Diese kommuniziert mit dem SMS-
Demonstrator iiber eine TCP /IP-Kommunikationsschnittstelle. In diesem Aufbau sind die
ESEs auf dem eingebetteten System des SMS-Demonstrators und die GSEs auf dem IMX6-
Board implementiert.

6.4 Verification of Request

Fiir die prototypische Umsetzung des VoR werden fiinf Partitionen auf einem IMX6-Board
erstellt. Diese Partitionen (Verwaltungssystem, Control-Partition 1 und 2, Interface und
O&M) beinhalten die in Kapitel 4 genannten Anwendungstypen. Dariiber hinaus werden
sie mit den in Kapitel 4 ebenfalls genannten Rechten, Eigenschaften und Kommunikati-
onsports ausgestattet. Die Konfiguration der Partitionen fiir diesen Anwendungsfall ist im
Anhang A dargestellt. Fiir die Implementierung wird angenommen, dass wiahrend des Be-
triebs eine neue Produktionslinie (Abb. 6.6) zur aktuellen Anlage (Abb. 6.4) hinzugefiigt
wird. Die neue Anlagenstruktur erfordert eine neue Prozessfithrungsanwendung. Das De-
ployment, die Integration und die Aktivierung der Prozessfiihrung wird in diesem Abschnitt
erlautert. Die Implementierung erfordert die folgenden Partitionen:

e Das Interface: Die Interface-Partition wird fiir das Deployment der Komponenten
benotigt.

e Die O&M-Partition: Eine Simulationsanwendung validiert das Feedback, bevor es
in die Prozessfithrung integriert wird.

o7

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6 Implementierung fiir eine Kaltwalzanlage

Embedded

ACPLT/RTE

Validierung der deployten Komponenten Steuerung des Logistiksystems

TCP/IP

Interface 0&Mm Control-Partition 1| Control-Partition 2

Verwaltungs-
system

Deployment
Platform

Pr flihrungs-

anwendung

Simulations-
modelle

Pr flihrungs-
anwendung

Abbildung 6.5: Aufbau

e Das Verwaltungssystem: Das Verwaltungssystem triggert die oben genannten
Vorgénge.

e Die Control-Partition: Die Control-Partitionen werden fiir die Prozessfithrung
benttigt. Die zweite Control-Partition wird fiir die Aktualisierung der Prozessfiihrung
cingesetzt.

Interface und Deployment

Das Verwaltungssystem triggert das Deployment der neuen Prozessfithrungsanwendung
in der Interface-Partition. Abb. 6.7 prisentiert den Deployment- und Redeployment-FB.
Er ermoglicht das Deployment von neuen Komponenten auf dem IMX6-Board. Dariiber
hinaus fiithrt er das Redeployment von Komponenten durch. Fiir die Durchfithrung des
Deployments und Redeployments werden die Ziel- und Quell-Informationen benétigt (Ser-
vername und Pfad zu den Komponenten) [34]. Dieser FB besteht aus einer getvar- und
einer setvar-Funktion (Abb. 6.8, Abb. 6.9).

Validierung und Inbetriebnahme

Fiir die Inbetriebnahme werden zwei Control-Partitionen eingesetzt, zwischen denen ge-
wechselt werden kann. Eine Partition beinhaltet die aktuelle Prozessfiihrungsanwendung
fiir die Steuerung der Anlage. Die zweite Partition wird fiir die Aktualisierung der Pro-
zessfithrungsanwendung eingesetzt. Nach der Aktualisierung und Synchronisation der Pro-

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6.4 Verification of Request

4@_&\

ﬂslsﬂfﬂTlHar 7‘ B SI% 1IilTi

i

b

Abbildung 6.6: Die erweiterte Produktionsanlage

zessfiihrungsanwendung in der zweiten Partition werden die Partitionen gewechselt, damit
die zweite Partition die Steuerung der Anlage iibernimmt. Dieser Prozess besteht aus den
folgenden Schritten:

e Die neue Prozessfithrungsanwendung wird durch O&M-Partition validiert.

e Die neue Prozessfilhrungsanwendung wird in der zweiten Control-Partition (deakti-
vierte Partition) implementiert.

e Wesentlichen Zustinde der Anlage (z. B. die aktuelle Position der Paletten, die
Zusténde der Prozessfithrungskomponenten) werden in beiden Partitionen synchro-
nisiert.

e Die aktuelle Prozessfithrung (Control-Partition) wird deaktiviert.
e Die neue Partition wird aktiviert.
Nach diesen Schritten iibernehmen die neue Prozesssteuerungsanwendung und die neue
Control-Partition die Steuerung der Anlage. Dies erfordert auch ein neues Schedulingsche-
ma. Die Ressourcen der aktuellen Partition miissen der neuen Partition zugeteilt werden.

Da die aktuelle Control-Partition deaktiviert wurde, benéotigt sie keine Ressourcen mehr.
Abb. 6.10 zeigt die Ressourcenverwaltung.

59

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6 Implementierung fiir eine Kaltwalzanlage

74 iFBSpro V2.7 Engineering
Host Datenbasis Bibliothek Tosk Instanz Verbindung Einstellungen _Hife

&l .5
28
T

B 2134.130.125.60:7509
) manacer
3£ acpit
-6 vendor Instance name: | /TechUnits/Dep
3£ communication

;| .. eproymentcrTreetranster
)»gaam Instance type:
€3 kshttp Task parent : | /Tasks/UrTask
Task chila
1 actimode cexreq Errstate 0
wootornosss = | cutorine || oown
= 0000000 oyotine methcount
TRUE 30

a i)u.):n.)zﬁ.s)ﬂﬁna
) manacer 0000000 maxcalotine
b6 acprt
-6 vendor Inputs outputs
3£ communication

a TRUE trigger

“TechUnits" scur

“TechUnits" targetFB substate

"134130.125 S3/MAN. 0

"134130.125 61/ MAN.

o

0

artonier
p—
g =
oo
[=]

1974 1aL

Abbildung 6.7: Deployment-Funktionsbaustein

6.4.1 Evaluation des VoR-Konzepts

Fiir VoR miissen die folgenden Schritte durchgefiihrt werden:
e Authentifizierung und Verifizierung des Feedbacks
e Plausibilitdtscheck

In der NAMUR diirfen nur dann Anderungen in der CPC vorgenommen werden, wenn
diese von einer VoR-Komponente stammen. In [24] werden die Anforderungen an VoR
definiert. Die wichtigsten Anforderungen kénnen wie folgt aufgelistet werden:

e Die Vertraulichkeit des Antrags: Der Antrag darf nicht fiir Drittparteien lesbar sein.

e Die Integritiit des Antrags: Eine Anderung des Antrags wihrend der Ubertragung
von der App in die VOR-Komponente muss erkannt werden.

e Verfiigharkeit der CPC-Doméne: Die VOR-Komponente darf die Verfiigharkeit des
DCS/PCS nicht beeintriachtigen.

e Die Authentizitidt des Antrags: Nur beglaubigte und vertrauenswiirdige Anwendun-
gen diirfen Anfragen in die CPC-Domiine weiterleiten.

e Datenschutz der CPC: Keine internen Informationen von der CPC sollten durch die
VoR-Komponente exponiert werden.

60

216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6.4 Verification of Request

74 iFBSpro V27 Engineering
Host

tenbasis Bibliothek Task Instanz Verbindung _Einstellungen Hilfe

134.130.125.60:7509
MANAGER

B-F) acplt

3-E vendor

-1 communication

-6 data
S
2] Tasks
)» TechUnits
&

Do
O
) .setvar

3 Cons

3£ Libraries

51§ servers
1§ avinto

B [2134.130.125.61:7509
MANAGER

-6 acpie
-3 vendor

-6 communication
-6 data

L @] rasks

3—({}) TechUnits

13 Deploy

-1 Cons

-3 Libraries
5-{) servers

i-{3 abinto

" \Librasest”
0

"134130.125.53"
"MANAGER"
"/data//Upload tree”

2

0

FALSE

TRUE

FALSE

1975

Instance name: | /TechUnits/Dep.getvar
Instance type: | /acplt/ksapi/getVar

Inputs Hidden Outputs
varvalue envariable ,
serverfost

serverN

£

Il

2
g

status

result

noldConnes

i

:

B

Abbildung 6.8: Deployment-Funktionsbaustein

Die VoR-Komponente entspricht der Validierungskomponente in der vorgeschlagenen Ar-
chitektur. Einige Strategien zur Erfiillung der Anforderungen werden in den folgenden
Punkten erldutert:

e Die Vertraulichkeit des Antrags: Der Antrag wird durch das Interface zum Verwal-
tungssystem weitergeleitet. Dieser kann nur gelesen werden, wenn die Applikationen
ein Zugriffsrecht darauf haben. Allerdings muss die Kommunikation zwischen den
externen Komponenten und dem Interface gesichert werden.

e Verfiigbarkeit der CPC-Domiéne: Die Antrige werden in die Prozessfithrung inte-
griert, nach dem sie tiberpriift worden sind. Dariiber hinaus ist die Prozessfithrung
vollig isoliert und kann von anderen Partitionen nicht zugegriffen werden.

e Die Authentizitdt des Antrags: In der vorgeschlagenen Architektur schreibt das Ver-
waltungssystem die Antriige in seinen Kommunikationsport. Der Control-Partition
ist es moglich auf diesen zuzugreifen. Dies verhindert eine direkte Verbindung zwi-
schen der Control-Partition und den anderen Applikationen. Durch diesen Vorgang
wird keine Anfrage an die Control-Partition weitergeleitet.

e Datenschutz der CPC: Die Kommunikationsverbindung der Validierungskomponente
zum Verwaltungssystem ist nur mit einem Read-Recht ausgestattet. Durch diesen
konnen nur Antriage im Verwaltungssystem-Kommunikationsport gelesen werden.

61

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6 Implementierung fiir eine Kaltwalzanlage

74 iFBSpro V2.7 Enginesring
Host Datenbasis Bibliothek Tosk Instanz Verbindung Einstellungen _ Hilfe

B 2134.130.125.60:7509

Abbildung 6.9: Deployment-Funktionsbaustein

Aktuelle Control-Partition Deaktivierte Control-Partition

B4 Phasen N \

0 0 20 30 40 50 60 70 80 9 100 110 120 130 140 150

ot T T

B ® = Phase 2
0 10 20 30 40 S0 60 70 8 9 100 110 120 130 140 150
w2 w3 - (W5
Abbildung 6.10: Aktuelle Ressourcenallokation
62

1312:05. 0
tersagt, m mit, fir oder in KI-Systemen, Ki-Modellen oder Generativen Sprachmodallen.

https://doi.org/10.51202/9783186275080

6.4 Verification of Request

Frontansicht Riickansicht

Energybax (24V)

Steckdosenleiste

Embedded PC

Hutschine mit EtherCAT Slave
und SIMBA Boxen

WLAN Access Point

KVM Konsole
KVM Switch
NAS Switch
Keba Handpanel!
IPC fior Profibus-Anbindung

IPC fiir Simulation (Unity)

G Server fiir Matlab-Modell

PDU

Abbildung 6.11: SMS-Demonstrator

63

Il 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

6 Implementierung fiir eine Kaltwalzanlage

19" Rack

WLAN
Access Point

iom ®.

Ethernet Switch

NAS

Handpanel

nschlussbox

’T

X-Pact Embedded

Laptop

IPC Legende

Ethernet
Reflective-Memory (RFM)

Profibus

EtherCAT

T

WLAN

/

/

IPC [3D-Simulation] /
— N

HP G9 Server [Matlab]

TITEL DATUM

08.08.2016

ERSTELLT VON KOMPLETTER PFAD

\\SHILDATVO2AHILT\S_UISER\RIL - LING, JAN PHILIPP\BASYS 4.0 DEMONSTRATOREN\NETZWERKPLAN ETHERNET ALS

Netzwerkplan Jung, Jan Philipp

BUSVST

Abbildung 6.12: Struktur des Demonstrators

64

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

7.1 Eingesetzte Technologien

Fiir die Implementierung werden ACPLT/RTE und ein PikeOS-Hypervisor verwendet.
Zuniichst ist eine Portierung von ACPLT/RTE auf das Echtzeit-OS (POSIX) des PikeOS-
Hypervisors erforderlich. Die Portierung erméglicht den Betrieb der Prozessfithrung auf
einer virtualisierten Umgebung. Die Portierung von ACPLT/RTE und PikeOS wird im
nichsten Abschnitt erlautert.

In diesem Abschnitt werden die Aufbauméglichkeiten im Bezug auf existierende An-
wendungen diskutiert. Diese sind in Abb. 7.1 grafisch dargestellt. Die erste Variante
setzt Container-Technologien (z.B. Docker) ein, um eine Versions- und Variantenver-
waltung sowie dynamisches Deployment mittels Containern zuzulassen. Abb. 7.1 (links)
prisentiert einen Aufbau, in welchem Versionierung und Deployment von Applikationen
mittels Container-Technologien umgesetzt sind. In diesem Fall kann zum Beispiel Linux als
Betriebssystem in der Partition verwendet werden, um den Betrieb von Docker-Containern
zu ermoglichen. Die iiberlagerte Ebene ist ein Container-Managementsystem zur Verwal-
tung der Container (beispielsweise Start und Stoppen). Die nichste Ebene beinhaltet Ap-
plikationen, die in mehreren Containern gekapselt sind.

Die zweite Variante ist in Abb. 7.1 (rechts) dargestellt. Sie prisentiert eine Moglichkeit,
in der, im Kontrast zur ersten Variante, keine Container-Technologie eingesetzt wird. Im
vorliegenden Fall kénnen unterschiedliche Betriebssysteme benutzt werden (beispielsweise
bietet POSIX-Interface den Vorteil leichtgewichtig und echtzeitfihig zu sein). Auf dem
Betriebssystem werden die Anwendungen implementiert. Das Deployment neuer Kompo-
nenten kann mittels Serialisierung der Anwendungen und nétigen Bibliotheken auf POSIX
erfolgen.

7.1.1 Portierung von ACPLT/RTE und PikeOS

ACPLT/RTE besteht aus einer Kernbibliothek (libov), die das Metamodell des Objekt-
verwaltungssystems enthiilt, sowie aus zuséitzlichen Bibliotheken, die bei Bedarf gelinkt
werden konnen. Diese sind unten aufgefiihrt:

e fb: Die fb-Bibliothek beschreibt das Metamodell der FBs.
e cshmi: Die cshmi-Bibliothek enthélt ein HMI-Modell fiir eine grafische Oberfliche.
e TCPbind: Die TCPbind-Bibliothek bietet eine Schnittstelle zum Netzwerk.

e ksbase, ksxdr, kshttp: Diese Bibliotheken stellen die Klassen und Funktionalitdten
fiir die Kommunikation bereit.

Neben den genannten Bibliotheken gibt es aulerdem noch einige zusétzliche Bibliotheken,
die je nach Bedarf geladen werden kénnen:

65

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Container Container
App App
Container-Management Applikationsebene
Linux POSIX
Hypervisor Hypervisor
Hardware Hardware

Abbildung 7.1: Interne Struktur der Partitionen

e TEC61131stdfb: Die IEC61131stdfb-Bibliothek enthélt FBs nach der Norm IEC
61131.

e vdivde3696: Die vdivde3696-Bibliothek enthéilt FBs nach der Norm VDI.

e Smrcs: Die Smres-Bibliothek enthélt Funktionen fiir die Interaktion mit dem SMS-
Demonstrator.

ACPLT/RTE wurde in ANSI C implementiert und kann unter Linux und Windows aus-
gefiihrt werden. Die Liste der in ACPLT/RTE verwendeten libc-Funktionen sind in der Ta-
belle 7.1 aufgelistet. ACPLT/RTE kann sowohl auf Elinos (das einen vollstindigen Linux-
Kernel bereitstellt), als auch auf POSIX portiert werden. Die Tabelle 7.2 zeigt das Mapping
und die Portierung von benétigten ACPLT/RTE-libe- und PikOS-libe-Funktionen.

Wie prisentiert sind die meisten Modifikationen fiir die Kommunikation, die Speicherzu-
teilung und die shared Objekte erforderlich. In dieser Arbeit wurden die in der Tabelle 7.2
prisentierten Modifikationen durchgefiihrt, damit ACPLT/RTE auf der Posix-Personality
(Echtzeit OS) des PikeOS Hypervisors ausgefiihrt werden kann. Fiir eine Portierung auf
ElinOS sind keine groferen Modifikationen erforderlich.

7.2 Prozessfithrung

Abb. 7.2 stellt das hierarchische Steuerungsmodell dar. Die unterste Ebene beinhaltet
die auf dem eingebetteten System des SMS-Demonstrators implementierten ESEs. Die
néchste Ebene prisentiert die auf dem IMX6-Board implementierten GSEs. Sie fungieren
als Orchestrator und orchetrieren die ESEs.

Die Prozessfithrung ist nicht auf eine Partition beschrankt. Es kénnen mehrere Parti-
tionen erstellt werden, welche die Prozessfithrungsrolle iibernehmen. Zu jedem Zeitpunkt
kann nur eine davon aktiv sein. Die anderen Partitionen kénnen fiir weitere Varianten und
Versionen der Prozessfiihrungsanwendungen eingesetzt werden. Wenn die verschiedenen

66

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7.2 Prozessfiihrung

Tabelle 7.1: libc-Funktionen (ACPLT/RTE)

String/memory utility functions | atoi, atoll, memcmp,
memcpy, memset
snprintf, sprintf,
strchr, strcmp, stre-
py, strdup, strerror,
strftime, strlen, strn-
cmp, strncpy, strstr,
strtod, strtol, strtoul,

strtoull, tolower,
toupper, vsnprintf
stdin/stdout perror, stderr, stdout,
puts
Socket /network 1O accept, bind, connect,

freeaddrinfo, getad-
drinfo, getnameinfo,
getpeername, getsock-
name, listen, recv,

setsockopt, socket,
send
File handle API close, lseek, open,
read, select, write
Streams close, clearerr, fclose,

feof, ferror, fflush,
fgets, flock, fopen,
fprintf, fseek, fwrite

Memory allocation calloc, free, malloc, re-
alloc

Memory mapping mmap, msync, mun-
map

Shared objects dlclose, dlerror, dlo-
pen, dlsym,

Time-related gettimeofday, gmtime,

localtime, mktime, na-
nosleep, setitimer, , ti-
me, timegm

Threads pthread_create,
pthread_join,

67

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Tabelle 7.2: Portierung von bendtigten ACPLT /RTE-libc- und PikOS-libc-Funktionen

String/memory utility functions

These functions can
be replaced by PikeOS
libc

stdin/stdout

PikeOS supports stan-
dard streams

Socket /network IO

POSIX specifies a
Light Weight Internet
Protocol (LWIP) so-
me function should be
modified. ACPLT/R-
TE should be provi-
ded by an interface to
LWIP for the commu-
nication. LWIP is also
TCP/IP compatible
protocol.

File handle API

these funtions are sup-
ported

Streams

these functions are
supported

Memory allocation

memory allocation is
supported

Memory mapping

memory mapping
functions must be

modified.

Shared objects

shared libraries are
not supported (*.s0).
The build process of
ACPLT/RTE should
modified to build all
required libraries sta-
tically (*.a).

Time-related

important functions
are supported

Threads

threads are supported

68

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7.2 Prozessfiihrung

Interface O&M Verwaltungs- Control
system
Deployment Simulations-
Platform modelle
RITE
| Hypervisor |
Steuerung | Rk |
v

GSEs
v
Embedded Syst
(Shr/TS—TDer:on!tiaet:r) ESEs
!
- = -
Feld :Jﬂln =8 8220 ME":]I I;;]
:=mm@mmm
Anlage

Abbildung 7.2: Prozessfiihrungsebenen

69

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Versionen sich nur in der Anwendungsebene unterscheiden, kénnen sie auch in Docker-
Containern innerhalb einer Partition gehostet werden. Wenn sie jedoch verschiedene Be-
triebssysteme bendotigen, miissen sie in verschiedene Partitionen gekapselt werden. Zum
Beispiel muss fiir den Wechsel zwischen Linux und POSIX die Partition gewechselt wer-
den.

7.2.1 Laufzeitanalyse in virtualisierten und nicht virtualisierten
Umgebungen

Eine Test-Applikation wurde erstellt, um die Prozessfiihrung in verschiedenen Umgebun-
gen zu vergleichen. In diesem Vergleich laufen die POSIX- und Linux-Prozesse auf einer
virtualisierten Umgebung (IMX6-Board), wobei der Windows-Prozess auf einem PC aus-
gefiihrt wird. Wie in Abb. 7.3 présentiert hat die Ausfithrung in POSIX keinen Jitter. Der
Prozess in Linux (ElinOS Personality) hat einen geringen Jitter und der Windows-Prozess
hat den hochsten Jitter.

In der néachsten Phase wurde die gleiche Analyse unter Hardwarebelastung durchgefiihrt.
Der Prozess in POSIX hat einen bestimmten Anteil an Hardware-Ressourcen, welche nicht
den anderen Applikationen zugeordnet werden kénnen. Daher hat die Hardware-Belastung
keinen Einfluss auf diesen Prozess und der Verlauf bleibt unveréndert. Der Prozess in
Windows hingegen weist einen erhhten Jitter auf. Abb. 7.4 priisentiert den Vergleich
zwischen POSIX und Windows.

Laufzeitanalyse

1.000

500

litter (us)

&

o

o
-
N
w
IS
”
(]
N
00
<

-1.000

-1.500
Urtask-Takte

s POS|X s LinUX Windows

Abbildung 7.3: Laufzeitanalyse in POSIX, Linux und Windows

7.2.2 Kommunikation

Verschiedene Methoden zur Kommunikation zwischen Partitionen (die von PikeOS bereit-
gestellt werden) wurden in Kapitel 2 vorgestellt. Um diese Kommunikation echtzeitfihig
und unidirektional zu gestalten, wurden bei der Implementierung Queueing-Ports verwen-
det. Die Queueing-Ports dienen auch als eine Basis fiir die NAMUR-Diode.

70

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7.2 Prozessfiihrung

Laufzeitanalyse
2000

1500
1000

500

Jitter (us)

-500

-1000
Urtask-Takte

e POSIX Windows

Abbildung 7.4: Laufzeitanalyse mit Hardware-Belastung in POSIX und Windows

Abb. 7.5 stellt ein Beispiel fiir die Implementierung der NAMUR-Diode dar. Die Imple-
mentierung besteht aus drei Partitionen, nidmlich der CPC, der Simulation (dhnlich wie
M+0) und dem Gateway. Die CPC und die Simulation kommunizieren miteinander indi-
rekt durch das Gateway. Der Informationsfluss zwischen der CPC und dem Gateway findet

© Simulation

@ Qlin

Abbildung 7.5: Kommunikationsports Zwischen der Partitionen

nur in einer Richtung statt, wihrend die Simulation und das Gateway miteinander in beide
Richtungen kommunizieren konnen. Die zweite Kommunikationsverbindung zwischen der
Simulation und dem Gateway dient zur Sendung der Anfragen an das Gateway.

Die Queueing-Ports werden hauptséchlich fiir die Kommunikation zwischen Partitionen
eingesetzt. Allerdings miissen diese fiir das vorgestellte Anwendungsszenario als ein Kom-
munikationsprotokoll zwischen FBs (in verschiedenen Partitionen) agieren. Aus diesem
Grund ist auf dem ACPLT/RTE eine Schnittstelle zu Queueing-Ports implementiert, so
dass die Kommunikation zwischen verschiedenen FBs iiber Queueing-Ports erfolgen kann.
Um eine unidirektionale Kommunikation in ACPLT/RTE zu bewerkstelligen, miissen die
Eingangs- und Ausgangsports entsprechend der Richtung des Informationsflusses definiert
werden. Abb. 7.6 zeigt ein Beispiel fiir die Ports in ACPLT/RTE.

Die Kommunikation zwischen verschiedenen Servern in ACPLT/RTE erfolgte ur-
spriinglich iiber fbcomlib. Abb. 7.7 présentiert die fbcomlib-Latenzen in LINUX und
POSIX. Die Ausfiihrung in POSIX hatte eine konstante Latenz und keinen Jitter. Die

71

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Znstance name: | /TechUni ts/Incontng Instance name: | /TechUnits/Outgoing
Tnstance type: | -+ -/posil/QPortlinkin Instance type: | -:/Posil/QPortLinkont
e Task parent : | /Tasks/UrTask
G iCAED : Task child i
o actmose | coxreg meesease || o
i actimods | corres e |
1970-01-01 01:00:17... proctime | TRUE calotime I 0.000000
1970.01.01 010437, proceme | ras catovme || osowe
0.000000 eyetime metheount
[eo 1000000 cyctine netncount
Fas | tearea o
wmE | sexreq 156
000w | maxcalctime
0000 | maxcalctime
Tapata iaden outpats
Tnputs Hiaden ontpats
100 readingTimeo | readBuffer value | 13437
1343 wvalue | newValue maxValueSize | 1024
“Qeortnl” poravame | s naxvatuesize | 1024
TRUE enabie | buttersize | currentcapas | 3 T portiane. | FALSE cumnec.pul 18
1ot rorseate . RE cnavie | crrorstate | 0
newvalue errorvalue o errorValue 0
TRUE connectionva RUE comnectionva TRUE

Abbildung 7.6: Unidirektional Kommunikation in ACPLT/RTE

Ausfiithrung in LINUX hatte im Gegensatz zu POSIX einen Jitter und eine durchschnitt-
liche Latenz von 3.410.054 us (fiir die Analyse wurde urtask = 1 gesetzt). In einer virtua-

fbcomlib-Latenzen

3.500.000

3.400.000
3.300.000
3.200.000
3.100.000
3.000.000
2.900.000
2.800.000

2.700.000
Linux Posix

Abbildung 7.7: fbcomlib-Latenzen in POSIX und LINUX

lisierten Umgebung mit PikeOS werden jedoch Queueing-Ports fiir diese Kommunikation
verwendet. Abb. 7.8 zeigt die Latenz dieser beiden Methoden (Zeit ist in ups gegeben,
urtask = 0.15).

Die fbcomlib ist im Kern asynchron. Die Reduzierung des Urtask-Takts kann zum
Packetverlust bei fbecomlib fithren. Die durch beide Kommunikationsprotokolle empfange-
nen Daten (bei urtask = 0.1) sind in der folgenden Datei dargestellt. Eine Wertereihe von
4961 bis 4969 wurde durch beide Kommunikationsprotokolle gesendet. Wie présentiert war
der fbecomlib-Kommunikationsempfinger nicht in der Lage alle Werte zu empfangen (die
Werte 4962, 4966 wurden nicht empfangen). Im Gegensatz zu fbcomlib hat der Queueing-
Port-Empfianger alle Werte empfangen.

72

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7.2 Prozessfiihrung

fbcomlib:

[ACPLT/0QV
[ACPLT/0V
[ACPLT/0V
[ACPLT/0V
[ACPLT/0V
[ACPLT/0V
[ACPLT/0V

400.000

350.000

300.000

250.000

200.000

150.000

100.000

50.000

0

fbcomlib

Latenzen

Queueing-Ports

Abbildung 7.8: fbcomlib und Queueing Ports

Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:

Queueing-Ports:

[ACPLT/0V
[ACPLT/0V
[ACPLT/0V
[ACPLT/0V
[ACPLT/0QV
[ACPLT/0V
[ACPLT/0V
[ACPLT/0V
[ACPLT/0V

Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:
Info] Receiver:

£=3699.
.819136;
.919136;
t=3700.
t£=3700.
£=3700.
t=3700.

t=3699
t=3699

£=4598.
t=4598.
t=4598.
t=4598.
t=4599.
£=4599.

t=4599

7.2.3 Verwaltungssystem

719136;

119136;
219136;
319136;
519136;

612313;
712313;
812313;
912313;
012313;
112313;

.212313;
£=4599.
t=4599.

312313;
412313;

value=4961.
value=4963.
value=4964.
value=4965.
value=4967.
value=4968.
value=4969.

value=4961.
value=4962.
value=4963.
value=4964.
value=4965.
value=4966.
value=4967.
value=4968.
value=4969.

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000
000000

Das Verwaltungssystem dient zur Uberwachung der Ressourcenzuweisung, der Kommuni-
kation und dem Deployment. Zudem bietet er Komponentenverwaltungsdienste an.

216.73.216.36, am 20.01.2026, 13:12:05. ©
m

73

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

Ressourcenverwaltung

Die Hardware-Ressourcenzuweisung kann vom Verwaltungssystem den Anforderungen ent-
sprechend geéindert werden. Abb. 7.9 zeigt zwei verschiedene, vom Verwaltungssystem

ST =
(0 Manager | O service | () Control | () MandO | (J Interface
Bl & &, Scheme1
O 5 1 15 20 25 30 35 40 45 50 55 60 65 YO 75 80 85 90 95 100 105 110 115 120
Livtabuna b b b s b L b b oo e koo beees Lo b b oo
wl w2 w3 we
w1 2 3 ps
B &, =, Scheme2
0 5 10 15 20 25 30 35 40 45 30 55 60 65 70O 75 8 85 90 95 100 105 110 115 120
[P T TP TP T P TN TPTO FOY FPPY FETET FOURT PP FPPY TETIY FOPY FOPPLERTRT IETRY DAY AT
w3 wi w2 wd
3 tp1 tp2 tp
Windows
Scheme: | Schemel ~| WindowTable: |0 ~| | Create
Identifier Start Duration TimePartition|D Flags Delete
1 0 60 1 WM_SCF_PERIOD
2 60 20 2 WM_SCF_PERIOD
3 80 20 3 WM_SCF_PERIOD
4 100 20 4 WM_SCF_PERIOD

Abbildung 7.9: Scheduling Schema

generierte Schedulingschemata, welche zur Laufzeit angewendet werden kénnen. Die Be-
dingungen fiir eine Anderung des Schedulingschemas werden erfiillt wenn:

e Partitionen 2, 3 und 4 mehr CPU-Zeit benotigen als ihnen urspriinglich zugewiesen
wurde und Partition 1 weniger CPU-Zeit als vorgesehen benotigt.

e die Anwendungen in den Partitionen 2, 3 und 4 eine hohere Prioritit als Partition 1
besitzen.

Verwaltungssystem als Gateway

Abb. 7.10 stellt die Kommunikationsports zwischen der Control-Partition, dem Verwal-
tungssystem und dem Interface dar.

Wenn die vom Interface benétigten Informationen nicht an dieses weitergeleitet werden
diirfen, wird die Kommunikation verweigert. Dieser Vorgang ist in der folgenden Datei
dargestellt. Die Meldung ,,Permission denied “ wird erzeugt, wenn die Daten nicht weiter-
geleitet werden diirfen, andernfalls findet die Kommunikation statt.

[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:37.340041] [INFO] Man: transferred 8 bytes of data

74

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7.2 Prozessfiihrung

[1970/01/01 00:04:37.340041] [INFO] Man: transferred
[1970/01/01 00:04:37.360041] [INFO] Man: transferred
[1970/01/01 00:04:37.840041] [INFO] Man: transferred
[1970/01/01 00:04:38.840041] [INFO] Man: transferred
[1970/01/01 00:04:39.840041] [INFO] Man: transferred
[1970/01/01 00:04:40.840041] [INFO] Man: transferred
[1970/01/01 00:04:41.840041] [INFQ] Man: transferred
[1970/01/01 00:04:42.840041] [INFO] Man: transferred
[1970/01/01 00:04:43.840041] [INFO] Man: transferred
[1970/01/01 00:04:44.840041] [INFO] Man: transferred
[1970/01/01 00:04:45.840041] [INFO] Man: transferred
[1970/01/01 00:04:46.840041] [INFO] Man: transferred
[1970/01/01 00:04:47.840041] [INFO] Man: transferred
[1970/01/01 00:04:48.840041] [INFQ] Man: transferred
[1970/01/01 00:04:49.840041] [INFO] Man: transferred
[1970/01/01 00:04:50.840041] [INFO] Man: transferred
[1970/01/01 00:04:51.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:52.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:04:53.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:54.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:55.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:56.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:57.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:58.840041] [INFO] Man: Permission Denied

[1970/01/01 00:04:59.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:00.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:01.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:02.840041] [INFO] Man: Permission Denied

[1970/01/01 00:05:03.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:04.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:05.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:06.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:07.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:08.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:09.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:10.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:11.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:12.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:13.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:14.840041] [INFO] Man: transferred 8 bytes of data
[1970/01/01 00:05:15.840041] [INFO] Man: transferred 8 bytes of data

bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data
bytes of data

0 00 C 00 0 00 0 00 0 o 0 0 0 0 00 0 0o

[e0]

8
8
8
8
8
8
8
8
8
8
8
8

Der Gateway-FB und seine Eingangs- (Prozessfithrung) und Ausgangsports (Interface)
sind in Abb. 7.11 dargestellt.

1)

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

7 Validierung des Konzepts

G H-BR < -5

© Manager B
INTERFACE OUT @

Mand0_OUT @

O Manager
Q CONTROLIN

O service B
O Control =]

& Mand0 B

O Control

MANAGER_OUT @

@ MandO B
O Interface =]

Q MANAGER_IN

O Interface

@ MANAGER_IN

& B . p—
Channel Table
Type Port Type Part.ID> Port> Provider Part.ID < Port < Create
Partition VM_PORT_QUEUING 2 INTERFACE.OUT <N/A> 5 MANAGER_IN Delete
Partition VM_PORT_QUEUING 3 MANAGER_OUT A2 CONTROL.IN
Partition VM_PORT_QUEUING 2 Mand0_OUT 4 MANAGER_IN

Abbildung 7.10: Kommunikationsports zwischen der Control-Partition und dem Interface

Instance rmame: Ifhchﬂhlu.’ldnnlar

Instanos typa: I - - ommuni cationController

Task parent & I!Ful:-,mr!nk

Task onild o I

[} At imcds I KT ErrStata I]
19700801 01:01:13 proctime FALSE carorime | 000000
0 000003 cyctime mathoount
TRUE taxreq I 3
0008000 maxcalctine I
Inputs nidden omtputs
I n p Ut H‘_‘:H""l \nesmingPare connssrisaVa I FALSE
‘_"__._'_'_'_,.‘F cutgoinglfort | roault Bi]
Output. — = =
103 roaadingTinec
o xpon
] tpn
L] 148
1883 idL I

Abbildung 7.11: Verwaltungssystem als ein Gateway zwischen der Control-Partition und dem
Interface

76

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

8 Fazit

Industrie 4.0 konfrontiert die industriellen Doménen mit neuen Herausforderungen. Die
Gerite kommunizieren miteinander fiir eine erhohte Effizienz, Optimierungsgrad und Wan-
delbarkeit. Wichtig ist, dass diese Vernetzung keinerlei Auswirkungen auf die Anforderun-
gen der kritischen Anwendungen, wie z. B. die Verfiigbarkeit, haben darf. Abgesehen von
der Vernetzung, werden Analysefunktionen und KI-Algorithmen zunehmend in der Indu-
strie Doménen eingesetzt. Die Anwendungen haben unterschiedliche Anforderungen an
Echtzeit und Verfiigharkeit im Vergleich zu kritischen Anwendungen, miissen aber mit
diesen kommunizieren. Die Vorteile des Betriebs dieser Anwendungen auf der gleichen
Hardware konnen wie folgt aufgelistet werden:

e Skalierbarkeit: Durch die Verwaltung von Applikationen mit unterschiedlichen An-
forderungen auf derselben Hardware reduziert sich die Anzahl der erforderlichen
Hardware-Ressourcen. In der virtualisierten Architektur kénnen sich mehrere An-
wendungen eine Hardwareressource teilen. Dies fiihrt zu einer besseren Skalierbar-
keit.

e Freie Zuordnung auf die Hardwareressourcen: Die Partitionen kénnen frei auf die
zur Verfligung stehenden Hardware-Ressourcen iibertragen werden. Dies erlaubt ein
dynamisches Deployment und die Wiederverwendbarkeit der Partitionen.

e Vereinfachte Kommunikationsinfrastruktur: Innerhalb der Umgebung eines Hypervi-
sors kann die Kommunikation zwischen den Partitionen einfach und effizient gestaltet
werden. Der gesamte Netzwerk-Overhead entfillt.

e Reduzierung der Abhéngigkeit zwischen Software und Hardware: Die Software wird
auf dem OS des Hypervisors spezifiziert und kann auf beliebigen Instanzen des Hy-
pervisors realisiert werden.

e Implementierung von Security-Aspekten auf der Systemebene: Security-Aspekte, wie
Zugriffsrechte, Kommunikation, Ressource-Allokation kénnen auf der Systemebene
definiert werden.

In dieser Dissertation wurde ein Architekturkonzept fiir Steuerungsgerite, bezeichnet als
Komponentenbasierte Architektur fiir Automatisierungssysteme, vorgestellt. Die vorge-
stellte Architektur verwendet eine Hardware-Virtualisierung, um verschiedene Anwendun-
gen auf Steuerungsgeriten zu trennen und zu integrieren. Die Systemfunktionen, die in die-
ser virtualisierten Umgebung implementiert wurden, bilden ein Verwaltungssystem und ein
Interface. Diese beiden Systemfunktionen bilden den Kern der KAS-Architektur und wur-
den jeweils in eigenen Partitionen implementiert. Anwendungen kénnen je nach QoS oder
Strukturierungsanforderungen in gemeinsamen oder getrennten Partitionen oder Contai-
nern realisiert werden. Das KAS-System stellt ein leistungsfiihiges internes Kommunikati-
onssystem fiir den Datenaustausch zwischen den Partitionen und Containern einer Ressour-
ce bereit. Die KAS-Mechanismen erlauben eine effiziente und iibersichtliche Uberwachung

T

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

8 Fazit

des Informationsflusses zwischen den internen Komponenten. Die Kommunikation zwi-
schen den Anwendungen soll jedoch sowohl hinsichtlich der Kommunikationsrichtung als
auch des Informationsflusses itberwacht werden. Die Uberwachung und Steuerung des Infor-
mationsflusses wird durch das Verwaltungssystem durchgefiihrt. Dariiber hinaus bietet das
Verwaltungssystem sowohl Dienste fiir das Ressourcen- und Komponentenmanagement als
auch Konfigurationsdienste (Deployment und Inbetriebnahme) an. Durch Virtualisierung
und Hypervisor-Technologie werden unabhéngige Umgebungen (VMs) generiert, die geméif
der Anforderungen der Anwendungen konfiguriert werden konnen. Beispielsweise haben die
Datenanalysefunktionen andere Anforderungen an Echtzeit und Verfiigbarkeit im Vergleich
zu Prozessfithrungsanwendungen. Daher miissen die Partitionen, welche diese Anwendun-
gen kapseln auch unterschiedlich konfiguriert sein. Die KAS-Architektur ermoglicht den
Betrieb, die Kooperation und die Vernetzung von Geriten in dem Industrie 4.0 Umfeld,
ohne die Anforderungen der kritischen Applikationen zu gefihrden.

KAS implementiert eine neue Architektur eines hierarchischen Komponentensystems.
KAS vereinfacht und strukturiert die Implementierung von modularen wandelbaren An-
wendungsstrukturen unter Beriicksichtigung der jeweiligen QoS. Es erscheint erstrebens-
wert, ein solches Konzept zu verallgemeinern und als neue generische Struktur fiir die Au-
tomatisierungsarchitektur zu standardisieren. Die Partitionen kapseln Anwendungen mit
unterschiedlichen Anforderungen. Standardisierte Konfigurationen der Partitionen gem#f
der Anwendungen wird auch als eine zukiinftige Arbeit betrachtet. Diese Konfigurationen
beinhalten die Fihigkeiten der Partitionen, die Zugriffsrechte, die QoS-Eigenschaften, die
Kommunikationsports usw. Dies ermoglicht auch eine Wiederverwendbarkeit dieser Parti-
tionen.

Im bisherigen System werden die Daten direkt zwischen den Partitionen 1:1 {ibertragen.
Fiir zukiinftige Anwendungen erscheint es hilfreich im Verwaltungssystem eine Datenhal-
tung, in Form eines Publisher/Subscriber-Systems, zu implementieren. Abb. 8.1 illustriert
die Kommunikation zwischen verschiedenen Anwendungen. Fiir die Kommunikation wird
eine Methode zur Identifikation, sowie der Speicherung der Daten bendtigt. Die Informatio-
nen miissen dazu mit einem Topic versehen werden. Dies inkludiert auch die Verwaltung der
historischen Daten. Zustéinde, die von der Verwaltungskomponente abgerufen werden, wer-
den in diesem System unter diversen Topics gespeichert. Die anderen Partitionen kénnen
diese Topics nach Bedarf abonnieren.

78

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Abbildung 8.1: Aufriistung mit einem Publisher/Subscriber-System

1312:05. 0

tersagt, m mit, flir oder in Ki-Syster

79

https://doi.org/10.51202/9783186275080

A Anhang

Dieser Anhang stellt die Partition-Konfigurationen dar.

1 | <?xml version="1.0" encoding="us-ascii" standalone="no"?7>

2 |<Project xmlns="http://www.sysgo.com/xsd/prj/project-4.8.xsd" xmlns:xsi="
http://www.w3.0rg/2001/XMLSchema-instance" productversion="4.2">

3 <Integration name="posix-devel" profile="integration"

4 target="arm_v7hf">

5 <PathTable>

6 <Path id="PIKEOS" location="F:\SYSGO\opt\pikeos-4.2\" />

7 <Path id="PIKEOS_POOL"

8 location="F:\SYSGO\opt\pikeos-4.2\target\arm\v7hf\" />

9 <Path id="CUSTOM_POOL" location="F:\SYSGO\POSIX4\POOL" />

10 </PathTable>

11 <ConfigurationDomainTable>

12 <!--start here-->

13 <!--use CTRL + SPACE for suggestions-->

14 <l--use ’validate’ from the right click menu to validate your code
-->

15 <Group name="Build">

16 <ComponentInstance name="Compilation Parameters"

17 ref="Compilation Parameters" />

18 </Group>

19 <Group name="Application">

20 <ComponentInstance name="POSIX Partition"

21 ref="POSIX Partition">

22 <ParameterValue name="PARTNAME" value="Manager" />

23 <VmitConfigurationTable>

24 <VmitConfiguration condition="true"

25 isReference="true">

26 <Partition

27 Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE VM_AB_PSP_RESET

VM_AB_MONITOR VM_AB_MEM_CREATE VM_AB_PSP_CONSOLE
VM_AB_HM_INJECT_OTHER" CpuMask="-1"

28 Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="
20"

29 MaxPrio="62" MultiPartitionHMTableID="0" Name="$ (PARTNAME
) "

30 SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

31 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>

32 <FileAccessTable>

33 <FileAccess

34 FileName="rfs:ov_server_manager.conf"

35 AccessMode="VM_0O_RD VM_O_MAP">

36 </FileAccess>

37

38 <FileAccess

39 FileName="shm:MandO_SHAREDMEMORY"

80

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

61
62
63

64
65
66

67
68
69
70
71
72
3
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

AccessMode="VM_O_RD VM_O_WR VM_O_MAP">
</FileAccess>
<FileAccess

FileName="shm: INTERFACE_SHAREDMEMORY"

AccessMode="VM_0O_RD VM_O_WR VM_O_MAP">
</FileAccess>

<ComponentReference
ref="P0OSIX Process" />
</FileAccessTable>
<MemoryRequirementTable >
<ComponentReference
ref="P0SIX Process" />
</MemoryRequirementTable >
<ProcessTable>
<ComponentReference
ref="P0SIX Process" />
</ProcessTable>
<QueuingPortTable>
<QueuingPort Name="INTERFACE_OUT"

MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_SOURCE">
</QueuingPort >
<QueuingPort Name="CONTROL_IN"

MaxMessageCount="4294900000" MaxMessageSize="
4294900000" Direction="VM_PORT_DESTINATION">

</QueuingPort >
<QueuingPort Name="MandO_OUT"

MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_SOURCE">
</QueuingPort >
<ComponentReference
ref="P0SIX Process" />
</QueuingPortTable >
<SamplingPortTable >
<ComponentReference
ref="P0SIX Process" />
</SamplingPortTable >
<HMTable >
<DefaultSwitch>
<Default Action="P4_HM_PAC_IDLE"

Code="0" Level="P4_HM_LEVEL_USER" Notify="0"

</DefaultSwitch>
</HMTable >
</Partition>
</VmitConfiguration>
</VmitConfigurationTable >
</ComponentInstance>
<ComponentInstance name="POSIX Process"
ref="P0OSIX Process">
<ParameterValue name="LWIP_CONFIG" value="true" />
<ParameterValue name="LWIP_TARGETIP_IF1"
value="134.130.125.60" />
<ParameterValue name="RAMSIZE" value="0x04000000" />
<ParameterValue name="FILE"
value="CUSTOM_POOL/ov_runtimeserver" />

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

/>

81

https://doi.org/10.51202/9783186275080

A Anhang

93 <ParameterValue name="MUXA_ALL" value="true" />

94 <ParameterValue name="LWIP_GATEWAY_IF1"

95 value="192.168.0.11" />

96 <ParameterValue name="DESTNAME" value="Manager" />

97 <ParameterValue name="POSIX_TUNE" value="true"/><ParameterValue
name="POSIX_TUNE_VM" value="true"/><ParameterValue name="
POSIX_TUNE_ARCH" value="true"/><ParameterValue name="
POSIX_TUNE_FS" value="true"/><ParameterValue name="
POSIX_TUNE_HEAP" value="true"/><ParameterValue name="
POSIX_TUNE_P4_PRIO" value="true"/><ParameterValue name="
POSIX_TUNE_SCHED" value="true"/><ParameterValue name="
POSIX_TUNE_PTHREAD" value="true"/><ParameterValue name="
POSIX_TUNE_MQ" value="true"/><ParameterValue name="
POSIX_TUNE_PARAMS" value="true"/><ParameterValue name="
POSIX_TUNE_TTY" value="true"/><AssignedDependencyTable>

98

99 <AssignedDependency cmp="imx_fec-vchanl"

100 provideId="channel" dependId="LWIP_DEVICE_IF1" />

101 <AssignedDependency cmp="muxa"

102 provideId="CHANNEL_02" dependId="IOFILE" />

103 </AssignedDependencyTable>

104 </ComponentInstance >

105 </Group >

106 <Group filename="driver/misc/devel.dom" name="devel"

107 path_id="PIKEOS_POOL">

108 <ComponentInstance name="monitor" ref="monitor">

109 <AssignedDependencyTable>

110 <AssignedDependency cmp="muxa" dependId="MONBIN"

111 provideId="monitor" />

112 <AssignedDependency cmp="muxa" dependId="MONCON"

113 provideId="mon_con" />

114 <AssignedDependency cmp="Monitor Master"

115 dependId="MON_MASTER" provideId="imon-master" />

116 </AssignedDependencyTable>

117 </ComponentInstance >

118 <ComponentInstance name="traceserver" ref="traceserver">

119 <AssignedDependencyTable >

120 <AssignedDependency cmp="muxa"

121 dependId="MUXA Channel" provideId="traceserver" />

122 </AssignedDependencyTable>

123 </ComponentInstance >

124 <ComponentInstance name="muxa" ref="muxa">

125 <ParameterValue name="HostIP" value="134.130.125.53" />

126 <ParameterValue name="TargetIP"

127 value="134.130.125.90" />

128 <ParameterValue name="GatewayIP"

129 value="134.130.125.126" />

130 <ParameterValue name="Netmask" value="255.255.255.0" />

131 <ParameterValue name="Channel2_Protocol"

132 value="telnet" />

133 <AssignedDependencyTable >

134 <AssignedDependency cmp="imx_fec-vchanO"

135 provideId="channel" dependId="FILE" />

136 </AssignedDependencyTable >

137 </ComponentInstance >

138 </Group>

82

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

139
140
141
142
143
144
145
146

147
148

149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164

165

166

167
168
169
170

171

172

173
174
175
176
177
178
179
180
181
182

<Group name="Default">
<ComponentInstance name="service.partition"
ref="service.partition">
<VmitConfigurationTable>
<VmitConfiguration condition="true"
isReference="true">
<Partition
Abilities="VM_AB_TIMEPART_CHANGE VM_AB_MONITOR
VM_AB_PSP_CONSOLE VM_AB_TIMEPART_SETUP
VM_AB_HM_INJECT_OTHER VM_AB_PART_SET_MODE
VM_AB_MEM_CREATE VM_AB_PSP_RESET VM_AB_CACHE_CHANGE
VM_AB_TRACE"
CpuMask="-1" Identifier="1" MaxChildTaskCount="20"
MaxFDCount="128" MaxPrio="102" MultiPartitionHMTableID="0
Name="service" SchedChangeAction="VM_SCHED_CHANGE_IGNORE"
StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>
<FileAccessTable>
<FileAccess
AccessMode="VM_0O_RD VM_O_WR" FileName="con:" />
<ComponentReference ref="monitor" />
<ComponentReference ref="traceserver" />
<ComponentReference ref="muxa" />
<ComponentReference
ref="imx_uart-base" />
<ComponentReference
ref="imx_fec-base" />
</FileAccessTable>
<MemoryRequirementTable >
<MemoryRequirement
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC"
Alignment="-1" CacheMode="VM_MEM_CACHE_CB" Contiguous
="false"
IsPool="true" MemRegionID="-1" MemRegionPartition="-1
"
Name="_RAM_" PhysicalAddress="-1" Size="0x200000"
Type="VM_MEM_TYPE_RAM" ZeroCount="0" />
<MemoryRequirement
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC"
Alignment="-1" CacheMode="VM_MEM_CACHE_CB" Contiguous
="false"
IsPool="false" MemRegionID="-1" MemRegionPartition="
_1||
Name="_KMEM_" PhysicalAddress="-1" Size="0x320000"
Type="VM_MEM_TYPE_KMEM" ZeroCount="0" />
<ComponentReference ref="monitor" />
<ComponentReference ref="traceserver" />
<ComponentReference ref="muxa" />
<ComponentReference
ref="imx_uart-base" />
<ComponentReference
ref="imx_fec-base" />
</MemoryRequirementTable >

83

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

A Anhang

183 <ProcessTable>
184 <ComponentReference ref="monitor" />
185 <ComponentReference ref="traceserver" />
186 <ComponentReference ref="muxa" />
187 <ComponentReference
188 ref="imx_uart -base" />
189 <ComponentReference
190 ref="imx_fec-base" />
191 </ProcessTable>
192 <QueuingPortTable >
193 <ComponentReference ref="monitor" />
194 <ComponentReference ref="traceserver" />
195 <ComponentReference ref="muxa" />
196 <ComponentReference
197 ref="imx_uart-base" />
198 <ComponentReference
199 ref="imx_fec-base" />
200 </QueuingPortTable >
201 <SamplingPortTable >
202 <ComponentReference ref="monitor" />
203 <ComponentReference ref="traceserver" />
204 <ComponentReference ref="muxa" />
205 <ComponentReference
206 ref="imx_uart-base" />
207 <ComponentReference
208 ref="imx_fec-base" />
209 </SamplingPortTable>
210 <HMTable>
211 <DefaultSwitch>
212 <Default Action="P4_HM_PAC_IDLE"
213 Code="0" Level="P4_HM_LEVEL_USER" Notify="O0" />
214 </DefaultSwitch>
215 </HMTable >
216 </Partition>
217 </VmitConfiguration>
218 </VmitConfigurationTable >
219 </ComponentInstance>
220 </Group>
221 <Bsp align="0x00001000" arch="arm" boot="uboot"
222 bootstrats="uboot ,uboot_unc,raw" endian="1little"
223 filename="board/imx6q_sabrelite.bsp.dom" name="imx6q_sabrelite"
224 path_id="PIKEOS_POOL" proc="v7hf" wrdsz="32">
225 <Description>
226 Boundary Devices BD-SL-i.MX6 (formerly the Freescale
227 SABRE Lite board).
228 </Description>
229 <Group name="Monitor Kernel Drivers">
230 <ComponentInstance name="Monitor Master"
231 ref="imon-master" />
232 <ComponentInstance name="Monitor PSSW" ref="imon-ssw" />
233 <ComponentInstance name="Monitor APEX"
234 ref="imon-apex" />
235 </Group >
236 <Group name="iMX6 Serial User Level Driver">
237 <Description>i.MX Serial Driver</Description>
238 <ComponentInstance name="imx_uart-base"
84

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

239
240
241
242
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

ref="imx_uart-fp_ext">
<ParameterValue name="MAX_FD_COUNT" value="5" />
<ParameterValue name="PROVIDER" value="ser0" />
<ParameterValue name="USE_CLK_MGR" value="true" />
<ParameterValue name="HEAP_SIZE" value="0x00300000"
AssignedDependencyTable >
<AssignedDependency cmp="iMX Clock Manager"
dependId="CLKMNGR" providelId="driver" />
</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_uart-port0"
ref="imx_uart-device">
<ParameterValue name="IOADDR_LINK" value="UART1" />
<ParameterValue name="IRQ_LINK" value="UART1" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="0" />
<ParameterValue name="I0_ID" value="0" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR"
</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_uart-portl"
ref="imx_uart-device">
<ParameterValue name="IOADDR_LINK" value="UART2" />
<ParameterValue name="DEVICE" value="1" />
<ParameterValue name="IRQ_LINK" value="UART2" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="1" />
<ParameterValue name="I0_ID" value="1" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR"
</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_uart-port2"
ref="imx_uart-device">
<ParameterValue name="IOADDR_LINK" value="UART3" />
<ParameterValue name="DEVICE" value="2" />
<ParameterValue name="IRQ_LINK" value="UART3" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

/><

/>

/>

tersagt, m mit, flir oder in Ki-Syster

85

https://doi.org/10.51202/9783186275080

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

A Anhang

86

<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="2" />
<ParameterValue name="I0_ID" value="2" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_uart-port3"
ref="imx_uart-device">
<ParameterValue name="I0OADDR_LINK" value="UART4" />
<ParameterValue name="DEVICE" value="3" />
<ParameterValue name="IRQ_LINK" value="UART4" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="3" />
<ParameterValue name="I0_ID" value="3" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_uart-port4"
ref="imx_uart-device">
<ParameterValue name="I0OADDR_LINK" value="UART5" />
<ParameterValue name="DEVICE" value="4" />
<ParameterValue name="IRQ_LINK" value="UART5" />
<ParameterValue name="CLOCK_SPEED"
value="80000000" />
<ParameterValue name="CLK_NAME"
value="uart_serial_clk_gate" />
<ParameterValue name="CLK_FREQ" value="80000000" />
<ParameterValue name="FILE_NAME" value="4" />
<ParameterValue name="I0_ID" value="4" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_uart-base"
dependId="PROVIDER" provideId="driver" />
<AssignedDependency cmp="imx_uart-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR" />
</AssignedDependencyTable >
</ComponentInstance>
</Group >
<Group name="iMX6_FEC Ethernet User Level Driver">
<ComponentInstance name="imx_fec-base"
ref="imx_fec-fp_ext">
<ParameterValue name="MAX_FD_COUNT" value="6" />
<ParameterValue name="PROVIDER" value="ethO0" />
<ParameterValue name="MAX_TRANSFER_SIZE"
value="1522" />

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

<ParameterValue name="MAX_FILE_COUNT" value="6" />
<ParameterValue name="USE_CLK_MGR" value="true" />

<AssignedDependencyTable >
<AssignedDependency cmp="iMX Clock Manager"
dependId="CLKMNGR" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_fec-device"
ref="imx_fec-device">
<ParameterValue name="USE_PSP_NODE" value="false"
<ParameterValue name="IO_ADDR" value="0x02188000"
<ParameterValue name="I0O_OFFSET" value="0" />
<ParameterValue name="I0_IRQ" value="150" />

/>
/>

<ParameterValue name="CLK_FREQ" value="66000000" />

<ParameterValue name="CLK_NAME"
value="enet_clk_gate" />
<ParameterValue name="FILE_NAME" value="dev0" />
<ParameterValue name="I0O_SIZE" value="0x400" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-base"
dependId="USE_CLK_MGR" provideId="USE_CLK_MGR"
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_fec-vchanO"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="0" />
<ParameterValue name="FILE_NAME" value="0" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance>
<ComponentInstance name="imx_fec-vchanl"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="1" />
<ParameterValue name="FILE_NAME" value="1" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_fec-vchan2"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="2" />
<ParameterValue name="FILE_NAME" value="2" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

/>

tersagt, m mit, flir oder in Ki-Syster

87

https://doi.org/10.51202/9783186275080

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

A Anhang

</AssignedDependencyTable >
</ComponentInstance >
<ComponentInstance name="imx_fec-vchan3"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="3" />
<ParameterValue name="FILE_NAME" value="3" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable>
</ComponentInstance >
<ComponentInstance name="imx_fec-vchan4d"
ref="hlnet-vchan">
<ParameterValue name="VCHAN" value="4" />
<ParameterValue name="FILE_NAME" value="4" />
<AssignedDependencyTable >
<AssignedDependency cmp="imx_fec-device"
dependId="DEVICE" provideId="file" />
<AssignedDependency cmp="imx_fec-base"
dependId="PROVIDER" provideId="driver" />
</AssignedDependencyTable >
</ComponentInstance ></Group>
<ComponentInstance name="PikeOS Kernel"
ref="Pike0S Kernel">
<ParameterValue name="PIKEOS_KERNEL_DIR"
value="PIKEOS_POOL/object/bsp/imx6" />
</ComponentInstance>
<ComponentInstance name="System Software"
ref="generic-pssw">
<ParameterValue name="PIKEOS_PSSW_BIN"
value="PIKEOS_POOL/pssw/object/standard/pssw.elf" />
</ComponentInstance >
<ComponentInstance name="sabrelite-config"
ref="sabrelite-config" />
<ComponentInstance name="imx6.psp" ref="imx6.psp">
<ParameterValue name="PSP_CONSOLE_PORT" value="2" />
<ParameterValue name="GPU_VOLT" value="false" />
</ComponentInstance>
<ComponentInstance name="PCI Manager"
ref="PCI Manager KDEV" />
<ComponentInstance name="HM Event Subscription"
ref="hmev" />
<ComponentInstance name="Standard Console"
ref="Standard Console" />
<ComponentInstance name="iMX Clock Manager"
ref="i.MX Clock Manager" />
<Info>
<Cpu name="i.MX6DL, i.MX6Q" />
<Vendor data="Boundary Devices" />

<Platman
manual="documentation/platform/platform-manual -ARM.pdf" />
<Uri
link="http://boundarydevices.com/products/sabre-lite-imx6-sbc
n />

88

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

461
462

463
464

465
466
467
468
469
470
471
472
473
474
475
476
477
478

479

480

481
482

483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

503
504
505
506
507

<Project label="PSSW Fusion Project"
profile="fusion-pssw" template="standard" variable="
FUSION_PSSW" />
<Project label="Kernel Fusion Project"
profile="fusion-kernel" template="imx6" variable="
FUSION_KERNEL" />
<Project label="PSP Project" profile="psp"
template="imx6" variable="PSP" />
</Info>
</Bsp>
<Group name="Application2">
<ComponentInstance name="POSIX Partition2"
ref="P0OSIX Partition">
<ParameterValue name="PARTNAME" value="Control" />
<ParameterValue name="PARTID" value="3" />
<VmitConfigurationTable>
<VmitConfiguration condition="true"
isReference="true">
<Partition
Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE VM_AB_PSP_RESET
VM_AB_PSP_CONSOLE VM_AB_HM_INJECT_OTHER
VM_AB_MEM_CREATE" CpuMask="-1"
Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="
20"
MaxPrio="62" MultiPartitionHMTableID="0" Name="$ (PARTNAME
)n
SchedChangeAction="VM_SCHED_CHANGE_IGNORE"
StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>
<FileAccessTable>
<FileAccess
AccessMode="VM_O_RD VM_O_MAP" FileName="rfs:
ov_server_manager2.conf" />
<FileAccess FileName="shm:MANAGER_SHAREDMEMORY"
AccessMode="VM_O_RD VM_O_WR VM_O_MAP">
</FileAccess>
<ComponentReference
ref="P0SIX Process2" />
</FileAccessTable>
<MemoryRequirementTable >
<ComponentReference
ref="P0SIX Process2" />
</MemoryRequirementTable >
<ProcessTable >
<ComponentReference
ref="P0SIX Process2" />
</ProcessTable>
<QueuingPortTable>
<QueuingPort Name="MANAGER_OUT"
MaxMessageCount="4294900000" MaxMessageSize="
4294900000" Direction="VM_PORT_SOURCE">
</QueuingPort>
<ComponentReference
ref="P0SIX Process2" />
</QueuingPortTable >
<SamplingPortTable>

89

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

A Anhang

508 <ComponentReference

509 ref="P0SIX Process2" />

510 </SamplingPortTable>

511 <HMTable>

512 <DefaultSwitch>

513 <Default Action="P4_HM_PAC_IDLE"

514 Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />

515 </DefaultSwitch>

516 </HMTable >

517 </Partition>

518 </VmitConfiguration>

519 </VmitConfigurationTable>

520 </ComponentInstance>

521 <ComponentInstance name="POSIX Process2"

522 ref="P0OSIX Process">

523 <ParameterValue name="LWIP_CONFIG" value="true" />

524 <ParameterValue name="LWIP_TARGETIP_IF1"

525 value="134.130.125.61" />

526 <ParameterValue name="RAMSIZE" value="0x04000000" />

527 <ParameterValue name="FILE"

528 value="CUSTOM_POOL/ov_runtimeserver" />

529 <ParameterValue name="MUXA_ALL" value="true" />

530 <ParameterValue name="LWIP_GATEWAY_IF1"

531 value="192.168.0.11" />

532 <ParameterValue name="DESTNAME" value="Control" />

533 <AssignedDependencyTable>

534

535

536

537 <AssignedDependency cmp="imx_fec-vchan2"

538 provideId="channel" dependId="LWIP_DEVICE_IF1" />

539 <AssignedDependency cmp="muxa"

540 provideId="CHANNEL_03" dependId="IOFILE" />

541 </AssignedDependencyTable>

542 </ComponentInstance >

543 </Group>

544 <Group name="Application3">

545 <ComponentInstance name="POSIX Partition3"

546 ref="POSIX Partition">

547 <ParameterValue name="PARTNAME" value="MandO" />

548 <ParameterValue name="PARTID" value="4" />

549 <VmitConfigurationTable >

550 <VmitConfiguration condition="true"

551 isReference="true">

552 <Partition

553 Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE" CpuMask="-1"

554 Identifier="$(PARTID)" MaxChildTaskCount="1" MaxFDCount="
20"

555 MaxPrio="62" MultiPartitionHMTableID="0" Name="$ (PARTNAME
)||

556 SchedChangeAction="VM_SCHED_CHANGE_IGNORE"

557 StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>

558 <FileAccessTable>

559 <FileAccess

560 AccessMode="VM_O_RD VM_O_MAP"

90

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

610
611
612
613
614

FileName="rfs:ov_server_manager3.conf" />

<FileAccess FileName="shm:INTERFACE_SHAREDMEMORY"

AccessMode="VM_O_RD VM_O_WR">
</FileAccess>
<ComponentReference

ref="P0SIX Process3" />

</FileAccessTable>
<MemoryRequirementTable >
<ComponentReference

ref="P0OSIX Process3" />

</MemoryRequirementTable >
<ProcessTable>
<ComponentReference

ref="P0SIX Process3" />

</ProcessTable>
<QueuingPortTable>
<QueuingPort Name="MANAGER_IN"
MaxMessageCount="4294900000" MaxMessageSize="

4294900000" Direction="VM_PORT_DESTINATION">

</QueuingPort >
<ComponentReference
ref="P0SIX Process3" />
</QueuingPortTable >
<SamplingPortTable>
<ComponentReference
ref="P0SIX Process3" />
</SamplingPortTable >
<HMTable>
<DefaultSwitch>
<Default Action="P4_HM_PAC_IDLE"
Code="0" Level="P4_HM_LEVEL_USER" Notify="0"
</DefaultSwitch>
</HMTable >
</Partition>
</VmitConfiguration>
</VmitConfigurationTable >
</ComponentInstance>
<ComponentInstance name="POSIX Process3"
ref="POSIX Process">
<ParameterValue name="LWIP_CONFIG" value="true" />
<ParameterValue name="LWIP_TARGETIP_IF1"
value="134.130.125.64" />
<ParameterValue name="RAMSIZE" value="0x04000000" />
<ParameterValue name="FILE"
value="CUSTOM_POOL/ov_runtimeserver" />
<ParameterValue name="MUXA_ALL" value="true" />
<ParameterValue name="LWIP_GATEWAY_IF1"
value="192.168.0.11" />
<ParameterValue name="DESTNAME" value="MandO" />
<ParameterValue name="POSIX_TUNE" value="false"/><
AssignedDependencyTable >

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

/>

91

https://doi.org/10.51202/9783186275080

615
616

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

632

633
634

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

653
654
655
656
657
658
659
660
661
662
663
664
665

A Anhang

<AssignedDependency cmp="muxa"
provideId="CHANNEL_07" dependId="IOFILE" /><
AssignedDependency
cmp="imx_fec-vchan3" provideId="channel"
dependId="LWIP_DEVICE_IF1" /></AssignedDependencyTable>
</ComponentInstance >
</Group>
<Group name="Application4d">
<ComponentInstance name="POSIX Partitiond"
ref="POSIX Partition">
<ParameterValue name="PARTNAME" value="Interface" />
<ParameterValue name="PARTID" value="5" />
<VmitConfigurationTable>
<VmitConfiguration condition="true"
isReference="true">
<Partition
Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE" CpuMask="-1"
Identifier="$ (PARTID)" MaxChildTaskCount="1" MaxFDCount="
20"
MaxPrio="62" MultiPartitionHMTableID="0" Name="$ (PARTNAME
)u
SchedChangeAction="VM_SCHED_CHANGE_IGNORE"
StartupMode="VM_PART_MODE_COLD_START" TimePartitionID="0"
>
<FileAccessTable>
<FileAccess
AccessMode="VM_O_RD VM_O_MAP"
FileName="rfs:ov_server_manager4.conf" />
<ComponentReference
ref="P0SIX Process4" />
</FileAccessTable>
<MemoryRequirementTable >
<ComponentReference
ref="P0SIX Process4" />
</MemoryRequirementTable >
<ProcessTable>
<ComponentReference
ref="P0SIX Process4" />
</ProcessTable>
<QueuingPortTable >
<QueuingPort Name="MANAGER_IN"
MaxMessageCount="4294900000" MaxMessageSize="
4294900000" Direction="VM_PORT_DESTINATION">
</QueuingPort >
<ComponentReference
ref="P0SIX Process4" />
</QueuingPortTable >
<SamplingPortTable>

<ComponentReference
ref="P0SIX Process4" />
</SamplingPortTable>
<HMTable>
<DefaultSwitch>
<Default Action="P4_HM_PAC_IDLE"
Code="0" Level="P4_HM_LEVEL_USER" Notify="0" />

92

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

683
684
685
686
687
688
689
690
691

693

694

695
696
697
698
699
700
701
702
703
704
705
706
707

708
709
710
711
712

713
714
715
716
ey

</DefaultSwitch>
</HMTable >
</Partition>
</VmitConfiguration>
</VmitConfigurationTable >
</ComponentInstance>
<ComponentInstance name="POSIX Process4"
ref="P0OSIX Process">
<ParameterValue name="LWIP_CONFIG" value="true" />
<ParameterValue name="LWIP_TARGETIP_IF1"
value="134.130.125.66" />
<ParameterValue name="RAMSIZE" value="0x04000000" />
<ParameterValue name="FILE"
value="CUSTOM_POOL/ov_runtimeserver" />
<ParameterValue name="MUXA_ALL" value="true" />
<ParameterValue name="LWIP_GATEWAY_IF1"
value="192.168.0.11" />
<ParameterValue name="DESTNAME" value="Interface" />
<AssignedDependencyTable >

<AssignedDependency cmp="imx_fec-vchand"
provideId="channel" dependId="LWIP_DEVICE_IF1" /><
AssignedDependency
cmp="muxa" provideId="CHANNEL_01" dependId="IOFILE" /></
AssignedDependencyTable >
</ComponentInstance >
</Group></ConfigurationDomainTable >
<Vmit >
<!--the master VMIT-->
<Configuration PartitionID="0"
Version="VM_VMIT_VERSION_CURRENT">
<ConnectionTable>
<PartitionChannelTable >
<Channel PortType="VM_PORT_QUEUING">
<DestinationPortRef PortName="MANAGER_IN"
PartitionID="5">
</DestinationPortRef >
<SourcePortRef PortName="INTERFACE_QUT" PartitionID="2"></
SourcePortRef ></Channel >
<Channel PortType="VM_PORT_QUEUING">
<DestinationPortRef PortName="CONTROL_IN"
PartitionID="2">
</DestinationPortRef >
<SourcePortRef PortName="MANAGER_OUT" PartitionID="3"></
SourcePortRef ></Channel >
<Channel PortType="VM_PORT_QUEUING">
<DestinationPortRef PortName="MANAGER_IN"
PartitionID="4">
</DestinationPortRef >
<SourcePortRef PortName="Mand0_OUT" PartitionID="2"></

93

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

718
719
720
721
722
723
724
725
726
27
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

744
745
746
47
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

A Anhang

94

SourcePortRef ></Channel >

<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

ref="Pike0S Kernel" />
ref="System Software" />
ref="sabrelite-config" />
ref="imx6.psp" />
ref="PCI Manager" />
ref="Monitor Master" />
ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription"
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-portl" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-portd" />

ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchan0" />
ref="imx_fec-vchanl" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="POSIX Partition2" />
ref="POSIX Process2" />

/>

<ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="P0OSIX Process3"/><ComponentReference ref="imx_fec-
vchan4"/><ComponentReference ref="POSIX Partition4"/><
ComponentReference ref="POSIX Process4"/></
PartitionChannelTable>

<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

<ExtensionChannelTable>

ref="Pike0S Kernel" />
ref="System Software" />
ref="sabrelite-config" />
ref="imx6.psp" />
ref="PCI Manager" />
ref="Monitor Master" />
ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription"
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-portl" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-portd" />
ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchanO" />
ref="imx_fec-vchanl" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="P0SIX Partition2" />

216.73.216.36, am 20.01.2026, 13:12:05. ©
m

/>

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

769
770

772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

798
799
800
801
802
803

804
805
806
807
808
809
810
811
812
813
814
815

<ComponentReference ref="POSIX Process2" />

<ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="POSIX Process3"/><ComponentReference ref="imx_fec-
vchan4"/><ComponentReference ref="POSIX Partitiond"/><
ComponentReference ref="POSIX Process4"/></

ExtensionChannelTable >

<GateChannelTable >
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

ref="Pike0S Kernel" />
ref="System Software" />
ref="sabrelite-config" />
ref="imx6.psp" />
ref="PCI Manager" />
ref="Monitor Master" />
ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription"
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-porti" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-port4" />
ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchanO" />
ref="imx_fec-vchanl" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="P0SIX Partition2" />
ref="P0SIX Process2" />

/>

<ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="P0OSIX ProcessS"/><ComponentReference ref="imx_fec-
vchan4”/><ComponentReference ref="P0SIX Partitiond4"/><
ComponentReference ref="POSIX Process4"/></GateChannelTable

>
</ConnectionTable >
<PartitionTable>
<ComponentReference ref="POSIX Partition" />
<ComponentReference ref="service.partition" />
<ComponentReference ref="POSIX Partition2" />
<ComponentReference ref="POSIX Partition3" /><
ComponentReference
ref="P0OSIX Partition4" /></PartitionTable>
<ScheduleTable >
<ScheduleScheme Name="Schemel">
<WindowTable>
<Window Identifier="1" Start="0" Duration="60"
TimePartitionID="1" Flags="VM_SCF_PERIOD">
</Window >
<Window Identifier="2" Start="60" Duration="20"
TimePartitionID="2" Flags="VM_SCF_PERIOD">
</Window >
<Window Identifier="3" Start="80" Duration="20"
TimePartitionID="3" Flags="VM_SCF_PERIOD">

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

95

https://doi.org/10.51202/9783186275080

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

860
861

862
863

864

865

A Anhang

96

</Window>

<Window Identifier="4"
TimePartitionID="4"

</Window></WindowTable

Start="100" Duration="20"
Flags="VM_SCF_PERIOD">
></ScheduleScheme >

<ScheduleScheme Name="Scheme2">

<WindowTable >

<Window Identifier="1"
TimePartitionID="1"

</Window>

<Window Identifier="2"
TimePartitionID="2"

</Window >

<Window Identifier="3"
TimePartitionID="3"

</Window >

<Window Identifier="4"
TimePartitionID="1"

Start="40" Duration="30"
Flags="VM_SCF_PERIOD">

Start="70" Duration="40"
Flags="VM_SCF_PERIOD">

Start="0" Duration="40"
Flags="VM_SCF_PERIOD">

Start="110" Duration="10"
Flags="VM_SCF_PERIOD">

</Window></WindowTable ></ScheduleScheme >

<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

ref="Pike0S Kernel" />
ref="System Software" />
ref="sabrelite-config" />
ref="imx6.psp" />
ref="PCI Manager" />
ref="Monitor Master" />
ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription" />
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-portl" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-port4" />
ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchanO" />
ref="imx_fec-vchanl" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="P0SIX Partition2" />
ref="POSIX Process2" />

<ComponentReference ref="POSIX Partition3"/><ComponentReference
ref="P0OSIX ProcessS"/><ComponentReference ref="imx_fec-vchan4
"/><ComponentReference ref="POSIX Partitiond"/><
ComponentReference ref="POSIX Process4"/></ScheduleTable>
<SharedMemoryTable >
<MemoryRequirement Name="MANAGER_SHAREDMEMORY"

Size="0x00001000

Alignment="-1" PhysicalAddress="-1" Contiguous="false"
IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="
VM_MEM_CACHE_CB"
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC">
</MemoryRequirement >

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

866
867
868

869

870
871

872
873

874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

903
904
905
906
907
908
909
910
911
912
913

<MemoryRequirement Name="MandO_SHAREDMEMORY" Size="0x00001000"
Alignment="-1" PhysicalAddress="-1" Contiguous="false"
IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="
VM_MEM_CACHE_CB"
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC">
</MemoryRequirement >
<MemoryRequirement Name="INTERFACE_SHAREDMEMORY" Size="0
x00001000"
Alignment="-1" PhysicalAddress="-1" Contiguous="false"
IsPool="false" Type="VM_MEM_TYPE_IO_MEM" CacheMode="
VM_MEM_CACHE_CB"
AccessMode="VM_MEM_ACCESS_RD VM_MEM_ACCESS_WR
VM_MEM_ACCESS_EXEC">
</MemoryRequirement >
<ComponentReference ref="POSIX Process" />
<ComponentReference ref="Pike0S Kernel" />
<ComponentReference ref="System Software" />
<ComponentReference ref="sabrelite-config" />
<ComponentReference ref="imx6.psp" />
<ComponentReference ref="PCI Manager" />

<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference
<ComponentReference

ref="Monitor Master"

/>

ref="Monitor PSSW" />
ref="Monitor APEX" />
ref="HM Event Subscription" />
ref="Standard Console" />
ref="imx_uart-base" />
ref="imx_uart-port0" />
ref="imx_uart-portl" />
ref="imx_uart-port2" />
ref="imx_uart-port3" />
ref="imx_uart-port4" />
ref="imx_fec-base" />
ref="imx_fec-device" />
ref="imx_fec-vchanO" />
ref="imx_fec-vchani" />
ref="imx_fec-vchan2" />
ref="imx_fec-vchan3" />
ref="iMX Clock Manager" />
ref="POSIX Partition2" />

ref="POSIX Process2"

/>

<ComponentReference ref="POSIX Partition3"/><ComponentReference

ref="P0OSIX ProcessS"/><ComponentReference ref="imx_fec-vchan4
"/><ComponentReference ref="POSIX Partitiond"/><
ComponentReference ref="POSIX Process4"/></SharedMemoryTable>

<SystemExtensionTable >

<FileProviderTable />

<GateProviderTable>
<ComponentReference ref="PCI Manager" />
<ComponentReference ref="Monitor Master" />
<ComponentReference ref="Monitor PSSW" />
<ComponentReference ref="Monitor APEX" />
<ComponentReference ref="HM Event Subscription" />
<ComponentReference ref="Standard Console" />
<ComponentReference ref="iMX Clock Manager" />

</GateProviderTable >

97

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

965

966
967

A Anhang

<PortProviderTable />
</SystemExtensionTable>
<ModuleHMTable >
<DefaultSwitch>
<Default Action="P4_HM_MAC_SHUTDOWN" Notify="0" />
</DefaultSwitch>
</ModuleHMTable >
<MultiPartitionHMTable >
<Table Identifier="0" Name="Default">
<DefaultSwitch>
<Default Action="P4_HM_MAC_SHUTDOWN"
Level="P4_HM_LEVEL_PARTITION" Notify="O0" />
</DefaultSwitch>
</Table>
</MultiPartitionHMTable >
</Configuration>
</Vmit>

<Romimage >
<properties>
<prop_dir name="app/Manager/Manager">
<prop_dir name="args">
<prop_string name="argvl" data="-c" />
<prop_string name="argv2"
data="/rfs/ov_server_manager.conf" />
<prop_uint32 name="numargs" data="2" />
</prop_dir>
</prop_dir>
<prop_dir name="app/Control/Control">

<prop_dir name="args">
<prop_string name="argvl" data="-c" />
<prop_string name="argv2"
data="/rfs/ov_server_manager2.conf" />
<prop_uint32 name="numargs" data="2" />
</prop_dir>
</prop_dir>

<prop_dir name="app/Interface/Interface">
<prop_dir name="args">
<prop_string name="argvl" data="-c" />
<prop_string name="argv2"
data="/rfs/ov_server_manager4.conf" />
<prop_uint32 name="numargs" data="2" />
</prop_dir>
</prop_dir>
<prop_dir name="app/Mand0/Mand0">
<prop_dir name="args">

<prop_string name="argvl" data="-c" />
<prop_string name="argv2" data="/rfs/ov_server_managerS
/><prop_uint32
name="numargs" data="2" /></prop_dir></prop_dir></
properties>
<files>

98

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©

.conf"

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

968

969

970

972

973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

<file name="ov_server_manager.conf" resource="/cygdrive/f/SYSGO/
P0SIX4/P00L/ov_server_manager.conf" /><file
name="ov_server_manager2.conf" resource="/cygdrive/f/SYSGO/POSIX4
/POOL/ov_server_manager2.conf" /><file
name="ov_server_manager2.conf" resource="/cygdrive/f/SYSGO/
POSIX4/P0O0L/ov_server_manager2.conf" /><file
name="ov_server_manager3.conf" resource="/cygdrive/f/SYSGO/
POSIX4/P0O0L/ov_server_manager.conf" /><file
name="ov_server_manager4.conf" resource="/cygdrive/f/SYSGO/
POSIX4/P00L/ov_server_manager.conf" /></files></Romimage>
<DefinitionTable >
<Definition filename="build/fusion-integration-parameters.cmp"
name="Compilation Parameters" path_id="PIKEOS_POOL" />
<Definition filename="partition/service_partition.cmp"
name="service.partition" path_id="PIKEOS_POOL" />
<Definition filename="driver/misc/monitor.cmp“ name="monitor"
path_id="PIKEOS_POOL" />
<Definition filename="driver/misc/traceserver.cmp"
name="traceserver" path_id="PIKEOS_POOL" />
<Definition filename="driver/misc/muxa.cmp" name="muxa"
path_id="PIKEOS_POOL" />
<Definition filename="posix/posix_partition_default.cmp"
name="POSIX Partition" path_id="PIKEOS_POOL" />
<Definition filename="posix/posix_process_default.cmp"
name="P0OSIX Process" path_id="PIKEOS_POOL" />
<Definition filename="kerne1/kerne1.cmp” name="Pike0S Kernel"
path_id="PIKEOS_POOL" />
<Definition filename="pssw/pssw.cmp" name="generic-pssw"
path_id="PIKEOS_POOL" />
<Definition filename="board/imx6/imx6q_sabrelite-config.cmp
name="sabrelite-config" path_id="PIKEOS_POOL" />
<Definition filename="psp/imx6.psp.cmp" name="imx6.psp"
path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/pci_manager.cmp"
name="PCI Manager KDEV" path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/imon/imon-master. cmp"
name="imon-master" path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/imon/imon-ssw.cmp"
name="imon-ssw" path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/imon/imon-apex.cmp"
name="imon-apex" path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/hmev.cmp" name="hmev"
path_id="PIKEOS_POOL" />
<Definition filename="kerneldriver/stdcon.cmp“
name="Standard Console" path_id="PIKEOS_POOL" />
<Definition
filename="driver/serial/imx_uart/imx_uart-fp_ext.cmp
name="imx_uart-fp_ext" path_id="PIKEOS_POOL" />
<Definition
filename="driver/serial/imx_uart/imx_uart-device.cmp"
name="imx_uart-device" path_id="PIKEOS_POOL" />
<Definition
filename="driver/ethernet/imx_fec/imx_fec-fp_ext.cmp"
name="imx_fec-fp_ext" path_id="PIKEOS_POOL" />
<Definition
filename="driver/ethernet/imx_fec/imx_fec-device.cmp

99

Il 216.73.216.36, am 20.01.2026, 13:12:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

1019
1020
1021
1022
1023
1024
1025
1026
1027

A Anhang

name="imx_fec-device" path_id="PIKEOS_POOL" />

<Definition filename="driver/config/hlnet/hlnet-vchan.cmp"
name="hlnet-vchan" path_id="PIKEOS_POOL" />

<Definition
filename="driver/clock/imx_clk/imx_clk-prov_kdev.cmp"
name="1i.MX Clock Manager" path_id="PIKEOS_POOL" />

</DefinitionTable>
</Integration>
</Project>

100

Il 216.73.216.36, am 20.01.2026, 13:12:05. © Inal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Nach der Konfiguration der Partitionen wird eine Binary erzeugt, die iiber Ethernet auf
das Board iibertragen wird.

=> dhcp 134.130.125.53:Control-Software

DHCP client bound to address 134.130.125.64 (1007 ms)

Using FEC device

TFTP from server 134.130.125.53; our IP address is 134.130.125.64
Filename ’test’.

Load address: 0x12000000

Loading: R R

SRR B L D S R R L R S R L S B R s S
B G G S S S 2
B S S e s

HEH HE
B S s s s S s s s s s s s

T,

B S S g S S S s S s s s
S e e e e e e e
B S S s s s
S
46.9 KiB/s
done
Bytes transferred = 10615003 (alf8db hex)
=> bootm
Booting kernel from Legacy Image at 12000000 ...
Image Name: PikeOS Boot Image
Image Type: ARM Linux Kernel Image (gzip compressed)
Data Size: 10614939 Bytes = 10.1 MiB
Load Address: 10020000
Entry Point: 10020000
Verifying Checksum ... OK
Uncompressing Kernel Image ... OK

Starting kernel ...

P4 kernel will start ...
PikeOS (C) Copyright SYSGO AG, Germany
ROM image build: devel-@Achernar-090821-09:24
Kernel build: 4.2-1784, type: noassert tracesys smp v7
ASP: "arm_v7hf" ARM v7, endian: little, VFP: d0-31
PSP build: 4.2-246
PSP: "imx6x" Freescale i.MX 6 (SMP - L2C)
Features: RETAIL TRACER-SYSCALL OPT SMP(4/32)
Configuration limits:

respart: 63

task: 256

101

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

A Anhang

thread: 511
timepart: 63
priority: 256
kprio: 32

interrupts: 1024

TP windows: 256

thr sstack: 4096 B
Resource partition O kernel memory refill strategy: dynamic (on demand)
Time stamp counter clock: 1000000 kHz, via system call
System ticker: periodic mode, resolution 10000000 ns
Time partition switch: 10000000 ns, watchdog timeout: 10000000 ns
Time partition synchronization: default
Free memory: 1011256 KiB
Pike0S PCI Manager KDEV, Build: 4.2-186
PCIMGR: message: PSP returned empty PCI device list
PSSW +Ext. FPs +Messages (Production), Build: 4.2-3668
PIKEOS_MON: Started, version: 4.2-325
Trace Server: version: 4.2-25
imx_uart: Provider "serQO" started, Build: 4.2-87 Production
MUXA: Version: 4.2-289
<DRV INFO> ethO: fec_mii_info: FEC: PHY identify @ 0x7 = 0x00221611
<DRV INFO> ethO: Registered MAC address(02:70:34:03:a9:88) for channel
<DRV INFO> ethO: Registered MAC address(06:70:34:03:a9:88) for channel
<DRV INFO> ethO: Registered MAC address(0a:70:34:03:a9:88) for channel
<DRV INFO> ethO: Registered MAC address(0e:70:34:03:29:88) for channel
<DRV INFO> ethO: Registered MAC address(12:70:34:03:29:88) for channel
imx_fec: Provider "ethO" started, Build: 4.2-82 Production

102

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

140
139
190
110
’0°

https://doi.org/10.51202/9783186275080

Literatur

ot

ALBRECHT, Harald. On meta-modeling for communication in operational pro-
cess control engineering: Zugl.: Aachen, Techn. Univ., Diss., 2002. Als Ms. gedr.
Diisseldorf: VDI-Verl., 2003. Fortschritt-Berichte VDI Reihe 8, Mefl-, Steuerungs-
und Regelungstechnik. 1sBN 3183975084.

ANCA APOSTU; FLORINA PUICAN; GEANINA ULARU; GEORGE SUCIU;
GYORGY. Study on advantages and disadvantages of Cloud Computing — the
advantages of Telemetry Applications in the Cloud. [0.D.]. Nr. 978-1-61804-179-
1. Auch verfiighar unter: https : / / pdfs . semanticscholar . org / adab /
876e216130cdd7ad6e44539849049dd2de39 . pdf.

ARMAND, Francois; GIEN, Michel. A Practical Look at Micro-Kernels and Virtual
Machine Monitors. 2009. Abger. unter DOI: 10.1109/CCNC.2009.4784874.

ARMOUSH, A.; FRANKE, D.; KALKOV, I.; KOWALEWSKI, S. An Approach for
Using Mobile Devices in Industrial Safety-Critical Embedded Systems. In: Mem-
mi G., Blanke U. (eds) Mobile Computing, Applications, and Services. MobiCASE
2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. 2014. Abger. unter DOI: 10.1109/ETFA. 2016.
7733669.

ASHTARI TALKHESTANI, Behrang; JUNG, Tobias; LINDEMANN, Benjamin;
SAHLAB, Nada; JAZDI, Nasser; SCHLOEGL, Wolfgang; WEYRICH, Michael. An
architecture of an Intelligent Digital Twin in a Cyber-Physical Production System.
2019. Abger. unter DOI: 10.1515/auto-2019-0039.

ATTELE, Kapila Rohan; KUMAR, Amit; SANKAR, V.; RAO, N. V.; SARMA,
T. Hitendra (Hrsg.). Emerging Trends in Electrical, Communications and Informa-
tion Technologies: Proceedings of ICECIT-2015. Singapore und s.l.: Springer Singa-
pore, 2017. Lecture Notes in Electrical Engineering. 1SBN 978-981-10-1538-0. Abger.
unter DOI: 10.1007/978-981-10-1540-3.

AUTOSAR, Specifications (Release 4.2). [0.D.].
AZARMIPOUR, Mahyar; ELFAHAM, Haitham; GRIES, Caspar; EPPLE, Ulrich.
PLC 4.0: A Control System for Industry 4.0. In: IECON 2019 - 45th Annual Confe-

rence of the IEEE Industrial Electronics Society. 2019, Bd. 1, S. 5513-5518. Abger.
unter DOI: 10.1109/IECON.2019.8927026.

AZARMIPOUR, Mahyar; ELFAHAM, Haitham; GRIES, Caspar; KLEINERT, To-
bias; EPPLE, Ulrich. A Service-based Architecture for the Interaction of Control
and MES Systems in Industry 4.0 Environment. In: 2020 IEEE 18th International
Conference on Industrial Informatics (INDIN). 2020, Bd. 1, S. 217-222. Abger. unter
DOI: 10.1109/INDIN45582.2020.9442083.

103

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Literatur

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

104

AZARMIPOUR, Mahyar; ELFAHAM, Haitham; GROTHOFF, Julian; TROTHA,
Christian von; GRIES, Caspar; EPPLE, Ulrich. Dynamic Resource Management for
Virtualization in Industrial Automation. In: IECON 2018 - 44th Annual Conference
of the IEEFE Industrial Electronics Society. 2018, S. 2878-2883. Abger. unter DOI:
10.1109/IECON.2018.8591622.

AZARMIPOUR, Mahyar; TROTHA, Christian von; GRIES, Caspar; KLEINERT,
Tobias; EPPLE, Ulrich. A Secure Gateway for the Cooperation of Information Tech-
nologies and Industrial Automation Systems. In: IECON 2020 The 46th Annual
Conference of the IEEE Industrial Electronics Society. 2020, S. 53-58. Abger. unter
DOI: 10.1109/IECON43393.2020.9254634.

BACIC, M. On hardware-in-the-loop simulation. 2005, S. 3194-3198. Abger. unter
DOI: 10.1109/CDC.2005.1582653.

BARHAM, Paul; DRAGOVIC, Boris; FRASER, Keir; HAND, Steven; HARRIS,
Tim; HO, Alex; NEUGEBAUER, Rolf; PRATT, Tan; WARFIELD, Andrew. Xen
and the Art of Virtualization. 2003.

BARRETT, Diane; KIPPER, Gregory. Virtualization and Forensics. 1 - How Vir-
tualization Happens. Hrsg. von BARRETT, Diane; KIPPER, Gregory. Boston: Syn-
gress, 2010. 1SBN 978-1-59749-557-8. Abger. unter DOI: https://doi.org/10.1016/
B978-1-59749-557-8.00001-1.

BARTODZIEJ, Christoph Jan. The concept Industry 4.0. BestMasters. Springer
Gabler, 2017. 1SBN 978-3-658-16501-7.

BASHARI RAD, Babak; BHATTI, Harrison; AHMADI, Mohammad. An Introduc-
tion to Docker and Analysis of its Performance. IJCSNS International Journal of
Computer Science and Network Security. 2017, Jg. 173, S. 8.

BOSCHERT, Stefan; ROSEN, Roland. Digital Twin—The Simulation Aspect. 2016.
Abger. unter DOI: https://doi.org/10.1007/978-3-319-32156-1_5.

BOSS, B.; BADER, S.; A., Orzelski; HOFFMEISTER, M.; HOMPEL, M. ten;
VOGEL-HEUSER, Birgit; BAUERNHAUSL, T. Verwaltungsschale. in Handbuch
Industrie 4.0: Produktion, Automatisierung und Logistik. 2019.

BREIVOLD, Hongyu Pei; JANSEN, Anton; SANDSTROM, Kristian; CRNKOVIC,
Ivica. Virtualize for Architecture Sustainability in Industrial Automation. In: 2013
IEEE 16th International Conference on Computational Science and Engineering.
2013, S. 409-415. Abger. unter poI: 10.1109/CSE.2013.69.

BREIVOLD, Hongyu Pei; SANDSTROM, Kristian. Virtualize for test environment
in industrial automation. In: Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation (ETFA). 2014, S. 1-8. Abger. unter DOI: 10.1109/ETFA.
2014.7005089.

BRENDAN, Burns; JOE, Beda; KALSEY, Hightower; THOMAS, Demmig. Kuber-
netes: Fine kompakte Einfihrung. 2020. 1SBN 978-3864908033.

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Literatur

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.
33.

34.

36.

BUYYA, Rajkumar; VECCHIOLA, Christian; SELVI, S. Thamarai. Mastering
Cloud Computing. Chapter 3 - Virtualization. Hrsg. von BUYYA, Rajkumar; VEC-
CHIOLA, Christian; SELVI, S. Thamarai. Boston: Morgan Kaufmann, 2013. 1SBN
978-0-12-411454-8. Abger. unter DOI: https://doi.org/10.1016/B978-0-12~
411454-8.00003-6.

CHEN, Yinong; DU, Zhihui; GARCIA-ACOSTA, Marcos. Robot as a Service in
Cloud Computing. In: 2010, S. 151-158. Abger. unter DOI: 10.1109/S0SE.2010.44.

CHRIS PAUL TATROU; MARKUS GRAUBE; LEON URBAS; TIM-PETER HEN-
RICHS, Stefan Erben. NOA Verification of Request: Reintegrating insights of cloud
based added value service. Atp - Magazine. 2018.

CRESPO, A.; RIPOLL, I.; MASMANO, M. Partitioned Embedded Architecture
Based on Hypervisor: The XtratuM Approach. In: 2010 European Dependable Com-
puting Conference. 2010, S. 67-72. Abger. unter DOI: 10.1109/EDCC.2010.18.

CRUZ, Tiago; SIM()ES7 Paulo; MONTEIRO, Edmundo. Virtualizing Programmable
Logic Controllers: Toward a Convergent Approach. IEEE Embedded Systems Letters.
2016, Jg. 8, Nr. 4, S. 69-72. Abger. unter DOI: 10.1109/LES.2016.2608418.

D., Juergens; D., Reinhardt; R., Schneider; G., Hofstteter. Implementing mized cri-
ticality software integration on multicore - a cost model and the lessons learned.
2015.

Details of the Asset Administration Shell: Part 1 - The exchange of information
between partners in the value chain of Industrie 4.0. [0.D.]. Auch verfiighar unter:
https://wuw.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/
2018-verwaltungsschale-im-detail.html.

DILLE, Nicholas; GROTE, Marc; KACZENSKI, Nils; KAPPEN, Jan. Microsoft
Hyper-V. Das Handbuch fir Administratoren. Rheinwerk-Verlag, 2017. 1SBN 978-3-
8362-4327-8.

DIN SPEC 91345:2016-04 - Referenzarchitekturmodell Industrie 4.0 (RAMI4.0).
[o.D.].

DOCKER. [0.D.]. Auch verfiighar unter: https://www.docker.com/.

DOCKER. Documentation of Docker. 2018.

DOLUI, Koustabh; KIRALY, Csaba. Towards Multi-Container Deployment on IoT
Gateways. 2018, S. 1-7. Abger. unter DOI: 10.1109/GLOCOM.2018.8647688.
ELFAHAAM, Haitham. A Runtime Adaptation Concept to reinforce Versatility in
Industrial Automation. 2019. 1SBN 978-3-18-526708-6.

ELFAHAM, Haitham; EPPLE, Ulrich. Meta models for intralogistics. at - Automa-
tisierungstechnik. 2020, Jg. 68, Nr. 3, S. 208-221. Abger. unter DOI: doi:10.1515/
auto-2019-0083.

FERRER, Borja Ramis; MOHAMMED, Wael M.; CHEN, Enbo; LASTRA, Jose
L. Martinez. Connecting web-based IoT devices to a cloud-based manufacturing plat-
form. In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics
Society. 2017, S. 8628-8633. Abger. unter Do1: 10.1109/IECON.2017.8217516.

105

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Literatur

37.

38.

39.

40.

41.

42.

43.

44.

46.

47.

48.

106

FURST, Simon; BECHTER, Markus. 2016 /6th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshop (DSN-W). AUTOSAR
for Connected and Autonomous Vehicles: The AUTOSAR Adaptive Platform. [0.D.].
Abger. unter DOI: 10.1109/DSN-W.2016.24.

GILANI, Syed Shiraz; JUNGBLUTH, Florian; FLATT, Holger; WENDT, Verena;
JASPERNEITE, Jirgen. Alternative controls for soft real-time industrial control
services in case of broken cloud links. 2016. Abger. unter pDo1: 10.1109/ETFA.2016.
7733669.

GIVEHCHI, Omid; IMTIAZ, Jahanzaib; TRSEK, H.; JASPERNEITE, J. Control-
as-a-service from the cloud: A case study for using virtualized PLCs. 2014 10th
IEEE Workshop on Factory Communication Systems (WFCS 2014). 2014, S. 1-4.
Abger. unter DOI: 10.1109/WFCS.2014.6837587.

GOLDBERG, Robert P. Survey of virtual machine research. Computer. 1974, Jg. 7,
Nr. 6, S. 34-45. Abger. unter DOI: 10.1109/MC.1974.6323581.

GOLDSCHMIDT, Thomas; HAUCK-STATTELMANN, Stefan; MALAKUTI, So-
mayeh; GRUNER, Sten. Container-based architecture for flexible industrial control
applications. Journal of Systems Architecture. 2018, Jg. 84, S. 28-36. 1SSN 1383-7621.
Auch verfiighar unter: https://www.sciencedirect.com/science/article/pii/
S1383762117304988.

GOLDSCHMIDT, Thomas; MURUGAIAH, Mahesh Kumar; SONNTAG, Christian;
SCHLICH, Bastian; BIALLAS, Sebastian; WEBER, Peter. Cloud-Based Control:
A Multi-tenant, Horizontally Scalable Soft-PLC. In: 2015 IEEE 8th International
Conference on Cloud Computing. 2015, S. 909-916. Abger. unter DOI: 10.1109/
CLOUD.2015.124.

GOLZER, Philipp. Big Data in Industrie 4.0 - Eine strukturierte Aufarbeitung von
Anforderungen, Anwendungsfillen und deren Umsetzung. 2017.

GRIES CASPAR AND WENGER MONIKA AND AZARMIPOUR MAHYAR.
PC2.5 Concept for the Software Abstraction Layer between PikeOS and the Ge-
neric Application Container. Hrsg. von BASYS4.0-PROJECT, Foerderkennzeichen
011516022. [0.D.].

GRIEVES M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emer-
gent Behavior in Complex Systems, In: Kahlen FJ., Flumerfell S., Alves A. (eds)
Transdisciplinary Perspectives on Complex Systems. Springer. 2017. 1SBN 978-3-319-
38754-3.

GROTHOFF, Julian Alexander; WAGNER, Constantin August; EPPLE, Ulrich.
BaSys 4.0: Metamodell der Komponenten und Ihres Aufbaus; 1st ed. RWTH Aachen
University, 2018. Abger. unter DOI: 10.18154/RWTH-2018-225880.

GRUNER, Sten; EPPLE, Ulrich. Paradigms for unified runtime systems in industri-
al automation. In: 2013 Furopean Control Conference (ECC). 2013, S. 3925-3930.
Abger. unter DOI: 10.23919/ECC.2013.6669313.

GUO, SONG AND ZENG, DEZE. Cyber-Physical Systems: Architecture, Securi-

ty and Application. Cham: Springer International Publishing, 2019. EAI/Springer
Innovations in Communication and Computing. ISBN 978-3-319-92564-6.

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Literatur

49.

50.

51

52.

54.

59.

56.

o7.

8.

959.

60.

61.

62.

63.

64.

HEGAZY, Tamir; HEFEEDA, Mohamed. Industrial Automation as a Cloud Service.
2015, Nr. 10. Abger. unter DOI: 10.1109/TPDS.2014.2359894.

HEISER, Gernot. The role of virtualization in embedded systems. 2008, S. 11-16.
ISBN 978-1-60558-126-2. Abger. unter DOI: 10.1145/1435458.1435461.

HEISER, Gernot; LESLIE; Ben. The OKL4 Microvisor: Convergence point of mi-
crokernels and hypervisors. 2010, S. 19-24.

IEC 62264, Integration von Unternechmens-EDV und Leitsystemen. [0.D.].
IEC 62541. OPC Unified Architecture: Part 1 - 10. 2010.

IGOR, Kalkov. A Real-time Capable, Open-Source-based Platform for Off-the-Shelf
Embedded Devices. 2018. 1SSN 0935-3232.

Industrial Internet Consortium. [0.D.]. Auch verfiighar unter: https : / / www .
iiconsortium.org/.

Industrie 4.0. [0.D.]. Auch verfiighar unter: https://www.plattform-i40.de/
PI40/Navigation/DE/Home/home.html.

ISA-95, Enterprise-Control System Integration Part 1: Models and Terminology.
[0.D.].

J. POPEK, Gerald; P. GOLBERG, Robert. Formal Requirements for Virtualizable
Third Generation Architectures. 1974.

JACQUES BRYGIER; MEMET OEZER. Safety and Security for the Internet of
Things. 2016. Auch verfiighar unter: https://hal.archives-ouvertes.fr/hal-
01292301/.

KOBRYN, Pamela A; TUEGEL, Eric J; BRANCH, Structural Mechanics.
Condition-based Maintenance Plus Structural Integrity (CBM+ SI) & the Airframe
Digital Twin. USAF Air Force Research Laboratory, S8ABW-201101428. 2011.

LANGMANN, Reinhard; ROJAS-PENA, Leandro F. A PLC as an Industry 4.0 com-
ponent. In: 2016 13th International Conference on Remote Engineering and Virtual
Instrumentation (REV). 2016, S. 10-15. Abger. unter DOI: 10.1109/REV.2016.
7444433.

LANGMANN, Reinhard; STILLER, Michael. The PLC as a Smart Service in Indu-
stry 4.0 Production Systems. Applied Sciences. 2019, Jg. 9, Nr. 18. 1SSN 2076-3417.
Abger. unter DOI: 10.3390/app9183815.

LEMERRE, Matthieu; OHAYON, Emmanuel; CHABROL, Damien; JAN, Ma-
thieu; JACQUES, Marie-Bénédicte. Method and Tools for Mixed-Criticality Real-
Time Applications within PharOS. 2012 IEEE 15th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops.
2011, Jg. 0, S. 41-48. 1SBN 978-0-7695-4377-2. Abger. unter DOI: 10.1109/ISORCW.
2011.15.

LI, Zheng; KIHL, Maria; LU, Qinghua; ANDERSSON, Jens A. Performance over-
head comparison between hypervisor and container based virtualization. In: Procee-
dings - 31st IEEE International Conference on Advanced Information Networking
and Applications, AINA 2017. Institute of Electrical und Electronics Engineers Inc.,
2017, S. 955-962. 1sBN 9781509060283. Abger. unter DOI: 10.1109/AINA.2017.79.

107

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Literatur

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

5.

76.

7.

78.

108

LIN, Chung-Wei; KIM, BaekGyu; SHIRAISHI, Shinichi. Hardware Virtualization
and Task Allocation for Plug-and-Play Automotive Systems. IEEE Design Test.
2019, S. 1-1. Abger. unter DOI: 10.1109/MDAT.2019.2932936.

LUCAS, Pierre; CHAPPUIS, Kevin; BOUTIN, Benjamin; VETTER, Julian; RAHO,
Daniel. VOSYSmonitor, a TrustZone-based Hypervisor for ISO 26262 Mixed-critical
System. In: 2018 23rd Conference of Open Innovations Association (FRUCT). 2018,
S. 231-238. Abger. unter DOI: 10.23919/FRUCT.2018.8588018.

M, Grieves. Digital twin: manufacturing excellence through virtual factory replicati-
on. 2014. Auch verfiighar unter: www.apriso.com/library/Whitepaper _%20Dr_
Grieves_DigitalTwin_ManufacturingExcellence.php.

M. POLKE. Prozefleittechnik: Mit 8 Tabellen. 2., vollig iiberarb. und stark erw.
Aufl. Miinchen: Oldenbourg, 1994. 1SBN 3-486-22549-9.

MAHYAR, Azarmipour; TROTHA CHRISTIAN, von; ULRICH, Epple; ZEESHAN,
Ansar; CASPAR, Gries. Realisierung der NAMUR-Diode mittels Virtualisierung. In:
atp magazin 5/2020. 2020, S. 2878-2883. Abger. unter DOIL: https://doi.org/10.
17560/atp.v6215.2472.

MEYER, Dirk. Objektverwaltungskonzept fiir die operative Prozefleittechnik: Zugl.:
Aachen, Techn. Hochsch., Diss. Als Ms. gedr. Disseldorf: VDI-Verl., 2002.
Fortschritt-Berichte VDI Reihe 8 Mef3-, Steuerungs- und Regelungstechnik. 1SBN
3183940086.

MOHAN RAJ, V.K.; SHRIRAM, R. A study on server Sleep state transition to re-
duce power consumption in a virtualized server cluster environment. In: 2012 Fourth
International Conference on Communication Systems and Networks (COMSNETS
2012). 2012, S. 1-6. Abger. unter DOI: 10.1109/COMSNETS.2012.6151371.
MORABITO, Roberto. Virtualization on Internet of Things Edge Devices With
Container Technologies: A Performance Evaluation. 2017. Abger. unter DOI: 10 .
1109/ACCESS.2017.2704444.

MURRAY, Glenn; JOHNSTONE, Michael N.; VALLI, Craig. The convergence
of IT and OT in critical infrastructure. 2017. Abger. unter pOI: 10 .4225/75/
5a84£f7b595b4e.

NE 175. Namur Open Architechture - NOA Concept. [0.D.]. Auch verfiighar unter:
https://www.namur.net/de/fokusthemen/namur-open-architecture.html.

NE177. NAMUR Open Architecture - NOA Security Architecture and Security Ga-
teway. [0.D.].

ORACLE. Virtualbox. [0.D.]. Auch verfiighar unter: www . oracle . com / de /
virtualization/virtualbox.

PALM, Florian; EPPLE, Ulrich. openAAS - Die offene Entwicklung der Verwal-
tungsschale. Tagungsband Automation. 2017.

PETRUCCI, Vinicius; CARRERA, Enrique V.; LOQUES, Orlando; LEITE, Juli-
us C.B.; MOSSE, Daniel. Optimized Management of Power and Performance for
Virtualized Heterogeneous Server Clusters. In: 2011 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing. 2011, S. 23-32. Abger. unter
DOI: 10.1109/CCGrid.2011.15.

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Literatur

79.

80.

81.

82.

83.

84.

85.
86.

87.

88.

89.
90.

91.

92.

PHILLIP LIPSON, GEERT VAN DER ZALM. PC vs. PLC: Comparing Control
Options. 2011. Auch verfiigbar unter: http://www.msalah.com/A/PCvsPLC. pdf.

PikeOS User Manual. 2009.

POGGI, Tomaso; ONAINDIA, Peio; AZKARATE-ASKATSUA, Mikel;
GRUTTNER, Kim; FAKIH, Maher; PEIR(/)7 Salvador; BALBASTRE, Patri-
cia. A Hypervisor Architecture for Low-Power Real-Time Embedded Systems. In:
2018 21st Euromicro Conference on Digital System Design (DSD). 2018, S. 252-259.
Abger. unter DOI: 10.1109/DSD.2018.00054.

POPOVIC, I. T.; RAKIC, A. Z. The Fog-Based Framework for Design of Real-Time
Control Systems in Internet of Things Environment. 2018, S. 1-6. Abger. unter DOI:
10.1109/INDEL.2018.8637639.

REINHARDT, Dominik; MORGAN, Gary. An embedded hypervisor for safety-
relevant automotive E/E-systems. In: Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems (SIES 2014). 2014, S. 189-198. Abger.
unter DOI: 10.1109/SIES.2014.6871203.

REPSCHLAEGER, Jonas; PANNICKE, Danny; ZARNEKOW, Riidiger. Cloud
Computing: Definitionen, Geschéftsmodelle und Entwicklungspotenziale. 2010, Nr.
5. Abger. unter DOI: 10.1007/BF03340507.

RUSSELL, B. Passive Benchmarking with docker LXC, KVM and OpenStack. 2015.

SANDSTROM, Kristian; VULGARAKIS, Aneta; LINDGREN, Markus; NOLTE,
Thomas. Virtualization technologies in embedded real-time systems. [0.D.]. Abger.
unter DOI: 10.1109/ETFA.2013.6648012.

SCHAUFFELE, Jorg; ZURAWKA, Thomas. Automotive Software Engineering.
2010. Abger. unter DOI: 10.1007/978-3-8348-9368-0.

SCHENK, Michael; WIRTH, Siegfried; MULLER, Egon (Hrsg.). Fabrikplanung und
Fabrikbetrieb: Methoden fir die wandlungsfihige, vernetzte und ressourceneffiziente
Fabrik. 2., vollstéindig iiberarbeitete und erweiterte Auflage 2014. Berlin: Springer
Vieweg, 2014. 1SBN 978-3-642-05458-7.

SCHLAGER, Martin. Hardware-in-the-loop simulation. 2008.

SCHUTZE, Andreas; HELWIG, Nikolai; SCHNEIDER, Tizian. Sensors 4.0: smart
sensors and measurement technology enable Industry 4.0. [0.D.]. Auch verfiighar
unter: https://doi.org/10.5194/jsss-7-359-2018.

SEGOVIA, Vanessa Romero; THEORIN, Alfred. History of Control: History of
PLC and DCS. 2013. Auch verfiighar unter: http ://archive . control . lth.
se/media/Education/DoctorateProgram/2012/History0fControl /Vanessa_
Alfred_report.pdf.

SEHR, Martin A.; LOHSTROH, Marten; WEBER, Matthew; UGALDE, Ines; WIT-
TE, Martin; NEIDIG, Joerg; HOEME, Stephan; NIKNAMI, Mehrdad; LEE, Edward
A. Programmable Logic Controllers in the Context of Industry 4.0. IEEE Transac-
tions on Industrial Informatics. 2021, Jg. 17, Nr. 5, S. 3523-3533. Abger. unter DOI:
10.1109/TII.2020.3007764.

109

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Literatur

93.

94.

96.

97.

98.

99.

100.

101.

102.

103.

104.

106.

107.

110

SHAFTO, Mike; CONROY, Mike; DOYLE, Rich; GLAESSGEN, Ed; KEMP, Chris;
LEMOIGNE, Jacqueline; WANG, Lui. Modeling, simulation, information technology
& processing roadmap. National Aeronautics and Space Administration. 2012, Jg. 32,
Nr. 2012, S. 1-38.

SPEZIFIKATION DIN SPEC 40912. Kernmodelle - Beschreibung und Beispiele.
2014.

STRASSER, Thomas; ZOITL, ALOIS : EBENHOFER, GERHARD. 4DIAC - Ein
Open Source Framework fiir verteilte industrielle Automatisierungs- und Steue-
rungssysteme. In: Informatik 2010. Bonn: Ges. fiir Informatik, 2010, S. 435-440.
GI-Edition lecture notes in informatics P, Proceedings. 1SBN 978-3-88579-269-7.

SYSGO EMBEDDING INNOVATIONS. [0.D.]. Auch verfiighar unter: https://
WWW.sysgo.com/.

TAUCHNITZ, Thomas; UWE, Maier. Speicherprogrammierbare Steuerungen.
Handbuch der Prozessautimatisierung, Oldenbourg Industrieverlag, 2009. ISBN
383563142X 2.2.3, ISBN 2.2.3.

TERZIMEHIC, Tari}g; WENGER, Monika; ZOITL, Alois; BAYHA, Andreas;
BECKER, Klaus; MULLER, Thorsten; SCHAUERTE, Hubertus. Towards an in-
dustry 4.0 compliant control software architecture using IEC 61499 amp; OPC UA.
In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). 2017, S. 1-4. Abger. unter DOI: 10.1109/ETFA.2017.8247718.
THONNESSEN, David. Hardware-in-the-Loop testing of industrial automation sy-
stems using PLC languages. Aachen: RWTH Aachen University, 2021. Abger. unter
DOI: 10.18154/RWTH-2021-08705. Diss. RWTH Aachen University.

TURNBULL, J. The Docker Book: Containerization is the new virtualization. 2014.
ISBN 9780988820203.

U. GURAV, R. Shaikh. Virtualization: a key feature of cloud computing. [0.D.]. Auch
verfiighbar unter: https://doi.org/10.1145/1741906.1741957.

USTUNDAG, Alp; CEVIKCAN, Emre (Hrsg.). Industry 4.0: Managing the digital
transformation. Cham: Springer, 2018. Springer series in advanced manufacturing.
ISBN 978-3-319-57869-9.

VAIDYA, Saurabh; AMBAD, Prashant; BHOSLE, Santosh. Industry 4.0 — A Glimp-
se. 2018. Abger. unter DOI: 10.1016/j.promfg.2018.02.034.

VANDERLEEST, Steven H.; WHITE, Dagan. MPSoC hypervisor: The safe and
secure future of avionics. [0.D.]. Abger. unter DOI: 10.1109/DASC.2015.7311448.
VDI Richtlinien 5201, Wandlungsfaehigkeit Beschreibung und Messung der
Wandlungsfaehigkeit produzierender Unternehmen Beispiel Medizintechnik. VDI-
Gesellschaft Technologies of Life Sciences, [0.D.].

Virtualisierung in der Automatisierungstechnik am Beispiel des SIMATIC S Soft-
ware, https://silo.tips/download/virtualisierung-in-der-automatisierungstechnik-
am-beispiel-des-simatic-s-softwar. [0.D.].

VMWARE. Understanding Full Virtualization, Paravirtualization, and Hardware

Assist. 2008. Auch verfiigbar unter: https://www.vmware . com/de/techpapers/
2007/understanding-full-virtualization-paravirtualizat-1008.html.

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

Literatur

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

VOGEL-HEUSER, Birgit. Die Auflésung der Automatisierungspyramide: Die Ma-
schinenkommunikation in der Smarten Fabrik. 2016.

W., Dorst. Umsetzungsstrategie Industrie 4.0: Ergebnisbericht der Plattform Indu-
strie 4.0. 2015.

WAGNER, Constantin; GROTHOFF, Julian; EPPLE, Ulrich; DRATH, Rainer;
MALAKUTI, Somayeh; GRUNER, Sten; HOFFMEISTER, Michael; ZIMER-
MANN;, Patrick. The role of the Industry 4.0 asset administration shell and the
digital twin during the life cycle of a plant. In: 2017 22nd IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA). 2017, S. 1-8.
Abger. unter DOI: 10.1109/ETFA.2017.8247583.

WEBB, John W.; REIS, Ronald A. (Hrsg.). Programmable logic controllers: Prin-
ciples and applications. 5. ed. Upper Saddle River, NJ: Prentice Hall, 2003. 1SBN
978-0-13-041672-8.

WIND RIVER. Wind River Hypervisor. [0.D.]. Auch verfiigbar unter: https://
www.windriver.com/products/.

WIND RIVER. Wind River Hypervisor. [0.D.]. Auch verfiighar unter: https://www.
windriver.com/products/product-notes/wind-river-hypervisor-product-
note.pdf.

WU, Dazhong; GREER, Matthew John; ROSEN, David W.; SCHAEFER, Dirk.
Cloud manufacturing: Strategic vision and state-of-the-art. 2013, Nr. 4. Abger. unter
DOI: 10.1016/3 . jmsy.2013.04.008.

XF, Yao; JJ, Zhou; CJ, Zhang; M, Liu. Proactive manufacturing: a big-data based
emerging manufacturing paradigm. Comput Integr Manuf Syst 23(1):172-185. 2017.

XU, Li Da; HE, Wu; LI, Shancang (Hrsg.). Internet of Things in Industries: A
Survey. 2014. Abger. unter DOI: 10.1109/TII.2014.2300753.

YONGWANG, Zhao; ZHIBIN, Yangi; MA, Dianfu. A survey on formal specification
and verification of separation kernels. In: 2017, S. 585-607. Abger. unter bOI: DOI10.
1007/s11704-016-4226-2.

YU, Liyong; GRUNER, Sten; EPPLE, Ulrich. An engineerable procedure description
method for industrial automation. In: 2013 IEEE 18th Conference on Emerging
Technologies Factory Automation (ETFA). 2013, S. 1-8. Abger. unter DOI: 10 .
1109/ETFA.2013.6648002.

ZHUANG, C.; LIU, J.; XIONG, H. Digital twin-based smart production mana-
gement and control framework for the complex product assembly shop-floor. The
International Journal of Advanced Manufacturing Technology. 2018. Abger. unter
DOI: doi.org/10.1007/s00170-018-1617-6.

111

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

216.73.216.36, am 20.01.2026, 13:12:05. ©
m

tar

mit, fir oder In KI-

https://doi.org/10.51202/9783186275080

Alle 23 Reihen der ,Fortschritt-Berichte VDI”
in der Ubersicht - bequem recherchieren unter:
elibrary.vdi-verlag.de

Und direkt bestellen unter:
www.vdi-nachrichten.com/shop

Reihe 01

Reihe 02
Reihe 03
Reihe 04
Reihe 05
Reihe 06
Reihe 07
Reihe 08
Reihe 09
Reihe 10
Reihe 11
Reihe 12
Reihe 13
Reihe 14
Reihe 15
Reihe 16
Reihe 17
Reihe 18
Reihe 19
Reihe 20
Reihe 21
Reihe 22
Reihe 23

Konstruktionstechnik/
Maschinenelemente
Fertigungstechnik
Verfahrenstechnik
Bauingenieurwesen

Grund- und Werkstoffe/Kunststoffe
Energietechnik

Stromungstechnik

Mess-, Steuerungs- und Regelungstechnik
Elektronik/Mikro- und Nanotechnik
Informatik/Kommunikation
Schwingungstechnik
Verkehrstechnik/Fahrzeugtechnik
Fordertechnik/Logistik
Landtechnik/Lebensmitteltechnik
Umwelttechnik

Technik und Wirtschaft
Biotechnik/Medizintechnik
Mechanik/Bruchmechanik
Warmetechnik/Kaltetechnik
Rechnergestuitzte Verfahren
Elektrotechnik
Mensch-Maschine-Systeme
Technische Gebaudeausrustung

216.73.216.36, am 20.01.2026, 13:12:05. © Inal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186275080

216.73.216.36, am 20.01.2026, 13:12:05. ©
m

tar

mit, fir oder In KI-

https://doi.org/10.51202/9783186275080

Z

', ‘/:
>—1// /
7"‘./ /’/I, A

INGENIEUR.de

BEST@MATCH

powered by ASCOTTY

So findet Sie Ihr Traumjob!

Ingenieure aller Fachrichtungen, Absolventen und wechselwillige Professionals aufgepasst:
Sagen Sie uns, was Sie kénnen, wollen und lieben - dann bieten Ihnen die besten
Unternehmen den passenden Job fur |hr Talent. Schnell, unkompliziert, ohne Aufwand.

DAS SIND IHRE VORTEILE:
Einfache Profilerstellung | Persdnliche Beratung | Passgenaue Job-Angebote |
Keine aufwandige Job-Suche | Unternehmen bewerben sich beilhnen | Kostenfreie Nutzung |
Transparenz: alle wichtigen Informationen zum Traumjob |
Sicher: Ihr Arbeitgeber hat keine Einsicht in Ihr Profil

JETZT ALS TALENT REGISTRIEREN:
BESTMATCH.INGENIEUR.DE

htpsz//dol.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. @ Urhebarrecttlich geschltzter Inhatt. Ohne gesonderte

Erlaubnis ist jade urheberrechtliche Nutzung untersagt, insbesondsre die Nutzung des Inhalts im Zusammenhang mit, fir oder in KI-Systemen, KI-Modsllen oder Generativen Sprachmodelien.

https://doi.org/10.51202/9783186275080

VDI

REIHE 08

MESS-,
STEUERUNGS-
UND REGELUNGS-
TECHNIK

2

NR. 1275 ISBN 978-3-18-527508-1
E-ISBN 978-3-18-627508-0

BAND
11

VOLUME
11

hitps://dol.org/10.51202/9783186275080 - Generiert durch IP 216.73.216.36, am 20.01.2026, 13:12:05. @ Urhebarrechtlich geschltzter Inhatt. Ohne gesonderte

Ist jeds urheberrechtliche Nutzung untersagt, insbesondsrs die Nutzung des Inhalts im Zusammenhang mit, fir oder in KI-Systemen, Ki-Modsilen oder Generativen Sprachmodalisn.

https://doi.org/10.51202/9783186275080

	Cover
	1 Einleitung
	1.1 Motivation
	1.2 Zielsetzung
	1.3 Struktur dieser Arbeit

	2 Grundlage und Stand der Technik
	2.1 Virtualisierung
	2.1.1 Virtualisierungstypen
	2.1.2 Virtualisierung mit Hypervisoren
	2.1.3 Virtualisierung mit Mikrokernels
	2.1.4 Hypervisor und Mikrokernel-Technologien

	2.2 Container-Technologien
	2.2.1 Virtualisierungsanwendungen in anderen industriellen Domänen
	2.2.2 Virtualisierung in der Luftfahrt
	2.2.3 Industrielle Automatisierung

	2.3 NAMUR Open Architecture
	2.4 Speicherprogrammierbare Steuerungen
	2.4.1 Programmierung
	2.4.2 Entwicklung der speicherprogrammierbaren Steuerungen
	2.4.3 Neue Architekturen für speicherprogrammierbare Steuerungen

	2.5 Digitale Zwillinge und Verwaltungsschalen
	2.5.1 Digitaler Zwilling als Validierungskomponente
	2.5.2 Digitaler Zwilling für Beobachtung und Optimierung

	2.6 Laufzeitumgebungen
	2.6.1 Industrie-PCs und eingebettete Systeme
	2.6.2 Betriebsmittel und Maßnahmenmodell

	3 Anforderung an zukünftige Automatisierungssysteme
	3.1 Anforderungen
	3.2 Leistungsfähige übertragung von Feld- und Automatisierungsdaten an überlagerte Anwendungen
	3.3 Prozessbegleitende Optimierung und überwachung
	3.4 Effiziente interne Kommunikation
	3.5 Lokale Komponentenverwaltung
	3.6 Dynamisches Komponentenmanagement
	3.7 Explizite Verwaltung und Sicherstellung von QoS-Eigenschaften

	4 Konzept
	4.1 Allgemeine Architektur
	4.2 Komponentenhierarchie
	4.2.1 Kommunikation zwischen den Partitionen

	4.3 Systempartitionen
	4.3.1 Verwaltungssystem
	4.3.2 Interface

	4.4 Verwaltungsdienste
	4.4.1 Interne Kommunikationsdienste
	4.4.2 Externe Kommunikationsdienste
	4.4.3 Konfigurationsdienste
	4.4.4 Ressourcenverwaltung
	4.4.5 Komponentenverwaltungsdienste

	4.5 Anwendungspartitionen
	4.6 Evaluation anhand der Anforderungen an die Architektur

	5 Anwendungsszenarien in der Automatisierungstechnik
	5.1 Architektur der Automatisierungspyramide
	5.2 Beispielhafte Anwendungspartitionen
	5.2.1 Control-Partition
	5.2.2 O&M-Partition

	6 Implementierung für eine Kaltwalzanlage
	6.1 Logistik
	6.2 SMS-Demonstrator
	6.3 Aufbau
	6.4 Verification of Request
	6.4.1 Evaluation des VoR-Konzepts

	7 Validierung des Konzepts
	7.1 Eingesetzte Technologien
	7.1.1 Portierung von ACPLT/RTE und PikeOS

	7.2 Prozessführung
	7.2.1 Laufzeitanalyse in virtualisierten und nicht virtualisierten Umgebungen
	7.2.2 Kommunikation
	7.2.3 Verwaltungssystem

	8 Fazit
	A Anhang

	Literatur

