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treten muß, aber beide zusammen nicht eintreten können«, und drittens,

»man sagt, ein Ereignis bleibt aus, wenn es nicht eintritt, oder wenn, was

dasselbe heißt, das entgegengesetzte Ereignis eintritt« (1908, 4). Das heißt,

auch in der Stochastik und der Probabilistik kann immer nur ein Ereignis

gleichzeitig eintreten und nur ein Wahrscheinlichkeitswert kann sich gegen

die anderen Ereignisse durchsetzen. Das Gehirn und insbesondere der Geist

wird in der kybernetisch, informatischen Logik zu einem »intuitiven Statis-

tiker« (Amos Tversky, zit. nach Ehrenberg 2019, 138) gekürt, Entscheidungs-

findung zu einer individuellen Wahl und Entscheidungen in einzelne, von-

einander unabhängige, Einheiten unterteilt. Stochastische Wahrscheinlich-

keit beschreibt Situationen, in denen ein Individuum eine »Präferenz für A

gegenüber B zeigt, aber Schwierigkeiten hat, diesen Unterschied wahrzuneh-

men. Wird die Wahl vielfach wiederholt und gibt das Subjekt A gegenüber B

den Vorzug ist diese Präferenz stochastisch.« (ebd.).

Diese Ausschließlichkeit von Ereignissen erfährt in der stochastischen

Anwendung, dem Ähnlichkeitsparadigma, der Mustererkennung und der

Vorhersehbarkeit von Aussagen eine neue Dimension. Die hier viel be-

schworene Komplexität der Systeme verweist nicht auf die Vielseitigkeit,

gar Diversität der definierten Aussagen/Kategorien, sondern allein darauf,

dass mehrere dieser eindimensionalen Aussagen und Kategorien in der Be-

rechnung ihres statistischen Auftretens in Zusammenhang gebracht werden

können. Vorhersagen werden aufgrund der Datenlage bereits festgelegter

Kategorien geschlossen, die sich also intrinsisch nicht widersprechen dürfen

und somit keinerlei Brüche, Komplementäres oder Dialektisches zulassen.

2 Komplexität

Die Entdeckung und sukzessive Etablierung nicht linearer Systeme und

Prozesse zunächst in der Physik bringt neue Theorien und mathematische

Konzepte hervor. Die Komplexitätstheorie und später die Systemtheorie

reagieren auf diese Entwicklung, konzeptualisieren die Informationsweiter-

gabe in Systemen, Prozessen und Netzwerken nicht mehr nur linear, sondern

als eigenständige kleine Einheiten, in denen auch nicht linear, heißt rekursiv

kommuniziert wird. Entscheidend für das Verstehen dieser energetisch

offenen und vernetzten Systeme ist der Blick auf die Beziehungen innerhalb

eines Systems, nicht mehr die einzelnen, atomaren Elemente, sondern die

Interaktionen rücken in den Fokus. In nicht linearen Systemen und Netzwer-
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ken finden Rückkopplungen und Rekursionen statt. Welche Rückkopplungen

in einem System stattfinden und welche Effekte sich dadurch in einem

System/Netzwerk zeigen, wird mit Wahrscheinlichkeiten beschrieben. Die

epistemischen Sprünge und Erweiterungen der Wahrscheinlichkeitstheorie

(Kap. 1.) hatten direkten Einfluss auf die Konzeptualisierung von Komplexi-

tät. Bis zumEnde des 19. Jahrhunderts ging dieWissenschaft noch davon aus,

dass Leben aus dem Nichts entstehen konnte. Das änderte sich allmählich

mit neuen Experimentalapparaturen, den Methoden des Sichtbarmachens

und den neuen Möglichkeiten der Wahrscheinlichkeitsrechnung. Unter dem

Mikroskop konnte 1827 die bereits beschriebene brownsche Bewegung beob-

achtet werden, deren ungeordnete Bewegungen in Flüssigkeiten und Gasen

sich nicht in die newtonschen Gesetze einordnen ließen, sondern erst durch

die Entdeckung nicht linearer Prozesse und die Anwendung wahrschein-

lichkeitstheoretischer Berechnungsmöglichkeiten nutzbar gemacht werden

konnten.

Die brownsche Bewegung, die auch als die »wichtigste Brücke zwischen

Mikro- und Makrophysik« (Bessenrodt 1977, 7) herangezogen wird, setzt vie-

le Jahre nach ihrer ersten Entdeckung eine gänzlich neue Fachrichtung in

Gang, die sich mit Theorien nicht linearer Systeme beschäftigt. Der Botani-

ker Robert Brown selbst hatte Pollenstaub in Wasser aufgelöst, unter dem

Mikroskop untersucht und hierbei zitternde Bewegungen entdeckt, die sich

mit dem wissenschaftlichen Instrumentarium des angehenden 19. Jahrhun-

derts nicht erklären ließen und somit von ihm als »aktive Urmoleküle, aller

Materie« (zit. n. ebd., 7) interpretiert wurden. Erst Albert Einstein löste das

Mysterium der kleinen aktiven Teilchen 1905 mit seiner Interpretation der

brownschen Bewegung, in der die Partikel nicht aus sich selbst heraus die

Bewegung hervorbringen, sondern durch Impulsübertragung der umliegen-

den Moleküle. Dies gab den Anstoß zu einer völlig neuen Sicht auf die Be-

schaffenheit von Materie und die ihr innewohnenden Prozesse. Zum tieferen

Verständnis nötig war hierfür dieThermodynamik, die den Begriff der Entro-

pie in die Wärmelehre einführte und damit die Physik letztendlich aus ihrer

linearen newtonianischen Fantasielosigkeit zu erwecken wusste, indem sie

eine zeitliche Dimension in physikalische Prozesse einführte.

Die beiden ersten Hauptsätze der Thermodynamik besagen, dass erstens

die Energie, die an einem Vorgang beteiligt ist, ihre Form ändern kann, aber

nichts von dieser Energie verloren geht. Zweitens, und das ist für die Frage

von Zeitwahrnehmung enorm wichtig, bleibt die an einem Vorgang teilha-

bende Energie zwar konstant, gleichzeitig verringert sich die Menge an nutz-
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barer Energie, da sich diese in Wärme, Reibung und Ähnliches umwandelt.

Diese beiden Entdeckungen führten zur Thermodynamik, auch als »Wissen-

schaft von der Komplexität« (Capra 1983, 73) bezeichnet, da hier zum ersten

Mal der Nachweis erbracht wurde, dass Naturprozesse sich nicht nur aus li-

nearen (und dementsprechend berechenbaren) Prozessen zusammensetzen.

Physikalische Vorgänge haben demnach eine bestimmte Richtung, die von

thermodynamischen Bedingungen abhängig sind.

Mechanische Energie wird in Wärme umgewandelt und kann nicht mehr

vollständig zurückgewonnen werden. Wird heißes Wasser mit kaltemWas-

ser zusammengegossen, ist das Ergebnis lauwarmesWasser, und die beiden

Flüssigkeiten lassen sich nicht mehr trennen. […] All diesen Vorgängen ist

gemeinsam, daß sie in eine bestimmte Richtung verlaufen – von der Ord-

nung zur Unordnung. Das ist die allgemeinste Formulierung des Zweiten

Hauptsatzes der Thermodynamik: Jedes beliebige isolierte physikalische

System entwickelt sich spontan in Richtung zunehmender Unordnung. (Ca-

pra 1983, 74)

Der Begriff der Entropie fasst dieses zweite thermodynamische Gesetz zu-

sammen. Er besagt, dass jedes System zum wachsenden Chaos strebt. Das

zweite thermodynamische Gesetz, insbesondere die hier eingeführte zeitliche

Dimension, dass Prozesse nicht rückwärtslaufen können, kann mit Newton

nicht mehr erklärt werden. Das war der Moment, in dem dieWahrscheinlich-

keitstheorie und damit die Statistik von Ludwig Boltzmann ins Spiel kam, um

das Verhalten nicht linearer Prozesse zu berechnen und wieder auf Spur zu

bringen:

Mit Hilfe der Wahrscheinlichkeitstheorie konnte das Verhalten komplexer

mechanischer Systeme nach statistischen Gesetzen beschrieben und die

Thermodynamik auf eine solide Newtonsche Grundlage gestellt werden

[…]. Boltzmann wies nach, daß der Zweite Hauptsatz ein statistisches Ge-

setz ist. Seine Aussage, dass gewisse Vorgänge nicht eintreten – beispiels-

weise die spontane Umwandlung von Wärmeenergie in mechanische Ener-

gie –, besagt nicht, daß sie unmöglich seien, sondern nur, daß sie äußerst

unwahrscheinlich sind. (Ebd., 74f.)

Wer über die Einführung von Komplexitätskonzepten in wissenschaftliche

Theorien spricht, sollte von der Systemtheorie nicht schweigen. Als Prinzip

zum »Gebrauche der Mathematik und deren Anwendung« (Lambert 1765)

schon beim Mathematiker und Logiker Johann Heinrich Lambert (1728–1777)
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zu finden, wurde die Systemtheorie als Konzept zunächst in der Biologie

(Zellsysteme) und in der Kybernetik der 1940er- und 1950er-Jahre weiter-

entwickelt. Die Systemtheorie ist weniger eine eigenständige Theorie als

eine Sammlung mathematischer Werkzeuge, und ihre wichtigste Einsicht

ist die Feststellung, dass auch einfachste deterministische Gleichungen sehr

komplexes Verhalten produzieren können. Die Systemtheorie ist eine verall-

gemeinernde Universaltheorie, um Erklärungsweisen für alle Systeme und

deren Verhalten anzubieten, unabhängig davon, ob es sich um biologische

Systeme wie Neuronale Netze handelt, um chemische oder physikalische Sys-

teme oder um gesellschaftliche wie ›die‹ Familie oder ›der‹ Staat. Der Begriff

»Komplexe Systeme« meint zunächst nicht viel mehr als Systeme, die über

mehr als zwei Variablen und verschiedene Querverbindungen verfügen und

die einem nicht reduktionistisch festgelegten Determinismus folgen. Heute

gelten nahezu alle Prozesse und Vorgänge als nicht linear und alle Systeme

als komplexe Systeme. Die Mathematik soll dabei helfen, wiederkehrende

Muster in den Prozessen zu erkennen und näher zu beschreiben.

2.1 Was sind komplexe Systeme und wie lassen sie sich

charakterisieren?

Das Prinzip der Selbstorganisation eines Systems geht allen anderen Be-

schreibungen von Systemen voraus und ist die grundlegende Annahme aller

Systemtheorien. Selbstorganisation meint, dass Systeme ohne Einflüsse oder

Steuerung von außen spontane Ordnungserhöhungen vollziehen können,

also strukturelle Ordnungen erreichen ohne ersichtliche linear beschreibbare

Ursachen. Dem Prinzip der Selbstorganisation oder auch Selbststeuerung

unterliegen in systemtheoretischen Ansätzen alle komplexen Systeme, ob

biologische, psychologische, soziale oder physische, auch Neuronale Netz-

werke stellen ein System dar. Der Gedanke der Selbstorganisation wurde

unter anderem durch die Kybernetik und ihre Modellierung parallel stattfin-

dender Prozesse vorangetrieben. Selbstorganisation legt den Fokus auf die

Erneuerung und Selbstregulierung von Systemen. Komplexe Systeme/Netze

brauchen kein Steuerungssystem mehr von außen, sondern funktionieren

durch ihre gegenseitige Beeinflussung und Selbstregulierung.

Selbstorganisation aber meint vor allem eines: die Abgeschlossenheit von

Systemen und Netzwerken und ihre Selbstreferenzialität. Diese epistemische

Selbstbezüglichkeit komplexer Systeme stellt das wissenschaftliche Erbe einer

Naturauffassung dar, das nicht mehr von fragmentierten, in sich geschlosse-
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nen Entitäten ausgeht, die nun nicht mehr linear hintereinandergeschaltet

gedacht werden, sondern von in sich geschlossenen, auf sich selbst verwei-

senden Systemen. Somit sind auch Neuronale Netzwerke (ob artifizielle, also

algorithmische oder physiologische) kleine, abgeschlossene, sich selbstorga-

nisierende und in ihrer Grundstruktur sich gleichende Systeme. Gleichzeitig

reiht sich diese Vorstellung in das Erbe einer Mathematischen Logik nach

Hilbert ein, die nicht mehr von Erfahrung ausgehend ihre Grundsätze (Axio-

me) formuliert, sondern formal-logisch bestimmt. In anderen Worten: Axio-

me gelten dann als wahr, wenn sie sich selbst nicht widersprechen. Wahr ist

demnach, was als wahr durch die Regelhaftigkeit im Rahmen einer Mathe-

matischen Logik bestimmt wird. Erfahrung ist, was formalisiert werden kann

undwas in den Trainingsdaten steckt. Selbstbezüglichkeit bedeutet, nicht von

Erfahrung auszugehen, sondern von formal-logischen Grundsätzen, die dann

als wahr gelten, wenn sie sich nicht selbst widersprechen.

Die Annahme der Selbstorganisierung und damit der Abgeschlossenheit

von Systemen ermöglicht ihre weitere Charakterisierung. In der Kybernetik

wurden prozessorientierte Rechensysteme zunächst linear hintereinander in

Reihe geschaltet.Mit den Erweiterungen konnektionistischer Errungenschaf-

ten wie die der Rekursion, Rückkopplungen, selbstlernender Algorithmen etc.

entstanden komplexe Systeme, die in konnektionistischen und kognitions-

wissenschaftlichen Ansätzen als Neuronale Netze bezeichnet werden. Auto-

poiesische, komplexe, nicht lineare Systeme/Netze zeichnen sich durch ihren

Grad der Selbstorganisation, der Rückkopplung, der Rekursion und Reverbe-

ration, des Selbstlernens und die sich daraus ergebende Selbstbezüglichkeit,

Bifurkationen und eine spezifische Form der Periodizität und der Zeitlichkeit

aus.

Rekursion, Rückkopplung und Feedback bezeichnen im Grunde genom-

men das gleiche Phänomen, die unterschiedlichen Begriffe verweisen auf die

verschiedenen (System-)Theorien, in denen sie verwendet werden. Sie be-

schreiben einen zentralen Vorgang, über den sich nicht lineare Prozesse defi-

nieren. Ein Teil des Outputs einer Gleichung wird durch Rückkopplung bezie-

hungsweise durch ihr Wiederaufrufen in den Prozess zurückgeführt und be-

einflusst dadurch wiederum das momentane Verhalten des Systems. Rekur-

sion bedeutet Zurücklaufen, meint das Rückkoppeln eines prinzipiell unend-

lichen Vorgangs, der sich selbst als Teil enthält oder mithilfe von sich selbst

definierbar ist. Die so in Beziehung gesetzten und aufeinanderfolgenden Teil-

vorgänge und nacheinander erzeugten Systeme/Netze sind nicht unabhängig

voneinander, ihre Relation orientiert sich an einer Kausalmatrix, jedes darin
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enthaltene System bestimmt sich durch selbstbezügliches, rekursives Verhal-

ten (eine grafische Ausführung rekursiver Systeme, die einer Kausalmatrix

folgen, sind Fraktale). Rekursionen beziehungsweise Rückkopplungen finden

unendlich oft statt, wenn keine Abbruchbedingung in die Funktion einpro-

grammiert wurde, weil sich das rekursive Programm sonst theoretisch un-

endlich oft selbst aufruft. Wird das Systemverhalten durch positive Rekursi-

on verstärkt, wie man es etwa aus der Rückkopplung zwischen Lautsprecher

und Mikrofon kennt, verwandelt die Verstärkerschleife einen leisen in einen

sehr lauten Ton. Negative Rekursion wirkt eher stabilisierend auf ein System.

Bifurkation beschreibt den kritischen Punkt, der durch diese sich selbst oder

benachbarte Funktionen unendlich oft aufrufende Rückkopplungen auftreten

kann.

Iteration, der Prozess des mehrfachen additiven Wiederholens, und Re-

kursion werden heute gleich häufig in der Berechnung komplexer Systeme

angewendet. Gleiche, also iterative, oder ähnliche rekursive Vorgänge wer-

den hierfür wiederholt aufgerufen. Wichtig ist der unterschiedliche Anwen-

dungsbereich: Prozessverarbeitungen, die auf stochastischen Berechnungen

beruhen, basieren meist auf der Anwendung von Iterationen, die mehrfach

Schleifen (for, while …) durchlaufen, bis eine Abbruchbedingung erfüllt ist.

In Neuronalen Netzen bildet die Rekursion die Grundlage für die ›selbst-

lernenden Algorithmen‹ und stellt somit eine neue Form des maschinellen

Lernens dar. Rückkopplungen und Rekursion macht aus ›müden‹, also aus-

schließlich ausführenden Algorithmen selbstlernende Algorithmen. Bei einer

Rekursion genügt es, lediglich die Prozeduren oder Funktionen mit der Auf-

forderung zu ergänzen, dass sie mit einem regelmäßig geänderten Parameter

erneut anzuwenden sind, bis eine Abbruchbedingung erfüllt ist.

Umdie Paradigmen der Regularität und die darüber hergestellte Stabilität

linearer Systeme in die Welt der nicht linearen Systeme zu übertragen, wird

die Periodizität zu einer unentbehrlichen Chiffre (allerdings in seiner aktuel-

len, nicht seiner etymologischen Bedeutung von Null und leer). Periodizität

stellt also Regularien für komplexe Systeme auf. Sie wird insbesondere mit

der Frage nach der Möglichkeit von Zufallsereignissen in komplexen Syste-

men relevant, beziehungsweise es werden Zufallsereignisse durch das Ein-

führen von Periodizität in komplexen Systemen per definitionem ausgeschlos-

sen, da Zufälligkeit nur als das nicht Vorhandensein bestimmter Formen von

Regularität aufgefasst wird. »Die Periodizität ist als Form der Regularität ba-

sal in dem Sinne, dass sie in allen übrigen Formen enthalten ist; sie zeichnet

sich ferner durch Minimalität bei der algorithmischen Umsetzung aus, ist al-
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so die am einfachsten zu prüfende Form von Regularität.« (Kirchner 2018,

245)

Die Versprechen nicht linearer und komplexer Systeme verweisen ver-

meintlich auf die Begrenztheit vorherigen wissenschaftlichen Forschens. Das

Verhältnis dreht sich um, das Nichtlineare, miteinander Vernetzte und auf-

einander Rekurrierende in der Natur wird nicht mehr als Ausnahme, als Ano-

malie angesehen, sondern als ihr Normalzustand. Komplexe Systeme sollen

dabei helfen, Formen von Vielfalt und vielfältigen Zusammenhängen zu erfas-

sen, was vorher mit deterministischeren Ansätzen, die das Leben, die Natur

und den Menschen mit Uhrwerken, Maschinen und Automaten verglichen,

kaum möglich war.

Diese auf das Gehirn übertragenen systemtheoretischen Annahmen rie-

fen auch kritische Stimmen in den Kognitions- und Neurowissenschaften

hervor. Es stellte sich die Frage, wie die sich selbst organisierenden Neuro-

nalen Netze in Kontakt mit der Außenwelt treten können? Oder auch allge-

meiner, wie Systeme mit- und zueinander in den Austausch kommen, sich

nicht nur selbstreferenziell verhalten, sondern inter- und intraaktiv kommu-

nizieren? Zur Diskussion wurde auch die Frage gestellt, wodurch das Gehirn,

zusammengesetzt aus vielen kleinen Systemen beziehungsweise Neuronalen

Netzwerken, zu einemOutput hervorbringenden Organismus wird.Wie lässt

sich aus dem Chaos feuernder Neuronennetzwerke ein klarer Gedanke ex-

trahieren? Wie extrahieren Neuronale Netze aus dem Rauschen des Gehirns

eine klare Entscheidung, etwa dass eine Aktion gestartet wird, zum Beispiel

das Heben eines Arms? Wie materialisiert sich Erinnerung und wie kann Er-

innerung wieder abgerufen werden? Ein möglicher Ordnungsansatz ist die

zeitliche Synchronisation von Prozessen, in der über das gleichzeitige bezie-

hungsweise das spezifische zeitlich versetzte Feuern von Synapsen, über das

Bewusstwerden von Denkprozessen Entscheidungen getroffen werden (vgl.

Singer 2005, 46). Erst durch die Einführung einer zykluszeitlichen Kompo-

nente wurde eine Modellierung der Kommunikation zwischen den Neuronen

möglich: »The cycle-time then is the time unit for the operations of neural

nets.« (Kay 2001, 598)

Durch die zeitliche Harmonisierung wird die Neuronenaktivität unter

Kontrolle gebracht und das nicht lineare Rauschen des Gehirns in eine Ord-

nung gesetzt, die in der Neurowissenschaft zu Anschauungszwecken auch

schon mal mit einem Orchester verglichen wird: Wenn alle in einem Orches-

ter wissen, wann sie was zu spielen haben, dann entsteht eine Melodie.
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Die oben beschriebenen Konzepte der Selbstorganisation, der Komplexi-

tät, der Nichtlinearität von Netzwerken, bauen auf vorherigen Reduktionen

und Mathematisierungen auf, die sich allesamt in der Logik der Verschal-

tung des Computers und der Welt der Algorithmen ausdrücken lassen. Und

auch der Umkehrschluss ist wahr: Keiner dieser auf mathematischen Mo-

dellen beruhenden und in Algorithmen eingelassenen Begriffe könnte ohne

die Rechenpower des Computers berechnet werden. Diese erkenntnistheore-

tischen Konzepte, die mathematischen Modelle und die in Computer imple-

mentierten Verschaltungslogiken bedingen einander und bringen das hervor,

was hier im Anschluss an die Kritische Theorie mit Instrumenteller Vernunft

vorgestellt werden wird.

2.2 Emergente und effiziente Komplexität in den Computational

Neurosciences

Durch systemtheoretisch angeregte beziehungsweise freigesetzte episte-

mische wirksame Modelle abgeschlossener Systeme, Netzwerke der Selbst-

organisation und Rekursion, spielen auch neue Komplexitätstheorien eine

bedeutende Rolle in der weiteren Geschichte konnektionistischer Versuche,

dem Gehirn eine neue Form zu geben. Ein abweichendes Verständnis von

Komplexität beziehungsweise der Art der Komplexität, nach der gesucht

wird, begründete zwei der heute wichtigsten Stränge kognitiv-computa-

tionaler Methoden. Komplexität wird in den Computational Neurosciences

als Erforschung von Effizienz neuronaler Systeme verstanden. Für den Be-

reich des Machine Learning und selbstlernender neuronaler Netzwerke ist

die Emergenz eines Systems, also die Frage nach dem Zusammenspiel der

einzelnen Elemente eines Systems, von Interesse.

Kurzer Rückblick, wie diese unterschiedlichen Foki entstanden sind. Kurt

Gödel zeigt in seinen Arbeiten der 1930er-Jahre die Grenzen des Berechenba-

ren und des Rechnens generell auf und setzt mit seinem Unvollständigkeits-

satz neue Maßstäbe in der Mathematik, indem er selbstbezügliche, unent-

scheidbare formale Aussagen entwirft, deren Wahrheitsgehalt nicht durch

eine Rechnung ermittelt werden kann. Der Fokus des Mathematikers liegt

dabei aber auf der Logik formalisierbarer Prozesse, für die er universell an-

wendbare Codes entwickelt. Damit schlägt Gödel erstmals eine Brücke von

den für diese Fragen notwendigen Axiomen und beweisbaren Theoremen zu

ihrer programmatischen Anwendung in Computern, bestehend aus Reihen

von Operationen, mit denen Beweise im Sinne der Logik berechnet werden
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können. Sein Unvollständigkeitssatz gilt neben der Ableitung Alan Turings als

epochale Entschlüsselung des Entscheidungsproblems, das Gödel wie Turing

ähnlich begreifen: Das Entscheidungsproblemmuss, im Sinne der Mathema-

tischen Logik, auf Fragen begrenzt werden, die eine klare Ja/Nein-Antwort

zulassen. Heißt: Gibt es eine Ähnlichkeit zwischen Bild A und Bild B: ja/nein?

Kommt eine Eigenschaft vor: ja/ nein. Wie hoch ist die Wahrscheinlichkeit,

dass ein bestimmtes Ereignis eintritt: 0 gar nicht, 1 sehr hoch etc. Das Ent-

scheidungsproblem versöhnt Logik undMathematik und stellt die Bedingun-

gen auf, aus deren Logik sich der Computer heraus entwickelt hat sowie sein

Anspruch, logischeDenkprozesse zu vollziehen und daraus logische Entschei-

dungen abzuleiten.

Gödel begründet mit diesen Überlegungen zu den Grenzen algorithmi-

scher Theorembeweise das, was heute theoretische Informatik genannt wird:

eine durch die Logik inspirierte Perspektive, die sich mit der Effizienz ma-

thematischerWerkzeuge, Axiomen, Algorithmen und Berechnungen digitaler

Computer auseinandersetzt. Der oben benannte Unterschied zwischen der

theoretischen Informatik und konnektionistischen Ansätzen findet sich in ih-

rer unterschiedlichen Verwendung der Komplexitätstheorie: Erstere beschäf-

tigt sichmit der rechnerischenKomplexität von imComputer durchgeführten

Theorembeweisen, fragt nach der Anwendbarkeit und der Effizienz des für

ein Problem vorgeschlagenen Algorithmus und ist der Deduktion verpflich-

tet. Ein zweiter konnektionistischer Ansatz beschäftigt sich mit dem Zusam-

menwirken vieler interagierender Elemente in Systemen, die ein komplexes

emergentes Verhalten, neue Eigenschaften oder Strukturen innerhalb eines

Systems hervorbringen, das sich nicht auf seine Einzelteile reduzieren lässt.

Dieser Ansatz folgt der induktiven Logik und mündet in dem heute deutlich

dominanteren Bereich neuronaler Netze und des Machine Learnings.

Eine von mir interviewte Person nannte ein anschauliches Beispiel für

effizienzbasierte Fragen kognitiver Komplexität:

Die Theorie der kognitiven Komplexität untersucht die intrinsische Schwie-

rigkeit von rechnerischen Problemen. Nehmen wir zum Beispiel das Sehen,

sagen wir, es gibt einige Pixel, und sagen wir, Sie wollen berechnen, was

die wahrscheinlichste Interpretation dieser spezifischen Pixel ist – das ist

das rechnerische Problem. Dann fragt man sich, was ist der schnellste Al-

gorithmus, wenn Sie sich einen Algorithmus ausdenken würden, der dieses

Problem rechnerisch löst, wie viele Ressourcen braucht dieser Algorithmus?

Ressourcen können Zeit oder Platz sein, in der Kognitiven Komplexität geht

https://doi.org/10.14361/9783839457566-014 - am 13.02.2026, 13:41:24. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839457566-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Kapitel 3: Komplexität, Kausalität und Zeitlichkeit in stochastischen Modellen 159

es vor allem um die Frage, ob das Gehirn über die Ressourcen verfügt, die-

sen Algorithmus auszuführen. Und nun gibt es Probleme wie die bayessche

Inferenz im Allgemeinen: Wenn es keine vereinfachenden Annahmen gibt,

dann gibt es keinen Algorithmus, und das ist keine technische Einschrän-

kung, das ist eine mathematische Einschränkung. Es bedeutet, dass ein Al-

gorithmus, der diese Berechnung durchführt, immer sogenannte exponen-

tielle Zeit braucht, also dass die Zeit, die er benötigt, in die Höhe schießt, je

mehr die Anzahl der Pixel wächst. Das bedeutet, dass man für alles andere

als trivial kleine Bilder mehr Zeit braucht, als seit dem Urknall vergangen

ist, um sie tatsächlich zu berechnen. Wir sagen: Ja, das kann das Gehirn

nicht. Selbst wenn das Gehirn mit Lichtgeschwindigkeit rechnen könnte,

was es nicht kann, wäre es nicht in der Lage, das in Jahrhunderten zu be-

rechnen. Und NP-Schwere bedeutet, das sind diese Arten von Problemen,

die diese Eigenschaft haben, dass es keinen effizienten Algorithmus für sie

gibt. (Interview 3, Min. 45f.)

Die Komplexitätstheorie in der theoretischen Informatik definiert für Auf-

gaben, die das Entscheidungsproblem, also alle Probleme mit einer Ja-oder-

nein-Antwort betreffen, Komplexitätsklassen für die weitere Verwendung in

Gleichungen. Zu diesen Klassen gehört unter anderem P – als die Komplexi-

tätsklasse, die die Menge aller Entscheidungsprobleme darstellt, die in Po-

lynominalzeit gelöst werden können. Das heißt, die Antwort ja oder nein

kann in einer angemessenen Zeit entschieden werden. NP ist die Klasse al-

ler Entscheidungsprobleme, für die eine gefundene Lösung effizient rechne-

risch und in Polynominalzeit überprüft werden kann. NP-complete ist eine

Komplexitätsklasse, die die Menge aller Probleme X in NP darstellt, für die

es möglich ist, jedes andere NP-Problem Y in Polynominalzeit auf X zu redu-

zieren. NP-Schwere beschreibt die Komplexitätsprobleme, die mindestens so

schwer sind wie die NP-complete-Probleme. Diese Klasse muss nicht in der

Komplexitätsklasse NP aufgehen noch müssen sie Teil des Entscheidungs-

problems sein. Bereits Gödel beschrieb 1956 dieses, bis heute offene Problem

der Vergleichbarkeit von Komplexitätsklassen für das Entscheidungsproblem

(P=NP?). Polynominalzeit gibt die Zeit an, in der Komplexitätsprobleme mit-

hilfe von Rechenmaschinen lösbar sein müssen. Die Polynominalzeit bildet

damit den Rahmen für praktisch lösbare mathematische Probleme und prak-

tisch nicht lösbare Probleme. Diese theoretischen Überlegungen zur Bere-

chenbarkeit der eigenenModelle spielen eine fundamentale Rolle in denCom-

putational Neurosciences.
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Und interessanterweise sind viele Modelle in der Kognitionswissenschaft

NP-hard, das heißt, die Modelle die postuliert werden, sind praktisch nicht

in der Polynominalzeit lösbar. Aber wir benutzen sie als Modelle dafür, wie

das Gehirn rechnet. Gleichzeitig können wir nachweisen, dass das nicht

möglich ist. Also es gibt dann zwar einen Algorithmus dafür, aber alle die-

se Algorithmen verbrauchen so viele Ressourcen, sie können nicht plausibel

physikalisch realisiert werden. Diese Algorithmen können nicht auf die rea-

le Welt zurück skaliert werden, denn das würde das Modell sprengen. Und

dann sagen sie, ja das ist nur ein technisches Problem. Nein, das ist kein

technisches Problem, da stimmt etwas grundlegend nicht. (Interview 3, 47

Min.)

2.3 Kausalität und Zufall in komplexen Systemen

We know that in the realm of

natural science, the absolute

connexion between the initial

and final elements of a problem,

exhibited in the mathematical

form, fitly symbolizes that

physical necessity which binds

together effect and cause –

Boole 1958, 316f.

Der Mathematiker Henri Poincaré (1854–1912) widmet sich in einem Text aus

dem Jahr 1908, den grundlegenden Schwierigkeiten, die in der Definition und

Abgrenzung von Kausalität als klare Festlegung von Ursache und Wirkung

und zufälligen Erscheinungen deutlich werden. Sein Hinweis auf die mathe-

matischen Grenzen in der Beschreibung von Naturgesetzen, beruht auf Über-

legungen vor der quantenphysikalischen Revolution und vor den Veränderun-

gen, die sich durch die Einhegung nicht linearer Prozesse in der Mathematik

ergaben:

Eine sehr kleine Ursache, die für uns unbemerkbar bleibt, bewirkt einen

beachtlichen Effekt, den wir unbedingt bemerken müssen, und dann sagen

wir, daß dieser Effekt vom Zufall abhänge. Würden wir die Gesetze der Na-

tur und den Zustand des Universums für einen gewissen Zeitpunkt genau

kennen, so könnten wir den Zustand dieses Universums für irgendeinen

späteren Zeitpunkt genau voraussagen. Aber selbst wenn die Naturgesetze
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für uns kein Geheimnis mehr enthielten, können wir doch den Anfangszu-

stand immer nur näherungsweise kennen. Wenn wir dadurch in den Stand

gesetzt werden, den späteren Zustandmit demselben Näherungsgrade vor-

auszusagen, so ist das alles, was man verlangen kann; wir sagen dann: die

Erscheinung wurde vorausgesagt, sie wird durch Gesetze bestimmt. Aber so

ist es nicht immer; es kann der Fall eintreten, daß kleine Unterschiede in

den Anfangsbedingungen große Unterschiede in den späteren Erscheinun-

gen bedingen; ein kleiner Irrtum in den ersteren kann einen außerordent-

lich großen Irrtum für die letzteren nach sich ziehen. Die Vorhersage wird

unmöglich und wir haben eine »zufällige Erscheinung«. (Poincaré 1908 [23:

Text 114])

Die hier zitierte Aussage Poincarés zeigt die Fallstricke auf, die sich aus

den Übersetzungen der experimentellen Beobachtungen der Physik in die

statischen Gesetze der Mathematik ergeben. Poincaré unterscheidet zwi-

schen theoretischer Vorhersagbarkeit und der praktischen Unmöglichkeit,

Ausgangsdaten beliebiger Genauigkeit zu er- beziehungsweise beschaffen.

Poincaré deutet an, dass Zufall auf der praktischen Unmöglichkeit der Vor-

hersage beruht, das heißt, für ihn ist Zufall allein Ausdruck für Nichtwissen

oder Nochnichtwissen. In Poincarés Aussage klingt ein erster Verweis auf

die Gesetze nicht linearer Prozesse an, die die Kausalitätsprinzipien kur-

ze Zeit später durch die Implementierung der Wahrscheinlichkeitstheorie

fundamental verändern sollten.

Durch die Wahrscheinlichkeitstheorie und ihre Einbettung in die Berech-

nung komplexer Systeme wird das Kausalitätsprinzip neu ausgerichtet: Bis-

her war das Kausalgesetz die »induktive Verallgemeinerung der Erfahrung,

dass sich in der Regel zu jedem beobachtbaren Ereignis B ein anderes Ereignis

A finden lässt« (Morfill/Scheingraber 1993, 282). Mit dem Verlassen eines de-

terministischen Standpunkts, durch die Implementierung der Gesetze nicht

linearer Prozesse, verlieren die reduziert gehaltenen Kausalaussagen ihren

Sinn, da es bei der Untersuchung »komplexer Systeme mit vielfältigen Zu-

sammenhängen […], in denmeisten Fällen unmöglich ist, zwischen einzelnen

Ereignissen eindeutige Ursache-Wirkungs-Verknüpfungen zu konstruieren«

(ebd.).

Die induktive und vorhersagende Logik stochastischer Berechnungen ba-

siert auf dem statistischen Verhältnis von Ursache und Wirkung und sucht

nach Korrelationen, nicht nach kausalen Zusammenhängen. Zufall wird mit-

hilfe der Probabilistik als Variable berechenbar gemacht und als notwendige
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veränderliche Größe in komplexen Systemen vorausgesetzt. Statistik bildet

die methodische Grundlage, um eine Art Inventur der gesammelten und vor-

handenenDaten vorzunehmen und einenÜberblick darüber zu geben,welche

Informationen überhaupt vorhanden sind und welche Verteilungsmodalitä-

ten vorliegen. Was aber die Gründe für diese Verteilung sind, das lässt sich

mit stochastischenModellen und Algorithmen nicht grundlegend, nicht theo-

rieleitend klären. Artifiziellen Systemen fehlt das Mitbedenken der Anfangs-

und Randbedingungen beziehungsweise das Einordnen, warum die Anfangs-

und Randbedingungen so sind, unter denen das Problem gelöst werden soll,

ebenso wie die Reflexion ihrer eigenen eingebetteten Systematiken und Lo-

giken. Die Netzwerke können zur Selbstorganisation Prozesse iterieren (wie-

derholen) und Daten immer wieder einspeisen, sie können rekursiv gefunde-

ne, gemachte Fehler in das System zurückspiegeln und daraus lernen, dass

dies fehlerhaft war. Sie können ihre Anfangs- und Randbedingungen inner-

halb einer Simulation variieren, auch können die bekannten Naturgesetze

programmiert und über nominale Angaben in die Berechnungen eingeschrie-

ben werden, diese sind aber nur ein Teil des Systems, Randbedingungen sind

eher kontingent und kontextabhängig.

Das Kausalitätsprinzip ist Ausgangspunkt von logischen wie statistischen

Überlegungen: Wenn, dann. Aus x ergibt sich y etc. Um dem Kausalitätsprin-

zip zu entsprechen, müssen Experimente unter den gleichen Bedingungen

wiederholt und ihre Ergebnisse reproduziert werden können: Gleiche Bedin-

gungen müssen gleiche Ergebnisse hervorbringen. Das ist die Fundamental-

anforderung jeden wissenschaftlichen Experiments im Labor – bis heute. Sie

gilt aber nicht für die Statistik: Diese prüft nicht mehr die Kausalität von Zu-

sammenhängen, sondern ihre Korrelation, also ob ein Zusammenhang signi-

fikant beziehungsweise valide ist. Sie gilt auch nicht für auf stochastischen

Berechnungen basierende Computermodelle und Simulationen.

Das Kausalitätsprinzip der Experimentalwissenschaften, vor allem aber

der Physik, besagt, dass gleicheUrsachen gleicheWirkungen haben.Das Kau-

salitätsprinzip wird in starke und schwache Kausalität unterschieden. So be-

schreibt die schwache Kausalität, dass gleiche Ursachen gleiche Wirkungen

haben, sagt aber nichts über die Schwere, mit der eine Ursache mit einer Wir-

kung zusammenhängt. Die starke Kausalität hingegen, die insbesondere in

nicht linearen Prozessen oder Systemen angenommenwird, besagt, dass ähn-

liche Ursachen ähnliche Wirkungen haben, aber kleinste Abweichungen zu

extrem verschiedenen Ergebnissen führen können. Diese Bestimmung von

Kausalität ist eine rein mathematische Festlegung für das Verhältnis von Ur-
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sache und Wirkung in Systemen und dient allein der weiteren formal-lo-

gischen Verfasstheit der anzuwendenden Gleichungen, aber kaum der Ein-

schätzung über die Ursächlichkeit eines Ereignisses über ein anderes. Das

Prinzip von Ursache und Wirkung wird, wenn zwei Prozesse ein und dem-

selben System angehören, als gegeben vorausgesetzt. Das Verhalten nicht li-

nearer Systememit starker Kausalität über längere Zeiträume ist nicht genau

vorherzuberechnen.

Zufall

»Ich möchte nur darauf aufmerksam machen, wie viele verschiedene Bedeu-

tungen dem Wort Zufall gegeben werden, und wie nützlich es wäre, sie zu

unterscheiden.« (Poincaré 1906, 114)

Wenn Kausalität das Verhältnis von Ursache undWirkung beschreibt, de-

finiert sich Zufall als die Abwesenheit vonKausalität, ein Ereignis, das eintritt,

ohne dass dafür eine Ursache oder eine Gesetzmäßigkeit erkennbar wird. Zu-

fälligkeit grenzt sich als Gegensatz von der Notwendigkeit ab, ist aber gleich-

zeitig in seiner Negation auf diese angewiesen. Denn erst im Wissen um Re-

gelhaftes und Notwendiges wird Zufälliges deutlich.

Diese definitorische Gegenüberstellung von Zufall und Gesetzmäßigkeit,

die die Abwesenheit des jeweils anderen anzeigt, verändert sich immathema-

tischen Verständnis zur Berechnung komplexer Systeme/Netze mittels Sto-

chastik. Wenn Zufälligkeit als Fehlen von Ursächlichem und Regelhaftem be-

schrieben und »als Negation einer bestimmten Form von Regularität« (Kirch-

ner 2018, 245) angesehen wird, braucht es eine übergeordnete Charakteristik,

umZufälliges dennochmathematisch berechenbar zumachen.Umden Zufall

in den Griff zu bekommen und ergo seiner Berechenbarkeit zuzuführen, wird

den verschiedenen zufällig eintretenden Ereignissen in komplexen Systemen

ein eigener Regularitätsbegriff angelegt […]: die Periodizität, die als Remi-

niszenz an die vor-chaotische, d.h. sich mit linearen oder linearisierten Pro-

blemen beschäftigende Naturwissenschaft aufgefasst werden kann. Die Pe-

riodizität ist als Form der Regularität basal in dem Sinne, dass sie in allen

übrigen Formen enthalten ist; sie zeichnet sich ferner durch Minimalität bei

der algorithmischen Umsetzung aus, ist also die am einfachsten zu prüfen-

de Form von Regularität. (Kirchner 2018, 245)

Durch die Annahme vonmathematisch berechenbarer Periodizität in komple-

xen Systemen können Zufallsverteilungen mithilfe von Wahrscheinlichkeits-
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rechnungen als notwendiger Motor für die Aufrechterhaltung eines komple-

xen Systems eingebaut werden. So wird Zufall zu seinem Gegenteil: einer

Notwendigkeit, die selbstverständlich über statistische Häufigkeitsverteilun-

gen als selbsterhaltende Maßnahme in selbstlernende Algorithmen einbezo-

gen wird.

Die Einteilung, ob biologische, organische, physikalische oder neuronale

Prozesse deterministisch oder zufällig verfasst sind, stellt sich in den Com-

putational Neurosciences heute tatsächlich nicht mehr: Organisch-neuronale

Prozesse sind stochastisch verfasst. Als komplexe Systeme basieren sie auf ei-

ner statisch ermittelten Kombination aus regelhafter Zufälligkeitsverteilung.

Diese mathematische Einhegung mithilfe der Wahrscheinlichkeitstheorie

wird auch als Probabilistik, ein Anwendungsbereich der Wahrscheinlich-

keitsrechnung, bezeichnet.

3 Wahrscheinlichkeit

Nach den Turbulenzen, die die Entdeckung des 1. und 2. Hauptsatzes der

Thermodynamik der newtonschen Physik bescherte, brauchte es neue ma-

thematische Herangehensweisen, um nicht lineare Prozesse zu berechnen

und die Formalisierung komplexer Systeme zu ermöglichen. Hier kommt die

Wahrscheinlichkeitstheorie ins Spiel, die dabei half, »das Verhalten komple-

xer mechanischer Systeme nach statistischen Gesetzen« (Capra 1983, 74) zu

beschreiben. Mithilfe von Wahrscheinlichkeitsannahmen können Aussagen,

Vorhersagen und Urteile nach dem Grad ihrer Gewissheit eingestuft werden.

In Kapitel 1 wurde bereits in die Wahrscheinlichkeitstheorie eingeführt. An

dieser Stelle sei noch auf die Diversität von Wahrscheinlichkeitskonzepten

hingewiesen, eine Art der Chancenberechnung gibt es nicht, Wahrschein-

lichkeitsannahmen können sehr unterschiedlich verfasst sein. In den Anfän-

genwurde dieWahrscheinlichkeit eines eintretenden Ereignisses dadurch be-

stimmt, dass »die Zahl der ›günstigen‹ durch die Zahl der ›möglichen‹ Fälle

dividiert« (Stegmüller 1956, 2) wurde. Das bedeutet, »wenn die Wahrschein-

lichkeit, mit einemWürfel eine Sechs zu werfen, gleich 1/6 ist, so beruht dies

nach der klassischen Ansicht darauf, daß sechs mögliche Fälle, nämlich die

sechs verschiedenen Augenzahlen des Würfels, und ein günstiger Fall, näm-

lich die Augenzahl 6, vorliegen« (ebd.).
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