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treten mufs, aber beide zusammen nicht eintreten konnen«, und drittens,
»man sagt, ein Ereignis bleibt aus, wenn es nicht eintritt, oder wenn, was
dasselbe heifdt, das entgegengesetzte Ereignis eintritt« (1908, 4). Das heif3t,
auch in der Stochastik und der Probabilistik kann immer nur ein Ereignis
gleichzeitig eintreten und nur ein Wahrscheinlichkeitswert kann sich gegen
die anderen Ereignisse durchsetzen. Das Gehirn und insbesondere der Geist
wird in der kybernetisch, informatischen Logik zu einem »intuitiven Statis-
tiker« (Amos Tversky, zit. nach Ehrenberg 2019, 138) gekiirt, Entscheidungs-
findung zu einer individuellen Wahl und Entscheidungen in einzelne, von-
einander unabhingige, Einheiten unterteilt. Stochastische Wahrscheinlich-
keit beschreibt Situationen, in denen ein Individuum eine »Priferenz fiir A
gegeniiber B zeigt, aber Schwierigkeiten hat, diesen Unterschied wahrzuneh-
men. Wird die Wahl vielfach wiederholt und gibt das Subjekt A gegeniiber B
den Vorzug ist diese Priferenz stochastisch.« (ebd.).

Diese Ausschliefilichkeit von Ereignissen erfihrt in der stochastischen
Anwendung, dem Ahnlichkeitsparadigma, der Mustererkennung und der
Vorhersehbarkeit von Aussagen eine neue Dimension. Die hier viel be-
schworene Komplexitit der Systeme verweist nicht auf die Vielseitigkeit,
gar Diversitit der definierten Aussagen/Kategorien, sondern allein darauf,
dass mehrere dieser eindimensionalen Aussagen und Kategorien in der Be-
rechnung ihres statistischen Auftretens in Zusammenhang gebracht werden
konnen. Vorhersagen werden aufgrund der Datenlage bereits festgelegter
Kategorien geschlossen, die sich also intrinsisch nicht widersprechen diirfen
und somit keinerlei Briiche, Komplementires oder Dialektisches zulassen.

2 Komplexitat

Die Entdeckung und sukzessive Etablierung nicht linearer Systeme und
Prozesse zunichst in der Physik bringt neue Theorien und mathematische
Konzepte hervor. Die Komplexititstheorie und spiter die Systemtheorie
reagieren auf diese Entwicklung, konzeptualisieren die Informationsweiter-
gabe in Systemen, Prozessen und Netzwerken nicht mehr nur linear, sondern
als eigenstindige kleine Einheiten, in denen auch nicht linear, heif3t rekursiv
kommuniziert wird. Entscheidend fiir das Verstehen dieser energetisch
offenen und vernetzten Systeme ist der Blick auf die Beziehungen innerhalb
eines Systems, nicht mehr die einzelnen, atomaren Elemente, sondern die
Interaktionen riicken in den Fokus. In nicht linearen Systemen und Netzwer-
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ken finden Riickkopplungen und Rekursionen statt. Welche Riickkopplungen
in einem System stattfinden und welche Effekte sich dadurch in einem
System/Netzwerk zeigen, wird mit Wahrscheinlichkeiten beschrieben. Die
epistemischen Spriinge und Erweiterungen der Wahrscheinlichkeitstheorie
(Kap. 1.) hatten direkten Einfluss auf die Konzeptualisierung von Komplexi-
tit. Bis zum Ende des 19. Jahrhunderts ging die Wissenschaft noch davon aus,
dass Leben aus dem Nichts entstehen konnte. Das anderte sich allmahlich
mit neuen Experimentalapparaturen, den Methoden des Sichtbarmachens
und den neuen Moglichkeiten der Wahrscheinlichkeitsrechnung. Unter dem
Mikroskop konnte 1827 die bereits beschriebene brownsche Bewegung beob-
achtet werden, deren ungeordnete Bewegungen in Fliissigkeiten und Gasen
sich nicht in die newtonschen Gesetze einordnen liefRen, sondern erst durch
die Entdeckung nicht linearer Prozesse und die Anwendung wahrschein-
lichkeitstheoretischer Berechnungsmoglichkeiten nutzbar gemacht werden
konnten.

Die brownsche Bewegung, die auch als die »wichtigste Briicke zwischen
Mikro- und Makrophysik« (Bessenrodt 1977, 7) herangezogen wird, setzt vie-
le Jahre nach ihrer ersten Entdeckung eine ginzlich neue Fachrichtung in
Gang, die sich mit Theorien nicht linearer Systeme beschiftigt. Der Botani-
ker Robert Brown selbst hatte Pollenstaub in Wasser aufgeldst, unter dem
Mikroskop untersucht und hierbei zitternde Bewegungen entdeckt, die sich
mit dem wissenschaftlichen Instrumentarium des angehenden 19. Jahrhun-
derts nicht erkliren lieflen und somit von ihm als »aktive Urmolekiile, aller
Materie« (zit. n. ebd., 7) interpretiert wurden. Erst Albert Einstein 16ste das
Mysterium der kleinen aktiven Teilchen 1905 mit seiner Interpretation der
brownschen Bewegung, in der die Partikel nicht aus sich selbst heraus die
Bewegung hervorbringen, sondern durch Impulsiibertragung der umliegen-
den Molekiile. Dies gab den Anstof zu einer vollig neuen Sicht auf die Be-
schaffenheit von Materie und die ihr innewohnenden Prozesse. Zum tieferen
Verstindnis notig war hierfir die Thermodynamik, die den Begriff der Entro-
pie in die Wirmelehre einfiihrte und damit die Physik letztendlich aus ihrer
linearen newtonianischen Fantasielosigkeit zu erwecken wusste, indem sie
eine zeitliche Dimension in physikalische Prozesse einfiihrte.

Die beiden ersten Hauptsitze der Thermodynamik besagen, dass erstens
die Energie, die an einem Vorgang beteiligt ist, ihre Form indern kann, aber
nichts von dieser Energie verloren geht. Zweitens, und das ist fir die Frage
von Zeitwahrnehmung enorm wichtig, bleibt die an einem Vorgang teilha-
bende Energie zwar konstant, gleichzeitig verringert sich die Menge an nutz-
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barer Energie, da sich diese in Wirme, Reibung und Ahnliches umwandelt.
Diese beiden Entdeckungen fithrten zur Thermodynamik, auch als »Wissen-
schaft von der Komplexitit« (Capra 1983, 73) bezeichnet, da hier zum ersten
Mal der Nachweis erbracht wurde, dass Naturprozesse sich nicht nur aus li-
nearen (und dementsprechend berechenbaren) Prozessen zusammensetzen.
Physikalische Vorginge haben demnach eine bestimmte Richtung, die von
thermodynamischen Bedingungen abhingig sind.

Mechanische Energie wird in Warme umgewandelt und kann nicht mehr
vollstindig zurlickgewonnen werden. Wird heifSes Wasser mit kaltem Was-
serzusammengegossen, ist das Ergebnis lauwarmes Wasser, und die beiden
Fliissigkeiten lassen sich nicht mehr trennen. [...] All diesen Vorgdngen ist
gemeinsam, dafd sie in eine bestimmte Richtung verlaufen — von der Ord-
nung zur Unordnung. Das ist die allgemeinste Formulierung des Zweiten
Hauptsatzes der Thermodynamik: Jedes beliebige isolierte physikalische
System entwickelt sich spontan in Richtung zunehmender Unordnung. (Ca-
pra 1983, 74)

Der Begriff der Entropie fasst dieses zweite thermodynamische Gesetz zu-
sammen. Er besagt, dass jedes System zum wachsenden Chaos strebt. Das
zweite thermodynamische Gesetz, insbesondere die hier eingefiihrte zeitliche
Dimension, dass Prozesse nicht riickwirtslaufen kénnen, kann mit Newton
nicht mehr erklirt werden. Das war der Moment, in dem die Wahrscheinlich-
keitstheorie und damit die Statistik von Ludwig Boltzmann ins Spiel kam, um
das Verhalten nicht linearer Prozesse zu berechnen und wieder auf Spur zu
bringen:

Mit Hilfe der Wahrscheinlichkeitstheorie konnte das Verhalten komplexer
mechanischer Systeme nach statistischen Gesetzen beschrieben und die
Thermodynamik auf eine solide Newtonsche Grundlage gestellt werden
[..]. Boltzmann wies nach, dafd der Zweite Hauptsatz ein statistisches Ge-
setz ist. Seine Aussage, dass gewisse Vorgange nicht eintreten — beispiels-
weise die spontane Umwandlung von Warmeenergie in mechanische Ener-
gie —, besagt nicht, daf3 sie unmdoglich seien, sondern nur, dafs sie dufderst
unwahrscheinlich sind. (Ebd., 74f.)

Wer iiber die Einfithrung von Komplexititskonzepten in wissenschaftliche
Theorien spricht, sollte von der Systemtheorie nicht schweigen. Als Prinzip
zum »Gebrauche der Mathematik und deren Anwendung« (Lambert 1765)
schon beim Mathematiker und Logiker Johann Heinrich Lambert (1728-1777)
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zu finden, wurde die Systemtheorie als Konzept zunichst in der Biologie
(Zellsysteme) und in der Kybernetik der 1940er- und 1950er-Jahre weiter-
entwickelt. Die Systemtheorie ist weniger eine eigenstindige Theorie als
eine Sammlung mathematischer Werkzeuge, und ihre wichtigste Einsicht
ist die Feststellung, dass auch einfachste deterministische Gleichungen sehr
komplexes Verhalten produzieren kénnen. Die Systemtheorie ist eine verall-
gemeinernde Universaltheorie, um Erklirungsweisen fiir alle Systeme und
deren Verhalten anzubieten, unabhingig davon, ob es sich um biologische
Systeme wie Neuronale Netze handelt, um chemische oder physikalische Sys-
teme oder um gesellschaftliche wie >die< Familie oder >der« Staat. Der Begriff
»Komplexe Systeme« meint zunichst nicht viel mehr als Systeme, die iiber
mehr als zwei Variablen und verschiedene Querverbindungen verfiigen und
die einem nicht reduktionistisch festgelegten Determinismus folgen. Heute
gelten nahezu alle Prozesse und Vorginge als nicht linear und alle Systeme
als komplexe Systeme. Die Mathematik soll dabei helfen, wiederkehrende
Muster in den Prozessen zu erkennen und niher zu beschreiben.

2.1 Was sind komplexe Systeme und wie lassen sie sich
charakterisieren?

Das Prinzip der Selbstorganisation eines Systems geht allen anderen Be-
schreibungen von Systemen voraus und ist die grundlegende Annahme aller
Systemtheorien. Selbstorganisation meint, dass Systeme ohne Einfliisse oder
Steuerung von auflen spontane Ordnungserhéhungen vollziehen koénnen,
also strukturelle Ordnungen erreichen ohne ersichtliche linear beschreibbare
Ursachen. Dem Prinzip der Selbstorganisation oder auch Selbststeuerung
unterliegen in systemtheoretischen Ansitzen alle komplexen Systeme, ob
biologische, psychologische, soziale oder physische, auch Neuronale Netz-
werke stellen ein System dar. Der Gedanke der Selbstorganisation wurde
unter anderem durch die Kybernetik und ihre Modellierung parallel stattfin-
dender Prozesse vorangetrieben. Selbstorganisation legt den Fokus auf die
Erneuerung und Selbstregulierung von Systemen. Komplexe Systeme/Netze
brauchen kein Steuerungssystem mehr von aufien, sondern funktionieren
durch ihre gegenseitige Beeinflussung und Selbstregulierung.
Selbstorganisation aber meint vor allem eines: die Abgeschlossenheit von
Systemen und Netzwerken und ihre Selbstreferenzialitit. Diese epistemische
Selbstbeziiglichkeit komplexer Systeme stellt das wissenschaftliche Erbe einer
Naturauffassung dar, das nicht mehr von fragmentierten, in sich geschlosse-
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nen Entititen ausgeht, die nun nicht mehr linear hintereinandergeschaltet
gedacht werden, sondern von in sich geschlossenen, auf sich selbst verwei-
senden Systemen. Somit sind auch Neuronale Netzwerke (ob artifizielle, also
algorithmische oder physiologische) kleine, abgeschlossene, sich selbstorga-
nisierende und in ihrer Grundstruktur sich gleichende Systeme. Gleichzeitig
reiht sich diese Vorstellung in das Erbe einer Mathematischen Logik nach
Hilbert ein, die nicht mehr von Erfahrung ausgehend ihre Grundsitze (Axio-
me) formuliert, sondern formal-logisch bestimmt. In anderen Worten: Axio-
me gelten dann als wahr, wenn sie sich selbst nicht widersprechen. Wahr ist
demnach, was als wahr durch die Regelhaftigkeit im Rahmen einer Mathe-
matischen Logik bestimmt wird. Erfahrung ist, was formalisiert werden kann
und was in den Trainingsdaten steckt. Selbstbeziiglichkeit bedeutet, nicht von
Erfahrung auszugehen, sondern von formal-logischen Grundsitzen, die dann
als wahr gelten, wenn sie sich nicht selbst widersprechen.

Die Annahme der Selbstorganisierung und damit der Abgeschlossenheit
von Systemen ermdglicht ihre weitere Charakterisierung. In der Kybernetik
wurden prozessorientierte Rechensysteme zunichst linear hintereinander in
Reihe geschaltet. Mit den Erweiterungen konnektionistischer Errungenschaf-
ten wie die der Rekursion, Riickkopplungen, selbstlernender Algorithmen etc.
entstanden komplexe Systeme, die in konnektionistischen und kognitions-
wissenschaftlichen Ansitzen als Neuronale Netze bezeichnet werden. Auto-
poiesische, komplexe, nicht lineare Systeme/Netze zeichnen sich durch ihren
Grad der Selbstorganisation, der Riickkopplung, der Rekursion und Reverbe-
ration, des Selbstlernens und die sich daraus ergebende Selbstbeziiglichkeit,
Bifurkationen und eine spezifische Form der Periodizitit und der Zeitlichkeit
aus.

Rekursion, Riickkopplung und Feedback bezeichnen im Grunde genom-
men das gleiche Phinomen, die unterschiedlichen Begriffe verweisen auf die
verschiedenen (System-)Theorien, in denen sie verwendet werden. Sie be-
schreiben einen zentralen Vorgang, itber den sich nicht lineare Prozesse defi-
nieren. Ein Teil des Outputs einer Gleichung wird durch Rickkopplung bezie-
hungsweise durch ihr Wiederaufrufen in den Prozess zuriickgefithrt und be-
einflusst dadurch wiederum das momentane Verhalten des Systems. Rekur-
sion bedeutet Zuriicklaufen, meint das Riickkoppeln eines prinzipiell unend-
lichen Vorgangs, der sich selbst als Teil enthilt oder mithilfe von sich selbst
definierbar ist. Die so in Beziehung gesetzten und aufeinanderfolgenden Teil-
vorgange und nacheinander erzeugten Systeme/Netze sind nicht unabhingig
voneinander, ihre Relation orientiert sich an einer Kausalmatrix, jedes darin
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enthaltene System bestimmt sich durch selbstbeziigliches, rekursives Verhal-
ten (eine grafische Ausfithrung rekursiver Systeme, die einer Kausalmatrix
folgen, sind Fraktale). Rekursionen beziehungsweise Riickkopplungen finden
unendlich oft statt, wenn keine Abbruchbedingung in die Funktion einpro-
grammiert wurde, weil sich das rekursive Programm sonst theoretisch un-
endlich oft selbst aufruft. Wird das Systemverhalten durch positive Rekursi-
on verstarkt, wie man es etwa aus der Riickkopplung zwischen Lautsprecher
und Mikrofon kennt, verwandelt die Verstirkerschleife einen leisen in einen
sehr lauten Ton. Negative Rekursion wirkt eher stabilisierend auf ein System.
Bifurkation beschreibt den kritischen Punkt, der durch diese sich selbst oder
benachbarte Funktionen unendlich oft aufrufende Riickkopplungen auftreten
kann.

Iteration, der Prozess des mehrfachen additiven Wiederholens, und Re-
kursion werden heute gleich hiufig in der Berechnung komplexer Systeme
angewendet. Gleiche, also iterative, oder dhnliche rekursive Vorginge wer-
den hierfir wiederholt aufgerufen. Wichtig ist der unterschiedliche Anwen-
dungsbereich: Prozessverarbeitungen, die auf stochastischen Berechnungen
beruhen, basieren meist auf der Anwendung von Iterationen, die mehrfach
Schleifen (for, while ...) durchlaufen, bis eine Abbruchbedingung erfillt ist.

In Neuronalen Netzen bildet die Rekursion die Grundlage fiir die >selbst-
lernenden Algorithmen< und stellt somit eine neue Form des maschinellen
Lernens dar. Riickkopplungen und Rekursion macht aus >miidens, also aus-
schlieRlich ausfithrenden Algorithmen selbstlernende Algorithmen. Bei einer
Rekursion geniigt es, lediglich die Prozeduren oder Funktionen mit der Auf-
forderung zu erginzen, dass sie mit einem regelmif3ig gednderten Parameter
erneut anzuwenden sind, bis eine Abbruchbedingung erfiillt ist.

Um die Paradigmen der Regularitit und die dariiber hergestellte Stabilitat
linearer Systeme in die Welt der nicht linearen Systeme zu tibertragen, wird
die Periodizitit zu einer unentbehrlichen Chiffre (allerdings in seiner aktuel-
len, nicht seiner etymologischen Bedeutung von Null und leer). Periodizitit
stellt also Regularien fiir komplexe Systeme auf. Sie wird insbesondere mit
der Frage nach der Moglichkeit von Zufallsereignissen in komplexen Syste-
men relevant, beziehungsweise es werden Zufallsereignisse durch das Ein-
fithren von Periodizitit in komplexen Systemen per definitionem ausgeschlos-
sen, da Zufilligkeit nur als das nicht Vorhandensein bestimmter Formen von
Regularitit aufgefasst wird. »Die Periodizitit ist als Form der Regularitit ba-
sal in dem Sinne, dass sie in allen iibrigen Formen enthalten ist; sie zeichnet
sich ferner durch Minimalitit bei der algorithmischen Umsetzung aus, ist al-
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so die am einfachsten zu priifende Form von Regularitit.« (Kirchner 2018,
245)

Die Versprechen nicht linearer und komplexer Systeme verweisen ver-
meintlich auf die Begrenztheit vorherigen wissenschaftlichen Forschens. Das
Verhiltnis dreht sich um, das Nichtlineare, miteinander Vernetzte und auf-
einander Rekurrierende in der Natur wird nicht mehr als Ausnahme, als Ano-
malie angesehen, sondern als ihr Normalzustand. Komplexe Systeme sollen
dabei helfen, Formen von Vielfalt und vielfiltigen Zusammenhingen zu erfas-
sen, was vorher mit deterministischeren Ansitzen, die das Leben, die Natur
und den Menschen mit Uhrwerken, Maschinen und Automaten verglichen,
kaum moglich war.

Diese auf das Gehirn iibertragenen systemtheoretischen Annahmen rie-
fen auch kritische Stimmen in den Kognitions- und Neurowissenschaften
hervor. Es stellte sich die Frage, wie die sich selbst organisierenden Neuro-
nalen Netze in Kontakt mit der Auflenwelt treten konnen? Oder auch allge-
meiner, wie Systeme mit- und zueinander in den Austausch kommen, sich
nicht nur selbstreferenziell verhalten, sondern inter- und intraaktiv kommu-
nizieren? Zur Diskussion wurde auch die Frage gestellt, wodurch das Gehirn,
zusammengesetzt aus vielen kleinen Systemen beziehungsweise Neuronalen
Netzwerken, zu einem Output hervorbringenden Organismus wird. Wie ldsst
sich aus dem Chaos feuernder Neuronennetzwerke ein klarer Gedanke ex-
trahieren? Wie extrahieren Neuronale Netze aus dem Rauschen des Gehirns
eine klare Entscheidung, etwa dass eine Aktion gestartet wird, zum Beispiel
das Heben eines Arms? Wie materialisiert sich Erinnerung und wie kann Er-
innerung wieder abgerufen werden? Ein moglicher Ordnungsansatz ist die
zeitliche Synchronisation von Prozessen, in der iiber das gleichzeitige bezie-
hungsweise das spezifische zeitlich versetzte Feuern von Synapsen, iiber das
Bewusstwerden von Denkprozessen Entscheidungen getroffen werden (vgl.
Singer 2005, 46). Erst durch die Einfithrung einer zykluszeitlichen Kompo-
nente wurde eine Modellierung der Kommunikation zwischen den Neuronen
moglich: »The cycle-time then is the time unit for the operations of neural
nets.« (Kay 2001, 598)

Durch die zeitliche Harmonisierung wird die Neuronenaktivitit unter
Kontrolle gebracht und das nicht lineare Rauschen des Gehirns in eine Ord-
nung gesetzt, die in der Neurowissenschaft zu Anschauungszwecken auch
schon mal mit einem Orchester verglichen wird: Wenn alle in einem Orches-
ter wissen, wann sie was zu spielen haben, dann entsteht eine Melodie.
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Die oben beschriebenen Konzepte der Selbstorganisation, der Komplexi-
tit, der Nichtlinearitit von Netzwerken, bauen auf vorherigen Reduktionen
und Mathematisierungen auf, die sich allesamt in der Logik der Verschal-
tung des Computers und der Welt der Algorithmen ausdriicken lassen. Und
auch der Umkehrschluss ist wahr: Keiner dieser auf mathematischen Mo-
dellen beruhenden und in Algorithmen eingelassenen Begriffe konnte ohne
die Rechenpower des Computers berechnet werden. Diese erkenntnistheore-
tischen Konzepte, die mathematischen Modelle und die in Computer imple-
mentierten Verschaltungslogiken bedingen einander und bringen das hervor,
was hier im Anschluss an die Kritische Theorie mit Instrumenteller Vernunft
vorgestellt werden wird.

2.2 Emergente und effiziente Komplexitat in den Computational
Neurosciences

Durch systemtheoretisch angeregte beziehungsweise freigesetzte episte-
mische wirksame Modelle abgeschlossener Systeme, Netzwerke der Selbst-
organisation und Rekursion, spielen auch neue Komplexititstheorien eine
bedeutende Rolle in der weiteren Geschichte konnektionistischer Versuche,
dem Gehirn eine neue Form zu geben. Ein abweichendes Verstindnis von
Komplexitit beziehungsweise der Art der Komplexitit, nach der gesucht
wird, begriindete zwei der heute wichtigsten Stringe kognitiv-computa-
tionaler Methoden. Komplexitit wird in den Computational Neurosciences
als Erforschung von Effizienz neuronaler Systeme verstanden. Fiir den Be-
reich des Machine Learning und selbstlernender neuronaler Netzwerke ist
die Emergenz eines Systems, also die Frage nach dem Zusammenspiel der
einzelnen Elemente eines Systems, von Interesse.

Kurzer Riickblick, wie diese unterschiedlichen Foki entstanden sind. Kurt
Godel zeigt in seinen Arbeiten der 1930er-Jahre die Grenzen des Berechenba-
ren und des Rechnens generell auf und setzt mit seinem Unvollstindigkeits-
satz neue Maf3stibe in der Mathematik, indem er selbstbeziigliche, unent-
scheidbare formale Aussagen entwirft, deren Wahrheitsgehalt nicht durch
eine Rechnung ermittelt werden kann. Der Fokus des Mathematikers liegt
dabei aber auf der Logik formalisierbarer Prozesse, fiir die er universell an-
wendbare Codes entwickelt. Damit schligt Godel erstmals eine Briicke von
den fiir diese Fragen notwendigen Axiomen und beweisbaren Theoremen zu
ihrer programmatischen Anwendung in Computern, bestehend aus Reihen
von Operationen, mit denen Beweise im Sinne der Logik berechnet werden
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kénnen. Sein Unvollstindigkeitssatz gilt neben der Ableitung Alan Turings als
epochale Entschliisselung des Entscheidungsproblems, das Godel wie Turing
dhnlich begreifen: Das Entscheidungsproblem muss, im Sinne der Mathema-
tischen Logik, auf Fragen begrenzt werden, die eine klare Ja/Nein-Antwort
zulassen. Heif3t: Gibt es eine Ahnlichkeit zwischen Bild A und Bild B: ja/nein?
Kommt eine Eigenschaft vor: ja/ nein. Wie hoch ist die Wahrscheinlichkeit,
dass ein bestimmtes Ereignis eintritt: 0 gar nicht, 1 sehr hoch etc. Das Ent-
scheidungsproblem verséhnt Logik und Mathematik und stellt die Bedingun-
gen auf, aus deren Logik sich der Computer heraus entwickelt hat sowie sein
Anspruch, logische Denkprozesse zu vollziehen und daraus logische Entschei-
dungen abzuleiten.

Gédel begriindet mit diesen Uberlegungen zu den Grenzen algorithmi-
scher Theorembeweise das, was heute theoretische Informatik genannt wird:
eine durch die Logik inspirierte Perspektive, die sich mit der Effizienz ma-
thematischer Werkzeuge, Axiomen, Algorithmen und Berechnungen digitaler
Computer auseinandersetzt. Der oben benannte Unterschied zwischen der
theoretischen Informatik und konnektionistischen Ansitzen findet sich in ih-
rer unterschiedlichen Verwendung der Komplexititstheorie: Erstere beschif-
tigt sich mit der rechnerischen Komplexitit von im Computer durchgefiithrten
Theorembeweisen, fragt nach der Anwendbarkeit und der Effizienz des fiir
ein Problem vorgeschlagenen Algorithmus und ist der Deduktion verpflich-
tet. Ein zweiter konnektionistischer Ansatz beschiftigt sich mit dem Zusam-
menwirken vieler interagierender Elemente in Systemen, die ein komplexes
emergentes Verhalten, neue Eigenschaften oder Strukturen innerhalb eines
Systems hervorbringen, das sich nicht auf seine Einzelteile reduzieren lasst.
Dieser Ansatz folgt der induktiven Logik und miindet in dem heute deutlich
dominanteren Bereich neuronaler Netze und des Machine Learnings.

Eine von mir interviewte Person nannte ein anschauliches Beispiel fiir
effizienzbasierte Fragen kognitiver Komplexitit:

Die Theorie der kognitiven Komplexitdt untersucht die intrinsische Schwie-
rigkeit von rechnerischen Problemen. Nehmen wir zum Beispiel das Sehen,
sagen wir, es gibt einige Pixel, und sagen wir, Sie wollen berechnen, was
die wahrscheinlichste Interpretation dieser spezifischen Pixel ist — das ist
das rechnerische Problem. Dann fragt man sich, was ist der schnellste Al-
gorithmus, wenn Sie sich einen Algorithmus ausdenken wiirden, der dieses
Problem rechnerisch |6st, wie viele Ressourcen braucht dieser Algorithmus?
Ressourcen konnen Zeit oder Platz sein, in der Kognitiven Komplexitit geht
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es vor allem um die Frage, ob das Gehirn iiber die Ressourcen verfiigt, die-
sen Algorithmus auszufithren. Und nun gibt es Probleme wie die bayessche
Inferenz im Allgemeinen: Wenn es keine vereinfachenden Annahmen gibt,
dann gibt es keinen Algorithmus, und das ist keine technische Einschrin-
kung, das ist eine mathematische Einschrinkung. Es bedeutet, dass ein Al-
gorithmus, der diese Berechnung durchfiihrt, immer sogenannte exponen-
tielle Zeit braucht, also dass die Zeit, die er benétigt, in die Hohe schieft, je
mehr die Anzahl der Pixel wichst. Das bedeutet, dass man fiir alles andere
als trivial kleine Bilder mehr Zeit braucht, als seit dem Urknall vergangen
ist, um sie tatsiachlich zu berechnen. Wir sagen: Ja, das kann das Gehirn
nicht. Selbst wenn das Gehirn mit Lichtgeschwindigkeit rechnen kénnte,
was es nicht kann, wire es nicht in der Lage, das in Jahrhunderten zu be-
rechnen. Und NP-Schwere bedeutet, das sind diese Arten von Problemen,
die diese Eigenschaft haben, dass es keinen effizienten Algorithmus fiir sie
gibt. (Interview 3, Min. 45f.)

Die Komplexititstheorie in der theoretischen Informatik definiert fiur Auf-
gaben, die das Entscheidungsproblem, also alle Probleme mit einer Ja-oder-
nein-Antwort betreffen, Komplexititsklassen fiir die weitere Verwendung in
Gleichungen. Zu diesen Klassen gehort unter anderem P - als die Komplexi-
titsklasse, die die Menge aller Entscheidungsprobleme darstellt, die in Po-
lynominalzeit gelost werden konnen. Das heifdt, die Antwort ja oder nein
kann in einer angemessenen Zeit entschieden werden. NP ist die Klasse al-
ler Entscheidungsprobleme, fir die eine gefundene Losung effizient rechne-
risch und in Polynominalzeit iiberpriift werden kann. NP-complete ist eine
Komplexititsklasse, die die Menge aller Probleme X in NP darstellt, fir die
es moglich ist, jedes andere NP-Problem Y in Polynominalzeit auf X zu redu-
zieren. NP-Schwere beschreibt die Komplexititsprobleme, die mindestens so
schwer sind wie die NP-complete-Probleme. Diese Klasse muss nicht in der
Komplexitatsklasse NP aufgehen noch miissen sie Teil des Entscheidungs-
problems sein. Bereits Godel beschrieb 1956 dieses, bis heute offene Problem
der Vergleichbarkeit von Komplexititsklassen fiir das Entscheidungsproblem
(P=NP?). Polynominalzeit gibt die Zeit an, in der Komplexititsprobleme mit-
hilfe von Rechenmaschinen lsbar sein miissen. Die Polynominalzeit bildet
damit den Rahmen fiir praktisch 1sbare mathematische Probleme und prak-
tisch nicht l6sbare Probleme. Diese theoretischen Uberlegungen zur Bere-
chenbarkeit der eigenen Modelle spielen eine fundamentale Rolle in den Com-
putational Neurosciences.
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Und interessanterweise sind viele Modelle in der Kognitionswissenschaft
NP-hard, das heifdt, die Modelle die postuliert werden, sind praktisch nicht
in der Polynominalzeit 18sbar. Aber wir benutzen sie als Modelle dafir, wie
das Gehirn rechnet. Cleichzeitig kdnnen wir nachweisen, dass das nicht
moglich ist. Also es gibt dann zwar einen Algorithmus dafiir, aber alle die-
se Algorithmen verbrauchen so viele Ressourcen, sie kénnen nicht plausibel
physikalisch realisiert werden. Diese Algorithmen kénnen nicht auf die rea-
le Welt zuriick skaliert werden, denn das wiirde das Modell sprengen. Und
dann sagen sie, ja das ist nur ein technisches Problem. Nein, das ist kein
technisches Problem, da stimmt etwas grundlegend nicht. (Interview 3, 47
Min.)

2.3 Kausalitat und Zufall in komplexen Systemen

We know that in the realm of
natural science, the absolute
connexion between the initial
and final elements of a problem,
exhibited in the mathematical
form, fitly symbolizes that
physical necessity which binds
together effect and cause —
Boole 1958, 316f.

Der Mathematiker Henri Poincaré (1854—1912) widmet sich in einem Text aus
dem Jahr 1908, den grundlegenden Schwierigkeiten, die in der Definition und
Abgrenzung von Kausalitit als klare Festlegung von Ursache und Wirkung
und zufilligen Erscheinungen deutlich werden. Sein Hinweis auf die mathe-
matischen Grenzen in der Beschreibung von Naturgesetzen, beruht auf Uber-
legungen vor der quantenphysikalischen Revolution und vor den Veranderun-
gen, die sich durch die Einhegung nicht linearer Prozesse in der Mathematik
ergaben:

Eine sehr kleine Ursache, die fiir uns unbemerkbar bleibt, bewirkt einen
beachtlichen Effekt, den wir unbedingt bemerken miissen, und dann sagen
wir, daf$ dieser Effekt vom Zufall abhidnge. Wiirden wir die Gesetze der Na-
tur und den Zustand des Universums fiir einen gewissen Zeitpunkt genau
kennen, so kénnten wir den Zustand dieses Universums fiir irgendeinen
spateren Zeitpunkt genau voraussagen. Aber selbst wenn die Naturgesetze
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fir uns kein Geheimnis mehr enthielten, konnen wir doch den Anfangszu-
stand immer nur ndherungsweise kennen. Wenn wir dadurch in den Stand
gesetzt werden, den spateren Zustand mit demselben Naherungsgrade vor-
auszusagen, so ist das alles, was man verlangen kann; wir sagen dann: die
Erscheinung wurde vorausgesagt, sie wird durch Gesetze bestimmt. Aber so
ist es nicht immer; es kann der Fall eintreten, dafs kleine Unterschiede in
den Anfangsbedingungen grofie Unterschiede in den spateren Erscheinun-
gen bedingen; ein kleiner Irrtum in den ersteren kann einen aufderordent-
lich grofRen Irrtum fiir die letzteren nach sich ziehen. Die Vorhersage wird
unmoglich und wir haben eine »zufillige Erscheinung«. (Poincaré 1908 [23:
Text 114])

Die hier zitierte Aussage Poincarés zeigt die Fallstricke auf, die sich aus
den Ubersetzungen der experimentellen Beobachtungen der Physik in die
statischen Gesetze der Mathematik ergeben. Poincaré unterscheidet zwi-
schen theoretischer Vorhersagbarkeit und der praktischen Unméglichkeit,
Ausgangsdaten beliebiger Genauigkeit zu er- beziehungsweise beschaffen.
Poincaré deutet an, dass Zufall auf der praktischen Unmdoglichkeit der Vor-
hersage beruht, das heifdt, fiir ihn ist Zufall allein Ausdruck fir Nichtwissen
oder Nochnichtwissen. In Poincarés Aussage klingt ein erster Verweis auf
die Gesetze nicht linearer Prozesse an, die die Kausalititsprinzipien kur-
ze Zeit spiter durch die Implementierung der Wahrscheinlichkeitstheorie
fundamental verandern sollten.

Durch die Wahrscheinlichkeitstheorie und ihre Einbettung in die Berech-
nung komplexer Systeme wird das Kausalititsprinzip neu ausgerichtet: Bis-
her war das Kausalgesetz die »induktive Verallgemeinerung der Erfahrung,
dass sich in der Regel zu jedem beobachtbaren Ereignis B ein anderes Ereignis
A finden lisst« (Morfill/Scheingraber 1993, 282). Mit dem Verlassen eines de-
terministischen Standpunkts, durch die Implementierung der Gesetze nicht
linearer Prozesse, verlieren die reduziert gehaltenen Kausalaussagen ihren
Sinn, da es bei der Untersuchung »komplexer Systeme mit vielfiltigen Zu-
sammenhingen [...], in den meisten Fillen unmoglich ist, zwischen einzelnen
Ereignissen eindeutige Ursache-Wirkungs-Verkniipfungen zu konstruieren«
(ebd.).

Die induktive und vorhersagende Logik stochastischer Berechnungen ba-
siert auf dem statistischen Verhiltnis von Ursache und Wirkung und sucht
nach Korrelationen, nicht nach kausalen Zusammenhingen. Zufall wird mit-
hilfe der Probabilistik als Variable berechenbar gemacht und als notwendige
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veranderliche Grofde in komplexen Systemen vorausgesetzt. Statistik bildet
die methodische Grundlage, um eine Art Inventur der gesammelten und vor-
handenen Daten vorzunehmen und einen Uberblick dariiber zu geben, welche
Informationen itberhaupt vorhanden sind und welche Verteilungsmodaliti-
ten vorliegen. Was aber die Griinde fiir diese Verteilung sind, das lisst sich
mit stochastischen Modellen und Algorithmen nicht grundlegend, nicht theo-
rieleitend kliren. Artifiziellen Systemen fehlt das Mitbedenken der Anfangs-
und Randbedingungen beziehungsweise das Einordnen, warum die Anfangs-
und Randbedingungen so sind, unter denen das Problem gelost werden soll,
ebenso wie die Reflexion ihrer eigenen eingebetteten Systematiken und Lo-
giken. Die Netzwerke kénnen zur Selbstorganisation Prozesse iterieren (wie-
derholen) und Daten immer wieder einspeisen, sie kénnen rekursiv gefunde-
ne, gemachte Fehler in das System zuriickspiegeln und daraus lernen, dass
dies fehlerhaft war. Sie konnen ihre Anfangs- und Randbedingungen inner-
halb einer Simulation variieren, auch kénnen die bekannten Naturgesetze
programmiert und itber nominale Angaben in die Berechnungen eingeschrie-
ben werden, diese sind aber nur ein Teil des Systems, Randbedingungen sind
eher kontingent und kontextabhingig.

Das Kausalititsprinzip ist Ausgangspunkt von logischen wie statistischen
Uberlegungen: Wenn, dann. Aus x ergibt sich y etc. Um dem Kausalititsprin-
zip zu entsprechen, miissen Experimente unter den gleichen Bedingungen
wiederholt und ihre Ergebnisse reproduziert werden kénnen: Gleiche Bedin-
gungen miissen gleiche Ergebnisse hervorbringen. Das ist die Fundamental-
anforderung jeden wissenschaftlichen Experiments im Labor - bis heute. Sie
gilt aber nicht fur die Statistik: Diese priift nicht mehr die Kausalitit von Zu-
sammenhingen, sondern ihre Korrelation, also ob ein Zusammenhang signi-
fikant beziehungsweise valide ist. Sie gilt auch nicht fiir auf stochastischen
Berechnungen basierende Computermodelle und Simulationen.

Das Kausalititsprinzip der Experimentalwissenschaften, vor allem aber
der Physik, besagt, dass gleiche Ursachen gleiche Wirkungen haben. Das Kau-
salitatsprinzip wird in starke und schwache Kausalitit unterschieden. So be-
schreibt die schwache Kausalitit, dass gleiche Ursachen gleiche Wirkungen
haben, sagt aber nichts tiber die Schwere, mit der eine Ursache mit einer Wir-
kung zusammenhingt. Die starke Kausalitit hingegen, die insbesondere in
nichtlinearen Prozessen oder Systemen angenommen wird, besagt, dass dhn-
liche Ursachen dhnliche Wirkungen haben, aber kleinste Abweichungen zu
extrem verschiedenen Ergebnissen fithren kénnen. Diese Bestimmung von
Kausalitit ist eine rein mathematische Festlegung fiir das Verhiltnis von Ur-
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sache und Wirkung in Systemen und dient allein der weiteren formal-lo-
gischen Verfasstheit der anzuwendenden Gleichungen, aber kaum der Ein-
schitzung iiber die Ursichlichkeit eines Ereignisses iiber ein anderes. Das
Prinzip von Ursache und Wirkung wird, wenn zwei Prozesse ein und dem-
selben System angehéren, als gegeben vorausgesetzt. Das Verhalten niche li-
nearer Systeme mit starker Kausalitat iiber lingere Zeitraume ist nicht genau
vorherzuberechnen.

Zufall

»Ich moéchte nur darauf aufmerksam machen, wie viele verschiedene Bedeu-
tungen dem Wort Zufall gegeben werden, und wie niitzlich es wire, sie zu
unterscheiden.« (Poincaré 1906, 114)

Wenn Kausalitit das Verhiltnis von Ursache und Wirkung beschreibt, de-
finiert sich Zufall als die Abwesenheit von Kausalitit, ein Ereignis, das eintritt,
ohne dass dafiir eine Ursache oder eine Gesetzmafligkeit erkennbar wird. Zu-
falligkeit grenzt sich als Gegensatz von der Notwendigkeit ab, ist aber gleich-
zeitig in seiner Negation auf diese angewiesen. Denn erst im Wissen um Re-
gelhaftes und Notwendiges wird Zufilliges deutlich.

Diese definitorische Gegeniiberstellung von Zufall und GesetzmifSigkeit,
die die Abwesenheit des jeweils anderen anzeigt, verandert sich im mathema-
tischen Verstindnis zur Berechnung komplexer Systeme/Netze mittels Sto-
chastik. Wenn Zufilligkeit als Fehlen von Ursichlichem und Regelhaftem be-
schrieben und »als Negation einer bestimmten Form von Regularitit« (Kirch-
ner 2018, 245) angesehen wird, braucht es eine tibergeordnete Charakteristik,
um Zufilliges dennoch mathematisch berechenbar zu machen. Um den Zufall
in den Griff zu bekommen und ergo seiner Berechenbarkeit zuzufithren, wird
den verschiedenen zufillig eintretenden Ereignissen in komplexen Systemen

ein eigener Regularitatsbegriff angelegt [..]: die Periodizitit, die als Remi-
niszenz an die vor-chaotische, d.h. sich mit linearen oder linearisierten Pro-
blemen beschiftigende Naturwissenschaft aufgefasst werden kann. Die Pe-
riodizitadt ist als Form der Regularitit basal in dem Sinne, dass sie in allen
brigen Formen enthalten ist; sie zeichnet sich ferner durch Minimalitat bei
der algorithmischen Umsetzung aus, ist also die am einfachsten zu priifen-
de Form von Regularitit. (Kirchner 2018, 245)

Durch die Annahme von mathematisch berechenbarer Periodizitit in komple-
xen Systemen konnen Zufallsverteilungen mithilfe von Wahrscheinlichkeits-
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rechnungen als notwendiger Motor fiir die Aufrechterhaltung eines komple-
xen Systems eingebaut werden. So wird Zufall zu seinem Gegenteil: einer
Notwendigkeit, die selbstverstindlich iiber statistische Hiufigkeitsverteilun-
gen als selbsterhaltende Mafinahme in selbstlernende Algorithmen einbezo-
gen wird.

Die Einteilung, ob biologische, organische, physikalische oder neuronale
Prozesse deterministisch oder zufillig verfasst sind, stellt sich in den Com-
putational Neurosciences heute tatsichlich nicht mehr: Organisch-neuronale
Prozesse sind stochastisch verfasst. Als komplexe Systeme basieren sie auf ei-
ner statisch ermittelten Kombination aus regelhafter Zufilligkeitsverteilung.
Diese mathematische Einhegung mithilfe der Wahrscheinlichkeitstheorie
wird auch als Probabilistik, ein Anwendungsbereich der Wahrscheinlich-
keitsrechnung, bezeichnet.

3 Wahrscheinlichkeit

Nach den Turbulenzen, die die Entdeckung des 1. und 2. Hauptsatzes der
Thermodynamik der newtonschen Physik bescherte, brauchte es neue ma-
thematische Herangehensweisen, um nicht lineare Prozesse zu berechnen
und die Formalisierung komplexer Systeme zu ermoglichen. Hier kommt die
Wahrscheinlichkeitstheorie ins Spiel, die dabei half, »das Verhalten komple-
xer mechanischer Systeme nach statistischen Gesetzen« (Capra 1983, 74) zu
beschreiben. Mithilfe von Wahrscheinlichkeitsannahmen kénnen Aussagen,
Vorhersagen und Urteile nach dem Grad ihrer Gewissheit eingestuft werden.
In Kapitel 1 wurde bereits in die Wahrscheinlichkeitstheorie eingefithrt. An
dieser Stelle sei noch auf die Diversitit von Wahrscheinlichkeitskonzepten
hingewiesen, eine Art der Chancenberechnung gibt es nicht, Wahrschein-
lichkeitsannahmen konnen sehr unterschiedlich verfasst sein. In den Anfin-
gen wurde die Wahrscheinlichkeit eines eintretenden Ereignisses dadurch be-
stimmt, dass »die Zahl der »giinstigen< durch die Zahl der >méglichen« Fille
dividiert« (Stegmilller 1956, 2) wurde. Das bedeutet, »wenn die Wahrschein-
lichkeit, mit einem Wiirfel eine Sechs zu werfen, gleich 1/6 ist, so beruht dies
nach der klassischen Ansicht darauf, dafd sechs mégliche Fille, nimlich die
sechs verschiedenen Augenzahlen des Wiirfels, und ein giinstiger Fall, nim-
lich die Augenzahl 6, vorliegen« (ebd.).
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