
164

K Ü N S T L I C H E  I N T E L L I G E N Z    

WT WERKSTATTSTECHNIK BD. 115 (2025) NR. 3

Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Automatisiertes Bildverarbeitungssystem zur Kontrolle von komplex-gebogenen Oberflächen 

KI ermöglicht automatisierte 
Qualitätskontrolle 

 B. Denkena, H. Buhl, J. Geggier

Z U S A M M E N FA S S U N G  Die Qualitätskontrolle geschliffe-
ner Oberflächen erfolgt bei komplexen Geometrien meist 
 manuell, da automatisierte Systeme mit einem hohem Para-
metrierungsaufwand einhergehen. Dieser Beitrag stellt ein 
 automatisiertes System zur Prüfung komplex-gebogener 
 Aluminiumprofile vor. Zum Einsatz kommen eine roboterge-
führte Industriekamera für die Datenerfassung sowie Metho-
den der Bildverarbeitung und künstlichen Intelligenz (KI) zur 
Datenanalyse, die den Parametrierungsaufwand reduzieren.

AI enables automated quality control – 
Automated image processing system for 
the inspection of complex curved surfaces

A B ST R A C T  The quality control of ground surfaces is often 
done manually for complex geometries, as automated sys-
tems are associated with a high parameterization effort. This 
article presents an automated system for inspecting complex 
curved aluminium profiles. A robot-guided industrial camera  
is used for data acquisition, as well as image processing and 
artificial intelligence (AI) methods for data analysis, which 
 reduce the parameterization effort.

1 Prüfung gebogener Bauteiloberflächen

In Passagierkabinen von Flugzeugen werden Aluminiumprofile 
als dekorative Sichtprofile verwendet. Die Dekorprofile zeichnen 
sich durch ein gleichmäßiges Schliffbild (Bild 1) auf einer kom-
plex-gebogenen Oberfläche mit einer hohen Anzahl an Geome-
trievarianten aus.

Ein weiterer Technologietrend ist der Einsatz bioinspirierter 
Strukturen, die ebenfalls mit komplexen Freiformflächen ein -
hergehen [1]. Aufgrund der komplexen Freiformflächen erfolgt 
die Qualitätskontrolle meist, wie auch bei dekorativen Profilen, 
als manuelle Sichtkontrolle. Dies führt zu einer hohen personellen 
Auslastung und subjektiven Ergebnissen, da die Beurteilung von 
der individuellen Wahrnehmung des Prüfpersonals abhängt. 

S T I C H W Ö R T E R  

Künstliche Intelligenz, Bildverarbeitung, Qualitätssicherung

Bild 1. Robotergeführtes Bildaufnahmesystem zur automatisierten Qualitätsbewertung. Foto: IFW
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Im Forschungsprojekt „Automatisierung des Dekorschleifpro-
zesses für komplex geformte Aluminiumprofile“ (AuDeko) wurde 
daher von der A&T Manufacturing GmbH, der SHL AG und dem 
Institut für Fertigungstechnik und Werkzeugmaschinen (IFW) 
der Leibniz Universität Hannover neben der automatisierten 
 Fertigung, die automatisierte Qualitätskontrolle von komplex-
 gebogenen Dekorprofilen untersucht. Der KI-gestützte Ansatz 
wird in diesem Beitrag vorgestellt. Die Methodik ist aber nicht 
nur auf Dekorprofile beschränkt, sondern lässt sich auch auf ge-
bogene Oberflächen in anderen Anwendungsgebieten übertragen. 

2 Klassische Bildverarbeitungsansätze:  
 Von der Bildaufnahme bis zur 
  Merkmalextraktion

Prozessketten zur optischen Qualitätskontrolle bestehen in der 
industriellen Bildverarbeitung aus den drei Schritten Bildaufnah-
me, Vorverarbeitung und Merkmalextraktion (Bild 2). 

Insbesondere die Bildaufnahme von gebogenen Oberflächen ist 
herausfordernd, da Störeffekte im Bildbereich auftreten können, 
welche die Merkmalextraktion beeinflussen. Typische Störeffekte 
sind Schattenwurf aufgrund der Beleuchtung sowie perspektivi-
sche Verzerrung, Unschärfe und Vignettierung durch die optische 
Abbildung des Objektivs [2]. Klassische Ansätze der Bildverarbei-
tung setzen eine statische Umgebung voraus, da ihre Robustheit 
im Vergleich zu KI-basierten Methoden begrenzt ist. Mit KI-ba-
sierten Ansätzen ist die Merkmalextraktion auch mit überlagerten 
Störeffekten möglich. Dies erfordert jedoch einen umfangreichen 
Datensatz, der alle relevanten Fälle abdeckt. Eine Alternative stellt 
hier die Kompensation der Störeffekte dar. Zur Kompensation 
sind unterschiedliche Ansätze bekannt, die sowohl bei der Bild -
datenaufnahme als auch in der Vorverarbeitung eingesetzt werden 
und in Abschnitt 2.1 vorgestellt werden [3–11].

2.1 Kompensation von Störeffekten  
 bei der Bildaufnahme und Vorverarbeitung

Perspektivische Verzerrungen können unter anderem hard-
wareseitig, etwa durch die Verwendung von Zeilenkameras und 
3D-Stereokameras, oder softwareseitig durch die Kamerakalibrie-
rung reduziert oder vermieden werden. Bei der hardwareseitigen 
Kompensation mit Zeilenkameras wird schrittweise eine einzelne 
Pixelzeile aufgenommen. Dadurch werden rotationssymmetrische 

Geometrien auf eine Ebene projiziert, was perspektivische Ver-
zerrungen, Unschärfe und Vignettierung vermeidet [3, 4]. Nach-
teilig dabei ist die notwendige Synchronisation zwischen Objekt- 
und Aufnahmegeschwindigkeit, um Ungenauigkeiten der 2D-Pro-
jektion zu verhindern [5]. Diese Synchronisation entfällt bei der 
Nutzung kostengünstigerer 2D-Kameras mit Flächensensoren. 
Durch den größeren Bildbereich treten jedoch vor allem in den 
Randbereichen objektivbedingte Verzerrungen auf, die es nach-
träglich softwareseitig zu kompensieren gilt [6]. 

Alternativ werden bei Stereo-Kamerasystemen die Tiefeninfor-
mationen durch Bildaufnahme aus unterschiedlichen Perspektiven 
errechnet und eine 3D-Punktewolke erstellt [7, 8]. Die Punktwol-
ke bietet eine 3D-Darstellung des Objekts, die unabhängig von 
der ursprünglichen Kameraperspektive ist. Durch Projektion der 
3D-Darstellung in einen 2D-Bildbereich werden objektivbedingte 
Verzerrungen vermieden. Die Erfassung der Punktwolke bedingt 
jedoch bei Objektgrößen im dreistelligen Millimeterbereich einen 
erheblichen Rechenaufwand im Minuten- bis Stundenbereich mit 
High-End-Prozessoren [8]. Zudem ist häufig eine Kompensation 
des Messrauschens erforderlich, das bei der Erfassung von Punkt-
wolken auftritt. Softwareseitig kann die Kompensation der per-
spektivischen Verzerrung ebenso während der Vorverarbeitung 
erfolgen. Dazu wird eine Koordinatentransformation der Pixel-
werte auf Grundlage eines geometrischen Modells des zu prüfen-
den Objekts durchgeführt [9]. Für die Entzerrung ist allerdings 
eine Synchronisation zwischen Modell und Bildausschnitt nötig 
[10]. Darüber hinaus treten Ungenauigkeiten durch geometrische 
Abweichungen zwischen dem Modell und dem Objekt auf. 

Analog zur perspektivischen Verzerrung können Schatten 
 sowohl hardware- als auch softwareseitig kompensiert werden. 
Hardwareseitig erfolgt dies durch eine angepasste Beleuchtungs-
strategie. Insbesondere bei einer hohen Variantenvielfalt der zu 
prüfenden Geometrie ist es jedoch nicht praktikabel alle Störein-
flüsse mit der Beleuchtung zu kompensieren. Zur softwareseitigen 
Entfernung von Schatten bei der Vorverarbeitung der Bilddaten 
liegen zahlreiche Ansätze vor, die hauptsächlich auf Methoden 
des überwachten maschinellen Lernens basieren [11]. Zum Trai-
ning der KI-Methoden werden dabei Datensätze mit schattenbe-
hafteten und schattenfreien Bildern der gleichen Szene verwen-
det, um die KI-Netze auf die Schattenentfernung zu adaptieren. 
Der Nachteil der Methoden des maschinellen Lernens ist jedoch 
der hohe Aufwand zur Erzeugung des Trainingsdatensatzes. 

Bild 2. Industrielle Bildverarbeitung. Grafik: IFW
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2.2 Von den Bilddaten zur Bauteilqualität  
 mittels Merkmalextraktion 

Eine zuverlässige und präzise Datenerfassung inklusive Kom-
pensation der Störeffekte bildet die Grundlage für die Analyse der 
Bauteilqualität. Anhand der erfassten Daten werden mit Metho-
den des maschinellen Lernens Merkmale, wie die Oberflächentex-
tur und Defekte, erfasst. Grundsätzlich wird die Extraktion von 
globalen und lokalen Merkmalen unterschieden. Bei dekorativen 
Sichtprofilen stellt die Oberflächentextur ein globales Merkmal 
(siehe unten Bild 6b) und die Oberflächendefekte ein lokales 
Merkmal (siehe unten Bild 7b) dar. Grundlegend kann die globa-
le Textur in den Bilddaten durch die Analyse der Pixelwerte mit 
Operatoren erster und zweiter Ordnung beschrieben werden 
[12]. Operatoren erster Ordnung geben statistische Eigenschaften 
wie Mittelwert und Varianz der Pixelwerte wieder, während Ope-
ratoren zweiter Ordnung Beziehungen zwischen den Pixelwerten 
einbeziehen und somit die globale Bildtextur charakterisieren. 
Operatoren zweiter Ordnung werden auch bei der Lokalisierung 
von Defekten verwendet [13]. Im Allgemeinen erfordern klassi-
sche Bildverarbeitungsmethoden jedoch eine gezielte Wahl der 
Schwellwerte und Variablen und sind somit mit hohem Erfah-
rungswissen und Aufwand verbunden. 

Für die Erkennung globaler und lokaler Merkmale haben sich 
Ansätze des maschinellen Lernens (ML) als effektiv erwiesen, da 
ein vergleichsweise geringer Parametrierungsaufwand erforder-
lich ist [14–16]. Als Beispiel seien hier faltende neuronale Netz-
werke (englisch: Convolutional Neural Network, CNN) genannt, 
welche besonders leistungsfähig bei der Erkennung von Mustern 
in Bilddaten sind [14]. Zur Lokalisierung von Defekten werden 
die relevanten Bereiche im Datensatz mithilfe von Begrenzungs-
rahmen (englisch: Bounding Box) manuell markiert, bevor ein 
anschließendes Training des CNN durchgeführt wird. Hierbei 
findet unter anderem das YOLO-Framework Anwendung [15]. In 
[16] wurde beispielsweise für die Lokalisierung von Defekten auf 
metallischen Oberflächen mittels CNN eine Mean Average Preci-
sion (mAP) = 0,83 erreicht. Dabei ist mAP eine Metrik zur 
 Bewertung der Vorhersage eines künstlichen neuronalen Netz-
werks und nimmt Werte im Bereich 0 bis 1 an. Ein Wert von 1 

gibt dabei eine ideale Übereinstimmung zwischen der Detektion 
durch das Netzwerk und den wahren Labeln an.

2.3 Transfer für die Qualitätskontrolle 
  komplex-gebogener Oberflächen 

Der Stand der Technik verdeutlicht, dass zur Automatisierung 
der Qualitätskontrolle sowohl eine Methode zur robusten und 
flexiblen Datenaufnahme ohne Störeffekte als auch eine Methode 
zur robusten Merkmalsextraktion benötigt werden. Stationäre 
Zeilenkameras eignen sich zur Kompensation von Störeffekten, 
erfordern jedoch eine Synchronisierung und sind auf geometrisch 
einfache Oberflächen beschränkt. 

Um die flexible Qualitätskontrolle komplex-gebogener Dekor-
profile zu realisieren, wird daher eine Kamera von einem Roboter 
orthogonal zur Bauteiloberfläche geführt. Um Ungenauigkeiten 
der Roboterbahn und schwankende Bahngeschwindigkeiten aus-
zugleichen, wird eine Kamera mit Flächensensor eingesetzt, die 
zur Kompensation der Störeinflüsse Informationen benachbarter 
Pixelzeilen berücksichtigt. Sowohl für die Klassifikation der Tex-
tur als auch die Lokalisierung von Oberflächendefekten werden 
für den vorliegenden Anwendungsfall CNN genutzt. Diese zeich-
nen sich aus durch die Fähigkeit zur Generalisierung durch einen 
umfangreichen, gelabelten Datensatz bei geringem Auslegungs- 
und Parametrierungsaufwand. Ein weiterer Grund ist die hohe 
Robustheit gegenüber wechselnden Umgebungsbedingungen.

3 Bildverarbeitung zur Qualitätskontrolle  
 komplex-gebogener Oberflächen

Das in diesem Beitrag vorgestellte Automationssystem zur 
Qualitätskontrolle komplex-gebogener Dekorprofile baut auf den 
Ergebnissen von Denkena et al. zur Qualitätskontrolle ebener 
Oberflächen auf [17, 18]. Dort wurde gezeigt, dass Oberflächen-
defekte und -texturen mittels CNN auf dekorativen Bauteilen er-
folgreich detektiert werden [17, 18]. Die vorgestellte Methode 
basiert auf der Pearson-Korrelation, um Einzelbilder gerader 
Oberflächen zusammenzufügen [18, 19]. Der vorliegende Beitrag 
erweitert das System um die Bildaufnahme und -vorverarbeitung 
von ebenen Oberflächen auf gebogene Oberflächen und passt die 

Bild 3. Prozesskette zur automatisierten Ermittlung der Oberflächenqualität komplex-gebogener Bauteile. Grafik: IFW
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CNN für diesen Anwendungsfall an. Zur Realisierung des Auto-
mationssystems enthält die Prozesskette die Schritte Bildaufnah-
me, Vorverarbeitung und Merkmalextraktion (Bild 3). 

Der Schleifprozess (1) definiert zunächst die zu prüfende 
Bauteilgeometrie. Mit den Geometrieinformationen des Bauteils 
wird die Kamerabahn berechnet. Dabei bleiben Arbeitsabstand 
und Aufnahmewinkel der Kamera für ein reproduzierbares und 
homogenes Bild konstant. Im Anschluss erfolgt die Bildaufnahme 
und -speicherung (2) in einer Datenbank. Da die Bilddaten Stör-
effekte enthalten, werden diese mit Projektionsalgorithmen (3) 
entfernt. Die bereinigten Bilddaten werden positionsabhängig in 
der Datenbank gespeichert und Qualitätsmerkmale (4) von 
 jedem Bild extrahiert. Die Qualitätsmerkmale definieren im Zu-
sammenhang mit der Position die Gesamtqualität des Bauteils. 
Mit einer Handlungslogik (5) wird schließlich ein Handlungs-
schritt (Freigabe, Aussortierung, Nacharbeit) in Abhängigkeit von 
Qualitätsgrenzen ermittelt. Die so definierte Prozesskette bietet 
den Vorteil, dass die Bauteilqualität geometrieunabhängig und 
ganzheitlich ermittelt wird. Die Schritte der Bewertung und 
Handlungsempfehlung werden nachfolgend erläutert. 

3.1 Datenaufnahme: Robotergeführte  
 Industriekamera sorgt für Flexibilität

Für die Bildaufnahme wurde eine Monochromkamera des 
Typs „DMK 33GX264“ der Imaging Source GmbH mit einer 
Auflösung von 5 Megapixel und einer maximalen Aufnahmefre-
quenz von 24 Bildern pro Sekunde ausgewählt (siehe Bild 1). 
Diese ist mit einem entozentrischen Objektiv mit einem Arbeits-
abstand von 100 mm und einer Blende von F16 ausgestattet. Zur 
beidseitigen Beleuchtung der Dekorprofile fanden zwei Weißlicht-
leuchten Anwendung. Auf eine Umhausung zum Schutz vor 
Fremdlicht konnte verzichtet werden, da Bilddaten unter kontrol-
lierten Lichtbedingungen mit einer kurzen Belichtungszeit 

(1/750 Sekunden) bei heller Beleuchtung (circa 49 kLux) aufge-
nommen wurden. 

Das Kamerasystem wurde von einem Roboter Typ „UR5e“ mit 
einer Reichweite von 850 mm geführt, um die Bilddatenaufnah-
me von komplex-gebogenen Oberflächen zu ermöglichen. Mit 
dem Aufbau wird eine Aufnahmefläche von ungefähr 534 mm2 
für jede Einzelaufnahme abgedeckt. Zur Vorverarbeitung der 
Bilddaten werden diese dann in einer Datenbank im JPEG-
 Format gespeichert. 

3.2 Bildverarbeitung:  
 Projektion der Bilddaten auf eine Ebene

Die aufgenommenen Bilddaten weisen Störeffekte auf, die 
durch geeignete Vorverarbeitungsschritte kompensiert werden. 
Um durch die Bildprojektion Störeffekte zu entfernen, erfolgt im 
ersten Schritt das Zusammenfügen der Bilddaten (Bild 4a). 

Die Rohbilder (2448 x 1000 Pixel) von der Oberfläche 
 werden zunächst auf einen Bereich (1000 x 1000 Pixel), der 
 keine Störeffekte enthält, zugeschnitten. Je nach Anwendung und 
Breite der Störeffekte im Randbereich kann der Zuschnitt größer 
oder kleiner erfolgen. Die Verarbeitungszeit erhöht sich allerdings 
mit zunehmender Anzahl an Zuschnitten. Nach dem Zuschnitt 
erfolgt die Schätzung eines Offsets zwischen den Einzelbildern, 
um den ein Suchbereich definiert wird. Innerhalb des Such -
bereichs werden die Einzelbilder zueinander verschoben und die 
Verschiebung mit der höchsten Korrelation wird als tatsächliche 
Bildverschiebung für das Zusammenfügen zu einem Gesamtbild 
angewendet. Als Grundlage dient hierbei die Pearson-Korrelation 
[17, 18]. Abschließend liegt ein zusammengefügtes Gesamtbild 
für das gesamte Bauteil vor. Im zweiten Schritt wird das Gesamt-
bild aufgetrennt, um unabhängig von der Bauteillänge konsistente 
Bildauflösungen (2448 x 1000 Pixel) für die Merkmalextraktion 
auf den Einzelbildern sicherzustellen (Bild 4b). Durch den 

Bild 4. Funktionsprinzip der Bildprojektion zur geometrieunabhängigen Qualitätskontrolle. Grafik: IFW
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 Projektionsprozess ist die globale Zuordnung der Einzelbilder auf 
das Bauteilkoordinatensystem möglich und die projizierte Ge-
samtlänge des Bauteils kann ermittelt werden.

Wesentliche Voraussetzung für die zuverlässige Lokalisierung 
der Qualitätsmerkmale im Bauteilkoordinatensystem ist eine hohe 
Übereinstimmung zwischen berechneter und tatsächlicher Ge-
samtlänge des Bauteils. Bild 5a zeigt die ermittelte Gesamtlänge 
durch den Bildverarbeitungsprozess (BV) gegenüber den wahren 
Werten (englisch: Ground Truth, GT) und gibt somit Aufschluss 
über die Genauigkeit der Bildprojektion. 

Damit die Ergebnisse nicht durch die Grauwertverteilung der 
Bilddaten negativ beeinflusst werden, wurden geometrische Mus-
tern auf den gebogenen Bauteilen zur eindeutigen Korrelations -
berechnung genutzt. Es zeigte sich auf einem Datensatz mit zehn 
gebogenen Bauteilen ein durchschnittlicher Fehler von 2,34 mm 
beziehungsweise 0,44 % bezogen auf die Gesamtlänge. Gründe für 
die Abweichung sind, dass sich durch Bildpixel nur diskrete Wer-
te ergeben können und Ungenauigkeiten bei der Korrelationsbe-
rechnung zur ungenauen Berechnung der Gesamtlänge führen. 
Durch einen Offset konnte die Abweichung in der Längenberech-
nung behoben werden. Die Berechnung der Gesamtlänge wies für 
ein einzelnes Bauteil mit zehn Wiederholmessungen eine Wieder-
holgenauigkeit von 0,16 % auf. Die maximale Abweichung betrug 
dabei 0,27 %. Folglich ist festzuhalten, dass ein zuverlässiger und 
reproduzierbarer Prozess der Bildzusammenfügung vorliegt. 

Eine weitere Grundlage für den zuverlässigen Einsatz der Pro-
jektionsmethode ist die Robustheit gegenüber der Grauwert -
verteilung in den Einzelbildern, die abhängig vom Schliffbild ist. 
Im nächsten Schritt wurde daher untersucht, inwieweit die Be-
rechnung der Gesamtlänge von der Grauwertverteilung abhängt. 
Dazu erfolgte der Vergleich der berechneten Gesamtlänge mittels 
Bildverarbeitung von Dekoroberflächen gegenüber eindeutigen 
geometrischen Mustern. In Bild 5b wird die berechnete Gesamt-
länge zusammengefügter Bilder mit Schliffoberfläche und mit 
geometrischen Mustern vergleichend dargestellt. Grundlage war 
ein Datensatz aus zehn gebogenen Bauteilen. Bei gleicher Bauteil-
länge wurde mit den Einzelbildern mit geometrischem Mustern 
eine um 4,49 mm längere Gesamtlänge als bei den Einzelbildern 
mit Dekorschliffen berechnet. Der Grund ist, dass die wiederho-

lenden geometrischen Muster eine präzisere Korrelationsberech-
nung ermöglichen  und sich somit genauere Verschiebungswerte 
für das Zusammenfügen ergeben. Der Einfluss der Grauwertver-
teilung lässt sich als nicht signifikant einordnen, da prozentual 
 eine Ungenauigkeit von 0,85 % vorliegt. 

Zur Bewertung des Einflusses der Bildprojektion auf die Bild-
qualität fand der Brisque-Wert (Blind/Referenceless Image Spatial 
Quality Evaluator) Berücksichtigung. Der Brisque-Wert bewertet 
Bildrauschen, Unschärfe und Kompressionsartefakte auf den Bild-
daten [17]. Die Bildqualität geschliffener Bauteiloberflächen wur-
de durchschnittlich um 7,5 % verschlechtert (Bild 5c), was auf 
Unschärfe in den Bildern aufgrund unpassender Zuordnungen 
der Grauwerte während der Bildprojektion zurückzuführen ist. 
Durch die iterative Anpassung der Parameter des Projektionsalgo-
rithmus konnte keine höhere Bildqualität erzielt werden. Um den 
Einfluss der Bildqualität auf die Merkmalextraktion zu mindern, 
wurden in den Grunddatensatz für das Training der Merkmal -
extraktion ebenso projizierte Einzelbilder aufgenommen. 

3.3 Merkmalextraktion:  
 CNN-basierte Ermittlung der Bauteilqualität

Nach der Projektion der Einzelbilder zur Kompensation von 
Störeffekten erfolgt die Extraktion der Qualitätsmerkmale. Die 
Oberflächenqualität wird durch die Merkmale Texturqualität und 
Oberflächendefekte charakterisiert. Für beide Merkmale wird ein 
überwachter Lernansatz verwendet. Dazu wurde mit einer Daten-
grundlage von 976 Einzelbildern ein CNN für die drei Klassen in 
Ordnung (i. O.), nicht in Ordnung (n .i. O.) und Rohteil (Roh) 
trainiert. Als CNN-Architektur wurde „YOLOv8“ der Ultralytics 
Inc. verwendet, da dieses auf Normdatensätzen sehr hohe Genau-
igkeiten erreicht [15]. Für das Training von Klassifizierungsmo-
dellen wurden auf dem ImageNet-Datensatz [18] vortrainierte 
Netze in unterschiedlicher Größe von der Ultralytics Inc. bereit-
gestellt. Diese reduzieren die Trainingszeit wesentlich und weisen 
in der Regel nach abgeschlossenem Training eine höhere Erken-
nungsgüte auf den eigenen Daten auf [19]. In Abhängigkeit der 
Modellgröße wurden Genauigkeiten zwischen As = 0,90 beim 

Bild 5. Einfluss der Bildprojektion auf die berechnete Gesamtlänge (a) sowie Abhängigkeit der Bildprojektion von Bilddaten (b) und Einfluss der Projektion 
auf die Bildqualität (c). Grafik: IFW
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s-Modell bis zu Ax = 0,94 beim x-Modell auf einem zuvor unbe-
kannten Testdatensatz erreicht (Bild 6a). 

Die Latenzzeit für die Klassifikation auf einer GPU des Typs 
„Nvidia RTX A4000“ steigt dabei abhängig von der Modellgröße 
schrittweise von tn = 8,8 ms bis tx = 12,8 ms an. Da die Bildauf-
nahme in der vorliegenden Anwendung langsamer als die maxi-
male Latenzzeit war, wurde die Modellgröße x als CNN mit der 
höchsten Genauigkeit gewählt. Das n-Modell erreicht trotz der 
kleinsten Modellgröße die zweithöchste Klassifikationsgenauig-
keit. Grund hierfür ist, dass für die Erkennung von geometrischen 
Texturen, die größtenteils aus Kanten bestehen, nicht zwingend 
komplexe neuronale Netzwerke benötigt werden. Die Konfusions-
matrix für die Modellgröße x veranschaulicht, dass das CNN für 
die Ermittlung der Texturqualität auf unbekannten Bilddaten ein 
F-Maß (Makro) von F1 = 0,95 erreicht (Bild 6b). Dies ist als 
hoch einzuordnen und somit für die Qualitätskontrolle geeignet. 

Neben der Texturqualität wird die Oberflächenqualität von 
 lokalen Defekten beeinflusst (Bild 7b). Der Wert neben der er-
kannten Defektklasse „scratch“, englisch für Kratzer, gibt die 
Konfidenz des Models an. 

Im gezeigten Bespiel gibt das Modell somit aus, dass es sich 
mit einer Konfidenz von 0,8 um einen Kratzer handelt. Defekte 

entstehen durch Beschädigungen des Schleifbands, Ablagerungen 
auf der Werkstückoberfläche oder fehlerhafte Handhabung. Die 
lokalen Defekte lassen sich ebenfalls mithilfe eines CNN auf Basis 
der YOLO-Architektur ermitteln. Das Training des Modells er-
folgte auf einem Bilddatensatz von 297 Bildern. 

Für die Objekterkennung werden von der Ultralytics Inc. 
ebenfalls vortrainierte Modelle bereitgestellt, die auf dem COCO-
Datensatz basieren [20]. Für die Bewertung der Detektionsgenau-
igkeit wird die mAP für eine Intersection over Union (IoU) von 
0,5 genutzt. Das heißt, wenn zischen dem Label und der Vorher-
sage des Modells eine IoU ≥ 0,5 erreicht wird, gilt die Vorhersage 
als wahr, ein kleinerer gilt als falsch. Die mAP berechnet sich im 
Anschluss aus der Anzahl an richtigen und falschen Vorhersagen 
für unterschiedliche Schwellenwerte der Konfidenz. Eine mAP 
von 1 entspricht dem bestmöglichen Ergebnis. Eine Übersicht zu 
erreichten mAPs in Abhängigkeit der Modellgröße ist in Bild 7a 
dargestellt. Die Modelle erreichen eine mAP zwischen mAPn = 
0,59 bis mAPl = 0,74 auf dem zuvor unbekannten Testdatensatz. 
Die höchste mAPl wird dabei nach 252 Trainingsepochen mit 
dem l-Modell erzielt. Bei der Defektlokalisierung liegt die Latenz-
zeit zwischen tn = 16,8 ms bis tx = 40,9 ms. 

Bild 6. Klassifikation der Texturqualität in i. O., n. i. O. und Rohteil mittels CNN. Grafik: IFW

Bild 7. Lokalisierung von Defekten auf dekorativen Oberflächen mittels CNN. Grafik: IFW
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Die Genauigkeit der Kratzerdetektion ist geringer als die Ge-
nauigkeit der Texturklassifikation. Dies ist mit der Komplexität 
der Aufgabe zu begründen. Aufgrund der Komplexität und damit 
der Netzarchitektur ist die Latenzzeit bei der Defektlokalisierung 
länger als bei der Texturklassifikation, jedoch weiterhin kürzer als 
die Bildaufnahmezeit mit einem Bild pro Sekunde. Zum Nach-
weis der Funktionsfähigkeit des gewählten Ansatzes ist das CNN 
geeignet. Zukünftig kann die Genauigkeit der Detektion durch 
 einen umfangreichen Datensatz, der parallel zur Produktion auf-
genommen wird, erhöht werden. 

3.4 Handlung: Identifikation von Nacharbeitsbereichen 

Die berechneten Qualitätsmerkmale werden nach jeder Quali-
tätskontrolle positionsaufgelöst gespeichert, um eine Bewertung 
der gesamten Bauteilqualität vorzunehmen. Damit ist es möglich, 
die Bilddaten auf das Bauteilkoordinatensystem zu beziehen und 
die Stellen der Nacharbeit zu identifizieren. Die Position wird auf 
Grundlage der Bildprojektion berechnet. Dazu wird die Position 
der Bildmitte als Absolutposition für jedes Bild ermittelt. Die pro-
jizierten Einzelbilder werden mit einem Abstand von 7,4 mm in 
y-Richtung aus dem Gesamtbild erzeugt. Bild 8 zeigt beispielhaft 
einen vom Automationssystem ermittelten Plot der positionsauf-
gelösten Texturklasse für ein gebogenes Dekorprofil. 

Im Ausschnitt des projizierten Bildes ist zu erkennen, dass ein 
Übergangsbereich zwischen Rohteil-Textur und n. i. O.-Textur 
vorliegt. Die Konfidenz c des CNN zur Klassifikation der Rohteil-
Textur liegt bei einer Absolutposition 0 <= y <= 25 mm entspre-
chend bei c > 0,95. Bei Positionen y > 40 mm wird die Textur-
klasse n. i. O. mit c > 0,95 korrekt zugewiesen. Im Übergangsbe-
reich liegt keine eindeutige Textur vor, weshalb für alle Klassen 
c < 0,95 ermittelt wird. Bei unsicheren Vorhersagen (c < 0,95) 
für alle Klassen ist die manuelle Kontrolle des Bauteilbereichs not 
wendig. Die manuell identifizierten Bereiche werden im nächsten 
Schritt für ein erneutes Training genutzt, um die Vorhersage -
genauigkeit des Automationssystems fortlaufend zu erhöhen.

4 Zusammenfassung 

In diesem Beitrag wurde ein neuartiger Ansatz vorgestellt, der 
die Qualitätskontrolle geschliffener Dekorprofile auf komplex-
 gebogenen Oberflächen bildbasiert ermöglicht. Dabei werden mit 

einer robotergeführten Industriekamera mit Flächensensor Bild-
daten der Schliffoberfläche aufgenommen, die anschließend mit-
hilfe eines auf der Pearson-Korrelation basierenden Algorithmus 
auf eine Ebene projiziert werden. Die Vorteile des Vorgehens sind 
die Kompensation von Störeffekten im Bildbereich und die Trans-
formation der Bilddaten in das Bauteilkoordinatensystem mit 
 einem kostengünstigen 2D-Kamerasystem. Zudem werden bei 
diesem Vorgehen störfreie und einheitliche Bilddaten erzeugt und 
somit eine Generalisierung des Modells auch bei kleiner Daten-
grundlage ermöglicht. 

Die Schliffoberflächen wurden mit dem Automationssystem 
hinsichtlich Texturqualität und lokaler Defekte bewertet. Für die 
Texturklassifikation konnte mit einem trainierten CNN ein 
F-Maß F1 = 0,95 und für die Lokalisierung der Kratzer eine 
mAP = 0,74 erreicht werden. Die Genauigkeiten und Robustheit 
beider CNN, vor allem für die Lokalisierung von Kratzern, kann 
durch eine variationsreiche Erweiterung des Datensatzes weiter 
gesteigert werden. Die Ergebnisse zeigen, dass sich die Methodik 
eignet, um eine automatisierte Qualitätskontrolle umzusetzen.
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