
Fortschritt-Berichte VDI

Dipl.-Ing. ( FH ) Rolf Winkler,
Aalen

Nr. 759

Grund- und
Werkstoffe/
Kunststoffe

Reihe 5

Experimentelle und 
numerische Bestimmung 
strukturmechanischer 
und akustischer Eigen-
schaften von metall i-
schen Hohlkugelstruk-
turen

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Experimentelle und numerische Bestimmung

strukturmechanischer und akustischer Eigenschaften

von metallischen Hohlkugelstrukturen

Dissertation

zur Erlangung des

Doktorgrades der Ingenieurwissenschaften (Dr.-Ing.)

des

Zentrums für Ingenieurwissenschaften

der Martin-Luther-Universität
Halle-Wittenberg,

vorgelegt

von Herr Dipl.-Ing. (FH) Rolf Winkler

geb. am 18. Mai 1983 in Aalen (Baden-Württemberg)

Gutachter:

1. Prof. Dr.-Ing. habil. Dr. h. c. Holm Altenbach

2. Prof. Dr.-Ing. Markus Merkel

3. Prof. Dr. rer. nat. Burkhard Heine

Tag der Verteidigung: 4. Juni 2015

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Fortschritt-Berichte VDI

Experimentelle und 
numerische Bestimmung 
strukturmechanischer 
und akustischer Eigen-
schaften von metall i-
schen Hohlkugelstruk-
turen

Dipl .-Ing. ( FH ) Rolf Winkler, 
Aalen

Grund- und
Werkstoffe/
Kunststoffe

Nr. 759

Reihe 5

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


© VDI Verlag GmbH · Düsseldorf 2016
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe 
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, 
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-952X
ISBN 978-3-18-375905-7

Winkler, Rolf 
Experimentelle und numerische Bestimmung strukturmechanischer und 
akustischer Eigenschaften von metallischen Hohlkugelstrukturen
Fortschr.-Ber. VDI Reihe 5 Nr. 759. Düsseldorf: VDI Verlag 2016.
218 Seiten, 120 Bilder, 17 Tabellen.
ISBN 978-3-18-375905-7, ISSN 0178-952X,
¤ 76,00/VDI-Mitgliederpreis ¤ 68,40.
Für die Dokumentation: Zellulare Metalle – Metallische Hohlkugelstruktur – Homogenisierung – 
Strukturmechanik – Elastizitätsmodul – Anisotropie – Schallabsorption – Computertomografie – 
Schwingung – Stochastische Kugelanordnungen

Die vorliegende Arbeit befasst sich mit der Charakterisierung mechanischer und akustischer 
 Eigenschaften von metallischen Hohlkugelstrukturen. Dieser relativ junge zellulare Werkstoff 
 kennzeichnet sich durch seine besondere Zellmorphologie aus. Im Gegensatz zu bisher 
 bekannten Metallschäumen weist der Strukturaufbau mit Hohlkugeln geringere Abweichungen 
in der Zellgröße und -anordnung auf. Ausgehend von geringeren Unregelmäßigkeiten in ihrem 
Strukturaufbau werden die Eigenschaften der Hohlkugelstrukturen oftmals als isotrop angenommen. 
Die meisten bisherigen analytischen und numerischen Betrachtungen beschränkten sich auf ideale 
Hohlkugelanordnungen, während sich der Großteil der experimentellen Untersuchungen mit 
zufälligen Anordnungen beschäftigt. Aus dieser Diskrepanz heraus ergibt sich die Motivation 
dieser Arbeit. Der Schwerpunkt liegt in der Analyse des anisotropen mechanischen und akus-
tischen Verhaltens unter dem Einfluss unregelmäßiger bzw. beliebiger Hohlkugelanordnungen. 

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; 
detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
http://dnb.ddb.de.

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


III

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als Wissenschaftlicher Mitarbeiter am
Zentrum für virtuelle Produktentwicklung der Hochschule Aalen.

Die Betreuung der Promotion übernahm Prof. Dr.-Ing. habil. Dr. h. c. Holm Altenbach. Ich danke
Ihm für die Unterstützung und die konstruktive Zusammenarbeit. Prof. Dr.-Ing. Markus Merkel
gab mir im Rahmen eines Forschungsprojektes (Baden-Württemberg Stiftung) die Möglichkeit, an
den Inhalten dieser Dissertation zu arbeiten. Ihm danke ich für das entgegengebrachte Vertrauen
und die Freiheit, die ich in den letzten Jahren erfolgreich nutzen konnte. Die beiden oben genannten
Professoren erstellten zusammen mit Prof. Dr. rer. nat. Burkhard Heine die Gutachten. Ihm gebührt
ebenfalls besonderer Dank.

Ich danke alle Kollegen und Kolleginnen, die zum Gelingen dieser Arbeit mitgewirkt haben.
Besonderen Dank gilt Dipl.-Inf. Janina Schulz von der Universität Freiburg für die Unterstützung
im Bereich digitale Bildverarbeitung. Zudem danke ich Prof. Dr.-Ing. Dr. rer. nat. habil. Drs. h.c.
Dietrich Stoyan und Dr.-Ing. Antje Elser von der Technische Universität Bergakademie Freiberg
für die Bereitstellung eines Packungsalgorithmus. Dankenswerterweise unterstützte mich Prof. Dr.
Wolfram Pannert im Bereich Akustik. Ein herzlicher Dank gilt Prof. Dr. rer. nat. Burkhard Alpers
für die mathematische Unterstützung in dieser Zeit. Darüber hinaus danke ich allen Korrekturleser
und -leserinnen für ihr Engagement.

An dieser Stelle möchte ich fern der wissenschaftlichen Ausarbeitung all den Menschen meinen
persönlichen Dank aussprechen, die an mich glaubten und mich in dieser Zeit unterstützten. Für die
manchmal nötige Ablenkung von der Arbeit danke ich meinem Freundeskreis und den Kameraden
der Freiwilligen Feuerwehr.
Ganz besonderer Dank gilt Veronika und unseren Familien. Ihr stetiger Rückhalt und ihre unend-
liche Geduld waren sehr wichtig für mich.

Aalen, im August 2015
Rolf Winkler

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Inhaltsverzeichnis V

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Zellulare Materialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Zellulare Metalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1.1 Offenporige zellulare Metalle . . . . . . . . . . . . . . . . . 6
1.2.1.2 Geschlossenporige zellulare Metalle . . . . . . . . . . . . . 6

1.2.2 Metallschäume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Hohlkugelstrukturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Stand der Forschung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Ziel und Inhalt der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Theoretische Grundlagen 17
2.1 Mechanische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Verzerrungen, Spannungen und Bilanzgleichungen . . . . . . . . . . . 18
2.1.2 Materialgesetze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Mechanische Kontinuumsschwingungen . . . . . . . . . . . . . . . . . . . . . 18
2.3 Akustische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Schallwellenausbreitung und akustische Kenngrößen . . . . . . . . . . 19
2.3.1.1 Schallwellen . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1.2 Schallfelder . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1.3 Impedanz und Admittanz . . . . . . . . . . . . . . . . . . . 20
2.3.1.4 Schallintensität und Schallleistung . . . . . . . . . . . . . . 21
2.3.1.5 Ebene und stehende Welle . . . . . . . . . . . . . . . . . . . 21

2.3.2 Mechanismen der Schallabsorption . . . . . . . . . . . . . . . . . . . 22
2.3.2.1 Schallabsorptionsgrad . . . . . . . . . . . . . . . . . . . . . 22
2.3.2.2 Schallreflektionskoeffizient . . . . . . . . . . . . . . . . . . 23
2.3.2.3 Schalltransmissionsgrad . . . . . . . . . . . . . . . . . . . . 24
2.3.2.4 Schalldissipationsgrad . . . . . . . . . . . . . . . . . . . . . 24
2.3.2.5 Wandimpedanz . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2.6 Gesetz von Darcy . . . . . . . . . . . . . . . . . . . . . . . 25

3 Methoden zur Charakterisierung 27
3.1 Geometriemodellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Untersuchung realer Strukturen . . . . . . . . . . . . . . . . . . . . . 27
3.1.1.1 Computertomografie . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1.2 Rekonstruktion- und Rückführ-Algorithmus . . . . . . . . . 28

3.1.2 Reguläre Packungen - Gitterstrukuren . . . . . . . . . . . . . . . . . . 29
3.1.3 Zufällige Kugelpackungen . . . . . . . . . . . . . . . . . . . . . . . . 31

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


VI Inhaltsverzeichnis

3.1.4 Hohlkugel-Mesomodell . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4.1 Geklebtes Modell . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4.2 Gesintertes Modell . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Stochastischer Kugelgenerator . . . . . . . . . . . . . . . . . . . . . . 34
3.1.5.1 Kugelmodelle . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.5.2 Kugelpackungsmodelle . . . . . . . . . . . . . . . . . . . . 34

3.1.6 Algorithmen zur Kugelpackungengenerierung . . . . . . . . . . . . . . 36
3.1.7 Kenngrößen zur Charakterisierung zufälliger Kugelpackungen . . . . . 37

3.1.7.1 Lokale Dichte . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.7.2 Koordinationszahl . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.7.3 Bindungswinkel . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.7.4 Paarkorrelation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.7.5 Kovarianz . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.8 Geometrisches Volumenmodell . . . . . . . . . . . . . . . . . . . . . 42
3.1.8.1 Reguläres Modell . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.8.2 Stochastisches Modell . . . . . . . . . . . . . . . . . . . . . 43

3.2 Elastizitätswerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Homogenisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Materialsymmetrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Negative Querkontraktion . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.4 Lastfälle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.5 Periodische Randbedingungen . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Schwingungssanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Numerische Modalanalyse . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 RITZsches Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Experimentelle Modalanalyse . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3.1 Versuchsaufbau und Messtechnik . . . . . . . . . . . . . . . 58
3.3.3.2 Probenvorbereitung . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3.3 Signalverarbeitung . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Schallabsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Absorptionsmechanismus . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Charakterisierende Materialeigenschaften und -größen . . . . . . . . . 61

3.4.2.1 Porosität . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2.2 Strömungswiderstand . . . . . . . . . . . . . . . . . . . . . 61
3.4.2.3 Porenformfaktor und charakteristische Längen . . . . . . . . 62
3.4.2.4 Tortuosität . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Äquivalentes Fluid-Modell . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.3.1 DELANY-BAZLEY-Modell . . . . . . . . . . . . . . . . . . 64
3.4.3.2 JOHNSON-CHAMPOUX-ALLARD-Modell . . . . . . . . . . 65

3.4.4 Akustische Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Ergebnisse 71
4.1 Zufällige Kugelpackungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Reale Kugelpackungen . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.2 Erzeugte Kugelpackungen . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Statik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.1 Einachsige Belastung . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.2 Mehrachsige Belastung - Materialsymmetrien . . . . . . . . . . . . . . 85

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Inhaltsverzeichnis VII

4.2.3 Einfluss der Randbedingungen . . . . . . . . . . . . . . . . . . . . . . 92
4.2.4 Vergleich und Diskussion . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Schwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.1 Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.2 Bestimmung der Materialkennwerte . . . . . . . . . . . . . . . . . . . 100
4.3.3 Vergleich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Verifizierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Akustik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Zwei-Mikrophon-Methode . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.2 Vier-Mikrophon-Methode . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Schlussbetrachtung 113
5.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Modellerweiterungen und neue Einsatzgebiete . . . . . . . . . . . . . . . . . . 115
5.3 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Anhang 117

A Theoretische Grundlagen 117
A.1 Mechanische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1.1 Bezugssysteme, Verschiebungen und Verzerrungen . . . . . . . . . . . 117
A.1.2 Geschwindigkeits- und Beschleunigungsfelder . . . . . . . . . . . . . 120
A.1.3 Belastungen und Spannungen . . . . . . . . . . . . . . . . . . . . . . 121
A.1.4 Gleichgewichtsbedingungen und Bewegungsgleichungen . . . . . . . . 122
A.1.5 Bilanzgleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1.5.1 Massenbilanz . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1.5.2 Impulsbilanz . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.1.5.3 Drehimpulsbilanz . . . . . . . . . . . . . . . . . . . . . . . 124
A.1.5.4 Mechanische Energiebilanz . . . . . . . . . . . . . . . . . . 124
A.1.5.5 Thermomechanische Energiebilanz . . . . . . . . . . . . . . 125

A.1.6 Materialverhalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.1.6.1 Linear-elastische Festkörper . . . . . . . . . . . . . . . . . . 127
A.1.6.2 Ideales Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.1.6.3 Linear-viskose Fluide . . . . . . . . . . . . . . . . . . . . . 131

A.1.7 Anfangs-Randwertproblem und HAMILTONsches Prinzip . . . . . . . . 132
A.2 Plattenschwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2.1 KIRCHHOFFsche Plattentheorie . . . . . . . . . . . . . . . . . . . . . 134
A.2.2 MINDLINsche Plattentheorie . . . . . . . . . . . . . . . . . . . . . . . 139
A.2.3 Weitere und höhere Plattentheorien . . . . . . . . . . . . . . . . . . . 142

A.3 Grundlagen zur Akustik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.3.1 Allgemeine lineare Wellengleichung in viskosen Fluiden . . . . . . . . 143
A.3.2 Schallgeschwindigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.3.3 Gesetz von Hagen-Poiseuille . . . . . . . . . . . . . . . . . . . . . . . 147
A.3.4 Lineare Wärmeleitungsgleichung . . . . . . . . . . . . . . . . . . . . 149
A.3.5 Schallausbreitung in zylindrischen Röhren . . . . . . . . . . . . . . . 149

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


VIII Inhaltsverzeichnis

B Charakterisierungsmethoden 155
B.1 Homogenisierungstheorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2 Periodische Randbedingung: FEM . . . . . . . . . . . . . . . . . . . . . . . . 157
B.3 Mindlin-Platte: PB2-RITZ-Methode . . . . . . . . . . . . . . . . . . . . . . . 159
B.4 Kenngrößen geordneter Kugelpackungen . . . . . . . . . . . . . . . . . . . . 162
B.5 Akustische Messmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.5.1 Zwei-Mikrofon-Methode . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.5.2 Vier-Mikrofon-Methode . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.5.3 Two-Load-Methode . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.5.4 One-Load-Methode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.5.4.1 Bestimmung der akustischen Parameter . . . . . . . . . . . . 167
B.6 JOHNSON-CHAMPOUX-ALLARD-PRIDE-LAFRAGE-Modell . . . . . . . . . . 168

C Resultate 171
C.1 Sonderfall: Periodische Randbedingung für ideale Anordnung . . . . . . . . . 171

C.1.1 Kubische Elementarzellen . . . . . . . . . . . . . . . . . . . . . . . . 171
C.1.2 Hexagonal dichtest gepackte Elementarzelle . . . . . . . . . . . . . . . 171

C.2 Sinterstellenwinkel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.2.1 Kubisch-Primitiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.2.2 Kubisch-Raumzentriert . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.2.3 Kubisch-Flächenzentriert . . . . . . . . . . . . . . . . . . . . . . . . . 174
C.2.4 Hexagonal-Dichtest-Gepackt . . . . . . . . . . . . . . . . . . . . . . . 174

C.3 Schallabsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
C.4 Schallgeschwindigkeitskörper . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Literaturverzeichnis 196

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Einleitung 1

1 Einleitung

Eine ständig wachsende Weltbevölkerung und das Bestreben unserer modernen, hochtechnisierten
Konsumgesellschaft nach weiterer technischer Entwicklung und Wohlstand stellt eine zentrale
Herausforderung der Menschheit dar. Dabei greift der Mensch zum Wohle des Fortschritts immer
stärker in das natürliche Ökosystem unserer Erde ein, mit teils katastrophalen Auswirkungen.
Zudem zwingt ein globaler Markt Unternehmen jeglicher Industriebereiche zu einer Erarbeitung
günstiger Technologien zur Sicherung ihrer nationalen und internationalen Wettbewerbsfähigkeit.
Diese Problematik macht sich auch in der Materialwissenschaft bemerkbar. Die Anforderungen an
technische Konstruktionen steigen ständig, jene müssen an Leichtigkeit gewinnen, sollen dabei
höhere Nutzlasten tragen, umweltverträglich sein, einen steigenden Komfort und eine höhere
Unfall- und Ausfallsicherheit gewährleisten und nicht zuletzt wirtschaftlich hergestellt werden.
Der gleichzeitig wachsende Anspruch unserer Gesellschaft nach einer energie-, ressourcenscho-
nenden und nachhaltigen Lebensweise führt zu einem enormen Forschungsbedarf und stellt eine
nicht leicht zu erfüllende Optimierungsaufgabe dar. In der Materialforschung und -entwicklung
steckt großes Potential, um die primären Ziele der Nachhaltigkeit, wie maximale Energie- und
Rohstoffeinsparung unter ökologischen und ökonomischen Randbedingungen zu erreichen. Neue
Materialien müssen nicht nur leicht sein, sondern gleichzeitig noch eine Vielzahl anderer Funktio-
nen erfüllen.
Die Natur hat sich dieser Herausforderung gestellt und in einem Jahrmillionen dauernden Evo-
lutionsprozess durch Verwendung zellularer Materialien diese Problematik gelöst. Zellulare Ma-
terialien, wie zum Beispiel Knochen, Holz oder Kork, begegnen uns in unserem Alltag ständig
und stellen keine Besonderheit mehr dar. Um die genialen Baupläne der Natur in technische
Lösungen umzusetzen, muss sich die Wissenschaft noch mancher Herausforderung stellen. Zum
Teil wurden diese Konzepte bereits erkannt und werden nun in vielen Bereichen der Technik -
zum Beispiel mittels Wabenstrukturen und Polymerschäumen - realisiert. Diese Materialen mit
zellularem Aufbau vereinen hohe Steifigkeit mit geringem spezifischem Gewicht und haben zudem
eine hohe Energiedissipation. Schon vor mehreren Jahrzehnten hat man diesen Ansatz auch bei
metallischen Materialien verfolgt. Durch gezieltes Weglassen von Material bzw. das Einbringen
von Poren in metallische Festkörper entstand so eine neue Materialklasse, die Metallschäume.
Dank neuer und kostengünstiger Herstellungsmethoden und zwischenzeitlich besserer Kenntnis
ihres Materialverhaltens erweitern diese zellularen Metalle das Einsatzspektrum technischer zellu-
larer Materialien. Ihre technisch schwierigere und noch kostenintensivere Herstellung im Vergleich
zu Kunststoffschäumen, sowie die teils großen Inhomogenitäten und ungenügende Reproduzier-
barkeit aktuell kommerziell erhältlicher Metallschäume verhindern noch eine weite Verbreitung.
Allerdings gibt es einige wenige Bereiche, in denen Metallschäume heute schon zum Einsatz
kommen. Dies sind Anwendungsbereiche in denen Kunststoffschäume an ihre Grenzen kommen -
sei es in Festigkeit, Temperaturbeständigkeit oder Umweltverträglichkeit. Dies betrifft die Sek-
toren der Transport-, Luft- und Raumfahrtindustrie ebenso wie schon erste Konsumgüter und
die Werkzeugmaschinenindustrie, wo eine ständige Nachfrage nach neuen Leichtbaukonzepten
herrscht. So werden zellulare Metalle als Crash-Absorber in diversen Fahrzeugen und Zügen,
als Schwingungsdämpfer an Robotern oder in Filtern in Industrieanlagen eingesetzt. Ebenfalls

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


2 Einleitung

bei Gebrauchsgütern, wie zum Beispiel Türgriffen, lassen sich Materialeinsparungen und damit
Kostensenkungen realisieren.
Allerdings wartet man bis heute noch auf den kommerziellen Durchbruch der zellularen Metalle,
insbesondere der Metallschäume. Dies kann nur gelingen, wenn die Wirtschaftlichkeit der zellu-
laren Metalle steigt und die Eigenschaften verbessert werden. Eine Verbesserung der Eigenschaft
bedeutet nicht nur mehr Multifunktionalität, sondern auch eine geringe Streuung der Materialkenn-
werte und damit verbundene Reproduzierbarkeit. Einen gewissen Teil hierfür kann das relativ neue
und innovative zellulare Metall, metallische Hohlkugelstrukturen, durch seine Zellenform und gut
reproduzierbare Zellengrößen, beitragen. Allein diese Eigenschaft genügt jedoch nicht, um der
Verbreitung des Materials Genüge zu tragen. Zusätzlich müssen grundlegende Kenntnisse über
physikalisches und mechanisches Materialverhalten gewonnen werden. Zudem wäre es von Vor-
teil, eine kostengünstige Vorhersage des Materialverhaltens für verschiedene Lastannahmen mittels
numerischer Simulation zu erhalten, um die Anforderungen optimal an die Leistungsfähigkeit
des zellularen Metalls anzupassen. Des Weiteren sollten dem Konstrukteur einfach handhabbare
Materialkennwerte übergeben werden, um eine zügige und sichere Realisierung zu ermöglichen.

1.1 Motivation

„When modern man builds large load-bearing structures, he uses dense solids,
steel, concrete, glass. When nature does the same she generally uses cellular materials:
wood, bone, coral. There must be good reason for it.“
M.F. Ashby

Ausgehend von dieser Feststellung begannen in der ersten Hälfte des letzten Jahrhunderts Bemü-
hungen mit der Zielsetzung zellulare Materialien künstlich zu erzeugen, die eine Nachbildung der
Natur darstellen sollen und die klassischen Baumaterialien teilweise ablösen können. Die viel-
fältigen Möglichkeiten der zellularen Materialien ergeben ein breites Einsatzspektrum, aufgrund
der, in gewissen Ausmaßen, Beeinflussung durch Abwandlung der Zellgeometrie und -abmaße.
Durch die Variabilität des Strukturaufbaus dieser Werkstoffe ist es möglich eine Vereinigung von
mehreren förderlichen Materialeigenschaften zu bilden und folglich ein multifunktionales Material
zu erschaffen.
Bis zum heutigen Tag werden in der Massenproduktion nur kunststoffbasierte Schäume und
Schwämme, wie beispielsweise Polystyrol- oder Polyethanschaum, hergestellt und verarbeitet.
Eigenschaften, wie geringe Steifigkeiten oder große Empfindlichkeit bei hohen Temperaturen,
setzen diesen Materialien Grenzen in ihrer Anwendbarkeit. Diese Defizite versucht man seit
Jahrzehnten durch Erforschung zellularer Metallen zu kompensieren. Die bisherigen Untersuchun-
gen bescheinigen den zellularen Metallen eine hohe Fähigkeit zur kinetischen Energieabsorption
(Crash) [58, 136], gute Schwingungsdämpfung [76, 77, 156], sehr gute Schalldämpfung bzw. -
absorption [87, 139], exzellente Wärmeisolation [138, 165] und hohe spezifische Steifigkeit [9, 63].
Mit diesen hervorragenden Materialeigenschaften zeichnen sich die zellularen Metalle als multi-
funktionale Leichtbauwerkstoffe aus. Jedoch bedarf es mehr als der zum Teil brillanten Material-
eigenschaften für eine industrielle Verbreitung der zellularen Metalle. 1999 wurde vom Chemnitzer
Fraunhofer Institut für Werkzeugmaschinen und Umformtechnik IWU eine Befragung [93], unter
deutschen Unternehmen aus dem Bereich Maschinenbau durchgeführt. Sie ergab, dass die Verbrei-
tung von zahlreichen Faktoren abhängt, wie zum Beispiel dem Preis oder der fehlenden exakten
Kenntnisse der Materialeigenschaften. Die Erhebung produzierte aufschlussreiche Ergebnisse. Das
direkte Interesse der Befragten an geschäumten Metallen war allgemein nur mäßig, was sich
auch in ihrem Bekanntheitsgrad widerspiegelt. Stellte man jedoch die Frage nach Werkstoffen

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Einleitung 3

mit innerhalb gewissen Grenzen einstellbaren Eigenschaften, war die Aufgeschlossenheit bzw. das
Interesse erheblich größer. Die Möglichkeit, dass sich Werkstoffkennwerte nach den vorliegenden
Anforderungen richten, erweitert die Auswahlmöglichkeiten und die Variationsvielfalt deutlich
und ist deshalb in aller Regel wünschenswert. Zellulare Metalle, unter anderem Metallschäume,
sind ebenfalls Werkstoffe mit einstellbaren Eigenschaften. Über die Variation der Zellgröße, -form
oder -wanddicke, die wiederum die Dichte des Materials beeinflusst, können alle technischen
Eigenschaften wie Elastizitätsmodul, Streckgrenze oder Zugfestigkeit, eingestellt werden. Den-
noch ist das allgemeine Interesse gering. Wahrscheinlich begründet sich dies damit, dass viele
Ingenieure mit dem Begriff „Schaum“ die Eigenschaften weich und wenig steif assoziieren [93].
Aus dieser Erkenntnis lässt sich eine weitere Aufklärung als Konsequenz ziehen.

Preis

Verfügbarkeit

keine Referenzanwendung

fehlende technische Parameter

technische Parameter nicht ausreichend

fehlende Unterstützung durch Vorgesetzte

sonstiges

0 5 10 15 20 25 30 35 40 45 50
in %

Abbildung 1.1: Hemmnisse für den Einsatz zellularer Metalle nach [93].

Eine Tendenz, sich mit zellularen Metallen zu beschäftigen, zeigt sich vor allem in besonders
innovativen Arbeitsgebieten wie der Luft- und Raumfahrt sowie der Automobilindustrie. Zellulare
Metalle bieten aber ebenso Vorteile im Bereich der Konsumgüter, wie erste Referenzanwendungen
zeigen. Legt man besonderes Augenmerk auf die Hemmnisse für den Einsatz zellularer Metalle
bzw. Metallschäume in Abb. 1.1, wird deutlich, dass das Fehlen von Referenzanwendungen
und technischer Parameter die Haupthindernisse sind. Gerade grundlegende Materialkennwerte
wie Elastizitätsmodul oder Druckfestigkeit, die vor allem konstruktionsrelevant sind, sind für
die industrielle Verbreitung notwendig. Erst mit dem tieferen Verständnis des Materialverhaltens
zellularer Metalle wurden erste Referenzanwendungen möglich.
Die metallischen Hohlkugelstrukturen stellen eine noch relativ neue Gruppe im Bereich der
zellularen strukturierten Metalle dar. Während auf dem Gebiet der Metallschäume ungefähr 150
Institutionen forschen und seit der Jahrtausendwende die Zahl der Publikationen in diesem Bereich
jährlich um ungefähr 20% wächst [129], sind die Forschungsaktivitäten im Sektor der metallischen
Hohlkugelstrukturen überschaubarer. Allerdings können die gewonnenen Forschungserkenntnisse
aus dem Bereich der Metallschäume auf die Hohlkugelstrukturen teilweise angewendet bzw. über-
tragen werden, was wiederum zu einer Beschleunigung der Forschung in diesem Gebiet führt. Die
vorliegende Arbeit beschäftigt sich mit den einstellbaren Größen, wie Zellanordnung, -größe und
-wandstärke, von metallischen Hohlkugelstrukturen und ihren Auswirkungen auf die technischen
und physikalischen Parameter der linearen Elastizität und der akustischen Absorption.
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1.2 Zellulare Materialien

1665 beobachtete Robert Hooke mit einem simplen Mikroskop den natürlichen Werkstoff Kork.
Dabei entdeckte er eine kastenförmige Struktur [96]. Diese Struktur nannte er cellulae (lat.), was im
Deutschen einer kleinen Kammer entspricht. Daraufhin konstruierte Anton van Leeuwenthoek sein
eigenes Mikroskop und untersuchte natürliche Substanzen wie Milch, die eine einzellige Struktur
aufwiesen [128]. So entstand der heutige Begriff der Zelle.
Zellulare Materialen findet man in großer Anzahl und Vielfalt in der Natur. Aber warum verwendet
die Natur solche zellularen Strukturen? Der Nutzen dieser Strukturen liegt darin, dass sie eine
relativ geringe Masse besitzen und zudem oft weitere Funktionen, wie Nährstofftransport oder
Nervenleitungen, beinhalten. Die geringe Masse birgt vor allem dann Vorteile, wenn die Struktur
beschleunigt oder verzögert werden muss, dabei aber auch eine hohe Steifigkeit aufweisen sollte.
Solche Strukturen wurden in der Natur in einem Zeitraum von Jahrmillionen optimiert. Ein
typisches Beispiel stellt der Knochen dar. Er besitzt eine recht geringe Masse bei einer hohen
Steifigkeit. Dies ist notwendig, um den Körper mit seinen Muskeln im Gleichgewicht zu halten.
In der Regel weisen zellulare Materialien ein günstiges Verhältnis zwischen Masse und Steifigkeit
auf. Seit Jahrtausenden versucht der Mensch, sich diese Eigenschaften der zellularen Materialien
zunutze zu machen. Zu Beginn verwendete der Mensch die in der Natur vorkommenden zellularen
Materialien wie Holz oder Kork. Mit der Zeit erlangte er die Fähigkeit, selbst künstlich zellulare
Materialen herzustellen. Heutzutage sind diese zellularen Materialien, insbesondere Schäume, aus
unserem Alltag nicht mehr wegzudenken. Beispielsweise ist Styropor in technischen Anwendun-
gen sowie im täglichen Leben selbstverständlich geworden. Bereits in den 40er Jahren des letzten
Jahrhunderts wurde die Idee zu einem neuen Werkstoff geboren, der zum einen hohe Steifigkeit und
zum anderen die Leichtigkeit eines Naturschwamms aufweisen sollte. Ein weiterer Meilenstein
in der Geschichte folgte in den 50er Jahren als geschmolzenes Aluminium in Natrium-Chlorid-
Negativformen gegossen wurde. So stellte man 1959 erstmals pulvermetallurgisches Halbzeug
mit Treibmittel her und es gelang 1963 das direkte Aufschäumen einer Schmelze. Jedoch be-
gann die eigentliche technische Verwendung vor allem von zellularen Metallen, insbesondere
Metallschäumen, erst in den letzten Jahren. Es wurden neue und einfachere Herstellungsverfahren
entwickelt und diese Werkstoffe können kosteneffizienter produziert werden. Heutzutage lassen
sich nahezu alle Materialien einem Schäumungsprozess unterziehen. Dank der neuen Herstellungs-
verfahren lassen sich nun Eigenschaften eines beliebigen Grundmaterials, wie zum Beispiel jene
von Metallen, mit den Eigenschaften einer zellularen Struktur verbinden und somit Gebiete neuer
Materialeigenschaften erschließen.
Abbildung 1.2 zeigt den Elastizitätsmodul als Funktion der Dichte für zellulare und konventionelle
Materialien. Hierbei steht der Elastizitätsmodul als ein Teil des Maßes für die Steifigkeit und die
Dichte als ein Maß für die Masse. Auf Grund des Verhältnisses der beiden Größen zueinander
werden zellulare Materialien vor allem im Leichtbau eingesetzt.
Diese neuen Materialien mit ihren besonderen Eigenschaften, eröffnen auch verschiedene neue
Anwendungsgebiete, in denen zellulare Materialen eingesetzt werden können. Prädestinierte Be-
reiche hierfür sind die Luft- und Raumfahrtindustrie aber auch die Rüstungsindustrie, wie zum
Beispiel zum Unterbodenschutz von Panzern gegen Minen. Heute ist zu beobachten, dass die
Anwendungsbereiche mehr in die zivile Nutzung übergehen. Die folgende Aufzählung soll einen
kleinen Einblick in das aktuelle Einsatzgebiet zellularer Materialen geben. Zellulare Materialen
werden zum Beispiel als Crashelemente für die Fahrzeug- und Schienentechnik, als Träger von
Katalysatoren (aufgrund ihrer großen Oberfläche), als Filter, als Auftriebskörper im Schiffsbau,
als Biomaterial für Implantate, als Wärmeisolator im Brandschutz und Wohnungsbau, als Kern
in Sandwich-Konstruktionen, als Schwingungsdämpfer in Roboterarmen und Maschinenbetten,
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Abbildung 1.2: Elastizitätsmodul und Dichte für verschiedene Materialien nach [79].

im Leichtbau als Trägerelemente, als Akustikabsorber oder neuerdings als moderne Kunst und
Schmuck verwendet.

1.2.1 Zellulare Metalle

Poröse metallische Werkstoffe, auch als zellulare Metalle bezeichnet, bestehen im Allgemeinen
aus zwei Phasen: Zum einen aus metallischen und zum anderen aus einer großen Menge mikro-
und makroskopisch verteilten Gases (meist Luft). Die Erscheinungsform der zellularen Metalle ist
vielfältig. Eine eindeutige Klassifikation gestaltet sich schwierig [116].
Einerseits kann man die zellularen Metalle aufgrund ihres Strukturaufbaus wie in Abb. 1.3
klassifizieren, andererseits kann man sie anhand der möglichen Herstellungsverfahren, wie in
Abb. 1.4 dargestellt, einteilen. Zu den zellularen Metallen gehören offen- und geschlossenporige
Metallschäume ebenso wie Bienenwabenstrukturen, metallische Hohlkugel- und Faserstrukturen
oder im Verbundguss gefertigte Werkstoffe. Auch syntaktische Schäume, die sich aus zwei festen
und einem gasförmigen Stoff (meist Luft) zusammensetzen, gehören zu dieser Gruppe der Leicht-
bauwerkstoffe. Gegenwärtig ist die Nutzung von leichten metallischen Strukturen hauptsächlich
durch metallische Schäume gekennzeichnet. Doch stellen aus metallischen Hohlkugeln aufgebaute
Strukturen eine neue, interessante Variante dieser leichten Materialien dar.
Alle zellularen Metallstrukturen weisen gewisse Analogien auf: Sie bieten ein gutes Masse-
Volumen-Verhältnis und eine hohe Steifigkeit, sind temperaturbeständig, wärmedämmend, recy-
celbar und verbinden eine geringe Dichte mit einem hohen Energieabsorptions- und Dämpfungs-
vermögen. Die verschiedenen anwendungsspezifischen Eigenschaften können zudem miteinander
kombiniert werden.
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Abbildung 1.3: Klassifizierung von zellularen Metallen mittels des Strukturaufbaus nach [219].

1.2.1.1 Offenporige zellulare Metalle

Weisen die Zellen in einer metallischen Struktur Öffnungen auf, durch welche Gase und Fluide
strömen können, so liegt ein offenporiges zellulares Metall vor, auch offenzelliger Schaum genannt
[55]. Offenporiges zellulares Metall zeichnet sich aus durch eine hohe Permeabilität, große spezi-
fische Oberfläche und niedrige spezifische Dichte sowie gute Verformbarkeit. Bei entsprechender
Werkstoffwahl können gute korrosions- und oxidationsbeständige Schäume dieser Art hergestellt
werden. Einsatzgebiete für diesen Werkstoff finden sich in der Fluid- und Verfahrenstechnik zum
Beispiel bei Filtern, Schalldämpfern, Wärmetauschern, Sieben, Abscheidern, Brennern, Explosi-
onsschutz, Flammendurchschlagsicherungen und Katalysatorträgern, aber auch in medizinischen
Produkten, wie zum Beispiel bioanalogen Knochenersatzmaterialien. Stellvertretend für offen-
porige zellulare Metalle kann man offenporige pulvermetallurgische Schäume und perforierte
metallische Hohlkugelstrukturen erwähnen.

1.2.1.2 Geschlossenporige zellulare Metalle

Ist die einzelne, fluid- bzw. gasgefüllte Zelle geschlossen und bilden solche Zellen die Gesamt-
struktur, so liegt ein geschlossenporiges zellulares Metall vor. Einsatzgebiete geschlossenpori-
ger Materialien sind beispielsweise Leichtbautragelemente im Anlagen-, Maschinen-, Fahrzeug-,
Flugzeug- und Schiffbau, Elemente zur Schall- und Wärmedämmung im Bauwesen, Energieabsor-
ber als Crash-Elemente in Kraftfahrzeugen, als Sicherheitselemente und Schutzeinrichtungen zum
Beispiel an Hochgeschwindigkeitswerkzeugmaschinen sowie Anwendungen zur Schwingungs-
bzw. Explosionsdämpfung und im Brandschutz. Weitere Einsatzgebiete ergeben sich im Be-
reich der Elektrotechnik zur elektromagnetischen Abschirmung bzw. als Elektroden. Außerdem
zeichnen sich Anwendungen für den Einsatz in schnell bewegten Baugruppen von Fertigungs-
anlagen (zum Beispiel Maschinentische, Handling-Systeme), als Kerne für Gussformen sowie
als Implantatwerkstoffe ab. Zu den geschlossenporigen zellularen Metallen zählen syntaktische
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Abbildung 1.4: Herstellungsverfahren von diversen zellularen Metallen nach [45].

Metallschäume genauso wie Metallschäume, poröse Metalle und metallische Hohlkugelstrukturen,
um nur einige Vertreter dieser Familie der zellularen Metalle zu benennen.

1.2.2 Metallschäume

Schon Mitte des letzten Jahrhunderts wurde die Idee für einen neuen Werkstoff geboren, der zum
einen die hohe Steifigkeit von Metallen und zum anderen die Leichtigkeit eines Naturschwamms
vereinen sollte. Die ersten technischen Umsetzungen dieses Konzepts der Metallschäume kamen in
den 70er Jahren des vorhergehenden Jahrhunderts auf [15, 28, 154]. Die eigentliche kommerzielle
Nutzung begann jedoch erst später. Der Schaum lässt sich auf verschiedene Weise erzeugen. So
wurde bereits in den 50er Jahren des 19. Jahrhunderts geschmolzenes Aluminium in Kochsalz-
Negativformen gegossen. Als weiteren Meilenstein stellte 1959 die Firma United Aircraft Corpora-
tion erstmals pulvermetallurgische Halbzeuge mit Treibmittel her. Im Jahre 1963 gelang Hardy und
Peisker das direkte Aufschäumen einer Schmelze [83]. Durch die ab 1990 zunehmende industrielle
Nutzung stieg die Zahl der Firmen und Institute, die sich mit diesem Themengebiet beschäftigen.
Metallschäume lassen sich wie die zellularen Metalle in geschlossen- und offenporiger Struktur
einteilen. Oftmals bezeichnet man den offenporigen Metallschaum auch als Metallschwamm.
Metallschäume kennzeichnen sich durch stark zufällige Porengröße und -verteilung. Äquivalent
gilt dies beim Netzaufbau von Metallschwämmen.
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Abbildung 1.5: Mögliche Anwendungsgebiete zellularer Metalle in Abhängigkeit von der Art der
Porosität nach [12].

1.2.3 Hohlkugelstrukturen

Pulvermetallurgisch hergestellte metallische Hohlkugeln stellen eine vergleichsweise neue Vari-
ante innerhalb der zellularen Metalle dar. Mit metallischen Hohlkugeln können verklebte, ver-
sinterte und verlötete zellulare Strukturen aufgebaut werden. Weiterhin ist es möglich, durch
einen speziellen Formgebungsprozess aus den mit Metallpulver beschichteten Styroporkugeln
einen Formkörper herzustellen, der nach der Wärmebehandlung eine versinterte zellulare Hohl-
kugelstruktur ergibt. Gegenüber anderen zellularen Materialien, wie zum Beispiel Metallschäu-
men, zeichnen sich metallische Hohlkugelstrukturen sowohl durch eine hohe Reproduzierbarkeit
im Strukturaufbau mit nahezu isotropen Eigenschaften aus, die durch die definierte Geometrie
der Hohlkugeln bedingt sind. Darüber hinaus verfügen sie über eine große Werkstoffflexibilität
aus. Der besondere Vorteil metallischer Hohlkugelstrukturen besteht darin, dass selbst bei un-
geordneten Strukturen die Porengröße nur geringfügig variiert. Hohlkugelstrukturen sind somit
im Vergleich zu stochastischen Schäumen besser berechenbare Leichtbauwerkstoffe, die durch
die genannten Vorzüge sehr gute Voraussetzungen für eine werkstoffmechanische Modellierung
des Bauteilverhaltens bieten. Neben einer deutlichen Gewichtseinsparung können durch me-
tallische Hohlkugelstrukturen weitere anwendungsspezifische Eigenschaften umgesetzt werden,
die insbesondere durch die Zellmorphologie und den Werkstoff einstellbar sind. Hierzu zählen
Wärmeisolation, ausgeprägtes Schall- und Energieabsorptionsvermögen, mechanische Dämpfung,
katalytische Effekte sowie eine hohe spezifische Oberfläche. Die metallische Hohlkugelstruktur
ermöglicht selbsttragende Konstruktionen und bietet mechanische Festigkeit auch bei stärkerer
Beanspruchung. Falls erwünscht können metallische Hohlkugeln ebenso in jegliche freie Form
injiziert werden, da Kugeln im Allgemeinen über sehr gute Schütt- und Fließeigenschaften verfü-
gen und außerdem eine hohe Packungsdichte haben. Ferner ist der Einsatz im Sandwichverbund
mit beliebigen Fasermatten oder Platten kombiniert realisierbar. Bedingt durch die bereits erwähnte
große Werkstoffvielfalt sowie die Variationsmöglichkeiten der Hohlkugelgeometrie und die daraus
herstellbaren Hohlkugelstrukturen ergeben sich zahlreiche Anwendungsgebiete und Einsatzfelder.
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Dies sind Kraftfahrzeugbau, Luft- und Raumfahrt, chemische Verfahrenstechnik, Geräte- und
Anlagenbau sowie die Medizintechnik. Die Vielfalt der Anwendungsmöglichkeiten metallischer
Hohlkugeln und daraus hergestellter metallischer Hohlkugelstrukturen steht noch am Anfang ihrer
industriellen Verwendbarkeit.
Zur Herstellung der Hohlkugelstrukturen gibt es verschiedene Verfahren und Werkstoffe, wobei die
Struktur generell aus kugelförmigen Zellen enger Durchmesserverteilung aufgebaut ist. Aufgrund
ihres Aufbaus aus einzelnen Kugeln lassen sich durch Variation der Kugelwanddicke und des
Kugeldurchmessers unterschiedlichste mechanische Eigenschaften und Dichten generieren. Die
üblichen Werte schwanken hierbei zwischen 0,3 und 1,5 g

cm3 . Abhängig von der Gestaltung des
Herstellungsverfahrens lassen sich die Wände der kugelförmigen Zellen entweder dicht oder
auch offen porös ausführen. Durch die Auswahl des entsprechenden Herstellungsverfahrens, der
Parameterwahl und des Werkstoffes lassen sich die Strukturen an die verschiedensten Betriebs-
beanspruchungen, wie beispielsweise Hochtemperatur- oder Korrosionsbeständigkeit, anpassen.
Im Allgemeinen werden für die metallischen Hohlkugelstrukturen folgende Werkstoffe eingesetzt:
niedrig legierter Stahl, Edelstähle (z.B. 1.4404, 1.4841, 1.4767), Nickel und Nickellegierungen,
intermetallische Verbindung, Molybdän, Wolfram und Edelmetalle.
Prinzipiell gibt es zwei unterschiedliche Verfahren: Das galvanische Verfahren und Wirbelbettbe-
schichtungsverfahren. Auf letzteres soll nur kurz eingegangen werden. Für das galvanische und
weitere Verfahren wird auf [37] verwiesen. Aktueller Stand der Technik ist die Herstellung von
Hohlkugelstrukturen mittels Wirbelbettbeschichtungsverfahren. Hierbei handelt es sich um ein
spezielles pulvermetallurgisches Verfahren, das sich, im Vergleich zum galvanischen Verfahren, als
wesentlich effizienter erweist und gemäß Abb. 1.6 funktioniert. Auf ein geeignetes Trägermaterial,
wie beispielsweise Polystyrolkugeln (EPS), wird in einer Wirbelbettbeschichtungsanlage eine
Metallpulver-Binder-Suspension aufgebracht. In einer nachgelagerten, mehrstufigen Wärmebe-
handlung werden der Binder und gleichzeitig das Trägermaterial entfernt und aus dem Metall-
pulver werden dichte Kugelschalen gesintert. Der Vorteil dieses Verfahrens besteht darin, dass das
Trägermaterial kommerziell verfügbar und der spezifische Durchmesser beliebig einstellbar ist,
wobei üblicherweise die Durchmesser 0,5 bis 10 mm, bei einer Wanddicke der Kugeln von 20 bis
500 μm betragen. Durch eine entsprechende Auswahl der Teilchenform sowie die gezielte Einstel-
lung der Prozessparameter lassen sich dicht-poröse und offen-poröse Hohlkugelschalen herstellen.
Vorteilhaft ist dieses Verfahren, weil alle pulverförmigen, sinterbaren Werkstoffe hiermit zu Hohl-
kugeln verarbeitet werden können. Aus den einzelnen Hohlkugeln lassen durch Sintern, Löten oder
Kleben nun Halbzeuge und Normteile fertigen, wobei zellulare Strukturen mit offener wie auch
geschlossener Porosität produziert werden können. Abhängig von den gewählten Einzelhohlkugeln
ist es zudem möglich ungeordnete, geordnete oder auch gradiert aufgebaute zellulare Strukturen
herzustellen. Üblicherweise werden gesinterte Hohlkugelstrukturen in einem Net-Shape-Prozess
hergestellt, indem die beschichteten Kugeln in ein spezielles Formgebungswerkzeug gefüllt und
mehr oder weniger stark deformiert und anschließend zu einer einsatzfähigen, zellularen metalli-
schen Struktur gesintert werden.
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Abbildung 1.6: Herstellung metallischer Hohlkugeln mit dem Wirbelschichtverfahren (nach Glatt
GmbH, Dresden).

1.3 Stand der Forschung

Ein umfassender Überblick über Herstellung, Charakterisierung, Eigenschaften und Anwendungs-
bereiche von offen- und geschlossenporigen Schäumen ist in folgenden Büchern und Artikeln
[9, 12, 45, 56, 75, 92] zu finden. Öchsner und Augustin [37] geben weitgehende Zusammen-
fassungen im Bereich der metallischen Hohlkugelstrukturen wieder. Die Qualität der zellularen
Materialien, die sich beispielweise in der Wiederherstellbarkeit, Streuung der Zellgröße und -
verteilung ausdrückt, bestimmt maßgeblich ihre Eigenschaften und ihr Verhalten und die damit
verbundenen Einsatzmöglichkeiten. Diese Eigenschaften können durch analytische und (halb-
) phänomenologische Modelle, Simulationen und experimentelle Messungen beschrieben bzw.
bestimmt werden. Die Literatur zur Beschreibung des Verhaltens zellularer Werkstoffe und zur Be-
stimmung der jeweiligen Materialgleichungen, mit dem Ziel ihre Eigenschaften bzw. ihr Verhalten
vorherzusagen, lassen sich grob in vier Richtungen unterteilen [36]. Es sind dies der Gebrauch von
phänomenologischen Modellen, die Verwendung von Formulierungen, welche für Verbundwerk-
stoffe entwickelt wurden, die Analyse von Modellstrukturen, die den Aufbau der physikalischen
Struktur repräsentieren und die Untersuchungen von realen Strukturen, die beispielsweise auf
Computertomografie-Bildern basieren.
Die einfachste Methode zur Beschreibung des Verhaltens von Materialien mit Meso- oder Mi-
krostruktur basieren auf der Theorie von Materialien ohne Strukturaufbau. Das Material des zu
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untersuchenden Körpers wird als homogen angenommen. Es werden alleinig die Materialpara-
meter bzw. die Stoffgesetze, wie das Elastizitätsgesetz, das Fließkriterium, die Fließregel oder
das Verfestigungsgesetz an die experimentell bestimmten Werte des jeweiligen Stoffs angepasst.
Diese phänomenologischen Materialmodelle bilden das elastisch-plastische Verhalten (komplettes
Spannungs-Dehnungsverhalten) strukturaufbautechnisch unmotiviert ab. Solche Materialmodelle
sind Grundlage für viele kommerzielle Finite-Element-Programme. In den Programmen kann
mittels Vorgabe der Spannungs-Dehnungskurve das experimentell bestimmte Materialverhalten
hinterlegt werden. Einen guten Überblick über die Vielfalt an Modellen für Metallschäume liefert
die Veröffentlichung von Hanssen et al. [82]. Angewendete Modelle für Hohlkugelstrukturen
können beispielsweise [37] entnommen werden. Als Grundlage und Referenz der meisten phä-
nomenologischen Arbeiten in diesem Gebiet dient das Werk von Despande und Fleck [48].
Analog entstanden in der Akustik phänomenologische Modelle zur Schallabsorption von porösen
Materialien. Das Material bzw. Fluid des zu untersuchenden Körpers wird wiederum als homogen
angesehen. Das wohl bekannteste Modell zur Schallabsorption ist das sogenannte äquivalente
Fluid Modell, das durch die frequenzabhängigen Größen effektive Dichte und effektives Kom-
pressionsmodul beschrieben wird. Für hochporöse Materialien hat sich das einfache Modell nach
Delany und Bazley [46] etabliert, das auf experimentell bestimmten Daten basiert, etabliert. Dieses
Schallabsorbermodell wurde später durch Miki [147] verfeinert.
Die bisher genannten phänomenologischen Material- und Akustikmodelle berücksichtigen kei-
neswegs, dass das zu untersuchende Material eine Meso- oder Mikrostruktur aufweist, die Ein-
fluss auf sein Verhalten hat. Eine Möglichkeit, dies zu umgehen, besteht darin, Materialmodelle
zu verwenden, die das Verhalten der Meso- bzw. Mikrostruktur durch neue Materialparameter
abbildet. In der Mechanik handelt es sich hierbei um eine Erweiterung des klassischen Kontiu-
umsmodells. Den unendlich vielen Materialpunkten des klassischen Kontiuumsmodells wird über
die translatorischen Freiheitsgrade hinaus noch ein kleines Starrkörpervolumen mit rotatorischen
Freiheitsgraden zugewiesen. So entstehen bei diesem sogenannten COSSERAT- oder Mikropolar-
Kontinuum für jeden Materialpunkt sechs Freiheitsgrade. Dies bedeutet, dass translatorische und
rotatorische Felder unabhängig sind und das Kräfte und gekoppelte Spannungen auftreten. Lakes
[120, 122] präsentierte experimentelle Werte auf Basis des COSSERAT-Kontinuums für diverse
poröse Materialien. Diebels und Steeb [50, 51, 52] bzw. Dillard et al. [53] nutzen diese Theorie
zur Beschreibung des Verhaltens von Schäumen. Altenbach und Eremeyev [7, 8] entwickelten
eine Plattentheorie auf Basis der COSSERAT-Gleichungen, bei der in ihre Dickenrichtung ein
heterogenes Materialverhalten berücksichtigt ist. Ein solches Materialverhalten findet man auch
bei Laminaten oder „Functionally Graded Materials“.
Die bisher genannten Verfahren betrachten die Meso- bzw. Mikrostruktur nur über Material-
parameter. In einigen Fällen spielt jedoch die Meso- bzw. Mikrostruktur eine entscheidende
Rolle und kann durch die aufgeführten Verfahren nicht ausreichend genau abgebildet werden.
Demgegenüber ist das komplette Modellieren der Meso- und Mikrostruktur als weitere Verfah-
rensmöglichkeit für reale makroskopische Bauteile viel zu aufwendig [110]. Selbst die heutigen
rechnerischen Ressourcen lassen noch keine effiziente Berechnung zu. Aus diesem Grund wurden
Ansätze entwickelt, die den meso- bzw. mikroskopischen Strukturaufbau in ihrer Betrachtung mit
einbeziehen und zudem effektiv anwendbar sind. Solche Verfahren werden im Allgemeinen als
Multiskalen-Methoden bezeichnet. Diese Methoden verknüpfen die Effektivität der Makroebene
mit der Genauigkeit der Mesoebene [110].
In der multiskalen Werkstoffmodellierung von zellularen Materialien ist es gebräuchlich, die
Untersuchungstiefe in drei verschiedene Größenskalen einzuteilen. Dabei wird auf geometri-
scher Ebene zwischen Mikro-, Meso- und Makromodellierung unterschieden [141]. Abbildung
1.7 veranschaulicht diese Einteilung. Während die Mikroebene einzelne Atome, die Moleküle,
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Kristalle und ihre Fehlstellen berücksichtigt, befasst sich die Modellierung in der Makroebene
zumeist mit Ingenieuranwendungen, wie beispielsweise die Beschreibung von Tragwerken durch
die Kontiuumsmechanik. Die Mesoebene stellt einen Zwischenbereich dar, der zur Beschreibung
von Mikrostrukturen, Zellen, Körnern, harten Einschlüssen etc. in der Materialwisssenschaft dient
[141]. Die Modellierung in der Mikroebene, die zum Beispiel zur Simulation von Diffusions-
und Reaktionsvorgängen dient, kann vor allem in den Gebieten der Physik, Chemie und der
Kristallografie von Bedeutung sein. Zur Beschreibung mechanischer Eigenschaften von Verbund-
werkstoffen [86] und insbesondere zellularen Festköpermaterialien [187] wird der Modellierung
in der Mikroebene zumeist keine Beachtung geschenkt. Die einzelnen Methoden unterscheiden
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Atome, Gitter
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Bauteil
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Abbildung 1.7: Ebenen der Materialmodellierung und -simulation.

sich dahingehend, wie die Struktur in einer ungeordneten Betrachtungsebene (z.B. Mikrostruktur)
abgebildet wird, wie die Betrachtungsebene (z.B. makrospokische Ebene) modelliert wird und
wie der Übergang zwischen den zwei betrachteten Ebenen formuliert wird. Dieser Übergang
zwischen den Ebenen findet durch Mittelungsprozesse, zumeist einer Volumenmittelwertbildung,
statt. Hierbei soll die Verzerrungsenergie der heterogenen Struktur in der unteren Ebene gleich
der Energie sein, die nach der Volumenmittelung im betrachteten Volumen gespeichert ist. Diese
Vorgehensweise wird als Homogenisierung bezeichnet [81]. So kann die Homogenisierung als
gedankliche Verschmierung einer heterogenen Struktur auf der Mikro- oder Mesoebene und der
Bildung von effektiven Materialeigenschaften auf der nächst höheren Betrachtungsebene, bei-
spielsweise Makroebene, verstanden werden. Eine Voraussetzung für die Homogenisierung ist
die Untersuchung einer Struktur, die sich translatorisch periodisch wiederholt bzw. statistisch
repräsentativ für den untersuchten realen Werkstoff ist. In diesem Zusammenhang spricht man von
einem repräsentativen Volumenelement (RVE). Eine genauere Betrachtung der Homogenisierung
wird in Kapitel 3.2.1 gegeben.
Die erste und einfachste Methode, die das Verhalten des mikro- oder mesoskopischen Struk-
turaufbaus berücksichtigt, ist das sogenannte Elementarzellen-Modell oder auch als Einheitszellen-
Modell (engl. „unit cell“) bekannt. Die Elementarzelle stellt die kleinste translatorisch periodische
Einheit einer unendlichen homogenen Struktur dar. Die aus der Physik, Chemie oder Kristallogra-
fie bekannten BRAVAIS-Gitter lassen sich in 14 mögliche Formtypen der Einheitszelle einteilen.
Gemäß der inhärenten Symmetrieelemente der Elementarzellen lassen sich die BRAVAIS-Gitter in
sieben Kristallsysteme klassifizieren, bezeichnet als triklin, monoklin, orthorhombisch, tetragonal,
kubisch, trigonal und hexagonal. Zumeist werden kubische oder hexagonale Kristallsysteme für die
Elementarzellen von homogenen Hohlkugelstrukturen gleicher Kugelgröße verwendet, begründet
durch die einfache und vor allem teilweise (packungs-)stabile Anordnung.
Bei Verwendung der analytischen Homogenisierungsmethoden werden die effektiven elastischen
Materialkonstanten basierend auf mikro- bzw. mesomechanischen Zusammenhängen berechnet.
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Die einfachsten Strukturaufbauten, die zur modellhaften Beschreibung von Metallschäumen ver-
wendet werden, sind zwei- oder dreidimensionale Elementarzellenmodelle. Die Abmessungen die-
ser Elementarzellen entsprechen in etwa der gemessenen Kantenlänge einer Zelle des betrachteten
Metallschaums selbst. Sie bilden meist offenzellige Strukturen ab. Im Fall der analytischen Model-
le ist die Beschreibung durch geschlossene mathematische Lösungen nur für wenige, sehr einfache
Strukturen möglich. Für reale Strukturen bedarf es einer starken Vereinfachung bzw. Abstraktion.
Aus diesem Grund gibt es nur wenige Modelle für Schäume Das wohl bekannteste Modell hierfür
ist das kubische Modell von Gibson und Ashby [75], das in vielen Veröffentlichungen als Referenz
genannt wird. Es besteht hauptsächlich aus Balken, die die Kanten eines Würfels abbilden. Werden
die Würfelflächen durch Platten bzw. Schalen interpretiert, so bildet dieses Modell das Verhalten
eines geschlossen porigen Schaums nach. Durch diese sehr einfachen Modellannahmen können
Zusammenhänge zwischen dem Elastizitätsmodul oder der Fließgrenze und der relativen Dichte
hergeleitet werden.
Ein analytisches Modell für gleich große Hohlkugeln mit dünner Wandung in einer kubischen
Anordnung wurde von Grenestedt [80] entwickelt. Es beruht auf den Untersuchungen von Reissner
[172, 173] und beschreibt das elastische Verhalten. Weiterführend betrachtet Grenested zufalls-
behaftete, verteilte Hohlkugeln mit unterschiedlicher Größe auf Basis des Modells von Hashin
und Shtrikman [84], das auf Variationsprinzipen beruht. Mit dem Näherungsmodell von Hashin
und Shtrikman lässt sich für die effektiven Materialparameter eine obere und untere Schranke
zuweisen. Unter der Annahme konstanter Dehnungen bzw. konstanter Spannungen im heterogenen
Material lassen sich die exakten Schranken (äußersten Extremalwerte) für die effektiven Material-
eigenschaften angeben. Der obere Extremalwert unter Annahme konstanter Dehnungen wird
als VOIGT-Schranke, der untere Grenzwert unter Annahme konstanter Spannungen als REUSS-
Schranke bezeichnet. Auf diese beiden Schranken wird in Abschnitt 3.2.1 genauer eingegangen.
Die Kugeln der analytischen Betrachtung nach Grenestedt stehen im belastungsfreien Zustand
in einem punktförmigen Kontakt, was nicht den realen Bedingungen von Hohlkugelstrukturen
entspricht.
Ähnlich wie bei der mechanischen Betrachtung gibt es nur analytische Modelle für die Schall-
absorption, bei Strukturen bestehend aus Regelgeometrien. Die Modelle von Kirchhoff [113],
Zwikker und Kosten [228] beschreiben beispielsweise die Schallausbreitung in zylindrischen
Rohren unter der Berücksichtigung viskoser und thermischer Effekte. Je nach Frequenz überwiegt
der eine oder andere Effekt. Bei der Homogenisierung von heterogenen, offenporigen Strukturen
(z.B. Schäumen) wird die mikroskopische NAVIER-STOKES-Bedingung in das makroskopische
Gesetz von Darcy überführt [71]. Daraus entstand die wohl bekannteste Theorie, die des quasi-
homogenen Schallabsorbers [152]. Diese Theorie setzt voraus, dass das Skelett des porösen
Absorbers starr ist und die inneren Strukturabmessungen sehr klein im Verhältnis zur Wellenlänge
der einfallenden Schallwellen sind. Der Absorber wird als quasi-homogenes Material mit viskosen
Verlusten angesehen. Während das Schallabsorbermodell für poröse Materialen nach Delany und
Bazley nicht auf den Strukturaufbau eingeht und beim Modell des quasi-homogenen Schallab-
sorbers oftmals die thermodynamischen Effekte vernachlässigt werden, berücksichtigt das halb-
phänomenologische JOHNSON-CHAMPOUX-ALLARD-Modell [1] sowohl den Strukturaufbau als
auch die viskosen und thermalen Effekte im porösen Medium. Fünf Parameter werden hierfür
benötigt: die Porosität, die Tortusität, der längenbezogene Strömungswiderstand, die charakteris-
tische thermische und viskose Länge der gesamten Struktur. Mit diesen Parametern lässt sich der
Absorptionskoeffizient einfach als Funktion der Frequenz bestimmen. Dieser Ansatz, auch äquiva-
lenter Fluid-Ansatz bezeichnet, geht von einem starren strukturellen Gerüst des porösen Mediums
aus und bildet ausschließlich die Ausbreitung der Kompressionswelle ab. Weiterführend gibt Biot,
basierend auf Untersuchungen bodenmechanischer Probleme eine Formulierung zur Beschreibung
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der Wellenausbreitung in gesättigten Medien mit deformierbarem Strukturgerüst (poroelastische
Materialien) [44]. Biot dehnt zusätzlich die Beschreibung auf die akustische Wellenausbreitung
[26] aus. Die Modellierung beinhaltet eine Longitudinalwelle und zwei Transversalwellen. Das
BIOT-Modell liefert für ein großes Spektrum praktischer Problemstellungen gute Ergebnisse. Zur
Beschreibung des Absorptionsverhaltens von Schäumen [56, 125], insbesondere von Hohlkugeln-
strukturen [60, 166] erwies sich das JOHNSON-CHAMPOUX-ALLARD-Modell als ausreichend.
Experimentelle Werte für das Schallabsorptionvermögen von Hohlkugelstrukturen präsentieren
Hübelt [88, 87], Pannert et al. [166] und Gasser [71].
Gestaltet sich der Strukturaufbau derart, dass keine analytische Lösung möglich ist, bietet sich
die Analyse des Materialverhaltens mittels numerischer Simulationsmethoden an. Ein etabliertes
numerisches Näherungsverfahren in der Ingenieuranwendung stellt die Finite-Elemente-Methode
(FEM) dar. Mit dieser Methode lassen sich Modelle mit komplexen Geometrien abbilden und somit
auf die Imperfektionen des Strukturaufbaus eingehen. Als weitere numerische Näherungsmetho-
den können beispielsweise die Randelementmethode (BEM) für akustische Probleme, Diskrete-
Element-Methode (DEM) in der Partikelverfahrenstechnik oder LAGRANGE-MONTE-CARLO-
Simulation zur Beschreibung von Strömungen aufgeführt werden. Es besteht keine Vollständigkeit
bei den aufgeführten numerischen Methoden und in dieser Arbeit wird auch nicht weiter auf sie
eingegangen.
Mit diesen numerischen Methoden können sowohl Strukturen mit einem periodischen Aufbau als
auch Strukturen mit einem beliebigen oder zufälligen Aufbau untersucht werden. Die Untersu-
chungen können in zwei- oder dreidimensionsaler Betrachtung stattfinden. Allerding erhöht sich
bei der letztgenannten der Rechenaufwand deutlich gegenüber der erstgenannten Betrachtung und
die Aussagefähigkeit einer zweidimensionsalen Betrachtung beschränkt ist. Im Fall periodischer
Strukturen, wie der Elementarzelle, erlauben periodische Randbedingungen eine Berechnung
einer unendlich ausgedehnten Struktur. Auf periodische Randbedingungen wird in dieser Arbeit
ausführlich in den Abschnitten 3.2.1 und 3.2.5 eingegangen. So untersuchte Sanders und Gibson
[183, 185] das elastische Verhalten einer unendlich ausgedehnten geklebten Hohlkugelstruktur mit
kubisch primitiver, kubisch raumzentrierter und kubisch flächenzentrierter Anordnung. Dabei wur-
de die Variation der Kugelwanddicke berücksichtigt. Gasser analysierte geklebte Strukturen und
bestätigte die Ergebnisse von Sanders [73, 71]. Marcadon und Feyel [142], Fiedler und Öchsner
[64, 37] und Vesenjak et al. [212] erweitern ihre elementarzellenbasierenden Untersuchungen auf
das plastische bzw. dynamische Verhalten. Die Elementarzelle mit hexagonal dichtest gepackter
Anordnung wird nur in wenigen Fällen betrachtet [37, 70].
Für Schüttungen von Hohlkugeln bzw. daraus folgenden Hohlkugelstrukturen stellen sich in der
Regel keine perfekten, wie bei den Elementarzellen dargestellten, regelmäßigen (theoretischen)
Packungen ein. Um realistische Strukturen mit ihrem unregelmäßigen Aufbau nach- bzw. abzubil-
den, gibt es mehrere Ansätze. Zum einen existieren Methoden, die sich auf die real vorkommenden
Gegebenheiten stützen, zum anderen gibt es Vorgehensweisen, die eine unregelmäßige Struktur auf
Basis physikalisch-technischer Effekte erzeugen. Bei der erst angeführten Methode kommt meist
das etablierte und zerstörungsfreie Messverfahren der Computertomografie zum Zug. Erstmalig
untersuchte Illerhaus mit der dreidimensionalen Computertomografie eine zylinderförmige Probe
aus gesinterter metallischer Hohlkugelstruktur und bestimmte die Größenverteilung der Hohlku-
geln [97]. Caty et al. nutzt die Computertomografie zur Bildung eines finiten Schalenmodells
zur Bestimmung der Ermüdungsdauer [32, 31]. Die Gruppe um Fiedler beschäftigt sich mit
numerischem Untersuchen von zellularen Metallen mittels Computertomografie. Ein Schwerpunkt
liegt auf dem thermischen Materialverhalten [66], wobei auch das mechanische Verhalten von
metallischen Hohlkugelstrukturen untersucht wird [65, 67, 213]. Winkler et el. präsentieren eine
Rekonstruktionsmethode von Hohlkugelstrukturen, mit der sich die Kugeldurchmesserverteilung

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Einleitung 15

und -position bestimmen lässt [225]. Diese Methode wird in Abschnitt 3.1.1 genauer erläutert.
Ebenfalls untersucht Fallet unregelmäßige Hohlkugelstrukturen mit Hilfe der Computertomografie
auf mechanische und teilweise akustische Eigenschaften [59, 60]. Grundlage hierfür bildet die
Arbeit von Gasser, der den längenbezogenen Strömungswiderstand aus inversen Elementarzellen
zur Schallabsorption bestimmt [71]. Zudem charakterisiert Fallet die Eigenschaften von Hohlku-
gelstrukturen mit Hilfe von Modellen, deren Kugelpackungen künstlich erzeugt werden. Die Ku-
gelpackungen werden mit Hilfe der Diskreten-Elementen-Methode, die aus der Molekulardynamik
stammt, bestimmt.
Neben der numerischen Charakterisierung wurden zahlreiche experimentelle Untersuchungen ver-
anlasst, die teilweise zur Verifizierung der aufgeführten Modelle dienen. Statische Druckversuche
wurden beispielsweise von Friedl et al. [68] und Lim et. al [133] durchgeführt. Winkler et al.
untersuchten experimentell das Schwingverhalten plattenförmiger Hohlkugelstrukturen und die
Ausbreitung des Körperschalls [223, 222, 224]. Die Einsatzmöglichkeit zellularer Metalle im
Automobilbereich gibt die Untersuchung von Heine et al. [89] wieder. In dieser Studie zeigen
Hohlkugelstrukturen ein gutes Potenzial durch ihr gutes Schallabsorptionsverhalten und durch ihre
voraussagbaren isotropen mechanischen Eigenschaften [37].
Diese isotropen Eigenschaften von Hohlkugelstrukturen werden in vielen Publikationen aufge-
führt. Es gibt allerdings noch keine dem Autor bekannte Arbeit, die sich genauer mit dem iso-
bzw. anisotropen Verhalten von unregelmäßig angeordneten Hohlkugelstrukturen beschäftigt. Des
Weiteren wurden keine Arbeiten gefunden, die reale Hohlkugelstrukturpackungen anhand von
Kennwerten analysieren und die daraus ermittelten Werte mit zufällig erzeugten Packungen vergli-
chen haben. Viele bisherige Modelle basieren rein auf realen Strukturen oder auf fiktiv erstellten
Packungen. Die auf realen Strukturen basierenden Methoden bilden zwar exakt den Aufbau der
zu untersuchenden Hohlkugelstruktur ab, sind aber sehr aufwendig. Die Untersuchung einer
Vielzahl von Proben ist somit noch unmöglich und eine Variation der Geometrie, beispielsweise
Änderung der Wanddicke, ist sehr komplex und folglich mit einem großen zeitlichen Aufwand
verbunden. Für die Anordnung von Kugeln gibt es heute schon eine Vielzahl diverser Algorithmen
zur Erstellung fiktiver Hohlkugelstrukturen. Ein Vergleich von realen und fiktiv erstellten Hohl-
kugelstrukturen wäre für die Vorhersehbarkeit von Nutzen. Dem Autor ist ebenfalls unbekannt,
dass es weitreichende Parameterstudien für regelmäßig geordnete und zufällig geordnete Modelle
gesinterter Hohlkugelstrukturen gibt. Neuartig dürfte auch das Schalltransmissionsverhalten von
Hohlkugelstrukturen sein.

1.4 Ziel und Inhalt der Arbeit

An der Fülle der zum Teil im Abschnitt 1.3 benannten Untersuchungen von zellularen Werkstoffen
ist ersichtlich, dass insbesondere der Bereich Metallschäume bereits ein gut untersuchter Werkstoff
ist. Aus den schon bestehenden Untersuchungen von Metallschäumen sollen die gewonnenen
Erkenntnisse auf den noch relativ jungen zellularen Werkstoff Hohlkugelstrukturen übertragen
und angewendet werden. Wie in der Einleitung erwähnt, weisen Hohlkugelstrukturen in ihrer
Zellmorphologie geringere Abweichungen auf als bei Metallschäumen und erweisen sich dadurch
in der Struktur als weniger heterogen. Durch geringere Unregelmäßigkeit in ihrem Strukturaufbau
werden die Eigenschaften von Hohlkugelstrukturen oftmals als isotrop angenommen.
Ziel dieser Arbeit ist eine weiterführende Charakterisierung mechanischer und akustischer Eigen-
schaften metallischer Hohlkugelstrukturen unter dem Einfluss unregelmäßiger Kugelanordnung.
Insbesondere soll ein Augenmerk auf das isotrope bzw. anisotrope mechanische Verhalten gewor-
fen werden. Des Weiteren wird das Schallabsorptions- und Schalltransmissionsverhalten betrach-
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tet. Zu Beginn werden in Kapitel 2 die für die Arbeit relevanten Grundlagen der Elastizitätstheorie
und Akustik erläutert. Diese wesentlichen Auszüge werden genutzt, um das Materialverhalten
zu formulieren, um die Modelle von Tragwerkselementen, wie die Platte, abzuleiten und um die
Mechanismen der Schallabsorption beschreiben zu können. Die Methoden zur Charakterisierung
werden ausführlich in Kapitel 3 aufgezeigt. Zunächst wird auf die Modellierung der Struktur-
geometrie eingegangen. Es wird eine Methode zur Rekonstruktion realer Hohlkugelstrukturen
und mehrere Algorithmen zur Regenerierung von Kugelpackungen präsentiert. Im Speziellen
werden zufällige Kugelpackungen betrachtet und ihre Charakterisierung anhand von Kennwerten
aufgezeigt. Als Ergebnis der Geometriemodellierung wird ein vollparametrisches Volumenmodell
für Hohlkugelstrukturen vorgestellt.
Einen weiteren Schwerpunkt in diesem Kapitel stellen die Methoden zur Bestimmung der Elasti-
zitätskennwerte dar. Zur Bestimmung dieser Werte wird eine Homogenisierungstheorie eingeführt
und ausführlich erläutert. Um die aus der Homogenisierung gewonnenen Ergebnisse später besser
interpretieren zu können, wird kurz auf Materialsymmetrien und beispielsweise auch auf negative
Querkontraktion eingegangen. Zusätzlich wird im Speziellen ein Finite-Elemente-Metode (FEM)
basierendes Berechnungsmodell mit besonderen Randbedingungen aufgezeigt.
Um die aus den Modellen bestimmten Elastizitätskennwerte zu verifizieren, soll das Schwin-
gungsverhalten von Hohlkugelstrukturen experimentell untersucht werden. Hierbei können die
homogenisierten Elastizitätskennwerte aus den aufgeführten Plattentheorien ermittelt werden. Zur
Lösung dieses Schwingproblems werden das RITZsche Verfahren und die FEM herangezogen.
Zur Messung der Eigenfrequenzen und -formen nutzt man die experimentelle Modalanalyse
mittels Festlaser und Impulshammer. Der Versuchsaufbau und die Durchführung werden detailliert
erläutert.
Als weiterer Bestandteil des Methodenkapitels sind die Verfahren zur experimentellen und mo-
dellbehafteten Bestimmung zum Schallabsorptionsverhalten von Hohlkugelstrukturen zu nennen.
Zum einen werden die Messungen mittels Impedanzrohr, zum anderen die phänomenologischen
Modellbildungen von porösen Absorbern und deren Kenngrößen aufgeführt. Bei den versuchs-
technischen Bestimmungen wird eine neuartige Methode zum Transmissionsverhalten vorgestellt.
Das vorletzte Kapitel geht auf die ermittelten Ergebnisse ein. Es werden zuerst die realen Pa-
ckungen von Hohlkugeln untersucht und die ermittelten charakterisierenden Kennwerte dargelegt.
Später werden die charakterisierenden Kennwerte der zufällig erzeugten Packungen mit den realen
verglichen. Im Anschluss werden die Erkenntnisse aus den linear-elastischen Untersuchungen
bereitgestellt und diskutiert. Die einachsige Betrachtungsweise wird hierbei auf eine mehrachsige
ausgeweitet und somit die kompletten Steifigkeitstensoren der homogenisierten Strukturen be-
stimmt. Aus den ermittelten Steifigkeitstensoren können Rückschlüsse auf das Materialverhalten,
Symmetrieebenen und Anisotropie gezogen werden. Zudem wird der Einfluss der Randbedingun-
gen diskutiert und ein Maß für die Anisotropie präsentiert.
In Kapitel 4 werden ebenfalls die homogenisierten Elastizitätswerte aus der experimentellen
Modalanalyse gezeigt. Die aus dem Versuch ermittelten Werte dienen zur Verifizierung der
vorgestellten Berechnungsmodelle, die auf zufällig erzeugten Packungen basieren. Abschließend
betrachtet dieses Kapitel die Resultate der akustischen Messung mit dem Impedanzrohr und stellt
die approximierten Parameter für das phänomenologische Modell vor. Die Arbeit endet mit einer
Schlussbetrachtung, die eine Zusammenfassung beinhaltet, mögliche Modellerweiterungen und
neue Einsatzgebiete aufzeigt und einen Ausblick gibt. Umfassende Herleitungen zu den Modellen
und Berechnungen sind dem Anhang zu entnehmen.
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2 Theoretische Grundlagen

Dieses Kapitel behandelt die Grundlagen der Kontinuumsmechanik und der technischen Akustik,
die in dieser Arbeit Verwendung finden. Die Darstellung der mathematischen Zusammenhänge
orientiert sich an der Nomenklatur gegenwärtiger Literatur [4, 21, 85, 152]. Allerdings besitzen
manche der hier verwendeten Symbole in den jeweiligen Quellen unterschiedliche Bedeutung. Aus
diesem Grund soll zu Beginn eine Darstellung aller eingeführten Schreibweisen erfolgen: Skalare,
reelle Größen werden in kursiver Schrift dargestellt: a; Tensoren erster Stufe bzw. Vektoren
werden klein und fett geschrieben: a; Tensoren zweiter Stufe bzw. Matrizen werden groß und fett
geschrieben: A; Tensoren vierter Stufe werden folgendermaßen notiert: A; für die Indizes i, j,k
oder l gilt die EINSTEINsche Summenkonvention1. Werden Indizes durch ein Komma getrennt,
weist dies auf eine Differentation nach dem Indize nach dem Komma hin Ai j, j. Werden sonstige
Indizes durch Kommatrennung einer Größe zugeordnet, wird die Größe durch die Bedeutung aller
einzelnen Indizes charakterisiert: λL,St und die EULER-Zahl wird mit e und die imaginäre Einheit
mit j abgekürzt.

2.1 Mechanische Grundlagen

Die mechanischen Grundlagen werden nach folgendem Ablaufschema erarbeitet, wie sie in
Abb. 2.1 dargestellt sind. Hierbei spricht man von Gleichgewichtsgleichungen, Materialgesetzen,
Spannungen, Verschiebungen, Verzerrungen, allgemeinen Anfangs-Randwertproblemen und dem
Prinzip von Hamilton. Diese Begrifflichkeiten werden in den anschließenden Abschnitten erörtert.
Die hier aufgeführten Herleitungen basieren auf [3, 6, 5, 4, 17, 21, 90, 152, 190, 195, 204, 220].

Abbildung 2.1: Herleitungsprinzip in der Kontinuumsmechanik nach [190]

1Diese Konvention beschreibt, dass über allen doppelt auftauchenden Indizes aufsummiert wird.
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2.1.1 Verzerrungen, Spannungen und Bilanzgleichungen

Durch Einführen von körper- und raumbezogene Bezugssystemen können durch äußere Kräfte
deformierte Körper beschreiben werden. Als quantifizierte Maße gelten Verschiebung u und
Verzerrung ε . Eine genauere Betrachtung kann dem Anhangsteil A.1.1 entnommen werden.
Für die Strömungsmechanik spielen die Geschwindigkeits- und Beschleunigungsfelder, die im
Anhangsteil A.1.2 näher aufgeführt, eine bedeutende Rolle. Belastungen und die daraus resultie-
renden werkstoffunabhängige Spannungen σ werden in A.1.3 beschrieben. Eine grundlegegende
Betrachtungsweise in der Mechanik wird in den Anhangsteilen A.1.4 und A.1.5 aufgezeigt sind.
Die Bilanzierung von Kräften, Momenten, Impulsen, Spannungen und Energien ist hierbei von
zentraler Bedeutung.

2.1.2 Materialgesetze

Den Zusammenhang zwischen Spannung σ und Verzerrung ε geben die werkstoffabhängigen Kon-
stitutivgleichungen wieder (siehe Anhang A.1.6). In der Arbeit werden folgende Materialtheorien
näher eingegangen: linear-elastische Festkörper, ideales Gas und viskoses Fluid. Erstaufgeführte
wird in Form des verallgemeinerten HOOKEschen Gesetzes (Anhangsteil A.1.6) zur Beschrei-
bung der elastischen Eigenschaften metallischer Hohlkugelstrukturen verwendet. Die beiden an-
deren Materialtheorien, ideales Gas (Anhang A.1.6.2) und viskoses Fluid (A.1.6.3) dienen zur
Modellbildung eines porösen akustischen Absorbers.

2.2 Mechanische Kontinuumsschwingungen

Reale Körper, Bauteile und Bauwerke sind in der Regel komplexe Geometrien. Diese lassen sich
nur in wenigen Fällen exakt analytisch berechnen. Hingegen lassen sich Problemstellungen mit
geometrischen Regelgeometrien oftmals analytisch geschlossen lösen. Sind eine oder zwei räum-
liche Ausdehnungen eines Körpers wesentlich kleiner als die anderen Ausdehnungen, lässt sich
in der Regel die Beziehung zwischen Verschiebungen u und Verzerrungen ε bzw. Spannungen σ
vereinfachen. Diese Körper haben ebenfalls eine räumliche Ausdehnung, lassen sich aber aufgrund
ihrer Abmessungen als zwei- oder eindimensionale Tragelemente idealisieren.
Ist eine Abmessung viel kleiner im Vergleich zu den beiden anderen, liegt ein flächenartiger Körper
vor. Stellt sich die Fläche als gekrümmt dar, spricht man von einer Schale. Bei ebenen Flächentrag-
werken unterscheidet man nach ihrer Belastung zwischen Platten und Scheiben. Während Scheiben
in ihrer Ebene belastet werden, wirkt die Belastung bei Platten senkrecht zur Plattenmittelfläche.
Linienförmige Tragelemente kennzeichnen sich dadurch, dass zwei Abmessungen des Körpers
wesentlich kleiner sind als die dritte. Derartige Tragelemente werden als Stäbe oder Balken
bezeichnet.
In dieser Arbeit wird auf die Theorien von schubstarren und schubweichen Platten eingegangen
(siehe Abschnitt A.2.1 und A.2.2)). Einige weiterführende Plattentheorien werden anschließend
erwähnt.
Diese Plattentheoriemodelle können ebenfalls zur Schwingungsanalyse genutzt werden. In dieser
Arbeit werden die Eigenformen und -frequenzen von Platten genutzt zur Ermittlung effektiver
Materialkennwerte, wie Elastizitätsmodul oder Querkontraktionszahl.
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2.3 Akustische Grundlagen

Akustik ist die Lehre vom Schall und seiner Ausbreitung. Das Wissenschaftsgebiet hat viele unter-
schiedliche Gesichtspunkte - beginnend bei der Entstehung und Erzeugung über die Ausbreitung
und Auswirkungen bis hin zur Beeinflussung und Analyse von Schall. Akustik beschreibt ein
interdisziplinäres Fachgebiet, welches in den Bereichen Physik, Materialwissenschaften und sogar
in der Psychologie von Interesse ist. Nachfolgend werden die physikalischen Grundlagen behan-
delt, die den Schall betreffen. Diese sollen zum Verständnis der Wirkungsweise von akustischer
Absorption und des KUNDTschen Rohres (Impedanzrohr) dienen.

2.3.1 Schallwellenausbreitung und akustische Kenngrößen

Der Schall ist eine Energieform, die sich durch Kollision von Atomen und Molekülen überträgt.
Die Schallausbreitung erfolgt über Longitudinal- und Transversalwellen bei Fluiden. Während in
Festkörpern beide Wellentypen auftreten, können sich in Gasen aufgrund der fehlenden Scherkräf-
te nur Longitudinalwellen ausbreiten. Deren Ausbreitungsgeschwindigkeit hängt von den elas-
tischen Eigenschaften (Kompressionsmodul) und der Dichte des Mediums ab. Das menschliche
Ohr ist für Frequenzen von 20 Hz bis 20 kHz sensibel. Dieser Bereich entspricht in der Luft, bei
Umgebungstemperatur von 20◦C, einer Wellenlänge von 17 mm bis 17 m.

2.3.1.1 Schallwellen

Schallwellen lassen sich auf verschiedene Weisen beschreiben:

• die Druckschwankung p∼,

• die Dichteschwankung ρ∼ und

• die Auslenkung ξξξ eines Gaspartikels x aus seiner Ruhelage x0.

Durchläuft eine Schallwelle ein Ausbreitungsmedium, so werden die Gasmoleküle aus ihrer Ru-
helage x0 um ξξξ ausgelenkt. Die Geschwindigkeit der Moleküle ist die Schallschnelle v. Durch die
Auslenkung entstehen Gebiete mit erhöhten und geringen Dichten. Somit lassen sich Schallwellen
durch Dichteschwankungen beschreiben. Mit den Dichteschwankungen einhergehenden Druck-
schwankungen im Medium gibt es eine weitere Beschreibungsmöglichkeit einer Schallwelle:

p̃(t) = p0 + p∼ (t) . (2.1)

Hierbei ist p0 der Umgebungsdruck, auch Atmosphärendruck pa genannt und p∼ (t) der Schall-
druck. Im Allgemeinen genügt es, den Schalldruck zur Schallausbreitung zu betrachten und die
eindimensionale Wellengleichung in x-Richtung zu formulieren:

∂ 2 p∼
∂x2 =

ρ0

K
∂ 2 p∼
∂ t2 . (2.2)

Dabei ist K das Kompressionsmodul, welches folgendermaßen definiert ist:

dp =−K
dV
V

(2.3)

K stellt einen Proportionalfaktor dar, der aussagt, wie sich eine Volumenänderung auf den Druck
auswirkt. ρ0 ist die Dichte des Gases bei Atmosphärendruck p0 = pa und Raumtemperatur T . Die
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Tabelle 2.1: Schallfeldgrößen.

Dichte: ρ̃ (x, t) = ρ0 +ρ∼ (x, t) ρ∼ (=̂ρ):Schalldichte
Druck: p̃(x, t) = p0 + p∼ (x, t) p∼ (=̂p):Schalldruck
Schnelle: ṽ(x, t) = v0 +v∼ (x, t) v∼ (=̂v):Schallschnelle

Wellengleichung für Schallwellen ist analog zur Wellengleichung für transversale Schwingungen
aufgebaut. Die Herleitung der allgemeinen linearen Wellengleichung für ein viskoses Fluid findet
man in Anhang A.3.1. Die Phasengeschwindigkeit c dieser Welle wird Schallgeschwindigkeit
genannt. Eine ausführliche Definition der Schallgeschwindigkeit und deren Bestimmung werden
im Anhangsteil A.3.2 bereitgestellt.

2.3.1.2 Schallfelder

Die grundlegenden Differentialgleichungen der Schallfelder mit ihren Schallfeldgrößen (Tabelle
2.1) in gasförmigen Medien sind die Kraftgleichung oder Impulsgleichung

ρ0
∂v
∂ t

=−grad(p) (2.4)

und die Kontinuitätsgleichung
∂ρ
∂ t

=−ρ0div(v) . (2.5)

Dabei sind p und ρ die Wechselanteile des Drucks und der Dichte im Schallfeld. ρ0 ist die
statische Luftdichte. Mit Annahme eines Zeitfaktors in der Form ejωt ergibt sich für die beiden
Grundgleichungen:

jωρ0v =−grad(p) , (2.6)

jωρ =−ρ0 div(v) . (2.7)

Hierbei ist ω = 2π f die Kreisfrequenz. Als dritte Grundgleichung kommt die Zustandsgleichung
des Mediums hinzu.

2.3.1.3 Impedanz und Admittanz

In der Schwingungslehre versteht man unter dem Begriff Impedanz einen Widerstand, der der
Ausbreitung von Schwingungen entgegenwirkt. Im Fachgebiet der Akustik unterscheidet man drei
verschiedene Arten von Impedanzen:

• die akustische Flussimpedanz,

• die akustische Feldimpedanz und

• die mechanische Impedanz.

Die Flussimpedanz, nach Norm nur akustische Impedanz genannt, definiert sich über den Quoti-
enten aus Schalldruck p und Schallschnelle v

Za =
p

Avm
=

p
q
, (2.8)
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wobei vm die über die Fläche A gemittelte Schallschnelle und q der Schallfluss sind. Die am
häufigsten vorkommende Art ist die Feldimpedanz, auch als spezifische Impedanz bezeichnet. Die
Feldimpedanz berechnet sich durch

Zs =
p
v
. (2.9)

Die dritte Art der Impedanzen ist ein Quotient aus einer Kraft und einer Schnelle

Zm =
pA
v

(2.10)

und wird als mechanische Feldimpedanz bezeichnet. Von nun an wird die akustische Feldimpedanz
nur noch mit Z benannt. Dem aufmerksamen Leser werden einige Abweichungen gegenüber dem
bisher Gewohnten aufgefallen sein. Dies beruht auf der Geschichte der Akustik, die nicht immer
logisch verlief. Der Begriff Impedanz wurde aus der Elektrodynamik, die wiederum wesentlich
von der Mechanik geprägt wurde, übernommen. So entstand ein Term „Skalar p dividiert durch
einen Vektor v“, der in der Mathematik nicht definiert ist. Dieses Problem kann umgangen werden,
indem man den Kehrwert von Z nutzt, auch Admittanz G genannt. G ist definiert durch die Relation

v = Gp, (2.11)

wobei G nun wirklich ein Vektor ist und zwar in die gleiche Richtung wie v geichtet.

2.3.1.4 Schallintensität und Schallleistung

Eine weitere Kenngröße ist der Schallfluss

q =
∫
A

vdA. (2.12)

Der Schallfluss setzt sich zusammen aus dem Integral der Schallschnelle v über eine gleichsinnig
durchströmte, gerichtete Fläche A. Des Weiteren lässt sich die Schallintensität mit

Is = pv (2.13)

anführen. Die Schallintensität bildet sich aus dem Produkt des Schalldrucks und der Schallschnelle
und beschreibt die Energiemenge, die an einem Ort im Schallfeld pro Zeiteinheit mit der Schnelle
pro Flächeneinheit durchströmt wird. Aus der Schallintensität kann die Schallleistung P einer
Schallquelle gewonnen werden, indem man die Intensitätsbeiträge der Flächenelemente dA einer
um die Quelle gelegten Fläche A integriert

P =
∫
A

IsdA. (2.14)

2.3.1.5 Ebene und stehende Welle

Hängt der momentane Zustand einer Schallwelle lediglich von einer einzigen Richtung ab, so
spricht man von einer ebenen Welle. Sie lässt sich folgendermaßen beschreiben:

p(x, t) = f(x− ct)+g(x+ ct) , (2.15)

wobei f und g beliebige, durch die Art der Schallanregung gegebene Funktionen sind. Der erste
Term f der rechten Seite beschreibt die Störung (Schallwelle), die sich mit der Schallgeschwin-
digkeit unter der Beibehaltung von Form und Stärke in Richtung der positiven Richtungsachse
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ausbreitet. Dementsprechend ist g der Wellenteil, der sich in die negative Ausbreitungsrichtung
fortpflanzt.

Eine stehende Welle entsteht durch Superposition zweier gegenläufig fortschreitender Wellen
mit gleicher Frequenz und gleicher Amplitude. Solche Wellen können aus zwei verschiedenen
Erregern stammen oder durch Reflexion einer Welle an einem Hindernis entstehen.

2.3.2 Mechanismen der Schallabsorption

Als Schallabsorption bezeichnet man die Umwandlung von Schallenergie in Wärme. Die Schallab-
sorption geschieht bei offenporigen und faserigen Schichten durch Reibung der Luftteilchen, bei
weichen geschlossenporigen Stoffen durch Kompressionsvorgänge und den damit verbundenen
Verlusten. Im Folgenden wird genauer auf die Leistungsverteilung einer Schallwelle beim Auf-
treffen auf ein absorbierendes Hindernis eingegangen. Trifft eine Schallwelle mit der Leistung Pe,
dem Schalldruck pe, der Schallschnelle ve und der Frequenz f auf ein gegenüber ihrer Wellenlänge
sehr großes Hindernis, wird diese teilweise reflektiert, unter Umständen auch gebeugt und gestreut,
durchgelassen, als Körperschall fortgeleitet, aber auch absorbiert. Eine Leistungsbilanz kann nach
Abb. 2.2 wie folgt

Pe = Pr +Pf +Pt +Pa (2.16)

aufgestellt werden. Wird diese grundlegende Betrachtung der Raumakustik für das Impedanzrohr
angewendet, kann der Einfluss des Körperschalls vernachlässigt werden, Pf → 0. Dies beruht auf
der Annahme, dass die Masse des Impedanzrohres groß gegenüber der mitbewegten Luftmasse
(mRohr � mLuft) der auftreffenden Welle ist. So vereinfacht sich die Gleichung (2.16) zu

Pe = Pa +Pt +Pa (2.17)

Pe

Pr

Pt

Pa

P
′

Abbildung 2.2: Leistungsverteilung des Schalls beim Auftreffen auf ein Absorbermaterial.

2.3.2.1 Schallabsorptionsgrad

Zur Beschreibung solcher Absorber werden hinsichtlich ihrer Wirksamkeit für die Sendeseite die
Summe aus Pa und Pt mit Pe ins Verhältnis gesetzt. Der sogenannte Schallabsorptionskoeffizient,
oder auch Schallabsorptionsgrad bezeichnet, kann gemäß

α =
Pa +Pt

Pe
=

Pe−Pr

Pe
=

P
′

Pe
= 1− Pr

Pe
(2.18)

berechnet werden. Die Werte für α liegen zwischen 0 und 1.
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2.3.2.2 Schallreflektionskoeffizient

Fällt eine ebene Schallwelle, wie in Abb. 2.3, auf eine unendlich ausgedehnte glatte Wand, wird
sie an dieser nach dem Reflexionsgesetz zurückgeworfen. Dabei verringert sich im Allgemeinen
ihre Amplitude, zugleich ändert sich die Phase. Wird die unter dem Winkel υ auftreffende Welle
durch

pe (x,y, t) = p̂ej(ωt−kxcosυ−kysinυ) (2.19)

festgelegt, gilt für die reflektierte Welle

pr (x,y, t) = p̂rej(ωt−kxcosυ−kysinυ) (2.20)

mit dem Schallreflektionskoeffizient
rak =

pr

pe
. (2.21)

Die Schallleistung, die nicht die Oberfläche der Einfallseite passiert, wird reflektiert. Für die

x
x = 0

y

einfallende
Welle

reflektierte
Welle

υ

υ

Abbildung 2.3: Reflektion einer Schallwelle an einer ebenen Fläche

Beschreibung dieser reflektierten Leistung wird der sogenannte Schallreflektionskoeffizient oder
auch kurz Schallreflektionsgrad berechnet. Er kann anhand der Schalldrücke pe und pr hergeleitet
werden.
Bei der Reflektion der senkrecht υ = 0 einfallenden Schallwelle wird ihre Amplitude geschwächt,
zugleich ändert sich die Phase. Mit

pe = p̂eej(kx−ωt) (2.22)

wird die einfallende Schallwelle bezeichnet. Für die reflektierte Schallwelle ergibt sich

pr = p̂erakej(kx−ωt). (2.23)

Durch die genannte Phasenverschiebung ist der Reflektionskoeffizient komplexwertig. Wird die
Schalleistung betrachtet, muss die Beziehung folgendermaßen lauten:

|rak|2 = Pr

Pe
=

p2
r

p2
e
. (2.24)
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Die einfallende Leistung Pe teilt sich wie in Abb. 2.2 ersichtlich in Pr und P
′

auf. Normiert man
die Größen auf die einfallende Leistung Pe, kann der Zusammenhang zwischen Reflektions- und
Absorptionskoeffizient hergeleitet werden:

Pe

Pe
=

Pr

Pe
+

P
′

Pe
,

1 = |rak|2 +α.
(2.25)

2.3.2.3 Schalltransmissionsgrad

Des Weiteren wird die durch die Probe transmittierte Leistung mit dem sogenannten Schall-
transmissionskoeffizienten beschrieben. Der Koeffizient kann ähnlich wie der Reflektionskoeffi-
zient hergeleitet werden. Auch bei der Schalltransmission wird die Amplitude der Schallwelle
geschwächt und zugleich findet eine Phasenverschiebung statt. Die Phasenverschiebung beruht
darauf, dass die spezifische Schallimpedanz und die damit verbundene Schallgeschwindigkeit des
Prüfmaterials abweichen. Der Schalltransmissionskoeffizient wird folgendermaßen bestimmt

tak =
pt

pe
. (2.26)

Betrachtet man den Schalltransmissionskoeffizienten mit Hilfe der Schallleistung bekommt man
folgende Beziehung

|tak|2 = Pt

Pe
=

p2
t

p2
e
. (2.27)

2.3.2.4 Schalldissipationsgrad

Zur Quantifizierung der Wirksamkeit hinsichtlich der Dissipationseigenschaft des Prüflings wird
der Dissipationskoeffizient verwendet. Der Dissipationskoeffizient gibt eine Aussage über die
Leistung, welche im Prüfmaterial geschluckt wird. Der Koeffizient lässt wie folgt bestimmen

dak =
Pa

Pe
=

Pe−Pr−Pt

Pe
= 1−|rak|2−|tak|2 = α−|tak|2 . (2.28)

2.3.2.5 Wandimpedanz

Die Wandimpedanz Z ist eine Größe, die den speziellen Aufbau einer reflektierenden Einrichtung
charakterisiert. Unter der Wandimpedanz versteht man das Verhältnis aus Druck und Schallschnel-
le auf der Wandoberfläche x = 0:

Z =
px=0

vx=0
. (2.29)

Der Zusammenhang zwischen der aufbaubeschreibenden Größe Z und den wirkungsbeschreiben-
den Größen β , α und tak soll kurz erklärt werden. Mit der günstigen Wahl des Koordinatensystems
(wie Abb. 2.3), bei dem dessen Nullpunkt auf der Wandoberfläche liegt, erhält man:

p = p0

(
ejkx + rejkx

)
(2.30)

und

v =
j
ωρ
∂ p
∂x

=
p0

ρc

(
ejkx− rakejkx

)
. (2.31)
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im Bereich x < 0 vor der Wand. So kann die Wandimpedanz mit dem Reflektionskoeffizienten
folgendermaßen verknüpft werden:

Z
ρc

=
1+ rak

1− rak
. (2.32)

In der Regel verwendet man statt des Reflektionskoeffizientens fast immer den Absorbtionsgrad.
Aus diesem Grund soll hier noch der Zusammenhang zwischen dem Verlustgrad β und der
Wandimpedanz Z erwähnt werden. Dafür löst man die Gl. (2.32) nach r auf

r =
Z
ρc −1
Z
ρc +1

, (2.33)

und bestimmt den Verlustgrad β

β = 1−|rak|2 =
4Re

{
Z
ρc

}
[
Re
{

Z
ρc

}
+1
]2

+
[
Im
{

Z
ρc

}
+1
]2 . (2.34)

Aus der Gleichung wird ersichtlich, dass wenn Z = ρc wird, ein maximaler Verlustgrad β erreicht
wird. Tritt der Fall auf, dass keine Schalltransmission tak = 0 stattfindet, kann der Absorbtionsgrad
dem Verlustgrad α = β gleichgesetzt werden.

2.3.2.6 Gesetz von Darcy

Bei der Schallabsorption poröser Stoffe spielt die Permeabilität eine zentrale Rolle. Die Permeabi-
lität charakterisiert die Durchströmbarkeit eines porösen Stoffes und ist eine reine Stoffkonstante
dieses Materials. Das DARCY-Gesetz beschreibt den Zusammenhang zwischen Geschwindigkeit
und Potentialgefälle:

vDarcy =
V̇
A
=

ṁ
ρA

=− kP

μV grad(p) und

vm =
vDarcy

φ
,

(2.35)

wobei vDarcy die DARCY-Geschwindigkeit (fiktive oder Filtergeschwindigkeit) des Strömungsme-
diums is, vm die mittlere reale Geschwindigkeit in den Poren, kP der Durchlässigkeitsbeiwert, φ
die Porosität und V̇ der Volumenstrom. Es wird von einer laminaren Strömung ausgegangen. Bei
diesem Gesetz handelt es sich um eine spezielle Lösung der NAVIER-STOKES-Gleichung.
Als ein einfacher poröser Stoff kann ein Körper mit runden Röhren angenommen werden. Die
Permeabilität lässt sich durch die Gesetzmäßigkeit von Hagen-Poiseuille bestimmen (siehe An-
hang A.3.3). Neben der Permeabilität spielt in der Akustik der Wärmeaustausch zwischen Fluid
und der porösen Struktur eine entscheidende Rolle. Eine Betrachtung des Wärmehaushalts ist im
Anhangsteil A.3.4 beigefügt. Wie sich die Einflüsse der Permeabilität und des Wärmeaustausch
auf die Schallausbreitung in zylindrischen Röhren auswirkt, zeigt der Anhangsteil A.3.5.
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3 Methoden zur Charakterisierung

In diesem Kapitel soll die für diese Arbeit notwendige Methodik zur Charakterisierung mecha-
nischer und akustischer Eigenschaften von Hohlkugelstrukturen vorgestellt werden. Zuerst wird
auf die allgemeinen Modellbildungen, basierend auf realen und künstlich erzeugten Strukturen,
eingegangen. Nachfolgend werden die statisch- , dynamisch-mechanisch und akustikspezifischen
Methoden zur jeweiligen Charakterisierung behandelt.

3.1 Geometriemodellbildung

In diesem Abschnitt wird die für diese Arbeit genutzte geometrische Modellierung von Hohlku-
gelstrukturen beschrieben. Dabei wird auf ideale, theoretische und reale sowie auf stochastisch
erzeugte Strukturen eingegangen.

3.1.1 Untersuchung realer Strukturen

Um das Verhalten von Hohlkugelstrukturen zu beschreiben und vorherbestimmen zu können, ist
es notwendig, reale Proben mit ihren unregelmäßigen Strukturen zu untersuchen. Hierbei kann auf
eine Vielzahl zerstörender und zerstörungsfreier Methoden zurückgegriffen werden. Des Weiteren
hängt die Methode auch vom Probenkörpermaterial und seiner Größe ab. Die Eigenschaften
beeinflussen Auflösungsbereich und -tiefe. Hierbei ist zu beachten, dass die Größe der untersuchten
Probenkörper stark abhängig von der gewünschten Auflösungstiefe ist. So ist es beispielweise
fast unmöglich große makroskopische Bauteile als Ganzes im Nanobereich zu untersuchen. Ein
wesentliches Ziel dieser Arbeit ist die Beschreibung bzw. Untersuchung der unregelmäßigen Pa-
ckung in realen Hohlkugelstrukturen. Um einen möglichst großen und aussagefähigen Bereich der
Hohlkugel zu erfassen, wird die Ortsauflösung so gewählt, dass alle relevanten Hohlkugelwände
im Auflösungsbild sichtbar sind.

3.1.1.1 Computertomografie

Ein aus der diagnostischen Medizin bekanntes Standardverfahren ist die RÖNTGEN-Computer-
tomografie (altgriechisch tome - Schnitt und graphein - schreiben). Heutzutage ist dieses Verfahren
im technischen Umfeld ebenfalls nicht mehr wegzudenken. Es hat sich beispielsweise im Bereich
der zerstörungsfreien Bauteilprüfung und Produktentwicklung etabliert.
Dieses moderne Verfahren basiert auf der Entdeckung der sogenannten Röntgenstrahlung1 im Jahr
1895, das nach dem Entdecker Wilhelm Conrad Röntgen benannt wurde. So bestand zum ersten
Mal die Möglichkeit in das Innere des menschlichen Körpers zu blicken, ohne diesen zu sezieren.
Bei der RÖNTGEN-Strahlung handelt es sich um langwellige elektromagnetische Strahlen (10−8

bis 10−12 m) mit einer Photonenenergie EPhoton zwischen 100 eV und einigen MeV - wobei die
Wellenlänge λRö von der elektrischen Energie abhängig ist, welche sie erzeugt. Sie entsteht, wenn

1Englisch: X-ray
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schnell fliegende Elektronen auf einen festen Stoff auftreffen und dadurch abgebremst werden.
Eine ausführliche Einführung in die Computertomografie kann [30] und [107] entnommen werden.

3.1.1.2 Rekonstruktion- und Rückführ-Algorithmus

Im Folgenden wird eine neue Methode zur Lokalisierung der genauen Position von Kugeln
und zugleich deren Kugelradiusbestimmung aus dreidimensionalen Computertomografiebildern
vorgestellt. Diese Kugelerkennungsmethode verwendet das Haar-Integration Framework (Pro-
grammiergerüst), das für generische (allgemeine) Objekterkennung und -klassifikation in zwei-
und dreidimensionalen Bildern genutzt wird. Diese Integrationsmethode wurde in Schulz-Mirbach
[189] eingeführt und unter anderem von Fehr et al. [62] weiterentwickelt. In dieser Arbeit handelt
es sich um Kugeln, die sich durch eine Reihe von Bildpunkten (Pixel bzw. Voxel), die einen
Abstand r zum Kugelzentrum c haben, wobei r als Kugelradius ausgenutzt werden kann. Bei
dieser Erkennungsmethode wird die Wahrscheinlichkeit bestimmt, dass ein beliebiger Bildpunkt
das Zentrum einer Kugel ist. Diese Punkte mit den höchsten Wahrscheinlichkeiten werden als
Kugelzentren selektiert. Die sogenannte Wahrscheinlichkeitskarte (engl.: probability map) für alle
Punkte im dreidimensionalen Bild gibt den Bereich der möglichen Radien an, die in der Zeit
O(N) berechnet werden können. Dabei stellt N die Anzahl der Voxels im Bild dar. Für Kugeln mit
nahezu gleichem Radius ist nur ein Rechendurchlauf durch das dreidimensionale Bild notwendig.
Abgesehen von Schnelligkeit ist der Algorithmus besonders robust gegenüber Störungen, wie
deformierte Kugeln oder nicht völlig geschlossene Kugeln in der Kugelstruktur. Zusätzlich beruht
diese Methode nur auf der relativen Grauwertänderung. Der mathematische Hintergrund dieser
Kugelerkennungsmethode wird hier kurz erläutert. Als Erstes werden die Merkmale der Invari-
anten vorgestellt, die für die Lokalisierung der Hohlkugeln verwendet werden. Die Invarianten
basieren auf der Idee der Berechnung lokaler Grauwertinvarianten, wie sie in [189] eingeführt
wurden. Grauwertinvarianten sind Haar-Integrale, d.h. eine Invariante I berechnet sich aus

I ( f ,X ) =
∫
G

f (gX )dg (3.1)

mit G als Transformationsgruppe, unter der die berechneten Invarianten invariant sein sollen, f
einer Kernfunktion und dem Bild X . Durch die Integration über alle Transformationen gX des
Bildes X entsteht pro Bild eine Invariante. Diese Haar-Integration kann angewendet werden,
um ganze Bilder oder beliebige Ausschnitte von n-dimensionale Bilder unabhängig von einer
gegebenen Transformationsgruppe zu beschreiben. Das Ergebnis I ( f ,X ) ist identisch für das Bild
X mit all ihren Transformationen unter der Transformationsgruppe G. Dieses Resultat kann als
invarianter Transformationkennwert dienen. Im besonderen Fall der Erkennung von kugelförmigen
Strukturen im dreidimensionalen Raum berechnet sich der rotationsinvariante Kennwert I wie
folgt:

I (X ,r,x0) =
∫
O3

R−1 ∇X (Rr−x0)

|∇X (Rr−x0)|
r
|r|dR. (3.2)

Hierbei stellt der Wert ein direktes Maß für die Wahrscheinlichkeitv dar, dass der Punkt x0 ein
Zentrum einer Kugel mit dem Radius |r| ist. Die Transformationsgruppe 03 ist die Gruppe der
Rotationen, die Rotationsmatrix R kann eine beliebige Rotation im dreidimensionalen Raum
sein und ∇X entspricht dem Gradientenbild von X . Die Integration über alle Rotationsmatrizen
R ∈ O3 ist sehr zeitaufwändig. Eine schnelle Approximation über die erwähnten rotationsin-
varianten Funktionen können aus Schulz et al. [188] entnommen und für die dreidimensiona-
le Kugelerkennung angewendet werden. Dieses Verfahren basiert auf einem Bewertungschema,
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(a) (b) (c)

Abbildung 3.1: Schnitt durch ein dreidimensionales Computertomografie-Bild mit a) Akkumula-
torkarte und b) mit erfassten Kugeln, c) erfasste Kugeln ohne Überlagerung.

welches dem in der Hough Transformation [11] verwendeten Verfahren ähnelt. Jeder Voxel x0
in einem dreidimensionalen Bild „stimmt“ für den Punkt xc ab, welcher in der Richtung des
Gradienten von x0 im Abstand |r| liegt. Daraus folgt, dass für jeden Punkt x0 auf der Ober-
fläche einer Kugel, der Punkt xc das Kugelzentrum ist. Der resultierende Akkumulator stellt
ein vierdimensionales Feld mit den Größen x, y, z und |r| dar. Die anschließende Anwendung
eines vierdimensionalen GAUSS-Filters ermöglicht eine weitere Erhöhung der Robustheit gegen
Störungen in der Kugelstruktur. Lokale Maxima im Akkumulator entsprechen den Kugelzentren
im originalen dreidimensionalen Bildbereich. Beispielhaft zeigt die Abb. 3.1 die Kugelerkennung
im Schnitt eines Computertomografie-Bildes. Dabei kann man in Abb. 3.1a die Überlagerung des
Originalbildes mit der Akkumulatorkarte erkennen. Die lokalen Maxima der Kugelzentren werden
dabei deutlich sichtbar. Die aus den lokalen Maxima extrahierten Kugeln werden in Abb. 3.1b
überlagert und mit dem Originalbild abgebildet. Abbildung. 3.1c zeigt die aus der Erkennung
resultierenden Kugeln. Mit dieser Methode können Position und Größe von Hohlkugeln aus realen
Proben mit hoher Zuverlässigkeit und Genauigkeit ermittelt werden. Um die Leistungsfähigkeit
dieses Algorithmus unter Beweis zu stellen, wurde eine reale Probe mit den Abmaßen 330 x 110
x 30 mm3 mit Hilfe eines Computertomografen gescannt und rekonstruiert. Dabei konnten über
40000 Kugeln detektiert werden. Hierbei wurden über 99,7% richtig erfasst. Abbildung 3.2 zeigt
die rekonstruierte Volumengeometrie.

3.1.2 Reguläre Packungen - Gitterstrukuren

Reguläre Packungen, auch theoretische Gitterstrukturen genannt, sind schon seit langem aus der
Chemie und der Atomphysik bekannt. Diese regulären Kugelpackungen bestehen aus periodischen
und durch bestimmte Regeln aneinander gesetzte Elementarzellen mit gleich großen Kugeln.
Hierbei stellt die Elementarzelle die kleinste Untereinheit der Packung dar. Setzt man die Ele-
mentarzellen periodisch aneinander, bildet sich ein unendliches Gitter.
Die regulären Packungen sind translationsinvariant, d. h. ihre Elemente lassen sich durch Ver-
schiebung deckungsgleich aufeinander abbilden. Außerdem besitzen diese Packungen Rotations-
symmetrie, die abhängig von der zugrunde liegenden Elementarzelle zwei-, drei- oder vierzählig
sein kann. Die meisten Festkörpermaterialien kristallieren in solchen Anordnungen oder in etwas
komplexeren Mischformen der regulären Packungen. So befasst sich die Kristallografie mit der
Einstufung natürlicher, aber auch zum Teil künstlicher kristalliner Werkstoffe in bestimmten
Kristallstrukturformen. Diese Einstufung ergibt sich aus der geometrischen Anordnung der dar-
in enthaltenen Atome. Dabei werden die Atome als Punkte oder Kugeln approximiert. Kugeln
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Abbildung 3.2: Rekonstruiertes Volumenmodel einer realen Probe auf Basis der bildverarbeiteten
Kugelerkennung.

gleicher Größe lassen sich auf verschiedene Weise zu regelmäßigen Strukturen zusammenführen,
die im Folgenden erklärt werden.
Aus direkt orthogonal übereinander gestapelten Kugeln ist die kubisch-primitive Packung (KP),
oder auch simple cubic packing genannt, aufgebaut. Ihr Volumenanteil ist relativ niedrig mit
VV = π

6 ≈ 0,52. Die Koordinationszahl (KZ) gibt an, wie viel direkte Nachbarn eine Kugel in der
Gitterstruktur besitzt. Für diesen Packungsfall beträgt die Koordinationszahl sechs. Dieser Gitter-
bzw. Packungstyp ist nicht stabil gegen Verschiebungen. Es gibt auch nur wenige Werkstoffe bzw.
Elemente, wie beispielsweise Quecksilber, die eine derartige Gitterstrukur aufweisen.
Einen stabilen Packungstyp stellt die kubisch raumzentrierte Packung (KRZ) oder auch body cen-
tered cubic packiung genannt dar. Die kubisch raumzentrierte Packung weist einen Volumenanteil
von VV = π

8

√
3 ≈ 0,68 auf. Diesen Packungs- bzw. Gittertyp trifft man häufig bei Metallen an,

wie beispielsweise bei Chrom, Wolfram und Molybdän. Metalle mit diesem Gittertyp weisen eine
mittelgroße Dichte bei relativer großer Zähigkeit auf.
Im Jahre 1611 stellte sich Keppler die Frage nach der dichtest möglichen Packung gleich großer
Kugeln [111]. Diese KEPPLERschen Packungen gehören ebenfalls zu den regulären Packungen
und haben die höchste, überhaupt von einer regulären Packung im dreidimensionalen Raum
erreichbare Dichte von VV = π

3
√

2
≈ 0,68. Diese regulären Packungen nach Keppler umfassen wie-

derum verschiedene Vertreter. Die bekanntesten sind die kubisch flächenzentrierte Kugelpackung
(KFZ) oder im englischen Spachraum face centered cubic genannte Packung und die hexagonal
dichteste Kugelpackung (HDP), im englischen Sprachraum auch als hexagonal close packed
bezeichnet. Der Unterschied zwischen den verschiedenen Vertretern der dichtesten Packung liegt
allein in der Anordnung ihrer Schichten.
Eine Übersicht über die aufgeführten Packungs- und Gitterstrukturen gibt Tabelle 3.1. Auf weitere
Gittermodelle, auch in der Literatur als BRAVAIS-Gitter bezeichnet, wird nicht weiter eingegangen.
Sie sind [27] und [137] zu entnehmen.
Als Sonderstellung soll nur kurz die quasiperiodische Packung erwähnt werden. Reale quasiperi-
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Tabelle 3.1: Reguläre Kugelpackungen.

Packung KP KRZ KFZ HDP

Volumen π
6

π
8

√
3 π

6

√
2 π

6

√
2

-anteil VV ≈ 0,52 ≈ 0,68 ≈ 0,74 ≈ 0,74

Koordinationszahl
(KZ)

6 8 12 12

odische Anordnungen aus Kugeln wurden in Metallen beobachtet. Bei den Untersuchungen wur-
den fünf-, sieben- oder zehnzählige Symmetrien festgestellt, die sich nur durch quasiperiodische
Anordnung der Atome erklären lassen. Solche ikosaedrischen Anordnungen von Atomen treten oft
als strukturelle Komponente der sogenannten Quasikristalle auf. Ihr Volumenanteil kann örtlich
begrenzt höher sein, als bei regulären dichtesten Packungen (KFZ und HDP). Im Gegensatz zu
den regulären Packungen besitzen quasiperiodische Packungen keine Translationsinvarianz. Es
gibt aber eine lokale Rotationssymmetrie, die im Vergleich zu den regulären Packungen fünf-,
sieben- oder zehnzählig sein kann. Quasiperiodische Packungen können nicht nur aus einer Art
von Elementarzellen gebildet werden.

3.1.3 Zufällige Kugelpackungen

Die zufälligen Kugelpackungen kennzeichnen sich dadurch, dass die Zentren der gepackten Kör-
per, hier Kugeln, weder periodische noch quasi-periodische Anordnung aufweisen. So besitzen
diese keine Translationinvarianz und keinerlei Rotationssymmetrien.
Zusätzlich wurde durch Bernal [19, 191] beobachtet, dass sich für eine reale, völlig zufällig dichte
Packung ein Volumenanteil von ca. VV = 0,636 einstellt. Packungen mit einem höheren Volu-
menanteil weisen bereits partiell geordnete Strukturen auf, so dass sie nicht mehr als vollkommen
zufällig betrachtet werden können. Auch bei zufälligen, mittels Simulation erzeugten Packungen
stellt sich ein ähnlicher Effekt ein. Eine genaue und vollständige Definition der Eigenschaft
“zufällig dicht gepackt“ konnte bis dato nicht gefunden werden [208].
Sämtliche Packungsformen lassen sich mit Hilfe mathematischer Kenngrößen charakterisieren.
Zu diesen Kenngrößen (Parametern) gehören unter anderem der Volumenanteil VV der Packung,
die Anzahl der nächsten Nachbarn, die Winkelverteilung zu den Nachbarn, diverse Korrelations-
funktionen sowie bei regulären Packungen die Kantenlänge der Einheits- bzw. Elementarzelle. Die
begrenzte Anzahl der Kenngrößen zur Charakterisierung gewährleistet keine eindeutige Reprodu-
zierbarkeit der zufälligen Packungen. Der Volumenanteil einer Hartkugelpackung

VV =
1

VZelle

N

∑
i=1

VKugel,i (3.3)

beschreibt das Verhältnis der Summe der Kugelvolumina zum Volumen der betrachteten Raum-
zelle. Er wird in der Literatur auch Raumausfüllung oder Dichte genannt. Die Volumenanteile für
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die regulären Kugelpackungen können Tabelle 3.1 entnommen werden. In manchen Quellen wird
anstatt des Volumenanteils die Porosität φ angegeben. Diese Größe gibt den Anteil des Volumens
an, der sich nicht aus den Kugeln zusammensetzt und berechnet sich aus φ = 1−VV.

3.1.4 Hohlkugel-Mesomodell

Auf Basis realer Hohlkugelstrukturen werden vereinfachte Hohlkugelpaar-Modellgeometrien in
der Mesoebene erzeugt [37, 183]. Dabei wurde darauf geachtet, dass die Modelle geometrisch, wie
auch in ihrer Parametervielfalt, so einfach wie möglich gestaltet wurden. Diese Modelle werden
zur weiteren FEM-Berechnung genutzt.

geklebt gesintert

R

rk

t

Φ Φ
rs

t

R

Rin

2t

Abbildung 3.3: Idealisiertes, geklebtes und gesintertes Hohlkugelmodel mit den Parametern: R
äußerer Radius, Rin innerer Radius, rs Sinterstellenradius, rk Klebestellenradius und t Wanddicke-
stärke

3.1.4.1 Geklebtes Modell

Das geklebte Modell wurde Öchsner [37] bzw. Sanders und Gibson [183] entnommen. Die Mo-
dellgeometrie eines verklebten Hohlkugelpaares mit verjüngter Verbindungstelle wird in Abb. 3.3
verdeutlicht. Hierfür lässt sich folgende Beziehung aufstellen:

rk

R
= tanΦ+

cosΦ−1
cosΦ

(3.4)

wobei R der äußere Radius, t die Wandstärke und rk den Radius der Verjüngung darstellt. Der
Winkel zwischen den Verjüngungsstellen beträgt 2Φ. Obwohl es einfacher ist, die Größe der
geklebten Bindungsstelle zu messen als den Winkel Φ, ergeben sich Vorteile bei der Berechnung.
Die relative Dichte der Hohlkugelstruktur setzt sich aus der Summe des Beitrags der beiden Kugeln
und der geklebten Verbindungstelle zusammen

ρ∗

ρS
=

(
ρ∗

ρS

)
Hohlkugel

+

(
ρ∗

ρS

)
Klebestelle

, (3.5)

wobei ρ∗ die Dichte der gesamten Hohlkugelstruktur und ρS des Strukturmaterials, wie beispiels-
weise Stahl, darstellt [183]. Nimmt man die Vernachlässigung der unterschiedlichen Dichten vom
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Kleber- und Hohlkugelmaterial an [183], kann folgende Beziehung

ρ∗

ρS
= PD

(
3
( t

R

)
−3
( t

R

)2
+
( t

R

)3
)
+

(
KZ
2

VKlebestelle

VEZ

)
(3.6)

aufgestellt werden. Dabei ist PD die Packungsdichte und KZ die Koordinationszahl. Die ent-
sprechenden Werte für verschiedene Packungen können aus Tabelle 3.2 abgelesen werden. Das
Volumen der Klebestelle lässt sich nach [183] folgendermaßen berechnen:

VKlebestelle (R,Φ) = 2πR3
(

1
cosΦ

−1

)2

(1− tanΦarcsin(cosΦ)) . (3.7)

Modelle mit einem Spalt zwischen dem Kugelpaar werden hier nicht behandelt und können [37]
entnommen werden.

Tabelle 3.2: Geometrische Eigenschaften verschiedener Kugelpackungen.

Packung PD KZ VEZ

KP 0,52 6 8R3

KRZ 0,68 8 64
√

3R3

9
KFZ 0,74 12 16

√
2R2

3.1.4.2 Gesintertes Modell

Bei dem gesinterten Hohlkugelmodell geht man von einer konstanten Wanddicke t aus, welche
zweifach wanddickenstarke Sinterstellen hervorrufen. Durch die Abplattung an den Sinterstellen
entsteht gegenüber der idealen Hohlkugel eine geringe Abnahme des Volumens, welche im Weite-
ren diskutiert wird. Die geometrischen Abmaße können aus Abb. 3.3 entnommen werden.
Die relative Dichte lässt sich aus den drei geometrischen Grundformeln [29] für das Volumen einer
Kugel VK, einer Kugelkalotte VKK und Kugelschale VKS

VK =
4
3
πR3, VKK =

h2π
3

(3R−h) und VKS =
4
3
π
(

R3− (R− t)3
)

(3.8)

mit der Beziehung

h = R−
√

R2− rs bzw. rs = R∗ sinΦ (3.9)

bestimmen. Zieht man das Volumen der äußeren Kugelkalotte von der inneren ab, so erhält man
das Volumen einer Hohlkugel mit einer Sinterstelle

VHK,ges =
1
3
πt
(
9R2−12Rt +4t2−3R2 cos2φ −6R2 cosΦ

)
. (3.10)

Daraus ergibt sich folgende absolute bzw. relative Volumenänderung pro Sinterstelle:

ΔVHK,ges =−πR2t
(
1+ cos2Φ−2cosΦ

)
bzw.

ΔVHK,ges,rel =−3
4

πR2t
(
1+ cos2Φ−2cosΦ

)
3R2−3Rt + t2 .

(3.11)
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Tabelle 3.3: Geometrische Eigenschaften verschiedener gesinterter Hohlkugelstruktur-
Elementarzellen.

Packung Einheitszellen-
volumen

Koordinationszahl Kugeln pro
Elementarzelle

KP 8R3 cos3φ 6 1

KRZ 64
√

3R3

9 R3 cos3φ 8 2
KFZ 16

√
2R3 cos3φ 12 4

HDP 8
√

2R3 cos3φ 12 2

Parameter VEZ KZ NEZ

Somit lässt sich für jegliche Kugelpackung das Volumen pro Elementarzelle folgendermaßen

VHKS,ges,solid = NEZ ∗
(
VKS +KZΔVHK,ges

)
(3.12)

bestimmen, wobei NEZ die Anzahl der Kugeln in einer Elementarzelle ist. Schlussendlich lässt sich
die relative Dichte der gesinterten Packung festlegen

ρ∗

ρS
=

VHKS,ges,solid

VEZ
. (3.13)

In Tabelle 3.3 können die Werte zur Berechnung der Dichte für verschiedene Packungen entnom-
men werden

3.1.5 Stochastischer Kugelgenerator

Die computergestützte Generierung und Analyse zufälliger Kugelpackungen erfordert den Einsatz
geeigneter Algorithmen bzw. Softwareprogramme. Die Entwicklung solcher Simulationssysteme,
mit denen der gesamte Prozess von der Erzeugung bis hin zur statistischen analytischen Auswer-
tung, kann beispielhaft [57] und [134] entnommen werden. Diese Simulationssysteme basieren auf
Methoden der räumlichen Statistik.

3.1.5.1 Kugelmodelle

Bei den regulären Kugelpackungen wird von einem konstanten Kugelradius ausgegangen, sprich
einer monodispersen Packung. Es besteht auch die Möglichkeit mit zwei unterschiedlichen oder
mit einer Vielzahl von verschiedenen Kugelradien Packungen zu erstellen. Dann spricht man von
bidispersen oder polydispersen Kugelpackungen. Die Kugelradien können durch verschiedene
Dichtefunktionen anteilig in der Packung vorhanden sein. Die Abb. 3.4 zeigt exemplarisch jeweils
eine mono-, bi- und polydisperse Packung.

3.1.5.2 Kugelpackungsmodelle

Neben den schon erwähnten regulären (theoretischen) Kugelpackungen gibt es noch weitere, auf
Kugeln basierende Modelle. In dieser Arbeit geht es vor allem um sogenannte zufällige Hartkugel-
packungen im dreidimensionalen Raum. Hartkugelpackungen sind dadurch gekennzeichnet (siehe
Abb. 3.5a), dass die Kugeln sich nicht überschneiden oder gegenseitig verformen. Anschaulich
betrachtet bestehen die Kugeln aus ideal starrem bzw. hartem Material, das sich unter Krafteinfluss
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(a) (b) (c)

Abbildung 3.4: Kugelmodelle mit unterschiedlichen Kugelradien: a) mono-, b) bi- und c) polydi-
sperse Packung.

(a) (b) (c)

Abbildung 3.5: Prinzipskizzen: a) Hartkugel-, b) BOOLEschen Modell und c) Kirsch-Kern-Modell.

nicht deformiert. Hierbei wird ersichtlich, dass es sich um ein theoretisches Modell handelt. Im
Folgenden werden Hartkugelpackungen vereinfacht als Kugelpackung bezeichnet.
Als weiteres Modell soll kurz das Boolesche Kugelpackungsmodell in Abb. 3.5b aufgeführt
werden. Es wird oft als Vergleichsmaßstab in der stochastischen Geometrie für andere Modelle
herangezogen, da sich einige Kenngrößen analytisch bestimmen lassen. Das Modell definiert
sich durch Vereinigung aus vielen unabhängigen Kugeln mit beliebigen Kugelzentren. Dabei
wird unterschieden zwischen monodispersen Booleschen Kugelsystemen, deren Kugeln identische
Durchmesser besitzen, und polydispersen Booleschen Kugelsystemen, bei denen die Durchmesser
der Kugeln Zufallsgrößen sind.
Bei einer Vielzahl von Anwendungen treten nicht nur harte Kugeln oder völlig zufällige Kugelan-
ordnungen auf. Es müssen auch beschränkte Überlappungen bzw. Durchdringung berücksichtigt
werden, zum Beispiel bei der Simulation offenporiger Materialien mit kugelförmiger Pore. Bei
diesem Modell gibt es einen harten, nicht deformierbaren Kugelkern und eine äußere Kugelschale,
die durchdringbar ist (siehe Abb. 3.5c und 3.6). Dieses Modell bezeichnet Torquato [207] als
cherry-pit model und Elsner [57] als Kirschkern-Modell. Dieses sogenannte Kirschkern-Modell
ist zugleich für gesinterte Hohlkugelstrukturen geeignet, da sich beim Sinterprozess eine gewisse
Durchdringung bzw. Verformung der Kugel einstellt. Für die in dieser Arbeit erstellten gesinterten
Hohlkugel-Geometriemodelle wurde jedoch das Hartkugelmodell genutzt und nachträglich eine
definierte Durchdringung erzeugt. Letztendlich entspricht wieder dem Kirschkern-Modell.
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λKR (Hartkugelradius)

R (äußerer Radius)

(1−λK)R

Abbildung 3.6: Kugelradien beim Kirsch-Kern-Modell nach [57].
.

3.1.6 Algorithmen zur Kugelpackungengenerierung

Es gibt eine Vielzahl gut untersuchter und ausgearbeiteter Ansätze für Packungsalgorithmen, im
Speziellen für Hartkugelpackungen. Einige dieser Algorithmen können auch nicht kugelförmige
bzw. sogar unregelmäßige Körper packen. In diesem Abschnitt soll eine kleine Auswahl von
verschiedenen Ansätzen für die Generierung zufälliger dichter Kugelpackungen vorgestellt werden
und die Auswahl eines Algorithmus begründet werden. Auf eine detaillierte Beschreibung der
Algorithmen wird bewusst verzichtet. Diese kann den angegebenen Literaturverweisen entnom-
men werden. Im Folgenden wird eine kleine Auswahl von Kugelgeneratoren zur Erzeugung von
zufälligen Packungen vorgestellt.
Eine einfache Methode zur Produktion von Kugelpackungen ist der intuitive Ansatz. Dabei wird
ein zufälliges Feld mit Kugelzentren erzeugt. Jedem dieser Zentren wird ein kleiner Kugelradius
zugeordnet und dieser dann schrittweise vergrößert. Berühren sich zwei benachbarte Kugeln, so
stoppt ihr Wachstum und der Radius der Kugeln wird fixiert. Ein Nachteil dieses Verfahrens ist die
geringe Einflussnahme auf die Durchmesserverteilung. Des Weiteren liegen die Volumenanteile
nur bei ca. VV = 0,15 und sind damit äußerst gering. In der räumlichen Statistik ist diese Realisie-
rungsmethode auch als dreidimensionales STIENEN-Modell [200] bekannt.
Als weitere Gruppe der Kugelpackungsalgorithmen kann die sequentielle Methode aufgeführt
werden. Im Gegensatz zum intuitiven Ansatz werden hier schrittweise Elemente (Kugeln) einer
Packung hinzugefügt. Die Unterschiede innerhalb dieser Algorithmengruppe liegen in den Strate-
gien des Hinzufügens von Elementen und in den Randbedingungen, die beispielsweise die Form
des Packungsvolumens bestimmt. Exemplarisch kann der Sedimentationsalgorithmus für diese Al-
gorithmengruppe aufgeführt werden. Das Prinzip dieses Algorithmus lehnt sich an den natürlichen
Vorgang der Sedimentation an, bei dem sich Partikel der Schwerkraft folgend sequentiell ablagern
[209, 210]. Hierbei wird ein beliebiges Behältnis, in der Regel ein Quader, und ein virtuelles
Kraftfeld (Gravitation) vorgegeben, welchem die Kugeln folgen müssen. Als Initialbedingung wird
eine Schicht zufälliger Kugeln am Behälterboden platziert, dabei dürfen die Kugeln sich nicht
überlappen. Nun wird in jedem weiteren Simulationsschritt eine Kugel erzeugt. Diese folgt der
vorgegebenen Richtung des Kraftfeldes. Trifft nun diese Kugel auf schon vorhandene Kugeln im
System wird durch Rollen eine stabile Position ermittelt. Als stabile Kugelposition gilt, wenn eine
Kugel drei Berührpunkte besitzt - sei es durch Nachbarkugeln oder Behälterwand. Kommt es nach
einer bestimmten Anzahl von Schritten zu keinem stabilen Zustand, wird diese Kugel verworfen
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und eine neue Kugel wird erzeugt [106, 143]. Eine weitere Vorgehensweise dieser Methode ist
das schalenweise Wachstum um ein Zentrum, welches einer Anlagerung von Kugeln um einen
zentralen Punkt entspricht. Der durchschnittliche Volumenanteil bei gleich großen Kugeln beträgt
für die Sedimentationsalgorithmen ca. 0,59 [215]. Er liegt somit noch unter dem Volumenanteil
VV = 0,636 der zufällig dichten Packung nach Bernal [19]. Dies kann unter anderem auf den
Effekt zurückgeführt werden, dass die Kugel zumeist die erstmögliche stabile Position einnimmt
und nicht die optimale. Ein weiterer Nachteil kann in der starken Inhomogenität liegen. Somit
scheidet dieser Algorithmus für hochverdichtete zufällige Kugelpackungen aus.
Ein weiterer Vertreter dieser Gruppe stellt der Random Sequential Addition (RSA) Algorithmus
dar. Der Ansatz ähnelt den Sedimentationsalgorithmen, jedoch unterliegen die Kugeln keinem
virtuellen Kraftfeld. Bei dieser Methode werden schrittweise Kugeln in einem vorgegebenen
Volumen erzeugt und auf Durchdringung geprüft. Bei Durchdringung wird die Kugel verworfen
und eine neue zufällige Kugel wird erzeugt. Nachteil dieser Vorgehensweise sind wiederum ein
geringe Packungsdichte VV < 0,636 [221] und relativ lange Rechenzeiten.
Eine weitere und grundlegend verschiedene Herangehensweise zu den bisher beschriebenen Al-
gorithmen stellen die Kollektiven-Umordnungsalgorithmen dar. Im Gegensatz zum sequentiellen
Hinzufügen steht die Anzahl der Elemente schon zu Beginn der Berechnung fest und bleibt
auch während des Packprozesses konstant. Des Weiteren ist die Anordnung der Kugelzentren
nicht statisch, sondern die Kugeln werden während der Berechnung in jedem weiteren Schritt
verschoben. Dies ermöglicht eine platzsparende Anordnung der Kugeln, so dass sich die Ge-
samtdichte tendenziell erhöht. Die einzelnen Algorithmen unterscheiden sich vor allem durch die
Herangehensweise der Umordnung der Kugelzentren.
Zu dieser Gruppe gehört der Algorithmus nach Jodrey und Tory [102, 103], der speziell für gleich
große Kugeln entwickelt wurde. Bei diesem Algorithmus dürfen die Kugeln geringfügig während
des Packungsvorganges überlappen. Dabei wird bei der Neuanordnung auf die Minimierung der
Überlappungen durch Abstoßung geachtet. Eine Erweiterung dieses Alghorithmus wurde durch
Bargiel et al. [14] und Moscinski et al. [151] entwickelt und ist unter den Namen Force-Biased-
Algorithmus bekannt. Mit diesen Algorithmen lassen sich sehr dichte Kugelpackungen erzeugen.
Dabei können in den erzeugten Packungen gleich großer Kugeln sogar hohe Anteile geordneter
Strukturen enthalten sein und dabei Volumenanteile bis zu VV = 0,72 erreicht werden. Eine genaue
Beschreibung des Force-Biased-Algorithmus kann Bargiel et al. [14] und Elsner [57] entnommen
werden.
Des Weiteren soll noch der LUBACHEVSKY-STILLINGER-Algorithmus [54, 140], der Wechsel-
wirkung durch elastische Stöße und die Molekulardynamik berücksichtigt, erwähnt werden. Bei
der Molekulardynamik geht es vorrangig um die physikalischen Wechelwirkungen der Atome und
deren zeitliche Bewegung. Die Packungen sind nur ein Nebenprodukt.
In dieser Arbeit wird zur Erzeugung dichter zufälliger Kugelpackungen der Force-Biased- Algo-
rithmus genutzt. Der Algorithmus ist im Simulationsprogramm SpherePack implementiert, das
dankenswerterweise durch Professor Dr. Dietrich Stoyan von der Technischen Universität Frei-
berg bereitgestellt wurde. Dieser Algorithmus erzeugt dichte zufällige und zugleich periodische
Kugelpackungen bei einer gewünschten Anzahl von Kugeln.

3.1.7 Kenngrößen zur Charakterisierung zufälliger Kugelpackungen

In diesem Abschnitt sollen mit Hilfe einer kleinen Anzahl ausgewählter Kenngrößen der räum-
lichen Statistik mit dem Force-Biased-Algorithmus zufällig erzeugte Kugelpackungen, sowie re-
konstruierte Kugelpackungen aus realen Hohlkugelstrukturen untersucht werden. Zu Beginn wird
auf die Kenngrößen spezifischer Oberflächen- und Volumenanteile, auch Packungsdichte genannt,
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eingegangen.
Die spezifische Oberfläche AV und der Volumenanteil VV eines Kugelsystems sind sogenannte
Kenngrößen erster Ordnung. Im Allgemeinen beschreibt die Kenngröße VV den Volumenanteil der
Materialphase ΦK der Kugeln bezüglich des Gesamtvolumens des Beobachtungsfensters WB:

VV =
V (ΦK)

V (WB)
. (3.14)

Entsprechend definiert sich die spezifische Oberfläche AV als Quotient aus Oberfläche vonΦK und
des Gesamtvolumens des Beobachtungsfenster WB:

AV =
A(ΦK)

V (WB)
. (3.15)

Für Hartkugelpackungen sind diese Kenngrößen einfach und exakt bestimmbar. Der Volumen-
anteil für diese Packungsart mit beliebiger Radienverteilung berechnet sich aus der Summe der
Kugelvolumina bezogen auf die mittlere Anzahl Kugeln pro Volumeneinheit, auch Anzahldichte
ρn genannt:

VV =
4
3
πR̄3ρn. (3.16)

Analog hierzu ergibt sich die spezifische Oberfläche aus Summe der Oberflächen aller Kugeln:

AV = 4πR̄2ρn. (3.17)

Die Größen R̄2 und R̄3 beschreiben hier das zweite bzw. dritte Moment der Radienverteilung der
Kugel. Für BOOLEsche Kugelpackungen und das Kirschkern-Modell wird eine Schätzmethode
eingesetzt [57, 134].
Im Weiteren werden ausgewählte Kenngrößen zur Charakterisierung aufgeführt, die Aufschluss
über die Ordnung der Packung wiedergeben. Die Kenngrößen sollen Erkenntnisse über die zu
untersuchende Packung zeigen, ob ein eher amorph- oder kristallähnlicher Ordnungszustand vor-
liegt. Zur Veranschaulichung werden die Charakterisierungsgrößen an einer zufällig generierten
periodischen Kugelpackung aufgezeigt.

3.1.7.1 Lokale Dichte

In zufälligen Kugelpackungen gibt es meist Bereiche mit weniger dicht und mehr dicht ange-
ordneten Kugeln. Zufällige Kugelpackungen können auch geordnete Bereiche aufweisen, die
beispielsweise als Hinweis auf Vorhandensein regulärer Strukturen dienen können. Um diese
lokalen Bereiche untersuchen zu können, bedarf es einer Kenngröße, mit der sich die lokalen
Veränderungen aufspüren lassen. Eine Kenngröße hierfür stellt die lokale Dichte einer Kugel in
einer Packung dar. Die Definition der lokalen Dichte basiert auf der VORONOI-Zerlegung bzw. bei
ungleich großen Kugeln auf der LAGUERRE-Zerlegung von Kugelpackungen [105, 135, 180, 181].
Die lokale Dichte einer Kugel ist definiert aus dem Verhältnis Volumen der Kugel zum Volumen
der sie umgebenden VORONOI-Zelle:

ρlokal =
Vi

VVor,i
. (3.18)

Die Abb. 3.7 zeigt die Vorgehensweise zur Erstellung einer VORONOI-Zelle im zweidimensio-
nalen Raum. Die lokale Dichte kann Aufschluss über Schwankungen in der Dichteverteilung der
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Abbildung 3.7: Konstruktion einer VORONOI-Zelle, hier beispielhaft für monodisperse Kreisschei-
ben gezeigt. Die der VORONOI-Zelle zugehörige Kugel ist schraffiert dargestellt.

Packung geben, wie sie zum Beispiel durch Clusterbildung hervorgerufen werden. In monodi-
spersen Kugelpackungen kann die lokale Dichte auf lokale strukturelle Anomalien hinweisen,
beispielsweise Kristallisationsbereiche. Zudem können mit Hilfe der lokalen Dichte potenzielle
ikosaedrische Anordnungen entdeckt werden, da die lokale Dichte für die zentralgelegene Kugel
in einer ikosaedrischen Anordnung mit ρlokal = 0,76 über derjenigen der KRZ- bzw. HDP-Struktur
liegt. Bei dieser Anordnung entstehen Lücken, die es unmöglich machen, solche Strukturen
raumfüllend periodisch anzuordnen. Diese Lücken verringern die lokalen Dichten für die Kugeln
um das Ikosaederzentrum. Dadurch bleibt die globale oder auch mittlere Packungsdichte der
gesamten Packung immer unter dem Wert der dichtest möglichen Anordnung. Abbildung 3.8a
zeigt exemplarisch die Verteilung der lokalen Dichte für eine Packung mit 100 Kugeln.
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Abbildung 3.8: Zufällige Kugelpackung: a) Histogramm der lokalen Dichte und b) dreidimen-
sionale Darstellung einer Kugelpackung mit 100 gleich großen Kugeln inklusive des VORONOI-
Gitters bei einer Dichte von VV = 0,62.
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3.1.7.2 Koordinationszahl

Ein weiterer topologischer Parameter einer Kugelpackung ist die Koordinationszahl KZ, sie be-
schreibt die direkten Kontakte einer Kugel zu ihren Nachbarn. Für reale monodisperse Kugelpa-
ckungen bestimmten beispielsweise Bernal et al. [20] die mittlere Koordinationszahl für direkte
Kontakte < KZ >= 6,4 für eine zufällige dichte Packung mit PD = 0,62 und < KZ >= 5,5 für
eine zufällige lose Packung mit PD = 0,6. Des Weiteren ermittelte Bernal et al. [20] die mittlere
Koordinationszahl für direkte und nahe2 Kontakte für die dichte Packung < KZ >= 8,5 und die
lose Packung < KZ >= 7,1. Gotoh und Finney [78] gaben eine mittlere Koordinationszahl von 6
für eine ungeordnete Packung mit PD = 0,58. Smith et al. [197] ermittelte mittlere Koordinations-
zahlen von KZ = 6,92 bis 9,51 bei Packungsdichten von 0,553 und 0,628.
Bei Packungen, die mit dem Forced-Biased-Algorithmus simuliert oder beschriebenen Rekon-
struktionsalgorithmus berechnet wurden, wird die Bestimmung der Koordination dadurch er-
schwert, dass die Kugeln in den Packungen nicht im direkten Kontakt zueinander stehen. Um
dieses Problem zu umgehen, wird beispielsweise bei den aus der Simulation gewonnnenen Pa-
ckungen ein Toleranzparameter εK eingeführt [22]. Dabei werden alle Kugeln mit einem Abstand
kleiner als εK als in direktem Kontakt betrachtet. In [22] wird εK als 1% des mittleren Radius
festgelegt. Im Fall der gewonnen Kugelpackungen aus dem Rekonstruktionsalgorithmus nach
[188] werden größere Werte für εK genutzt. Für die exemplarische Kugelpackung in Abb. 3.8b
wurde eine mittlere Koordinationszahl von 6,0 bei εK = 0,01 des mittleren Kugelradius ermittelt
und die Verteilung kann aus Abb. 3.9 entnommen werden.
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Abbildung 3.9: Histogramm der Koordinationszahl einer Kugelpackung mit 100 gleich großen
Kugeln.

3.1.7.3 Bindungswinkel

Eine in Physik und Chemie weit verbreitete und oft genutzte Methode zur Strukturcharakteri-
sierung von Kugelpackungen bzw. atomaren Systemen ist die Betrachtung der Bindungswinkel,
beispielhaft aufgeführt in [69, 117, 226]. Als Bindungswinkel wird der Winkel bezeichnet, der
zwischen den Verbindungsvektoren einer Kugel und zwei ihrer Nachbarn aufgespannt wird. Abbil-
dung 3.10a verdeutlicht die Bestimmung des Bindungswinkel αB einer Kugel mit zwei benachbar-
ten Kugeln j und k. Die Verteilung dieser Bindungswinkel reagiert merklich auf die Struktur der
Kugelpackung: Während in einer ungeordneten Kugelpackung verschiedenste Winkel zwischen
0 und 180° vorkommen, treten bei kristallinen Strukturen jeweils nur gewisse Bindungswinkel
auf. Die Winkelverteilung wird im Fall der kristallinen Anordnung diskret mit großen Werten bei

2bei 5% Durchmesserzuwachs
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den für die jeweilige Kristallstruktur typischen Bindungswinkeln. So beschreibt die Verteilung der
Bindungswinkel ein Maß für Ordnung einer Kugelpackung. Es treten beispielsweise bei der KP
Anordnung nur 90° und 180° Winkel auf. Indessen sind es bei der HDP Anordnung überwiegend
60° und 120°. Es zeigen sich aber auch Winkel von 90°, 109,47° und 146,44°.

αB
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Abbildung 3.10: Bindungswinkel: a) Schematische Darstellung eines Bindungswinkels αB zwi-
schen der Kugel i und ihren Nachbarn j und k, b) Histogramm des Bindungswinkels einer
Kugelpackung mit 100 gleich großen Kugeln.

3.1.7.4 Paarkorrelation

Eine aus der Physik und räumlichen Statistik bekannte Kenngröße zur Beschreibung von Kugelpa-
ckungen ist die Paarkorrelationsfunktion g(r). Sie wird auch radiale Verteilungsfunktion genannt.
Die Paarkorrelationsfunktion basiert auf der bekannten Größe zweiter Ordnung, der RIPLEYschen
K (r) Funktion [176, 202]. Diese Funktionen werden zumeist auf Punktfelder angewandt. Da die
Zentren der Kugeln als Punktprozess interpretiert werden können, wird diese Funktionen bezüglich
der Kugelzentren bestimmt. Ist ρK die Intensität eines Punktprozesses, so kann die Größe ρKK (r)
als die mittlere Anzahl von Kugeln im Radius r um eine zufällige Kugel in der Packung angesehen
werden. Die Paarkorrelationsfunktion ist definiert durch

g(r) =
∂K (r)
∂ r

1
nbnrn−1 , r ≥ 0. (3.19)

Hierbei ist bn das Volumen der n-dimensionalen Einheitskugel. Die Paarkorrelationsfunktion g(r)
einer Kugelpackung beschreibt die Häufigkeit der Abstände von Kugelzentren in der Packung. Das
heißt die Paarkorrelationsfunktion gibt die Wahrscheinlichkeit an, dass die Zentren zweier Kugeln
den Abstand r haben. Für unmögliche Zwischenachsabstände, bei Packungen mit gleich großen
Kugeln ohne Überlappung entspricht dies für Abstände r kleiner als der Kugeldurchmesser D, gilt
g(r) = 0. Der Abstand r

D = 1 wird auch als Hardcore-Abstand bezeichnet. An dieser Stelle weist
die Paarkorrelationsfunktion für dichte Packungen harter Kugeln ein ausgebildetes Maximum auf.
So lassen sich an der Form der Paarkorrelationsfunktion Veränderungen der Nahordnung in einem
Kugelpackungssystem erkennen. Zudem findet man für Packungen mit kristalliner Struktur Maxi-
ma bei der Kristallstruktur typischen Abständen, beispielhaft bei HDP-Packung in den Abständen
1,
√

2,
√

3, 2, usw. Der Grad der Ausprägung dieser Maxima gibt Auskunft darüber, wie gut die
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Ordnung der betrachteten Kugelpackung ist. Für r→∞ geht der Wert der Paarkorrelationsfunktion
zu Eins. In Abb. 3.11a ist erkennbar, dass eine örtliche Nahordnung vorhanden ist. Erkenntlich wird
dies durch schwach ausgeprägte Maxima an den Stellen r =

√
3 und r = 2.
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Abbildung 3.11: Kenngrößen: a) Paarkorrelationsfunktion und b) Kovarianz einer Kugelpackung
mit 100 gleich großen Kugeln bei einer Dichte von VV = 0,62.

3.1.7.5 Kovarianz

Eine weitere nennenswerte Kenngröße in der räumlichen Statistik ist die Kovarianz, oft auch als
Zweipunktwahrscheinlichkeit bezeichnet [207]. Die Kovarianz C (r) charakterisiert die Vereini-
gungsmenge aller Kugeln in einer Packung und beschreibt somit die Variabilität des Volumenan-
teils der Kugel in der Packung. C (r) gibt die Wahrscheinlichkeit an, dass zwei Kugeln mit dem
Abstand r in der Vereinigungsmenge aller Punkte liegen. Folgende Eigenschaften

C (0) =VV (3.20)

und
C (∞) =V 2

V (3.21)

besitzt die Kovarianz. Weitere Eigenschaften können [98, 202] und [207] entnommen werden.
Die Bestimmung der Kovarianz erfolgt in der Regel durch eine Schätzung mit Hilfe des MONTE-
CARLO-Algorithmus. Die Abb. 3.11b zeigt den Verlauf der Kovarianz für die beispielhafte Ku-
gelpackung (siehe Abb. 3.8b). Die Form der Schwankungen im Graph wird durch die jeweilige
Radienverteilung in bi- bzw. polydispersen Kugelpackungen bestimmt und reflektiert bevorzugte
lokale Anordnungen von Kugel in der Packung [134]. Bei monodispersen Kugelpackungen sind
die Schwankungen am größten ausgeprägt [134, 207]. Weitere Parameter bzw. Kenngrößen zur
Charakterisierung zufälliger Kugelpackungen können [57, 134] und [207] entnommen werden.

3.1.8 Geometrisches Volumenmodell

Die Modellierung der Hohlkugeln und auch der Elementarzellen geschieht in dieser Arbeit mit
Hilfe von Computer Aided Design (CAD) Programmen, im Speziellen mit der kommerziellen
Kontruktionsoftware ProEngineer®. Die Modellierung basiert auf den aufbereiteten Daten des Ku-
gelpackungsprogramms SpherePack oder Kugelerkennungssoftware von Janina Schulz. Reguläre
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Packungen werden direkt im CAD-Programm erstellt, es bedarf keinerlei Vorbereitungssoftware.
In dieser Arbeit wird implizit nur auf Volumenmodelle eingegangen. Dies hat den Vorteil, dass
Volumenüberschneidungen wie bei flächigen oder linienförmigen Tragwerken verhindert werden
[43]. Als Nachteil wird ein höherer Modellierungsgrad und -aufwand in Kauf genommen.

3.1.8.1 Reguläres Modell

Für die parametrische Modellierung werden die Geometriegrößen des Hohlkugel-Mesomodells
herangezogen. Dies sind im Einzelnen der Kugeldurchmesser D, der Sinterwinkel Φ bzw. Sinter-
stellenradius r und die Wanddicke t. Als reguläre Gitter werden die drei kubischen (KP, KRZ und
KFZ) und hexagonale (HPD) Regelgitterstruktur genutzt. Aus diesen Vorgaben lässt sich für jede
Gitteranordnung eine geometrische Elementar- bzw. Einheitszelle bilden, die sich periodisch zu
einer unendlichen Struktur zusammenfügen lässt. Einen Überblick über die erstellten Elementar-
zellen zeigt die Abb. 3.12. Für die Weiterverarbeitung bzw. das Erstellen eines homogenen und

Abbildung 3.12: Überblick aller erstellen Elementarzellen.

strukturierten Finite-Element-Netzes ist eine Segmentierung der Geometrie notwendig.

3.1.8.2 Stochastisches Modell

Im Gegensatz zum regulären Modell ist beim stochastischen Modell eine gewisse Vorbereitung
vor der Geometrieerzeugung im CAD-Programm erforderlich. Zu Beginn wird eine zufällige
Kugelpackung mit dem Programm Spherepack erzeugt und die Daten, wie die Koordinaten der
Kugelzentren und der Radius, in einer Textdatei an das Mathematikprogramm MATLAB® über-
geben. Analog können auch Daten aus den rekonstruierten Kugelpackungen übergeben werden.
Diese Vorbereitung ist notwendig, um eine stochastische und zugleich auch periodische Struktur
zu erzeugen. Aus dem Kugelpackungsprogramm SpherePack erhält man jeweils die Kugelzentren
mit entsprechenden Radien innerhalb eines definierten Volumens. Schneidet man entlang der
Oberfläche des definierten Volumens, hier ein Würfel, erkennt man Fehlstellen bzw. eine nicht
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periodische Struktur. Grund hierfür sind Segmente von Kugeln, die ihre Kugelzentren außerhalb
des definierten Volumens haben und noch teilweise in das definierte Volumen ragen. Um dieses
Problem zu lösen, wird eine weitere Schicht von Kugeln, die die Periodizität erfüllt, um das
definierte Volumen gepackt und dann erst wieder an der Oberfläche des definierten Volumen
geschnitten. Des Weiteren werden die Kugeln definiert vergrößert, so dass sich eine bestimmte
Durchdringung bzw. im Falle der gesinterten Hohlkugel ein bestimmter Sinterwinkel einstellt.
Zudem werden vorbestimmte Parameter übergeben, um eine konstante Wanddicke gemäß dem
Hohlkugel-Mesomodell nach Abschnitt 3.1.4 zu gewährleisten. Damit diese Parameter sowie
die Geometriedaten zügig, sicher und bequem übergeben werden können, wurde die Software
SmartAssembly von der b&w software genutzt. Die Abb. 3.13 zeigt den kompletten CAE-Prozess
für die Erstellung der Volumengeometrie bzw. der Simulation.

Schnittstelle

Kugelpackungs-Rekonstruktions-

Matlab

PRO Enginneer

ANSYS

C-Code Bi-direktionale

Algorithmus Algorithmus

Preprocessing

Smart Assembly

Parameterisierung

+

Abbildung 3.13: CAE-Prozess des stochastischen Modells
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3.2 Elastizitätswerte

Dieser Abschnitt behandelt die Methoden zur Bestimmung der elastischen Materialkennwerte.
Zum Anfang wird auf die Homogenisierung eingegangen, dann folgt die Charakterisierung der
gewonnenen Materialkennwerte. Hierbei wird kurz ein Sonderfall der negativen Querkontraktion
behandelt. Des Weiteren werden die Lastfälle zur Bestimmung der Kennwerte erläutert und die
genaue Umsetzung dieser beschrieben.

3.2.1 Homogenisierung

Eine Möglichkeit zur Charakterisierung der Materialeigenschaften eines Bauteils mit zellularem
Aufbau stellt die sogenannte Homogenisierung dar. Ziel der Homogenisierung ist es, ein effektives
Materialverhalten eines homogenen Ersatzmediums zu finden, welches sich ähnlich verhält wie
das zu untersuchende heterogene Medium. Dieser Homogenisierungsprozess über die Skalen wird
durch eine geeignete Mittelwertbildung vollzogen [81, 43]. Eine klassische Homogenisierung kann
auf zwei Arten durchgeführt werden. Entweder ist die Mikrostruktur periodisch und kann so
durch ein Einheitszellenmodell angenähert werden. Oder das betrachtete Volumenelement (VE)
ist so groß, dass es eine quasi-unendliche Anzahl von Mikrostrukturelementen (z.B. Körner,
Einschlüsse, Kugeln, Inhomogenitäten) beinhaltet. Wird das betrachtete Volumenelement groß
genug gewählt, kann die Probe als statistisch homogen angesehen werden [164]. Die Grundlagen
der Homogenisierung für diese Arbeit werden in Anlehnung an [81, 43, 164] und [190] hergeleitet
und zusammengefasst.
Bei der Anwendung der zuletzt erwähnten Homogenisierungsmethode wird vorausgesetzt, dass die
charakteristische Größe der Heterogenität in einer Skala (beispielsweise Mikroebene) gegenüber
der nächst höheren Skala (beispielsweise Mesoebene) so klein ist, dass sie nicht mehr wahrge-
nommen werden kann und somit das Material als homogen bezeichnet wird. Trifft dieser Fall
zu, können drei Skalen, die Mikroskala als Skala der Körner des Vollmaterials, die Mesoskala
als Skala der betrachteten Volumenelemente (VE) und die Makroskala als Größenordnung der
Bauteile, aufgeteilt werden. Es gilt

dmikro � d̆ � dmakro, (3.22)

wobei d der charakteristischen Länge der jeweiligen Skalaebene entspricht. Hierbei bezeichnet
(.̆) die Größe auf der Mesoebene, die auf der Mikrostruktur betrachtet wird. In der Literaturstelle
[164] wird zur Erfüllung dieser Bedingung ein dimensionsloser Parameter

δl =
d̆

dmikro
→ ∞ (3.23)

eingeführt. Die Größe dmikro beschreibt dabei die charakteristische Länge einzelner Körner,
Einschlüsse und sonstiger Mikrostrukurelemente. Lassen sich die Skalen nach Gl. (3.22) bzw.
(3.23) deutlich voneinander trennen, existiert ein repräsentatives Volumenelement (RVE) und das
Homogensierungsschema, wie in Abb. 3.14 dargestellt, kann angewendet werden. Ein Punkt der
heterogenen Struktur kann durch zwei Koordinaten bezeichnet werden (Abb. 3.14). Zum einen
mit der makroskopischen Koordinate xmakro, die auch der Punkt im homogenen Ersatzmedium
beschreibt, zum anderen mit der mesoskopischen Koordinate xmeso, welche den Ort der Umge-
bung der Heterogenität beschreibt. So lässt sich mit Hilfe der Lokalisierungstensoren A bzw. B
ein makroskopischer Verzerrungszustand εεε bzw. makroskopischer Spannungszustand σσσ auf die
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VE RVE
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Mesoebene Makroebene
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A, B A, B
<.> <.>

C Ceff

Abbildung 3.14: Schema der Homogenisierung mit charakteristischen Längen.

Mesoskala projizieren. Ein Herleitungsweg wird im Anhang B.1 vorgestellt. Zusammengefasst
erhält man die HILL-Bedingung in folgender Form

0 =
1
V

∫
∂B

(
t̆−< σ̆σσ > n

)
(ŭ−< ε̆εε > ·x)dA. (3.24)

In dieser Form kann die HILL-Bedingung so interpretiert werden, dass die in einem heterogenen
Material auf den Rand des Volumenelements fluktuierenden Verzerrungs- und Spannungsfelder im
energetischen Sinne gleichwertig sind zu ihren Mittelwerten (Abb. 3.15). Um diese Randbedin-

<ε̆εε >, <σ̆σσ>ε̆εε , σ̆σσ

Abbildung 3.15: Auf den VE-Rand fluktuierende Mesofelder und ihre Mittelwerte.

gungen zu erfüllen, gibt es drei verschiedene Möglichkeiten [112]:

• Randbedingungen aus uniformen Verschiebungen ŭ = ε̆εε0 ·x, weil für die uniforme Verschie-
bungen

εεε =< ε̆εε0 >= ε̆εε0 (3.25)
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gilt und somit der Term in der zweiten Klammer in Gl. (B.20) zu Null wird. Die Rand-
bedingungen aus dieser Klasse werden kinematisch uniforme Randbedingungen (KURB)
genannt.

• Randbedingungen aus uniformen Spannugen t̆ = σ̆σσ0 ·n, weil für die uniforme Spannungen

σσσ =< σ̆σσ0 >= σ̆σσ0 (3.26)

gilt und somit der Term in der ersten Klammer in Gl. (B.20) zu Null wird. Die Randbedin-
gungen aus dieser Klasse werden statisch uniforme Randbedingungen (SURB) genannt.

• Periodische oder orthogonal gemischte Randbedingungen, bei der keine der beiden Klam-
mern einzeln in Gl. (B.20) verschwindet, sondern die Bedingungen gemeinsam erfüllt. Bei
dieser Klasse der Randbedingungen werden jeweils die gegenüberliegenden Seiten derart
gekoppelt, dass sie sich äquivalent zueinander verhalten und somit eine Verformung eines
quasi unendlich großen Volumens entsteht.

Für homogene Materialien ohne Mikro- bzw. Mesostruktur sind die drei verschiedenen Randbe-
dingungen äquivalent zueinander. Dabei ruft ein uniformer Verzerrungszustand einen uniformen
Spannungszustand und umgekehrt hervor. Wird zum Beispiel ein repräsentatives Volumenelement
(RVE) einer periodischen Struktur betrachtet, ist dies nicht mehr der Fall. So kann ein uniformer
Spannungszustand eine Randverschiebung hervorrufen, die nicht konstant ist, oder ein uniformer
Verzerrungszustand kann Spannungen im Inneren hervorrufen, die ebenfalls nicht konstant sind.
Damit sind beide Zustände nicht ineinander überführbar. Diese beiden Zustände stellen eine untere
bzw. obere Grenze der effektiven Materialeigenschaften dar [91] und können zur Abschätzung des
Effektivwertes helfen.
Zieht man unter allen Verschiebungsrandbedingungen kinematisch zulässige Verzerrungsfelder in
Betracht, so wird nach dem Prinzip der minimalen Energie das elastische Potential (A.66) am
kleinsten, das den wahren Verzerrungen angehört [217]. Setzt man nach Voigt [216] ein uniformes
Verzerrungsfeld ε̆εε0 voraus, kann man den dazugehörigen Steifigkeitstensor C

V bestimmen, der
sich nach dem Extremalprinzip größer als die tatsächlichen Steifigkeitseigenschaften darstellt

Ceff ≤ C
V =

(
S

V)−1
. (3.27)

Somit bildet dieser Steifigkeitstensor eine obere Schranke. Der zugehörige Lokalisierungstensor A
wird zum I Tensor.
Betrachtet man nach Reuss [175] alle unter Spannungsbedingungen zulässigen Spanungsfelder
und das Prinzip der Komplementärenergie, ergibt sich analog ein Nachgiebigkeitstensor SR, der
größer ist als der wahre Nachgiebigkeitstensor. Er bildet deshalb ebenso eine Schranke:

Seff ≤ S
R =

(
C

R)−1
. (3.28)

Zusammengefasst erhält man die Schranken für die effektiven Materialeigenschaften(
S

R)−1 ≤ Ceff ≤ CV oder
(
C

V)−1 ≤ Seff ≤ SR. (3.29)

Weil die VOIGT- und REUSS-Schranken oftmals sehr weit auseinanderliegen, besteht ein prag-
matischer Ansatz zur Bestimmung der effektiven Materialwerte unter der Verwendung ihres
Mittelwerts [81] oder in anderen linearen Kombinationen [38, 35]. Aus vielen numerischen Un-
tersuchungen hat sich gezeigt, dass die periodische Randbedingung (PRB) das effizienteste Kon-
vergenzverhalten mit zunehmender Größe des repräsentativen Volumenelements (RVE) aufweist
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Abbildung 3.16: Veranschaulichung der Konvergenz mit der RVE-Größe nach [205]: a) Repräsen-
tatives Volumenelement (RVE) mit unterschiedlicher Größe, b) Konvergenz der durchschnittlichen
Eigenschaften mit zunehmender RVE Größe für unterschiedlichen Randbedingungstypen: SURB,
KURB und periodische Randbedingungen

[109, 123, 205] (siehe Abb. 3.16). Dementsprechend erhält man mit den periodischen Randbedin-
gungen (PRB) bei gleicher Größe des repräsentativen Volumenelements (RVE) einen Wert, der
näher am Effektivwert liegt als bei SURB und KURB. Die VOIGT- und REUSS-Schranken haben
trotz ihrer Nachteile infolge des unrealistischen homogenen Spannungs- bzw. Verzerrungsfeldes
eine breite Verwendung gefunden. Die Vorteile liegen in ihrer einfachen Berechnung und in den
qualitativen Aussagen zu den elastischen Eigenschaften.

3.2.2 Materialsymmetrie

Eine elementare Fragestellung bei der Untersuchung der Mesostrukturen (Hohlkugelmodelle)
betrifft die Materialsymmetrie bzw. die Isotropie. Die Frage nach der Isotropie wurde in diversen
Literaturen diskutiert wurden und hierfür auch Maße eingeführt. So haben beispielweise Benouali
et al. [18] das Verhältnis Ei

E j
zur Untersuchung der Abweichung von Elastizitätsmodulen in zwei

verschiedenen Raumrichtungen i und j eingeführt, wobei der kleinere Elastizitätsmodul immer
im Nenner steht. Im Gegensatz dazu führen Kanaun und Tkachenko [108] das Verhältnis 2(1+ν)G

E
ein, das für den isotropen Fall (vgl. Tabelle A.2) gegen eins konvergiert. Ein weiteres Maß zur
Beschreibung, inwieweit sich das mechanische Verhalten vom isotropen Fall unterscheidet, ist der
Anisotropiefaktor [179]

Aaniso =
2(S11−S12)

S44
. (3.30)

So ist bei einem Wert Aaniso = 1 das Material isotrop und bei Aaniso > 1 oder Aaniso < 1 anisotrop.
Eine weitere Methode zur Untersuchung auf Symmetrie ist es, die Steifigkeits- und Nachgie-
bigkeitstensoren (C und S) selbst zu betrachten und mittels ihrer Einträge auf Symmetrien zu
schließen. Eine mit dem Auge gut erkennbare Methode zur Überprüfung der Symmetrie stellen
die Elastizitätsmodulkörper dar [179]. Diese grafische Methode zur Darstellung der beiden Mate-
rialtensoren kann [25] und [145] entnommen werden. Dabei wird die Steifigkeit bzw. die Nachgie-
bigkeit in alle Raumrichtungen d über nacheinander in diese Raumrichtung virtuell durchgeführte
Zugversuche abgebildet. So ergibt sich für folgende Projektionsformel für den Elastizitätsmodul
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Abbildung 3.17: Elastizitätsmodulkörper: Richtungsabhängigkeit der Elastizitätsmoduln einiger
Werkstoffe [145, 179]. In jede Raumrichtung gibt der Abstand der Oberfläche vom Koordinatenur-
sprung die Größe des Elastizitätsmoduls an.

nach [25]
1

E (d)
= d⊗d · ·S · ·d⊗d (3.31)

Die jeweilige Form der entstehenden Oberfläche, auch Elastizitätsmodulkörper genannt, bzw. ihre
Symmetrie entscheidet über ihre jeweilige Materialsymmetrie (vgl. Abb. A.1).
Abbildung 3.17 zeigt exemplarisch drei Werkstoffe mit unterschiedlichen Materialverhalten. Der
Elastizitätsmodulkörper des Schwermetalls Wolfram stellt dabei eine ideale Kugel dar. Aus der
kugelförmigen Oberfläche wird ersichtlich, dass der Elastizitätsmodul richtungsunabhängig ist und
somit der Isotropie entspricht. Ein deutlich anderes Verhalten weist das Buntmetall Kupfer auf.
Schon mit Hilfe des Anisotropiefaktors kann eine deutliche Anisotropie erkannt werden, jedoch
nicht auf die Symmetrieebenen zurückgeschlossen werden. Mit Hilfe des Elastizitätsmodulkörpers
wird ersichtlich, dass der Elastizitätsmodul in Raumdiagonalenrichtung wesentlich größer als in
Achsenrichtung ist. Zudem lässt sich eine kubische Symmetrie erkennen. Ein invertiertes Ver-
halten des richtungsabhängigen Elastizitätsmoduls zeigt im Gegensatz die mineralische Keramik
Zirkonia. Der maximale Elastizitätsmodul wird in Achsenrichtung erreicht. Jedoch hat Zirkonia
wie auch Kupfer kubische Symmetrie.
Betrachtet man die anderen Materialparameter, wie Schubmodul, Kompressionsmodul und Quer-
kontraktion in Abhängigkeit der Raumrichtung, ergeben sich mit Hilfe der Projektionsformeln [25]

1
2G(d,n)

=

√
2

2
(d⊗n+n⊗d) · ·S · ·

√
2

2
(d⊗n+n⊗d) ,

ν (d,n)
E (d)

=−d⊗d · ·S · ·n⊗n und

1
E (d)

= I · ·S · ·d⊗d

(3.32)

die gleichen Ergebnisse. Dabei ist zu beachten, dass der Schubmodul und die Querkontraktionszahl
vom Normalenvektor n der betrachteten Grundfläche abhängen. Deren Orientierung ist wiederum
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an die Raumrichtung d geknüpft.

3.2.3 Negative Querkontraktion

In mehreren Variationsberechnungen traten bei kleinen Verhältnissen von Wanddicken zu Durch-
messer für die makroskopische Querkontraktionszahlen negative Werte auf. Dieser Effekt kann
gut an Metallschäumen mit Hinterschnitten veranschaulicht werden [121]. Abbildung 3.18 zeigt
exemplarisch die Verformung einer Zelle mit Hinterschnitt, die sich unter Belastung anders als
gewöhnliche Werkstoffe verformen würde. Dies führt bei einer Zugbelastung zu einer Ausdehnung

FF

Abbildung 3.18: Metallschaumzellen mit Hinterschnitt nach [121].

in Querrichtung. Bei Metallschäumen kann der Bereich der Querkontraktionszahlen im Bereich
von -0,7 bis 0,5 liegen [95, 94]. Bei syntaktischen und verklebten Hohlkugelstrukturen wurde ein
Bereich der Querkontraktionszahlen von -0,3 bis 0,4 beobachtet [72, 183, 203]. Nach Pasternak
und Dyskin [168, 167, 194] können sich Extremwerte für Hohlkugelstrukturen mit hexagonaler
Anordnung und sehr dünnen Wanddicken mit bis zu -1 einstellen. Selbst bei kubisch elementaren
Metallen können sich negative Querkontraktionen einstellen [16].

3.2.4 Lastfälle

Zur Bestimmung des Materialverhaltens und der im Grundlagenkapitel 2 eingeführten Materi-
alparametern wie Elastizitätsmodul E, Schubmodul G, Kompressionsmodul K oder der Quer-
kontraktionszahl ν , werden gemäß der zuvor vorgestellten Methodik Lastfälle definiert, mit de-
nen die 21 Unbekannten der Materialtensoren berechnet werden können. Hierfür werden pro
Randbedingungsart sechs Lastfälle benötigt. Ein siebter Lastfall, wie z.B. der zur Ermittlung des
Kompressionsmoduls K, kann zur Überprüfung herangezogen werden. Ähnliche Vorgehensweisen
können [108, 112, 183, 190] und [199] entnommen werden.
Die einfachste Vorgehensweise zur Ermittlung der Unbekannten ist es, sechs Lastfälle zu erzeugen,
in denen nur ein Eintrag mit dem Betrag eins im Spannungs- bzw. Verzerrungsvektor der Gl. (A.68)
entsteht. Dabei sind alle anderen Einträge gleich Null gesetzt. Diese Lastfälle für Verzerrungen
sind repräsentativ für ein homogenes Material in Abb. 3.19 dargestellt, wobei bei der linear
elastischen und geometrisch linearen Berechnung der elastischen Materialparameter zwischen
Zug- und Druckverhalten nicht zu unterscheiden ist. Wird das zu untersuchende Volumenelement
oder die zu untersuchende Elementarzelle mittels einer dieser Fälle belastet, können durch Messen
der entsprechenden Einträge des Ergebnisfeldes eine Spalte der zugehörigen Steifigkeits- bzw.
Nachgiebigkeitsmatrix C bzw. S bestimmt werden. Nachfolgend ist dies beispielhaft für den 11-
Lastfall aufgeführt (SURB oder bei periodischer Randbedingung mit uniformer und homogenisier-
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Lastfall (-namen):

11 (xx) 22 (yy) 33 (zz) 23 (yz) 13 (xz) 12 (xy)

Lastfallvektoren:⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

Abbildung 3.19: Sechs Grundlastfälle zur Bestimmung der Materialkonstanten nach [190].

ter Spannung) ⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
ε23
ε13
ε12

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Si jkl

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

S1111
S2211
S3311
S2311
S1311
S1211

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.33)

3.2.5 Periodische Randbedingungen

Mit den gewonnen Erkenntnissen aus den zuvor behandelten Abschnitten lassen sich Volumenele-
mente bilden, die einen regelmäßigen oder periodisch stochastischen Strukturaufbau aufweisen.
Mit Hilfe der Homogenisierung versucht man einen durchschnittlichen Wert zu bestimmen, der
möglichst nahe am Effektivwert einer realen Struktur liegt. Es hat sich gezeigt, dass periodische
Randbedingungen diesem Effektivwert bei gleicher Größe der Elementarzelle näher kommen als
bei anderen Randbedingungen [43, 205]. Aus diesem Grund wird in der vorliegenden Arbeit näher
auf diese Form der Randbedingung eingegangen. Es wird zuerst allgemein im zweidimensiona-
len und dreidimensionalen Raum und danach speziell auf die Anforderung der Finite-Element-
Modellierung eingegangen.
Im Folgenden wird die Formulierung einer periodischen Randbedingung für das Verschiebungsfeld
am Rand einer rechteckigen Einheitszelle beschrieben. Abbildung 3.20 zeigt die undeformierte
und deformierte Struktur einer rechteckigen zweidimensionalen Elementarzelle. Der Rand der
rechteckigen Elementarzelle besteht aus vier Kanten, die mit N, O, S und W bezeichnet werden,
sowie vier Eckpunkten, markiert und abgekürzt mit NO, NW, SO und SW. Die Namensgebung
orientiert sich an den Himmelsrichtungen Nord, Süd Ost und West.
Bei der Definition der Randbedingungen ist zu beachten, dass Starrkörperbewegungen unter-
bunden werden. Im Fall der Abb. 3.20 ist die Translations- und Rotationsbewegung durch das
Festlager am Eckpunkt SW und das Loslager am Eckpunkt SO beschränkt. Kurz gesagt, es
ist eine statisch bestimmte Lagerung zu erreichen. Bei der Lagerung muss des Weiteren darauf
geachtet werden, dass die Bedingung der geometrischen Periodizität, wie beispielsweise Dehnung
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N
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Abbildung 3.20: Idealisierte zweidimensionlae Elementarzelle nach [43].

und Stauchung im Zug-, Druck- und Schubfall, nicht verletzt werden. Es ist zweckmäßig, diese
globalen Deformationsfälle auf ausgewählte Verschiebungskomponenten von bestimmten Finite-
Element-Knoten an den Ecken des Modells zu beziehen. Diese Knoten werden auch Masterknoten
genannt. Die Knoten NW und SO in der Abb. 3.20 stellen Masterknoten dar und ihr Beitrag zum
Deformationsfeld der Elementarzelle ist durch Pfeile angedeutet.
Zur Aufrechterhaltung der geometrischen Periodizität im deformierten Zustand einer rechteckigen
Elementarzelle sind die Verschiebungen der gegenüberliegenden Begrenzungskanten zu koppeln.
Die Freiheitsgrade (FG) einer dieser gekoppelten Kanten bleiben ungezwungen. Diese Freiheits-
grade sind die sogenannten Master-Freiheitsgrade. Die Knoten auf der gegenüberliegenden Seite,
dem Slave-Rand der Elementarzelle, haben Partner-Knoten auf der Master-Kante und sind mit
den Master-Knoten hinsichtlich ihrer Verschiebung in x und y-Richtung gekoppelt. Darüber hinaus
wird ein zusätzlicher Verschiebungsvektor überlagert. Er beruht auf dem Verschiebungsbereich der
Slave-Knoten. Dieser Verschiebungsvektor bezieht sich auf die makroskopischen Freiheitsgrade
der Elementarzelle. In der idealisierten Elementarzelle aus Abb. 3.20 sind jeweils die Verschie-
bungsvektoren für die Kanten N und O gegeben durch uNW =

[
uNW vNW

]T
und uSO =

[
uSO 0

]T
.

Die Komponenten dieser Verschiebungsvektoren werden auf den makroskopischen Verzerrungs-
tensor bezogen, der durch den Vektor εεε =

[
εxx εyy γxy

]T
mit seinen Komponenten

εxx =
uSO

lx
, εyy =

uNW

ly
, und γxy =

uNW

ly
(3.34)

beschrieben werden kann. Zu beachten ist, dass die Verschiebung an Ecken nicht die einzig mög-
liche Master- und Slave-Einheit bildet. Alle geeigneten Freiheitsgrade in einem Finite-Elemente-
Modell können als eine Master-und Slave-Einheit verwendet werden. Sonst würde ein automa-
tisches Generierungsschema für die periodischen Randbedingungen scheitern, sobald sich keine
Finite-Element-Knoten in den Ecken der Elementarzelle befinden.
Die Kopplungsbedingungen müssen getrennt für Slave-Kantenknoten und Slave-Eckknoten defi-
niert werden. Im aufgeführten zweidimensionalen Beispiel sind die Verschiebungen des Eckkno-
tens völlig festgehalten zur Verhinderung der Starrkörpertranslation. Die vertikale Verschiebung
des Eckknoten SO ist unterbunden, um eine Starrkörperrotation der Elementarzelle zu unter-
drücken. Der horizontale Freiheitsgrad der Eckknoten SO bezieht sich auf die makroskopische
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Normaldehnung in x-Richtung. Die horizontale und vertikale Verschiebung des Knoten NW defi-
niert die makroskopische Schubdehnung und die makroskopische Normaldehnung in y-Richtung.
Die Master-Kanten S und W bleiben ungezwungen. Dagegen werden die Verschiebungen der
Slave-Kanten N und O über die Kopplungsgleichungen

uO (y) = uW (y)+uSO (3.35)

und
uN (x) = uS (x)+uNW (3.36)

vorgegeben. Der Verschiebungsvektor des Eckknotens NO ist eine Linearkombination aus den
Verschiebungsvektoren uNW und uSO der zwei Masterknoten NW und SO

uNO = uNW +uSO. (3.37)

Bei Linien- und Flächentragwerkselementen, wie Balken und Schalenelementen, in der Finiten-
Elemente-Methode ist zu beachten, dass es einen weiteren Freiheitsgrad der Rotation an den
Knoten gibt. Um weiterhin die geometrische Periodizität zu erfüllen, werden weitere Kopplungs-
gleichungen benötigt. Im Falle einer rechteckigen zweidimensionalen Elementarzelle sind die
Rotationswinkel an den Ecken identisch

ϕNO = ϕNW = ϕSO = ϕSW. (3.38)

Dabei agiert der Freiheitsgrad ϕSW als Master-Freiheitsgrad für den Rotations-Freiheitsgrad in
den vier Ecken der Elementarzelle. Die Rotations-Freiheitsgrade der gegenüberliegenden Kanten
müssen wie folgt

ϕW (y) = ϕO (y) und ϕN (x) = ϕS (x) (3.39)

gekoppelt sein. Da die Verschiebungen aller Knoten entlang der Slave-Kanten am Rand der
Elementarzelle an einzelne Master-Freiheitsgrade gekoppelt werden, wirken die von außen auf-
gebrachten Kräfte auf diese Master-Freiheitsgrade über die ganze Kante verteilt, die der Master-
Freiheitsgradbewegung folgt. Dies bedeutet, dass die aufsummierten Oberflächenspannungen ent-
lang der Slave-Kante der resultierenden Kraft auf die Master-Freiheitsgrade entspricht. Dement-
sprechend bringen die Reaktionskräfte an den Lagerstellen die Elementarzelle in ein statisches
Gleichgewicht und entsprechen der Summe der Oberflächenspannungsvektoren an den Master-
Kanten.
So reagiert das Elementarzellenmodell auf konzentrierte Lasten, die auf die Master-Freiheitsgrade
wirken, wie eine infinite periodische Struktur auf eine homogenisierend angewendete Spannung
reagieren würde [196, 43]. Daraus können ähnlich wie in Gl. (3.21) folgende Beziehungen

σxx =
HSO

ly
, σxx =

HNW

lx
, und σxy =

HNW

lx
(3.40)

zwischen der homogenisierten Spannung <σσσ >=<
[
σxx σyy σxy

]T
> und konzentrierten Kno-

tenkräften (Kraft pro Elementdicke) H und V formuliert werden.
Das bisher beschriebene Schema kann auf eine dreidimensionale Elementarzelle erweitert werden.
Abbildung 3.21 zeigt Namenskonventionen zur Identifizierung der Ecken, Kanten und Flächen
einer kubischen Elementarzelle. Hierfür werden zusätzlich zwei weitere Bezeichner Deckel und
Boden eingeführt zur Beschreibung der dritten Raumrichtung. Dabei bezeichnen Abkürzungen mit
drei Buchstaben Eckpunkte, jene mit zwei Buchstaben beschreiben Kanten und einzelne Buchsta-
ben stehen für Flächen. Abbildung 3.21b zeigt eine kubische dreidimensionale Elementarzelle im
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Abbildung 3.21: Dreidimensionale Elementarzelle nach [43]: a) vorgegebene Bezeichnung für
die Knotensätze einer kubischen Elementarzelle und b) allgemeiner Deformationszustand eines
Einheitswürfels.

Zustand einer allgemein makroskopischen Deformation mit drei Normal- und Schubverformungs-
freiheitsgraden. So kann beispielweise die komplexe Zwangsbedingung in Bezug auf die Anzahl
der unabhängig beteiligten Freiheitsgrade für die x-Verschiebung uNOD der Ecke NOD bestimmt
werden

uNOD = uSOB +uNWB +uSWD. (3.41)

Die Bestimmung der Verschiebung bzw. Verzerrungen der Kanten, Eckkanten und Flächen erfol-
gen analog dem zuvor beschriebenen Beispiel einer zweidimensionalen rechteckigen Elementar-
zelle. Die Umsetzung der periodischen Randbedingungen in einem Finite-Elemente-Code wird im
Anhang B.2 vorgestellt.

3.3 Schwingungssanalyse

Die Schwingungsanalyse erfasst und untersucht auftretende Schwingungen nach Art und Ausmaß.
Eine besondere Form der Schwingungsanalyse stellt die Modalanalyse dar. Sie ist ein Verfahren
zur Beschreibung der natürlichen dynamischen Eigenschaften wie Eigenfrequenzen, Dämpfungen
und Schwingungs-Eigenformen einer Struktur. Zur Ermittlung dieser Parameter können sowohl
rechnerische als auch experimentelle Methoden eingesetzt werden. Bei beiden rechnerisch auf-
geführten Verfahren wird die reale Struktur auf ein idealisiertes lineares mathematisches Modell
zurückgeführt [114, 220].
Mit dem ersten CAUCHY-EULERschen Bewegungsgesetz (A.36) ergibt sich die allgemeine Bewe-
gungsgleichung mit einer geschwindigkeitsproportionalen Dämpfung

∇ ·σσσ +ρfm− kvu̇−ρü = fm (t) , (3.42)

wobei kv einen Dämpfungskoeffizienten darstellt. fm (t) ist der zeitlich abhängige Massenlastvek-
tor.
Das Eigenschwingproblem von Platten kann entweder mit partiellen Differentialgleichungen oder
mit Hilfe der Energiefunktionen aus Abschnitt 2.2 gelöst werden. Beide Lösungsstrategien versu-
chen, analytische und numerische Standardverfahren zu nutzen. Zu den verfügbaren Verfahren
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gehören die Finite-Elemente-Methode (FEM), die Finite-Differenzen-Methode, die Randwert-
Element-Methode, die Differential-Quadrature-Methode, die GALERKINsche Methode und die
RITZsche Methode [132]. Jedoch ist dem Autor nicht bekannt, dass sich alle 21 möglichen
Lastfälle für eine Rechteckplatte, insbesondere für den Fall mit vier freien Rändern, geschlossen
analytisch berechnen lassen. In dieser Arbeit wird das RITZsche Verfahren wegen seiner einfachen
numerischen Umsetzung verwendet. Des Weiteren werden die gewonnenen Ergebnisse mittels
eines kommerziellen FEM-Programms auf Plausibilität geprüft.

3.3.1 Numerische Modalanalyse

In der FEM ergibt sich die Bewegungsgleichung nach der Diskretisierung zu folgender Eigenwert-
gleichung in Matrizenschreibweise

M · ü+Cdamp · u̇+K ·u = f(t), (3.43)

wobei u dern Verschiebungsvektor, M die Massenmatrix, C die Dämpfungsmatrix, K die Steifig-
keitsmatrix und f(t) den zeitlich abhängigen Lastvektor darstellt. Für eine freie Eigenschwingung
ist der Lastvektor f(t)= 0, es entsteht eine homogene Differentialgleichung. Da die Lastfunktionen
oft nicht genau bekannt sind und auch die Vorgabe von Dämpfungswerten schwierig ist, werden
sehr häufig anstelle transienter Berechnungen nur dämpfungsfreie Eigenfrequenzberechnungen
durchgeführt. Ziel ist es, eine Struktur so abzustimmen, dass ihre Eigenfrequenzen nicht mit den
Lastfrequenzen zusammenfallen und so dynamische Einflüsse reduziert oder gar ausgeschaltet
werden. Die Eigenfrequenzen bzw. -formen ergeben sich aus den Eigenwerten bzw. -vektoren der
Gleichung.

3.3.2 RITZsches Verfahren

Das RITZsche Näherungsverfahren stellt die verallgemeinerte Version der RAYLEIGH-Methode
dar. Die RAYLEIGH-Methode basiert auf dem Prinzip, dass bei Eigenschwingungen ein völliger
Austausch zwischen kinetischer und potentieller Energie ohne Dissipationseffekte stattfindet. So-
mit beruht das RAYLEIGH-Verfahren auf der schwachen Formulierung des Eigenwertproblems.
Mit einer Testfunktion für die Schwingungsformen, die die geometrischen Randbedingungen
erfüllt und unter der Annahme einer harmonischen Schwingung ergeben sich die Eigenschwin-
gungsfrequenzen. Die daraus resultierenden Eigenfrequenzen stellen eine obere Schranke dar, es
sei denn, die exakte Eigenfunktion der freien Schwingung wird als Testfunktion angenommen.
Ritz verallgemeinerte das RAYLEIGH-Verfahren durch die Annahme einer Reihe von zulässigen
Testfunktionen, die jeweils unabhängige Amplitudenkoeffizienten haben [177]. Er zeigte dabei,
dass eine engere obere Schranke für die Eigenfrequenzen, durch die Minimierung des Energie-
funktionals in Bezug auf die Koeffizienten erreicht werden kann. Ritz demonstrierte seine Methode
für eine völlig lagerungsfreien quadratische Platte, für die es keine exakt analytische Lösung gibt
[132].
In dieser Arbeit wird das RITZsche Verfahren zur Eigenschwingungsanalyse von MINDLIN-Platten
angewendet. Bei der RITZschen Methode nähert man die Verschiebungsfunktion R(x,y) durch eine
endliche Anzahl von Linearkombination der Form

R(x,y) =∑ciφi (x,y) (3.44)
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an, wobei φi (x,y) die Näherungsfunktionen sind, die die individuellen geometrischen Randbedin-
gungen erfüllen. Die unbekannten Koeffizienten ci werden durch das Extrema des Energiefunktio-
nals (Gl. A.88)

∂φi

∂ci
= 0 mit i = 1,2, ...,m (3.45)

bestimmt, welches einen Satz homogener Gleichungen, ausgedrückt durch die Terme mit den
Koeffizienten ci, nach sich zieht. Somit lässt sich das Problem auf folgendes Eigenwert- und
Eigenvektorproblem reduzieren: (

K−λ 2M
) · c = 0, (3.46)

dabei ist K die Steifigkeitsmatrix. Diese definiert sich durch

K =
∂U
∂c

(3.47)

und die Massenmatrix M wird beschrieben durch

M =
∂K
∂c

. (3.48)

Gemäß dem RITZschen Verfahren gelangt man zur exakten Lösung bei der Grenzwertbetrachtung
m → ∞ der Gl. (3.45), wenn das System der gewählten Testfunktionen folgende Bedingungen
erfüllt:

• die Funktionen φi (x,y) sind linear unabhängig,

• die Funktionen φi (x,y) bilden ein komplettes System von Gleichungen,

• die Funktionen φi (x,y) erfüllen die kinematischen Randbedingungen.

Es ist nicht notwendig, dass die gewählten Testfunktionen den statischen Randbedingungen ge-
nügen. Allerdings erwiesen sich diese Testfunktionen bei manchen Berechnungen als effizienter.
Es ist unmöglich bzw. unpraktisch, einen unendlichen Wert von m anzunehmen. So werden in
der Regel Konvergenzstudien durchgeführt, um mit endlichen Werten von m die gewünschte Ge-
nauigkeit zu erreichen. Die Genauigkeit und die Geschwindigkeit der Konvergenz des RITZschen
Verfahrens hängen von der Wahl und der Anzahl der Testfunktionen ab, die das Verschiebungsfeld
repräsentieren. Es muss wie bei vielen Näherungsverfahren ein Kompromiss zwischen Genauigkeit
und Rechenzeit eingegangen werden. Im Allgemeinen liefert dieses Verfahren genaue Eigenwerte
mit einer hinreichenden Anzahl von Testfunktionen.
Die wahrscheinlich am häufigsten verwendeten Testfunktionen sind Produkte aus Eigenfunktionen
von Balkenschwingungen [177, 130, 42], Spline-Funktionen [148] und balkenähnliche orthogona-
le Polynome [23, 24, 49]. Weitere RITZsche Funktionen können Leissa [131] entnommen werden.
Viele intensive Untersuchungen konzentrieren sich auf die Verwendung von zweidimensionalen
Polynomen [24, 124], die entsprechenden Basisfunktionen für die Schwingungsanalyse von Plat-
ten zugeordnet werden können. Die Verwendung der letztgenannten Testfunktionen ermöglicht
eine Automatisierung der RITZ-Methode für Platten mit allgemeiner Form und allgemeinen
Randbedingungen. Zudem erhöht sich die Rechengenauigkeit, da sich Polynome rechnerisch gut
differenzieren und integrieren lassen [132].
In dieser Arbeit werden völlig freischwingende Platten untersucht. Aus diesem Grund werden
nur auf die Randbedingungen freie Ränder eingegangen. Eine derartige Randbedingung bedeutet,
dass die Ränder querkraft- und momentfrei sind. Beschreibt man diese Randbedingungen für
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einen beliebig gekrümmten Rand mit den lokalen Randkoordinaten ξ ,η , erhält man für den Rand
folgende Bedingungen [6]

mξ ,ξ = DPl
(
ψξ ,ξ +νψη ,η

)
= 0,

mξ ,η = DPl
1−ν

2

(
ψη ,ξ +νψξ ,η

)
= 0,

qξ = Ghκ
(
ψξ +w,ξ

)
= 0.

(3.49)

Das weitere und detaillierte Vorgehen der RITZ-Methode nach Liew [132] kann dem Anhang ent-
nommen werden. Die spezielle Methode wird auch als pb2-RITZ-Methode bezeichnet. Der Buch-
stabe p bezeichnet die Verwendung von Polynomen. Der Buchstabe b steht für Basisfunktionen.
Die 2 deutet auf eine zweidimensionale Betrachtung hin. Die Implementierung des Algorithmus
erfolgt in dem Computeralgebra Programm Maple.

3.3.3 Experimentelle Modalanalyse

Die experimentelle Modalanalyse ist ein rechnergestütztes Verfahren. Anhand der experimentellen
Modalanalyse ist es nöglich eine schwingungsfähige Struktur mit unendlich vielen Freiheitsgraden
durch ein diskretes System mit Massenpunkten, Koppelsteifigkeiten und Dämpfungen zu beschrei-
ben. Ziel ist, mit Hilfe von geeigneten Messungen der experimentellen Modalanalyse die Parameter
der modellhaften Systemstruktur zu bestimmen. Hierzu wird der zu bestimmende Probenkörper
durch breitbandige Anregung in Schwingungen versetzt. Um eine experimentelle Modalanalyse
an einem Probekörper durchführen zu können, ist eine weit umfangreichere Ausrüstung als bei
der numerischen Modalanalyse erforderlich. Neben dem Messkörper wird eine messtechnische
Ausrüstung benötigt. Sie besteht in der Regel aus einem Impulshammer (in der passenden Ge-
wichtsklasse und mit passendem Kopfmaterial), einem oder mehreren Beschleunigungs- bzw.
Wegaufnehmern sowie einem mehrkanaligen Aufzeichnungsgerät für die Signale und einem
Rechner mit entsprechender Auswertungssoftware. Der Impulshammer spielt eine zentrale Rolle
So beeinflusst die Härte der Impulshammerspitze die dadurch generierte Frequenz der Struk-
tur entscheidend. Neben der Impulshammmer-Methode stellt die Shakeranregung eine weitere
Möglichkeit der experimentellen Modalanalyse dar. Hier werden die Eigenschaften der Struktur
anhand einer Shakeranregung mit einem Signalgenerator in einem definierten Frequenzbereich
ermittelt. Im Rahmen dieser Arbeit wird die Impulshammer-Methode zur Strukturuntersuchung
angewandt. Anstatt den üblichen Beschleunigungs- bzw. Wegaufnehmern wird ein vorhandener
Festlaser genutzt.
Die experimentelle Bestimmung der modalen Parameter erfolgt mit Hilfe des Übertragungsver-
haltens der Struktur. Hierzu wird die zu untersuchende Struktur durch breitbandige Anregung
mittels Impulshammer in Vibration versetzt. Die Systemantwort wird an verschiedenen Stütz-
stellen der Strukturoberfläche gemessen. Die ermittelten Messwertpaare, wie z. B. Reaktionskraft
des Impulshammers und Beschleunigung der Struktur, werden aufeinander bezogen. Sie bilden
so die Übertragungsfunktion. Aus den ermittelten Übertragungsfunktionen können die modalen
Parameter bestimmt werden. Zur Lösung dieser Aufgabe wurde eine Vielzahl unterschiedlicher
Rechen- und Auswertverfahren entwickelt. Die gebräuchlichsten sind die Mehrfreiheitsgradaus-
wertung (Multi Degree of Freedom, MDOF-Methode) und die Einfreiheitsgradauswertung (Single
Degree of Freedom, SDOF-Methode). Bei der letzteren wird die Gesamtantwort eines Systems in
einem bestimmten Frequenzintervall um eine Resonanzstelle als Antwort eines Schwingers mit
einem Freiheitsgrad betrachtet. Aus den gemessenen Transferfunktionen werden rechnerisch über
Curve-Fit-Algorithmen die Eigenfrequenzen, die zugehörigen Dämpfungen und die Eigenformen
ermittelt. Abbildung 3.22 zeigt den Ablauf der Impulshammer-Methode.
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Modale Parameter:

- Eigenfrequenz
- Dämpfung
- Eigenform

Curve
Fit

FFT
Probe

Laser-VibrometerImpulshammer

Impuls Antwort

Real

Imaginär
FRF

Abbildung 3.22: Impulshammer-Methode: Ablauf der Messung.

3.3.3.1 Versuchsaufbau und Messtechnik

Die Messung sollte mittels einer entkoppelten und steifen Versuchskonstruktion erfolgen, um
mögliche Fehler durch Erschütterungen bzw. Eigenschwingungen des Versuchsaufbaus zu vermei-
den. Es wird eine Vorrichtung benötigt, an welcher der Festlaser in vertikaler Richtung befestigt
werden kann. Da eine frei gelagerte Probe nicht realisiert werden kann, wird ein Gestell aus
Aluminiumprofilen verwendet. An diesem Gestell werden Gummiseile befestigt und die Probe
wurde auf diese Gummiseile gelegt. Alternativ wurde eine besonders weiche Schaumstoffunter-
lage, auf der das Probenmaterial platziert wird, als Lagerungsform genutzt. Es zeigten sich keine
nennenswerten Unterschiede zwischen den beiden Lagerungsformen. Beide können annähernd als
frei-frei gelagert betrachtet werden. Somit konnten die Proben mit einem geringen Lagereinfluss
der Schwingungsuntersuchung unterzogen werden.
Mit dem Impulshammer wird die Struktur durch einen definierten Impuls angeregt. Der Im-
pulshammer hat ein Kopfgewicht von 275 g. Am Impulshammer können die Schlagspitzen je
nach Material der Struktur ausgewechselt werden. Außerdem kann ein Zusatzgewicht angebracht
werden, welches die einzubringende Kraft beeinflusst. Hierdurch wird die Amplitude des Impulses
vergrößert. Durch die Wahl der Schlagspitzen wird die einzubringende Kraft folgendermaßen
beeinflusst: Harte Spitzen (Stahl) verursachen kurze Impulse und hohe Frequenzen und weiche
Schlagspitzen (Gummi) verursachen breitere Impulse und niedrigere Frequenzen. Dazwischen gibt
es auch noch Schlagspitzen aus Aluminium und Kunststoff.
Die Auswahl der Schlagspitzen oder der Zusatzgewichte erfolgt entweder auf Basis von Erfah-
rungswerten oder durch mehrere Versuchsschläge mit verschiedenen Schlagspitzen und Gewich-
ten. Bei der Durchführung der Versuche darf es zu keinen Prellschlägen bzw. Doppelschlägen
kommen. Diese würden das Messergebnis massiv verfälschen. Zur statistischen Absicherung
wurde in diesen Versuchen jeder Punkt mindestens fünf Mal angeregt und später korreliert. Den
kompletten Messaufbau zeigt die Abb. 3.23a.
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(a) (b)

Abbildung 3.23: Experimentelle Modalanalyse: a) Messaufbau, b) Probenvorbereitung.

3.3.3.2 Probenvorbereitung

Alle Proben werden gewogen, vermessen und mit einer Versuchsnummer versehen. Um ein
Messgitter für die Proben festlegen zu können, ist vorab zu klären, bis zu welchem Bereich die
Eigenschwingungen angeregt werden sollen. Das Ziel dieser Messung ist, auf jeden Fall immer
die ersten vier Eigenschwingungsfrequenzen zu erhalten. Das Messgitter orientiert sich an den
zu erwartenden Eigenformen, die stark von der Probenform abhängen. Zur Bestimmung steigen-
der Eigenformen werden immer feinere Messgitter benötigt. Für die zu messende Probenkörper
entstanden neun bis 56 Messpunkte. Da es durch die unebene Oberfläche nicht möglich ist, die
Messpunkte auf der Probe deutlich zu markieren, wurde ein Kreppklebeband auf die Proben
geklebt (siehe Abb. 3.23b).

3.3.3.3 Signalverarbeitung

Das von Festlaser und Impulshammer gelieferte Messsignal wird mit einem Signalanalysator
digitalisiert. Nun wird vom Messgerät eine FFT3 der Signale (Kraft und Beschleunigung) durch-
geführt. Dies liefert ein Spektrum für jeden gemessenen Punkt und die eingeleitete Kraft. Daraus
wird aus jedem Spektrum eines Messpunktes (Antwortspektrum) und dem Kraftspektrum (Anre-
gungsspektrum) die Übertragungsfunktion (FRF, Frequency Response Function) gebildet, d.h. ein
Spektrum der Beschleunigung in Bezug auf das Krafteinleitungsspektrum. Diese FRFs setzen sich
aus einem Real- und einem Imaginärteil zusammen. Ist die Messung abgeschlossen, werden die
gewonnenen FRFs in das Auswerteprogramm Test.Lab der Firma LMS geladen und ausgewertet.
Hier werden dann über einen Algorithmus Eigenfrequenzen und -formen ermittelt, die auch im
Programm grafisch dargestellt und animiert werden.

3.4 Schallabsorption

In diesem Kapitel sollen Methoden zur Charakterisierung von Schallabsorption in porösen Medien,
insbesondere Hohlkugelstrukturen, vorgestellt werden. Solch poröse Materialien bestehen aus

3Fast-Fourier-Transformation, Transformation der Messsignale vom Zeitbereich in den Frequenzbereich
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einem Netzwerk von Poren, die über viskose und thermische Effekte eine Dissipation der Schall-
energie hervorrufen. Dieses Kapitel liefert einen Einblick in die physikalischen Mechanismen, die
theoretischen Modellbeschreibungen und die Messung der Schallabsorption in porösen Medien.
Der erste Abschnitt gibt eine qualitative Beschreibung von porösen Schallabsorber und Einsatz
wieder.

3.4.1 Absorptionsmechanismus

Wenn sich Schall in kleinen Räumen, wie in verbundenen Poren in einem porösen Absorber
ausbreitet, wird Schallenergie in Wärme umgewandelt. Diese Energieumwandlung basiert im We-
sentlichen auf dem Effekt der viskosen Grenzschicht. Luft ist ein viskoses Fluid. Dementsprechend
wird Schallenergie durch Reibung mit den Porenwänden dissipiert. Wenn der Schall durch die
unregelmäßigen Poren wandert, entsteht zudem ein Impulsverlust durch Strömungsänderung. Dies
zeigt Abb. 3.24. Die Grenzschicht in Luft beläuft sich bei hörbaren Frequenzen im Submillimeter-
Bereich. Demzufolge treten viskose Verluste in kleinen Luftschichten mit angrenzenden Poren-
wänden auf. Neben den viskosen Effekten treten auch thermische Verluste auf, hervorgerufen
durch die Wärmeleitung vom Fluid zum Absorbermaterial. Dieser Effekt macht sich vor allem
bei niedrigen Frequenzen bemerkbar. Für eine effektive Schallabsorption müssen verbundene
Fluidkanäle im Material vorhanden sein, so dass eine offenporige Struktur vorliegt. Verluste über
die Vibration des Absorbermaterial können in der Regel vernachlässigt werden, wenn der Schall
durch die Poren wandert.
Abbildung 3.25 zeigt den Absorptionskoeffizienten für einen porösen Absorber und verdeutlicht
dabei den Einfluss der Materialdicke. Der Absorber befindet sich bei der Messung vor einem
schallharten Hintergrund. Die Kurvencharakteristik des Absorptionsgrads ähnelt in erster Nä-

Geschlossene Pore

Porennetzwerk

Sackgasse-Pore

Abbildung 3.24: Schematische Repräsentation eines akustischen porösen Mediums; in weiß dar-
gestellt die Fluidphase bestehend aus das Netzwerk der verbundenen Poren, in grau dargestellt die
Festphase.

herung der eines Hochpassfilters. Mit zunehmender Dicke des Absorbermaterials nimmt der
Absorptionsgrad bei geringeren Frequenzen zu. Um eine merkliche Absorption zu erreichen, ist
im Absorber eine hohe Partikelgeschwindigkeit (Schallschnelle) vonnöten. Die Partikelgeschwin-
digkeit ist an den Wänden in Räumen für gewöhnlich gleich Null, so dass die wandnahen Bereiche
keine nennenswerte Absorption erzeugen. Die von der Wand weiter legenden entfernten Bereiche

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Methoden zur Charakterisierung 61

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000 2500 3000 3500

A
bs

or
pt

io
n

Frequenz [Hz]

30 mm
60 mm

Abbildung 3.25: Absorptionskoeffizient für einen offenporigen Polymerschaum, gemessen für
zwei verschiedene Dicken mit schallhartem Abschluss.

des Absorbers sind meist am effektivsten. Die höchsten Partikelgeschwindigkeiten treten bei einer
Entfernung von einer Viertel Wellenlänge auf. So entsteht in der Regel das erste Maximum des
Absorptionsgrads, wenn die Dicke des Absorbers ein Viertel der Wellenlänge entspricht. Das
Spektrum von Absorbermaterialien erstreckt sich von natürlichen Schwämmen über gewöhnliche
Stahlwolle oder Fasermaterialien bis hin zu synthetischen Schäumen. Selbst haushaltsübliche
Teppiche stellen einen Schallabsorber dar.

3.4.2 Charakterisierende Materialeigenschaften und -größen

In diesem Abschnitt soll auf die wesentlichen, charakterisierenden Größen zur mathematischen
Modellierung von porösen Absorbern näher eingegangen werden. Mit den Größen können Eigen-
schaften wie Wandimpedanz, charakteristische Impedanz und Absorptionkoeffizient bestimmt
werden. Die mathematischen Modelle sollen zudem beschreiben, wie Absorption entsteht, und
an die gewünschten Anforderungen angepasst werden können. Zunächst jedoch soll auf die
wesentlichen Größen eingegangen werden, die maßgeblich die Schallausbreitung in porösen Me-
dien beeinflussen. Dies sind Porosität und Strömungswiderstand. Des Weiteren werden Größen
beleuchtet, die die Komplexität der Geometrie erfassen.

3.4.2.1 Porosität

Die akustische Porosität gibt den Anteil des Fluidvolumens im Absorber an und stellt ein Ver-
hältnis zwischen effektivem Porenvolumen und Gesamtvolumen des Absorbers dar. Gewöhnliche
Absorber haben eine hohe Porosität, die nahe bei Eins liegt - wie Mineralwolle mit 0,98. Bei der
Bestimmung der akustischen Porosität gehen geschlossene Poren, wie Abb. 3.24 verdeutlicht, nicht
in das effektive Porenvolumen ein. Diese Poren sind unzugänglich für die Schallausbreitung. Die
Porosität ist ein Schlüsselparameter, jedoch liegt sie bei gewöhnlichen Absorbern nahe Eins. Bei
alternativen Absorbermaterialien wie Schäumen und insbesondere Hohlkugelstrukturen sieht dies
jedoch deutlich anders aus. Da sich Porosität und Strömungswiderstand meist entgegenstehen, ist
bei der Auslegung eines Absorbermaterials abzuwägen.

3.4.2.2 Strömungswiderstand

Der Strömungswiderstand gibt an, wie leicht ein Fluid durch einen porösen Körper hindurch-
strömen kann und welchen Widerstand das Fluid durch die Struktur erfährt. Somit macht der

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


62 Methoden zur Charakterisierung

Strömungswiderstand eine Aussage darüber, wie viel Schallenergie durch den Grenzschichteffekt
innerhalb des Materials in Wärme umgewandelt werden kann. Ausgehend vom Gesetz von Darcy

vs =− kP

μV∇p =− 1
Ξ
∇p, (3.50)

welches im Abschnitt 2.3.2.6 beschrieben wird, kann ein längenbezogener Strömungswiderstand
Ξ eingeführt werden, der den effektiven Widerstand pro Materialeinheitsdicke angibt. Gravitati-
onseinflüsse werden dabei vernachlässigt.

3.4.2.3 Porenformfaktor und charakteristische Längen

Die einfachsten theoretischen Modelle des porösen Absorbers basieren auf der Annahme, dass die
Struktur, bzw. die feste Phase, steif und bewegungslos sei. Dadurch lassen sich die klassischen
Theorien der Schallausbreitung in kleinen Röhren anwenden. Jedoch gibt es nur geschlossene
analytische Lösungen für einfache Geometrien, wie ein Verbund aus zylindrischen Röhren. Im
Allgemeinen sind diese Formen der Röhren weit von den realen und komplexen Geometrien der
meisten Absorbermaterialen entfernt. Infolgedessen wurde ein halb empirischer Ansatz entwickelt.
Dieser bestimmt Schlüsseleigenschaften des Materials aus Kombination von Versuchen und Theo-
rie. Die wichtigsten dieser Parameter sind im Anschluss aufgeführt.
Während die Porosität und der Strömungswiderstand für gewöhnlich die wichtigsten Parameter
für die Schallabsorption darstellen, gibt es weitere zweitrangige Parameter, wie die Formfaktoren
oder die Tortuosität (Gewundenheit). Die Form der Poren hat deutlichen Einfluss auf die Schall-
ausbreitung und dadurch auch auf das Absorptionsverhalten. Unterschiedliche Porenformen haben
unterschiedliche Oberflächen und infolgedessen auch unterschiedliches, viskoses und thermisches
Verhalten. Wie schon erwähnt lassen sich die realen, willkürlichen Porenformen und somit auch
die Porenformfaktoren nicht analytisch bestimmen. Dementsprechend werden diese Formfaktoren
für gewöhnlich empirisch durch die bestmögliche Anpassung an die akustische Messung gefunden.
Die Formfaktoren sind vom Modell abhängig, das zur Vorhersage der Schallausbreitung im porö-
sen Absorber genutzt wird. Die Formfaktoren cv und ct bzw. charakteristische Längen Λv und Λt

werden in den später aufgeführten Ansätzen für die effektive Dichte und den Kompressionsmodul
und weiterführend zur Bestimmung der charakteristischen Impedanz und Wellenzahl genutzt.
Diese Faktoren beziehen sich ausschließlich auf den dynamischen Fall und repräsentieren die
Effekte bei höheren Frequenzen.
Die viskose Wechselwirkung zwischen dem oszillierenden Fluid und den Porenwänden ist be-
kannt bei niedrigen und hohen Frequenzen. Im dazwischenliegenden Frequenzbereich werden
diese Wechselwirkungen mit einer einfachen Funktion approximiert, die den Niedrig- und Hoch-
frequenzbereich verknüpft [104]. Für ein Absorbermaterial bestehend aus ausschließlich zylin-
drischen Poren, entspricht die charakteristische Länge dem Radius der Röhre und somit dem
hydraulischen Radius der entsprechenden zylindrischen Poren. Johnson [104] gibt eine exakte
Beschreibung für die viskose charakteristische Länge

Λv = 2

∫
V

v2dV∫
A

v2dA
, (3.51)

wobei das Integral im Zähler über ein Volumen geht, das größer als das der Porengröße ist
und das Integral im Nenner über die Oberfläche der Poren geht. Die Größe v entspricht der
mikroskopischen Geschwindigkeit eines idealen bzw. eines nicht viskosen Fluids durch die Poren.
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≈ 2Λv ≈ 2Λt

Abbildung 3.26: Schematische Repräsentation einer akustischen Pore; die viskose charakteristi-
sche Länge Λv ist maßgeblich für die viskosen Effekte und die thermale charakteristische Länge Λt

wiederum maßgeblich für thermische Effekte verantwortlich, bei hohen Frequenzen entsprechen
diese Längen der geometrischen Größe einer Pore

Der Faktor 2 wird genutzt, da die charakteristische Länge dem hydraulischen Radius (siehe Abb.
3.26) einer identischen zylindrischen Pore entspricht. Die charakteristische Länge ist demzufolge
ein Verhältnis von Volumen zu Oberfläche gewichtet durch das Quadrat der mikroskopischen
Geschwindigkeit. Der viskose Porenfaktor lässt sich wie folgt

cv =
1
Λv

√
8α∞μV

φΞ
(3.52)

bestimmen. Dabei ist α∞ die Tortuosität, auf die im folgenden Abschnitt eingegangen wird. Für
die meisten Absorber liegt der Bereich von cv zwischen 0,3 und 3. Für einen runden, einen
quadratischen und einen dreiecksförmigen Porenquerschnitt ist der Porenformfaktor cv 1, 1,07
und 1,14, für Spalte 0,78.
Des Weiteren ist eine zusätzliche charakteristische Länge für Materialien mit nicht zylinderförmi-
gen Poren und innerer komplexer Struktur notwendig. Die thermische Wechselwirkung zwischen
komprimierter und ausgedehnter Luft und den Porenwänden ist wiederum bekannt für niedrige
(isothermisch) und hohe (adiabatisch) Frequenzen. Auf ähnliche Weise, wie im viskosen Fall wird
der thermische Effekt im Zwischenfrequenzbereich durch eine analytische Funktion approximiert,
die wiederum den Niedrig- mit dem Hochfrequenzbereich verbindet [2, 119]. Der Übergang
zwischen dem Niedrig- und dem Hochfrequenzbereich hängt vom mittleren Abstand ab, den die
Wärme bis zu den Poren durchwandern muss. Sie wird charakterisiert durch

Λt = 2

∫
V

dV∫
A

dA
= 2

VP

AP
. (3.53)

Somit ist die thermisch-charakteristische Länge das Verhältnis zwischen Porenvolumen zu Po-
renoberfläche. Die thermisch-charakteristische Länge erfährt keine Gewichtung im Gegensatz zur
viskosen charakteristische Länge und wird darum in der Regel gleich oder größer sein als diese. Im
Fall eines Absorbers mit geradlinigen zylinderförmigen Poren sind beide charakteristischen Län-
gen gleich groß und entsprechen dem Radius der zylindrischen Pore. Der thermische Porenfaktor
ist wie folgt definiert:

ct =
1
Λt

√
8α∞μV

φΞ
. (3.54)
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3.4.2.4 Tortuosität

Die Orientierung der Poren relativ zum einfallenden Schallfeld hat einen Effekt auf die Schallaus-
breitung im porösen Material. Dieser Effekt wird durch den Parameter Tortuosität ausgedrückt, oft
auch als Strukturformfaktor bezeichnet. Je komplexer der Schallausbreitungspfad desto höher die
Absorption im Material. Die Komplexität des Pfades kann teilweise durch die Tortuosität beschrie-
ben werden. So charakterisiert die dynamische Tortuosität, meist nur kurz Tortuosität genannt, die
teilweise viskosen Effekte im Hochfrequenzbereich, wenn die viskosen Grenzschichten der Strö-
mung klein gegenüber den charakteristischen Größen der Poren sind. Es ist eine dimensionslose
Größe und ihre mathematische Beschreibung wurde durch Johnson [104] erarbeitet:

α∞ =

1
V

∫
V

v2dV

(
1
V

∫
V

vdV

)2 . (3.55)

Dieses Maß gibt eine Art Unordnung des Systems (Material) an [104].

3.4.3 Äquivalentes Fluid-Modell

Sehr viele theoretische und analytische Modelle zur Beschreibung des Verhaltens von porösen
Materialien wurden über die letzten Jahre entwickelt. Eine Modellbildung für poröse Materialen,
charakterisiert durch ihre feste und flüssige Phase, verlangt zur Beschreibung und Untersuchung
nach einer Anzahl von Parametern. Diese Parameter haben alle eine physikalische Bedeutung.
Diese kann, je nach Modellbildung, für das jeweilige Material sehr nützlich sein. Im Fall sehr
komplexer Modellbeschreibungen erreicht die maximale Anzahl bis zu zehn Parameter [26, 192].
Einfachere Modelle, wie das Modell des äquivalenten Fluides, benötigen nur fünf Parameter zur
Charakterisierung der akustischen Wellenausbreitung in porösen Materialien. Wird das Skelett
des porösen Materials während der akustischen Wellenausbreitung als steif oder bewegungslos
betrachtet, kann das Fluid innerhalb des porösen Mediums durch ein makroskopisch äquivalentes
Fluid ersetzt werden. Dieses äquivalente Fluid kann durch die Größen, effektive Dichte ρeff und
effektiven Kompressionsmodul Keff beschrieben werden. Diese Werte stehen in Abhängigkeit zur
Frequenz ω = 2π f . Zusätzlich sind die Wellenzahl k (ω) und die charakteristische Impedanz
Zc (ω) des äquivalenten Fluides frequenzabhängig [1].
In dieser Arbeit werden das Delany-Bazley-Modell [46] und das Johnson-Champoux-Allard-
Modell [104, 34] vorgestellt. Das Delany-Bazley-Modell ist sehr einfaches und aussagefähiges
Modell für poröse Materialien, bei denen die Porosität nahe Eins ist.

3.4.3.1 DELANY-BAZLEY-Modell

Das DELANY-BAZLEY-Modell [46] basiert auf einer Vielzahl von empirisch gewonnen Daten. Die
komplexe Wellenzahl k und die charakteristische Impedanz Zc wurden durch Delany and Bazley
[46] für viele Fasermaterialien, die einen Porositätsanteil nahe bei eins haben, in einen großem
Frequenzbereich gemessen. Gemäß diesen Messungen hängen die Größen des Modells K und Zc

von der Kreisfrequenz ω und dem Strömungswiderstand Ξ des jeweiligen Materials ab. Eine gute
Anpassung an die Messwerte k und Zc lieferte folgender Ausdruck:

Zc = ρ0c0F1 (X) und k =
ω
c0

F2 (X) (3.56)
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mit

F1 (X) =1+0.057X−0,754− j0.087X−0,732,

F2 (X) =1+0.0978X−0,700− j0.189X−0,595,
(3.57)

wobei c0 und ρ0 die Schallgeschwindigkeit und die Dichte der Luft sind. Der dimensionslose
Parameter X kann aus

X =
ρ0 f
Ξ

(3.58)

bestimmt werden. Dabei ist f die Frequenz. Danley und Bazley empfehlen zur Validierung ihres
Gesetzes folgende Grenzen für X :

0,01 < X < 1,0. (3.59)

Die äquivalente Schallgeschwindigkeit und Dichte lässt sich gemäß diesem Fluidmodell wie folgt
berechnen

cäq =
ω
k
=

c0

F2 (X)
und ρäq =

Zc

cäq
= ρ0F1 (X)F2 (X). (3.60)

Der Strömungswiderstand eines porösen Materials Ξ ist ein physikalischer Parameter, der sich
mit Hilfe des Gesetzes von Darcy bestimmen lässt. Jedoch lässt sich der Strömungswiderstand
eines luftdurchströmten, porösen Körpers extrem schwer messen. Der Strömungswiderstand ist
eine spezifische Eigenschaft der Mikrogeometrie der Poren und beeinflusst die Ausbreitung und
Absorption akustischer Wellen [1].
Diese einfachen Beziehungen, wie im DANLEY-BAZLEY-Modell durch Abhängigkeit von Fre-
quenz und Strömungswiderstand formuliert, genügen jedoch nicht zur exakten und allgemeinen
Beschreibung poröser Materialien [1]. Sie wurde schon des Öfteren, wie zum Beispiel durch
Komatsu [115] und Miki [147, 146] erweitert und angepasst. Allerdings lässt sich dieses Modell
weitläufig nutzen. Es gibt brauchbare Werte für die komplexe Wellenzahl und charakterliche
Impedanz wieder.

3.4.3.2 JOHNSON-CHAMPOUX-ALLARD-Modell

Neben der empirischen Approximationsmethode nach Danley und Bazley gibt es auch physikalisch
theoretische Modellbeschreibungen für steife, bewegungslose und weiche, bewegliche Strukturen.
Auf die Modellbeschreibung nach Biot [26] für weiche bzw. bewegliche Strukturen soll nicht
näher eingegangen werden, da die Strukturen für metallische Hohlkugeln als steif gegenüber der
schwingenden Luftmasse angesehen werden. Eine genaue und ausführliche Modellbeschreibung
nach Biot ist in [1] zu finden.
Die Geometrie von Poren in gewöhnlichen porösen Materialen lässt ist nicht einfach beschreiben
und eine direkte Berechnung der viskosen und thermischen Wechselwirkungen zwischen Fluid
und Festkörper ist im Allgemeinen unmöglich. Aus diesem Grund werden die Poren in manchen
Modellbildungen durch einfachere Geometrie ersetzt. Als einfachste Regelgeometrie lässt sich
eine Pore durch einen Zylinder beschreiben. Eine theoretische Schallausbreitung in zylindrischen
Röhren mit viskosen und thermischen Effekten hat Kirchhoff in seiner Theorie [113] beschrieben.
Leider war diese Beschreibung für viele Anwendungen zu kompliziert, vor allem bei Röhren mit
nicht kreisrunden Querschnitten. Ein einfacheres Modell, welches thermische und viskose Effekte
für kreisrunde Röhrenquerschnitte getrennt behandelt, wurde durch Zwikken und Kosten [228]
ausgearbeitet. Der thermische Austauscheffekt in Bezug auf den viskosen Effekt wird im Modell
von Stinson [201] beschrieben. Eine Übersicht über die verschiedenen Modelle, die vor 1980
ausgearbeitet wurden, sind in der Arbeit von Attenborough [10] zu finden. Im Allgemeinen fußen
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sich alle Modelle auf der Theorie des quasi-homogenen Absorbers, wie in Kapitel 3 beschrieben.
All diese Theorien bauen auf der Annahme der linearisierten NAVIER-STOKES-Gleichung für
inkompressible Fluide

ρ0
∂v
∂ t

=−∇p+νVΔv, (3.61)

der linearisierten Wärmeenergiegleichung

ρ0cp
∂T
∂ t

=−λΔT +
∂ p
∂ t

, (3.62)

der Zustandsgleichung für ideale Gase

p = ρRiT = ρ (cp− cV )T (3.63)

und der Kontinuitätsgleichung

p0 (∇ ·v)+ ∂ρ∂ t
= 0 (3.64)

auf, wobei cp und cV die spezifischen Wärmekapazitäten bei konstantem Druck oder Volumen, λ
die Wärmeleitfähigkeit, Ri die spezifische Gaskonstante und T die Temperatur sind. Des Weiteren
werden folgende Annahmen getroffen:

• keine Hauptströmung v = 0,

• laminare Strömung, keine Wirbel,

• keine innere Wärmeerzeugung,

• homogenes Medium/Fluid und

• kleine harmonische Schwankungen/Störungen (Druck/Geschwindigkeit).

Folgende Beziehungen werden im Einzelnen zur Bestimmung der effektiven Dichte und des
effektiven Kompressionsmoduls des Fluides angegeben. Die charakteristischen Längen zur Be-
rücksichtigung der viskosen und thermischen Verlustmechanismen

Λv =
1
cv

√
8α∞μV

φΞ
und Λt =

1
ct

√
8α∞μV

φΞ
(3.65)

ergeben sich aus den physikalisch messbaren Materialparametern Porosität φ , dem längenbezoge-
nen Strömungswiderstand Ξ, der dynamischen Viskosität der Luft μV, dem Strukturformfaktor α∞
und den viskosen und thermischen Porenformfaktoren cv und ct. Mit den Zwischengrößen

Gv (ω) =

√
1+

j4α2
∞μVρ0ω
φ2Λ2

vΞ2 und Gt (ω) =

√
1+

j4α2
∞μVρ0ωPr

c4
t φ2Λ2

vΞ2
(3.66)

wobei Pr die PRANDTL-Zahl ist und das Verhältnis zwischen der kinematischen Viskosität und
der Temperaturleitfähigkeit von Flüssigkeiten oder Gasen beschreibt. Mit Hilfe der Zusatzgrößen

λv = cv

√
8α∞ρ0ω
φΞ

und λt =
1
ct

√
8α∞ρ0ω
φΞ

(3.67)
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erhält man die effektive Dichte

ρeff (ω) = ρα∞
[

1+
8c2

vGv (ω)
jλ 2

v

]
, (3.68)

und den Kompressionsmodul des äquivalenten Fluides

K (ω) =
γ p0

γ− (γ−1)
[
1+ 8Gt(ω)

−jPrλ 2
t

]−1 . (3.69)

Die dimensionslose Größe γ kennzeichnet hierbei den Adiabatenexponent. Aus der effektiven
Dichte und dem Kompressionsmodul lässt sich die charakteristische Impedanz des Mediums

Zc =
√
ρeff (ω)K (ω) (3.70)

bestimmen. Mit der endlichen Dicke d der porösen Probe lässt sich nun die Impedanz

Z =
−jZa cot(kad)

φ
(3.71)

berechnen. Zudem kann die Wellenzahl

ka = ω

√
ρeff (ω)
K (ω)

(3.72)

im porösen Medium ermitteln werden. Schlussendlich kann mit Hilfe der Wandimpedanz nach
Abschnitt 2.3.2.5 der Absorptionsgrad

α =
4Re

{
Z
ρc

}
[
Re
{

Z
ρc

}
+1
]2

+
[
Im
{

Z
ρc

}
+1
]2 (3.73)

bestimmt werden.
Einen Überblick über die Modelle und eine Erweiterung des JOHNSON-CHAMPOUX-ALLARD-
Modells kann dem Anhangsteil B.6 entnommen werden.

3.4.4 Akustische Messungen

Grundsätzlich gibt es mehrere Möglichkeiten, die akustischen Eigenschaften eines Materials zu
bestimmen. Zum einen kann man das Hallraumverfahren nach DIN52212 [158] einsetzen, das
nur für große Probenabmessungen geeignet ist und mit diffusem Schalleinfall arbeitet. Gerade
das Messen der akustischen Materialparameter unter den Bedingungen des Schalleinfalles aus
vielen, verteilten Richtungen, führt zu wirklichkeitsnahen Ergebnissen. Um die Messgenauigkeit
dieser Methode einzuhalten, muss allerdings die stirnseitige Oberfläche des Prüfgegenstandes
mehrere Quadratmeter betragen. Für eine schnellere und einfachere Einschätzung kann auch ein
anderes Verfahren eingesetzt werden: die Messung im KUNDTschen Rohr bzw. im Impedanzrohr
nach DIN52215 [159] bzw. ISO10534-1 [160] und ISO10534-2 [162]. Das KUNDTsche Rohr
wird zur gezielten Erzeugung ebener Wellen genutzt und stellt eine Messeinrichtung dar zur
Charakterisierung von teilweise absorbierenden und teilweise reflektierenden Anordnungen bei

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


68 Methoden zur Charakterisierung

senkrechtem Schalleinfall. Es ist jedoch berücksichtigen, dass die Berechnungsformeln zur Mess-
methode mit senkrechtem Schalleinfall Annäherungen sind. Dafür ist die Ermittlung der akus-
tischen Materialparameter kleiner Prüfgegenstände in der Größe des Impedanzrohrquerschnitts
möglich. Abhängig von den zu untersuchenden Frequenzen können Flächen von bis zu 10 x 10
cm2 zum Einsatz kommen. Zur Beurteilung des akustischen Verhaltens von Hohlkugelstrukturen
werden Ergebnisse aus Versuchen vorgestellt. Als charakteristische Größen werden Absorption,
Transmission und Reflexion untersucht. Die Messungen selbst sind nach den gängigen Methoden
durchgeführt. Eingesetzt werden sowohl die Zwei-Mikrophon- nach ISO10534-2 [162] als auch
die Vier-Mikrophon-Methode.
Die Messung der akustischen Materialparameter mit einer ebenen Schallwelle im KUNDTschen
Rohr kann grundsätzlich auf zwei Weisen erfolgen. Die Stehwellenmethode nach ISO 10534-1
[160] und die Übertragungsfunktionsmethode nach ISO 10534-2 [162]. Für die Messung wird
in beiden Fällen die Ausbreitung einer eindimensionalen Welle mit senkrechter Reflexion, sprich
eine ebene Welle, benötigt. Dieser Fall lässt sich besonders gut in einem Rohr erzeugen, das an
beiden Enden senkrecht abgeschlossen ist. Bei den behandelten Messsystemen ist ein Ende durch
eine Materialprobe senkrecht abgeschlossen. Das andere Ende wird durch eine über den gesamten
Querschnitt möglichst gleich schwingende Kolbenmembran, sprich ein Lautsprecher, angeregt.
Mit beiden Methoden lassen sich durch den senkrechten Schalleinfall der Reflektionskoeffizient
r, der Absorptionsgrad α und die akustische Impedanz Za des Absorbermaterials bestimmen.
Um eine derartige Schallwellenausbreitung zu gewährleisten, bedarf es einiger Voraussetzungen,
welche im Folgenden diskutiert werden:

• Die Schallverluste im Rohr sind so zu minimieren, dass sich die ebene Welle ohne nen-
nenswerte Abschwächung ausbreiten kann. Folglich nutzt man für den mittleren und hohen
Frequenzbereich, der den Lärmschutz im Maschinenbau und Bauwesen betrifft, steife Stahl-
konstruktionen für das Rohr. Für niedrige Frequenzen, bis zur Grenze des menschlichen
Gehörs (20 Hz), kommen sehr dicke Stahl- oder Betonstahlplatten zum Einsatz.

• Der Rohrquerschnitt sollte einen konstanten Querschnitt über den Messraum aufweisen, in
dem die Mikrofone und die Probe platziert sind. Die Form des Querschnitts ist dabei nicht
ausschlaggebend. Runde und quadratische Rohrquerschnitte sind am meisten verbreitet. Der
runde Querschnitt neigt zur geringen Anfälligkeit bei Quermoden-Problemen, der quadrati-
sche Querschnitt bietet Vorteile bei der Probenvorbereitung.

• Der Lautsprecher sollte mehrere Röhrendurchmesser bzw. Röhrenweiten vom nächstlie-
genden Mikrofon entfernt sein, damit sich eine ebene Welle ausbilden kann. Jedoch sollte
die Länge des Impedanzrohres von der Schallquelle bis zur Oberfläche der zu messenden
nicht mehr als fünf bis zehn Rohrmesser bzw. -weiten betragen, um Dissipationseffekte der
Schallausbreitung nicht unnötig zu erhöhen.

• Die Positionen der Mikrofone sollte nicht zu nahe an der Probe liegen, damit evaneszen-
te Wellen4, hervorgerufen durch Reflektion am Absorbermaterial, ausreichend Zeit haben
abzuklingen.

• Die höchste theoretische Frequenz fo,t mit der im Impedanzrohr gemessen werden kann,
hängt von der Quereigenmodenausbildung des Fluides und somit von den Ausmaßen des
Rohrquerschnittes ab [152]. Aus diesem Grund ist eine Frequenz unterhalb der ersten
modalen Grenzfrequenz anzustreben fo,t ≤ c

2lq
, damit sich eine ebene Welle ausbilden kann.

Die Größe lq stellt hierbei den Durchmesser oder die Weite des Rohrs dar.

4sich verflüchtigende Wellen
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Bei der Stehwellenmethode nach ISO 10534-1 wird mittels eines Schallwandlers eine sinusförmige
Schallwelle in das Impedanzrohr eingespeist. Diese Schallwelle breitet sich im Rohr eindimensio-
nal aus und wird am Rohrende reflektiert. Die reflektierte Welle überlagert sich mit der einlaufen-
den Welle und bildet eine stehende Welle im Rohr. Da die reflektierende Schallwelle und somit
auch die stehende Schallwelle abhängig vom akustischen Verhalten des Rohrabschlusses ist, kann
mittels Messen der Druckminima und -maxima der Reflektionskoeffizient des Rohrabschlusses
(Absorbermaterials) bestimmt werden.
Zu der oberen theoretischen Grenzfrequenz fo,t gibt es bei der Stehwellenmethode eine untere
theoretische Grenzfrequenz fu,t, die wiederum von den geometrischen Abmessungen des Rohres
abhängt. Die untere theoretische Grenzfrequenz erhält man, da für die Messung zwei Druckminima
erforderlich sind und da das erste Druckminimum im Extremfall ein Viertel der Wellenlänge vom
reflektierenden Abschluss entfernt ist. Daraus ergibt sich eine untere theoretische Grenzfrequenz
fu,t ≥ 3c

4lR
bei gegebener Rohrlänge lR. Unter realen Bedingungen wird von der Rohrlänge noch

mindestens ein Rohrdurchmesser oder -weite abgezogen, da sich erst nach einem gewissen Ab-
stand eine ebene Welle ausbildet. So liegt die tatsächliche untere Grenzfrequenz höher als bei der
theoretischen Betrachtung.
Bei der Übertragungsfunktionsmethode nach ISO 10534-2 dient ein Rauschgenerator als Schall-
quelle, der ein breitbandiges ‘weißes“ Rauschen5 erzeugt. Abbildung 3.27 zeigt dies. Dieses

x = l x1 x2 x = 0

M2M1

x

pe

pr

akustisch
harte Wand

MaterialprobeLautsprecher

stationäres
Rauschsignal

zum FFT-Analysator

Abbildung 3.27: KUNDTsches Rohr; Übertragungsfunktionsmethode nach ISO 10534-2 mit ein-
laufenden und reflektierten Drucksignal (pe und pr)

Rauschsignal wird über einen Lautsprecher in das Impedanzrohr eingekoppelt. Die Signalerfas-
sung erfolgt mittels zwei oder mehrerer Mikrofone an fixen Positionen der Rohrinnenwand.
Gegenüber der Messung nach der Stehwellenmethode nach ISO 10534-1 ergibt sich bei dieser
Methode nach ISO 10534-2 ein wesentlicher Vorteil. Da die Übertragungsfunktionsmethode nach
ISO 10534-2 mit einem weißen Rauschen arbeitet, das bereits alle gewünschten Frequenzen
beinhaltet, kann somit sehr viel Messzeit eingespart werden. Dadurch dauert die Messung nur
einen Bruchteil dessen, was die Messung nach ISO 10534-1 dauern würde. Zusätzlich kann bei
der Zwei-Mikrofon-Methode die Absorption an der Rohrinnenwand vernachlässigt werden, da die
Länge des Impedanzrohres im Vergleich zur Stehwellenmethode sehr kurz gehalten werden kann.
Dies beruht darauf, dass sich bei der Übertragungsfunktionsmethode im Rohr nur eine ebene Welle
ausbilden muss, die nach wenigen Rohrdurchmessern bzw. -weiten entsteht.

5Rauschen mit konstanter Amplitude im Leistungsdichtespektrum
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Aus diesen Gründen wurde die Übertragungsfunktionsmethode nach ISO 10534-2 der Stehwellen-
methode nach ISO 10534-1 bevorzugt.
Der gewünschte Einsatzbereich sollte von 500 bis 4000 Hz erfolgen. Daraus ergibt sich nach
Auslegung nach ISO 10534-2 ein quadratischer Querschnitt von 40x40 mm2. Im Anhang wird
der theoretische Hintergrund der Übertragungsfunktionsmethode mit zwei Mikrofonen nach ISO
10534-2 und eine Weiterentwicklung dieser Methode dargelegt und die Bestimmung der Kenngrö-
ßen eines Absorbermaterials aufgezeigt.
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4 Ergebnisse

In diesem Kapitel werden die gewonnenen Ergebnisse aus Simulation und Versuch für die me-
chanischen und akustischen Eigenschaften metallischer Hohlkugelstrukturen vorgestellt. Dabei
wird auf die Grundlagen und Methoden zur Bestimmung dieser Eigenschaften aus den zwei
vorhergehenden Kapiteln zurückgegriffen.
Zunächst werden Hohlkugelpackungen analysiert und mit dem Forced-Biased-Algorithmus er-
zeugten Packungen gegenüber gestellt. Ein weiterer Untersuchungspunkt ist die Bestimmung der
homogenisierten Elastizitätswerte verschiedener Hohlkugelpackungen. Dabei fällt das Augenmerk
auf die qualitative und quantitative Anisotropie. Zudem werden durch die experimentelle Mo-
dalanalyse homogenisierte Elastizitätswerte von realen Hohlkugelstrukturen ermittelt und mit der
modellhaften Beschreibung verglichen. Abschließend wird das akustische und frequenzabhängige
Absorptions- und Transmissionsverhalten zweier Hohlkugelstruktur-Probenserien bestimmt. Zu-
sätzlich werden die Ergebnisse des JOHNSON-CHAMPOUX-ALLARD-Modells präsentiert.

4.1 Zufällige Kugelpackungen

In diesem Teil der Arbeit werden die zufälligen Kugelpackungen aus Simulation und Rekonstruk-
tion untersucht, charakterisiert und verglichen. Zu Beginn wird auf die realen Packungen von drei
verschiedenen Hohlkugelstrukturen eingegangen, danach werden künstlich erzeugte Kugelpackun-
gen betrachtet.

4.1.1 Reale Kugelpackungen

Die versinterte Probe HKS 113 mit einem mittleren Außendurchmesser der Hohlkugeln von 2,6
mm wird in kleine zylinderförmige Proben zerlegt und mit Hilfe der Computertomografie gescannt.
An der Hochschule Aalen stehen dwe dreidimensionalen Röntgentomografie zwei Industriegräte
zur Verfügung, das RayScan 200 von Wälischmiller und das v|tome|x s von Phoenix. Abhängig
von der Probengröße und Auflösung wird der geeignete Computertomograf ausgewählt und die
gewonnenen Volumenbilder mit dem Rückführalgorithmus nach [188] rekonstruiert. Der Ablauf
der Rekonstruktion ist für eine Teilprobe in Abb. 4.1 ersichtlich. Für die Probe HKS113 wird
eine mittlere Packungsdichte PD = 0,57 mit einen Toleranzparameter εK = 2% ermittelt. An
der Verteilung der lokalen Dichte (siehe Abb. 4.2a) lässt sich erkennen, dass es lokal mehr und
weniger dicht geordnete Bereiche gibt. Die Spanne reicht von 0,45 bis 0,64. Die am meisten
vorkommenden lokalen Dichten liegen nahe der mittleren Packungsdichte. Betrachtet man des
Weiteren die Bindungswinkel zwischen den benachbarten Kugeln (Abb. 4.2b) erkennt man eine
homogene Winkelverteilung, was auf eine Packung mit wenig geordneten bzw. kristallinen Berei-
che schließen lässt. Diese Aussage lässt sich durch die geringe Ausprägung der Maxima in der
Paarkorrelationsfunktion für die HKS 113 (Abb. 4.3a) bekräftigen. Geringe Ausschläge bei r = 1
und r =

√
3 lassen auf wenig geordnete Bereiche zurückschließen, was wiederum einer amorphen

Struktur nahe kommt. Ein weiteres Indiz für wenig kristalline Bereiche ist die geringe Anzahl von
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(a) (b) (c) (d)

Abbildung 4.1: Rekonstruktionsprozess des Probenkörpers HKS113 a) Originalprobenkörper mit
zylindrischer Form, b) Computertomografie Voxelbild, c) erfasste Kugeln und d) rekonstruiertes
CAD- Modell.
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Abbildung 4.2: Kenngrößen der realen Probe HKS 113 a) Verteilung der lokale Dichte und b)
Bindungswinkelverteilung.

höheren Koordinationszahlen (Abb. 4.3b). Die durchschnittliche Koordinationszahl liegt für den
ausgewählten Bereich bei KZ = 6,8.
Neben der HKS 113 wurde die versinterte HKS 105 mit einem mittleren Außendurchmesser der
Hohlkugeln von 1,6 mm und die verklebte Probe HKS 100 mit einem mittleren Außendurchmesser
der Hohlkugeln von 3,0 mm untersucht. Betrachtet man die Verteilung der lokalen Dichte in der
Abb. 4.4, zeigt sich eine größere Varianz für die verklebte Probe gegenüber der versinterten Probe.
Für die verklebte HKS 100 ergab sich eine mittlere Packungsdichte von 0,625 und für die versintere
Probe ein Wert von 0,564. Packungsdichten über 0,74 in der Verteilung lassen auf ikosaedrische
Anordnungen schließen, jedoch können diese hohen Werte teilweise durch Ungenauigkeiten bei
der Computertomografie und beim Rückführen der Strukturen entstehen.
Ein leicht erhöhtes Auftreten des Bindungswinkels 60° und des Winkelbereiches von 90° bis 120°
spricht für lokal geordnete Bereiche (siehe Abb. 4.5). Die lokal geordneten Bereiche spiegeln sich
in den lokalen Maxima in der Paarkorrelationsfunktion bei r = 1 und r ≈ √3 für die gesinterte
(Abb. 4.6a) und die verklebte (Abb. 4.6b) Struktur wieder. Die Maxima deuten auf KFZ- oder
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Abbildung 4.3: Weitere Kenngrößen der Probe HKS 113 a) Paarkorrelationsfunktion und b)
Verteilung der Koordinationszahl.
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Abbildung 4.4: Verteilung der lokale Dichte - a) HKS 100 und b) HKS 105.
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Abbildung 4.5: Verteilung des Bindungswinkels - a) HKS 105 und b) HKS 100.

HPD-geordnete Bereiche hin. Eine Übersicht zur Paarkorrelationsfunktion kubisch geordneter
Kugelpackungen kann dem Anhang entnommen werden (siehe Tabelle B.1). Für die mittlere
Koordinationszahl wird bei der gesinterten Probe ein Wert von 7,85 und bei der geklebten Probe
ein Wert von 9,19 ermittelt. Dabei beträgt der eingestellte Toleranzparameter εK = 0,2%. Es
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Abbildung 4.6: Paarkorrelationsfunktion - a) HKS100 und b) HKS105.

zeigt sich, dass sich bei steigender Packungsdichte die Koordinationszahl erhöht. Die Verteilung
der Koordinationszahlen kann aus Abb. 4.7 entnommen werden. Der Verlauf ähnelt stark einer
Normalverteilung.
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Abbildung 4.7: Verteilung der Koordinationszahl - a) HKS 105 und b) HKS 100.

4.1.2 Erzeugte Kugelpackungen

Neben den aus realen Strukturen gewonnenen Kugelpackungen können mittels des Forced-Biased-
Algorithmus zufällige Packungen generiert werden. Der Algorithmus ist sehr leistungsfahig und
kann Packungen mit mehreren tausend Kugeln erzeugen. Eine Besonderheit dieses Algorithmus
ist es, auch hochverdichtete Packungen erzeugen zu können. Des Weiteren ist die Packungsfolge in
allen drei Raumrichtungen periodisch. Für die Simulation sollen repräsentativ vier verschiedene,
zufällige Kugelpackungen erzeugt werden. Vorgabe war es, eine lose, eine mittlere, eine hoch und
eine höchst verdichtete Packung zu erzeugen. Die Anzahl der Kugeln in den Packungen wird auf 30
begrenzt. Grund hierfür ist die Realisierbarkeit der Parametrisierung der Kugelgeometrie im CAD-
Programm. Dabei stellen die CAD- und FEM-Programme bzw. die Rechnerleistung limitierende
Faktoren dar. Die Namen der zufällig erzeugten Packungen orientieren sich an der Packungsdichte.
Die Packungsdichten liegen zwischen PD = 0,547 und PD = 0,694. Eine grafische Darstellung
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der Packungen ist Tabelle 4.1 zu entnehmen. Die lose und die mittlere Packung P55 und P62
charakterisieren sich durch ein amorph-ähnliches Verhalten. Dieses Verhalten wird gekennzeichnet
durch den Verlauf der Paarkorrelationsfunktion und die Verteilung der Bindungswinkel. Bei P55
hat die Paarkorrelationsfunktion (siehe Tabelle 4.2) ein ausgeprägtes Maximum bei r = 1. Es
treten keine weiteren nennenswerten Maxima auf. Ein fast analoges Verhalten hierzu hat die
Packung P62. Die Paarkorrelationsfunktion weist nur nahe r = 2 ein sehr schwaches Maximum
auf. Dies deutet auf eine sehr schwache Ordnung im Nahordnungsbereich hin. Betrachtet man
des Weiteren die Verteilung der Bindungswinkel (siehe Tabelle 4.2), stellt man keine besondere
Häufung gewisser Winkel fest. Die Verteilungen der lokalen Dichte und die Koordinationszahl für
die Packungen P55 und P62 (siehe Tabelle4.2) beschreiben ebenfalls ein ähnliches Verhalten. Es

Tabelle 4.1: Überblick über die mittleren Kenngrößen zufälliger Kugelpackungsmodelle.

Modell Visualizierung mittlere lokale
Dichte

mittlere Koordi-
nationszahl

P55 0,547 5,80

P62 0,623 7,67

P66 0,661 10,47

P69 0,694 11,20

treten weder hohe lokale Dichten (> 0,7) noch hohe Koordinationszahlen > 11 auf. Ein wesentlich
anderes Verhalten ist bei der Packung P66 festzustellen. Am Verlauf der Paarkorrelation werden
deutliche Maxima sichtbar. Betrachtet man die ersten drei Maxima, so erkennt man einen affinen
Verlauf zur KFZ-Packung (siehe Tabelle B.1). Ebenfalls für eine geordnete Packung spricht die
Häufigkeit der Bindungswinkel um 60°, 90°,120° und 180°. Aus der lokalen Dichte lässt sich
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erkennen, dass es einige Bereiche mit hohen Packungsdichten und wenige mit sehr niedrigen
Packungsdichten gibt. Dies spricht für eine geordnete Struktur mit Fehlstellen. Ein analoges
Verhalten erkennt man bei der Verteilung der Koordinationszahl. Es gibt viele Bereiche mit
zahlreichen Kontakten und einzelne Bereiche mit wenigen Kontakten. Die Packung P69 stellt ein
Extrembeispiel dar. Die Paarkorrelationsfunktion verläuft fast deckungsgleich zum Verlauf der
KFZ-Packung (siehe Tabelle B.1). Ebenfalls typisch für eine völlig durchgeordnete Struktur ist
der Verlauf der Bindungswinkel. Hier sind deutliche Maxima bei den charakteristischen Winkeln
zu erkennen. Ein weiteres Indiz für eine geordnete Packung ist die hohe lokale Dichte > 0,6
und die Koordinationszahl ≥ 10. Die Packung P69 entspricht nahezu einer KFZ-Anordnung,
nur an den Verläufen der lokalen Dichte und der Koordinationszahl lässt sich erkennen, dass
Fehlstellen in der Struktur vorhanden sind. Im Folgenden sollen die zufällig erzeugten und auf
realen Strukturen basierenden Kugelpackungen miteinander verglichen werden. Die in Abb. 4.8
mit dem Plus gekennzeichneten Werte repräsentieren die Packungen mit idealen bzw. theoretischen
Ordnungen. Die durch Kreuz verdeutlichten Werte wurden von Bernal und Manson [20] bestimmt.
Die ausgefüllten Quadrate entsprechen den Werten von Smith et al. [197] und die Kreise den
Werten von Gotoh und Finney [78]. Die Sterne kennzeichnen die Kennwerte aus den zufällig ge-
nerierten Packungen und Quadrate bestimmen die Kennwerte aus den realen Hohlkugelstrukturen
mittels Computertomografie und Rekonstruktionsalgoritmus. Die Linie stellt die lineare Regres-
sion aller zufälligen Packungen dar. Die Regressionsgerade verbindet fast die KP-Anordnung mit
der KFZ-Anordnung. Die Werte von Bernal und Manson bzw. Gotoh und Finney liegen unterhalb
dieser Geraden. Wiederrum liegen die Werte von Smith et al. über bzw. auf der Geraden. Die
Werte des Forced-Biased-Algorithmus liegen in der Bandbreite der zufälligen Kugelpackungen
über und unter der Regressionsgerade. Die aus der Rekonstruktion gewonnen Kennwerte liegen
auf oder sehr nahe an der Geraden. Als einziger Ausreißer kann die KRZ-Anordnung gesehen
werden. Sie hat bei hoher Packungsdichte eine relativ geringe mittlere Koordinationszahl. Aus dem
Diagramm wird eine Korrelation zwischen Packungsdichte und Koordinationszahl ersichtlich. Mit
zunehmender Packungsdichte nimmt die Koordinationszahl zu.

5

6

7

8

9

10

11

12

13

0,5 0,55 0,6 0,65 0,7 0,75 0,8

K
oo

rd
in

at
io

ns
za

hl

Packungsdichte

Theorie
Bernal et al. [20]
Smith et al. [197]
Gotoh et al. [78]

FBA
CT

Abbildung 4.8: Mittlere Koordinationszahl über mittlere Packungsdichte
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4.2 Statik

In diesem Abschnitt werden Ergebnisse aus den Finite-Elemente-Berechnungen präsentiert. Als
Grundlage dient die Modellbildung aus dem vorhergehenden Kapitel. Die Modelle basieren auf
der Annahme einer periodischen Einheitszelle (EZ) bzw. eines periodischen Repräsentativen Vo-
lumenelements (RVE). Für die Bestimmung der statischen linearen Eigenschaften werden die pe-
riodischen bzw. orthogonal gemischten Randbedingungen genutzt. Es werden sowohl theoretisch
geordnete als auch stochastische Kugelpackungen für gesinterte Hohlkugelstrukturen betrachtet.
Verklebte und verlötete Hohlkugelstrukturen wurden schon ausgiebig in Sanders [184] und Gasser
et al. [72] studiert. Für alle Modelle wird ein linear-elastisches Material angenommen. Zu Beginn
werden die Einflüsse der Basis- bzw. Strukturmaterialeigenschaften untersucht, die durch den
Elastizitätsmodul und die Querkontraktionszahl des Werkstoffes beschrieben werden. Ziel dieser
Untersuchung ist eine materialunabhängige Beschreibung des Elastizitätsmoduls, der durch ein
Verhältnis des homogenisierten Elastizitätsmoduls der Hohlkugelstruktur zum Elastizitätsmodul
des Strukturmaterials ausgedrückt wird. Dieses Verhältnis wird fortan als relativer Elastizitäts-
modul bezeichnet. Aus der Kinetik, dem linearen Materialgesetz und der Kinematik mit linearen
Randbedingungen ergibt sich ein linearer Zusammenhang zwischen dem homogenisierten Elastizi-
tätsmodul der Hohlkugelstruktur und dem Elastizitätsmodul des Strukturmaterials E�

1 ∝ ES. Dieser
lineare Zusammenhang wird durch die eigene Variationsberechnung bestätigt und durch Gao et
al. [70] belegt. Schließlich werden alle Modelle mit einem Strukturelastizitätsmodul von ES =200
MPa berechnet. Eine weitere materielle Einflussgröße ist die Querkontraktionszahl ν . Aus eigenen
Berechnungen wird ein zu vernachlässigender Einfluss der Querkontraktionszahl ermittelt, der
durch die Arbeit von Sanders und Gibson [185] bestätigt wird. Die Querkontraktionszahl wird
aus diesem Grund wahlweise für alle Modelle ν = 0,3 gesetzt. Die genutzten Werkstoffwerte für
das Hohlkugelmaterial entsprechen den Werten von Stahl für die durchgeführten Berechnungen.
Die Finite-Elemente-Netze der verschiedenen Hohlkugelstrukturen, basierend auf ideal angeord-
neten und zufällig generierten Packungen, werden aus den CAD-Geometrien gewonnen. Zur
Erstellung der Netze und zur Simulation wird das kommerzielle FEM-Programm ANSYS genutzt.
Für die Simulation werden die Geometrien mit Tetraeder und Hexaeder Volumenelementen des
Typs Solid 187 und Solid 186 vernetzt. Während die geordneten Modelle ausschließlich mit
dem 20-knotigem Hexaederelement vernetzt werden, wird bei den zufällig angeordneten Model-
len zusätzlich das 10-knotige Tetraederelement verwendet. Zur Berechnung stand eine Hewlett
Packard Z800 Workstation mit 4x2,4 GHz Taktfrequenz und 16 GB Arbeitsspeicher zur Ver-
fügung. Die Modelle werden so gestaltet, dass der Effekt einer Änderung der Parametergrößen
(Kugelwanddicke, Kugeldurchmesser und Sinterstellendurchmesser bzw. Sinterstellenwinkel) eine
mechanische Antwort der HKS berechnet werden kann. Es wird für jede Parametergröße ein
kompletter Parametersatz simuliert. Um eine verlässliche Aussage der Modelle zu erhalten, wird
eine Konvergenzbetrachtung durchgeführt. Dabei zeigen sich gute Ergebnisse bei fünf Elementen
über die Wanddicke und bei 40 Elementen über die halbe Kugellänge der idealen Elementarzellen.
Abbildung 4.9 zeigt die Elementarzelle der vier verschiedenen, theoretisch geordneten Packungen.
Die Elementzahl variiert von 60.000 für die KP-Elementarzelle (EZ-KP) bis 210.000 für die HDP-
Elementarzelle (EZ-HDP).
Für die zufällig geordneten Strukturen wurde jeweils ein RVE-FE-Modell mit 30 Kugeln erzeugt.
Die Anzahl der Kugeln wurde bewusst gering gehalten, damit eine ausreichende Netzauflösung im
FE-Modell noch gewährleistet ist. Hierbei ist ein Kompromiss zwischen Netzfeinheit und Kugelan-
zahl einzugehen. Mit steigender Rechenleistung werden zukünftig mehr Kugeln berechenbar sein.
Die kubisch periodischen Strukturen des RVE-Modells erfordern auch ein periodisches Netz. Dies
bedeutet, dass das Oberflächennetz an den gegenüberliegenden Schnittflächen deckungsgleich ist.
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(a) (b) (c) (d)

Abbildung 4.9: FE Modelle theoretisch geordneter Strukturen a) KP Anordnung, b) KRZ Anord-
nung, c) KFZ Anordnung und d) HDP Anordnung.

Die Elementanzahl variiert von 420.000 bis 710.000 Elementen, in Abhängigkeit vom Modell und
den eingestellten Parametern. Abbildung 4.10 zeigt die FE-Modelle basierend auf den zufällig
generierten Packungen aus Tabelle 4.1.

(a) (b) (c) (d)

Abbildung 4.10: FE Modelle zufällig generierter Strukturen a) KP55 Anordnung, b) KP62 Anord-
nung, c) KP66 Anordnung und d) KP69 Anordnung.

4.2.1 Einachsige Belastung

Der erste Teil befasst sich mit dem einachsigen Zug in 1 bzw. x-Richtung. Hierbei werden
Materialkennwerte wie Elastizitätsmodul E1 und Querkontraktionszahl ν12 für die Richtung x
bzw. 1 in Abhängigkeit der drei Geometrieparameter Kugeldurchmesser D, Kugelwanddicke und
Sinterstellendurchmesser Ds bzw. Sinterstellenbindungswinkel Φ vorgestellt und ihren Einflüsse
verdeutlicht. Zu Beginn wird der Einfluss des Kugeldurchmesser bei konstanter Wanddicke und
konstantem Sinterstellenbindungswinkel vonΦ= 5,7° betrachtet. Das Verhältnis von Kugelwand-
dicke zu Kugeldurchmesser variiert von t

D = 0,02 bis 0,04. Hierbei wird auf die theoretischen
Kugelanordnungen, kubisch-primitiv (KP), kubisch-raumzentriert (KFZ), kubisch-flächenzentriert
(KFZ) und hexagonal-dichtest-gepackt (HDP) eingegangen. Für die HDP-Anordnung wurde eine
besondere Form der periodischen Randbedingung eingeführt, da diese keine kubisch periodische
Struktur darstellt. Die periodische Randbedingung für die einachsige Belastung in Längsrichtung
wird im Anhang erläutert.
Die Marker in den Abbildungen 4.11 - 4.18 stellen jeweils einen Berechnungswert dar und die
interpolierte Volllinie soll einen Trend wiedergeben. Wie in Abb. 4.11 ersichtlich, zeigen sich
die dichteren Kugelpackungen erwartungsgemäß steifer. Mit zunehmendem Verhältnis von Kugel-
wanddicke zu Kugeldurchmesser t

D ergibt sich eine Zunahme des Verhältnisses des Elastizitätsmo-
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duls der homogenisierten Hohlkugelstruktur zum Elastizitätsmodul des Strukturmaterials (Stahl)
E∗1
ES

. Dieses Verhältnis kann als ein Maß für die Steifigkeit interpretiert werden. Betrachtet man das
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Abbildung 4.11: Parametervariation Kugeldurchmesser bei konstanter Wanddicke und konstantem
Sinterstellenwinkel, Einfluss auf den relativen Elastizitätsmodul.

Ganze auf Basis der relativen Dichten, sprich dem Verhältnis der Dichte der Struktur ρ∗1 zur Dichte
des Strukturmaterials (Stahl) ρS, so wird der Effekt der dichteren Packung etwas geringer, da diese
auch eine höhere Dichte besitzt. Es zeigt sich, dass die Werte von dichter gepackten Strukturen
(KRZ, KFZ und HDP) sehr eng beieinanderliegen und eine stärkere Zunahme des relativen
Elastizitätsmoduls zeigen. Unerwarteterweise weist die HDP-Anordnung geringe Steifigkeitswerte
gegenüber der KFZ-Anordnung auf, was eventuell auf die andere Modellierungsart der Randbe-
dingungen zurückzuführen ist. Ein weiterer Erklärungsansatz liegt in der Richtungsabhängigkeit
des Elastizitätsmoduls und der dazugehörigen Symmetrie.
Legt man das Augenmerk auf die Querkontraktionszahl der homogenisierten Struktur in x-
Richtung (ν12) (Abb. 4.12), erkennt man bei geringen Verhältnissen von Wanddicke zu Kugel-
durchmesser t

D große negative Werte. Dieses Verhalten ist sehr ungewöhnlich für Körper bestehend
aus Vollmaterial, jedoch nicht für Schäume und Fasermaterialien. Die dicht gepackten Packungen
KRZ, KFZ und HDP zeigen dieses Verhalten, jedoch hat die KP-Anordnung einen nahezu kon-
stanten Verlauf knapp über Null.
Neben dem Kugeldurchmesser lässt sich auch der Sinterstellendurchmesser bzw. Sinterstellenwin-
kel variieren. Abbildung 4.13 zeigt den Einfluss des Parameters Sinterstellendurchmesser auf den
Elastizitätsmodul bei einem konstantem Verhältnis von Wanddicke zu Durchmesser t

D = 0,6. Eine
Steigerung des Verhältnisses Sinterstellendurchmesser zu Kugeldurchmesser bewirkt eine größere
Zunahme des relativen Elastizitätsmoduls als bei der Steigerung des Verhältnisses Wanddicke zu
Kugeldurchmesser bei der Durchmesservariation (vgl. Abb. 4.11). Dieser Effekt wird deutlich,
wenn man die Variation auf die relative Dichte bezieht. Hier reicht schone eine sehr geringe Stei-
gerung, um ein deutliche Zunahme des relativen Elastizitätsmodul zu erreichen (siehe Abb. 4.13).
Es zeigt sich, wie schon bei der anderen Parametervariation, dass mit steigender Packungsdichte
auch der Elastizitätsmodul zunimmt. Ebenfalls zeigen KFZ- und HDP-Anordnung die höchsten
Steifigkeiten.
Betrachtet man des Weiteren die Querkontraktionszahl in Abb. 4.14, so ist zu erkennen, dass
die KP Anordnung geringfügig über Null liegt und sehr schwach wächst. Wiederum besitzen
die dichtgepackten Anordnungen (KRZ, KFZ und HDP) relativ große negative Werte, wobei
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Abbildung 4.12: Parametervariation Kugeldurchmesser bei konstanten Werten für Wanddicke und
Sinterstellenwinkel, Einfluss auf die Querkontraktionszahl.
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Abbildung 4.13: Parametervariation Sinterstellendurchmesser bei konstanten Werte für Wanddicke
und Kugeldurchmesser, Einfluss auf den relativen Elastizitätsmodul.

sich ein lokales Minimum bei ungefähr einem Verhältnis von Sinterstellendurchmesser zu Ku-
geldurchmesser Ds

D von 0,5 einstellt. Die lokalen Minima werden deutlich sichtbar, wenn sich die
Querkontraktionszahl auf die relative Dichte bezieht.
Das Verhältnis Sinterstellendurchmesser zu Kugeldurchmesser kann auch durch den Sinterstellen-
winkel ausgedrückt werden. Abbildung 4.15 gibt diese Betrachtung in Abhängigkeit des Sinterstel-
lenwinkels wieder. Für kleine Winkel besteht eine nahezu lineare Abhängigkeit. Aus diesem Grund
erhält man fast identische Verläufe für den Elastizitätsmodul und die Querkontraktionszahl. Dem
Anhang kann eine Variation des Sinterstellenwinkels Φ von 5° bis 20° für die idealen Packungen
KP, KFZ und KFZ entnommen werden.
Während bei der Variation des Sinterstellendurchmessers und des Kugeldurchmessers auf die
idealen, packungsbasierenden Elementarzellen eingegangen wird, werden man bei der Variation
der Kugelwanddicke zusätzlich die vier zufällig erzeugten RVEs mit einer Packungsdichte von
55% bis 69% betrachtet. Bei der Untersuchung ändert sich das Verhältnis von Wanddicke zu
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Abbildung 4.14: Parametervariation Sinterstellendurchmesser bei konstanten Werte für Wanddicke
und Kugeldurchmesser, Einfluss auf die Querkontraktionszahl.
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Abbildung 4.15: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf den Elastizitätsmodul und die Querkontraktionszahl.

Kugeldurchmesser t
D in sechs Schritten von 0,004 bis 0,05. Dies entspricht den üblichen und vor-

liegenden Probenverhältnissen. Das Verhältnis von Sinterstellendurchmesser zu Kugeldurchmesser
wird auf 0,267 eigestellt, was einem Winkel von 15,5° entspricht.
Begutachtet man in Abb. 4.16 die Verläufe der relativen Elastizitätsmoduln in Abhängigkeit
von der normierten Wanddicke, lassen sich wiederrum bei der KP-Elementarzelle mit ca. 52%
Packungsdichte die geringsten Werte erkennen. Mit geringfügig größeren relativen Elastizitätsmo-
dulwerten in x-Richtung zeigt sich das RVE Modell mit 55% Packungsdichte. Erwartungsgemäß
ordnen sich der Verläufe des RVE-Modells mit 62% Packungsdichte und des RVE-Modells mit
66% Packungsdichte zwischen dem RVE-Modell mit 55% und der KRZ-Elementarzelle mit ca.
68% Packungsdichte ein. Als anfänglich unerwartet stellt sich der Verlauf des RVE-Modells mit
69% Packungsdichte gegenüber der HDP-Elementarzelle heraus, da diese in x-Richtung einen
geringfügig höheren Verlauf des relativen Elastizitätsmoduls über die normierte Wanddicke besitzt.
Grund hierfür kann möglicherweise die Varianz des Sinterstellendurchmessers bei den zufällig
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Abbildung 4.16: Parametervariation Kugeldurchmesser bei konstanten Werten für Wanddicke und
Sinterstellenwinkel, Einfluss auf die Querkontraktionszahl.

geordneten Modellen sein. Des Weiteren wird ein nahezu identischer Verlauf der Werte für
HDP- und KFZ-Elementarzelle erwartet, jedoch erweist sich die KFZ-Anordnung als steifer in
x-Richtung. Dieses Phänomen lässt sich durch die unterschiedliche Form der Elementarzellen
und damit verbundene Periodizität erklären. Gao et al. [70] bestätigen diesen Effekt. Während
KP-, KRZ- und KFZ-Modelle und alle zufällig erzeugten RVE-Modelle eine kubische Form der
Elementarzelle bzw. des repräsentativen Volumenelements besitzen, besteht die Form der HDP
Elementarzelle aus einem prismatischen Körper mit hexagonaler Grundfläche. Aus der Form
der Elementarzelle ergibt sich ein richtungsabhängiger Elastizitätsmodul der im nachfolgenden
Abschnitt näher behandelt wird.
Bezieht man nun den relativen Elastizitätsmodul auf die relative Dichte und trägt beide Achsen
logarithmisch auf, erhält man Verläufe, wie in Abb. 4.17 dargestellt. Die Zunahme des relativen
Elastizitätsmoduls mit der Packungsdichte und relativer Dichte wird deutlich sichtbar. Alle Verläu-
fe der einzelnen Modelle entsprechen im doppelt-logarithmischen Diagramm nahezu einer Gera-
den, was auf eine Potenzfunktion schließen lässt. Es kann für jedes Modell folgender Potenzansatz
gemacht werden:

E�
1

Es
=C1

(
ρ�1
ρs

)C2

(4.1)

wobei C1 und C2 modell- bzw. parameterabhängige Konstanten sind. Einige Konstanten für ge-
klebte und verlötete Strukturen lassen sich aus Sanders und Gibson [183, 185] und Gasser et al.
[72, 72] entnehmen. Betrachtet man die Verläufe in Abb. 4.17 näher, erkennt man einen nahezu
parallelen Verlauf zwischen den Modellvarianten. Dies lässt darauf schließen, dass das Verhältnis
von Wanddicke zu Kugeldurchmesser t

D in Abhängigkeit der Modellvariante fast ausschließlich
die Konstante C1 beeinflusst. Auf die nähere Bestimmung der Konstanten wird in dieser Arbeit
verzichtet, da eine Bestimmung mittels Diagramm als praxisnäher empfunden wird.
Im Weiteren wird die Querkontraktion über dem Verhältnis von Wanddicke zu Kugeldurchmesser
in Abb. 4.18 behandelt. Die Verläufe zeigen hier keinen eindeutigen Trend. So beschreiben die
KRZ-Anordnungen die untere Grenze der Querkontraktionszahl bzw. die KP-Anordnung bei
kleinen und die HDP-Anordnung bei großen t

D Verhältnissen die obere Grenze. Die RVE55- und
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Abbildung 4.17: Parametervariation Kugeldurchmesser bei konstanten Werten für Wanddicke und
Sinterstellenwinkel, Einfluss auf den Elastizitätsmodul.

RVE62- Modelle basierend auf einer losen und mittleren dichten Packung bzw. armorph-ähnlichen
Struktur zeigen einen Querkontraktionsverlauf nahe Null, wobei die Querkontraktionszahl in „2“-
und „3“- Richtung (ν12 und ν13) deutlich abweichen. Bei den hoch und höchst dichtgepackten
zufälligen Packungen sind die Abweichung in beide Raumrichtungen wesentlich geringer. Als ein-
ziger Trend ist festzustellen, mit ein paar wenigen Ausnahmen, dass mit zunehmendem Verhältnis
von Wanddicke zu Kugeldurchmesser die Querkontraktionszahl der homogenisierten Struktur auch
zunimmt.
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Abbildung 4.18: Parametervariation Kugeldurchmesser bei konstanten Wanddicke und Sinterstel-
lenwinkel, Einfluss auf die Querkontraktionszahl.
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4.2.2 Mehrachsige Belastung - Materialsymmetrien

Da eine virtuelle einachsige Zug- bzw. Druckbelastungsuntersuchung keinen eindeutigen Rück-
schluss auf das Materialverhalten gibt, wird eine Untersuchung in mehreren Achsen veranlasst.
Zusätzlich stellt sich bei der Untersuchung der verschiedenen Kugelanordnungen die Frage nach
der Materialsymmetrie bzw. nach der Isotropie. Aus diesem Grund werden ideale und zufällig
erzeugte Kugelanordnungen mit unterschiedlichen Packungsdichten betrachtet. Als Referenz wird
die in vielen Literaturstellen (z.B. [37]) erwähnte, kubisch primitive Anordnung herangezogen.
Hierfür wurden alle sechs Lastfälle, drei Zug- bzw. Schubfälle in drei Raumrichtungen mittels
FE-Berechnung nachgebildet. Mit diesen sechs Lastfällen lässt sich der gesamte Steifigkeits-
bzw. Nachgiebigkeitstensor bestimmen. Es werden ähnliche Parametereinstellungen wie bei der
Kugelwanddicken-Variation des zuvor beschrieben Abschnitts verwendet. Es wird lediglich das
Verhältnis Sinterstellen zu Kugeldurchmesser von 0,8 auf 0,9 erhöht, was einem Sinterstellenwin-
kel von 17,5° entspricht.
Abbildung 4.19 zeigt den richtungsabhängigen Elastizitätsmodul. Der Betrag ergibt sich aus der
Distanz vom Koordinatenursprung bis zur Kurve bzw. Oberfläche. Es werden drei Verläufe in den
markanten Ebenen (xy, yz und xz) und ein sogenannter dreidimensionaler Elastizitätsmodulkörper
dargestellt. Die verschiedenen Parametervariationen werden durch unterschiedliche Linientypen
deutlich gemacht, teilweise mit Markern versehen. In allen Variationen zeigt sich für den richtungs-
abhängigen Elastizitätsmodul in den Schnittebenen ein quadratförmiger Verlauf mit abgerundeten
Ecken und eine konkave Wölbung in der Mitte der Seiten. Alle Verläufe sind in allen drei Ebenen
identisch bzw. deckungsgleich. Dementsprechend gestaltet sich der dreidimensionale Elastizitäts-
modulkörper als ein Würfel mit abgerundeten Ecken und im Flächenschwerpunkt eingedrückten
Würfelflächen. Es lässt sich unschwer erkennen, dass Minima des Elastizitätsmoduls jeweils in
Achsenrichtung (<100>,<010>,<001>) auftreten. Die Maxima treten in der Ebenenbetrachtung
in der Diagonale unter 45° auf. Sie entsprechen den positiven Richtungen in <110>, <101>
und <011>. Die negativen Richtungen und aus negativen und positiven kombinierten Richtungen
werden aus Symmetriegründen nicht aufgeführt. Die Symmetrie entspricht der kubischen Material-
symmetrie (siehe Tabelle A.1) und lässt sich mit drei unabhängigen Materialkonstanten (Ekub, νkub
und Gkub) beschreiben [5]. So ergibt sich beispielsweise für eine KP-Anordnung mit einem äußeren
Kugeldurchmesser von 3 mm, einer Wanddicke von 0,03 mm und Sinterstellendurchmesser von 0,9
mm bzw. einem Sinterstellenwinkel von 17,4° ein Wert für Ekub = 479,8 MPa. Der Elastizitätsmo-
dul des Grundmaterials (Werkstoff Hohlkugel) beträgt hierbei 200 GPa. Bei dieser Konstellation
erhält man für νkub = 0,0944 und Gkub = 744,4 MPa. Diese Elastizitätswerte (Ekub, νkub und Gkub)
sind unabhängig voneinander und beschreiben einen Sonderfall der Anisotropie (kubische Mate-
rialsymmetrie). Der niedrige Wert der Querkontraktionszahl ist bedingt durch den Strukturaufbau
der HKS und kann nicht mit einem homogenen (isotropen) Vollkörper verglichen werden. Bildet
man das arithmetische Mittel des richtungsabhängigen Elastizitätsmoduls Ēarith = 677,9 MPa,
so ist zu erkennen, dass der Elastizitätsmodul in <100> Richtung wesentlich geringer als der
durchschnittliche Elastizitätsmodul ausfällt. Bei der KP-Anordnung zeigt sich, dass der Wert von
G stets größer ist als der von E. Dies deutet darauf, dass die Struktur unter Schubbelastung
steifer ist als unter Zug- bzw. Druckbelastung. Gut erkennen lässt sich des Weiteren, dass sich die
Form des Elastizitätsmodulkörpers und deren Schnitte über die Variationen der Kugelwanddicke
nicht wesentlich ändert, was einer reinen Skalierung nahe kommt. Somit ändert sich kaum das
Materialverhalten bei dieser Variation.
Die Verläufe der relativen und richtungsabhängigen Elastizitätsmodule für die KRZ Anordnung
werden in Abb. 4.20 dargestellt. Im Vergleich zur KP Anordnung erkennt man hier ein ganz anderes
Materialverhalten. Betrachtet man den Verlauf in den drei Ebenen, erkennt man im Unterschied zu
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Abbildung 4.19: Kubisch-primitive Elementarzelle - Elastizitätsmodulkörper: Variation der Wand-
dicke

den KP Anordnungen einem um 45° zum Ursprung verdrehten Verlauf. Die Verläufe in den drei
Ebenen sind ebenfalls identisch. Zudem zeigen sich alle Verläufe in der Form ähnlich. Der dreidi-
mensionale Elastizitätsmodulkörper präsentiert sich ähnlich einer Kugel, bei der die positiven und
negativen Achsenrichtungen gestreckt werden. Aus den Geometrien der Elastizitätsmodulkörper
in zwei- und dreidimensionaler Darstellung lässt sich leicht erkennen, dass das globale Maximum
des richtungsabhängigen Elastizitätsmodulwertes in <100> Richtung zu finden ist. Erst bei genauer
Betrachtung ist das Mimimum in <111> Richtung zu finden. Die Materialsymmetrie entspricht
ebenfalls, wie bei der KP-Anordnung, der kubischen Symmetrie und lässt sich mit den drei vonein-
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Abbildung 4.20: Kubisch-raumzentrierte Elementarzelle - Elastizitätsmodulkörper: Variation der
Wanddicke.

ander unabhängigen Konstanten Ekub, νkub und Gkub beschreiben. So ergibt sich beispielsweise mit
den gleichen Abmessungen wie bei der KP-Anordnung, einem äußeren Kugeldurchmesser von 3
mm, einer Wanddicke von 0,03 mm und einem Sinterstellendurchmesser von 0,9 mm, ein Wert für
Ekub = 1696 MPa. Für die weiteren Materialwerte erhält man νkub =−0,262 und Gkub = 684 MPa.
Es zeigt sich, dass bei der KRZ-Anordnung der Wert von Ekub wesentlich höher ist als der Wert von
Gkub. Der Mittelwert des richtungsabhängigen Elastizitätsmodul beträgt bei dieser Konstellation
Ēarith = 1460 MPa und liegt nicht weit vom Maximalwert von 1696 MPa entfernt. Ein isotropes
Verhalten ist weder bei der KP- noch bei der KRZ-Anordnung ansatzweise zu erkennen.
Der visualisierte richtungsabhängige Elastizitätsmodul für die KFZ-Anordnung wird in Abb. 4.21
wiedergegeben. Der relativbezogene, dreidimensionale Elastizitätsmodulkörper präsentiert sich als
eine Kugel, die an Achsen leicht nach außen gezogen wird. Die Form des Elastizitätsmodulkörpers
ähnelt stark der Form der KRZ-Anordnung, wobei bei KRZ-Anordnung die Streckung an den Ko-
ordinatenachsen stärker ausgeprägt ist. Betrachtet man die in den drei Ebenen identischen Verläufe
des Elastizitätsmoduls, zeigt sich ein ähnlicher Verlauf wie bei der KRZ-Anordnung. Jedoch ist
der Verlauf rein konkav. Das Maximum des richtungsabhängigen Elastizitätsmoduls findet man
ebenfalls in <100> Richtung. Analog dazu entsteht in <111> ein Minium des richtungsabhängigen
Elastizitätsmoduls. Im Gegensatz zur KP- und KRZ-Anordnung sind diese Minima und Maxima
wesentlich weniger stark ausgeprägt. Die Materialsymmetrie gestaltet als kubisch. Für dimensions-
behaftete Abmessungen mit einem äußeren Kugeldurchmesser von 3 mm, einer Wanddicke von
0,03 mm und einem Sinterstellendurchmesser von 0,9 mm erhält man für die Materialkonstante
Ekub einen Wert von 2466 MPa. Für νkub und Gkub ergeben sich Werte von −0,062 und 1112
MPa, der Mittelwert des richtungsabhängigen Elastizitätsmoduls Ēarith beträgt hierbei 2334 MPa.
Die Form des Elastizitätsmodulkörpers der KFZ-Anordnung kommt dem Elastizitätsmodulkörper
eines isotropen Werkstoffes, einer Kugel, sehr nahe.
Die Abb. 4.22 zeigt den richtungsabhängigen Elastizitätsmodul für das repräsentative Volumen-
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Abbildung 4.21: Kubisch-flächentrierte Elementarzelle - Elastizitätsmodulkörper: Variation der
Wanddicke

element (RVE55) basierend auf der zufälligen Packung P55 in Tabelle 4.2. Die Form des Elasti-
zitätsmodulkörpers präsentiert sich als völlig deformierte Kugel, die in verschiedenen Richtungen
gestreckt bzw. gestaucht wird. Betrachtet man die Verläufe des Elastizitätsmoduls in den einzelnen
Ebenen, ist schnell zu erkennen, dass diese nicht mehr identisch sind. Für jede Ebene stellt
sich ein anderer Verlauf ein. In der xy-Ebene sieht man ein um ca. 45° gedrehtes Rechteck mit
abgerundeten Kanten, dagegen erhält man in der yz-Ebene einen rautenähnlichen Verlauf und in
der xz-Ebene schließlich einen schwach deformierten kreisförmigen, Verlauf. Es lässt sich weder
am Elastizitätsmodulkörper noch an der Steifigkeits- bzw. Nachgiebigkeitsmatrix eine Symmetrie
erkennen. Es stellt sich ein völlig triklines Materialverhalten ein und es gibt 21 unabhängige
Materialkonstanten. Mit dimensionshafteten Hohlkugelabmaßen von D = 3 mm, t = 0,03 mm
und DS = 0,9 mm erhält man einen minimalen Wert des Elastizitätsmoduls von Emin = 425 MPa.
Maximum und Mittelwert betragen Emin = 623 MPa bzw. Ēarith = 549 MPa. Dieses Verhalten
ändert sich über die Variation der Wanddicke nicht merklich, da die Kurven nahezu parallel,
offsetmäßig verlaufen.
Die Form des Elastizitätsmodulkörpers für das repräsentative Volumenelement, basierend auf der
zufälligen Packung P62, präsentiert sich in Abb. 4.23 ebenfalls als deformierte Kugel, die an
den Koordinatenachsen gestreckt wird. Die größte Streckung erkennt man in <010> Richtung.
Dementsprechend zeigen sich die Verläufe in den einzelnen Ebenen als mehr oder weniger defor-
mierte Kreise. Verläufe laufen ebenfalls parallel zueinander. Somit hat auch hier die Variation der
Wanddicke keinen merklichen Einfluss auf die Form des Elastizitätsmodulkörpers. Betrachtet man
den Elastizitätskörper oder die Steifigkeits- bzw. Nachgiebigkeitsmatrix, ist keine Symmetrie zu
erkennen. Das Material verhält sich triklin, wobei das Verhalten schon einem orthotropen Verhalten
nahe kommt. Für die beispielhafte Betrachtung mit dimensionsbehafteten Abmaßen (D = 3 mm,
t = 0,03 und DS = 0,9 mm) ergeben sich für den maximalen und minimalen Elastizitätsmoduls
folgende Werte Emax = 1035 MPa und Emin = 809 MPa. Der Mittelwert des Elastizitätsmodul
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Abbildung 4.22: Repräsentatives Volumenelement mit 55% Packungsdichte - Elastizitätsmodul-
körper: Variation der Wanddicke.

beträgt dabei Ēarith = 908 MPa.
Abbildung 4.24 zeigt den relativen und richtungsabhängigen Elastizitätsmodul für das repräsen-
tative Volumenelement basierend auf der zufälligen Packung P66. Der Elastizitätsmodulkörper
stellt sich auch als eine Kugel dar, die an den Koordinatenachsen schwach nach außen deformiert
wird. Die Streckungen sind in allen Achsen nahezu gleich. Jedoch lässt sich keine Symmetrie
bei strenger Betrachtung erkennen, obwohl die Form sehr stark der KFZ-Anordnung kubischem
Materialverhalten ähnelt. In der beispielhaften Ausführung für den richtungsabhängigen Elastizi-
tätsmodul mit den dimensionsbehafteten Größen (D = 3 mm, t = 0,03 und DS = 0,9 mm) erhält
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Abbildung 4.23: Repräsentatives Volumenelement mit 62% Packungsdichte - Elastizitätsmodul-
körper: Variation der Wanddicke

man folgende Werte für den minimalen und maximalen Elastizitätsmodul Emin = 1139 MPa und
Emax = 1271 MPa bzw. für den Mittelwert Ēarith = 1206 MPa.
Blickt man letztlich auf den richtungsabhängigen Elastizitätsmodul für das repräsentative Volu-
menelement, basierend auf der zufällig erzeugten Packung P69 in Abb. 4.25, so ist ein identisches
Verhalten zur KFZ-Anordnung zu erkennen. In den drei Ebenen zeichnet sich ein deckungsglei-
cher Verlauf des richtungsabhängigen Elastizitätsmoduls ab. Es stellt sich für alle Variationen
ein kubisches Materialverhalten ein. Dementsprechend kann man das Materialverhalten auf drei
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Abbildung 4.24: Repräsentatives Volumenelement mit 66% Packungsdichte - Elastizitätsmodul-
körper: Variation der Wanddicke.

Materialkonstanten zurückführen. So ergibt sich beispielsweise bei dimensionsbehafteter Betrach-
tung (D = 3 mm, t = 0,03 und DS = 0,9 mm) für die Materialkennwerte Ekub = 2129 MPa,
νkub = −0,055 und Gkub = 942,8 MPa. Vergleicht man die Werte dieser Packung mit der KFZ-
Anordnung, ergibt sich ein um 15,8% verminderter Elastizitätsmodul Ekub. Der Wert von Gkub
reduziert sich um 17,9%.
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Abbildung 4.25: Repräsentatives Volumenelement mit 69% Packungsdichte - Elastizitätsmodul-
körper: Variation der Wanddicke.

4.2.3 Einfluss der Randbedingungen

Aus der in Abschnitt 3.2.1 eingeführten Homogenisierungsmethode ergeben sich drei verschiedene
Möglichkeiten für die Definition der Randbedingungen eines Volumenelements. Die bisher vor-
gestellten Ergebnisse basieren auf den periodischen Randbedingungen (PRB), welche den Vorteil
haben, dass sie näher am wirklichen Effektivwert liegen [109, 123, 205]. Dennoch sollen in diesem
Abschnitt zwei weitere mögliche Randbedingungen in Bezug auf Hohlkugelstrukturen untersucht
bzw. diskutiert werden.
Die zwei weiteren Randbedingungen sind die kinematisch uniforme Randbedingung (KURB) und
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die statisch uniforme Randbedingung (SURB), die zugleich die REUSS- und VOIGT-Schranke bil-
den. Die ermittelten Nachgiebigkeits- bzw. Steifigkeitstensoren mit den Randbedingungen KURB
und SURB bilden somit die untere bzw. obere Schranke für den Effektivwert.
Abbildung 4.26 zeigt für die Elementarzellen mit KP-, KRZ- und KFZ-Anordnung bei einem
Verhältnis von Kugelwanddicke zu Hohlkugeldurchmesser t/D = 0,02 den richtungsabhängigen
Elastizitätsmodul in der xy-Ebene für die drei verschiedenen Randbedingungen. Bei der KP-
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Abbildung 4.26: Vergleich der Randbedingungen für Elementarzellen: KURB, SURB und PRB.

Elementarzelle unterscheiden sich die Verläufe SURB und PRB kaum, die Elastizitätsmodule
in Koordinatenachsenrichtung sind betragsmäßig nahezu gleich. Dennoch liegt die PRB-Kurve
erwartungsgemäß innerhalb der SURB-Kurve. Der Abstand zwischen der SURB- und KURB-
Kurve ist deutlich. Bei der KRZ Anordnung sind ebenfalls die Elastizitätsmodule in Koordinaten-
achsenrichtung fast gleich. Die Spanne zwischen SURB und KURB ist geringer und PRB liegt
in diesem Raum, wobei die Spanne sich näher an der SURB-Kurve befindet. Im Gegensatz zur
KP Elementarzelle zeigt die KRZ-Anordnung für jede Randbedingung einen anderen Elastizi-
tätsmodulkörper. Bei der KURB sind die Werte des Elastizitätsmoduls in Achsenrichtung stärker
ausgeprägt. Die Ausprägung zeigt sich nur noch schwach bei der PRB und SURB und weist einen
dem isotropen Zustand nahen Elastizitätsmodulkörper auf.
Bei der KFZ-Anordnung mit KURB sind die Elastizitätswerte in Achsenrichtung betragsmäßig
am größten. Die PRB-Kurve zeigt ein annähernd und die SURB-Kurve ein vollständig isotropes
Verhalten, was durch [80] bestätigt wird.
Weitet man die Betrachtung auf ein RVE aus, zeigen sich Verläufe gemäß Abb. 4.27. Im Gegensatz
zur Elementarzellenbetrachtung entstehen unterschiedliche Verläufe in den Ebenenschnitten des
jeweiligen Elastizitätsmodulkörpers. Die PRB-Kurven liegen beim RVE69 in Abb. 4.27a wieder
sehr nahe an den SURB-Verläufen. Die Distanz zwischen SURB-Kurve und KURB-Kurve ver-
ringert sich im Vergleich zu den Kurven der Elementarzellenmodelle- Dies bestätigt die Aussage,
dass mit zunehmender RVE-Größe die Verläufe dem tatsächlichen Effektivwert näher kommen
[205]. Beim RVE62 in Abb. 4.27b weisen die SURB und PRB einen größeren Abstand auf. Für
das RVE62 mit KURB ließen sich keine aussagefähigen Ergebnisse erzeugen. Ursache hierfür
sind freistehende Geometrien aufgrund der geringeren Packungsdichte (Kugelschnitte ohne Ver-
bindung).
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Abbildung 4.27: Vergleich der Randbedingungen für a) RVE69 und b) RVE62: KURB, SURB und
PRB

Zusammengefasst liegt bei allen Untersuchungen der Verlauf der PRB zwischen den Verläufen von
SURB und KURB, was die Plausibilität der Ergebnisse unterstreicht. Die Verläufe der PRB liegen
näher an den Verläufen von SURB, was auch [205] bestätigt (siehe Abb. 3.16).

4.2.4 Vergleich und Diskussion

Bisher wurde nur näher auf die gesinterten Hohlkugelstrukturen eingegangen. In diesem Abschnitt
werden die gesinterten mit geklebten bzw. gelöteten Hohlkugelstrukturen verglichen. Die Werte
des Elastizitätsmoduls für die geklebten bzw. gelöteten Hohlkugelstrukturen wurden Sanders [184]
und Gasser [71] entnommen. So verglich Gasser schon die Ergebnisse von Sanders in seiner
Arbeit und stellte fest, dass die Ergebnisse nahezu identisch waren. Aus diesem Grund soll ein
Vergleich zwischen den Resultaten der geklebten Hohlkugelstrukturen von Sanders [184] mit den
hier gewonnenen Ergebnissen der gesinterten Hohlkugelstrukturen angestellt werden. Abbildung
4.28a zeigt den Verlauf des relativen Elastizitätsmoduls über das Wanddicken- zu Kugeldurch-
messerverhältnis für vier verschiedene Sinterstellenwinkel von 5° bis 20°. Dabei zeigt sich ein
annähernd identischer Verlauf zwischen den geklebten und gesinterten Varianten. Betrachtet man
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die KRZ-Anordnungen mit einem Sinterstellenwinkel bzw. Klebestellewinkel von 15° bzw. 20°, so
ist zu erkennen, dass die geklebten Hohlkugelstrukturen bei größeren Wanddicken zu Durchmes-
serverhältnissen gegenüber den gesinterten Strukturen geringfügig an Steifigkeit verlieren. Dieses
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Abbildung 4.28: Vergleich gesinterte und geklebte Hohlkugelstruktur in a) KP-Anordnung und b)
KRZ-Anordnung.

Verhalten wird ebenfalls bei der KFZ-Anordnung in Abb. 4.29 sichtbar. Ebenfalls zeigt sich bei
größeren Wanddicken zu Durchmesserverhältnissen ein geringfügig niedriger Wert des relativen
Elastizitätsmoduls bei geklebten Hohlkugelstrukturen. Eine Möglichkeit der Steifigkeitszunahme
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Abbildung 4.29: Vergleich gesinterte und geklebte Hohlkugelstruktur in KFZ-Anordnung.

der gesinterten gegenüber den geklebten Hohlkugelstrukturen kann an der Tatsache liegen, dass
mit steigendem Sinterstellenwinkel bzw. -durchmesser die Kugeln stärker deformieren und somit
der Mittelpunktabstand der Kugeln geringer wird.
Im Folgenden sollen verschiedene Elastizitätsmodulkörper qualitativ und quantitativ miteinander
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verglichen und bewertet werden. Hierbei werden die gewonnenen Werte aus der Wanddicken-
variation im vorhergehenden Abschnitt genutzt. Abbildung 4.30 zeigt für die KP-, KRZ- bzw.
KFZ-Elementarzelle und für die zufällig erzeugten repräsentativen Volumenelemente die Ebenen-
schnitte der relativen Elastizitätsmodulkörper, basierend auf den Packungen aus Tabelle 4.2. Die
abgebildeten Elastizitätsmodulkörperschnitte wurden mit den Parametereinstellungen t

D = 0,01
und einem Sinterstellenwinkel von 17,4° bestimmt. An den Schnittverläufen lässt sich erkennen,

RVE69RVE66RVE62RVE55KFZKRZKP

Relatives Elastizitätsmodul

Aaniso = 0,80583RVE69:

Aaniso = 0,84576RVE66:

Aaniso = 0,80414RVE62:

Aaniso = 0,79173RVE55:

Aaniso = 0,83729KFZ:

Aaniso = 0,57622KRZ:

Aaniso = 3,3971KP:
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Abbildung 4.30: Richtungsabhängiger Elastizitätsmodulkörper für verschieden ideale und zufällig
erzeugte Packungen bei einem Sinterstellenwinkel von 17,4°.

dass mit zunehmender Packungsdichte der Elastizitätsmodul steigt. Jedoch ist der Betrag bei-
spielsweise bei der KP-Anordnung sehr stark schwankend bzw. richtungsabhängig und in <110>
Richtung betragsmäßig höher als bei der mit dem zufällig erzeugten Modell 55% Packungsdichte.
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Als nächst steifere Anordnung zeigt sich die zufällige Hohlkugelanordnung (RVE62) basierend
auf der Kugelpackung P62. Die Form dieser Anordnung präsentiert sich ebenfalls kreisähnlich
in den drei Ebenen. Wie erwartet, ist das repräsentative Volumenmodell RVE66 steifer als das
Modell RVE62. Die Form des richtungsabhängigen Elastizitätsmoduls orientiert sich sehr stark
an dem KFZ-Modell. Die KRZ-Anordnung zeigt sich beim Elastizitätsmodul wiederum in der
stärker ausgeprägten Richtungsabhängigkeit. Es sind deutliche Minima und Maxima zu erkennen.
Die Verläufe für das KFZ-Modell und für das repräsentative Volumenmodell RVE69 sind nahezu
identisch, sie sind nur in der Größe bzw. Betrag skaliert. Betrachtet man qualitativ die Formen der
verschiedenen Modelle in Bezug auf das isotrope Verhalten, das von einem kreisförmigen Verlauf
gekennzeichnet ist, so ergibt, dass die Modelle KFZ, RVE69, RVE66 und RVE62 diesem Verhalten
am nächsten kommen. Das Model RVE55 zeigt zum Teil eine stärkere Richtungsausprägung
in den Ebenen, wobei die Formen noch kreisähnlich sind. Die KRZ-Elementarzelle zeigt eine
mittlere Zunahme des Elastizitätsmoduls in Achsenrichtung, wobei die KP-Elementarzelle eine
starke Schwächung in dieser Richtung aufweist.
Um die Ausprägung der Isotropie bzw. Anisotropie in einer skaleren Größen ausdrücken zu
können, wurde von Zener der elastische Anisotropiefaktor AAniso eingeführt [227]. Für kubisch
symmetrisches Materialverhalten definiert Zener den Faktor wie folgt:

AAniso =
2C44

C11−C12
=

2(S11−S12)

S44
, (4.2)

wobei die drei Konstanten Ci j die drei unabhängigen elastischen Steifigkeitskoeffizienten (VOIGT

Koeffizienten [217]) sind. Der Koeffizient C44 repräsentiert den Scherwiderstand auf Ebene <100>
in Richtung <0kl>, während der Term C11−C12/2 stellvertretend für den Scherwiderstand auf
Ebene <110> in <-110> Richtung steht [126]. Der Anisotropiefaktor stellt ein Verhältnis der zwei
extremen elastischen Koeffizienten dar. Wenn AAniso < 1 ist das Material am steiffesten in Richtung
<100> und wenn AAniso > 1 ist die Steifigkeit am größten in der Diagonalenrichtung <111> [157].
Der Wert von AAniso = 1 entspricht der Isotropie. Mit dem bekannten Zusammenhang zwischen
dem Elastizitätskoeffizienten C und der Dichte ρ sowie der Schallgeschwindigkeit c

C = ρc, (4.3)

is der Ansiotropiefaktor nach Zener durch Einsetzen der Gl. (4.3) in Gl. (4.2) experimentell
für Materialien mittels Körperschallanalyse bestimmbar [127]. Abbildung 4.31a zeigt deb Ani-
sotropiefaktor nach Zener über die Packungsdichte. Es zeigt sich keine Abhängigkeit zwischen
Anisotropiefaktor und Packungsdichte. Am nächsten an die Isotropie kommt die KFZ-Anordnung
sowie die hoch und höchst zufällig gepackte Anordnung RVE62 und RVE66. Als stark anisotrop
erweist sich die KP-Anordnung. Der invertierte Anisotropiefaktor von KRZ (1/AAniso, vertausch-
tes Schubfestigkeitsverhältnis von Maxima und Minima) liegt zwischen den Werten von KFZ-und
KP-Anordnung. Ein analoges Verhalten erhält man in Abb. 4.31b, wenn man den Isotropiefaktor
über die Koordinationszahl aufträgt. Es kann ebenfalls kein Zusammenhang zwischen Koordi-
nationszahl und Anisotropiefaktor gefunden werden. Da der Anisotropiefaktor nach Zener nur
für rein kubisches Materialverhalten gilt, wird der allgemeingültige Anisotropiefaktor A�

Aniso nach
Ledbetter und Migliori [126] für zufällig geordnete repräsentative Volumenelemente (Modelle mit
nicht kubischer Materialsymmetrie) bestimmt. Der Anisotropiefaktor definiert sich über

A�
Aniso =

c2
1

c2
2
, (4.4)

wobei c1 und c2 die minimale und maximale Schubwellenausbreitungsgeschwindigkeit (trans-
versale Körperschallgeschwindigkeit) entlang aller Ausbreitungsrichtungen d und Polarisations-
richtungen p ist. Gleichung (4.4) erfüllt diese für alle Materialsymmertrien, von kubisch bis
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Abbildung 4.31: Anisotropiefaktor über a) Packungsdichte und b) Koordinationszahl.

triklin [126]. Die detaillierte Bestimmung der Körperschallgeschwindigkeit kann Anhang C.4
entnommen. Die Werte für den Anisotropiefaktor A�

Aniso wurden mit über 15.000 verschiedenen
Richtungsvektoren numerisch bestimmt. Die Werte für die Anisotropiekoeffizienten der jeweiligen
Modelle sind in Tabelle 4.3 aufgelistet. Abbildung 4.32 zeigt den Anisotropiefaktor nach Ledbetter
über die Koordinationszahl, im Vergleich zum den Anisotropiefaktor nach Zener sind kleine
Abweichungen bei den zufällig geordneten Modellen (RVE52 - RVE62) vorhanden. Die Abwei-
chung nimmt mit zunehmender Packungsdichte ab. Die Abbildungen 4.33a und 4.33b zeigen den
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Abbildung 4.32: Anisotropiefaktor nach Ledbet-
ter über Koordinationszahl.

Modell AAniso A�
Aniso

KP-EZ 3,3971 3,3985

KRZ-EZ 0,57622 0.57833

KFZ-EZ 0,83729 0,83677

RVE55 0,79173 0,59201

RVE62 0,80414 0,72434

RVE66 0,84576 0,82023

RVE69 0,80583 0,80332

Tabelle 4.3: Anisotropiekoeffizienten.

relativen Elastizitätsmodul in den Richtungen <100>, <110> und <111> über Packungsdichte bzw.
Koordinationszahl. Als Trend hierbei ist zu erkennen, dass mit zunehmender Packungsdichte bzw.
zunehmender Koordinationszahl der relative Elastizitätsmodul steigt. Zudem wird deutlich, dass
die Schwankungen in den drei vorgegebenen Richtungen bei den zufällig geordneten Modellen
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und beim KFZ-Modell am geringsten ausfallen.
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Abbildung 4.33: Relativer Elastizitätsmodul über a) Packungsdichte und b) Koordinationszahl.

4.3 Schwingungen

Zur Überprüfung der numerisch ermittelten Ergebnisse werden Messungen zur Eigenfrequenz mit
verschiedenen Hohlkugelstrukturen durchgeführt. Verwendet werden plattenförmige Strukturen
mit quadratischer und rechteckiger Grundform, deren Eigenschwingungen mittels Modalanalyse
bestimmt werden. Die gemessenen Abmaße und die Dichten sind in Tabelle 4.4 zusammengefasst.
Zusätzlich können die Verbindungsart zwischen den Hohlkugeln und deren mittlere Durchmesser
entnommen werden.

4.3.1 Versuchsdurchführung

Die Messung der Eigenfrequenzen erfolgt mit dem in Kapitel 3 beschriebenen Messaufbau mit
dem Auswerteprogram Test.Lab®. Das Prüfobjekt wird hier mit einem Impulshammer zu Schwin-
gungen angeregt und mit einem Festlaser werden die transversalen Wege bzw. Geschwindigkeiten
und Beschleunigungen aufgezeichnet. Unter Berücksichtigung des Eingangs- und Ausgangspek-
trums lassen sich die Übertragungsfunktion von einem Anregungspunkt zum Messpunkt und
hieraus wiederum die Eigenfrequenzen berechnen. Durch eine geeignete Auflösung der Anre-
gungspunkte können über die Zuordnung zum Messpunkt auch die Schwingformen angegeben
werden. Somit können die einzelnen Eigenfrequenzen den einzelnen Eigenschwingformen zuge-
ordnet werden.
Zur Überprüfung der Unabhängigkeit der Messergebnisse vom Versuchsaufbau und der Messung
von Eigenschwingungen ohne Lagereinfluss (frei-frei) werden drei Untersuchungen anhand einer
homogenen Platte aus Vollmaterial (Stahlplatte) durchgeführt. Zum einem ist die Lagerung auf
verschiedene Weisen (Schaum und Gummiseile) realisiert worden. Zum anderen sind die La-
gerungspositionen variiert worden. Und als Letztes wurden die Position des Festlasers und die
Anregungspunkte mit Test.Lab® optimiert. Die ersten beiden Untersuchungen zeigen, dass sowohl
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Tabelle 4.4: Proben zur Schwingungsanalyse.

Messplatten

Proben Nr. Breite
[mm]

Länge
[mm]

Höhe
[mm]

Dichte[
kg
m3

] äußerer
Kugel-

durchmess-
ser
[mm]

Verbind-
ungsart

HKS 86 330 330 77 440 1,6 versintert

HKS 87 332 335 74 450 1,6 versintert

HKS 104 292 329 46 810 3,0 versintert

HKS 105 331 331 84 610 1,6 versintert

HKS 106 328 244 42 820 3,0 versintert

HKS 111 330 330 83 770 2,6 versintert

HKS 112 337 337 86 740 2,6 versintert

HKS 113 335 334 85 760 2,6 versintert

HKS-K 100 110 300 30 450 3,0 verklebt

HKS-K 121 292 400 74 590 3,0 verklebt

HKS-K 122 302 400 74 360 3,0 verklebt

HKS-K 123 318 400 74 400 3,0 verklebt

HKS-L 202 130 390 25 500 4,5 verlötet

verschiedene Lagerungsarten als auch die Lageposition einen so geringen Einfluss haben, dass sie
in den Messungen kaum erkennbar sind. Die Verteilung der Anschlagstellen des Impulshammers
und die Messstelle des Festlasers sind derart festgelegt, dass sie sich möglichst mit keinem
Bewegungsknoten der ersten vier Eigenformen decken. In Tabelle 4.5 sind die Messergebnisse
für die aufgeführten Hohlkugelstrukturplatten aufgelistet. Beispielhaft zeigt die Abb. 4.34 die
ersten zwei mit Hilfe des Auswerteprogramms visualisierten Eigenformen mit den entsprechenden
Eigenfrequenzen für die Probe HKS 106.

4.3.2 Bestimmung der Materialkennwerte

Die mit Hilfe der experimentellen Modalanalyse gemessenen Ergebnisse werden zur Bestimmung
der Materialkennwerte verwendet. Hierzu wird angenommen, dass das gemessene Objekt homo-
gene bzw. isotrope Materialeigenschaften besitzt. Zur Ermittlung der Materialparameter wird eine
Least-Square Optimierung der Kennwerte durchgeführt, wobei die Zielfunktion fz aus der Summe
der quadratischen Abweichungen aller nEF Eigenfrequenzen besteht und minimiert wird:

fz =
nEF

∑
i=1

(
1− fi,Theorie (E�,ν�)

fi,Messung

)2

→min. (4.5)
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Tabelle 4.5: Gemessene Eigenfrequenzen mit der Vibrationsanalyse.

Gemessene Eigenfrequenzen

Proben Nr. 1. Eigenfrequenz
[Hz]

2. Eigenfrequenz
[Hz]

3. Eigenfrequenz
[Hz]

4. Eigenfrequenz
[Hz]

HKS 86 480 718 804 1110

HKS 87 350 525 576 824

HKS 104 470 660 870 1100

HKS 105 747 1040 1070 1600

HKS 106 590 650 1150 1300

HKS 111 783 1120 1670 2460

HKS 112 748 1040 1070 1570

HKS 113 742 1030 1060 1570

HKS-K 100 523 838 1360 1700

HKS-K 122 500 520 880 1040

HKS-K 123 160 190 290 360

HKS-L 202 260 560 740 1160

f3 = 1150 Hz

(a)

f4 = 1300 Hz

(b)

Abbildung 4.34: Probe HKS 106: a) Dritte und b) vierte Eigenform und Eigenfrequenz.

Zur Bestimmung der theoretischen Eigenfrequenzen fi,Theorie werden einerseits die Finite Elemen-
te Methode und andererseits die PB2-RITZ-Methode nach Liew et al. [132] genutzt. Der PB2-
Ritz Algorithmus wird in Maple® implementiert. Hierbei stehen auch Optimierungsroutinen zur
Minimierung der Zielfunktion fz zur Verfügung. Die Zielfunktion ist abhängig von den geometri-
schen Abmaßen der Platten und deren Materialkennwerten, wobei nur die Elastizitätskennwerte
E� und ν� als variable Größen angesehen werden. Die gemessene Dichte und die geometrischen
Abmaßen werden konstant und somit nicht als Variationsgrößen betrachtet. Eine ausführliche
Beschreibunng des Algorithmus kann dem Anhang entnommen werden. Die Berechnungen auf
Basis der Finite-Elemente-Methode werden mit der Software ANSYS® durchgeführt, die auch
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einen integrierten Optimierungsalgorithmus beinhaltet. Beide Methoden sind Näherungsverfahren,
die auf der schwachen Form der Kontinuumsmechanik beruhen. Eine rein analytische Beschrei-
bung einer völlig frei gelagerten Platte (FFFF) gibt es bis dato nicht. Tabelle 4.6 zeigt die mit
der PB2-RITZ-Methode (Polynomgrad von 10) bestmöglich angepassten Materialkennwerte an
die Eigenschwingungen bzw. Eigenfrequenzen der Hohlkugelplatten. Die mit Hilfe der Finiten-

Tabelle 4.6: Approximierte Materialparameter: MINDLINsche Plattentheorie.

Approximierte Materialparameter mit Hilfe der MINDLINschen Plattentheorie
(PB2-RITZ-Methode).

Berechnete Materialparameter

Proben Nr. Elastizitätsmodul E�

[MPa]
Querkontraktion ν�

[ ]
Dichte

[
kg
m3

]
(gemessen)

HKS 86 640 0,19 440

HKS 87 381 0,14 450

HKS 104 2090 0,19 810

HKS 105 1500 -0,03 610

HKS 106 1980 -0,12 820

HKS 111 2090 0,00 770

HKS 112 1890 0,04 740

HKS 113 1900 0,03 760

HKS-K 100 1120 0,17 450

HSS-K 122 515 -0,19 360

HSS-K 123 790 -0,3 400

HSS-L 202 1285 -0,11 500

Elemente-Methode ermittelten Werte können der Tabelle 4.7 entnommen werden. Es zeigen sich
nur geringe Abweichungen.

4.3.3 Vergleich

Um die isotropen Materialparameter, gewonnen aus der Modalanalyse, im Bereich der zellularen
Metalle einordnen zu können, sollen diese mit den Ergebnissen von Gibson [74] verglichen
werden. Gibson fasste viele publizierte Werte zusammen und ordnete sie nach offen- bzw. ge-
schlossenporigen Metallschäumen. Hierbei ergeben sich zwei charakteristische Verläufe für offen-
und geschlosssenporige Strukturen, die in Abb. 4.35 skizziert sind. Im Diagramm wird das relative
Elastizitätsmodul über der relativen Dichte abgetragen. Der genaue Wert des Elastizätsmoduls für
die homogenisierte Wandstruktur ist unbekannt. Es wird ein Wert von Stahl ES = 200 GPa für
das Grundmaterial angenommen. Die vorhandenen Poren in den Wänden verursachen vermut-
lich, dass der homogenisierte Elastizitätsmodul der Wand geringer ausfällt. Es werden pauschal
25% abgezogen, was einen Wert von ES = 150 GPa entspricht. Diese zwei Werte stellen eine
obere bzw. untere Grenze dar. Bezieht man den relativen Elastizitätsmodul auf die obere Grenze,
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Tabelle 4.7: Approximierte Materialparameter mit Hilfe Finite-Element-Methode und homogeni-
sierter Volumenelemente

Berechnete Materialparameter

Proben Nr. Elastizitätsmodul E�

[MPa]
Querkontraktion ν�

[ ]
Dichte

[
kg
m3

]
(gemessen)

HKS 86 640 0,21 440

HKS 87 381 0,14 450

HKS 104 2090 0,19 610

HKS 105 1530 -0,025 610

HKS 106 2000 -0,10 820

HKS 111 1610 0,07 770

HKS 112 1910 0,048 740

HKS 113 1910 0,050 760

HKS-K 100 1110 0,13 450

HSS-K 122 500 -0,20 360

HSS-K 123 800 -0,28 400

HSS-L 202 1280 -0,09 500
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Abbildung 4.35: Gemessener relativer Elastizitätsmodul bei einem Elastizitätsmodul des Grund-
materials von 200 GPa für geklebte, gelötete und gesinterte Proben.

ergeben sich die abgebildeten Werte in Abb. 4.35. Erzeugt man eine Regressionsgerade in der
logarithmischen Auftragung für die gesinterten Proben, zeigt sich ein fast identischer Verlauf
wie bei den offenporigen Strukturen, was einer ähnlichen Steifigkeit entspricht. Da der tatsäch-
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Abbildung 4.36: Gemessener realativer Elastizitätsmodul bei einem Elastizitätsmodul des Grund-
materials von 150 GPa für geklebte, gelötete und gesinterte Proben.

liche homogenisierte Elastizitätsmodul vorrausichtlich geringer ist als der von Stahl, wird die
Steifigkeit der Hohlkugelstruktur höher sein als bei den von Gibson behandelten, offenporigen
Schäumen. Wird der fiktive Extremwert des Elastizitätsmoduls ES = 150 GPa eingesetzt, zeigt
sich der Verlauf gemäß Abb. 4.36. Hier ordnen sich die Hohlkugelstrukturen zwischen den offen-
und geschlossenporigen ein, wobei sie näher an den offenporigen Strukturen liegen. Die Werte
für den relativen Elastizitätsmodul der gelöteten und verklebten Hohlkugelplatte sind ebenfalls
nahe der aufgezeigten Trendlinie, was einem ähnlichen Verhalten entspricht. So reihen sich die
Hohlkugelstrukturen gut in die Metallschäume ein.

4.4 Verifizierung

Um Hohlkugeln bzw. Kugelverbunde genauer charakterisieren zu können, werden für die Probe
HKS 86 und HKS 113 Mikroskopieaufnahmen gemacht. Zuerst werden die Proben aus dem
Rohling gesägt und vorgeschliffen. Im nächsten Schritt werden die Probenrohlinge in einem Zwei-
komponentenepoxidharz eingebettet. Diese Bettung stützt beim Schleifen die fragile Struktur der
Hohlkugel, so dass keine Verformungen der Kugeln stattfinden. Zuletzt werden die Proben an der
Untersuchungsfläche poliert und gereinigt. Nach der Probenpräparation werden die Probenkörper
mit dem licht- und rechnerunterstützten Mikroskop Zeiss Axioplan2 untersucht und mit dem
Programm Zeiss AxioVision 4.6.3 ausgewertet. Abbildung 4.37a zeigt die Bestimmung der Hohl-
kugelwanddicke und des Kugeldurchmesssers für die Probe HKS 113. Des Weiteren werden die
Kugelwände näher betrachtet. Es zeigten sich hierbei Porenbildung durch den Sinterprozess. Die
Porenbildung fällt für die beiden Proben unterschiedlich aus. So weist die Probe HKS 113 relative
kleine Poren mit einem relativen Porenvolumen von 5,3% auf (siehe Abb. 4.37b). Wiederum zeigt
sich in Abb. 4.37c eine relativ große Porenbildung im Verhältnis zur Wanddicke, allerdings entsteht
ein ähnliches relatives Porenvolumen von 4,8%.
In Veyhl et al. [214] wurden für HKS 113 und andere Proben das Grundmaterial als 316L (1.4404)
bestimmt. Für dieses Material wird ein Elastizitätsmodul von ca. 190 - 200 GPa angegebenen
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(a) (b) (c)

Abbildung 4.37: Mikrsokopieaufnahmen: a) Vermessung einer Kugel von HKS 113, b) Porenvo-
lumenbestimmung in HKS 113 und c) Porenbestimmung in HKS 105.

[155]. Durch die Poren wird der tatsächlich homogenisierte Elastizitätsmodul ES des Grundwerk-
stoffes geringer ausfallen. Hier wird ein fiktiver Abschlag bis zu 25% angenommen. Die Dichte des
Grundwerkstoffes beträgt 7980 kg

m3 [155]. Bei ungefähr 5% Porenvolumen ergibt sich eine Dichte

ρS von ca. 7600 kg
m3 . Zusätzlich wurden für die Probe HKS 113 in Veyhl et al. [214] mehrere

Hohlkugeln vermessen. Aus den ermittelten Werten ergibt sich ein mittleres Verhältnis von Hohl-
kugelwanddicke zu Kugeldurchmesser von t

D = 0.25 und ein mittlerer Sinterstellenwinkel φ von
14,1°. Für die Probe HKS 105 werden in eigenen Untersuchungen Werte von t

D = 0.22 und φ von
15,2° ermittelt. Aus den zuvor beschriebenen Untersuchungen werden mittlere Packungsdichten
PD = 0,56 und PD = 0,57 für die Proben HKS 105 und HKS 113 bestimmt.
Aus den Schwingungsuntersuchungen erhält man den Wert des homogenisierten Elastizitätsmo-
duls E� und der Querkontraktionszahl ν� der Hohlkugelstrukturen (siehe Tabelle 4.6 und Tabelle
4.7). Abbildung 4.38 zeigt den Verlauf des relativen Elastizitätsmoduls für die KP-Anordnung
für verschiedene Sinterstellenwinkel von 5° bis 20° über dem Verhältnis von Wanddicke zu
Kugeldurchmesser und relativer Dichte. Die Marker stellen die ermittelten Werte für die Proben
HKS 105 und HKS 113 dar. Es zeigt sich, dass die Werte für den relativen Elastizitätsmodul für die
beiden Proben höher sind als die 15° Kurve, somit die Struktur steifer ist als die KP-Anordnung mit
Packungsdichte von PD = 52% und mit einem Sinterstellenwinkel von 15%. Im Gegensatz dazu
lässt sich aus Abb. 4.39 erkennen, dass der Bereich zwischen unterer und oberer Grenze für den
relativen, homogenisierten Elastizitätsmodul deutlich unterhalb der 15° für die KRZ-Anordnung
liegt. Dies begründet sich durch die Packungsdichte der KRZ-Anordnung von ca. PD = 68%
und die Proben, die im Bereich zwischen 56% bis 57% liegen und damit wesentlich geringere
Packungsdichten vorweisen. Vergleicht man des Weiteren die ermittelten homogenisierten Elastizi-
tätsmodulwerte aus der Schwingungsuntersuchung mit den Elastizitätsmodulverläufen der zufällig
angeordneten Hohlkugelmodelle (RVE55 bis RVE69) in den Abb. 4.40 und Abb. 4.41, so ist zu
erkennen, dass die Grenzwerte der beiden Proben bzw. der Bereich zwischen den beiden Proben,
zwischen den Modellen RVE55 und RVE62 mit Packungsdichten von 55% und 66% liegen. Somit
kongruieren die Ergebnisse der Modelle sehr gut mit den gemessenen Elastizitätsmodulwerten.
Eine weitere gute Übereinstimmung zeigen die Querkontraktionsverläufe ν�

12 in Abb. 4.42 mit den
ermittelten Querkontraktionswerten ν� für die Proben HKS 105 und HKS 113. Die Werte liegen
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Abbildung 4.38: KP-Anordnung mit unterschiedlichen Sinterstellenwinkeln; homogenisierter
Elastizitätsmodul E� über relative Wanddicke t/D und relative Dichte ρ�/ρS mit Werten für die
Proben HKS 105 und HKS 113.
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Abbildung 4.39: KRZ-Anordnung mit unterschiedlichen Sinterstellenwinkeln; homogenisiertes
Elastizitätsmodul E� über relative Wanddicke t/D und relative Dichte ρ�/ρS mit Werten für die
Proben HKS 105 und HKS 113.
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Abbildung 4.40: Verschiedene RVE-Anordnungen mit einem Sinterstellenwinkel von ca. 15%;
homogenisierter Elastizitätsmodul E� über relative Wanddicke t/D mit Werten für die Proben HKS
105 und HKS 113.
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Abbildung 4.41: Verschiedene RVE-Anordnungen mit Sinterstellenwinkel von ca. 15%; homoge-
nisierter Elastizitätsmodul E� über relative Dichte ρ�/ρS mit Werten für die Proben HKS 105 und
HKS 113.
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Abbildung 4.42: Querkontraktionszahl für verschiedene RVE-Anordnungen mit Sinterstellenwin-
kel von ca. 15% a) über relative Wanddicke t/D und b) relative Dichte ρ�/ρS mit Werten für die
Proben HKS 105 und HKS 113.

nahe bei RVE55 bzw. teilweise zwischen RVE55 und RVE62. Schlussendlich ergibt sich eine
sehr gute Übereinstimmung zwischen simulierten und gemessenen Werten des homogenisierten
Elastizitätsmoduls und der Querkontraktionszahl.

4.5 Akustik

In diesem Abschnitt werden die Ergebnisse aus theoretischen Absorbermodellen und der experi-
mentellen Messung vorgestellt und verglichen. In dieser Arbeit wurden zwei verschiedene Typen
von Hohlkugelstrukturen mit variierender Probendicke im Bereich von 500 bis 3500 Hz gemessen.
Die Abb. 4.43 zeigt die Probenserie HKS 113. Bei den Proben handelt es sich um versinterte
Stahlhohlkugeln mit einem mittleren Kugeldurchmesser von 1,6 mm bzw. 2,6 mm.

4.5.1 Zwei-Mikrophon-Methode

Abbildung 4.44 zeigt den Absorptionskoeffizient der Proben HKS 86 und HKS 113. Für beide Pro-
bentypen wird eine Approximation nach dem JOHNSON-CHAMPOUX-ALLARD-Absorbermodell

Abbildung 4.43: Hohlkugelstrukturproben des Typs HKS 113, verschiedene Dicken von 10 mm
bis 60 mm.
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Tabelle 4.8: Angepasste JOHNSON-CHAMPOUX-ALLARD-Parameter an die Messdaten

Absorberkennwerte

Parameter HKS 86 HKS 113

φ : Porosität 0,84 0,37
(gemessen) (0,6) (0,4)

Ξ: Strömungswiderstand
[

Ns
m2

]
17600 13500

α∞: Strukturformfaktor 3,25 2,2

cv: Formfaktor der Röhre, viskose Effekte 1,7 0,16

ct: Formfaktor der Röhre, thermische Effekte 2,0 2,7

durchgeführt. In Abb. 4.44a wird der Effekt der Probendicke deutlich sichtbar. Nimmt die Proben-
dicke zu, wird das erste Maxima des Absorptionskoeffizients bei niedrigerer Frequenz erreicht. Das
erste Maximum wird erreicht, wenn ein Viertel der Wellenlänge λ

4 der Probendicke d entspricht.
Vergleicht man die beiden Probentypen mit der Dicke d = 60 mm, wird deutlich, dass Probe
HKS 86 über f = 500 Hz ein breitbandiges Absorptionsverhalten mit kleinen frequenzabhängigen
Schwankungen besitzt. Der Absorptionskoeffizient liegt immer höher als 0,7. Die Probe HKS 113
erreicht ihr erstes Maximum bei rund 800 Hz - jedoch im Vergleich zur Probe HKS 113 mit einem
großen Schwankungsanteil und einer Abnahme des Absorptionskoeffizienten bis zu α = 0,4.
Der Parameter Dichte φ wird sowohl experimentell als auch mit Hilfe des Absorbermodells
nach Johnson, Champoux und Allard bestimmt. Aus experimentellen Untersuchungen wird für
die Probe HKS 113 eine Dichte von φ = 0,4 bestimmt. Dieser Wert wird in der Modellbildung
nach Johnson, Champoux und Allard bestätigt. Experimentell ergibt sich für die Probe HKS 113
eine Dichte von φ = 0,6 und φ = 0,84 für die JOHNSON-CHAMPOUX-ALLARD-Anpassung. Die
große Abweichung lässt sich durch die Messung mit Wasser erklären, dass durch die Oberflä-
chenspannung nicht in jede Mikropore eindringen konnte. Aus diesem Grund können diese Werte
nur zur groben Orientierung herangezogen werden. In der Tabelle 4.8 sind die angepassten JCA-
Modellkennwerte aufgeführt. Die Parameter wurden durch eine mehrdimensionale, nichtlineare
Minimierung (fminsearch) durchgeführt, die in MatLab®verfügbar ist. Mit dieser Optimierungs-
methode kann kein globales Minimum gefunden werden. Die Berechnung wird daher mehrmals
von verschiedenen Ausgangspunkten gestartet. Dabei endeten die Optimierungsdurchläufe immer
beim gleichen Satz von JCA-Absorberkennwerten. Es ist deswegen von einer singulären Lösung
des Parametersatzes auszugehen. Abbildung 4.45 soll die Diskrepanz zwischen den gemessenen
und den theoretisch ermittelten Werten erklären. Innerhalb der Kugelwände können deutliche
Poren auftauchen. Während die Probe HKS 86 eine mehr offenporöse Wandstruktur vorweist,
gleicht die Wandstruktur der Probe HKS 113 eher einer geschlossenporigen Struktur. In Abb.
4.45a lassen sich deutliche Mikrokanäle zwischen dem Inneren und dem Äußeren der Hohlkugeln
erkennen. Diese Effekte berücksichtigt das theoretische Modell nach Johnson, Champoux und
Allard nicht.

4.5.2 Vier-Mikrophon-Methode

Die Koeffizienten der Absorption α , Reflektion r und Transmission t können für die Proben HKS
113 und HKS 86 in der Abb. 4.46 abgelesen werden. Die Dicke der Hohlkugelproben beträgt
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Abbildung 4.44: Absorptionskoeffizient für verschiedene Probendicken mit 20 mm, 40 mm und 60
mm, Messwerte (gestrichelte Linie) und JCA Theorie (Volllinie).

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Ergebnisse 111

(a) HKS 86, mittlere Kugelwanddicke 29 μm (b) HKS 113, mittlere Kugelwanddicke 76 μm

Abbildung 4.45: Mikroaufnahmen von Kugelwänden.

Tabelle 4.9: Angepasste JOHNSON-CHAMPOUX-ALLARD-Parameter an die Messdaten für Poly-
merschaum und Fasermaterial

Absorberkennwerte für polymere Schäume

Parameter Hartschaum Fasermaterial

φ : Porosität 1,03 0,81

Ξ: Strömungswiderstand
[

Ns
m2

]
423 10289

α∞: Strukturformfaktor 1,51 1,08

cv: Formfaktor der Röhre, viskose Effekte 4,46 0,04

ct: Formfaktor der Röhre, thermische Effekte 2,45 3,77

30 mm. Durch die unterschiedliche experimentelle Anordnung gegenüber der Zwei-Mikrophon-
Methode, zeigt sich in Abb. 4.44 (kein schallharter Abschluss hinter der Messprobe) ein anderer
Verlauf für die Absorption α . Weitere charakterisierenden Größen für die HKS Probe 86, wie cha-
rakteristische Impedanz und komplexe Wellenzahl, werden im Anhang C.3 vorgestellt. Aus dem
Ergebnis wird die vorausgesagte Unabhängigkeit der Probendicke ersichtlich. Die Parameter für
das JOHNSON-CHAMPOUX-ALLARD-Modell sind Tabelle 4.8 zuentnehmen. Aus den Diagram-
men wird erkennbar, dass eine gute Übereinstimmung mit der JOHNSON-CHAMPOUX-ALLARD-
Theorie erreicht wurde. Eine gute Übereinstimmung wird mit den angepassten Parametern zum
JOHNSON-CHAMPOUX-ALLARD-Modell aus der Tabelle 4.9 erzielt. Weitere Absorberkennwerte
von zwei alternativen Absorbermaterialen sind dem Anhang C.3 zu entnehmen.
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Abbildung 4.46: Absorptions- α , Reflektions- r und Transmissionskoeffizient für die Proben HKS
86 (Volllinie) und HKS 113 (gestrichelte Linie).
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5 Schlussbetrachtung

Im ersten Teil dieses Kapitels werden die Untersuchungsergebnisse zusammengefasst. Im An-
schluss werden weitere Einsatzmöglichkeiten dieser Modellbildung diskutiert und weiterführende
Untersuchungsmöglickeiten im Ausblick präsentiert.

5.1 Zusammenfassung

Ziel dieser Arbeit ist eine umfangreiche Charakterisierung mechanischer und akustischer Eigen-
schaften metallischer Hohlkugelstrukturen (HKS). Dieser relativ junge zellulare Werkstoff kenn-
zeichnet sich durch seine besondere Zellmorphologie aus. Im Gegensatz zu bisher bekannten
Metallschäumen weist der Strukturaufbau mit Hohlkugeln geringere Abweichungen in der Zellgrö-
ße und -anordnung auf. Ausgehend von geringeren Unregelmäßigkeiten in ihrem Strukturaufbau
und ihrer hohen Reproduzierbarkeit werden die Eigenschaften der Hohlkugelstrukturen oftmals
als isotrop angenommen. Die meisten bisherigen analytischen und numerischen Betrachtungen
beschränkten sich auf die ideale Hohlkugelanordnung, während sich der Großteil der experimen-
tellen Untersuchungen mit real-zufälligen Anordnungen beschäftigt. Aus dieser Diskrepanz heraus
ergibt sich die Motivation dieser Arbeit. Ein Schwerpunkt liegt in der Analyse des isotropen
bzw. anisotropen mechanischen Verhaltens unter dem Einfluss unregelmäßiger bzw. beliebiger
Kugelanordnung. Einen weiteren Kernpunkt dieser Arbeit stellt das akustische Verhalten in Bezug
auf Absorption- und Transmissionverhalten dar.
Zur Charakterisierung von realen Hohlkugelstrukturen wurde die zerstörungsfreie Untersuchungs-
methode der Computertomografie verwendet. Während die bisherigen Untersuchungen mit dieser
Technologie zur Erzeugung von rein numerischen Simulationsmodellen stattfanden, nutzt man
diese erstmalig, um Hohlkugelpackungen mit Hilfe der aus der räumlichen Statistik bekannten
Kenngrößen zu beschreiben. Zur Erkennung von Hohlkugeln wurde hierfür ein Algorithmus
entwickelt, der Kugeldurchmesser und -position bestimmt. Die Vorgehensweise in der Arbeit ist
detailliert veranschaulicht.
Zusätzlich wurden verschiedene Algorithmen zur Kugelpackungsgenerierung untersucht und mit-
einander verglichen. Als effizienter und für hohe Packungsdichten geeigneter Kugelpackungsge-
nerator kam als einziger der Forced-Biased-Algorithmus (FBA) in Betracht. Mit diesem lassen
sich translatorisch-periodische Kugelpackungen in beliebiger Anzahl erzeugen. Die mit dem FBA
erzeugten Packungen konnten so mit den aus der Computertomografie gewonnenen Hohlkugelpa-
ckungen verglichen und auf ihre Aussagekräftigkeit hin geprüft werden.
Mit den Kugelpackungen wurde fortführend ein vollparametrisches Hohlkugelstrukturmodell auf-
gebaut. Zu den zufälligen Hohlkugelmodellen, die ein repräsentatives Volumenelement (RVE)
darstellen, wurden des Weiteren vier verschiedene Elementarzellenmodelle auf Basis von aus
der Physik bekannten Packungen (KP, KRZ, KFZ und HDP) erstellt. Insgesamt wurden vier
Elementarzellenmodelle und vier zufällig erzeugte RVE-Modelle mit einer Packungsdichte von
57% bis 69% genauer auf ihre Elastizitätswerte untersucht. Diese Arbeit konzentrierte sich auf
versinterte metallische Hohlkugelstrukturen.
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Zur Bestimmung der elastischen Materialkennwerte von Hohlkugelstrukturen wurde in dieser
Arbeit die Homogenisierungstheorie nach Hill genutzt. Um die Energieäquivalenz aus dieser
Theorie zu erfüllen, ergeben sich drei verschiedene Möglichkeiten zur Lagerung der Ränder. Zum
einen sind das die kinematisch uniforme Randbedingung (KURB) und die statisch uniforme Rand-
bedingung (SURB), zum anderen die periodischen Randbedingung (PRB). Aus vorhergehenden
Untersuchungen hat sich gezeigt, dass die PRB den realen Effektivwerten am nächsten kommt.
Zuerst wurde ein virtueller, eindimensionaler Zug- bzw. Druckversuch mit PRB für die Modelle
unter der Variation der Wandstärke und der Sinterstelle (Durchmesser) veranlasst. Hierbei zeigte
sich, dass mit steigender Packungsdichte der (relative) Elastizitätsmodul ebenfalls zunimmt. Ge-
mäß den gleichen Packungsdichten von HDP und KFZ erwartete man betragsmäßig identische
Elastizitätswerte. Es ergaben sich jedoch kleine Differenzen, die im Nachhinein durch die Rich-
tungsabhängigkeit erklärt werden können.
Ausgehend von dem vermeintlichen Widerspruch wurde das mehrachsige Verhalten untersucht.
Aus bestimmten Lastfallannahmen lässt sich mit sechs Lastfällen der Steifigkeits- bzw. Nachgie-
bigkeitstensor für die drei Lagerungsmöglichkeiten (KURB, SURB und PRB) bestimmen. Diese
Tensoren beinhalten das gesamte Materialverhalten und können mit aus der Kristallphysik bekann-
ten Größen beschrieben werden. Zudem wurde eine grafische Darstellung des Tensors in Bezug
auf die richtungsabhängigen Materialkennwerte vorgestellt. Für einen ideal isotropen Werkstoff
ergibt sich beispielsweise für den Elastizitätsmodul eine Kugel, die einen richtungsunabhängigen
Wert beschreibt.
Für die Elementarzellenmodelle (mit PRB) ergab sich ein kubisches Materialverhalten. Je nach
Modell stellten sich die maximalen Elastizitätsmodulwerte in die Achsen- oder in die Raumdiago-
nalenrichtung ein. Für RVE-Modelle ergibt sich ein völlig triklines Verhalten, wobei mit steigender
Packungsdichte eine Annäherung an das kubische Materialverhalten stattfindet. So war bei einer
69% Packungsdichte ein fast perfektes kubisches Symmetrieverhalten festzustellen. Die Variation
der Kugelgeometrie in Bezug auf Wandstärke oder Sinterstellendurchmesser hatte nahezu keinen
Einfluss auf das Materialverhalten. Dies zeigt sich deutlich an dem parallel- (offset-) förmigen
Schnittverlauf der Elastizitätsmodulkörper.
Um die Anisotropie bzw. Isotropie nicht nur qualitativ, sondern auch quantitativ zu bewerten,
wurde hierfür ein Maß gesucht. Für das kubisches Materialverhalten der Elementarzellenmodelle
bietet sich der Anisotropiefaktor nach Zener [227] an. Jedoch gestaltet sich das Verhalten der RVE-
Modelle als triklin. Hierfür eignet sich der allgemeingültige Anisotropiefaktor nach Ledbetter
und Migliori [126]. Bei der Auswertung zeigte sich das KFZ-Modell als am ehesten isotrop,
hingegen präsentierten sich KP- und KRZ-Modelle stark anisotrop. Alle RVE-Modelle lagen näher
am idealen Isotropiewert (Eins) als das KP- und das KRZ-Modell. Es war keine Korrelation
zwischen Anisotropie und Packungsdichte bzw. Koordinationszahl festzustellen. Zur Ermittlung
des allgemeingültigen Anisotropiefaktors galt es, die transversale Körperschallgeschwindigkeiten
zu bestimmen. Hieraus lässt sich richtungsabhängige Ausbreitungsgeschwindigkeit in der Struktur
abbilden. Dies zeigt Anhang C.4.
Um die Ergebnisse auf Plausibilität zu prüfen, wurde für die Elementarzellen und für zwei RVE-
Modelle der Steifigkeits- bzw. Nachgiebigkeitstensor mit kinematisch uniformen und statisch uni-
formen Randbedingungen untersucht. Die Randbedingungen beschreiben zwei Extremalschranken
(VOIGT- und REUSS-Schranke). Demnach muss der Elastizitätsmodulkörper bzw. -verlauf zwi-
schen den Schranken liegen. Dies konnte für alle Modelle bestätigt werden. Hierbei zeigt sich, dass
das KFZ-Modell mit SURB ein ideales isotropes Verhalten hat. Die Untersuchungen bestätigen
die Arbeiten von Grenestedt [80]. Schlussendlich weist nur dieses Modell mit den besonderen
Randbedingungen ein ideal isotropes Verhalten auf.
Um die Aussagekräftigkeit der Modelle zu unterstreichen, wurde eine experimentelle Verifizierung
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veranlasst. Aus zwei Probenserien wurden die Effektivwerte ermittelt und hierzu die experimen-
telle Modalanalyse genutzt. Aus den gewonnenen Eigenfrequenzen bzw. -formen konnten mit
Hilfe der Plattentheorie die homogenisierten Werte für den Elastizitätsmodul und die Querkon-
traktionszahl bestimmt werden. Es zeigte sich eine sehr gute Übereinstimmung. Somit liefert die
vorgeschlagene Vorgehensweise bzw. Simulationskette gute Ergebnisse.
Das akustische Verhalten ist ein weiterer Untersuchungsaspekt dieser Arbeit. Bei der Messung mit
dem KUNDTschen Rohr wurde das akustische Absorptionsvermögen von zwei verschiedene HKS-
Probenreihen näher untersucht. Die Reihen unterschieden sich in ihrer Kugelgröße und Wanddicke,
die sich bei einer Reihe als offenporös erwies. Die experimentellen Untersuchungen wurden in
einem Frequenzbereich von 500 Hz bis 4 kHz durchgeführt. Zur Messung standen zwei verschie-
dene Verfahren zur Verfügung. Zum einen ein KUNDTsches Rohr mit schallhartem Abschluss
(Zwei-Mikrofon-Methode) und zum anderen ein Rohr mit offenem bzw. schallweichem Abschluss
(Vier-Mikrofon-Methode). Mit der letzteren lassen sich neben dem Absorptionsverhalten auch
Reflektions- und Transmissionskoeffizienten bestimmen.
Zusätzlich wurden in der Arbeit halb-phänomenologische Modelle zur Beschreibung der Absorpti-
onsmechanismen vorgestellt. Als effektives und hinreichend genaues Absorbermodell erwies sich
das JOHNSON-CHAMPOUX-ALLARD-Modell (JCA). Die aus der JCA-Modellapproximierung be-
rechneten Werte wurden bestätigt. So zeigten bei diesem Absorbermodell die frequenzabhängigen
Verläufe der Impedanz bzw. die Wellenzahl gute Übereinstimmungen mit den Messungen. Im
Gegensatz zu offenporigen Schäumen zeigen sich bei HKS deutliche Minima und Maxima im
frequenzabhängigen Absorptionsverlauf. So erreicht das Absorptionsvermögen bei bestimmten
Frequenzen nahezu 100%. Mit dieser Eigenschaft kann HKS als akustischer Filter genutzt werden.

5.2 Modellerweiterungen und neue Einsatzgebiete

Die vorgestellte Vorgehensweise bzw. Modellbildung kann erweitert und somit neue Einsatzge-
biete erschlossen werden. In dieser Arbeit wurden zufällig erzeugte Kugelpackungen zur Modell-
bildung genutzt. Die beschriebene Erzeugung von parametrischen Volumenmodellen lässt eben-
falls zu, rekonstruierte, aus der Computertomografie gewonnene Packungen als Ausgangsdaten
zu nutzen. Mit dieser Vorgehensweise lassen sich somit parametrische Modelle auf Basis von
realen Hohlkugelpackungen realisieren und auf ihr Elastizitätsverhalten untersuchen. Diese realen
Strukturen weisen zu den bisher untersuchten Modellen keine translatorische Periodizität auf. Die
Untersuchungen beschränken sich somit auf SURB und KURB.
Zusätzlich lässt sich aus Modellen, unter Berücksichtigung einer Spannungshypothese, die Fließ-
grenze bestimmen. Ein weiteres Novum wäre die numerische Untersuchung von zufällig ange-
ordneten geklebten oder verlöteten Hohlkugelstrukturen. Abbildung 5.1a zeigt ein parametrisches
Volumenmodell für diesen Fall. Während in realen Strukturen fast ausschließlich gleich große
Hohlkugelkörper verwendet werden, könnte man mit dem Force-Biased-Algorithmus bidisperse
(siehe Abb. 5.1b) oder polydisperse Hohlkugelmodelle analysieren.
Als Weiteres lassen sich Hohlkugeln in einer Matrix, beispielsweise Epoxidharz, einbetten. Ein
mögliches Modell dafür veranschaulicht Abb. 5.1c. Alle vorgestellten Volumenmodelle dieser Ar-
beit (Abb. 5.1a - 5.1c) können für weitere physikalisch-technische Untersuchungen, wie beispiels-
weise für elektrische oder thermische Leitfähigkeit, genutzt werden. Zudem kann, wie in Abb. 5.1d
gezeigt, zu allen Modellen das invertierte Volumen bestimmt werden, das sich zur Berechnung der
Durchströmung anbietet. Hieraus können Parameter für die halb-phänomenologische Modelle zur
Beschreibung der Absorptionsmechanismen ermittelt werden.
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(a) (b) (c) (d)

Abbildung 5.1: Mögliche Erweiterung des RVE-Modells a) geklebtes, b) bidisperse, c) inverses
und d) syntaktisches Hohlkugelmodell.

5.3 Ausblick

Die Untersuchungen in dieser Arbeit basieren auf Volumenmodellen mit maximal 30 ganzen
Hohlkugeln in einem RVE. Die zur Verfügung stehende Rechenleistung beschränkte eine Auswei-
tung auf mehr als die erwähnte Hohlkugelanzahl in einem RVE. Für die Zukunft lassen sich mit
steigender Rechenleistung RVEs mit deutlich mehr Hohlkugeln analysieren und damit den Ansatz
der asymptotischen Homogenisierung verfolgen. Hiermit kann man höhere vertrauenswürdige
Aussagen gewinnen [109, 123, 163, 205]. Mit zunehmender Recheneffizienz und -kapazität lassen
die Untersuchungen zudem auf die stochastische Homogenisierung ausweiten. Bei dieser Art der
Homogenisierung werden die effektiven Materialeigenschaften nicht nur durch die Kugelanzahl
pro Volumenelement (Größe des Volumenelements) bestimmt, sondern auch durch die Anzahl der
verwendeten Modellrealisierungen.
Im Bereich der Vorhersage des akustischen Absorptionsverhaltens von zufälligen und geordneten
Hohlkugelpackungen mit ihren Geometrieparametern wurden erste numerische Betrachtungen
realisiert [99]. Hierbei kann ebenfalls auf die vorgestellte Möglichkeit zur Erstellung von zufälligen
Hohlkugelpackungen zurückgegriffen werden.
Nachdem in dieser Arbeit gezeigt wurde, dass die vorgeschlagene Modellierungsart bzw. Vor-
gehensweise für versinterte metallische Hohlkugelstrukturen mit zufälliger Kugelanordnung gute
Ergebnisse liefert, sollte der verwendete Simulationsprozess auch auf weitere Hohlkugelverbunde,
wie geklebte, gelötete und eingebettete Strukturen, angewendet werden. Die Arbeit mit ihren
vorgestellten Methoden bietet eine Basis für weiterführende Analysen. Mit Modellverfeinerungen
und -erweiterung können neue Untersuchungsaspekte gelegt werden.
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A Theoretische Grundlagen

A.1 Mechanische Grundlagen

A.1.1 Bezugssysteme, Verschiebungen und Verzerrungen

Die Grundvoraussetzung in der Kontinuumsmechanik ist, dass alle relevanten Größen auf einem
sogenannten „Kontinuum “ definiert sind, also einer offenen Teilmenge des Raumes R3. Die offene
Menge variiert in der Regel zeitlich. Mit Kinematik bezeichnet man die Beschreibung solcher
zeitlich veränderlicher Gebiete oder Körper, ohne Berücksichtigung der einwirkenden Kräfte, die
diese Veränderungen hervorrufen. Ein Körper B ist eine zusammenhängende, kompakte Menge
materieller Punkte, die sich durch ihre materiellen Randpunkte, d. h. durch ihre Oberfläche ∂B,
abgrenzt. Die Bewegungen materieller Körper werden durch die Bewegung ihrer materiellen
Punkte beschrieben. Dabei ist es notwendig, die materiellen Punkte zu identifizieren. Dazu bildet
man die materiellen Punkte auf Raumpunkte des EUKLIDschen Raumes R

3 ab und definiert
einen raumfesten Bezugspunkt 0. So ist die Lage eines materiellen Punkts durch Positions- oder
Ortsvektor x zu jedem beliebigen Zeitpunkt beschreibbar. Eine Unterscheidung der einzelnen
materiellen Punkte von B erreicht man durch Zuweisung einer kennzeichnenden Marke für jeden
materiellen Punkt. Hinzu definiert man, dass für eine ausgewählte Zeit t= t0 ein materieller Punkt
den Positionsvektor x(t0) ≡ a hat. Diese Zuordnung des Postionsvektors als Marke für einen
materiellen Punkt wird oftmals auch als Referenzkonfiguration genannt. Folgende Annahmen
können kurz zusammengefasst werden:

• Der Punkt x(a, t0) = a wird durch seine Position zur Referenzzeit t= t0 beschrieben.

• Die Abbildung (a, t) �→ x(a, t) ist stetig differenzierbar.

• Für jedes t≥ t0 ist B � a �→ x(a, t) ∈ x(B, t).

• Die JACOBI- Determinante, auch Funktionaldeterminante genannt, ist J (a, t)= det
[
∂xi
∂a j

]
> 0

für alle t ≥ t0, a ∈ B. Dies bedeutet eine eindeutige Zuordnung und keine Selbstdurchdrin-
gung des Körpers B.

Zur Beschreibung der Bewegung eines Kontinuums gibt es mehrere Methoden, wobei Truesdell
[211] hierfür vier Methoden unterscheidet. Vielfach werden jedoch nur zwei Möglichkeiten auf-
geführt, die auch hinter den Bezeichnungen x und a stehen:

• die LAGRANGEsche (körperbezogene) Darstellung a: Es wird ein bestimmter materieller
Punkt betrachtet und dessen Bewegung verfolgt.

• die EULERsche Darstellung x: Es wird ein fester Punkt im Raum betrachtet, an dem Punkt
zu verschiedenen Zeitpunkten in der Regel verschiedene materielle Punkte vorzufinden sind.
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Führt man wie in Abb. A.1 ein kartesisches Koordinationsystem mit den Basisvektoren ei und
einem Ursprung 0 ein, erhält man für die Bewegungsgleichung des materiellen Punktes mit der
Marke a:

x = xiei, a = aiei, x(a, t0) = x0 ≡ a,

x = x(a, t) und a = a(x, t) .
(A.1)

So kann die Verformung von B zu einem Zeitpunkt t durch das Zustandsfeld x : (a, t) �→ x(a, t)
oder durch das Verschiebungsfeld:

u : (a, t) �→ u(a, t) = x(a, t)−a (A.2)

erfasst werden. Zur weiteren Beschreibung lässt sich der räumliche Deformationsgradient als ein

a

u

x

e1

e2

e3
x1,a1

x2,a2

x3,a3

B0

B

∂B (t)

∂B0 = B (t0)

dx

da

P(t)

P0

0

Bahn von P

undeformierter Ausgangszustand
(Referenzkonfiguration)

aktueller Ausgangszustand
(Momentankonfiguration)

Abbildung A.1: Transformation von Linienelementen eines Körpers im R
3.

lokales Maß definieren:

F(a, t) = [∇ax(a, t)]T =
∂xi

∂a j
eie j oder F(a, t) = [gradx(a, t)]T (A.3)

Der Index T kennzeichnet dabei den transponierten Vektor. Mit dem Gradient lässt sich eine
Umrechnungsvorschrift zwischen materiellen und räumlichen Linien-, Flächen- und Volumen-
elementen wiedergeben. Die durch den Deformationsgradienten F gegebene Abbildung von da
auf dx wird gesehen als Reihenschaltung einer reinen Streckung und einer reinen Drehung bzw.
umgekehrt, wobei die Zerlegung eindeutig ist. So gilt:

F = R ·U = V ·R, (A.4)

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Theoretische Grundlagen 119

wobei der Drehtensor R orthogonal ist und dies bedeutet:

RT ·R = R ·RT = I, det
[
Ri j
]
= 1. (A.5)

Diese Darstellung wird auch als polare Zerlegung bezeichnet. Der im Deformationsgradient ent-
haltene Drehanteil ist für die Beschreibung des lokalen Deformationsverhaltens im Allgemeinen
von geringem Interesse, da er eine reine Starrkörperdrehung kennzeichnet. Eine Reihe von ver-
schiedenen Verzerrungsmaßen lassen sich mit Hilfe des sogenannten Rechtsstrecktensors U und
Linksstrecktensors V darstellen:

U =
(
FT ·F) 1

2 ,

V =
(
F ·FT) 1

2 .
(A.6)

So erhält man mit Hilfe der polaren Zerlegung den rechten und linken CAUCHY-GREEN-
Deformationstensor bezüglich der Referenz- und Momentankonfiguration:

C = U2 =FT ·F,
B = U2 =F ·FT.

(A.7)

Diese beiden Tensoren sind symmetrisch und entsprechen im unbelasteten Falle der Identität I. In
der ingenieurtechnischen Betrachtung ist es wünschenswert, dass der unbelastete Fall durch eine
Null ausgedrückt wird. Hierfür werden der materielle GREEN-LAGRANGEsche Verzerrungtensor

E =
1
2
(C− I) (A.8)

und der räumliche EULER-ALMANSI-Verzerrungstensor

εεε=
1
2

(
I−B−1) (A.9)

eingeführt.
Des Weiteren wird der materielle Verschiebungsgradient

H = ∇xu(a)T (A.10)

dargelegt. Dadurch lässt sich unter Voraussetzung kleiner Verzerrungen eine geometrische Li-
nearisierung durchführen. Die Bedingung für kleine Verzerrungen ist hierfür, dass die Norm des
Verschiebungsgradienten δ = ‖H‖ viel kleiner als Eins und die Norm des Verschiebungsvektors
‖u‖ viel kleiner als eine charakteristische Länge des Körpers L0 ist.
Der Deformationstensor kann über F = I+H beschrieben werden. Daraus ergibt sich:

C = I+H+HT +HT ·H,

B = I+H+HT +H ·HT.
(A.11)

Geht man von kleinen Verzerrungen aus, ergeben sich geringe Abweichungen des Deformations-
gradienten F mit der Indentität I. Für diesen Fall lassen sich Verzerrungsmaße vereinfachen, man
spricht von geometrischer Linearisierung. So erhält man den rechten und linken CAUCHY-GREEN-
Deformationstensor in linearisierter Form:

Clin = Blin = I+H+HT. (A.12)
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Der räumliche bzw. materielle Verzerrungstensor wird im Folgenden nur als Verzerrungstensor
bezeichnet.

εεε = Elin = εεεlin =
1
2

(
H+HT)= 1

2

(
∇xu(a)+(∇xu(a))T

)
(A.13)

oder in Indexschreibweise:

εi jeie j =
1
2

(
ui, j +u j,i

)
eie j. (A.14)

Zudem kann aus dem Produkt in der Gl. (A.7) eine Symmetrie des Verzerrungstensors abgeleitet
werden:

εεε = εεεT oder

εi jeie j = εi je jei = ε jieie j.
(A.15)

Neben den frei gewählten Koordinatensystemen, die durch die Transformationsbeziehung geändert
werden können, gibt es ein besonderes Koordinaten- bzw. Achsensystem, das Hauptachsensystem.
Es kennzeichnet sich dadurch aus, dass an den Schnitten senkrecht zu den Achsen nur Normal-
dehnungen und keine Schubverformungen auftreten. So existiert ein Hauptachsensystem, in dem
die Gleitungen verschwinden und nur die Hauptdehnungen ε1, ε2 und ε3 auftreten. Daneben gibt
es die drei Invarianten des Verzerrungstensors Iε, IIε und IIIε. Die erste charakterisiert dabei die
Volumendehnung

Iε = εV = εkk = ε1 + ε2 + ε3 = Spur(εεε) (A.16)

Dabei wird der Verzerrungstensor entsprechend

εεε =
εV
3

I+ e bzw. εi j =
εV
3
δi j + ei j. (A.17)

zerlegt. Der erste Summand beschreibt die Volumenänderung, während durch den Deviator e eine
Gestaltänderung ausgedrückt wird. Auf die weiteren zwei Invarianten wird in dieser Arbeit nicht
eingegangen. Man kann jedoch in [3, 81] darüber nachlesen.

A.1.2 Geschwindigkeits- und Beschleunigungsfelder

Neben dem Deformationsgradiententensor F, der die lokalen Deformationen von Linien- , Flächen-
und Volumenelementen charakterisiert, spielt in der Kontinuumsmechanik auch der Geschwindig-
keitsgradiententensor L eine wichtige Rolle, besonders in der Stömungsmechanik. Eine ausführli-
che Betrachtung kann aus [4] entnommen werden. Mit Hilfe des Geschwindigkeitsgradiententen-
sors können die Änderungsgeschwindigkeiten materieller Linien-, Flächen- und Volumenelemente
analysiert werden. Zu Beginn führt man die Geschwindigkeit v eines materiellen Punktes a durch
folgende Gleichung

v(a, t) =
D
Dt

x(a, t)≡ ẋ(a, t) =
∂
∂ t

x(a, t) (A.18)

ein. Dabei stellt der Operator „ ˙(...)“ die zeitliche Ableitung und D
Dt die substantielle Ableitung

in LAGRANGEscher Betrachtung dar. Das Einsetzen von a(x) führt auf das Geschwindigkeitsfeld
v(x, t) in der EULERschen Betrachtung zurück. Das Beschleunigungsfeld eines materiellen Punk-
tes ergibt sich analog:

b(a, t) =
∂
∂ t

v(a, t) . (A.19)
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Das Beschleunigungsfeld b(t) kann wieder durch Einsetzen von a(x) ermittelt werden, es kann
aber auch durch die substantielle Ableitung des Geschwindigkeitsfeldes v(x, t) bestimmt werden.
Die substantielle Ableitung setzt sich nach der Kettenregel der Differentialrechnung zusammen

b(x, t) =
∂v
∂ t

+v ·grad v. (A.20)

Nun lässt sich der räumliche Geschwindigkeitsgradiententensor L folgendermaßen beschreiben:

L = [grad(v(x, t))]T oder Li j = vi, j. (A.21)

Dabei lässt sich der Tensor in einen symmetrischen und antisymmetrischen Anteil aufteilen:

L =
1
2

(
L+LT)+ 1

2

(
L−LT) . (A.22)

Der symmetrische Anteil wird Streck- oder auch Deformationsgeschwindigkeitstensor

D =
1
2

(
vi, j + v j,i

)
eie j (A.23)

genannt. Mit Hilfe der Koordinaten vom Deformationsgeschwindigkeitstensor können den Än-
derungsraten für die Längen und die Winkel materieller Linienelemente zugeordnet werden. Der
antisymmetrische Anteil des Geschwindikeitsgradiententensors heißt Drehgeschwindigkeitstensor
oder Spintensor

W =
1
2

(
vi, j− v j,i

)
eie j. (A.24)

Die Koordinaten des Drehgeschwindigkeitstensors können den Drehgeschwindigkeiten materieller
Linienelemente zugewiesen werden.

A.1.3 Belastungen und Spannungen

Die für die Deformation eines Körpers verantwortlichen äußeren Kräfte, auch eingeprägte Kräfte
genannt, können in Körper- und Oberflächenkräfte unterteilt werden. Körperkräfte können auf die
Massen- oder Volumeneinheit bezogen werden. Für die Massenkraft fmdm ist z.B. fm der Vektor
der Massenkraftdichte:

fm =
[

f m
x f m

y f m
z
]T

=
[

f m
1 f m

2 f m
3

]T
, (A.25)

wobei m die Masse und F die Körperkraft sind. Die Indizes x,y,z bzw. 1,2,3 deuten auf die
Vektorkomponenten in Achsenrichtung hin. Bezieht man die Körperkraft auf das Volumen V
ergeben sich für die Volumenkraft fVdV und Volumenkraftdichte:

fV =
[

f V
x f V

y f V
z
]T

=
[

f V
1 f V

2 f V
3

]T
. (A.26)

ρ ist die Massendichte, oft nur kurz als Dichte benannt. Oberflächenkräfte wirken immer von
außen auf eine Fläche A und werden daher auch als eingeprägte Kontaktkräfte bezeichnet. Die
Oberflächenkraft fOdA ist auf die Flächeneinheit bezogen, wobei fO hierbei den Oberflächenspan-
nungsvektor darstellt:

fO =
[

f O
x f O

y f O
z
]T

=
[

f O
1 f O

2 f O
3

]T
. (A.27)

Im vorherigen Kapitel wurde eine werkstoffunabhängige Kenngröße zur Beschreibung der Ver-
zerrung vorgelegt. In diesem Kapitel führt man eine weitere werkstoffunabhängige Kenngröße im
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Gebiet der Kinetik ein und leitet die grundlegenden Gleichungen der Dynamik her. Hierzu wird
einer der Oberflächenspannung ähnelnden Größe aus dem Grenzprozess zu einer infinitesimalen
Fläche

σ = lim
�A→0

�F
�A

=
dF
dA

(A.28)

festgelegt, die allgemein als Spannung bezeichnet wird. Im allgemeinen Fall wird die Kraft durch
einen Vektor beschrieben. Dabei wirkt sie auf eine infinitesimale betrachtete Fläche, die durch
ihren Normalenvektor n charakterisiert werden kann. Es wird ersichtlich, dass die Spannung von
zwei Richtungen abhängig ist. Somit dient ein Tensor zweiter Stufe, der Spannungstensor,

σσσ = σi jeie j (A.29)

zur Beschreibung des aktuellen Spannungszustandes. Aus diesem Spannungstensor lässt sich mit
Hilfe des Normalenvektors der betrachteten Flächen der Spannungsvektor t berechnen

t = n ·σσσ bzw. tiei = σ jin jei. (A.30)

Diese Bedingung wird auch Satz von Cauchy genannt. Entsprechend der Argumentation mit ma-
teriellen und räumlichen Koordinaten wird der PIOLA-KIRCHOFF- und der CAUCHY- Spannungs-
tensor unterschieden. Für kleine Deformationen können die Tensoren als gleich angenommen
werden.
Vielfach ist es nützlich den Spannungstensor additiv zu zerlegen:

σσσ = σmI+ s bzw. σi jeie j = σmδi jeie j + si jeie j. (A.31)

mit der allseitig gleichen anliegenden Spannung σm = 1
3σi jδi j. Aufgrund der Analogie zum

Spannungszustand in ruhenden Flüssigkeiten wird dieser Anteil auch als hydrostatischer Span-
nungszustand bezeichnet. Den Tensor s bezeichnet man als Spannungsdeviator.

A.1.4 Gleichgewichtsbedingungen und Bewegungsgleichungen

Des Weiteren wird eine der wichtigsten Betrachtungsweisen in der Mechanik erklärt. Gleichge-
wichtsbedingungen, auch Bilanzgleichungen genannt, besagen, dass die zeitliche Änderung einer
Zustandsgröße gleich dem positiven oder negativen Zuwachs innerhalb des Gebiets und dem Zu-
bzw. Abfluss über die Gebietsgrenzen ist.
Befindet sich ein Körper in Ruhelage, somit im statischen Gleichgewicht, müssen die angreifenden
Oberflächenkräfte fOdA = tdA und Volumenkräfte fVdV im Kräfte- und Momentengleichgewicht
sein: ∫

V

fVdV +
∫
A

tdA = 0, (A.32)

∫
V

(
x× fV)dV +

∫
A

(x× t)dA = 0. (A.33)

Mit der Gl. (A.30) und durch die Anwendung des Divergenztheorems, auch GAUSSscher Integral-
satz genannt [29], erhält man:∫

A

tdA =
∫
A

n ·σσσdA =
∫
V

∇ ·σσσdV =
∫
V

divσσσdV. (A.34)

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Theoretische Grundlagen 123

Damit vereinfacht sich die Gl. (A.32) zu∫
V

(
fV +∇ ·σσσ)dV = 0. (A.35)

Somit kann das integrale Gleichgewicht eines beliebigen Kontinuums in Ruhelage beschrieben
werden. Lässt sich durch hinreichende Glattheit und Stetigkeit des Integranden das Integral be-
rechnen, erhält man die differentielle Gleichgewichtsbedingung:

∇ ·σσσ + fV = 0 bzw. divσσσ + fV = 0 (A.36)

Erweitert man das Gleichgewicht durch die Trägkeitskräfte −ẍdm = −ẍρdV nach Newton und
d’Alembert ergibt sich ∫

V

(
fV +∇ ·σσσ −ρ ẍ

)
dV = 0. (A.37)

Nach den gleichen Überlegungen, wie beim statischen Gleichgewicht, erhält man das erste
Cauchy-Euler’sche Bewegungsgesetz:

fV +div(σσσ) = ρ ẍ = ρ v̇ = ρb bzw.
(

f V
i +σ ji, j

)
ei = ρ ẍiei. (A.38)

Hingegen folgt aus dem Momentengleichgewicht mit dem Divergenztheorem∫
V

(
x× fV)dV −

∫
V

[∇ · (σσσ ×x)]dV = 0 (A.39)

und mathematischem Geschick [4] mit der Identität I für den statischen Fall des zweiten Cauchy-
Euler’schen Bewegungsgesetzes die Symmetrie des Spannungstensors

σσσ =σσσT bzw. σi jeie j = σi je jei = σ jieie j. (A.40)

A.1.5 Bilanzgleichungen

Als typische Bilanzgleichungen können Massenbilanz, Impulsbilanz, Drehimpulsbilanz, Energie-
bilanz sowie der zweite Hauptsatz der Thermodynamik genannt werden. Wobei die zwei letztge-
nannten in der hier angeführten Mechanik weniger von Interesse sind.

A.1.5.1 Massenbilanz

Die Masse eines Körpers ist durch das Volumenintegral über das Dichtefeld bestimmt

m =
∫
V

ρ (x, t)dV =
∫
V0

ρ0 (a, t)dV0. (A.41)

Durch die Gleichheit der Integrale wird die globale Massenerhaltung ausgedrückt. Die Masse dm
eines materiellen Volumens dV ist zu jeder Zeit konstant. Es darf keine Massenänderung entstehen:

Dm
Dt

=
D
Dt

∫
V

ρ (x, t)dV =
∫
V

[
∂
∂ t
ρ (x, t)+div(ρ (x, t)v)

]
dV =

∂
∂ t

∫
V0

ρ0 (a, t)dV0 = 0. (A.42)
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A.1.5.2 Impulsbilanz

Der Impulsvektor kann wie folgt

p(x, t) =
∫
m

v(x, t)dm =
∫
V

v(x, t)ρ (x, t)dV =
∫
V0

v(x, t)ρ0 (x, t)dV0 (A.43)

berechnet werden. Die Impulsbilanz beschreibt, dass die zeitliche Änderung des Impuls gleich der
Summe aller von außen auf den Körper wirkenden Oberflächen- und Volumenkräfte ist. Diese
Impulsbilanz wird auch als erstes EULER-CAUCHY-Bewegungsgesetz bezeichnet. In globaler
Schreibweise lautet diese Bilanz

Dp
Dt

=
∫
A

t(x,n, t)dA+
∫
V

fm (x, t)ρ (x, t)dV =
∫
A

t(x,n, t)dA+
∫
V

fV (x, t)dV. (A.44)

Betrachtet man die Bilanz lokal, so erhält man

∇ ·σσσ +ρfm = divσσσ + fV = ρ
Dv
Dt

. (A.45)

A.1.5.3 Drehimpulsbilanz

Der Drehimpuls- oder Drallvektor bestimmt sich über:

IO (p, t) =
∫
V

x×ρ (x, t)v(x, t)dV. (A.46)

Die Drehimpulsbilanz besagt, dass die zeitliche Änderung des Gesamtdrehimpulses eines Körpers
IO (p, t) in Bezug auf einen Punkt O gleich dem Gesamtmoment aller außen auf den Körper wir-
kenden Oberflächen- und Volumenkräfte bezüglich des gleichen Punktes O ist. Aus der räumlichen
Betrachtung ergibt sich folgende Drehimpulsbilanz

DIO

Dt
=
∫
A

[x× t(x,n, t)]dA+
∫
V

[x×ρ (x, t) fm (x, t)]dV =
∫
V

[
grad(x×σσσ)+x× fV (x, t)

]
dV.

(A.47)
Bei der lokalen Betrachtungsweise gelangt man wieder zur Symmetrieaussage für den CAUCHY-
schen Spannungstensor σσσ =σσσT.

A.1.5.4 Mechanische Energiebilanz

Im Folgenden sind einige klassische Energieprinzipien für deformierbare Körper zusammenge-
fasst. Wirken auf einen deformierbaren Körper äußere Oberflächen- und Volumenkräfte wird
der Körper deformiert und somit Arbeit geleistet. Als Folge der geleisteten Arbeit nimmt dieser
Energie auf. Dabei teilt sich diese mechanische Energie W in zwei Energietypen auf. Zum einen
wird ein Teil für die Deformation als kinetische Energie K, also Bewegungsenergie, verwendet.
Der andere bzw. der verbleibende Teil der Energie aus der Differenz der Gesamtenergie und der
kinetischen Energie ist die innere Energie U , die bei Festkörpern der Verzerrungsenergie und bei
Fluiden der Energie entspricht, die eine viskose Dissipation während der Strömung ermöglicht.
Die kinetische und innere Energie lassen sich wie folgt bestimmen

K =
1
2

∫
V

v ·vρdV und U =
∫
V

uρdV, (A.48)
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wobei 1
2ρv ·v und ρu die spezifischen Energien oder Energiedichten und K+U die mechanische

Gesamtenergie des Körpers darstellen. Die Leistung der äußeren Kräfte lässt sich folgendermaßen

Pa =
∫
A

t ·vdA+
∫
V

ρfm ·vdV (A.49)

bestimmen. Der Energiesatz der Kontinuumsmechanik besagt, dass die Änderung der mechani-
schen Gesamtenergie eines Körpers den Energiefluss innerhalb des Körpers ausdrückt. Dies kann
alternativ in leistungsbezogener oder energetischer Form ausgedrückt werden:

D
Dt

(K+U) = Pa +Q,
D
Dt

∫
V

(
1
2

v ·v+u

)
ρdV =

∫
A

(t ·v)dA+
∫
V

(fm ·vρ)dV +Q
(A.50)

oder

(K+U)2− (K+U)1 =

t2∫
t1

(Pa +Q)dt, (A.51)

wobei Q den Energietransport im Körper darstellt, welcher nicht durch Pa erfasst wird (zum
Beispiel Wärmetransport, der hier nicht näher festgelegt wird).

A.1.5.5 Thermomechanische Energiebilanz

Die thermomechanische Energiebilanz wird auch als erster Hauptsatz der Thermodynamik be-
zeichnet. Zusätzlich zur mechanischen Energiebilanz wird der thermische Energietransport Q
ausführlich betrachtet. Die Geschwindigkeit des Wärmetransports setzt sich aus zwei Teilen
zusammen, der unmittelbaren Wärmezufuhr im Volumen infolge skalarer Wärmequellen Qr sowie
der Wärmezufuhr über die das Kontinuum umhüllende Fläche A

Q=
∫
V

ρQrdV −
∫
A

n ·hdA. (A.52)

Dabei ist h der Wärmestromvektor pro Flächeneinheit A. Das Vorzeichen des Flächenintegralterms
wurde so gewählt, dass ein positiver Wärmestromvektor eine Wärmezufuhr über die Oberfläche
bedeutet. Damit erhält man aus der Bilanz der Energie

(K+U)2− (K+U)1 =

t2∫
t1

(Pa +Q)dt oder K̇+ U̇ = Pa +Q (A.53)

durch Einsetzen der Ausdrücke K, U , Pa und Q:

D
Dt

∫
V

(
1
2

v ·v+u

)
ρdV =

∫
A

(t ·v)dA+
∫
V

(fm ·vρ)dV +
∫
V

ρQrdV −
∫
A

n ·hdA (A.54)

oder in lokaler Form
ρ u̇=σσσ · ·D−∇ ·h+ρQr. (A.55)

Während der erste Hauptsatz nur eine Aussage über den Erhalt der Gesamtenergie bei der Transfor-
mation von der einen in die andere Energieform gibt, liefert der zweite Haupsatz eine Angabe, wie
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reversibel beziehungsweise irreversibel eine Energietransformation ist. Dabei stellt die Entropie S
ein Maß dar, wie viel Energie irreversibel von einer nutzbaren in nichtnutzbare, dies bedeutet nicht
mehr in mechanische Arbeit umsetzbare Energie, transformiert wird. Die Entropie definiert sich
über

S =
∫
m

sdm =
∫
V

ρsdV, (A.56)

dabei ist s spezifische innere Entropie. Der zweite Hauptsatz der Thermodynamik in globaler Form
lautet

D
Dt

∫
V

ρsdV ≥
∫
V

ρ
Qr

T
dV −

∫
A

n ·h
T

dA =
∫
V

ρ
Qr

T
dV −

∫
V

(
∇ ·h

T
− h ·∇T

T 2

)
dV (A.57)

und in lokaler Form
ρT ṡ≥ ρQr−∇ ·h+h ·∇lnT. (A.58)

Durch Umstellen und Anwenden der Produktregel kann der Hauptsatz als dissipative Ungleichung

σσσ · ·D−ρDfE

Dt
−ρsDT

Dt
−h ·∇lnT ≥ 0 (A.59)

geschrieben werden, dabei stellt fE = f−Ts die HELMOLTZsche freie Energie dar. Des Weiteren
wird die spezifische Dissipationsfunktion

D=σσσ · ·D−ρ (ḟE + sṪ
)≥ 0 (A.60)

eingeführt, die ein Maß für die Energiedissipation im Kontinuum präsentiert. Unter Verwendung
dieser dissipativen Funktion D kann man auch den ersten Hauptsatz wiedergeben

ρT
Ds

Dt
=σσσ · ·D−ρ

(
DfE

Dt
+ s

DT
Dt

)
+(ρQr−∇ ·h) ,

ρT
Ds

Dt
=D+(ρQr−∇ ·h) .

(A.61)

A.1.6 Materialverhalten

Die Gleichungen zur Beschreibung des spezifischen Materialverhaltens werden im Allgemeinen
als Konstitutivgleichungen bezeichnet. Alternativ treten auch Begriffe wie Materialgleichungen,
Stoffgleichungen, physikalische Gleichungen oder Zustandsgleichungen auf. Konstitutivgleichun-
gen verbinden alle von den makroskopischen Kontinuumsverhalten beschreibenden phänomenolo-
gischen Größen. Solche Größen, die in der Physik auch Konstitutivgrößen genannt werden, wurden
zum Teil in den vorhergehenden Kapitel behandelt: Spannungen, Verzerrungen, Temperatur und
viele mehr. Die Beziehungen zwischen diesen Größen können unterschiedliche mathematische
Strukturen aufweisen, wie zum Beispiel algebraische Beziehungen (HOOKEsches Gesetz) oder
Differentialgleichung (NEWTONsches Fluid).
Die Anzahl der zu bestimmenden Konstitutivgleichungen hängt vom konkreten Kontinuumspro-
blem ab. Für den rein mechanischen Fall werden folgende Bilanzgleichungen eingeführt: die
Massenbilanz (eine skalare Gleichung), die Impulsgleichung (eine vektorielle Gleichung, dies
bedeutet bis zu drei skalare Gleichungen), die Drehimpulsbilanz (eine vektorielle Gleichung) und
die Energiebilanz (eine skalare Gleichung). In Summe entstehen im dreidimensionalen Fall acht
skalare Gleichungen zur Verfügung. Jedoch sind folgende vierzehn Größen zu bestimmen: die
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Dichte ρ (eine skalare Größe), die Geschwindigkeit v (ein Vektor bzw. drei skalare Koordinaten),
der Spannungstensor σσσ (ein Tensor zweiter Stufe, daraus folgen neun Koordinatengrößen) und
die innere Energie U . Um zur Lösung für das notwendige Lösungssystem zu gelangen, müssen
die Bilanzgleichungen durch sechs Konstitutivgleichungen ergänzt werden. Der Inhalt dieses
Abschnittes wurde aus den Quellen [4] und [190] zusammengefasst.

A.1.6.1 Linear-elastische Festkörper

Aus den Impulsbilanzgleichungen ergibt sich ein Gleichungssystem mit drei Gleichungen mit neun
unbekannten Größen (sechs Komponenten des symmetrischen Spannungstensors und drei aus den
Beschleunigungskomponenten). Um zu einer eindeutigen Lösung des Systems zu gelangen müssen
sechs weitere Gleichungen eingeführt werden, die nicht mehr aus den allgemeinen Bilanzglei-
chungen formuliert werden können. Dabei wird nun ersichtlich, dass die Materialunabhängigkeit
aufgegeben werden muss, da Systeme je nach Material unterschiedlich reagieren. Die Material-
gleichungen können mittels der Materialtheorie hergeleitet werden.
Das in dieser Arbeit verwendete linear-elastische Materialverhalten zeichnet sich durch vollstän-
dige Reversibilität aus. Es wird mit Hilfe des verallgemeinerten oder anisotropen HOOKEschen
Gesetzes beschrieben:

σσσ = C · ·εεε bzw. εεε = S · ·σσσ , (A.62)

wobei C den Steifigkeits- und S den Nachgiebigkeitstensor darstellt. Der Operator “··“ steht für
die zweifache Kontraktion zweier Tensoren. Dabei folgt offensichtlich, dass S= C

−1 ist und das

C=
∂σσσ
∂εεε

und S=
∂εεε
∂σσσ

. (A.63)

gilt. Die Energie, die bei der Deformation eines linear-elastischen Materials benötigt wird, muss
vollständig im Material gespeichert werden. Hierfür wird eine spezifische Größe, die sogenann-
te volumenbezogene Formänderungsenergie oder Formänderungsenergiedichte dWF (siehe Gl.
(A.48) und [149]), eingeführt und durch verschiedene Integrationswege

ρu= dWF =

εεε∫
0

σσσ · ·dεεε =
εεε∫

0

(C · ·εεε) · ·dεεε = 1
2
(C · ·εεε) · ·εεε = 1

2
σσσ · ·εεε (A.64)

bestimmt werden. Die spezifische komplementäre Energie berechnet sich hingegen zu

ρu∗ = dW ∗
F =

σσσ∫
0

εεε · ·dσσσ =

σσσ∫
0

(S · ·σσσ) · ·dσσσ =
1
2
(S · ·σσσ) · ·σσσ =

1
2
εεε · ·σσσ . (A.65)

Als Potenzialformulierung erhält man:

σσσ =
∂dWF

∂εεε
bzw. εεε =

∂dW ∗
F

∂σσσ
. (A.66)

Die Formänderungsenergiedichte dWF kann auch als volumenbezogenes elastisches Potenzial
betrachtet werden. Zudem lässt sich die Formänderungsenergiedichte in einen Energieanteil rei-
ner Volumenänderung und in einen Energieanteil reiner Gestaltänderung trennen [81]. Mit den
Beziehungen aus Gleichung (A.63) können der Steifigkeits- und Nachgiebigkeitstensor formuliert
werden:

C=
∂ 2dWF

∂εεε2 bzw. S=
∂ 2dW ∗

F

∂σσσ2 . (A.67)
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Im allgemeinen Fall wird der Steifigkeits- und Nachgiebigkeitstensor durch einen Tensor vierter
Stufe mit 81 unabhängigen Einträgen erfasst. Aufgrund der Vertauschbarkeit der Differentiation
(Satz von Schwarz [29]) in der Gleichung (A.67) ergibt sich eine Symmetrie der beiden Tensoren
( Ci jkl = Ckli j und Si jkl = Skli j). Zudem entstehen durch die Symmetrie von Spannungstensor σσσ
und Verzerrungstensor εεε weitere Symmetriebedingungen (Ci jkl = Cjikl bzw. Ci jkl = Ci jlk). Somit
reduzieren sich die Tensoren auf 36 (6x6) Einträge, wobei durch die Symmetrie nur 21 Größen
unabhängig beziehungsweise unbekannt sind.
Durch diese Verringerung der unbekannten Einträge lässt sich zum Beispiel das Materialverhalten
in der üblichen Schreibweise von Voigt [217] σσσ = Cεεε mit σσσ =

[
σ11 σ22 σ33 σ12 σ23 σ31

]T
und εεε =

[
ε11 ε22 ε33 2ε12 2ε23 2ε31

]T
überführen. Jedoch besitzt diese Schreibweise den

Nachteil, dass C als 6x6-Matrix nicht die gleichen Tensoreigenschaften aufweist, wie der vierstu-
fige Tensor C. Dieses Problem kann mit Hilfe der Schreibweise nach Fedorov [61], Covin und
Mehrabadi [40, 144], σihi =Ci jhi⊗h j · ·εkhk gelöst werden. Die Gleichung für die Koeffizienten-
einträge σi, εk und Ci j lässt sich in Matrixform folgendermaßen⎡

⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33√
2σ23√
2σ13√
2σ12

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133
√

2C1123
√

2C1113
√

2C1112

C2222 C2233
√

2C2223
√

2C2213
√

2C2212

C3333
√

2C3323
√

2C3313
√

2C3312
sym. 2C2323 2C2313 2C2312

2C1313 2C1312
2C1212

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33√
2ε23√
2ε13√
2ε12

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.68)

notieren. Diese Schreibweise hat im Vergleich zur üblichen VOIGTschen Notation den Vorteil, dass
die Tensoren hi einen sechsdimensionalen Raum aufspannen und normiert sind:

h1 = e1⊗ e1, h4 =

√
2

2
(e2⊗ e3 + e3⊗ e2) ,

h2 = e2⊗ e1, h5 =

√
2

2
(e1⊗ e3 + e3⊗ e1) ,

h3 = e3⊗ e1, h6 =

√
2

2
(e1⊗ e2 + e1⊗ e2) .

(A.69)

Dadurch können mit Hilfe der quadratischen Matrix die Invarianten, Eigenwerte und Eigentenso-
ren berechnet werden [25]. Der Tensor C beschreibt in sich dabei ein vollständig anisotropes und
damit auch triklines Materialverhalten.
Abhängig vom Material lässt sich durch das Nutzen weiterer Materialsymmetrien die Anzahl der
unbekannten Einträge reduzieren. Einen Überblick über die möglichen verschiedenen Material-
symmetrien, die Symmetrieebenen und die Anzahl der unbekannten Einträge bzw. Materialkon-
stanten soll die Tabelle A.1 geben. Alternativ kann diese Art der Materialcharakterisierung aus
[25, 33] oder [39] entnommen werden. Als die wichtigsten Symmetrien für diese Arbeit werden
die orthotrope, kubische und isotrope Symmetrie angesehen.

Unter Isotropie versteht man ein gleiches Materialverhalten in allen Raumrichtungen, dies bedeutet
ein rotationsinvariantes Verhalten. Dadurch steigt die Anzahl der Symmetrieebenen gegen unend-
lich, währenddessen sich die Zahl der unbekannten Materialkonstanten auf zwei reduziert. In der
Literatur findet man häufig Paare dieser Materialkonstanten:

• das Elastizitätsmodul E und die Querkontraktionszahl ν , die vor allem im Ingenieurbereich
Anwendung finden,
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Tabelle A.1: Übersicht über die acht Materialsymmetrien (nach [25, 33, 39, 190])

.

Art der Materialsymmetrien

triklin monoklin orthotrop trigonal tetragonal kubisch transveral isotrop
isotrop

Anzahl der Materialsymmetrieebenen

0 1 3 3 5 9 ∞+1 ∞3

Anzahl der unbekannten Matrixeinträge

21 13 9 6 6 3 5 2

Steifigkeitsmatrizen

⎡ ⎣C
11

C
12

C
13

C
14

C
15

C
16

C
22

C
23

C
24

C
25

C
26

C
33

C
34

C
35

C
36

C
44

C
45

C
46

sy
m
.

C
55

C
56

C
66

⎤ ⎦
⎡ ⎣C

11
C

12
C

13
C

14
0

0
C

22
C

23
C

24
0

0
C

33
C

34
0

0
C

44
0

0
sy

m
.

C
55

C
56

C
66

⎤ ⎦
⎡ ⎣C

11
C

12
C

13
0

0
0

C
22

C
23

0
0

0
C

33
0

0
0

C
44

0
0

sy
m
.

C
55

0 C
66

⎤ ⎦
⎡ ⎣C

11
C

12
C

13
C

14
0

0
C

11
C

13
−C

14
0

0
C

33
0

0
0

C
44

0
0

sy
m
.

C
44

C
14

C
11
−

C
12

⎤ ⎦
⎡ ⎣C

11
C

12
C

13
C

14
0

0
C

11
C

13
−C

14
0

0
C

33
0

0
0

C
44

0
0

sy
m
.

C
44

0 C
66

⎤ ⎦
⎡ ⎣C

11
C

12
C

12
0

0
0

C
11

C
12

0
0

0
C

11
0

0
0

C
44

0
0

sy
m
.

C
44

0 C
44

⎤ ⎦
⎡ ⎣C

11
C

12
C

13
0

0
0

C
11

C
13

0
0

0
C

33
0

0
0

C
44

0
0

sy
m
.

C
44

0
C

11
−

C
12

⎤ ⎦
⎡ ⎣C

11
C

12
C

12
0

0
0

C
11

C
12

0
0

0
C

11
0

0
0

C
11
−

C
12

0
0

sy
m
.

C
11
−

C
12

0
C

11
−

C
12

⎤ ⎦
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Tabelle A.2: Konvertierung der elastischen Konstanten des isotropen Fall.

Zugrunde liegendes Konstantenpaar

E,v K,ν G,ν K,G λ ,μ

K E
3(1−2ν) K 2G(1+ν)

3(1−2ν) K λ + 2
3μ

E E 3K (1−2ν) 2G(1+ν) 9KG
3K+G

μ(3λ+2μ)
λ+μ

ν ν ν ν 3K−2G
2(3K+G)

λ
2(λ+μ)

G = μ E
2(1+ν)

3K(1−2ν)
2(1+ν) G G μ

λ Eν
(1+ν)(1−2ν)

3Kν
2(1+ν)

2Gν
2(1−2ν) K− 2

3G λ

• die LAMÉ-Konstanten λ und μ , die vor allem für theoretische Betrachtungen genutzt wer-
den,

• das Kompressionsmodul K und das Schubmodul G, die im Materialverhalten einen hydro-
statischen und einen deviatorischen Anteil beschreiben oder

• eine beliebige Kombination der aufgeführten Konstanten.

Eine Umrechnung der einzelnen Kombinationen kann zum Beispiel in [3] gefunden werden. So
lässt sich mit der Gl. (A.31) und mit den LAMÉ-Konstanten folgende Spannungs-Dehnungs-
Beziehung aufstellen:

σσσ = λSpur(εεε)I+2μεεε. (A.70)

Eine kleine Übersicht über mögliche Kombinationen soll die Tabelle A.2 geben. Setzt man die
isotropen Materialkonstanten E und ν in die volumenbezogen Formänderungsenergien (A.64) und
(A.65) erhält man:

dWF =
E

2(1+ν)

[
εεε · ·εεε− ν

1−2ν
(Spur(εεε))2

]
bzw. dWFi j =

E
2(1+ν)

[
εi jεi j− ν

1−2ν
(εkk)

2
]
,

dW ∗
F =

1
2E

[
(1+ν)σσσ · ·σσσ −ν (Spur(σσσ))2

]
bzw. dW ∗

Fi j =
1

2E

[
(1+ν)σi jσi j−ν (σkk)

2
]
.

(A.71)

Mit den Bedingungen, dass die Formänderungsenergien stets ≥ 0 sein müssen und den Glei-
chungen (A.71) genügen, lässt sich erkennen, dass die Querkontraktionszahl ν dabei im Intervall
(−1;0,5) liegen muss.
Die obere Grenze der Querkontraktionszahl bezeichnet dabei den Punkt, an dem das Volumen
eines elastisch beanspruchten Körpers konstant bleibt oder oder das Volumen beginnt sich im
hydrostatischen Druckfall zu vergrößern. Eine natürliche untere Grenze für herkömmliche Werk-
stoffe stellt ν ≥ 0 dar, da sich ein Körper unterhalb dieser Grenze zum Beispiel im einachsigen
Druckversuch in den beiden unbelasteten Richtungen zusammenzieht. Bei Metallen liegt die
Querkontraktionszahl üblicherweise im Bereich von 0,25 bis 0,35 [13].
Im allgemeinen orthotropen Fall erhält man neun unabhängige Materialkonstanten, die sich durch
die drei Symmetrieebenen ergeben. In der Regel werden die Materialkonstanten E, ν und G
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des isotropen Falls genutzt, indem sie unabhängig für jede Raumrichtung angenommen werden.
Daraus ergibt sich zum Beispiel folgender Nachgiebigkeitstensor:

S=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12
E1

−ν13
E1

0 0 0
1

E2
−ν23

E2
0 0 0

1
E3

0 0 0
1

2G23
0 0

sym. 1
2G13

0
1

2G11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

hi⊗hi, (A.72)

wobei die Bedingungen der Hauptsymmetrie (ν12
E1

= ν21
E2

, ν22
E2

= ν32
E3

und ν31
E3

= ν13
E1

) bereits beinhaltet
sind [5].
Der kubische Symmetriefall befindet sich mit seinen drei Materialkonstanten und neun Symme-
trieebenen zwischen Orthotropie und Isotropie. Hierbei sind die Materialkonstanen im Gegensatz
zur Orthotropie in alle Raumrichtungen gleich (E = E1 = E2 = E3, ν = ν12 = ν13 = ν23 und
G = G12 = G13 = G23). Jedoch besteht keine Beziehung zwischen dem Schubmodul G und dem
Elastizitätsmodul E mit der Querkontraktionszahl ν .

A.1.6.2 Ideales Gas

Ein einfaches Beispiel für materialtheoretische beschriebene Konstitutivgleichungen repräsentiert
die idealen Gase. Als Ausgangspunkt wird die Zustandsgleichung für ideale Gase

pV = mGasRiT (A.73)

genutzt. Dabei ist mGas die Gasmasse, p der Druck, Ri die spezifische Gaskonstante, T die
Temperatur und V das Volumen. Die spezifische Gaskonstante hängt von der Molmasse M und
der allgemeinen Gaskonstante Ra ab:

Ri =
Ra

M
. (A.74)

Mit der Bestimmungsgleichung für die Dichte

ρ =
mGas

V
, (A.75)

erhält man für den Druck:

p =
ρRaT

M
. (A.76)

Aus der Zustandsgleichung kann folgender Spannungstensor analog zum ruhenden Spannungszu-
stand von linear viskosen Fluiden,

σσσ =−pI =−ρRaT
M

I (A.77)

für den hydrostatischen Spannungszustand abgeleitet werden.

A.1.6.3 Linear-viskose Fluide

Im Vergleich zu den Festkörpern können Fluide im Ruhezustand keine Schub- bzw. Scherspannun-
gen aufnehmen, d. h. der Spannungszustand ist im Ruhezustand durch den Kugeltensor gekenn-
zeichnet. Damit ergibt sich als Stoffgleichung für ideale Fluide folgende Beziehung:

σσσ =−pI oder σi j =−p(ρ,T )δi j, (A.78)
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wobei der Druck p als unabhängige mechanische Variable anzusehen ist, die mit der Dichte ρ und
der Temperatur T in einer thermischen Zustandsgleichung des Fluids zusammenhängen, wie zum
Beispiel für ein ideales Gas.
Im Falle einer Bewegung D �= 0 kann ein zähes Fluid viskose Spannungen aufnehmen, die durch
einen zusätzlichen Term σσσV zum Ausdruck kommen und vom Verzerrungsgeschwindigkeitstensor
D mit Di j =

(
vi, j + v j,i

)
/2 abhängen, so ergibt sich folgender Spannungszustand:

σσσ =−pI+σσσV. (A.79)

Der Term σσσV wird auch Extraspannungstensor oder viskoser Spannungstensor genannt. Bei Li-
nearität ist dieser Tensor durch eine lineare Transformation

σσσV = V(ρ,T ) · ·D (A.80)

oder
σV

i j =Vi jkl (ρ,T )Dkl (A.81)

gegeben, wobei V den Viskositätstensor vierter Stufe darstellt und die viskosen Eigenschaften
beinhaltet. Man kann auch ein viskoses Fluid als Stoff definieren, dessen Eigenschaften richtungs-
abhängig sind. Solche Fluide werden als einfach bezeichnet. Beschreibt der viskose Spannungs-
tensor ein homogenes isotropes Material ergibt sich folgende isotrope Tensorfunktion von D:

σσσV = β0I+β1D+β2D2 + · · · , (A.82)

wobei βi = βi (Inv(D)). Im Rahmen der physikalischen Linearisierung wird daraus eine lineare
Funktion

σσσV = β0I+β1D, (A.83)

wobei β0 = λV (I · ·D)I = λVSpur(D) = λVdiv(v)I und β1 = 2μV. So ergibt sich der Spanungs-
tensor eines zähen viskosen Fluids

σσσ =−pI+2μVD+λV (I · ·D)I =−pI+2μVD+λVSpur(D)I. (A.84)

Für ein inkompressibles Fluid erhält man folgenden Spanungstensor:

σσσ =−pI+2μVDD, (A.85)

dabei ist DD der Deviator von D.

A.1.7 Anfangs-Randwertproblem und HAMILTONsches Prinzip

Durch Einsetzen der Beschreibung des Materialverhaltens in die lokalen Bilanzgleichungen ge-
langt man zum vollständigen Anfangs-Randwertproblem in den Verschiebungen [220]. Daraus
ergeben sich die Feldgleichungen (partielle Differentialgleichungen)

ρfV +div(C · ·εεε) = ρ v̇ = ρü (A.86)

des schwingenden dreidimensionalen Festkörpers. Um zur Lösung des Anfangs-Randwertproblems
zu gelangen, bedarf es sowohl der Anfangsbedingungen für Verschiebungen zum Zeitpunk Null
u(t= 0) und der Geschwindigkeit zum Zeitpunk Null v(t= 0) als auch der Randbedingungen.
Dabei können drei Arten von Randbedingungen
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• für die Verschiebungen: u = u0 auf ∂Bu (Dirichlet, geometrisch oder wesentlich),

• für die Spannungen: t = t0 auf ∂Bt (Neumann, dynamisch, natürlich oder restlich) und

• gemischte aus Verschiebungen und Spannungen

auf den Rand des Körpers, ∂B = ∂Bu∩∂Bt unterschieden werden.
Eine weitere Herleitungsmöglichkeit der beschreibenden partiellen Differentialgleichungen stellen
die Prinzipien der analytischen Kontinuumsmechanik dar. Für die Herleitung der Bewegungsglei-
chungen eines Kontinuums kann das HAMILTONsche Prinzip genutzt werden. Es beruft sich auf
das Prinzip von LAGRANGE-D’ALEMBERT [220], welches in der Statik besser als Prinzip der
virtuellen Arbeit bekannt ist. Mit der kinetischen Energie K (A.48) und dem Potenzial Π, das sich
aus inneren und äußeren Potenzialen zusammensetzt, erhält man folgende Beziehung:

δ
t2∫

t1

L(u)dt+δ
t2∫

t1

Wδdt= δ
t2∫

t1

K (u)−Π(u)dt+δ
t2∫

t1

Wδdt= 0, (A.87)

wobeiL=K−Π die LAGRANGEsche Funktion, δ die Variation und Wδ die virtuelle Arbeit der po-
tenziallosen Kräfte bezeichnet. Dabei ist ersichtlich, dass die Variation, die sich aus der Differenz
zwischen der kinetischen und der potenziellen Energie der virtuellen Arbeit zusammensetzt, für
den Übergang eines elastomechanisch-dynamischen Systems von einem Zustand in einen anderen
im Zeitintervall [t1, t2] Null beträgt. Für ein konservatives elastomechanisch-dynamisches System
erhält man ein Extremalprinzip [5]:

δ
t2∫

t1

L(u)dt= δ
t2∫

t1

K (u)−Π(u)dt= 0 (A.88)

mit

K (u) =
1
2

∫
V

ρu̇ · u̇dV =
1
2

∫
V

ρv ·vdV (A.89)

und

Π(u) =
1
2

∫
V

σσσ ·εεε (u)dV − 1
2

∫
V

fV ·udV − 1
2

∫
A

fO ·udA. (A.90)

Folglich wird dieses allgemeine Prinzip auf plattenförmige Strukturen angewandt.

A.2 Plattenschwingungen

Platten stellen ebene Flächentragwerke dar, bei denen die Belastung senkrecht zur Mittelfläche
auftritt. Wird hingegen ein ebenes Flächentragwerk parallel zur Mittelfläche belastet, spricht man
von einer Scheibe. Plattentheorien beschreiben räumliche Spannungs- und Verzerrungszustände
durch Kenngrößen, die auf der Plattenmittelfläche definiert sind. In der Technischen Mechanik
wird für ausreichend dünne Platten (Verhältnis von Plattendicke h zu Kantenlänge l < 0,1) ge-
wöhnlich die klassische Kirchhoffsche Plattentheorie verwendet. Dieses Theoriemodell entspricht
einer schubstarrren Platte mit kleinen Durchbiegungen. Für dünne bis mäßig dicke Platten (h/l
< 0,2) findet die Mindlinsche Plattentheorie zumeist ihren Einsatz. Dieses Modell nach Mindlin
kommt einem Modell einer schubelastischen Platte mit kleiner Durchbiegung gleich und wird oft
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als Schubdeformationstheorie erster Ordnung bezeichnet bzw. klassifiziert. Viele reale Flächen-
tragwerke im Maschinenbau fallen in den Bereich der mäßig dicken Platten. Des Weiteren verliert
die einfache Biegetheorie bei höheren Frequenzen allmählich ihre Gültigkeit [41]. Aus diesem
Grund wird in dieser Arbeit die MINDLINsche Plattentheorie verwendet. Um die Unterschiede zu
verdeutlichen wird zu Beginn auf die schubstarre Platte eingegangen.

A.2.1 KIRCHHOFFsche Plattentheorie

Die sogenannte klassische Plattentheorie wurde im Jahre 1850 von Kirchhoff entwickelt [6]. Die
Anwendung dieser Theorie ist nur für hinreichend dünne Platten gültig. Zudem gelten folgende
Annahmen:

• Das Plattenmaterial ist isotrop und homogen. Es gilt das verallgemeinerte HOOKEsche
Gesetz.

• Die Plattenmittelfläche beschreibt bei der Biegeform eine neutrale Ebene. Für alle Punkte
der Plattenmittelfläche erfahren die Verformung u1 (x1,x2,0) = 0, u2 (x1,x2,0) = 0 und
u3 (x1,x2,0) �= 0. Die Durchbiegung w ist im Vergleich zur Plattendicke klein und die
Krümmungen der Biegeflächen dürfen linearisiert werden κ11 ≈ −w,11, κ22 ≈ −w,22 und
κ11 ≈ −w,12. κ11 und κ22 stellen die Krümmungen der Mittelflächen in den parallelen
Ebenen zur x1,x3- und x2,x3 -Ebene dar. Die Krümmung ist die Verwindung oder Drillung
der Mittelfläche.

• Alle Punkte auf einer Normalen zur unverformten Mittelfläche bleiben auch Punkte der Nor-
malen zur verformten Mittelfläche (Verallgemeinerung der BERNOULLI-Balken-Hypothese
auf Platten, auch zweite BERNOULLI-Hypothese oder KIRCHHOFFsche Normalenhypothese
genannt [6]).

• Die Punkte auf einer beliebigen Normalen zur Mittelfläche ändern bei der Verformung ihre
gegenseitige Abstände auf dieser Normalen nicht, d. h. die Platte wird in der Dickenrichtung
als dehnstarr betrachtet (erste BERNOULLI-Hypothese).

• Die Normalspannung σ33 wird als sehr klein gegenüber den anderen Normalspannungen σ11
und σ22 gesehen und folglich gilt σ33 ≈ 0 (statische Hypothese).

• Die Schubspannungen σ13 und σ23 müssen aus Gleichgewichtsbedingungen bei der Platte
einen von Null verschiedenen Wert annehmen. Angesichts der kinematischen Hypothese
ε13 = ε23 = 0 ist dies nur für einen Schubmodul G → ∞ möglich. Dies bedeutet eine
schubstarre Platte.

• die Normalspannung σ33 wird für das schubelastische Plattenmodell vernachlässigt

Die Abmessungen und Größen für die Verschiebungsgleichungen für ein herausgeschnittenes
differentielles Plattenelement im unverformten und verformten Zustand zeigt die Abb. A.2. Dabei
stellen ψ1 und ψ2 die Drehwinkel der Plattenquerschnitte um die x2- und x1-Achse dar. Hierbei
handelt es sich um sehr kleine Winkel und es gelten im Rahmen einer Theorie erster Ordnung
folgende Gleichungen:

cosψ1 ≈ cosψ2 ≈ 1, sinψ1 ≈ ψ1 ≈ tanψ1 ≈ w,1, sinψ2 ≈ ψ2 ≈ tanψ2 ≈ w,2. (A.91)
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ψ1 ≈ ∂w
∂x1 ψ2 ≈ ∂w
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verformete

Abbildung A.2: Kinematische Beziehungen am schubstarren Plattenelement nach [6].

Die kinematischen Hypothesen der schubstarren Platte führen zu den folgendenen Verschiebungs-
gleichungen:

u1 (x1,x2,x3) =−x3w,1 (x1,x2) ,

u2 (x1,x2,x3) =−x3w,2 (x1,x2) ,

u3 (x1,x2,x3) = w(x1,x2) .

(A.92)

Aus den Verzerrungs-Verschiebungsgleichungen

ε11 = u1,1 =−x3w,11,

ε22 = u2,2 =−x3w,22,

γ12 = 2ε12 = u1,2 +u2,1 =−2x3w,12,

γ21 = 2ε21 = u2,1 +u2,1 =−2x3w,21,

γ13 = 2ε13 = u1,3 +u3,1 = u1,3 +w,1,

γ23 = 2ε23 = u2,3 +u3,2 = u2,3 +w,2

(A.93)

wird erkenntlich, dass die Verzerrungen ε11, ε22 und γ12 = γ21 linear abhängig von x3 sind.
Dahingegen zeigen sich die Schubverformungen als von x3 unabhängige Größen. Aus der KIRCH-
HOFFschen Normalenhypothese erfolgt, dass die Schubverformungen bzw. -verzerrungen γ13 und
γ23 vernachlässigt werden können:

γ13 = 2ε13 = u1,3 +w,1 = 0→ u1,3 = w,1,

γ23 = 2ε23 = u1,2 +w,2 = 0→ u2,3 = w,2.
(A.94)

Begründet auf der ersten BERNOULLI-Hypothese ergibt sich, dass u1,3 und u2,3 über die Plattendi-
cke konstant sind. Zugleich können die Verdrehwinkel als Ableitung der Durchbiegungen ermittelt

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


136 Theoretische Grundlagen

werden (siehe Abb. A.2)

ψ1 ≈ u1,3 =−w,1,

ψ1 ≈ u2,3 =−w,2.
(A.95)

Aus den statischen und kinematischen Hypothesen für die KIRCHHOFFsche Platte geht hevor, dass
für die klassische Plattentheorie ein ebener Spannungszustand angenommen werden kann. Ein
Elastizitätsgesetz gibt es deshalb nur für die Spannungen σ11, σ22 und σ12. Die Schubspannun-
gen σ13 und σ13 werden allein aus den Gleichgewichstbedingungen ermittelt. Die Spannungen
σ33, σ13 und σ23 liefern keinen Anteil zur Formänderungsenergie einer schubstarren Platte. Die
Spannungen werden durch Integration über die Plattendicke h auf die Schnittlänge bezogenen
Schnittgrößen zusammengefasst. Als Ergebnis der Plattengrößen verbleiben Biegemomente, Tor-
sionsmomente und Querkräfte:

−h/2∫
−h/2

σmmx3dx3 =mmm (x1,x2) Biegemomente [Kraft],

−h/2∫
−h/2

σmnx3dx3 =mmn (x1,x2) Biegemomente [Kraft],

−h/2∫
−h/2

σm3dx3 =qm (x1,x2) Querkräfte [Kraft/Länge]

(A.96)

mit m = 1,2 und n = 1,2 und m �= n. Die Gleichgewichtsbedingungen für die Plattenschnittgrö-
ßen werden am unverformten differentiellen Plattenelement formuliert. Sie berücksichtigen das
Kräftegleichgewicht in x3-Richtung und die Momentengleichgewichte um die x1- und x2-Achse.
Vernachlässigt man die betragsmäßig kleineren Terme höherer Ordnung, erhält man zusammenge-
fasst die Gleichgewichtsbedingungen der Schnittgrößen an einem Plattenelement:

q1,1 +q2,2 +q = 0,

m11,1 +m21,2−q1 = 0,

m22,1 +m12,1−q2 = 0.

(A.97)

Die visuelle Darstellung der aufgeführten Schnittgrößen kann Abb. A.3 entnommen werden. Die
äußere Belastung ist durch äußere Kräfte q sowie durch äußere Momente m1 und m2 gekennzeich-
net. Die Größen q1 und q2 repräsentieren Querkräfte, m11 und m22 stellen Biegemomente dar. m12
bezeichnet das Drillmoment. Aus den Gln. (A.97) können die Querkräfte eliminiert werden, indem
man die beiden Momentengleichungen nachdifferenziert. Unter der Betrachtung von m12 = m21
erhält man:

m11,11 +m12,12 +m22,22 =−q. (A.98)

Es ergibt sich eine statisch unbestimmte Gleichung mit drei unbekannten Schnittmomenten m11,
m22 und m12. Den Zusammenhang zwischen Schnittgrößen und Verschiebung liefert das Werk-
stoffgesetz. Für die schubstarre Platte wird das verallgemeinerte HOOKEsche Materialgesetz für
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Abbildung A.3: Plattenschnittgrößen nach [6]: a) Kräfte und Momente und b) Spannungen.

ebene Spannungszustände zu Grunde gelegt

ε11 =
1
E
(σ11−νσ22)→ σ11 =

E
1−ν2 (ε11 +νε22) ,

ε22 =
1
E
(σ22−νσ11)→ σ11 =

E
1−ν2 (ε22 +νε11) ,

ε12 =
1+ν

E
σ12 → σ12 =

E
1+ν

ε12.

(A.99)

Substituiert man die Verzerrungen durch die Ableitung der Durchbiegung w(x1,x2), kann man
alle Spannungen durch eine Funktion w(x1,x2) beschreiben. Durch Einsetzen des von w(x1,x2)
abhängigen Materialgesetzes in die Gln. (A.96) ergeben sich die Materialgleichungen für die
Schnittmomente

m11 (x1,x2) =−DPl (w,11 +νw,22) ,

m22 (x1,x2) =−DPl (w,22 +νw,11) ,

m12 (x1,x2) =−DPl (1−nu)w,12,

(A.100)

mit der Biegesteifigkeit DPl =
Eh3

12(1−ν2)
. Sie wird oft auch als Plattensteifigkeit benannt.

Aufgrund der schubstarren Modellannahme verschwinden die Schubverzerrungen in Plattendi-
ckenrichtung und es existiert kein Elastizitätsgesetz für die Querkräfte. Sie werden allein aus
den Gleichgewichtsbedingungen (A.97) berechnet. Aus den Gln. (A.98) und (A.100) wird die
Gleichung zur Durchbiegung der Plattenmittelfläche für konstante Plattensteifigkeit DPl und Quer-
kontraktionszahl ν bestimmt

DPlΔΔw(x1,x2) = q. (A.101)

Bei dieser Durchbiegegleichung handelt es sich um eine partielle Differentialgleichung vierter
Ordnung. Als kinematische Freiheitsgrade an den Rändern einer Platte können die Durchbie-
gung und die Verdrehung des Plattenrandes, als statische Randgrößen das Biegemoment, das
Torsionsmoment und die Querkraft vorgegeben werden. Bei der Formulierung der statischen
Randbedingungen ergeben sich aber Probleme. Die dem Modell der schubstarren Platte voraus-
gesetzten Hypothesen haben das mathematische Plattenmodel vereinfacht. Die Gleichung für das
schubstarre Plattenmodell reduziert das mathematische Modell auf ein lineares Randwertproblem

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


138 Theoretische Grundlagen

vierter Ordnung. Für partielle Differentialgleichungen vierter Ordnung können pro Rand jeweils
nur zwei Randbedingungen vorgegeben werden, auch wenn für den Plattenrand drei Schnittgrößen
definiert sind. Teilweise kann man dieses Problem umgehen, indem man das Torsionsmoment und
die Querkraft am Rand zu einer Ersatzquerkraft zusammenfasst.
Erweitert man die Strukturanalyse auf dynamische Antworten werden die Trägheitseffekte be-
rücksichtigt. Es ergibt sich eine resultierende Trägheitskraft dmẅ mit der Masse dm = ρdA.
Dementsprechend wirkt auf ein Plattenelement dA in x3-Richtung eine positive Flächenlast q und
in negativer x3-Richtung die Trägheitskraft ρhẅ. Die Plattengleichung ergibt sich folgenderweise:

DPlΔΔw(x1,x2, t) = q(x1,x2, t)−ρhẅ. (A.102)

Werden keine äußeren Lasten q(t) = 0 aufgebracht, folgt hieraus die Gleichung zur Berechnung
der freien Eigenschwingung eine schubstarren Platte:

DPlΔΔw(x1,x2, t) =−ρhẅ. (A.103)

Ausgangspunkt für die Energieformulierung einer schubstarren Platte sind oftmals Variationsprin-
zipien. Die Formänderungsenergie lässt sich durch Integration der volumenbezogenen Formän-
derungsenergie (Gl. (A.64)) über das Volumen bestimmen. Aufgrund γ13 = γ31 = 0 gehen die
Schubspannungen σ13 und σ31 nicht in die Gleichung für Formänderungsenergie ein. Und mit
ε33 = 0 steuert die Spannung σ33 keinen Energieanteil bei. Damit erhält man

Wf = U =
1
2

∫
V

εεε · ·C · ·εεεdV =
1
2

∫
V

σσσ · ·εεεdV,

Wf =
1
2

∫
V

σ11ε11 +σ22ε22 +2σ12ε12dV.
(A.104)

Ersetzt man die Spannungen nach dem HOOKEschen Gesetz durch die Verzerrungen, erhält man
folgende Formulierung für die Formänderungsenergie

Wf =
1
2

∫
V

E
1−ν2

(
ε2

11 + ε
2
22 +2νε11ε22 +

1−ν
2
γ2

12

)
dV. (A.105)

Für weitere Betrachtungen ist es von Vorteil die Energieformulierungen in ausführlicher Schreib-
weise zu notieren. Beschreibt man die Verzerrungen durch die Ableitungen der Biegefläche,
gelangt man über die Integration über die Dicke zu

Wf =
1
2

∫
A

DPl

[(
∂ 2w
∂x2

)2

+

(
∂ 2w
∂y2

)2

+2ν
∂ 2w∂ 2w
∂x2∂y2 +2(1−ν)

(
∂ 2w
∂x∂y

)2
]

dA. (A.106)

Die kinetische Energie lässt sich nach Gl. (A.89) bestimmen. Beschreibt man die Geschwindigkeit
durch die zeitliche Ableitung der Biegefläche w ergibt sich für eine konstante Plattendicke und
Dichte:

K =
1
2

∫
V

ρv ·vdV =
1
2

hρ
∫
A

ρ
(
∂w
∂ t

)2

dA. (A.107)
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A.2.2 MINDLINsche Plattentheorie

Die klassische Plattentheorie, die dem Modell der schubstarren Platte mit kleinen Durchbiegungen
entspricht, hat sich für viele praktische Anwendungen bewährt, soweit die Platten hinreichend
dünne Platten und die Durchbiegung klein im Verhältnis zur Plattendicke sind. Auch für Platten
mittlerer Dicke kann, falls sich die Durchbiegungen auch weiterhin klein gestalten, ein zweidimen-
sionales, lineares Plattenmodell Grundlage einer Strukturanalyse sein. Analog zur Balkentehorie
nimmt der Einfluss der Schubverformungen in Querrichtung mit zunehmender Dicke h zu. In
der heutigen Literatur werden diese erweiterten Plattentheorien oft klassifiziert in eine Schub-
deformationstheorie erster Ordnung und höherer Ordnung. Für die Ingenieuranwendungen hat die
Schubdeformationstheorie erster Ordnung, die auch als MINDLINsche Plattentheorie bezeichnet
wird und das Verhalten schubelastischer Platten mit kleinen Durchbiegungen beschreibt, sehr
große Bedeutung.
Für diese schubelastische Plattentheorie gelten folgende Annahmen:

• Das Material ist ebenfalls homogen und isotrop. Weiterhin gilt das verallgemeinerte HOO-
KEsche Gesetz.

• Die Plattenmittelfläche stellt bei der Biegeverformung eine neutrale Ebene dar. Die Punkte
der Mittelpunkte weisen folgende Veraschiebungen u1 (x1,x2,0) = 0, u2 (x1,x2,0) = 0 und
u3 (x1,x2,0) = w(x1,x2) �= 0 auf. Die Durchbiegung gestaltet sich klein im Vergleich zur
Plattendicke und die Krümmungen der Biegefläche werden linearisiert κ11 ≈ ψ1,1, κ22 ≈
ψ2,2, κ12 ≈ ψ1,2 +ψ2,1

• Alle Punkte eines Linienelements orthogonal zur unverformten Plattenmittelfläche ändern
bei der Verformung ihre Abstände nicht (ε33 ≈ 0) und bleiben Punkt der Geraden, d. h. die
Platte in Dickenrichtung ist dehnstarr (erste BERNOULLI-Hypothese)

• Die Normalspannung σ33 �max(σ11,σ22) wird bei der Mindlinschen Theorie vernachläs-
sigt, was σ33 ≈ 0 bedeutet.

• Die KIRCHHOFFsche Normalenhypothese (zweite BERNOULLI-Hypothese) verliert ihre
Gültigkeit.

Ebenso wie bei der KIRCHHOFFsche Plattentheorie gilt die Annahme σ33 ≈ 0. In der Elastizi-
tätstheorie ergibt sich bei dieser und der Annahme ε33 ≈ 0 ein ebener Spannungszustand und nd
zugleich ein ebener Verzerrungszustand, was nicht konsistent ist. Entgegen den widersprüchlichen
Annahmen, führen sie in der Anwendung für Platten auf zuverlässige Strukturmodelle. Für das
schubelastische Plattenmodell bleiben somit alle in Abschnitt A.2.1 formulierten Voraussetzungen
des schubstarren Modells bis auf die KIRCHHOFFsche Normalenhypothese erhalten. Während bei
der schubstarren Plattentheorie alle Verformungen durch eine Größe, die Durchbiegung w(x1,x2),
beschrieben werden können, sind bei dem schubelastischen Modell neben der Durchbiegung
w(x1,x2) auch die Querschnittsdrehwinkel ψ1 (x1,x2) und ψ2 (x1,x2) unabhängige Größen. Aus
weiteren Ableitung wird erkenntlich, dass für das schubelastische Modell auch für die Schub-
spannungen σ13 und σ23 ein Elastizitätsgesetz formuliert werden kann. Analog zum schubstarren
Modell werden die kinematischen Gleichungen, die Gleichgewichtsbedingungen und das Materi-
algesetz formuliert sowie die Plattengleichungen abgeleitet. Die Betrachtung beschränkt sich auf
die konstante Dicke h. Gleichermaßen folgt aus der ersten BERNOULLI-Hypothese wie bei der
KIRCHHOFFschen Plattentheorie ε33≈ 0. Damit gilt für die schubelastische Platte die kinematische
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a) b)

x1 x2

x3x3
ψ1 ψ2

w

−w,1 −w,2

Abbildung A.4: Kinematik am schubelastischen Plattenelement: a) Schnitt x1 = konst., und b)
Schnitt x1 = konst. [6].

Hypothese (siehe Abb. A.4 )

u1 (x1,x2,x3)≈ x3ψ1 (x1,x2) ,

u2 (x1,x2,x3)≈ x3ψ1 (x1,x2) ,

w(x1,x2,x3)≈ w(x1,x2) .

(A.108)

Die Gleichgewichtsbedingungen sind identisch mit denen der schubstarren Platte. Die Gln. (A.97)
und (A.98) behalten ihre Gültigkeit.

ε11 = u1,1 =−x3ψ1,1, γ12 = 2ε12 = u1,2 +u2,1 = x3 (ψ1,2 +ψ1,2) ,

ε22 = u2,2 =−x3ψ2,2, γ13 = 2ε13 = u1,3 +u3,1 = ψ,1 +w1,

ε33 = u3,3 = w,3 = 0, γ23 = 2ε23 = u2,3 +u3,2 = ψ,2 +w2.

(A.109)

Mit der Annahme σ33 = 0 erhält man aus dem verallgemeinerten Hookeschen Gesetz

ε11 =
1
E
(σ11−νσ22)→ σ11 =

E
1−ν2 (ε11 +νε22) ,

ε22 =
1
E
(σ22−νσ11)→ σ11 =

E
1−ν2 (ε22 +νε11) ,

ε12 =
1

2G
σ12 =

2(1+ν)
E

σ12 → σ12 = 2Gε12 =
E

1+ν
ε12,

ε13 =
1

2G
σ31 =

2(1+ν)
E

σ31 → σ31 = 2Gε31 =
E

1+ν
ε31,

ε23 =
1

2G
σ23 =

2(1+ν)
E

σ23 → σ23 = 2Gε23 =
E

1+ν
ε23,

(A.110)

wobei G den Schubmodul darstellt. Im Gegensatz zu den konstitutiven Gleichungen für die
schubstarre Platte impliziert dieses Elastizitätsgesetz auch Gleichungen für die Schubspannungen
σ13 und σ23. Setzt man die Verzerrungs-Verschiebungsbeziehungen (A.109) in die Gl. (A.110) ein,
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bekommt man als Resultat das Elastizitätsgesetz für die schubelastische Platte

σ11 =
Ex3

1−ν2 (ψ1,1 +νψ2,2) , σ13 =
E

2(1+ν)
(ψ1 +w,1) ,

σ22 =
Ex3

1−ν2 (ψ2,2 +νψ1,1) , σ23 =
E

2(1+ν)
(ψ2 +w,2) ,

σ12 =
Ex3

2(1+ν)
(ψ1,2 +ψ2,1) .

(A.111)

Die Spannungen σ11, σ22 und σ12 haben, ebenfalls wie in der klassischen Plattentheorie, einen
linearen Verlauf über die Dicke h. Die Schubspannungen σ13 und σ23 sind unabhängig von
x3 und damit konstant über die Plattendicke h. Dies demonstriert den Näherungscharakter des
schubelastischen Plattenmodells. Aus dem Gleichgewicht am differentiellen Element ergeben sich
über h parabolische Verläufe für die Schubspannungen im Gegensatz zur schubstarren Platte (vgl.
Abb. A.3). Formuliert man das Materialgesetz für die Schnittgrößen, wird dieser Widerspruch
verdeckt, da die Verläufe der Schubspannungen daraus nicht ersichtlich sind

m11 = DPl (ψ1,1 +νψ2,2) ,

m22 = DPl (ψ2,2 +νψ1,1) ,

m12 =
1−ν

2
D(ψ1,2 +ψ2,1) ,

q1 = Ghs (ψ1 +w,1) ,

q1 = Ghs (ψ1 +w,1) ,

(A.112)

wobei DPl die Plattensteifigkeit ist. In den Gleichungen für q1 und q2 wird die wirkliche Plattendi-
cke h durch eine reduzierte Schubdicke hs substituiert, um den Fehler der konstanten Schubspan-
nungsverteilung über h zu berichtigen.
Für die Ableitung der Plattengleichungen ist es oftmals hilfreich die folgenden Abkürzungen
einzuführen

Φ(x1,x2) = ψ1,1 +ψ2,2 und Ψ(x1,x2) = ψ1,1−ψ2,2. (A.113)

Das schubelastische Plattenmodell kann somit durch drei partielle Differentialgleichungen zweiter
Ordnung, d. h. durch ein Problem sechster Ordnung vollständig formuliert werden

DPlΔΦ=−q, Δw =−Φ+
DPl

Ghs
ΔΦ,

1−ν
2

DPl

Ghs
ΔΨ−Ψ= 0. (A.114)

Die Schubdicke hs = κh wird aus energetischen Betrachtungen bestimmt. Berechnet man die
komplementäre Formänderungsenergie einmal mit parabolischem Spannungsverlauf über h und
einmal mit der durch den Schubfaktor κ ergänzten konstanten Verteilung und setzt man beide
Energieausdrücke gleich kann der Korrekturfaktor κ bestimmt werden [6]. Für eine isotrope Platte
ergibt sich ein Wert für den Schubfaktor κ = 5

6 .
Während die Schubspannungen σ13 und σ13 bei der schubstarren Platte nicht in die Gleichung für
die Formänderungsenergie eingehen, liefern sie bei der schubelastischen Betrachtung einen Anteil
an der Formänderungsenergie. Aufgrund ε33 ≈ 0 gibt es weiterhin keinen Energiebeitrag aus der
Normalspannung σ33. Aus

Wf = U =
1
2

∫
V

εεε · ·C · ·εεεdV (A.115)
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erhält man unter Berücksichtigung der Verzerrungs-Verschiebungsbeziehung und des Elastizitäts-
gesetzes für die schubelastische Platte

Wf =
1
2

∫
V

[
E

1−ν2

(
ε2

11 + ε
2
22 +2νε11ε22

)
+G

(
γ2

12 + γ
2
23 + γ

2
13

)]
dV. (A.116)

Setzt man in Gl. (A.116) die Verzerrungen nach Gl. (A.109) ein und integriert in x3-Richtung über
die Plattendicke h, ergibt sich in ausführlicher Schreibweise

Wf =
1
2

∫
A

DPl

{(
∂ψx

∂x
+
∂ψy

∂y

)2

−2(1−ν)
[
∂ψx

∂x
∂ψy

∂y
− 1

4

(
∂ψx

∂y
+
∂ψy

∂x

)]}

+κGh

[(
ψx +

∂w
∂x

)2

+

(
ψy +

∂w
∂y

)2
]

dA.

(A.117)

Für die kinetische Energie K der schubelastischen Platte gilt dementsprechend

K =
1
2

∫
V

u̇ · u̇dV =
1
2

∫
V

ρ
(
u̇1

2 + u̇2
2 + u̇3

2)dV. (A.118)

Durch Substitution der Verschiebungen nach Gln. (A.108) in Gl. (A.118) und Integration über die
Plattendicke erhält man für die kinetische Energie:

K =
1
2

∫
V

ρ

[(
∂u
∂ t

)2

+

(
∂v
∂ t

)2

+

(
∂w
∂ tt

)2
]

tdV

=
1
2
ρh
∫
A

[(
∂w
∂ t

)2

+
h2

12

{(
∂ψx

∂ t

)2

+

(
∂ψy

∂ t

)2
}]

dA.

(A.119)

Durch die Erweiterung des kinematischen Modells der schubstarren Platten ergeben sich in den
dynamischen Strukturgleichungen zusätzlich Rotationsträgheiten. Hierauf hat bereits Timoshenko
bei der Erweiterung des EULER-BERNOULIschen Balkenmodells hingewiesen [206].

A.2.3 Weitere und höhere Plattentheorien

Oftmals werden die MINDLINsche und die REISSNERsche Plattentheorie [174] als Synonym
füreinander verwendet. Doch trotz der großen Ähnlichkeiten sind sie nicht identisch. Aus diesem
Grund wird in dieser Arbeit auf die wesentlichen Unterschiede eingegangen. Ebenfalls leitete
Reissner seine Theorie für den statischen Fall her. Zum Vergleich stellt man die zweite partielle
Differentialgleichung der MINDLINschen Theorie (A.114) um

Ghs (Δw+Φ)−DPlΔΦ= 0 (A.120)

und setzt die Querkräfte aus Gln. (A.112) in die Querkraft Gleichgewichtsbedingung (A.97) unter
der Berücksichtigung der Abkürzung aus Gl. (A.113) ein. Man erhält

Ghs (Δw+Φ) = q. (A.121)
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Durch Elimination von Φ gewinnt man daraus

DPlΔΔw = q− h2

6κ
1

1−ν Δq. (A.122)

Reissner leitet eine ähnliche Differentialgleichung her, allerdings nutzte er eine etwas andere
Vorgehensweise als Mindlin. Im Gegensatz zur MINDLINschen Theorie werden die Normal-
spannungen σ33 bei der REISSNERschen Betrachtung nicht vernachlässigt, sondern als kubische
Funktion von z angenommen, die an den Deckflächen der Platte (z = ±h

2) den dort wirkenden
Querbelastungen entsprechen. Wie in Abb. A.3 veranschaulicht, wird für die Schubspannungen ein
parabolischer Verlauf angenommen. Somit lässt sich σ33 mit Hilfe der Gleichgewichtsbedingung
des räumlichen Spannungszustandes ermitteln. Weiterhin werden w, ψ1 und ψ2 als resultierende
Formänderungsgrößen angesehen, die sich derart ergeben, dass sie mit den dazugehörigen Schnitt-
größen dieselben Beiträge zur Formänderungsenergie liefern, wie die tatsächlichen Spannungen
und Verschiebungen. Letztendlich erhält man für die REISSNERsche Plattentheorie [171] folgende
partielle Differentialgleichung

DPlΔΔw = q− h2

10
2−ν
1−ν Δq, (A.123)

die sich nur durch den Schubkorrekturfaktor κ von der MINDLINschen Plattentheorie unterschei-
det. Für κ = 5

3(2−ν) stimmen beide Plattengleichungen überein. Daraus folgt für einen Schubkor-

rekturfaktor κ = 5
6 , dass es einen querkontraktionsfreien Körper (ν = 0) bedarf, um bei beiden

Theorien zum gleichen Ergebnis zu gelangen.
Die bisher aufgeführten Plattenmodelle haben ihre Gültigkeitsbereiche nur für kleine Durchbie-
gungen. In der Praxis können jedoch mäßige (finite) Plattendurchbiegungen auftreten. Mit zuneh-
mender Durchbiegung dürfen geometrisch-nichtlineare Terme in den kinematischen Gleichungen
nicht mehr vernachlässigt werden. Das Modell einer dünnen Platte mit mäßiger Verformung
stellt die Theorie nach Kármán dar [218]. Ihre Grundgleichungen beschreiben die kinematischen
Annahmen einer schubstarren Platte sowie eines isotropen, linear-elastischen Materialverhaltens.
Geometrisch-nichtlineare Modelle für schubelastische und anisotrope Platten können aus der
Fachliteratur, wie beispielsweise aus Shen [193] und Reddy [170] entnommen werden.
Untersuchungen zu Schwingungsproblemen von Platten aus Laminat oder aus „Functionally
Graded Material (FGM)“, als ein mögliches Modell für zellulare Materialien, findet man bei
der Gruppe um Reddy in großer Anzahl. Zur Vorhersage der Eigenfrequenzen von FGM Platten
entwickeln Altenbach und Eremeyev [7, 8] ein Modell, das auf einem mikropolaren COSSERAT-
Kontinuum basiert und eine Heterogenität in Richtung der Plattendicke aufweisen kann.

A.3 Grundlagen zur Akustik

A.3.1 Allgemeine lineare Wellengleichung in viskosen Fluiden

Ausgehend von der Massenbilanz kann die Kontinuitätsgleichung

∂
∂ t
ρ (x, t)+∇ · (ρ (x, t)v) =

∂
∂ t
ρ (x, t)+div(ρ (x, t)v) = 0 (A.124)

formuliert werden. Die Kontinuitätsgleichung beschreibt die Massenerhaltung im Fluid. Es wird
nicht von Massensenken oder -quellen ausgegangen. Betrachtet man nun das viskose Fluid, wel-
ches durch die linear eingehende Deformationsgeschwindigkeit D gekennzeichnet ist und geht man
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des Weiteren von einem isotropen Fluid aus, so erhält man:

σσσ =
(−p+λVSpur(D)

)
I+2μVI =

(−p+λV∇ ·D)I+2μVI. (A.125)

Zieht man nun das erste CAUCHY-EULERsche Bewegungsgesetz hinzu, welches die Impulserhal-
tung beschreibt, so ergibt sich für die Konstitutivgleichung

ρ
Dv
Dt

= div(σσσ)+ fV = ∇ ·σσσ + fV (A.126)

mit

D =
1
2

[
∇v+(∇v)T

]
(A.127)

und

div(D) = ∇ ·D1
2

[
∇2v+∇(∇ ·v)T

]
(A.128)

Setzt man nun die Konstitutivgleichung in die Bewegungsgleichung ein, erhält man die NAVIER-
STOKES-Gleichung mit den inhomogenen Viskositätskoeffizienten λV und μV

ρ
Dv
Dt

=−∇p+∇
(
λV∇ ·v)+∇ · (2μVD

)
+ fV. (A.129)

Nimmt man noch die STOKESsche Bedingung für die konstanten Viskositätskoeffizienten λV und
μV

3λV +2μV = 0 oder λV =−2
3
μV (A.130)

an, ergibt sich

ρ v̇ =−∇p+μV
[
∇2v+

1
3
∇(∇ ·v)

]
+ fV. (A.131)

Zudem ist die Druck-Dichte-Beziehung

p = p(ρ) (A.132)

von Bedeutung, wenn es sich beim Fluid um ein Gas oder eine kompressible Flüssigkeit handelt.
Zur Herleitung der linearisierten Wellengleichung zerlegt man die Grundgrößen in Gleich- und
Schwankungsanteile:

p̃(x, t) = p0 + p∼ (x, t) = p0 + p, (A.133)

ρ̃ (x, t) = ρ0 +ρ∼ (x, t) = ρ0 +ρ, (A.134)

ṽ(x, t) = v0 +v∼ (x, t) = v0 +v≡ v. (A.135)

Bei der Zerlegung wird vorausgesetzt, dass sich das Fluid im Ruhestand v0 = 0 befindet und alle
Bewegungen durch Oszillationen hervorgerufen werden. Anschließend werden alle Terme höherer
Ordnung der Schwankungsanteile vernachlässigt. Für die Kontinuitätsgleichung ergibt sich durch
Einsetzen

∂
∂ t

(ρ0 +ρ)+∇ · [(ρ0 +ρ)v] =
∂
∂ t

(ρ0 +ρ)+div [(ρ0 +ρ)v] = 0. (A.136)

Da die Größe ρ0 konstant ist, verschwindet sie bei der Zeitableitung. Zusätzlich wird von einer
kleinen Dichtenschwankung |ρ| � ρ0 ausgegangen, es kann in Gl. (A.136) der Term ρv vernach-
lässigt werden. Es folgt daraus

∂ρ
∂ t

+ρ0∇ ·v =
∂ρ
∂ t

+ρ0div(v) = 0. (A.137)
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In der NAVIER-STOKES-Gleichung tritt die substantielle Ableitung der Geschwindigkeit auf.
Damit entsteht folgende Beziehung durch Einsetzen und Substituieren

(ρ0 +ρ)
[
∂v
∂ t
−v ·∇(v)

]
=−∇(p0 + p)+μV

[
∇2v+

1
3
∇(∇ ·v)

]
,

(ρ0 +ρ)
[
∂v
∂ t
−v ·grad(v)

]
=−grad(p0 + p)+μV

[
div(grad(v))+

1
3

grad(div(v))
]
.

(A.138)

Durch die Linearisierung der Schwankungsgrößen erhält man

ρ0
∂v
∂ t

=−∇p+μV
[
∇2v+

1
3
∇(∇ ·v)

]
,

ρ0
∂v
∂ t

=−grad(p)+μV
[

div(grad(v))+
1
3

grad(div(v))
]
.

(A.139)

Ersetzt man die dynamische Viskosität μV durch die kinematische Viskosität νV = μV

ρ0
erbibt sich

für die linearisierte NAVIER-STOKES-Gleichung:

∂v
∂ t

=− 1
ρ0
∇p+νV

[
∇2v+

1
3
∇(∇ ·v)

]
. (A.140)

Aufgrund der nicht genau beschreibbaren Druck-Dichte Beziehung kann man sie nicht auf die
gleiche Weise linearisieren. Ersatzweise nutzt man eine TAYLOR-Entwicklung:

p̃(ρ) = p(ρ0)+(p̃−ρ) dp(ρ0)

dρ
+ . . . (A.141)

Wird p0 = p̃(ρ0) auf die linke Seite gebracht, liefern Einsetzen und Vernachlässigung der Terme
höherer Ordnung die Beziehung:

p = ρ
dp(ρ0)

dρ
. (A.142)

Die auftretende Ableitung d
dρ p(ρ0) wird mit c2 abgekürzt. Die Größe c beschreibt die Ausbrei-

tungsgeschwindigkeit der Wellen. Die linearisierte Druck-Dichte-Beziehung lautet schließlich

p = c2ρ. (A.143)

Substituiert man ρ in der linearisierten Kontinuitätsgleichung (A.137) durch die linearisierte
Druck-Dichte-Beziehung (A.143), bekommt man

∂ p
∂ t

+ c2ρ0∇ ·v = 0. (A.144)

Differenziert man diese Gleichung nach der Zeit gelangt man zu

∂ 2 p
∂ t2

+ c2ρ0∇ · ∂v
∂ t

= 0. (A.145)

Setzt man nun die lokale Beschleunigung ∂v
∂ t aus der linearisierten NAVIER-STOKES-Gleichung

(A.140) in die Gleichung (A.145), erhält man folgende Gleichung

∂ 2 p
∂ t2 + c2ρ0

[
− 1
ρ0
∇2 p+νV∇2 (∇ ·v)+ ν

V

3
∇2 (∇ ·v)

]
= 0 oder

∂ 2 p
∂ t2 + c2ρ0

[
− 1
ρ0
∇2 p+

4νV

3
∇2 (∇ ·v)

]
= 0.

(A.146)
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Substituiert man nun ∇ ·v mit Hilfe der Gleichung (A.144) ergibt sich die linearisierte Wellenglei-
chung für den Schalldruck:

∂ 2 p
∂ t2 + c2ρ0

[
− 1
ρ0
∇2 p+

4νV

3ρ0c2∇
2∂ p
∂ t

]
= 0 oder

∂ 2 p
∂ t2 − c2∇2 p− 4νV

3
∇2∂ p
∂ t

= 0.

(A.147)

Geht man von einem reibungslosen Fluid νV = 0 aus, entsteht zum Beispiel die linearisierte
Wellengleichung für ideale Gase

∂ 2 p
∂ t2

− c2∇2 p =
∂ 2 p
∂ t2

− c2Δp = 0. (A.148)

Wird eine harmonische Zeitabhängigkeit für den Schalldruck p = p̂ejωt angenommen, folgt aus
der Wellengleichung die HELMHOLTZ -Gleichung

Δp+ k2 p = 0, (A.149)

mit der Wellenzahl k = ω
c .

A.3.2 Schallgeschwindigkeit

Die Schallgeschwindigkeit c ist die Geschwindigkeit mit welcher sich Schallwellen in einem belie-
bigen Medium ausbreiten. Sie ist sowohl von den elastischen Eigenschaften des Ausgangsmediums
als auch von dessen Dichte, Temperatur und Druck abhängig. Daher können Schwankungen von
Temperatur und Luftfeuchtigkeit einen wesentlichen Einfluss auf Messungen haben, insbesondere
bei hohen Frequenzen und geringer Luftfeuchtigkeit. Die Schallgeschwindigkeit für Gase lässt
sich aus der Wellengleichung (2.2) ablesen:

∂ 2 p
∂x2 =

1
c2

∂ 2 p
∂ t2

. (A.150)

Daraus leitet sich für die Schallgeschwindigkeit ab:

c =

√
K
ρ0

. (A.151)

Die Schallausbreitung kann als eine isentrope (adiabatische) Kompression und Expansion ange-
nommen werden. Hierfür wird sich das adiabatische Gasgesetz

pV γ =C1 oder p =
C1

V γ
(A.152)

zu Nutze gemacht. Hierbei ist γ = cv
cp

der Adiabatenkoeffizient und cv beziehungsweise cp die iso-
chore beziehungsweise isobare Wärmekapazität des Gases. C1 stellt eine Konstante dar. Alternativ
lässt sich das Kompressionsmodul folgendermaßen ausdrücken:

K =−V
d p
dV

= γV
C1

V γ+1 = γ p. (A.153)
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Somit lässt sich die Schallgeschwindigkeit durch den Atmosphärendruck beschreiben:

c =

√
K
ρ0

=

√
γ paK
ρa

. (A.154)

So ergibt sich bei einem Atmosphärendruck von 1013 mbar und einer Umgebungstemperatur von
20◦C eine Schallgeschwindigkeit von 343 m

s . Ersetzt man ρ = mgas
V und p= nRT

V mit dem Gasgesetz
so entsteht:

c =

√
γ

nRTV
V mgas

=

√
γRT
M

. (A.155)

Daraus wird ersichtlich, dass die Schallgeschwindigkeit nur von der Temperatur T , der Molmasse
M und der allgemeinen Gaskonstante R abhängig ist.

A.3.3 Gesetz von Hagen-Poiseuille

Mit Hilfe des Gesetzes von Hagen-Poiseuille lässt sich der Volumenstrom V̇ eines NEWTONschen
Fluids durch ein gerades Rohr mit kreisförmigem, konstanten Querschnitt beschreiben. Die Strö-
mung im Rohr wird als laminar gesehen. Als Ausganspunkt nutzt man die Kontinuitätsgleichung
in Zylinder-Koordinaten

∇ ·v = 0,

∂vr

∂ r
+
∂vϕ
r∂ϕ

+
∂vz

∂ z
+

ur

r
=
∂vr

r∂ r
+
∂vϕ
r∂ϕ

+
∂vz

∂ z
= 0.

(A.156)

Dabei wird von einem inkompressiblen Medium ∂ρ
∂ t = 0 ausgegangen. Des Weiteren nutzt man die

inkompressible NAVIER-STOKES-Gleichung in Zylinder-Koordinaten:

v̇ =− 1
ρ
∇p+νVΔv+ fm,

Dvr

Dt
− v2

ϕ

r
=− 1

ρ
∂ p
∂ r

+νV
[
Δvr− vr

r2 −
2
r2

vϕ
∂ϕ

]
+ f m

r ,

Dvϕ
Dt

− vrvϕ
r

=− 1
ρr
∂ p
∂ϕ

+νV
[
Δvϕ −

vϕ
r2 +

2
r2

vr

∂ϕ

]
+ f m

ϕ ,

Dvz

Dt
=− 1

ρ
p+νVΔvz + f m

z .

(A.157)

Zur kürzeren Notation wird die Funktion f = f(r,ϕ,z, t) für die LAPLACE-Operation und der
substantiellen Ableitung eingeführt

Δf=
1
r
∂
∂ r

(
r
∂ f
∂ r

)
+

1
r2

∂ 2f

∂ϕ2 +
∂ 2f

∂ z2 ,

Df

Dt
=
∂ f
∂ t

+ vr
∂ f
∂ r

+
vϕ
r
∂ f
∂ϕ

+ vz
∂ f
∂ z

.

(A.158)

Mit der Annahme, dass eine rotationssymmetrische Strömung ∂ f
∂ϕ = 0 vorliegt, eine ausgebildete

∂v
∂ z = 0 und stationäre ∂ f

∂ t = 0 Strömung herrscht und dass keine Massenkräfte fm berücksichtigt
werden, ergeben sich folgende Beziehungen:

∂ rvr

r∂ r
= 0, (A.159)
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vr
∂vr

∂ r
=− 1

ρ
∂ p
∂ r

+νV
(
∂ 2vr

∂ r2 +
∂vr

r∂ r
− vr

r2

)
, (A.160)

vr
∂vz

∂ r
=− 1

ρ
∂ p
∂ z

+νV
(
∂ 2vz

∂ r2 +
∂vz

r∂ r

)
. (A.161)

Aus Gl. (A.159) kann man erkennen, dass rvr konstant ist und die radiale Strömungsgeschwin-
digkeit vr = 0 ist. Aus der NAVIER-STOKES-Gleichung (A.160) in radialer Richtung ergibt sich
nun ∂ p

∂ r = 0 und der Druck hängt nur noch von der axialen Richtung ab p = p(z). Nimmt man
nun die NAVIER-STOKES-Gleichung (A.161) in axialer Richtung in den Blick lässt sich folgende
Beziehung feststellen

∂ p
∂x

=
μV

r
∂
∂ r

(
r
∂vz

∂ r

)
. (A.162)

Durch zweimalige Integration entsteht

vz (r) =
1
4

r2

μV

∂ p
∂ z

+C1 lnr+C2 (A.163)

mit den Integrationskonstanten C1 und C2. Da die Geschwindigkeit vz an der Rohrachse r = 0
aus physikalischen Gründen nicht unendlich groß sein kann, muss C1 = 0 sein. Zudem sollte die
Randbedingung, Haften an der Rohrwand vz (r = R) = 0, berücksichtigt werden. Daraus folgt für
die zweite Integrationskonstante

C2 =−1
4

R2

μV

∂ p
∂ z

. (A.164)

Damit ergibt sich folgendes Geschwindigkeitsprofil für die axiale Geschwindigkeit

vz (r) =
1

4μV

∂ p
∂ z

(
r2−R2) . (A.165)

In Bezug auf den Massenstrom lässt sich vorweisen

ṁ =

2π∫
ϕ=0

R∫
r=0

ρvz (r)rdrdϕ =− πρ
8μV

dp
dz

R4. (A.166)

Bezieht man den Volumenstrom auf den durchströmten Querschnitt steht einem die mittlere
Geschwindigkeit zur Verfügung

v̄ =
V̇
A
=

1
2πR2

2π∫
ϕ=0

R∫
r=0

vz (r)rdrdϕ =
vmax

2
. (A.167)

So lässt sich eine Beziehung zwischen dem Druckgradienten und der mittleren Geschwindigkeit
herstellen

∂ p
∂ z

=
8v̄μV

R2 = konst. (A.168)

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Theoretische Grundlagen 149

A.3.4 Lineare Wärmeleitungsgleichung

Die thermische Energiebilanzgleichung (A.61) eines Fluids mit einer örtlichen thermischen Leit-
fähigkeit λt kann mit Hilfe der spezifischen Entropie s zu

ρT

(
∂s
∂ t

+v ·∇s
)
=D−∇ ·h =D+λtΔT (A.169)

mit h =−λt∇T formuliert werden. Die linke Seite der Bilanz beschreibt die vom Fluid aufgenom-
mene Wärme pro Volumeneinheit. Die dissipative Funktion D betrachtet die viskosen Verluste
und erfasst die Energie, welche infolge der Viskosität in Wärme umgewandelt wird. Die über die
Oberfläche ins Volumen eingebrachte Wärme berücksichtigt der Term λtΔT . Für die spezifische
Entropie s eines idealen Gases gilt folgender Gleichgewichtszustand [100] :

dS =
dQ
T

=
dU −dW

T
und

ds=
du+ dp

ρ

T
=

dh− 1
ρ dp

T
=

CpdT − 1
ρ dp

T
,

(A.170)

wobei h die spezifische Enthalpie und Q die Wärmemenge des idealen Gases repräsentieren.
Differenziert man die Gleichung für die Entropieänderung idealer Gase (A.170) nach der Zeit
hat man zum Ergebnis:

∂s
∂ t

=
Cp

T
∂T
∂ t
− 1

Tρ
∂ p
∂ t

. (A.171)

Setzt man diesen Ausdruck nun in die Wärmeleitungsgleichung (A.169) und vernachlässigt den
Term v ·∇s und die Dissipationsfunktion D so gewinnt man als Approximation erster Ordnung:

ρT

[
Cp

T
∂T
∂ t
− 1

Tρ
∂ p
∂ t

]
= λtΔT,

ρCp
∂T
∂ t

= λtΔT +
∂ p
∂ t

.

(A.172)

Geht man von einer kleinen Schwankung der Dichte aus so entsteht folgende Wärmeleitungsglei-
chung

ρ0Cp
∂T
∂ t

= λtΔT +
∂ p
∂ t

. (A.173)

A.3.5 Schallausbreitung in zylindrischen Röhren

Die lineare und vereinfachte Form der NAVIER-STOKES-Gleichung (A.139) und der Wärme-
bilanzgleichung (A.173) genügen den Größen der Geschwindigkeit v, dem Druck p und der
akustischen Temperatur T eines Fluids in einer zylindrischen Röhre bzw. in einer Pore. Der Zu-
sammenhang zwischen den Schwankungen der Temperatur, der Geschwindigkeit und des Drucks
in einem akustischen Feld können wie folgt postuliert werden

ρ0
∂v
∂ t

=−∇p+μVΔv, (A.174)

ρ0Cp
∂T
∂ t

= λΔT + p
∂ p
∂ t

, (A.175)
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wobei μV die dynamische Viskosität, λ die spezifische Wärmeleitung und Cp die spezifische
Wärme bei konstantem Druck ist. Der Druck wird als konstant über dem Röhrenquerschnitt
angenommen. Als Randbedingung an Rohrwänden wird eine konstante Temperatur T = konstant
und Haften (v = 0) angenommen. Nutzt man die linearisierte NAVIER-STOKES-Gleichung in
zylindrischen Koordinaten unter der Annahme einer axialsymmetrischen Strömung und eines
axial-richtungsabhängigen Druckgradientens lässt sich erkennen, dass

jωρ0v3 =− ∂ p
∂x3

+
μV

r
∂
∂ r

(
r
∂v3

∂ r

)
(A.176)

mit v3 = v̂3ejωt . Die Geschwindigkeit an der Zylinderfläche, der Kontaktbereich zwischen Fluid
und der steifen Struktur, nimmt den Wert Null an. Die Lösung der Differentialgleichung (A.176)
nach [1, 29], an der die Geschwindigkeit der Zylinderoberfläche r = R verschwindet, lautet:

v3 =− 1
jωρ0

∂ p
∂x3

(
1− J0 (lr)

J0 (lR)

)
. (A.177)

In dieser Gl. (A.177) ist

l =

√
−jωρ0

μV (A.178)

und J0 ist die Besselfunktion nullter Ordnung. Die gemittelte Geschwindigkeit v̄3 über die Rohr-
geschwindigkeit lässt sich wie folgt

v̄3 =
1
πR2

R∫
0

v32πdr (A.179)

bestimmen. Macht man sich nun folgende Beziehung [29]
∫ a1

0 rJ0 (r)dr = a1J1 (a1) zu Nutze und
setzt v3 aus Gl. (A.177) in Gl. (A.179) ein, erhält man für die mittlere Geschwindigkeit

v̄3 =− 1
jωρ0

∂ p
∂x3

[
1− 2

s
√−j

J1
(
s
√−j

)
J0
(
s
√−j

)
]
. (A.180)

wobei s die Schubwellenzahl ist und sich folgendermaßen bestimmt:

s = R
√
ωρ0

μV . (A.181)

Die Abb. A.5 zeigt die axialen Geschwindigkeitsprofile in einer zylindrischen Röhre in Abhängig-
keit von der Schubwellenzahl s. Die effektive Dichte ρ des Mediums in der Röhre ist definiert als
das Umschreiben der Gl. (A.180) in eine kompakte Form

∂ p
∂x3

= jωρ v̄3 (A.182)

mit
ρ =

ρ0

1− 2
s
√−j

J1(s
√−j)

J0(s
√−j)

. (A.183)

Die Formulierung der effektiven Dichte zeigt den zusätzlichen Beitrag zum Trägheitsterm durch
die Wechselwirkung mit der Röhrenwand. Die Abb. A.6 zeigt die effektive Dichte ρ einer zylindri-
schen Röhre. Dabei wird ersichtlich, dass sich bei niedrigen Frequenzen der viskose Effekt deutlich

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Theoretische Grundlagen 151

-1

-0,5

0

0,5

1

0 0,5 1 1,5 2

no
rm

ie
rt

er
R

ad
iu

s
r R
[]

normierte Geschwindigkeit v3
v̄3

[ ]

s=1
s=2
s=5

s=10
s=50

s=100

Abbildung A.5: Normierte axiale Geschwindigkeitsprofile v3/v̄3 in einer normierten zylindrischen
Röhre r

R in Abhängigkeit von der Schubwellenzahl s.
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Abbildung A.6: Effektive Dichte ρ von Luft in einer zylindrischen Röhre in Bezug auf die
Ausgangsdichte ρ0 in Abhängigkeit der Schubwellenzahl s.
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bemerkbar macht und bei hohen Frequenzen die Trägheit dominant ist. Im bisher beschriebenen
Teil der Schallausbreitung in Röhren wurde nur auf die viskosen Effekte eingegangen. Folgendes
beschäftigt sich mit den thermalen Effekten. Ausgehend von der linearisierten Wärmegleichung
(A.175) und der linearisierten Zustandsgleichung für ideale Gase erlangt man folgende Beziehung

p0 + p = Ri (ρ0 +ρ)(T0 +T )≈ Ri (ρ0ρ+ρ0T +T0ρ) , (A.184)

wobei das betragsmäßig kleine Produkt aus Schalldichte und Schalltemperatur ρT vernachlässigt
wird. Durch Umstellen und Einbeziehen der BOYLE-MARIOTTE-Gleichung für die Ruhelage Ri =

p0
ρ0T0

erhält man:

p =
p0

ρ0T0
(ρ0T +T0ρ) oder

p
p0

=
ρ
ρ0

+
T
T0
. (A.185)

Die Temperaturänderung in Rohrlängsrichtung (x3) ist kleiner als in radialer Richtung (x1 und x2)
und wird deswegen vernachlässigt. So reduziert sich die Wärmebilanz A.173 zu

∂ 2T

∂x2
1
+
∂ 2T

∂x2
2
− jω

T
ν ′

=−j
ω
λ

p oder

∂
r∂ r

(
r
∂T
∂ r

)
− jω

T
ν ′

=−j
ω
λ

p,

(A.186)

wobei ν ′ = λ
ρ0Cp

gilt. Diese Gleichung ähnelt in der Form der Gl. (A.176) mit gleichen Rand-
bedingungen, die Temperaturänderung ist ebenfalls Null an der Rohrwandfläche. Es wird eine

Kreisfrequenz ωt = ω μV

ρ0ν ′ = ωPr in Bezug auf die Prandtl-Zahl definiert und ω in Gl. (A.187)
ersetzt

∂
r∂ r

(
r
∂T
∂ r

)
− jωt

ρ0T
μV =−j

ωtν ′ρ0

λμV p. (A.187)

Geht man vom gleichen Differentialgleichungstyp

∂
r∂ r

(
r
∂ f
∂ r

)
− jω

ρ0

μV f=−j
ωρ0

μV (A.188)

aus, so hat man für die Lösungsfunktion der Schalltemperatur T und der Geschwindigkeit v3 als
Ergebnis:

T =
pν ′

λ
f(r,Prω) =

pν ′

λ

(
1− J0

(√
Prlr

)
J0
(√

PrlR
)
)
, (A.189)

v3 =− ∂
∂x3

f(r,ω)
1

jωρ0
=− 1

jωρ0

∂
∂x3

(
1− J0 (lr)

J0 (lR)

)
. (A.190)

Nutzt man die Volumendehnung unter der Berücksichtigung der Massenerhaltung erhält man:

εV =
dV
V

=
dρ
ρ

=
ρ̄
ρ0

. (A.191)

Der Kompressionsmodul definiert sich durch

K =
σm

εV
=
−pρ0

ρ̄
, (A.192)

wobei die mittlere Dichte ρ̄ der Durchschnitt von ρ über dem Querschnitt ist, die durch die Gl.
(A.185) gegeben ist:

ρ̄ =
p
p0
ρ0− T̄

T0
ρ0. (A.193)
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So kann der Ausdruck für den Kompressionsmodul unter Berücksichtigung der Gln. (A.189) und
(A.193) umgeschrieben werden

K =
p0

1− p0
T0

ν ′
λ f̄(r,Prω)

. (A.194)

Nutzt man die Zustandsgleichung mit der spezifischen Wärme bei konstantem Volumen
ρ0 (Cp−CV ) =

p0
T0

für ideale Gase, vereinfacht sich der Ausdruck für den Kompressionsmodul zu

K =
γ p0

γ− (γ−1) f̄(r,Prω)
, (A.195)

wobei γ den Adiabatenexponenten γ = Cp
CV

darstellt. Bezeichnet man f̄(r,ω) durch F (ω) und
f̄(r,Prω) durch F (r,Prω) vereinfachen sich die Ausdrücke für die effektive Dichte und den
Kompressionsmodul zu

ρ =
ρ0

F (r,ω)
,

K =
γ p0

γ− (γ−1)F (r,Prω)

(A.196)

mit

F (Prω) =

[
1− 2√

Prs
√−j

J1
(√

Prs
√−j

)
J0
(√

Prs
√−j

)
]
. (A.197)

So bleibt für der Kompressionsmodul in Abhängigkeit von der Schubwellenzahl folgende Bezie-
hung

K =
γ p0

1+(γ−1) 2√
Prs
√−j

J1(
√

Prs
√−j)

J0(
√

Prs
√−j)

. (A.198)

Diese Methode zur Bestimmung des Kompressionsmoduls ist für alle zylindrischen Röhren
gültig. Die Abb. A.7 zeigt der Kompressionsmodul für zylindrische Röhren in Abhängigkeit
von der Schubwellenzahl s, dabei wird im Realteil ersichtlich, dass bei niedrigen Frequenzen
(isothermische Grenze) der Kompressionsmodul dem Umgebungsdruck p0 bei hohen Frequenzen
(adiabatische Grenze) γ p0 entspricht.
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Abbildung A.7: Der Kompressionmodul K von einer luftgefüllten zylindrischen Röhre in Bezug
auf den Umgebungsdruck p0 in Abhängigkeit von der Schubwellenzahl s.
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B Charakterisierungsmethoden

B.1 Homogenisierungstheorie

Aus den vorgestellten Gegebenheiten in Abschnitt 3.2.1 ergeben sich folgender mesoskopischer
Verzerrungs- und Spannungszustand

ε̆εε = A · ·εεε und σ̆σσ = A · ·σσσ . (B.1)

Betrachtet man nun das lokale statische und volumenkraftfreie Randwertproblem (vgl. Gl.(A.36))
auf der Mesoebene

∇ · σ̆σσ = 0 bzw. σ̆i j, jei = 0, (B.2)

löst dieses mit Hilfe des allgemeinen Materialgesetzes auf der Mesoebene

σ̆σσ (x) = C̆(x) · ·ε̆εε (x) bzw. ε̆εε (x) = S̆(x) · ·σ̆σσ (x) , (B.3)

bildet den Volumenmittelwert, abgekürzt durch das Klammersymbol < . >, des mesoskopischen
Spannungs- σ̆σσ (x) bzw. Verzerrungszustandes ε̆εε (x)

σσσ =< σ̆σσ (x)>=
1
V

∫
B

σ̆σσ (x)dV bzw. εεε =< ε̆εε (x)>=
1
V

∫
B

ε̆εε (x)dV (B.4)

und gibt diese wieder an die Makroebene zurück, so ergibt sich für das makroskopische Material-
gesetz

σσσ =< σ̆σσ >=< C̆ · ·ε̆εε (x)>=< C̆ · ·A · ·εεε >=< C̆ · ·A> · ·εεε,
σσσ = Ceff · ·εεε

(B.5)

mit dem effektiven Steifigkeitstensor Ceff auf der Makroebene bzw. dementsprechend

εεε =< ε̆εε >=< S̆ · ·σ̆σσ (x)>=< S̆ · ·B · ·σσσ >=< S̆ · ·B> · ·σσσ ,
εεε = Seff · ·σσσ

(B.6)

mit dem makroskopischen effektiven Nachgiebigkeitstensor Seff. Die makroskopischen Zustände
vom Ort xmeso sind auf der Mesoebene unabhängig. Mit Hilfe des Divergenztheorems∫

B

∇ · fdV =
∫
∂B

n · fdA (B.7)

lassen sich Volumenmittelwerte der mesoskopischen Zustände, unter der Voraussetzung der Inte-
grierbarkeit der Kraft f an den Rändern und im Volumen, auf den Rand des Volumenelements
abbilden, wobei n den nach außen gerichteten Normalenvektor des Randes darstellt. Dies ist
gerade im Fall heterogener Materialen mit sprungartig ändernden Eigenschaften nicht gegeben.
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So wird jede Grenzfläche im Volumenelement einzeln betrachtet. Hierbei stellt sich heraus, dass
sich die zusätzlichen Terme gegenseitig aufheben und somit die nachfolgende Herleitung auch für
heterogene Strukturen gültig ist [81]. Des Weiteren ist die Abbildung der Ränder gültig für die in
diesem Arbeitsumfeld zu Grunde gelegten Theorie kleiner Verformungen für die Spannungs- und
Verzerrungsfelder [112]. Daraus ergibt sich der Vorteil, dass sich die Randterme einfach behandeln
lassen.
Mit dem lokalen statischen und volumenkraftfreien Randwertproblem (Gl. (B.2)) und mit

∇ ·x =
xi

x j
ei · e j = δi j = 1 (B.8)

ergibt sich
∇ · (σσσ ⊗x) = (∇ ·σσσ)⊗x+σσσ∇ ·x =σσσ . (B.9)

Daraus lässt sich die Volumenmittelung des mesoskopischen Spannungszustands wie folgt

< σ̆σσ >=
1
V

∫
B

∇ · (σ̆σσ ⊗x)dV =
1
V

∫
∂B

n · σ̆σσ ⊗xdA =
1
V

∫
∂B

t̆⊗xdA,

< σ̆i j >=
1
V

∫
B

(
σ̆ikx j

)
,k dV =

1
V

∫
∂B

nkσ̆ikx jdA =
1
V

∫
∂B

t̆ix jdA
(B.10)

auf den Rand abbilden [190]. Analog ergibt sich für den mesoskopischen Verzerrungszustand unter
Berücksichtigung der Gl. (A.14)

< ε̆i j >=
1
V

∫
B

1
2

(
ŭi, j + ŭ j,i

)
dV =

1
V

∫
∂B

1
2

(
ŭin j + ŭ jni

)
dA =

1
V

∫
∂B

ŭin jdA,

< ε̆εε >=
1
V

∫
∂B

ŭ⊗ndA
(B.11)

eine Formulierung bezogen auf den Rand. Gemäß der Gl. (A.64) lässt sich eine mittlere Förmän-
derungsenergiedichte

dWF =
1
2
σσσ · ·εεε = 1

2
< σ̆σσ > ··< ε̆εε > (B.12)

in der Makroebene bestimmen. Entspricht die Formänderungsenergiedichte der wahren Verfor-
mung auf der Mesoebene

< dW̆F >=
1
2
< σ̆σσ · ·ε̆εε > (B.13)

der mittleren Formänderungsenergiedichte, so ergibt sich folgende Bedingung

dWF−< dW̆F >= 0 bzw. < σ̆σσ > ··< ε̆εε >−< σ̆σσ · ·ε̆εε >= 0. (B.14)

Diese wird auch HILL-Bedingung genannt [81]. Sie besagt, dass sich ein effektives Medium und
das dazugehörige RVE mechanisch entsprechen, wenn beide dieselbe quantitative Verzerrungs-
energie unter gleichen makroskopischen Verformungen speichern [47]. Gemäß den zuvor beschrie-
benen Zuständen kann ebenfalls die Bedingung auf den Rand des Volumenelements abgebildet
werden. So lässt sich das Produkt mit den Gleichungen (A.14), (A.40) und (B.2)

σσσ · ·εεε = σi jεi j =
1
2

(
ui, j +u j,i

)
=

1
2

(
σi jui

)
, j +

1
2

(
σi ju j

)
,i =

(
σi jui

)
, j (B.15)
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umformulieren. Somit ergibt sich

< σ̆σσ · ·ε̆εε >=
1
V

∫
B

(
σ̆i jŭi

)
, j dV =

1
V

∫
∂B

σ̆i jŭin jdA =
1
V

∫
∂B

t̆iŭidA. (B.16)

Hingegen lässt sich die makroskopische Größe < σ̆σσ > ··< ε̆εε > mit den Gln. (B.11) und (B.10) und
der Beziehung

1 =
1
V

∫
B

1dV =
1
V

∫
B

∇ ·xdV =
1
V

∫
∂B

xin jδi jdA (B.17)

auf drei verschiedene Arten ausdrücken:

< σ̆σσ > ··< ε̆εε >=
1
V

∫
∂B

< σ̆i j > ŭin jdA

=
1
V

∫
∂B

< ε̆i j > t̆ix jdA

=
1
V

∫
∂B

< σ̆i j >< ε̆i j > xin jδi jdA.

(B.18)

Mit dem Trick

< σ̆σσ > ··< ε̆εε >=< σ̆σσ > ··< ε̆εε >+< σ̆σσ > ··< ε̆εε >−< σ̆σσ > ··< ε̆εε > (B.19)

lässt sich < σ̆σσ > ··< ε̆εε >−< σ̆σσ · ·ε̆εε > zu

0 =
1
V

∫
∂B

(
t̆iŭi−< σ̆i j > ŭin j−< ε̆i j > t̆ix j+< σ̆i j >< ε̆i j > xin jδi j

)
dA

=
1
V

∫
∂B

(
t̆i−< σ̆i j > n j

)(
ŭi−< ε̆i j > x j

)
dA

=
1
V

∫
∂B

(
t̆−< σ̆σσ > n

)
(ŭ−< ε̆εε > ·x)dA

(B.20)

umschreiben.

B.2 Periodische Randbedingung: FEM

Die Finite Elemente Methode (FEM) ist ein numerisches Näherungsverfahren zur Lösung komple-
xer Berechnungen und findet überwiegend im Ingenieurwesen Anwendung. Ein weitverbreitetes
Einsatzgebiet ist der rechnerische Nachweis von Neukonstruktionen. Mittels der FEM kann an
virtuellen Prototypen überprüft werden, ob die Anforderungen hinsichtlich der physikalischen
Eigenschaften erfüllt werden.
In der Mechanik gibt es statische und dynamische Probleme, die mit verschiedenen Lösungsansät-
zen berechnet werden können. Zum einen das implizite Lösungsverfahren, welches überwiegend
für statische bis quasi-statische Probleme geeignet ist. Zum anderen das explizite Lösungsverfah-
ren, das bei kurzzeitdynamischen Vorgängen und großen Verzerrungen,wie Crashsimulationen und
Umformprozessen, Anwendung findet.
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Um dabei nicht eine Lösung für ein komplexes Gesamtgebiet zu suchen, wird das Modell diskre-
tisiert, d.h. in endlich viele Elemente unterteilt. Die Lösung wird anschließend für jedes einzelne
Element berechnet. Da die Elemente durch sogenannte Knoten miteinander verbunden sind, sind
auch die mechanischen Gleichungen miteinander gekoppelt. Die Gesamtlösung ergibt sich aus der
Zusammensetzung der Teillösungen der einzelnen Elemente.
Basis zur Generierung von Ergebnissen virtueller Modelle sind, neben den aufgeführten Hilfs- und
Konstruktionsprogrammen, das FE-Programm ANSYS® von der Firma Ansys Inc.
Im Folgenden wird kurz die Finite-Elemente-Umsetzung der periodischen Randbedingungen aus
dem zuvor beschriebenen Abschnitt beschrieben. Hierbei wird zum Teil spezifischen auf den FE-
Code Ansys eingegangen. Als Hilfsmittel standen die Publikationen von Moosrainer [150] und
Schmidt [186] und das Ansys Hilfe System zur Verfügung.
Die Vorgehensweise zur Umsetzung der periodischen Randbedingungen wird exemplarisch an
einem achtknotigen Schalenelement erläutert. Die Abb. B.1 zeigt ein rechteckiges Schalenelement
mit Mittelknoten. Die gewonnen Erkenntnisse können auf dreidimensionale Volumenelemente

1

4 3

25

6

7

8

x

y

1

4 3

25

6

7

8

a) b)

9

10

Abbildung B.1: Umsetzung der periodischen Randbedingungen an einem FE-Schalenelement: a)
Schalenelement mit Knotennummern und b) Schalenelement mit 2 Hilfsknoten

übetragen werden. Eine periodische Kopplung zwischen rechtem und linkem Rand bzw. Master-
und Slave-Kante ergibt für die Verschiebung in x-Richtung durch folgende Gleichungen:

u2 (x)−u1 (x) = 0,

u6 (x)−u8 (x) = 0 und

u3 (x)−u4 (x) = 0.

(B.21)

Dies ergibt jedoch eine starre Verbindung der Ränder, es wäre keine makroskopische Dehnung
der Struktur möglich. Um diese Längung bzw. Dehnung korrekt abbilden zu können, ohne auf die
Kopplung des rechten und linken Schnittrandes zu verzichten, wird ein Hilfsfreiheitsgrad (in Abb.
B.1 Knoten 9) zur Aufnahme der konstanten Verschiebungsdifferenz zwischen den beiden Rändern
eingeführt. Das Gleichungssytem der Verschiebung in x-Richtung unter der Berücksichtigung der
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Längung der Elementarzelle lautet wie folgt:

u2 (x)−u1 (x) = u9 (x) ,

u6 (x)−u8 (x) = u9 (x) und

u3 (x)−u4 (x) = u9 (x) .

(B.22)

Analog ergibt sich für die Periodizität zwischen unterem und oberem Rand in x-Richtung folgende
Beziehungen:

u4 (x)−u1 (x)−u9 (x) = 0,

u7 (x)−u5 (x)−u9 (x) = 0 und

u3 (x)−u2 (x)−u9 (x) = 0.

(B.23)

Des Weiteren ergeben sich ähnliche Beziehungen für die Verschiebungen in y-Richtung und in
z-Richtung bei der dreidimensionalen Betrachtung. Diese Zwangsbdedingungen (engl.: Cons-
traint Equations) können teils automatisch erzeugt werden und den Hilfsknoten, die aus einem
masselosen dreidimensionalen Masseelement bestehen, gekoppelt werden. Betrachtet man die
Eckgleichungen für die Verschiebung in x-Richtung ein weiteres

u2 (x)−u1 (x)−u9 (x) = 0,

u3 (x)−u4 (x)−u9 (x) = 0,

u4 (x)−u1 (x)−u10 (x) = 0 und

u3 (x)−u2 (x)−u10 (x) = 0

(B.24)

und eleminiert die Hilfsvariablen in den ersten beiden und in den letzen beiden Gleichung, erhält
man

u2 (x)−u1 (x)−u3 (x)−u4 (x) = 0 und

u2 (x)−u1 (x)−u3 (x)−u4 (x) = 0,
(B.25)

dabei wird ersichtlich, dass es keine unabhängigen Gleichungen sind, sondern zwei identische
Gleichungen, was zu einer Überbestimmung des Gleichungssystem führt. Aus diesem Grund sind
nur linear unabhängige Gleichungen zu ermitteln. Eine einfache Lösung ist es, eine Eckgleichung
ersatzlos zu streichen [150].

B.3 Mindlin-Platte: PB2-RITZ-Methode

Hier soll die Vorgehensweise der RITZschen Methode nach Liew [132] beschrieben werden.
Betrachten wir eine allgemeine Polygonplatte mit maximaler Länge a ein und maximale Breite
b in Koordinatenachsrichtung. Durch die Annahme eines rechtwinkligen Koordinatensystem, wie
in Abb. B.2a gezeigt, können sich die Formänderungsenergie nach Gl. (A.117) und kinetische
Energie nach Gl. (A.119) bestimmt werden. Zur Verallgemeinerung und Vereinfachung werden die
Koordinaten auf jeweils die maximale Länge der Abmessungen normiert, hierbei werden folgende
dimensionslose Größen

ξ =
2x
a
, η =

2y
b
, τ =

h
b
, w̄ =

2w
b
, a=

b
ab

, λ f = ω2b2

√
ρh
DPl

(B.26)
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Abbildung B.2: Allgemeine Plattenabmaße im a) originalen und b) im normierten Koordinaten-
system.

eingeführt. Die Normalisierung der Koordinaten ermöglicht die Transformation der Plattenabmes-
sungen wie in Abb. B.2b dargestellt. Verwendet man die normalisierten Größen aus Gl. B.26 in
den Energiegleichungen (A.117) und (A.119) erhält man

Ū =
1
2

∫∫
Ā

({(
a
∂ψx

∂ξ
+
∂ψy

∂η

)2

−2(1−ν)
[
a
∂ψx

∂ξ
∂ψy

∂η
− 1

4

(
∂ψx

∂η
+
∂ψy

∂η

)]}

+
6(1−ν)κ

4τ2

[(
ψx +a

∂ w̄
∂ξ

)2

+

(
ψy +a

∂ w̄
∂η

)2
])

dξdη

(B.27)

und

K̄ =
1
2
λ 2

f

∫∫
Ā

[
1

16
w̄2 +

τ2

48

(
ψ2

x +ψ2
y

)]
dξdη , (B.28)

wobei Ā die normaliserte Fläche ist. Daraus lässt sich die normierte LAGRANGEsche Funktion
bestimmen

Π= Ū − K̄. (B.29)

Für das Schwingungsproblem der MINDLIN Platte kann man folgende polynominale Funktionen
für die Annährung des Verschiebungsfeldes aufstellen

w(ξ ,η) =
p1

∑
q=0

q

∑
i=0

cmφw
m (ξ ,η) , (B.30)

ψx (ξ ,η) =
p2

∑
q=0

q

∑
i=0

dmφ x
m (ξ ,η) , (B.31)

ψy (ξ ,η) =
p3

∑
q=0

q

∑
i=0

emφ y
m (ξ ,η) , (B.32)

wobei pi, i = 1,2,3 der Freiheitsgrad des Polynomraums ist, ci, di und ei sind die unbekannten
Koeffizienten. Der Index m bestimmt sich über

m =
(q+1)(q+2)

2
− i, (B.33)
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Die Gesamtzahl der Koeffizienten ci, di und ei sind Nk mit k = 1,2,3, die vom Freiheitsgrad des
Polynomraums pi abhängig ist. Nk berechnet sich aus

Nk =
(pk +1)(pk +2)

2
. (B.34)

Die Funktionen φw
m , φ x

m und φ y
m definieren sich durch

〈φw
m (ξ ,η) ,φ x

m (ξ ,η) ,φ y
m (ξ ,η) ,〉= ξ iηq−1 〈φw

1 (ξ ,η) ,φ x
1 (ξ ,η) ,φ

y
1 (ξ ,η) ,

〉
(B.35)

Die Basisfunktionen φw
1 , φ x

1 und φ y
1 können wie folgt angegeben werden:

〈
φw

1 (ξ ,η) ,φ x
1 (ξ ,η) ,φ

y
1 (ξ ,η) ,

〉
=

〈
ne

∏
j=1

[χ (ξ ,η)]γ
w
j ,

ne

∏
j=1

[χ (ξ ,η)]γ
x
j ,

ne

∏
j=1

[χ (ξ ,η)]γ
y
j

〉
; (B.36)

wobei ne die Nummer der Plattenkante und χ (ξ ,η) die Bedingungsgleichung der jten gelagerten
Kannte ist. Der Exponent γ j ist abhängig von der gelagerten Kantenbedingungen, die sich wie folgt
bestimmen lässt

γw
j =

{
0 frei (F)

1 1 einfach gelagert(S) oder fest eingespannt (C)
(B.37)

γx
j =

{
0 frei (F) oder einfach gelagert (S) in y-Richtung

1 1 einfach gelagert(S) in x-Richtung oder fest eingespannt (C)
(B.38)

γy
j =

{
0 frei (F) oder einfach gelagert (S) in x-Richtung

1 1 einfach gelagert(S) in y-Richtung oder fest eingespannt (C)
(B.39)

Wendet man nun das RITZsche Verfahren an, erhält man〈
∂Π
∂cm

,
∂Π
∂dm

,
∂Π
∂em

〉
= 〈0,0,0〉 , (B.40)

hierbei ist m= 1,2, ...,Nk. Setzt man die Energiegleichungen (B.27)-(B.29) mit den approximierten
Verschiebungsfeldgleicheung (B.30)-(B.32) in die Gl. (B.40) erhält man folgende Eigenwertsglei-
chung: ⎛

⎝
⎡
⎣Kcc Kcd Kce

Kdd Kde

Kee

⎤
⎦−λ 2

f

⎡
⎣Mcc Mcd Mce

Mdd Mde

Mee

⎤
⎦
⎞
⎠
⎡
⎣c

d
e

⎤
⎦=

⎡
⎣0

0
0

⎤
⎦ , (B.41)

wobei die Einträge der Ersatzsteifigkeitsmatrix K und der Ersatzmassenmatrix M sind:

kcc
i j = T

∫∫
Ā

[
a
∂φw

i

∂ξ
∂φw

j

∂ξ
+

1
a

∂φw
i

∂η
∂φw

j

∂η

]
dξdη ; i = 1,2, ..,N1; j = i = 1,2, ..,N1; (B.42)

kcd
i j = T

∫∫
Ā

[
∂φw

i

∂ξ
φx

i

]
dξdη ; i = 1,2, ..,N1; j = i = 1,2, ..,N2; (B.43)

kce
i j = T

∫∫
Ā

[
1
a

∂φw
i

∂ξ
φx

i

]
dξdη ; i = 1,2, ..,N1; j = i = 1,2, ..,N3; (B.44)
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kdd
i j =

∫∫
Ā

[
a
∂φx

i

∂ξ
∂φx

j

∂ξ
+

1−ν
2a

∂φx
i

∂η
∂φx

j

∂η
T

a
φx

i φx
j

]
dξdη ; i = 1,2, ..,N2; j = i = 1,2, ..,N2;

(B.45)

kde
i j =

∫∫
Ā

[
ν
∂φ x

i

∂ξ
∂φy

j

∂η
+

1−ν
2
∂φx

i

∂η
∂φy

j

∂ξ

]
dξdη ; i = 1,2, ..,N2; j = i = 1,2, ..,N3; (B.46)

kdd
i j =

∫∫
Ā

[
1
a

∂φx
i

∂ξ
∂φx

j

∂ξ
+a

1−ν
2
∂φx

i

∂η
∂φx

j

∂η
T

a
φx

i φx
j

]
dξdη ; i = 1,2, ..,N3; j = i = 1,2, ..,N3;

(B.47)

mcc
i j =

1
16a

∫∫
Ā

φw
i φw

j dξdη ; i = 1,2, ..,N1; j = i = 1,2, ..,N1; (B.48)

mcd
i j = 0; i = 1,2, ..,N1; j = i = 1,2, ..,N2; (B.49)

mce
i j = 0; i = 1,2, ..,N1; j = i = 1,2, ..,N3; (B.50)

mdd
i j =

τ2

48a

∫∫
Ā

φx
i φx

j dξdη ; i = 1,2, ..,N2; j = i = 1,2, ..,N2; (B.51)

mde
i j = 0 i = 1,2, ..,N2; j = i = 1,2, ..,N3; (B.52)

mdd
i j =

τ2

48a

∫∫
Ā

φy
i φ

y
j dξdη ; i = 1,2, ..,N3; j = i = 1,2, ..,N3; (B.53)

mit der Zwischengröße

T=
6(1−ν)κ

4τ2 . (B.54)

B.4 Kenngrößen geordneter Kugelpackungen

In diesem Abschnitt sollen auf einige repräsentative Kenngrößen von theoretisch geordneter (Hohl-
) Kugelpackungen vorgestellt werden.
In Tabelle B.1 werden drei verschiedene charakterisierende Kenngrößen für die idealen kubische
Packungen (KP, KRZ und KFZ) gezeigt. Zudem wird die periodische VORONOI-Zelle für diese
Packungssteme abgebildet. Für die KP-Anordnug ergibt sich ein Würfel und für KRZ und KFZ
jeweils ein regelmäßiger Polyeder. Als weitere Kenngröße wird die Bindungswinkel-Verteilung
aufgeführt. Für die KP-Anordnung ergeben sich auschlichlich Winkel von 90° und 180°. Markante
Winkel bei der KRZ-Anordnung sind 70°, 109° und 180°. Bie der HDP-Anordnung zeigen sich
caharkteristische Winkel bei 60°, 90°, 120 und 180°. Zuletzt werden die Paarkorrelationsfunktio-
nen für die drei Packungsanordnungen präsentiert. Bei allen Packungen ensteht ein Maximum bei
Eins, was den direkten Kontakt der Kugeln hervorhebt. Als weitere Maxima zeigen sich Werte von√

2,
√

3, 2 usw.
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B.5 Akustische Messmethoden

B.5.1 Zwei-Mikrofon-Methode

Bei der Zwei-Mikrofon-Methode nach DIN 10534-2 [162] wird der Prüfling vor einer schallharten
Stahlplatte platziert. Dabei werden die einfallende und die reflektierte Schallwelle untersucht. Mit
dieser Methode lässt sich aus den aufgenommen Druckverläufen der Absorptionsgrad α eines
porösen Materials bestimmen.
Die Transferfunktionsmethode basiert auf der Tatsache, dass der Reflektionskoeffizient r bei
senkrechter Einschallung aus der gemessenen Übertragungsfunktion H12 zwischen den beiden
Mikrofonen, welche vor der zu untersuchenden Probe angebracht sind, bestimmt werden kann.
Somit ergibt sich die komplexe Übertragungsfunktion H12 zu

H12 =
p2

p1
=

pB

pA
=

ejk0x2 + re−jk0x2

ejk0x1 + re−jk0x1
, (B.55)

wobei p1 und p2 die komplexen Schalldruckamplituden wie in Abb. B.3a an den Mikrofonpositio-
nen x1 und x2 sind und sich folgendermaßen bestimmten lassen

p1 =Ae−jk0x1 +Bejk0x1 und p2 =Ae−jk0x2 +Bejk0x2 . (B.56)

Die Wellenzahl bestimmt sich über

k0 =
2π f
c0

=
2π
λ0

. (B.57)

Die Transferfunktion der einfallenden Schallwelle Hin und der reflektierten Welle Href ergibt sich
zu

Hin =
A2

A1
= e−jk0(x2−x1) und Href =

B2

B1
= ejk0(x2−x1). (B.58)

Kombiniert man die einzelnen Gleichungen, erhält man den komplexen Reflektionskoeffizienten r

r =
H12−Hin

Href−H12
e−j2k0x1 . (B.59)

Durch den schallharten Abschluss ergibt sich für den Absorptionskoeffizient

α = 1−|r|2 . (B.60)

B.5.2 Vier-Mikrofon-Methode

Das Vier-Mikrofon-Impedanzrohr ist eine Weiterentwicklung des Zwei-Mikrofon-Impedanzrohres
(KUNDTsches Rohr) [198]. Es wurde durch zwei Mikrofone hinter dem Prüfling ergänzt im
sogenannten Übertragungs-Raum (siehe Abb. B.3b). Zudem ist kein schallharter Abschluss mehr
vorhanden. Der Lautsprecher im Erzeugerraum wird, wie bei der Zwei-Mikrofon-Methode, mit
einem stationären „weißen“ Rauschsignal angesteuert. Ein Teil der Schallwelle wird an der
Prüflings-Oberfläche reflektiert. Ein anderer Teil der Schallwelle wird durch den Prüfling in den
Übertragungsraum übertragen.
Bei beiden Vorgängen wird ein Teil der Schallenergie gedämpft. Dies entsteht bei offenporigen
und faserigen Schichten durch Reibung der Luftteilchen, bei weichen geschlossenporigen Stoffen
durch Kompressionsvorgänge und damit verbundene Verluste. Durch die Reflektion entsteht im
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Abbildung B.3: Schemaskizzen Impedanzrohr: a) Zwei-Mikrofon-Methode, b)Vier-Mikrofon-
Methode.

Erzeugerraum eine Überlagerung von hin- (A) und zurücklaufenden (B) Wellen, eine sogenannte
stehende Welle.
Durch eine FOURIER-Transformation lässt sich der Schalldruck im Erzeugerraum der resultieren-
den Welle beschreiben mit

pEr =Ae−jk0xn +Bejk0xn . (B.61)

Hier ist A die komplexe Amplitude der einfallenden, B die komplexe Amplitude der reflektierten
Welle und k0 die Wellenzahl des Fluides. Dieser Effekt tritt ebenfalls im Übertragungsraum auf,
wobei es hier unerheblich ist, ob das Ende des Impedanzrohres geschlossen ist oder nicht. Dies ist
für den Fall des offenen Endes des Impedanzrohres gültig, da sich die Impedanz Z beim Übergang
der Schallwelle in den freien Raum verändert

Z2 = Z1
A1

A2
. (B.62)

Aus der allgemeinen Überlegung folgt für den Reflektionskoeffizient rak in diesem Fall

rak =
Z2−Z2

Z1 +Z2
. (B.63)

Durch Kombination beider Gleichungen, ergibt sich der Reflektionskoeffizient rak in direkter
Abhängigkeit zum Verhältnis der Querschnitte, definiert durch n = A1

A2
, zu

rak =
n−1
n+1

. (B.64)

Für den Schalldruck im Übertragungsraum folgt analog zum Erzeugerraum

pÜr = Ce−jk0xn +De−jk0xn . (B.65)

Hier ist C die komplexe Amplitude der einfallenden und D die komplexe Amplitude der reflektier-
ten Welle. Durch den Einsatz der Vier-Mikrofon-Methode an den entsprechenden vier Positionen,
ergeben sich folgende komplexe Schalldruck-Gleichungen

p1 =Ae−jk0x1 +Be−jk0x1 , p2 =Ae−jk0x2 +Be−jk0x2 ,

p3 = Ce−jk0x3 +De−jk0x3 , p4 = Ce−jk0x4 +De−jk0x4 .
(B.66)
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Formt man die Gleichungen für p1 bis p4 um, so ergeben sich die komplexen Koeffizienten A bis
D, die zur Berechnung der Schalldrücke und Schallschnellen an der Oberfläche der Werkstoffprobe
benötigt werden zu

A=
j
(

p1e−jk0x2− p1e−jk0x1
)

2sin(k0 (x1− x2))
, B =

j
(

p2e−jk0x1− p2e−jk0x2
)

2sin(k0 (x1− x2))
,

C = j
(

p3e−jk0x4− p1e−jk0x3
)

2sin(k0 (x3− x4))
, D =

j
(

p4e−jk0x3− p2e−jk0x4
)

2sin(k0 (x3− x4))
.

(B.67)

Mit Hilfe einer Transfermatrix lässt sich die Anhängigkeit dieser vier Größen untereinander
darstellen [

p
v

]
x=0

=

[
T11 T12
T21 T22

]
·
[

p
v

]
x=d

. (B.68)

Hierbei ist p der Schalldruck und v die Schallschnelle an der Oberfläche des Materials. Somit folgt
für den Schalldruck am linken und rechten Rand der Probe:

p|x=0 =Ae−jk00 +Bejk00 =A+B,
p|x=d = Ce−jk0d +Dejk0d.

(B.69)

Zieht man den allgemeingültigen, grundlegenden Zusammenhang zwischen der Schallschnelle und
dem Schalldruck

∂vx

∂ t
=

1
ρ0

∂ p
∂x

(B.70)

hinzu und setzt man den Schalldruck und die Schallschnelle hier ein, ergibt sich durch geschicktes
Zusammenfassen

vx (x, t) =
1
ρ0c

(
Ae−j(k0x−ωt) +Bej(k0x−ωt)

)
. (B.71)

Mittels einer FOURIER-Transformation ergibt sich im Frequenzbereich die Schallschnelle als
komplexes Spektrum

vx (x,ω) =
1
ρ0c

(
Ae−jk0x +Bejk0x

)
(B.72)

Die Schallschnelle an der Probenoberfläche ergibt sich somit zu

v|x=0 =
Ae−jk00 +Bejk00

ρ0c
=
A−B
ρ0c

,

v|x=d =
Ce−jk0d +Dejk0d

ρ0c
.

(B.73)

B.5.3 Two-Load-Methode

Mit Hilfe der komplexen Schalldrücke p1 bis p4 werden wie oben erläutert die komplexen
Koeffizienten A bis D berechnet. Hierbei präsentiert sich nur eine Herausforderung: Die Matrix
enthält vier Unbekannte, die Messung liefert jedoch nur zwei Gleichungen. Somit werden noch
zwei weitere Gleichungen benötigt. Bei der Two-Load-Methode werden diese zwei Gleichungen
durch eine zweite Messung mit geändertem Abschluss des Impedanzrohres erzeugt. Beispielsweise
kann hierzu ein schallschluckender Abschluss eingesetzt werden, wie die Abb. B.3b am rechten
Rand verdeutlicht. Die Transfermatrix wird hierdurch erweitert und kann eindeutig gelöst werden:[

p1 p2
v1 v2

]
x=0

=

[
T11 T12
T21 T22

]
·
[

p1 p2
v1 v2

]
x=d

(B.74)
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Nach einer entsprechenden Umstellung der Transfermatrix und Bildung der inversen Matrix erge-
ben sich die Matrixelemente T11 bis T22 zu:

T11 =
p2|x=0 v1|x=d− p1|x=0 v2|x=d

p2|x=d v1|x=d− p1|x=d v2|x=d

T12 =
p2|x=0 p1|x=d− p1|x=0 p2|x=0

v2|x=d p1|x=d− v1|x=d p2|x=d

T21 =
v2|x=0 v1|x=d− v1|x=0 v2|x=d

p2|x=d v1|x=d− p1|x=d v2|x=d

T22 =
v2|x=0 p1|x=d− v1|x=0 p2|x=0

v2|x=d p1|x=d− v1|x=d p2|x=d

(B.75)

B.5.4 One-Load-Methode

Anstatt wie bei der Two-Load-Methode eine zweite Messung durchzuführen, gibt es auch die
Möglichkeit, zwei weitere Gleichungen zur Lösung des Gleichungssystems einzuführen. Diese
Möglichkeit der Lösung ist jedoch ausschließlich bei Materialien praktikabel, die eine homogene
und isotrope Beschaffenheit aufweisen. Unter dieser Annahme folgt für die Transfermatrix:

T11 = T22 und (B.76)

T11T22−T12T21 = 1. (B.77)

B.5.4.1 Bestimmung der akustischen Parameter

Zur Berechnung der akustischen Kennwerte soll nun zuerst von einem idealen, nicht reflektie-
renden Abschluss ausgegangen werden, wodurch die Schallwelle D im Übertragungsraum nicht
existiert. Normiert man die Gleichungen für den Schalldruck und die Schallschnelle auf die
einfallende Welle A, folgt

p|x=0 = 1+ r,

v|x=0 =
1− r
ρ0c

,

p|x=0 = te−jk0d,

v|x=0 =
te−jk0d

ρ0c
.

(B.78)

Aufgrund der Definition des Reflektions- und des Transmissionsfaktors durch

rak =
B
A und t =

C
A (B.79)

folgt für den reflektionsfreien Abschluss

rak =
T11 +

T12
ρ0c −ρ0cT21−T22

T11 +
T12
ρ0c −ρ0cT21 +T22

und (B.80)

tak =
T11 +

2ejk0d

ρ0c

T11 +
T12
ρ0c −ρ0cT21 +T22

. (B.81)
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Die Oberflächenimpedanz der Sendeseite ergibt sich zu

Zs =
T11 +

T12
ρ0c

T21 +
T22
ρ0c

. (B.82)

Die Wellenausbreitung innerhalb des Absorbers können durch folgenden Ausdruck[
T11 T12
T21 T22

]
=

[
cos(kad) j sin(kad)ρaca

j sin(kad)ρaca cos(kad)

]
(B.83)

beschrieben werden. Dabei ist ka die komplexe Wellenzahl und Za = ρaca die charakteristische
Impedanz des Absorbermaterials. Durch Umkehr der oben aufgeführten Beziehung, kann man ka

Za folgendermaßen bestimmen

ka =
1
d

cos−1 T11 oder

ka =
1
d

sin−1√−T12T21

(B.84)

und

Za = ρaca =

√
T12

T21
. (B.85)

Neben den Impedanzrohr-Messmethoden gibt es weitere Messmethoden, wie das bereits erwähnte
Hallraummessverfahren nach ISO 354 [161]. Der Hallraummessmethode liegt die Nachhallzeit-
formel nach Sabine [182] zu Grunde. Diese Messmethode basiert auf der Erkenntnis, dass der
stationäre Schalldruckpegel oder das Abklingen des Schalldruckpegels nach Abschalten einer
Schallquelle in geschlossen Räumen unter anderem von der schallabsorbierenden Eigenschaft der
Wandbegrenzung abhängt. In mehreren Messreihen wird die mittlere Nachhallzeit in einem be-
messenen Hallraum mit und ohne Prüfobjekt, sprich Absorbermaterial, bestimmt. Die gemessenen
Werte beziehen sich beim Hallraumverfahren auf das diffuse Schallfeld, in dem der Schall nahezu
gleichmäßig verteilt ist.

B.6 JOHNSON-CHAMPOUX-ALLARD-PRIDE-LAFRAGE-Modell

Eine Erweiterung des JOHNSON-CHAMPOUX-ALLARD-Modells stellt das JOHNSON-CHAMPOUX-
ALLARD-PRIDE-LAFRAGE-Modell dar. Wie bei dem Modell von Johnson, Champoux und Allard
beruht die Beschreibung der dissipativen viskos-trägen Effekte auf den Arbeiten von Johnson,
Koplik und Dashen, zusätzlich werden die Effekte der Arbeit von Pride, Morgan und Gangi
integriert. Bei den thermisch dissipativen Effekten wird das Modell um die Erkenntnisse der Arbeit
von Pride Morgan und Gangi bzw. Lafrage, Lemarinier, Allard und Tranow erweitert.
Ausgehend von der Arbeit von Johnson [104] über das halb-phänomenologische Modell zur Be-
schreibung komplexer Dichten eines porösen Akustikmaterials mit starrem Strukturskelett, wurde
das Modell durch Pride [169] weiter verfeinert und durch Lafarge [118] überarbeitet. Mit Hilfe der
Zwischengrößen

Mv =
8μVα∞
φΞΛ2

v
und Pv =

Mv

4
(
α0
α∞ −1

) (B.86)
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und der viskosen Kreisfrequenz

ωv =
ωρ0α∞
φΞ

(B.87)

kann der Zwischenterm

Fv (ω) = 1−Pv +Pv

√
1+

Mv

2P2
v

jωv (B.88)

gebildet werden. Dabei stellen α0 die statische viskose Verwundenheit und α∞ die viskose Verwun-
denheit an der Hochfrequenzgrenze dar. α∞ entspricht dem Strukturformfaktor α∞ des JOHNSON-
CHAMPOUX-ALLARD-Modells. Die übrigen drei weiteren Parameter können aus dem JOHNSON-
CHAMPOUX-ALLARD-Modell entnommen werden. So kann mit den fünf Parametern die effektive
Dichte

ρeff (ω) = ρ0

[
1+

1
jω

Fv (ω)
]

(B.89)

beschrieben werden. Die thermischen Effekte lassen sich mit den Zwischengrößen

Mt =
kt0

φΛ2
t

und Pt =
Mt

4(αt0−1)
(B.90)

und der thermischen Kreisfrequenz

ωt =
ωρ0kt0Pr
φμ

(B.91)

mit dem Zwischentermen

Ft (ω) = 1−Pt +Pt

√
1+

Mt

2P2
t

jωt und

βt (ω) = γ− (γ−1)

[
1+

1
jωt

Ft (ω)
] (B.92)

bestimmen. Der Kompressionsmodul lässt sich aus den vier Parametern, die Porosität φ , die
thermisch charakteristische Länge beziehungsweise dem thermischen Formfaktor cv, die statisch
thermische Leitfähigkeit kt0 und die statisch thermischen Verwundenheit αt0 folgendermaßen
bestimmen:

K (ω) =
γ p0

βt (ω)
. (B.93)

Dieses Modell kann zum JOHNSON-CHAMPOUX-ALLARD-LAFARGE-Modell vereinfacht wer-
den, indem man Pt = Pv = 0 setzt. Daraus ergibt sich

αt0 = 1,25 und αt0 = α∞
2μ

V

Ξ α∞+φΛ
2
v

φΛ2
v

. (B.94)

Mit der weiteren zusätzlichen Bedingung Mv = 0 bzw.

kt0 =
φΛ2

t

8
(B.95)

reduziert sich das JOHNSON-CHAMPOUX-ALLARD-LAFARGE-Modell zum JOHNSON-CHAM-
POUX-ALLARD-Modell. Eine kleine Übersicht über die theoretischen Absorbermodelle soll die
Tabelle B.2 geben.
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Tabelle B.2: Übersicht über die Absorbermodelle mit zunehmender Komplexität - starres Mo-
dellskelett der porösen Struktur (nach [1, 101]).

.

Art der senkrechte geneigte ungleichförmige ungleichförmige
Material- zylindrische zylindrische Poren Poren mit

morphologie Poren Poren möglichen
Verengungen

Anzahl der 2 3 4-6 8
Parameter

Modelle Zwikker Kosten Miki Attenborough Johnson-
mit φ , Ξ= η

k0
φ , Ξ, α∞ φ , Ξ, α∞, b Champoux-

Parametern Allard-
Wilson Pride-

ρ∞, τvor, K∞, τent Lafarge
φ , Ξ, α∞, Λv,

Johnson- α0, Λt, kt0, α ′0
Champoux-

Allard-
Pride
φ , Ξ, α∞
Λv, Λt, kt0
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C Resultate

C.1 Sonderfall: Periodische Randbedingung für ideale Anord-
nung

Neben den periodischen Randbedingungen für kubische Strukturen wurden spezielle periodische
Randbedingungen für ideale Strukturen im einachsigen Zug- und Druckfall betrachtet. Sie sind
ausdrücklich nur bei dieser Belastungsart gültig.

C.1.1 Kubische Elementarzellen

Sinnbildlich sind in den Abb. C.1a und C.1b das Funktionsprinzip der Randbedingung und der
dazugehörigen Lagerdefinition gezeigt. Symbolisch wird die Sperrung der Richtungen, in der sich
der Körper nicht verschieben soll, durch das Loslager-Symbol dargestellt und die Last durch einen
grauen Pfeil. Die Abbildungen C.1a und C.1b zeigen durch Loslager-Symbole an den Kanten der

(a) Ansicht von oben (b) Seitenansicht

Abbildung C.1: Sinnbildliche Funktionsweise der Befehle zur periodischen Randbedingung

x-, y- und z-Richtung die typische Lagerung, wie sie aufgrund der Symmetriebedingung vorge-
nommen wird. Im FE Programm sind die Randbegingungen mit Hilfe eines Makros einzustellen,
dass sich der Würfel bei Belastung in x- und y-Richtung ausdehnen darf. Dabei ist sichergestellt,
dass sich die bewegende Fläche parallel zur, oder entgegen, der gesperrten gegenüberliegenden
Fläche bewegen kann. In Abb. C.1a ist dies sinnbildlich durch die Loslagerkonstruktionen oben
und rechts zu erkennen, sowie in Abb. C.1b an der rechten Fläche.

C.1.2 Hexagonal dichtest gepackte Elementarzelle

Die bisher gezeigten kubischen Elementarzellen sind in der x-, y- und z-Richtung symmetrisch.
Die HDP-Elementarzelle zeigt gewisse Symmetrien, ist aber nicht in der x-, y- und z-Richtung
symmetrisch. Aufgrund dieser Eigenschaft wird die HDP-Elementarzelle durch zwei verschiedene
Lastfälle untersucht.
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(a) (b)

Abbildung C.2: HDP-Elementarzelle: a) Draufsicht, b) Seitenansicht.

Den ersten Fall der untersucht wird, zeigt Abb. C.2a (HDP Elementarzelle in der Draufsicht). Hier
wird später die Last aufgegeben und es ist eine Symmetrie zu erkennen.Die Abb. C.3 zeigt ein
sechseckiges Prisma. In Abb. C.3a sind die Lagerung und die mit dem Makro geführten Flächen
zu erkennen. Abbildung C.3b zeigt die Last, die in Richtung der z-Achse erfolgt.

(a) (b)

Abbildung C.3: HDP-Elementarzelle: a) Lagerung, b) Last.

(a) (b)

Abbildung C.4: HDP-Elementarzelle: a) Vorderansicht, b) Lagerung und Last

C.2 Sinterstellenwinkel

Zusätzlich zu den vorgestellten Ergebnissen in Abschnitt 4.2.1 werden in diesem Anhangsteil die
Variation des Sinterstellwinkels für verschiedene regelmäßige Hohlkugelpackungen (KP, KRZ,
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KFZ und HDP) vorgestellt. Es wird jeweils der relative Elastizitätsmodul und Querkontraktions-
zahl bezogen auf das Verhältnis von Wanddicke zu Hohlkugeldurchmesser bzw. auf die relative
Dichte gezeigt.

C.2.1 Kubisch-Primitiv

Die Abb. C.5 präsentiert die für die kubisch-primitive Elementarzelle mit vier verschiedenen
Sinterstellenwinkeln von 5° bis 20° den relativen Elastizitätsmodul in Abhängigkeit vom Verhältnis
Wanddicke zu Hohlkugeldurchmesser. Es stellen sich ähnliche Kurvenverläufe für diese Parame-
tervariation wie bei der Variation des Sinterstellendurchmessers in Abschnitt 4.2.1 ein. Bezieht
man den relativen Elastizitätsmodul auf die relative Dichte erhält man nahezu lineare Verläufe im
doppel-logarithmischen Diagramm (siehe Abb. C.5). Die Abb. C.6 zeigt den Querkontraktionsver-
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Abbildung C.5: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf den Elastizitätsmodul.

lauf in Bezug auf das Verhältnis Wanddicke zu Hohlkugeldurchmesser bzw. die relative Dichte. Es
lässt sich ein Zusammenhang zwischen Querkontraktionszahl und dem geometrischen Verhältnis
erkennen. Mit steigendem Verhältnis von Wanddicke zu Hohlkugeldurchmesser nimmt ebenfalls
die Querkontraktionszahl zu. Einen ähnlichen Verlauf erkennt man bei der Abbildung über die
relative Dichte.

C.2.2 Kubisch-Raumzentriert

Die Abb. C.7 zeigt für die kubisch-raumzentrierte Elementarzelle mit vier verschiedenen Sin-
terstellenwinkeln (5° bis 20°) den relativen Elastizitätsmodul in Abhängigkeit vom Verhältnis
Wanddicke zu Hohlkugeldurchmesser und relativer Dichte. Die dazugehörenden Querkontrak-
tionsverläufe in Bezug auf das geometrische Verhältnis bzw. auf die Dichte ist in Abb. C.8
dargestellt. Es kann ebenfalls der Zusammenhang festgestellt werden, dass mit zunehmenden
geometrischen Verhältnis von Wanddicke zu Kugeldurchmesser bzw. zunehmeder relativer Dichte
die Querkontraktionszahl steigt. Im Gegensatz zu KP-Anordnung befinden sich die Werte der
Querkontraktionszahl ausschliesslich im negativen Bereich.
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Abbildung C.6: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf die Querkontraktionszahl.
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Abbildung C.7: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf den Elastizitätsmodul und die Querkontraktionszahl.

C.2.3 Kubisch-Flächenzentriert

Die Abb. C.9 gibt die Verläufe des relativen Elastizitätsmoduls für die KFZ-Anordnung wieder.
Betrachtet man die Verläufe erkennt man eine größerer Zunahme des relativen Elastizitätsmoduls
gegenüber der KP- und KRZ-Anordnung. Den Verlauf der Querkontraktion in Abhängigkeit vom
Verhältnis von Wanddicke zu Hohlkugeldurchmesser bzw. von der relativen dicht ist Abb. C.10
dargelegt. Im Vergleich zu den Verläufen der KP- und KRZ-Anordnung zeigt der Querkontrakti-
onszahlverlauf der KFZ-Anordnung die größte Varianz.

C.2.4 Hexagonal-Dichtest-Gepackt

Abbildung C.11 veranschaulicht den Verlauf des relativen Elastizitätsmoduls für die HDP-Anordnung.
Der Querkontraktionsverlauf für diese Anordnung kann aus Abb. C.12 entnommen werden. Beide
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Abbildung C.8: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf den Elastizitätsmodul und die Querkontraktionszahl.
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Abbildung C.9: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluß auf den Elastizitätsmodul und die Querkontraktionszahl.

Verläufe ähneln den Verläufen der KFZ-Anordnung sehr stark.
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Abbildung C.10: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstan-
tem Kugeldurchmesser, Einfluß auf den Elastizitätsmodul und die Querkontraktionszahl.
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Abbildung C.11: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstan-
tem Kugeldurchmesser, Einfluß auf den Elastizitätsmodul und die Querkontraktionszahl.
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Abbildung C.12: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstan-
tem Kugeldurchmesser, Einfluß auf den Elastizitätsmodul und die Querkontraktionszahl.
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C.3 Schallabsorption

Die folgenden Abb. C.13, C.14, C.15 und C.16 zeigen jeweils den Real- und Imaginärteil der
charakterisierenden Größen, charakteristische Impedanz und komplexe Wellenzahl für die Probe
HKS 86. In den Diagrammen stellt die Volllinie das JOHNSON-CHAMNPOUX-ALLARD- Modell,
die gestrichelte Linie die Messung mit der One-Load Methode und die gepunktete Linie die
Messung mit der Two-Load Methode dar. Abbildung C.17 präsentiert akustische Absorberwete
für einem Hartschaum und einem Fasermaterial.
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Abbildung C.13: HKS 86: Realteil der Wellenzahl Zc für verschiedene Probendicken.
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Abbildung C.14: HKS 86: Imaginärteil der Impedanz Zc für verschiedene Probendicken.
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Abbildung C.15: HKS 86: Realteil der Wellenzahl ka für verschiedene Probendicken.
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Abbildung C.16: HKS 86: Imaginärteil der Wellenzahl ka für verschiedene Probendicken.
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(a) Hartschaum (b) Fasermaterial
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Abbildung C.17: Übersicht über die Kennwerte der Polymerschäume, Proben, Real- und Imagi-
närteil der Wellenzahl und Real- und Imaginärteil der Impedanz.
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C.4 Schallgeschwindigkeitskörper

Zur Bestimmung des allgemeinen Anisotropiefaktors A�
Aniso nach Ledbetter und Migliori [126]

benötigt man die maximale bzw. minimale Schubwellenausbreitungsgeschwindigkeit, auch trans-
versale Schallgeschwindigkeit genannt. Geht man von der CAUCHY-EULERschen Bewegungsglei-
chung

∇ ·σσσ + fV = ρ ẍ bzw.

σi j, j + f V
i = ρ ẍi

(C.1)

aus und nutzt das lineare HOOKEsche Materialgesetz

σσσ = C · ·εεε bzw.

σi j =Ci jklεkl,
(C.2)

wobei

εεε =
1
2

[
∇u+(∇u)T

]
bzw.

εkl =
1
2

(
ul,k +uk,l

) (C.3)

ist, erhält man durch Einsetzen von Gl. (C.2) und Gl. (C.3) in Gl. (C.1) bei Vernachlässigung der
Volumenkräfte folgende Bewegungsgleichung:

C ·∇2u−ρ ẍ = 0 bzw.

Ci jkluk,l j−ρ ẍi = 0
(C.4)

Die harmonische Ebenen-Wellen-Verschiebungen können wie folgt:

u(x, t) = ûpej(k·x−ωt)

u(x, t) = ûpej( 1
c d·x−t) bzw.

ui = ûpie
j( 1

c n j·x j−t)
(C.5)

mit

k = kd bzw. ki = kdi (C.6)

und

c =
ω
k

(C.7)

ausgedrückt werden. Hierbei stellt û den Amplitudenfaktor, p den Polarisations-Einheitsvektor,
n den Ausbreitungs Einheits-Richtungsvektor, k den Wellenzahlvektor und c die Phasen- bzw.
Ausbreitungsgeschwindigkeit dar. Setzt man die Gl.(C.5) und Gl. (C.6) in Gl. (C.4) ein, ergibt sich
die monochromatische Ebenen-Wellen-Gleichung [153, 157]:(

C · ·d−ρc2I
) ·p = 0 bzw.(

Ci jkld jdl−ρc2δik
)

pk = 0.
(C.8)
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Diese CHRISTOFFEL-Gleichung für anisotrope Festkörper lässt sich auf ein Eigenwertproblem mit
drei Eigenwerten ρc2 reduzieren: ∣∣C · ·d−ρc2I

∣∣= 0 bzw.∣∣Ci jkld jdl−ρc2δik
∣∣= 0.

(C.9)

Aus den Eigenwerten können die drei Ausbreitungsgeschwindigkeiten bestimmt werden. Für reine
longitudinale ebene Körperschallwellen sind der Polarisationsvektor p und der Ausbreitungsvektor
n parallel zueinander. Für reine transversale (Schub-) Wellen stehen der Polarisationsvektor p und
der Ausbreitungsvektor n senkrecht aufeinander. In den anderen Fällen breitet sich eine quasi-
longitudinale bzw. quasi-transversale Welle aus.
Im Folgenden sind für die idealen Hohlkugelstruktur Elementarzellen in den Abbildungen C.18 bis
C.20 (KP, KRZ und KFZ) die quasi-longitudinale und die zwei transversale Schallgeschwindigkeit
darstellt. Die Berechnungen sind mit folgenden Hohlkugelparametern t

D = 0,01 und Sinterstel-
lenwinkel von 17.4° durchgeführt worden. Die Schallgeschwindigkeit wird in den Diagrammen
relativ zur longitudinalen Schallgeschwindigkeit des isotropen Strukturmaterials (z.B. Stahl) an-
gegeben. Abbildungen C.21 - C.24 zeigen die relativen Köperschallgeschwindigkeiten für die
zufällig geordneten repräsentativen Volumenelemente-Modelle.
In Winkler et al. [224] wurde für die Probe HKS 113 longitudinale Schallgeschwindigkeit in
einem Bereich von 1532 m

s bis 1644 m
s gemessen. Geht man von einer longitudinalen Kö-

perschallgeschwindigkeit von 5850 m
s [178] aus, ergibt sich eine relative quasi-longitudinale

Schallgeschwindigkeit im Bereich von 26,3% bis 28,2%. Vergleicht man diese Werte mit der
relativen quasi-longitudinalen Schallgeschwindigkeit der RVE mit 55% Packungsdichte in der
Abb. C.21 bei einem Verhältnis von Wanddicke zu Kugeldurchmesser von 0,01 und in der Abb.
C.25 bei einem Verhältnis von Wanddicke zu Kugeldurchmesser von 0,04, erkennt man eine gute
Übereinstimmung. Für die Probe HKS 113 wurde ein t

D = 0,25 und einer Packungsdichte von
57% ermittelt (siehe Kapitel 4).

https://doi.org/10.51202/9783186759054 - Generiert durch IP 216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186759054


Resultate 185

2. transversal
1. transversal

longitudinal

y

x

xy-Ebene2. quasi-transversal

1. quasi-transversalquasi-longitudinal

z

y
x

z

y
x

z

y
x

Relative Schallgeschwindigkeit [ ]

−0,2 0 0,2
−0,2

0
0,2

0,4

−0,2
0

0,2

−0,2
0

0,2

−0,2

0

0,2

−0,2
0
0,2

0,4

−0,2
0

0,2

−0,2
0

0,2

−0,2

0

0,2

0,4

−0,2

0

0,2

−0,2

0

0,2

Abbildung C.18: Richtungsabhängige Körperschallgeschwindigkeit für KP-Elementarzelle.
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Abbildung C.19: Richtungsabhängige Körperschallgeschwindigkeit für KRZ-Elementarzelle.
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Abbildung C.20: Richtungsabhängige Körperschallgeschwindigkeit für KFZ-Elementarzelle.
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Abbildung C.21: Richtungsabhängige Körperschallgeschwindigkeit für RVE mit 55% Packungs-
dichte.
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Abbildung C.22: Körperschallgeschwindigkeit für RVE mit 62% Packungsdichte.
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Abbildung C.23: Körperschallgeschwindigkeit für RVE mit 66% Packungsdichte.
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Abbildung C.24: Körperschallgeschwindigkeit für RVE mit 69% Packungsdichte.
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Abbildung C.25: Richtungsabhängige Körperschallgeschwindigkeit für RVE mit 55% Packungs-
dichte bei einem Verhältis von Wanddicke zu Kugeldurchmessser von 0,04.
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Symbolverzeichnis

Mathematische Operatoren und Symbole

a ·b = aibi Skalarprodukt von Vektoren und Tensoren
a×b = εi jkaibiek Kreuzprodukt zweier Vektoren
a⊗b = aibiei⊗ ei Tensorprodukt
A ·B = Ai jB jkei⊗ ek einfache Kontraktion zweier Tensoren
A · ·B = Ai jklBklei⊗ e j zweifache Kontraktion zweier Tensoren
grad(a) = ∇a = ∂

∂x j
aiei⊗ e j Gradient (räumliche Betrachtung)

div(A) = ∇ ·A = Ai jei⊗ e j
∂
∂xk

ek =
∂
∂xk

Aikei Divergenz
div(grad(a)) = ∇ · (∇a) = ∇2a = Δa Laplace Differentialoperator
Spur(A) = Aii Spur eines Tensors
sym(A) = 1

2

(
A+AT

)
Symmetrischer Anteil

skew(A) = 1
2

(
A−AT

)
Antisymmetrischer Anteil

(.)T, AT = Ai je j⊗ ei Transposition, Beispiel Tensor zweiter Stufe
∂
∂ t (.),

d
dt (.),

˙(.), (.),t Zeitableitung
∂
∂x (.),

d
dx (.), (.)

′, (.),x Ortsableitung am Beispiel nach x
d(.) infinitesimal kleine Größe
�(.) finitesimal kleine Größe
δi j(.) Kronecker-Symbol (1 für i = j, sonst 0)
∂
∂ (.) partielle Ableitung
εi jk Permutationssymbol
f(·) Funktion von (·)
I = δi jei⊗ e j = ei⊗ ei Identität
Im{·} Imaginärteil der komplexen Zahl(·)
Re{·} Realteil der komplexen Zahl(·)

Formelzeichen (lateinisch)

a Länge
a Ortsvektor im materiellen Koordinatensystem
A Fläche
AAniso ZENERsche Anisotropiefaktor
A∗Aniso allgemeingültiger Anisotropiefaktor
A Zuordnungstensor

b Breite
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b Beschleunigungsfeld
B rechter CAUCHY-GREEN-Deformationstensor
B Körper
∂B Körperoberfläche
B Zuordnungstensor

c Schall-, Phasengeschwindigkeit
cp isobare Wärmekapazität
cv isochore Wärmekapazität
ct thermischer Porenfaktor
cv viskoser Porenfaktor
c0 Schallgeschwindigkeit der Luft, des Mediums
C (r) Kovarianz
Cp spezifische isobare Wärmekapazität
C1 Konstante
C2 Konstante
C linker CAUCHY-GREEN-Deformationstensor
Cdamp Dämpfungsmatrix
C Steifigkeitstensor

d Dicke des Absorbers
dak Schalldissipationsgrad
D Durchmesser
DPl Plattensteifigkeit
D Dissipationsfunktion
d Raumrichtungsvektor
D Deformationsgeschwindigkeitstensor

E Elastizitätsmodul
E GREEN-LAGRANGE-Verzerrungstensor

f Frequenz
f beliebige Funktion
fE HELMOTZsche freie Energie
F Kraft
fm Massenkraftdichtevektor
fO Oberflächenkraftvektor
fV Volumenkraftvektor
F Deformationsgradient

g(r) Paarkorrelationsfunktion
g beliebige Funktion
G Schubmodul
G Admittanz

h Höhe, Plattendicke
hs Schubdicke
h Basisvektoren
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H Übertragungsfunktion
h Wärmestromvektor
H Verschiebungsgradient

I Flächenmoment 2. Ordnung
I (x) Invariiante
I Identität
IO Drehimpulsvektor
IS Schallintensität

j Massenträgheitsmoment
j Imaginäre Größe
J JACOBI-Determinante
Ji (x) Besselfunktion i-ter Ordnung

k Wellenzahl
ka Wellenzahl im Absorber
kP Durchlässigkeitsbeiwert
kv viskoser Dämpfungskoeffizient
K Kompressionsmodul
K (r) RIPLEYsche Funktion
KZ Koordniationszahl
K kinetische Energie
k Wellenzahlvektor

l Länge
L normierte Länge
L LAGRANGEsche Funktion
L Geschwindigsgradiententensor

m Moment
mGas Gasmasse
M Molmasse
M Massenmatrix

n Index, Anzahl
N Anzahl
n Normalenvektor

p Druck
P (Schall-) Leistung
Pr PRANDTL-Zahl
PD Packungsdichte
p Impulssvektor
Pa Leistung der äußeren Kräfte
p Polarisationsvektor

q äußere Kraft
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Q Wärmezufuhr
Qr Wärmequelle
q Schallfluss

r Radius
rak Schallreflektionskoeffizien
rk Klebestellenradius
rs Sintertellenradius
R (äußerer) Radius
Ra allgemeine Gaskonstante
Ri spezifische Gaskonstante
Rin innere Radius
R Drehtensor, -matrix

s Schubwellenzahl
s spezifische Entropie
S Entropie
S Nachgiebigkeitstensor

t Schalendicke
tak Schalltransmissionsgrad
t Zeit
T Temperatur
t Spannungsvektor
T Transmissionsmatrix

u Verschiebung
u spezifische innere Energie
U innere Energie
u Verschiebungsvektor
U Rechtsstrecktenortensor

vDarcy DARCY-Geschwindigkeit
V Volumen
VV Volumenanteil
v Geschwindigkeitsvektor
V Linksstrecktenortensor
V Viskositätsstensor

W Arbeit
dWF Formänderungsenergiedichte
W Drehgeschwindigkeitsvektor
W mechanische Energie

x Koordinate
x Ortsvektor im räumlichen Koordinatensystem
X Bild
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y Koordinate

z Koordinate
Z Impedanz
Za akustische Flussimpedanz
Zc charakteristische Impedanz
Zm mechanische FeldImpedanz
Zs akustische Feldimpedanz

Formelzeichen (griechisch)

α Absorptionsgrad
α∞ Strukturformfaktor

β Verlustgrad

γ Adiabadenexponent
γi j Schubverzerrung

εK Toleranzparameter
εεε ALMANSI-Verzerrungstensor
εεε Verzerrungstensor

η lokale Koordninaten

κ Schubkorrekturfaktor
κii Krümmung

λ LAMÉ-Konstanten
λ f dimensionsloser Frequenzparameter
λ0 Wellenlänge
Λt thermische charkteristische Länge
Λv viskose charkteristische Länge

μ LAME-Konstante
μV dynamische Viskosität der Luft, des Mediums

ν Querkontraktionszahl
ξ lokale Koordninaten
Ξ längenbezogener Strömungswiderstand
ξξξ Auslenkung

Π Potential
ρ Dichte
ρ0 Dichte der Luft, des Mediums
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ρlokal lokale Dichte

σ Oberflächenpannung
σm hydrostatische Spannung
σσσ Spannungstensor

τ Spannungsvektor

φ Porosität
Φ Binde, Sinterwinkel

ψi Drehwinkel um xi-Achse

ω Kreisfrequenz
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Abkürzungsverzeichnis

Abkürzung Beschreibung
B Boden
CAD Computer Aided Design
D Deckel
EZ Elementarzelle
FBA Forced Biased Alghorythmus
FEM Finite-Elemente-Methode
HDP hexagonal dichtest gepackt
HKS Hohlkugelstruktur
KFZ kubisch flächen zentriert
KRZ kubisch raum zentriert
KP kubisch primitiv
KURB kinematisch uniforme Randbedingung
MHKS metallische Hohlkugelstruktur
N Nord
O Ost
PRB periodische Randbedingung
RVE Repräsentatives Volumement
S Süd
SURB statisch uniforme Randbedingung
VE Volumenelement
W West
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