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Einleitung 1

1 Einleitung

Eine stidndig wachsende Weltbevolkerung und das Bestreben unserer modernen, hochtechnisierten
Konsumgesellschaft nach weiterer technischer Entwicklung und Wohlstand stellt eine zentrale
Herausforderung der Menschheit dar. Dabei greift der Mensch zum Wohle des Fortschritts immer
stirker in das natiirliche Okosystem unserer Erde ein, mit teils katastrophalen Auswirkungen.
Zudem zwingt ein globaler Markt Unternehmen jeglicher Industriebereiche zu einer Erarbeitung
giinstiger Technologien zur Sicherung ihrer nationalen und internationalen Wettbewerbsfahigkeit.
Diese Problematik macht sich auch in der Materialwissenschaft bemerkbar. Die Anforderungen an
technische Konstruktionen steigen stdndig, jene miissen an Leichtigkeit gewinnen, sollen dabei
hohere Nutzlasten tragen, umweltvertriaglich sein, einen steigenden Komfort und eine héhere
Unfall- und Ausfallsicherheit gewahrleisten und nicht zuletzt wirtschaftlich hergestellt werden.
Der gleichzeitig wachsende Anspruch unserer Gesellschaft nach einer energie-, ressourcenscho-
nenden und nachhaltigen Lebensweise fiihrt zu einem enormen Forschungsbedarf und stellt eine
nicht leicht zu erfiillende Optimierungsaufgabe dar. In der Materialforschung und -entwicklung
steckt groBes Potential, um die priméren Ziele der Nachhaltigkeit, wie maximale Energie- und
Rohstoffeinsparung unter dkologischen und 6konomischen Randbedingungen zu erreichen. Neue
Materialien miissen nicht nur leicht sein, sondern gleichzeitig noch eine Vielzahl anderer Funktio-
nen erfiillen.

Die Natur hat sich dieser Herausforderung gestellt und in einem Jahrmillionen dauernden Evo-
lutionsprozess durch Verwendung zellularer Materialien diese Problematik geldst. Zellulare Ma-
terialien, wie zum Beispiel Knochen, Holz oder Kork, begegnen uns in unserem Alltag stindig
und stellen keine Besonderheit mehr dar. Um die genialen Baupldne der Natur in technische
Losungen umzusetzen, muss sich die Wissenschaft noch mancher Herausforderung stellen. Zum
Teil wurden diese Konzepte bereits erkannt und werden nun in vielen Bereichen der Technik -
zum Beispiel mittels Wabenstrukturen und Polymerschdumen - realisiert. Diese Materialen mit
zellularem Aufbau vereinen hohe Steifigkeit mit geringem spezifischem Gewicht und haben zudem
eine hohe Energiedissipation. Schon vor mehreren Jahrzehnten hat man diesen Ansatz auch bei
metallischen Materialien verfolgt. Durch gezieltes Weglassen von Material bzw. das Einbringen
von Poren in metallische Festkorper entstand so eine neue Materialklasse, die Metallschdume.
Dank neuer und kostengiinstiger Herstellungsmethoden und zwischenzeitlich besserer Kenntnis
ihres Materialverhaltens erweitern diese zellularen Metalle das Einsatzspektrum technischer zellu-
larer Materialien. Thre technisch schwierigere und noch kostenintensivere Herstellung im Vergleich
zu Kunststoffschaumen, sowie die teils grolen Inhomogenititen und ungeniigende Reproduzier-
barkeit aktuell kommerziell erhiltlicher Metallschdume verhindern noch eine weite Verbreitung.
Allerdings gibt es einige wenige Bereiche, in denen Metallschdume heute schon zum Einsatz
kommen. Dies sind Anwendungsbereiche in denen Kunststoffschdume an ihre Grenzen kommen -
sei es in Festigkeit, Temperaturbestindigkeit oder Umweltvertrdglichkeit. Dies betrifft die Sek-
toren der Transport-, Luft- und Raumfahrtindustrie ebenso wie schon erste Konsumgiiter und
die Werkzeugmaschinenindustrie, wo eine stindige Nachfrage nach neuen Leichtbaukonzepten
herrscht. So werden zellulare Metalle als Crash-Absorber in diversen Fahrzeugen und Ziigen,
als Schwingungsddmpfer an Robotern oder in Filtern in Industrieanlagen eingesetzt. Ebenfalls
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2 Einleitung

bei Gebrauchsgiitern, wie zum Beispiel Tiirgriffen, lassen sich Materialeinsparungen und damit
Kostensenkungen realisieren.

Allerdings wartet man bis heute noch auf den kommerziellen Durchbruch der zellularen Metalle,
insbesondere der Metallschdume. Dies kann nur gelingen, wenn die Wirtschaftlichkeit der zellu-
laren Metalle steigt und die Eigenschaften verbessert werden. Eine Verbesserung der Eigenschaft
bedeutet nicht nur mehr Multifunktionalitdt, sondern auch eine geringe Streuung der Materialkenn-
werte und damit verbundene Reproduzierbarkeit. Einen gewissen Teil hierfiir kann das relativ neue
und innovative zellulare Metall, metallische Hohlkugelstrukturen, durch seine Zellenform und gut
reproduzierbare Zellengrofen, beitragen. Allein diese Eigenschaft geniigt jedoch nicht, um der
Verbreitung des Materials Geniige zu tragen. Zusitzlich miissen grundlegende Kenntnisse tiber
physikalisches und mechanisches Materialverhalten gewonnen werden. Zudem wire es von Vor-
teil, eine kostengiinstige Vorhersage des Materialverhaltens fiir verschiedene Lastannahmen mittels
numerischer Simulation zu erhalten, um die Anforderungen optimal an die Leistungsfahigkeit
des zellularen Metalls anzupassen. Des Weiteren sollten dem Konstrukteur einfach handhabbare
Materialkennwerte {ibergeben werden, um eine ziigige und sichere Realisierung zu ermdglichen.

1.1 Motivation

,»When modern man builds large load-bearing structures, he uses dense solids,
steel, concrete, glass. When nature does the same she generally uses cellular materials:
wood, bone, coral. There must be good reason for it.”

M.F. Ashby

Ausgehend von dieser Feststellung begannen in der ersten Hilfte des letzten Jahrhunderts Bemii-
hungen mit der Zielsetzung zellulare Materialien kiinstlich zu erzeugen, die eine Nachbildung der
Natur darstellen sollen und die klassischen Baumaterialien teilweise ablosen konnen. Die viel-
faltigen Moglichkeiten der zellularen Materialien ergeben ein breites Einsatzspektrum, aufgrund
der, in gewissen Ausmafen, Beeinflussung durch Abwandlung der Zellgeometrie und -abmaRe.
Durch die Variabilitit des Strukturaufbaus dieser Werkstoffe ist es moglich eine Vereinigung von
mehreren forderlichen Materialeigenschaften zu bilden und folglich ein multifunktionales Material
zu erschaffen.

Bis zum heutigen Tag werden in der Massenproduktion nur kunststoffbasierte Schiume und
Schwiamme, wie beispielsweise Polystyrol- oder Polyethanschaum, hergestellt und verarbeitet.
Eigenschaften, wie geringe Steifigkeiten oder groBe Empfindlichkeit bei hohen Temperaturen,
setzen diesen Materialien Grenzen in ihrer Anwendbarkeit. Diese Defizite versucht man seit
Jahrzehnten durch Erforschung zellularer Metallen zu kompensieren. Die bisherigen Untersuchun-
gen bescheinigen den zellularen Metallen eine hohe Féhigkeit zur kinetischen Energieabsorption
(Crash) [58, 136], gute Schwingungsdédmpfung [76, 77, 156], sehr gute Schalldimpfung bzw. -
absorption [87, 139], exzellente Wérmeisolation [138, 165] und hohe spezifische Steifigkeit [9, 63].
Mit diesen hervorragenden Materialeigenschaften zeichnen sich die zellularen Metalle als multi-
funktionale Leichtbauwerkstoffe aus. Jedoch bedarf es mehr als der zum Teil brillanten Material-
eigenschaften fiir eine industrielle Verbreitung der zellularen Metalle. 1999 wurde vom Chemnitzer
Fraunhofer Institut fiir Werkzeugmaschinen und Umformtechnik IWU eine Befragung [93], unter
deutschen Unternehmen aus dem Bereich Maschinenbau durchgefiihrt. Sie ergab, dass die Verbrei-
tung von zahlreichen Faktoren abhdngt, wie zum Beispiel dem Preis oder der fehlenden exakten
Kenntnisse der Materialeigenschaften. Die Erhebung produzierte aufschlussreiche Ergebnisse. Das
direkte Interesse der Befragten an geschdumten Metallen war allgemein nur mifig, was sich
auch in ihrem Bekanntheitsgrad widerspiegelt. Stellte man jedoch die Frage nach Werkstoffen
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mit innerhalb gewissen Grenzen einstellbaren Eigenschaften, war die Aufgeschlossenheit bzw. das
Interesse erheblich groBer. Die Moglichkeit, dass sich Werkstoftkennwerte nach den vorliegenden
Anforderungen richten, erweitert die Auswahlmoglichkeiten und die Variationsvielfalt deutlich
und ist deshalb in aller Regel wiinschenswert. Zellulare Metalle, unter anderem Metallschdaume,
sind ebenfalls Werkstoffe mit einstellbaren Eigenschaften. Uber die Variation der ZellgroBe, -form
oder -wanddicke, die wiederum die Dichte des Materials beeinflusst, konnen alle technischen
Eigenschaften wie Elastizititsmodul, Streckgrenze oder Zugfestigkeit, eingestellt werden. Den-
noch ist das allgemeine Interesse gering. Wahrscheinlich begriindet sich dies damit, dass viele
Ingenieure mit dem Begriff ,,Schaum* die Eigenschaften weich und wenig steif assoziieren [93].
Aus dieser Erkenntnis ldsst sich eine weitere Aufklérung als Konsequenz ziehen.

Preis

Verfiigbarkeit

keine Referenzanwendung

fehlende technische Parameter
technische Parameter nicht ausreichend

fehlende Unterstiitzung durch Vorgesetzte

sonstiges

! ! ! ! ! ! ! ! !

0 5 10 15 20 25 30 35 40 45 50
in %

Abbildung 1.1: Hemmnisse fiir den Einsatz zellularer Metalle nach [93].

Eine Tendenz, sich mit zellularen Metallen zu beschéftigen, zeigt sich vor allem in besonders
innovativen Arbeitsgebieten wie der Luft- und Raumfahrt sowie der Automobilindustrie. Zellulare
Metalle bieten aber ebenso Vorteile im Bereich der Konsumgiiter, wie erste Referenzanwendungen
zeigen. Legt man besonderes Augenmerk auf die Hemmnisse fiir den Einsatz zellularer Metalle
bzw. Metallschdume in Abb. 1.1, wird deutlich, dass das Fehlen von Referenzanwendungen
und technischer Parameter die Haupthindernisse sind. Gerade grundlegende Materialkennwerte
wie Elastizitditsmodul oder Druckfestigkeit, die vor allem konstruktionsrelevant sind, sind fiir
die industrielle Verbreitung notwendig. Erst mit dem tieferen Verstdndnis des Materialverhaltens
zellularer Metalle wurden erste Referenzanwendungen moglich.

Die metallischen Hohlkugelstrukturen stellen eine noch relativ neue Gruppe im Bereich der
zellularen strukturierten Metalle dar. Wahrend auf dem Gebiet der Metallschdume ungeféhr 150
Institutionen forschen und seit der Jahrtausendwende die Zahl der Publikationen in diesem Bereich
jéhrlich um ungefahr 20% wéchst [129], sind die Forschungsaktivitdten im Sektor der metallischen
Hohlkugelstrukturen iiberschaubarer. Allerdings kénnen die gewonnenen Forschungserkenntnisse
aus dem Bereich der Metallschdume auf die Hohlkugelstrukturen teilweise angewendet bzw. {iber-
tragen werden, was wiederum zu einer Beschleunigung der Forschung in diesem Gebiet fiihrt. Die
vorliegende Arbeit beschiftigt sich mit den einstellbaren Gréfen, wie Zellanordnung, -gréf3e und
-wandstédrke, von metallischen Hohlkugelstrukturen und ihren Auswirkungen auf die technischen
und physikalischen Parameter der linearen Elastizitit und der akustischen Absorption.
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1.2 Zellulare Materialien

1665 beobachtete Robert Hooke mit einem simplen Mikroskop den natiirlichen Werkstoff Kork.
Dabei entdeckte er eine kastenformige Struktur [96]. Diese Struktur nannte er cellulae (lat.), was im
Deutschen einer kleinen Kammer entspricht. Daraufhin konstruierte Anton van Leeuwenthoek sein
eigenes Mikroskop und untersuchte natiirliche Substanzen wie Milch, die eine einzellige Struktur
aufwiesen [128]. So entstand der heutige Begriff der Zelle.

Zellulare Materialen findet man in groer Anzahl und Vielfalt in der Natur. Aber warum verwendet
die Natur solche zellularen Strukturen? Der Nutzen dieser Strukturen liegt darin, dass sie eine
relativ geringe Masse besitzen und zudem oft weitere Funktionen, wie Nahrstofftransport oder
Nervenleitungen, beinhalten. Die geringe Masse birgt vor allem dann Vorteile, wenn die Struktur
beschleunigt oder verzogert werden muss, dabei aber auch eine hohe Steifigkeit aufweisen sollte.
Solche Strukturen wurden in der Natur in einem Zeitraum von Jahrmillionen optimiert. Ein
typisches Beispiel stellt der Knochen dar. Er besitzt eine recht geringe Masse bei einer hohen
Steifigkeit. Dies ist notwendig, um den Koérper mit seinen Muskeln im Gleichgewicht zu halten.
In der Regel weisen zellulare Materialien ein giinstiges Verhéltnis zwischen Masse und Steifigkeit
auf. Seit Jahrtausenden versucht der Mensch, sich diese Eigenschaften der zellularen Materialien
zunutze zu machen. Zu Beginn verwendete der Mensch die in der Natur vorkommenden zellularen
Materialien wie Holz oder Kork. Mit der Zeit erlangte er die Fahigkeit, selbst kiinstlich zellulare
Materialen herzustellen. Heutzutage sind diese zellularen Materialien, insbesondere Schaume, aus
unserem Alltag nicht mehr wegzudenken. Beispielsweise ist Styropor in technischen Anwendun-
gen sowie im tdglichen Leben selbstverstindlich geworden. Bereits in den 40er Jahren des letzten
Jahrhunderts wurde die Idee zu einem neuen Werkstoff geboren, der zum einen hohe Steifigkeit und
zum anderen die Leichtigkeit eines Naturschwamms aufweisen sollte. Ein weiterer Meilenstein
in der Geschichte folgte in den 50er Jahren als geschmolzenes Aluminium in Natrium-Chlorid-
Negativformen gegossen wurde. So stellte man 1959 erstmals pulvermetallurgisches Halbzeug
mit Treibmittel her und es gelang 1963 das direkte Aufschdumen einer Schmelze. Jedoch be-
gann die eigentliche technische Verwendung vor allem von zellularen Metallen, insbesondere
Metallschdumen, erst in den letzten Jahren. Es wurden neue und einfachere Herstellungsverfahren
entwickelt und diese Werkstoffe konnen kosteneffizienter produziert werden. Heutzutage lassen
sich nahezu alle Materialien einem Schdumungsprozess unterziehen. Dank der neuen Herstellungs-
verfahren lassen sich nun Eigenschaften eines beliebigen Grundmaterials, wie zum Beispiel jene
von Metallen, mit den Eigenschaften einer zellularen Struktur verbinden und somit Gebiete neuer
Materialeigenschaften erschlieen.

Abbildung 1.2 zeigt den Elastizitdtsmodul als Funktion der Dichte fiir zellulare und konventionelle
Materialien. Hierbei steht der Elastizitdtsmodul als ein Teil des Mafles fiir die Steifigkeit und die
Dichte als ein MaB fiir die Masse. Auf Grund des Verhiltnisses der beiden Groflen zueinander
werden zellulare Materialien vor allem im Leichtbau eingesetzt.

Diese neuen Materialien mit ihren besonderen Eigenschaften, er6ffnen auch verschiedene neue
Anwendungsgebiete, in denen zellulare Materialen eingesetzt werden konnen. Pridestinierte Be-
reiche hierfiir sind die Luft- und Raumfahrtindustrie aber auch die Riistungsindustrie, wie zum
Beispiel zum Unterbodenschutz von Panzern gegen Minen. Heute ist zu beobachten, dass die
Anwendungsbereiche mehr in die zivile Nutzung tibergehen. Die folgende Aufzéhlung soll einen
kleinen Einblick in das aktuelle Einsatzgebiet zellularer Materialen geben. Zellulare Materialen
werden zum Beispiel als Crashelemente fiir die Fahrzeug- und Schienentechnik, als Tréger von
Katalysatoren (aufgrund ihrer groen Oberflache), als Filter, als Auftriebskorper im Schiffsbau,
als Biomaterial fiir Implantate, als Wérmeisolator im Brandschutz und Wohnungsbau, als Kern
in Sandwich-Konstruktionen, als Schwingungsddmpfer in Roboterarmen und Maschinenbetten,
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Abbildung 1.2: Elastizititsmodul und Dichte fiir verschiedene Materialien nach [79].

im Leichtbau als Tragerelemente, als Akustikabsorber oder neuerdings als moderne Kunst und
Schmuck verwendet.

1.2.1 Zellulare Metalle

Pordse metallische Werkstoffe, auch als zellulare Metalle bezeichnet, bestehen im Allgemeinen
aus zwei Phasen: Zum einen aus metallischen und zum anderen aus einer grolen Menge mikro-
und makroskopisch verteilten Gases (meist Luft). Die Erscheinungsform der zellularen Metalle ist
vielfiltig. Eine eindeutige Klassifikation gestaltet sich schwierig [116].

Einerseits kann man die zellularen Metalle aufgrund ihres Strukturaufbaus wie in Abb. 1.3
klassifizieren, andererseits kann man sie anhand der méglichen Herstellungsverfahren, wie in
Abb. 1.4 dargestellt, einteilen. Zu den zellularen Metallen gehoren offen- und geschlossenporige
Metallschdume ebenso wie Bienenwabenstrukturen, metallische Hohlkugel- und Faserstrukturen
oder im Verbundguss gefertigte Werkstofte. Auch syntaktische Schaume, die sich aus zwei festen
und einem gasférmigen Stoff (meist Luft) zusammensetzen, gehoren zu dieser Gruppe der Leicht-
bauwerkstoffe. Gegenwirtig ist die Nutzung von leichten metallischen Strukturen hauptsichlich
durch metallische Schaume gekennzeichnet. Doch stellen aus metallischen Hohlkugeln aufgebaute
Strukturen eine neue, interessante Variante dieser leichten Materialien dar.

Alle zellularen Metallstrukturen weisen gewisse Analogien auf: Sie bieten ein gutes Masse-
Volumen-Verhdltnis und eine hohe Steifigkeit, sind temperaturbestindig, wirmeddmmend, recy-
celbar und verbinden eine geringe Dichte mit einem hohen Energieabsorptions- und Dampfungs-
vermdgen. Die verschiedenen anwendungsspezifischen Eigenschaften kénnen zudem miteinander
kombiniert werden.
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Abbildung 1.3: Klassifizierung von zellularen Metallen mittels des Strukturaufbaus nach [219].

1.2.1.1 Offenporige zellulare Metalle

Weisen die Zellen in einer metallischen Struktur Offnungen auf, durch welche Gase und Fluide
stromen konnen, so liegt ein offenporiges zellulares Metall vor, auch offenzelliger Schaum genannt
[55]. Offenporiges zellulares Metall zeichnet sich aus durch eine hohe Permeabilitit, grofle spezi-
fische Oberfliche und niedrige spezifische Dichte sowie gute Verformbarkeit. Bei entsprechender
Werkstoffwahl konnen gute korrosions- und oxidationsbestidndige Schaume dieser Art hergestellt
werden. Einsatzgebiete fiir diesen Werkstoff finden sich in der Fluid- und Verfahrenstechnik zum
Beispiel bei Filtern, Schallddmpfern, Warmetauschern, Sieben, Abscheidern, Brennern, Explosi-
onsschutz, Flammendurchschlagsicherungen und Katalysatortridgern, aber auch in medizinischen
Produkten, wie zum Beispiel bioanalogen Knochenersatzmaterialien. Stellvertretend fiir offen-
porige zellulare Metalle kann man offenporige pulvermetallurgische Schdume und perforierte
metallische Hohlkugelstrukturen erwéihnen.

1.2.1.2 Geschlossenporige zellulare Metalle

Ist die einzelne, fluid- bzw. gasgefiillte Zelle geschlossen und bilden solche Zellen die Gesamt-
struktur, so liegt ein geschlossenporiges zellulares Metall vor. Einsatzgebiete geschlossenpori-
ger Materialien sind beispielsweise Leichtbautragelemente im Anlagen-, Maschinen-, Fahrzeug-,
Flugzeug- und Schiftbau, Elemente zur Schall- und Warmeddmmung im Bauwesen, Energieabsor-
ber als Crash-Elemente in Kraftfahrzeugen, als Sicherheitselemente und Schutzeinrichtungen zum
Beispiel an Hochgeschwindigkeitswerkzeugmaschinen sowie Anwendungen zur Schwingungs-
bzw. Explosionsddmpfung und im Brandschutz. Weitere Einsatzgebiete ergeben sich im Be-
reich der Elektrotechnik zur elektromagnetischen Abschirmung bzw. als Elektroden. Auflerdem
zeichnen sich Anwendungen fiir den Einsatz in schnell bewegten Baugruppen von Fertigungs-
anlagen (zum Beispiel Maschinentische, Handling-Systeme), als Kerne fiir Gussformen sowie
als Implantatwerkstoffe ab. Zu den geschlossenporigen zellularen Metallen zdhlen syntaktische
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Abbildung 1.4: Herstellungsverfahren von diversen zellularen Metallen nach [45].

Metallschaume genauso wie Metallschdume, pordse Metalle und metallische Hohlkugelstrukturen,
um nur einige Vertreter dieser Familie der zellularen Metalle zu benennen.

1.2.2 Metallschiume

Schon Mitte des letzten Jahrhunderts wurde die Idee fiir einen neuen Werkstoff geboren, der zum
einen die hohe Steifigkeit von Metallen und zum anderen die Leichtigkeit eines Naturschwamms
vereinen sollte. Die ersten technischen Umsetzungen dieses Konzepts der Metallschdume kamen in
den 70er Jahren des vorhergehenden Jahrhunderts auf [15, 28, 154]. Die eigentliche kommerzielle
Nutzung begann jedoch erst spéter. Der Schaum ldsst sich auf verschiedene Weise erzeugen. So
wurde bereits in den 50er Jahren des 19. Jahrhunderts geschmolzenes Aluminium in Kochsalz-
Negativformen gegossen. Als weiteren Meilenstein stellte 1959 die Firma United Aircraft Corpora-
tion erstmals pulvermetallurgische Halbzeuge mit Treibmittel her. Im Jahre 1963 gelang Hardy und
Peisker das direkte Aufschdumen einer Schmelze [83]. Durch die ab 1990 zunehmende industrielle
Nutzung stieg die Zahl der Firmen und Institute, die sich mit diesem Themengebiet beschéftigen.

Metallschdume lassen sich wie die zellularen Metalle in geschlossen- und offenporiger Struktur
einteilen. Oftmals bezeichnet man den offenporigen Metallschaum auch als Metallschwamm.
Metallschiume kennzeichnen sich durch stark zufillige PorengroBe und -verteilung. Aquivalent
gilt dies beim Netzaufbau von Metallschwammen.
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Abbildung 1.5: Mogliche Anwendungsgebiete zellularer Metalle in Abhingigkeit von der Art der
Porositit nach [12].

1.2.3 Hohlkugelstrukturen

Pulvermetallurgisch hergestellte metallische Hohlkugeln stellen eine vergleichsweise neue Vari-
ante innerhalb der zellularen Metalle dar. Mit metallischen Hohlkugeln konnen verklebte, ver-
sinterte und verlotete zellulare Strukturen aufgebaut werden. Weiterhin ist es moglich, durch
einen speziellen Formgebungsprozess aus den mit Metallpulver beschichteten Styroporkugeln
einen Formkdorper herzustellen, der nach der Warmebehandlung eine versinterte zellulare Hohl-
kugelstruktur ergibt. Gegeniiber anderen zellularen Materialien, wie zum Beispiel Metallschiu-
men, zeichnen sich metallische Hohlkugelstrukturen sowohl durch eine hohe Reproduzierbarkeit
im Strukturaufbau mit nahezu isotropen Eigenschaften aus, die durch die definierte Geometrie
der Hohlkugeln bedingt sind. Dariiber hinaus verfligen sie iliber eine grole Werkstoffflexibilitét
aus. Der besondere Vorteil metallischer Hohlkugelstrukturen besteht darin, dass selbst bei un-
geordneten Strukturen die Porengrofe nur geringfiigig variiert. Hohlkugelstrukturen sind somit
im Vergleich zu stochastischen Schdumen besser berechenbare Leichtbauwerkstoffe, die durch
die genannten Vorziige sehr gute Voraussetzungen fiir eine werkstoffmechanische Modellierung
des Bauteilverhaltens bieten. Neben einer deutlichen Gewichtseinsparung konnen durch me-
tallische Hohlkugelstrukturen weitere anwendungsspezifische Eigenschaften umgesetzt werden,
die insbesondere durch die Zellmorphologie und den Werkstoff einstellbar sind. Hierzu zéhlen
Wirmeisolation, ausgepragtes Schall- und Energieabsorptionsvermdgen, mechanische Dampfung,
katalytische Effekte sowie eine hohe spezifische Oberfliche. Die metallische Hohlkugelstruktur
ermdglicht selbsttragende Konstruktionen und bietet mechanische Festigkeit auch bei stirkerer
Beanspruchung. Falls erwiinscht konnen metallische Hohlkugeln ebenso in jegliche freie Form
injiziert werden, da Kugeln im Allgemeinen tiber sehr gute Schiitt- und FlieBeigenschaften verfii-
gen und auflerdem eine hohe Packungsdichte haben. Ferner ist der Einsatz im Sandwichverbund
mit beliebigen Fasermatten oder Platten kombiniert realisierbar. Bedingt durch die bereits erwéhnte
grofle Werkstoffvielfalt sowie die Variationsmoglichkeiten der Hohlkugelgeometrie und die daraus
herstellbaren Hohlkugelstrukturen ergeben sich zahlreiche Anwendungsgebiete und Einsatzfelder.
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Dies sind Kraftfahrzeugbau, Luft- und Raumfahrt, chemische Verfahrenstechnik, Gerdte- und
Anlagenbau sowie die Medizintechnik. Die Vielfalt der Anwendungsmoglichkeiten metallischer
Hohlkugeln und daraus hergestellter metallischer Hohlkugelstrukturen steht noch am Anfang ihrer
industriellen Verwendbarkeit.

Zur Herstellung der Hohlkugelstrukturen gibt es verschiedene Verfahren und Werkstofte, wobei die
Struktur generell aus kugelférmigen Zellen enger Durchmesserverteilung aufgebaut ist. Aufgrund
ihres Aufbaus aus einzelnen Kugeln lassen sich durch Variation der Kugelwanddicke und des
Kugeldurchmessers unterschiedlichste mechanische Eigenschaften und Dichten generieren. Die
iiblichen Werte schwanken hierbei zwischen 0,3 und 1,5 C%. Abhéngig von der Gestaltung des
Herstellungsverfahrens lassen sich die Wénde der kugelformigen Zellen entweder dicht oder
auch offen pords ausfithren. Durch die Auswahl des entsprechenden Herstellungsverfahrens, der
Parameterwahl und des Werkstoffes lassen sich die Strukturen an die verschiedensten Betriebs-
beanspruchungen, wie beispielsweise Hochtemperatur- oder Korrosionsbestiandigkeit, anpassen.
Im Allgemeinen werden fiir die metallischen Hohlkugelstrukturen folgende Werkstoffe eingesetzt:
niedrig legierter Stahl, Edelstdhle (z.B. 1.4404, 1.4841, 1.4767), Nickel und Nickellegierungen,
intermetallische Verbindung, Molybdan, Wolfram und Edelmetalle.

Prinzipiell gibt es zwei unterschiedliche Verfahren: Das galvanische Verfahren und Wirbelbettbe-
schichtungsverfahren. Auf letzteres soll nur kurz eingegangen werden. Fiir das galvanische und
weitere Verfahren wird auf [37] verwiesen. Aktueller Stand der Technik ist die Herstellung von
Hohlkugelstrukturen mittels Wirbelbettbeschichtungsverfahren. Hierbei handelt es sich um ein
spezielles pulvermetallurgisches Verfahren, das sich, im Vergleich zum galvanischen Verfahren, als
wesentlich effizienter erweist und gemil3 Abb. 1.6 funktioniert. Auf ein geeignetes Tragermaterial,
wie beispielsweise Polystyrolkugeln (EPS), wird in einer Wirbelbettbeschichtungsanlage eine
Metallpulver-Binder-Suspension aufgebracht. In einer nachgelagerten, mehrstufigen Wirmebe-
handlung werden der Binder und gleichzeitig das Trigermaterial entfernt und aus dem Metall-
pulver werden dichte Kugelschalen gesintert. Der Vorteil dieses Verfahrens besteht darin, dass das
Triagermaterial kommerziell verfiigbar und der spezifische Durchmesser beliebig einstellbar ist,
wobei tliblicherweise die Durchmesser 0,5 bis 10 mm, bei einer Wanddicke der Kugeln von 20 bis
500 pm betragen. Durch eine entsprechende Auswahl der Teilchenform sowie die gezielte Einstel-
lung der Prozessparameter lassen sich dicht-porése und offen-porése Hohlkugelschalen herstellen.
Vorteilhaft ist dieses Verfahren, weil alle pulverformigen, sinterbaren Werkstoffe hiermit zu Hohl-
kugeln verarbeitet werden konnen. Aus den einzelnen Hohlkugeln lassen durch Sintern, Léten oder
Kleben nun Halbzeuge und Normteile fertigen, wobei zellulare Strukturen mit offener wie auch
geschlossener Porositit produziert werden konnen. Abhédngig von den gewéhlten Einzelhohlkugeln
ist es zudem mdglich ungeordnete, geordnete oder auch gradiert aufgebaute zellulare Strukturen
herzustellen. Ublicherweise werden gesinterte Hohlkugelstrukturen in einem Net-Shape-Prozess
hergestellt, indem die beschichteten Kugeln in ein spezielles Formgebungswerkzeug gefiillt und
mehr oder weniger stark deformiert und anschlieBend zu einer einsatzfahigen, zellularen metalli-
schen Struktur gesintert werden.

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

10 Einleitung

Wirbelbeschichtung

FY.
%L O O
EPS-Granulat O

Vorgeschiaumtes EPS

Binder-Metall-
pulversuspension

bt

kontinuierlicher
Warmluftstrom

T F / beschichtete EPS-Kugeln

Wirmebehandlung
Pyrolyse des EPS-Kern und des
Binders, Sintern des Pulvers

N

ee®
SRR

Hohlkugelformkdorper metallische Einzelhohlkugeln

Abbildung 1.6: Herstellung metallischer Hohlkugeln mit dem Wirbelschichtverfahren (nach Glatt
GmbH, Dresden).

1.3 Stand der Forschung

Ein umfassender Uberblick iiber Herstellung, Charakterisierung, Eigenschaften und Anwendungs-
bereiche von offen- und geschlossenporigen Schdumen ist in folgenden Biichern und Artikeln
[9, 12, 45, 56, 75, 92] zu finden. Ochsner und Augustin [37] geben weitgehende Zusammen-
fassungen im Bereich der metallischen Hohlkugelstrukturen wieder. Die Qualitdt der zellularen
Materialien, die sich beispielweise in der Wiederherstellbarkeit, Streuung der ZellgroBe und -
verteilung ausdriickt, bestimmt mafigeblich ihre Eigenschaften und ihr Verhalten und die damit
verbundenen Einsatzmdglichkeiten. Diese Eigenschaften konnen durch analytische und (halb-
) phidnomenologische Modelle, Simulationen und experimentelle Messungen beschrieben bzw.
bestimmt werden. Die Literatur zur Beschreibung des Verhaltens zellularer Werkstoffe und zur Be-
stimmung der jeweiligen Materialgleichungen, mit dem Ziel ihre Eigenschaften bzw. ihr Verhalten
vorherzusagen, lassen sich grob in vier Richtungen unterteilen [36]. Es sind dies der Gebrauch von
phianomenologischen Modellen, die Verwendung von Formulierungen, welche fiir Verbundwerk-
stoffe entwickelt wurden, die Analyse von Modellstrukturen, die den Aufbau der physikalischen
Struktur reprasentieren und die Untersuchungen von realen Strukturen, die beispielsweise auf
Computertomografie-Bildern basieren.

Die einfachste Methode zur Beschreibung des Verhaltens von Materialien mit Meso- oder Mi-
krostruktur basieren auf der Theorie von Materialien ohne Strukturaufbau. Das Material des zu
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untersuchenden Korpers wird als homogen angenommen. Es werden alleinig die Materialpara-
meter bzw. die Stoffgesetze, wie das Elastizititsgesetz, das FlieBkriterium, die FlieSregel oder
das Verfestigungsgesetz an die experimentell bestimmten Werte des jeweiligen Stoffs angepasst.
Diese phianomenologischen Materialmodelle bilden das elastisch-plastische Verhalten (komplettes
Spannungs-Dehnungsverhalten) strukturaufbautechnisch unmotiviert ab. Solche Materialmodelle
sind Grundlage fiir viele kommerzielle Finite-Element-Programme. In den Programmen kann
mittels Vorgabe der Spannungs-Dehnungskurve das experimentell bestimmte Materialverhalten
hinterlegt werden. Einen guten Uberblick iiber die Vielfalt an Modellen fiir Metallschdume liefert
die Verdffentlichung von Hanssen et al. [82]. Angewendete Modelle fiir Hohlkugelstrukturen
konnen beispielsweise [37] entnommen werden. Als Grundlage und Referenz der meisten phé-
nomenologischen Arbeiten in diesem Gebiet dient das Werk von Despande und Fleck [48].
Analog entstanden in der Akustik phdnomenologische Modelle zur Schallabsorption von pordsen
Materialien. Das Material bzw. Fluid des zu untersuchenden Korpers wird wiederum als homogen
angesehen. Das wohl bekannteste Modell zur Schallabsorption ist das sogenannte dquivalente
Fluid Modell, das durch die frequenzabhingigen Groflen effektive Dichte und effektives Kom-
pressionsmodul beschrieben wird. Fiir hochporése Materialien hat sich das einfache Modell nach
Delany und Bazley [46] etabliert, das auf experimentell bestimmten Daten basiert, etabliert. Dieses
Schallabsorbermodell wurde spéter durch Miki [147] verfeinert.

Die bisher genannten phanomenologischen Material- und Akustikmodelle beriicksichtigen kei-
neswegs, dass das zu untersuchende Material eine Meso- oder Mikrostruktur aufweist, die Ein-
fluss auf sein Verhalten hat. Eine Mdglichkeit, dies zu umgehen, besteht darin, Materialmodelle
zu verwenden, die das Verhalten der Meso- bzw. Mikrostruktur durch neue Materialparameter
abbildet. In der Mechanik handelt es sich hierbei um eine Erweiterung des klassischen Kontiu-
umsmodells. Den unendlich vielen Materialpunkten des klassischen Kontiuumsmodells wird tiber
die translatorischen Freiheitsgrade hinaus noch ein kleines Starrkérpervolumen mit rotatorischen
Freiheitsgraden zugewiesen. So entstehen bei diesem sogenannten COSSERAT- oder Mikropolar-
Kontinuum fiir jeden Materialpunkt sechs Freiheitsgrade. Dies bedeutet, dass translatorische und
rotatorische Felder unabhéngig sind und das Krifte und gekoppelte Spannungen auftreten. Lakes
[120, 122] prasentierte experimentelle Werte auf Basis des COSSERAT-Kontinuums fiir diverse
pordse Materialien. Diebels und Steeb [50, 51, 52] bzw. Dillard et al. [53] nutzen diese Theorie
zur Beschreibung des Verhaltens von Schdaumen. Altenbach und Eremeyev [7, 8] entwickelten
eine Plattentheorie auf Basis der COSSERAT-Gleichungen, bei der in ihre Dickenrichtung ein
heterogenes Materialverhalten beriicksichtigt ist. Ein solches Materialverhalten findet man auch
bei Laminaten oder ,,Functionally Graded Materials*.

Die bisher genannten Verfahren betrachten die Meso- bzw. Mikrostruktur nur tiber Material-
parameter. In einigen Féllen spielt jedoch die Meso- bzw. Mikrostruktur eine entscheidende
Rolle und kann durch die aufgefiihrten Verfahren nicht ausreichend genau abgebildet werden.
Demgegeniiber ist das komplette Modellieren der Meso- und Mikrostruktur als weitere Verfah-
rensmdglichkeit fiir reale makroskopische Bauteile viel zu aufwendig [110]. Selbst die heutigen
rechnerischen Ressourcen lassen noch keine effiziente Berechnung zu. Aus diesem Grund wurden
Ansitze entwickelt, die den meso- bzw. mikroskopischen Strukturaufbau in ihrer Betrachtung mit
einbeziehen und zudem effektiv anwendbar sind. Solche Verfahren werden im Allgemeinen als
Multiskalen-Methoden bezeichnet. Diese Methoden verkniipfen die Effektivitit der Makroebene
mit der Genauigkeit der Mesoebene [110].

In der multiskalen Werkstoffmodellierung von zellularen Materialien ist es gebrauchlich, die
Untersuchungstiefe in drei verschiedene Groflenskalen einzuteilen. Dabei wird auf geometri-
scher Ebene zwischen Mikro-, Meso- und Makromodellierung unterschieden [141]. Abbildung
1.7 veranschaulicht diese Einteilung. Wéhrend die Mikroebene einzelne Atome, die Molekiile,
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Kiristalle und ihre Fehlstellen beriicksichtigt, befasst sich die Modellierung in der Makroebene
zumeist mit Ingenieuranwendungen, wie beispielsweise die Beschreibung von Tragwerken durch
die Kontiuumsmechanik. Die Mesoebene stellt einen Zwischenbereich dar, der zur Beschreibung
von Mikrostrukturen, Zellen, Kornern, harten Einschliissen etc. in der Materialwisssenschaft dient
[141]. Die Modellierung in der Mikroebene, die zum Beispiel zur Simulation von Diffusions-
und Reaktionsvorgéngen dient, kann vor allem in den Gebieten der Physik, Chemie und der
Kristallografie von Bedeutung sein. Zur Beschreibung mechanischer Eigenschaften von Verbund-
werkstoffen [86] und insbesondere zellularen Festkdpermaterialien [187] wird der Modellierung
in der Mikroebene zumeist keine Beachtung geschenkt. Die einzelnen Methoden unterscheiden

. Zellen, Einschliisse .
At Gitt ’ ’ Bauteil
ome, Lrtter Verbundwerkstoffe autel

Mikro Meso Makro

107° 106 1073 10°

Elementgrofie [m]
Abbildung 1.7: Ebenen der Materialmodellierung und -simulation.

sich dahingehend, wie die Struktur in einer ungeordneten Betrachtungsebene (z.B. Mikrostruktur)
abgebildet wird, wie die Betrachtungsebene (z.B. makrospokische Ebene) modelliert wird und
wie der Ubergang zwischen den zwei betrachteten Ebenen formuliert wird. Dieser Ubergang
zwischen den Ebenen findet durch Mittelungsprozesse, zumeist einer Volumenmittelwertbildung,
statt. Hierbei soll die Verzerrungsenergie der heterogenen Struktur in der unteren Ebene gleich
der Energie sein, die nach der Volumenmittelung im betrachteten Volumen gespeichert ist. Diese
Vorgehensweise wird als Homogenisierung bezeichnet [81]. So kann die Homogenisierung als
gedankliche Verschmierung einer heterogenen Struktur auf der Mikro- oder Mesoebene und der
Bildung von effektiven Materialeigenschaften auf der ndchst hoheren Betrachtungsebene, bei-
spielsweise Makroebene, verstanden werden. Eine Voraussetzung fiir die Homogenisierung ist
die Untersuchung einer Struktur, die sich translatorisch periodisch wiederholt bzw. statistisch
reprasentativ fiir den untersuchten realen Werkstoft ist. In diesem Zusammenhang spricht man von
einem reprisentativen Volumenelement (RVE). Eine genauere Betrachtung der Homogenisierung
wird in Kapitel 3.2.1 gegeben.

Die erste und einfachste Methode, die das Verhalten des mikro- oder mesoskopischen Struk-
turaufbaus beriicksichtigt, ist das sogenannte Elementarzellen-Modell oder auch als Einheitszellen-
Modell (engl. ,,unit cell*) bekannt. Die Elementarzelle stellt die kleinste translatorisch periodische
Einheit einer unendlichen homogenen Struktur dar. Die aus der Physik, Chemie oder Kristallogra-
fie bekannten BRAVAIS-Gitter lassen sich in 14 mdgliche Formtypen der Einheitszelle einteilen.
GemiB der inhdrenten Symmetrieelemente der Elementarzellen lassen sich die BRAVAIS-Gitter in
sieben Kristallsysteme klassifizieren, bezeichnet als triklin, monoklin, orthorhombisch, tetragonal,
kubisch, trigonal und hexagonal. Zumeist werden kubische oder hexagonale Kristallsysteme fiir die
Elementarzellen von homogenen Hohlkugelstrukturen gleicher Kugelgrofie verwendet, begriindet
durch die einfache und vor allem teilweise (packungs-)stabile Anordnung.

Bei Verwendung der analytischen Homogenisierungsmethoden werden die effektiven elastischen
Materialkonstanten basierend auf mikro- bzw. mesomechanischen Zusammenhéngen berechnet.
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Die einfachsten Strukturaufbauten, die zur modellhaften Beschreibung von Metallschaumen ver-
wendet werden, sind zwei- oder dreidimensionale Elementarzellenmodelle. Die Abmessungen die-
ser Elementarzellen entsprechen in etwa der gemessenen Kantenldnge einer Zelle des betrachteten
Metallschaums selbst. Sie bilden meist offenzellige Strukturen ab. Im Fall der analytischen Model-
le ist die Beschreibung durch geschlossene mathematische Losungen nur fiir wenige, sehr einfache
Strukturen moglich. Fiir reale Strukturen bedarf es einer starken Vereinfachung bzw. Abstraktion.
Aus diesem Grund gibt es nur wenige Modelle fiir Schiume Das wohl bekannteste Modell hierfiir
ist das kubische Modell von Gibson und Ashby [75], das in vielen Veroffentlichungen als Referenz
genannt wird. Es besteht hauptsichlich aus Balken, die die Kanten eines Wiirfels abbilden. Werden
die Wiirfelflachen durch Platten bzw. Schalen interpretiert, so bildet dieses Modell das Verhalten
eines geschlossen porigen Schaums nach. Durch diese sehr einfachen Modellannahmen kénnen
Zusammenhinge zwischen dem Elastizitdtsmodul oder der FlieBgrenze und der relativen Dichte
hergeleitet werden.

Ein analytisches Modell fiir gleich groBe Hohlkugeln mit diinner Wandung in einer kubischen
Anordnung wurde von Grenestedt [80] entwickelt. Es beruht auf den Untersuchungen von Reissner
[172, 173] und beschreibt das elastische Verhalten. Weiterfithrend betrachtet Grenested zufalls-
behaftete, verteilte Hohlkugeln mit unterschiedlicher Grofle auf Basis des Modells von Hashin
und Shtrikman [84], das auf Variationsprinzipen beruht. Mit dem Néherungsmodell von Hashin
und Shtrikman ldsst sich fiir die effektiven Materialparameter eine obere und untere Schranke
zuweisen. Unter der Annahme konstanter Dehnungen bzw. konstanter Spannungen im heterogenen
Material lassen sich die exakten Schranken (dufersten Extremalwerte) fiir die effektiven Material-
eigenschaften angeben. Der obere Extremalwert unter Annahme konstanter Dehnungen wird
als VOIGT-Schranke, der untere Grenzwert unter Annahme konstanter Spannungen als REUSS-
Schranke bezeichnet. Auf diese beiden Schranken wird in Abschnitt 3.2.1 genauer eingegangen.
Die Kugeln der analytischen Betrachtung nach Grenestedt stehen im belastungsfreien Zustand
in einem punktformigen Kontakt, was nicht den realen Bedingungen von Hohlkugelstrukturen
entspricht.

Ahnlich wie bei der mechanischen Betrachtung gibt es nur analytische Modelle fiir die Schall-
absorption, bei Strukturen bestehend aus Regelgeometrien. Die Modelle von Kirchhoff [113],
Zwikker und Kosten [228] beschreiben beispielsweise die Schallausbreitung in zylindrischen
Rohren unter der Beriicksichtigung viskoser und thermischer Effekte. Je nach Frequenz {iberwiegt
der eine oder andere Effekt. Bei der Homogenisierung von heterogenen, offenporigen Strukturen
(z.B. Schiumen) wird die mikroskopische NAVIER-STOKES-Bedingung in das makroskopische
Gesetz von Darcy iiberfiihrt [71]. Daraus entstand die wohl bekannteste Theorie, die des quasi-
homogenen Schallabsorbers [152]. Diese Theorie setzt voraus, dass das Skelett des pordsen
Absorbers starr ist und die inneren Strukturabmessungen sehr klein im Verhdltnis zur Wellenlénge
der einfallenden Schallwellen sind. Der Absorber wird als quasi-homogenes Material mit viskosen
Verlusten angesehen. Wihrend das Schallabsorbermodell fiir porése Materialen nach Delany und
Bazley nicht auf den Strukturaufbau eingeht und beim Modell des quasi-homogenen Schallab-
sorbers oftmals die thermodynamischen Effekte vernachlédssigt werden, beriicksichtigt das halb-
phianomenologische JOHNSON-CHAMPOUX-ALLARD-Modell [1] sowohl den Strukturaufbau als
auch die viskosen und thermalen Effekte im porosen Medium. Fiinf Parameter werden hierfiir
bendtigt: die Porositét, die Tortusitét, der langenbezogene Stromungswiderstand, die charakteris-
tische thermische und viskose Lange der gesamten Struktur. Mit diesen Parametern lésst sich der
Absorptionskoeffizient einfach als Funktion der Frequenz bestimmen. Dieser Ansatz, auch dquiva-
lenter Fluid-Ansatz bezeichnet, geht von einem starren strukturellen Gertist des porésen Mediums
aus und bildet ausschlieBlich die Ausbreitung der Kompressionswelle ab. Weiterfiihrend gibt Biot,
basierend auf Untersuchungen bodenmechanischer Probleme eine Formulierung zur Beschreibung
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der Wellenausbreitung in gesattigten Medien mit deformierbarem Strukturgeriist (poroelastische
Materialien) [44]. Biot dehnt zusitzlich die Beschreibung auf die akustische Wellenausbreitung
[26] aus. Die Modellierung beinhaltet eine Longitudinalwelle und zwei Transversalwellen. Das
B1oT-Modell liefert fiir ein groles Spektrum praktischer Problemstellungen gute Ergebnisse. Zur
Beschreibung des Absorptionsverhaltens von Schaumen [56, 125], insbesondere von Hohlkugeln-
strukturen [60, 166] erwies sich das JOHNSON-CHAMPOUX-ALLARD-Modell als ausreichend.
Experimentelle Werte flir das Schallabsorptionvermdgen von Hohlkugelstrukturen prisentieren
Hiibelt [88, 87], Pannert et al. [166] und Gasser [71].

Gestaltet sich der Strukturaufbau derart, dass keine analytische Losung mdglich ist, bietet sich
die Analyse des Materialverhaltens mittels numerischer Simulationsmethoden an. Ein etabliertes
numerisches Naherungsverfahren in der Ingenieuranwendung stellt die Finite-Elemente-Methode
(FEM) dar. Mit dieser Methode lassen sich Modelle mit komplexen Geometrien abbilden und somit
auf die Imperfektionen des Strukturaufbaus eingehen. Als weitere numerische Naherungsmetho-
den konnen beispielsweise die Randelementmethode (BEM) fiir akustische Probleme, Diskrete-
Element-Methode (DEM) in der Partikelverfahrenstechnik oder LAGRANGE-MONTE-CARLO-
Simulation zur Beschreibung von Stromungen aufgefiihrt werden. Es besteht keine Vollstindigkeit
bei den aufgefiihrten numerischen Methoden und in dieser Arbeit wird auch nicht weiter auf sie
eingegangen.

Mit diesen numerischen Methoden kdnnen sowohl Strukturen mit einem periodischen Aufbau als
auch Strukturen mit einem beliebigen oder zufilligen Aufbau untersucht werden. Die Untersu-
chungen kdnnen in zwei- oder dreidimensionsaler Betrachtung stattfinden. Allerding erhoht sich
bei der letztgenannten der Rechenaufwand deutlich gegeniiber der erstgenannten Betrachtung und
die Aussagefihigkeit einer zweidimensionsalen Betrachtung beschrénkt ist. Im Fall periodischer
Strukturen, wie der Elementarzelle, erlauben periodische Randbedingungen eine Berechnung
einer unendlich ausgedehnten Struktur. Auf periodische Randbedingungen wird in dieser Arbeit
ausfiihrlich in den Abschnitten 3.2.1 und 3.2.5 eingegangen. So untersuchte Sanders und Gibson
[183, 185] das elastische Verhalten einer unendlich ausgedehnten geklebten Hohlkugelstruktur mit
kubisch primitiver, kubisch raumzentrierter und kubisch flichenzentrierter Anordnung. Dabei wur-
de die Variation der Kugelwanddicke berticksichtigt. Gasser analysierte geklebte Strukturen und
bestitigte die Ergebnisse von Sanders [73, 71]. Marcadon und Feyel [142], Fiedler und Ochsner
[64, 37] und Vesenjak et al. [212] erweitern ihre elementarzellenbasierenden Untersuchungen auf
das plastische bzw. dynamische Verhalten. Die Elementarzelle mit hexagonal dichtest gepackter
Anordnung wird nur in wenigen Fillen betrachtet [37, 70].

Fiir Schiittungen von Hohlkugeln bzw. daraus folgenden Hohlkugelstrukturen stellen sich in der
Regel keine perfekten, wie bei den Elementarzellen dargestellten, regelméfigen (theoretischen)
Packungen ein. Um realistische Strukturen mit ihrem unregelméBigen Aufbau nach- bzw. abzubil-
den, gibt es mehrere Ansétze. Zum einen existieren Methoden, die sich auf die real vorkommenden
Gegebenheiten stiitzen, zum anderen gibt es Vorgehensweisen, die eine unregelmafige Struktur auf
Basis physikalisch-technischer Effekte erzeugen. Bei der erst angefiihrten Methode kommt meist
das etablierte und zerstorungsfreie Messverfahren der Computertomografie zum Zug. Erstmalig
untersuchte Illerhaus mit der dreidimensionalen Computertomografie eine zylinderformige Probe
aus gesinterter metallischer Hohlkugelstruktur und bestimmte die Groenverteilung der Hohlku-
geln [97]. Caty et al. nutzt die Computertomografie zur Bildung eines finiten Schalenmodells
zur Bestimmung der Ermiidungsdauer [32, 31]. Die Gruppe um Fiedler beschiftigt sich mit
numerischem Untersuchen von zellularen Metallen mittels Computertomografie. Ein Schwerpunkt
liegt auf dem thermischen Materialverhalten [66], wobei auch das mechanische Verhalten von
metallischen Hohlkugelstrukturen untersucht wird [65, 67, 213]. Winkler et el. prisentieren eine
Rekonstruktionsmethode von Hohlkugelstrukturen, mit der sich die Kugeldurchmesserverteilung
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und -position bestimmen lésst [225]. Diese Methode wird in Abschnitt 3.1.1 genauer erldutert.
Ebenfalls untersucht Fallet unregelméBige Hohlkugelstrukturen mit Hilfe der Computertomografie
auf mechanische und teilweise akustische Eigenschaften [59, 60]. Grundlage hierfiir bildet die
Arbeit von Gasser, der den lingenbezogenen Stromungswiderstand aus inversen Elementarzellen
zur Schallabsorption bestimmt [71]. Zudem charakterisiert Fallet die Eigenschaften von Hohlku-
gelstrukturen mit Hilfe von Modellen, deren Kugelpackungen kiinstlich erzeugt werden. Die Ku-
gelpackungen werden mit Hilfe der Diskreten-Elementen-Methode, die aus der Molekulardynamik
stammt, bestimmt.

Neben der numerischen Charakterisierung wurden zahlreiche experimentelle Untersuchungen ver-
anlasst, die teilweise zur Verifizierung der aufgefiihrten Modelle dienen. Statische Druckversuche
wurden beispielsweise von Friedl et al. [68] und Lim et. al [133] durchgefiihrt. Winkler et al.
untersuchten experimentell das Schwingverhalten plattenformiger Hohlkugelstrukturen und die
Ausbreitung des Korperschalls [223, 222, 224]. Die Einsatzméglichkeit zellularer Metalle im
Automobilbereich gibt die Untersuchung von Heine et al. [89] wieder. In dieser Studie zeigen
Hohlkugelstrukturen ein gutes Potenzial durch ihr gutes Schallabsorptionsverhalten und durch ihre
voraussagbaren isotropen mechanischen Eigenschaften [37].

Diese isotropen Eigenschaften von Hohlkugelstrukturen werden in vielen Publikationen aufge-
fiihrt. Es gibt allerdings noch keine dem Autor bekannte Arbeit, die sich genauer mit dem iso-
bzw. anisotropen Verhalten von unregelmiflig angeordneten Hohlkugelstrukturen beschiftigt. Des
Weiteren wurden keine Arbeiten gefunden, die reale Hohlkugelstrukturpackungen anhand von
Kennwerten analysieren und die daraus ermittelten Werte mit zufallig erzeugten Packungen vergli-
chen haben. Viele bisherige Modelle basieren rein auf realen Strukturen oder auf fiktiv erstellten
Packungen. Die auf realen Strukturen basierenden Methoden bilden zwar exakt den Aufbau der
zu untersuchenden Hohlkugelstruktur ab, sind aber sehr aufwendig. Die Untersuchung einer
Vielzahl von Proben ist somit noch unméglich und eine Variation der Geometrie, beispielsweise
Anderung der Wanddicke, ist sehr komplex und folglich mit einem groBen zeitlichen Aufwand
verbunden. Fiir die Anordnung von Kugeln gibt es heute schon eine Vielzahl diverser Algorithmen
zur Erstellung fiktiver Hohlkugelstrukturen. Ein Vergleich von realen und fiktiv erstellten Hohl-
kugelstrukturen wire fiir die Vorhersehbarkeit von Nutzen. Dem Autor ist ebenfalls unbekannt,
dass es weitreichende Parameterstudien fiir regelmiBig geordnete und zufallig geordnete Modelle
gesinterter Hohlkugelstrukturen gibt. Neuartig diirfte auch das Schalltransmissionsverhalten von
Hohlkugelstrukturen sein.

1.4 Ziel und Inhalt der Arbeit

An der Fiille der zum Teil im Abschnitt 1.3 benannten Untersuchungen von zellularen Werkstoffen
ist ersichtlich, dass insbesondere der Bereich Metallschaume bereits ein gut untersuchter Werkstoff
ist. Aus den schon bestehenden Untersuchungen von Metallschdumen sollen die gewonnenen
Erkenntnisse auf den noch relativ jungen zellularen Werkstoff Hohlkugelstrukturen iibertragen
und angewendet werden. Wie in der Einleitung erwiahnt, weisen Hohlkugelstrukturen in ihrer
Zellmorphologie geringere Abweichungen auf als bei Metallschdumen und erweisen sich dadurch
in der Struktur als weniger heterogen. Durch geringere UnregelméaBigkeit in ihrem Strukturaufbau
werden die Eigenschaften von Hohlkugelstrukturen oftmals als isotrop angenommen.

Ziel dieser Arbeit ist eine weiterfithrende Charakterisierung mechanischer und akustischer Eigen-
schaften metallischer Hohlkugelstrukturen unter dem Einfluss unregelméBiger Kugelanordnung.
Insbesondere soll ein Augenmerk auf das isotrope bzw. anisotrope mechanische Verhalten gewor-
fen werden. Des Weiteren wird das Schallabsorptions- und Schalltransmissionsverhalten betrach-
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tet. Zu Beginn werden in Kapitel 2 die fiir die Arbeit relevanten Grundlagen der Elastizitétstheorie
und Akustik erldutert. Diese wesentlichen Ausziige werden genutzt, um das Materialverhalten
zu formulieren, um die Modelle von Tragwerkselementen, wie die Platte, abzuleiten und um die
Mechanismen der Schallabsorption beschreiben zu kénnen. Die Methoden zur Charakterisierung
werden ausfiihrlich in Kapitel 3 aufgezeigt. Zundchst wird auf die Modellierung der Struktur-
geometrie eingegangen. Es wird eine Methode zur Rekonstruktion realer Hohlkugelstrukturen
und mehrere Algorithmen zur Regenerierung von Kugelpackungen prisentiert. Im Speziellen
werden zufillige Kugelpackungen betrachtet und ihre Charakterisierung anhand von Kennwerten
aufgezeigt. Als Ergebnis der Geometriemodellierung wird ein vollparametrisches Volumenmodell
fiir Hohlkugelstrukturen vorgestellt.

Einen weiteren Schwerpunkt in diesem Kapitel stellen die Methoden zur Bestimmung der Elasti-
zitatskennwerte dar. Zur Bestimmung dieser Werte wird eine Homogenisierungstheorie eingefiihrt
und ausfiihrlich erldutert. Um die aus der Homogenisierung gewonnenen Ergebnisse spéter besser
interpretieren zu konnen, wird kurz auf Materialsymmetrien und beispielsweise auch auf negative
Querkontraktion eingegangen. Zusétzlich wird im Speziellen ein Finite-Elemente-Metode (FEM)
basierendes Berechnungsmodell mit besonderen Randbedingungen aufgezeigt.

Um die aus den Modellen bestimmten Elastizititskennwerte zu verifizieren, soll das Schwin-
gungsverhalten von Hohlkugelstrukturen experimentell untersucht werden. Hierbei konnen die
homogenisierten Elastizitdtskennwerte aus den aufgefiihrten Plattentheorien ermittelt werden. Zur
Losung dieses Schwingproblems werden das RiTzsche Verfahren und die FEM herangezogen.
Zur Messung der Eigenfrequenzen und -formen nutzt man die experimentelle Modalanalyse
mittels Festlaser und Impulshammer. Der Versuchsaufbau und die Durchfiihrung werden detailliert
erldutert.

Als weiterer Bestandteil des Methodenkapitels sind die Verfahren zur experimentellen und mo-
dellbehafteten Bestimmung zum Schallabsorptionsverhalten von Hohlkugelstrukturen zu nennen.
Zum einen werden die Messungen mittels Impedanzrohr, zum anderen die phdnomenologischen
Modellbildungen von pordsen Absorbern und deren Kenngroflen aufgefiihrt. Bei den versuchs-
technischen Bestimmungen wird eine neuartige Methode zum Transmissionsverhalten vorgestellt.
Das vorletzte Kapitel geht auf die ermittelten Ergebnisse ein. Es werden zuerst die realen Pa-
ckungen von Hohlkugeln untersucht und die ermittelten charakterisierenden Kennwerte dargelegt.
Spéter werden die charakterisierenden Kennwerte der zufallig erzeugten Packungen mit den realen
verglichen. Im Anschluss werden die Erkenntnisse aus den linear-elastischen Untersuchungen
bereitgestellt und diskutiert. Die einachsige Betrachtungsweise wird hierbei auf eine mehrachsige
ausgeweitet und somit die kompletten Steifigkeitstensoren der homogenisierten Strukturen be-
stimmt. Aus den ermittelten Steifigkeitstensoren konnen Riickschliisse auf das Materialverhalten,
Symmetrieebenen und Anisotropie gezogen werden. Zudem wird der Einfluss der Randbedingun-
gen diskutiert und ein Maf fiir die Anisotropie préasentiert.

In Kapitel 4 werden ebenfalls die homogenisierten Elastizititswerte aus der experimentellen
Modalanalyse gezeigt. Die aus dem Versuch ermittelten Werte dienen zur Verifizierung der
vorgestellten Berechnungsmodelle, die auf zufillig erzeugten Packungen basieren. AbschlieBend
betrachtet dieses Kapitel die Resultate der akustischen Messung mit dem Impedanzrohr und stellt
die approximierten Parameter fiir das phanomenologische Modell vor. Die Arbeit endet mit einer
Schlussbetrachtung, die eine Zusammenfassung beinhaltet, mogliche Modellerweiterungen und
neue Einsatzgebiete aufzeigt und einen Ausblick gibt. Umfassende Herleitungen zu den Modellen
und Berechnungen sind dem Anhang zu entnehmen.
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2 Theoretische Grundlagen

Dieses Kapitel behandelt die Grundlagen der Kontinuumsmechanik und der technischen Akustik,
die in dieser Arbeit Verwendung finden. Die Darstellung der mathematischen Zusammenhénge
orientiert sich an der Nomenklatur gegenwartiger Literatur [4, 21, 85, 152]. Allerdings besitzen
manche der hier verwendeten Symbole in den jeweiligen Quellen unterschiedliche Bedeutung. Aus
diesem Grund soll zu Beginn eine Darstellung aller eingefiihrten Schreibweisen erfolgen: Skalare,
reelle Groen werden in kursiver Schrift dargestellt: a; Tensoren erster Stufe bzw. Vektoren
werden klein und fett geschrieben: a; Tensoren zweiter Stufe bzw. Matrizen werden grof3 und fett
geschrieben: A; Tensoren vierter Stufe werden folgendermaBen notiert: A; fiir die Indizes i, j, k
oder / gilt die EINSTEINsche Summenkonvention'. Werden Indizes durch ein Komma getrennt,
weist dies auf eine Differentation nach dem Indize nach dem Komma hin 4;; ;. Werden sonstige
Indizes durch Kommatrennung einer Grofle zugeordnet, wird die GroBe durch die Bedeutung aller
einzelnen Indizes charakterisiert: A s; und die EULER-Zahl wird mit ¢ und die imagindre Einheit
mit j abgekiirzt.

2.1 Mechanische Grundlagen

Die mechanischen Grundlagen werden nach folgendem Ablaufschema erarbeitet, wie sie in
ADD. 2.1 dargestellt sind. Hierbei spricht man von Gleichgewichtsgleichungen, Materialgesetzen,
Spannungen, Verschiebungen, Verzerrungen, allgemeinen Anfangs-Randwertproblemen und dem
Prinzip von Hamilton. Diese Begrifflichkeiten werden in den anschlieBenden Abschnitten erortert.
Die hier aufgefiihrten Herleitungen basieren auf [3, 6, 5, 4, 17, 21, 90, 152, 190, 195, 204, 220].

Randbedingungen

Analytische Mechanik  —»  Starke Form
Prinzip von Hamilton

Kinematik ——» Verzerrungen

Anfangs-

Kinetik —> Spannungen
: = Randwertproblem

Bilanzgleichungen /|
= = # Schwache Form

_r

Randbedingungen

Materialtheorie —> Materialgesetz

Abbildung 2.1: Herleitungsprinzip in der Kontinuumsmechanik nach [190]

IDiese Konvention beschreibt, dass iiber allen doppelt auftauchenden Indizes aufsummiert wird.
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2.1.1 Verzerrungen, Spannungen und Bilanzgleichungen

Durch Einfithren von kérper- und raumbezogene Bezugssystemen konnen durch duBiere Kréfte
deformierte Korper beschreiben werden. Als quantifizierte Malle gelten Verschiebung « und
Verzerrung €. Eine genauere Betrachtung kann dem Anhangsteil A.1.1 entnommen werden.
Fiir die Stromungsmechanik spielen die Geschwindigkeits- und Beschleunigungsfelder, die im
Anhangsteil A.1.2 niher aufgefiihrt, eine bedeutende Rolle. Belastungen und die daraus resultie-
renden werkstoffunabhéngige Spannungen ¢ werden in A.1.3 beschrieben. Eine grundlegegende
Betrachtungsweise in der Mechanik wird in den Anhangsteilen A.1.4 und A.1.5 aufgezeigt sind.
Die Bilanzierung von Kriften, Momenten, Impulsen, Spannungen und Energien ist hierbei von
zentraler Bedeutung.

2.1.2 Materialgesetze

Den Zusammenhang zwischen Spannung ¢ und Verzerrung € geben die werkstoffabhéngigen Kon-
stitutivgleichungen wieder (sieche Anhang A.1.6). In der Arbeit werden folgende Materialtheorien
nidher eingegangen: linear-elastische Festkorper, ideales Gas und viskoses Fluid. Erstaufgefiihrte
wird in Form des verallgemeinerten HOOKEschen Gesetzes (Anhangsteil A.1.6) zur Beschrei-
bung der elastischen Eigenschaften metallischer Hohlkugelstrukturen verwendet. Die beiden an-
deren Materialtheorien, ideales Gas (Anhang A.1.6.2) und viskoses Fluid (A.1.6.3) dienen zur
Modellbildung eines pordsen akustischen Absorbers.

2.2 Mechanische Kontinuumsschwingungen

Reale Korper, Bauteile und Bauwerke sind in der Regel komplexe Geometrien. Diese lassen sich
nur in wenigen Féllen exakt analytisch berechnen. Hingegen lassen sich Problemstellungen mit
geometrischen Regelgeometrien oftmals analytisch geschlossen 16sen. Sind eine oder zwei rdum-
liche Ausdehnungen eines Korpers wesentlich kleiner als die anderen Ausdehnungen, lésst sich
in der Regel die Beziehung zwischen Verschiebungen u und Verzerrungen € bzw. Spannungen &
vereinfachen. Diese Korper haben ebenfalls eine rdumliche Ausdehnung, lassen sich aber aufgrund
ihrer Abmessungen als zwei- oder eindimensionale Tragelemente idealisieren.

Ist eine Abmessung viel kleiner im Vergleich zu den beiden anderen, liegt ein flichenartiger Korper
vor. Stellt sich die Flache als gekriimmt dar, spricht man von einer Schale. Bei ebenen Flachentrag-
werken unterscheidet man nach ihrer Belastung zwischen Platten und Scheiben. Wiahrend Scheiben
in ihrer Ebene belastet werden, wirkt die Belastung bei Platten senkrecht zur Plattenmittelfliche.
Linienformige Tragelemente kennzeichnen sich dadurch, dass zwei Abmessungen des Korpers
wesentlich kleiner sind als die dritte. Derartige Tragelemente werden als Stibe oder Balken
bezeichnet.

In dieser Arbeit wird auf die Theorien von schubstarren und schubweichen Platten eingegangen
(siche Abschnitt A.2.1 und A.2.2)). Einige weiterfithrende Plattentheorien werden anschlieend
erwihnt.

Diese Plattentheoriemodelle konnen ebenfalls zur Schwingungsanalyse genutzt werden. In dieser
Arbeit werden die Eigenformen und -frequenzen von Platten genutzt zur Ermittlung effektiver
Materialkennwerte, wie Elastizitditsmodul oder Querkontraktionszahl.
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2.3 Akustische Grundlagen

Akustik ist die Lehre vom Schall und seiner Ausbreitung. Das Wissenschaftsgebiet hat viele unter-
schiedliche Gesichtspunkte - beginnend bei der Entstehung und Erzeugung iiber die Ausbreitung
und Auswirkungen bis hin zur Beeinflussung und Analyse von Schall. Akustik beschreibt ein
interdisziplindres Fachgebiet, welches in den Bereichen Physik, Materialwissenschaften und sogar
in der Psychologie von Interesse ist. Nachfolgend werden die physikalischen Grundlagen behan-
delt, die den Schall betreffen. Diese sollen zum Verstindnis der Wirkungsweise von akustischer
Absorption und des KUNDTschen Rohres (Impedanzrohr) dienen.

2.3.1 Schallwellenausbreitung und akustische Kenngrofien

Der Schall ist eine Energieform, die sich durch Kollision von Atomen und Molekiilen iibertragt.
Die Schallausbreitung erfolgt iiber Longitudinal- und Transversalwellen bei Fluiden. Wihrend in
Festkorpern beide Wellentypen auftreten, konnen sich in Gasen aufgrund der fehlenden Scherkraf-
te nur Longitudinalwellen ausbreiten. Deren Ausbreitungsgeschwindigkeit hangt von den elas-
tischen Eigenschaften (Kompressionsmodul) und der Dichte des Mediums ab. Das menschliche
Ohr ist fiir Frequenzen von 20 Hz bis 20 kHz sensibel. Dieser Bereich entspricht in der Luft, bei
Umgebungstemperatur von 20°C, einer Wellenldnge von 17 mm bis 17 m.

2.3.1.1 Schallwellen
Schallwellen lassen sich auf verschiedene Weisen beschreiben:
+ die Druckschwankung p.,
+ die Dichteschwankung p.. und
+ die Auslenkung & eines Gaspartikels x aus seiner Ruhelage xg.

Durchliuft eine Schallwelle ein Ausbreitungsmedium, so werden die Gasmolekiile aus ihrer Ru-
helage xo um € ausgelenkt. Die Geschwindigkeit der Molekiile ist die Schallschnelle v. Durch die
Auslenkung entstehen Gebiete mit erhdhten und geringen Dichten. Somit lassen sich Schallwellen
durch Dichteschwankungen beschreiben. Mit den Dichteschwankungen einhergehenden Druck-
schwankungen im Medium gibt es eine weitere Beschreibungsmoglichkeit einer Schallwelle:

P(t)=po+p~(1). 2.1

Hierbei ist pg der Umgebungsdruck, auch Atmosphérendruck p, genannt und p.. (¢) der Schall-
druck. Im Allgemeinen geniigt es, den Schalldruck zur Schallausbreitung zu betrachten und die
eindimensionale Wellengleichung in x-Richtung zu formulieren:

*p~._ podp~

= . 2.2
o K o’ @2
Dabei ist K das Kompressionsmodul, welches folgendermallen definiert ist:
Vv
dp=-K d7 2.3)

K stellt einen Proportionalfaktor dar, der aussagt, wie sich eine Volumenédnderung auf den Druck
auswirkt. pg ist die Dichte des Gases bei Atmosphdrendruck pg = p, und Raumtemperatur 7. Die
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Tabelle 2.1: Schallfeldgrofen.

Dichte: | p (x,t) = po+ p~ (x,t) | p~ (=p):Schalldichte
Druck: P (x,t) = po+ p~ (x,t) | p~ (=p):Schalldruck
Schnelle: | V(x,t) =vo+V~ (X,t) | Vo (=v):Schallschnelle

Wellengleichung fiir Schallwellen ist analog zur Wellengleichung fiir transversale Schwingungen
aufgebaut. Die Herleitung der allgemeinen linearen Wellengleichung fiir ein viskoses Fluid findet
man in Anhang A.3.1. Die Phasengeschwindigkeit ¢ dieser Welle wird Schallgeschwindigkeit
genannt. Eine ausfiihrliche Definition der Schallgeschwindigkeit und deren Bestimmung werden
im Anhangsteil A.3.2 bereitgestellt.

2.3.1.2 Schalifelder

Die grundlegenden Differentialgleichungen der Schallfelder mit ihren Schallfeldgrofen (Tabelle
2.1) in gasformigen Medien sind die Kraftgleichung oder Impulsgleichung

ov
- 2.4
po%; = —erad (p) (2:4)
und die Kontinuititsgleichung
%’z = —podiv(v). 2.5)

Dabei sind p und p die Wechselanteile des Drucks und der Dichte im Schallfeld. py ist die
statische Luftdichte. Mit Annahme eines Zeitfaktors in der Form &/®! ergibt sich fiir die beiden
Grundgleichungen:

jopov = —grad (p), (2.6)

jop = —po div(v). 2.7)

Hierbei ist @ = 2z f die Kreisfrequenz. Als dritte Grundgleichung kommt die Zustandsgleichung
des Mediums hinzu.

2.3.1.3 Impedanz und Admittanz

In der Schwingungslehre versteht man unter dem Begriff Impedanz einen Widerstand, der der
Ausbreitung von Schwingungen entgegenwirkt. Im Fachgebiet der Akustik unterscheidet man drei
verschiedene Arten von Impedanzen:

* die akustische Flussimpedanz,
* die akustische Feldimpedanz und
* die mechanische Impedanz.

Die Flussimpedanz, nach Norm nur akustische Impedanz genannt, definiert sich tiber den Quoti-
enten aus Schalldruck p und Schallschnelle v

: (2.8)
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wobei vy, die liber die Fliche A gemittelte Schallschnelle und q der Schallfluss sind. Die am
héufigsten vorkommende Art ist die Feldimpedanz, auch als spezifische Impedanz bezeichnet. Die
Feldimpedanz berechnet sich durch

Zy=~—. 2.9

Die dritte Art der Impedanzen ist ein Quotient aus einer Kraft und einer Schnelle

_r4
B A\

Zm (2.10)

und wird als mechanische Feldimpedanz bezeichnet. Von nun an wird die akustische Feldimpedanz
nur noch mit Z benannt. Dem aufmerksamen Leser werden einige Abweichungen gegeniiber dem
bisher Gewohnten aufgefallen sein. Dies beruht auf der Geschichte der Akustik, die nicht immer
logisch verlief. Der Begriff Impedanz wurde aus der Elektrodynamik, die wiederum wesentlich
von der Mechanik geprigt wurde, iibernommen. So entstand ein Term ,,Skalar p dividiert durch
einen Vektor v, der in der Mathematik nicht definiert ist. Dieses Problem kann umgangen werden,
indem man den Kehrwert von Z nutzt, auch Admittanz G genannt. G ist definiert durch die Relation

v=Gp, (2.11)

wobei G nun wirklich ein Vektor ist und zwar in die gleiche Richtung wie v geichtet.

2.3.1.4 Schallintensitit und Schallleistung

Eine weitere Kenngrofe ist der Schallfluss
q= / vdA. (2.12)
4

Der Schallfluss setzt sich zusammen aus dem Integral der Schallschnelle v iiber eine gleichsinnig
durchstromte, gerichtete Flache A. Des Weiteren lésst sich die Schallintensitét mit

I =pv (2.13)

anfiihren. Die Schallintensitdt bildet sich aus dem Produkt des Schalldrucks und der Schallschnelle
und beschreibt die Energiemenge, die an einem Ort im Schallfeld pro Zeiteinheit mit der Schnelle
pro Fliacheneinheit durchstromt wird. Aus der Schallintensitdt kann die Schallleistung P einer
Schallquelle gewonnen werden, indem man die Intensitétsbeitridge der Flichenelemente dA einer
um die Quelle gelegten Flache A4 integriert

P= /IsdA. (2.14)
A

2.3.1.5 Ebene und stehende Welle

Héingt der momentane Zustand einer Schallwelle lediglich von einer einzigen Richtung ab, so
spricht man von einer ebenen Welle. Sie ldsst sich folgendermalien beschreiben:

px,t)=f(x—ct)+g(x+ct), (2.15)

wobei f und g beliebige, durch die Art der Schallanregung gegebene Funktionen sind. Der erste
Term § der rechten Seite beschreibt die Storung (Schallwelle), die sich mit der Schallgeschwin-
digkeit unter der Beibehaltung von Form und Stirke in Richtung der positiven Richtungsachse
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ausbreitet. Dementsprechend ist g der Wellenteil, der sich in die negative Ausbreitungsrichtung
fortpflanzt.

Eine stehende Welle entsteht durch Superposition zweier gegenldufig fortschreitender Wellen
mit gleicher Frequenz und gleicher Amplitude. Solche Wellen konnen aus zwei verschiedenen
Erregern stammen oder durch Reflexion einer Welle an einem Hindernis entstehen.

2.3.2 Mechanismen der Schallabsorption

Als Schallabsorption bezeichnet man die Umwandlung von Schallenergie in Warme. Die Schallab-
sorption geschieht bei offenporigen und faserigen Schichten durch Reibung der Luftteilchen, bei
weichen geschlossenporigen Stoffen durch Kompressionsvorgéinge und den damit verbundenen
Verlusten. Im Folgenden wird genauer auf die Leistungsverteilung einer Schallwelle beim Auf-
treffen auf ein absorbierendes Hindernis eingegangen. Trifft eine Schallwelle mit der Leistung P,
dem Schalldruck pe, der Schallschnelle ve und der Frequenz f auf ein gegeniiber ihrer Wellenlénge
sehr grofes Hindernis, wird diese teilweise reflektiert, unter Umsténden auch gebeugt und gestreut,
durchgelassen, als Korperschall fortgeleitet, aber auch absorbiert. Eine Leistungsbilanz kann nach
Abb. 2.2 wie folgt

Po=PR+P+P+P (2.16)
aufgestellt werden. Wird diese grundlegende Betrachtung der Raumakustik fiir das Impedanzrohr
angewendet, kann der Einfluss des Korperschalls vernachléssigt werden, Pr — 0. Dies beruht auf
der Annahme, dass die Masse des Impedanzrohres grof3 gegeniiber der mitbewegten Luftmasse
(mRohr => myys) der auftreffenden Welle ist. So vereinfacht sich die Gleichung (2.16) zu

P.=P,+P+P, (2.17)

P

(7

Abbildung 2.2: Leistungsverteilung des Schalls beim Auftreffen auf ein Absorbermaterial.

= %)

Py

2.3.2.1 Schallabsorptionsgrad

Zur Beschreibung solcher Absorber werden hinsichtlich ihrer Wirksamkeit fiir die Sendeseite die
Summe aus P, und P; mit P ins Verhiltnis gesetzt. Der sogenannte Schallabsorptionskoeffizient,
oder auch Schallabsorptionsgrad bezeichnet, kann geméaf
P+P P.—P P P
gt _fef B & (2.18)
Pe P Fe P

berechnet werden. Die Werte fiir & liegen zwischen 0 und 1.

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

Theoretische Grundlagen 23

2.3.2.2 Schallreflektionskoeffizient

Fallt eine ebene Schallwelle, wie in Abb. 2.3, auf eine unendlich ausgedehnte glatte Wand, wird
sie an dieser nach dem Reflexionsgesetz zuriickgeworfen. Dabei verringert sich im Allgemeinen
ihre Amplitude, zugleich &ndert sich die Phase. Wird die unter dem Winkel v auftreffende Welle
durch

Pe (x,y,l) _ ﬁei(wt—kxcosvfkysinu) (2.19)

festgelegt, gilt fiir die reflektierte Welle
Dr (x,y,t) _ ﬁrej(wtkacosvfkysinv) (2.20)

mit dem Schallreflektionskoeffizient
ra = 25, 2.21)

Pe

Die Schallleistung, die nicht die Oberfliche der Einfallseite passiert, wird reflektiert. Fiir die

reflektierte
Welle

x=0
Abbildung 2.3: Reflektion einer Schallwelle an einer ebenen Fliche

Beschreibung dieser reflektierten Leistung wird der sogenannte Schallreflektionskoeffizient oder
auch kurz Schallreflektionsgrad berechnet. Er kann anhand der Schalldriicke pe und p; hergeleitet
werden.
Bei der Reflektion der senkrecht v = 0 einfallenden Schallwelle wird ihre Amplitude geschwécht,
zugleich dndert sich die Phase. Mit

Pe = pee®®Y (2.22)

wird die einfallende Schallwelle bezeichnet. Fiir die reflektierte Schallwelle ergibt sich
pr = Perae Y. (2.23)

Durch die genannte Phasenverschiebung ist der Reflektionskoeffizient komplexwertig. Wird die
Schalleistung betrachtet, muss die Beziehung folgendermaf3en lauten:

L

. 2.24
Fe pg ¢ )

‘rak‘z =
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Die einfallende Leistung P, teilt sich wie in Abb. 2.2 ersichtlich in A und P’ auf. Normiert man
die Groflen auf die einfallende Leistung P, kann der Zusammenhang zwischen Reflektions- und
Absorptionskoeffizient hergeleitet werden:

/

P. P P
P. P P’ (2.25)
1= |rak|2 +o.

2.3.2.3 Schalltransmissionsgrad

Des Weiteren wird die durch die Probe transmittierte Leistung mit dem sogenannten Schall-
transmissionskoeffizienten beschrieben. Der Koeffizient kann dhnlich wie der Reflektionskoeffi-
zient hergeleitet werden. Auch bei der Schalltransmission wird die Amplitude der Schallwelle
geschwicht und zugleich findet eine Phasenverschiebung statt. Die Phasenverschiebung beruht
darauf, dass die spezifische Schallimpedanz und die damit verbundene Schallgeschwindigkeit des
Priifmaterials abweichen. Der Schalltransmissionskoeffizient wird folgendermaflen bestimmt

fa = 2L, (2.26)

Pe
Betrachtet man den Schalltransmissionskoeffizienten mit Hilfe der Schallleistung bekommt man
folgende Beziehung
A_pt

‘2
Fe pg

(2.27)

|tak

2.3.2.4 Schalldissipationsgrad

Zur Quantifizierung der Wirksamkeit hinsichtlich der Dissipationseigenschaft des Priiflings wird
der Dissipationskoeffizient verwendet. Der Dissipationskoeffizient gibt eine Aussage iiber die
Leistung, welche im Priifmaterial geschluckt wird. Der Koeffizient ldsst wie folgt bestimmen

P, P.—P—P
=2 T e P = o — [ (2.28)
P P

2.3.2.5 Wandimpedanz

Die Wandimpedanz Z ist eine Grof3e, die den speziellen Aufbau einer reflektierenden Einrichtung
charakterisiert. Unter der Wandimpedanz versteht man das Verhéltnis aus Druck und Schallschnel-
le auf der Wandoberfliche x = 0:

z="P=0 (2.29)

Vx=0

Der Zusammenhang zwischen der aufbaubeschreibenden Gréfe Z und den wirkungsbeschreiben-
den GroBen B, o und f, soll kurz erklart werden. Mit der giinstigen Wahl des Koordinatensystems
(wie Abb. 2.3), bei dem dessen Nullpunkt auf der Wandoberfldche liegt, erhélt man:

P=n (ej"“Jrrej"") (2.30)
und -
_ P (e, e
V= 053 = pe (el Facd ) 2.31)
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im Bereich x < 0 vor der Wand. So kann die Wandimpedanz mit dem Reflektionskoeffizienten
folgendermaflen verkniipft werden:
V4 . 1 47k
pc 1 ak
In der Regel verwendet man statt des Reflektionskoeffizientens fast immer den Absorbtionsgrad.
Aus diesem Grund soll hier noch der Zusammenhang zwischen dem Verlustgrad 8 und der
Wandimpedanz Z erwéhnt werden. Dafiir 16st man die Gl. (2.32) nach r auf

(2.32)

Z_1
r==% o (2.33)
pe T
und bestimmt den Verlustgrad 8
, 4Re { £}
B=1—ral” = (2.34)

2 2°
z z
[Re{Z}+1]"+ [m{Z}+1]
Aus der Gleichung wird ersichtlich, dass wenn Z = pc¢ wird, ein maximaler Verlustgrad 3 erreicht

wird. Tritt der Fall auf, dass keine Schalltransmission 7, = 0 stattfindet, kann der Absorbtionsgrad
dem Verlustgrad oo = 8 gleichgesetzt werden.

2.3.2.6 Gesetz von Darcy

Bei der Schallabsorption pordser Stoffe spielt die Permeabilitit eine zentrale Rolle. Die Permeabi-
litat charakterisiert die Durchstrombarkeit eines pordsen Stoffes und ist eine reine Stoffkonstante
dieses Materials. Das DARCY-Gesetz beschreibt den Zusammenhang zwischen Geschwindigkeit
und Potentialgefille:

Voo kp
VDarey = — = — = ———grad und
ey = = o4 T v e (p) 239
oy = VD;rcy7

wobei vparcy die DARCY-Geschwindigkeit (fiktive oder Filtergeschwindigkeit) des Stromungsme-
diums is, vy, die mittlere reale Geschwindigkeit in den Poren, kp der Durchléssigkeitsbeiwert, ¢
die Porositit und V' der Volumenstrom. Es wird von einer laminaren Stromung ausgegangen. Bei
diesem Gesetz handelt es sich um eine spezielle Losung der NAVIER-STOKES-Gleichung.

Als ein einfacher pordser Stoff kann ein Kdrper mit runden Rohren angenommen werden. Die
Permeabilitdt ldsst sich durch die GesetzméBigkeit von Hagen-Poiseuille bestimmen (siehe An-
hang A.3.3). Neben der Permeabilitit spielt in der Akustik der Warmeaustausch zwischen Fluid
und der porésen Struktur eine entscheidende Rolle. Eine Betrachtung des Warmehaushalts ist im
Anhangsteil A.3.4 beigefiigt. Wie sich die Einfllisse der Permeabilitit und des Warmeaustausch
auf die Schallausbreitung in zylindrischen Rohren auswirkt, zeigt der Anhangsteil A.3.5.
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3 Methoden zur Charakterisierung

In diesem Kapitel soll die fiir diese Arbeit notwendige Methodik zur Charakterisierung mecha-
nischer und akustischer Eigenschaften von Hohlkugelstrukturen vorgestellt werden. Zuerst wird
auf die allgemeinen Modellbildungen, basierend auf realen und kiinstlich erzeugten Strukturen,
eingegangen. Nachfolgend werden die statisch- , dynamisch-mechanisch und akustikspezifischen
Methoden zur jeweiligen Charakterisierung behandelt.

3.1 Geometriemodellbildung

In diesem Abschnitt wird die fiir diese Arbeit genutzte geometrische Modellierung von Hohlku-
gelstrukturen beschrieben. Dabei wird auf ideale, theoretische und reale sowie auf stochastisch
erzeugte Strukturen eingegangen.

3.1.1 Untersuchung realer Strukturen

Um das Verhalten von Hohlkugelstrukturen zu beschreiben und vorherbestimmen zu kénnen, ist
es notwendig, reale Proben mit ihren unregelmafigen Strukturen zu untersuchen. Hierbei kann auf
eine Vielzahl zerstorender und zerstorungsfreier Methoden zuriickgegriffen werden. Des Weiteren
hingt die Methode auch vom Probenkdrpermaterial und seiner Grofle ab. Die Eigenschaften
beeinflussen Auflosungsbereich und -tiefe. Hierbei ist zu beachten, dass die Grofle der untersuchten
Probenkdrper stark abhéngig von der gewiinschten Auflosungstiefe ist. So ist es beispielweise
fast unmoglich grofle makroskopische Bauteile als Ganzes im Nanobereich zu untersuchen. Ein
wesentliches Ziel dieser Arbeit ist die Beschreibung bzw. Untersuchung der unregelmafigen Pa-
ckung in realen Hohlkugelstrukturen. Um einen moglichst groBen und aussagefiahigen Bereich der
Hohlkugel zu erfassen, wird die Ortsauflosung so gewihlt, dass alle relevanten Hohlkugelwénde
im Auflosungsbild sichtbar sind.

3.1.1.1 Computertomografie

Ein aus der diagnostischen Medizin bekanntes Standardverfahren ist die RONTGEN-Computer-
tomografie (altgriechisch tome - Schnitt und graphein - schreiben). Heutzutage ist dieses Verfahren
im technischen Umfeld ebenfalls nicht mehr wegzudenken. Es hat sich beispielsweise im Bereich
der zerstorungsfreien Bauteilpriifung und Produktentwicklung etabliert.

Dieses moderne Verfahren basiert auf der Entdeckung der sogenannten Rontgenstrahlung! im Jahr
1895, das nach dem Entdecker Wilhelm Conrad Rontgen benannt wurde. So bestand zum ersten
Mal die Moglichkeit in das Innere des menschlichen Kdrpers zu blicken, ohne diesen zu sezieren.
Bei der RONTGEN-Strahlung handelt es sich um langwellige elektromagnetische Strahlen (108
bis 10~!2 m) mit einer Photonenenergie Epporon zWischen 100 eV und einigen MeV - wobei die
Wellenldnge Ars von der elektrischen Energie abhingig ist, welche sie erzeugt. Sie entsteht, wenn

!Englisch: X-ray
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schnell fliegende Elektronen auf einen festen Stoff auftreffen und dadurch abgebremst werden.
Eine ausfiihrliche Einfiihrung in die Computertomografie kann [30] und [107] entnommen werden.

3.1.1.2 Rekonstruktion- und Riickfiihr-Algorithmus

Im Folgenden wird eine neue Methode zur Lokalisierung der genauen Position von Kugeln
und zugleich deren Kugelradiusbestimmung aus dreidimensionalen Computertomografiebildern
vorgestellt. Diese Kugelerkennungsmethode verwendet das Haar-Integration Framework (Pro-
grammiergeriist), das fiir generische (allgemeine) Objekterkennung und -klassifikation in zwei-
und dreidimensionalen Bildern genutzt wird. Diese Integrationsmethode wurde in Schulz-Mirbach
[189] eingefiihrt und unter anderem von Fehr et al. [62] weiterentwickelt. In dieser Arbeit handelt
es sich um Kugeln, die sich durch eine Reihe von Bildpunkten (Pixel bzw. Voxel), die einen
Abstand r zum Kugelzentrum ¢ haben, wobei r als Kugelradius ausgenutzt werden kann. Bei
dieser Erkennungsmethode wird die Wahrscheinlichkeit bestimmt, dass ein beliebiger Bildpunkt
das Zentrum einer Kugel ist. Diese Punkte mit den hochsten Wahrscheinlichkeiten werden als
Kugelzentren selektiert. Die sogenannte Wahrscheinlichkeitskarte (engl.: probability map) fiir alle
Punkte im dreidimensionalen Bild gibt den Bereich der mdglichen Radien an, die in der Zeit
O (N) berechnet werden konnen. Dabei stellt N die Anzahl der Voxels im Bild dar. Fiir Kugeln mit
nahezu gleichem Radius ist nur ein Rechendurchlauf durch das dreidimensionale Bild notwendig.
Abgesehen von Schnelligkeit ist der Algorithmus besonders robust gegeniiber Stérungen, wie
deformierte Kugeln oder nicht vollig geschlossene Kugeln in der Kugelstruktur. Zusétzlich beruht
diese Methode nur auf der relativen Grauwertdnderung. Der mathematische Hintergrund dieser
Kugelerkennungsmethode wird hier kurz erldutert. Als Erstes werden die Merkmale der Invari-
anten vorgestellt, die fiir die Lokalisierung der Hohlkugeln verwendet werden. Die Invarianten
basieren auf der Idee der Berechnung lokaler Grauwertinvarianten, wie sie in [189] eingefiihrt
wurden. Grauwertinvarianten sind Haar-Integrale, d.h. eine Invariante / berechnet sich aus

10.2) = [ £(s)dg G0
G

mit G als Transformationsgruppe, unter der die berechneten Invarianten invariant sein sollen, f
einer Kernfunktion und dem Bild X'. Durch die Integration iiber alle Transformationen gX™ des
Bildes X entsteht pro Bild eine Invariante. Diese Haar-Integration kann angewendet werden,
um ganze Bilder oder beliebige Ausschnitte von n-dimensionale Bilder unabhingig von einer
gegebenen Transformationsgruppe zu beschreiben. Das Ergebnis / (f, X') ist identisch fiir das Bild
X mit all ihren Transformationen unter der Transformationsgruppe G. Dieses Resultat kann als
invarianter Transformationkennwert dienen. Im besonderen Fall der Erkennung von kugelférmigen
Strukturen im dreidimensionalen Raum berechnet sich der rotationsinvariante Kennwert / wie
folgt:

VX (Rr—xq) r

——— X —dR. 2
VX (Rr—xo)| |r| 3.2)

1(X,r,xq) :/R’l
03

Hierbei stellt der Wert ein direktes MaB fiir die Wahrscheinlichkeitv dar, dass der Punkt x( ein
Zentrum einer Kugel mit dem Radius |r| ist. Die Transformationsgruppe 03 ist die Gruppe der
Rotationen, die Rotationsmatrix R kann eine beliebige Rotation im dreidimensionalen Raum
sein und VX entspricht dem Gradientenbild von X'. Die Integration iiber alle Rotationsmatrizen
R € O3 ist sehr zeitaufwéndig. Eine schnelle Approximation iiber die erwéhnten rotationsin-
varianten Funktionen kénnen aus Schulz et al. [188] entnommen und fiir die dreidimensiona-
le Kugelerkennung angewendet werden. Dieses Verfahren basiert auf einem Bewertungschema,
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(b)

Abbildung 3.1: Schnitt durch ein dreidimensionales Computertomografie-Bild mit a) Akkumula-
torkarte und b) mit erfassten Kugeln, c) erfasste Kugeln ohne Uberlagerung.

welches dem in der Hough Transformation [11] verwendeten Verfahren dhnelt. Jeder Voxel xq
in einem dreidimensionalen Bild ,stimmt* fiir den Punkt x. ab, welcher in der Richtung des
Gradienten von xo im Abstand |r| liegt. Daraus folgt, dass fiir jeden Punkt x( auf der Ober-
fliche einer Kugel, der Punkt x. das Kugelzentrum ist. Der resultierende Akkumulator stellt
ein vierdimensionales Feld mit den GréBen x, y, z und |r| dar. Die anschliefende Anwendung
eines vierdimensionalen GAUSSs-Filters ermdglicht eine weitere Erhdhung der Robustheit gegen
Storungen in der Kugelstruktur. Lokale Maxima im Akkumulator entsprechen den Kugelzentren
im originalen dreidimensionalen Bildbereich. Beispielhaft zeigt die Abb. 3.1 die Kugelerkennung
im Schnitt eines Computertomografie-Bildes. Dabei kann man in Abb. 3.1a die Uberlagerung des
Originalbildes mit der Akkumulatorkarte erkennen. Die lokalen Maxima der Kugelzentren werden
dabei deutlich sichtbar. Die aus den lokalen Maxima extrahierten Kugeln werden in Abb. 3.1b
iiberlagert und mit dem Originalbild abgebildet. Abbildung. 3.1c zeigt die aus der Erkennung
resultierenden Kugeln. Mit dieser Methode kdnnen Position und GroBe von Hohlkugeln aus realen
Proben mit hoher Zuverldssigkeit und Genauigkeit ermittelt werden. Um die Leistungsfahigkeit
dieses Algorithmus unter Beweis zu stellen, wurde eine reale Probe mit den AbmafBen 330 x 110
x 30 mm® mit Hilfe eines Computertomografen gescannt und rekonstruiert. Dabei konnten iiber
40000 Kugeln detektiert werden. Hierbei wurden iiber 99,7% richtig erfasst. Abbildung 3.2 zeigt
die rekonstruierte Volumengeometrie.

3.1.2 Regulire Packungen - Gitterstrukuren

Regulidre Packungen, auch theoretische Gitterstrukturen genannt, sind schon seit langem aus der
Chemie und der Atomphysik bekannt. Diese reguldren Kugelpackungen bestehen aus periodischen
und durch bestimmte Regeln aneinander gesetzte Elementarzellen mit gleich grofen Kugeln.
Hierbei stellt die Elementarzelle die kleinste Untereinheit der Packung dar. Setzt man die Ele-
mentarzellen periodisch aneinander, bildet sich ein unendliches Gitter.

Die reguldren Packungen sind translationsinvariant, d. h. ihre Elemente lassen sich durch Ver-
schiebung deckungsgleich aufeinander abbilden. Aulerdem besitzen diese Packungen Rotations-
symmetrie, die abhingig von der zugrunde liegenden Elementarzelle zwei-, drei- oder vierzéhlig
sein kann. Die meisten Festkorpermaterialien kristallieren in solchen Anordnungen oder in etwas
komplexeren Mischformen der reguldren Packungen. So befasst sich die Kristallografie mit der
Einstufung natiirlicher, aber auch zum Teil kiinstlicher kristalliner Werkstoffe in bestimmten
Kristallstrukturformen. Diese Einstufung ergibt sich aus der geometrischen Anordnung der dar-
in enthaltenen Atome. Dabei werden die Atome als Punkte oder Kugeln approximiert. Kugeln
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Abbildung 3.2: Rekonstruiertes Volumenmodel einer realen Probe auf Basis der bildverarbeiteten
Kugelerkennung.

gleicher Grofle lassen sich auf verschiedene Weise zu regelmifligen Strukturen zusammenfiihren,
die im Folgenden erkldrt werden.

Aus direkt orthogonal tibereinander gestapelten Kugeln ist die kubisch-primitive Packung (KP),
oder auch simple cubic packing genannt, aufgebaut. Thr Volumenanteil ist relativ niedrig mit
Wy = £ = 0,52. Die Koordinationszahl (KZ) gibt an, wie viel direkte Nachbarn eine Kugel in der
Gitterstruktur besitzt. Fiir diesen Packungsfall betrdgt die Koordinationszahl sechs. Dieser Gitter-
bzw. Packungstyp ist nicht stabil gegen Verschiebungen. Es gibt auch nur wenige Werkstoffe bzw.
Elemente, wie beispielsweise Quecksilber, die eine derartige Gitterstrukur aufweisen.

Einen stabilen Packungstyp stellt die kubisch raumzentrierte Packung (KRZ) oder auch body cen-
tered cubic packiung genannt dar. Die kubisch raumzentrierte Packung weist einen Volumenanteil
von Wy = %\/? = 0,68 auf. Diesen Packungs- bzw. Gittertyp trifft man hiufig bei Metallen an,
wie beispielsweise bei Chrom, Wolfram und Molybdan. Metalle mit diesem Gittertyp weisen eine
mittelgroe Dichte bei relativer grofer Zéhigkeit auf.

Im Jahre 1611 stellte sich Keppler die Frage nach der dichtest moglichen Packung gleich grofer
Kugeln [111]. Diese KEPPLERschen Packungen gehoren ebenfalls zu den reguldren Packungen
und haben die hochste, tiberhaupt von einer reguldren Packung im dreidimensionalen Raum
erreichbare Dichte von Iy = Lz ~ 0, 68. Diese reguldren Packungen nach Keppler umfassen wie-
derum verschiedene Vertreter. Die bekanntesten sind die kubisch flichenzentrierte Kugelpackung
(KFZ) oder im englischen Spachraum face centered cubic genannte Packung und die hexagonal
dichteste Kugelpackung (HDP), im englischen Sprachraum auch als hexagonal close packed
bezeichnet. Der Unterschied zwischen den verschiedenen Vertretern der dichtesten Packung liegt
allein in der Anordnung ihrer Schichten.

Eine Ubersicht iiber die aufgefiihrten Packungs- und Gitterstrukturen gibt Tabelle 3.1. Auf weitere
Gittermodelle, auch in der Literatur als BRAVAIS-Gitter bezeichnet, wird nicht weiter eingegangen.
Sie sind [27] und [137] zu entnehmen.

Als Sonderstellung soll nur kurz die quasiperiodische Packung erwihnt werden. Reale quasiperi-
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Tabelle 3.1: Reguldre Kugelpackungen.

Packung KP KRZ KFZ HDP

‘ SN
Volumen % % V3 % V2 % V2
-anteil Vy ~ 0,52 ~ 0,68 ~ 0,74 ~ 0,74
Koordinationszahl 6 8 12 12
(K2)

odische Anordnungen aus Kugeln wurden in Metallen beobachtet. Bei den Untersuchungen wur-
den fiinf-, sieben- oder zehnzdhlige Symmetrien festgestellt, die sich nur durch quasiperiodische
Anordnung der Atome erklédren lassen. Solche ikosaedrischen Anordnungen von Atomen treten oft
als strukturelle Komponente der sogenannten Quasikristalle auf. Ihr Volumenanteil kann ortlich
begrenzt hoher sein, als bei reguldren dichtesten Packungen (KFZ und HDP). Im Gegensatz zu
den reguldren Packungen besitzen quasiperiodische Packungen keine Translationsinvarianz. Es
gibt aber eine lokale Rotationssymmetrie, die im Vergleich zu den reguldren Packungen fiinf-,
sieben- oder zehnzéhlig sein kann. Quasiperiodische Packungen koénnen nicht nur aus einer Art
von Elementarzellen gebildet werden.

3.1.3 Zufillige Kugelpackungen

Die zufilligen Kugelpackungen kennzeichnen sich dadurch, dass die Zentren der gepackten Kor-
per, hier Kugeln, weder periodische noch quasi-periodische Anordnung aufweisen. So besitzen
diese keine Translationinvarianz und keinerlei Rotationssymmetrien.

Zusétzlich wurde durch Bernal [19, 191] beobachtet, dass sich fiir eine reale, vollig zufillig dichte
Packung ein Volumenanteil von ca. /'y = 0,636 einstellt. Packungen mit einem héheren Volu-
menanteil weisen bereits partiell geordnete Strukturen auf, so dass sie nicht mehr als vollkommen
zufallig betrachtet werden konnen. Auch bei zufdlligen, mittels Simulation erzeugten Packungen
stellt sich ein dhnlicher Effekt ein. Eine genaue und vollstindige Definition der Eigenschaft
“zufdllig dicht gepackt” konnte bis dato nicht gefunden werden [208].

Samtliche Packungsformen lassen sich mit Hilfe mathematischer Kenngrofen charakterisieren.
Zu diesen Kenngrofien (Parametern) gehdren unter anderem der Volumenanteil 7y der Packung,
die Anzahl der ndchsten Nachbarn, die Winkelverteilung zu den Nachbarn, diverse Korrelations-
funktionen sowie bei reguldren Packungen die Kantenldnge der Einheits- bzw. Elementarzelle. Die
begrenzte Anzahl der Kenngroen zur Charakterisierung gewahrleistet keine eindeutige Reprodu-
zierbarkeit der zufdlligen Packungen. Der Volumenanteil einer Hartkugelpackung

4%

1 N
= Vkugel.i 33
Vyelle Z{ Kugel,i ( )

beschreibt das Verhiltnis der Summe der Kugelvolumina zum Volumen der betrachteten Raum-
zelle. Er wird in der Literatur auch Raumausfiillung oder Dichte genannt. Die Volumenanteile fiir
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die reguliren Kugelpackungen konnen Tabelle 3.1 entnommen werden. In manchen Quellen wird
anstatt des Volumenanteils die Porositét ¢ angegeben. Diese Grofle gibt den Anteil des Volumens
an, der sich nicht aus den Kugeln zusammensetzt und berechnet sich aus ¢ = 1 — I4,.

3.1.4 Hohlkugel-Mesomodell

Auf Basis realer Hohlkugelstrukturen werden vereinfachte Hohlkugelpaar-Modellgeometrien in
der Mesoebene erzeugt [37, 183]. Dabei wurde darauf geachtet, dass die Modelle geometrisch, wie
auch in ihrer Parametervielfalt, so einfach wie moglich gestaltet wurden. Diese Modelle werden
zur weiteren FEM-Berechnung genutzt.

geklebt gesintert

N\

~

Abbildung 3.3: Idealisiertes, geklebtes und gesintertes Hohlkugelmodel mit den Parametern: R
duBerer Radius, R;, innerer Radius, rg Sinterstellenradius, 7 Klebestellenradius und ¢ Wanddicke-
starke

3.1.4.1 Geklebtes Modell

Das geklebte Modell wurde Ochsner [37] bzw. Sanders und Gibson [183] entnommen. Die Mo-

dellgeometrie eines verklebten Hohlkugelpaares mit verjlingter Verbindungstelle wird in Abb. 3.3

verdeutlicht. Hierfiir ldsst sich folgende Beziehung aufstellen:
Tk cos®—1

— =tan®
an® -+ cos®

2 (3.4)

wobei R der duflere Radius, ¢ die Wandstérke und ¢ den Radius der Verjiingung darstellt. Der
Winkel zwischen den Verjiingungsstellen betragt 2d. Obwohl es einfacher ist, die Grofe der
geklebten Bindungsstelle zu messen als den Winkel @, ergeben sich Vorteile bei der Berechnung.
Die relative Dichte der Hohlkugelstruktur setzt sich aus der Summe des Beitrags der beiden Kugeln
und der geklebten Verbindungstelle zusammen

P (&) + (‘L) , (3.5)
Ps Ps / Hohlkugel Ps / Kiebestelle

wobei p* die Dichte der gesamten Hohlkugelstruktur und ps des Strukturmaterials, wie beispiels-
weise Stahl, darstellt [183]. Nimmt man die Vernachldssigung der unterschiedlichen Dichten vom
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Kleber- und Hohlkugelmaterial an [183], kann folgende Beziehung

P <t) <t>2 <t>3 KZ Viebestelle

“—=pPD(3(5)-3( 5 3.6

pPs ( R R * R * 2 Vez (3-6)
aufgestellt werden. Dabei ist PD die Packungsdichte und KZ die Koordinationszahl. Die ent-

sprechenden Werte fiir verschiedene Packungen konnen aus Tabelle 3.2 abgelesen werden. Das
Volumen der Klebestelle 14sst sich nach [183] folgendermalien berechnen:

| 2
Viebestelle (R, @) = 27R? (ﬁ - 1) (1 —tan®arcsin (cos D)) . (3.7)

Modelle mit einem Spalt zwischen dem Kugelpaar werden hier nicht behandelt und kénnen [37]
entnommen werden.

Tabelle 3.2: Geometrische Eigenschaften verschiedener Kugelpackungen.

Packung PD KZ Vez
KP 0,52 6 8R3
KRZ 0,68 8 3R
KFZ 0,74 12 16V/2R?

3.1.4.2 Gesintertes Modell

Bei dem gesinterten Hohlkugelmodell geht man von einer konstanten Wanddicke ¢ aus, welche
zweifach wanddickenstarke Sinterstellen hervorrufen. Durch die Abplattung an den Sinterstellen
entsteht gegeniiber der idealen Hohlkugel eine geringe Abnahme des Volumens, welche im Weite-
ren diskutiert wird. Die geometrischen Abmafe konnen aus Abb. 3.3 entnommen werden.

Die relative Dichte ldsst sich aus den drei geometrischen Grundformeln [29] fiir das Volumen einer
Kugel Vk, einer Kugelkalotte Vkk und Kugelschale Vgg

4 W 4
o= 3nR, Tk = TTR—h) und Vis= om (R3 (R —t)3) (3.8)
mit der Beziehung
h=R—+\/R?—rs bzw. r¢=Rx*sin® 3.9

bestimmen. Zieht man das Volumen der dueren Kugelkalotte von der inneren ab, so erhilt man
das Volumen einer Hohlkugel mit einer Sinterstelle

1
ViiK ges = 371 (9R? — 12Rt +4¢* — 3R cos® ¢ — 6R* cos D) . (3.10)
Daraus ergibt sich folgende absolute bzw. relative Volumendnderung pro Sinterstelle:
AViK ges = — Rt (1 +cos* @ —2cos®)  bzw.

3 R (1+cos® ® —2cos D) (G.1D)

AV gessel =~ 3R2_3Rt+12
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Tabelle 3.3: Geometrische Eigenschaften verschiedener gesinterter Hohlkugelstruktur-
Elementarzellen.

Packung Einheitszellen-  Koordinationszahl Kugeln pro
volumen Elementarzelle

KP 8R3cos’ ¢ 6 1

KRZ SSR B3 o3 8 2

KFZ 16v/2R3cos® ¢ 12 4

HDP 8v2R3 cos’ ¢ 12 2

Parameter Vez KZ Ngz

Somit 1ésst sich fiir jegliche Kugelpackung das Volumen pro Elementarzelle folgendermaf3en
VHKS ges solid = Nez * (Vis + KZAVHK ges) (3.12)

bestimmen, wobei Ngz die Anzahl der Kugeln in einer Elementarzelle ist. Schlussendlich lésst sich
die relative Dichte der gesinterten Packung festlegen

P* _ VHKS,gessolid

Ps Vez (3.13)

In Tabelle 3.3 konnen die Werte zur Berechnung der Dichte fiir verschiedene Packungen entnom-
men werden

3.1.5 Stochastischer Kugelgenerator

Die computergestiitzte Generierung und Analyse zufilliger Kugelpackungen erfordert den Einsatz
geeigneter Algorithmen bzw. Softwareprogramme. Die Entwicklung solcher Simulationssysteme,
mit denen der gesamte Prozess von der Erzeugung bis hin zur statistischen analytischen Auswer-
tung, kann beispielhaft [57] und [134] entnommen werden. Diese Simulationssysteme basieren auf
Methoden der raumlichen Statistik.

3.1.5.1 Kugelmodelle

Bei den reguldren Kugelpackungen wird von einem konstanten Kugelradius ausgegangen, sprich
einer monodispersen Packung. Es besteht auch die Mdglichkeit mit zwei unterschiedlichen oder
mit einer Vielzahl von verschiedenen Kugelradien Packungen zu erstellen. Dann spricht man von
bidispersen oder polydispersen Kugelpackungen. Die Kugelradien kénnen durch verschiedene
Dichtefunktionen anteilig in der Packung vorhanden sein. Die Abb. 3.4 zeigt exemplarisch jeweils
eine mono-, bi- und polydisperse Packung.

3.1.5.2 Kugelpackungsmodelle

Neben den schon erwihnten reguldren (theoretischen) Kugelpackungen gibt es noch weitere, auf
Kugeln basierende Modelle. In dieser Arbeit geht es vor allem um sogenannte zufillige Hartkugel-
packungen im dreidimensionalen Raum. Hartkugelpackungen sind dadurch gekennzeichnet (siche
Abb. 3.5a), dass die Kugeln sich nicht iiberschneiden oder gegenseitig verformen. Anschaulich
betrachtet bestehen die Kugeln aus ideal starrem bzw. hartem Material, das sich unter Krafteinfluss
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& ¢ @

(a) (b) ©

Abbildung 3.4: Kugelmodelle mit unterschiedlichen Kugelradien: a) mono-, b) bi- und c) polydi-
sperse Packung.

(a) (b) (©
Abbildung 3.5: Prinzipskizzen: a) Hartkugel-, b) BOOLEschen Modell und ¢) Kirsch-Kern-Modell.

nicht deformiert. Hierbei wird ersichtlich, dass es sich um ein theoretisches Modell handelt. Im
Folgenden werden Hartkugelpackungen vereinfacht als Kugelpackung bezeichnet.

Als weiteres Modell soll kurz das Boolesche Kugelpackungsmodell in Abb. 3.5b aufgefiihrt
werden. Es wird oft als Vergleichsmafstab in der stochastischen Geometrie fiir andere Modelle
herangezogen, da sich einige Kenngroflen analytisch bestimmen lassen. Das Modell definiert
sich durch Vereinigung aus vielen unabhédngigen Kugeln mit beliebigen Kugelzentren. Dabei
wird unterschieden zwischen monodispersen Booleschen Kugelsystemen, deren Kugeln identische
Durchmesser besitzen, und polydispersen Booleschen Kugelsystemen, bei denen die Durchmesser
der Kugeln ZufallsgréBen sind.

Bei einer Vielzahl von Anwendungen treten nicht nur harte Kugeln oder véllig zufillige Kugelan-
ordnungen auf. Es miissen auch beschriinkte Uberlappungen bzw. Durchdringung beriicksichtigt
werden, zum Beispiel bei der Simulation offenporiger Materialien mit kugelférmiger Pore. Bei
diesem Modell gibt es einen harten, nicht deformierbaren Kugelkern und eine dufiere Kugelschale,
die durchdringbar ist (siche Abb. 3.5¢ und 3.6). Dieses Modell bezeichnet Torquato [207] als
cherry-pit model und Elsner [57] als Kirschkern-Modell. Dieses sogenannte Kirschkern-Modell
ist zugleich fiir gesinterte Hohlkugelstrukturen geeignet, da sich beim Sinterprozess eine gewisse
Durchdringung bzw. Verformung der Kugel einstellt. Fiir die in dieser Arbeit erstellten gesinterten
Hohlkugel-Geometriemodelle wurde jedoch das Hartkugelmodell genutzt und nachtriglich eine
definierte Durchdringung erzeugt. Letztendlich entspricht wieder dem Kirschkern-Modell.
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AR (Hartkugelradius)

R (&uBerer Radius)

(1-2)R

Abbildung 3.6: Kugelradien beim Kirsch-Kern-Modell nach [57].

3.1.6 Algorithmen zur Kugelpackungengenerierung

Es gibt eine Vielzahl gut untersuchter und ausgearbeiteter Ansétze fiir Packungsalgorithmen, im
Speziellen fiir Hartkugelpackungen. Einige dieser Algorithmen kénnen auch nicht kugelformige
bzw. sogar unregelmiBige Korper packen. In diesem Abschnitt soll eine kleine Auswahl von
verschiedenen Ansitzen fiir die Generierung zufalliger dichter Kugelpackungen vorgestellt werden
und die Auswahl eines Algorithmus begriindet werden. Auf eine detaillierte Beschreibung der
Algorithmen wird bewusst verzichtet. Diese kann den angegebenen Literaturverweisen entnom-
men werden. Im Folgenden wird eine kleine Auswahl von Kugelgeneratoren zur Erzeugung von
zufilligen Packungen vorgestellt.

Eine einfache Methode zur Produktion von Kugelpackungen ist der intuitive Ansatz. Dabei wird
ein zufilliges Feld mit Kugelzentren erzeugt. Jedem dieser Zentren wird ein kleiner Kugelradius
zugeordnet und dieser dann schrittweise vergroBert. Beriihren sich zwei benachbarte Kugeln, so
stoppt ihr Wachstum und der Radius der Kugeln wird fixiert. Ein Nachteil dieses Verfahrens ist die
geringe Einflussnahme auf die Durchmesserverteilung. Des Weiteren liegen die Volumenanteile
nur bei ca. iy = 0, 15 und sind damit duflerst gering. In der rdumlichen Statistik ist diese Realisie-
rungsmethode auch als dreidimensionales STIENEN-Modell [200] bekannt.

Als weitere Gruppe der Kugelpackungsalgorithmen kann die sequentielle Methode aufgefiihrt
werden. Im Gegensatz zum intuitiven Ansatz werden hier schrittweise Elemente (Kugeln) einer
Packung hinzugefiigt. Die Unterschiede innerhalb dieser Algorithmengruppe liegen in den Strate-
gien des Hinzufiigens von Elementen und in den Randbedingungen, die beispielsweise die Form
des Packungsvolumens bestimmt. Exemplarisch kann der Sedimentationsalgorithmus fiir diese Al-
gorithmengruppe aufgefiihrt werden. Das Prinzip dieses Algorithmus lehnt sich an den natiirlichen
Vorgang der Sedimentation an, bei dem sich Partikel der Schwerkraft folgend sequentiell ablagern
[209, 210]. Hierbei wird ein beliebiges Behiltnis, in der Regel ein Quader, und ein virtuelles
Kraftfeld (Gravitation) vorgegeben, welchem die Kugeln folgen miissen. Als Initialbedingung wird
eine Schicht zufilliger Kugeln am Behélterboden platziert, dabei diirfen die Kugeln sich nicht
iiberlappen. Nun wird in jedem weiteren Simulationsschritt eine Kugel erzeugt. Diese folgt der
vorgegebenen Richtung des Kraftfeldes. Trifft nun diese Kugel auf schon vorhandene Kugeln im
System wird durch Rollen eine stabile Position ermittelt. Als stabile Kugelposition gilt, wenn eine
Kugel drei Beriihrpunkte besitzt - sei es durch Nachbarkugeln oder Behélterwand. Kommt es nach
einer bestimmten Anzahl von Schritten zu keinem stabilen Zustand, wird diese Kugel verworfen
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und eine neue Kugel wird erzeugt [106, 143]. Eine weitere Vorgehensweise dieser Methode ist
das schalenweise Wachstum um ein Zentrum, welches einer Anlagerung von Kugeln um einen
zentralen Punkt entspricht. Der durchschnittliche Volumenanteil bei gleich groSen Kugeln betrdgt
fiir die Sedimentationsalgorithmen ca. 0,59 [215]. Er liegt somit noch unter dem Volumenanteil
Vv = 0,636 der zufillig dichten Packung nach Bernal [19]. Dies kann unter anderem auf den
Effekt zuriickgefiihrt werden, dass die Kugel zumeist die erstmdgliche stabile Position einnimmt
und nicht die optimale. Ein weiterer Nachteil kann in der starken Inhomogenitit liegen. Somit
scheidet dieser Algorithmus fiir hochverdichtete zufillige Kugelpackungen aus.

Ein weiterer Vertreter dieser Gruppe stellt der Random Sequential Addition (RSA) Algorithmus
dar. Der Ansatz dhnelt den Sedimentationsalgorithmen, jedoch unterliegen die Kugeln keinem
virtuellen Kraftfeld. Bei dieser Methode werden schrittweise Kugeln in einem vorgegebenen
Volumen erzeugt und auf Durchdringung gepriift. Bei Durchdringung wird die Kugel verworfen
und eine neue zufillige Kugel wird erzeugt. Nachteil dieser Vorgehensweise sind wiederum ein
geringe Packungsdichte /i, < 0,636 [221] und relativ lange Rechenzeiten.

Eine weitere und grundlegend verschiedene Herangehensweise zu den bisher beschriebenen Al-
gorithmen stellen die Kollektiven-Umordnungsalgorithmen dar. Im Gegensatz zum sequentiellen
Hinzufiigen steht die Anzahl der Elemente schon zu Beginn der Berechnung fest und bleibt
auch wihrend des Packprozesses konstant. Des Weiteren ist die Anordnung der Kugelzentren
nicht statisch, sondern die Kugeln werden wihrend der Berechnung in jedem weiteren Schritt
verschoben. Dies ermdglicht eine platzsparende Anordnung der Kugeln, so dass sich die Ge-
samtdichte tendenziell erhéht. Die einzelnen Algorithmen unterscheiden sich vor allem durch die
Herangehensweise der Umordnung der Kugelzentren.

Zu dieser Gruppe gehort der Algorithmus nach Jodrey und Tory [102, 103], der speziell fiir gleich
grofle Kugeln entwickelt wurde. Bei diesem Algorithmus diirfen die Kugeln geringfiigig wihrend
des Packungsvorganges tiberlappen. Dabei wird bei der Neuanordnung auf die Minimierung der
Uberlappungen durch AbstoBung geachtet. Eine Erweiterung dieses Alghorithmus wurde durch
Bargiel et al. [14] und Moscinski et al. [151] entwickelt und ist unter den Namen Force-Biased-
Algorithmus bekannt. Mit diesen Algorithmen lassen sich sehr dichte Kugelpackungen erzeugen.
Dabei konnen in den erzeugten Packungen gleich groBer Kugeln sogar hohe Anteile geordneter
Strukturen enthalten sein und dabei Volumenanteile bis zu Vyy = 0,72 erreicht werden. Eine genaue
Beschreibung des Force-Biased-Algorithmus kann Bargiel et al. [14] und Elsner [57] entnommen
werden.

Des Weiteren soll noch der LUBACHEVSKY-STILLINGER-Algorithmus [54, 140], der Wechsel-
wirkung durch elastische StoBe und die Molekulardynamik beriicksichtigt, erwdhnt werden. Bei
der Molekulardynamik geht es vorrangig um die physikalischen Wechelwirkungen der Atome und
deren zeitliche Bewegung. Die Packungen sind nur ein Nebenprodukt.

In dieser Arbeit wird zur Erzeugung dichter zufélliger Kugelpackungen der Force-Biased- Algo-
rithmus genutzt. Der Algorithmus ist im Simulationsprogramm SpherePack implementiert, das
dankenswerterweise durch Professor Dr. Dietrich Stoyan von der Technischen Universitdt Frei-
berg bereitgestellt wurde. Dieser Algorithmus erzeugt dichte zufillige und zugleich periodische
Kugelpackungen bei einer gewiinschten Anzahl von Kugeln.

3.1.7 Kenngrofien zur Charakterisierung zufilliger Kugelpackungen

In diesem Abschnitt sollen mit Hilfe einer kleinen Anzahl ausgewihlter Kenngroflen der rdum-
lichen Statistik mit dem Force-Biased-Algorithmus zufallig erzeugte Kugelpackungen, sowie re-
konstruierte Kugelpackungen aus realen Hohlkugelstrukturen untersucht werden. Zu Beginn wird
auf die KenngrofBen spezifischer Oberflachen- und Volumenanteile, auch Packungsdichte genannt,
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eingegangen.

Die spezifische Oberfliche Ay und der Volumenanteil /3, eines Kugelsystems sind sogenannte
KenngroBen erster Ordnung. Im Allgemeinen beschreibt die Kenngrofe /; den Volumenanteil der
Materialphase @k der Kugeln beziiglich des Gesamtvolumens des Beobachtungsfensters Wg:

V(@)

=T )

. (3.14)

Entsprechend definiert sich die spezifische Oberfliche Ay als Quotient aus Oberfléche von ®k und
des Gesamtvolumens des Beobachtungsfenster Wg:

A4(Pxk)

Ay = 7 07e)"

(3.15)

Fiir Hartkugelpackungen sind diese Kenngrofen einfach und exakt bestimmbar. Der Volumen-
anteil fir diese Packungsart mit beliebiger Radienverteilung berechnet sich aus der Summe der
Kugelvolumina bezogen auf die mittlere Anzahl Kugeln pro Volumeneinheit, auch Anzahldichte
P genannt:

4 -
= gnR3pn. (3.16)
Analog hierzu ergibt sich die spezifische Oberfliche aus Summe der Oberflichen aller Kugeln:

Ay = 4TR2p,. (3.17)

Die GroBen R2 und R3 beschreiben hier das zweite bzw. dritte Moment der Radienverteilung der
Kugel. Fiir BooLEsche Kugelpackungen und das Kirschkern-Modell wird eine Schitzmethode
eingesetzt [57, 134].

Im Weiteren werden ausgewihlte KenngroBen zur Charakterisierung aufgefiihrt, die Aufschluss
iiber die Ordnung der Packung wiedergeben. Die Kenngrofen sollen Erkenntnisse iiber die zu
untersuchende Packung zeigen, ob ein eher amorph- oder kristalldhnlicher Ordnungszustand vor-
liegt. Zur Veranschaulichung werden die Charakterisierungsgrofien an einer zufallig generierten
periodischen Kugelpackung aufgezeigt.

3.1.7.1 Lokale Dichte

In zufdlligen Kugelpackungen gibt es meist Bereiche mit weniger dicht und mehr dicht ange-
ordneten Kugeln. Zufillige Kugelpackungen konnen auch geordnete Bereiche aufweisen, die
beispielsweise als Hinweis auf Vorhandensein reguldrer Strukturen dienen konnen. Um diese
lokalen Bereiche untersuchen zu kénnen, bedarf es einer Kenngrofie, mit der sich die lokalen
Veranderungen aufspiiren lassen. Eine Kenngrofle hierfiir stellt die lokale Dichte einer Kugel in
einer Packung dar. Die Definition der lokalen Dichte basiert auf der VORONOI-Zerlegung bzw. bei
ungleich groen Kugeln auf der LAGUERRE-Zerlegung von Kugelpackungen [105, 135, 180, 181].
Die lokale Dichte einer Kugel ist definiert aus dem Verhiltnis Volumen der Kugel zum Volumen
der sie umgebenden VORONOI-Zelle:

Plokal = (3.18)

i
V\/or,i

Die Abb. 3.7 zeigt die Vorgehensweise zur Erstellung einer VORONOI-Zelle im zweidimensio-
nalen Raum. Die lokale Dichte kann Aufschluss iiber Schwankungen in der Dichteverteilung der

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

Methoden zur Charakterisierung 39

Abbildung 3.7: Konstruktion einer VORONOI-Zelle, hier beispielhaft fiir monodisperse Kreisschei-
ben gezeigt. Die der VORONOI-Zelle zugehorige Kugel ist schraffiert dargestellt.

Packung geben, wie sie zum Beispiel durch Clusterbildung hervorgerufen werden. In monodi-
spersen Kugelpackungen kann die lokale Dichte auf lokale strukturelle Anomalien hinweisen,
beispielsweise Kristallisationsbereiche. Zudem konnen mit Hilfe der lokalen Dichte potenzielle
ikosaedrische Anordnungen entdeckt werden, da die lokale Dichte fiir die zentralgelegene Kugel
in einer ikosaedrischen Anordnung mit pjor, = 0, 76 tiber derjenigen der KRZ- bzw. HDP-Struktur
liegt. Bei dieser Anordnung entstehen Liicken, die es unmoglich machen, solche Strukturen
raumfiillend periodisch anzuordnen. Diese Liicken verringern die lokalen Dichten fiir die Kugeln
um das Ikosaederzentrum. Dadurch bleibt die globale oder auch mittlere Packungsdichte der
gesamten Packung immer unter dem Wert der dichtest moglichen Anordnung. Abbildung 3.8a
zeigt exemplarisch die Verteilung der lokalen Dichte fiir eine Packung mit 100 Kugeln.

25 %
2 20%
=)
2 15%
jus)
e 10%
2
< 5%
. I

0% -
05 055 06 065 07 075
Wert
(a) Histogramm (b) Dreidimensionale Darstellung

Abbildung 3.8: Zufillige Kugelpackung: a) Histogramm der lokalen Dichte und b) dreidimen-
sionale Darstellung einer Kugelpackung mit 100 gleich groen Kugeln inklusive des VORONOI-
Gitters bei einer Dichte von Vy = 0,62.
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3.1.7.2 Koordinationszahl

Ein weiterer topologischer Parameter einer Kugelpackung ist die Koordinationszahl KZ, sie be-
schreibt die direkten Kontakte einer Kugel zu ihren Nachbarn. Fiir reale monodisperse Kugelpa-
ckungen bestimmten beispielsweise Bernal et al. [20] die mittlere Koordinationszahl fiir direkte
Kontakte < KZ >= 6,4 fiir eine zufillige dichte Packung mit PD = 0,62 und < KZ >=5,5 fiir
eine zufillige lose Packung mit PD = 0,6. Des Weiteren ermittelte Bernal et al. [20] die mittlere
Koordinationszahl fiir direkte und nahe? Kontakte fiir die dichte Packung < KZ >= 8,5 und die
lose Packung < KZ >=7,1. Gotoh und Finney [78] gaben eine mittlere Koordinationszahl von 6
fiir eine ungeordnete Packung mit PD = 0, 58. Smith et al. [197] ermittelte mittlere Koordinations-
zahlen von KZ = 6,92 bis 9,51 bei Packungsdichten von 0,553 und 0,628.

Bei Packungen, die mit dem Forced-Biased-Algorithmus simuliert oder beschriebenen Rekon-
struktionsalgorithmus berechnet wurden, wird die Bestimmung der Koordination dadurch er-
schwert, dass die Kugeln in den Packungen nicht im direkten Kontakt zueinander stehen. Um
dieses Problem zu umgehen, wird beispielsweise bei den aus der Simulation gewonnnenen Pa-
ckungen ein Toleranzparameter eg eingefiihrt [22]. Dabei werden alle Kugeln mit einem Abstand
kleiner als ex als in direktem Kontakt betrachtet. In [22] wird e als 1% des mittleren Radius
festgelegt. Im Fall der gewonnen Kugelpackungen aus dem Rekonstruktionsalgorithmus nach
[188] werden groflere Werte filir ex genutzt. Fiir die exemplarische Kugelpackung in Abb. 3.8b
wurde eine mittlere Koordinationszahl von 6,0 bei ex = 0,01 des mittleren Kugelradius ermittelt
und die Verteilung kann aus Abb. 3.9 entnommen werden.
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Abbildung 3.9: Histogramm der Koordinationszahl einer Kugelpackung mit 100 gleich groflen
Kugeln.

3.1.7.3 Bindungswinkel

Eine in Physik und Chemie weit verbreitete und oft genutzte Methode zur Strukturcharakteri-
sierung von Kugelpackungen bzw. atomaren Systemen ist die Betrachtung der Bindungswinkel,
beispielhaft aufgefiihrt in [69, 117, 226]. Als Bindungswinkel wird der Winkel bezeichnet, der
zwischen den Verbindungsvektoren einer Kugel und zwei ihrer Nachbarn aufgespannt wird. Abbil-
dung 3.10a verdeutlicht die Bestimmung des Bindungswinkel o einer Kugel mit zwei benachbar-
ten Kugeln ; und £. Die Verteilung dieser Bindungswinkel reagiert merklich auf die Struktur der
Kugelpackung: Wihrend in einer ungeordneten Kugelpackung verschiedenste Winkel zwischen
0 und 180° vorkommen, treten bei kristallinen Strukturen jeweils nur gewisse Bindungswinkel
auf. Die Winkelverteilung wird im Fall der kristallinen Anordnung diskret mit grolen Werten bei

2bei 5% Durchmesserzuwachs
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den fiir die jeweilige Kristallstruktur typischen Bindungswinkeln. So beschreibt die Verteilung der
Bindungswinkel ein Maf} fiir Ordnung einer Kugelpackung. Es treten beispielsweise bei der KP
Anordnung nur 90° und 180° Winkel auf. Indessen sind es bei der HDP Anordnung iiberwiegend
60° und 120°. Es zeigen sich aber auch Winkel von 90°, 109,47° und 146,44°.

9%
8%
7%
6%
5%
4%
3% l
2%
1%
0%

Relative Haufigkeit

0 20 40 60 80 100 120 140 160 180

Bindungswinkel in [°]

(a) Schematische Darstellung (b) Histogramm

Abbildung 3.10: Bindungswinkel: a) Schematische Darstellung eines Bindungswinkels op zwi-
schen der Kugel i und ihren Nachbarn j und %, b) Histogramm des Bindungswinkels einer
Kugelpackung mit 100 gleich grofien Kugeln.

3.1.7.4 Paarkorrelation

Eine aus der Physik und rdumlichen Statistik bekannte Kenngroe zur Beschreibung von Kugelpa-
ckungen ist die Paarkorrelationsfunktion g (r). Sie wird auch radiale Verteilungsfunktion genannt.
Die Paarkorrelationsfunktion basiert auf der bekannten Grofe zweiter Ordnung, der RIPLEYschen
K (r) Funktion [176, 202]. Diese Funktionen werden zumeist auf Punktfelder angewandt. Da die
Zentren der Kugeln als Punktprozess interpretiert werden konnen, wird diese Funktionen beziiglich
der Kugelzentren bestimmt. Ist px die Intensitét eines Punktprozesses, so kann die GroBe px X (r)
als die mittlere Anzahl von Kugeln im Radius » um eine zufillige Kugel in der Packung angesehen
werden. Die Paarkorrelationsfunktion ist definiert durch
dK(r) 1

g(}’)— ar W, FZO (319)
n

Hierbei ist b, das Volumen der n-dimensionalen Einheitskugel. Die Paarkorrelationsfunktion g (r)
einer Kugelpackung beschreibt die Haufigkeit der Abstéinde von Kugelzentren in der Packung. Das
heift die Paarkorrelationsfunktion gibt die Wahrscheinlichkeit an, dass die Zentren zweier Kugeln
den Abstand r haben. Fiir unmogliche Zwischenachsabsténde, bei Packungen mit gleich grofien
Kugeln ohne Uberlappung entspricht dies fiir Abstinde 7 kleiner als der Kugeldurchmesser D, gilt
g(r) = 0. Der Abstand £ = 1 wird auch als Hardcore-Abstand bezeichnet. An dieser Stelle weist
die Paarkorrelationsfunktion fiir dichte Packungen harter Kugeln ein ausgebildetes Maximum auf.
So lassen sich an der Form der Paarkorrelationsfunktion Verdnderungen der Nahordnung in einem
Kugelpackungssystem erkennen. Zudem findet man fiir Packungen mit kristalliner Struktur Maxi-
ma bei der Kristallstruktur typischen Absténden, beispielhaft bei HDP-Packung in den Abstéinden
1, V2, V/3, 2, usw. Der Grad der Ausprigung dieser Maxima gibt Auskunft dariiber, wie gut die
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Ordnung der betrachteten Kugelpackung ist. Fiir » — oo geht der Wert der Paarkorrelationsfunktion
zu Eins. In Abb. 3.11a ist erkennbar, dass eine drtliche Nahordnung vorhanden ist. Erkenntlich wird
dies durch schwach ausgepriigte Maxima an den Stellen » = /3 und » = 2.

5 T T T 0,7 T T
100 Kugeln 100 Kugeln
0,65 R
4 r —
= 0,6
>
— 3t S 055
—_ N
S 5
5 ol & 0.5
z 0,45
1k 2 ’
0.4
0 ! ! ! ! ! ! ! 0’35 ! ! ! !
0 05 1 15 2 25 3 35 4 0 0.5 1 1.5 2 2.5
normierter Radius [ ] normierter Radius [ ]
(a) Paarkorrelationsfunktion (b) Kovarianz

Abbildung 3.11: Kenngrofien: a) Paarkorrelationsfunktion und b) Kovarianz einer Kugelpackung
mit 100 gleich groen Kugeln bei einer Dichte von V5, = 0,62.

3.1.7.5 Kovarianz

Eine weitere nennenswerte Kenngrof3e in der raumlichen Statistik ist die Kovarianz, oft auch als
Zweipunktwahrscheinlichkeit bezeichnet [207]. Die Kovarianz C(r) charakterisiert die Vereini-
gungsmenge aller Kugeln in einer Packung und beschreibt somit die Variabilitat des Volumenan-
teils der Kugel in der Packung. C(r) gibt die Wahrscheinlichkeit an, dass zwei Kugeln mit dem
Abstand r in der Vereinigungsmenge aller Punkte liegen. Folgende Eigenschaften

C(0)=ry (3.20)

und

C(e0) =V (3.21)
besitzt die Kovarianz. Weitere Eigenschaften konnen [98, 202] und [207] entnommen werden.
Die Bestimmung der Kovarianz erfolgt in der Regel durch eine Schétzung mit Hilfe des MONTE-
CARLO-Algorithmus. Die Abb. 3.11b zeigt den Verlauf der Kovarianz fiir die beispielhafte Ku-
gelpackung (siehe Abb. 3.8b). Die Form der Schwankungen im Graph wird durch die jeweilige
Radienverteilung in bi- bzw. polydispersen Kugelpackungen bestimmt und reflektiert bevorzugte
lokale Anordnungen von Kugel in der Packung [134]. Bei monodispersen Kugelpackungen sind
die Schwankungen am grofiten ausgepragt [134, 207]. Weitere Parameter bzw. Kenngrofien zur
Charakterisierung zufilliger Kugelpackungen kénnen [57, 134] und [207] entnhommen werden.

3.1.8 Geometrisches Volumenmodell

Die Modellierung der Hohlkugeln und auch der Elementarzellen geschieht in dieser Arbeit mit
Hilfe von Computer Aided Design (CAD) Programmen, im Speziellen mit der kommerziellen
Kontruktionsoftware ProEngineer®. Die Modellierung basiert auf den aufbereiteten Daten des Ku-
gelpackungsprogramms SpherePack oder Kugelerkennungssoftware von Janina Schulz. Regulére
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Packungen werden direkt im CAD-Programm erstellt, es bedarf keinerlei Vorbereitungssoftware.
In dieser Arbeit wird implizit nur auf Volumenmodelle eingegangen. Dies hat den Vorteil, dass
Volumeniiberschneidungen wie bei flachigen oder linienférmigen Tragwerken verhindert werden
[43]. Als Nachteil wird ein hoherer Modellierungsgrad und -aufwand in Kauf genommen.

3.1.8.1 Regulires Modell

Fiir die parametrische Modellierung werden die Geometriegrolen des Hohlkugel-Mesomodells
herangezogen. Dies sind im Einzelnen der Kugeldurchmesser D, der Sinterwinkel ® bzw. Sinter-
stellenradius 7 und die Wanddicke ¢. Als reguldre Gitter werden die drei kubischen (KP, KRZ und
KFZ) und hexagonale (HPD) Regelgitterstruktur genutzt. Aus diesen Vorgaben ldsst sich fiir jede
Gitteranordnung eine geometrische Elementar- bzw. Einheitszelle bilden, die sich periodisch zu
einer unendlichen Struktur zusammenfiigen lisst. Einen Uberblick iiber die erstellten Elementar-
zellen zeigt die Abb. 3.12. Fiir die Weiterverarbeitung bzw. das Erstellen eines homogenen und

Abbildung 3.12: Uberblick aller erstellen Elementarzellen.

strukturierten Finite-Element-Netzes ist eine Segmentierung der Geometrie notwendig.

3.1.8.2 Stochastisches Modell

Im Gegensatz zum reguldren Modell ist beim stochastischen Modell eine gewisse Vorbereitung
vor der Geometrieerzeugung im CAD-Programm erforderlich. Zu Beginn wird eine zufallige
Kugelpackung mit dem Programm Spherepack erzeugt und die Daten, wie die Koordinaten der
Kugelzentren und der Radius, in einer Textdatei an das Mathematikprogramm MATLAB® iiber-
geben. Analog konnen auch Daten aus den rekonstruierten Kugelpackungen tibergeben werden.

Diese Vorbereitung ist notwendig, um eine stochastische und zugleich auch periodische Struktur
zu erzeugen. Aus dem Kugelpackungsprogramm SpherePack erhélt man jeweils die Kugelzentren
mit entsprechenden Radien innerhalb eines definierten Volumens. Schneidet man entlang der
Oberfliche des definierten Volumens, hier ein Wiirfel, erkennt man Fehlstellen bzw. eine nicht

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

44 Methoden zur Charakterisierung

periodische Struktur. Grund hierfiir sind Segmente von Kugeln, die ihre Kugelzentren auBerhalb
des definierten Volumens haben und noch teilweise in das definierte Volumen ragen. Um dieses
Problem zu 16sen, wird eine weitere Schicht von Kugeln, die die Periodizitit erfillt, um das
definierte Volumen gepackt und dann erst wieder an der Oberfliche des definierten Volumen
geschnitten. Des Weiteren werden die Kugeln definiert vergroflert, so dass sich eine bestimmte
Durchdringung bzw. im Falle der gesinterten Hohlkugel ein bestimmter Sinterwinkel einstellt.
Zudem werden vorbestimmte Parameter iibergeben, um eine konstante Wanddicke gemill dem
Hohlkugel-Mesomodell nach Abschnitt 3.1.4 zu gewdhrleisten. Damit diese Parameter sowie
die Geometriedaten ziigig, sicher und bequem iibergeben werden kénnen, wurde die Software
SmartAssembly von der b&w software genutzt. Die Abb. 3.13 zeigt den kompletten CAE-Prozess
fiir die Erstellung der Volumengeometrie bzw. der Simulation.

Rekonstruktions- Kugelpackungs-
Algorithmus Algorithmus

A 4
Matlab
Preprocessing

PRO Enginneer
+

Y

Smart Assembly

C-Code Bi-direktionale
Parameterisierung Schnittstelle

ANSYS

Abbildung 3.13: CAE-Prozess des stochastischen Modells
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3.2 Elastizitatswerte

Dieser Abschnitt behandelt die Methoden zur Bestimmung der elastischen Materialkennwerte.
Zum Anfang wird auf die Homogenisierung eingegangen, dann folgt die Charakterisierung der
gewonnenen Materialkennwerte. Hierbei wird kurz ein Sonderfall der negativen Querkontraktion
behandelt. Des Weiteren werden die Lastfille zur Bestimmung der Kennwerte erldutert und die
genaue Umsetzung dieser beschrieben.

3.2.1 Homogenisierung

Eine Moglichkeit zur Charakterisierung der Materialeigenschaften eines Bauteils mit zellularem
Aufbau stellt die sogenannte Homogenisierung dar. Ziel der Homogenisierung ist es, ein effektives
Materialverhalten eines homogenen Ersatzmediums zu finden, welches sich dhnlich verhilt wie
das zu untersuchende heterogene Medium. Dieser Homogenisierungsprozess iiber die Skalen wird
durch eine geeignete Mittelwertbildung vollzogen [81, 43]. Eine klassische Homogenisierung kann
auf zwei Arten durchgefiihrt werden. Entweder ist die Mikrostruktur periodisch und kann so
durch ein Einheitszellenmodell angendhert werden. Oder das betrachtete Volumenelement (VE)
ist so grofB}, dass es eine quasi-unendliche Anzahl von Mikrostrukturelementen (z.B. Korner,
Einschliisse, Kugeln, Inhomogenititen) beinhaltet. Wird das betrachtete Volumenelement grof3
genug gewdhlt, kann die Probe als statistisch homogen angesehen werden [164]. Die Grundlagen
der Homogenisierung fiir diese Arbeit werden in Anlehnung an [81, 43, 164] und [190] hergeleitet
und zusammengefasst.

Bei der Anwendung der zuletzt erwidhnten Homogenisierungsmethode wird vorausgesetzt, dass die
charakteristische Grofe der Heterogenitit in einer Skala (beispielsweise Mikroebene) gegeniiber
der nichst hoheren Skala (beispielsweise Mesoebene) so klein ist, dass sie nicht mehr wahrge-
nommen werden kann und somit das Material als homogen bezeichnet wird. Trifft dieser Fall
zu, konnen drei Skalen, die Mikroskala als Skala der Korner des Vollmaterials, die Mesoskala
als Skala der betrachteten Volumenelemente (VE) und die Makroskala als GroBenordnung der
Bauteile, aufgeteilt werden. Es gilt

dmikro < J < dmakrm (3~22)

wobei d der charakteristischen Lénge der jeweiligen Skalaebene entspricht. Hierbei bezeichnet
(%) die GroBe auf der Mesoebene, die auf der Mikrostruktur betrachtet wird. In der Literaturstelle
[164] wird zur Erfiillung dieser Bedingung ein dimensionsloser Parameter
d
o= — oo (3.23)
dmikro

eingefiihrt. Die GroBe dpiko beschreibt dabei die charakteristische Lénge einzelner Korner,
Einschliisse und sonstiger Mikrostrukurelemente. Lassen sich die Skalen nach Gl. (3.22) bzw.
(3.23) deutlich voneinander trennen, existiert ein reprasentatives Volumenelement (RVE) und das
Homogensierungsschema, wie in Abb. 3.14 dargestellt, kann angewendet werden. Ein Punkt der
heterogenen Struktur kann durch zwei Koordinaten bezeichnet werden (Abb. 3.14). Zum einen
mit der makroskopischen Koordinate Xpaxr, die auch der Punkt im homogenen Ersatzmedium
beschreibt, zum anderen mit der mesoskopischen Koordinate Xpmeso, Wwelche den Ort der Umge-
bung der Heterogenitit beschreibt. So ldsst sich mit Hilfe der Lokalisierungstensoren A bzw. B
ein makroskopischer Verzerrungszustand € bzw. makroskopischer Spannungszustand o auf die
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Abbildung 3.14: Schema der Homogenisierung mit charakteristischen Langen.

Mesoskala projizieren. Ein Herleitungsweg wird im Anhang B.1 vorgestellt. Zusammengefasst
erhilt man die HILL-Bedingung in folgender Form

0:%/(E7<6‘>n)(ﬁ7<é>~x)dA4 (3.24)
B

In dieser Form kann die HILL-Bedingung so interpretiert werden, dass die in einem heterogenen
Material auf den Rand des Volumenelements fluktuierenden Verzerrungs- und Spannungsfelder im
energetischen Sinne gleichwertig sind zu ihren Mittelwerten (Abb. 3.15). Um diese Randbedin-

£,06 <€ >, <6>

T T 1

— —
- —>
— —

V)

Abbildung 3.15: Auf den VE-Rand fluktuierende Mesofelder und ihre Mittelwerte.

gungen zu erfiillen, gibt es drei verschiedene Moglichkeiten [112]:

» Randbedingungen aus uniformen Verschiebungen i = €Y. x, weil fiir die uniforme Verschie-
bungen
g=<&>=g" (3.25)
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gilt und somit der Term in der zweiten Klammer in Gl. (B.20) zu Null wird. Die Rand-
bedingungen aus dieser Klasse werden kinematisch uniforme Randbedingungen (KURB)
genannt.

Randbedingungen aus uniformen Spannugen t = &° - n, weil fiir die uniforme Spannungen

0=<6">=¢" (3.26)

gilt und somit der Term in der ersten Klammer in Gl. (B.20) zu Null wird. Die Randbedin-
gungen aus dieser Klasse werden statisch uniforme Randbedingungen (SURB) genannt.

Periodische oder orthogonal gemischte Randbedingungen, bei der keine der beiden Klam-
mern einzeln in Gl (B.20) verschwindet, sondern die Bedingungen gemeinsam erfiillt. Bei
dieser Klasse der Randbedingungen werden jeweils die gegeniiberliegenden Seiten derart
gekoppelt, dass sie sich dquivalent zueinander verhalten und somit eine Verformung eines
quasi unendlich groB3en Volumens entsteht.

Fiir homogene Materialien ohne Mikro- bzw. Mesostruktur sind die drei verschiedenen Randbe-
dingungen &dquivalent zueinander. Dabei ruft ein uniformer Verzerrungszustand einen uniformen
Spannungszustand und umgekehrt hervor. Wird zum Beispiel ein représentatives Volumenelement
(RVE) einer periodischen Struktur betrachtet, ist dies nicht mehr der Fall. So kann ein uniformer
Spannungszustand eine Randverschiebung hervorrufen, die nicht konstant ist, oder ein uniformer
Verzerrungszustand kann Spannungen im Inneren hervorrufen, die ebenfalls nicht konstant sind.
Damit sind beide Zustidnde nicht ineinander iiberfithrbar. Diese beiden Zustéinde stellen eine untere
bzw. obere Grenze der effektiven Materialeigenschaften dar [91] und kénnen zur Abschitzung des
Effektivwertes helfen.

Zieht man unter allen Verschiebungsrandbedingungen kinematisch zulédssige Verzerrungsfelder in
Betracht, so wird nach dem Prinzip der minimalen Energie das elastische Potential (A.66) am
kleinsten, das den wahren Verzerrungen angehort [217]. Setzt man nach Voigt [216] ein uniformes
Verzerrungsfeld £° voraus, kann man den dazugehorigen Steifigkeitstensor CY bestimmen, der
sich nach dem Extremalprinzip grofer als die tatsdchlichen Steifigkeitseigenschaften darstellt

Cr<C¥=(sV) . (3.27)

Somit bildet dieser Steifigkeitstensor eine obere Schranke. Der zugehorige Lokalisierungstensor A
wird zum I Tensor.

Betrachtet man nach Reuss [175] alle unter Spannungsbedingungen zuldssigen Spanungsfelder
und das Prinzip der Komplementirenergie, ergibt sich analog ein Nachgiebigkeitstensor SR, der
groBer ist als der wahre Nachgiebigkeitstensor. Er bildet deshalb ebenso eine Schranke:

Ser <SR = (CR) ™. (3.28)
Zusammengefasst erhdlt man die Schranken fiir die effektiven Materialeigenschaften
(S}) ' <Cer<Cy oder (CY) ' < Ser < Sk. (3.29)

Weil die VOIGT- und REUSS-Schranken oftmals sehr weit auseinanderliegen, besteht ein prag-
matischer Ansatz zur Bestimmung der effektiven Materialwerte unter der Verwendung ihres
Mittelwerts [81] oder in anderen linearen Kombinationen [38, 35]. Aus vielen numerischen Un-
tersuchungen hat sich gezeigt, dass die periodische Randbedingung (PRB) das effizienteste Kon-
vergenzverhalten mit zunehmender Grofle des repriasentativen Volumenelements (RVE) aufweist
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Abbildung 3.16: Veranschaulichung der Konvergenz mit der RVE-Gro8e nach [205]: a) Reprisen-
tatives Volumenelement (RVE) mit unterschiedlicher Grofe, b) Konvergenz der durchschnittlichen
Eigenschaften mit zunehmender RVE Gro8e fiir unterschiedlichen Randbedingungstypen: SURB,
KURB und periodische Randbedingungen

[109, 123, 205] (siehe Abb. 3.16). Dementsprechend erhélt man mit den periodischen Randbedin-
gungen (PRB) bei gleicher Grofle des représentativen Volumenelements (RVE) einen Wert, der
ndher am Effektivwert liegt als bei SURB und KURB. Die VOIGT- und REUSS-Schranken haben
trotz ihrer Nachteile infolge des unrealistischen homogenen Spannungs- bzw. Verzerrungsfeldes
eine breite Verwendung gefunden. Die Vorteile liegen in ihrer einfachen Berechnung und in den
qualitativen Aussagen zu den elastischen Eigenschaften.

3.2.2 Materialsymmetrie

Eine elementare Fragestellung bei der Untersuchung der Mesostrukturen (Hohlkugelmodelle)
betrifft die Materialsymmetrie bzw. die Isotropie. Die Frage nach der Isotropie wurde in diversen
Literaturen diskutiert wurden und hierfiir auch Mal3e eingefiihrt. So haben beispielweise Benouali
et al. [18] das Verhéltnis % zur Untersuchung der Abweichung von Elastizitdtsmodulen in zwei
verschiedenen Raumrichtungen 7 und j eingefiihrt, wobei der kleinere Elastizititsmodul immer
im Nenner steht. Im Gegensatz dazu fiihren Kanaun und Tkachenko [108] das Verhéltnis %
ein, das fiir den isotropen Fall (vgl. Tabelle A.2) gegen eins konvergiert. Ein weiteres Ma} zur
Beschreibung, inwieweit sich das mechanische Verhalten vom isotropen Fall unterscheidet, ist der
Anisotropiefaktor [179]

Aaniso = 2 (Slg Slz)- (3~30)

44

So ist bei einem Wert 4pi50 = 1 das Material isotrop und bei Aapiso > 1 oder Ayyiso < 1 anisotrop.
Eine weitere Methode zur Untersuchung auf Symmetrie ist es, die Steifigkeits- und Nachgie-
bigkeitstensoren (C und S) selbst zu betrachten und mittels ihrer Eintrdge auf Symmetrien zu
schlieBen. Eine mit dem Auge gut erkennbare Methode zur Uberpriifung der Symmetrie stellen
die Elastizititsmodulkorper dar [179]. Diese grafische Methode zur Darstellung der beiden Mate-
rialtensoren kann [25] und [145] entnommen werden. Dabei wird die Steifigkeit bzw. die Nachgie-
bigkeit in alle Raumrichtungen d iiber nacheinander in diese Raumrichtung virtuell durchgefiihrte
Zugversuche abgebildet. So ergibt sich fiir folgende Projektionsformel fiir den Elastizitdtsmodul
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Wolfram, A,piso = 1.00 Kupfer. Aapiso = 3.21 Zirkonia, Aypice = 0.40

Abbildung 3.17: Elastizitdtsmodulkorper: Richtungsabhidngigkeit der Elastizitdtsmoduln einiger
Werkstoffe [145, 179]. In jede Raumrichtung gibt der Abstand der Oberfliche vom Koordinatenur-
sprung die GrofBe des Elastizitdtsmoduls an.

nach [25] .
E(d)
Die jeweilige Form der entstehenden Oberfliche, auch Elastizitatsmodulkorper genannt, bzw. ihre
Symmetrie entscheidet iiber ihre jeweilige Materialsymmetrie (vgl. Abb. A.1).
Abbildung 3.17 zeigt exemplarisch drei Werkstoffe mit unterschiedlichen Materialverhalten. Der
Elastizitdtsmodulkorper des Schwermetalls Wolfram stellt dabei eine ideale Kugel dar. Aus der
kugelformigen Oberflache wird ersichtlich, dass der Elastizitdtsmodul richtungsunabhingig ist und
somit der Isotropie entspricht. Ein deutlich anderes Verhalten weist das Buntmetall Kupfer auf.
Schon mit Hilfe des Anisotropiefaktors kann eine deutliche Anisotropie erkannt werden, jedoch
nicht auf die Symmetrieebenen zuriickgeschlossen werden. Mit Hilfe des Elastizitdtsmodulkorpers
wird ersichtlich, dass der Elastizitdtsmodul in Raumdiagonalenrichtung wesentlich grofer als in
Achsenrichtung ist. Zudem lésst sich eine kubische Symmetrie erkennen. Ein invertiertes Ver-
halten des richtungsabhidngigen Elastizititsmoduls zeigt im Gegensatz die mineralische Keramik
Zirkonia. Der maximale Elastizitdtsmodul wird in Achsenrichtung erreicht. Jedoch hat Zirkonia
wie auch Kupfer kubische Symmetrie.
Betrachtet man die anderen Materialparameter, wie Schubmodul, Kompressionsmodul und Quer-
kontraktion in Abhidngigkeit der Raumrichtung, ergeben sich mit Hilfe der Projektionsformeln [25]

=d®d-S--dad (3.31)

1 V2 V2
m77(d®n+n®d)~~S-~7(d®n+n®d),
v(d,n)
M) ol 3.32
E(d) d®d--S--n®n und (3.32)
1
. _1.S-d®d
E(d) ¢

die gleichen Ergebnisse. Dabei ist zu beachten, dass der Schubmodul und die Querkontraktionszahl
vom Normalenvektor n der betrachteten Grundflache abhidngen. Deren Orientierung ist wiederum
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an die Raumrichtung d gekniipft.

3.2.3 Negative Querkontraktion

In mehreren Variationsberechnungen traten bei kleinen Verhéltnissen von Wanddicken zu Durch-
messer fiir die makroskopische Querkontraktionszahlen negative Werte auf. Dieser Effekt kann
gut an Metallschdumen mit Hinterschnitten veranschaulicht werden [121]. Abbildung 3.18 zeigt
exemplarisch die Verformung einer Zelle mit Hinterschnitt, die sich unter Belastung anders als
gewohnliche Werkstoffe verformen wiirde. Dies fiihrt bei einer Zugbelastung zu einer Ausdehnung

Abbildung 3.18: Metallschaumzellen mit Hinterschnitt nach [121].

in Querrichtung. Bei Metallschdumen kann der Bereich der Querkontraktionszahlen im Bereich
von -0,7 bis 0,5 liegen [95, 94]. Bei syntaktischen und verklebten Hohlkugelstrukturen wurde ein
Bereich der Querkontraktionszahlen von -0,3 bis 0,4 beobachtet [72, 183, 203]. Nach Pasternak
und Dyskin [168, 167, 194] konnen sich Extremwerte fiir Hohlkugelstrukturen mit hexagonaler
Anordnung und sehr diinnen Wanddicken mit bis zu -1 einstellen. Selbst bei kubisch elementaren
Metallen konnen sich negative Querkontraktionen einstellen [16].

3.2.4 Lastfille

Zur Bestimmung des Materialverhaltens und der im Grundlagenkapitel 2 eingefiihrten Materi-
alparametern wie Elastizitdtsmodul £, Schubmodul G, Kompressionsmodul K oder der Quer-
kontraktionszahl v, werden gemidl der zuvor vorgestellten Methodik Lastfélle definiert, mit de-
nen die 21 Unbekannten der Materialtensoren berechnet werden konnen. Hierfiir werden pro
Randbedingungsart sechs Lastfille bendtigt. Ein siebter Lastfall, wie z.B. der zur Ermittlung des
Kompressionsmoduls K, kann zur Uberpriifung herangezogen werden. Ahnliche Vorgehensweisen
konnen [108, 112, 183, 190] und [199] entnommen werden.

Die einfachste Vorgehensweise zur Ermittlung der Unbekannten ist es, sechs Lastfille zu erzeugen,
in denen nur ein Eintrag mit dem Betrag eins im Spannungs- bzw. Verzerrungsvektor der Gl. (A.68)
entsteht. Dabei sind alle anderen Eintrdge gleich Null gesetzt. Diese Lastfille fiir Verzerrungen
sind reprédsentativ fiir ein homogenes Material in Abb. 3.19 dargestellt, wobei bei der linear
elastischen und geometrisch linearen Berechnung der elastischen Materialparameter zwischen
Zug- und Druckverhalten nicht zu unterscheiden ist. Wird das zu untersuchende Volumenelement
oder die zu untersuchende Elementarzelle mittels einer dieser Fille belastet, konnen durch Messen
der entsprechenden Eintrdge des Ergebnisfeldes eine Spalte der zugehdrigen Steifigkeits- bzw.
Nachgiebigkeitsmatrix C bzw. S bestimmt werden. Nachfolgend ist dies beispielhaft fiir den 11-
Lastfall aufgefiihrt (SURB oder bei periodischer Randbedingung mit uniformer und homogenisier-
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Lastfall (-namen):

11 (xx) 22 (yy) 33 (z2) 23 (yz) 13 (xz) 12 (xp)
Lastfallvektoren:
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Abbildung 3.19: Sechs Grundlastfille zur Bestimmung der Materialkonstanten nach [190].

ter Spannung)

€11 1 Si11
€2 0 S$2211
€33 Sijki 0 83311

= = 3.33
€3 0 Sx11 @33)
€13 0 S1311
€12 0 S1211

3.2.5 Periodische Randbedingungen

Mit den gewonnen Erkenntnissen aus den zuvor behandelten Abschnitten lassen sich Volumenele-
mente bilden, die einen regelméifBigen oder periodisch stochastischen Strukturaufbau aufweisen.
Mit Hilfe der Homogenisierung versucht man einen durchschnittlichen Wert zu bestimmen, der
moglichst nahe am Effektivwert einer realen Struktur liegt. Es hat sich gezeigt, dass periodische
Randbedingungen diesem Effektivwert bei gleicher Grofle der Elementarzelle ndher kommen als
bei anderen Randbedingungen [43, 205]. Aus diesem Grund wird in der vorliegenden Arbeit néher
auf diese Form der Randbedingung eingegangen. Es wird zuerst allgemein im zweidimensiona-
len und dreidimensionalen Raum und danach speziell auf die Anforderung der Finite-Element-
Modellierung eingegangen.

Im Folgenden wird die Formulierung einer periodischen Randbedingung fiir das Verschiebungsfeld
am Rand einer rechteckigen Einheitszelle beschrieben. Abbildung 3.20 zeigt die undeformierte
und deformierte Struktur einer rechteckigen zweidimensionalen Elementarzelle. Der Rand der
rechteckigen Elementarzelle besteht aus vier Kanten, die mit N, O, S und W bezeichnet werden,
sowie vier Eckpunkten, markiert und abgekiirzt mit NO, NW, SO und SW. Die Namensgebung
orientiert sich an den Himmelsrichtungen Nord, Siid Ost und West.

Bei der Definition der Randbedingungen ist zu beachten, dass Starrkdrperbewegungen unter-
bunden werden. Im Fall der Abb. 3.20 ist die Translations- und Rotationsbewegung durch das
Festlager am Eckpunkt SW und das Loslager am Eckpunkt SO beschrankt. Kurz gesagt, es
ist eine statisch bestimmte Lagerung zu erreichen. Bei der Lagerung muss des Weiteren darauf
geachtet werden, dass die Bedingung der geometrischen Periodizitit, wie beispielsweise Dehnung
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SW 4> = T0) X

L

Abbildung 3.20: Idealisierte zweidimensionlae Elementarzelle nach [43].

und Stauchung im Zug-, Druck- und Schubfall, nicht verletzt werden. Es ist zweckmaBig, diese
globalen Deformationsfille auf ausgewihlte Verschiebungskomponenten von bestimmten Finite-
Element-Knoten an den Ecken des Modells zu beziehen. Diese Knoten werden auch Masterknoten
genannt. Die Knoten NW und SO in der Abb. 3.20 stellen Masterknoten dar und ihr Beitrag zum
Deformationsfeld der Elementarzelle ist durch Pfeile angedeutet.

Zur Aufrechterhaltung der geometrischen Periodizitét im deformierten Zustand einer rechteckigen
Elementarzelle sind die Verschiebungen der gegeniiberliegenden Begrenzungskanten zu koppeln.
Die Freiheitsgrade (FG) einer dieser gekoppelten Kanten bleiben ungezwungen. Diese Freiheits-
grade sind die sogenannten Master-Freiheitsgrade. Die Knoten auf der gegeniiberliegenden Seite,
dem Slave-Rand der Elementarzelle, haben Partner-Knoten auf der Master-Kante und sind mit
den Master-Knoten hinsichtlich ihrer Verschiebung in x und y-Richtung gekoppelt. Dariiber hinaus
wird ein zusétzlicher Verschiebungsvektor tiberlagert. Er beruht auf dem Verschiebungsbereich der
Slave-Knoten. Dieser Verschiebungsvektor bezieht sich auf die makroskopischen Freiheitsgrade
der Elementarzelle. In der idealisierten Elementarzelle aus Abb. 3.20 sind jeweils die Verschie-
bungsvektoren fiir die Kanten N und O gegeben durch unw = [uNw va] Tund usp = [uso 0} T
Die Komponenten dieser Verschiebungsvektoren werden auf den makroskopischen Verzerrungs-
tensor bezogen, der durch den Vektor € = [E,QC &y yxy} T mit seinen Komponenten

uso _ unNw UNW

Ex = —, 8yy*177 und Yoy = —F—
Y

3.34
. A (334)

beschrieben werden kann. Zu beachten ist, dass die Verschiebung an Ecken nicht die einzig mog-
liche Master- und Slave-Einheit bildet. Alle geeigneten Freiheitsgrade in einem Finite-Elemente-
Modell kénnen als eine Master-und Slave-Einheit verwendet werden. Sonst wiirde ein automa-
tisches Generierungsschema fiir die periodischen Randbedingungen scheitern, sobald sich keine
Finite-Element-Knoten in den Ecken der Elementarzelle befinden.

Die Kopplungsbedingungen miissen getrennt fiir Slave-Kantenknoten und Slave-Eckknoten defi-
niert werden. Im aufgefiihrten zweidimensionalen Beispiel sind die Verschiebungen des Eckkno-
tens vollig festgehalten zur Verhinderung der Starrkorpertranslation. Die vertikale Verschiebung
des Eckknoten SO ist unterbunden, um eine Starrkorperrotation der Elementarzelle zu unter-
driicken. Der horizontale Freiheitsgrad der Eckknoten SO bezieht sich auf die makroskopische
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Normaldehnung in x-Richtung. Die horizontale und vertikale Verschiebung des Knoten NW defi-
niert die makroskopische Schubdehnung und die makroskopische Normaldehnung in y-Richtung.
Die Master-Kanten S und W bleiben ungezwungen. Dagegen werden die Verschiebungen der
Slave-Kanten N und O iiber die Kopplungsgleichungen

uo (v) = uw (¥) +uso (3.35)

und
uy (x) = ug (x) +unw (3.36)

vorgegeben. Der Verschiebungsvektor des Eckknotens NO ist eine Linearkombination aus den
Verschiebungsvektoren unw und ugg der zwei Masterknoten NW und SO

uNo = UNw + Uso- (3.37)

Bei Linien- und Flachentragwerkselementen, wie Balken und Schalenelementen, in der Finiten-
Elemente-Methode ist zu beachten, dass es einen weiteren Freiheitsgrad der Rotation an den
Knoten gibt. Um weiterhin die geometrische Periodizitdt zu erfiillen, werden weitere Kopplungs-
gleichungen benétigt. Im Falle einer rechteckigen zweidimensionalen Elementarzelle sind die
Rotationswinkel an den Ecken identisch

ONO = ONW = P50 = Psw- (3.38)

Dabei agiert der Freiheitsgrad ¢sw als Master-Freiheitsgrad fiir den Rotations-Freiheitsgrad in
den vier Ecken der Elementarzelle. Die Rotations-Freiheitsgrade der gegeniiberliegenden Kanten
missen wie folgt

ow() =0¢o(y) und on(x)=gs(x) (3.39)
gekoppelt sein. Da die Verschiebungen aller Knoten entlang der Slave-Kanten am Rand der
Elementarzelle an einzelne Master-Freiheitsgrade gekoppelt werden, wirken die von auflen auf-
gebrachten Krifte auf diese Master-Freiheitsgrade tiber die ganze Kante verteilt, die der Master-
Freiheitsgradbewegung folgt. Dies bedeutet, dass die aufsummierten Oberflichenspannungen ent-
lang der Slave-Kante der resultierenden Kraft auf die Master-Freiheitsgrade entspricht. Dement-
sprechend bringen die Reaktionskrifte an den Lagerstellen die Elementarzelle in ein statisches
Gleichgewicht und entsprechen der Summe der Oberflichenspannungsvektoren an den Master-
Kanten.

So reagiert das Elementarzellenmodell auf konzentrierte Lasten, die auf die Master-Freiheitsgrade
wirken, wie eine infinite periodische Struktur auf eine homogenisierend angewendete Spannung
reagieren wiirde [196, 43]. Daraus konnen dhnlich wie in Gl. (3.21) folgende Beziehungen

Hso Hxw Hxw

O = —F—, Oxn= , und Oxy = (340)
% L Iy

zwischen der homogenisierten Spannung < 6 >=< [Gyx Oy O'Xy]T > und konzentrierten Kno-
tenkréiften (Kraft pro Elementdicke) / und /' formuliert werden.

Das bisher beschriebene Schema kann auf eine dreidimensionale Elementarzelle erweitert werden.
Abbildung 3.21 zeigt Namenskonventionen zur Identifizierung der Ecken, Kanten und Flachen
einer kubischen Elementarzelle. Hierfiir werden zusitzlich zwei weitere Bezeichner Deckel und
Boden eingefiihrt zur Beschreibung der dritten Raumrichtung. Dabei bezeichnen Abkiirzungen mit
drei Buchstaben Eckpunkte, jene mit zwei Buchstaben beschreiben Kanten und einzelne Buchsta-
ben stehen fiir Flachen. Abbildung 3.21b zeigt eine kubische dreidimensionale Elementarzelle im
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Abbildung 3.21: Dreidimensionale Elementarzelle nach [43]: a) vorgegebene Bezeichnung fiir
die Knotensitze einer kubischen Elementarzelle und b) allgemeiner Deformationszustand eines
Einheitswiirfels.

Zustand einer allgemein makroskopischen Deformation mit drei Normal- und Schubverformungs-
freiheitsgraden. So kann beispielweise die komplexe Zwangsbedingung in Bezug auf die Anzahl
der unabhingig beteiligten Freiheitsgrade fiir die x-Verschiebung unop der Ecke NOD bestimmt
werden

UNOD = USOB + UNWB + USWD- (3.41)

Die Bestimmung der Verschiebung bzw. Verzerrungen der Kanten, Eckkanten und Flachen erfol-
gen analog dem zuvor beschriebenen Beispiel einer zweidimensionalen rechteckigen Elementar-
zelle. Die Umsetzung der periodischen Randbedingungen in einem Finite-Elemente-Code wird im
Anhang B.2 vorgestellt.

3.3 Schwingungssanalyse

Die Schwingungsanalyse erfasst und untersucht auftretende Schwingungen nach Art und Ausma$.
Eine besondere Form der Schwingungsanalyse stellt die Modalanalyse dar. Sie ist ein Verfahren
zur Beschreibung der natiirlichen dynamischen Eigenschaften wie Eigenfrequenzen, Ddmpfungen
und Schwingungs-Eigenformen einer Struktur. Zur Ermittlung dieser Parameter konnen sowohl
rechnerische als auch experimentelle Methoden eingesetzt werden. Bei beiden rechnerisch auf-
gefiihrten Verfahren wird die reale Struktur auf ein idealisiertes lineares mathematisches Modell
zuriickgefiihrt [114, 220].

Mit dem ersten CAUCHY-EULERschen Bewegungsgesetz (A.36) ergibt sich die allgemeine Bewe-
gungsgleichung mit einer geschwindigkeitsproportionalen Dampfung

V.6 +pf" —kya—pii =1"(7), (3.42)

wobei ky einen Dampfungskoeffizienten darstellt. f (¢) ist der zeitlich abhidngige Massenlastvek-
tor.

Das Eigenschwingproblem von Platten kann entweder mit partiellen Differentialgleichungen oder
mit Hilfe der Energiefunktionen aus Abschnitt 2.2 geldst werden. Beide Losungsstrategien versu-
chen, analytische und numerische Standardverfahren zu nutzen. Zu den verfiigbaren Verfahren
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gehoren die Finite-Elemente-Methode (FEM), die Finite-Differenzen-Methode, die Randwert-
Element-Methode, die Differential-Quadrature-Methode, die GALERKINsche Methode und die
Ritzsche Methode [132]. Jedoch ist dem Autor nicht bekannt, dass sich alle 21 mdglichen
Lastfdlle fiir eine Rechteckplatte, insbesondere fiir den Fall mit vier freien Randern, geschlossen
analytisch berechnen lassen. In dieser Arbeit wird das RiTZsche Verfahren wegen seiner einfachen
numerischen Umsetzung verwendet. Des Weiteren werden die gewonnenen Ergebnisse mittels
eines kommerziellen FEM-Programms auf Plausibilitét gepriift.

3.3.1 Numerische Modalanalyse

In der FEM ergibt sich die Bewegungsgleichung nach der Diskretisierung zu folgender Eigenwert-
gleichung in Matrizenschreibweise

M i + Coamp -+ K- u = (), (3.43)

wobei u dern Verschiebungsvektor, M die Massenmatrix, C die Dampfungsmatrix, K die Steifig-
keitsmatrix und f(t) den zeitlich abhidngigen Lastvektor darstellt. Fiir eine freie Eigenschwingung
ist der Lastvektor f(t) = 0, es entsteht eine homogene Differentialgleichung. Da die Lastfunktionen
oft nicht genau bekannt sind und auch die Vorgabe von Dampfungswerten schwierig ist, werden
sehr héufig anstelle transienter Berechnungen nur dimpfungsfreie Eigenfrequenzberechnungen
durchgefiihrt. Ziel ist es, eine Struktur so abzustimmen, dass ihre Eigenfrequenzen nicht mit den
Lastfrequenzen zusammenfallen und so dynamische Einfliisse reduziert oder gar ausgeschaltet
werden. Die Eigenfrequenzen bzw. -formen ergeben sich aus den Eigenwerten bzw. -vektoren der
Gleichung.

3.3.2 RiITZsches Verfahren

Das RiTzsche Néherungsverfahren stellt die verallgemeinerte Version der RAYLEIGH-Methode
dar. Die RAYLEIGH-Methode basiert auf dem Prinzip, dass bei Eigenschwingungen ein volliger
Austausch zwischen kinetischer und potentieller Energie ohne Dissipationseffekte stattfindet. So-
mit beruht das RAYLEIGH-Verfahren auf der schwachen Formulierung des Eigenwertproblems.
Mit einer Testfunktion fiir die Schwingungsformen, die die geometrischen Randbedingungen
erfiillt und unter der Annahme einer harmonischen Schwingung ergeben sich die Eigenschwin-
gungsfrequenzen. Die daraus resultierenden Eigenfrequenzen stellen eine obere Schranke dar, es
sei denn, die exakte Eigenfunktion der freien Schwingung wird als Testfunktion angenommen.
Ritz verallgemeinerte das RAYLEIGH-Verfahren durch die Annahme einer Reihe von zuléssigen
Testfunktionen, die jeweils unabhingige Amplitudenkoeffizienten haben [177]. Er zeigte dabei,
dass eine engere obere Schranke fiir die Eigenfrequenzen, durch die Minimierung des Energie-
funktionals in Bezug auf die Koeffizienten erreicht werden kann. Ritz demonstrierte seine Methode
fiir eine vollig lagerungsfreien quadratische Platte, fiir die es keine exakt analytische Losung gibt
[132].

In dieser Arbeit wird das RiTzsche Verfahren zur Eigenschwingungsanalyse von MINDLIN-Platten
angewendet. Bei der R1TZschen Methode néhert man die Verschiebungsfunktion R (x,y) durch eine
endliche Anzahl von Linearkombination der Form

R(x,y) =Y cii(x,y) (3.44)
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an, wobei ¢; (x,y) die Ndherungsfunktionen sind, die die individuellen geometrischen Randbedin-
gungen erfiillen. Die unbekannten Koeffizienten ¢; werden durch das Extrema des Energiefunktio-
nals (Gl. A.88)

¢ 0 L

=——=0 miti=1,2,....,m (3.45)

&c,-
bestimmt, welches einen Satz homogener Gleichungen, ausgedriickt durch die Terme mit den
Koeffizienten c¢;, nach sich zieht. Somit ldsst sich das Problem auf folgendes Eigenwert- und
Eigenvektorproblem reduzieren:

(K—A?M) -c=0, (3.46)
dabei ist K die Steifigkeitsmatrix. Diese definiert sich durch
ou
K=—-- 3.47
3¢ (3.47)
und die Massenmatrix M wird beschrieben durch
K
M=—. 3.48
I (3.48)

Gemil dem RiTZschen Verfahren gelangt man zur exakten Lsung bei der Grenzwertbetrachtung
m — oo der Gl. (3.45), wenn das System der gewihlten Testfunktionen folgende Bedingungen
erfiillt:

« die Funktionen ¢; (x,y) sind linear unabhéngig,
« die Funktionen ¢; (x,y) bilden ein komplettes System von Gleichungen,
« die Funktionen ¢; (x,y) erfiillen die kinematischen Randbedingungen.

Es ist nicht notwendig, dass die gewihlten Testfunktionen den statischen Randbedingungen ge-
niigen. Allerdings erwiesen sich diese Testfunktionen bei manchen Berechnungen als effizienter.
Es ist unmdglich bzw. unpraktisch, einen unendlichen Wert von m anzunehmen. So werden in
der Regel Konvergenzstudien durchgefiihrt, um mit endlichen Werten von m die gewlinschte Ge-
nauigkeit zu erreichen. Die Genauigkeit und die Geschwindigkeit der Konvergenz des RiTzschen
Verfahrens hangen von der Wahl und der Anzahl der Testfunktionen ab, die das Verschiebungsfeld
reprasentieren. Es muss wie bei vielen Naherungsverfahren ein Kompromiss zwischen Genauigkeit
und Rechenzeit eingegangen werden. Im Allgemeinen liefert dieses Verfahren genaue Eigenwerte
mit einer hinreichenden Anzahl von Testfunktionen.

Die wahrscheinlich am haufigsten verwendeten Testfunktionen sind Produkte aus Eigenfunktionen
von Balkenschwingungen [177, 130, 42], Spline-Funktionen [148] und balkenéhnliche orthogona-
le Polynome [23, 24, 49]. Weitere RiTZsche Funktionen konnen Leissa [131] entnommen werden.
Viele intensive Untersuchungen konzentrieren sich auf die Verwendung von zweidimensionalen
Polynomen [24, 124], die entsprechenden Basisfunktionen fiir die Schwingungsanalyse von Plat-
ten zugeordnet werden koénnen. Die Verwendung der letztgenannten Testfunktionen ermdglicht
eine Automatisierung der RiTz-Methode fiir Platten mit allgemeiner Form und allgemeinen
Randbedingungen. Zudem erhoht sich die Rechengenauigkeit, da sich Polynome rechnerisch gut
differenzieren und integrieren lassen [132].

In dieser Arbeit werden vollig freischwingende Platten untersucht. Aus diesem Grund werden
nur auf die Randbedingungen freie Riander eingegangen. Eine derartige Randbedingung bedeutet,
dass die Rinder querkraft- und momentfrei sind. Beschreibt man diese Randbedingungen fiir
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einen beliebig gekriimmten Rand mit den lokalen Randkoordinaten &, 1, erhélt man fiir den Rand
folgende Bedingungen [6]

me & = Dp (Ve g +Vinn) =0,
1-v
meg :DPIT (eri +Vl[lg,n) =0, (3.49)
qe = GhK‘(I]/g -‘rW,é) =0.

Das weitere und detaillierte Vorgehen der RiTz-Methode nach Liew [132] kann dem Anhang ent-
nommen werden. Die spezielle Methode wird auch als pb2-R1Tz-Methode bezeichnet. Der Buch-
stabe p bezeichnet die Verwendung von Polynomen. Der Buchstabe b steht fiir Basisfunktionen.
Die 2 deutet auf eine zweidimensionale Betrachtung hin. Die Implementierung des Algorithmus
erfolgt in dem Computeralgebra Programm Maple.

3.3.3 Experimentelle Modalanalyse

Die experimentelle Modalanalyse ist ein rechnergestiitztes Verfahren. Anhand der experimentellen
Modalanalyse ist es noglich eine schwingungsfihige Struktur mit unendlich vielen Freiheitsgraden
durch ein diskretes System mit Massenpunkten, Koppelsteifigkeiten und Dampfungen zu beschrei-
ben. Ziel ist, mit Hilfe von geeigneten Messungen der experimentellen Modalanalyse die Parameter
der modellhaften Systemstruktur zu bestimmen. Hierzu wird der zu bestimmende Probenkérper
durch breitbandige Anregung in Schwingungen versetzt. Um eine experimentelle Modalanalyse
an einem Probekdrper durchfiihren zu konnen, ist eine weit umfangreichere Ausriistung als bei
der numerischen Modalanalyse erforderlich. Neben dem Messkoérper wird eine messtechnische
Ausriistung benoétigt. Sie besteht in der Regel aus einem Impulshammer (in der passenden Ge-
wichtsklasse und mit passendem Kopfmaterial), einem oder mehreren Beschleunigungs- bzw.
Wegaufnehmern sowie einem mehrkanaligen Aufzeichnungsgerit fiir die Signale und einem
Rechner mit entsprechender Auswertungssoftware. Der Impulshammer spielt eine zentrale Rolle
So beeinflusst die Harte der Impulshammerspitze die dadurch generierte Frequenz der Struk-
tur entscheidend. Neben der Impulshammmer-Methode stellt die Shakeranregung eine weitere
Moglichkeit der experimentellen Modalanalyse dar. Hier werden die Eigenschaften der Struktur
anhand einer Shakeranregung mit einem Signalgenerator in einem definierten Frequenzbereich
ermittelt. Im Rahmen dieser Arbeit wird die Impulshammer-Methode zur Strukturuntersuchung
angewandt. Anstatt den iiblichen Beschleunigungs- bzw. Wegaufnehmern wird ein vorhandener
Festlaser genutzt.

Die experimentelle Bestimmung der modalen Parameter erfolgt mit Hilfe des Ubertragungsver-
haltens der Struktur. Hierzu wird die zu untersuchende Struktur durch breitbandige Anregung
mittels Impulshammer in Vibration versetzt. Die Systemantwort wird an verschiedenen Stiitz-
stellen der Strukturoberfliche gemessen. Die ermittelten Messwertpaare, wie z. B. Reaktionskraft
des Impulshammers und Beschleunigung der Struktur, werden aufeinander bezogen. Sie bilden
so die Ubertragungsfunktion. Aus den ermittelten Ubertragungsfunktionen konnen die modalen
Parameter bestimmt werden. Zur Losung dieser Aufgabe wurde eine Vielzahl unterschiedlicher
Rechen- und Auswertverfahren entwickelt. Die gebrduchlichsten sind die Mehrfreiheitsgradaus-
wertung (Multi Degree of Freedom, MDOF-Methode) und die Einfreiheitsgradauswertung (Single
Degree of Freedom, SDOF-Methode). Bei der letzteren wird die Gesamtantwort eines Systems in
einem bestimmten Frequenzintervall um eine Resonanzstelle als Antwort eines Schwingers mit
einem Freiheitsgrad betrachtet. Aus den gemessenen Transferfunktionen werden rechnerisch tiber
Curve-Fit-Algorithmen die Eigenfrequenzen, die zugehdrigen Dampfungen und die Eigenformen
ermittelt. Abbildung 3.22 zeigt den Ablauf der Impulshammer-Methode.
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Impulshammer Laser-Vibrometer

Impuls Antwort

A
Y

Probe

Real Modale Parameter:

Curve - Eigenfrequenz

[
Fit - Dampfung
ind - Eigenform
/\/FRF\ﬁ Imaginér g

Abbildung 3.22: Impulshammer-Methode: Ablauf der Messung.

3.3.3.1 Versuchsaufbau und Messtechnik

Die Messung sollte mittels einer entkoppelten und steifen Versuchskonstruktion erfolgen, um
mogliche Fehler durch Erschiitterungen bzw. Eigenschwingungen des Versuchsaufbaus zu vermei-
den. Es wird eine Vorrichtung benétigt, an welcher der Festlaser in vertikaler Richtung befestigt
werden kann. Da eine frei gelagerte Probe nicht realisiert werden kann, wird ein Gestell aus
Aluminiumprofilen verwendet. An diesem Gestell werden Gummiseile befestigt und die Probe
wurde auf diese Gummiseile gelegt. Alternativ wurde eine besonders weiche Schaumstoffunter-
lage, auf der das Probenmaterial platziert wird, als Lagerungsform genutzt. Es zeigten sich keine
nennenswerten Unterschiede zwischen den beiden Lagerungsformen. Beide konnen annédhernd als
frei-frei gelagert betrachtet werden. Somit konnten die Proben mit einem geringen Lagereinfluss
der Schwingungsuntersuchung unterzogen werden.

Mit dem Impulshammer wird die Struktur durch einen definierten Impuls angeregt. Der Im-
pulshammer hat ein Kopfgewicht von 275 g. Am Impulshammer koénnen die Schlagspitzen je
nach Material der Struktur ausgewechselt werden. AuBlerdem kann ein Zusatzgewicht angebracht
werden, welches die einzubringende Kraft beeinflusst. Hierdurch wird die Amplitude des Impulses
vergrofert. Durch die Wahl der Schlagspitzen wird die einzubringende Kraft folgendermalien
beeinflusst: Harte Spitzen (Stahl) verursachen kurze Impulse und hohe Frequenzen und weiche
Schlagspitzen (Gummi) verursachen breitere Impulse und niedrigere Frequenzen. Dazwischen gibt
es auch noch Schlagspitzen aus Aluminium und Kunststoff.

Die Auswahl der Schlagspitzen oder der Zusatzgewichte erfolgt entweder auf Basis von Erfah-
rungswerten oder durch mehrere Versuchsschlage mit verschiedenen Schlagspitzen und Gewich-
ten. Bei der Durchfithrung der Versuche darf es zu keinen Prellschlagen bzw. Doppelschliagen
kommen. Diese wiirden das Messergebnis massiv verfdlschen. Zur statistischen Absicherung
wurde in diesen Versuchen jeder Punkt mindestens fiinf Mal angeregt und spéter korreliert. Den
kompletten Messaufbau zeigt die Abb. 3.23a.
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Abbildung 3.23: Experimentelle Modalanalyse: a) Messaufbau, b) Probenvorbereitung.

3.3.3.2 Probenvorbereitung

Alle Proben werden gewogen, vermessen und mit einer Versuchsnummer versehen. Um ein
Messgitter fiir die Proben festlegen zu kdnnen, ist vorab zu kléren, bis zu welchem Bereich die
Eigenschwingungen angeregt werden sollen. Das Ziel dieser Messung ist, auf jeden Fall immer
die ersten vier Eigenschwingungsfrequenzen zu erhalten. Das Messgitter orientiert sich an den
zu erwartenden Eigenformen, die stark von der Probenform abhéngen. Zur Bestimmung steigen-
der Eigenformen werden immer feinere Messgitter benétigt. Fiir die zu messende Probenkérper
entstanden neun bis 56 Messpunkte. Da es durch die unebene Oberfliche nicht moglich ist, die
Messpunkte auf der Probe deutlich zu markieren, wurde ein Kreppklebeband auf die Proben
geklebt (siche Abb. 3.23D).

3.3.3.3 Signalverarbeitung

Das von Festlaser und Impulshammer gelieferte Messsignal wird mit einem Signalanalysator
digitalisiert. Nun wird vom Messgerit eine FFT? der Signale (Kraft und Beschleunigung) durch-
gefiihrt. Dies liefert ein Spektrum fiir jeden gemessenen Punkt und die eingeleitete Kraft. Daraus
wird aus jedem Spektrum eines Messpunktes (Antwortspektrum) und dem Kraftspektrum (Anre-
gungsspektrum) die Ubertragungsfunktion (FRF, Frequency Response Function) gebildet, d.h. ein
Spektrum der Beschleunigung in Bezug auf das Krafteinleitungsspektrum. Diese FRFs setzen sich
aus einem Real- und einem Imaginérteil zusammen. Ist die Messung abgeschlossen, werden die
gewonnenen FRFs in das Auswerteprogramm Test.Lab der Firma LMS geladen und ausgewertet.
Hier werden dann iiber einen Algorithmus Eigenfrequenzen und -formen ermittelt, die auch im
Programm grafisch dargestellt und animiert werden.

3.4 Schallabsorption

In diesem Kapitel sollen Methoden zur Charakterisierung von Schallabsorption in pordsen Medien,
insbesondere Hohlkugelstrukturen, vorgestellt werden. Solch pordse Materialien bestehen aus

3Fast-Fourier-Transformation, Transformation der Messsignale vom Zeitbereich in den Frequenzbereich
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einem Netzwerk von Poren, die iiber viskose und thermische Effekte eine Dissipation der Schall-
energie hervorrufen. Dieses Kapitel liefert einen Einblick in die physikalischen Mechanismen, die
theoretischen Modellbeschreibungen und die Messung der Schallabsorption in pordsen Medien.
Der erste Abschnitt gibt eine qualitative Beschreibung von pordsen Schallabsorber und Einsatz
wieder.

3.4.1 Absorptionsmechanismus

Wenn sich Schall in kleinen Rdumen, wie in verbundenen Poren in einem pordsen Absorber
ausbreitet, wird Schallenergie in Warme umgewandelt. Diese Energieumwandlung basiert im We-
sentlichen auf dem Effekt der viskosen Grenzschicht. Luft ist ein viskoses Fluid. Dementsprechend
wird Schallenergie durch Reibung mit den Porenwénden dissipiert. Wenn der Schall durch die
unregelméBigen Poren wandert, entsteht zudem ein Impulsverlust durch Stromungsidnderung. Dies
zeigt Abb. 3.24. Die Grenzschicht in Luft belduft sich bei horbaren Frequenzen im Submillimeter-
Bereich. Demzufolge treten viskose Verluste in kleinen Luftschichten mit angrenzenden Poren-
winden auf. Neben den viskosen Effekten treten auch thermische Verluste auf, hervorgerufen
durch die Warmeleitung vom Fluid zum Absorbermaterial. Dieser Effekt macht sich vor allem
bei niedrigen Frequenzen bemerkbar. Fiir eine effektive Schallabsorption miissen verbundene
Fluidkanile im Material vorhanden sein, so dass eine offenporige Struktur vorliegt. Verluste tiber
die Vibration des Absorbermaterial konnen in der Regel vernachléssigt werden, wenn der Schall
durch die Poren wandert.

Abbildung 3.25 zeigt den Absorptionskoeffizienten fiir einen pordsen Absorber und verdeutlicht
dabei den Einfluss der Materialdicke. Der Absorber befindet sich bei der Messung vor einem
schallharten Hintergrund. Die Kurvencharakteristik des Absorptionsgrads dhnelt in erster Na-

Geschlossene Pore

\ (<

Porennetzwerk

Sackgasse-Pore

Abbildung 3.24: Schematische Reprisentation eines akustischen porésen Mediums; in weil dar-
gestellt die Fluidphase bestehend aus das Netzwerk der verbundenen Poren, in grau dargestellt die
Festphase.

herung der eines Hochpassfilters. Mit zunehmender Dicke des Absorbermaterials nimmt der
Absorptionsgrad bei geringeren Frequenzen zu. Um eine merkliche Absorption zu erreichen, ist
im Absorber eine hohe Partikelgeschwindigkeit (Schallschnelle) vonnéten. Die Partikelgeschwin-
digkeit ist an den Wénden in Rdumen fiir gewohnlich gleich Null, so dass die wandnahen Bereiche
keine nennenswerte Absorption erzeugen. Die von der Wand weiter legenden entfernten Bereiche
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Abbildung 3.25: Absorptionskoeffizient fiir einen offenporigen Polymerschaum, gemessen fiir
zwei verschiedene Dicken mit schallhartem Abschluss.

des Absorbers sind meist am effektivsten. Die hochsten Partikelgeschwindigkeiten treten bei einer
Entfernung von einer Viertel Wellenlénge auf. So entsteht in der Regel das erste Maximum des
Absorptionsgrads, wenn die Dicke des Absorbers ein Viertel der Wellenldnge entspricht. Das
Spektrum von Absorbermaterialien erstreckt sich von natiirlichen Schwédmmen iiber gewoéhnliche
Stahlwolle oder Fasermaterialien bis hin zu synthetischen Schdumen. Selbst haushaltsiibliche
Teppiche stellen einen Schallabsorber dar.

3.4.2 Charakterisierende Materialeigenschaften und -gréfien

In diesem Abschnitt soll auf die wesentlichen, charakterisierenden Grofen zur mathematischen
Modellierung von pordsen Absorbern niher eingegangen werden. Mit den GroBlen kénnen Eigen-
schaften wie Wandimpedanz, charakteristische Impedanz und Absorptionkoeffizient bestimmt
werden. Die mathematischen Modelle sollen zudem beschreiben, wie Absorption entsteht, und
an die gewiinschten Anforderungen angepasst werden konnen. Zundchst jedoch soll auf die
wesentlichen Groflen eingegangen werden, die maf3geblich die Schallausbreitung in pordsen Me-
dien beeinflussen. Dies sind Porositdt und Stromungswiderstand. Des Weiteren werden Grofien
beleuchtet, die die Komplexitit der Geometrie erfassen.

3.4.2.1 Porositit

Die akustische Porositéit gibt den Anteil des Fluidvolumens im Absorber an und stellt ein Ver-
hiltnis zwischen effektivem Porenvolumen und Gesamtvolumen des Absorbers dar. Gewdhnliche
Absorber haben eine hohe Porositit, die nahe bei Eins liegt - wie Mineralwolle mit 0,98. Bei der
Bestimmung der akustischen Porositdt gehen geschlossene Poren, wie Abb. 3.24 verdeutlicht, nicht
in das effektive Porenvolumen ein. Diese Poren sind unzugénglich fiir die Schallausbreitung. Die
Porositit ist ein Schliisselparameter, jedoch liegt sie bei gewohnlichen Absorbern nahe Eins. Bei
alternativen Absorbermaterialien wie Schdumen und insbesondere Hohlkugelstrukturen sieht dies
jedoch deutlich anders aus. Da sich Porositét und Stromungswiderstand meist entgegenstehen, ist
bei der Auslegung eines Absorbermaterials abzuwégen.

3.4.2.2 Stromungswiderstand

Der Stromungswiderstand gibt an, wie leicht ein Fluid durch einen porésen Korper hindurch-
stromen kann und welchen Widerstand das Fluid durch die Struktur erfihrt. Somit macht der

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

62 Methoden zur Charakterisierung

Stromungswiderstand eine Aussage dariiber, wie viel Schallenergie durch den Grenzschichteffekt
innerhalb des Materials in Warme umgewandelt werden kann. Ausgehend vom Gesetz von Darcy

Vo= — 2 Vp=—2Vp, (3.50)

welches im Abschnitt 2.3.2.6 beschrieben wird, kann ein ldngenbezogener Strémungswiderstand
= eingefiihrt werden, der den effektiven Widerstand pro Materialeinheitsdicke angibt. Gravitati-
onseinfliisse werden dabei vernachldssigt.

3.4.2.3 Porenformfaktor und charakteristische Lingen

Die einfachsten theoretischen Modelle des pordsen Absorbers basieren auf der Annahme, dass die
Struktur, bzw. die feste Phase, steif und bewegungslos sei. Dadurch lassen sich die klassischen
Theorien der Schallausbreitung in kleinen Rohren anwenden. Jedoch gibt es nur geschlossene
analytische Losungen fiir einfache Geometrien, wie ein Verbund aus zylindrischen Rohren. Im
Allgemeinen sind diese Formen der R6hren weit von den realen und komplexen Geometrien der
meisten Absorbermaterialen entfernt. Infolgedessen wurde ein halb empirischer Ansatz entwickelt.
Dieser bestimmt Schliisseleigenschaften des Materials aus Kombination von Versuchen und Theo-
rie. Die wichtigsten dieser Parameter sind im Anschluss aufgefiihrt.

Wihrend die Porositit und der Stromungswiderstand fiir gewohnlich die wichtigsten Parameter
fiir die Schallabsorption darstellen, gibt es weitere zweitrangige Parameter, wie die Formfaktoren
oder die Tortuositit (Gewundenheit). Die Form der Poren hat deutlichen Einfluss auf die Schall-
ausbreitung und dadurch auch auf das Absorptionsverhalten. Unterschiedliche Porenformen haben
unterschiedliche Oberflachen und infolgedessen auch unterschiedliches, viskoses und thermisches
Verhalten. Wie schon erwéhnt lassen sich die realen, willkiirlichen Porenformen und somit auch
die Porenformfaktoren nicht analytisch bestimmen. Dementsprechend werden diese Formfaktoren
fiir gewohnlich empirisch durch die bestmdgliche Anpassung an die akustische Messung gefunden.
Die Formfaktoren sind vom Modell abhédngig, das zur Vorhersage der Schallausbreitung im pordo-
sen Absorber genutzt wird. Die Formfaktoren ¢, und ¢; bzw. charakteristische Langen A, und A¢
werden in den spéter aufgefiihrten Ansédtzen fiir die effektive Dichte und den Kompressionsmodul
und weiterfithrend zur Bestimmung der charakteristischen Impedanz und Wellenzahl genutzt.
Diese Faktoren beziehen sich ausschlielich auf den dynamischen Fall und reprisentieren die
Effekte bei hoheren Frequenzen.

Die viskose Wechselwirkung zwischen dem oszillierenden Fluid und den Porenwénden ist be-
kannt bei niedrigen und hohen Frequenzen. Im dazwischenliegenden Frequenzbereich werden
diese Wechselwirkungen mit einer einfachen Funktion approximiert, die den Niedrig- und Hoch-
frequenzbereich verkniipft [104]. Fiir ein Absorbermaterial bestehend aus ausschlieBlich zylin-
drischen Poren, entspricht die charakteristische Linge dem Radius der Rohre und somit dem
hydraulischen Radius der entsprechenden zylindrischen Poren. Johnson [104] gibt eine exakte
Beschreibung fiir die viskose charakteristische Lange

[V
Av=2"—, 3.51
=2 (3.51)
4
wobei das Integral im Zahler iiber ein Volumen geht, das groBer als das der Porengrofe ist
und das Integral im Nenner iiber die Oberfliche der Poren geht. Die GroBe v entspricht der
mikroskopischen Geschwindigkeit eines idealen bzw. eines nicht viskosen Fluids durch die Poren.
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Abbildung 3.26: Schematische Reprisentation einer akustischen Pore; die viskose charakteristi-
sche Lange A, ist maB3geblich fiir die viskosen Effekte und die thermale charakteristische Lange A¢
wiederum maBgeblich fiir thermische Effekte verantwortlich, bei hohen Frequenzen entsprechen
diese Langen der geometrischen Grofe einer Pore

Der Faktor 2 wird genutzt, da die charakteristische Lange dem hydraulischen Radius (siche Abb.
3.26) einer identischen zylindrischen Pore entspricht. Die charakteristische Lange ist demzufolge
ein Verhiltnis von Volumen zu Oberfliche gewichtet durch das Quadrat der mikroskopischen
Geschwindigkeit. Der viskose Porenfaktor ldsst sich wie folgt

1 [80wpY
A\ 92

cy = (3.52)
bestimmen. Dabei ist o, die Tortuositdt, auf die im folgenden Abschnitt eingegangen wird. Fiir
die meisten Absorber liegt der Bereich von ¢, zwischen 0,3 und 3. Fiir einen runden, einen
quadratischen und einen dreiecksférmigen Porenquerschnitt ist der Porenformfaktor ¢, 1, 1,07
und 1,14, fiir Spalte 0,78.

Des Weiteren ist eine zusétzliche charakteristische Lange fiir Materialien mit nicht zylinderférmi-
gen Poren und innerer komplexer Struktur notwendig. Die thermische Wechselwirkung zwischen
komprimierter und ausgedehnter Luft und den Porenwénden ist wiederum bekannt fiir niedrige
(isothermisch) und hohe (adiabatisch) Frequenzen. Auf dhnliche Weise, wie im viskosen Fall wird
der thermische Effekt im Zwischenfrequenzbereich durch eine analytische Funktion approximiert,
die wiederum den Niedrig- mit dem Hochfrequenzbereich verbindet [2, 119]. Der Ubergang
zwischen dem Niedrig- und dem Hochfrequenzbereich hingt vom mittleren Abstand ab, den die
Wairme bis zu den Poren durchwandern muss. Sie wird charakterisiert durch

far
14 P

A=2—-=2—. 3.53

R FVRREN (3.53)
A

Somit ist die thermisch-charakteristische Lange das Verhiltnis zwischen Porenvolumen zu Po-
renoberfliche. Die thermisch-charakteristische Lange erfihrt keine Gewichtung im Gegensatz zur
viskosen charakteristische Lange und wird darum in der Regel gleich oder grofler sein als diese. Im
Fall eines Absorbers mit geradlinigen zylinderformigen Poren sind beide charakteristischen Lan-
gen gleich grof und entsprechen dem Radius der zylindrischen Pore. Der thermische Porenfaktor
ist wie folgt definiert:

(3.54)
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3.4.2.4 Tortuositat

Die Orientierung der Poren relativ zum einfallenden Schallfeld hat einen Effekt auf die Schallaus-
breitung im pordsen Material. Dieser Effekt wird durch den Parameter Tortuositét ausgedriickt, oft
auch als Strukturformfaktor bezeichnet. Je komplexer der Schallausbreitungspfad desto hoher die
Absorption im Material. Die Komplexitit des Pfades kann teilweise durch die Tortuositét beschrie-
ben werden. So charakterisiert die dynamische Tortuositdt, meist nur kurz Tortuositit genannt, die
teilweise viskosen Effekte im Hochfrequenzbereich, wenn die viskosen Grenzschichten der Stro-
mung klein gegeniiber den charakteristischen GroBlen der Poren sind. Es ist eine dimensionslose
GroBe und ihre mathematische Beschreibung wurde durch Johnson [104] erarbeitet:

¥ [V
4

(1)

Dieses Maf} gibt eine Art Unordnung des Systems (Material) an [104].

O = (3.55)

3.4.3 Aquivalentes Fluid-Modell

Sehr viele theoretische und analytische Modelle zur Beschreibung des Verhaltens von pordsen
Materialien wurden iiber die letzten Jahre entwickelt. Eine Modellbildung fiir pordse Materialen,
charakterisiert durch ihre feste und fliissige Phase, verlangt zur Beschreibung und Untersuchung
nach einer Anzahl von Parametern. Diese Parameter haben alle eine physikalische Bedeutung.
Diese kann, je nach Modellbildung, fiir das jeweilige Material sehr niitzlich sein. Im Fall sehr
komplexer Modellbeschreibungen erreicht die maximale Anzahl bis zu zehn Parameter [26, 192].
Einfachere Modelle, wie das Modell des dquivalenten Fluides, bendtigen nur finf Parameter zur
Charakterisierung der akustischen Wellenausbreitung in pordsen Materialien. Wird das Skelett
des pordsen Materials wihrend der akustischen Wellenausbreitung als steif oder bewegungslos
betrachtet, kann das Fluid innerhalb des porésen Mediums durch ein makroskopisch dquivalentes
Fluid ersetzt werden. Dieses dquivalente Fluid kann durch die GroBen, effektive Dichte peg und
effektiven Kompressionsmodul K¢ beschrieben werden. Diese Werte stehen in Abhéngigkeit zur
Frequenz @ = 2rf. Zusitzlich sind die Wellenzahl k(@) und die charakteristische Impedanz
Z. () des dquivalenten Fluides frequenzabhéngig [1].

In dieser Arbeit werden das Delany-Bazley-Modell [46] und das Johnson-Champoux-Allard-
Modell [104, 34] vorgestellt. Das Delany-Bazley-Modell ist sehr einfaches und aussagefihiges
Modell fiir porése Materialien, bei denen die Porositét nahe Eins ist.

3.4.3.1 DELANY-BAZLEY-Modell

Das DELANY-BAZLEY-Modell [46] basiert auf einer Vielzahl von empirisch gewonnen Daten. Die
komplexe Wellenzahl k und die charakteristische Impedanz Z; wurden durch Delany and Bazley
[46] fiir viele Fasermaterialien, die einen Porositéitsanteil nahe bei eins haben, in einen grofem
Frequenzbereich gemessen. Gemil diesen Messungen hingen die Groflen des Modells K und Z
von der Kreisfrequenz @ und dem Stromungswiderstand = des jeweiligen Materials ab. Eine gute
Anpassung an die Messwerte k und Z, lieferte folgender Ausdruck:

Ze = pocoFi (X) und k= CEF2 (X) (3.56)
0
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mit
Fi (X) =140.057X%7% _j0.087x %732,

3.57
F (X) =1+0.0978X %79 _j0.189.x 05, (3.57)

wobei ¢o und pg die Schallgeschwindigkeit und die Dichte der Luft sind. Der dimensionslose
Parameter X kann aus
X= p%f (3.58)

bestimmt werden. Dabei ist /" die Frequenz. Danley und Bazley empfehlen zur Validierung ihres
Gesetzes folgende Grenzen fiir X:
0,01 <X < 1,0. (3.59)

Die dquivalente Schallgeschwindigkeit und Dichte ldsst sich geméf diesem Fluidmodell wie folgt
berechnen ® P
¢

ciq= 7 = WOX) und  piq = Z = poFi (X)Fy (X). (3.60)
Der Stromungswiderstand eines pordsen Materials Z ist ein physikalischer Parameter, der sich
mit Hilfe des Gesetzes von Darcy bestimmen lédsst. Jedoch ldsst sich der Stromungswiderstand
eines luftdurchstromten, pordsen Korpers extrem schwer messen. Der Stromungswiderstand ist
eine spezifische Eigenschaft der Mikrogeometrie der Poren und beeinflusst die Ausbreitung und
Absorption akustischer Wellen [1].
Diese einfachen Beziehungen, wie im DANLEY-BAZLEY-Modell durch Abhéngigkeit von Fre-
quenz und Stromungswiderstand formuliert, geniigen jedoch nicht zur exakten und allgemeinen
Beschreibung pordser Materialien [1]. Sie wurde schon des Ofteren, wie zum Beispiel durch
Komatsu [115] und Miki [147, 146] erweitert und angepasst. Allerdings lédsst sich dieses Modell
weitldufig nutzen. Es gibt brauchbare Werte fiir die komplexe Wellenzahl und charakterliche
Impedanz wieder.

3.4.3.2 JOHNSON-CHAMPOUX-ALLARD-Modell

Neben der empirischen Approximationsmethode nach Danley und Bazley gibt es auch physikalisch
theoretische Modellbeschreibungen fiir steife, bewegungslose und weiche, bewegliche Strukturen.
Auf die Modellbeschreibung nach Biot [26] fiir weiche bzw. bewegliche Strukturen soll nicht
niher eingegangen werden, da die Strukturen fiir metallische Hohlkugeln als steif gegeniiber der
schwingenden Luftmasse angesehen werden. Eine genaue und ausfiihrliche Modellbeschreibung
nach Biot ist in [1] zu finden.

Die Geometrie von Poren in gewohnlichen porésen Materialen lésst ist nicht einfach beschreiben
und eine direkte Berechnung der viskosen und thermischen Wechselwirkungen zwischen Fluid
und Festkorper ist im Allgemeinen unmdglich. Aus diesem Grund werden die Poren in manchen
Modellbildungen durch einfachere Geometrie ersetzt. Als einfachste Regelgeometrie ldsst sich
eine Pore durch einen Zylinder beschreiben. Eine theoretische Schallausbreitung in zylindrischen
Rohren mit viskosen und thermischen Effekten hat Kirchhoff in seiner Theorie [113] beschrieben.
Leider war diese Beschreibung fiir viele Anwendungen zu kompliziert, vor allem bei Rohren mit
nicht kreisrunden Querschnitten. Ein einfacheres Modell, welches thermische und viskose Effekte
fiir kreisrunde Rohrenquerschnitte getrennt behandelt, wurde durch Zwikken und Kosten [228]
ausgearbeitet. Der thermische Austauscheffekt in Bezug auf den viskosen Effekt wird im Modell
von Stinson [201] beschrieben. Eine Ubersicht iiber die verschiedenen Modelle, die vor 1980
ausgearbeitet wurden, sind in der Arbeit von Attenborough [10] zu finden. Im Allgemeinen fuflen
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sich alle Modelle auf der Theorie des quasi-homogenen Absorbers, wie in Kapitel 3 beschrieben.
All diese Theorien bauen auf der Annahme der linearisierten NAVIER-STOKES-Gleichung fiir
inkompressible Fluide

P)
poa—: = Vp+1vVay, (3.61)

der linearisierten Warmeenergiegleichung

Ip

aT
— =—AAT , 3.62
Pocp ot + ot ( )
der Zustandsgleichung fiir ideale Gase
p=pRT=p(cp—cy)T (3.63)
und der Kontinuititsgleichung
d
po(v-v)+a—‘; =0 (3.64)

auf, wobei ¢, und ¢y die spezifischen Warmekapazititen bei konstantem Druck oder Volumen, A
die Wiarmeleitfahigkeit, R; die spezifische Gaskonstante und 7" die Temperatur sind. Des Weiteren
werden folgende Annahmen getroffen:

* keine Hauptstromung v = 0,

* laminare Stromung, keine Wirbel,

* keine innere Wiarmeerzeugung,

* homogenes Medium/Fluid und

* kleine harmonische Schwankungen/Stérungen (Druck/Geschwindigkeit).

Folgende Beziehungen werden im Einzelnen zur Bestimmung der effektiven Dichte und des
effektiven Kompressionsmoduls des Fluides angegeben. Die charakteristischen Léngen zur Be-
rlicksichtigung der viskosen und thermischen Verlustmechanismen

1 v 1 v
Ay L [BO=HT g A= L Bk (3.65)
Cy 0= ¢t 0=

ergeben sich aus den physikalisch messbaren Materialparametern Porositét ¢, dem ldngenbezoge-
nen Strémungswiderstand =, der dynamischen Viskositit der Luft 4V, dem Strukturformfaktor o,
und den viskosen und thermischen Porenformfaktoren ¢, und ¢;. Mit den Zwischengréfen

j4oZuVpow
$2ATE?

j4oZpYpowPr

Gy(w)=4[1+ =
' e

und  Gi(w)=/1+ (3.66)

wobei Pr die PRANDTL-Zahl ist und das Verhiltnis zwischen der kinematischen Viskositét und
der Temperaturleitfahigkeit von Fliissigkeiten oder Gasen beschreibt. Mit Hilfe der Zusatzgrofien

I
xvzcv,lgaz’;"w und A= w‘(’;ﬁ (3.67)
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erhdlt man die effektive Dichte

8c2G, (@
Pefr () = p Ol [HW()] (3.68)
und den Kompressionsmodul des dquivalenten Fluides
K(0)= YpPo (3.69)

r—(r—1) [1+ff;,§.‘,‘{§]71.

Die dimensionslose Grofe y kennzeichnet hierbei den Adiabatenexponent. Aus der effektiven
Dichte und dem Kompressionsmodul ldsst sich die charakteristische Impedanz des Mediums

Ze =/ pesr (0) K (@) (3.70)

bestimmen. Mit der endlichen Dicke d der porésen Probe ldsst sich nun die Impedanz

P —jZgcot (kad) 3.71)
(0
berechnen. Zudem kann die Wellenzahl
Pefr ()
ky = 3.72

im pordsen Medium ermitteln werden. Schlussendlich kann mit Hilfe der Wandimpedanz nach
Abschnitt 2.3.2.5 der Absorptionsgrad

4Re { %} 373

2 2
[Re{%} + 1] + [Im{%} + 1]
bestimmt werden.

Einen Uberblick iiber die Modelle und eine Erweiterung des JOHNSON-CHAMPOUX-ALLARD-
Modells kann dem Anhangsteil B.6 enthommen werden.

o=

3.4.4 Akustische Messungen

Grundsitzlich gibt es mehrere Moglichkeiten, die akustischen Eigenschaften eines Materials zu
bestimmen. Zum einen kann man das Hallraumverfahren nach DIN52212 [158] einsetzen, das
nur fiir grole Probenabmessungen geeignet ist und mit diffusem Schalleinfall arbeitet. Gerade
das Messen der akustischen Materialparameter unter den Bedingungen des Schalleinfalles aus
vielen, verteilten Richtungen, fiithrt zu wirklichkeitsnahen Ergebnissen. Um die Messgenauigkeit
dieser Methode einzuhalten, muss allerdings die stirnseitige Oberfliche des Priifgegenstandes
mehrere Quadratmeter betragen. Fiir eine schnellere und einfachere Einschitzung kann auch ein
anderes Verfahren eingesetzt werden: die Messung im KUNDTschen Rohr bzw. im Impedanzrohr
nach DIN52215 [159] bzw. 1SO10534-1 [160] und ISO10534-2 [162]. Das KUNDTsche Rohr
wird zur gezielten Erzeugung ebener Wellen genutzt und stellt eine Messeinrichtung dar zur
Charakterisierung von teilweise absorbierenden und teilweise reflektierenden Anordnungen bei

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

68 Methoden zur Charakterisierung

senkrechtem Schalleinfall. Es ist jedoch beriicksichtigen, dass die Berechnungsformeln zur Mess-
methode mit senkrechtem Schalleinfall Anndherungen sind. Dafiir ist die Ermittlung der akus-
tischen Materialparameter kleiner Priifgegenstéinde in der GroBe des Impedanzrohrquerschnitts
moglich. Abhédngig von den zu untersuchenden Frequenzen konnen Flachen von bis zu 10 x 10
cm? zum Einsatz kommen. Zur Beurteilung des akustischen Verhaltens von Hohlkugelstrukturen
werden Ergebnisse aus Versuchen vorgestellt. Als charakteristische Groflen werden Absorption,
Transmission und Reflexion untersucht. Die Messungen selbst sind nach den géngigen Methoden
durchgefiihrt. Eingesetzt werden sowohl die Zwei-Mikrophon- nach 1SO10534-2 [162] als auch
die Vier-Mikrophon-Methode.

Die Messung der akustischen Materialparameter mit einer ebenen Schallwelle im KUNDTschen
Rohr kann grundsitzlich auf zwei Weisen erfolgen. Die Stehwellenmethode nach ISO 10534-1
[160] und die Ubertragungsfunktionsmethode nach ISO 10534-2 [162]. Fiir die Messung wird
in beiden Féllen die Ausbreitung einer eindimensionalen Welle mit senkrechter Reflexion, sprich
eine ebene Welle, benétigt. Dieser Fall ldsst sich besonders gut in einem Rohr erzeugen, das an
beiden Enden senkrecht abgeschlossen ist. Bei den behandelten Messsystemen ist ein Ende durch
eine Materialprobe senkrecht abgeschlossen. Das andere Ende wird durch eine iiber den gesamten
Querschnitt moglichst gleich schwingende Kolbenmembran, sprich ein Lautsprecher, angeregt.
Mit beiden Methoden lassen sich durch den senkrechten Schalleinfall der Reflektionskoeffizient
r, der Absorptionsgrad o und die akustische Impedanz Z, des Absorbermaterials bestimmen.
Um eine derartige Schallwellenausbreitung zu gewihrleisten, bedarf es einiger Voraussetzungen,
welche im Folgenden diskutiert werden:

Die Schallverluste im Rohr sind so zu minimieren, dass sich die ebene Welle ohne nen-
nenswerte Abschwiachung ausbreiten kann. Folglich nutzt man fiir den mittleren und hohen
Frequenzbereich, der den Larmschutz im Maschinenbau und Bauwesen betrifft, steife Stahl-
konstruktionen fiir das Rohr. Fiir niedrige Frequenzen, bis zur Grenze des menschlichen
Gehors (20 Hz), kommen sehr dicke Stahl- oder Betonstahlplatten zum Einsatz.

Der Rohrquerschnitt sollte einen konstanten Querschnitt iiber den Messraum aufweisen, in
dem die Mikrofone und die Probe platziert sind. Die Form des Querschnitts ist dabei nicht
ausschlaggebend. Runde und quadratische Rohrquerschnitte sind am meisten verbreitet. Der
runde Querschnitt neigt zur geringen Anfilligkeit bei Quermoden-Problemen, der quadrati-
sche Querschnitt bietet Vorteile bei der Probenvorbereitung.

Der Lautsprecher sollte mehrere Réhrendurchmesser bzw. Réhrenweiten vom néchstlie-
genden Mikrofon entfernt sein, damit sich eine ebene Welle ausbilden kann. Jedoch sollte
die Lange des Impedanzrohres von der Schallquelle bis zur Oberfliche der zu messenden
nicht mehr als fiinf bis zehn Rohrmesser bzw. -weiten betragen, um Dissipationseffekte der
Schallausbreitung nicht unnétig zu erhdhen.

Die Positionen der Mikrofone sollte nicht zu nahe an der Probe liegen, damit evaneszen-
te Wellen®, hervorgerufen durch Reflektion am Absorbermaterial, ausreichend Zeit haben
abzuklingen.

Die hochste theoretische Frequenz f,; mit der im Impedanzrohr gemessen werden kann,
hingt von der Quereigenmodenausbildung des Fluides und somit von den Ausmafen des
Rohrquerschnittes ab [152]. Aus diesem Grund ist eine Frequenz unterhalb der ersten
modalen Grenzfrequenz anzustreben f;; < i, damit sich eine ebene Welle ausbilden kann.
Die GroBe /g stellt hierbei den Durchmesser oder die Weite des Rohrs dar.

4sich verfliichtigende Wellen
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Bei der Stehwellenmethode nach ISO 10534-1 wird mittels eines Schallwandlers eine sinusférmige
Schallwelle in das Impedanzrohr eingespeist. Diese Schallwelle breitet sich im Rohr eindimensio-
nal aus und wird am Rohrende reflektiert. Die reflektierte Welle tiberlagert sich mit der einlaufen-
den Welle und bildet eine stehende Welle im Rohr. Da die reflektierende Schallwelle und somit
auch die stehende Schallwelle abhidngig vom akustischen Verhalten des Rohrabschlusses ist, kann
mittels Messen der Druckminima und -maxima der Reflektionskoeffizient des Rohrabschlusses
(Absorbermaterials) bestimmt werden.

Zu der oberen theoretischen Grenzfrequenz f,; gibt es bei der Stehwellenmethode eine untere
theoretische Grenzfrequenz f,, die wiederum von den geometrischen Abmessungen des Rohres
abhingt. Die untere theoretische Grenzfrequenz erhilt man, da fiir die Messung zwei Druckminima
erforderlich sind und da das erste Druckminimum im Extremfall ein Viertel der Wellenlénge vom
reflektierenden Abschluss entfernt ist. Daraus ergibt sich eine untere theoretische Grenzfrequenz
Jut > 437; bei gegebener Rohrldnge /r. Unter realen Bedingungen wird von der Rohrldnge noch
mindestens ein Rohrdurchmesser oder -weite abgezogen, da sich erst nach einem gewissen Ab-
stand eine ebene Welle ausbildet. So liegt die tatsdchliche untere Grenzfrequenz hoher als bei der
theoretischen Betrachtung.

Bei der Ubertragungsfunktionsmethode nach ISO 10534-2 dient ein Rauschgenerator als Schall-
quelle, der ein breitbandiges ‘weiBes* Rauschen’ erzeugt. Abbildung 3.27 zeigt dies. Dieses

K K zum FFT-Analysator
M, M:

1 )
Lautsprecher Materialprobe

k—\E \ ___________ Wit ‘ .

\ \
stationdres akustisch
Rauschsignal X harte Wand

x=1 X1 X2 x=0

Abbildung 3.27: KUNDTsches Rohr; Ubertragungsfunktionsmethode nach ISO 10534-2 mit ein-
laufenden und reflektierten Drucksignal (pe und py)

Rauschsignal wird iiber einen Lautsprecher in das Impedanzrohr eingekoppelt. Die Signalerfas-
sung erfolgt mittels zwei oder mehrerer Mikrofone an fixen Positionen der Rohrinnenwand.
Gegeniiber der Messung nach der Stehwellenmethode nach ISO 10534-1 ergibt sich bei dieser
Methode nach ISO 10534-2 ein wesentlicher Vorteil. Da die Ubertragungsfunktionsmethode nach
ISO 10534-2 mit einem weilen Rauschen arbeitet, das bereits alle gewiinschten Frequenzen
beinhaltet, kann somit sehr viel Messzeit eingespart werden. Dadurch dauert die Messung nur
einen Bruchteil dessen, was die Messung nach ISO 10534-1 dauern wiirde. Zusitzlich kann bei
der Zwei-Mikrofon-Methode die Absorption an der Rohrinnenwand vernachldssigt werden, da die
Liange des Impedanzrohres im Vergleich zur Stehwellenmethode sehr kurz gehalten werden kann.
Dies beruht darauf, dass sich bei der Ubertragungsfunktionsmethode im Rohr nur eine ebene Welle
ausbilden muss, die nach wenigen Rohrdurchmessern bzw. -weiten entsteht.

SRauschen mit konstanter Amplitude im Leistungsdichtespektrum
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Aus diesen Griinden wurde die Ubertragungsfunktionsmethode nach ISO 10534-2 der Stehwellen-
methode nach ISO 10534-1 bevorzugt.

Der gewiinschte Einsatzbereich sollte von 500 bis 4000 Hz erfolgen. Daraus ergibt sich nach
Auslegung nach ISO 10534-2 ein quadratischer Querschnitt von 40x40 mm?2. Im Anhang wird
der theoretische Hintergrund der Ubertragungsfunktionsmethode mit zwei Mikrofonen nach ISO
10534-2 und eine Weiterentwicklung dieser Methode dargelegt und die Bestimmung der Kenngro-
Ben eines Absorbermaterials aufgezeigt.
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4 Ergebnisse

In diesem Kapitel werden die gewonnenen Ergebnisse aus Simulation und Versuch fiir die me-
chanischen und akustischen Eigenschaften metallischer Hohlkugelstrukturen vorgestellt. Dabei
wird auf die Grundlagen und Methoden zur Bestimmung dieser Eigenschaften aus den zwei
vorhergehenden Kapiteln zuriickgegriffen.

Zunichst werden Hohlkugelpackungen analysiert und mit dem Forced-Biased-Algorithmus er-
zeugten Packungen gegeniiber gestellt. Ein weiterer Untersuchungspunkt ist die Bestimmung der
homogenisierten Elastizititswerte verschiedener Hohlkugelpackungen. Dabei fillt das Augenmerk
auf die qualitative und quantitative Anisotropie. Zudem werden durch die experimentelle Mo-
dalanalyse homogenisierte Elastizitdtswerte von realen Hohlkugelstrukturen ermittelt und mit der
modellhaften Beschreibung verglichen. Abschlieend wird das akustische und frequenzabhéngige
Absorptions- und Transmissionsverhalten zweier Hohlkugelstruktur-Probenserien bestimmt. Zu-
sitzlich werden die Ergebnisse des JOHNSON-CHAMPOUX-ALLARD-Modells prasentiert.

4.1 Zufillige Kugelpackungen

In diesem Teil der Arbeit werden die zufélligen Kugelpackungen aus Simulation und Rekonstruk-
tion untersucht, charakterisiert und verglichen. Zu Beginn wird auf die realen Packungen von drei
verschiedenen Hohlkugelstrukturen eingegangen, danach werden kiinstlich erzeugte Kugelpackun-
gen betrachtet.

4.1.1 Reale Kugelpackungen

Die versinterte Probe HKS 113 mit einem mittleren Aulendurchmesser der Hohlkugeln von 2,6
mm wird in kleine zylinderformige Proben zerlegt und mit Hilfe der Computertomografie gescannt.
An der Hochschule Aalen stehen dwe dreidimensionalen Rontgentomografie zwei Industriegrite
zur Verfiigung, das RayScan 200 von Wilischmiller und das v|tome|x s von Phoenix. Abhéngig
von der Probengrofle und Auflosung wird der geeignete Computertomograf ausgewéhlt und die
gewonnenen Volumenbilder mit dem Riickfiihralgorithmus nach [188] rekonstruiert. Der Ablauf
der Rekonstruktion ist fiir eine Teilprobe in Abb. 4.1 ersichtlich. Fiir die Probe HKS113 wird
eine mittlere Packungsdichte PD = 0,57 mit einen Toleranzparameter ex = 2% ermittelt. An
der Verteilung der lokalen Dichte (sieche Abb. 4.2a) ldsst sich erkennen, dass es lokal mehr und
weniger dicht geordnete Bereiche gibt. Die Spanne reicht von 0,45 bis 0,64. Die am meisten
vorkommenden lokalen Dichten liegen nahe der mittleren Packungsdichte. Betrachtet man des
Weiteren die Bindungswinkel zwischen den benachbarten Kugeln (Abb. 4.2b) erkennt man eine
homogene Winkelverteilung, was auf eine Packung mit wenig geordneten bzw. kristallinen Berei-
che schlielen ldsst. Diese Aussage ldsst sich durch die geringe Auspridgung der Maxima in der
Paarkorrelationsfunktion fiir die HKS 113 (Abb. 4.3a) bekriftigen. Geringe Ausschlidge bei r = 1
und = /3 lassen auf wenig geordnete Bereiche zuriickschliefen, was wiederum einer amorphen
Struktur nahe kommt. Ein weiteres Indiz fiir wenig kristalline Bereiche ist die geringe Anzahl von
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Abbildung 4.1: Rekonstruktionsprozess des Probenkdrpers HKS113 a) Originalprobenkdrper mit
zylindrischer Form, b) Computertomografie Voxelbild, c) erfasste Kugeln und d) rekonstruiertes
CAD- Modell.
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Abbildung 4.2: KenngrofBen der realen Probe HKS 113 a) Verteilung der lokale Dichte und b)
Bindungswinkelverteilung.

hoheren Koordinationszahlen (Abb. 4.3b). Die durchschnittliche Koordinationszahl liegt fiir den
ausgewihlten Bereich bei KZ = 6, 8.

Neben der HKS 113 wurde die versinterte HKS 105 mit einem mittleren AuBendurchmesser der
Hohlkugeln von 1,6 mm und die verklebte Probe HKS 100 mit einem mittleren Auendurchmesser
der Hohlkugeln von 3,0 mm untersucht. Betrachtet man die Verteilung der lokalen Dichte in der
ADbb. 4.4, zeigt sich eine groBere Varianz fiir die verklebte Probe gegeniiber der versinterten Probe.
Fiir die verklebte HKS 100 ergab sich eine mittlere Packungsdichte von 0,625 und fiir die versintere
Probe ein Wert von 0,564. Packungsdichten iiber 0,74 in der Verteilung lassen auf ikosaedrische
Anordnungen schlieflen, jedoch kénnen diese hohen Werte teilweise durch Ungenauigkeiten bei
der Computertomografie und beim Riickfiihren der Strukturen entstehen.

Ein leicht erhohtes Auftreten des Bindungswinkels 60° und des Winkelbereiches von 90° bis 120°
spricht fiir lokal geordnete Bereiche (siche Abb. 4.5). Die lokal geordneten Bereiche spiegeln sich
in den lokalen Maxima in der Paarkorrelationsfunktion bei » = 1 und » ~ /3 fiir die gesinterte
(Abb. 4.6a) und die verklebte (Abb. 4.6b) Struktur wieder. Die Maxima deuten auf KFZ- oder
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Abbildung 4.3: Weitere Kenngroen der Probe HKS 113
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Abbildung 4.4: Verteilung der lokale Dichte - a) HKS 100 und b) HKS 105.
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Abbildung 4.5: Verteilung des Bindungswinkels - a) HKS 105 und b) HKS 100.

HPD-geordnete Bereiche hin. Eine Ubersicht zur Paarkorrelationsfunktion kubisch geordneter
Kugelpackungen kann dem Anhang entnommen werden (siehe Tabelle B.1). Fiir die mittlere
Koordinationszahl wird bei der gesinterten Probe ein Wert von 7,85 und bei der geklebten Probe
ein Wert von 9,19 ermittelt. Dabei betragt der eingestellte Toleranzparameter ex = 0,2%. Es
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Abbildung 4.6: Paarkorrelationsfunktion - a) HKS100 und b) HKS105.

zeigt sich, dass sich bei steigender Packungsdichte die Koordinationszahl erhoht. Die Verteilung
der Koordinationszahlen kann aus Abb. 4.7 entnommen werden. Der Verlauf dhnelt stark einer
Normalverteilung.
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Abbildung 4.7: Verteilung der Koordinationszahl - a) HKS 105 und b) HKS 100.

4.1.2 Erzeugte Kugelpackungen

Neben den aus realen Strukturen gewonnenen Kugelpackungen konnen mittels des Forced-Biased-
Algorithmus zufillige Packungen generiert werden. Der Algorithmus ist sehr leistungsfahig und
kann Packungen mit mehreren tausend Kugeln erzeugen. Eine Besonderheit dieses Algorithmus
ist es, auch hochverdichtete Packungen erzeugen zu konnen. Des Weiteren ist die Packungsfolge in
allen drei Raumrichtungen periodisch. Fiir die Simulation sollen repriasentativ vier verschiedene,
zufillige Kugelpackungen erzeugt werden. Vorgabe war es, eine lose, eine mittlere, eine hoch und
eine hochst verdichtete Packung zu erzeugen. Die Anzahl der Kugeln in den Packungen wird auf 30
begrenzt. Grund hierfiir ist die Realisierbarkeit der Parametrisierung der Kugelgeometrie im CAD-
Programm. Dabei stellen die CAD- und FEM-Programme bzw. die Rechnerleistung limitierende
Faktoren dar. Die Namen der zufillig erzeugten Packungen orientieren sich an der Packungsdichte.
Die Packungsdichten liegen zwischen PD = 0,547 und PD = 0,694. Eine grafische Darstellung
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der Packungen ist Tabelle 4.1 zu entnehmen. Die lose und die mittlere Packung P55 und P62
charakterisieren sich durch ein amorph-&hnliches Verhalten. Dieses Verhalten wird gekennzeichnet
durch den Verlauf der Paarkorrelationsfunktion und die Verteilung der Bindungswinkel. Bei P55
hat die Paarkorrelationsfunktion (siehe Tabelle 4.2) ein ausgeprigtes Maximum bei » = 1. Es
treten keine weiteren nennenswerten Maxima auf. Ein fast analoges Verhalten hierzu hat die
Packung P62. Die Paarkorrelationsfunktion weist nur nahe » = 2 ein sehr schwaches Maximum
auf. Dies deutet auf eine sehr schwache Ordnung im Nahordnungsbereich hin. Betrachtet man
des Weiteren die Verteilung der Bindungswinkel (siche Tabelle 4.2), stellt man keine besondere
Haufung gewisser Winkel fest. Die Verteilungen der lokalen Dichte und die Koordinationszahl fiir
die Packungen P55 und P62 (siehe Tabelle4.2) beschreiben ebenfalls ein dhnliches Verhalten. Es

Tabelle 4.1: Uberblick iiber die mittleren KenngrdBen zufilliger Kugelpackungsmodelle.

Modell Visualizierung mittlere lokale mittlere Koordi-
Dichte nationszahl
P55 0,547 5,80
P62 0,623 7,67
980,
P66 u 0,661 10,47
P69 La 0,694 11,20

treten weder hohe lokale Dichten (> 0, 7) noch hohe Koordinationszahlen > 11 auf. Ein wesentlich
anderes Verhalten ist bei der Packung P66 festzustellen. Am Verlauf der Paarkorrelation werden
deutliche Maxima sichtbar. Betrachtet man die ersten drei Maxima, so erkennt man einen affinen
Verlauf zur KFZ-Packung (siehe Tabelle B.1). Ebenfalls fiir eine geordnete Packung spricht die
Haufigkeit der Bindungswinkel um 60°, 90°,120° und 180°. Aus der lokalen Dichte ldsst sich
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erkennen, dass es einige Bereiche mit hohen Packungsdichten und wenige mit sehr niedrigen
Packungsdichten gibt. Dies spricht fiir eine geordnete Struktur mit Fehlstellen. Ein analoges
Verhalten erkennt man bei der Verteilung der Koordinationszahl. Es gibt viele Bereiche mit
zahlreichen Kontakten und einzelne Bereiche mit wenigen Kontakten. Die Packung P69 stellt ein
Extrembeispiel dar. Die Paarkorrelationsfunktion verlduft fast deckungsgleich zum Verlauf der
KFZ-Packung (siche Tabelle B.1). Ebenfalls typisch fiir eine vollig durchgeordnete Struktur ist
der Verlauf der Bindungswinkel. Hier sind deutliche Maxima bei den charakteristischen Winkeln
zu erkennen. Ein weiteres Indiz fiir eine geordnete Packung ist die hohe lokale Dichte > 0,6
und die Koordinationszahl > 10. Die Packung P69 entspricht nahezu einer KFZ-Anordnung,
nur an den Verldufen der lokalen Dichte und der Koordinationszahl lésst sich erkennen, dass
Fehlstellen in der Struktur vorhanden sind. Im Folgenden sollen die zufillig erzeugten und auf
realen Strukturen basierenden Kugelpackungen miteinander verglichen werden. Die in Abb. 4.8
mit dem Plus gekennzeichneten Werte reprasentieren die Packungen mit idealen bzw. theoretischen
Ordnungen. Die durch Kreuz verdeutlichten Werte wurden von Bernal und Manson [20] bestimmt.
Die ausgefiillten Quadrate entsprechen den Werten von Smith et al. [197] und die Kreise den
Werten von Gotoh und Finney [78]. Die Sterne kennzeichnen die Kennwerte aus den zufillig ge-
nerierten Packungen und Quadrate bestimmen die Kennwerte aus den realen Hohlkugelstrukturen
mittels Computertomografie und Rekonstruktionsalgoritmus. Die Linie stellt die lineare Regres-
sion aller zufdlligen Packungen dar. Die Regressionsgerade verbindet fast die KP-Anordnung mit
der KFZ-Anordnung. Die Werte von Bernal und Manson bzw. Gotoh und Finney liegen unterhalb
dieser Geraden. Wiederrum liegen die Werte von Smith et al. liber bzw. auf der Geraden. Die
Werte des Forced-Biased-Algorithmus liegen in der Bandbreite der zufdlligen Kugelpackungen
iiber und unter der Regressionsgerade. Die aus der Rekonstruktion gewonnen Kennwerte liegen
auf oder sehr nahe an der Geraden. Als einziger Ausreifler kann die KRZ-Anordnung gesehen
werden. Sie hat bei hoher Packungsdichte eine relativ geringe mittlere Koordinationszahl. Aus dem
Diagramm wird eine Korrelation zwischen Packungsdichte und Koordinationszahl ersichtlich. Mit
zunehmender Packungsdichte nimmt die Koordinationszahl zu.

13
12 1
— 11 X
S *
2 10
|
'% 9 P dn
g
S
5 8 u T + Theorie +
v u / Bernal etal. [20] X
7 l/zr Smithetal. [[97] m
Gotohetal. [78] O
6 : < FBA x
5 ‘ ‘CT O
0,5 0,55 0,6 0,65 0,7 0,75 0,8
Packungsdichte

Abbildung 4.8: Mittlere Koordinationszahl iiber mittlere Packungsdichte
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4.2 Statik

In diesem Abschnitt werden Ergebnisse aus den Finite-Elemente-Berechnungen présentiert. Als
Grundlage dient die Modellbildung aus dem vorhergehenden Kapitel. Die Modelle basieren auf
der Annahme einer periodischen Einheitszelle (EZ) bzw. eines periodischen Reprisentativen Vo-
lumenelements (RVE). Fiir die Bestimmung der statischen linearen Eigenschaften werden die pe-
riodischen bzw. orthogonal gemischten Randbedingungen genutzt. Es werden sowohl theoretisch
geordnete als auch stochastische Kugelpackungen fiir gesinterte Hohlkugelstrukturen betrachtet.
Verklebte und verlotete Hohlkugelstrukturen wurden schon ausgiebig in Sanders [184] und Gasser
et al. [72] studiert. Fiir alle Modelle wird ein linear-elastisches Material angenommen. Zu Beginn
werden die Einfliisse der Basis- bzw. Strukturmaterialeigenschaften untersucht, die durch den
Elastizititsmodul und die Querkontraktionszahl des Werkstoffes beschrieben werden. Ziel dieser
Untersuchung ist eine materialunabhingige Beschreibung des Elastizitdtsmoduls, der durch ein
Verhiltnis des homogenisierten Elastizitditsmoduls der Hohlkugelstruktur zum Elastizitdtsmodul
des Strukturmaterials ausgedriickt wird. Dieses Verhéltnis wird fortan als relativer Elastizitdts-
modul bezeichnet. Aus der Kinetik, dem linearen Materialgesetz und der Kinematik mit linearen
Randbedingungen ergibt sich ein linearer Zusammenhang zwischen dem homogenisierten Elastizi-
titsmodul der Hohlkugelstruktur und dem Elastizitditsmodul des Strukturmaterials £ o< Eg. Dieser
lineare Zusammenhang wird durch die eigene Variationsberechnung bestdtigt und durch Gao et
al. [70] belegt. Schlieflich werden alle Modelle mit einem Strukturelastizitdtsmodul von Eg =200
MPa berechnet. Eine weitere materielle EinflussgroBe ist die Querkontraktionszahl v. Aus eigenen
Berechnungen wird ein zu vernachlédssigender Einfluss der Querkontraktionszahl ermittelt, der
durch die Arbeit von Sanders und Gibson [185] bestdtigt wird. Die Querkontraktionszahl wird
aus diesem Grund wahlweise fiir alle Modelle v = 0,3 gesetzt. Die genutzten Werkstoffwerte fiir
das Hohlkugelmaterial entsprechen den Werten von Stahl fiir die durchgefiihrten Berechnungen.
Die Finite-Elemente-Netze der verschiedenen Hohlkugelstrukturen, basierend auf ideal angeord-
neten und zufdllig generierten Packungen, werden aus den CAD-Geometrien gewonnen. Zur
Erstellung der Netze und zur Simulation wird das kommerzielle FEM-Programm ANSY'S genutzt.
Fiir die Simulation werden die Geometrien mit Tetraeder und Hexaeder Volumenelementen des
Typs Solid 187 und Solid 186 vernetzt. Wahrend die geordneten Modelle ausschlieflich mit
dem 20-knotigem Hexaederelement vernetzt werden, wird bei den zufillig angeordneten Model-
len zusitzlich das 10-knotige Tetraederelement verwendet. Zur Berechnung stand eine Hewlett
Packard Z800 Workstation mit 4x2,4 GHz Taktfrequenz und 16 GB Arbeitsspeicher zur Ver-
fiigung. Die Modelle werden so gestaltet, dass der Effekt einer Anderung der ParametergroBen
(Kugelwanddicke, Kugeldurchmesser und Sinterstellendurchmesser bzw. Sinterstellenwinkel) eine
mechanische Antwort der HKS berechnet werden kann. Es wird fiir jede Parametergrofie ein
kompletter Parametersatz simuliert. Um eine verldssliche Aussage der Modelle zu erhalten, wird
eine Konvergenzbetrachtung durchgefiihrt. Dabei zeigen sich gute Ergebnisse bei fiinf Elementen
iiber die Wanddicke und bei 40 Elementen iiber die halbe Kugelldnge der idealen Elementarzellen.
Abbildung 4.9 zeigt die Elementarzelle der vier verschiedenen, theoretisch geordneten Packungen.
Die Elementzahl variiert von 60.000 fiir die KP-Elementarzelle (EZ-KP) bis 210.000 fiir die HDP-
Elementarzelle (EZ-HDP).

Fiir die zufillig geordneten Strukturen wurde jeweils ein RVE-FE-Modell mit 30 Kugeln erzeugt.
Die Anzahl der Kugeln wurde bewusst gering gehalten, damit eine ausreichende Netzauflosung im
FE-Modell noch gewihrleistet ist. Hierbei ist ein Kompromiss zwischen Netzfeinheit und Kugelan-
zahl einzugehen. Mit steigender Rechenleistung werden zukiinftig mehr Kugeln berechenbar sein.
Die kubisch periodischen Strukturen des RVE-Modells erfordern auch ein periodisches Netz. Dies
bedeutet, dass das Oberflichennetz an den gegeniiberliegenden Schnittflichen deckungsgleich ist.
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(2) (b) (© (d)

Abbildung 4.9: FE Modelle theoretisch geordneter Strukturen a) KP Anordnung, b) KRZ Anord-
nung, ¢) KFZ Anordnung und d) HDP Anordnung.

Die Elementanzahl variiert von 420.000 bis 710.000 Elementen, in Abhédngigkeit vom Modell und
den eingestellten Parametern. Abbildung 4.10 zeigt die FE-Modelle basierend auf den zufillig
generierten Packungen aus Tabelle 4.1.

(a) (b) (c) (d)

Abbildung 4.10: FE Modelle zufillig generierter Strukturen a) KP55 Anordnung, b) KP62 Anord-
nung, ¢) KP66 Anordnung und d) KP69 Anordnung.

4.2.1 Einachsige Belastung

Der erste Teil befasst sich mit dem einachsigen Zug in 1 bzw. x-Richtung. Hierbei werden
Materialkennwerte wie Elastizitditsmodul £ und Querkontraktionszahl vy, fiir die Richtung x
bzw. 1 in Abhédngigkeit der drei Geometrieparameter Kugeldurchmesser D, Kugelwanddicke und
Sinterstellendurchmesser D bzw. Sinterstellenbindungswinkel @ vorgestellt und ihren Einfliisse
verdeutlicht. Zu Beginn wird der Einfluss des Kugeldurchmesser bei konstanter Wanddicke und
konstantem Sinterstellenbindungswinkel von @ = 5, 7° betrachtet. Das Verhaltnis von Kugelwand-
dicke zu Kugeldurchmesser variiert von £ = 0,02 bis 0,04. Hierbei wird auf die theoretischen
Kugelanordnungen, kubisch-primitiv (KP), kubisch-raumzentriert (KFZ), kubisch-flichenzentriert
(KFZ) und hexagonal-dichtest-gepackt (HDP) eingegangen. Fiir die HDP-Anordnung wurde eine
besondere Form der periodischen Randbedingung eingefiihrt, da diese keine kubisch periodische
Struktur darstellt. Die periodische Randbedingung fiir die einachsige Belastung in Langsrichtung
wird im Anhang erlautert.

Die Marker in den Abbildungen 4.11 - 4.18 stellen jeweils einen Berechnungswert dar und die
interpolierte Volllinie soll einen Trend wiedergeben. Wie in Abb. 4.11 ersichtlich, zeigen sich
die dichteren Kugelpackungen erwartungsgemaf steifer. Mit zunehmendem Verhdltnis von Kugel-
wanddicke zu Kugeldurchmesser % ergibt sich eine Zunahme des Verhiltnisses des Elastizititsmo-
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duls der homogenisierten Hohlkugelstruktur zum Elastizitdtsmodul des Strukturmaterials (Stahl)
—=. Dieses Verhiltnis kann als ein MaB fiir die Steifigkeit interpretiert werden. Betrachtet man das
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Abbildung 4.11: Parametervariation Kugeldurchmesser bei konstanter Wanddicke und konstantem
Sinterstellenwinkel, Einfluss auf den relativen Elastizitdtsmodul.

Ganze auf Basis der relativen Dichten, sprich dem Verhiltnis der Dichte der Struktur p; zur Dichte
des Strukturmaterials (Stahl) pg, so wird der Effekt der dichteren Packung etwas geringer, da diese
auch eine hohere Dichte besitzt. Es zeigt sich, dass die Werte von dichter gepackten Strukturen
(KRZ, KFZ und HDP) sehr eng beieinanderliegen und eine stirkere Zunahme des relativen
Elastizitaitsmoduls zeigen. Unerwarteterweise weist die HDP-Anordnung geringe Steifigkeitswerte
gegeniiber der KFZ-Anordnung auf, was eventuell auf die andere Modellierungsart der Randbe-
dingungen zuriickzufiihren ist. Ein weiterer Erkldrungsansatz liegt in der Richtungsabhéngigkeit
des Elastizitdtsmoduls und der dazugehdrigen Symmetrie.

Legt man das Augenmerk auf die Querkontraktionszahl der homogenisierten Struktur in x-
Richtung (vi2) (Abb. 4.12), erkennt man bei geringen Verhiltnissen von Wanddicke zu Kugel-
durchmesser §; groBe negative Werte. Dieses Verhalten ist sehr ungewdhnlich fiir Kérper bestehend
aus Vollmaterial, jedoch nicht fiir Schiume und Fasermaterialien. Die dicht gepackten Packungen
KRZ, KFZ und HDP zeigen dieses Verhalten, jedoch hat die KP-Anordnung einen nahezu kon-
stanten Verlauf knapp iiber Null.

Neben dem Kugeldurchmesser lésst sich auch der Sinterstellendurchmesser bzw. Sinterstellenwin-
kel variieren. Abbildung 4.13 zeigt den Einfluss des Parameters Sinterstellendurchmesser auf den
Elastizititsmodul bei einem konstantem Verhéltnis von Wanddicke zu Durchmesser % =0,6. Eine
Steigerung des Verhdltnisses Sinterstellendurchmesser zu Kugeldurchmesser bewirkt eine grof3ere
Zunahme des relativen Elastizititsmoduls als bei der Steigerung des Verhiltnisses Wanddicke zu
Kugeldurchmesser bei der Durchmesservariation (vgl. Abb. 4.11). Dieser Effekt wird deutlich,
wenn man die Variation auf die relative Dichte bezieht. Hier reicht schone eine sehr geringe Stei-
gerung, um ein deutliche Zunahme des relativen Elastizitdtsmodul zu erreichen (siche Abb. 4.13).
Es zeigt sich, wie schon bei der anderen Parametervariation, dass mit steigender Packungsdichte
auch der Elastizititsmodul zunimmt. Ebenfalls zeigen KFZ- und HDP-Anordnung die hochsten
Steifigkeiten.

Betrachtet man des Weiteren die Querkontraktionszahl in Abb. 4.14, so ist zu erkennen, dass
die KP Anordnung geringfiigig tiber Null liegt und sehr schwach wichst. Wiederum besitzen
die dichtgepackten Anordnungen (KRZ, KFZ und HDP) relativ grofle negative Werte, wobei
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Abbildung 4.12: Parametervariation Kugeldurchmesser bei konstanten Werten fiir Wanddicke und
Sinterstellenwinkel, Einfluss auf die Querkontraktionszahl.

0,02 0,02 : :
K KP-EZ ——— 7(
/ KRZ-EZ —— A
0,015 0,015 | KFZ-EZ —x

HDP-EZ —<¢&—

0,01 7( g
0,005
’ S

~_~

0,01 )?
—

0,005 M
x>
o

relativer Elastizitaetsmodul E£}/E; ]

relativer Elastizitaetsmodul £}/E; ]

_ X
—
0 0
0 0,05 0,1 0,15 0,2 0,06 0,07 0,08 0,09 0,1
Sinterdurchmesser/Durchmesser Dg/D [ ] relative Dichte p}/p; [ ]

Abbildung 4.13: Parametervariation Sinterstellendurchmesser bei konstanten Werte fiir Wanddicke
und Kugeldurchmesser, Einfluss auf den relativen Elastizitdtsmodul.

sich ein lokales Minimum bei ungefdhr einem Verhéltnis von Sinterstellendurchmesser zu Ku-
geldurchmesser % von 0,5 einstellt. Die lokalen Minima werden deutlich sichtbar, wenn sich die
Querkontraktionszahl auf die relative Dichte bezieht.

Das Verhéltnis Sinterstellendurchmesser zu Kugeldurchmesser kann auch durch den Sinterstellen-
winkel ausgedriickt werden. Abbildung 4.15 gibt diese Betrachtung in Abhéngigkeit des Sinterstel-
lenwinkels wieder. Fiir kleine Winkel besteht eine nahezu lineare Abhéngigkeit. Aus diesem Grund
erhilt man fast identische Verldufe fiir den Elastizitdtsmodul und die Querkontraktionszahl. Dem
Anhang kann eine Variation des Sinterstellenwinkels @ von 5° bis 20° fiir die idealen Packungen
KP, KFZ und KFZ entnommen werden.

Waihrend bei der Variation des Sinterstellendurchmessers und des Kugeldurchmessers auf die
idealen, packungsbasierenden Elementarzellen eingegangen wird, werden man bei der Variation
der Kugelwanddicke zusitzlich die vier zufillig erzeugten RVEs mit einer Packungsdichte von
55% bis 69% betrachtet. Bei der Untersuchung andert sich das Verhiltnis von Wanddicke zu
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Abbildung 4.14: Parametervariation Sinterstellendurchmesser bei konstanten Werte fiir Wanddicke
und Kugeldurchmesser, Einfluss auf die Querkontraktionszahl.
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Abbildung 4.15: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf den Elastizitdtsmodul und die Querkontraktionszahl.

Kugeldurchmesser ﬁ in sechs Schritten von 0,004 bis 0,05. Dies entspricht den iiblichen und vor-
liegenden Probenverhéltnissen. Das Verhiltnis von Sinterstellendurchmesser zu Kugeldurchmesser
wird auf 0,267 eigestellt, was einem Winkel von 15,5° entspricht.

Begutachtet man in Abb. 4.16 die Verldufe der relativen Elastizititsmoduln in Abhédngigkeit
von der normierten Wanddicke, lassen sich wiederrum bei der KP-Elementarzelle mit ca. 52%
Packungsdichte die geringsten Werte erkennen. Mit geringfiigig groBeren relativen Elastizititsmo-
dulwerten in x-Richtung zeigt sich das RVE Modell mit 55% Packungsdichte. Erwartungsgemaf
ordnen sich der Verldufe des RVE-Modells mit 62% Packungsdichte und des RVE-Modells mit
66% Packungsdichte zwischen dem RVE-Modell mit 55% und der KRZ-Elementarzelle mit ca.
68% Packungsdichte ein. Als anfanglich unerwartet stellt sich der Verlauf des RVE-Modells mit
69% Packungsdichte gegeniiber der HDP-Elementarzelle heraus, da diese in x-Richtung einen
geringfligig hoheren Verlauf des relativen Elastizititsmoduls {iber die normierte Wanddicke besitzt.
Grund hierfiir kann moglicherweise die Varianz des Sinterstellendurchmessers bei den zufillig
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Abbildung 4.16: Parametervariation Kugeldurchmesser bei konstanten Werten fiir Wanddicke und
Sinterstellenwinkel, Einfluss auf die Querkontraktionszahl.

geordneten Modellen sein. Des Weiteren wird ein nahezu identischer Verlauf der Werte fiir
HDP- und KFZ-Elementarzelle erwartet, jedoch erweist sich die KFZ-Anordnung als steifer in
x-Richtung. Dieses Phanomen ldsst sich durch die unterschiedliche Form der Elementarzellen
und damit verbundene Periodizitdt erklaren. Gao et al. [70] bestétigen diesen Effekt. Wahrend
KP-, KRZ- und KFZ-Modelle und alle zufillig erzeugten RVE-Modelle eine kubische Form der
Elementarzelle bzw. des reprisentativen Volumenelements besitzen, besteht die Form der HDP
Elementarzelle aus einem prismatischen Korper mit hexagonaler Grundflache. Aus der Form
der Elementarzelle ergibt sich ein richtungsabhingiger Elastizitdtsmodul der im nachfolgenden
Abschnitt ndher behandelt wird.

Bezieht man nun den relativen Elastizitdtsmodul auf die relative Dichte und trdgt beide Achsen
logarithmisch auf, erhdlt man Verldufe, wie in Abb. 4.17 dargestellt. Die Zunahme des relativen
Elastizititsmoduls mit der Packungsdichte und relativer Dichte wird deutlich sichtbar. Alle Verldu-
fe der einzelnen Modelle entsprechen im doppelt-logarithmischen Diagramm nahezu einer Gera-
den, was auf eine Potenzfunktion schlieen ldsst. Es kann fiir jedes Modell folgender Potenzansatz

gemacht werden: -

Ef P\~

o (3) a
wobei C| und C; modell- bzw. parameterabhingige Konstanten sind. Einige Konstanten fiir ge-
klebte und verl6tete Strukturen lassen sich aus Sanders und Gibson [183, 185] und Gasser et al.
[72, 72] entnehmen. Betrachtet man die Verldufe in Abb. 4.17 niher, erkennt man einen nahezu
parallelen Verlauf zwischen den Modellvarianten. Dies lasst darauf schliefen, dass das Verhiltnis
von Wanddicke zu Kugeldurchmesser % in Abhéngigkeit der Modellvariante fast ausschlieBlich
die Konstante C; beeinflusst. Auf die nihere Bestimmung der Konstanten wird in dieser Arbeit
verzichtet, da eine Bestimmung mittels Diagramm als praxisndher empfunden wird.
Im Weiteren wird die Querkontraktion iiber dem Verhiltnis von Wanddicke zu Kugeldurchmesser
in Abb. 4.18 behandelt. Die Verldufe zeigen hier keinen eindeutigen Trend. So beschreiben die
KRZ-Anordnungen die untere Grenze der Querkontraktionszahl bzw. die KP-Anordnung bei
kleinen und die HDP-Anordnung bei grofien L% Verhiltnissen die obere Grenze. Die RVESS- und
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Abbildung 4.17: Parametervariation Kugeldurchmesser bei konstanten Werten fiir Wanddicke und
Sinterstellenwinkel, Einfluss auf den Elastizititsmodul.

RVE62- Modelle basierend auf einer losen und mittleren dichten Packung bzw. armorph-ahnlichen
Struktur zeigen einen Querkontraktionsverlauf nahe Null, wobei die Querkontraktionszahl in ,,2-
und ,,3“- Richtung (vi» und v;3) deutlich abweichen. Bei den hoch und hochst dichtgepackten
zufilligen Packungen sind die Abweichung in beide Raumrichtungen wesentlich geringer. Als ein-
ziger Trend ist festzustellen, mit ein paar wenigen Ausnahmen, dass mit zunehmendem Verhéltnis
von Wanddicke zu Kugeldurchmesser die Querkontraktionszahl der homogenisierten Struktur auch
Zunimmt.

0,2
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Abbildung 4.18: Parametervariation Kugeldurchmesser bei konstanten Wanddicke und Sinterstel-
lenwinkel, Einfluss auf die Querkontraktionszahl.
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4.2.2 Mehrachsige Belastung - Materialsymmetrien

Da eine virtuelle einachsige Zug- bzw. Druckbelastungsuntersuchung keinen eindeutigen Riick-
schluss auf das Materialverhalten gibt, wird eine Untersuchung in mehreren Achsen veranlasst.
Zusitzlich stellt sich bei der Untersuchung der verschiedenen Kugelanordnungen die Frage nach
der Materialsymmetrie bzw. nach der Isotropie. Aus diesem Grund werden ideale und zufillig
erzeugte Kugelanordnungen mit unterschiedlichen Packungsdichten betrachtet. Als Referenz wird
die in vielen Literaturstellen (z.B. [37]) erwidhnte, kubisch primitive Anordnung herangezogen.
Hierfiir wurden alle sechs Lastfille, drei Zug- bzw. Schubfille in drei Raumrichtungen mittels
FE-Berechnung nachgebildet. Mit diesen sechs Lastfillen ldsst sich der gesamte Steifigkeits-
bzw. Nachgiebigkeitstensor bestimmen. Es werden dhnliche Parametereinstellungen wie bei der
Kugelwanddicken-Variation des zuvor beschrieben Abschnitts verwendet. Es wird lediglich das
Verhiltnis Sinterstellen zu Kugeldurchmesser von 0,8 auf 0,9 erhoht, was einem Sinterstellenwin-
kel von 17,5° entspricht.

Abbildung 4.19 zeigt den richtungsabhdngigen Elastizitditsmodul. Der Betrag ergibt sich aus der
Distanz vom Koordinatenursprung bis zur Kurve bzw. Oberfliche. Es werden drei Verldufe in den
markanten Ebenen (xy, yz und xz) und ein sogenannter dreidimensionaler Elastizititsmodulkorper
dargestellt. Die verschiedenen Parametervariationen werden durch unterschiedliche Linientypen
deutlich gemacht, teilweise mit Markern versehen. In allen Variationen zeigt sich fiir den richtungs-
abhingigen Elastizitdtsmodul in den Schnittebenen ein quadratférmiger Verlauf mit abgerundeten
Ecken und eine konkave Wolbung in der Mitte der Seiten. Alle Verldufe sind in allen drei Ebenen
identisch bzw. deckungsgleich. Dementsprechend gestaltet sich der dreidimensionale Elastizitéts-
modulkérper als ein Wiirfel mit abgerundeten Ecken und im Flachenschwerpunkt eingedriickten
Wiirfelflachen. Es ldsst sich unschwer erkennen, dass Minima des Elastizititsmoduls jeweils in
Achsenrichtung (<100>,<010>,<001>) auftreten. Die Maxima treten in der Ebenenbetrachtung
in der Diagonale unter 45° auf. Sie entsprechen den positiven Richtungen in <110>, <101>
und <011>. Die negativen Richtungen und aus negativen und positiven kombinierten Richtungen
werden aus Symmetriegriinden nicht aufgefiihrt. Die Symmetrie entspricht der kubischen Material-
symmetrie (siche Tabelle A.1) und ldsst sich mit drei unabhéngigen Materialkonstanten (Exyp, Vikub
und Gyyp ) beschreiben [5]. So ergibt sich beispielsweise fiir eine KP-Anordnung mit einem dufleren
Kugeldurchmesser von 3 mm, einer Wanddicke von 0,03 mm und Sinterstellendurchmesser von 0,9
mm bzw. einem Sinterstellenwinkel von 17,4° ein Wert fiir £y, = 479, 8 MPa. Der Elastizitdtsmo-
dul des Grundmaterials (Werkstoff Hohlkugel) betrédgt hierbei 200 GPa. Bei dieser Konstellation
erhilt man fiir vip, = 0,0944 und Gy, = 744,4 MPa. Diese Elastizititswerte (Exyp, Vb Und Giyb)
sind unabhéngig voneinander und beschreiben einen Sonderfall der Anisotropie (kubische Mate-
rialsymmetrie). Der niedrige Wert der Querkontraktionszahl ist bedingt durch den Strukturaufbau
der HKS und kann nicht mit einem homogenen (isotropen) Vollkorper verglichen werden. Bildet
man das arithmetische Mittel des richtungsabhingigen Elastizititsmoduls Ey = 677,9 MPa,
so ist zu erkennen, dass der Elastizititsmodul in <100> Richtung wesentlich geringer als der
durchschnittliche Elastizititsmodul ausfillt. Bei der KP-Anordnung zeigt sich, dass der Wert von
G stets groBer ist als der von E. Dies deutet darauf, dass die Struktur unter Schubbelastung
steifer ist als unter Zug- bzw. Druckbelastung. Gut erkennen ldsst sich des Weiteren, dass sich die
Form des Elastizitdtsmodulkorpers und deren Schnitte {iber die Variationen der Kugelwanddicke
nicht wesentlich dndert, was einer reinen Skalierung nahe kommt. Somit dndert sich kaum das
Materialverhalten bei dieser Variation.

Die Verldufe der relativen und richtungsabhéngigen Elastizititsmodule fiir die KRZ Anordnung
werden in Abb. 4.20 dargestellt. Im Vergleich zur KP Anordnung erkennt man hier ein ganz anderes
Materialverhalten. Betrachtet man den Verlauf in den drei Ebenen, erkennt man im Unterschied zu
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Abbildung 4.19: Kubisch-primitive Elementarzelle - Elastizititsmodulkérper: Variation der Wand-
dicke

den KP Anordnungen einem um 45° zum Ursprung verdrehten Verlauf. Die Verldufe in den drei
Ebenen sind ebenfalls identisch. Zudem zeigen sich alle Verldufe in der Form dhnlich. Der dreidi-
mensionale Elastizititsmodulkorper prisentiert sich dhnlich einer Kugel, bei der die positiven und
negativen Achsenrichtungen gestreckt werden. Aus den Geometrien der Elastizitdtsmodulkorper
in zwei- und dreidimensionaler Darstellung lésst sich leicht erkennen, dass das globale Maximum
des richtungsabhéngigen Elastizititsmodulwertes in <100> Richtung zu finden ist. Erst bei genauer
Betrachtung ist das Mimimum in <111> Richtung zu finden. Die Materialsymmetrie entspricht
ebenfalls, wie bei der KP-Anordnung, der kubischen Symmetrie und ldsst sich mit den drei vonein-
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Abbildung 4.20: Kubisch-raumzentrierte Elementarzelle - Elastizititsmodulkérper: Variation der
Wanddicke.

ander unabhéngigen Konstanten Eyyp, Viup und Gy, beschreiben. So ergibt sich beispielsweise mit
den gleichen Abmessungen wie bei der KP-Anordnung, einem dufleren Kugeldurchmesser von 3
mm, einer Wanddicke von 0,03 mm und einem Sinterstellendurchmesser von 0,9 mm, ein Wert fiir
Eyxup = 1696 MPa. Fiir die weiteren Materialwerte erhilt man vy, = —0,262 und Gy, = 684 MPa.
Es zeigt sich, dass bei der KRZ-Anordnung der Wert von Ey,, wesentlich hoher ist als der Wert von
Gyup- Der Mittelwert des richtungsabhingigen Elastizitdtsmodul betrdgt bei dieser Konstellation
Eqrith = 1460 MPa und liegt nicht weit vom Maximalwert von 1696 MPa entfernt. Ein isotropes
Verhalten ist weder bei der KP- noch bei der KRZ-Anordnung ansatzweise zu erkennen.

Der visualisierte richtungsabhéngige Elastizitdtsmodul fiir die KFZ-Anordnung wird in Abb. 4.21
wiedergegeben. Der relativbezogene, dreidimensionale Elastizititsmodulkorper préasentiert sich als
eine Kugel, die an Achsen leicht nach auflen gezogen wird. Die Form des Elastizitdtsmodulkdrpers
dhnelt stark der Form der KRZ-Anordnung, wobei bei KRZ-Anordnung die Streckung an den Ko-
ordinatenachsen stirker ausgeprégt ist. Betrachtet man die in den drei Ebenen identischen Verlaufe
des Elastizitdtsmoduls, zeigt sich ein dhnlicher Verlauf wie bei der KRZ-Anordnung. Jedoch ist
der Verlauf rein konkav. Das Maximum des richtungsabhédngigen Elastizitdtsmoduls findet man
ebenfalls in <100> Richtung. Analog dazu entsteht in <111> ein Minium des richtungsabhidngigen
Elastizitaitsmoduls. Im Gegensatz zur KP- und KRZ-Anordnung sind diese Minima und Maxima
wesentlich weniger stark ausgeprégt. Die Materialsymmetrie gestaltet als kubisch. Fiir dimensions-
behaftete Abmessungen mit einem dufBeren Kugeldurchmesser von 3 mm, einer Wanddicke von
0,03 mm und einem Sinterstellendurchmesser von 0,9 mm erhilt man fiir die Materialkonstante
Exyp einen Wert von 2466 MPa. Fiir vy, und Gy, ergeben sich Werte von —0,062 und 1112
MPa, der Mittelwert des richtungsabhingigen Elastizititsmoduls E,yg, betrigt hierbei 2334 MPa.
Die Form des Elastizitditsmodulkorpers der KFZ-Anordnung kommt dem Elastizititsmodulkérper
eines isotropen Werkstoffes, einer Kugel, sehr nahe.

Die Abb. 4.22 zeigt den richtungsabhingigen Elastizititsmodul fiir das reprasentative Volumen-
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Abbildung 4.21: Kubisch-flichentrierte Elementarzelle - Elastizititsmodulkdrper: Variation der
Wanddicke

element (RVESS) basierend auf der zufilligen Packung P55 in Tabelle 4.2. Die Form des Elasti-
zitatsmodulkorpers prisentiert sich als vollig deformierte Kugel, die in verschiedenen Richtungen
gestreckt bzw. gestaucht wird. Betrachtet man die Verldufe des Elastizitditsmoduls in den einzelnen
Ebenen, ist schnell zu erkennen, dass diese nicht mehr identisch sind. Fiir jede Ebene stellt
sich ein anderer Verlauf ein. In der xy-Ebene sieht man ein um ca. 45° gedrehtes Rechteck mit
abgerundeten Kanten, dagegen erhélt man in der yz-Ebene einen rautenihnlichen Verlauf und in
der xz-Ebene schlieBlich einen schwach deformierten kreisformigen, Verlauf. Es lésst sich weder
am Elastizitdtsmodulkorper noch an der Steifigkeits- bzw. Nachgiebigkeitsmatrix eine Symmetrie
erkennen. Es stellt sich ein vollig triklines Materialverhalten ein und es gibt 21 unabhingige
Materialkonstanten. Mit dimensionshafteten Hohlkugelabmaflen von D = 3 mm, ¢t = 0,03 mm
und Dg = 0,9 mm erhélt man einen minimalen Wert des Elastizitdtsmoduls von E\j, = 425 MPa.
Maximum und Mittelwert betragen Epi, = 623 MPa bzw. E,iq = 549 MPa. Dieses Verhalten
andert sich tiber die Variation der Wanddicke nicht merklich, da die Kurven nahezu parallel,
offsetméBig verlaufen.

Die Form des Elastizitdtsmodulkorpers fiir das reprasentative Volumenelement, basierend auf der
zufdlligen Packung P62, prisentiert sich in Abb. 4.23 ebenfalls als deformierte Kugel, die an
den Koordinatenachsen gestreckt wird. Die grofite Streckung erkennt man in <010> Richtung.
Dementsprechend zeigen sich die Verldufe in den einzelnen Ebenen als mehr oder weniger defor-
mierte Kreise. Verldufe laufen ebenfalls parallel zueinander. Somit hat auch hier die Variation der
Wanddicke keinen merklichen Einfluss auf die Form des Elastizitdtsmodulkorpers. Betrachtet man
den Elastizitatskorper oder die Steifigkeits- bzw. Nachgiebigkeitsmatrix, ist keine Symmetrie zu
erkennen. Das Material verhalt sich triklin, wobei das Verhalten schon einem orthotropen Verhalten
nahe kommt. Fiir die beispielhafte Betrachtung mit dimensionsbehafteten Abmafen (D = 3 mm,
t = 0,03 und Ds = 0,9 mm) ergeben sich fiir den maximalen und minimalen Elastizititsmoduls
folgende Werte Epax = 1035 MPa und Ep,j, = 809 MPa. Der Mittelwert des Elastizitdtsmodul
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Abbildung 4.22: Représentatives Volumenelement mit 55% Packungsdichte - Elastizitdtsmodul-
korper: Variation der Wanddicke.

betriigt dabei Ejrj, = 908 MPa.

Abbildung 4.24 zeigt den relativen und richtungsabhéngigen Elastizitdtsmodul fiir das représen-
tative Volumenelement basierend auf der zufilligen Packung P66. Der Elastizititsmodulkdrper
stellt sich auch als eine Kugel dar, die an den Koordinatenachsen schwach nach aufien deformiert
wird. Die Streckungen sind in allen Achsen nahezu gleich. Jedoch ldsst sich keine Symmetrie
bei strenger Betrachtung erkennen, obwohl die Form sehr stark der KFZ-Anordnung kubischem
Materialverhalten dhnelt. In der beispielhaften Ausfithrung fiir den richtungsabhingigen Elastizi-
tatsmodul mit den dimensionsbehafteten Grofien (D = 3 mm, f = 0,03 und Dg = 0,9 mm) erhalt
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Abbildung 4.23: Reprisentatives Volumenelement mit 62% Packungsdichte - Elastizitdtsmodul-
korper: Variation der Wanddicke

man folgende Werte fiir den minimalen und maximalen Elastizititsmodul £,;, = 1139 MPa und
Emax = 1271 MPa bzw. fiir den Mittelwert £, = 1206 MPa.

Blickt man letztlich auf den richtungsabhingigen Elastizitdtsmodul fiir das reprasentative Volu-
menelement, basierend auf der zufillig erzeugten Packung P69 in Abb. 4.25, so ist ein identisches
Verhalten zur KFZ-Anordnung zu erkennen. In den drei Ebenen zeichnet sich ein deckungsglei-
cher Verlauf des richtungsabhéngigen Elastizititsmoduls ab. Es stellt sich fiir alle Variationen
ein kubisches Materialverhalten ein. Dementsprechend kann man das Materialverhalten auf drei
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Abbildung 4.24: Reprisentatives Volumenelement mit 66% Packungsdichte - Elastizitditsmodul-
korper: Variation der Wanddicke.

Materialkonstanten zuriickfiihren. So ergibt sich beispielsweise bei dimensionsbehafteter Betrach-
tung (D =3 mm, t = 0,03 und Ds = 0,9 mm) fiir die Materialkennwerte Ejy,, = 2129 MPa,
Viub = —0,055 und Gy, = 942,8 MPa. Vergleicht man die Werte dieser Packung mit der KFZ-
Anordnung, ergibt sich ein um 15,8% verminderter Elastizitdtsmodul Ey,,. Der Wert von Gy
reduziert sich um 17,9%.
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Abbildung 4.25: Reprisentatives Volumenelement mit 69% Packungsdichte - Elastizitdtsmodul-
korper: Variation der Wanddicke.

4.2.3 Einfluss der Randbedingungen

Aus der in Abschnitt 3.2.1 eingefiihrten Homogenisierungsmethode ergeben sich drei verschiedene
Moglichkeiten fiir die Definition der Randbedingungen eines Volumenelements. Die bisher vor-
gestellten Ergebnisse basieren auf den periodischen Randbedingungen (PRB), welche den Vorteil
haben, dass sie ndher am wirklichen Effektivwert liegen [109, 123, 205]. Dennoch sollen in diesem
Abschnitt zwei weitere mogliche Randbedingungen in Bezug auf Hohlkugelstrukturen untersucht
bzw. diskutiert werden.

Die zwei weiteren Randbedingungen sind die kinematisch uniforme Randbedingung (KURB) und
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die statisch uniforme Randbedingung (SURB), die zugleich die REUSS- und VOIGT-Schranke bil-
den. Die ermittelten Nachgiebigkeits- bzw. Steifigkeitstensoren mit den Randbedingungen KURB
und SURB bilden somit die untere bzw. obere Schranke fiir den Effektivwert.

Abbildung 4.26 zeigt fiir die Elementarzellen mit KP-, KRZ- und KFZ-Anordnung bei einem
Verhiltnis von Kugelwanddicke zu Hohlkugeldurchmesser #/D = 0,02 den richtungsabhingigen
Elastizititsmodul in der xy-Ebene fiir die drei verschiedenen Randbedingungen. Bei der KP-

Relativer Elastizititsmodul [ ]

%1073 KP x1073 KRZ KFZ
{n"‘vv\\‘“/./ \, //33 \\ 0.01 ,/ v,"\”\
2 ; 507 . AN ,f N
\ ; 1> o 0,005 r \
0 ) ' 0 t | 0 | |
= 1 % 3 ~ U HE i
/‘/ \ v 1 =0,005 | % L
2l - AR BN e 7
P NS S e 00y o
-2 0 2 -5 0 s 0,00 0 0,0l
X %1073 X %1073 X
—  KURB — = —=SURB - PRB

Abbildung 4.26: Vergleich der Randbedingungen fiir Elementarzellen: KURB, SURB und PRB.

Elementarzelle unterscheiden sich die Verldufe SURB und PRB kaum, die Elastizititsmodule
in Koordinatenachsenrichtung sind betragsmiBig nahezu gleich. Dennoch liegt die PRB-Kurve
erwartungsgemif innerhalb der SURB-Kurve. Der Abstand zwischen der SURB- und KURB-
Kurve ist deutlich. Bei der KRZ Anordnung sind ebenfalls die Elastizitdtsmodule in Koordinaten-
achsenrichtung fast gleich. Die Spanne zwischen SURB und KURB ist geringer und PRB liegt
in diesem Raum, wobei die Spanne sich niher an der SURB-Kurve befindet. Im Gegensatz zur
KP Elementarzelle zeigt die KRZ-Anordnung fiir jede Randbedingung einen anderen Elastizi-
tatsmodulkorper. Bei der KURB sind die Werte des Elastizitditsmoduls in Achsenrichtung starker
ausgepragt. Die Auspragung zeigt sich nur noch schwach bei der PRB und SURB und weist einen
dem isotropen Zustand nahen Elastizitdtsmodulkérper auf.

Bei der KFZ-Anordnung mit KURB sind die Elastizititswerte in Achsenrichtung betragsmaflig
am grofiten. Die PRB-Kurve zeigt ein anndhernd und die SURB-Kurve ein vollstandig isotropes
Verhalten, was durch [80] bestétigt wird.

Weitet man die Betrachtung auf ein RVE aus, zeigen sich Verldufe gemi3 Abb. 4.27. Im Gegensatz
zur Elementarzellenbetrachtung entstehen unterschiedliche Verldufe in den Ebenenschnitten des
jeweiligen Elastizitdtsmodulkdrpers. Die PRB-Kurven liegen beim RVE69 in Abb. 4.27a wieder
sehr nahe an den SURB-Verldufen. Die Distanz zwischen SURB-Kurve und KURB-Kurve ver-
ringert sich im Vergleich zu den Kurven der Elementarzellenmodelle- Dies bestitigt die Aussage,
dass mit zunehmender RVE-Grof3e die Verldufe dem tatsdchlichen Effektivwert ndher kommen
[205]. Beim RVE62 in Abb. 4.27b weisen die SURB und PRB einen grofleren Abstand auf. Fiir
das RVE62 mit KURB lielen sich keine aussagefdhigen Ergebnisse erzeugen. Ursache hierfiir
sind freistehende Geometrien aufgrund der geringeren Packungsdichte (Kugelschnitte ohne Ver-
bindung).
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Abbildung 4.27: Vergleich der Randbedingungen fiir a) RVE69 und b) RVE62: KURB, SURB und
PRB

Zusammengefasst liegt bei allen Untersuchungen der Verlauf der PRB zwischen den Verlaufen von
SURB und KURB, was die Plausibilitdt der Ergebnisse unterstreicht. Die Verldufe der PRB liegen
néher an den Verldufen von SURB, was auch [205] bestitigt (siche Abb. 3.16).

4.2.4 Vergleich und Diskussion

Bisher wurde nur naher auf die gesinterten Hohlkugelstrukturen eingegangen. In diesem Abschnitt
werden die gesinterten mit geklebten bzw. geléteten Hohlkugelstrukturen verglichen. Die Werte
des Elastizitdtsmoduls fiir die geklebten bzw. geloteten Hohlkugelstrukturen wurden Sanders [184]
und Gasser [71] entnommen. So verglich Gasser schon die Ergebnisse von Sanders in seiner
Arbeit und stellte fest, dass die Ergebnisse nahezu identisch waren. Aus diesem Grund soll ein
Vergleich zwischen den Resultaten der geklebten Hohlkugelstrukturen von Sanders [184] mit den
hier gewonnenen Ergebnissen der gesinterten Hohlkugelstrukturen angestellt werden. Abbildung
4.28a zeigt den Verlauf des relativen Elastizititsmoduls {iber das Wanddicken- zu Kugeldurch-
messerverhdltnis fiir vier verschiedene Sinterstellenwinkel von 5° bis 20°. Dabei zeigt sich ein
anndhernd identischer Verlauf zwischen den geklebten und gesinterten Varianten. Betrachtet man
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die KRZ-Anordnungen mit einem Sinterstellenwinkel bzw. Klebestellewinkel von 15° bzw. 20°, so
ist zu erkennen, dass die geklebten Hohlkugelstrukturen bei groBeren Wanddicken zu Durchmes-
serverhéltnissen gegeniiber den gesinterten Strukturen geringfiigig an Steifigkeit verlieren. Dieses

— 0,025 T T — 0,08 T T
= 50— — = 50— —
5 100 —x— 4 B 007 F 10° —x—
& 002 150 —%— & 06 L 15° —%— o
e 20° —o— e ’ 20°0 —o— <
g 0015 | geklebt 10° [184] A X g 005 | geklebt 15° [184]
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g 5 0m
N N
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Abbildung 4.28: Vergleich gesinterte und geklebte Hohlkugelstruktur in a) KP-Anordnung und b)
KRZ-Anordnung.

Verhalten wird ebenfalls bei der KFZ-Anordnung in Abb. 4.29 sichtbar. Ebenfalls zeigt sich bei
grofleren Wanddicken zu Durchmesserverhéltnissen ein geringfiigig niedriger Wert des relativen
Elastizitdtsmoduls bei geklebten Hohlkugelstrukturen. Eine Mdoglichkeit der Steifigkeitszunahme
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Abbildung 4.29: Vergleich gesinterte und geklebte Hohlkugelstruktur in KFZ-Anordnung.

der gesinterten gegeniiber den geklebten Hohlkugelstrukturen kann an der Tatsache liegen, dass
mit steigendem Sinterstellenwinkel bzw. -durchmesser die Kugeln stirker deformieren und somit
der Mittelpunktabstand der Kugeln geringer wird.

Im Folgenden sollen verschiedene Elastizitdtsmodulkorper qualitativ und quantitativ miteinander
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verglichen und bewertet werden. Hierbei werden die gewonnenen Werte aus der Wanddicken-

variation im vorhergehenden Abschnitt genutzt. Abbildung 4.30 zeigt fiir die KP-, KRZ- bzw.

KFZ-Elementarzelle und fiir die zufdllig erzeugten représentativen Volumenelemente die Ebenen-

schnitte der relativen Elastizititsmodulkorper, basierend auf den Packungen aus Tabelle 4.2. Die

abgebildeten Elastizitdtsmodulkdrperschnitte wurden mit den Parametereinstellungen % = 0,01

und einem Sinterstellenwinkel von 17,4° bestimmt. An den Schnittverldufen lésst sich erkennen,
Relatives Elastizititsmodul

xy-Ebene yz-Ebene
0,01 0,01
0,005 0,005
= 0 w 0f
—0,005 —0,005
—0,01 —0,01
—0,01 —-0,005 0 0,005 0,01 —0,01 —-0,005 0 0,005 0,01
x y
—KP — - —-KRZ - KFZ - - RVES5 —se— RVE62 —8— RVE66 —e— RVE69
xz-Ebene
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Abbildung 4.30: Richtungsabhéngiger Elastizitdtsmodulkorper fiir verschieden ideale und zufillig
erzeugte Packungen bei einem Sinterstellenwinkel von 17,4°.

dass mit zunehmender Packungsdichte der Elastizititsmodul steigt. Jedoch ist der Betrag bei-
spielsweise bei der KP-Anordnung sehr stark schwankend bzw. richtungsabhidngig und in <110>
Richtung betragsmafig hoher als bei der mit dem zufillig erzeugten Modell 55% Packungsdichte.
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Als nichst steifere Anordnung zeigt sich die zufallige Hohlkugelanordnung (RVE62) basierend
auf der Kugelpackung P62. Die Form dieser Anordnung présentiert sich ebenfalls kreisahnlich
in den drei Ebenen. Wie erwartet, ist das représentative Volumenmodell RVE66 steifer als das
Modell RVE62. Die Form des richtungsabhingigen Elastizitdtsmoduls orientiert sich sehr stark
an dem KFZ-Modell. Die KRZ-Anordnung zeigt sich beim Elastizitdtsmodul wiederum in der
starker ausgepréagten Richtungsabhéngigkeit. Es sind deutliche Minima und Maxima zu erkennen.
Die Verldufe fiir das KFZ-Modell und fiir das représentative Volumenmodell RVE69 sind nahezu
identisch, sie sind nur in der Grof3e bzw. Betrag skaliert. Betrachtet man qualitativ die Formen der
verschiedenen Modelle in Bezug auf das isotrope Verhalten, das von einem kreisformigen Verlauf
gekennzeichnet ist, so ergibt, dass die Modelle KFZ, RVE69, RVE66 und RVE62 diesem Verhalten
am ndchsten kommen. Das Model RVESS zeigt zum Teil eine stirkere Richtungsausprigung
in den Ebenen, wobei die Formen noch kreisdhnlich sind. Die KRZ-Elementarzelle zeigt eine
mittlere Zunahme des Elastizitdtsmoduls in Achsenrichtung, wobei die KP-Elementarzelle eine
starke Schwichung in dieser Richtung aufweist.
Um die Auspragung der Isotropie bzw. Anisotropie in einer skaleren Groflen ausdriicken zu
konnen, wurde von Zener der elastische Anisotropiefaktor 4niso eingefiihrt [227]. Fiir kubisch
symmetrisches Materialverhalten definiert Zener den Faktor wie folgt:

2C4  2(S11—S12)
Ci—Ci Sa4
wobei die drei Konstanten C;; die drei unabhingigen elastischen Steifigkeitskoeffizienten (VOIGT
Koeffizienten [217]) sind. Der Koeffizient Cy4 représentiert den Scherwiderstand auf Ebene <100>
in Richtung <0k1>, wihrend der Term Cj; — Cj,/2 stellvertretend fiir den Scherwiderstand auf
Ebene <110> in <-110> Richtung steht [126]. Der Anisotropiefaktor stellt ein Verhéltnis der zwei
extremen elastischen Koeffizienten dar. Wenn A apiso < 1 ist das Material am steiffesten in Richtung
<100> und wenn A apiso > 1 ist die Steifigkeit am grofBten in der Diagonalenrichtung <111>[157].
Der Wert von Aapiso = 1 entspricht der Isotropie. Mit dem bekannten Zusammenhang zwischen
dem Elastizitdtskoeffizienten C und der Dichte p sowie der Schallgeschwindigkeit ¢

C=pc, (4.3)

is der Ansiotropiefaktor nach Zener durch Einsetzen der Gl. (4.3) in Gl. (4.2) experimentell
fiir Materialien mittels Korperschallanalyse bestimmbar [127]. Abbildung 4.31a zeigt deb Ani-
sotropiefaktor nach Zener iiber die Packungsdichte. Es zeigt sich keine Abhéngigkeit zwischen
Anisotropiefaktor und Packungsdichte. Am néchsten an die Isotropie kommt die KFZ-Anordnung
sowie die hoch und hochst zufillig gepackte Anordnung RVE62 und RVE66. Als stark anisotrop
erweist sich die KP-Anordnung. Der invertierte Anisotropiefaktor von KRZ (1 /4 aniso, vertausch-
tes Schubfestigkeitsverhéltnis von Maxima und Minima) liegt zwischen den Werten von KFZ-und
KP-Anordnung. Ein analoges Verhalten erhdlt man in Abb. 4.31b, wenn man den Isotropiefaktor
tiber die Koordinationszahl auftrigt. Es kann ebenfalls kein Zusammenhang zwischen Koordi-
nationszahl und Anisotropiefaktor gefunden werden. Da der Anisotropiefaktor nach Zener nur
fiir rein kubisches Materialverhalten gilt, wird der allgemeingiiltige Anisotropiefaktor A% .., nach
Ledbetter und Migliori [126] fiir zuféllig geordnete repréasentative Volumenelemente (Modelle mit
nicht kubischer Materialsymmetrie) bestimmt. Der Anisotropiefaktor definiert sich iiber
2
A;\niso = %? 4.4)
)
wobei ¢; und ¢ die minimale und maximale Schubwellenausbreitungsgeschwindigkeit (trans-
versale Korperschallgeschwindigkeit) entlang aller Ausbreitungsrichtungen d und Polarisations-
richtungen p ist. Gleichung (4.4) erfiillt diese fiir alle Materialsymmertrien, von kubisch bis

Apniso = ’ (4‘2)
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Abbildung 4.31: Anisotropiefaktor iiber a) Packungsdichte und b) Koordinationszahl.

triklin [126]. Die detaillierte Bestimmung der Korperschallgeschwindigkeit kann Anhang C.4

entnommen. Die Werte fiir den Anisotropiefaktor 4

* .
Aniso

wurden mit tiber 15.000 verschiedenen

Richtungsvektoren numerisch bestimmt. Die Werte fiir die Anisotropiekoeffizienten der jeweiligen
Modelle sind in Tabelle 4.3 aufgelistet. Abbildung 4.32 zeigt den Anisotropiefaktor nach Ledbetter
iiber die Koordinationszahl, im Vergleich zum den Anisotropiefaktor nach Zener sind kleine
Abweichungen bei den zufillig geordneten Modellen (RVES2 - RVE62) vorhanden. Die Abwei-
chung nimmt mit zunehmender Packungsdichte ab. Die Abbildungen 4.33a und 4.33b zeigen den
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Abbildung 4.32: Anisotropiefaktor nach Ledbet-

ter liber Koordinationszahl.

Modell | Aaniso | Ahniso
KP-EZ | 33971 | 33985
KRZ-EZ | 057622 | 0.57833
KFZ-EZ | 083729 | 083677
RVESS | 079173 | 0,59201
RVE62 | 080414 | 0,72434
RVE66 | 0,84576 | 0,82023
RVE69 | 0,80583 | 0,80332

Tabelle 4.3: Anisotropiekoeffizienten.

relativen Elastizitditsmodul in den Richtungen <100>, <110>und <111> iiber Packungsdichte bzw.
Koordinationszahl. Als Trend hierbei ist zu erkennen, dass mit zunehmender Packungsdichte bzw.
zunehmender Koordinationszahl der relative Elastizititsmodul steigt. Zudem wird deutlich, dass
die Schwankungen in den drei vorgegebenen Richtungen bei den zufillig geordneten Modellen
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und beim KFZ-Modell am geringsten ausfallen.
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Abbildung 4.33: Relativer Elastizititsmodul iiber a) Packungsdichte und b) Koordinationszahl.

4.3 Schwingungen

Zur Uberpriifung der numerisch ermittelten Ergebnisse werden Messungen zur Eigenfrequenz mit
verschiedenen Hohlkugelstrukturen durchgefithrt. Verwendet werden plattenférmige Strukturen
mit quadratischer und rechteckiger Grundform, deren Eigenschwingungen mittels Modalanalyse
bestimmt werden. Die gemessenen Abmafle und die Dichten sind in Tabelle 4.4 zusammengefasst.
Zusitzlich konnen die Verbindungsart zwischen den Hohlkugeln und deren mittlere Durchmesser
entnommen werden.

4.3.1 Versuchsdurchfithrung

Die Messung der Eigenfrequenzen erfolgt mit dem in Kapitel 3 beschriebenen Messaufbau mit
dem Auswerteprogram Test.Lab®. Das Priifobjekt wird hier mit einem Impulshammer zu Schwin-
gungen angeregt und mit einem Festlaser werden die transversalen Wege bzw. Geschwindigkeiten
und Beschleunigungen aufgezeichnet. Unter Beriicksichtigung des Eingangs- und Ausgangspek-
trums lassen sich die Ubertragungsfunktion von einem Anregungspunkt zum Messpunkt und
hieraus wiederum die Eigenfrequenzen berechnen. Durch eine geeignete Auflosung der Anre-
gungspunkte konnen iiber die Zuordnung zum Messpunkt auch die Schwingformen angegeben
werden. Somit konnen die einzelnen Eigenfrequenzen den einzelnen Eigenschwingformen zuge-
ordnet werden.

Zur Uberpriifung der Unabhingigkeit der Messergebnisse vom Versuchsaufbau und der Messung
von Eigenschwingungen ohne Lagereinfluss (frei-frei) werden drei Untersuchungen anhand einer
homogenen Platte aus Vollmaterial (Stahlplatte) durchgefiihrt. Zum einem ist die Lagerung auf
verschiedene Weisen (Schaum und Gummiseile) realisiert worden. Zum anderen sind die La-
gerungspositionen variiert worden. Und als Letztes wurden die Position des Festlasers und die
Anregungspunkte mit Test.Lab® optimiert. Die ersten beiden Untersuchungen zeigen, dass sowohl
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Tabelle 4.4: Proben zur Schwingungsanalyse.

Messplatten
Proben Nr. Breite Léange Hohe Dichte dulerer Verbind-
[mm] [mm] [mm)] % Kugel- ungsart
durchmess-

ser

[mm]
HKS 86 ‘ 330 ‘ 330 ‘ 77 ‘ 440 ‘ 1,6 ‘ versintert
HKS87 | 332 | 335 | 74 | 45 | 16 | versintert
HKS104 | 292 | 329 | 46 | 810 | 30 | versintert
HKS105 | 331 | 331 | 8 | 610 | 1,6 | versintert
HKS106 | 328 | 244 | 42 | 80 | 30 | versintert
HKS 111 | 330 | 330 | 8 | 770 | 26 | versintert
HKS112 | 337 | 337 | 8 | 740 | 26 | versintert
HKS113 | 335 | 334 | 8 | 760 | 26 | versintert
HKS-K 100 [ 110 | 300 | 30 | 45 | 30 | verklebt
HKS-K 121 [ 292 | 400 | 74 | 590 | 30 | verklebt
HKS-K 122 | 302 | 400 | 74 | 360 | 30 | verklebt
HKS-K123 | 318 | 400 | 74 | 400 | 30 | verklebt
HKS-L202 | 130 | 390 | 25 | 500 | 45 | verldtet

verschiedene Lagerungsarten als auch die Lageposition einen so geringen Einfluss haben, dass sie
in den Messungen kaum erkennbar sind. Die Verteilung der Anschlagstellen des Impulshammers
und die Messstelle des Festlasers sind derart festgelegt, dass sie sich mdglichst mit keinem
Bewegungsknoten der ersten vier Eigenformen decken. In Tabelle 4.5 sind die Messergebnisse
fiir die aufgefiihrten Hohlkugelstrukturplatten aufgelistet. Beispielhaft zeigt die Abb. 4.34 die
ersten zwei mit Hilfe des Auswerteprogramms visualisierten Eigenformen mit den entsprechenden
Eigenfrequenzen fiir die Probe HKS 106.

4.3.2 Bestimmung der Materialkennwerte

Die mit Hilfe der experimentellen Modalanalyse gemessenen Ergebnisse werden zur Bestimmung
der Materialkennwerte verwendet. Hierzu wird angenommen, dass das gemessene Objekt homo-
gene bzw. isotrope Materialeigenschaften besitzt. Zur Ermittlung der Materialparameter wird eine
Least-Square Optimierung der Kennwerte durchgefiihrt, wobei die Zielfunktion f, aus der Summe
der quadratischen Abweichungen aller ngr Eigenfrequenzen besteht und minimiert wird:

nER . C(F* v\ 2
fz _ 2 (1 _ .ﬁTheorle (E ,V )> s min. (45)

i=1 fz‘"Messung
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Tabelle 4.5: Gemessene Eigenfrequenzen mit der Vibrationsanalyse.

Gemessene Eigenfrequenzen

Proben Nr. 1. Eigenfrequenz | 2. Eigenfrequenz | 3. Eigenfrequenz | 4. Eigenfrequenz
[Hz] [Hz] [Hz] [HZ]
HKS 86 | 480 | 718 | 804 | 1110
HKS 87 \ 350 \ 525 \ 576 \ 824
HKS 104 \ 470 \ 660 \ 870 \ 1100
HKS 105 \ 747 \ 1040 \ 1070 \ 1600
HKS 106 \ 590 \ 650 \ 1150 \ 1300
HKS 111 \ 783 \ 1120 \ 1670 \ 2460
HKS 112 \ 748 \ 1040 \ 1070 \ 1570
HKS 113 \ 742 \ 1030 \ 1060 \ 1570
HKS-K 100 | 523 \ 838 \ 1360 \ 1700
HKS-K 122 | 500 \ 520 \ 880 \ 1040
HKS-K 123 | 160 \ 190 \ 290 \ 360
HKS-L202 | 260 \ 560 \ 740 \ 1160

fs=1150Hz “ fa=1300 Hz
(@ (b)
Abbildung 4.34: Probe HKS 106: a) Dritte und b) vierte Eigenform und Eigenfrequenz.

Zur Bestimmung der theoretischen Eigenfrequenzen f; Theorie Werden einerseits die Finite Elemen-
te Methode und andererseits die PB2-Ri1TZ-Methode nach Liew et al. [132] genutzt. Der PB2-
Ritz Algorithmus wird in Maple® implementiert. Hierbei stehen auch Optimierungsroutinen zur
Minimierung der Zielfunktion f, zur Verfiigung. Die Zielfunktion ist abhidngig von den geometri-
schen Abmafen der Platten und deren Materialkennwerten, wobei nur die Elastizitdtskennwerte
E* und v* als variable Gr6Ben angesehen werden. Die gemessene Dichte und die geometrischen
AbmalBen werden konstant und somit nicht als Variationsgréen betrachtet. Eine ausfiihrliche
Beschreibunng des Algorithmus kann dem Anhang entnommen werden. Die Berechnungen auf
Basis der Finite-Elemente-Methode werden mit der Software ANSYS® durchgefiihrt, die auch
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einen integrierten Optimierungsalgorithmus beinhaltet. Beide Methoden sind Naherungsverfahren,
die auf der schwachen Form der Kontinuumsmechanik beruhen. Eine rein analytische Beschrei-
bung einer vollig frei gelagerten Platte (FFFF) gibt es bis dato nicht. Tabelle 4.6 zeigt die mit
der PB2-RiTZ-Methode (Polynomgrad von 10) bestmdglich angepassten Materialkennwerte an
die Eigenschwingungen bzw. Eigenfrequenzen der Hohlkugelplatten. Die mit Hilfe der Finiten-

Tabelle 4.6: Approximierte Materialparameter: MINDLINsche Plattentheorie.

Approximierte Materialparameter mit Hilfe der MINDLINschen Plattentheorie
(PB2-RiT1Z-Methode).

Berechnete Materialparameter

Proben Nr. Elastizititsmodul £* | Querkontraktion v* Dichte [%]
[MPa] (] (gemessen)
HKS 86 \ 640 \ 0,19 \ 440
HKS 87 \ 381 \ 0,14 \ 450
HKS 104 \ 2090 \ 0,19 \ 810
HKS 105 \ 1500 \ -0,03 \ 610
HKS 106 \ 1980 \ -0,12 \ 820
HKS 111 \ 2090 \ 0,00 \ 770
HKS 112 \ 1890 \ 0,04 \ 740
HKS 113 | 1900 | 0,03 \ 760
HKS-K 100 \ 1120 \ 0,17 \ 450
HSS-K 122 \ 515 \ -0,19 \ 360
HSS-K 123 \ 790 \ -0.3 \ 400
HSS-L 202 | 1285 | -0,11 | 500

Elemente-Methode ermittelten Werte konnen der Tabelle 4.7 entnommen werden. Es zeigen sich
nur geringe Abweichungen.

4.3.3 Vergleich

Um die isotropen Materialparameter, gewonnen aus der Modalanalyse, im Bereich der zellularen
Metalle einordnen zu koénnen, sollen diese mit den Ergebnissen von Gibson [74] verglichen
werden. Gibson fasste viele publizierte Werte zusammen und ordnete sie nach offen- bzw. ge-
schlossenporigen Metallschdumen. Hierbei ergeben sich zwei charakteristische Verlaufe fiir offen-
und geschlosssenporige Strukturen, die in Abb. 4.35 skizziert sind. Im Diagramm wird das relative
Elastizititsmodul {iber der relativen Dichte abgetragen. Der genaue Wert des Elastizdtsmoduls fiir
die homogenisierte Wandstruktur ist unbekannt. Es wird ein Wert von Stahl Eg = 200 GPa fiir
das Grundmaterial angenommen. Die vorhandenen Poren in den Wénden verursachen vermut-
lich, dass der homogenisierte Elastizitdtsmodul der Wand geringer ausféllt. Es werden pauschal
25% abgezogen, was einen Wert von Eg = 150 GPa entspricht. Diese zwei Werte stellen eine
obere bzw. untere Grenze dar. Bezieht man den relativen Elastizititsmodul auf die obere Grenze,
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Tabelle 4.7: Approximierte Materialparameter mit Hilfe Finite-Element-Methode und homogeni-

sierter Volumenelemente

Berechnete Materialparameter

Proben Nr. Elastizititsmodul £* | Querkontraktion v* Dichte [;—g}}

[MPa (] (gemessen)
HKS 86 \ 640 \ 0,21 \ 440
HKS 87 \ 381 \ 0,14 \ 450
HKS 104 \ 2090 \ 0,19 \ 610
HKS 105 | 1530 | -0,025 | 610
HKS 106 \ 2000 \ -0,10 \ 820
HKS 111 \ 1610 \ 0,07 \ 770
HKS 112 \ 1910 \ 0,048 \ 740
HKS 113 | 1910 | 0,050 | 760
HKS-K 100 \ 1110 \ 0,13 \ 450
HSS-K 122 \ 500 \ -0,20 \ 360
HSS-K 123 \ 800 \ -0,28 \ 400
HSS-L 202 | 1280 | -0,09 | 500

0,1 - -

gesintert

geklebt ]

geloetet o}
offenporig [74] -----------
geschlossenporig [74] -eeeeees
HKS gesintert

0,01

relativer Elastizititsmodul E*/E; [ ]

relative Dichte p*/p; []

Abbildung 4.35: Gemessener relativer Elastizitditsmodul bei einem Elastizitdtsmodul des Grund-

materials von 200 GPa fiir geklebte, geldtete und gesinterte Proben.

ergeben sich die abgebildeten Werte in Abb. 4.35. Erzeugt man eine Regressionsgerade in der
logarithmischen Auftragung filir die gesinterten Proben, zeigt sich ein fast identischer Verlauf
wie bei den offenporigen Strukturen, was einer dhnlichen Steifigkeit entspricht. Da der tatsdch-
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0,1 -
gesintert
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) 0,01
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;g ............
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0,01

relative Dichte p*/p; [ ]

Abbildung 4.36: Gemessener realativer Elastizititsmodul bei einem Elastizititsmodul des Grund-
materials von 150 GPa fiir geklebte, gelotete und gesinterte Proben.

liche homogenisierte Elastizitdtsmodul vorrausichtlich geringer ist als der von Stahl, wird die
Steifigkeit der Hohlkugelstruktur hoher sein als bei den von Gibson behandelten, offenporigen
Schdaumen. Wird der fiktive Extremwert des Elastizititsmoduls Eg = 150 GPa eingesetzt, zeigt
sich der Verlauf geméf Abb. 4.36. Hier ordnen sich die Hohlkugelstrukturen zwischen den offen-
und geschlossenporigen ein, wobei sie ndher an den offenporigen Strukturen liegen. Die Werte
fiir den relativen Elastizitdtsmodul der geldteten und verklebten Hohlkugelplatte sind ebenfalls
nahe der aufgezeigten Trendlinie, was einem &dhnlichen Verhalten entspricht. So reihen sich die
Hohlkugelstrukturen gut in die Metallschdume ein.

4.4 Verifizierung

Um Hohlkugeln bzw. Kugelverbunde genauer charakterisieren zu konnen, werden fiir die Probe
HKS 86 und HKS 113 Mikroskopieaufnahmen gemacht. Zuerst werden die Proben aus dem
Rohling geségt und vorgeschliffen. Im néchsten Schritt werden die Probenrohlinge in einem Zwei-
komponentenepoxidharz eingebettet. Diese Bettung stiitzt beim Schleifen die fragile Struktur der
Hohlkugel, so dass keine Verformungen der Kugeln stattfinden. Zuletzt werden die Proben an der
Untersuchungsfliche poliert und gereinigt. Nach der Probenpréparation werden die Probenkorper
mit dem licht- und rechnerunterstiitzten Mikroskop Zeiss Axioplan2 untersucht und mit dem
Programm Zeiss AxioVision 4.6.3 ausgewertet. Abbildung 4.37a zeigt die Bestimmung der Hohl-
kugelwanddicke und des Kugeldurchmesssers fiir die Probe HKS 113. Des Weiteren werden die
Kugelwinde néher betrachtet. Es zeigten sich hierbei Porenbildung durch den Sinterprozess. Die
Porenbildung fillt fiir die beiden Proben unterschiedlich aus. So weist die Probe HKS 113 relative
kleine Poren mit einem relativen Porenvolumen von 5,3% auf (siche Abb. 4.37b). Wiederum zeigt
sich in Abb. 4.37¢ eine relativ grofe Porenbildung im Verhéltnis zur Wanddicke, allerdings entsteht
ein dhnliches relatives Porenvolumen von 4,8%.

In Veyhl et al. [214] wurden fiir HKS 113 und andere Proben das Grundmaterial als 316L (1.4404)
bestimmt. Fiir dieses Material wird ein Elastizititsmodul von ca. 190 - 200 GPa angegebenen
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(a)

Abbildung 4.37: Mikrsokopieaufnahmen: a) Vermessung einer Kugel von HKS 113, b) Porenvo-
lumenbestimmung in HKS 113 und ¢) Porenbestimmung in HKS 105.

[155]. Durch die Poren wird der tatsdchlich homogenisierte Elastizitdtsmodul Eg des Grundwerk-
stoffes geringer ausfallen. Hier wird ein fiktiver Abschlag bis zu 25% angenommen. Die Dichte des
Grundwerkstoffes betrigt 7980 % [155]. Bei ungefihr 5% Porenvolumen ergibt sich eine Dichte

ps von ca. 7600 l];—g;. Zusétzlich wurden fiir die Probe HKS 113 in Veyhl et al. [214] mehrere
Hohlkugeln vermessen. Aus den ermittelten Werten ergibt sich ein mittleres Verhiltnis von Hohl-
kugelwanddicke zu Kugeldurchmesser von ﬁ = 0.25 und ein mittlerer Sinterstellenwinkel ¢ von
14, 1°. Fiir die Probe HKS 105 werden in eigenen Untersuchungen Werte von ﬁ =0.22 und ¢ von
15,2° ermittelt. Aus den zuvor beschriebenen Untersuchungen werden mittlere Packungsdichten
PD = 0,56 und PD = 0,57 fiir die Proben HKS 105 und HKS 113 bestimmt.

Aus den Schwingungsuntersuchungen erhélt man den Wert des homogenisierten Elastizitdtsmo-
duls E£* und der Querkontraktionszahl v* der Hohlkugelstrukturen (siehe Tabelle 4.6 und Tabelle
4.7). Abbildung 4.38 zeigt den Verlauf des relativen Elastizitdtsmoduls fiir die KP-Anordnung
fiir verschiedene Sinterstellenwinkel von 5° bis 20° {iber dem Verhiltnis von Wanddicke zu
Kugeldurchmesser und relativer Dichte. Die Marker stellen die ermittelten Werte fiir die Proben
HKS 105 und HKS 113 dar. Es zeigt sich, dass die Werte fiir den relativen Elastizitatsmodul fiir die
beiden Proben hoher sind als die 15° Kurve, somit die Struktur steifer ist als die KP-Anordnung mit
Packungsdichte von PD = 52% und mit einem Sinterstellenwinkel von 15%. Im Gegensatz dazu
ldsst sich aus Abb. 4.39 erkennen, dass der Bereich zwischen unterer und oberer Grenze fiir den
relativen, homogenisierten Elastizititsmodul deutlich unterhalb der 15° fiir die KRZ-Anordnung
liegt. Dies begriindet sich durch die Packungsdichte der KRZ-Anordnung von ca. PD = 68%
und die Proben, die im Bereich zwischen 56% bis 57% liegen und damit wesentlich geringere
Packungsdichten vorweisen. Vergleicht man des Weiteren die ermittelten homogenisierten Elastizi-
tatsmodulwerte aus der Schwingungsuntersuchung mit den Elastizitditsmodulverldufen der zufallig
angeordneten Hohlkugelmodelle (RVESS bis RVE69) in den Abb. 4.40 und Abb. 4.41, so ist zu
erkennen, dass die Grenzwerte der beiden Proben bzw. der Bereich zwischen den beiden Proben,
zwischen den Modellen RVESS5 und RVE62 mit Packungsdichten von 55% und 66% liegen. Somit
kongruieren die Ergebnisse der Modelle sehr gut mit den gemessenen Elastizititsmodulwerten.
Eine weitere gute Ubereinstimmung zeigen die Querkontraktionsverldufe Vv, in Abb. 4.42 mit den
ermittelten Querkontraktionswerten v* fiir die Proben HKS 105 und HKS 113. Die Werte liegen
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Abbildung 4.38: KP-Anordnung mit unterschiedlichen Sinterstellenwinkeln; homogenisierter
Elastizitdtsmodul E* iiber relative Wanddicke ¢/D und relative Dichte p*/ps mit Werten fiir die
Proben HKS 105 und HKS 113.
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Abbildung 4.39: KRZ-Anordnung mit unterschiedlichen Sinterstellenwinkeln; homogenisiertes
Elastizitdtsmodul E* iiber relative Wanddicke ¢/D und relative Dichte p*/ps mit Werten fiir die
Proben HKS 105 und HKS 113.
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Abbildung 4.40: Verschiedene RVE-Anordnungen mit einem Sinterstellenwinkel von ca. 15%;
homogenisierter Elastizitdtsmodul £* iiber relative Wanddicke 7/ D mit Werten fiir die Proben HKS

105 und HKS 113.
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Abbildung 4.41: Verschiedene RVE-Anordnungen mit Sinterstellenwinkel von ca. 15%; homoge-
nisierter Elastizititsmodul £* iiber relative Dichte p*/ps mit Werten fiir die Proben HKS 105 und

HKS 113.
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Abbildung 4.42: Querkontraktionszahl fiir verschiedene RVE-Anordnungen mit Sinterstellenwin-
kel von ca. 15% a) iiber relative Wanddicke #/D und b) relative Dichte p*/ps mit Werten fiir die
Proben HKS 105 und HKS 113.

nahe bei RVES5 bzw. teilweise zwischen RVESS und RVE62. Schlussendlich ergibt sich eine
sehr gute Ubereinstimmung zwischen simulierten und gemessenen Werten des homogenisierten
Elastizitaitsmoduls und der Querkontraktionszahl.

4.5 Akustik

In diesem Abschnitt werden die Ergebnisse aus theoretischen Absorbermodellen und der experi-
mentellen Messung vorgestellt und verglichen. In dieser Arbeit wurden zwei verschiedene Typen
von Hohlkugelstrukturen mit variierender Probendicke im Bereich von 500 bis 3500 Hz gemessen.
Die Abb. 4.43 zeigt die Probenserie HKS 113. Bei den Proben handelt es sich um versinterte
Stahlhohlkugeln mit einem mittleren Kugeldurchmesser von 1,6 mm bzw. 2,6 mm.

4.5.1 Zwei-Mikrophon-Methode

Abbildung 4.44 zeigt den Absorptionskoeffizient der Proben HKS 86 und HKS 113. Fiir beide Pro-
bentypen wird eine Approximation nach dem JOHNSON-CHAMPOUX-ALLARD-Absorbermodell

Abbildung 4.43: Hohlkugelstrukturproben des Typs HKS 113, verschiedene Dicken von 10 mm
bis 60 mm.
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Tabelle 4.8: Angepasste JOHNSON-CHAMPOUX-ALLARD-Parameter an die Messdaten

Absorberkennwerte
Parameter HKS 86 | HKS 113

o: Porositét ‘ 0,84 ‘ 0,37

(gemessen) (0,6) 0,4)
S Stromungswiderstand [ %] | 17600 | 13500
Ow:  Strukturformfaktor ‘ 3,25 ‘ 2,2
Cyl Formfaktor der Rohre, viskose Effekte ‘ 1,7 ‘ 0,16
ct: Formfaktor der R6hre, thermische Effekte ‘ 2,0 ‘ 2,7

durchgefiihrt. In Abb. 4.44a wird der Effekt der Probendicke deutlich sichtbar. Nimmt die Proben-
dicke zu, wird das erste Maxima des Absorptionskoeffizients bei medrlgerer Frequenz erreicht. Das
erste Maximum wird erreicht, wenn ein Viertel der Wellenlange der Probendicke d entspricht.
Vergleicht man die beiden Probentypen mit der Dicke d = 60 mm, wird deutlich, dass Probe
HKS 86 tiber /= 500 Hz ein breitbandiges Absorptionsverhalten mit kleinen frequenzabhdngigen
Schwankungen besitzt. Der Absorptionskoeffizient liegt immer hoher als 0,7. Die Probe HKS 113
erreicht ihr erstes Maximum bei rund 800 Hz - jedoch im Vergleich zur Probe HKS 113 mit einem
groflen Schwankungsanteil und einer Abnahme des Absorptionskoeffizienten bis zu o = 0,4.
Der Parameter Dichte ¢ wird sowohl experimentell als auch mit Hilfe des Absorbermodells
nach Johnson, Champoux und Allard bestimmt. Aus experimentellen Untersuchungen wird fiir
die Probe HKS 113 eine Dichte von ¢ = 0,4 bestimmt. Dieser Wert wird in der Modellbildung
nach Johnson, Champoux und Allard bestitigt. Experimentell ergibt sich fiir die Probe HKS 113
eine Dichte von ¢ = 0,6 und ¢ = 0,84 fiir die JOHNSON-CHAMPOUX-ALLARD-Anpassung. Die
grofle Abweichung lésst sich durch die Messung mit Wasser erkldren, dass durch die Oberfla-
chenspannung nicht in jede Mikropore eindringen konnte. Aus diesem Grund konnen diese Werte
nur zur groben Orientierung herangezogen werden. In der Tabelle 4.8 sind die angepassten JCA-
Modellkennwerte aufgefiihrt. Die Parameter wurden durch eine mehrdimensionale, nichtlineare
Minimierung (fminsearch) durchgefiihrt, die in MatLab®verfiigbar ist. Mit dieser Optimierungs-
methode kann kein globales Minimum gefunden werden. Die Berechnung wird daher mehrmals
von verschiedenen Ausgangspunkten gestartet. Dabei endeten die Optimierungsdurchldufe immer
beim gleichen Satz von JCA-Absorberkennwerten. Es ist deswegen von einer singuldren Losung
des Parametersatzes auszugehen. Abbildung 4.45 soll die Diskrepanz zwischen den gemessenen
und den theoretisch ermittelten Werten erklaren. Innerhalb der Kugelwédnde konnen deutliche
Poren auftauchen. Wihrend die Probe HKS 86 eine mehr offenporése Wandstruktur vorweist,
gleicht die Wandstruktur der Probe HKS 113 eher einer geschlossenporigen Struktur. In Abb.
4.45a lassen sich deutliche Mikrokanile zwischen dem Inneren und dem AuBeren der Hohlkugeln
erkennen. Diese Effekte beriicksichtigt das theoretische Modell nach Johnson, Champoux und
Allard nicht.

4.5.2 Vier-Mikrophon-Methode

Die Koeffizienten der Absorption ¢, Reflektion » und Transmission ¢ kénnen fiir die Proben HKS
113 und HKS 86 in der Abb. 4.46 abgelesen werden. Die Dicke der Hohlkugelproben betrigt
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Abbildung 4.44: Absorptionskoeffizient fiir verschiedene Probendicken mit 20 mm, 40 mm und 60
mm, Messwerte (gestrichelte Linie) und JCA Theorie (Volllinie).
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(a) HKS 86, mittlere Kugelwanddicke 29 um (b) HKS 113, mittlere Kugelwanddicke 76 um

Abbildung 4.45: Mikroaufnahmen von Kugelwénden.

Tabelle 4.9: Angepasste JOHNSON-CHAMPOUX-ALLARD-Parameter an die Messdaten fiir Poly-
merschaum und Fasermaterial

Absorberkennwerte fiir polymere Schiume

Parameter Hartschaum ‘ Fasermaterial
¢:  Porositit \ 1,03 \ 081
E:  Stromungswiderstand [%} ‘ 423 ‘ 10289
O.:  Strukturformfaktor ‘ 1,51 ‘ 1,08
Cy: Formfaktor der Rohre, viskose Effekte ‘ 4,46 ‘ 0,04
ct: Formfaktor der R6hre, thermische Effekte ‘ 2,45 ‘ 3,77

30 mm. Durch die unterschiedliche experimentelle Anordnung gegeniiber der Zwei-Mikrophon-
Methode, zeigt sich in Abb. 4.44 (kein schallharter Abschluss hinter der Messprobe) ein anderer
Verlauf fiir die Absorption ¢. Weitere charakterisierenden GroBen fiir die HKS Probe 86, wie cha-
rakteristische Impedanz und komplexe Wellenzahl, werden im Anhang C.3 vorgestellt. Aus dem
Ergebnis wird die vorausgesagte Unabhingigkeit der Probendicke ersichtlich. Die Parameter fiir
das JOHNSON-CHAMPOUX-ALLARD-Modell sind Tabelle 4.8 zuentnehmen. Aus den Diagram-
men wird erkennbar, dass eine gute Ubereinstimmung mit der JOHNSON-CHAMPOUX-ALLARD-
Theorie erreicht wurde. Eine gute Ubereinstimmung wird mit den angepassten Parametern zum
JOHNSON-CHAMPOUX-ALLARD-Modell aus der Tabelle 4.9 erzielt. Weitere Absorberkennwerte
von zwei alternativen Absorbermaterialen sind dem Anhang C.3 zu entnehmen.
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Abbildung 4.46: Absorptions- a, Reflektions- » und Transmissionskoeffizient fiir die Proben HKS
86 (Volllinie) und HKS 113 (gestrichelte Linie).
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5 Schlussbetrachtung

Im ersten Teil dieses Kapitels werden die Untersuchungsergebnisse zusammengefasst. Im An-
schluss werden weitere Einsatzmdglichkeiten dieser Modellbildung diskutiert und weiterfiihrende
Untersuchungsmoglickeiten im Ausblick prisentiert.

5.1 Zusammenfassung

Ziel dieser Arbeit ist eine umfangreiche Charakterisierung mechanischer und akustischer Eigen-
schaften metallischer Hohlkugelstrukturen (HKS). Dieser relativ junge zellulare Werkstoff kenn-
zeichnet sich durch seine besondere Zellmorphologie aus. Im Gegensatz zu bisher bekannten
Metallschdumen weist der Strukturaufbau mit Hohlkugeln geringere Abweichungen in der Zellgro-
Be und -anordnung auf. Ausgehend von geringeren UnregelmaBigkeiten in ihrem Strukturaufbau
und ihrer hohen Reproduzierbarkeit werden die Eigenschaften der Hohlkugelstrukturen oftmals
als isotrop angenommen. Die meisten bisherigen analytischen und numerischen Betrachtungen
beschrinkten sich auf die ideale Hohlkugelanordnung, wihrend sich der GroBteil der experimen-
tellen Untersuchungen mit real-zufélligen Anordnungen beschéftigt. Aus dieser Diskrepanz heraus
ergibt sich die Motivation dieser Arbeit. Ein Schwerpunkt liegt in der Analyse des isotropen
bzw. anisotropen mechanischen Verhaltens unter dem Einfluss unregelméfiger bzw. beliebiger
Kugelanordnung. Einen weiteren Kernpunkt dieser Arbeit stellt das akustische Verhalten in Bezug
auf Absorption- und Transmissionverhalten dar.

Zur Charakterisierung von realen Hohlkugelstrukturen wurde die zerstorungsfreie Untersuchungs-
methode der Computertomografie verwendet. Wéhrend die bisherigen Untersuchungen mit dieser
Technologie zur Erzeugung von rein numerischen Simulationsmodellen stattfanden, nutzt man
diese erstmalig, um Hohlkugelpackungen mit Hilfe der aus der rdumlichen Statistik bekannten
Kenngroflen zu beschreiben. Zur Erkennung von Hohlkugeln wurde hierfiir ein Algorithmus
entwickelt, der Kugeldurchmesser und -position bestimmt. Die Vorgehensweise in der Arbeit ist
detailliert veranschaulicht.

Zusitzlich wurden verschiedene Algorithmen zur Kugelpackungsgenerierung untersucht und mit-
einander verglichen. Als effizienter und fiir hohe Packungsdichten geeigneter Kugelpackungsge-
nerator kam als einziger der Forced-Biased-Algorithmus (FBA) in Betracht. Mit diesem lassen
sich translatorisch-periodische Kugelpackungen in beliebiger Anzahl erzeugen. Die mit dem FBA
erzeugten Packungen konnten so mit den aus der Computertomografie gewonnenen Hohlkugelpa-
ckungen verglichen und auf ihre Aussagekriftigkeit hin gepriift werden.

Mit den Kugelpackungen wurde fortfiihrend ein vollparametrisches Hohlkugelstrukturmodell auf-
gebaut. Zu den zufdlligen Hohlkugelmodellen, die ein représentatives Volumenelement (RVE)
darstellen, wurden des Weiteren vier verschiedene Elementarzellenmodelle auf Basis von aus
der Physik bekannten Packungen (KP, KRZ, KFZ und HDP) erstellt. Insgesamt wurden vier
Elementarzellenmodelle und vier zufillig erzeugte RVE-Modelle mit einer Packungsdichte von
57% bis 69% genauer auf ihre Elastizitdtswerte untersucht. Diese Arbeit konzentrierte sich auf
versinterte metallische Hohlkugelstrukturen.
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Zur Bestimmung der elastischen Materialkennwerte von Hohlkugelstrukturen wurde in dieser
Arbeit die Homogenisierungstheorie nach Hill genutzt. Um die Energiedquivalenz aus dieser
Theorie zu erfiillen, ergeben sich drei verschiedene Moglichkeiten zur Lagerung der Rander. Zum
einen sind das die kinematisch uniforme Randbedingung (KURB) und die statisch uniforme Rand-
bedingung (SURB), zum anderen die periodischen Randbedingung (PRB). Aus vorhergehenden
Untersuchungen hat sich gezeigt, dass die PRB den realen Effektivwerten am niachsten kommt.
Zuerst wurde ein virtueller, eindimensionaler Zug- bzw. Druckversuch mit PRB fiir die Modelle
unter der Variation der Wandstérke und der Sinterstelle (Durchmesser) veranlasst. Hierbei zeigte
sich, dass mit steigender Packungsdichte der (relative) Elastizititsmodul ebenfalls zunimmt. Ge-
maf den gleichen Packungsdichten von HDP und KFZ erwartete man betragsméafBig identische
Elastizititswerte. Es ergaben sich jedoch kleine Differenzen, die im Nachhinein durch die Rich-
tungsabhingigkeit erkléart werden konnen.

Ausgehend von dem vermeintlichen Widerspruch wurde das mehrachsige Verhalten untersucht.
Aus bestimmten Lastfallannahmen ldsst sich mit sechs Lastfillen der Steifigkeits- bzw. Nachgie-
bigkeitstensor fiir die drei Lagerungsmdoglichkeiten (KURB, SURB und PRB) bestimmen. Diese
Tensoren beinhalten das gesamte Materialverhalten und kénnen mit aus der Kristallphysik bekann-
ten Groflen beschrieben werden. Zudem wurde eine grafische Darstellung des Tensors in Bezug
auf die richtungsabhingigen Materialkennwerte vorgestellt. Fiir einen ideal isotropen Werkstoff
ergibt sich beispielsweise fiir den Elastizitdtsmodul eine Kugel, die einen richtungsunabhingigen
Wert beschreibt.

Fiir die Elementarzellenmodelle (mit PRB) ergab sich ein kubisches Materialverhalten. Je nach
Modell stellten sich die maximalen Elastizitdtsmodulwerte in die Achsen- oder in die Raumdiago-
nalenrichtung ein. Fiir RVE-Modelle ergibt sich ein vollig triklines Verhalten, wobei mit steigender
Packungsdichte eine Annédherung an das kubische Materialverhalten stattfindet. So war bei einer
69% Packungsdichte ein fast perfektes kubisches Symmetrieverhalten festzustellen. Die Variation
der Kugelgeometrie in Bezug auf Wandstéirke oder Sinterstellendurchmesser hatte nahezu keinen
Einfluss auf das Materialverhalten. Dies zeigt sich deutlich an dem parallel- (offset-) formigen
Schnittverlauf der Elastizitdtsmodulkorper.

Um die Anisotropie bzw. Isotropie nicht nur qualitativ, sondern auch quantitativ zu bewerten,
wurde hierfiir ein Maf3 gesucht. Fiir das kubisches Materialverhalten der Elementarzellenmodelle
bietet sich der Anisotropiefaktor nach Zener [227] an. Jedoch gestaltet sich das Verhalten der RVE-
Modelle als triklin. Hierfiir eignet sich der allgemeingiiltige Anisotropiefaktor nach Ledbetter
und Migliori [126]. Bei der Auswertung zeigte sich das KFZ-Modell als am ehesten isotrop,
hingegen prisentierten sich KP- und KRZ-Modelle stark anisotrop. Alle RVE-Modelle lagen ndher
am idealen Isotropiewert (Eins) als das KP- und das KRZ-Modell. Es war keine Korrelation
zwischen Anisotropie und Packungsdichte bzw. Koordinationszahl festzustellen. Zur Ermittlung
des allgemeingiiltigen Anisotropiefaktors galt es, die transversale Korperschallgeschwindigkeiten
zu bestimmen. Hieraus lésst sich richtungsabhidngige Ausbreitungsgeschwindigkeit in der Struktur
abbilden. Dies zeigt Anhang C.4.

Um die Ergebnisse auf Plausibilitéit zu priifen, wurde fiir die Elementarzellen und fiir zwei RVE-
Modelle der Steifigkeits- bzw. Nachgiebigkeitstensor mit kinematisch uniformen und statisch uni-
formen Randbedingungen untersucht. Die Randbedingungen beschreiben zwei Extremalschranken
(VOIGT- und REUSS-Schranke). Demnach muss der Elastizititsmodulkdrper bzw. -verlauf zwi-
schen den Schranken liegen. Dies konnte fiir alle Modelle bestétigt werden. Hierbei zeigt sich, dass
das KFZ-Modell mit SURB ein ideales isotropes Verhalten hat. Die Untersuchungen bestitigen
die Arbeiten von Grenestedt [80]. Schlussendlich weist nur dieses Modell mit den besonderen
Randbedingungen ein ideal isotropes Verhalten auf.

Um die Aussagekriftigkeit der Modelle zu unterstreichen, wurde eine experimentelle Verifizierung
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veranlasst. Aus zwei Probenserien wurden die Effektivwerte ermittelt und hierzu die experimen-
telle Modalanalyse genutzt. Aus den gewonnenen Eigenfrequenzen bzw. -formen konnten mit
Hilfe der Plattentheorie die homogenisierten Werte fiir den Elastizitdtsmodul und die Querkon-
traktionszahl bestimmt werden. Es zeigte sich eine sehr gute Ubereinstimmung. Somit liefert die
vorgeschlagene Vorgehensweise bzw. Simulationskette gute Ergebnisse.

Das akustische Verhalten ist ein weiterer Untersuchungsaspekt dieser Arbeit. Bei der Messung mit
dem KUNDTschen Rohr wurde das akustische Absorptionsvermdgen von zwei verschiedene HKS-
Probenreihen nédher untersucht. Die Reihen unterschieden sich in ihrer Kugelgrofe und Wanddicke,
die sich bei einer Reihe als offenpords erwies. Die experimentellen Untersuchungen wurden in
einem Frequenzbereich von 500 Hz bis 4 kHz durchgefiihrt. Zur Messung standen zwei verschie-
dene Verfahren zur Verfiigung. Zum einen ein KUNDTsches Rohr mit schallhartem Abschluss
(Zwei-Mikrofon-Methode) und zum anderen ein Rohr mit offenem bzw. schallweichem Abschluss
(Vier-Mikrofon-Methode). Mit der letzteren lassen sich neben dem Absorptionsverhalten auch
Reflektions- und Transmissionskoeffizienten bestimmen.

Zusitzlich wurden in der Arbeit halb-phdnomenologische Modelle zur Beschreibung der Absorpti-
onsmechanismen vorgestellt. Als effektives und hinreichend genaues Absorbermodell erwies sich
das JOHNSON-CHAMPOUX-ALLARD-Modell (JCA). Die aus der JCA-Modellapproximierung be-
rechneten Werte wurden bestitigt. So zeigten bei diesem Absorbermodell die frequenzabhéngigen
Verldufe der Impedanz bzw. die Wellenzahl gute Ubereinstimmungen mit den Messungen. Im
Gegensatz zu offenporigen Schaumen zeigen sich bei HKS deutliche Minima und Maxima im
frequenzabhéngigen Absorptionsverlauf. So erreicht das Absorptionsvermdgen bei bestimmten
Frequenzen nahezu 100%. Mit dieser Eigenschaft kann HKS als akustischer Filter genutzt werden.

5.2 Modellerweiterungen und neue Einsatzgebiete

Die vorgestellte Vorgehensweise bzw. Modellbildung kann erweitert und somit neue Einsatzge-
biete erschlossen werden. In dieser Arbeit wurden zufallig erzeugte Kugelpackungen zur Modell-
bildung genutzt. Die beschriebene Erzeugung von parametrischen Volumenmodellen lédsst eben-
falls zu, rekonstruierte, aus der Computertomografie gewonnene Packungen als Ausgangsdaten
zu nutzen. Mit dieser Vorgehensweise lassen sich somit parametrische Modelle auf Basis von
realen Hohlkugelpackungen realisieren und auf ihr Elastizititsverhalten untersuchen. Diese realen
Strukturen weisen zu den bisher untersuchten Modellen keine translatorische Periodizitét auf. Die
Untersuchungen beschrénken sich somit auf SURB und KURB.

Zusitzlich lasst sich aus Modellen, unter Beriicksichtigung einer Spannungshypothese, die Flie3-
grenze bestimmen. Ein weiteres Novum wére die numerische Untersuchung von zufillig ange-
ordneten geklebten oder verléteten Hohlkugelstrukturen. Abbildung 5.1a zeigt ein parametrisches
Volumenmodell fiir diesen Fall. Wahrend in realen Strukturen fast ausschlieBlich gleich grofe
Hohlkugelkorper verwendet werden, konnte man mit dem Force-Biased-Algorithmus bidisperse
(siche Abb. 5.1b) oder polydisperse Hohlkugelmodelle analysieren.

Als Weiteres lassen sich Hohlkugeln in einer Matrix, beispielsweise Epoxidharz, einbetten. Ein
mogliches Modell dafiir veranschaulicht Abb. 5.1c. Alle vorgestellten Volumenmodelle dieser Ar-
beit (Abb. 5.1a - 5.1c) konnen fiir weitere physikalisch-technische Untersuchungen, wie beispiels-
weise fiir elektrische oder thermische Leitféhigkeit, genutzt werden. Zudem kann, wie in Abb. 5.1d
gezeigt, zu allen Modellen das invertierte Volumen bestimmt werden, das sich zur Berechnung der
Durchstromung anbietet. Hieraus konnen Parameter fiir die halb-phdnomenologische Modelle zur
Beschreibung der Absorptionsmechanismen ermittelt werden.
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() (d

Abbildung 5.1: Mogliche Erweiterung des RVE-Modells a) geklebtes, b) bidisperse, c¢) inverses
und d) syntaktisches Hohlkugelmodell.

5.3 Ausblick

Die Untersuchungen in dieser Arbeit basieren auf Volumenmodellen mit maximal 30 ganzen
Hohlkugeln in einem RVE. Die zur Verfiigung stehende Rechenleistung beschrinkte eine Auswei-
tung auf mehr als die erwidhnte Hohlkugelanzahl in einem RVE. Fiir die Zukunft lassen sich mit
steigender Rechenleistung RVEs mit deutlich mehr Hohlkugeln analysieren und damit den Ansatz
der asymptotischen Homogenisierung verfolgen. Hiermit kann man hohere vertrauenswiirdige
Aussagen gewinnen [109, 123, 163, 205]. Mit zunehmender Recheneffizienz und -kapazitit lassen
die Untersuchungen zudem auf die stochastische Homogenisierung ausweiten. Bei dieser Art der
Homogenisierung werden die effektiven Materialeigenschaften nicht nur durch die Kugelanzahl
pro Volumenelement (Grofe des Volumenelements) bestimmt, sondern auch durch die Anzahl der
verwendeten Modellrealisierungen.

Im Bereich der Vorhersage des akustischen Absorptionsverhaltens von zufélligen und geordneten
Hohlkugelpackungen mit ihren Geometrieparametern wurden erste numerische Betrachtungen
realisiert [99]. Hierbei kann ebenfalls auf die vorgestellte Moglichkeit zur Erstellung von zufilligen
Hohlkugelpackungen zuriickgegriffen werden.

Nachdem in dieser Arbeit gezeigt wurde, dass die vorgeschlagene Modellierungsart bzw. Vor-
gehensweise fiir versinterte metallische Hohlkugelstrukturen mit zufélliger Kugelanordnung gute
Ergebnisse liefert, sollte der verwendete Simulationsprozess auch auf weitere Hohlkugelverbunde,
wie geklebte, geldtete und eingebettete Strukturen, angewendet werden. Die Arbeit mit ihren
vorgestellten Methoden bietet eine Basis fiir weiterfiihrende Analysen. Mit Modellverfeinerungen
und -erweiterung konnen neue Untersuchungsaspekte gelegt werden.
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A Theoretische Grundlagen

A.1 Mechanische Grundlagen

A.1.1 Bezugssysteme, Verschiebungen und Verzerrungen

Die Grundvoraussetzung in der Kontinuumsmechanik ist, dass alle relevanten Grofen auf einem
sogenannten ,,Kontinuum “ definiert sind, also einer offenen Teilmenge des Raumes R3. Die offene
Menge variiert in der Regel zeitlich. Mit Kinematik bezeichnet man die Beschreibung solcher
zeitlich verdnderlicher Gebiete oder Kérper, ohne Beriicksichtigung der einwirkenden Krifte, die
diese Verdnderungen hervorrufen. Ein Korper B ist eine zusammenhéngende, kompakte Menge
materieller Punkte, die sich durch ihre materiellen Randpunkte, d. h. durch ihre Oberfliche 01,
abgrenzt. Die Bewegungen materieller Korper werden durch die Bewegung ihrer materiellen
Punkte beschrieben. Dabei ist es notwendig, die materiellen Punkte zu identifizieren. Dazu bildet
man die materiellen Punkte auf Raumpunkte des EUKLIDschen Raumes R? ab und definiert
einen raumfesten Bezugspunkt 0. So ist die Lage eines materiellen Punkts durch Positions- oder
Ortsvektor x zu jedem beliebigen Zeitpunkt beschreibbar. Eine Unterscheidung der einzelnen
materiellen Punkte von B erreicht man durch Zuweisung einer kennzeichnenden Marke fiir jeden
materiellen Punkt. Hinzu definiert man, dass fiir eine ausgewdéhlte Zeit t = t( ein materieller Punkt
den Positionsvektor x (t9) = a hat. Diese Zuordnung des Postionsvektors als Marke fiir einen
materiellen Punkt wird oftmals auch als Referenzkonfiguration genannt. Folgende Annahmen
konnen kurz zusammengefasst werden:

* Der Punkt x (a,tg) = a wird durch seine Position zur Referenzzeit t = t; beschrieben.
* Die Abbildung (a,t) — x (a, t) ist stetig differenzierbar.
* Firjedes t >t ist B> a+— x(a,t) € x(B,1).

+ Die JACOBI- Determinante, auch Funktionaldeterminante genannt, istJ (a, t) = det %} >0

fiir alle t > ty, a € B. Dies bedeutet eine eindeutige Zuordnung und keine Selbstdurchdrin-
gung des Korpers 5.

Zur Beschreibung der Bewegung eines Kontinuums gibt es mehrere Methoden, wobei Truesdell
[211] hierfiir vier Methoden unterscheidet. Vielfach werden jedoch nur zwei Moglichkeiten auf-
gefiihrt, die auch hinter den Bezeichnungen x und a stehen:

» die LAGRANGEsche (korperbezogene) Darstellung a: Es wird ein bestimmter materieller
Punkt betrachtet und dessen Bewegung verfolgt.

+ die EULERsche Darstellung x: Es wird ein fester Punkt im Raum betrachtet, an dem Punkt
zu verschiedenen Zeitpunkten in der Regel verschiedene materielle Punkte vorzufinden sind.
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Fiihrt man wie in Abb. A.1 ein kartesisches Koordinationsystem mit den Basisvektoren e; und

einem Ursprung 0 ein, erhdlt man fiir die Bewegungsgleichung des materiellen Punktes mit der
Marke a:

x=ux;¢;, a=uae;, Xx(aty)=x

a

' Al
x=x(a,t) und a= . A1)

So kann die Verformung von B zu einem Zeitpunkt t durch das Zustandsfeld x : (a,t) — x(a, t)
oder durch das Verschiebungsfeld:

u: (a,t)~u(at)=x(a,t)—a (A2)

erfasst werden. Zur weiteren Beschreibung ldsst sich der rdumliche Deformationsgradient als ein

undeformierter Ausgangszustand aktueller Ausgangszustand

(Referenzkonfiguration) Bahn von P (Momentankonfiguration)
dB(t)

e

X3,d3 X1,d]

Abbildung A.1: Transformation von Linienelementen eines Kérpers im R3,
lokales Maf} definieren:

F(a,t):[Vax(a,t)]T:%eiej oder F(a,t) = [gradx (a,t)]T (A3)
J

Der Index T kennzeichnet dabei den transponierten Vektor. Mit dem Gradient lésst sich eine
Umrechnungsvorschrift zwischen materiellen und rdumlichen Linien-, Flichen- und Volumen-
elementen wiedergeben. Die durch den Deformationsgradienten F gegebene Abbildung von da

auf dx wird gesehen als Reihenschaltung einer reinen Streckung und einer reinen Drehung bzw.
umgekehrt, wobei die Zerlegung eindeutig ist. So gilt:

F=R-U=V:R, (A4
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wobei der Drehtensor R orthogonal ist und dies bedeutet:
RT-R=R-R'=1, det[R;]=1. (A.5)

Diese Darstellung wird auch als polare Zerlegung bezeichnet. Der im Deformationsgradient ent-
haltene Drehanteil ist fiir die Beschreibung des lokalen Deformationsverhaltens im Allgemeinen
von geringem Interesse, da er eine reine Starrkérperdrehung kennzeichnet. Eine Reihe von ver-
schiedenen Verzerrungsmaf3en lassen sich mit Hilfe des sogenannten Rechtsstrecktensors U und
Linksstrecktensors V darstellen:

=

U= (F'-F)?, A6

V:(F-FT)%.

So erhidlt man mit Hilfe der polaren Zerlegung den rechten und linken CAUCHY-GREEN-
Deformationstensor beziliglich der Referenz- und Momentankonfiguration:

C=U?=F".F, A7

B=U>=F F". '

Diese beiden Tensoren sind symmetrisch und entsprechen im unbelasteten Falle der Identitit I. In

der ingenieurtechnischen Betrachtung ist es wiinschenswert, dass der unbelastete Fall durch eine

Null ausgedriickt wird. Hierfiir werden der materielle GREEN-LAGRANGEsche Verzerrungtensor
1

E=(C-1) (A.8)

und der rdumliche EULER-ALMANSI-Verzerrungstensor

1 -1
=-(I-B A9
e=5(1-B) (A9)
eingefiihrt.
Des Weiteren wird der materielle Verschiebungsgradient

H=Vu(a)T (A.10)

dargelegt. Dadurch ldsst sich unter Voraussetzung kleiner Verzerrungen eine geometrische Li-
nearisierung durchfiihren. Die Bedingung fiir kleine Verzerrungen ist hierfiir, dass die Norm des
Verschiebungsgradienten 6 = ||H|| viel kleiner als Eins und die Norm des Verschiebungsvektors
||u]| viel kleiner als eine charakteristische Lange des Korpers Ly ist.

Der Deformationstensor kann iiber F = I 4 H beschrieben werden. Daraus ergibt sich:

C=I1+H+H"+H" -H,

A1l
B=I+H+H'+H-H". @10

Geht man von kleinen Verzerrungen aus, ergeben sich geringe Abweichungen des Deformations-
gradienten F mit der Indentitdt 1. Fiir diesen Fall lassen sich Verzerrungsmalie vereinfachen, man
spricht von geometrischer Linearisierung. So erhdlt man den rechten und linken CAUCHY-GREEN-
Deformationstensor in linearisierter Form:

Ciin =B, =I+H+H". (A.12)
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Der rdumliche bzw. materielle Verzerrungstensor wird im Folgenden nur als Verzerrungstensor
bezeichnet.

1 1
£=Ein=cin =5 (H+H") = > (qu (a) + (Vxu (a))T) (A.13)
oder in Indexschreibweise:
1
&ijeiej = = (u,;j +uj,i) eje;. (A.14)

2

Zudem kann aus dem Produkt in der Gl. (A.7) eine Symmetrie des Verzerrungstensors abgeleitet
werden:

e=g' oder (A15)
Ejjeje; = E;je;e; = Ejje;e;.

Neben den frei gewdhlten Koordinatensystemen, die durch die Transformationsbeziehung geéndert
werden konnen, gibt es ein besonderes Koordinaten- bzw. Achsensystem, das Hauptachsensystem.
Es kennzeichnet sich dadurch aus, dass an den Schnitten senkrecht zu den Achsen nur Normal-
dehnungen und keine Schubverformungen auftreten. So existiert ein Hauptachsensystem, in dem
die Gleitungen verschwinden und nur die Hauptdehnungen €;, €3 und €3 auftreten. Daneben gibt
es die drei Invarianten des Verzerrungstensors /¢, /I und /1I.. Die erste charakterisiert dabei die
Volumendehnung

Ig:evzskk:81+€2+£3:8pur(£) (A.16)

Dabei wird der Verzerrungstensor entsprechend

N5+ e (A17)

&
82l1+e bzw. Ej = 3

3
zerlegt. Der erste Summand beschreibt die Volumendnderung, wihrend durch den Deviator e eine
Gestaltinderung ausgedriickt wird. Auf die weiteren zwei Invarianten wird in dieser Arbeit nicht
eingegangen. Man kann jedoch in [3, 81] dariiber nachlesen.

A.1.2 Geschwindigkeits- und Beschleunigungsfelder

Neben dem Deformationsgradiententensor F, der die lokalen Deformationen von Linien- , Flachen-
und Volumenelementen charakterisiert, spielt in der Kontinuumsmechanik auch der Geschwindig-
keitsgradiententensor L eine wichtige Rolle, besonders in der Stomungsmechanik. Eine ausfiihrli-
che Betrachtung kann aus [4] entnommen werden. Mit Hilfe des Geschwindigkeitsgradiententen-
sors konnen die Anderungsgeschwindigkeiten materieller Linien-, Flichen- und Volumenelemente
analysiert werden. Zu Beginn fiihrt man die Geschwindigkeit v eines materiellen Punktes a durch
folgende Gleichung

= %x (a,t) (A.18)
ein. Dabei stellt der Operator ,,(.:.)“ die zeitliche Ableitung und % die substantielle Ableitung
in LAGRANGEscher Betrachtung dar. Das Einsetzen von a (x) fiihrt auf das Geschwindigkeitsfeld
v (x,t) in der EULERschen Betrachtung zuriick. Das Beschleunigungsfeld eines materiellen Punk-
tes ergibt sich analog:

v(a,t) = D

ﬁx(a’t) =x(a,t)

b(a,t) = %v(a,t). (A.19)
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Das Beschleunigungsfeld b (t) kann wieder durch Einsetzen von a (x) ermittelt werden, es kann
aber auch durch die substantielle Ableitung des Geschwindigkeitsfeldes v (x, t) bestimmt werden.
Die substantielle Ableitung setzt sich nach der Kettenregel der Differentialrechnung zusammen

v
Jt

Nun lésst sich der rdumliche Geschwindigkeitsgradiententensor L folgendermafen beschreiben:

b(x,t) = = +v-gradv. (A.20)

L =[grad(v(x,1))]T oder Lij=vi;. (A21)

Dabei lésst sich der Tensor in einen symmetrischen und antisymmetrischen Anteil aufteilen:

1 1
L=2 (L+L)+3 (L-L7). (A22)
Der symmetrische Anteil wird Streck- oder auch Deformationsgeschwindigkeitstensor
1
D= E (Vlg’j —+ ij) eje; (A.23)

genannt. Mit Hilfe der Koordinaten vom Deformationsgeschwindigkeitstensor konnen den An-
derungsraten fiir die Langen und die Winkel materieller Linienelemente zugeordnet werden. Der
antisymmetrische Anteil des Geschwindikeitsgradiententensors heifit Drehgeschwindigkeitstensor
oder Spintensor

1
W= E (V,‘_’j — Vj_’j) €€;. (A24)

Die Koordinaten des Drehgeschwindigkeitstensors konnen den Drehgeschwindigkeiten materieller
Linienelemente zugewiesen werden.

A.1.3 Belastungen und Spannungen

Die fiir die Deformation eines Korpers verantwortlichen dufleren Krifte, auch eingeprégte Kréfte
genannt, konnen in Korper- und Oberflachenkrifte unterteilt werden. Korperkréfte konnen auf die
Massen- oder Volumeneinheit bezogen werden. Fiir die Massenkraft f"dm ist z.B. f™ der Vektor
der Massenkraftdichte:

o= oo =r oo (A25)

wobei m die Masse und F die Korperkraft sind. Die Indizes x,y,z bzw. 1,2,3 deuten auf die
Vektorkomponenten in Achsenrichtung hin. Bezieht man die Korperkraft auf das Volumen V
ergeben sich fiir die Volumenkraft f¥d/ und Volumenkraftdichte:

=[N M= A AT (A.26)

p ist die Massendichte, oft nur kurz als Dichte benannt. Oberflichenkréfte wirken immer von
auflen auf eine Fliache 4 und werden daher auch als eingeprigte Kontaktkrifte bezeichnet. Die
Oberflichenkraft fOd4 ist auf die Flicheneinheit bezogen, wobei f© hierbei den Oberflichenspan-

nungsvektor darstellt:
=1 R L= B AT (A27)

Im vorherigen Kapitel wurde eine werkstoffunabhingige Kenngrofe zur Beschreibung der Ver-
zerrung vorgelegt. In diesem Kapitel fithrt man eine weitere werkstoffunabhingige Kenngréfie im
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Gebiet der Kinetik ein und leitet die grundlegenden Gleichungen der Dynamik her. Hierzu wird
einer der Oberflichenspannung dhnelnden Grofle aus dem Grenzprozess zu einer infinitesimalen
Flache

(A.28)

festgelegt, die allgemein als Spannung bezeichnet wird. Im allgemeinen Fall wird die Kraft durch
einen Vektor beschrieben. Dabei wirkt sie auf eine infinitesimale betrachtete Fliche, die durch
ihren Normalenvektor n charakterisiert werden kann. Es wird ersichtlich, dass die Spannung von
zwei Richtungen abhingig ist. Somit dient ein Tensor zweiter Stufe, der Spannungstensor,

O = 0jjee; (A.29)

zur Beschreibung des aktuellen Spannungszustandes. Aus diesem Spannungstensor ldsst sich mit
Hilfe des Normalenvektors der betrachteten Flachen der Spannungsvektor t berechnen

t=n-0 bzw. tie;=0jn;e. (A.30)

Diese Bedingung wird auch Satz von Cauchy genannt. Entsprechend der Argumentation mit ma-
teriellen und rdumlichen Koordinaten wird der PIOLA-KIRCHOFF- und der CAUCHY- Spannungs-
tensor unterschieden. Fiir kleine Deformationen kdnnen die Tensoren als gleich angenommen
werden.

Vielfach ist es niitzlich den Spannungstensor additiv zu zerlegen:

o =o0,l+s bzw. ojjeiej = O'n,(‘iijeie]- +sije;e;. (A.31)

mit der allseitig gleichen anliegenden Spannung o, = %0',:,-5,7. Aufgrund der Analogie zum
Spannungszustand in ruhenden Fliissigkeiten wird dieser Anteil auch als hydrostatischer Span-
nungszustand bezeichnet. Den Tensor s bezeichnet man als Spannungsdeviator.

A.1.4 Gleichgewichtsbedingungen und Bewegungsgleichungen

Des Weiteren wird eine der wichtigsten Betrachtungsweisen in der Mechanik erklart. Gleichge-
wichtsbedingungen, auch Bilanzgleichungen genannt, besagen, dass die zeitliche Anderung einer
ZustandsgrofBe gleich dem positiven oder negativen Zuwachs innerhalb des Gebiets und dem Zu-
bzw. Abfluss iiber die Gebietsgrenzen ist.

Befindet sich ein Korper in Ruhelage, somit im statischen Gleichgewicht, miissen die angreifenden
Oberflichenkrifte f9d4 = td4 und Volumenkrifte fVdV im Krifte- und Momentengleichgewicht
sein:

/ Vay + / tdd =0, (A32)
4 A

[xxtVyar+ [xxgaa—o. (A33)
Vv A

Mit der Gl. (A.30) und durch die Anwendung des Divergenztheorems, auch GAUSSscher Integral-
satz genannt [29], erhélt man:

Jua= [noat= [v.oar= [avear. (A34)
Y 4 v v
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Damit vereinfacht sich die Gl. (A.32) zu
/ (tV+V.6)dr=0. (A35)
4

Somit kann das integrale Gleichgewicht eines beliebigen Kontinuums in Ruhelage beschrieben
werden. Lisst sich durch hinreichende Glattheit und Stetigkeit des Integranden das Integral be-
rechnen, erhilt man die differentielle Gleichgewichtsbedingung:

V.o+f=0 bzw. dive+f =0 (A.36)

Erweitert man das Gleichgewicht durch die Trigkeitskrifte —Xdm = —Xpdl nach Newton und
d’Alembert ergibt sich

[ +9-0-px)ar —o. (A37)
vV

Nach den gleichen Uberlegungen, wie beim statischen Gleichgewicht, erhilt man das erste
Cauchy-Euler’sche Bewegungsgesetz:

¥V +div(e)=pik=pv=pb bzw. (f+0;,)e =pie:. (A.38)
Hingegen folgt aus dem Momentengleichgewicht mit dem Divergenztheorem
/(xfo) dV—/[V~(0'><x)]dV:0 (A.39)
14 v

und mathematischem Geschick [4] mit der Identitdt I fiir den statischen Fall des zweiten Cauchy-
Euler’schen Bewegungsgesetzes die Symmetrie des Spannungstensors

O = O'T bzw. Ojjeie; = O;;e;e; = 0j;e;e;. (A40)

A.1.5 Bilanzgleichungen

Als typische Bilanzgleichungen kdnnen Massenbilanz, Impulsbilanz, Drehimpulsbilanz, Energie-
bilanz sowie der zweite Hauptsatz der Thermodynamik genannt werden. Wobei die zwei letztge-
nannten in der hier angefiihrten Mechanik weniger von Interesse sind.

A.1.5.1 Massenbilanz

Die Masse eines Korpers ist durch das Volumenintegral iiber das Dichtefeld bestimmt

m= [ p(x,)dV = [ po(a,t)d¥p. (A41)
[

Durch die Gleichheit der Integrale wird die globale Massenerhaltung ausgedriickt. Die Masse dm
eines materiellen Volumens dV ist zu jeder Zeit konstant. Es darf keine Massenénderung entstehen:

Dm

D P , P
Dt:DtV/p(x,t)dV:V/[atp (x,6) + div (p (xﬂc)v)} dV:aV/po (a,0d=0. (A42)
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A.1.5.2 Impulsbilanz

Der Impulsvektor kann wie folgt

p(x,6) = /v(x,t)dm - /v(x,t)p (x,)dV = '/V(x,t)po (x,0) Vo (A43)
m Vv Vo

berechnet werden. Die Impulsbilanz beschreibt, dass die zeitliche Anderung des Impuls gleich der
Summe aller von auflien auf den Korper wirkenden Oberflichen- und Volumenkrifte ist. Diese
Impulsbilanz wird auch als erstes EULER-CAUCHY-Bewegungsgesetz bezeichnet. In globaler
Schreibweise lautet diese Bilanz
D
=2 t(x7n7t)dA+/fm(x7t)p (x,6)dV = /t(x7n,t)dA+/fV(x7t)dV. (A.44)
4 v 4 v

Betrachtet man die Bilanz lokal, so erhdlt man

V-O‘+pfm=diV0'+fV=p%. (A.45)

A.1.5.3 Drehimpulsbilanz

Der Drehimpuls- oder Drallvektor bestimmt sich iiber:

Io(p,t) = /.x x p (x,t)v(x,t)dV. (A.46)
4

Die Drehimpulsbilanz besagt, dass die zeitliche Anderung des Gesamtdrehimpulses eines Korpers
Ip (p,?) in Bezug auf einen Punkt O gleich dem Gesamtmoment aller aulen auf den Kdrper wir-
kenden Oberflachen- und Volumenkrifte beziiglich des gleichen Punktes O ist. Aus der riumlichen
Betrachtung ergibt sich folgende Drehimpulsbilanz

% = / [x x t(x,n,t)]d4 + /[x x p (x,t) ™ (x,t)]dV = / [grad (x x 6) +x x ¥ (x,7)] dV.
"o v i
(A47)
Bei der lokalen Betrachtungsweise gelangt man wieder zur Symmetrieaussage fiir den CAUCHY-
schen Spannungstensor 6 = G '.

A.1.5.4 Mechanische Energiebilanz

Im Folgenden sind einige klassische Energieprinzipien fiir deformierbare Korper zusammenge-
fasst. Wirken auf einen deformierbaren Korper duflere Oberflichen- und Volumenkrifte wird
der Korper deformiert und somit Arbeit geleistet. Als Folge der geleisteten Arbeit nimmt dieser
Energie auf. Dabei teilt sich diese mechanische Energie W in zwei Energietypen auf. Zum einen
wird ein Teil fiir die Deformation als kinetische Energie K, also Bewegungsenergie, verwendet.
Der andere bzw. der verbleibende Teil der Energie aus der Differenz der Gesamtenergie und der
kinetischen Energie ist die innere Energie I/, die bei Festkorpern der Verzerrungsenergie und bei
Fluiden der Energie entspricht, die eine viskose Dissipation wihrend der Stromung ermoglicht.
Die kinetische und innere Energie lassen sich wie folgt bestimmen

K= % /v~vpdV und U= /lupdV, (A.48)
\% \%
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wobei %pv -vund pu die spezifischen Energien oder Energiedichten und K+ die mechanische
Gesamtenergie des Korpers darstellen. Die Leistung der dufleren Kréfte 14sst sich folgendermafen

Pa :/t~vdA+ /pim~vdV (A.49)
J .
bestimmen. Der Energiesatz der Kontinuumsmechanik besagt, dass die Anderung der mechani-

schen Gesamtenergie eines Korpers den Energiefluss innerhalb des Kérpers ausdriickt. Dies kann
alternativ in leistungsbezogener oder energetischer Form ausgedriickt werden:

2(K+U):P3+Q,

D ~(1 ) (A.50)
— —v-v4u | pdV = v)dd+ [ (f"-vp)dV +Q
Dtv/ 2 / /

oder
15}
(K+U), - (K+U), = [ (Pt Q) (A.51)
f
wobei Q den Energietransport im Korper darstellt, welcher nicht durch P, erfasst wird (zum
Beispiel Warmetransport, der hier nicht néher festgelegt wird).

A.1.5.,5 Thermomechanische Energiebilanz

Die thermomechanische Energiebilanz wird auch als erster Hauptsatz der Thermodynamik be-
zeichnet. Zusitzlich zur mechanischen Energiebilanz wird der thermische Energietransport Q
ausfiihrlich betrachtet. Die Geschwindigkeit des Wérmetransports setzt sich aus zwei Teilen
zusammen, der unmittelbaren Warmezufuhr im Volumen infolge skalarer Warmequellen O, sowie
der Wirmezufuhr tiber die das Kontinuum umbhiillende Flache 4

0 :!pQrdV—}/ n-hdd. (A.52)

Dabei ist h der Warmestromvektor pro Flacheneinheit 4. Das Vorzeichen des Flachenintegralterms
wurde so gewihlt, dass ein positiver Warmestromvektor eine Warmezufuhr iiber die Oberfliche
bedeutet. Damit erhélt man aus der Bilanz der Energie

t
(IC+Z/{)27(/C+L{)1:/(P3+Q)dt odet K+U=Py+0Q (A.53)

4

durch Einsetzen der Ausdriicke KC, U, P, und Q:

Dt/( v- v+u) pdV = / dA+/(f“ vp)dV+/pQrdV /n-hdA (A.54)

A

oder in lokaler Form
pui=06--D—V-h+pQ,. (A.55)

Waihrend der erste Hauptsatz nur eine Aussage iiber den Erhalt der Gesamtenergie bei der Transfor-
mation von der einen in die andere Energieform gibt, liefert der zweite Haupsatz eine Angabe, wie
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reversibel beziechungsweise irreversibel eine Energietransformation ist. Dabei stellt die Entropie S
ein Mal} dar, wie viel Energie irreversibel von einer nutzbaren in nichtnutzbare, dies bedeutet nicht
mehr in mechanische Arbeit umsetzbare Energie, transformiert wird. Die Entropie definiert sich
tiber

S = / adm = / psdV, (A.56)
m Vv

dabei ist s spezifische innere Entropie. Der zweite Hauptsatz der Thermodynamik in globaler Form

lautet
D/pst>/prdV / LILY g /Q‘dV /(Vh hVT)dV (A57)

und in lokaler Form

pT5>pOr—V-h+h-VInT. (A.58)
Durch Umstellen und Anwenden der Produktregel kann der Hauptsatz als dissipative Ungleichung

- -D— p%—p DD—f—h-VlnTzo (A.59)

geschrieben werden, dabei stellt fg = f — T's die HELMOLTZsche freie Energie dar. Des Weiteren
wird die spezifische Dissipationsfunktion

D=0-D-p(fe+sT)>0 (A.60)

eingefiihrt, die ein MaB fiir die Energiedissipation im Kontinuum présentiert. Unter Verwendung
dieser dissipativen Funktion © kann man auch den ersten Hauptsatz wiedergeben

pTD——G D— p(DiEHl) (PO:—V-h),
(A.61)

pfa:m(pQr—M).

A.1.6 Materialverhalten

Die Gleichungen zur Beschreibung des spezifischen Materialverhaltens werden im Allgemeinen
als Konstitutivgleichungen bezeichnet. Alternativ treten auch Begriffe wie Materialgleichungen,
Stoffgleichungen, physikalische Gleichungen oder Zustandsgleichungen auf. Konstitutivgleichun-
gen verbinden alle von den makroskopischen Kontinuumsverhalten beschreibenden phdnomenolo-
gischen Grofen. Solche Grofen, die in der Physik auch Konstitutivgrolen genannt werden, wurden
zum Teil in den vorhergehenden Kapitel behandelt: Spannungen, Verzerrungen, Temperatur und
viele mehr. Die Beziehungen zwischen diesen Groflen konnen unterschiedliche mathematische
Strukturen aufweisen, wie zum Beispiel algebraische Beziehungen (HOOKEsches Gesetz) oder
Differentialgleichung (NEWTONsches Fluid).

Die Anzahl der zu bestimmenden Konstitutivgleichungen hidngt vom konkreten Kontinuumspro-
blem ab. Fiir den rein mechanischen Fall werden folgende Bilanzgleichungen eingefiihrt: die
Massenbilanz (eine skalare Gleichung), die Impulsgleichung (eine vektorielle Gleichung, dies
bedeutet bis zu drei skalare Gleichungen), die Drehimpulsbilanz (eine vektorielle Gleichung) und
die Energiebilanz (eine skalare Gleichung). In Summe entstehen im dreidimensionalen Fall acht
skalare Gleichungen zur Verfiigung. Jedoch sind folgende vierzehn Grofen zu bestimmen: die
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Dichte p (eine skalare Grofe), die Geschwindigkeit v (ein Vektor bzw. drei skalare Koordinaten),
der Spannungstensor ¢ (ein Tensor zweiter Stufe, daraus folgen neun Koordinatengréf3en) und
die innere Energie /. Um zur Losung fiir das notwendige Losungssystem zu gelangen, miissen
die Bilanzgleichungen durch sechs Konstitutivgleichungen ergdnzt werden. Der Inhalt dieses
Abschnittes wurde aus den Quellen [4] und [190] zusammengefasst.

A.1.6.1 Linear-elastische Festkorper

Aus den Impulsbilanzgleichungen ergibt sich ein Gleichungssystem mit drei Gleichungen mit neun
unbekannten Groflen (sechs Komponenten des symmetrischen Spannungstensors und drei aus den
Beschleunigungskomponenten). Um zu einer eindeutigen Losung des Systems zu gelangen miissen
sechs weitere Gleichungen eingefiihrt werden, die nicht mehr aus den allgemeinen Bilanzglei-
chungen formuliert werden kénnen. Dabei wird nun ersichtlich, dass die Materialunabhingigkeit
aufgegeben werden muss, da Systeme je nach Material unterschiedlich reagieren. Die Material-
gleichungen konnen mittels der Materialtheorie hergeleitet werden.
Das in dieser Arbeit verwendete linear-elastische Materialverhalten zeichnet sich durch vollstin-
dige Reversibilitdt aus. Es wird mit Hilfe des verallgemeinerten oder anisotropen HOOKEschen
Gesetzes beschrieben:

c=C--€ bzw. €=S--0, (A.62)

wobei C den Steifigkeits- und S den Nachgiebigkeitstensor darstellt. Der Operator “-- steht fiir
die zweifache Kontraktion zweier Tensoren. Dabei folgt offensichtlich, dass S = C~! ist und das

Jdo Je

C=== und S=-. A.63

oe " Jo (A.63)
gilt. Die Energie, die bei der Deformation eines linear-elastischen Materials bendtigt wird, muss
vollstindig im Material gespeichert werden. Hierfiir wird eine spezifische Grofe, die sogenann-
te volumenbezogene Forménderungsenergie oder Forménderungsenergiedichte dWr (siehe Gl.
(A.48) und [149]), eingefiihrt und durch verschiedene Integrationswege

£

£
pu:dWF:/0'~-d£:/(©-s)-~de:%(C~-s)~-£:%o~-£ (A.64)
0 0

bestimmt werden. Die spezifische komplementére Energie berechnet sich hingegen zu

(o) (o2
1 1
pu* = dwy :/£~-d0': /(S~~o)-~do = i(S~~o‘)~~o': €0 (A.65)
0 0
Als Potenzialformulierung erhdlt man:
ddWr adwy

= bzw. £=—F. A.66
° de ww. € Jdo ( )

Die Forménderungsenergiedichte dWr kann auch als volumenbezogenes elastisches Potenzial
betrachtet werden. Zudem lésst sich die Formanderungsenergiedichte in einen Energieanteil rei-
ner Volumenédnderung und in einen Energieanteil reiner Gestaltdnderung trennen [81]. Mit den
Beziehungen aus Gleichung (A.63) konnen der Steifigkeits- und Nachgiebigkeitstensor formuliert
werden: S S

C="5g bzw S=-5L. (A.67)
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Im allgemeinen Fall wird der Steifigkeits- und Nachgiebigkeitstensor durch einen Tensor vierter
Stufe mit 81 unabhéngigen Eintrdgen erfasst. Aufgrund der Vertauschbarkeit der Differentiation
(Satz von Schwarz [29]) in der Gleichung (A.67) ergibt sich eine Symmetrie der beiden Tensoren
( Cijir = Cpij und Sjjiy = Syiij). Zudem entstehen durch die Symmetrie von Spannungstensor &
und Verzerrungstensor € weitere Symmetriebedingungen (C;ji; = Cjigs bzw. Cjjiy = Cyjry). Somit
reduzieren sich die Tensoren auf 36 (6x6) Eintrage, wobei durch die Symmetrie nur 21 Gréflen
unabhéngig beziehungsweise unbekannt sind.

Durch diese Verringerung der unbekannten Eintrage ldsst sich zum Beispiel das Materialverhalten
in der iiblichen Schreibweise von Voigt [217] 6 = C€ mit 6 = [611 0y 033 Ol2 O3 631} T
und € = [811 &n &3 2€1p 283 2831]T uberfithren. Jedoch besitzt diese Schreibweise den
Nachteil, dass C als 6x6-Matrix nicht die gleichen Tensoreigenschaften aufweist, wie der vierstu-
fige Tensor C. Dieses Problem kann mit Hilfe der Schreibweise nach Fedorov [61], Covin und
Mebhrabadi [40, 144], o;h; = C;th; ® h; - -g,h; gelost werden. Die Gleichung fiir die Koeffizienten-
eintrige o;, & und C;; ldsst sich in Matrixform folgendermaf3en

o1l Ciin Cnz Cuzs V2Cis V2Ciis V2Ci €1

022 Co Cozz V203 V2Cn13 V20 €2

033 | _ G333 V2C333 V2C3313 V2C3312 £33 (A.68)
\/50-23 o sym. 2C2323 2C2313 2C2312 ﬁ823 ’
V2013 2C1313  2Cin2 V2er
V201, 2C1212 V2ers

notieren. Diese Schreibweise hat im Vergleich zur iiblichen VO1GTschen Notation den Vorteil, dass
die Tensoren h; einen sechsdimensionalen Raum aufspannen und normiert sind:

2

h) =e;®eq, h4:§(e2®e3+e3®e2),
2

h =e;R®eq, h5:§(61®e3+e3®61), (A~69)
2

h3:e3®e1, h6:§(61®62+61®62).

Dadurch konnen mit Hilfe der quadratischen Matrix die Invarianten, Eigenwerte und Eigentenso-
ren berechnet werden [25]. Der Tensor C beschreibt in sich dabei ein vollstdndig anisotropes und
damit auch triklines Materialverhalten.

Abhingig vom Material 14sst sich durch das Nutzen weiterer Materialsymmetrien die Anzahl der
unbekannten Eintriige reduzieren. Einen Uberblick iiber die méglichen verschiedenen Material-
symmetrien, die Symmetrieebenen und die Anzahl der unbekannten Eintrdge bzw. Materialkon-
stanten soll die Tabelle A.1 geben. Alternativ kann diese Art der Materialcharakterisierung aus
[25, 33] oder [39] entnommen werden. Als die wichtigsten Symmetrien fiir diese Arbeit werden
die orthotrope, kubische und isotrope Symmetrie angesehen.

Unter [sotropie versteht man ein gleiches Materialverhalten in allen Raumrichtungen, dies bedeutet
ein rotationsinvariantes Verhalten. Dadurch steigt die Anzahl der Symmetrieebenen gegen unend-
lich, wiahrenddessen sich die Zahl der unbekannten Materialkonstanten auf zwei reduziert. In der
Literatur findet man hiufig Paare dieser Materialkonstanten:

* das Elastizitdtsmodul £ und die Querkontraktionszahl v, die vor allem im Ingenieurbereich
Anwendung finden,
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Tabelle A.1: Ubersicht iiber die acht Materialsymmetrien (nach [25, 33, 39, 190])

Art der Materialsymmetrien

triklin monoklin | orthotrop | trigonal | tetragonal | kubisch | transveral | isotrop
isotrop
Anzahl der Materialsymmetrieebenen
0 1 3 3 5 9 oot 1 oo}

Anzahl der unbekannten Matrixeintrage

21

13

9

6

6

3

Steifigkeitsmatrizen
&
coocoo |
— <
o | —
) o
cocoo I S o
T ] © < — cococoo | o
" S | cccecsg " [ R
ccooco coocood = L
3 & =
<
. . coood cooad . .
cocod P cosod cosod -«
&
- s cool
T a3 TE 3T . Ige 3 IS F I . -
C:‘D‘S J:\OJ OHO:/! Oy o Oy o QQQS QHO:/! G
[S2S [VAVNVS ToC TTS STT [SReNS} STTT
oA H oA g o g ] g ta =) g o5 g o= H o= g
(SR o [SRe) o [SRe) o (SR} o (SR B (SR} 2 [SRe) H (SR B
I\J 1 Iu ] I 1 e ] I‘J 1 I‘J 1 Iu ] Ib
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Tabelle A.2: Konvertierung der elastischen Konstanten des isotropen Fall.

Zugrunde liegendes Konstantenpaar

Ev | Kv | Gv | KG | Au

K ‘ sibse ‘ K ‘ T ‘ K ‘ A+2u

E | E [3k(-2v)| 26(14v) | gKG | s
A A R A R A O = N o<
G=p | 2<f+v> B o A R A
| awiem | e | omiaw | K36 | 4

+ die LAME-Konstanten A und p, die vor allem fiir theoretische Betrachtungen genutzt wer-
den,

* das Kompressionsmodul K und das Schubmodul G, die im Materialverhalten einen hydro-
statischen und einen deviatorischen Anteil beschreiben oder

+ eine beliebige Kombination der aufgefiihrten Konstanten.

Eine Umrechnung der einzelnen Kombinationen kann zum Beispiel in [3] gefunden werden. So
lasst sich mit der Gl. (A.31) und mit den LAME-Konstanten folgende Spannungs-Dehnungs-
Beziehung aufstellen:

o = ASpur (&) I+2ue. (A.70)

Eine kleine Ubersicht iiber mogliche Kombinationen soll die Tabelle A.2 geben. Setzt man die
isotropen Materialkonstanten £ und v in die volumenbezogen Formédnderungsenergien (A.64) und
(A.65) erhilt man:

Ay =

E _ \4 2 o E o \% 2
m |:8 € 7172‘/ (Spur(e)) :| bzw. dWFlj* 2(1+v) |:€ljelj 1—2v (Ekk) :|./

dwg = [(1+v)a~‘o—V(Spur(G))z] bzw. diy;; =

1
2E 2E
(A.71)
Mit den Bedingungen, dass die Forménderungsenergien stets > 0 sein miissen und den Glei-
chungen (A.71) geniigen, ldsst sich erkennen, dass die Querkontraktionszahl v dabei im Intervall
(—1;0,5) liegen muss.
Die obere Grenze der Querkontraktionszahl bezeichnet dabei den Punkt, an dem das Volumen
eines elastisch beanspruchten Korpers konstant bleibt oder oder das Volumen beginnt sich im
hydrostatischen Druckfall zu vergroBern. Eine natiirliche untere Grenze fiir herkdmmliche Werk-
stoffe stellt v > 0 dar, da sich ein Korper unterhalb dieser Grenze zum Beispiel im einachsigen
Druckversuch in den beiden unbelasteten Richtungen zusammenzieht. Bei Metallen liegt die
Querkontraktionszahl iiblicherweise im Bereich von 0,25 bis 0,35 [13].
Im allgemeinen orthotropen Fall erhélt man neun unabhéngige Materialkonstanten, die sich durch
die drei Symmetrieebenen ergeben. In der Regel werden die Materialkonstanten £, v und G
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des isotropen Falls genutzt, indem sie unabhingig fiir jede Raumrichtung angenommen werden.
Daraus ergibt sich zum Beispiel folgender Nachgiebigkeitstensor:

1 vV \%
o 715—112 fg—i 0 0 0
5P 0 o
S= B h; @ h;, (A.72)
2Gy; ? 0
sym. Icy (l)
2611

wobei die Bedingungen der Hauptsymmetrie (‘é—‘lz = %‘, % = 2—332 und “;—331 = “;—113) bereits beinhaltet
sind [5].

Der kubische Symmetriefall befindet sich mit seinen drei Materialkonstanten und neun Symme-
trieebenen zwischen Orthotropie und Isotropie. Hierbei sind die Materialkonstanen im Gegensatz
zur Orthotropie in alle Raumrichtungen gleich (F = E; = E, = E3, v = Vi = Vi3 = V3 und
G = G2 = G13 = Gy3). Jedoch besteht keine Beziehung zwischen dem Schubmodul G und dem
Elastizititsmodul £ mit der Querkontraktionszahl v.

A.1.6.2 Ideales Gas

Ein einfaches Beispiel fiir materialtheoretische beschriebene Konstitutivgleichungen reprisentiert
die idealen Gase. Als Ausgangspunkt wird die Zustandsgleichung fiir ideale Gase

PV =maGasRiT (AT3)

genutzt. Dabei ist mg,s die Gasmasse, p der Druck, R; die spezifische Gaskonstante, 7' die
Temperatur und ¥ das Volumen. Die spezifische Gaskonstante hidngt von der Molmasse M und
der allgemeinen Gaskonstante R, ab:

R
Ri= Ma (A.74)
Mit der Bestimmungsgleichung fiir die Dichte
MGas
= A.75
p="0 (A73)
erhdlt man fiir den Druck: RT
PR
= A.76
P=" (A.76)

Aus der Zustandsgleichung kann folgender Spannungstensor analog zum ruhenden Spannungszu-
stand von linear viskosen Fluiden,

pR,T
M
fiir den hydrostatischen Spannungszustand abgeleitet werden.

o=-—pl=—

I (A7)

A.1.6.3 Linear-viskose Fluide

Im Vergleich zu den Festkorpern kénnen Fluide im Ruhezustand keine Schub- bzw. Scherspannun-
gen aufnehmen, d. h. der Spannungszustand ist im Ruhezustand durch den Kugeltensor gekenn-
zeichnet. Damit ergibt sich als Stoffgleichung fiir ideale Fluide folgende Beziehung:

o =—pl oder G,-A/-:—p(p,T)S,-j, (A.78)
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wobei der Druck p als unabhéngige mechanische Variable anzusehen ist, die mit der Dichte p und
der Temperatur 7 in einer thermischen Zustandsgleichung des Fluids zusammenhéngen, wie zum
Beispiel fiir ein ideales Gas.

Im Falle einer Bewegung D # 0 kann ein zéhes Fluid viskose Spannungen aufnehmen, die durch
einen zusitzlichen Term 6V zum Ausdruck kommen und vom Verzerrungsgeschwindigkeitstensor
D mit D;; = (Vi, itV j‘,-) /2 abhéngen, so ergibt sich folgender Spannungszustand:

o= —pltaY, (A.79)

Der Term ¢V wird auch Extraspannungstensor oder viskoser Spannungstensor genannt. Bei Li-
nearitit ist dieser Tensor durch eine lineare Transformation

oV =V(p,T)--D (A.80)

oder
0, =Viju (P, T) Dy (A.81)

1

gegeben, wobei V den Viskositétstensor vierter Stufe darstellt und die viskosen Eigenschaften
beinhaltet. Man kann auch ein viskoses Fluid als Stoff definieren, dessen Eigenschaften richtungs-
abhingig sind. Solche Fluide werden als einfach bezeichnet. Beschreibt der viskose Spannungs-
tensor ein homogenes isotropes Material ergibt sich folgende isotrope Tensorfunktion von D:

oV =Bl +BiD+BD>+ -, (A.82)

wobei f; = fB; (Inv(D)). Im Rahmen der physikalischen Linearisierung wird daraus eine lineare
Funktion
6V =Byl +BiD, (A.83)

wobei Bo =AY (I--D)I = AVSpur (D) = AVdiv(v)Iund B; = 2uV. So ergibt sich der Spanungs-
tensor eines zdhen viskosen Fluids

o=—pl+2uVD+AY (I1--D)I = —pI+2u D+ 1VSpur (D) L. (A.84)
Fiir ein inkompressibles Fluid erhélt man folgenden Spanungstensor:
o=—pl+2uVDP, (A.85)

dabei ist DP der Deviator von D.

A.1.7 Anfangs-Randwertproblem und HAMILTONsches Prinzip

Durch Einsetzen der Beschreibung des Materialverhaltens in die lokalen Bilanzgleichungen ge-
langt man zum vollstdndigen Anfangs-Randwertproblem in den Verschiebungen [220]. Daraus
ergeben sich die Feldgleichungen (partielle Differentialgleichungen)

pt¥ +div(C--€) = pv = pii (A.86)

des schwingenden dreidimensionalen Festkorpers. Um zur Losung des Anfangs-Randwertproblems
zu gelangen, bedarf es sowohl der Anfangsbedingungen fiir Verschiebungen zum Zeitpunk Null
u(t=0) und der Geschwindigkeit zum Zeitpunk Null v (t = 0) als auch der Randbedingungen.
Dabei konnen drei Arten von Randbedingungen
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« fiir die Verschiebungen: u = ug auf d 8, (Dirichlet, geometrisch oder wesentlich),
« fiir die Spannungen: t = to auf d3; (Neumann, dynamisch, natiirlich oder restlich) und
+ gemischte aus Verschiebungen und Spannungen

auf den Rand des Korpers, 0B = 9B, N d B, unterschieden werden.

Eine weitere Herleitungsmoglichkeit der beschreibenden partiellen Differentialgleichungen stellen
die Prinzipien der analytischen Kontinuumsmechanik dar. Fiir die Herleitung der Bewegungsglei-
chungen eines Kontinuums kann das HAMILTONsche Prinzip genutzt werden. Es beruft sich auf
das Prinzip von LAGRANGE-D’ALEMBERT [220], welches in der Statik besser als Prinzip der
virtuellen Arbeit bekannt ist. Mit der kinetischen Energie K (A.48) und dem Potenzial I1, das sich
aus inneren und duBeren Potenzialen zusammensetzt, erhilt man folgende Beziehung:

t t t t
6/5(u)dt+5/W5dt: 5/1C(u) fl'I(u)dtJré/ngt: 0, (A87)
t t t ol

wobei £ = K —I1die LAGRANGEsche Funktion, § die Variation und Wy die virtuelle Arbeit der po-
tenziallosen Krifte bezeichnet. Dabei ist ersichtlich, dass die Variation, die sich aus der Differenz
zwischen der kinetischen und der potenziellen Energie der virtuellen Arbeit zusammensetzt, fiir
den Ubergang eines elastomechanisch-dynamischen Systems von einem Zustand in einen anderen
im Zeitintervall [, t2] Null betrégt. Fiir ein konservatives elastomechanisch-dynamisches System
erhilt man ein Extremalprinzip [5]:

tZ. EZ_
S/L(u)dt:S/IC(u)—H(u)dt:O (A.88)
£ f
mit | {
K(u)zi/pﬁ-ﬁdei/pv-vdV (A.89)
4 4
und 1 1 1
Nu)== [c-e(w)dV/—= [ V. udV —= [ 1O uda. (A.90)
st -

Folglich wird dieses allgemeine Prinzip auf plattenférmige Strukturen angewandt.

A.2 Plattenschwingungen

Platten stellen ebene Flichentragwerke dar, bei denen die Belastung senkrecht zur Mittelfliche
auftritt. Wird hingegen ein ebenes Flachentragwerk parallel zur Mittelfliche belastet, spricht man
von einer Scheibe. Plattentheorien beschreiben raumliche Spannungs- und Verzerrungszustéinde
durch KenngréBen, die auf der Plattenmittelfliche definiert sind. In der Technischen Mechanik
wird fiir ausreichend diinne Platten (Verhéltnis von Plattendicke /4 zu Kantenldnge / < 0,1) ge-
wohnlich die klassische Kirchhoffsche Plattentheorie verwendet. Dieses Theoriemodell entspricht
einer schubstarrren Platte mit kleinen Durchbiegungen. Fiir diinne bis miBig dicke Platten (h//
< 0,2) findet die Mindlinsche Plattentheorie zumeist ihren Einsatz. Dieses Modell nach Mindlin
kommt einem Modell einer schubelastischen Platte mit kleiner Durchbiegung gleich und wird oft
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als Schubdeformationstheorie erster Ordnung bezeichnet bzw. klassifiziert. Viele reale Flachen-
tragwerke im Maschinenbau fallen in den Bereich der miBig dicken Platten. Des Weiteren verliert
die einfache Biegetheorie bei hoheren Frequenzen allmihlich ihre Giiltigkeit [41]. Aus diesem
Grund wird in dieser Arbeit die MINDLINsche Plattentheorie verwendet. Um die Unterschiede zu
verdeutlichen wird zu Beginn auf die schubstarre Platte eingegangen.

A.2.1 KIRCHHOFFsche Plattentheorie

Die sogenannte klassische Plattentheorie wurde im Jahre 1850 von Kirchhoff entwickelt [6]. Die
Anwendung dieser Theorie ist nur fiir hinreichend diinne Platten giiltig. Zudem gelten folgende
Annahmen:

Das Plattenmaterial ist isotrop und homogen. Es gilt das verallgemeinerte HOOKEsche
Gesetz.

Die Plattenmittelfliche beschreibt bei der Biegeform eine neutrale Ebene. Fiir alle Punkte
der Plattenmittelfliche erfahren die Verformung u; (x1,x2,0) = 0, u (x1,x2,0) = 0 und
u3 (x1,x2,0) # 0. Die Durchbiegung w ist im Vergleich zur Plattendicke klein und die
Kriimmungen der Biegeflichen diirfen linearisiert werden k11 ~ —w 11, K»» = —w 2 und
K11 &~ —w 2. K1 und Ky, stellen die Kriimmungen der Mittelflichen in den parallelen
Ebenen zur x1,x3- und x;,x3 -Ebene dar. Die Kriimmung ist die Verwindung oder Drillung
der Mittelflache.

Alle Punkte auf einer Normalen zur unverformten Mittelflache bleiben auch Punkte der Nor-
malen zur verformten Mittelfliche (Verallgemeinerung der BERNOULLI-Balken-Hypothese
auf Platten, auch zweite BERNOULLI-Hypothese oder KIRCHHOFFsche Normalenhypothese
genannt [6]).

Die Punkte auf einer beliebigen Normalen zur Mittelfliche dndern bei der Verformung ihre
gegenseitige Abstinde auf dieser Normalen nicht, d. h. die Platte wird in der Dickenrichtung
als dehnstarr betrachtet (erste BERNOULLI-Hypothese).

Die Normalspannung o33 wird als sehr klein gegeniiber den anderen Normalspannungen o7
und 0y, gesehen und folglich gilt 033 ~ 0 (statische Hypothese).

Die Schubspannungen 073 und 0,3 miissen aus Gleichgewichtsbedingungen bei der Platte
einen von Null verschiedenen Wert annehmen. Angesichts der kinematischen Hypothese
€13 = &3 = 0 ist dies nur fiir einen Schubmodul G — e mdglich. Dies bedeutet eine
schubstarre Platte.

die Normalspannung o33 wird fiir das schubelastische Plattenmodell vernachléssigt

Die Abmessungen und Groflen fiir die Verschiebungsgleichungen fiir ein herausgeschnittenes
differentielles Plattenelement im unverformten und verformten Zustand zeigt die Abb. A.2. Dabei
stellen y; und y, die Drehwinkel der Plattenquerschnitte um die x,- und x;-Achse dar. Hierbei
handelt es sich um sehr kleine Winkel und es gelten im Rahmen einer Theorie erster Ordnung
folgende Gleichungen:

cosyj R cosyr =1, sinyprRy xtany;xw, Sinyh Ry Rtanyh X w). (A91)

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

Theoretische Grundlagen 135

T

e

] \
4&‘.’? ””” e == e ”HI u
T 9’
I
! unverformete
; Mittelflache
I
I
‘ um w(xy,x7)
verformete
Mittelfiache

X3 uy (x1,x2,x3) x up (x1,x2,%3)

Abbildung A.2: Kinematische Beziechungen am schubstarren Plattenelement nach [6].

Die kinematischen Hypothesen der schubstarren Platte fithren zu den folgendenen Verschiebungs-
gleichungen:

uy (x1,x2,%3) = —x3w,1 (x1,X2),
up (xX1,%2,X3) = —x3w (x1,X2), (A.92)
u3 (x1,Xx2,x3) = w(x1,x2).

Aus den Verzerrungs- Verschiebungsgleichungen

11 = Ul 1 = —X3W 11,
€ = Uy = —X3W 22,
Y2 =2€p=uip+uy1 = —2x3w,12
’ (A.93)
Y1 =261 =ux1+uy1 = —2x3w21,
Vi3 =2&3 =u13+us =u3+wym,
Y3 =2€3 =up3t+uzy =up3+wy
wird erkenntlich, dass die Verzerrungen €11, &, und y3 = 7 linear abhingig von x3 sind.
Dahingegen zeigen sich die Schubverformungen als von x3 unabhéngige GroBen. Aus der KIRCH-

HOFFschen Normalenhypothese erfolgt, dass die Schubverformungen bzw. -verzerrungen ;3 und
Y23 vernachldssigt werden kdnnen:

N3=2e3=uiz+w1=0—-u3=wp,

(A.94)
Y3 =23 =uip+wr=0—uy3=wp.

Begriindet auf der ersten BERNOULLI-Hypothese ergibt sich, dass 1 3 und u; 3 iiber die Plattendi-
cke konstant sind. Zugleich konnen die Verdrehwinkel als Ableitung der Durchbiegungen ermittelt
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werden (siche Abb. A.2)

YiRup3=—wi,

VIR U3 =—wp.

(A.95)

Aus den statischen und kinematischen Hypothesen fiir die KIRCHHOFFsche Platte geht hevor, dass
fir die klassische Plattentheorie ein ebener Spannungszustand angenommen werden kann. Ein
Elastizitatsgesetz gibt es deshalb nur fiir die Spannungen oy, 022 und o7,. Die Schubspannun-
gen o3 und 073 werden allein aus den Gleichgewichstbedingungen ermittelt. Die Spannungen
033, 013 und 03 liefern keinen Anteil zur Formédnderungsenergie einer schubstarren Platte. Die
Spannungen werden durch Integration tiber die Plattendicke / auf die Schnittlinge bezogenen
Schnittgroen zusammengefasst. Als Ergebnis der Plattengrof3en verbleiben Biegemomente, Tor-
sionsmomente und Querkréfte:

—h/z

Cpmx3dx3 =nipm (x1,x2) Biegemomente [Kraft],

—h)2
—h/2
/ Opnx3dxs =mpyy, (x1,x2) Biegemomente [Kraft], (A.96)
—h)2
—h/2
/ Om3dxs =g (x1,x2)  Querkrifte [Kraft/Lange]
—h/2

mit m = 1,2 und n = 1,2 und m # n. Die Gleichgewichtsbedingungen fiir die Plattenschnittgro-
Ben werden am unverformten differentiellen Plattenelement formuliert. Sie beriicksichtigen das
Kriftegleichgewicht in x3-Richtung und die Momentengleichgewichte um die x;- und x;-Achse.
Vernachldssigt man die betragsmiBig kleineren Terme hoherer Ordnung, erhélt man zusammenge-
fasst die Gleichgewichtsbedingungen der Schnittgroen an einem Plattenelement:

q11+q22+q=0,
miy,1+m12—q1 =0, (A.97)
my 1 +mip1—q2=0.

Die visuelle Darstellung der aufgefiihrten Schnittgroen kann Abb. A.3 entnommen werden. Die
dullere Belastung ist durch dulere Krifte ¢ sowie durch duflere Momente 1 und m; gekennzeich-
net. Die Grofen g und g; représentieren Querkrifte, m; und my; stellen Biegemomente dar. m;
bezeichnet das Drillmoment. Aus den Gln. (A.97) kdnnen die Querkrifte eliminiert werden, indem
man die beiden Momentengleichungen nachdifferenziert. Unter der Betrachtung von mj, = my;
erhélt man:

miy 1 +mia 12 +mp 2 =—q. (A.98)
Es ergibt sich eine statisch unbestimmte Gleichung mit drei unbekannten Schnittmomenten m1,

my und myy. Den Zusammenhang zwischen Schnittgroen und Verschiebung liefert das Werk-
stoffgesetz. Fiir die schubstarre Platte wird das verallgemeinerte HOOKEsche Materialgesetz fiir
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Abbildung A.3: PlattenschnittgroBen nach [6]: a) Krifte und Momente und b) Spannungen.

ebene Spannungszustinde zu Grunde gelegt

€ —1(0 VOy) — O] = (e11+ven)
ll—E 11 22 11—17‘/2 11 22)
1 E
&2 =g (0n—vou) = o= (en+ven), (A.99)
v
E1p = O12 — 012 = €12.
12 12 12 1+v 12

Substituiert man die Verzerrungen durch die Ableitung der Durchbiegung w(x;,x;), kann man
alle Spannungen durch eine Funktion w (x;,x;) beschreiben. Durch Einsetzen des von w (x1,x2)
abhingigen Materialgesetzes in die Gln. (A.96) ergeben sich die Materialgleichungen fiir die
Schnittmomente

miy (x1,%2) = —Dpr (w11 +Vw22),
my (x1,%2) = —Dp1 (W2 +vw 1), (A.100)
mia (x1,x2) = —Dpy (1 — nu) w 12,

mit der Biegesteifigkeit Dp; = . Sie wird oft auch als Plattensteifigkeit benannt.

ER
12(1-v2)
Aufgrund der schubstarren Modellannahme verschwinden die Schubverzerrungen in Plattendi-
ckenrichtung und es existiert kein Elastizititsgesetz fiir die Querkrifte. Sie werden allein aus
den Gleichgewichtsbedingungen (A.97) berechnet. Aus den Gln. (A.98) und (A.100) wird die
Gleichung zur Durchbiegung der Plattenmittelflache fiir konstante Plattensteifigkeit Dp; und Quer-
kontraktionszahl v bestimmt

DpiAAW (x1,x2) =q. (A.101)

Bei dieser Durchbiegegleichung handelt es sich um eine partielle Differentialgleichung vierter
Ordnung. Als kinematische Freiheitsgrade an den Réndern einer Platte kénnen die Durchbie-
gung und die Verdrehung des Plattenrandes, als statische Randgroflen das Biegemoment, das
Torsionsmoment und die Querkraft vorgegeben werden. Bei der Formulierung der statischen
Randbedingungen ergeben sich aber Probleme. Die dem Modell der schubstarren Platte voraus-
gesetzten Hypothesen haben das mathematische Plattenmodel vereinfacht. Die Gleichung fiir das
schubstarre Plattenmodell reduziert das mathematische Modell auf ein lineares Randwertproblem
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vierter Ordnung. Fiir partielle Differentialgleichungen vierter Ordnung konnen pro Rand jeweils
nur zwei Randbedingungen vorgegeben werden, auch wenn fiir den Plattenrand drei Schnittgrofien
definiert sind. Teilweise kann man dieses Problem umgehen, indem man das Torsionsmoment und
die Querkraft am Rand zu einer Ersatzquerkraft zusammenfasst.

Erweitert man die Strukturanalyse auf dynamische Antworten werden die Trigheitseffekte be-
riicksichtigt. Es ergibt sich eine resultierende Trigheitskraft dmw mit der Masse dm = pdA.
Dementsprechend wirkt auf ein Plattenelement d4 in x3-Richtung eine positive Flichenlast ¢ und
in negativer x3-Richtung die Trigheitskraft p/sw. Die Plattengleichung ergibt sich folgenderweise:

DpiAAw (x1,x2,t) = q (x1,X2,t) — ph. (A.102)

Werden keine duBeren Lasten ¢(¢) = 0 aufgebracht, folgt hieraus die Gleichung zur Berechnung
der freien Eigenschwingung eine schubstarren Platte:

DpAAw (xl ,xz,t) = —phw. (A.103)

Ausgangspunkt fiir die Energieformulierung einer schubstarren Platte sind oftmals Variationsprin-
zipien. Die Formédnderungsenergie ldsst sich durch Integration der volumenbezogenen Formén-
derungsenergie (Gl. (A.64)) iliber das Volumen bestimmen. Aufgrund 713 = 131 = 0 gehen die
Schubspannungen 073 und 03] nicht in die Gleichung fiir Forménderungsenergie ein. Und mit
£33 = 0 steuert die Spannung 033 keinen Energieanteil bei. Damit erhilt man

1 1
Wf:Z/{:E/sn(Cnst:E/o%edV,
|4

4 (A.104)

1
W= 5/0'11811 + 022& +2012€12dV.
v

Ersetzt man die Spannungen nach dem HOOKEschen Gesetz durch die Verzerrungen, erhélt man
folgende Formulierung fiir die Forménderungsenergie

1 E I-v
We = EV/W (8121 +&% +2V811822+77122) dr. (A.105)

Fiir weitere Betrachtungen ist es von Vorteil die Energieformulierungen in ausfiihrlicher Schreib-
weise zu notieren. Beschreibt man die Verzerrungen durch die Ableitungen der Biegefliche,
gelangt man tiber die Integration iiber die Dicke zu

1 9w 2 *w 2 9*wa*w 2w 2
Wf_zA/Dp.Kaxz) *(Tﬁ) +ZVW+Z(17v)<axay) A4 (A.106)

Die kinetische Energie lasst sich nach Gl. (A.89) bestimmen. Beschreibt man die Geschwindigkeit
durch die zeitliche Ableitung der Biegefliche w ergibt sich fiir eine konstante Plattendicke und
Dichte:

/cfl/ av = Ln / M\ 4 (A.107)
’2(1/”"v 2P\ ) ¢ '
A
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A.2.2 MINDLINsche Plattentheorie

Die klassische Plattentheorie, die dem Modell der schubstarren Platte mit kleinen Durchbiegungen
entspricht, hat sich fiir viele praktische Anwendungen bewéhrt, soweit die Platten hinreichend
diinne Platten und die Durchbiegung klein im Verhéltnis zur Plattendicke sind. Auch fiir Platten
mittlerer Dicke kann, falls sich die Durchbiegungen auch weiterhin klein gestalten, ein zweidimen-
sionales, lineares Plattenmodell Grundlage einer Strukturanalyse sein. Analog zur Balkentehorie
nimmt der Einfluss der Schubverformungen in Querrichtung mit zunehmender Dicke % zu. In
der heutigen Literatur werden diese erweiterten Plattentheorien oft klassifiziert in eine Schub-
deformationstheorie erster Ordnung und héherer Ordnung. Fiir die Ingenieuranwendungen hat die
Schubdeformationstheorie erster Ordnung, die auch als MINDLINsche Plattentheorie bezeichnet
wird und das Verhalten schubelastischer Platten mit kleinen Durchbiegungen beschreibt, sehr
grofle Bedeutung.

Fiir diese schubelastische Plattentheorie gelten folgende Annahmen:

Das Material ist ebenfalls homogen und isotrop. Weiterhin gilt das verallgemeinerte HOO-
KEsche Gesetz.

Die Plattenmittelfliche stellt bei der Biegeverformung eine neutrale Ebene dar. Die Punkte
der Mittelpunkte weisen folgende Veraschiebungen u; (x1,x2,0) = 0, u3 (x1,x2,0) = 0 und
u3 (x1,x2,0) = w(xy,x2) # 0 auf. Die Durchbiegung gestaltet sich klein im Vergleich zur
Plattendicke und die Kriimmungen der Biegefliche werden linearisiert k11 =~ Y11, K2 ~
Y22, K2 R Y12+ Y2

Alle Punkte eines Linienelements orthogonal zur unverformten Plattenmittelfliche dndern
bei der Verformung ihre Abstinde nicht (€33 ~ 0) und bleiben Punkt der Geraden, d. h. die
Platte in Dickenrichtung ist dehnstarr (erste BERNOULLI-Hypothese)

Die Normalspannung 033 < max (011, 022) wird bei der Mindlinschen Theorie vernachlés-
sigt, was 033 =~ 0 bedeutet.

Die KIRCHHOFFsche Normalenhypothese (zweite BERNOULLI-Hypothese) verliert ihre
Giiltigkeit.

Ebenso wie bei der KIRCHHOFFsche Plattentheorie gilt die Annahme o33 =~ 0. In der Elastizi-
titstheorie ergibt sich bei dieser und der Annahme €33 ~ 0 ein ebener Spannungszustand und nd
zugleich ein ebener Verzerrungszustand, was nicht konsistent ist. Entgegen den widerspriichlichen
Annahmen, fiihren sie in der Anwendung fiir Platten auf zuverlassige Strukturmodelle. Fiir das
schubelastische Plattenmodell bleiben somit alle in Abschnitt A.2.1 formulierten Voraussetzungen
des schubstarren Modells bis auf die KIRCHHOFFsche Normalenhypothese erhalten. Wahrend bei
der schubstarren Plattentheorie alle Verformungen durch eine GroBe, die Durchbiegung w (x1,x7),
beschrieben werden konnen, sind bei dem schubelastischen Modell neben der Durchbiegung
w(x1,x2) auch die Querschnittsdrehwinkel y; (x1,x2) und y, (x1,x2) unabhidngige GrofBen. Aus
weiteren Ableitung wird erkenntlich, dass fiir das schubelastische Modell auch fiir die Schub-
spannungen o3 und 0»3 ein Elastizititsgesetz formuliert werden kann. Analog zum schubstarren
Modell werden die kinematischen Gleichungen, die Gleichgewichtsbedingungen und das Materi-
algesetz formuliert sowie die Plattengleichungen abgeleitet. Die Betrachtung beschréankt sich auf
die konstante Dicke 4. Gleichermafen folgt aus der ersten BERNOULLI-Hypothese wie bei der
KIRCHHOFFschen Plattentheorie €33 &~ 0. Damit gilt fiir die schubelastische Platte die kinematische
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Abbildung A.4: Kinematik am schubelastischen Plattenelement: a) Schnitt x; = konst., und b)
Schnitt x; = konst. [6].

Hypothese (siche Abb. A.4)

up (x1,%2,%3) = X391 (X1,%2)
uz (x1,%2,%3) = X391 (X1,X2) (A.108)
w(x1,x2,x3) = w(x1,x2) .

Die Gleichgewichtsbedingungen sind identisch mit denen der schubstarren Platte. Die Gln. (A.97)
und (A.98) behalten ihre Giiltigkeit.

el =u1 = —X3Y11, Y2=26enp=u2+uy1 =x3(Yi2+Vi2),
& =uxp=-—X3Y02, V3=283=u13+u31=VyY,1+wi, (A.109)
3=u33=w3=0, P3=2&3=up3+uzp="yY2+w.

Mit der Annahme o33 = 0 erhilt man aus dem verallgemeinerten Hookeschen Gesetz

€ —l(c —VOon) — 011 = — (€11 + ven)
n=z(on 22 =1z 22),
€ —1(0' Voy1) — 011 = E (e +ven)
22 =5 (00 11 =1 e 11) 5
1 2(1+v) E
— — 51y — =2Ge, = A.110
€12 = 5 ~012 7 012 = 012 &= 18 ( )
1 2(1+v) E
— oy =17 -2 =
€13 = 5031 7 93170 Gesy 1+v831’
1 2(1+v) E
= — =— — =2G&n =
&3 3 G023 E 023 — 023 €23 1 +v£23’

wobei G den Schubmodul darstellt. Im Gegensatz zu den konstitutiven Gleichungen fiir die
schubstarre Platte impliziert dieses Elastizititsgesetz auch Gleichungen fiir die Schubspannungen
013 und 023. Setzt man die Verzerrungs-Verschiebungsbeziehungen (A.109) in die Gl. (A.110) ein,
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bekommt man als Resultat das Elastizitdtsgesetz fiir die schubelastische Platte

O11 (w]l ‘w22)7 O13 2 (wl W1)>
1 V2 5 s (1 V) :
022 (‘I/22 Wl 1)7 023 (WZ WZ)- (1‘111)
1 V2 5 V s 2(] ) 32/
012_2 1 (',l/lz W21)~
( ) ’ :

Die Spannungen oy, 027 und 013 haben, ebenfalls wie in der klassischen Plattentheorie, einen
linearen Verlauf iiber die Dicke 4. Die Schubspannungen oj3 und o33 sind unabhingig von
x3 und damit konstant iiber die Plattendicke 4. Dies demonstriert den Naherungscharakter des
schubelastischen Plattenmodells. Aus dem Gleichgewicht am differentiellen Element ergeben sich
iiber & parabolische Verlaufe fiir die Schubspannungen im Gegensatz zur schubstarren Platte (vgl.
Abb. A.3). Formuliert man das Materialgesetz fiir die SchnittgroBen, wird dieser Widerspruch
verdeckt, da die Verldufe der Schubspannungen daraus nicht ersichtlich sind

mi1 = Dpi (W11 +v2y2),
may = Dpi (Y22 +vy11),

1—-v
leZTD(WlAZ‘FWZ,I): (A.112)

q1=Ghs(y1 +w,1),
q1=Ghs(y1 +w1),

wobei Dp die Plattensteifigkeit ist. In den Gleichungen fiir ¢ und ¢, wird die wirkliche Plattendi-
cke & durch eine reduzierte Schubdicke /4 substituiert, um den Fehler der konstanten Schubspan-
nungsverteilung iiber /4 zu berichtigen.

Fiir die Ableitung der Plattengleichungen ist es oftmals hilfreich die folgenden Abkiirzungen
einzufiihren

Oxp,x2)=yi1+w und W(x;,x) =y -y, (A.113)

Das schubelastische Plattenmodell kann somit durch drei partielle Differentialgleichungen zweiter
Ordnung, d. h. durch ein Problem sechster Ordnung vollstindig formuliert werden
Dpy 1 —v Dp

AD,
Ghs 2 Ghg

DpA® = —q, Aw=—-®+ AY —¥ =0. (A.114)
Die Schubdicke s = xh wird aus energetischen Betrachtungen bestimmt. Berechnet man die
komplementire Formédnderungsenergie einmal mit parabolischem Spannungsverlauf iiber 4 und
einmal mit der durch den Schubfaktor x ergdnzten konstanten Verteilung und setzt man beide
Energieausdriicke gleich kann der Korrekturfaktor x bestimmt werden [6]. Fiir eine isotrope Platte
ergibt sich ein Wert fiir den Schubfaktor k¥ = %.

Wihrend die Schubspannungen o3 und 073 bei der schubstarren Platte nicht in die Gleichung fiir
die Formédnderungsenergie eingehen, liefern sie bei der schubelastischen Betrachtung einen Anteil
an der Forméinderungsenergie. Aufgrund €33 =~ 0 gibt es weiterhin keinen Energiebeitrag aus der
Normalspannung 033. Aus

L
Wf:u:5/5-~c-~st (A.115)
V
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erhilt man unter Beriicksichtigung der Verzerrungs-Verschiebungsbezichung und des Elastizitts-
gesetzes fiir die schubelastische Platte

1 E
Wr = 5/ {W (8121 +8222 +2V811822) +G(7122 Jr7’223 +7’123)} ar. (A.116)
v

Setzt man in Gl. (A.116) die Verzerrungen nach Gl. (A.109) ein und integriert in x3-Richtung iiber
die Plattendicke 4, ergibt sich in ausfiihrlicher Schreibweise

1 dy, w2 oy dy, 1 [dy, dy,
Wf—zA/DP'{(ax*ay B P I A

(A.117)
exan] (ver 2 4 (2 |
Vet Ox Wy dy '
Fiir die kinetische Energie X der schubelastischen Platte gilt dementsprechend
1 1
K= [aeidy =3 [p (i +ii +ii?) . (A118)
v Vv

Durch Substitution der Verschiebungen nach Gln. (A.108) in Gl. (A.118) und Integration iiber die
Plattendicke erhdlt man fiir die kinetische Energie:

s G G G
o[BG

A

tdV

(A.119)

Durch die Erweiterung des kinematischen Modells der schubstarren Platten ergeben sich in den
dynamischen Strukturgleichungen zusitzlich Rotationstragheiten. Hierauf hat bereits Timoshenko
bei der Erweiterung des EULER-BERNOULIschen Balkenmodells hingewiesen [206].

A.2.3 Weitere und hohere Plattentheorien

Oftmals werden die MINDLINsche und die REISSNERsche Plattentheorie [174] als Synonym
fiireinander verwendet. Doch trotz der groBen Ahnlichkeiten sind sie nicht identisch. Aus diesem
Grund wird in dieser Arbeit auf die wesentlichen Unterschiede eingegangen. Ebenfalls leitete
Reissner seine Theorie fiir den statischen Fall her. Zum Vergleich stellt man die zweite partielle
Differentialgleichung der MINDLINschen Theorie (A.114) um

Ghg (Aw + @) — DpiAD = 0 (A.120)

und setzt die Querkrifte aus Gln. (A.112) in die Querkraft Gleichgewichtsbedingung (A.97) unter
der Beriicksichtigung der Abkiirzung aus Gl. (A.113) ein. Man erhélt

Ghy (Aw+®) = g. (A.121)
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Durch Elimination von ® gewinnt man daraus

o1
DPIAAW =q— -

A A.122
6K1—v q ( )

Reissner leitet eine dhnliche Differentialgleichung her, allerdings nutzte er eine etwas andere
Vorgehensweise als Mindlin. Im Gegensatz zur MINDLINschen Theorie werden die Normal-
spannungen o33 bei der REISSNERschen Betrachtung nicht vernachléssigt, sondern als kubische
Funktion von z angenommen, die an den Deckflichen der Platte (z = j:%) den dort wirkenden
Querbelastungen entsprechen. Wie in Abb. A.3 veranschaulicht, wird fiir die Schubspannungen ein
parabolischer Verlauf angenommen. Somit ldsst sich o33 mit Hilfe der Gleichgewichtsbedingung
des raumlichen Spannungszustandes ermitteln. Weiterhin werden w, y; und y, als resultierende
Forméinderungsgrofen angesehen, die sich derart ergeben, dass sie mit den dazugehdrigen Schnitt-
grofien dieselben Beitrdge zur Formédnderungsenergie liefern, wie die tatsdchlichen Spannungen
und Verschiebungen. Letztendlich erhélt man fiir die REISSNERsche Plattentheorie [171] folgende
partielle Differentialgleichung

W2—v

f A.123
01—y (A.123)

DplAAw =g —

die sich nur durch den Schubkorrekturfaktor k¥ von der MINDLINschen Plattentheorie unterschei-

det. Fiir k = ﬁ stimmen beide Plattengleichungen iiberein. Daraus folgt fiir einen Schubkor-

rekturfaktor x = %, dass es einen querkontraktionsfreien Kérper (v = 0) bedarf, um bei beiden
Theorien zum gleichen Ergebnis zu gelangen.

Die bisher aufgefiihrten Plattenmodelle haben ihre Giiltigkeitsbereiche nur fiir kleine Durchbie-
gungen. In der Praxis konnen jedoch méBige (finite) Plattendurchbiegungen auftreten. Mit zuneh-
mender Durchbiegung diirfen geometrisch-nichtlineare Terme in den kinematischen Gleichungen
nicht mehr vernachlissigt werden. Das Modell einer diinnen Platte mit maBiger Verformung
stellt die Theorie nach Karman dar [218]. Thre Grundgleichungen beschreiben die kinematischen
Annahmen einer schubstarren Platte sowie eines isotropen, linear-elastischen Materialverhaltens.
Geometrisch-nichtlineare Modelle fiir schubelastische und anisotrope Platten konnen aus der
Fachliteratur, wie beispielsweise aus Shen [193] und Reddy [170] entnommen werden.
Untersuchungen zu Schwingungsproblemen von Platten aus Laminat oder aus ,,Functionally
Graded Material (FGM)“, als ein mogliches Modell fiir zellulare Materialien, findet man bei
der Gruppe um Reddy in groBler Anzahl. Zur Vorhersage der Eigenfrequenzen von FGM Platten
entwickeln Altenbach und Eremeyev [7, 8] ein Modell, das auf einem mikropolaren COSSERAT-
Kontinuum basiert und eine Heterogenitét in Richtung der Plattendicke aufweisen kann.

A.3 Grundlagen zur Akustik

A.3.1 Allgemeine lineare Wellengleichung in viskosen Fluiden

Ausgehend von der Massenbilanz kann die Kontinuitétsgleichung

d .
ap (X,f) +V- (p (X,t) V) = ﬁp (X,f) +div (p (X,t) V) =0 (A124)
formuliert werden. Die Kontinuititsgleichung beschreibt die Massenerhaltung im Fluid. Es wird
nicht von Massensenken oder -quellen ausgegangen. Betrachtet man nun das viskose Fluid, wel-

ches durch die linear eingehende Deformationsgeschwindigkeit D gekennzeichnet ist und geht man
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des Weiteren von einem isotropen Fluid aus, so erhilt man:
6= (—p+21VSpur(D))1+2uV1= (—p+A'V-D)I1+2u"L (A.125)

Zieht man nun das erste CAUCHY-EULERsche Bewegungsgesetz hinzu, welches die Impulserhal-
tung beschreibt, so ergibt sich fiir die Konstitutivgleichung

pDD—::div(O‘)—l—fV:Vﬁ—&-fV (A.126)
mit |
p-3 [Vv+(Vv)T] (A.127)
und
: 1 2 T
div(D) =V-D3 [V VAV (V) } (A.128)

Setzt man nun die Konstitutivgleichung in die Bewegungsgleichung ein, erhélt man die NAVIER-
STOKES-Gleichung mit den inhomogenen Viskositéitskoeffizienten AV und uV

D

P = VPV (AV-v) V- (21VD) +". (A.129)
Nimmt man noch die STOKESsche Bedingung fiir die konstanten Viskositéitskoeffizienten AV und

u¥ )
3AV+2uV =0 oder AV:?#V (A.130)

an, ergibt sich
1

pv=—Vp+uV [Vzv+§V(V-v)} +1V. (A.131)

Zudem ist die Druck-Dichte-Beziehung

p=p(p) (A.132)

von Bedeutung, wenn es sich beim Fluid um ein Gas oder eine kompressible Fliissigkeit handelt.
Zur Herleitung der linearisierten Wellengleichung zerlegt man die GrundgréBen in Gleich- und
Schwankungsanteile:

P(x,t) = po+p~(x,t) = po+p, (A.133)
p (x,t) = po+p~ (X, t) = po+p, (A.134)
V(x,t)=vo+ve (X, t) =vp+V=v. (A.135)

Bei der Zerlegung wird vorausgesetzt, dass sich das Fluid im Ruhestand v = 0 befindet und alle
Bewegungen durch Oszillationen hervorgerufen werden. Anschliefend werden alle Terme hoherer
Ordnung der Schwankungsanteile vernachléssigt. Fiir die Kontinuititsgleichung ergibt sich durch
Einsetzen

P .
3¢ Po+P)+V-[(po+p)v]= 5 (po+p)+div[(po+p)v] =0. (A.136)

Da die Grofle py konstant ist, verschwindet sie bei der Zeitableitung. Zusétzlich wird von einer
kleinen Dichtenschwankung |p| < py ausgegangen, es kann in Gl. (A.136) der Term pv vernach-
lassigt werden. Es folgt daraus

Ip

ap .
§+pOV-V—§+podlv(v)—O. (A.137)
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In der NAVIER-STOKES-Gleichung tritt die substantielle Ableitung der Geschwindigkeit auf.
Damit entsteht folgende Beziehung durch Einsetzen und Substituieren

(o9 [ Gr vV )| ==V )+ [V 39 (7).

(A.138)
d . 1 .
(po+p) {a—: —v-grad (v)} = —grad(po+p) +u" [dlv (grad (v)) + ggrad (div (v))} .
Durch die Linearisierung der Schwankungsgrofen erhilt man
Po% =—Vp+uV {V2v+ %V (V-v)} ,
(A.139)

Po% = —grad (p)+u" {div (grad(v)) + %grad(div (v))] .

Ersetzt man die dynamische Viskositit 4V durch die kinematische Viskositit vV = ’;—Ov erbibt sich
fiir die linearisierte NAVIER-STOKES-Gleichung:

av 1 1

—=——Vp+vV Vv 4+ _V(V-v) . A.140

Gt pg Pt { v+ VI V)} (A.140)
Aufgrund der nicht genau beschreibbaren Druck-Dichte Beziehung kann man sie nicht auf die
gleiche Weise linearisieren. Ersatzweise nutzt man eine TAYLOR-Entwicklung:

dp (po)

plp)=ppo)+(p—p)—— dp +. (A.141)

Wird po = p(po) auf die linke Seite gebracht, liefern Einsetzen und Vernachlédssigung der Terme
hoherer Ordnung die Beziehung:
dp (Po
0]
p
Die auftretende Ableitung % p(po) wird mit ¢? abgekiirzt. Die GréBe ¢ beschreibt die Ausbrei-
tungsgeschwindigkeit der Wellen. Die linearisierte Druck-Dichte-Beziehung lautet schlieSlich

(A.142)

p=c’p. (A.143)

Substituiert man p in der linearisierten Kontinuitétsgleichung (A.137) durch die linearisierte
Druck-Dichte-Beziehung (A.143), bekommt man

0
P L 2peV v =0. (A.144)
at
Differenziert man diese Gleichung nach der Zeit gelangt man zu
%p v
V. A.145
FERE A i (A-145)

Setzt man nun die lokale Beschleunlgung aus der linearisierten NAVIER-STOKES-Gleichung
(A.140) in die Gleichung (A.145), erhilt man folgende Gleichung

9*p 2 Vy2 vVos
+2po Vp+v VA(V-v)+—V*(V-v)| =0 oder
o2 " po 3
. 1 v (A.146)
I v 22 e
(%2-&- p[ pOVp 3V(V v)} .
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Substituiert man nun V - v mit Hilfe der Gleichung (A.144) ergibt sich die linearisierte Wellenglei-
chung fiir den Schalldruck:

=0 od
a2 ¢ Po 3ppc? - ot oder

v
P o 4vY 2@_
0 c“Vop 3Vat—0.

(A.147)

Geht man von einem reibungslosen Fluid vy = 0 aus, entsteht zum Beispiel die linearisierte
Wellengleichung fiir ideale Gase

I’p 22 ?’p
Wird eine harmonische Zeitabhingigkeit fiir den Schalldruck p = pel® angenommen, folgt aus
der Wellengleichung die HELMHOLTZ -Gleichung

Ap+H2p =0, (A.149)

mit der Wellenzahl & = €.

A.3.2 Schallgeschwindigkeit

Die Schallgeschwindigkeit c ist die Geschwindigkeit mit welcher sich Schallwellen in einem belie-
bigen Medium ausbreiten. Sie ist sowohl von den elastischen Eigenschaften des Ausgangsmediums
als auch von dessen Dichte, Temperatur und Druck abhingig. Daher konnen Schwankungen von
Temperatur und Luftfeuchtigkeit einen wesentlichen Einfluss auf Messungen haben, insbesondere
bei hohen Frequenzen und geringer Luftfeuchtigkeit. Die Schallgeschwindigkeit fiir Gase l4sst
sich aus der Wellengleichung (2.2) ablesen:

2’p 193%p
— === A.150
ox2 ¢ ot? ( )
Daraus leitet sich fiir die Schallgeschwindigkeit ab:
K
c=4]—. (A.151)

Po

Die Schallausbreitung kann als eine isentrope (adiabatische) Kompression und Expansion ange-
nommen werden. Hierfiir wird sich das adiabatische Gasgesetz
G
pV¥=C, oder p=— (A.152)
VY
zu Nutze gemacht. Hierbei ist y = £ der Adiabatenkoeffizient und ¢y beziehungsweise c, die iso-
chore beziehungsweise isobare Warmekapazitit des Gases. C; stellt eine Konstante dar. Alternativ
lasst sich das Kompressionsmodul folgendermafien ausdriicken:
dp C
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Somit ldsst sich die Schallgeschwindigkeit durch den Atmospharendruck beschreiben:

e | K [1PK (A.154)
Po Pa

So ergibt sich bei einem Atmosphirendruck von 1013 mbar und einer Umgebungstemperatur von
20°C eine Schallgeschwindigkeit von 343 . Ersetzt man p = *“” und p = ”RT mit dem Gasgesetz

so entsteht:
nRTV YRT
=4/ —. A.155
Vs =\ 3 (A.155)

Daraus wird ersichtlich, dass die Schallgeschwindigkeit nur von der Temperatur 7', der Molmasse
M und der allgemeinen Gaskonstante R abhéngig ist.

A.3.3 Gesetz von Hagen-Poiseuille

Mit Hilfe des Gesetzes von Hagen-Poiseuille ldsst sich der Volumenstrom J eines NEWTONschen
Fluids durch ein gerades Rohr mit kreisformigem, konstanten Querschnitt beschreiben. Die Stro-
mung im Rohr wird als laminar gesehen. Als Ausganspunkt nutzt man die Kontinuitatsgleichung
in Zylinder-Koordinaten

V.v=0,

% Ive dv, u dv Iy 81/2_0 (A.156)

ar Trap Tz 7 T rar rap ez

Dabei wird von einem inkompressiblen Medium % = 0 ausgegangen. Des Weiteren nutzt man die
inkompressible NAVIER-STOKES-Gleichung in Zylinder-Koordinaten:

1
V= —EVp—i-vVAv—&-fm,

2

Dy, Vv 1 2
- 2=- 3p+v [Avr—v—;——z(;—"’}ﬂ,m,
b r p1 i o 2“’ (A.157)
Vo vrv(p p Vo Vr m
—_¢_T9° Ay, — 24 =2 T
Dt r pr&(p+V { Ve T 2 +rza(p} 1o
Dv, 1
T i vVAv, + £

Zur kiirzeren Notation wird die Funktion § = f(r,¢,z,7) fir die LAPLACE-Operation und der
substantiellen Ableitung eingefiihrt

10 (0 1 92 92
Af= o (r(%) +—28—f2+a—zi.,
Df 9f 9f vedf  0f

Dt 7+ r8r+7%+ 70z’

(A.158)

Mit der Annahme, dass eine rotationssymmetrische Stromung [)ﬂ = 0 vorliegt, eine ausgebildete

az = 0 und stationire gg = 0 Strémung herrscht und dass keine Massenkrifte f beriicksichtigt
werden, ergeben sich folgende Beziehungen:

orv,

ror

—0, (A.159)
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o 1ldp v, v W
or T T por v ( o2 " ror 12)° (A-160)
dv, ldp 0%v, Jdv,
Y or _7E£+v (3r2 +r8r ’ (a.161)

Aus Gl (A.159) kann man erkennen, dass rv; konstant ist und die radiale Strémungsgeschwin-
digkeit v, = 0 ist. Aus der NAVIER-STOKES-Gleichung (A.160) in radialer Richtung ergibt sich
nun % = 0 und der Druck héngt nur noch von der axialen Richtung ab p = p(z). Nimmt man
nun die NAVIER-STOKES-Gleichung (A.161) in axialer Richtung in den Blick lésst sich folgende
Beziehung feststellen

dp v o [ v,
ax~ rar\"ar) (A162)
Durch zweimalige Integration entsteht
1729
vz(r)=ZW£+C1 Inr+G (A.163)

mit den Integrationskonstanten C; und C,. Da die Geschwindigkeit v, an der Rohrachse » = 0
aus physikalischen Griinden nicht unendlich grof} sein kann, muss C; = 0 sein. Zudem sollte die
Randbedingung, Haften an der Rohrwand v, (r = R) = 0, beriicksichtigt werden. Daraus folgt fiir
die zweite Integrationskonstante

1 R?dp

__Kdp A.164
= 41V oz (A-164)

Damit ergibt sich folgendes Geschwindigkeitsprofil fiir die axiale Geschwindigkeit

1 dp

w—vg(rLRz). (A.165)

v, (r) =

In Bezug auf den Massenstrom lésst sich vorweisen

2 R

. mp dp 4

m= / /pvz(r)rdrd(pzfgu—vaR. (A.166)
@=0r=0

Bezieht man den Volumenstrom auf den durchstromten Querschnitt steht einem die mittlere
Geschwindigkeit zur Verfiigung

2nr R

o1
G:Z:ZERz / /vz(r)rdrd(p:%. (A.167)
¢=0r=0

So lasst sich eine Beziehung zwischen dem Druckgradienten und der mittleren Geschwindigkeit
herstellen
ap _ gV
dz R

= konst. (A.168)
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A.3.4 Lineare Wirmeleitungsgleichung

Die thermische Energiebilanzgleichung (A.61) eines Fluids mit einer ortlichen thermischen Leit-
fahigkeit A kann mit Hilfe der spezifischen Entropie s zu

0
pT(a—i+v~Vs>:®—V.h:®+MT (A.169)
mit h = —A VT formuliert werden. Die linke Seite der Bilanz beschreibt die vom Fluid aufgenom-

mene Wirme pro Volumeneinheit. Die dissipative Funktion ® betrachtet die viskosen Verluste
und erfasst die Energie, welche infolge der Viskositéit in Warme umgewandelt wird. Die tiber die
Oberfliche ins Volumen eingebrachte Wiarme berticksichtigt der Term AT Fiir die spezifische
Entropie s eines idealen Gases gilt folgender Gleichgewichtszustand [100] :

dS:d—Q:M und
r r (A.170)
dp _1 _1 ‘
:du-i-F :db pdp:deT pdp
T T T ’

wobei h die spezifische Enthalpie und Q die Warmemenge des idealen Gases reprisentieren.
Differenziert man die Gleichung fiir die Entropiednderung idealer Gase (A.170) nach der Zeit

hat man zum Ergebnis:

ds _GpdT 1 dp (A.171)

Setzt man diesen Ausdruck nun in die Wirmeleitungsgleichung (A.169) und vernachldssigt den
Term v- Vs und die Dissipationsfunktion ® so gewinnt man als Approximation erster Ordnung:

r[QF Lo ar
T dt Tp ot (A172)
aT dp

Cp—— = MT + —.
R T T
Geht man von einer kleinen Schwankung der Dichte aus so entsteht folgende Warmeleitungsglei-
chung

ap

oT
poCy e = kAT + 2. (A.173)

A.3.5 Schallausbreitung in zylindrischen Réhren

Die lineare und vereinfachte Form der NAVIER-STOKES-Gleichung (A.139) und der Wérme-
bilanzgleichung (A.173) geniigen den Grofen der Geschwindigkeit v, dem Druck p und der
akustischen Temperatur 7" eines Fluids in einer zylindrischen Rohre bzw. in einer Pore. Der Zu-
sammenhang zwischen den Schwankungen der Temperatur, der Geschwindigkeit und des Drucks
in einem akustischen Feld konnen wie folgt postuliert werden

po% =—Vp+uVAy, (A.174)
aT dap
PGy = AAT +p—-, (A.175)
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wobei pV die dynamische Viskositit, A die spezifische Wirmeleitung und C, die spezifische
Wairme bei konstantem Druck ist. Der Druck wird als konstant {iber dem Rohrenquerschnitt
angenommen. Als Randbedingung an Rohrwinden wird eine konstante Temperatur 7 = konstant
und Haften (v = 0) angenommen. Nutzt man die linearisierte NAVIER-STOKES-Gleichung in
zylindrischen Koordinaten unter der Annahme einer axialsymmetrischen Stromung und eines
axial-richtungsabhéngigen Druckgradientens ldsst sich erkennen, dass

. op uVa [ ovs
=240 (== Al

J®pov3 dx3 + rar\"or (A-176)
mit v3 = 3¢/, Die Geschwindigkeit an der Zylinderfliche, der Kontaktbereich zwischen Fluid

und der steifen Struktur, nimmt den Wert Null an. Die Losung der Differentialgleichung (A.176)
nach [1, 29], an der die Geschwindigkeit der Zylinderoberfliche » = R verschwindet, lautet:

I S 1 Uy
"7 " jopo xs (1 Jo(IR) ) A17D)

1:1/_17;"0 (A.178)

und Jy ist die Besselfunktion nullter Ordnung. Die gemittelte Geschwindigkeit v iiber die Rohr-
geschwindigkeit lasst sich wie folgt

In dieser Gl. (A.177) ist

o
e / vy27dr (A.179)
0

bestimmen. Macht man sich nun folgende Beziehung [29] Ji" rJo () dr = a1J; (a1) zu Nutze und
setzt v3 aus Gl. (A.177) in Gl. (A.179) ein, erhélt man fiir die mittlere Geschwindigkeit

__Loap|, 2 Ai(svE)
’ sv/=1Jdo (sv/=i) |

jopo dx3
wobei s die Schubwellenzahl ist und sich folgendermaBen bestimmt:

0]
s=R1/u—’i". (A.181)

Die Abb. A.5 zeigt die axialen Geschwindigkeitsprofile in einer zylindrischen Réhre in Abhéngig-
keit von der Schubwellenzahl s. Die effektive Dichte p des Mediums in der Réhre ist definiert als
das Umschreiben der GI. (A.180) in eine kompakte Form

(A.180)

P _iwopis (A.182)
0x3
mit o
S - Al
P 1— 2 A (S\/j-]) ( 83)
sv/=i Jo (&\/jj)

Die Formulierung der effektiven Dichte zeigt den zusitzlichen Beitrag zum Tragheitsterm durch
die Wechselwirkung mit der Rohrenwand. Die Abb. A.6 zeigt die effektive Dichte p einer zylindri-
schen Rohre. Dabei wird ersichtlich, dass sich bei niedrigen Frequenzen der viskose Effekt deutlich
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Abbildung A.5: Normierte axiale Geschwindigkeitsprofile v3 /v3 in einer normierten zylindrischen
Réhre 5 in Abhéngigkeit von der Schubwellenzahl s.
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Abbildung A.6: Effektive Dichte p von Luft in einer zylindrischen Rohre in Bezug auf die
Ausgangsdichte py in Abhédngigkeit der Schubwellenzahl s.
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bemerkbar macht und bei hohen Frequenzen die Triagheit dominant ist. Im bisher beschriebenen
Teil der Schallausbreitung in Rohren wurde nur auf die viskosen Effekte eingegangen. Folgendes
beschiftigt sich mit den thermalen Effekten. Ausgehend von der linearisierten Wirmegleichung
(A.175) und der linearisierten Zustandsgleichung fiir ideale Gase erlangt man folgende Beziehung

po+p=Ri(po+p)(To+T)=~Ri(pop +poT +Top), (A.184)

wobei das betragsmiBig kleine Produkt aus Schalldichte und Schalltemperatur p 7" vernachléssigt
wird. Durch Umstellen und Einbeziehen der BOYLE-MARIOTTE-Gleichung fiir die Ruhelage R; =
i erhalt man:
poto T
Po P _P
=>—(poT+ Ty oder —=—+—. (A.185)
r poTo (b P) po po To
Die Temperaturdnderung in Rohrldngsrichtung (x3) ist kleiner als in radialer Richtung (x; und x;)
und wird deswegen vernachldssigt. So reduziert sich die Warmebilanz A.173 zu
9T 9T

. T .0
§x2+ Ja)—/:—]%p oder

9x3 v
d aT o T o)
) it = 2
ror ' or 1Oy 7P
wobei v/ = po’l—cp gilt. Diese Gleichung dhnelt in der Form der Gl. (A.176) mit gleichen Rand-

bedingungen, die Temperaturdnderung ist ebenfalls Null an der Rohrwandfliche. Es wird eine
v
Kreisfrequenz @ = a)f% = wPr in Bezug auf die Prandtl-Zahl definiert und @ in Gl. (A.187)

(A.186)

ersetzt 5 o7 r ,
Po .V Po
— (r—= = . Al
ror (V 8r> o uv - AuVY P (A-187)
Geht man vom gleichen Differentialgleichungstyp
d ( 9df Po . 0P
— (r== =—j— A.188
ror (rar) -l uvf uV ( )
aus, so hat man fiir die Losungsfunktion der Schalltemperatur 7 und der Geschwindigkeit v3 als
Ergebnis:
Jo (VPrl
r= f(rPrw) v (D (A.189)
A Jo (VPrIR)
d 1 1 0 Jo (Ir) )
n=——Frow)—=——1(1-— . A.190
3 t9X3f( )pro JwpPo t9X3 ( J() ([R) ( )
Nutzt man die Volumendehnung unter der Beriicksichtigung der Massenerhaltung erhilt man:
o=V _d_P (A.191)
Vop  po
Der Kompressionsmodul definiert sich durch
k=In_"PP0 (A.192)
&y p

wobei die mittlere Dichte p der Durchschnitt von p iliber dem Querschnitt ist, die durch die Gl.
(A.185) gegeben ist:

_ D T
= —po— —=pPo- A.193
p popo TOPo ( )

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

Theoretische Grundlagen 153

So kann der Ausdruck fiir den Kompressionsmodul unter Beriicksichtigung der Gln. (A.189) und

(A.193) umgeschrieben werden

K=— P (A.194)

*%}J%}(}"?P}”ﬂ))

Nutzt man die Zustandsgleichung mit der spezifischen Wérme bei konstantem Volumen
pPo(Cp—Cy) = %‘]’ fiir ideale Gase, vereinfacht sich der Ausdruck fiir den Kompressionsmodul zu

K=— TP (A.195)

y—(r—Di(nPro)

wobei y den Adiabatenexponenten y = g—f darstellt. Bezeichnet man §(r, @) durch F (@) und

f(r,Pr®) durch F (r,Pro) vereinfachen sich die Ausdriicke fiir die effektive Dichte und den
Kompressionsmodul zu

-
F(r,o)’
) - (A.196)
Y= (Yﬁ I)F(VPV(D)
mit _
F(Pro) = [1-——2 Ji (VPrsy/=j) (A.197)

VPrsy/=jJy (\/PiVS\/—*‘])

So bleibt fiir der Kompressionsmodul in Abhingigkeit von der Schubwellenzahl folgende Bezie-
hung

YPo
K= . A.198
1+(y—1) __2 APy ( )
Y VPrs\/—j Jo(\/Prs\/—j)

Diese Methode zur Bestimmung des Kompressionsmoduls ist fiir alle zylindrischen Réhren
giiltig. Die Abb. A.7 zeigt der Kompressionsmodul fiir zylindrische Rdhren in Abhédngigkeit
von der Schubwellenzahl s, dabei wird im Realteil ersichtlich, dass bei niedrigen Frequenzen
(isothermische Grenze) der Kompressionsmodul dem Umgebungsdruck pg bei hohen Frequenzen
(adiabatische Grenze) ypy entspricht.
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Abbildung A.7: Der Kompressionmodul K von einer luftgefiillten zylindrischen Rhre in Bezug
auf den Umgebungsdruck pg in Abhéngigkeit von der Schubwellenzahl s.
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B Charakterisierungsmethoden

B.1 Homogenisierungstheorie

Aus den vorgestellten Gegebenheiten in Abschnitt 3.2.1 ergeben sich folgender mesoskopischer
Verzerrungs- und Spannungszustand

€=A-¢ und 6=A 0. (B.1)

Betrachtet man nun das lokale statische und volumenkraftfreie Randwertproblem (vgl. GL.(A.36))
auf der Mesoebene

V.-6=0 bzw. 6‘,-_,-,je,- = 07 (BZ)
16st dieses mit Hilfe des allgemeinen Materialgesetzes auf der Mesoebene

6(x)=C(x)--£(x) bzw. &(x)=S(x)--6(x), (B.3)

bildet den Volumenmittelwert, abgekiirzt durch das Klammersymbol < . >, des mesoskopischen
Spannungs- & (x) bzw. Verzerrungszustandes € (x)
- | . 1 /.
0 =<0 (x)>= ;/a(x) dV bzw. €=<E&(x)>= ;/E(x) ar (B.4)
B B

und gibt diese wieder an die Makroebene zuriick, so ergibt sich fiir das makroskopische Material-
gesetz

0=<6>=<C-&(x)>=<C- A-g>=<C--A> ¢

B.5
0 =Ce-€ ®-5)
mit dem effektiven Steifigkeitstensor Ceg auf der Makroebene bzw. dementsprechend
e=<&>=<S--6(x) >=<S- B--6>=<S - B> -0,
(x) , B.6)

€ =S¢t O

mit dem makroskopischen effektiven Nachgiebigkeitstensor Seg. Die makroskopischen Zusténde
vom Ort Xpeso sind auf der Mesoebene unabhéngig. Mit Hilfe des Divergenztheorems

B B

lassen sich Volumenmittelwerte der mesoskopischen Zustinde, unter der Voraussetzung der Inte-
grierbarkeit der Kraft f an den Réndern und im Volumen, auf den Rand des Volumenelements
abbilden, wobei n den nach auflen gerichteten Normalenvektor des Randes darstellt. Dies ist
gerade im Fall heterogener Materialen mit sprungartig dndernden Eigenschaften nicht gegeben.
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So wird jede Grenzfliche im Volumenelement einzeln betrachtet. Hierbei stellt sich heraus, dass
sich die zusétzlichen Terme gegenseitig autheben und somit die nachfolgende Herleitung auch fiir
heterogene Strukturen giiltig ist [81]. Des Weiteren ist die Abbildung der Rénder giiltig fiir die in
diesem Arbeitsumfeld zu Grunde gelegten Theorie kleiner Verformungen fiir die Spannungs- und
Verzerrungsfelder [112]. Daraus ergibt sich der Vorteil, dass sich die Randterme einfach behandeln
lassen.
Mit dem lokalen statischen und volumenkraftfreien Randwertproblem (Gl. (B.2)) und mit
V-x:ﬁe;-ej: ,'jil (B8)
Xj

ergibt sich

V- (c®x)=(V-0)®x+06V-x=o0. (B.9)

Daraus ldsst sich die Volumenmittelung des mesoskopischen Spannungszustands wie folgt

1 1 1 [.
<6‘>:V/V-(6'®x)dV=;/n-6‘®di=;/t@di,
B

B B (B.10)

. | . 1 . 1 [,
<Gij>:;'/ (cr,-kxj)'de:V/nkoykxjdA:;/t,‘xjdA
B B B

auf den Rand abbilden [190]. Analog ergibt sich fiir den mesoskopischen Verzerrungszustand unter
Beriicksichtigung der Gl. (A.14)

. 1 r1,. . 171, . 1 /.

<§j>= ?/ 5 (u,-,j—i-uj,[) dV = ? / E (u;nj—&-u/-n;)dA = ?/uinjd/L

1 B B B (B.11)

<&€>=_— [u®nd4

v / sen
B

eine Formulierung bezogen auf den Rand. Gemaf der Gl. (A.64) lésst sich eine mittlere Formén-

derungsenergiedichte

1 1 . -
de:§a~~s:§<o>~-<e> (B.12)
in der Makroebene bestimmen. Entspricht die Forminderungsenergiedichte der wahren Verfor-

mung auf der Mesoebene

- 1 L.
<Ap>=3<6-&> (B.13)
der mittleren Formédnderungsenergiedichte, so ergibt sich folgende Bedingung
dWp— <dWp>=0 bzw. <6>-<&€>—-<6--&>=0. (B.14)

Diese wird auch HILL-Bedingung genannt [81]. Sie besagt, dass sich ein effektives Medium und
das dazugehorige RVE mechanisch entsprechen, wenn beide dieselbe quantitative Verzerrungs-
energie unter gleichen makroskopischen Verformungen speichern [47]. Gemial3 den zuvor beschrie-
benen Zustinden kann ebenfalls die Bedingung auf den Rand des Volumenelements abgebildet
werden. So lésst sich das Produkt mit den Gleichungen (A.14), (A.40) und (B.2)

—_

1 1
(G,-jui) + = (O-ijuj),i = (G,-jui) J (B.15)

0-& =0y =5 (1 +uji) =35 Jt3

2
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umformulieren. Somit ergibt sich

. 1 .. 1 L. 1 /..
<O0:--€&€>= ;/ (O'iju,-)AjdV = ; / G,'jll,‘l’ljdA = ; /t,—u,-dA. (B.]ﬁ)
B B B

Hingegen lisst sich die makroskopische GroBe < 6 > -- < € > mit den Gln. (B.11) und (B.10) und
der Beziehung

1 1 1

1:V/ldV:V/V'XdV:;/xinjaijdA (B17)
B B B

auf drei verschiedene Arten ausdriicken:

8 - 1 - _
<o‘>~~<£>:;/<0',-j>u,-njdA
B

| . .
i;/ <£ij>tixjdA (B.18)
B
1 . <
:;/<Gij >< g >xl-nj5,-_,-dA.
B

Mit dem Trick
<G> <E>=<O0><E>+<O><E>—<O>-<E€> (B.19)
lisstsich< & > <&€>—-<6--€>zu

1 - - . < . . y
0= V/ (t,-u,-f < 0jj > uinj— < gj > ixj+ < 0 >< & > x,-nj5,-j) d4
B
1 . . . <
= 7 / (l‘,'— < 0jj > I’lj) (u,'— < E&j >Xj)dA (B.20)
oB

=5 [ <o>m)@-<&> v
B

umschreiben.

B.2 Periodische Randbedingung: FEM

Die Finite Elemente Methode (FEM) ist ein numerisches Naherungsverfahren zur Losung komple-
xer Berechnungen und findet iberwiegend im Ingenieurwesen Anwendung. Ein weitverbreitetes
Einsatzgebiet ist der rechnerische Nachweis von Neukonstruktionen. Mittels der FEM kann an
virtuellen Prototypen iiberpriift werden, ob die Anforderungen hinsichtlich der physikalischen
Eigenschaften erfiillt werden.

In der Mechanik gibt es statische und dynamische Probleme, die mit verschiedenen Losungsansit-
zen berechnet werden konnen. Zum einen das implizite Losungsverfahren, welches tiberwiegend
fiir statische bis quasi-statische Probleme geeignet ist. Zum anderen das explizite Losungsverfah-
ren, das bei kurzzeitdynamischen Vorgiangen und grofen Verzerrungen,wie Crashsimulationen und
Umformprozessen, Anwendung findet.
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Um dabei nicht eine Losung fiir ein komplexes Gesamtgebiet zu suchen, wird das Modell diskre-
tisiert, d.h. in endlich viele Elemente unterteilt. Die Losung wird anschlielend fiir jedes einzelne
Element berechnet. Da die Elemente durch sogenannte Knoten miteinander verbunden sind, sind
auch die mechanischen Gleichungen miteinander gekoppelt. Die Gesamtlosung ergibt sich aus der
Zusammensetzung der Teillgsungen der einzelnen Elemente.

Basis zur Generierung von Ergebnissen virtueller Modelle sind, neben den aufgefiihrten Hilfs- und
Konstruktionsprogrammen, das FE-Programm ANSYS® von der Firma Ansys Inc.

Im Folgenden wird kurz die Finite-Elemente-Umsetzung der periodischen Randbedingungen aus
dem zuvor beschriebenen Abschnitt beschrieben. Hierbei wird zum Teil spezifischen auf den FE-
Code Ansys eingegangen. Als Hilfsmittel standen die Publikationen von Moosrainer [150] und
Schmidt [186] und das Ansys Hilfe System zur Verfligung.

Die Vorgehensweise zur Umsetzung der periodischen Randbedingungen wird exemplarisch an
einem achtknotigen Schalenelement erldautert. Die Abb. B.1 zeigt ein rechteckiges Schalenelement
mit Mittelknoten. Die gewonnen Erkenntnisse konnen auf dreidimensionale Volumenelemente

2) b) ®10
4 7 3 4 7 3
L . ] . . ]
8 e ®6 8@ o6 @9
y
o o .- - o
1 5 2 1 5 2
X

Abbildung B.1: Umsetzung der periodischen Randbedingungen an einem FE-Schalenelement: a)
Schalenelement mit Knotennummern und b) Schalenelement mit 2 Hilfsknoten

iibetragen werden. Eine periodische Kopplung zwischen rechtem und linkem Rand bzw. Master-
und Slave-Kante ergibt fiir die Verschiebung in x-Richtung durch folgende Gleichungen:

up (x) —up (x) =0,
ug(x) —ug(x) =0 wund (B.21)
uz (x) —usg (x) =0

Dies ergibt jedoch eine starre Verbindung der Rénder, es wire keine makroskopische Dehnung
der Struktur moéglich. Um diese Langung bzw. Dehnung korrekt abbilden zu kdnnen, ohne auf die
Kopplung des rechten und linken Schnittrandes zu verzichten, wird ein Hilfsfreiheitsgrad (in Abb.
B.1 Knoten 9) zur Aufnahme der konstanten Verschiebungsdifferenz zwischen den beiden Randern
eingefiihrt. Das Gleichungssytem der Verschiebung in x-Richtung unter der Beriicksichtigung der
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Langung der Elementarzelle lautet wie folgt:

u (x) —u (x) = u9 (x),
ug (x) —ug (x) =ug(x) und (B.22)

u3 (x) —ua (x) = ug (x).

Analog ergibt sich fiir die Periodizitit zwischen unterem und oberem Rand in x-Richtung folgende
Beziehungen:

ug (x) —up (x) —ug (x) =0,
u7(x) —us (x) —ug (x) =0 und (B.23)
uz (x) —up (x) —ug (x) =0

Des Weiteren ergeben sich dhnliche Beziehungen fiir die Verschiebungen in y-Richtung und in
z-Richtung bei der dreidimensionalen Betrachtung. Diese Zwangsbdedingungen (engl.: Cons-
traint Equations) konnen teils automatisch erzeugt werden und den Hilfsknoten, die aus einem
masselosen dreidimensionalen Masseelement bestehen, gekoppelt werden. Betrachtet man die
Eckgleichungen fiir die Verschiebung in x-Richtung ein weiteres

07
u3 (x) — ug (x) —ug 0, (B.24)
ug (x) —uy (x) —uyo 0
0
und eleminiert die Hilfsvariablen in den ersten beiden und in den letzen beiden Gleichung, erhalt
man

upy (x) —uy (x) —u3 (x) —ug(x) =0 und

0
(B.25)
up (x) —uy (x) —u3 (x) —us (x) =0,
dabei wird ersichtlich, dass es keine unabhingigen Gleichungen sind, sondern zwei identische
Gleichungen, was zu einer Uberbestimmung des Gleichungssystem fiihrt. Aus diesem Grund sind
nur linear unabhéngige Gleichungen zu ermitteln. Eine einfache Losung ist es, eine Eckgleichung
ersatzlos zu streichen [150].

B.3 Mindlin-Platte: PB2-R1TZ-Methode

Hier soll die Vorgehensweise der RiTzschen Methode nach Liew [132] beschrieben werden.
Betrachten wir eine allgemeine Polygonplatte mit maximaler Linge a ein und maximale Breite
b in Koordinatenachsrichtung. Durch die Annahme eines rechtwinkligen Koordinatensystem, wie
in Abb. B.2a gezeigt, konnen sich die Forminderungsenergie nach Gl. (A.117) und kinetische
Energie nach GI. (A.119) bestimmt werden. Zur Verallgemeinerung und Vereinfachung werden die
Koordinaten auf jeweils die maximale Linge der Abmessungen normiert, hierbei werden folgende
dimensionslose Grofien

2 [Ph

W b .
éfz,nff,T*E,W—i,ﬂ—afb7lf7wb Fm (B26)
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A A

b/2 1

/ ’ n
A Y
A A
X

b2 1 s

Y A
a/2 | a/2 1 | 1
- > > - > >
(a) (®)

Abbildung B.2: Allgemeine Plattenabmalle im a) originalen und b) im normierten Koordinaten-
system.

eingefiihrt. Die Normalisierung der Koordinaten erméglicht die Transformation der Plattenabmes-
sungen wie in Abb. B.2b dargestellt. Verwendet man die normalisierten Groflen aus Gl. B.26 in
den Energiegleichungen (A.117) und (A.119) erhdlt man

SY((C RIS s )
(s (o se3s) oo

=3 f//{16'2+* v+ wz)]dédm (B.28)

wobei 4 die normaliserte Fliche ist. Daraus lisst sich die normierte LAGRANGEsche Funktion
bestimmen

(B.27)
6(1-v)x
+T

und

n=u-~k. (B.29)

Fiir das Schwingungsproblem der MINDLIN Platte kann man folgende polynominale Funktionen
fiir die Anndhrung des Verschiebungsfeldes aufstellen

2 2 cmBpy ( (B.30)

q=0i=l

v (&, 2 ded)m En)., (B.31)
g=0i=
2 Z€m¢m (B.32)
q=0i=l

wobei p;, i = 1,2,3 der Freiheitsgrad des Polynomraums ist, ¢;, d; und ¢; sind die unbekannten
Koeffizienten. Der Index m bestimmt sich tiber

_(g+1D)g+2)

3 : (B.33)
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Die Gesamtzahl der Koeffizienten ¢;, d; und e; sind Ny mit £ = 1,2,3, die vom Freiheitsgrad des
Polynomraums p; abhéngig ist. Ny berechnet sich aus

(Pe+1) (Pe+2)

N, =
k 2

(B.34)

Die Funktionen ¢, ¢ und ¢, definieren sich durch

(& (6.1), 85 (&:1) . 0m (E,m) ) =&MT (01" (&), 07 (&,1). 97 (&,m).) (B.35)

Die Basisfunktionen ¢}", ¢7 und ¢; kdnnen wie folgt angegeben werden:

( 1‘”(5-,71)7(11?(5717)7¢f(-§,n)7><ln_[ H[x &mlY, ﬁ[ (& ml >; (B.36)

Jj=1 j=1

wobei n, die Nummer der Plattenkante und y (&, n) die Bedingungsgleichung der jten gelagerten
Kannte ist. Der Exponent ¥; ist abhéingig von der gelagerten Kantenbedingungen, die sich wie folgt
bestimmen lasst

W 0 frei (F)
= _ ) (B.37)
1 1 einfach gelagert(S) oder fest eingespannt (C)
P 0 frei (F) oder einfach gelagert (S) in y-Richtung (B.38)
7711 1einfach gelagert(S) in x-Richtung oder fest eingespannt (C) '
/= 0 frei (F) oder einfach gelagert (S) in x-Richtung (B.39)
/711 1 einfach gelagert(S) in y-Richtung oder fest eingespannt (C) ’
‘Wendet man nun das RiTzsche Verfahren an, erhilt man
oIl 011 oIl
——,=— ) =1(0,0,0), B.40
(G S 5o ) = 0.0.0), (B.40

hierbeiistm = 1,2, ..., Nj. Setzt man die Energiegleichungen (B.27)-(B.29) mit den approximierten
Verschiebungsfeldgleicheung (B.30)-(B.32) in die Gl. (B.40) erhélt man folgende Eigenwertsglei-
chung:

Kee ch Kee WY G4 Mcd WY G4

c [1}
K9 Kde ,,1% M4 \de d| = |0|, (B.41)
Kee Mee e 0

wobei die Eintrége der Ersatzsteifigkeitsmatrix K und der Ersatzmassenmatrix M sind:
= // dgN Iy 18¢W ey
kij = 8.’;‘ ER a an an

}éd i=1,2,.,Ny; j=i=1,2,.,N;; (B.42)

ki = g//Fa(p& ‘p’}d‘sd”; i=12,.,Ni; j=i=12,.,Ny; (B.43)
ki = //{ 9¢ d”}d&d”; i=12,.,Ni; j=i=12,.,Ns; (B.44)
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//{ 8¢"9¢" 1-vo¢rdof T

aé aé 2a an an (pl ¢]:| édns i=1,2,.,Ny; ]:1:1,2,..,N2;

(B.45)

xd¢Y _ xd¢Y
.e:// {vad’ 0 1-vogrod; dedn; i=1,2,.,Ny; j=i=1.2,..Ns; (B.46)

i JdE an ' 2 Jn 9&

A

2 9g 92 T2 an an

9% — X g
=) {”‘p’ O ol vo0rod; ¢,¢,}dédn, P= 12, Ny j=i=1,2,.Ny;

(B.47)
ms = 16“//@ prdEdn; =12, Nyi; j=i=12,.Nj; (B.48)
mfj’_o; i=1,2,.,N;; j=i=12,.. No; (B.49)
m“_o; i=1,2,.,Ny; j=i=12,.,Ny; (B.50)
mil = //¢,¢}dédn, P= 1,2, Ny == 1,2, N (B.51)
md‘—’ 0 i=1,2,.,Ny; j=i=1,2,.. Nz (B.52)
= //¢ OJaEdN; =12, Nyy j=i= 12N (B.53)
mit der Zwischengrofie
6(1-v)x
=2 B.54
* 412 (B:54)

B.4 Kenngroflen geordneter Kugelpackungen

In diesem Abschnitt sollen auf einige reprisentative KenngréBen von theoretisch geordneter (Hohl-
) Kugelpackungen vorgestellt werden.

In Tabelle B.1 werden drei verschiedene charakterisierende Kenngrofen fiir die idealen kubische
Packungen (KP, KRZ und KFZ) gezeigt. Zudem wird die periodische VORONOI-Zelle fiir diese
Packungssteme abgebildet. Fiir die KP-Anordnug ergibt sich ein Wiirfel und fiir KRZ und KFZ
jeweils ein regelméBiger Polyeder. Als weitere Kenngroe wird die Bindungswinkel-Verteilung
aufgefiihrt. Fiir die KP-Anordnung ergeben sich auschlichlich Winkel von 90° und 180°. Markante
Winkel bei der KRZ-Anordnung sind 70°, 109° und 180°. Bie der HDP-Anordnung zeigen sich
caharkteristische Winkel bei 60°, 90°, 120 und 180°. Zuletzt werden die Paarkorrelationsfunktio-
nen fiir die drei Packungsanordnungen prisentiert. Bei allen Packungen ensteht ein Maximum bei
Eins, was den direkten Kontakt der Kugeln hervorhebt. Als weitere Maxima zeigen sich Werte von

V2, /3,2 usw.
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B.5 Akustische Messmethoden

B.5.1 Zwei-Mikrofon-Methode

Bei der Zwei-Mikrofon-Methode nach DIN 10534-2 [162] wird der Priifling vor einer schallharten
Stahlplatte platziert. Dabei werden die einfallende und die reflektierte Schallwelle untersucht. Mit
dieser Methode lédsst sich aus den aufgenommen Druckverldufen der Absorptionsgrad o eines
pordsen Materials bestimmen.

Die Transferfunktionsmethode basiert auf der Tatsache, dass der Reflektionskoeffizient r bei
senkrechter Einschallung aus der gemessenen Ubertragungsfunktion Hip zwischen den beiden
Mikrofonen, welche vor der zu untersuchenden Probe angebracht sind, bestimmt werden kann.
Somit ergibt sich die komplexe Ubertragungsfunktion Hj, zu

P2 PB elkox2 | pe—ikox2

H =0
12 p1 pa  ekovi peikoxt’

(B.55)

wobei p; und p, die komplexen Schalldruckamplituden wie in Abb. B.3a an den Mikrofonpositio-
nen x; und x; sind und sich folgendermafien bestimmten lassen

p1 = Ae o o Belfoxi ynd  p, = Ae 0% 4 Belov2 (B.56)
Die Wellenzahl bestimmt sich iiber mf 2
T T
ko=—"=—. B.57
0= T (B.57)
Die Transferfunktion der einfallenden Schallwelle Hj, und der reflektierten Welle H,.¢ ergibt sich
zZu
Hyy = & — e dhox—x1)  ypd Hyep = @ — glfolxa—=x1) (B.58)
Al B

Kombiniert man die einzelnen Gleichungen, erhilt man den komplexen Reflektionskoeffizienten

Hip —Hin _ppjx
p=—— e lkon B.59
Hyer— Hip ( )

Durch den schallharten Abschluss ergibt sich fiir den Absorptionskoeffizient

a=1-|r?. (B.60)

B.5.2 Vier-Mikrofon-Methode

Das Vier-Mikrofon-Impedanzrohr ist eine Weiterentwicklung des Zwei-Mikrofon-Impedanzrohres
(KunDTsches Rohr) [198]. Es wurde durch zwei Mikrofone hinter dem Priifling ergénzt im
sogenannten Ubertragungs-Raum (siche Abb. B.3b). Zudem ist kein schallharter Abschluss mehr
vorhanden. Der Lautsprecher im Erzeugerraum wird, wie bei der Zwei-Mikrofon-Methode, mit
einem stationdren ,,weilen* Rauschsignal angesteuert. Ein Teil der Schallwelle wird an der
Priiflings-Oberflache reflektiert. Ein anderer Teil der Schallwelle wird durch den Priifling in den
Ubertragungsraum iibertragen.

Bei beiden Vorgidngen wird ein Teil der Schallenergie geddmpft. Dies entsteht bei offenporigen
und faserigen Schichten durch Reibung der Luftteilchen, bei weichen geschlossenporigen Stoffen
durch Kompressionsvorginge und damit verbundene Verluste. Durch die Reflektion entsteht im
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(a) (b)
X1 X 0 X1 X2 0 X3 X4
A ‘ A —C
Be— ‘ Be— De— =
Erzeuger-Raum Ubertragungs-Raum

Abbildung B.3: Schemaskizzen Impedanzrohr: a) Zwei-Mikrofon-Methode, b)Vier-Mikrofon-
Methode.

Erzeugerraum eine Uberlagerung von hin- (A) und zuriicklaufenden () Wellen, eine sogenannte
stehende Welle.
Durch eine FOURIER-Transformation ldsst sich der Schalldruck im Erzeugerraum der resultieren-
den Welle beschreiben mit

pEr = Ae 0¥ - Beikovn, (B.61)

Hier ist A die komplexe Amplitude der einfallenden, 5 die komplexe Amplitude der reflektierten
Welle und ko die Wellenzahl des Fluides. Dieser Effekt tritt ebenfalls im Ubertragungsraum auf,
wobei es hier unerheblich ist, ob das Ende des Impedanzrohres geschlossen ist oder nicht. Dies ist
fiir den Fall des offenen Endes des Impedanzrohres giiltig, da sich die Impedanz Z beim Ubergang
der Schallwelle in den freien Raum verdndert

Ay
Zy=7—. B.62
2=2 (B.62)
Aus der allgemeinen Uberlegung folgt fiir den Reflektionskoeffizient 7, in diesem Fall
L —2Z
ak = . B.63
Tak 71+ 7, ( )

Durch Kombination beider Gleichungen, ergibt sich der Reflektionskoeffizient r, in direkter
Abhingigkeit zum Verhiltnis der Querschnitte, definiert durch n = j—;, zu

n—1
= . B.64
Tak nrl ( )
Fiir den Schalldruck im Ubertragungsraum folgt analog zum Erzeugerraum
Py, = Ce o - peikomn, (B.65)

Hier ist C die komplexe Amplitude der einfallenden und D die komplexe Amplitude der reflektier-
ten Welle. Durch den Einsatz der Vier-Mikrofon-Methode an den entsprechenden vier Positionen,
ergeben sich folgende komplexe Schalldruck-Gleichungen

p1 = Ae o BeTihox ) — peTIRov | geikon

py = Co o Deihos ) Corikv | pe-ikovs, (B.66)
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Formt man die Gleichungen fiir p; bis p4 um, so ergeben sich die komplexen Koeffizienten .A bis
D, die zur Berechnung der Schalldriicke und Schallschnellen an der Oberfliche der Werkstoffprobe
bendtigt werden zu

A= j (Ple_jkoxz *ple_jkt)xl) 5 j (pze—jkoxl ,pze—jkgxz)
2sin(ko (x1 —x2)) 2sin (ko (x1 —x2))
j —jkoxa _ . e—ikox3 ; —jkoxs _ o a—jkoxs (B.67)
C:] (p3‘3 pie ) 'D:J (p4e pae )

2sin (ko (x3 —x4)) 2sin (ko (x3 —x4))

Mit Hilfe einer Transfermatrix ldsst sich die Anhéngigkeit dieser vier Groflen untereinander

darstellen
{P:| _ {Tll Tl2} . {P} ) (B.63)
Vo [Tt T |v]._,

Hierbei ist p der Schalldruck und v die Schallschnelle an der Oberfléche des Materials. Somit folgt
fiir den Schalldruck am linken und rechten Rand der Probe:

Pl = Ae 00 4 Bkl = A4 B,

, . B.69
Ply_yg = CeH0d 1 Delkod, (®.69)

Zieht man den allgemeingiiltigen, grundlegenden Zusammenhang zwischen der Schallschnelle und

dem Schalldruck
Ive _ 1 9p
ot Po ox
hinzu und setzt man den Schalldruck und die Schallschnelle hier ein, ergibt sich durch geschicktes

Zusammenfassen

(B.70)

Ve (1) = i (Ae‘J'("Ox—“”) +Bei<k°x_“”)) . (B.71)

Mittels einer FOURIER-Transformation ergibt sich im Frequenzbereich die Schallschnelle als
komplexes Spektrum

Ve (x, @) = (Ae’jk"" + Bejk‘))‘) (B.72)

L
Poc
Die Schallschnelle an der Probenoberfliche ergibt sich somit zu
| Ae 70 4 Belk0— A— B
Vig—o = = s
poc Poc
Co ol + et B7)
Poc ’

v|x:d =

B.5.3 Two-Load-Methode

Mit Hilfe der komplexen Schalldriicke p; bis ps werden wie oben erldutert die komplexen
Koeffizienten A bis D berechnet. Hierbei prasentiert sich nur eine Herausforderung: Die Matrix
enthilt vier Unbekannte, die Messung liefert jedoch nur zwei Gleichungen. Somit werden noch
zwei weitere Gleichungen bendtigt. Bei der Two-Load-Methode werden diese zwei Gleichungen
durch eine zweite Messung mit geédindertem Abschluss des Impedanzrohres erzeugt. Beispielsweise
kann hierzu ein schallschluckender Abschluss eingesetzt werden, wie die Abb. B.3b am rechten
Rand verdeutlicht. Die Transfermatrix wird hierdurch erweitert und kann eindeutig geldst werden:

pvop2| _|Tn Ta| |p1 p2 (B.74)
vi 2| o T T2f v v2),_y '
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Nach einer entsprechenden Umstellung der Transfermatrix und Bildung der inversen Matrix erge-
ben sich die Matrixelemente 77; bis 75, zu:

T, = P2limo Vilyma = P1limo V2lima
P2leg Vils—a = Pilx=d V2l1=q
_ P20 Pilia = Pilico P2lico
Vz\x:d p1 \x:d -V \x:d P2|x:d (B.75)
Ty = 2h=0V1limd = Vil V2l '
P2le—q Vils—a = Pilx=a V2l1=q
Ty — V2ly—o P1liea = Vilimo P2lio
Vz\x:d P1 |x:d -V |x:d P2|x:d

B.5.4 One-Load-Methode

Anstatt wie bei der Two-Load-Methode eine zweite Messung durchzufiihren, gibt es auch die
Maoglichkeit, zwei weitere Gleichungen zur Losung des Gleichungssystems einzufiihren. Diese
Moglichkeit der Losung ist jedoch ausschlieBlich bei Materialien praktikabel, die eine homogene
und isotrope Beschaffenheit aufweisen. Unter dieser Annahme folgt fiir die Transfermatrix:

Tiy=T» und (B.76)

TnTy—Tialn =1. (B.77)

B.5.4.1 Bestimmung der akustischen Parameter

Zur Berechnung der akustischen Kennwerte soll nun zuerst von einem idealen, nicht reflektie-
renden Abschluss ausgegangen werden, wodurch die Schallwelle D im Ubertragungsraum nicht
existiert. Normiert man die Gleichungen fiir den Schalldruck und die Schallschnelle auf die
einfallende Welle A, folgt

p‘xZO =1+ r
| 1—r
Vik=0=
poc
. B.78
p‘x 0= teijk()d ( )
te—ikd
V‘XZO - poc .
Aufgrund der Definition des Reflektions- und des Transmissionsfaktors durch
B C
Fak = a und = a (B.79)
folgt fiir den reflektionsfreien Abschluss
Ti1+ 22 — poeTyy — T
Fak = pT"C und (B.80)
T+ gz — pocTar + T
Zejkﬂd
tak = Tt e B.81
ak = T . ( . )
N+ 56— pocTa + T
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Die Oberflichenimpedanz der Sendeseite ergibt sich zu

T+ 12
Zy= poc (B.82)

ST I
i+ 5%

Die Wellenausbreitung innerhalb des Absorbers konnen durch folgenden Ausdruck
Tiy Tia| _ | cos (kad)  jsin(kqd) paca (B.83)
T Txn jsin (kad) paca cos (kqd) ’

beschrieben werden. Dabei ist k, die komplexe Wellenzahl und Z, = p,c, die charakteristische
Impedanz des Absorbermaterials. Durch Umkehr der oben aufgefiihrten Beziehung, kann man £,
Z, folgendermaflen bestimmen

1
kg = gcos_1 Ty oder
" (B.84)
kg = Esin_1 V-T2

und

Z=paca = | 12, (B.35)

21

Neben den Impedanzrohr-Messmethoden gibt es weitere Messmethoden, wie das bereits erwdhnte
Hallraummessverfahren nach ISO 354 [161]. Der Hallraummessmethode liegt die Nachhallzeit-
formel nach Sabine [182] zu Grunde. Diese Messmethode basiert auf der Erkenntnis, dass der
stationdre Schalldruckpegel oder das Abklingen des Schalldruckpegels nach Abschalten einer
Schallquelle in geschlossen Rdumen unter anderem von der schallabsorbierenden Eigenschaft der
Wandbegrenzung abhéngt. In mehreren Messreihen wird die mittlere Nachhallzeit in einem be-
messenen Hallraum mit und ohne Priifobjekt, sprich Absorbermaterial, bestimmt. Die gemessenen
Werte beziehen sich beim Hallraumverfahren auf das diffuse Schallfeld, in dem der Schall nahezu
gleichmiBig verteilt ist.

B.6 JOHNSON-CHAMPOUX-ALLARD-PRIDE-LAFRAGE-Modell

Eine Erweiterung des JOHNSON-CHAMPOUX-ALLARD-Modells stellt das JOHNSON-CHAMPOUX-
ALLARD-PRIDE-LAFRAGE-Modell dar. Wie bei dem Modell von Johnson, Champoux und Allard
beruht die Beschreibung der dissipativen viskos-tragen Effekte auf den Arbeiten von Johnson,
Koplik und Dashen, zusitzlich werden die Effekte der Arbeit von Pride, Morgan und Gangi
integriert. Bei den thermisch dissipativen Effekten wird das Modell um die Erkenntnisse der Arbeit
von Pride Morgan und Gangi bzw. Lafrage, Lemarinier, Allard und Tranow erweitert.

Ausgehend von der Arbeit von Johnson [104] iiber das halb-phdnomenologische Modell zur Be-
schreibung komplexer Dichten eines pordsen Akustikmaterials mit starrem Strukturskelett, wurde
das Modell durch Pride [169] weiter verfeinert und durch Lafarge [118] iiberarbeitet. Mit Hilfe der
Zwischengrofien

Oleo M,
M, = —— und BP=——
VT 9EA2 YT (% B 1) (B.86)
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und der viskosen Kreisfrequenz

— ©OP0%- (B.87)
o=
kann der Zwischenterm
My
F(@)=1=P,+P, |14+ —jo, (B.88)

2P2

gebildet werden. Dabei stellen ¢ die statische viskose Verwundenheit und o.. die viskose Verwun-
denheit an der Hochfrequenzgrenze dar. o, entspricht dem Strukturformfaktor o, des JOHNSON-
CHAMPOUX-ALLARD-Modells. Die iibrigen drei weiteren Parameter konnen aus dem JOHNSON-
CHAMPOUX-ALLARD-Modell entnommen werden. So kann mit den fiinf Parametern die effektive
Dichte

1
Pest (@) = po {1 + J-EFV (w)} (B.89)
beschrieben werden. Die thermischen Effekte lassen sich mit den Zwischengrofien
kio M,
My=— d P=——— B.9
Toar M T T dae 1) B0
und der thermischen Kreisfrequenz
P
_ wpokoPr (B.91)
ou
mit dem Zwischentermen
M,
Fi(@) =1-R+Py [1+sio. und
t (B.92)

Bu(@) = 7— (y—1) [1 ; jiwtﬂ(m}

bestimmen. Der Kompressionsmodul lédsst sich aus den vier Parametern, die Porositdt ¢, die
thermisch charakteristische Lange beziehungsweise dem thermischen Formfaktor ¢, die statisch
thermische Leitfdhigkeit k¢ und die statisch thermischen Verwundenheit o4y folgendermafen
bestimmen:

YPo
K(w)= . (B.93)
B (o)
Dieses Modell kann zum JOHNSON-CHAMPOUX-ALLARD-LAFARGE-Modell vereinfacht wer-
den, indem man A, = P, = 0 setzt. Daraus ergibt sich

v
28 0.+ 9A2
04 = 1725 und oy = %T‘%V (B94)
Mit der weiteren zusétzlichen Bedingung M, = 0 bzw.
A2
ko = % (B.95)

reduziert sich das JOHNSON-CHAMPOUX-ALLARD-LAFARGE-Modell zum JOHNSON-CHAM-
POUX-ALLARD-Modell. Eine kleine Ubersicht iiber die theoretischen Absorbermodelle soll die
Tabelle B.2 geben.
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Tabelle B.2: Ubersicht iiber die Absorbermodelle mit zunehmender Komplexitit - starres Mo-
dellskelett der pordsen Struktur (nach [1, 101]).

Art der senkrechte geneigte ungleichféormige | ungleichférmige
Material- zylindrische zylindrische Poren Poren mit
morphologie Poren Poren moglichen
Verengungen
Anzahl der 2 3 4-6 8
Parameter
Modelle Zwikker Kosten Miki Attenborough Johnson-
mit 0,2 = Aﬂo 0, Z, O 0,Z, O, b Champoux-
Parametern Allard-
Wilson Pride-
Poos Tyors Kooy Tent Lafarge
O, Z, Ooo, Ay,

Johnson-
Champoux-
Allard-
Pride
@, Z, O
AVa At, kt()

!
0, Ay, ki, 0
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C Resultate

C.1 Sonderfall: Periodische Randbedingung fiir ideale Anord-
nung
Neben den periodischen Randbedingungen fiir kubische Strukturen wurden spezielle periodische

Randbedingungen fiir ideale Strukturen im einachsigen Zug- und Druckfall betrachtet. Sie sind
ausdriicklich nur bei dieser Belastungsart giiltig.

C.1.1 Kubische Elementarzellen

Sinnbildlich sind in den Abb. C.l1a und C.1b das Funktionsprinzip der Randbedingung und der
dazugehdrigen Lagerdefinition gezeigt. Symbolisch wird die Sperrung der Richtungen, in der sich
der Korper nicht verschieben soll, durch das Loslager-Symbol dargestellt und die Last durch einen
grauen Pfeil. Die Abbildungen C.1a und C.1b zeigen durch Loslager-Symbole an den Kanten der

ﬁir,ﬁf::-

> <Hx > <B—x

y oo : oo

(a) Ansicht von oben (b) Seitenansicht

Abbildung C.1: Sinnbildliche Funktionsweise der Befehle zur periodischen Randbedingung

x-, y- und z-Richtung die typische Lagerung, wie sie aufgrund der Symmetriebedingung vorge-
nommen wird. Im FE Programm sind die Randbegingungen mit Hilfe eines Makros einzustellen,
dass sich der Wiirfel bei Belastung in x- und y-Richtung ausdehnen darf. Dabei ist sichergestellt,
dass sich die bewegende Fldche parallel zur, oder entgegen, der gesperrten gegeniiberliegenden
Fliche bewegen kann. In Abb. C.la ist dies sinnbildlich durch die Loslagerkonstruktionen oben
und rechts zu erkennen, sowie in Abb. C.1b an der rechten Fliche.

C.1.2 Hexagonal dichtest gepackte Elementarzelle

Die bisher gezeigten kubischen Elementarzellen sind in der x-, y- und z-Richtung symmetrisch.
Die HDP-Elementarzelle zeigt gewisse Symmetrien, ist aber nicht in der x-, y- und z-Richtung
symmetrisch. Aufgrund dieser Eigenschaft wird die HDP-Elementarzelle durch zwei verschiedene
Lastfille untersucht.
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(a)
Abbildung C.2: HDP-Elementarzelle: a) Draufsicht, b) Seitenansicht.

Den ersten Fall der untersucht wird, zeigt Abb. C.2a (HDP Elementarzelle in der Draufsicht). Hier
wird spater die Last aufgegeben und es ist eine Symmetrie zu erkennen.Die Abb. C.3 zeigt ein
sechseckiges Prisma. In Abb. C.3a sind die Lagerung und die mit dem Makro gefiihrten Fliachen
zu erkennen. Abbildung C.3b zeigt die Last, die in Richtung der z-Achse erfolgt.

(b)
Abbildung C.3: HDP-Elementarzelle: a) Lagerung, b) Last.

L

(a) (b)
Abbildung C.4: HDP-Elementarzelle: a) Vorderansicht, b) Lagerung und Last

C.2 Sinterstellenwinkel

Zusitzlich zu den vorgestellten Ergebnissen in Abschnitt 4.2.1 werden in diesem Anhangsteil die
Variation des Sinterstellwinkels fiir verschiedene regelmiflige Hohlkugelpackungen (KP, KRZ,
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KFZ und HDP) vorgestellt. Es wird jeweils der relative Elastizitdtsmodul und Querkontraktions-
zahl bezogen auf das Verhdltnis von Wanddicke zu Hohlkugeldurchmesser bzw. auf die relative
Dichte gezeigt.

C.2.1 Kubisch-Primitiv

Die Abb. C.5 priasentiert die fiir die kubisch-primitive Elementarzelle mit vier verschiedenen
Sinterstellenwinkeln von 5° bis 20° den relativen Elastizitdtsmodul in Abhéngigkeit vom Verhéltnis
Wanddicke zu Hohlkugeldurchmesser. Es stellen sich dhnliche Kurvenverldufe fiir diese Parame-
tervariation wie bei der Variation des Sinterstellendurchmessers in Abschnitt 4.2.1 ein. Bezieht
man den relativen Elastizititsmodul auf die relative Dichte erhdlt man nahezu lineare Verldufe im
doppel-logarithmischen Diagramm (siche Abb. C.5). Die Abb. C.6 zeigt den Querkontraktionsver-

—. 0,025 . 0,1
= = 30 ——
o o 10° ——
o002 & 15° —%—
3 z 20° —o— 4??
] ] 0,01
S 0015 - ﬁ?
= 001 5 /
Z Z 0001 L
= T =
5 0,005 . 5
(o] o
= 0 = 0,0001
0 001 002 003 004 005 0,01 0,1 1
Wanddicke/Durchmesser #/D | ] relative Dichte p}/p; []

Abbildung C.5: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf den Elastizitdtsmodul.

lauf in Bezug auf das Verhéltnis Wanddicke zu Hohlkugeldurchmesser bzw. die relative Dichte. Es
lasst sich ein Zusammenhang zwischen Querkontraktionszahl und dem geometrischen Verhéltnis
erkennen. Mit steigendem Verhiltnis von Wanddicke zu Hohlkugeldurchmesser nimmt ebenfalls
die Querkontraktionszahl zu. Einen dhnlichen Verlauf erkennt man bei der Abbildung iiber die
relative Dichte.

C.2.2 Kubisch-Raumzentriert

Die Abb. C.7 zeigt fiir die kubisch-raumzentrierte Elementarzelle mit vier verschiedenen Sin-
terstellenwinkeln (5° bis 20°) den relativen Elastizititsmodul in Abhédngigkeit vom Verhiltnis
Wanddicke zu Hohlkugeldurchmesser und relativer Dichte. Die dazugehdrenden Querkontrak-
tionsverldufe in Bezug auf das geometrische Verhiltnis bzw. auf die Dichte ist in Abb. C.8
dargestellt. Es kann ebenfalls der Zusammenhang festgestellt werden, dass mit zunehmenden
geometrischen Verhiltnis von Wanddicke zu Kugeldurchmesser bzw. zunehmeder relativer Dichte
die Querkontraktionszahl steigt. Im Gegensatz zu KP-Anordnung befinden sich die Werte der
Querkontraktionszahl ausschliesslich im negativen Bereich.
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Abbildung C.6: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf die Querkontraktionszahl.
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5o 20,0001
0 001 002 003 004 005 0,01 0,1 1

Wanddicke/Durchmesser #/D [ ] relative Dichte p/p; []

Abbildung C.7: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf den Elastizitdtsmodul und die Querkontraktionszahl.

C.2.3 Kubisch-Fliachenzentriert

Die Abb. C.9 gibt die Verldufe des relativen Elastizitdtsmoduls fiir die KFZ-Anordnung wieder.
Betrachtet man die Verldufe erkennt man eine groBerer Zunahme des relativen Elastizitdtsmoduls
gegeniiber der KP- und KRZ-Anordnung. Den Verlauf der Querkontraktion in Abhéngigkeit vom
Verhiltnis von Wanddicke zu Hohlkugeldurchmesser bzw. von der relativen dicht ist Abb. C.10
dargelegt. Im Vergleich zu den Verldaufen der KP- und KRZ-Anordnung zeigt der Querkontrakti-
onszahlverlauf der KFZ-Anordnung die grofte Varianz.

C.2.4 Hexagonal-Dichtest-Gepackt

Abbildung C.11 veranschaulicht den Verlauf des relativen Elastizitdtsmoduls fiir die HDP-Anordnung.
Der Querkontraktionsverlauf fiir diese Anordnung kann aus Abb. C.12 entnommen werden. Beide
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Abbildung C.8: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einfluss auf den Elastizitdtsmodul und die Querkontraktionszahl.
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Abbildung C.9: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstantem
Kugeldurchmesser, Einflul auf den Elastizitdtsmodul und die Querkontraktionszahl.

Verldufe dhneln den Verldufen der KFZ-Anordnung sehr stark.
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Abbildung C.10: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstan-
tem Kugeldurchmesser, Einflufl auf den Elastizitdtsmodul und die Querkontraktionszahl.
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Abbildung C.11: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstan-
tem Kugeldurchmesser, Einflufl auf den Elastizitdtsmodul und die Querkontraktionszahl.
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Abbildung C.12: Parametervariation Sinterstellenwinkel bei konstanter Wanddicke und konstan-
tem Kugeldurchmesser, Einflufl auf den Elastizitditsmodul und die Querkontraktionszahl.
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C.3 Schallabsorption

Die folgenden Abb. C.13, C.14, C.15 und C.16 zeigen jeweils den Real- und Imaginérteil der
charakterisierenden Grofen, charakteristische Impedanz und komplexe Wellenzahl fiir die Probe
HKS 86. In den Diagrammen stellt die Volllinie das JOHNSON-CHAMNPOUX-ALLARD- Modell,
die gestrichelte Linie die Messung mit der One-Load Methode und die gepunktete Linie die
Messung mit der Two-Load Methode dar. Abbildung C.17 prisentiert akustische Absorberwete
fiir einem Hartschaum und einem Fasermaterial.
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Abbildung C.13: HKS 86: Realteil der Wellenzahl Z, fiir verschiedene Probendicken.
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Abbildung C.14: HKS 86: Imaginérteil der Impedanz Z; fiir verschiedene Probendicken.
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Abbildung C.15: HKS 86: Realteil der Wellenzahl £, fiir verschiedene Probendicken.

216.73.216.36, am 18.01.2026, 12:41:28. ©
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

Resultate 181

= 0 d=20 mm = 0 d=30 mm
—|g —|g
S mg R0 T
= ThEy S 40
é é -60
= =
§ g -80
B B -100
g g -120
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Frequenz [Hz] Frequenz [Hz]
d=50 mm
I olg 0
-10 2ty
< 201
=30
E £
5 5
o & -60
= = -70
2 2 50
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Frequenz [Hz] Frequenz [Hz]
. d=60 mm
i
m-10 | St
E_ZO -
= -30
g 40
8 -50
= 60

0 500 1000 1500 2000 2500 3000 3500
Frequenz [Hz]

Abbildung C.16: HKS 86: Imaginérteil der Wellenzahl %, fiir verschiedene Probendicken.
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(b) Fasermaterial
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Abbildung C.17: Ubersicht iiber die Kennwerte der Polymerschéume, Proben, Real- und Imagi-
narteil der Wellenzahl und Real- und Imaginérteil der Impedanz.
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C.4 Schallgeschwindigkeitskorper

Zur Bestimmung des allgemeinen Anisotropiefaktors 4} .. nach Ledbetter und Migliori [126]
bendtigt man die maximale bzw. minimale Schubwellenausbreitungsgeschwindigkeit, auch trans-
versale Schallgeschwindigkeit genannt. Geht man von der CAUCHY-EULERschen Bewegungsglei-
chung

V.o+f¥=pk bzw.

. (C.1)
Gijj+ 17 = pii
aus und nutzt das lineare HOOKEsche Materialgesetz
oc=C--€g bzw.
(C2)
0ij = Ciju€n,
wobei
= [Vu + (Vu) ] bzw.
% (€3)
& = 5 (Muc + uk,z)

ist, erhélt man durch Einsetzen von Gl. (C.2) und Gl. (C.3) in Gl. (C.1) bei Vernachlédssigung der
Volumenkrifte folgende Bewegungsgleichung:

C-V’u—pi=0 bzw.

. (C.4)
Cijrivig1j— pXi =0
Die harmonische Ebenen-Wellen-Verschiebungen konnen wie folgt:
( ) _ 12 kx wt)
u(x,t) = dpe’ (z x-t) bzw. (C5)
u; = up (% X t)
mit
k=kd bzw. k =kd; (C.6)
und
o
e=— (C.7)

ausgedriickt werden. Hierbei stellt 7 den Amplitudenfaktor, p den Polarisations-Einheitsvektor,
n den Ausbreitungs Einheits-Richtungsvektor, k den Wellenzahlvektor und ¢ die Phasen- bzw.
Ausbreitungsgeschwindigkeit dar. Setzt man die G1.(C.5) und Gl. (C.6) in Gl. (C.4) ein, ergibt sich
die monochromatische Ebenen-Wellen-Gleichung [153, 157]:

((C~ -dfpczl) p=0 bzw.

(C8)
(Cijuidjdy — p* i) pi = 0.
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Diese CHRISTOFFEL-Gleichung fiir anisotrope Festkorper lédsst sich auf ein Eigenwertproblem mit
drei Eigenwerten pc? reduzieren:

|(C~ -d —pc21| =0 bzw.

C.9
|Cijuadjdy — pc* S| = 0. €9
Aus den Eigenwerten kénnen die drei Ausbreitungsgeschwindigkeiten bestimmt werden. Fiir reine
longitudinale ebene Korperschallwellen sind der Polarisationsvektor p und der Ausbreitungsvektor
n parallel zueinander. Fiir reine transversale (Schub-) Wellen stehen der Polarisationsvektor p und
der Ausbreitungsvektor n senkrecht aufeinander. In den anderen Féllen breitet sich eine quasi-
longitudinale bzw. quasi-transversale Welle aus.
Im Folgenden sind fiir die idealen Hohlkugelstruktur Elementarzellen in den Abbildungen C.18 bis
C.20 (KP, KRZ und KFZ) die quasi-longitudinale und die zwei transversale Schallgeschwindigkeit
darstellt. Die Berechnungen sind mit folgenden Hohlkugelparametern 5 = 0,01 und Sinterstel-
lenwinkel von 17.4° durchgefiihrt worden. Die Schallgeschwindigkeit wird in den Diagrammen
relativ zur longitudinalen Schallgeschwindigkeit des isotropen Strukturmaterials (z.B. Stahl) an-
gegeben. Abbildungen C.21 - C.24 zeigen die relativen Koperschallgeschwindigkeiten fiir die
zufillig geordneten reprisentativen Volumenelemente-Modelle.
In Winkler et al. [224] wurde fiir die Probe HKS 113 longitudinale Schallgeschwindigkeit in
einem Bereich von 1532 T bis 1644 ¥ gemessen. Geht man von einer longitudinalen Ko-
perschallgeschwindigkeit von 5850 & [178] aus, ergibt sich eine relative quasi-longitudinale
Schallgeschwindigkeit im Bereich von 26,3% bis 28,2%. Vergleicht man diese Werte mit der
relativen quasi-longitudinalen Schallgeschwindigkeit der RVE mit 55% Packungsdichte in der
Abb. C.21 bei einem Verhiltnis von Wanddicke zu Kugeldurchmesser von 0,01 und in der Abb.
C.25 bei einem Verhiltnis von Wanddicke zu Kugeldurchmesser von 0, 04, erkennt man eine gute
Ubereinstimmung. Fiir die Probe HKS 113 wurde ein £ = 0,25 und einer Packungsdichte von
57% ermittelt (siehe Kapitel 4).
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Abbildung C.18: Richtungsabhingige Korperschallgeschwindigkeit fiir KP-Elementarzelle.
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Abbildung C.19: Richtungsabhingige Korperschallgeschwindigkeit fiir KRZ-Elementarzelle.
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Abbildung C.20: Richtungsabhingige Korperschallgeschwindigkeit fiir KFZ-Elementarzelle.
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Abbildung C.21: Richtungsabhingige Korperschallgeschwindigkeit fiir RVE mit 55% Packungs-
dichte.

216.73.216.36, am 18.01.2026, 12:41:28. ©
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

Resultate 187

quasi-longitudinal 1. quasi-transversal

Relative Schallgeschwindigkeit [ ]

-0,2

0,2 0,2
xy-Ebene

0,
2. quasi-transversal

z m— Jongitudinal
02 = = = I transversal | 0:2

0.1 virones 2 transversal

= 0

—0,1
—0,2

0 Ll
2 0,1
0,2 .

Abbildung C.22: Korperschallgeschwindigkeit fiir RVE mit 62% Packungsdichte.
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Abbildung C.23: Korperschallgeschwindigkeit fiir RVE mit 66% Packungsdichte.
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Abbildung C.24: Kérperschallgeschwindigkeit fiir RVE mit 69% Packungsdichte.
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Abbildung C.25: Richtungsabhingige Korperschallgeschwindigkeit fiir RVE mit 55% Packungs-
dichte bei einem Verhiltis von Wanddicke zu Kugeldurchmessser von 0, 04.

216.73.216.36, am 18.01.2026, 12:41:28. ©
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186759054

Symbolverzeichnis

189

Symbolverzeichnis

Mathematische Operatoren und Symbole

a-b= a,-b,-
axb= fijka,-b,-ek
a®b=aqabe e;
A-B= A,-jB‘,-ke,' X ey
A--B=4;juBye®e;
grad(a) =Va= (%/a,»e,- ®e;
div(A) =V A = dye; e, = L Aye;
div(grad (a)) = V- (Va) = VZa = Aa
Spur(A) = 4;;
_ 1 T
sym(A) = 5 (A+AT)
skew (A) = (A—AT)

(A)T, AT =Adije;®e
200,400,000,
PO JONONON
d()

A(.)

gij(-)

20)

€ijk

f()

I=gjei0e =€ e
Im{-}

Re{-}

Skalarprodukt von Vektoren und Tensoren
Kreuzprodukt zweier Vektoren
Tensorprodukt

einfache Kontraktion zweier Tensoren
zweifache Kontraktion zweier Tensoren
Gradient (rdumliche Betrachtung)
Divergenz

Laplace Differentialoperator

Spur eines Tensors

Symmetrischer Anteil
Antisymmetrischer Anteil
Transposition, Beispiel Tensor zweiter Stufe
Zeitableitung

Ortsableitung am Beispiel nach x
infinitesimal kleine Grof3e

finitesimal kleine Grofe
Kronecker-Symbol (1 fiir i = j, sonst 0)
partielle Ableitung
Permutationssymbol

Funktion von (-)

Identitt

Imagindrteil der komplexen Zahl(-)
Realteil der komplexen Zahl(-)

Formelzeichen (lateinisch)

a Lange
a Ortsvektor im materiellen Koordinatensystem
A Fliche
AAniso ZENERsche Anisotropiefaktor
A niso allgemeingiiltiger Anisotropiefaktor
Zuordnungstensor
b Breite
216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschitzter Inhalt .
tersagt, m 'mit, fiir oder in KI-Syster



https://doi.org/10.51202/9783186759054

190 Symbolverzeichnis
b Beschleunigungsfeld

B rechter CAUCHY-GREEN-Deformationstensor
B Korper

B Korperoberfliche

B Zuordnungstensor

c Schall-, Phasengeschwindigkeit

cp isobare Wirmekapazitit

cy isochore Warmekapazitit

ct thermischer Porenfaktor

Cy viskoser Porenfaktor

co Schallgeschwindigkeit der Luft, des Mediums
C(r) Kovarianz

Cp spezifische isobare Warmekapazitit

C Konstante

G Konstante

C linker CAUCHY-GREEN-Deformationstensor
Camp Déampfungsmatrix

C Steifigkeitstensor

d Dicke des Absorbers

dax Schalldissipationsgrad

D Durchmesser

Dp; Plattensteifigkeit

D Dissipationsfunktion

d Raumrichtungsvektor

D Deformationsgeschwindigkeitstensor

E Elastizititsmodul

E GREEN-LAGRANGE-Verzerrungstensor
f Frequenz

f beliebige Funktion

fE HELMOTZsche freie Energie

F Kraft

fm Massenkraftdichtevektor

10 Oberflachenkraftvektor

v Volumenkraftvektor

F Deformationsgradient

g(r) Paarkorrelationsfunktion

g beliebige Funktion

G Schubmodul

G Admittanz

h Hohe, Plattendicke

hy Schubdicke

h Basisvektoren

216.73.216.36, am 18.01.2026, 12:41:28. © Urheberrechtiich geschutzter Inhak k.
m

mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186759054

Symbolverzeichnis

191

=S X

SRS

MGas

=5 ==

aviaS]

Pr
PD

Pa

Ubertragungsfunktion
Wirmestromvektor
Verschiebungsgradient

Flachenmoment 2. Ordnung
Invariiante

Identitat

Drehimpulsvektor
Schallintensitét

Massentrigheitsmoment
Imaginire Grofie
JAcoBI-Determinante
Besselfunktion i-ter Ordnung

Wellenzahl

Wellenzahl im Absorber
Durchléssigkeitsbeiwert
viskoser Dampfungskoeffizient
Kompressionsmodul
RIPLEYsche Funktion
Koordniationszahl

kinetische Energie
Wellenzahlvektor

Linge

normierte Lange
LAGRANGEsche Funktion
Geschwindigsgradiententensor

Moment
Gasmasse
Molmasse
Massenmatrix

Index, Anzahl
Anzahl
Normalenvektor

Druck

(Schall-) Leistung
PRANDTL-Zahl
Packungsdichte
Impulssvektor

Leistung der duferen Krifte
Polarisationsvektor

duflere Kraft
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IR

XN
Y Y g

K

*®H S2EI <<<3T5 CERES HoSSgS 0ntc o3
- 3
<

Warmezufuhr
Wirmequelle
Schallfluss

Radius
Schallreflektionskoeffizien
Klebestellenradius
Sintertellenradius
(4uBerer) Radius
allgemeine Gaskonstante
spezifische Gaskonstante
innere Radius

Drehtensor, -matrix

Schubwellenzahl
spezifische Entropie
Entropie
Nachgiebigkeitstensor

Schalendicke
Schalltransmissionsgrad
Zeit

Temperatur
Spannungsvektor
Transmissionsmatrix

Verschiebung

spezifische innere Energie
innere Energie
Verschiebungsvektor
Rechtsstrecktenortensor

DARCY-Geschwindigkeit
Volumen

Volumenanteil
Geschwindigkeitsvektor
Linksstrecktenortensor
Viskosititsstensor

Arbeit
Forménderungsenergiedichte
Drehgeschwindigkeitsvektor
mechanische Energie

Koordinate
Ortsvektor im rdumlichen Koordinatensystem
Bild
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<

S

NNNNN

Koordinate

Koordinate

Impedanz

akustische Flussimpedanz
charakteristische Impedanz
mechanische Feldlmpedanz
akustische Feldimpedanz

Formelzeichen (griechisch)

o
Oloo

B

Y
Yij

€K

(o)

W [1] O <

=

Po

Absorptionsgrad
Strukturformfaktor

Verlustgrad

Adiabadenexponent
Schubverzerrung

Toleranzparameter
ALMANSI-Verzerrungstensor
Verzerrungstensor

lokale Koordninaten

Schubkorrekturfaktor
Krimmung

LAME-Konstanten

dimensionsloser Frequenzparameter
Wellenldnge

thermische charkteristische Lange
viskose charkteristische Lénge

LAME-Konstante
dynamische Viskositét der Luft, des Mediums

Querkontraktionszahl

lokale Koordninaten

langenbezogener Stromungswiderstand
Auslenkung

Potential
Dichte
Dichte der Luft, des Mediums
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Plokal lokale Dichte

9 Oberflichenpannung

Om hydrostatische Spannung
o Spannungstensor

T Spannungsvektor

o Porositét

) Binde, Sinterwinkel

7 Drehwinkel um x;-Achse
w Kreisfrequenz
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Abkiirzungsverzeichnis

Abkiirzung
B
CAD
D

EZ
FBA
FEM
HDP
HKS
KFZ
KRZ
KP
KURB
MHKS

PRB
RVE

SURB
VE

Beschreibung

Boden

Computer Aided Design
Deckel

Elementarzelle

Forced Biased Alghorythmus
Finite-Elemente-Methode
hexagonal dichtest gepackt
Hohlkugelstruktur

kubisch flaichen zentriert
kubisch raum zentriert
kubisch primitiv

kinematisch uniforme Randbedingung
metallische Hohlkugelstruktur
Nord

Ost

periodische Randbedingung
Reprisentatives Volumement
Siid

statisch uniforme Randbedingung
Volumenelement

West
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