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µR Fest Festkörperreibungszahl 

Π Dimensionslose Druckkennzahl 

τ Schubspannung 

τE Übergangsschubspannung 

τL Grenzschubspannung 

ν Kinematische Viskosität 

ν1,2 Querdehnzahl des Körpers 1 bzw. 2 

φ Umfangswinkel 

φy,z Kippwinkel des WK um die y-, z-Achse 

ψ Relatives Lagerspiel 

Ω Dimensionsloser Parameter 

ω Rotationsgeschwindigkeit 

ωɶ  Mittlere Rotationsgeschwindigkeit 
 

Indizes 

a Kontaktpartner 1, z.B. Lagerschale, Außenring  

AR Außenring 

b Kontaktpartner 2, z.B. Wellenzapfen, Käfig 

IK Innenkreis 
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Nomenklatur XIII 

 

IR Innenring 

K Käfig 

r Ersatzring 

R Reibung 

WK Wälzkörper 

x Komponente in x-Richtung 

y Komponente in y-Richtung 

z Komponente in z-Richtung 
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XIV Zusammenfassung 

 

Zusammenfassung 

In vielen technischen Anwendungen ist zur Verbesserung der Energieeffizienz die Rei-
bung in Wälzlagerungen zu reduzieren. Wälzlager, die hohen Zentripetalbeschleuni-
gungen ausgesetzt sind, können eine stark erhöhte Reibung an den Käfigkontakten 
aufweisen, da der bordgeführte Käfig gegen den Außenring gedrückt und verformt 
wird. Zur gezielten Entwicklung neuer reibungsarmer Lagerlösungen ist in solchen 
Anwendungsfällen sowohl die Schmierstoffhydrodynamik in den Käfigkontakten als 
auch die Käfigelastizität in der Wälzlagerdynamiksimulation zu berücksichtigen. 

Die Berücksichtigung der Schmierstoffhydrodynamik erfolgt mit Hilfe analytischer 
Berechnungsansätze differenziert für jeden Käfigkontakt. Die Kontaktberechnung 
bleibt damit weiterhin recheneffizient, numerisch stabil und für die Dynamik-
simulation von Wälzlagern geeignet. Eine Umsetzung dieses Ansatzes erfolgt im 
Wälzlagerdynamiksimulationsprogramm CABA3D. Eine ausreichend hohe Genauigkeit 
der hydrodynamischen Berechnung wird durch den Abgleich mit dem validierten 
Gleitlagerprogramm COMBROS sichergestellt. Es kann gezeigt werden, dass die Be-
rücksichtigung der Schmierstoffhydrodynamik einen großen Einfluss auf die Käfig- 
und Lagerkinematik sowie das Reibungsmoment haben kann und bei Lagern unter 
Zentripetalbeschleunigung berücksichtigt werden sollte. 

Zusätzlich wird der Einfluss der Käfigverformung durch die Integration eines 
elastischen Käfigs in die Dynamiksimulation untersucht. Hierzu ist die Rückführung 
der verformten Kontaktgeometrie des Käfigs aus einzelnen, verschobenen Käfigknoten 
nötig. Anschließend können wiederum die hydrodynamischen Ansätze zur Berechnung 
der Kontaktkräfte und des Reibungsmoments eingesetzt werden. Die Ergebnisse der 
elastohydrodynamischen Kontaktberechnung mit Hilfe von CABA3D werden mit 
Ergebnissen des Gleitlagerprogramms AVL ExciteTM verglichen. Es zeigt sich, dass 
die Käfigelastizität einen deutlichen Einfluss auf den Druckverlauf des Schmierfilms 
und damit auch auf das Käfigreibungsmoment hat. Die Kopplung der Hydrodynamik 
in den Käfigkontakten und der Käfigelastizität sollte daher für Lager, die hohen 
Zentripetalbeschleunigungen ausgesetzt sind, ebenfalls betrachtet werden. 

Der Einfluss des neuen Berechnungsansatzes auf die Lagerdynamik und die Lager-
reibung wird am Beispiel eines Pleuellagers vorgestellt. Das Lager wird hierbei in der 
Simulation mit Zentripetalbeschleunigungen von bis zu 5000 ∙ g belastet. 
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Abstract XV 

 

Abstract 

Friction must be reduced in a lot of bearing applications to raise the power efficiency. 
Rolling bearings that run under high centripetal acceleration show increased friction 
in their cage contacts. The cage is pushed against the outer ring and is deformed 
under high centripetal accelerations. Hence, the hydrodynamics as well as the 
deformation of the cage have to be taken into consideration in rolling element bearing 
dynamics simulations for the systematic development of new, power efficient bearing 
applications.  

The hydrodynamic of the lubrication in the cage contacts is considered in the 
dynamics simulation program for rolling element bearings CABA3D by the use of 
analytical, differentiated calculation approaches. That leads to a time-efficient 
contact calculation, which is numerical stable and can be used in the dynamics 
simulation. The accuracy of the hydrodynamic calculation is shown by comparing 
these results to results of the journal bearing program COMBROS. The consideration 
of the lubricant’s hydrodynamics has an immense influence on the cage’s and 
bearing’s kinematics as well as the friction torque. Therefore, the hydrodynamics 
should not be neglected under unsteady conditions. 

The deformation of the cage is considered in addition by integrating a full-elastically 
modelled cage in the dynamics simulation for rolling element bearings. The deformed 
contact geometry is reconstructed from the deformed and displaced cage’s finite 
element nodes. After that the hydrodynamic approaches are used to calculate the 
contact forces and the friction torque. The results of the elastohydrodynamic contact 
calculation are compared to results of the journal bearing calculation program 
AVL ExciteTM. The cage’s elasticity has a significant influence on the pressure 
distribution and the friction torque between cage and outer ring. Therefore, the 
hydrodynamics and the cage’s elasticity should not be neglected in rolling bearing 
dynamics simulations for bearings that run under high centripetal accelerations. 

The influence of the new calculation approach on the bearing’s dynamics and friction 
is presented by the example of a piston rod bearing. The bearing is loaded in the 
simulation with a centripetal acceleration up to 5000 ∙ g. 
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