
13

Datenverarbeitung

Nachdem die Datengrundlage geschaffen wurde, müssen die ankom-
menden Daten für die weitere Verwendung verarbeitet werden. Falls 
möglich sollte dafür zunächst eine explorative Datenanalyse durchge-
führt werden. Die eigentliche Datenverarbeitung lässt sich in zwei Kate-
gorien einteilen: Echtzeit-Verarbeitung und asynchrone Verarbeitung. 

Abbildung 3: Übersichtsgrafik – Datenverarbeitung

Explorative Datenanalyse

Falls es zu Beginn dieser Phase bereits eine Datengrundlage gibt, sollte 
zunächst eine explorative Datenanalyse durchgeführt werden. Deren Ziel 
ist es, einen Eindruck von der Struktur und Qualität der Daten in Bezug 
auf Vollständigkeit und Korrektheit zu bekommen. Die daraus gewon-
nenen Erkenntnisse sollten in einem zentralen Dokument (im Folgen-
den „Logbuch“ genannt) festgehalten werden. In diesem sollten mög-
lichst alle, aber zumindest alle relevanten Kanäle der Rohdaten beschrie-
ben werden. Dazu gehören: eine Verbindung des Namens des Kanals zu 
einem verständlichen Namen, eine plausible Reichweite von Werten, die 
der Kanal annehmen kann und eine optionale Beschreibung des Kanals.

https://doi.org/10.5771/9783828875746-13 - am 23.01.2026, 18:07:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783828875746-13
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


14

Implementierung eines Reichweitenmanagementsystems für Elektrobusse

Zunächst muss ein geeignetes Tool zur Untersuchung der Daten gewählt 
werden. Das wohl bekannteste Tool zur Datenauswertung ist Microsoft 
Excel. Alternativ existieren Programmiersprachen, die sich vollständig 
(R) oder teilweise mit bestimmten Libraries (Python mit Pandas) auf Da-
tenauswertung spezialisiert haben. Diese Programmiersprachen haben 
gegenüber Excel einige Vorteile: Sie sind in der Lage auch größere Da-
tenmengen zu verarbeiten, Datenauswertungen sind besser reproduzier-
bar und der entstehende Code kann eventuell wiederverwendet werden. 
Der Nachteil ist ein erhöhter Aufwand in der Einarbeitung, dieser kann 
sich mittel- und langfristig aber lohnen. Bei der Wahl des Tools sollte 
vor allem das Vorwissen in der Arbeitsgruppe berücksichtigt werden.

Echtzeitverarbeitung

Das Ziel der Echtzeitverarbeitung ist es, die Daten mit möglichst wenig 
Latenz und möglichst hoher Qualität vom Bordcomputer auf das Tablet 
zu übermitteln. Wie oben beschrieben lässt sich ein Umweg über einen 
Webserver nicht immer vermeiden und ist für eine zentrale Überwa-
chung notwendig. Zunächst müssen die Rohdaten für eine spätere Ver-
arbeitung gespeichert werden. Außerdem müssen die Rohdaten validiert 
und dann abgeglichen werden. Grundsätzlich lässt sich jede für den Ser-
ver geeignete Programmiersprache nutzen. Solange die Performance kein 
Problem darstellt, kann die gleiche Programmiersprache wie in der ex-
plorativen Datenauswertung verwendet werden, wodurch sich mögli-
cherweise Code wiederverwenden lässt.

Speicherung

Nach der Übertragung muss sichergestellt werden, dass die übertrage-
nen Daten gespeichert werden. Die Wahl der Datenbank sollte hier vor 
allem von der Skalierung des Systems abhängen. Im Folgenden wird da-
von ausgegangen, dass kein verteiltes System zur Speicherung der Daten 
nötig ist. Dann kann eine relationale Datenbank wie MySQL oder Post-
greSQL verwendet werden. Die Datenbank für die Speicherung der Da-
ten sollte auf das Schreiben und nicht auf das Abrufen der Daten ausge-
legt sein. Zur Indexierung der Daten bietet sich der Timestamp der Roh-

https://doi.org/10.5771/9783828875746-13 - am 23.01.2026, 18:07:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783828875746-13
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


15

Datenverarbeitung

daten an. Außerdem ist es sinnvoll einen Timestamp beim Empfang der 
Daten zu speichern, um die Latenz zwischen Bordcomputer und Web-
server beobachten zu können.

Validierung der Fahrdaten

Bei der Validierung der Fahrdaten sollte auf Erkenntnisse aus der explo-
rativen Datenanalyse und das dort entstandene Logbuch zurückgegrif-
fen werden. Viele der Datenkanäle können nur Werte aus einem begrenz-
ten Wertebereich annehmen. Beispielsweise kann der Ladestand der Bat-
terie nicht über ihre maximale Kapazität steigen und die gefahrenen Ki-
lometer nicht negativ sein. Dieses Wissen sollte so gut wie möglich ge-
nutzt werden, um Fehler frühzeitig zu erkennen und letztendliche Feh-
ler in der Anzeige zu vermeiden. Weiterhin sollten die ankommenden 
Daten auf ihre Reihenfolge geprüft werden. Dies kann mithilfe des Log-
ging Timestamps realisiert werden. Letztlich sollte das System einen Aus-
fall des Loggings erkennen und Client-Systemen entsprechende Infor-
mationen bereitstellen, damit diese angemessen reagieren können. Falls 
möglich, sollte ein automatisches Reporting an die für den Bordcompu-
ter Verantwortlichen Personen stattfinden, damit das Problem schnellst-
möglich behoben werden kann.

Aggregierung und Augmentierung der Fahrdaten

Nach der Validierung der Fahrdaten können die Rohdaten aggregiert 
und augmentiert werden. Grundsätzlich ist dies sowohl auf dem Server 
und dem Client möglich. Beide Möglichkeiten bieten Vor- und Nachtei-
le:

Die Aggregierung auf dem Server ist vor allem dann sinnvoll, wenn meh-
rere Client Systeme diese Daten benötigen. Damit muss die Verarbei-
tung nur einmal stattfinden. Auch sehr rechenintensive Verarbeitungen 
sollten – wegen der leistungsstärkeren Hardware – auf dem Server durch-
geführt werden.

https://doi.org/10.5771/9783828875746-13 - am 23.01.2026, 18:07:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783828875746-13
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


16

Implementierung eines Reichweitenmanagementsystems für Elektrobusse

Ein Nachteil der Aggregierung und Augmentierung auf dem Server ist, 
dass solch ein State auf dem Server gehalten werden muss. Solange das 
System nicht verteilt ist sondern auf einem einzelnen Server basiert, stellt 
dies kein Problem dar. Muss das System später auf mehrere Server ver-
teilt werden, kann dies allerdings zu Problemen führen. Falls möglich ist 
also eine Verarbeitung, die einen State auf dem Server nötig macht, zu 
vermeiden.

Inhaltlich gibt es viele Möglichkeiten die Rohdaten zu erweitern. Inwie-
fern das sinnvoll ist, hängt von den Zielen der Clientsysteme ab. Zwei 
sinnvolle Beispiele sind: Die Verarbeitung von GPS-Daten um Haltestel-
len zu erkennen und die Aggregierung vom Verbrauch über eine zurück-
liegende Strecke / Zeit.

Verfügbarmachung durch eventbasiertes Publishing

Für die weitere Verwertung der Echtzeitdaten müssen die nun verarbei-
teten Daten für Client-Systeme zur Verfügung gestellt werden. Hierfür 
bietet sich eine eventbasierte Architektur an. Hierbei können einzelne 
Event Streams (also z. B. der Datenstrom eines Bordcomputers) von Cli-
ent-Systemen abonniert werden. Somit kann pro Bus ein Event Stream 
erstellt werden, wobei die sich jeweils in dem Bus befindende App nur 
diesen Stream zu abonnieren braucht. Eine zentrale App, wie z. B. eine 
Übersicht der Ladestände aller Busse kann wiederum alle Streams abon-
nieren. Auch das Erweitern der Systemarchitektur durch neue Anwen-
dungen wird so ermöglicht. Für Systeme, die nicht mehr als einen Ser-
ver benötigen, bietet sich Redis als Lösung an. Muss das System auf meh-
rere Server verteilt werden, kann Apache Kafka eine geeignete Wahl sein.

Asynchrone Datenverarbeitung 

Unter die asynchrone Datenverarbeitung fallen alle Verarbeitungsschrit-
te, die nicht in Echtzeit geschehen. Diese können einmalig oder regel-
mäßig in unterschiedlichen Zeitabständen stattfinden. 

https://doi.org/10.5771/9783828875746-13 - am 23.01.2026, 18:07:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783828875746-13
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


17

Datenverarbeitung

Data Warehouse

Ein Data Warehouse ist eine Datenbank, die Daten in einer für Anfra-
gen spezialisierten Form bereitstellt. Hierfür werden die Daten mithilfe 
von Batch Jobs verarbeitet. Batch Jobs sind automatisierte Datenverar-
beitungsprogramme, die regelmäßig zu bestimmten Zeitpunkten statt-
finden. Das Ziel ist es, die Daten in geeigneter Form zu aggregieren und 
augmentieren, um Anfragen zu beschleunigen.

Wie genau die Daten aggregiert werden, ist abhängig von den Anforde-
rungen. Einige sinnvolle Aggregierungen sind beispielsweise:

• Aggregation einzelner Linienfahrten
• Aggregation von Umläufen einzelner Busse
• Verbrauch auf bestimmten Linien/Linienabschnitten
• Wöchentliche/Monatliche/Quartalsmäßige Analysen

Das Ziel eines solchen Data Warehouses ist die bessere Verfügbarkeit der 
Daten. Diese können dann effizient von anderen Systemen, wie z. B. ei-
nem Reporting Tool genutzt werden. 

Prädiktive Modelle

Mit Hilfe von Machine Learning ist es möglich auf Basis der Daten prä-
diktive Modelle zu erstellen. Gerade im Bus-Betrieb bieten sich hier durch 
die immer gleichen Strecken Möglichkeiten, die nicht bei allen Elektro-
fahrzeugen gegeben sind. Ein Beispiel für eine sinnvolle Prädiktion ist 
beispielsweise eine Vorhersage, mit welcher Akkuladung ein Bus eine 
Strecke beendet. Hierfür geeignete Libraries sind z. B. Scitkit-Learn (Py-
thon), Pytorch (Python) und Keras / Tensorflow (R und Python).

Zusammenfassung & Checkliste/Prozess

Bevor die Rohdaten – wie im nächsten Kapitel beschrieben – in Assis-
tenzsystemen verwertet werden können, müssen sie vorverarbeitet wer-
den. Dabei kann zwischen der Vorbereitung für Echtzeit- und asynchro-

https://doi.org/10.5771/9783828875746-13 - am 23.01.2026, 18:07:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783828875746-13
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


18

Implementierung eines Reichweitenmanagementsystems für Elektrobusse

nen Anwendungen unterschieden werden. Stellen Sie sicher, dass Sie für 
Echtzeitanwendungen jeden Punkt der folgenden Checkliste abhaken 
können.

 ☐ Es wurde ein Logbuch angelegt und für relevante Personen ver-
fügbar gemacht,
d. h. es existiert ein Dokument, z. B. in Form einer Tabelle, in dem 
Informationen über Datenkanäle festgehalten werden.

 ☐ Alle Daten werden nach der Übertragung zuverlässig gespeichert,
d. h. es wurde eine geeignete Datenbank gewählt und im Rahmen 
der Echtzeitverarbeitung die Speicherung realisiert.

 ☐ Alle Daten werden vor der Veröffentlichung validiert,
d. h. es ist sichergestellt, dass Daten korrekt und in der richtigen 
Reihenfolge dargestellt werden.

 ☐ Echtzeit-Daten werden mit einer eventbasierten Technologie ver-
öffentlicht,
d. h. es wurde eine geeignete Technologie gewählt und in die Echt-
zeitverarbeitung integriert.

Für weitere Anwendungen sollten zudem die folgenden Punkte bestätigt 
werden können:

 ☐ Eine explorative Datenanalyse wurde durchgeführt und die Er-
gebnisse im Logbuch festgehalten,
d. h. die Daten wurden grundlegend auf ihre Qualität und Beson-
derheiten untersucht und die Ergebnisse im Logbuch festgehalten.

 ☐ Es wurden Skripte erstellt und ihre automatisierte Ausführung 
ermöglicht,
d. h. Prädiktionsmodelle können trainiert und ein potenzielles Data 
Warehouse gefüllt werden.

 ☐ Es wurde eine API für das Data Warehouse entwickelt,
d. h. Client Systeme können die Daten des Data Warehouses effizi-
ent nutzen.

https://doi.org/10.5771/9783828875746-13 - am 23.01.2026, 18:07:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783828875746-13
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

	Explorative Datenanalyse
	Echtzeitverarbeitung
	Asynchrone Datenverarbeitung
	Zusammenfassung & Checkliste/Prozess

