

work places. However, during my field stay, a Brazilian-German project week took place, including meetings and workshops as well as high-level events such as a reception at the German Embassy. On these occasions, participant observation was useful to witness the

"discursive and non-discursive practices in discourse production, in the setting up and using of dispositifs, the practical reception/adaptation/confrontation with discourses and the analysis of the interplay between situational contexts and practices with discourses or the constitution of contexts through discourses."

(Keller 2013: 102)

Participant observation therefore produced quite distinct data from interviews, as it showed how projects dealt with the dominant policy discourse and its effects in action. Participant observation additionally provided insights into interactions between policy makers, project participants and other actors during several conferences, such as agenda-setting events (Appendix A-1). On these occasions, manifold informal conversations with project participants, ministerial employees and project management agency staff occurred, which often contributed undistorted, unfiltered and uninhibited statements on the research subject. During the occasions of participant observation, I took fieldnotes of the conversations, observations, preliminary ideas of analysis, etc. Due to the mostly formal settings of participant observation I could write them down immediately in my laptop or paper notebook without causing irritation. Appendix A-5 depicts an exemplary page from my fieldnotes on paper.

4.5 Data analysis

In the approach to discourse as conceptualized in SKAD (ch. 3), statements, practices and dispositives are considered as "manifestations of the structured processing of controversial social knowledge" (Keller 2013: 85). SKAD is therefore aimed at finding the *typical*: From individual utterances, general statements about a discourse are abstracted. This means that while acknowledging the coexistence of different forms of knowledge or constructed realities, discourse analysis is not interested in reconstructing individual, subjective opinions, meaning ascriptions, or knowledge – this is a major difference to other forms of qualitative, interpretive data analysis (Keller 2011b; 2013). Therefore, the aim of data analysis was to find typical patterns, shared knowledge and interpretations of reality among the actors (Meuser and Nagel 2002). Interviews are considered as instances of discursive events, which contribute statements to a discourse. These in turn make up the body of a discourse's contents.

However, there is no standardized procedure or technique of how to get from single individual utterance to the typical statement. According to Corbin and Strauss, “[a]nalysis is, for a large part, intuitive and requires trusting the self to make the right decisions” (2008: 71). In order to maintain scientific quality, it is therefore important to explain and justify the chosen approach and document it. Grounded theory seemed as appropriate approach to data analysis which entailed a high degree of reflexivity in the process of a systematic reconstruction of the construction of reality (Keller 2013).

4.5.1 Corpus of data for fine analysis

Individual utterances mostly do not represent a complete discourse, but just a piece of it (Keller 2013). In general, fine analysis

“cannot include all the data in the corpus. On the contrary, it must arrive at a systematically reflected and justified selection of texts or textual extracts within the corpus, i.e. it must subject the data corpus to further restrictions, and particularly in respect of the need to produce statements about the discourse as a whole.” (Keller 2013: 98–99)

While the initial corpus of texts, interviews and notes on participant observation emerged mainly through theoretical sampling (see above), documents for fine analysis were selected on the basis of being typical, exemplary of other texts, other actors, other events. Statements were contrasted to reconstruct the discourse in depth (precise nuances within the discourse) and breadth (spectrum of different subdiscourses within the field) until a saturation point was reached, and no further aspects emerged to explain theory/research question (Keller 2013).

4.5.2 Analytical procedure

Coding is an analytical tool through which data is linked to concepts and theories (Corbin and Strauss 2008; Bryman and Burgess 1994). Several approaches to coding exist. While Grounded Theory develops codes exclusively based on empirical findings, I chose to follow DeWalt and DeWalt (2011) in entering into the data material with a list of known codes derived from my conceptual frame and research questions, but keeping open-minded for new, unknown categories. The list of codes was adjusted, categories were expanded or reduced, labels refined.

Contextual codes, also called structural codes in methods literature, were used to denote the underlying properties of the interviewees, such as nationality, social position, disciplinary background, etc. Contextual codes also depicted the context of statement production, such as who was intended as addressee of the text, context in which the statement was made, etc. Attaching conceptual codes allowed me

to crosslink and analyze the underlying conditions for certain types of statements later – thus to define different contextual levels for different interviews, documents or actor types (Corbin and Strauss 2008; Keller 2013).

Based on Grounded Theory, I used a few analytic strategies as entry points into analysis. On the one hand, asking questions about the content (“what is going on?”) and about theory (“what is the relationship of one concept to another?”), and on the other hand making comparisons between texts in order to see similarities and differences. Using the software Atlas.ti, I developed conceptual codes to depict underlying concepts identified, such institutions, activities or ideas. Next to the broader concepts taken from the conceptual frame, in the beginning categories were developed by looking at the text itself, such as main problems, central themes, concerns. During analysis, I added further codes for recurring patterns (DeWalt and DeWalt 2011; Keller 2013). Codes were set into relation to each other, for example regarding the interaction between actors or in view of causes and effects. On this basis, I differentiated between themes or categories, elaborated properties or dimensions specific to one theme or one group and developed different subcodes which depicted nuances. The ongoing analysis was accompanied through writing memos, i.e. notes on ideas, concepts, dimensions of categories, codes, comparisons, etc. (Ritchie and Spencer 1994; Corbin and Strauss 2008; DeWalt and DeWalt 2011; Keller 2013). To exemplify coding, an extract of the list of codes is added as Appendix A-6.

4.6 Reflections on my position as a researcher

4.6.1 Objectivity and reflexivity in research

While scientific paradigms such as positivism or post-positivism stick to an image of science as objective and disinterested, scientists following constructivism or critical theory question this image and challenge the idea that scientific knowledge is truly objective and rational (Guba and Lincoln 1994). Qualitative research requires interpretation of the data – which necessarily involves the researcher who attaches meaning to data and represents results of analysis in a written form (Langer 2013). Thus, scientific knowledge is viewed as a type of knowledge among others, affected by interests, ideologies and world views of the scientists producing it (Sismondo 2008). Following, if underlying interests coin science and research, these biases should be acknowledged rather than hidden. As Cox provokingly states: If a scientific theory pretends not to have a standpoint, it is most probably an ideology (Cox 1981).

Scientific reflexivity is a concept in this vein, acknowledging biases and the own position. Coined by social thinkers such as Bourdieu or Giddens, it rose to the