
Lernen wie Gehirne

Stellen Sie sich vor, Sie erforschen Insekten und beobachten auf Ihrer 
Forschungsreise das Zusammenleben von zwei Käferarten. Die einen 
Käfer haben einen einfarbigen, braunen Körper. Die anderen sehen 
sehr ähnlich aus, lassen sich aber gut an den glänzenden Punkten auf 
ihrem sonst braunen Rücken erkennen. Wie Ameisen laufen diese Käfer 
geschäftig auf Duftpfaden zwischen verschiedenen Futterquellen hin 
und her. Treffen zwei Exemplare aufeinander, drängeln sie sich einfach 
aneinander vorbei. Doch dann sehen Sie plötzlich ein ungewöhnliches 
Schauspiel: Einer der Käfer macht so etwas wie einen Knicks und bleibt 
so lange regungslos stehen, bis der andere außer Sichtweite ist. Nach-
dem Sie die Käfer geduldig über eine längere Zeit beobachtet haben, er-
kennen Sie die Regel, die diesem ungewöhnlichen Verhalten zugrunde 
liegt. Wenn einer der einfarbigen Käfer auf einen größeren Käfer mit 
glänzenden Punkten trif ft, dann macht er einen Knicks. Sonst nicht.

Als Mensch kann man in dieses Verhalten viel hineininterpretieren. 
Vielleicht ist der Knicks eine Ehrerbietung gegenüber den größeren Kä-
fern. Oder die einfarbigen Käfer haben schlicht Angst und der Knicks 
ist eine Unterwerfungsgeste. Mit solchen Erklärungen muss man aber 
vorsichtig sein. Wir Menschen neigen dazu, zu viel zu psychologisieren. 
Versuchsteilnehmer, denen man zum Beispiel einen Film zeigt, in dem 
sich ein Dreieck und ein Quadrat kreisförmig umeinander drehen oder 
in dem das Dreieck und das Quadrat sich hintereinander herbewegen, 
sprechen ganz natürlich über die geometrischen Formen, als ob sie 
Personen wären: Sie haben zusammen getanzt und sich gefreut oder 
der eine hatte Angst und ist vor dem anderen weggelaufen. Obwohl die 
Versuchsteilnehmer nur sich bewegende geometrische Formen sehen, 
schreiben sie den Formen spontan ein psychisches Innenleben zu, um 
ihr Verhalten zu erklären. Genauso wie bei tanzenden Dreiecken und 
bei sprechenden Computerprogrammen ist die Versuchung groß, auch 
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das Verhalten unserer Käfer durch psychische Zuschreibungen zu er-
klären.1

Tatsächlich gibt es aber eine viel einfachere, mechanistische Er-
klärung für das sonderbare Knicksverhalten der Tiere. In Australien 
lebt ein Käfer, der den Käfern in unserem Gedankenexperiment ähn-
lich ist. Die Deckf lügel von weiblichen ›Julodimorpha Bakewelli‹ sind 
braun und auffällig glänzend gepunktet. Immer wenn ein Männchen 
diese Punkte sieht, versucht es das Weibchen zu begatten. Das Insekt 
hat einen Detektor für glänzende Punkte, um eine bestimmte Verhal-
tensweise auszulösen. Dummerweise ist die Farbe des Weibchens dem 
Braun einer Bierf lasche sehr ähnlich und die Knubbel am Boden der 
Bierf lasche glänzen noch verlockender als die Punkte des Weibchens. 
Achtlos weggeworfene Bierf laschen in der australischen Wüste werden 
so zur Liebesfalle für männliche Käfer, die wieder und wieder Bierf la-
schen besteigen, bis sie entweder verhungern oder von räuberischen 
Wüstenameisen aufgefressen werden.2

Die Käfer, die Sie beobachtet haben, besitzen also so einen Detektor 
für glänzende Punkte. Außerdem haben sie einen weiteren Detektor, 
der feststellt, ob der Käfer, der ihnen entgegenkommt, größer ist als sie 
selber (zum Beispiel, weil sie hochschauen müssen). Im Verlauf Ihrer 
Käferstudie vermuten Sie, das Knicksverhalten des Insekts wird gerade 
immer dann ausgelöst, wenn der Punkt-Detektor und der Größer-De-
tektor anschlagen. Aber wie würde das im Detail funktionieren?

1  �Die klassische Studie dazu stammt von Heider & Simmel (1944). Im Internet fin-
den sich viele Videos dieser Studie und es lohnt sich, diese anzuschauen, um einen 
Eindruck davon zu bekommen, wie leicht man einfachen geometrischen Formen 
ein komplexes, psychisches Innenleben zuschreibt. Braitenberg (1984) beschreibt 
verschiedene Gedankenexperimente, die zeigen, dass sich Verhalten oft auch viel 
einfacher erklären lässt. Das Käferbeispiel ist von seinen Gedankenexperimenten 
inspiriert.

2  �Siehe Gwynne & Rentz (1983) für den Käfer und die Bierflaschen und Lettvin, Matu-
rana, McCulloch & Pitts (1959) für ähnliche Auslöser beim Frosch. Ich habe zuerst bei 
Hoffman (2009) von Julodimorpha Bakewelli gelesen.
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Wie Nervenzellen rechnen

Käfer haben – so wie wir Menschen – ein Nervensystem, das ihr Verhal-
ten steuert. Nervensysteme bestehen aus spezialisierten Nervenzellen, 
auch Neurone genannt, die untereinander elektrische Signale austau-
schen. Diese Signale sind digitale Signale: Jedes Neuron kann nur an 
oder aus sein. Eins oder Null. Wenn ein Neuron an ist, dann sendet es 
einen elektrischen Impuls, ein sogenanntes Aktionspotenzial, an ande-
re Neurone, mit denen es verschaltet ist.3 Man sagt: Das Neuron feuert.

Abb. 4: Drei neuronale Netze

In Abbildung 4a ist eine einfache Verschaltung von drei Neuronen zu 
sehen. Eine solche Verschaltung von mehreren Neuronen nennt man 
ein ›neuronales Netz‹. Das Neuron P ist der Punkt-Detektor. Sieht das 
Insekt glänzende Punkte, schaltet sich der Punkt-Detektor an und das 
Neuron sendet ein elektrisches Signal an das Ausgabeneuron, mit dem 
es verschaltet ist. Neuron G, der Größer-Detektor, schaltet sich wiede-
rum nur an, wenn der entgegenkommende Käfer größer ist. Dann sen-
det auch Neuron G ein elektrisches Signal an das Ausgabeneuron. Doch 
das Ausgabeneuron schaltet sich nur an, wenn die Summe aller Signale, 
die bei ihm ankommen, größer als der Schwellenwert 1,5 ist. Falls das 
passiert, wird das Knicksverhalten des Insekts ausgelöst. Solche einfa-
chen Neurone nennt man auch McCulloch-Pitts-Zellen – nach den zwei 
theoretischen Hirnforschern, die sie zuerst untersucht haben.4

3  �Wobei jedes Aktionspotenzial aussieht wie jedes andere, ganz wie bei digitalen 
Signalen in technischen Systemen. Obwohl die allermeisten Neurone diesem Al-
les-Oder-Nichts-Gesetz folgen, gibt es bei Insekten recht häufig auch graduierte 
Potenziale bei denen die Stärke des Signals variiert. Das deutet auf eine analoge 
Signalverarbeitung hin.

4  �Bei Piccinini (2004) findet sich eine hervorragende Darstellung der Originalarbeit 
von McCulloch & Pitts (1943) im historischen und philosophischen Kontext.
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Schickt nun nur Neuron P ein Signal an das Ausgabeneuron (P=1 
und G=0), kommt beim Ausgabeneuron nur ein Signal der Stärke 1 an. 
Und da das kleiner als der Schwellenwert 1,5 ist, schaltet sich das Aus-
gabeneuron nicht an, und der Knicks wird nicht ausgelöst. Wenn aber 
P und G beide feuern (P=1 und G=1), dann ist die Eingabe 1+1=2 grö-
ßer als 1,5 und das Ausgabeneuron schaltet sich an. Dieses neuronale 
Netz in Abbildung 4a ist eine UND-Verschaltung: Das Ausgabeneuron 
schaltet sich nur an, wenn Neuron P und Neuron G angeschaltet sind. 
Der Knicks passiert nur, falls der entgegenkommende Käfer Punkte hat 
und größer ist.

Neurone können auch so verschaltet sein, dass sie sich wie ein logi-
sches ODER verhalten. Die effektive Verschaltung in einem neuronalen 
Netz ändert sich mit den ›Verbindungsstärken‹. Ist die Verbindungs-
stärke zwischen Neuron P und dem Ausgabeneuron doppelt so groß (+2, 
wie in dem Netz in Abbildung 4b), ist das Signal, das P schickt, sobald 
es angeschaltet ist, doppelt so stark. Bei einem Schwellenwert von 1,5 
reicht dann die Aktivität von P alleine aus, um das Ausgabeneuron an-
zuschalten (denn bei P=1 und G=0 ist mit einer Verbindungsstärke von 2 
die Summe 2+0=2 größer als 1,5). Da die Verbindungsstärke von G zum 
Ausgabeneuron in Abbildung 4b auch verdoppelt ist, feuert das Aus-
gabeneuron ebenso, falls nur G an ist. Senden beide Eingabeneurone 
Signale, schaltet sich das Ausgabeneuron sowieso an (denn 2+2=4>1,5). 
Lediglich wenn gar kein Signal ankommt, bleibt es ausgeschaltet. Das 
Insekt macht also einen Knicks, wenn der entgegenkommende Käfer 
Punkte hat oder größer ist (das logische ODER schließt den Fall, dass 
der Käfer Punkte hat und größer ist, mit ein).

Andere Verbindungsstärken und Schwellenwerte führen dazu, dass 
das neuronale Netz sich nach anderen logischen Regeln verhält. In dem 
Netz in Abbildung 4c ist die Verbindungsstärke von P zum Ausgabe-
neuron +1 und die von G zum Ausgabeneuron -1. Der Schwellenwert 
am Ausgabeneuron beträgt in diesem Beispiel 0,5. Hier schaltet sich 
das Ausgabeneuron nur ein, wenn allein P ein Signal sendet (P=1 und 
G=0 ergibt 1 und ist größer 0,5). Feuert G, wird die Eingabe so stark ge-
hemmt, dass P keinen Effekt hat (P=0 und G=1 führt zu 0-1=-1<0,5 und 
P=1 und G=1 zu 1-1=0<0,5). Das Insekt macht nur dann einen Knicks, 
falls der entgegenkommende Käfer Punkte hat, nicht aber, wenn er 
größer ist. Die logische Regel ist also P UND NICHT G.
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Abb. 5: Ein mehrschichtiges neuronales Netz

Bauen wir neuronale Netze künstlich nach, können wir die Verbindun-
gen und Schwellenwerte so einstellen, dass die Netze sich nach beliebi-
gen logischen Regeln verhalten. Mit größeren Netzen lassen sich kom-
pliziertere logische Regeln ausführen, die wiederum komplizierteres 
Verhalten erzeugen. Je komplizierter die Regel, desto größer muss je-
doch das Netz sein. Ein Netz, in dem Neuronen in mehreren Schichten 
hintereinander geschaltet sind, nennt man ein ›mehrschichtiges‹ oder 
›tiefes neuronales Netz‹.5 (Hausaufgabe: Was berechnet das mehr-
schichtige Netz in Abbildung 5?) In Fällen, in denen ein Ausgabeneuron 
Signale von einem Neuron empfängt, aber auch selber (eventuell indi-
rekt) Signale an dieses Neuron sendet, spricht man von einem ›rekur-
renten‹ Netzwerk. Mit rekurrenten neuronalen Netzen lassen sich noch 
kompliziertere Regeln implementieren.

Es ist kein historischer Zufall, dass ähnliche logische Verschal-
tungen in Computern verbaut sind. Auch Computer rechnen digital 
mit Einsen und Nullen: Der Strom ist entweder an oder aus. Statt aus 
Neuronen bestehen die Schaltkreise zwar aus Transistoren, das Grund-
prinzip ist aber dasselbe wie bei McCulloch-Pitts-Zellen. Als Warren 
McCulloch und Walter Pitts in den frühen 1940er Jahren an ihrer neuen 
Theorie des Nervensystems gearbeitet haben, waren sie natürlich bes-
tens mit Turings Arbeiten zur Turingmaschine vertraut. Sie erkannten 
sofort, dass man mit einem neuronalen Netz die Verhaltensregeln im-
plementieren kann, mit denen sich eine Papier-und-Bleistift-Maschine 
steuern lässt. Ein künstliches neuronales Netz, das mit Sensoren und 
Motoren auf Papier liest und schreibt, ist eine Turingmaschine – und 
diese Maschine ist genauso mächtig wie ein moderner Computer mit 
genügend Speicher. Aber was genau mehrschichtige, rekurrente neuro-
nale Netze ohne zusätzlichen Speicher berechnen können, war zu-
nächst noch unklar und stimulierte wichtige Grundlagenforschung zur 

5  �Auf Englisch ›multilayer‹ oder ›deep neural network‹.
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Automatentheorie (zur Erinnerung: der Begriff ›KI‹ war von Anfang an 
umstritten und der Informationstheoretiker Claude Shannon bevor-
zugte den langweiligeren Begriff ›Automatenstudien‹). Die Computer-
technik beeinf lussten McCulloch und Pitts aber auch deshalb, weil ihre 
Ideen in den bahnbrechenden Bericht einf lossen, in dem John von Neu-
mann 1945 die grundlegende Architektur heutiger Computer entwarf 
und dabei eine Parallele zwischen logischen Schaltkreisen in Rechen-
maschinen und neuronalen Netzwerken im Gehirn zog.6

Als wir mit unserer Papier-und-Bleistift-Maschine einfache Denk-
prozesse – zum Beispiel das Addieren von Zahlen – mit einem mecha-
nischen Apparat nachgebildet haben, dachten wir nicht darüber nach, 
wie diese Denkprozesse im Gehirn tatsächlich ablaufen. Sicher nicht 
so wie bei unserer mechanischen Papier-und-Bleistift-Maschine. Ihre 
inneren »Organe« sind nicht genauso aufgebaut wie ein Gehirn. Auch 
moderne Mikroprozessoren sind in ihrer Struktur Gehirnen nicht 
sonderlich ähnlich. Obwohl diese verschiedenen Mechanismen völlig 
unterschiedlich aussehen, so sind sie doch alle Computer, die irgend-
wie rechnen.

Sicher, McCulloch-Pitts-Zellen sind eine starke Vereinfachung der 
Funktionsweise echter, biologischer Neurone. Wir wissen heute viel 
mehr über Nervenzellen als Warren McCulloch und Walter Pitts in den 
1940er Jahren. Nervenzellen sind wesentlich komplexer, als die beiden 
annahmen. Die Idee, dass Neurone so etwas wie logische Schaltele-
mente sind, übte dennoch auf die theoretische Hirnforschung histo-
risch einen enormen Einf luss aus. Noch entscheidender war allerdings 
der Einf luss dieser Idee auf die KI-Forschung. Da Gehirne ähnlich 
funktionieren wie elektronische Computer, kann man vielleicht nicht 
nur das menschliche Rechnen, sondern auch all die anderen fantasti-
schen Fähigkeiten von Gehirnen in Computern nachbilden.

6  �Siehe Piccinini (2004). Kleene (1951) entwickelt ausgehend von neuronalen Netzen 
den wichtigen Begrif f des ›endlichen Automaten‹. Siehe Neumann (1993) für den Be-
richt. Ein aktueller Trend in der KI-Forschung nutzt die alte Einsicht aus, dass künst-
liche neuronale Netze in Kombination mit einem externen Speicher Turingmaschi-
nen sind, um Computerprogramme zu lernen (Graves et al., 2016).
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Wie Menschen und Computer Bilder erkennen

Wie erkennt ein Gehirn zum Beispiel den Buchstaben ›A‹ auf den Sei-
ten dieses Buches? Die Linse des Auges stellt das Bild auf der Netzhaut 
scharf. Dort sitzen Fotorezeptoren, die das Licht in elektrische Signale 
umwandeln, so wie das auch in einer digitalen Kamera passiert. 

Abb. 6: Musterkennung mit neuronalen Netzen

In Abbildung 6 stellen die Quadrate die Bildpunkte auf der Netzhaut 
dar. Vom Auge werden die elektrischen Signale an den visuellen Kor-
tex weitergeleitet, der sich im Hinterkopf befindet. Die Neurone dort 
detektieren Linien und Kanten verschiedener Orientierungen. Es gibt 
beispielsweise Neurone, die immer aktiv sind, sobald sich an einer be-
stimmten Stelle in einem Bild eine horizontale Linie befindet. Zwei sol-
che Beispielneurone (N2 und N3) sind in der Abbildung über dem ›A‹ 
zu sehen. Genauso gibt es im visuellen Kortex Neurone für vertikale 
Linien oder Linien jedes anderen Winkels. In der nächsten Schicht des 
neuronalen Netzes können dann kleine Linienstücke zu längeren Li-
nien kombiniert werden. Diese Neuronen werden in der Abbildung von 
dem obersten Neuron (N1) symbolisiert. Der Querbalken ist vielleicht 
manchmal etwas schief, sodass der Detektor für horizontale Linien 
nicht anschlägt. Mit einer ODER-Verschaltung von Liniendetektoren 
leicht unterschiedlicher Winkel kann der Querbalken aber trotzdem 
erkannt werden. In einer weiteren Schicht können dann die Detekto-
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ren für den Aufstrich, den Abstrich und die zwei Querbalken mit einer 
UND-Verschaltung zu einem A-Detektor zusammengebaut werden.7

So erkennt das Gehirn mit einfachen Liniendetektoren und durch 
mehrschichtige, logische Verschaltungen komplexe Muster. Das funk-
tioniert nicht nur für Buchstaben, sondern auch für ganze Worte, Ob-
jekte oder Personen. Die Neurone, die ganz am Ende eines solchen 
tiefen neuronalen Netzes sitzen, nennen Hirnforscher auch augen-
zwinkernd Großmutterneurone – denn falls diese Theorie über die 
Funktionsweise des Gehirns stimmen sollte, müsste es für jede Person, 
die man kennt, ein solches Neuron geben, und eben auch für die eigene 
Großmutter. Dieses Großmutterneuron wird gerade genau dann aktiv, 
wenn Rotkäppchen die Augen, die Ohren und den Mund seiner Groß-
mutter zusammen sieht.8

Lange war die Existenz von Großmutterneuronen nur eine theo-
retische Hypothese. Hinweise darauf, dass die Hypothese tatsächlich 
stimmen könnte, verdanken wir unter anderem Epilepsie-Patienten. 
Um den Herd der Anfälle zu finden, werden Patienten in besonders 
schweren Fällen manchmal Elektroden implantiert, mit denen man die 
elektrische Aktivität einzelner Gehirnareale über einen längeren Zeit-
raum messen kann. Während dieser Beobachtungszeit ließen sich ei-
nige Patienten eine große Zahl an Bildern von Prominenten zeigen und 
bei einem Patienten wurde ein Jennifer-Aniston-Neuron gefunden.9 
Das ist eine Nervenzelle im Gehirn, die aktiv wird, sobald der Patient 
ein Bild von Jennifer Aniston sieht. Die Forscherinnen und Forscher 
zeigten dem Patienten auch Bilder von anderen Prominenten, Häusern 
und Tieren, aber diese Zelle reagierte nur auf Bilder von Jennifer Anis-
ton. Es scheint also tatsächlich Großmutterneurone im menschlichen 
Gehirn zu geben. Komischerweise reagierte die Nervenzelle aber nicht, 
wenn neben Jennifer Aniston auch Brad Pitt auf dem Bild zu sehen war. 
Vielleicht weil die zwei sich bald trennen sollten? Ob der Patient auch 
eine Brangelina-Zelle und eine Vaughniston-Zelle hatte, wissen wir lei-
der nicht.

7  �Der Aufbau und die Funktionsweise des visuellen Systems sind genauer bei Hubel & 
Wiesel (1979) beschrieben.

8  �Gross (2002) beschreibt die Geschichte der Großmutterneurone.
9  �Quian Quiroga, Reddy, Kreiman, Koch & Fried (2005) haben außerdem ein Halle-
Berry-Neuron und ein Bill-Clinton-Neuron gefunden.
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Die eigene Großmutter zu erkennen ist so mühelos. Wie konnte sich 
Rotkäppchen nur täuschen lassen? Schauen Sie sich ein Bild im Fami-
lienalbum an, wissen Sie sofort, ob Ihre Großmutter darauf zu sehen ist. 
Aber versuchen Sie mal zu erklären, wie genau Sie das machen. Woher 
wissen Sie, dass das Ihre Großmutter ist und nicht der böse Wolf? Okay, 
die Augen, die Ohren und der Mund sind nicht so groß. Aber ist das 
alles? Was ist mit der Farbe der Augen? Würden Sie merken, wenn die 
Ohren eine andere Form hätten? Da Sie nicht genau erklären können, 
wie Sie Ihre Großmutter erkennen, handelt es sich dabei um implizites 
Wissen – genauso wie beim Fahrradfahren oder bei der Intuition von 
Schachexperten.

Dementsprechend ist es in den Anfangstagen der KI nicht gelungen, 
Computersysteme zu bauen, die Gesichter erkennen können. Um ein 
künstliches neuronales Netz zu programmieren, das Gesichter erkennt, 
müssen wir genau wissen, welche Detektoren wir dafür brauchen und 
wie man diese in mehreren Schichten verschaltet. Anders als beispiels-
weise bei der schriftlichen Addition kennen wir den Algorithmus nicht, 
mit dem wir Gesichter erkennen. Wenn wir nicht wissen, wie das geht, 
können wir das einem Computer auch nicht beibringen.

Wie schafft es unser Gehirn, die ganzen Nervenzellen genau so zu 
verschalten, dass wir unsere Lieben erkennen? Babys kommen nicht 
schon mit fest verdrahteten Neuronen zur Welt, um ihre Großmütter 
zu erkennen. Irgendwie muss ihr Gehirn diese Fähigkeit erst erlernen. 
Die Regeln, nach denen sich ein neuronales Netz verhält, können sich 
mit den Verbindungsstärken zwischen den Neuronen ändern. Zur Er-
innerung: Das Netz in Abbildung 4a ist eine UND-Verschaltung und das 
Netz in 4b eine ODER-Verschaltung. Der einzige Unterschied liegt in 
den Verbindungsstärken der Punkt- und Größer-Detektoren beim Aus-
gabeneuron. Wenn es also im Gehirn einen Mechanismus gibt, mit dem 
die Verbindungsstärken in so einem Netzwerk automatisch verändert 
werden, dann passt das Gehirn auch sein Verhalten an. Das neuronale 
Netz kann auf diese Art lernen.

Neuronale Netze lernen durch Korrektur

Die einfachste Form des Lernens ist das sogenannte ›überwachte Ler-
nen‹. Beim überwachten Lernen gibt es einen Lehrer, der den Lernpro-
zess begleitet und das Verhalten korrigiert. Das Feedback des Lehrers 
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muss allerdings nicht besonders elaboriert sein. Es reicht, dass der Ler-
nende durch den Lehrer mitbekommt, ob sein Verhalten richtig oder 
falsch war.

Wie genau könnte ein solches überwachtes Lernen in neuronalen 
Netzen ablaufen? Zurück zu den Käfern mit ihrem außergewöhnlichen 
Knicksverhalten, die Sie auf Ihrer Forschungsreise entdeckt haben: Ein 
paar Kilometer weiter beobachten Sie wieder die gleichen Käferarten, 
doch überraschenderweise sieht das Knicksverhalten ganz anders aus. 
Diesmal knicksen die einfarbigen Käfer, sobald sie Käfer mit Punkten 
sehen, die aber nicht größer als sie selber sind. Das neuronale Netz die-
ser Käfer muss also dem Netz in Abbildung 4c entsprechen (statt dem 
Netz in 4a wie bei der vorherigen Kolonie). Das Knicksverhalten kann 
also nicht angeboren sein. Nachdem Sie die Insekten wieder über einen 
längeren Zeitraum beobachtet haben, fällt Ihnen auf, dass die gerade 
aus ihrer Puppenhaut geschlüpften, frisch erwachsenen Käfer sich tat-
sächlich noch nicht an die Knicksregel halten. Sie lernen sie erst nach 
ein paar Zusammentreffen mit anderen Käfern. Ihnen fällt außerdem 
auf, dass Käfer, die sich nicht an die richtige Knicksetikette halten, so-
fort angegriffen werden. Und Sie schließen daraus, dass junge Käfer 
offenbar durch diese recht direkte Rückmeldung erfahren, dass sie 
einen Fehler gemacht haben und so lernen, ihr Verhalten entsprechend 
anzupassen.

In unserem Gedankenexperiment besteht das Nervensystem der 
Käfer dank Evolution aus den zwei Eingabeneuronen, die Punkte und 
Größe detektieren, und dem Ausgabeneuron, das den Knicks auslösen 
kann. Die Verbindungsstärken zwischen den Detektor-Neuronen und 
dem Knicks-Neuron sind aber nicht durch die Evolution fest vorein-
gestellt, sondern passen sich erst durch Erfahrung an die Umwelt an. 
Das Gleiche gilt für den Schwellenwert. Zu dem Zeitpunkt, an dem die 
Käfer aus ihrer Puppenhaut schlüpfen, sind die Verbindungsstärken in 
ihrem neuronalen Netz alle 0 und der Schwellenwert bei 1,5, so wie in 
Abbildung 7a. Dann trif ft der Jungkäfer auf einen Käfer mit Punkten, 
der nicht größer als er selber ist (P=1 und G=0). Neuron G bleibt inaktiv 
und Neuron P sendet ein Signal an das Ausgabeneuron, aber da die Ver-
bindungsstärke 0 ist, kommt beim Ausgabeneuron nichts an und der 
Schwellenwert von 1,5, bei dem ein Knicks ausgelöst wird, wird nicht 
überschritten. Der Käfer macht also fälschlicherweise keinen Knicks 
und die anderen Käfer attackieren ihn deshalb. Doch aus diesem Fehler 
kann er lernen.
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Abb. 7: Veränderung eines Netzes durch Korrektur

Was ist also im neuronalen Netz schiefgegangen? Und wie kann ein Lern-
algorithmus das Netzwerk so anpassen, dass zukünftig keine Fehler mehr 
gemacht werden?10 Die aggressive Reaktion der anderen Käfer bedeutet, 
dass es falsch war, dass das Ausgabeneuron inaktiv blieb. Es hätte feuern 
und einen Knicks auslösen müssen. Entweder war die Verbindungsstär-
ke zwischen Neuron P und dem Ausgabeneuron also zu schwach oder 
der Schwellenwert zu hoch. Versuchsweise erhöht der Lernalgorithmus 
deshalb die Verbindungsstärke von Neuron P von 0 auf 1 und senkt den 
Schwellenwert von 1,5 auf 0,5. Das neue Netz sieht jetzt aus, wie das Netz 
in Abbildung 7b. Das nächste Mal, wenn der Käfer auf einen gepunkteten 
Kollegen trifft, der nicht größer ist (P=1 und G=0), sendet Neuron P ein 
Signal der Stärke 1. Das Signal übersteigt den Schwellenwert von 0,5 und 
der Käfer macht diesmal richtigerweise einen Knicks.

Unglücklicherweise trif ft der Käfer danach auf einen größeren Kä-
fer mit Punkten (P=1 und G=1) und Neuron P löst einen Knicks aus, egal 
was Neuron G macht, weil die Verbindungsstärke für Neuron G immer 
noch 0 ist. Wieder wird der Käfer angegriffen. Diesmal, weil er einen 
Knicks macht, den er nicht hätte machen sollen. Entweder war also 
die Verbindungsstärke zu groß oder der Schwellenwert zu klein. Der 
Lernalgorithmus macht daher im nächsten Schritt alle Verbindungs-
stärken der Detektoren, die aktiv waren, um 1 kleiner und erhöht auch 
den Schwellenwert um 1. Das Netz sieht jetzt so aus wie in Abbildung 7c.

Durch diese Änderung macht der Käfer aber wieder einen Fehler, 
sobald er auf einen gepunkteten Kollegen trif ft, der nicht größer als 
er selber ist (P=1 und G=0). Er macht keinen Knicks und wird deshalb 
angegriffen. Der Lernalgorithmus erhöht darauf hin die Verbindungs-
stärke von Neuron P wieder von 0 auf 1 und senkt den Schwellenwert 

10  �Im Folgenden wird der ›Perzeptronlernalgorithmus‹ beschrieben, der auf Rosen-
blatt (1958) zurückgeht.
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wieder von 1,5 auf 0,5 (die Verbindungsstärke von G wird nicht ange-
fasst, weil G=0 war und daher keinen Einf luss hatte). Mit diesen Ände-
rungen sieht das neuronale Netz so aus wie das Netz in Abbildung 7d. 
Dieses Netz hat die Regel gelernt, dass nur ein Knicks gemacht wird, 
falls der andere Käfer Punkte hat, nicht aber, wenn er größer ist. Der 
Käfer macht jetzt keine Fehler mehr.

Stellen Sie sich vor, Sie besuchen eine fremde Kultur, in der jeder 
vor kleineren Menschen einen Knicks macht. Man muss Ihnen die-
se Regel nur einmal erklären und Sie wissen sofort, wie Sie sich ver-
halten müssen. Was aber, wenn Ihnen niemand die Regel verrät und 
Sie stattdessen böse Blicke ernten, wenn Sie sich falsch verhalten? Sie 
würden sich wahrscheinlich so ähnlich verhalten wie die Käfer in unse-
rem Gedankenexperiment. Sie würden verschiedene Regeln ausprobie-
ren und so lange bei einer Regel bleiben, bis Sie einen Fehler machen. 
Dann würden Sie versuchen, die Regel anzupassen, um Ihren Fehler zu 
korrigieren. Nichts anderes machen Lernalgorithmen: Sie suchen Re-
geln, die möglichst wenige Fehler machen. Auch Lernalgorithmen sind 
Suchalgorithmen!11

Traditionellen Computerprogrammen werden die Regeln, nach 
denen sie sich verhalten sollen, fest einprogrammiert. Lernende Com-
puterprogramme können ihr Verhalten – oft mit Unterstützung eines 
Lehrers – selbständig anpassen. Man spricht dann von ›maschinellem 
Lernen‹. Maschinelles Lernen ist gerade dann von Vorteil, wenn man 
zwar das richtige Verhalten kennt, aber nicht weiß, wie es eigentlich 
zustande kommt. Zum Beispiel, wenn es darum geht, Ihre Großmut-
ter auf einem Bild zu erkennen. Da es sich dabei um implizites Wissen 
handelt, können Sie keinem Computer erklären, wie er das machen soll. 
Ihr Gehirn macht das zwar nach bestimmten Regeln, Sie kennen diese 
Regeln aber nicht. Sie können allerdings einem Lernalgorithmus viele 
Beispielfotos zeigen, auf denen Ihre Großmutter mal zu sehen ist und 
mal nicht. Der Lernalgorithmus findet durch dieses Training von allei-
ne Regeln, mit denen er Ihre Großmutter erkennen kann. Diese Regeln 
werden äußerst kompliziert sein und viele Ausnahmen haben.

In Fällen, in denen Regeln nicht perfekt sind, spricht man von 
›statistischen Regeln‹, die nicht immer, aber oft gelten. Der Lernalgo-

11  �Ein ganz ähnliches Beispiel wird auch von Bruner, Goodnow & Austin (1956) dis-
kutiert, die die Algorithmen untersucht haben, nach denen Menschen in solchen 
Situationen Regeln lernen.
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rithmus findet in solchen Fällen keine fehlerlose Regel, sondern eine, 
die möglichst wenige Fehler macht. Das ändert aber nicht viel für die 
Lernalgorithmen, deren Ziel es immer noch ist, die Anzahl der Fehler 
zu minimieren. Statistische Regeln, die auf diese Weise gelernt wur-
den, erkennen Muster in der Eingabe, die helfen, die richtige Antwort 
vorherzusagen. Alle modernen Programme zur Mustererkennung – sei 
es zur Gesichtserkennung, Buchstabenerkennung, Objekterkennung 
oder Spracherkennung – funktionieren genau so. Zwar gibt es viele 
verschiedene Arten von maschinellen Lernalgorithmen in der KI, aber 
meist basieren diese zurzeit auf tiefen neuronalen Netzen.

Diese künstlichen neuronalen Netze haben nicht selten Tausen-
de von Neuronen in vielen Schichten mit Millionen von Verbindun-
gen. Und mit leistungsfähigeren Computern werden es immer mehr. 
Dadurch ist es äußerst schwer zu verstehen, warum ein Netz sich so 
verhält, wie es sich verhält. Zwar waren es die Entwickler, die den 
Lernalgorithmus programmiert und dem Netzwerk im Training viele 
Beispiele gezeigt haben, wie es sich richtig verhalten soll, aber auch die 
Entwickler können sich unmöglich die unzähligen Neuronen und alle 
Verbindungsstärken ansehen, um das Netz wirklich zu verstehen (wie 
wir das in unserem Gedankenexperiment gemacht haben, in dem es 
nur drei Neurone gab). Obwohl das Netz bestimmten Regeln folgt, die 
präzise im Computer spezifiziert sind, können wir diese Regeln auf-
grund ihrer Komplexität nicht nachvollziehen. Wir können also nicht 
darauf hoffen, dass so ein künstliches neuronales Netz uns helfen 
kann zu erklären, wie wir unsere Großmutter erkennen. Dieses Wissen 
bleibt auch in künstlichen neuronalen Netzen implizit!

Obwohl künstliche neuronale Netze ursprünglich mal von Gehir-
nen inspiriert waren und sie inzwischen einige menschliche Fähigkei-
ten imitieren können, darf man sie nicht vorschnell mit menschlichen 
Gehirnen gleichsetzen. Nur weil ein künstliches neuronales Netz auf 
ein paar Fotos meine Großmutter erkennen kann, heißt das nicht, dass 
das Netz das genauso macht wie ich. Vielleicht erkennt das Netz nur 
die Nase. Solange man dem Netz keine Bilder zeigt, auf denen die Nase 
verdeckt ist oder jemand anderes eine ähnliche Nase hat, bemerkt man 
den Unterschied nicht. Tatsächlich verhalten sich neuronale Netze auf 
bestimmten Bildern, auf die sie nicht trainiert worden sind, oft ganz 
anders als Menschen. Eine meterhohe Zahnbürste wird zum Beispiel 
von Menschen trotz ihrer Größe leicht übersehen. Menschen rechnen 
einfach nicht mit Riesenzahnbürsten. Neuronale Netze sind aber extra 

https://doi.org/10.14361/9783839405598-008 - am 13.02.2026, 09:39:39. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839405598-008
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nd/4.0/


Frank Jäkel: Die intelligente Täuschung104

so konstruiert, dass sie Objekte erkennen, egal wie groß sie sind. Um-
gekehrt lassen sich neuronale Netze von verzerrten und verschmutzten 
Bildern mehr und anders verwirren als Menschen. Die Lektion, die wir 
von ELIZA gelernt haben, gilt auch hier: Man sollte Computern nicht 
vorschnell menschliche Intelligenz zuschreiben. Auch wenn ihre Fähig-
keiten beeindruckend sind, ist ihre Intelligenz eine andere als unsere.12

Nichtsdestotrotz sind die Netze darauf trainiert, auf den meisten 
Bildern möglichst die Objekte zu erkennen, die wir Menschen erwarten. 
Damit ein neuronales Netz lernen kann, die Großmutter zu erkennen, 
muss erst vorher ein Mensch Beispielbilder markieren, auf denen die 
Großmutter zu sehen ist. Und wenn das Netz einen Fehler macht, wird 
die Antwort korrigiert und der Lernalgorithmus passt das Netz ent-
sprechend an.

Für die Spracherkennung von Google, Amazon und Apple hör(t)en 
deshalb Menschen die Mitschnitte von Unterhaltungen mit Siri, Alexa 
und Co ab, um verbliebene Fehler der Spracherkennung zu korrigieren. 
Als die Presse über die Mitschnitte berichtete, war es für viele Nutzer 
ein Schock zu erfahren, dass ihre Gespräche mit KI-Systemen nicht 
vertraulich sind.13 Aber wenn man weiß, wie die Technik funktioniert, 
ist das keine Überraschung. Hinter den meisten Anwendungen neuro-
naler Netze stecken viele, viele Stunden Arbeit von Menschen, die mit 
ihrem impliziten Wissen die Fehler markieren, aus denen die Maschi-
nen lernen. Mittlerweile gibt es eine ganze Industrie, die diese kleintei-
lige und mühselige Arbeit auf viele Menschen in der ganzen Welt – aus 
Kostengründen oft in Entwicklungsländern – verteilt.14

Neuronale Netze lernen auch ohne Lehrer

Kleine Kinder lernen sicher nicht, wie eine Katze oder ein Hund aus-
sieht, indem ihnen die Eltern nacheinander tausende von Katzen- und 
Hundebilder zeigen und jedes Mal fragen, ob ein Hund oder eine Kat-
ze zu sehen ist, um entweder zustimmend zu nicken oder das Kind zu 

12  �Siehe Eckstein, Koehler, Welbourne & Akbas (2017) für die Riesenzahnbürste und 
Geirhos et al. (2018) für verschiedene Arten von veränderten Bildern.

13  �Erst nachdem die Presse darüber berichtet hatte, wurde diese Verfahrensweise 
transparent gemacht oder abgestellt (Hurtz, 2019).

14  �Siehe Dzieza (2023).
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korrigieren. Tiere im Bilderbuch benennen ist eine tolle Beschäftigung, 
aber wahrscheinlich können schon Babys, die noch nicht sprechen, den 
Unterschied zwischen Hunden und Katzen sehen – unabhängig da-
von, ob jemand sie darauf hinweist. Hunde und Katzen sehen nicht nur 
unterschiedlich aus, sondern verhalten sich auch anders. Das macht es 
möglich, dass die Unterscheidung zwischen Hunden und Katzen von 
alleine entdeckt werden kann, ohne dass es dazu einen Lehrer braucht. 
Den Lehrer braucht es dann nur noch, um die Wörter zu lernen, nach-
dem das Kind schon erkannt hat, dass es sich um zwei unterschiedliche 
Tierarten handelt.15

Ein Kind, das Hunde und Katzen beobachtet, lernt vielleicht, dass 
bestimmte Merkmale oft zusammen auftreten. Hunde bellen und we-
deln mit dem Schwanz, Katzen schnurren, sobald man sie streichelt. 
Viele Hunde haben Schlappohren, aber Katzen nicht, und so weiter. 
Das Kind lernt diese statistischen Regelmäßigkeiten, indem es die 
Merkmale miteinander assoziiert. Wenn es nun einen Hund mit dem 
Schwanz wedeln sieht, erwartet das Kind, dass er auch bellt.16

Sie erkennen das ›A‹ in Abbildung 8, obwohl das Bild verschmutzt 
ist, und nur Teile davon zu sehen sind. Sie wissen genau, was sich hin-
ter dem Tintenklecks verbirgt, weil in Ihrem Gedächtnis alle Merkmale 
des Buchstabens miteinander assoziiert sind und Ihr Gedächtnis die 
fehlenden Teile deshalb ergänzen kann. So wie das Kind das Bellen er-
wartet, wenn es ein Schwanzwedeln sieht.

Lernen ohne Lehrer wird im maschinellen Lernen ›unüberwachtes 
Lernen‹ genannt und ein Beispiel dafür sind sogenannte ›autoassozia-
tive neuronale Netzwerke‹. Das sind künstliche neuronale Netze, die 
die Eingabe mit sich selber assoziieren (daher der Name). Damit ist ge-
meint, dass das Netz lernt, welche Merkmale der Eingaben mit welchen 
anderen Merkmalen der gleichen Eingaben oft zusammen auftreten. 

15  �In Wirklichkeit ist das etwas komplizierter als hier dargestellt. Quinn, Eimas & 
Rosenkrantz (1993) haben untersucht, wie 3-4 Monate alte Kinder Hunde- und Kat-
zenbilder kategorisieren. Beide sind leicht von Vögeln zu unterscheiden. Katzen 
sind untereinander sehr ähnlich, sodass sie auch leicht zusammengruppiert wer-
den können. Hunde können allerdings äußerst verschieden aussehen, daher ist es 
für die Kinder manchmal schwer, Katzen nicht als eine Art von Hund anzusehen.

16  �Diese Art von Assoziation, insbesondere zwischen den verschiedenen Sinnen, ist 
eine alte Idee von empiristischen Philosophen. George Berkeley stellte sich das 
schon 1709 in An Essay Towards a New Theory of Vision so ähnlich vor. In seinem Bei-
spiel war es aber kein Hund, sondern eine Kutsche.
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Wie immer in künstlichen neuronalen Netzen bedeutet Lernen, dass 
die Verbindungsstärke zwischen Neuronen angepasst werden. Die 
Grundidee ist, dass jedes Neuron in dem Netzwerk ein Merkmal der 
Eingabe repräsentiert (zum Beispiel das Bellen des Hundes oder den 
Querbalken des Buchstabens ›A‹). Diese Neuronen sind untereinander 
verbunden. Wenn zwei Neuronen oft zusammen aktiv sind, stärkt das 
die Verbindung zwischen den beiden Neuronen. Wird zu einem spä-
teren Zeitpunkt nur eines der zwei Neuronen durch eine Eingabe ak-
tiviert, sorgt die starke Verbindung zwischen den zwei Neuronen da-
für, dass auch das andere Neuron aktiviert wird.17 Die Aktivierung der 
Neurone für Schwanzwedeln alleine führt dann zur Aktivierung der 
Neurone für das Bellen – und umgekehrt. Die Aktivierung der Neuro-
ne für einzelne Teile eines ›A‹ führt zur Aktivierung der Neurone, die 
durch den Tintenf leck verdeckt sind.

Abb. 8: Ein Bild mit Tintenklecks

17  �Diese Art von Lernen nennt man auch ›Hebb’sches Lernen‹, benannt nach dem 
Psychologen Donald Hebb, der dieses Prinzip wesentlich klarer und neurowissen-
schaftlich plausibler beschrieben hat als viele Philosophen vor ihm (Hebb, 1949). 
Hebb’sches Lernen ist allerdings nicht die einzige Möglichkeit, wie man Lernen in 
autoassoziativen Netzen umsetzen kann.
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Neuronale Netze lieben Katzenvideos

Die Kombination von unüberwachtem Lernen und überwachtem Ler-
nen ist sehr mächtig. Überwachtes Lernen kann extrem aufwendig und 
kostspielig sein. Damit ein künstliches neuronales Netz den Unter-
schied zwischen Hunden und Katzen lernen kann, müssen Menschen 
erst eine unglaublich große Menge an Hunde- und Katzenbildern be-
schriften. Für viele Anwendungen ist das die Mühe nicht wert. Indem 
das neuronale Netz unüberwacht viele Bilder aus dem Internet durch-
sieht, kann es allerdings mit deutlich weniger menschlicher Unterstüt-
zung trainiert werden. Es hilft, wenn das Netz schon viele Hunde- und 
Katzenbilder gesehen hat – sogar, wenn es gar nicht weiß, dass es Hun-
de und Katzen waren. Es hilft aber auch, wenn es viele andere Bilder 
gesehen hat, weil es so die statistischen Regelmäßigkeiten in Bildern 
allgemein lernt. Vielleicht wurde ihm auch schon beigebracht andere 
Tierarten zu unterscheiden, was das Lernen von Hunden und Katzen 
zusätzlich vereinfacht. Solch ein vortrainiertes Netz, das allgemein 
etwas über Bilder gelernt hat, lässt sich dann leichter und billiger an 
verschiedene Aufgaben anpassen, als wenn man für jede Aufgabe ein 
neues neuronales Netz trainiert. Wir Menschen fangen ja auch nicht 
bei jeder neuen Aufgabe bei null an, sondern entwickeln unsere vor-
handenen Fähigkeiten weiter.

Der beeindruckende Fortschritt in KI-Anwendungen, den man un-
gefähr seit 2010 beobachten kann, ist größtenteils dadurch angetrie-
ben, dass künstliche neuronale Netze in vielen Fällen überraschend 
gut lernen, statistische Muster zu erkennen. Auch Menschen sind oft 
gut darin, Muster zu erkennen, aber unser Wissen darüber ist implizit. 
Wir können nicht sagen, nach welchen Regeln wir unsere Großmutter 
erkennen oder wie genau wir Hunde von Katzen unterscheiden. Das 
macht es für Entwicklerinnen und Entwickler schwer, traditionel-
le Computerprogramme für solche Mustererkennungsaufgaben zu 
schreiben, denn sie können dem Computer nicht Schritt für Schritt 
Anweisungen geben, wie die Aufgaben zu lösen sind. Besser ist es, ein 
Computerprogramm zu schreiben, das selbständig aus Beispielen lernt. 
KI-Forscherinnen und -Forscher basteln daher seit den Anfangstagen 
der Computer an künstlichen neuronalen Netzen, die lernen können, 
Muster zu erkennen. Warum sehen wir dann erst über 50 Jahre später 
funktionierende Gesichts- und Spracherkennung? Das lag daran, dass 
tiefe neuronale Netze schlicht eine extrem große Menge an Beispielen 
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brauchen, um ihr implizites Wissen zu lernen – mehrere Millionen 
Beispiele sind keine Seltenheit.18 Deshalb mussten erst zwei Entwick-
lungen zusammenkommen: Zum einen mussten Computer schnell ge-
nug werden, um solche großen Datenmengen überhaupt verarbeiten 
zu können. Zum anderen mussten entsprechend große Datenmengen 
erst einmal zur Verfügung stehen. Diese Datenmengen finden sich im 
Internet, wo Nutzer jeden Tag Unmengen an Texten, Bildern und Vi-
deos teilen. Wer hätte gedacht, dass all diese Katzenvideos zu etwas 
gut sein würden.19

18  �Das Training von Netzen zur Objekterkennung geschah zum Beispiel lange gerne 
mit der Datenbank ImageNet, die etwa 14 Millionen Bilder enthält (Deng et al., 
2009).

19  �Le et al. (2012) haben zehn Millionen Einzelbilder aus YouTube-Videos extrahiert 
und ein künstliches neuronales Netz unüberwacht trainiert. Nach dem Training 
hatte das Netz Neuronen, die selektiv menschliche Gesichter erkennen konnten, 
weil Gesichter häufig in den Videos vorkamen. Aber Katzen kamen auch häufig vor, 
weshalb das Netz auch ohne Lehrer gelernt hat, wie Katzen aussehen.
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