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hierdurch die Spezifität der laboreigenen Erzeugungslogik von Erkenntnis

verloren gehen.3

5 Mathematisierung des Labors und Laboratisierung
von Gesellschaft

Neben der Ausweitung des Laborbegriffs lässt sich auch eine generelle Trans-

formation des Labors hin zu einemmathematisierten Labor konstatieren: Da-

ten sammeln, auswerten und simulieren, für die Entscheidungen von heute

und das Regieren, im biopolitischen Sinne ließe sich hier auch von Verwal-

ten sprechen, der Datenkörper von morgen. Um die bereits weiter oben an-

geführte umfangreiche Datenflut in den Neurowissenschaften einzuhegen,

braucht es allgemeingültige, universell verfasste Algorithmen, die in die Mo-

dellierungen und Simulationen einfließen und Bedeutung generieren kön-

nen. Die Datenflut in fast allen Disziplinen verlangt nach Statistiker*innen

undDatenwissenschaftler*innen, die sich der Aufgabewidmen, nach solcher-

art informatischen und mathematischen Lösungen zu suchen, die auch auf

ähnliche Probleme eine Antwort liefern. Daten erheben, sammeln, verwal-

ten, analysieren und interpretieren hat eine enorme Bedeutung in den Labor-

wissenschaften erlangt. Der Computer mit seiner Möglichkeit, Simulationen

durchzuführen, hat das Experimentallabor zu einem ›Dry Lab‹ werden lassen

(Merz 2006).

Dry lab oder auch digital laboratory frequently become associated with

computer simulation be it in popular accounts or in the discourse of prac-

titioners. The notions seem to suggest that computers and simulation ap-

plications constitute research environments in their own right, allowing

one to perform computer experiments and endowing one with the poten-

tial to replace traditional laboratory settings. (Ebd., 155)

Der Laborraum ist demnach dabei, aus dem Wet Lab herausgelöst und in

Standardbüroräume verlegt zu werden, die sich vor allem durch eine Samm-

3 Sicherlichwäre es interessant, sich diesen geänderten und ausgedehnten Laborbegriff

unter der Frage anzuschauen, warum gerade der in den Naturwissenschaften verbrei-

tete Ort derWissensproduktion hier aufgerufen wird und welche Auswirkungen diese

Anrufung des Labors auf die Konnotation andere Formen von Erkenntnisproduktion

und -praktiken hat.
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lung leistungsstarker Computer auszeichnen. Das führt zu einer veränder-

ten epistemologischen Grundvoraussetzung, zu einer ›bevorstehenden Um-

wandlung der Neurowissenschaften in eine Ingenieursdisziplin‹ (vgl. Bruder

2017, 119), indem Gehirne und Körper als zusammengesetzte Netzwerksyste-

me imaginiert werden. Das stimmt besonders für die Computational Neuro-

sciences und die Neuroinformatik, in denen computergestützte Erkenntnis-

theorien eine bedeutsame Rolle spielen: »Indeed, methodologists in neuro-

science have typically worked on various modeling efforts in distinct fields,

which means that they tend to think about the systems to be modeled in

rather general terms.« (Ebd., 118) Mathematik ist ein bedeutsamesWerkzeug

in den Computational Neurosciences, aber so wie vormals der Computer als

Vorbild für Neuronale Netzwerke ausgedient hatte und heute das Gehirn als

Ideal für künstliche neuronale Netze gilt, kann diese Übertragung auch auf

das Verhältnis von Mathematik und Neurosciences angewandt werden:

[A] similar argument can be applied to the relationship between math-

ematics and neuroscience where it is clear that we either are not using

the right mathematical tools to understand the brain or such tools have

not yet been discovered. The resultant mathematical descriptions should

make non-trivial predictions about the system that can then be verified

experimentally. This approach takes advantage and has the potential to

use the vast amounts of qualitative data in neuroscience and to put it in

a quantitative context. (Silvia 2011, 2, zit. n. Bruder 2017, 119)

5.1 Das mathematische Labor: Computerbeweis, Computermodelle

und Simulationen

In die Erkenntnisproduktion und Experimentalanordnungen moderner La-

bore schreiben sich vermehrt Mathematische Logiken und Praktiken ein, un-

ter anderem die Logik des mathematischen Beweisens. Der Beweis stellt, wie

bereits in Kapitel 1 ausführlicher beschrieben, den ›Goldstandard‹ der Mathe-

matik dar, neben den formalisierten Axiomen ist es der Beweis, der der Ma-

thematik die Deutungshoheit ermöglicht und sie zu einer objektiven, verall-

gemeinerbarenDisziplinmacht.Dermathematische Beweis ist originär nicht

im Labor verortet. Beweise werden gänzlich losgelöst von konkreten Experi-

menten oder Anwendungen erlangt, einzig das sorgfältige und schrittweise

Ableiten aus anderen, bereits bewiesenen Axiomen oder Sätzenwird als regel-

konformer Beweis anerkannt.Dennoch existieren verschiedene Versionen des
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mathematischen Beweisens, und die Auseinandersetzungen darüber, wie ein

guter, richtiger Beweis auszusehen hat, gehen weit in die Geschichte zurück.

In den letzten Jahren hat sich durch die Verwendung von Computern eine

bestimmte Form des Beweises durchgesetzt, die, so zumindest die Einschät-

zung Ian Hackings, wiederum in der Tradition von Leibniz steht. Für Leibniz

ist der mathematische Beweis eine notwendige, aber langwierige und wenig

kreative Tätigkeit, für deren Erledigung er Rechenmaschinen ins Feld führt,

die diese Tätigkeit in Zukunft übernehmen sollen. Leibniz’ nur in Gedanken

existierende Rechenmaschinen sind heute Realität geworden, der Computer

wird inzwischen fast ausschließlich für die Durchführung mathematischer

Beweise im Sinne Leibniz’ eingesetzt. Mitte des zwanzigsten Jahrhunderts

erfuhr der mathematische Beweis eine Neuausrichtung: »The conception of

proof as conferring certainty, […] has changed, in part due to developments

in mathematics itself. Proofs have, to put it crudely, become longer and

longer, so that it is not possible for a single human to grasp them in their

entirety.« (Hacking 2014, 63)

Der mit dem Computer durchgeführte Beweis steht für mehr als nur ei-

ne regelkonform durchgeführte Beweisführung, er steht auch für Sicherheit

und eine ›höhere‹ Gewissheit, die durch die Exklusion subjektiven undmögli-

cherweise fehlerhaften Eingreifens vonseiten der Wissenschaftler*innen ver-

meintlich garantiert wird. Dieser Umstand wird in der Mathematik nach wie

vor viel diskutiert, denn nicht alle sehen die Mathematik als rein formalis-

tische Angelegenheit, sondern verweisen auch auf kreative Prozesse und er-

fahrungsbasiertes Wissen, das in die Beweisführung und das Finden neu-

er Theoreme miteinfließen muss. »Computerbeweise hingegen können nicht

wirklich kreativ sein, die finden keine Theoreme – keine neuen.« (Interview

5, 38 Min.) Gleichzeitig hat durch die massive Anwendung von Computermo-

dellen und Simulationen eine Verschiebung im Verständnis des Beweisens

stattgefunden.

Durch den vermehrten Einsatz von Computermodellen und Simulatio-

nen sollen Theorien, Konzepte und konkrete Prozesse und Funktionsweisen

›bewiesen‹ werden. Diese folgen selbstverständlich nicht den Ansprüchen

des eigentlichen mathematischen Beweises, aber Mathematik wird hier

eingesetzt, um organische Abläufe zu gestalten, nachzuweisen und letztlich

eine zunächst in der Theorie durchgespielte Idee durch die Modellierung

und Simulation zu beweisen. So entsteht eine ganz neuen mathematischen

Grundprinzipien folgende Erzeugungslogik und bringt das Mathematische

Labor (Bruder 2017) hervor.
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Durch die Verwendung von auf stochastischen Berechnungen basieren-

den Computermodellen und Simulationen haben sich die Bedingungen der

experimentellen Erkenntnisproduktion grundlegend verändert. Daten wer-

den nicht länger aus deduktiven Experimentalanordnungen hervorgebracht,

sondern folgen der induktiven Logik. Allein die Entscheidung, auf welchen

Wahrscheinlichkeitsbegriff in den Berechnungen zurückgegriffen wird,

bleibt der Wahl der Wissenschaftler*innen überlassen. Die Wahrschein-

lichkeitstheorie implementiert in jeden Entscheidungsschritt stochastische

Kalkulationen und führt zu einer ganz spezifischen Ausgestaltung des

mathematischen Beweises, der sich allein durch die omnipräsente und

selbstverständliche Anwendung als mathematische Beweislogik durchgesetzt

hat. Die Stochastik als Verknüpfung von Statistik und Wahrscheinlichkeit

folgt der Vorgehensweise der induktiven Logik, die nicht nach ›wahren‹,

allgemeingültigen Aussagen sucht, sondern sich mit statistisch validen

Angaben zufriedengibt.

Something entirely new has been added to the tools of the physicist, in-

deed of all scientists and quite a few humanists. In the sciences we have

powerful and increasingly fast computational techniques to make approx-

imate solutions to complex equations that cannot be solved exactly. They

enable practitioners to construct simulations that establish intimate re-

lations between theory and experiment. Today, much – maybe most –

experimental work in physics and chemistry is run alongside, and often

replaced by, simulations. (Hacking 2014, 50)

Computermodelle und Simulationen sind beides für sich genommen voraus-

setzungsreiche Werkzeuge, auf die Funktion von Computermodellen bin ich

in Kapitel 2 näher eingegangen. Simulationen werde ich im Folgenden kurz

beschreiben. Dudai und Evers formulieren es so: »The term ›simulation‹ can

acquire different meanings in different contexts. Here we will restrict our

treatment to simulation in science and engineering. In these disciplines, si-

mulation involvesmathematical and engineeringmethods.« (2014, 254) Simu-

lationen nehmen verschiedene Rollen im erkenntnisgenerierenden Prozess

ein. Eine pragmatische Systematik, um die verschiedenen Funktionen von

Simulationen in der Wissenschaft und Technik einzuordnen, basiert auf zwei

Hauptkriterien –demZiel, dasmithilfe einer Simulation erreicht werden soll,

und dem Träger, dem Medium, in dem die Simulation umgesetzt wird (vgl.

ebd.). Bei den Zielen einer Simulation wird zunächst zwischen vollständi-

gen Simulationen eines ganzen Systems und der Simulation partieller Teil-
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bereiche unterschieden. Ebenso gehören zu den Zielen einer Simulation: das

funktionelle Nachbauen und das theoretische Verstehen eines Systems und

der Prozesse, um ein Konzept zu beweisen oder ihre operative Leistungsfä-

higkeit zu prüfen, Kosten und Risiken zuminimieren, das System zumanipu-

lieren oder die Funktionen zu vervielfältigen. ZumMedium beziehungsweise

dem Mittel, eine Simulation durchzuführen, gehören entweder ein natürli-

cher Träger oder rein artifizielle Träger wie mittels mathematischer Modelle

im Computer. Simulationen können also konkret oder abstrakt durchgeführt

werden, können Daten-getrieben oder Modell-getrieben sein, können in ver-

ändertem Maßstab oder maßstabsgetreu nachgebaut werden (vgl. ebd.).

Computational Neurosciences können als Kombination aus Experiment-

allabor und mathematischem Labor beschrieben werden. Die Disziplin

setzt sich einerseits zusammen aus den numerischen Größen, wie etwa

Membrandurchlässigkeit und Ionenfluss, die durch elektrophysiologische

Ableitungen an Synapsen und Neuronenverbindungen ermittelt wurden.

Diese Werte sind bereits vor vielen Jahren in die Berechnungsmodelle von

Neuronentätigkeit wie das Hodgkin-Huxley-Modell eingeflossen undwurden

in den letzten Jahren nur noch graduell angepasst. Andererseits können mit

den so entstandenen Modellen heute die abgeleiteten neuronalen Feuerungs-

ratendaten (meist aus Tierversuchen) modelliert und berechnet werden.

Gleichzeitig werden diese Berechnungen eingesetzt, um mithilfe von theo-

retischen Überlegungen (wie der effizienten Komplexitätstheorie; siehe Kap.

3) und Simulationen die Modelle entsprechend ihrer Durchführbarkeit zu

verbessern oder zu falsifizieren. Der Fokus der Computational Neurosciences

liegt eher auf der Entwicklung immer besser angepasster Computermodelle,

mit denen man neuronale Aktivität und Vernetzungsmuster berechnen und

simulieren kann, weniger darauf, Daten auszuwerten. Welche Überlegungen

zur Verbesserung der Modellperformances herangezogen werden, zeigen die

Laborstudien rund um das Blue-Brain-Projekt der Wissenschaftssoziologin

Tara Mahfoud und des Filmemachers Noah Hutton. Beide verweisen auf

projektinterne Diskussionen rund um Frage, wie die Ähnlichkeit (bezie-

hungsweise Unähnlichkeit) zwischen den eigenen synthetisierten, durch

Algorithmen erzeugten Zellen und den rekonstruierten Zellen aus dem

elektrophysiologischen Labor zu bewerten sei. War es wichtiger, dass die

synthetisierten Neuronen aussahen, wie andere Neuronen aussehen, oder

war es wichtiger, eine hohe Anzahl von Merkmalen zu haben, die mit den

rekonstruierten Zellen übereinstimmten, auch wenn sie nicht ähnlich aus-

sahen? Schnell fokussierte man sich in der Diskussion auf statistische Tests,
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die zur Erzeugung von Variabilität erforderlich sind, auch wenn nicht alle

Zellen gleich aussehen:

One of the problems that was highlighted was that when Henry evaluated

some of the synthesised cells, he would say they didn’t »look nice« and

that more features should be added. Adding features, Nancy said, made

running statistical analyses for similarity more complicated. Biologists, she

said, want to include everything in the model, but that compromised the

performance of the model. (Mahfoud 2018, 147f.)

Hier schließt sich die Problematik an, die richtige Menge an Merkmalen in

ein Modell aufzunehmen, um möglichst realitätsgetreu zu modellieren, aber

gleichzeitig zweckmäßig zu entscheiden, um nicht die Leistung des Modells

zu schwächen.Die Entscheidungen über die imModell und den Simulationen

verwendetenWerte undMerkmale sind ausschlaggebend für den Output und

die Erkenntnisse, die aus den Probeläufen entstehen. Diese Entscheidungen

werden subjektiv am Computer vorgenommen, von in Denkstile (Fleck 1980)

bestimmter Denkkollektive (ebd.) eingebundenen Individuen, sind aber ent-

scheidend für den Erfolg eines Modells beziehungsweise einer Simulation.

Das Beispiel aus Henry Makrams Blue Brain Labor über die Frage der ange-

messenen Zugabe an Zufall und Variabilität in Computermodellen zeigt ein-

drücklich, wie viel Subjektivität in der Praxis mathematischer Labore steckt.

Asked how she approached the extraction of morphological constants from

the highly variable shapes of neurons found in the cortex, Kanari explained

that she uses »the features that are consistent, and exploits them […] so

[we] generate structures that have the same main topology, but also add

some noise. Add the variability that you see in biology.« I then asked: »How

do you add the right kind of variability?« To which she replied: »That’s a

good question, because the right kind, we can never know what’s the right

kind of variability.« (Hutton 2022 [in Druck])

5.2 Laboratisierung von Gesellschaft

In ihrem Buch Automated Inequality gibt Eubanks (2015) ein Beispiel für die

Auswirkungen eines trainierten Algorithmus, der bei einer großen US-ame-

rikanischen Krankenversicherung darüber entscheidet, ob und zu welchen

KonditionenMenschen versichert werden. Künstliche Intelligenzen erwecken

den Anschein, neutral zu sein, da sie in der Anwendung vermeintlich von
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menschlichen Unzulänglichkeiten befreit sind. Wie fatal diese Unterschät-

zung von algorithmisch gelenkten Entscheidungsprozessen ist, darüber klärt

Eubanks in ihrem Buch auf:

But that’s the thing of being targeted by an algorithm: you get a sense

of a pattern in the digital noise, an electronic eye turned toward you, but

you can’t put your finger on exactly what’s amiss. There is no requirement

that you be notified when you are red-flagged. With the notable exception

of credit reporting, we have remarkably limited access to the equations,

algorithms, and models that shape our life chances. (2015, 5)

Ein gut trainierter Algorithmus vergisst nicht – und kann auf alle jemals

eingespeisten Informationen zurückgreifen. Eben dieses Versprechen birgt

gleichzeitig Gefahren. Mit der Automatisierung statistischer Berechnungen

und darüber vorgenommenen Bewertungen findet eine unsichtbare Weiter-

führung laborativer Praktiken statt in Bereichen, die eher politische und/oder

soziale Antworten benötigen. Die in die Bewertungssysteme eingespeisten

Daten können nicht ›vergessen‹ werden und die Systeme reproduzieren so

einprogrammierte Biases, können dabei aber zwischen Kausalität und Kor-

relationen nicht unterscheiden. Diese Argumentationsweisen haben Einfluss

auf Subjekte außerhalb des Labors. Im Anschluss an Teresa de Lauretis’ (1987)

Ansatz, Geschlecht als Ensemble von Auswirkungen zu konzeptualisieren,

»die in den Körpern, den Verhaltensweisen, den gesellschaftlichen Beziehun-

gen durch das Dispositiv einer komplexen politischen Technologie herbeige-

führt werden« (Döring/Fitsch 2016, 62), will Ruha Benjamin (2019) auch Race

als Effekt und Produkt verschiedener Technologien verstanden wissen. »Race

as Technology: This field guide explores […] how race itself is a kind of tech-

nology – one designed to separate, stratify, and sanctify the many forms of

injustice experienced by members of racialized groups.« (36) Mit Laboratisie-

rung der Gesellschaft sind diese auf Mathematik und Statistik begründeten Re-

gierungstechnologien aus dem Labor gemeint. Beruhend auf einer generel-

len Mathematisierung der Wahrnehmung und Kanalisierung durch Berech-

nungsschritte von Computern, egal welcher Größe, tragen sie die erkenntnis-

theoretischen Bedingungen laborativer Wissensproduktion in die Mitte der

Gesellschaft.

Das Wissen der Computermodelle und Simulationen folgt der Mathe-

matischen Logik und unterliegt einer »Algorithmizität, das heißt, sie ist ge-

prägt durch automatisierte Entscheidungsverfahren, die den Informations-

überfluss reduzieren und formen, so dass sich aus den vonMaschinen produ-
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zierten Datenmengen Informationen gewinnen lassen, […] und zu Grundla-

gen des singulären und gemeinschaftlichen Handelns werden können« (Stal-

der 2017, 13). Um diese riesigen, täglich produzierten Datenmengen auszule-

sen, braucht es Algorithmen, deren Verständnis von großer Wichtigkeit ist,

sind sie es doch, die etwas in den Daten sichtbar machen und etwas zu se-

hen geben, dessen Interpretation darüber bestimmt, welche Bedeutung den

Daten beigemessen wird.

Der Einsatz digitaler Technologien in derWissensproduktion bedeutet für

die neurowissenschaftliche Forschung zweierlei: Zum einen nimmt sie Ein-

fluss auf das Sammeln, die Nutzung und die Weiterverarbeitung der gesam-

melten Daten und führt durch die globale Vernetzung von Daten zu einer Au-

tomatisierung datengetriebener statistischer Erkenntnisproduktion und zu

Big Data. Zum anderen bestimmen Digitalität und Virtualität nicht nur die

Art und Weise, wie Wissen hergestellt wird, sondern auch das epistemische,

also erkenntnistheoretische Grundgerüst, mit dem auf Prozesse im Gehirn

geschaut wird und wie diese Prozesse modelliert werden. Die durch die Digi-

talisierung beobachtbaren methodischen Anpassungen in den neurowissen-

schaftlichen Disziplinen brachten Effekte für das jeweilige epistemische Ver-

ständnis mit sich. Diese Entwicklungen spitzen sich derzeit auf zwei Ebe-

nen zu: zum einen in den von Deep-Learning-Algorithmen hervorgebrachten

Entscheidungen künstlicher Intelligenzen, die es verunmöglichen, nachzu-

vollziehen, wie sie zum jeweiligen Ergebnis gekommen sind. Zum anderen

breitet sich die Logik des Engineerings und des Verschaltens in seiner infor-

matischen Bedeutung so gut wie in allen auf Computer gestützten Diszipli-

nen immer weiter aus: »Regulation by Engineering: The Pretense of the New

in the Eternal Same« (Fitsch et al. 2020, 53). Dabei vermischen sich in diesem

Engineeringansatz zwei sehr unterschiedliche Ebenen:

At the bottom, one has to realize that these various activities, though su-

perficially similar, are of a radically different kind. Constructing a machine

that works (such as a highly parallel computer) is an engineering problem.

[…] Understanding the brain, on the other hand, is a scientific problem.

The brain is given to us, the product of a long evolution. (Crick 1989, 132)

Damit nähert sich die Modellbildung in den Natur- und Technikwissenschaf-

ten ihren derzeitigen technischen Möglichkeiten an: Schnellere Rechner kön-

nen ein Vielfaches an Daten technisch so konstruieren, um sie zu berechnen,

und erzeugen damit die Illusion von Echtzeitverarbeitung, von Denken und

vermeintlich freien Entscheidungen. Somit verwundert es auch nicht, dass
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heute das Gehirn mit seinen komplexen Abläufen in den neuronalen Netz-

werken und Verschaltungen dem Computer als Vorbild dient.

Nicht nur der Erkenntnisprozess transformiert sich, auch das, was wir

als Wissen und als glaubwürdige Beschreibung der Welt anerkennen, ändert

sich durch die digitalen, mathematischen wissenschaftlichen Bezugnahmen.

Es kommt zu einer weit reichenden Neufassung desWissensbegriffs, für des-

sen Verständnis zwischen Daten, Informationen, Kommunikation und Wis-

sen unterschieden werden muss, um diese in Relation zu ihrer technischen

Verfasstheit und Reproduzierbarkeit neu zu bestimmen:

Die Produktion von Daten als allgemeinster Rohstoff für Wissen benötigt

Techniken der Beobachtung; die Produktion von Informationen als bewer-

tete Daten braucht Techniken der Selektion und Evaluation, der Bildung von

Präferenzen und Prioritäten; und die Produktion von Wissen, Wissen ver-

standen als der Einbau von Informationen in Erfahrungskontexte, verlangt

Techniken und Technologien der Steuerung von Erfahrung. (Willke 2005,

129)

Die Technisierung von Wissen und deren Kommunikation muss in der Ab-

hängigkeit dieses Wissens von mathematisierten Wahrnehmungstechnolo-

gien verstanden werden. Über diesen Aspekt hinaus basiert digitales Wissen

nicht nur auf seiner technischen Reproduzierbarkeit, sondern auch auf der

binär-methodischen Herstellungslogik; also nicht nur das Wissen, sondern

die Wahrnehmung selbst wird mathematisiert. Durch die Mathematisierung von

Wahrnehmung werden Entscheidungen an Apparaturen abgetreten, die mit

einer Vielzahl an Trainingsdaten, Mustern, Häufigkeiten und Rankings ge-

füttert wurden, sodass sie über einen vermeintlichen Erfahrungsschatz ver-

fügen, der weit über den eines einzelnen Menschen hinausgeht. Das nächste

Kapitel beschreibt diese technisch induzierte Automatisierung als Mathema-

tisierung von Wahrnehmung, also den mathematischen Grundbedingungen

aktueller Erkenntnispraktiken.

Knorr-Cetina hat in ihren Arbeiten auf den erzeugungslogischenMoment

des Labors verwiesen: Objekte werden hier nicht beschrieben, sondern er-

zeugt und hervorgebracht. Das mathematische Labor, an Mathematik und

Visualisierungen geknüpfte ImmutableMobiles, ist kein beschreibendes, son-

dern ein Rahmenbedingungen erzeugendes Labor, das Vorhersagen und Ent-

scheidungen vornimmt. Die stochastischen Berechnungsweisen und selbst-

lernenden Algorithmen erzeugen formal-mathematische Vorhersagen, die di-

rekten Einfluss auf die gesellschaftlichen Lebensbedingungen haben.Die For-
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schung ist Daten-getrieben, das heißt, ihr Ausgangspunkt sind nicht Hypo-

thesen oder eine spezifische Fragestellung, anhand derer sie ein Studiende-

sign oder ein Modell bilden. Das Fundament bilden gesammelte Daten, die

dann nach Mustern und Korrelationen abgesucht werden, die Interpretati-

on der Daten erfolgt unabhängig ihrer kontextspezifischen Rahmenbedin-

gungen. Dabei wird das Wissen in die Zukunft gerichtet und »die erwar-

tete[n] Möglichkeiten in erfahrbare Wirklichkeiten transformier[t]« (Dickel

2019, 9). Eine Laboratisierung der Gesellschaft verlagert das laborative Daten-

sammeln und -interpretieren in gesellschaftliche Praktiken. Eine labortypi-

sche Erkenntnisproduktion kann in Echtzeit und an vielen Orten gleichzeitig

durchgeführt werden, wir alle liefern die benötigten Daten. »Die Produkti-

on und Rezeption [erkenntnistheoretischer] Artefakte verwandelt sich dabei

von einer exklusiven Expertentätigkeit zu einer öffentlichen sozialen Praxis.«

(Dickel 2019, U4)

6 Die fehlende halbe Sekunde und die Rückkehr des Körpers
unter den Vorzeichen des Labors

Die Laboratisierung der Gesellschaft verlangt wiederum, dass die vormals von al-

lem Subjektiven und Körperlichen bereinigten und durch formalisierte Sym-

bole, Repräsentationen und Immutable Mobiles ersetzten Wissensprozesse,

die Körper, Organismen und Prozesse, wieder eingeholt werden. Allerdings

in einer handhabbaren Form und gemäß bereits erfolgter Reduktionen und

in Technologien geflossener Vorstellungen von zumBeispiel organischen neu-

ronalen Netzwerken und ihren Prozessen. Am Beispiel der ›fehlenden halben

Sekunde‹, die in verschiedenen physiologischen Studien in den 1970er-Jahren

entdeckt wurde (Libet 2005), lässt sich zeigen, wie der Körper in das hoch-

technisierte und formalisierte Wissen wieder integriert werden soll und wel-

chen Stellenwert das Unverfügbare darin bekommt. Die Anrufung situierter

Körperlichkeit muss hier unter zwei Prämissen verstanden werden: Erstens

wurde der Körper aus der Erkenntnisproduktion sukzessive hinausgedrängt,

unterstützt durch die Kontinuität laborativer Praxen, die die Erkenntnispro-

duktion schrittweise von der Körperlichkeit und Kontextgebundenheit der

Untersuchungsgegenstände durch die Übertragung ins Labor gelöst haben.

Zweitenswurde das erkenntnisgenerierende Subjekt im Labor durch die tech-

nischen, formal-mathematischenMethoden ersetzt und bleibt so imErkennt-

nisprozess selbst körperlos. Die Entdeckung der fehlenden halben Sekunde
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