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Die nachfolgend aufgeführten Größen und Bezeichnungen sind global, d. h. für die ganze Arbeit,
gültig. Größen, die nur lokal verwendet werden, sind in der weiteren Arbeit definiert. Die Notation
orientiert sich jeweils an die angegebenen Quellen, um weiterführende Recherchen zu erleichtern.

Lateinische Symbole

0x, 0x�y Nullmatrix der Dimension x � x bzw. x � y

a Systemeigenwert
A Präexponentieller Faktor in der Arrhenius-Gleichung
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kc Massentransportkoeffizient
la, lm Additive bzw. multiplikative Modellunsicherheit
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n Motordrehzahl
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x;p Relative Sensitivität des Parameters p bezüglich der Größe x

te Kraftstoffeinspritzzeit
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� Konvertierungsrate
‚ Sauerstofffüllstand bzw. Belegungsgrad einer Oberflächenspezies
‚ Vektor mit den Sauerstofffüllständen aller Modellzellen bzw. mit den Bele-

gungsgraden aller Oberflächenspezies in einer Zelle des Modells
�B, �C Steuerbarkeits- bzw. Beobachtbarkeitsmaß nach Lükel/Müller
� Lambdawert
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Indizes

i Gasspezies, lokaler Index
.�/in, .�/out Größe am Eingang bzw. am Ausgang des Katalysators
j Nummer der Reaktion bzw. der Teilreaktion
.�/.j/ Mit der Reaktion j assoziierte Gas- bzw. Oberflächenspezies
k Nummer einer Zelle des nach dem Ort diskretisierten Modells
lsu, su Lambdasonde vor bzw. hinter dem Katalysator
s Oberflächenspezies
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Q.�/ Schätzwert
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Chemische Spezies
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CO2 Kohlenstoffdioxid
H2 Wasserstoff
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N2 Stickstoff
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Abkürzungen

cpsi Cells Per Square Inch
E/A exakte Ein-/Ausgangslinearisierung
ECU Electronic Control Unit
FTP 75 Federal Test Procedure 75
IMC Internal Model Control
LQ Linear Quadratisch
SCR Selective Catalytic Reduction
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Zusammenfassung

Zur effizienten Abgasnachbehandlung bei Benzinmotoren hat sich seit mehr als drei Jahrzehnten
der Drei-Wege-Katalysator bewährt. Die physikalische Modellbildung des Katalysators führt auf
nichtlineare, partielle Differentialgleichungen. Je nach Detaillierungsgrad der physikochemischen
Modellbildung können die Katalysatormodelle sehr komplex ausfallen und diese Komplexität er-
schwert die systematische systemtheoretische Analyse des Katalysators. Daher beschränkt sich
der Reglerentwurf in der Literatur auf recht einfache Katalysatormodelle und meist lineare Rege-
lungskonzepte. Der Umstand, dass die bekannten Katalysatormodelle nicht in Form von Zustands-
raummodellen vorliegen, erschwert den Einsatz der bewährten Methoden der Regelungstechnik
weiter.

In der vorliegenden Arbeit wird ein neuer Ansatz zur Erstellung nichtlinearer Zustandsraummo-
delle aus vereinfachten physikochemischen Katalysatormodellen präsentiert. Als Ausgangspunkt
dient ein Modell der Sauerstoffspeicherung durch Ceroxid, das komplexer als die bisher zum
Reglerentwurf eingesetzten Modelle ist. Auf dem Weg zur Herleitung des Zustandsraummodells
werden hier die sogenannten Gewichtsfunktionen definiert. Die Gewichtsfunktionen ermöglichen
eine kompakte und intuitive Beschreibung des Katalysatormodells und ihre Erweiterung auf an-
dere Reaktionsschemata wird detailliert untersucht.

Die Modelldarstellung im Zustandsraum erlaubt die analytische Systemanalyse, wodurch z. B. die
asymptotische Stabilität des Katalysators nachgewiesen und das nichtlineare Modell analytisch
linearisiert wird. Ein wesentlicher Aspekt der Systemanalyse ist die Berechnung von Strukturma-
ßen, die den quantitativen Vergleich verschiedener Katalysatoren ermöglichen und so den Ma-
terialentwicklungsprozess unterstützen können. Bevor das Modell in der Praxis eingesetzt wird,
werden zuerst seine Parameter optimiert. Anhand von analytischen Sensitivitätsanalysen werden
die für das Ein-/Ausgangsverhalten wichtigen Modellparameter identifiziert und anschließend mit
Messdaten von einem Laborprüfstand optimiert.

Die Modellbildung und die Systemanalyse liefern tiefe Einblicke in die Systemstruktur und das
Systemverhalten, die beim Erstellen eines Regelungskonzeptes für den Katalysator nützlich sind.
Aufgrund der schlechten Beobachtbarkeit des Katalysators wird ein Open-Loop-Beobachter ein-
gesetzt. Das stark nichtlineare Systemverhalten motiviert des Weiteren den Entwurf von nichtli-
nearen Reglern. Die Arbeit beginnt mit dem Entwurf eines unterlagerten Lambdaregelkreises und
schließt mit dem Entwurf und demVergleich von vier dem Lambdaregelkreis überlagerten Emissi-
onsreglern. Zwei Emissionsregler werden mittels exakter Ein-/Ausgangslinearisierung entworfen,
einer wird in Form einer nichtlinearen modellprädiktiven Regelung ausgeführt und die linearen
Regler sind durch einen LQ-Regler vertreten. Der LQ-Regler und einer der mittels exakter Ein-
/Ausgangslinearisierung entworfenen Regler werden am Laborprüfstand implementiert und einer
klassischen Lambda-Eins-Regelstrategie gegenübergestellt.
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