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Fehlertolerante Sicherheits-
steuerung aus der Cloud
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Cloud-Systeme werden zunehmend in der Produktionstechnik
eingesetzt. Sicherheitskritische Systeme lassen sich mit dem
heutigen Stand der Technik nur schwer integrieren. Zufallige
Fehler wie Alterungsprozesse oder Umwelteinfllisse miissen
behandelt werden. In diesem Beitrag werden Architekturen
vorgestellt, die eine performante Sicherheitssteuerung in
Cloud-Systemen erlauben. Darliber hinaus wird die Fehler-
toleranz von Hardware- und Softwareausféllen durch Redun-
danz analysiert und bewertet.
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1 Einleitung

Die Virtualisierung von Hardware- und Softwareressourcen
nimmt in der klassischen IT seit vielen Jahren eine zentrale Rolle
ein, zum Beispiel um vorhandene Ressourcen besser auszunutzen,
Hardware einzusparen oder durch Kapselung eine hohere Sicher-
heit zu erreichen [1] Grundsitzlich kann Virtualisierung als Ab-
straktion von Ressourcen bei erzwungener Modularitit verstan-
den werden [2]. Erzwungene Modularitit heiflt, dass Klienten
der Abstraktion diese nicht umgehen konnen. Beim Einsatz von
virtuellen Maschinen abstrahiert der sogenannte Hypervisor die
Hardware eines Servers oder PCs, sodass mehrere Betriebssyste-
me parallel betrieben werden koénnen. Bei Containern liegt die
Abstraktion auf Betriebssystemebene und isoliert Anwendungen
hinsichtlich der Ressourcennutzung voneinander. Ein typischer
Aufbau eines Rechenzentrums fiir Cloud Computing besteht aus
mehreren Servern, um hochverfiighare Anwendungen zu ermogli-
chen. Dieser Aufbau wird typischerweise als Cluster bezeichnet.

Auch in der Operational Technology (OT) der Produktions-
technik wird Virtualisierung zunehmend eingesetzt, um neben
der Verfligbarmachung der oben genannten Vorteile heterogene
Hardwareumgebungen aufzulésen. Dabei sind die Anforderungen
der Produktionstechnik wie Echtzeit und Zuverlissigkeit zu
berticksichtigen.

Erweiterte Anforderungen haben sicherheitskritische Systeme
wie Sicherheitssteuerungen im Sinne der Gefahrenfreiheit. Hier
ist eine Vermeidung oder Detektion und Behandlung zufilliger
Fehler zum Beispiel durch Alterungsprozesse oder Umweltein-
flissse erforderlich. Typische Fehler sind Hardwarefehler, die aus
Umwelteinfliissen wie Temperaturschwankungen, Vibrationen
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Cloud-based fault tolerance
of safety control in the cloud

Cloud systems are increasingly being used in production tech-
nology. However, based on current state of the art, safety-criti-
cal systems are difficult to integrate. It is absolutely necessary
to handle random errors such as ageing processes or environ-
mental influences. This paper presents architectures enabling
high-performance safety control in cloud systems. It also ana-
lyzes and evaluates the fault tolerance of hardware and soft-
ware failures due to redundancy .

und Strahlung resultieren und sich als sporadische Bitflips in
RAM (Random Access Memory) und Prozessor oder auch als
permanent unterbrochene Leitungen manifestieren.

Im operativen Einsatz gibt es aktuell zwei Ansitze, um Hard-
warefehlern zu begegnen. Zum einen erlaubt eine mehrkanalige
Hardware und ein Vergleich der Ergebnisse der Kanile eine Di-
agnose von Hardwarefehlern - in der Regel erfolgt die Auslegung
zweifach. Dabei wird spezielle Hardware verwendet, die beispiels-
weise mit zwei CPUs (Central Processing Units) ausgestattet ist,
die im Lockstep-Verfahren arbeiten. Zum anderen wird codierte
Verarbeitung eingesetzt, welche durch die Erzeugung verschiede-
ner Arten von Daten- und Verarbeitungsredundanz eine Diagno-
se von Hardwarefehlern ermoglicht. Ersterer Ansatz hat den
Nachteil, dass hohe Kosten und hoher Aufwand etwa fiir die Ent-
wicklung einer zweikanaligen Hardware notwendig sind und ein
Einsatz auf Standardhardware nicht moglich ist. Der zweite An-
satz ist hardwareunabhingig und kann auf Standardhardware
eingesetzt werden, jedoch mit hohen Performanceeinbufien [3].

Im Kontext der Virtualisierung gewinnt die redundante Aus-
fithrung von Sicherheitssteuerungen auf unterschiedlicher Hard-
ware an Bedeutung, da typischerweise Cluster betrieben werden.
Im Gegensatz zur mehrkanaligen Hardware werden mehrere PCs
oder Server verwendet, die jeweils eine Replika der Sicherheits-
steuerung ausfithren. Dabei ist der administrative Aufwand fiir
den Betrieb mehrerer Sicherheitssteuerungen aufgrund der
Virtualisierung in Kombination mit Werkzeugen zur Verwaltung
der virtuellen Systeme gering.

In diesem Beitrag werden daher Architekturen vorgestellt, die
unter Ausnutzung eines Clusters den Einsatz von leistungsfahigen
Sicherheitssteuerungen auf Standardhardware ohne codierte Ver-
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Bild 1. Architekturtibersicht fir redundante Sicherheitssteuerungen. Grafik: ISW, Uni Stuttgart

arbeitung erméglichen. Des Weiteren wird neben der Detektion
von Hardwarefehlern auch die Fehlertoleranz von Hardware- und
Softwareausfillen durch Redundanz betrachtet. Ein fehlertoleran-
tes System in dieser Arbeit muss Toleranz gegeniiber Hardware-
fehlern und Toleranz gegeniiber Serverausfillen besitzen.

2 Verwandte Arbeiten

In der Literatur gibt es Arbeiten wie [4, 5], die durch Virtuali-
sierung sowohl sicherheitskritische als auch normalkritische Sys-
teme auf einer Hardware betreiben. Dabei werden FPGAs (Field
Programmable Gate Arrays) eingesetzt und es wird Diversitit auf
Hardwareebene durch unterschiedliche CPUs erzeugt. Hier steht
die effiziente Ausnutzung der Hardware im Vordergrund.

Zum anderen gibt es Arbeiten, die Multicore-CPUs einsetzen
und Redundanz auf mehreren CPU-Kernen erzeugen [6]. Aller-
dings werden viele Hardwarekomponenten von den CPU-Kernen
gemeinsam genutzt, sodass der Nachweis von Fehlern durch
gemeinsame Ursachen der Softwarekanile schwierig ist. Auch das
Zusammenfithren der Ergebnisse der verschiedenen Software-
kanile ist eine Herausforderung, welche etwa durch die codierte
Verarbeitung eines Mehrheitsentscheiders in [7] gelost wird.

3 Architektur und Anforderungen

Die Probleme der verwandten Arbeiten bei Fehlern aufgrund
gemeinsamer Ursachen und spezieller Hardware koénnen durch
den Einsatz eines Clusters mit Standardhardware umgangen wer-
den. Allerdings miissen die Zeitanforderungen und die Zusam-
menfithrung redundanter Ergebnisse beriicksichtigt werden.

3.1 Annahmen zur Architektur

Ein Cluster besteht in dieser Arbeit aus mehreren Servern. Als
Virtualisierung konnen sowohl ein Hypervisor mit virtuellen
Maschinen als auch Container eingesetzt werden. Echtzeit kann
beim Einsatz eines Hypervisors durch statische Partitionierung
der CPU und einem echtzeitfihigen Betriebssystem oder durch
hierarchisches Scheduling erreicht werden [8-11]. Bei Contai-
nern kann Echtzeit durch Echtzeit-Linux realisiert werden [12].
Im Cluster werden N Replikas der Sicherheitssteuerungen ausge-
fithrt, wie in Bild 1 dargestellt.
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Die Kommunikation zu den sicheren E/As (Ein- und Aus-
gabe-Einheiten) erfolgt iiber einen sicheren Feldbus nach dem
Black-Channel-Prinzip, also der Ubertragung sicherheitskriti-
scher Signale tiber nicht sichere Kommunikationsmedien. Ent-
sprechende Losungen gibt es fiir verschiedene Kommunikations-
techniken, wie etwa WiFi-Netzwerke [13]. Die Absicherungsme-
chanismen und Funktionsweisen werden nach DINEN 61784-3
angenommen, sodass Paketverlust, Zeitverletzungen, Paketdupli-
zierungen und dhnliche Fehler durch das Safety-Protokoll ent-
deckt werden. Es wird angenommen, dass die N Replikas garan-
tiert auf N verschiedenen Servern ausgefithrt werden, sodass die
Detektion von zufilligen Hardwarefehlern méglich ist. Hierfiir
wird ein geeigneter und sicherer Mechanismus vorausgesetzt, der
zum Beispiel auf statischen und eindeutigen Identifikationsnum-
mern basiert.

3.2 Anforderungen

In den Annahmen wird gezeigt, dass die Echtzeitfihigkeit fiir
die Virtualisierung als gegeben angenommen werden kann. Dies
bedeutet, dass die einzelnen Replikas der Sicherheitssteuerung in
Echtzeit ausgefithrt werden konnen. Die Zusammenfiithrung der
Ergebnisse kann zusitzliche Kommunikationspfade erfordern und
wird im nédchsten Kapitel gezeigt. Daher muss ein Nachweis tiber
die maximale Kommunikationslatenz erbracht werden. Die Zu-
sammenfithrung der Ergebnisse muss Hardwarefehler detektieren
oder korrigieren konnen.

Die Fehlertoleranz erfordert die sichere Fortfithrung des
Betriebs bei Ausfall von Hardware oder Software. Dazu muss bei
Ausfall einer oder mehrerer Repliken sichergestellt sein, dass die
verbleibenden Replika weiterhin Hardwarefehler detektieren oder
korrigieren konnen. Dartiber hinaus muss die Detektion eines
Ausfalls in Echtzeit erfolgen.

4 Hardwarefehlerdetektion
und Fehlertoleranz

Um Fehlertoleranz zu implementieren, miissen sowohl die
Hardwarefehlerdetektion als auch die Toleranz von Ausfillen
berticksichtigt werden. In der Literatur zu sicherheitskritischen
Systemen und fehlertoleranten Cloud-Systemen koénnen drei rele-
vante Architekturen identifiziert werden. Im Folgenden werden
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Bild 2. Umsetzungsmaglichkeiten fiir zweikanalige Fehlertoleranz. Grafik: ISW, Uni Stuttgart

diese drei Architekturen vorgestellt und gezeigt, wie sie fiir die
vorliegende Zielsetzung eingesetzt werden kdnnen.

4.1 Hardwarefehlerdetektion bei
zwei-kanaliger codierter Verarbeitung

Friichtl [14] stellt in seiner Arbeit die Zusammenfiihrung
zweier Softwarekanile iiber das Feldbustelegramm vor, die durch
codierte Verarbeitung gesichert sind. Dabei schreibt der erste Ka-
nal das Datenfeld des Telegramms und der zweite Kanal die Priif-
summe des Telegramms. Die Uberpriifung erfolgt im sicheren
Kommunikationspartner, der fiir jedes Paket die Konsistenz von
Datenfeld und Priifsumme iiberpriift. Bei Inkonsistenzen liegt ein
zufilliger Hardwarefehler vor und das Sicherheitssystem geht
automatisch in den sicheren Zustand iiber. Der Vorteil dieses
Verfahrens ist, dass es mit jedem existierenden Feldbus realisiert
werden kann. Eine erhohte Ausfallsicherheit ist nicht gegeben, da
keine weiteren Kanile in das Konzept integriert werden koénnen.

In einem Cloud-Cluster kann dieses Prinzip genutzt werden,
indem eine Replika das Datenfeld und die andere Replika die
Priiffsumme in das Telegramm schreibt. Die erste Replika kann
das Paket an die zweite Replika weiterleiten, welche das Paket
dann an die Ein- und Ausgabe-Einheit (E/A) sendet, wie in
Bild 2 dargestellt.

Dies erfordert eine Modifikation des Feldbusses, da mehrere
Feldbusmaster (FM) nicht moglich sind. Alternativ kann die
zweite Replika das Telegramm an die erste Replika zuriicksenden,
die dann das Telegramm an die E/A sendet. In diesem Fall ist nur
eine Modifikation im Feldbusmaster der ersten Replika notig.

Die Latenz setzt sich dabei aus der Verarbeitung (z,,) je Re-
plika und der Kommunikation zusammen. Fiir die zweikanalige
Fehlertoleranz mit modifiziertem Feldbus ergibt sich eine Ge-
samtlatenz von tG‘m0d=te+max(tvyl+td;tv,2)+ t,. Im Falle eines
unmodifizierten Feldbusses ergibt sich eine Gesamtlatenz von
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toum = 1, + max(t,;t,+1,+ 1)+, Der Ausfall einer Replika
kann nicht toleriert werden, da beide fiir die Detektion von
Hardwarefehlern benétigt werden.

4.2 N-Modulare Systeme mit Mehrheitsentscheider

N-modulare Redundanz ist ein Ansatz zur Implementierung
fehlertoleranter Systeme. Im Fehlerfall, zum Beispiel bei einem
Hardwarefehler, kann die Funktionalitit aufrechterhalten werden.
Typischerweise wird zwischen passiven und aktiven Systemen
unterschieden [15]. Bei passiven Systemen maskiert ein Mehr-
heitsentscheider (ME) fehlerhafte oder fehlende Ergebnisse unter
der Annahme, dass die mehrheitlich gleichen Ergebnisse korrekt
sind. Bei aktiven Systemen konnen zusitzlich fehlerhafte Module
abgeschaltet oder ausgetauscht werden. Das Prinzip der n-modu-
laren Redundanz kann auf zwei Arten angewendet werden, wie in
Bild 3 dargestellt.

Entweder befindet sich der Mehrheitsentscheider in den siche-
ren E/As, was eine Anpassung des Feldbusses erfordert. Dabei
eignet sich vor allem eine Kommunikation nach dem Publisher/
Subscribe-Prinzip, bei welchem der klassische FM aufgelost wird.
Wihrend der Konfigurationszeit wird die Anzahl der Replikas
bekannt gemacht. Alternativ kann der Mehrheitsentscheider im
Feldbusmaster liegen. In diesem Fall muss dieser einzelne Fehler-
punkt gegen zufillige Hardwarefehler abgesichert werden, etwa
durch codierte Verarbeitung. Im ersten Fall ist eine Fehlertole-
ranz gegen den Ausfall einzelner Replikas gegeben. Im zweiten
Fall kann der Ausfall des Feldbusmasters nicht toleriert werden.

Die Latenz setzt sich dabei aus der Verarbeitung (¢,,) und der
Kommunikation zusammen. Fiir den Mehrheitsentscheider im
E/A ergibt sich eine Gesamtlatenz von
topu=1tT max(t,,; ... ;tv'N) +t, ), Fir Mehrheits-
entscheider im Cluster ergibt sich die Gesamtlatenz von #; ¢, =
t, + max(z,, ...; t“N) tt T ta

einen
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Bild 3. Umsetzungsmaglichkeiten flir N-Modulare Systeme. Grafik: ISW, Uni Stuttgart

4.3 Fehlertolerante Cloud-Systeme

Kritische Systeme werden fehlertolerant betrieben, um eine
hohe Verfiigbarkeit und Integritit zu erreichen. In der Literatur
[16] gibt es verschiedene Ansitze wie Replikation, Migration
oder selbstheilende Systeme. Am hiufigsten kommen Ansitze mit
replizierter Hardware zum Einsatz, wobei die Software entweder
parallel betrieben wird oder im Fehlerfall migriert wird [16]. Um
einen einzelnen Ausfallpunkt zu vermeiden, itberwachen sich die
redundanten Replikas gegenseitig. Dieser Ansatz wird zum Bei-
spiel bei hochverfiigbaren Kubernetes-Clustern verwendet [17].

Fir die Anwendung des Prinzips in sicherheitskritischen
Systemen muss zum einen die Uberwachung und die Behandlung
eines Fehlerfalls zeitdeterministisch erfolgen. Zum anderen miis-
sen Hardwarefehler detektiert werden. Jedes Replika empfingt
die Eingangsdaten und sendet das berechnete Ergebnis an alle an-
deren Replikas. Die Anzahl an Kommunikationsverbindungen ist
daher hoher. Der Ausfall einer Replika wird iiber das Ausbleiben
des Ergebnisses erkannt. Dazu ist ein Timer erforderlich. Eine
Replika wird als aktiv bestimmt und sendet die Ausgangsdaten
zur E/A-Einheit. Fillt die aktive Replika aus, iibernimmt ein an-
deres Replika die aktive Rolle. Um eine Auswahl zur Laufzeit zu
vermeiden, wird eine statische Reihenfolge festgelegt. Die maxi-
mal tolerierte Anzahl von Ausfillen ist N-2.

Zur Detektion von Hardwarefehlern kann entweder das in
Kapitel 4.1 oder in Kapitel 4.2 beschriebene Prinzip verwendet
werden. Bild 4 zeigt diese Architektur.

Bei Einsatz der Methodik aus Kapitel 4.1 wird das Telegramm
der Ausgangsdaten in der aktiven Instanz unter Verwendung des
Ergebnisses der eigenen Berechnung und der einer anderen Re-
plika gebildet. Wird die Methodik aus Kapitel 4.2 genutzt, ver-
wendet das aktive Replika einen Mehrheitsentscheider. Dieser ist
ein einzelner Fehlerpunkt und muss zusitzlich abgesichert wer-
den.

Die Latenz setzt sich dabei aus der Verarbeitung () und
Kommunikation zusammen. Beim Zusammensetzen des Tele-
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gramms ergibt sich eine Gesamtlatenz von
Lo = LT max(z,,, ... t“AJ) +1,+t, und bei der Verwendung eines
Mehrheitsentscheiders ergibt sich eine Gesamtlatenz von
fom =1+ Max(t,, + byttt H L

5 Vergleich der Architekturen

Die Tabelle zeigt die drei moglichen Architekturen und die je-
weiligen Ausprigungen mit ihren Eigenschaften.

Der Vergleich der Latenz gibt einen Hinweis darauf, welche
Elemente zur Gesamtlatenz beitragen. Je mehr serielle Elemente,
desto grofler die potenzielle Latenz. Fiir eine konkrete Einord-
nung ist ein experimenteller Vergleich notwendig. Zur Detektion
von Hardwarefehlen werden immer zwei Replikas benotigt, wes-
halb die Ausfalltoleranz immer N-2 betrigt. Einige Architekturen
konnen nicht auf bestehende sichere Feldbusse zuriickgreifen,
sondern benétigen angepasste Kommunikationsmuster. Fiir den
Einsatz in bestehenden Umgebungen ist daher die Unterstiitzung
aktueller sicherer Feldbusprotokolle relevant. Die Anzahl der
Kommunikationsverbindungen ist fiir die Netzwerkauslastung re-
levant. Je geringer die Anzahl der Kommunikationsverbindungen,
desto effizienter kann das Netzwerk ausgelastet werden. Bei eini-
gen Architekturen ist die Absicherung eines einzelnen Fehler-
punktes erforderlich.

6 Zusammenfassung und Ausblick

Der Einsatz von Standardhardware fiir sicherheitskritische
Systeme ist aufgrund der geringeren Kosten attraktiv. Die Ansit-
ze in der Literatur setzen auf codierte Verarbeitung. Durch den
Aufbau von Cloud-Systemen in Form von Server-Clustern ist der
Einsatz fiir sicherheitskritische Systeme durch Redundanz mdog-
lich. Hierbei koénnen nicht nur Hardwarefehler, sondern auch
Systemausfille toleriert werden. In dieser Arbeit wurden daher
Architekturen aus der Literatur identifiziert, die diese Toleranz
ermoglichen. Die Architekturen koénnen in unterschiedlichen
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Bild 4. Umsetzungsmadglichkeit nach dem Prinzip fehlertoleranter Cloud-Systeme. Grafik: ISW, Uni Stuttgart

Tabelle. Vergleich der fehlertoleranten Architekturen.

Eigenschaften

Architektur

Zweikanalig
(modifiziert)

Zweikanalig
(unmodifiziert)

Mehrheits-
entscheider (E/A)

Mehrheitsentschei-
der (Cluster)

Fehlertolerantes
Cloudsystem
(Telegramm)

Fehlertolerantes
Cloudsystem (ME)
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Anzahl der logischen
Kommunikations

Absicherung eines
einzelnen Fehlerpunkts
notwendig

Feldbusmodifikati-

Ausfalltoleranz )
on notwendig

Latenz

verbindungen

t=t,

+max (t,, + 1t t,,) N-2=0 Ja 4 Nein
+ laGmod
lGun=le . .
: N-2=0 Nein 4 Nein
+max (t,,; 1, +t,, T 1) +1,
tGEa=te .
N-2 Ja 2N Nein
T max (4 ) et e
N-2
16,Cluster = te + 0 unter Bertick-
max (f,7; ...; hy) + sichtigung Nein 2N + 1 Ja

des Mehrheits-
entscheiders

Lt typti,

16 tel

=1,

+ max (t,; N-2 Ja
+ g o oy T typ)

e

N+1+NN-1)=N+1 Nein

tG.ME

=t

+ max (,, N-2 Ja
ttues s by T tye)

+1 41,

N+1+NN-1)=N*+1 Ja
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Auspragungen realisiert werden. Ein Vergleich zeigt, dass neben
der Ausfalltoleranz auch andere Eigenschaften wie die Latenz, die
Anzahl der Kommunikationsverbindungen, die Absicherung ein-
zelner Fehlerpunkte oder die Moglichkeit der Nutzung vorhan-
dener sicherer Feldbusse beriicksichtigt werden miissen.

In weiteren Arbeiten ist aufzuzeigen, welche Ausprigung am
besten geeignet ist. Dazu miissen vor allem die Grundlagen fiir
eine sichere Kommunikation in verteilten Systemen gelegt wer-
den, um darauf aufbauend die Architekturmoglichkeiten weiter
zu analysieren.
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