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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Softwarebasierte Sicherheitssteuerungen

Fehlertolerante Sicherheits-
steuerung aus der Cloud

M. Fischer, M. Walker, A. Lechler, O. Riedel, A. Verl

Cloud-Systeme werden zunehmend in der Produktionstechnik 
eingesetzt. Sicherheitskritische Systeme lassen sich mit dem 
heutigen Stand der Technik nur schwer integrieren. Zufällige 
Fehler wie Alterungsprozesse oder Umwelteinflüsse müssen 
behandelt werden. In diesem Beitrag werden Architekturen 
vorgestellt, die eine performante Sicherheitssteuerung in 
Cloud-Systemen erlauben. Darüber hinaus wird die Fehler -
toleranz von Hardware- und Softwareausfällen durch Redun-
danz analysiert und bewertet.

Cloud-based fault tolerance  
of safety control in the cloud

Cloud systems are increasingly being used in production tech-
nology. However, based on current state of the art, safety-criti-
cal systems are difficult to integrate. It is absolutely necessary 
to handle random errors such as ageing processes or environ-
mental influences. This paper presents architectures enabling 
high-performance safety control in cloud systems. It also ana-
lyzes and evaluates the fault tolerance of hardware and soft-
ware failures due to redundancy .

1 Einleitung

Die Virtualisierung von Hardware- und Softwareressourcen 
nimmt in der klassischen IT seit vielen Jahren eine zentrale Rolle 
ein, zum Beispiel  um vorhandene Ressourcen besser auszunutzen, 
Hardware einzusparen oder durch Kapselung eine höhere Sicher-
heit zu erreichen [1]. Grundsätzlich kann Virtualisierung als Ab -
straktion von Ressourcen bei erzwungener Modularität verstan-
den werden [2]. Erzwungene Modularität heißt, dass Klienten 
der Abstraktion diese nicht umgehen können. Beim Einsatz von 
virtuellen Maschinen abstrahiert der sogenannte Hypervisor die 
Hardware eines Servers oder PCs, sodass mehrere Betriebssyste-
me parallel betrieben werden können. Bei Containern liegt die 
Abstraktion auf Betriebssystemebene und isoliert Anwendungen 
hinsichtlich der Ressourcennutzung voneinander. Ein typischer 
Aufbau eines Rechenzentrums für Cloud Computing besteht aus 
mehreren Servern, um hochverfügbare Anwendungen zu ermögli-
chen. Dieser Aufbau wird typischerweise als Cluster bezeichnet.

Auch in der Operational Technology (OT) der Produktions-
technik wird Virtualisierung zunehmend eingesetzt, um neben 
der Verfügbarmachung der oben genannten Vorteile heterogene 
Hardwareumgebungen aufzulösen. Dabei sind die Anforderungen 
der Produktionstechnik wie Echtzeit und Zuverlässigkeit zu 
 berücksichtigen.

Erweiterte Anforderungen haben sicherheitskritische Systeme 
wie Sicherheitssteuerungen im Sinne der Gefahrenfreiheit. Hier 
ist eine Vermeidung oder Detektion und Behandlung zufälliger 
Fehler zum Beispiel durch Alterungsprozesse oder Umweltein-
flüsse erforderlich. Typische Fehler sind Hardwarefehler, die aus 
Umwelteinflüssen wie Temperaturschwankungen, Vibrationen 

und Strahlung resultieren und sich als sporadische Bitflips in 
RAM (Random Access Memory) und Prozessor oder auch als 
permanent unterbrochene Leitungen manifestieren.

Im operativen Einsatz gibt es aktuell zwei Ansätze, um Hard-
warefehlern zu begegnen. Zum einen erlaubt eine mehrkanalige 
Hardware und ein Vergleich der Ergebnisse der Kanäle eine Di-
agnose von Hardwarefehlern – in der Regel erfolgt die Auslegung 
zweifach. Dabei wird spezielle Hardware verwendet, die beispiels-
weise mit zwei CPUs (Central Processing Units) ausgestattet ist, 
die im Lockstep-Verfahren arbeiten. Zum anderen wird codierte 
Verarbeitung eingesetzt, welche durch die Erzeugung verschiede-
ner Arten von Daten- und Verarbeitungsredundanz eine Diagno-
se von Hardwarefehlern ermöglicht. Ersterer Ansatz hat den 
Nachteil, dass hohe Kosten und hoher Aufwand etwa für die Ent-
wicklung einer zweikanaligen Hardware notwendig sind und ein 
Einsatz auf Standardhardware nicht möglich ist. Der zweite An-
satz ist hardwareunabhängig und kann auf Standardhardware 
eingesetzt werden, jedoch mit hohen Performanceeinbußen [3].

Im Kontext der Virtualisierung gewinnt die redundante Aus-
führung von Sicherheitssteuerungen auf unterschiedlicher Hard-
ware an Bedeutung, da typischerweise Cluster betrieben werden. 
Im Gegensatz zur mehrkanaligen Hardware werden mehrere PCs 
oder Server verwendet, die jeweils eine Replika der Sicherheits-
steuerung ausführen. Dabei ist der administrative Aufwand für 
den Betrieb mehrerer Sicherheitssteuerungen aufgrund der 
 Virtualisierung in Kombination mit Werkzeugen zur Verwaltung 
der virtuellen Systeme gering. 

In diesem Beitrag werden daher Architekturen vorgestellt, die 
unter Ausnutzung eines Clusters den Einsatz von leistungsfähigen 
Sicherheitssteuerungen auf Standardhardware ohne codierte Ver-
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arbeitung ermöglichen. Des Weiteren wird neben der Detektion 
von Hardwarefehlern auch die Fehlertoleranz von Hardware- und 
Softwareausfällen durch Redundanz betrachtet. Ein fehlertoleran-
tes System in dieser Arbeit muss Toleranz gegenüber Hardware-
fehlern und Toleranz gegenüber Serverausfällen besitzen.

2 Verwandte Arbeiten

In der Literatur gibt es Arbeiten wie [4, 5], die durch Virtuali-
sierung sowohl sicherheitskritische als auch normalkritische Sys-
teme auf einer Hardware betreiben. Dabei werden FPGAs (Field 
Programmable Gate Arrays) eingesetzt und es wird Diversität auf 
Hardwareebene durch unterschiedliche CPUs erzeugt. Hier steht 
die effiziente Ausnutzung der Hardware im Vordergrund.

Zum anderen gibt es Arbeiten, die Multicore-CPUs einsetzen 
und Redundanz auf mehreren CPU-Kernen erzeugen [6]. Aller-
dings werden viele Hardwarekomponenten von den CPU-Kernen 
gemeinsam genutzt, sodass der Nachweis von Fehlern durch 
 gemeinsame Ursachen der Softwarekanäle schwierig ist. Auch das 
Zusammenführen der Ergebnisse der verschiedenen Software -
kanäle ist eine Herausforderung, welche etwa durch die codierte 
Verarbeitung eines Mehrheitsentscheiders in [7] gelöst wird.

3 Architektur und Anforderungen

Die Probleme der verwandten Arbeiten bei Fehlern aufgrund 
gemeinsamer Ursachen und spezieller Hardware können durch 
den Einsatz eines Clusters mit Standardhardware umgangen wer-
den. Allerdings müssen die Zeitanforderungen und die Zusam-
menführung redundanter Ergebnisse berücksichtigt werden.

3.1 Annahmen zur Architektur

Ein Cluster besteht in dieser Arbeit aus mehreren Servern. Als 
Virtualisierung können sowohl ein Hypervisor mit virtuellen 
 Maschinen als auch Container eingesetzt werden. Echtzeit kann 
beim Einsatz eines Hypervisors durch statische Partitionierung 
der CPU und einem echtzeitfähigen Betriebssystem oder durch 
hierarchisches Scheduling erreicht werden [8–11]. Bei Contai-
nern kann Echtzeit durch Echtzeit-Linux realisiert werden [12]. 
Im Cluster werden N Replikas der Sicherheitssteuerungen ausge-
führt, wie in Bild 1 dargestellt. 

Die Kommunikation zu den sicheren E/As (Ein- und Aus -
gabe-Einheiten) erfolgt über einen sicheren Feldbus nach dem 
Black-Channel-Prinzip, also der Übertragung sicherheitskriti-
scher Signale über nicht sichere Kommunikationsmedien. Ent-
sprechende Lösungen gibt es für verschiedene Kommunikations-
techniken, wie etwa WiFi-Netzwerke [13]. Die Absicherungsme-
chanismen und Funktionsweisen werden nach DIN EN 61784–3 
angenommen, sodass Paketverlust, Zeitverletzungen, Paketdupli-
zierungen und ähnliche Fehler durch das Safety-Protokoll ent-
deckt werden. Es wird angenommen, dass die N Replikas garan-
tiert auf N verschiedenen Servern ausgeführt werden, sodass die 
Detektion von zufälligen Hardwarefehlern möglich ist. Hierfür 
wird ein geeigneter und sicherer Mechanismus vorausgesetzt, der 
zum Beispiel auf statischen und eindeutigen Identifikationsnum-
mern basiert.

3.2 Anforderungen

In den Annahmen wird gezeigt, dass die Echtzeitfähigkeit für 
die Virtualisierung als gegeben angenommen werden kann. Dies 
bedeutet, dass die einzelnen Replikas der Sicherheitssteuerung in 
Echtzeit ausgeführt werden können. Die Zusammenführung der 
Ergebnisse kann zusätzliche Kommunikationspfade erfordern und 
wird im nächsten Kapitel gezeigt. Daher muss ein Nachweis über 
die maximale Kommunikationslatenz erbracht werden. Die Zu-
sammenführung der Ergebnisse muss Hardwarefehler detektieren 
oder korrigieren können. 

Die Fehlertoleranz erfordert die sichere Fortführung des 
 Betriebs bei Ausfall von Hardware oder Software. Dazu muss bei 
Ausfall einer oder mehrerer Repliken sichergestellt sein, dass die 
verbleibenden Replika weiterhin Hardwarefehler detektieren oder 
korrigieren können. Darüber hinaus muss die Detektion eines 
Ausfalls in Echtzeit erfolgen.

4 Hardwarefehlerdetektion  
 und Fehlertoleranz

Um Fehlertoleranz zu implementieren, müssen sowohl die 
Hardwarefehlerdetektion als auch die Toleranz von Ausfällen 
 berücksichtigt werden. In der Literatur zu sicherheitskritischen 
Systemen und fehlertoleranten Cloud-Systemen können drei rele-
vante Architekturen identifiziert werden. Im Folgenden werden 

Bild 1. Architekturübersicht für redundante Sicherheitssteuerungen. Grafik: ISW, Uni Stuttgart
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diese drei Architekturen vorgestellt und gezeigt, wie sie für die 
vorliegende Zielsetzung eingesetzt werden können.

4.1 Hardwarefehlerdetektion bei  
 zwei-kanaliger codierter Verarbeitung

Früchtl [14] stellt in seiner Arbeit die Zusammenführung 
zweier Softwarekanäle über das Feldbustelegramm vor, die durch 
codierte Verarbeitung gesichert sind. Dabei schreibt der erste Ka-
nal das Datenfeld des Telegramms und der zweite Kanal die Prüf-
summe des Telegramms. Die Überprüfung erfolgt im sicheren 
Kommunikationspartner, der für jedes Paket die Konsistenz von 
Datenfeld und Prüfsumme überprüft. Bei Inkonsistenzen liegt ein 
zufälliger Hardwarefehler vor und das Sicherheitssystem geht 
 automatisch in den sicheren Zustand über. Der Vorteil dieses 
Verfahrens ist, dass es mit jedem existierenden Feldbus realisiert 
werden kann. Eine erhöhte Ausfallsicherheit ist nicht gegeben, da 
keine weiteren Kanäle in das Konzept integriert werden können.

In einem Cloud-Cluster kann dieses Prinzip genutzt werden, 
indem eine Replika das Datenfeld und die andere Replika die 
Prüfsumme in das Telegramm schreibt. Die erste Replika kann 
das Paket an die zweite Replika weiterleiten, welche das Paket 
dann an die Ein- und Ausgabe-Einheit (E/A) sendet, wie in 
Bild 2 dargestellt. 

Dies erfordert eine Modifikation des Feldbusses, da mehrere 
Feldbusmaster (FM) nicht möglich sind. Alternativ kann die 
zweite Replika das Telegramm an die erste Replika zurücksenden, 
die dann das Telegramm an die E/A sendet. In diesem Fall ist nur 
eine Modifikation im Feldbusmaster der ersten Replika nötig.

Die Latenz setzt sich dabei aus der Verarbeitung (tv,N) je Re-
plika und der Kommunikation zusammen. Für die zweikanalige 
Fehlertoleranz mit modifiziertem Feldbus ergibt sich eine Ge-
samtlatenz von tG,mod = te + max(tv,1+td;tv,2)+ ta. Im Falle eines 
unmodifizierten Feldbusses ergibt sich eine Gesamtlatenz von 

tG,un = te + max(tv,1;te + tv,2 + td) + ta. Der Ausfall einer Replika 
kann nicht toleriert werden, da beide für die Detektion von 
Hardwarefehlern benötigt werden.

4.2 N-Modulare Systeme mit Mehrheitsentscheider

N-modulare Redundanz ist ein Ansatz zur Implementierung 
fehlertoleranter Systeme. Im Fehlerfall, zum Beispiel bei einem 
Hardwarefehler, kann die Funktionalität aufrechterhalten werden. 
Typischerweise wird zwischen passiven und aktiven Systemen 
unterschieden [15]. Bei passiven Systemen maskiert ein Mehr-
heitsentscheider (ME) fehlerhafte oder fehlende Ergebnisse unter 
der Annahme, dass die mehrheitlich gleichen Ergebnisse korrekt 
sind. Bei aktiven Systemen können zusätzlich fehlerhafte Module 
abgeschaltet oder ausgetauscht werden. Das Prinzip der n-modu-
laren Redundanz kann auf zwei Arten angewendet werden, wie in 
Bild 3 dargestellt. 

Entweder befindet sich der Mehrheitsentscheider in den siche-
ren E/As, was eine Anpassung des Feldbusses erfordert. Dabei 
eignet sich vor allem eine Kommunikation nach dem Publisher/
Subscribe-Prinzip, bei welchem der klassische FM aufgelöst wird. 
Während der Konfigurationszeit wird die Anzahl der Replikas 
 bekannt gemacht. Alternativ kann der Mehrheitsentscheider im 
Feldbusmaster liegen. In diesem Fall muss dieser einzelne Fehler-
punkt gegen zufällige Hardwarefehler abgesichert werden, etwa 
durch codierte Verarbeitung. Im ersten Fall ist eine Fehlertole-
ranz gegen den Ausfall einzelner Replikas gegeben. Im zweiten 
Fall kann der Ausfall des Feldbusmasters nicht toleriert werden.

Die Latenz setzt sich dabei aus der Verarbeitung (tv,N) und der 
Kommunikation zusammen. Für den Mehrheitsentscheider im 
E/A ergibt sich eine Gesamtlatenz von 
tG,E/A = te + max(tv1; ... ;tv,N) + ta + tME. Für einen Mehrheits -
entscheider im Cluster ergibt sich die Gesamtlatenz von tG,Cluster = 
te + max(tv1; ...; tv,N) + ti + tME + ta.

Bild 2. Umsetzungsmöglichkeiten für zweikanalige Fehlertoleranz. Grafik: ISW, Uni Stuttgart
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4.3 Fehlertolerante Cloud-Systeme

Kritische Systeme werden fehlertolerant betrieben, um eine 
hohe Verfügbarkeit und Integrität zu erreichen. In der Literatur 
[16] gibt es verschiedene Ansätze wie Replikation, Migration 
oder selbstheilende Systeme. Am häufigsten kommen Ansätze mit 
replizierter Hardware zum Einsatz, wobei die Software entweder 
parallel betrieben wird oder im Fehlerfall migriert wird [16]. Um 
einen einzelnen Ausfallpunkt zu vermeiden, überwachen sich die 
redundanten Replikas gegenseitig. Dieser Ansatz wird zum Bei-
spiel bei hochverfügbaren Kubernetes-Clustern verwendet [17].

Für die Anwendung des Prinzips in sicherheitskritischen 
 Systemen muss zum einen die Überwachung und die Behandlung 
eines Fehlerfalls zeitdeterministisch erfolgen. Zum anderen müs-
sen Hardwarefehler detektiert werden. Jedes Replika empfängt 
die Eingangsdaten und sendet das berechnete Ergebnis an alle an-
deren Replikas. Die Anzahl an Kommunikationsverbindungen ist 
daher höher. Der Ausfall einer Replika wird über das Ausbleiben 
des Ergebnisses erkannt. Dazu ist ein Timer erforderlich. Eine 
Replika wird als aktiv bestimmt und sendet die Ausgangsdaten 
zur E/A-Einheit. Fällt die aktive Replika aus, übernimmt ein an-
deres Replika die aktive Rolle. Um eine Auswahl zur Laufzeit zu 
vermeiden, wird eine statische Reihenfolge festgelegt. Die maxi-
mal tolerierte Anzahl von Ausfällen ist N-2.

Zur Detektion von Hardwarefehlern kann entweder das in 
Kapitel 4.1 oder in Kapitel 4.2 beschriebene Prinzip verwendet 
werden. Bild 4 zeigt diese Architektur. 

Bei Einsatz der Methodik aus Kapitel 4.1 wird das Telegramm 
der Ausgangsdaten in der aktiven Instanz unter Verwendung des 
Ergebnisses der eigenen Berechnung und der einer anderen Re-
plika gebildet. Wird die Methodik aus Kapitel 4.2 genutzt, ver-
wendet das aktive Replika einen Mehrheitsentscheider. Dieser ist 
ein einzelner Fehlerpunkt und muss zusätzlich abgesichert wer-
den.

Die Latenz setzt sich dabei aus der Verarbeitung (tv) und 
Kommunikation zusammen. Beim Zusammensetzen des Tele-

gramms ergibt sich eine Gesamtlatenz von 
tG,tel = te + max(tv1; ... tv,N) + ti + ta und bei der Verwendung eines 
Mehrheitsentscheiders ergibt sich eine Gesamtlatenz von 
tG,ME = te + max(tv1 + tME; ... tv,N + tME) + ti + ta.

5 Vergleich der Architekturen

Die Tabelle zeigt die drei möglichen Architekturen und die je-
weiligen Ausprägungen mit ihren Eigenschaften. 

Der Vergleich der Latenz gibt einen Hinweis darauf, welche 
Elemente zur Gesamtlatenz beitragen. Je mehr serielle Elemente, 
desto größer die potenzielle Latenz. Für eine konkrete Einord-
nung ist ein experimenteller Vergleich notwendig. Zur Detektion 
von Hardwarefehlen werden immer zwei Replikas benötigt, wes-
halb die Ausfalltoleranz immer N-2 beträgt. Einige Architekturen 
können nicht auf bestehende sichere Feldbusse zurückgreifen, 
sondern benötigen angepasste Kommunikationsmuster. Für den 
Einsatz in bestehenden Umgebungen ist daher die Unterstützung 
aktueller sicherer Feldbusprotokolle relevant. Die Anzahl der 
Kommunikationsverbindungen ist für die Netzwerkauslastung re-
levant. Je geringer die Anzahl der Kommunikationsverbindungen, 
desto effizienter kann das Netzwerk ausgelastet werden. Bei eini-
gen Architekturen ist die Absicherung eines einzelnen Fehler-
punktes erforderlich.

6 Zusammenfassung und Ausblick

Der Einsatz von Standardhardware für sicherheitskritische 
Systeme ist aufgrund der geringeren Kosten attraktiv. Die Ansät-
ze in der Literatur setzen auf codierte Verarbeitung. Durch den 
Aufbau von Cloud-Systemen in Form von Server-Clustern ist der 
Einsatz für sicherheitskritische Systeme durch Redundanz mög-
lich. Hierbei können nicht nur Hardwarefehler, sondern auch 
Systemausfälle toleriert werden. In dieser Arbeit wurden daher 
Architekturen aus der Literatur identifiziert, die diese Toleranz 
ermöglichen. Die Architekturen können in unterschiedlichen 

Bild 3. Umsetzungsmöglichkeiten für N-Modulare Systeme. Grafik: ISW, Uni Stuttgart
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Bild 4. Umsetzungsmöglichkeit nach dem Prinzip fehlertoleranter Cloud-Systeme. Grafik: ISW, Uni Stuttgart

Tabelle. Vergleich der fehlertoleranten Architekturen.

 Eigenschaften 
Architektur

Zweikanalig 
(modifiziert)

Zweikanalig 
(unmodifiziert)

Mehrheits -
entscheider (E/A)

Mehrheitsentschei-
der (Cluster)

Fehlertolerantes  
Cloudsystem 
 (Telegramm)

Fehlertolerantes  
Cloudsystem (ME)

Latenz

t = te 

+ max (tv,1 + td; tv,2) 
+ taGmod

tG,un = te

+ max (tv,1; te + tv,2 + td) + ta 

tG,E/A = te  
+ max (tv1; ...; tv,N) + ta + tME

tG,Cluster = te + 
max (tv1; ...; tv,N) +  
ti + tME + ta

tG,tel 
= te 
+ max (tv1 
+ tME; ...; tv,N + tME) 
+ ti + ta

tG,ME

= te

+ max (tv1

+tME; ...; tv,N + tME) 
+ ti + ta

Ausfalltoleranz

N – 2 = 0

N – 2 = 0

N – 2

N – 2
0 unter Berück-
sichtigung  
des Mehrheits-
entscheiders

N – 2

N – 2

Feldbusmodifikati-
on  notwendig

Ja

Nein

Ja

Nein

Ja

Ja

Anzahl der logischen 
 Kommunikations  

verbindungen

4

4

2N

2N + 1

N + 1 + N(N – 1) = N2 + 1

N + 1 + N(N – 1) = N2 + 1

Absicherung eines   
einzelnen Fehlerpunkts 

 notwendig

Nein

Nein

Nein

Ja

Nein

Ja
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Ausprägungen realisiert werden. Ein Vergleich zeigt, dass neben 
der Ausfalltoleranz auch andere Eigenschaften wie die Latenz, die 
Anzahl der Kommunikationsverbindungen, die Absicherung ein-
zelner Fehlerpunkte oder die Möglichkeit der Nutzung vorhan-
dener sicherer Feldbusse berücksichtigt werden müssen.

In weiteren Arbeiten ist aufzuzeigen, welche Ausprägung am 
besten geeignet ist. Dazu müssen vor allem die Grundlagen für 
eine sichere Kommunikation in verteilten Systemen gelegt wer-
den, um darauf aufbauend die Architekturmöglichkeiten weiter 
zu analysieren.
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