
 T I T E L T H E M A – F A C H A U F S A T Z

189WT WERKSTATTSTECHNIK BD. 113 (2023) NR. 5

Bei diesem Beitrag handelt es sich um einen wissenschaftlich
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Softwarebasierte Sicherheitssteuerungen

Fehlertolerante Sicherheits-
steuerung aus der Cloud

M. Fischer, M. Walker, A. Lechler, O. Riedel, A. Verl

Cloud-Systeme werden zunehmend in der Produktionstechnik
eingesetzt. Sicherheitskritische Systeme lassen sich mit dem
heutigen Stand der Technik nur schwer integrieren. Zufällige
Fehler wie Alterungsprozesse oder Umwelteinflüsse müssen
behandelt werden. In diesem Beitrag werden Architekturen
vorgestellt, die eine performante Sicherheitssteuerung in
Cloud-Systemen erlauben. Darüber hinaus wird die Fehler -
toleranz von Hardware- und Softwareausfällen durch Redun-
danz analysiert und bewertet.

Cloud-based fault tolerance
of safety control in the cloud

Cloud systems are increasingly being used in production tech-
nology. However, based on current state of the art, safety-criti-
cal systems are difficult to integrate. It is absolutely necessary
to handle random errors such as ageing processes or environ-
mental influences. This paper presents architectures enabling
high-performance safety control in cloud systems. It also ana-
lyzes and evaluates the fault tolerance of hardware and soft-
ware failures due to redundancy .

1 Einleitung

Die Virtualisierung von Hardware- und Softwareressourcen
nimmt in der klassischen IT seit vielen Jahren eine zentrale Rolle
ein, zum Beispiel um vorhandene Ressourcen besser auszunutzen,
Hardware einzusparen oder durch Kapselung eine höhere Sicher-
heit zu erreichen [1]. Grundsätzlich kann Virtualisierung als Ab -
straktion von Ressourcen bei erzwungener Modularität verstan-
den werden [2]. Erzwungene Modularität heißt, dass Klienten
der Abstraktion diese nicht umgehen können. Beim Einsatz von
virtuellen Maschinen abstrahiert der sogenannte Hypervisor die
Hardware eines Servers oder PCs, sodass mehrere Betriebssyste-
me parallel betrieben werden können. Bei Containern liegt die
Abstraktion auf Betriebssystemebene und isoliert Anwendungen
hinsichtlich der Ressourcennutzung voneinander. Ein typischer
Aufbau eines Rechenzentrums für Cloud Computing besteht aus
mehreren Servern, um hochverfügbare Anwendungen zu ermögli-
chen. Dieser Aufbau wird typischerweise als Cluster bezeichnet.

Auch in der Operational Technology (OT) der Produktions-
technik wird Virtualisierung zunehmend eingesetzt, um neben
der Verfügbarmachung der oben genannten Vorteile heterogene
Hardwareumgebungen aufzulösen. Dabei sind die Anforderungen
der Produktionstechnik wie Echtzeit und Zuverlässigkeit zu
 berücksichtigen.

Erweiterte Anforderungen haben sicherheitskritische Systeme
wie Sicherheitssteuerungen im Sinne der Gefahrenfreiheit. Hier
ist eine Vermeidung oder Detektion und Behandlung zufälliger
Fehler zum Beispiel durch Alterungsprozesse oder Umweltein-
flüsse erforderlich. Typische Fehler sind Hardwarefehler, die aus
Umwelteinflüssen wie Temperaturschwankungen, Vibrationen

und Strahlung resultieren und sich als sporadische Bitflips in
RAM (Random Access Memory) und Prozessor oder auch als
permanent unterbrochene Leitungen manifestieren.

Im operativen Einsatz gibt es aktuell zwei Ansätze, um Hard-
warefehlern zu begegnen. Zum einen erlaubt eine mehrkanalige
Hardware und ein Vergleich der Ergebnisse der Kanäle eine Di-
agnose von Hardwarefehlern – in der Regel erfolgt die Auslegung
zweifach. Dabei wird spezielle Hardware verwendet, die beispiels-
weise mit zwei CPUs (Central Processing Units) ausgestattet ist,
die im Lockstep-Verfahren arbeiten. Zum anderen wird codierte
Verarbeitung eingesetzt, welche durch die Erzeugung verschiede-
ner Arten von Daten- und Verarbeitungsredundanz eine Diagno-
se von Hardwarefehlern ermöglicht. Ersterer Ansatz hat den
Nachteil, dass hohe Kosten und hoher Aufwand etwa für die Ent-
wicklung einer zweikanaligen Hardware notwendig sind und ein
Einsatz auf Standardhardware nicht möglich ist. Der zweite An-
satz ist hardwareunabhängig und kann auf Standardhardware
eingesetzt werden, jedoch mit hohen Performanceeinbußen [3].

Im Kontext der Virtualisierung gewinnt die redundante Aus-
führung von Sicherheitssteuerungen auf unterschiedlicher Hard-
ware an Bedeutung, da typischerweise Cluster betrieben werden.
Im Gegensatz zur mehrkanaligen Hardware werden mehrere PCs
oder Server verwendet, die jeweils eine Replika der Sicherheits-
steuerung ausführen. Dabei ist der administrative Aufwand für
den Betrieb mehrerer Sicherheitssteuerungen aufgrund der
 Virtualisierung in Kombination mit Werkzeugen zur Verwaltung
der virtuellen Systeme gering.

In diesem Beitrag werden daher Architekturen vorgestellt, die
unter Ausnutzung eines Clusters den Einsatz von leistungsfähigen
Sicherheitssteuerungen auf Standardhardware ohne codierte Ver-

S T I C H W Ö R T E R

Sicherheit, Steuerungen, Industrie 4.0

doi.org/10.37544/1436–4980–2023–05–11

https://doi.org/10.37544/1436-4980-2023-05-11 - am 25.01.2026, 04:33:53. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2023-05-11
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

190

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 113 (2023) NR. 5

arbeitung ermöglichen. Des Weiteren wird neben der Detektion
von Hardwarefehlern auch die Fehlertoleranz von Hardware- und
Softwareausfällen durch Redundanz betrachtet. Ein fehlertoleran-
tes System in dieser Arbeit muss Toleranz gegenüber Hardware-
fehlern und Toleranz gegenüber Serverausfällen besitzen.

2 Verwandte Arbeiten

In der Literatur gibt es Arbeiten wie [4, 5], die durch Virtuali-
sierung sowohl sicherheitskritische als auch normalkritische Sys-
teme auf einer Hardware betreiben. Dabei werden FPGAs (Field
Programmable Gate Arrays) eingesetzt und es wird Diversität auf
Hardwareebene durch unterschiedliche CPUs erzeugt. Hier steht
die effiziente Ausnutzung der Hardware im Vordergrund.

Zum anderen gibt es Arbeiten, die Multicore-CPUs einsetzen
und Redundanz auf mehreren CPU-Kernen erzeugen [6]. Aller-
dings werden viele Hardwarekomponenten von den CPU-Kernen
gemeinsam genutzt, sodass der Nachweis von Fehlern durch
 gemeinsame Ursachen der Softwarekanäle schwierig ist. Auch das
Zusammenführen der Ergebnisse der verschiedenen Software -
kanäle ist eine Herausforderung, welche etwa durch die codierte
Verarbeitung eines Mehrheitsentscheiders in [7] gelöst wird.

3 Architektur und Anforderungen

Die Probleme der verwandten Arbeiten bei Fehlern aufgrund
gemeinsamer Ursachen und spezieller Hardware können durch
den Einsatz eines Clusters mit Standardhardware umgangen wer-
den. Allerdings müssen die Zeitanforderungen und die Zusam-
menführung redundanter Ergebnisse berücksichtigt werden.

3.1 Annahmen zur Architektur

Ein Cluster besteht in dieser Arbeit aus mehreren Servern. Als
Virtualisierung können sowohl ein Hypervisor mit virtuellen
 Maschinen als auch Container eingesetzt werden. Echtzeit kann
beim Einsatz eines Hypervisors durch statische Partitionierung
der CPU und einem echtzeitfähigen Betriebssystem oder durch
hierarchisches Scheduling erreicht werden [8–11]. Bei Contai-
nern kann Echtzeit durch Echtzeit-Linux realisiert werden [12].
Im Cluster werden N Replikas der Sicherheitssteuerungen ausge-
führt, wie in Bild 1 dargestellt.

Die Kommunikation zu den sicheren E/As (Ein- und Aus -
gabe-Einheiten) erfolgt über einen sicheren Feldbus nach dem
Black-Channel-Prinzip, also der Übertragung sicherheitskriti-
scher Signale über nicht sichere Kommunikationsmedien. Ent-
sprechende Lösungen gibt es für verschiedene Kommunikations-
techniken, wie etwa WiFi-Netzwerke [13]. Die Absicherungsme-
chanismen und Funktionsweisen werden nach DIN EN 61784–3
angenommen, sodass Paketverlust, Zeitverletzungen, Paketdupli-
zierungen und ähnliche Fehler durch das Safety-Protokoll ent-
deckt werden. Es wird angenommen, dass die N Replikas garan-
tiert auf N verschiedenen Servern ausgeführt werden, sodass die
Detektion von zufälligen Hardwarefehlern möglich ist. Hierfür
wird ein geeigneter und sicherer Mechanismus vorausgesetzt, der
zum Beispiel auf statischen und eindeutigen Identifikationsnum-
mern basiert.

3.2 Anforderungen

In den Annahmen wird gezeigt, dass die Echtzeitfähigkeit für
die Virtualisierung als gegeben angenommen werden kann. Dies
bedeutet, dass die einzelnen Replikas der Sicherheitssteuerung in
Echtzeit ausgeführt werden können. Die Zusammenführung der
Ergebnisse kann zusätzliche Kommunikationspfade erfordern und
wird im nächsten Kapitel gezeigt. Daher muss ein Nachweis über
die maximale Kommunikationslatenz erbracht werden. Die Zu-
sammenführung der Ergebnisse muss Hardwarefehler detektieren
oder korrigieren können.

Die Fehlertoleranz erfordert die sichere Fortführung des
 Betriebs bei Ausfall von Hardware oder Software. Dazu muss bei
Ausfall einer oder mehrerer Repliken sichergestellt sein, dass die
verbleibenden Replika weiterhin Hardwarefehler detektieren oder
korrigieren können. Darüber hinaus muss die Detektion eines
Ausfalls in Echtzeit erfolgen.

4 Hardwarefehlerdetektion
 und Fehlertoleranz

Um Fehlertoleranz zu implementieren, müssen sowohl die
Hardwarefehlerdetektion als auch die Toleranz von Ausfällen
 berücksichtigt werden. In der Literatur zu sicherheitskritischen
Systemen und fehlertoleranten Cloud-Systemen können drei rele-
vante Architekturen identifiziert werden. Im Folgenden werden

Bild 1. Architekturübersicht für redundante Sicherheitssteuerungen. Grafik: ISW, Uni Stuttgart

https://doi.org/10.37544/1436-4980-2023-05-11 - am 25.01.2026, 04:33:53. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2023-05-11
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

191WT WERKSTATTSTECHNIK BD. 113 (2023) NR. 5

diese drei Architekturen vorgestellt und gezeigt, wie sie für die
vorliegende Zielsetzung eingesetzt werden können.

4.1 Hardwarefehlerdetektion bei
 zwei-kanaliger codierter Verarbeitung

Früchtl [14] stellt in seiner Arbeit die Zusammenführung
zweier Softwarekanäle über das Feldbustelegramm vor, die durch
codierte Verarbeitung gesichert sind. Dabei schreibt der erste Ka-
nal das Datenfeld des Telegramms und der zweite Kanal die Prüf-
summe des Telegramms. Die Überprüfung erfolgt im sicheren
Kommunikationspartner, der für jedes Paket die Konsistenz von
Datenfeld und Prüfsumme überprüft. Bei Inkonsistenzen liegt ein
zufälliger Hardwarefehler vor und das Sicherheitssystem geht
 automatisch in den sicheren Zustand über. Der Vorteil dieses
Verfahrens ist, dass es mit jedem existierenden Feldbus realisiert
werden kann. Eine erhöhte Ausfallsicherheit ist nicht gegeben, da
keine weiteren Kanäle in das Konzept integriert werden können.

In einem Cloud-Cluster kann dieses Prinzip genutzt werden,
indem eine Replika das Datenfeld und die andere Replika die
Prüfsumme in das Telegramm schreibt. Die erste Replika kann
das Paket an die zweite Replika weiterleiten, welche das Paket
dann an die Ein- und Ausgabe-Einheit (E/A) sendet, wie in
Bild 2 dargestellt.

Dies erfordert eine Modifikation des Feldbusses, da mehrere
Feldbusmaster (FM) nicht möglich sind. Alternativ kann die
zweite Replika das Telegramm an die erste Replika zurücksenden,
die dann das Telegramm an die E/A sendet. In diesem Fall ist nur
eine Modifikation im Feldbusmaster der ersten Replika nötig.

Die Latenz setzt sich dabei aus der Verarbeitung (tv,N) je Re-
plika und der Kommunikation zusammen. Für die zweikanalige
Fehlertoleranz mit modifiziertem Feldbus ergibt sich eine Ge-
samtlatenz von tG,mod = te + max(tv,1+td;tv,2)+ ta. Im Falle eines
unmodifizierten Feldbusses ergibt sich eine Gesamtlatenz von

tG,un = te + max(tv,1;te + tv,2 + td) + ta. Der Ausfall einer Replika
kann nicht toleriert werden, da beide für die Detektion von
Hardwarefehlern benötigt werden.

4.2 N-Modulare Systeme mit Mehrheitsentscheider

N-modulare Redundanz ist ein Ansatz zur Implementierung
fehlertoleranter Systeme. Im Fehlerfall, zum Beispiel bei einem
Hardwarefehler, kann die Funktionalität aufrechterhalten werden.
Typischerweise wird zwischen passiven und aktiven Systemen
unterschieden [15]. Bei passiven Systemen maskiert ein Mehr-
heitsentscheider (ME) fehlerhafte oder fehlende Ergebnisse unter
der Annahme, dass die mehrheitlich gleichen Ergebnisse korrekt
sind. Bei aktiven Systemen können zusätzlich fehlerhafte Module
abgeschaltet oder ausgetauscht werden. Das Prinzip der n-modu-
laren Redundanz kann auf zwei Arten angewendet werden, wie in
Bild 3 dargestellt.

Entweder befindet sich der Mehrheitsentscheider in den siche-
ren E/As, was eine Anpassung des Feldbusses erfordert. Dabei
eignet sich vor allem eine Kommunikation nach dem Publisher/
Subscribe-Prinzip, bei welchem der klassische FM aufgelöst wird.
Während der Konfigurationszeit wird die Anzahl der Replikas
 bekannt gemacht. Alternativ kann der Mehrheitsentscheider im
Feldbusmaster liegen. In diesem Fall muss dieser einzelne Fehler-
punkt gegen zufällige Hardwarefehler abgesichert werden, etwa
durch codierte Verarbeitung. Im ersten Fall ist eine Fehlertole-
ranz gegen den Ausfall einzelner Replikas gegeben. Im zweiten
Fall kann der Ausfall des Feldbusmasters nicht toleriert werden.

Die Latenz setzt sich dabei aus der Verarbeitung (tv,N) und der
Kommunikation zusammen. Für den Mehrheitsentscheider im
E/A ergibt sich eine Gesamtlatenz von
tG,E/A = te + max(tv1; ... ;tv,N) + ta + tME. Für einen Mehrheits -
entscheider im Cluster ergibt sich die Gesamtlatenz von tG,Cluster =
te + max(tv1; ...; tv,N) + ti + tME + ta.

Bild 2. Umsetzungsmöglichkeiten für zweikanalige Fehlertoleranz. Grafik: ISW, Uni Stuttgart

https://doi.org/10.37544/1436-4980-2023-05-11 - am 25.01.2026, 04:33:53. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2023-05-11
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

192

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 113 (2023) NR. 5

4.3 Fehlertolerante Cloud-Systeme

Kritische Systeme werden fehlertolerant betrieben, um eine
hohe Verfügbarkeit und Integrität zu erreichen. In der Literatur
[16] gibt es verschiedene Ansätze wie Replikation, Migration
oder selbstheilende Systeme. Am häufigsten kommen Ansätze mit
replizierter Hardware zum Einsatz, wobei die Software entweder
parallel betrieben wird oder im Fehlerfall migriert wird [16]. Um
einen einzelnen Ausfallpunkt zu vermeiden, überwachen sich die
redundanten Replikas gegenseitig. Dieser Ansatz wird zum Bei-
spiel bei hochverfügbaren Kubernetes-Clustern verwendet [17].

Für die Anwendung des Prinzips in sicherheitskritischen
 Systemen muss zum einen die Überwachung und die Behandlung
eines Fehlerfalls zeitdeterministisch erfolgen. Zum anderen müs-
sen Hardwarefehler detektiert werden. Jedes Replika empfängt
die Eingangsdaten und sendet das berechnete Ergebnis an alle an-
deren Replikas. Die Anzahl an Kommunikationsverbindungen ist
daher höher. Der Ausfall einer Replika wird über das Ausbleiben
des Ergebnisses erkannt. Dazu ist ein Timer erforderlich. Eine
Replika wird als aktiv bestimmt und sendet die Ausgangsdaten
zur E/A-Einheit. Fällt die aktive Replika aus, übernimmt ein an-
deres Replika die aktive Rolle. Um eine Auswahl zur Laufzeit zu
vermeiden, wird eine statische Reihenfolge festgelegt. Die maxi-
mal tolerierte Anzahl von Ausfällen ist N-2.

Zur Detektion von Hardwarefehlern kann entweder das in
Kapitel 4.1 oder in Kapitel 4.2 beschriebene Prinzip verwendet
werden. Bild 4 zeigt diese Architektur.

Bei Einsatz der Methodik aus Kapitel 4.1 wird das Telegramm
der Ausgangsdaten in der aktiven Instanz unter Verwendung des
Ergebnisses der eigenen Berechnung und der einer anderen Re-
plika gebildet. Wird die Methodik aus Kapitel 4.2 genutzt, ver-
wendet das aktive Replika einen Mehrheitsentscheider. Dieser ist
ein einzelner Fehlerpunkt und muss zusätzlich abgesichert wer-
den.

Die Latenz setzt sich dabei aus der Verarbeitung (tv) und
Kommunikation zusammen. Beim Zusammensetzen des Tele-

gramms ergibt sich eine Gesamtlatenz von
tG,tel = te + max(tv1; ... tv,N) + ti + ta und bei der Verwendung eines
Mehrheitsentscheiders ergibt sich eine Gesamtlatenz von
tG,ME = te + max(tv1 + tME; ... tv,N + tME) + ti + ta.

5 Vergleich der Architekturen

Die Tabelle zeigt die drei möglichen Architekturen und die je-
weiligen Ausprägungen mit ihren Eigenschaften.

Der Vergleich der Latenz gibt einen Hinweis darauf, welche
Elemente zur Gesamtlatenz beitragen. Je mehr serielle Elemente,
desto größer die potenzielle Latenz. Für eine konkrete Einord-
nung ist ein experimenteller Vergleich notwendig. Zur Detektion
von Hardwarefehlen werden immer zwei Replikas benötigt, wes-
halb die Ausfalltoleranz immer N-2 beträgt. Einige Architekturen
können nicht auf bestehende sichere Feldbusse zurückgreifen,
sondern benötigen angepasste Kommunikationsmuster. Für den
Einsatz in bestehenden Umgebungen ist daher die Unterstützung
aktueller sicherer Feldbusprotokolle relevant. Die Anzahl der
Kommunikationsverbindungen ist für die Netzwerkauslastung re-
levant. Je geringer die Anzahl der Kommunikationsverbindungen,
desto effizienter kann das Netzwerk ausgelastet werden. Bei eini-
gen Architekturen ist die Absicherung eines einzelnen Fehler-
punktes erforderlich.

6 Zusammenfassung und Ausblick

Der Einsatz von Standardhardware für sicherheitskritische
Systeme ist aufgrund der geringeren Kosten attraktiv. Die Ansät-
ze in der Literatur setzen auf codierte Verarbeitung. Durch den
Aufbau von Cloud-Systemen in Form von Server-Clustern ist der
Einsatz für sicherheitskritische Systeme durch Redundanz mög-
lich. Hierbei können nicht nur Hardwarefehler, sondern auch
Systemausfälle toleriert werden. In dieser Arbeit wurden daher
Architekturen aus der Literatur identifiziert, die diese Toleranz
ermöglichen. Die Architekturen können in unterschiedlichen

Bild 3. Umsetzungsmöglichkeiten für N-Modulare Systeme. Grafik: ISW, Uni Stuttgart

https://doi.org/10.37544/1436-4980-2023-05-11 - am 25.01.2026, 04:33:53. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2023-05-11
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

193WT WERKSTATTSTECHNIK BD. 113 (2023) NR. 5

Bild 4. Umsetzungsmöglichkeit nach dem Prinzip fehlertoleranter Cloud-Systeme. Grafik: ISW, Uni Stuttgart

Tabelle. Vergleich der fehlertoleranten Architekturen.

 Eigenschaften
Architektur

Zweikanalig
(modifiziert)

Zweikanalig
(unmodifiziert)

Mehrheits -
entscheider (E/A)

Mehrheitsentschei-
der (Cluster)

Fehlertolerantes
Cloudsystem
 (Telegramm)

Fehlertolerantes
Cloudsystem (ME)

Latenz

t = te

+ max (tv,1 + td; tv,2)
+ taGmod

tG,un = te

+ max (tv,1; te + tv,2 + td) + ta

tG,E/A = te
+ max (tv1; ...; tv,N) + ta + tME

tG,Cluster = te +
max (tv1; ...; tv,N) +
ti + tME + ta

tG,tel
= te
+ max (tv1
+ tME; ...; tv,N + tME)
+ ti + ta

tG,ME

= te

+ max (tv1

+tME; ...; tv,N + tME)
+ ti + ta

Ausfalltoleranz

N – 2 = 0

N – 2 = 0

N – 2

N – 2
0 unter Berück-
sichtigung
des Mehrheits-
entscheiders

N – 2

N – 2

Feldbusmodifikati-
on notwendig

Ja

Nein

Ja

Nein

Ja

Ja

Anzahl der logischen
 Kommunikations

verbindungen

4

4

2N

2N + 1

N + 1 + N(N – 1) = N2 + 1

N + 1 + N(N – 1) = N2 + 1

Absicherung eines
einzelnen Fehlerpunkts

 notwendig

Nein

Nein

Nein

Ja

Nein

Ja

https://doi.org/10.37544/1436-4980-2023-05-11 - am 25.01.2026, 04:33:53. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2023-05-11
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

194

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 113 (2023) NR. 5

M a r c F i s c h e r , M. Sc.

M o r i t z W a l k e r , M. Sc.

Dr.-Ing. A r m i n L e c h l e r

Prof. Dr.-Ing. O l i v e r R i e d e l

Prof. Dr.-Ing. A l e x a n d e r V e r l

Institut für Steuerungstechnik der Werkzeugmaschinen
 und Fertigungseinrichtungen (ISW)
Universität Stuttgart
Seidenstr. 36, 70174 Stuttgart
Tel. +49 711 / 685 82534
marc.fischer@isw.uni-stuttgart.de
www.isw.uni-stuttgart.de

L i t e r a t u r

[1] Anand, A.; Chaudhary, A.; Arvindhan, M.: The Need for Virtualization:
When and Why Virtualization Took Over Physical Servers. In: Hura, G.
S.; Singh, A. K.; Siong Hoe, L. (eds.): Advances in Communication and
Computational Technology. Singapore: Springer Singapore 2021,
pp. 351–1359

[2] Baun, C.: Virtualisierung. In: Baun, C. (Hrsg.): Betriebssysteme kom-
pakt. Berlin: Springer Vieweg 2017, S. 231–241

[3] Fischer, M.; Riedel, O.; Lechler, A.: Comprehensive Analysis of Soft-
ware-Based Fault Tolerance with Arithmetic Coding for Performant En-
coding of Integer Calculations. In: Trapp, M.; Saglietti, F.; Spisländer,
M. et al. (Hrsg.): Computer Safety, Reliability, and Security. 41st Inter-
national conference SAFECOMP. [S.l.]. Cham: Springer 2022, pp.
144–157

[4] Perez, J.; Gonzalez, D.; Trujillo, S. et al.: A safety concept for a wind
power mixed-criticality embedded system based on multicore partitio-
ning. Stand: 2014. Internet: www.uni-siegen.de/dreams/publications/
presentation/a_safety_concept_for_a_wind_power_mixed-criticali-
ty_embedded_system_based_on_multicore_partitioning-paper.pdf.
Zugriff am 28.03.2023

[5] Agirre, I.; Azkarate-Askasua, M.; Larrucea, A. et al.: A Safety Concept
for a Railway Mixed-Criticality Embedded System Based on Multicore
Partitioning. 2015 IEEE International Conference on Computer and In-
formation Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelli-
gence and Computing (CIT/IUCC/DASC/PICOM), liverpool, United
Kingdom, 2015, pp. 1780–1787

[6] Cerrolaza, J. P.; Obermaisser, R.; Abella, J. et al.: Multi-core Devices for
Safety-critical Systems. ACM Computing Surveys 53 (2021) 4, pp. 1–38

[7] Ulbrich, P.; Hoffmann, M.; Kapitza, R. et al.: Eliminating Single Points of
Failure in Software-Based Redundancy. 2012 Ninth European Depen-
dable Computing Conference (EDCC), Sibiu, 2012, pp. 49–60

[8] Li, H.; Xu, X.; Ren, J. et al.: ACRN: a big little hypervisor for IoT deve-
lopment. 15th ACM SIGPLAN/SIGOPS International Conference,
 Providence, RI, USA, 2019, pp. 31–44

[9] Abeni, L.; Faggioli, D.: Using Xen and KVM as real-time hypervisors.
Journal of Systems Architecture 106 (2020), # 101709

[10] Intel (ed.): Achieving Real-Time Performance on a Virtualized Industrial
Control Platform. White Paper. Stand: 2014. Internet: cdrdv2-public.in
tel.com/330740/industrial-solutions-real-time-performance-white-pa
per.pdf. Zugriff am 28.03.2023

[11] Abeni, L.; Biondi, A.; Bini, E.: Hierarchical scheduling of real-time tasks
over Linux-based virtual machines. Journal of Systems and Software
149 (2019), pp. 234–249

[12] Struhár, V.; Behnam, M.; Ashjaei, M. et al.: Real-Time Containers: A
Survey. Stand: 2020. Internet: drops.dagstuhl.de/opus/volltex
te/2020/12001/pdf/OASIcs-Fog-IoT-2020–7.pdf. Zugriff am 28.03.2023

[13] Peserico, G.; Morato, A.; Tramarin, F. et al.: Functional Safety Networks
and Protocols in the Industrial Internet of Things Era. Sensors 21
(2021) 18, doi.org/10.3390/s21186073

[14] Früchtl, M.: Sicherheit eingebetteter Systeme auf Basis arithmetischer
Codierungen. Dissertation, Universität Kassel, 2014

[15] Dubrova, E.: Fault-Tolerant Design. New York: Springer 2013
[16] Hasan, M.; Goraya, M. S.: Fault tolerance in cloud computing

 environment: A systematic survey. Computers in Industry 99 (2018),
pp. 156–172

[17] The Linux Foundation: Options for Highly Available Topology. Stand:
17.01.2022. Internet: kubernetes.io/docs/setup/production-environment/
tools/kubeadm/ha-topology/. Zugriff am 28.03.2023

Ausprägungen realisiert werden. Ein Vergleich zeigt, dass neben
der Ausfalltoleranz auch andere Eigenschaften wie die Latenz, die
Anzahl der Kommunikationsverbindungen, die Absicherung ein-
zelner Fehlerpunkte oder die Möglichkeit der Nutzung vorhan-
dener sicherer Feldbusse berücksichtigt werden müssen.

In weiteren Arbeiten ist aufzuzeigen, welche Ausprägung am
besten geeignet ist. Dazu müssen vor allem die Grundlagen für
eine sichere Kommunikation in verteilten Systemen gelegt wer-
den, um darauf aufbauend die Architekturmöglichkeiten weiter
zu analysieren.

L I Z E N Z

Dieser Fachaufsatz steht unter der Lizenz Creative Commons
Namensnennung 4.0 International (CC BY 4.0)

https://doi.org/10.37544/1436-4980-2023-05-11 - am 25.01.2026, 04:33:53. https://www.inlibra.com/de/agb - Open Access -

https://orcid.org/0000-0001-8789-9597
https://orcid.org/0000-0002-6372-3658
https://orcid.org/0000-0002-4073-1487
https://orcid.org/0000-0002-1883-6813
https://orcid.org/0000-0002-2548-6620
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37544/1436-4980-2023-05-11
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8789-9597
https://orcid.org/0000-0002-6372-3658
https://orcid.org/0000-0002-4073-1487
https://orcid.org/0000-0002-1883-6813
https://orcid.org/0000-0002-2548-6620
https://creativecommons.org/licenses/by/4.0/

