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“Simplicity is prerequisite for reliability.”
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Kurzfassung

Die aktuellen Entwicklungen der Prozessleittechnik und der Automatisierungstechnik, die
unter den Oberbegriffen „Industrie 4.0“ und „Cyber-Physical Production Systems“ sub-
sumiert werden, fordern die Verlagerung bzw. die Bereitstellung zusätzlicher Funktionen
auf die Prozessleitebene der Automatisierungspyramide. Diese Funktionen umfassen bei-
spielsweise Self-X Funktionalitäten wie Selbstoptimierung und Selbstdiagnose einzelner
Komponenten sowie die Bereitstellung zusätzlicher nicht-echtzeitrelevanter Daten wie die
Beschreibung der Fähigkeiten und Merkmale des Systems. Diese zusätzlichen Funktionen
machen den Unterschied zwischen herkömmlichen Systemen und smarten Industrie 4.0-
Systemen aus.

Die Bereitstellung der zusätzlichen Funktionalität erfordert überplanmäßige Rechen- und
Kommunikationsressourcen, was insbesondere im Hinblick auf die echtzeitkritischen Lauf-
zeitumgebungen nichttrivial ist. Zum einen werden die verfügbaren Ressourcen einzelner
Systeme bereits vollständig genutzt bzw. reserviert, zum anderen könnten die Betreiber
den Aufwand der notwendigen Rekonfiguration des Systems unter anderem aus Gründen
der langen Betreibs- und Lebenszyklen der Systeme scheuen.

Die Laufzeitsysteme der Prozessleitebene werden in den meisten Fällen in einem kon-
stanten Zyklus betrieben, der dem zu kontrollierenden physischen System angepasst ist. Da
die Ausführungszeit der anwenderspezifischen Logik gewissen Fluktuationen sowie Über-
abschätzungen in Bezug auf die maximale Laufzeit unterliegt, variiert die tatsächliche
Ausführungszeit innerhalb des Zyklus. Die überschüssige Zeit, Slackzeit genannt, bleibt
wegen der festen Zykluszeit häufig ungenutzt.

Die dynamische Anpassung der benötigten (Rechen-)Ressourcen ist eine Dimension der
Flexibilität leittechnischer Anwendungen, die in der Domäne der Automatisierungstechnik
bislang unbeachtet blieb. In den Bereichen der Echtzeitsysteme und des Schedulings exi-
stieren dagegen bereits Konzepte, die den Ausgangspunkt für diese Arbeit darstellen. Die
Analyse dieser Ansätze, unter Berücksichtigung der aufgestellten spezifischen Anforderun-
gen der Leittechnik, bildet die Grundlage dieser Dissertation.

Die Zielsetzung dieser Arbeit ist ein Rahmenwerk für die nahtlose Integration von res-
sourcenadaptiven Anwendungen in die zyklischen Laufzeitsysteme. Diese Anwendungsklas-
se kann für die Bereitstellung der zusätzlichen Funktionalität während der Slackzeit ge-
nutzt werden, ohne die Echtzeitanforderungen und den Funktionsumfang der existierenden
Kernanwendung einzuschränken.

Ein Beitrag der Arbeit ist eine Softwarearchitektur, die die Koexistenz unterschiedli-
cher Ausführungsparadigmen innerhalb eines Laufzeitsystems ermöglicht. Die Paradigmen
umfassen die tasklistengesteuerte Ausführung nach IEC 61131-3, die ereignisgesteuerte
Ausführung nach IEC 61499 sowie die Einbettung weiterer Ausführungsvorschriften, wie
z. B. der eingeführten ressourcenadaptiven Ausführung. Dieses ist durch die konsequente
Kapselung der Daten und der Ausführungsvorschrift innerhalb der Komponenten sowie des
Prinzips des hierarchischen Schedulings möglich.
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Kurzfassung

Eine mögliche Ausführungsvorschrift wird durch das zusätzlich eingeführte Meta-Modell
zur Beschreibung der Ausführungszeitsensitivität für Funktionsbaustein-Anwendungen in-
nerhalb des Laufzeitsystems definiert. Dazu wird die Semantik der Prozedurbeschreibungs-
sprache Sequential State Chart angepasst, um die Auswertung des Charts innerhalb eines
Zyklus des Laufzeitsystems zu ermöglichen. Die Syntax der Sprache ist den meisten Nut-
zern bekannt, was positiv zu der Akzeptanz der Sprache beiträgt. Die Semantik der Pro-
zedur wird formal mithilfe des UPPAAL-Toolkits modelliert, das neben der Eindeutigkeit
auch zusätzliche Möglichkeiten für das Engineering, wie z. B. die formale Validierung und
Simulation, eröffnet.

Anschließend wird eine Referenzarchitektur für den systemweiten Komponentenschedu-
ler vorgestellt, der die Überwachung und die dynamische Zuteilung der Slackzeit an die
einzelnen ressourcenadaptiven Komponenten sicherstellt. Für diesen Zweck wird eine Kom-
bination aus offline und online Scheduling verwendet. Die Berechnung des offline Schedules
beinhaltet das Lösen eines NP-harten Problems, das mithilfe eines gemischt-ganzzahligen
linearen Programms und eines passenden Solvers aufgestellt bzw. gelöst wird. Die Kombi-
nation aus einem offline und online Verfahren ermöglicht die Ausführung der ressourcena-
daptiven Anwendungen sowie weitere Möglichkeiten der Flexibilisierung des Schedulings,
wie z. B. die Möglichkeit des dynamischen Austauschs des Schedules zur Laufzeit bei gleich-
zeitiger Sicherstellung der Echtzeitschranken.

Das eingeführte Rahmenwerk inklusive einer Engineering-Umgebung wurde als Erwei-
terung der quelloffenen Laufzeitumgebung ACPLT/RTE prototypisch implementiert. Der
Mehrwert der ressourcenadaptiven Anwendungen für die Prozessleittechnik wird an meh-
reren Use-Cases demonstriert. Dazu zählen Anwendungen mit und ohne Zugriff in den
operativen Betrieb des Laufzeitsystems. Zu der ersten Kategorie gehören die prozessbe-
gleitende Simulation mit variabler Simulationsgenauigkeit und die mehrstufige Messwert-
validierung. In die zweite Kategorie fallen die nicht-echtzeitfähige Kommunikation mittels
OPC UA und die Transaktionskontrolle für regelbasiertes Engineering im Rahmen der
Automatisierung der Automatisierung.
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Abstract
Resource-Aware Applications for Operative Process Control Engineering

Current developments in process control engineering and industrial automation that can
be subsumed under the umbrella terms “Industrie 4.0” and “Cyber-Physical Production
Systems”, require the provision of additional functionalities to the process control layer
of the automatization pyramid. These functionalities include, for example, Self-X functio-
nalities like self-optimization and self-diagnosis of single automation components as well
as the provision of additional non real-time information like the description of system ca-
pabilities and attributes. These additional functionalities make all the difference between
conventional and smart Industrie 4.0 production systems.

The deployment of these additional services requires supplementary computation- and
communication-resources. Providing these resources is non-trivial due to the hard real-time
requirements of industrial runtime environments. On one hand, the available resources may
already be completely utilized or reserved. On the other hand, operators may shy away
from the required costs of the system reconfiguration due to the long service- and life-cycles
of the utilized equipment.

Industrial runtime systems are usually operated with a fixed cycle time that is fitted to
the controlled physical system. The effectively utilized processing time of the whole system
varies due to fluctuations in the actual execution times of the application-specific control
logic as well as overestimations of its worst-case execution time. The unused processing
time at the end of a cycle, the so called slack time, is usually not utilized by current runtime
environments.

A dynamic adaptation of required (computational) resources is a dimension of flexi-
bility of industrial automation applications that has not been focused upon in process
control engineering research. However, some approaches for resource-awareness of appli-
cations exist in the research communities of real-time systems and scheduling theory. A
review of these approaches constitutes a starting point for this dissertation. The analysis of
the available approaches and frameworks has to be performed under the aspects of derived
domain-specific functional and non-functional requirements.

The goal of this work is to develop a framework for a seamless integration of resource-
aware applications into cyclic runtime environments. This class of industrial automation
applications can be used for the provision of additional functionality during the slack time
which per definition cannot violate the real-time requirements and the functionality of the
existing runtime’s core-application.

A first contribution of this work is a software architecture which allows the coexistence
of different execution control paradigms within one runtime environment. These paradigms
comprise a task list-based execution according to IEC 61131-3, an event-based execution
of IEC 61499 as well as embedding further execution control rules such as the introdu-
ced resource-aware execution mechanisms. This embedment is possible due to a rigorous
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Abstract

encapsulation of dataflow and execution control flows within a program organization unit
and the utilization of mechanisms of hierarchical scheduling.

One possibility of realizing the resource-aware execution control is represented by the
introduced meta-model for describing the execution-time sensitivity of function block ap-
plications inside the runtime environment. The meta-model is built upon a procedure
description language called Sequential State Chars of which the semantics are adopted so
that they can be evaluated during the cycle of the runtime system. The syntax of the lan-
guage is familiar to most users in the industrial automation domain thus allowing a higher
acceptance of the introduced framework. The semantics of the procedure description lan-
guage is formalized by using a transformation to timed automata of the UPPAAL-toolkit.
This transformation not only allows an unambiguous semantics of the introduced meta-
model, but also adds additional possibilities for the engineering, e.g. formal validation and
simulation of modelled procedures.

Subsequently, a reference architecture for a resource-aware system level component sche-
duler is introduced. This architecture allows the monitoring and dynamic assignment of
slack time to single resource-aware components at runtime. The presented scheduler uses
a combination of offline and online scheduling. The computation of an offline scheduling
table requires solving an NP-hard problem. This task is accomplished by modelling the
scheduling problem as a mixed-integer program and solving it with available solvers. The
combination of offline and online scheduling techniques not only allows the execution of
resource-aware applications, but also the use of additional features like the dynamic ex-
change of offline scheduling tables at runtime and the execution of sporadic tasks.

The introduced resource-aware framework and the appendant engineering environment
were prototypically implemented as an extension of an open source industrial runtime
environment ACPLT/RTE. The additional value of resource-aware applications is demon-
strated in different use cases with and without operative process intervention. The first
category includes the process accompanying simulation with variable simulation precision
and multistage validation of measured values. The second category contains non real-time
communication with OPC UA and transaction control that is used for rule based enginee-
ring systems in the domain of automation of automation.
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1. Einleitung

1.1. Motivation
Die während der letzten Jahre zu beobachtenden Tendenzen in der Automatisierungs-
technik fordern die Ausweitung der Aufgabengebiete der eingesetzten Systeme und deren
Komponenten. Die Systeme sollen damit neben deren eigentlichen Kernfunktionen zusätz-
liche Funktionalität beinhalten, um beispielsweise die vertikale und horizontale Integration
zu erleichtern bzw. zu ermöglichen.

Von diesen Entwicklungen sind alle Ebenen der Automatisierungspyramide betroffen.
Beispielsweise werden Feldgeräte zu „intelligenten Feldgeräten“ weiterentwickelt, die eine
Parametrierung bzw. Integration in ein Leitsystem ohne zusätzliche Programmierschnitt-
stellen ermöglichen. Auf der Prozessleitebene werden immer mehr Laufzeitsysteme mit
nicht-echtzeitfähigen Kommunikationsschnittellen ausgestattet, die über hybride Feldbus-
systeme realisiert sind. Diese Schnittstellen ermöglichen den Austausch von Meta-Daten
neben dem operativen Betrieb. Glücklicherweise sind die Kommunikationsprotokolle für
einen modellbasierten Zugriff auf solche Daten, wie z. B. Open Platform Communications
Unified Architecture (OPC UA) [IEC10], rechtzeitig standardisiert worden und erreichen
eine zunehmende Durchdringung des Marktes für die Automatisierungslösungen.

Die Aggregation und die Repräsentanz zusätzlicher Daten und Funktionen ist in dem
kürzlich spezifizierten Referenzarchitekturmodell Industrie 4.0 [DIN16] als „Verwaltungs-
schale“ vorgestellt worden. Laut diesem Modell stellt die Schale die Laufzeitdaten, die da-
zugehörigen Informationen und die Dienste des Komponenten-Managers für jedes Industrie
4.0-Asset bereit. Die Spezifikation schreibt keine feste Verortung der Verwaltungsschale vor.
So können die Schalen eines Assets theoretisch auf einem beliebigen oder sogar verteilten
IT-System ausgeführt werden. Nichtsdestotrotz ist die Verortung der Funktionalität der
Verwaltungsschale oder deren Teile auf dem Asset-Hardwaresystem ein naheliegender und
wegen des Zugriffes auf die Laufzeitinformationen oft unabdingbarer Weg.

Weitere besonders hervorzuhebende Kategorien der zusätzlichen Funktionalität sind zum
einen die sogenannten Self-X Funktionen, wie Selbstkonfiguration oder Selbstoptimierung,
die häufig zwingend auf dem Zielsystem ausgeführt werden müssen. Zum anderen sind
Software-Agentensysteme zu erwähnen, die wegen der Voraussetzung der Mobilität einzel-
ner Agenten einen „Lebensraum“ auf dem ausführenden System benötigen.

Zusammenfassend lässt sich sagen: Ressourcen für zusätzliche Funktionalität werden
dringend benötigt. Dieses gilt insbesondere für die Laufzeitsysteme auf der Prozessleitebene
der Automatisierungspyramide.

Auf den ersten Blick erscheint die Bereitstellung zusätzlicher Ressourcen (insbesonde-
re der Rechenzeit) auf der Prozessleitebene problematisch. Das liegt vor allem an den
harten Echtzeitanforderungen an die Laufzeitsysteme. Diese werden häufig aus Gründen
der gleichmäßigen Abtastung in einem festen Zyklus betrieben, dabei wird die verfügbare
Rechenzeit oft bereits vollständig genutzt bzw. reserviert. Die faktische Ausführungszeit
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1. Einleitung

der Logik kann jedoch aus mehreren, weiter unten aufgeführten, Gründen Fluktuationen
unterliegen. Wegen der festen Zykluszeit kann die, aufgrund dieser Fluktuationen eventu-
ell verfügbare, Zeit nicht für prozessrelevante Berechnungen genutzt werden. Somit sind
Szenarien möglich, in denen die verfügbare Rechenkapazität des Laufzeitsystems am Ende
eines Zyklus ungenutzt bleibt. Diese ungenutzte Zeit wird in dieser Arbeit als Slackzeit
bezeichnet und ist insbesondere für die Ausführung zusätzlicher, nicht-echtzeitkritischer
Funktionalität vielversprechend.

Im Folgenden werden Gründe für die Entstehung der Slackzeit als Folge der Schwankung
bzw. der Überschätzung der Ausführungszeit der Logik aufgezählt:

• Überabschätzungen: Worst Case Execution Time (WCET)-Analyse liefert eine
obere Schranke für die Laufzeit eines Programms. Diese Schranke kann bei analyti-
scher Abschätzung über der tatsächlich beobachtbaren maximalen Laufzeit liegen.

• Summierung der Überabschätzungen: Falls die WCET-Abschätzungen für die
einzelnen Komponenten eines Programms vorliegen (z. B. für jeden Funktionsbau-
stein), so wird im einfachsten Fall die WCET des gesamten Programms durch eine
einfache Addition der einzelnen WCET berechnet. Diese Abschätzung lässt jedoch
die Abhängigkeiten einzelner Komponenten voneinander außer Betracht.

• Fluktuationen durch unterschiedliche Ausführungspfade: Einfache Standard-
bausteine der IEC 61131-3, wie z. B. Additions- oder Logik-Bausteine, schwanken
kaum in ihrer Ausführungszeit. Die Ausführungszeit komplexerer Funktionsbaustei-
ne, die vor allem in imperativen Programmiersprachen wie strukturierter Text oder
C implementiert sind, unterliegt Schwankungen, die durch unterschiedliche Ausfüh-
rungspfade einzelner Programme bedingt sind.
Als Beispiel gilt ein PID-Regler: auch wenn die Bestandteile des Reglers, z. B. ein
P-Glied, als einfachste Blöcke erscheinen, so müssen bei einer tatsächlichen Imple-
mentierung viele Randfälle betrachtet werden. Dieses erzeugt Verzweigungen im Aus-
führungspfad. Tatsächlich beinhaltet die Implementierung eines PID-Reglers in der
VDI/VDE 3696 (Bausteinklasse „C“) [VDI95] als strukturierter Text mehr als ein
dutzend Verzweigungen des Programmablaufs.

• Optimierung der Ausführung: In den einzelnen Laufzeitumgebungen sind Opti-
mierungsansätze zu finden, die über die Spezifikation der IEC 61131-3 hinausgehen.
Beispielweise existiert in dem Funktionsbausteinsystem des ACPLT/RTE Laufzeitsy-
stems eine Möglichkeit die Bausteine nur bei Änderung ihrer Eingänge auszuführen.
Solche Optimierungen sorgen gerade in den stationären Phasen das Prozesses für eine
relativ niedrige Auslastung des Laufzeitsystems.

• Diskretisierung der Systemauslastung: Zusätzlich zu der Kontrolllogik in der
Funktionsbausteinsprache kann in einer Laufzeitumgebung auch prozedurale Logik
enthalten sein. Für die Beschreibung der Prozeduren wird die Ablaufsprache der IEC
61131-3 oder eine Statechart-basierte Sprache verwendet. Da einzelne Zustände der
Prozedur unterschiedlichste unterlagerte Logik aktivieren bzw. deaktivieren können,
führen diese Abläufe zur diskreten Veränderung der Systemauslastung.
Die diskreten Sprünge der Auslastung werden von den ereignisorientierten Abläufen
verstärkt und tragen zu den dynamischen Lastschwankungen bei. In der IEC 61131-3
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Abbildung 1.1.: Laufzeiten der Kontrolllogik eines Moduls der modularen Anlage M4P.AC
inklusive der maximalen und der minimalen Laufzeit des längeren Zyklustyps (gerade Zyklen)
innerhalb der kompletten Messreihe.

werden nicht-zyklisch aktivierbare Bausteine erwähnt, die on-demand als Reaktion
auf einen physikalischen Eingang ausgeführt werden können.

• Seltenheit der worst-case Ereignisse: Falls die WCET sich auf ein seltenes Er-
eignis des physischen Systems, z. B. auf eine Notsituation, bezieht, lässt sich diese
Laufzeit aus Gründen der sicherheitsgerichteten Auslegung der Produktionssysteme
praktisch niemals beobachten.

Die Fluktuationen der Ausführungszeit lassen sich empirisch belegen. In Abbildung 1.1
ist die Dauer der Ausführung einer leittechnischen Anwendung in einem der Module der
modularen Anlage M4P.AC aufgezeichnet. Das Modul führt während der Aufzeichnung ein
einfaches Rezept aus. Das Laufzeitsystem wird dabei von einem Echtzeitbetriebssystem
ausgeführt. Es sind zwei Typen von Zyklen erkennbar, die unterschiedliche Laufzeiten
aufweisen. Der erste Typ wird in den ungeraden Zyklen der Abbildung dargestellt und
terminiert stets innerhalb von 1 ms. Der zweite Typ, der in geraden Zyklen der Abbildung
dargestellt ist, weist eine Laufzeit zwischen ca. 4 und 6 ms auf. Diese Laufzeit unterliegt
etwas größeren Schwankungen: innerhalb von ca. 18000 aufgezeichneten Zyklen betrug das
gemessene Maximum des zweiten Typs ca. 6 ms. Das Minimum hingegen betrug ca. 4 ms.
Somit konnten Fluktuationen bis zu 33 % der maximal gemessenen Laufzeit der Logik
festgestellt werden.

Die Laufzeitumgebungen verfügen somit über eine Rechenkapazität, die häufig aber nicht
garantiert in jedem Zyklus zur Verfügung steht. Diese Kapazität eignet sich zum einen für
die Funktionalität, die keinen Echtzeitanforderungen unterliegt. Zum anderen sind auch
optional auszuführenden Zusatzfunktionen der Echtzeit-Logik denkbar, deren Ausführung
nur in Zyklen mit der ausreichend großer Slackzeit stattfinden darf.
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1. Einleitung

1.2. Zielsetzung
Das Ziel der Arbeit ist die Definition eines neuen Konzepts zur Flexibilisierung des Lauf-
zeitverhaltens der leittechnischen Anwendungen, das eine sichere und effektive Nutzung
der Slackzeit der Laufzeitsysteme ermöglicht. Anwendungen mit flexiblem Laufzeitverhal-
ten werden in dieser Dissertation als ressourcenadaptiv bezeichnet.

Die Recherche über die existierenden Konzepte für ressourcenadaptive Systeme aus der
Informatik bildet den Ausgangspunkt dieser Arbeit. Die Herausforderung besteht darin,
die geeigneten Konzepte und Tools aus den unterschiedlichsten Bereichen der Informatik
und der Mathematik, z. B. aus den Bereichen des Software-Engineerings, der Scheduling
Theorie, der Optimierung und der formalen Verifikation, zu identifizieren und zu einem
an die Randbedingungen der Leittechnik angepassten und realisierbaren Gesamtpaket zu
kombinieren. Diese Randbedingungen umfassen nicht nur die notwendigen implementie-
rungstechnischen und konzeptionellen Maßnahmen für die Umsetzung der funktionalen
Anforderungen, sondern auch insbesondere die Analyse der domänenspezifischen nicht-
funktionalen Anforderungen. Im Bereich der nicht-funktionalen Anforderungen spielen vor
allem die minimalen Migrationsaufwände und die Akzeptanz der Nutzer eine besondere
Rolle.

Als Ergebnis soll ein Rahmenwerk entstehen, das eine nahtlose Integration von ressour-
cenadaptiven Konzepten in zyklische, an die IEC 61131-3 angelehnte, Laufzeitumgebun-
gen der Prozessleittechnik ermöglicht. Der Begriff Rahmenwerk suggeriert ein Gerüst aus
mehreren Bestandteilen, die die Definition, die Einbettung und das Ausführen ressourcen-
adaptiver Anwendungen im operativen Kontext ermöglichen.

Für die Integration von ressourcenadaptiven Anwendungen werden folgende Bestandteile
bzw. Konzepte benötigt, die das Rahmenwerk zwingend enthalten soll:

• Eine Softwarearchitektur des Laufzeitsystems, die die Koexistenz zwischen den exi-
stierenden und ressourcenadaptiven Anwendungen innerhalb einer Laufzeitumgebung
ermöglicht.

• Eine domänenspezifische Sprache für die Beschreibung des ressourcenadaptiven Ver-
haltens von Anwendungen. Da Funktionsbausteinnetzwerke speziell in der Domäne
der Automatisierungstechnik stark verbreitet sind, soll die zu erstellende Sprache ins-
besondere die Ausführung solcher Netzwerke steuern können. Die eingeführte Sprache
soll möglichst stark an die etablierten Prozedurbeschreibungssprachen der Automa-
tisierungstechnik angelehnt werden, um eine maximale Akzeptanz bei den Nutzern
zu erreichen.

• Ein Scheduling-Modell, das die Ausführung einzelner Anwendungskomponenten zur
Laufzeit überwachen und die Slackzeit an die adaptiven Anwendungen dynamisch
zuteilen kann. Das Modell soll mit den existierenden zyklischen Laufzeitumgebungen
kompatibel sein.

Die Umsetzbarkeit und die Anwendbarkeit des Rahmenwerks soll anhand einer proto-
typischen Implementierung und Einbettung des Rahmenwerks in ein existierendes Lauf-
zeitsystem bestätigt werden. Dieser Prototyp soll auf industrieller Hardware und anhand
synthetischer Tests sowie unterschiedlicher Anwendungsszenarien aus dem Umfeld der Pro-
zessleittechnik evaluiert werden.
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1.3. Aufbau der Arbeit

1.3. Aufbau der Arbeit
Der Rest dieser Dissertation ist wie folgt aufgebaut:

• Kapitel 2 beleuchtet die für diese Arbeit relevanten Grundlagen. Dazu gehört ei-
ne Vorstellung der Aufgaben der Automatisierungs- und der Prozessleittechnik, eine
Übersicht über die unterschiedlichen Verfahren für das Scheduling von Echtzeitsyste-
men sowie eine kurze Einführung in Timed Automata und die gemischt-ganzzahlige
Optimierung. Anschließend werden die Begriffe aus dem Umfeld der Laufzeitsysteme
und deren Softwarearchitekturen nach IEC 61131-3 und IEC 61499 eingeführt.

• Kapitel 3 stellt den Stand der Wissenschaft und Technik auf dem Gebiet der Flexi-
bilisierung leittechnischer Anwendungen zusammen. Neben den eigenen Vorarbeiten
stehen dabei die aktuellen Arbeiten zu Themen der losen Kopplung der Systeme
durch Serviceorientierung, die Agentensysteme, die modellgetriebenen Ansätze und
die Ansätze zur Laufzeit-Rekonfiguration der Laufzeitsysteme im Mittelpunkt. Ab-
geschlossen wird das Kapitel mit einer Gegenüberstellung ausgewählter Laufzeitsy-
steme und Sprachen für die Prozedurbeschreibung. Die Untersuchungen zum Stand
der Technik zeigen eine Forschungslücke bezüglich der adaptiven Ausführungszeit der
leittechnischen Anwendungen auf.

• In Kapitel 4 werden funktionale und nicht-funktionale Anforderungen an das zu
erstellende Rahmenwerk aufgestellt, die aus den domänenspezifischen Anforderungen
der Leittechnik abgeleitet werden.

• Kapitel 5 analysiert vielversprechende Kandidaten für das Schließen der aufgezeig-
ten Forschungslücke aus dem Bereich der Informatik unter den Gesichtspunkten der
aufgestellten funktionalen und nicht-funktionalen Anforderungen.

• Kapitel 6 beschreibt das entwickelte Rahmenwerk als den Hauptbeitrag dieser Arbeit:
– Abschnitt 6.1 stellt eine Softwarearchitektur vor, die die gemeinsame Verwal-

tung der Logik und deren Ausführungsvorschrift innerhalb einzelner Kompo-
nenten vorschreibt. Damit wird eine Kapslung erreicht, die die Grundlage für
die Integration weiterer Typen der Ausführungssteuerung schafft. Als Beispiel
dient die Koexistenz von IEC 61131-3 und IEC 61499 Anwendungen.

– In Abschnitt 6.2 wird ein Meta-Modell für die Beschreibung des ressourcen-
adaptiven Verhaltens vorgestellt, das an eine bekannte Prozedurbeschreibungs-
sprache angelehnt ist. Die Semantik des Modells wird formal durch eine Über-
führung auf Automatennetzwerke des UPPAAL-Toolkits beschrieben.

– In Abschnitt 6.3 wird ein Referenzmodell eines Schedulers für ressourcenadap-
tive Anwendungen vorgestellt. Dieser nutzt eine Kombination aus offline und
online Scheduling-Verfahren. Das offline Problem wird mithilfe der Methoden
der gemischt-ganzzahligen Optimierung aufgestellt und gelöst.

• Kapitel 7 stellt die prototypische Implementierung des Rahmenwerks vor. Das Rah-
menwerk wird anhand von vier Use-Cases mit und ohne Prozesseingriff validiert.

• Kapitel 8 schließt die Arbeit mit einer Diskussion der erzielten Ergebnisse und einem
Ausblick ab.
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2. Grundlagen
In diesem Kapitel werden die benötigten Grundlagen vorgestellt. Die Zielsetzung der Dar-
stellung ist somit eine möglichst kompakte und konsistente Definition der verwendeten
Begriffe und Zusammenhänge. Für eine umfassende Einführung in die angesprochenen
Themengebiete wird auf die zitierten Quellen verwiesen.

2.1. Allgemeine Grundlagen

2.1.1. Automatisierungstechnik und Prozessleittechnik
Der Begriff „Automatisierung“ bezeichnet laut [LG99] den Prozess „Maschinen, Geräte
oder technische Anlagen mit Hilfe von elektrischen, mechanischen, pneumatischen oder
hydraulischen Einrichtungen in die Lage zu versetzen, mehr oder weniger selbsttätig zu
arbeiten“. Je nach der zu automatisierenden Anlage wird der Begriff der Automatisierung
weiter spezialisiert.

Im Bereich der industriellen Produktion haben sich historisch zwei weitgehend getrenn-
te Domänen herauskristallisiert [MBS+11]: die diskrete Fertigung und die Prozesstech-
nik. Die daraus abgeleiteten spezialisierten Unterdisziplinen der Automatisierung heißen
Fertigungsautomatisierung bzw. Prozessautomatisierung. Neben den historisch geprägten
Unterschieden der beiden Disziplinen, wie z. B. den Normen und den Begriffssystemen, exi-
stiert eine Reihe technischer Differenzierungsmerkmale, die in Tabelle 2.1 zusammengefasst
sind.

Als Prozessleittechnik bezeichnet man den Oberbegriff für die Kernaufgaben der Au-
tomatisierung (wie z. B. Steuern und Regeln) im Bereich der Prozessautomatisierung
[Pol94, LG99, Mey02]. Die Leittechnik bindet den Menschen „in angemessener Art und
Weise in seiner Verantwortlichkeit und seinen Werten in das Prozessgeschehen“ ein [ASS97].
Dabei spielt vor allem die Informationsorientierung den entscheidenden Unterschied, denn
sie erlaubt die ganzheitliche Betrachtung aller operativen Aufgaben unter den Gesichts-
punkten der Integration in die Informationssysteme eines produzierenden Unternehmens.
Unter den „operativen Aufgaben“ werden dabei Maßnahmen mit unmittelbaren Auswir-
kungen im physischen System verstanden [Mey02]. Die informationsorientierte Betrach-
tungsweise ermöglicht den Zugang zu komplexeren Aufgaben, wie z. B. der Instandhaltung,
der Produktverfolgung und dem Engineering. Der Begriff der Informationsorientierung be-
schreibt auch die Tatsache, dass die Methoden der Informatik und der Informationsverar-
beitung immer mehr an Bedeutung für die Leittechnik gewinnen.

Die Systeme und Funktionen bzw. die Aufgaben der Automatisierungstechnik lassen sich
in einem Ebenenmodell, der sogenannten Automatisierungspyramide, einordnen. Diese Py-
ramide ist in Abbildung 2.1 dargestellt. Die Breite der Ebenen stellt sowohl die Hierarchie
der Führung, als auch die Anzahl der eingesetzten Systeme dar – ein Unternehmensleitsy-
stem kann eine Anlage mit mehreren tausenden Feldgeräten leiten. Die Übersicht über die
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2.1. Allgemeine Grundlagen

Tabelle 2.1.: Fertigungs- und Prozessautomatisierung im Vergleich (nach [MBS+11, Fel01]).

Merkmal Fertigungsautomatisierung Prozessautomatisierung

Aktoren Motoren Ventile, Pumpen
Transport Förderbänder Pumpen, Kompressoren
Produkt Festkörper ungeordnete Menge
Prozesse bewirkt durch Aktoren laufen selbstständig
Reaktionszeiten kurz mittel bis lang
Bedienen und Be-
obachten

dezentral zentral

Unternehmensleitebene

Produktionsleitebene

Feldebene

Prozessleitebene

operativ

dispositiv

Qualität der FunktionEbenenmodell

Sensoren, Aktoren

PLS, SPS

PCs und Server

Server

Funktion

PLT-Feldfunktionen

Prozessführung
M, S, R, Sicherheit

Führen des Betriebs 
bzw. der Fabrik

Führen des Unternehmens

Abbildung 2.1.: Automatisierungspyramide mit eingesetzten Hardware-Plattformen, Funktio-
nen und deren qualitativer Bewertung (angelehnt an [Pol94, Pol85]).

Qualität der Funktion sagt aus, dass die Systeme auf den unteren Schichten zunehmend
operativ agieren. Damit werden auch Zeitschranken für den Echtzeitbetrieb zunehmend
kleiner.

Die Prozessleitebene ist für die Ausrichtung dieser Arbeit von besonderem Interesse.
Die Systeme auf dieser Ebene setzen die Produktionsaufträge übergeordneter Ebenen in
operative Realisierungsprozesse um [Pol94], die mittels der angebundenen Sensorik und
Aktorik der Feldebene physisch bewirkt bzw. überwacht werden.

Der Einsatz der Prozessleitsysteme (PLS) auf der Prozessleitebene gehört zum heutigen
Stand der Technik in der Prozessautomatisierung. Der Haupteinsatzzweck ist unbestritten
das Messen-Steuern-Regeln Aufgabenfeld. Das Leitsystem besteht aus den Komponenten
die in Abbildung 2.2 dargestellt sind. Das PLS ist ein verteiltes System, dessen Mindestaus-
stattung aus folgenden Komponenten besteht: Die Anzeige- und Bedienkomponente (ABK)
ist die Schnittstelle zwischen dem Leitsystem und dem Bediener und ist normalerweise in
der Leitwarte installiert. Sie ermöglicht das Überwachen der Anlage und kann für manu-
elle Eingriffe in die Prozessführung genutzt werden. Die Engineering Workstation (EWS)
ist eine dedizierte Software- oder Hardwareeinheit, die zur Konfiguration des PLS genutzt
wird. Die prozessnahe Komponente (PNK) bildet die Schnittstelle des Leitsystems zu der
Feldebene. Die Komponente enthält in der Regel Input-Output (I/O)-Karten, die konven-
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2. Grundlagen

Feldbus

Sensor Aktor

konventionell

Systembus

Prozessnahe 
Komponente 

(PNK)

Prozessnahe 
Komponente 

(PNK)

Anzeige- u. 
Bedienkomp.

(ABK)

Anzeige- u. 
Bedienkomp.

(ABK)

Engineering
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Abbildung 2.2.: Grundstruktur eines Prozessleitsystems (angelehnt an [TM09a, Pol94]).

tionell oder mittels eines Feldbuses mit den Sensoren und Aktoren verbunden sind. Die
Kommunikation zwischen den PNKs und anderen Komponenten des PLSs erfolgt mittels
eines echtzeitfähigen Systembuses. Die Ausführung der operativen Logik ist das definieren-
de Merkmal einer PNK.

Die PNK stellt die Hardware-Plattform für die ausgeführte Software bereit. Diese be-
steht aus der Laufzeitumgebung und der darin eingebetteten benutzer- und anlagenspezifi-
schen Anwendung. Eine verbreitete Plattform für die PNK ist die speicherprogrammierbare
Steuerung (SPS), die in Abschnitt 2.2.3 detailliert vorgestellt wird. Die primäre Aufgabe
einer PNK ist das Ausführen der Steuer-, Regel-, sowie Interlocklogik. Aus diesen Aufgaben
lassen sich auch die nicht-funktionalen Anforderungen an die PNKs und die eingebette-
ten Laufzeitumgebungen ableiten, wie z. B. Echtzeitanforderungen, Anforderungen an die
Programmierung durch den typischen Nutzer, Stabilität und Anforderungen an die Kom-
munikation. Einer genauen Anforderungsanalyse ist Kapitel 4 dieser Arbeit gewidmet.

2.1.2. Echtzeitsysteme und Scheduling
Echtzeitsysteme

Da die Hauptaufgabe der Automatisierungstechnik in der Beherrschung eines physikali-
schen Systems besteht, spielen die temporalen Eigenschaften des Systems eine kritische
Rolle im gesamten Lebenszyklus einer leittechnischen Anwendung. Das korrekte Verhalten
des gesteuerten Systems hängt somit nicht nur von der korrekten Ausgabe des steuernden
Systems, z. B. von dem richtigen Schaltsignal oder Stellwert, sondern auch von dem Zeit-
punkt der Wirksamkeit dieses Signals ab. Solche Systeme werden Echtzeitsysteme genannt.
Das kanonische Beispiel für ein Echtzeitsystem ist die Funktionalität der Airbag-Auslösung
in einem Kraftfahrzeug. Für die Sicherheit der Insassen ist nicht nur die Tatsache der Aus-
lösung im Falle eines Unfalls, sondern auch der richtige Zeitpunkt dieser von immenser
Bedeutung. Es ist ersichtlich, dass sowohl Cyber-Physical Systems (CPS), als auch Cyber-
Physical Production Systems (CPPS) aufgrund der Kopplung mit der physikalischen Welt
einen Sonderfall der Echtzeitsysteme darstellen (die Definition beider Begriffe folgt im
Abschnitt 2.1.3).
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2.1. Allgemeine Grundlagen

Für diese Arbeit wird die Definition eines Echtzeitsystems von Kopetz [Kop11a] genutzt:
„Ein Echtzeitsystem (...) muss auf die Stimuli der Umgebung in den, von der Umgebung
vorgegebenen, Zeitintervallen reagieren“. Das einfachste Modell eines Echtzeitsystems for-
dert somit die Existenz einer garantierten oberen Zeitschranke für die Dauer der Reaktion
des Systems auf einen Stimulus. Die tatsächliche Dauer der garantierten Antwortzeit spielt
dabei keine Rolle und hängt alleine von der Umgebung des Systems und somit von der zu
lösenden Aufgabe ab. Es ist hinzuzufügen, dass die Definition keinen Prozessor oder Com-
puter innerhalb eines Echtzeitsystems fordert und somit auch weitere, z. B. mechanische
oder elektrische Systeme, abdeckt.

Die Umgebung des Echtzeitsystems besteht notwendigerweise aus dem gesteuerten phy-
sischen System. Neben diesem können weitere Echtzeitsysteme Teil der Umgebung sein,
z. B. ein Human-Machine Interface (HMI), das mit den Bedienern interagiert und deren
Befehle aufnimmt.

Eine Dimension für die Klassifikation der Echtzeitsysteme ist der abstrakte Nutzen der
gelieferten Antwort nach dem Ablauf der garantierten Echtzeitschranke (oder Deadline).
Hat die Antwort keinen Nutzen, so wird die Schranke eine feste Schranke genannt. Im
anderen Fall wird die Schranke als weich bezeichnet.

Die zweite Dimension der Klassifikation sind die Konsequenzen der Nichteinhaltung
der garantierten Schranke. Die Konsequenzen können entweder sicherheitskritisch oder
nicht sicherheitskritisch sein. Welche Umstände sicherheitskritisch sind, hängt von der
spezifischen Aufgabe ab. Typischerweise werden Schäden der eingesetzten Hardware, der
Umgebung und, vor allem der Menschen als sicherheitskritisch bewertet.

Sicherheitskritische Systeme mit festen Schranken werden Systeme mit harten Echtzeit-
bedingungen genannt. Nicht sicherheitskritische Systeme mit weichen Schranken werden
als Systeme mit weichen Echtzeitbedingungen bezeichnet. Die Begriffe „hart“ und „weich“
werden somit in Abhängigkeit vom Kontext unterschiedlich gedeutet. Der Entwurf der Sy-
steme mit harten Echtzeitbedingungen unterscheidet sich grundlegend von dem der weichen
Echtzeitsysteme [Kop11a]. Die harte Echtzeit erfordert ein garantiertes Systemverhalten
des Systems für alle möglichen Zustände des Systems und der Umgebung.

Neben der Erfüllung der charakteristischen Anforderung, der Zusicherung der Echtzeit-
schranken, können Echtzeitsysteme in Bezug auf weitere Eigenschaften bewertet werden.
Die zwei wichtigsten Kriterien für diese Arbeit sind die Vorhersehbarkeit und die Flexibili-
tät. Diese werden wie folgt definiert [BH09]: „Vorhersehbarkeit ist der Grad des Vertrauens
darin, dass korrekte, qualitative oder quantitative Prognosen über den Zustand eines Sy-
stems gemacht werden können“ und „Flexibilität stellt den Grad der Anpassungsfähigkeit
eines Systems an eine neue Umgebung dar“. Weitere Bewertungskriterien für Echtzeitsyste-
me sind in [BH09] zu finden. Der Begriff Adaptivität wird mit dem Begriff der Flexibilität
synonym verwendet. Ein ausführlicher Vergleich der Begriffe Adaptivität und Flexibilität
ist in [VMSS07] zu finden.

Aktivierungsparadigmen der Echtzeitsysteme

Im Allgemeinen wird zwischen den zwei grundlegenden Paradigmen der Aktivierung der
Echtzeitsysteme unterschieden: den zeit- und den ereignisgesteuerten Systemen [Kop11a,
Foh12]. Der Trigger ist in diesem Sinne der Auslöser für eine bestimmte Systemaktion
[Kop11a]. Das Aktivierungsparadigma beantwortet die folgenden Fragen: wann werden die
Ereignisse erkannt, wer initiiert Aktivitäten des Systems und wann werden die Entschei-
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2. Grundlagen

dungen getroffen [Foh12].
In den zeitgesteuerten Systemen hängen alle Aktivitäten von dem Fortschritt der physi-

schen Zeit (wall-clock time) ab. Genauer genommen werden die Aktivitäten an den vordefi-
nierten, periodischen Punkten der Zeit gestartet (den sogenannten Uhr-Ticks). Die äußeren
Stimuli des Echtzeitsystems können somit nur während dieser Zeitpunkte verarbeitet wer-
den. Das klassische Beispiel für ein zeitgesteuertes System ist das Softwaremodell einer
SPS (vgl. Abschnitt 2.2.3). Die Implementierung eines zeitgesteuerten Systems beinhaltet
nur einen CPU-Interrupt – den Timer für die Abstände zwischen den Zyklen.

In den ereignisgesteuerten Systemen werden die Aktivitäten durch „signifikante Ereignis-
se, die keine Uhr-Ticks sind“, [Kop11a] ausgelöst. Signifikante Ereignisse kennzeichnen die
Veränderungen der Umgebung des Echtzeitsystems, auf die eine Systemreaktion erfolgen
muss [Kop93]. Dieses Verhalten wird durch unterschiedliche CPU-Interrupts des Systems
umgesetzt. Als Beispiel für ein ereignisgesteuertes System dienen viele der eingebetteten
Systeme die auf, die unterschiedlichen externen Stimuli, z. B. eine Eingangsänderung, di-
rekt über einen Interrupt reagieren können.

Die Diskussionen der Vor- und Nachteile der beiden Ansätze auf der generellen Ebene
der Echtzeitsysteme werden seit Jahren geführt [Foh12]. In der Domäne der Automati-
sierungstechnik finden sich diese zwei unterschiedlichen Paradigmen in den zwei Softwa-
rearchitekturen der Standards IEC 61131 und IEC 61499 wieder, die in Abschnitten 2.2.5
bzw. 2.2.6 genauer vorgestellt werden. Die Vor- und Nachteile der beiden Ansätze sind im
Kontext der domänenspezifischen Anforderungen ein Gegenstand der aktiven Diskussion.

Scheduling der Echtzeitsysteme

Aus der Perspektive des Schedulings kann ein Echtzeitsystem als eine Menge der Prozes-
soren (CPUs), einer Menge der Tasks und der Ressourcen definiert werden [But11]. Zum
Zweck dieser Arbeit kann die Existenz eines einzelnen Prozessors (uniprozessor System)
angenommen werden. Darüber hinaus ist die Modellierung der Ressourcen nicht erforder-
lich. Für die Modellierung der Zeit wird ein diskretes Modell mit positiven Zeitpunkten
aus N0 angenommen.

Die Aufgabe des Schedulers ist somit, die Ausführung der Tasks Ti = T1, ..., Tn auf einem
Prozessor unter der Einhaltung bestimmter Bedingungen zu garantieren. Da ein Task auch
mehrfach ausgeführt werden kann (z. B. bei zyklischen Tasks), wird zwischen den Tasks
und deren Instanzen (Jobs) unterschieden.

Eine grundlegende Bedingung ist das Einhalten der Ausführungsdeadlines für zyklische
Tasks. Dazu werden die Tasks als Tupel Ti = (wi, peri, deadi) modelliert. Die k-te Instanz
des Tasks Ti, k ≥ 1, kann ab dem Zeitpunkt (k − 1) · peri ausgeführt werden und muss
vor der Deadline (k − 1) · peri + deadi beendet werden. Der Parameter deadi bezeichnet
die relative Deadline des Jobs bezüglich der Periode. Der Parameter wi ist die WCET des
Jobs. Diese Zusammenhänge sind beispielhaft in Abbildung 2.3 dargestellt.

Ein Schedule ist somit eine Funktion, die die Jobs an die CPU in Abhängigkeit von
dem jeweiligen Zeitpunkt zuordnet. Ein Schedule ist zulässig, wenn er die gewünschten
Bedingungen erfüllt. Eine Menge der Tasks heißt schedulbar, falls ein zulässiger Schedule
existiert. Das zugehörige Entscheidungsproblem wird als Scheduling-Problem bezeichnet.
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2.1. Allgemeine Grundlagen

0 Zeit

Abbildung 2.3.: Korrekte Ausführung eines zyklischen Tasks Ti über zwei Perioden.

Preemptive und Cooperative Scheduling

Unter „Preemption“ versteht man die technische Möglichkeit die Ausführung eines Tasks
zu unterbrechen und die Ressourcen der CPU an einen anderen Task zu übertragen. Die-
ser Vorgang wird als „Kontextwechsel“ bezeichnet. Die Unterbrechung der Ausführung
erfordert keine Kooperation seitens des Tasks und geschieht aus Sicht des unterbrochenen
Programms transparent. Scheduler, die Mechanismen der Preemption einsetzen, werden
als preemptive oder unterbrechende Scheduler bezeichnet.

Scheduling-Verfahren, die die laufenden Tasks nicht unterbrechen, werden cooperative
oder nicht-unterbrechende Scheduler genannt. In diesem Fall kann der Scheduler nur nach
der Terminierung des aktuell ausgeführten Tasks aktiv werden.

Die Vorteile der nicht-unterbrechenden Verfahren umfassen [BBY13]:

• Laufzeit-Effizienz und einfache Vorhersagbarkeit: Das nicht-unterbrechende
Scheduling vermeidet den Aufwand und die Unsicherheiten, die mit dem Kontext-
wechsel verbunden sind, wie z. B. die Auffrischung der Caches oder das Zurückset-
zen der CPU-Pipeline. Die Vergrößerung der gemessenen WCET, alleine wegen der
Cache-Auffrischung nach dem Kontextwechsel, kann bis zu 33% betragen [BBY13].

• Kleinerer Jitter: Bei einem cooperativen Scheduler gleicht die Ausführungszeit
eines Tasks der Differenz des Start- und Endzeitpunktes der Ausführung. Das hat
vor allem Vorteile bei dem Entwurf regelungstechnischer Systeme.

• Keine Mechanismen zur Synchronisation der Prozesse notwendig: Der ge-
genseitige Ausschluss der Zugriffe einzelner Tasks auf Ressourcen ist garantiert, somit
entfällt die Implementierung der Synchronisationsmechanismen und das Lösen der
damit verbundenen Probleme, z. B. der Prioritätsinversion.

Aus der Perspektive der Leittechnik sind alle der oben genannten Aspekte relevant. Syste-
me mit hoher Vorhersagbarkeit und Anwendbarkeit für die Aufgaben der Regelungstechnik
sind für die Aufgaben der Leittechnik bestens geeignet. Der letzte Punkt erleichtert die
Programmierung der PNKs, da es zu keinen unerwünschten Effekten durch die Kontext-
wechsel kommen kann.

Zu den Nachteilen des nicht-unterbrechenden Ansatzes zählen:

• Fragilität: Da die Kontrolle über die CPU des Systems komplett an ein Task bis zu
seiner Terminierung bzw. die Rückgabe der Kontrolle übergeben wird, kann ein Task
nicht nur die anderen Tasks, sondern auch den Scheduler von dem Zugriff auf die
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CPU ausschließen und somit das gesamte System monopolisieren. Bestimmte Eigen-
schaften der Tasks, wie z. B. eine garantierte Terminierung, müssen somit während
der Entwicklung bzw. vor der Ausführung sichergestellt sein.

• Zusicherung der Eigenschaften aller Tasks notwendig: Als zusätzlicher Aspekt
des vorherigen Punktes, muss jeder Task auch die Einhaltung seiner Ausführungszeit
garantieren. Somit müssen alle Tasks mit gleicher Sorgfalt analysiert bzw. verifiziert
werden. Im Falle von preemptive Scheduling kann ein „fehlerhafter“ Task, z. B. ei-
ner, der eine obere Laufzeitschranke überschreitet, durch den Scheduler terminiert
werden.

• Lange Antwortzeit: Das System ist während der Ausführung eines Tasks
„blockiert“ und kann auf keine externe Stimuli reagieren.

• Komplexität des Scheduling-Problems: Die Komplexität der nicht-
unterbrechenden Scheduling-Probleme, z. B. die Entscheidung, ob für eine Menge
der Tasks ein gültiger Schedule existiert, ist im Gegensatz zu unterbrechendem Sche-
duling für die meisten Problemklassen nicht effizient lösbar [But11]. Die Schedules
werden aus diesem Grund entweder durch extensive Suche oder heuristisch erstellt.

Die notwendige Verifikation der ausgeführten Programme macht das nicht-unterbrechende
Scheduling für allgemeine Zwecke unattraktiv. Im Falle einer gesicherten Entwicklungs- und
Ausführungsumgebung, wie z. B. im Bereich der industriellen Produktion, können aber die
Vorteile des Ansatzes die Nachteile übersteigen. Darüber hinaus kommen die Beispiele der
Anwendung nicht-unterbrechender Scheduler aus den Bereichen der Sensornetzwerke (z. B.
TinyOS [LMP+05]) und der Agentensysteme (z. B. JADE [BPR01]).

Die Kombination der Vorteile beider Ansätze ist durch die Einschränkung der Möglich-
keiten für Kontextwechsel möglich, z. B. durch die Angabe erlaubter Zeitpunkte für einen
Wechsel. Diese Scheduling-Verfahren werden unter dem Begriff des „Limited Preemptive
Schedulings“ zusammengefasst [BBY13].

Scheduling zeitgesteuerter Systeme

In diesem und im nächsten Abschnitt werden die Vor- und Nachteile der Scheduling-
Ansätze für beide Aktivierungsparadigmen diskutiert. Die Grundlage für diese Auflistungen
bietet die Veröffentlichung von Fohler [Foh12]. Beide Ansätze können sowohl im unterbre-
chenden, als auch im nicht-unterbrechenden Modus eingesetzt werden.

Zeitgesteuerte Systeme werden durch das Abarbeiten einer Taskliste (oder Tabelle), die
vor der Laufzeit des Echtzeitsystems erstellt wurde, gescheduled. Dieser Vorgang wird in
den Quellen auch als offline, static oder pre-runtime Scheduling bezeichnet. Die Taskliste
beinhaltet die zu dem Zyklusanfang relativen Zeitpunkte oder Intervalle der Ausführung
einzelner Tasks bzw. Jobs. Im Falle einfacher zyklischer Systeme mit einem Prozessabbild,
wie z. B. einer SPS, wird nur die Reihenfolge der Jobs benötigt, da es keine blockieren-
den Ressourceninteraktionen innerhalb des Systems gibt. Das gesamte Wissen über die
Systemarchitektur, z. B. die Anzahl und Parameter der ausgeführten Tasks, sowie die Ei-
genschaften des kontrollierten physischen Systems, wie z. B. für die Wahl der Zykluszeit,
wird für die Erstellung der Tabelle benötigt.

Die Vorteile des Schedulings der zeitgesteuerten Systeme beinhalten [Foh12, Kop11a]:
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• Determinismus: Durch die zyklische Abarbeitung der Taskliste werden die ein-
zelnen Jobs in unveränderter Reihenfolge in jedem Zyklus ausgeführt. Auch der
genauere Zeitpunkt der physischen Wirksamkeit der geschriebenen Ausgänge (das
„Erscheinen“ der Werte am physischen Ausgang des Systems) lässt sich bestimmen.
Diese Eigenschaften hängen nicht von den äußeren Einflüssen auf das System ab
und definieren somit ein vorhersagbares Verhalten. Dieser Vorteil erlaubt einfache
Berechnungen der nächsten Ausführungszeit jedes Tasks und somit der maximalen
Wartezeit zwischen den Ausführungen. Deshalb sind auch einfache Abschätzungen
der Reaktionszeit des gesamten Systems auf äußere Stimuli möglich.

• Konstruktive Erstellung der Taskliste: Die Taskliste kann nach deren Erstellung
in Bezug auf die Einhaltung der geforderten Eigenschaften überprüft werden. Die
Komplexität der Validierung ist in der Regel gering und umfasst im einfachsten Fall
nur die Sicherstellung der Zeitschranken (vgl. Abschnitt 6.3.3). Der Algorithmus
zur Erstellung einer Taskliste muss somit nur eine gültige Lösung finden, die den
geforderten Bedingungen genügt.

• Komplexe Randbedingungen möglich: Da die Taskliste in einer Phase vor der
Laufzeit erstellt wird, können komplexe Bedingungen in Bezug auf die Eigenschaften
der Liste bei deren Erstellung berücksichtigt werden. Diese Eigenschaften können
Reihenfolgebeziehungen der Tasks, deren Phase, sowie die Regelung der Ressour-
cenzugriffe umfassen. Die Algorithmen zur Konstruktion der Tasklisten können in
der Regel auch weitere Randbedingungen problemlos aufnehmen, da diese normaler-
weise auf der Lösung eines Optimierungsproblems basieren, die eine globale Suche
im Lösungsraum impliziert (die möglichen Randbedingungen für den entwickelten
Komponentenscheduler werden in Abschnitt 6.3.2 vorgestellt).

• Minimaler Laufzeitaufwand: Durch die Tatsache, dass die Scheduling Taskliste
vor der Laufzeit erstellt werden kann, beschränkt sich der Laufzeit-Aufwand auf we-
nige einfache Operationen wie das Nachschlagen des nächsten Eintrages oder das
Ausrechnen einiger Differenzen zwischen bestimmten Zeitpunkten. Die Anzahl dieser
Operationen und deren Komplexität hängen nicht von der Komplexität der Randbe-
dingungen, die bei der Erstellung die Taskliste berücksichtigt wurden, ab.

• Einfachere Implementierung: Dieser Vorteil folgt direkt aus dem letzten Punkt,
denn die Implementierung des Scheduler muss nur die oben erwähnten Operationen
umfassen. Durch die einfachere Implementierung ist zu erwarten, dass Scheduler für
zeitgesteuerte Systeme auch weniger anfällig für Implementierungsfehler sind und
eine einfache Fehlersuche ermöglichen.

• Einfacheres Testen: Die zyklischen Systeme sind einfacher zu testen, da nur alle
Szenarien innerhalb eines Zyklus getestet werden müssen [Kop11a].

Die Nachteile eines solchen Ansatzes umfassen:

• Berechnungskomplexität und Komplexität des benötigten Wissens: Für
das Aufstellen der Taskliste wird das komplette Wissen über das System benötigt.
Dazu gehören die Auflistung der ausgeführten Tasks, deren Parameter, wie z. B. die
Periode, und vor Allem eine Abschätzung der Laufzeit der abgeleiteten Jobs. Diese
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Parameter sind nicht immer zu dem Zeitpunkt des Entwurfs des Systems bekannt
oder mit hohem Aufwand ermittelbar.

Darüber hinaus ist allein das Aufstellen einer Probleminstanz zur Erstellung einer
Taskliste komplex, da alle Randbedingungen berücksichtigt werden müssen. Das Pro-
blem der konstruktiven Erstellung einer Taskliste ist typischerweise nicht effizient
(d. h. in polynomieller Zeit) lösbar. In der Praxis werden die Tasklisten über eine
Überführung des Problems auf ein Standardproblem der Optimierung gelöst, z. B.
auf ein Integer Linear Program (ILP). Falls aber die Taskliste selten (im Extrem-
fall nur einmal) erstellt bzw. angepasst wird, ist die für die Erstellung benötigte
Rechenzeit vernachlässigbar.

• Größe der Taskliste: Die Taskliste enthält Information über die Ausführung ein-
zelner Tasks bzw. der abgeleiteten Jobs. Die Menge der Information hängt vom ge-
wählten Algorithmus ab und variiert von den genauen Zeitpunkten der Ausführung
einzelner Jobs, bis zu einer groben Zuordnung der Jobs zu dem jeweiligen System-
zyklus. Eine Taskliste für zyklische Tasks muss über die Länge einer Hyperperiode
aufgestellt werden. Diese ist das kleinste gemeinsame Vielfache (kgV) der Perioden
einzelner Tasks. Die Ausführung der Jobs innerhalb der Hyperperiode bleibt unver-
ändert, d. h. die Abarbeitung der Taskliste erfolgt zyklisch.

Die Größe der Taskliste hängt somit von der Länge der Hyperperiode und der be-
nötigten Information zur Ausführung einzelner Jobs ab. Gerade bei Systemen mit
eingeschränkten Speicherressourcen kann diese Größe zum kritischen Punkt werden.
Um das Anwachsen der Länge der Hyperperiode bei der ungünstigen Wahl der Pe-
rioden einzelner Tasks (z. B. als Primzahlen) vorzubeugen, können harmonische Pe-
rioden der Tasks eingesetzt werden. Dies bedeutet, dass die Periode jedes Tasks ein
ganzes Vielfaches jeder kürzeren Periode eines anderen Tasks ist. Die Information zur
Ausführung des Jobs kann durch zusätzliche Annahmen über das Laufzeitsystem re-
duziert werden. Bei der nicht-unterbrechenden Ausführung der Logik innerhalb einer
SPS ist die Information über die Zuordnung eines Jobs zu dem jeweiligen Systemzy-
klus und innerhalb der Hyperperiode sowie deren Reihenfolge bereits ausreichend.

• Fehlende Flexibilität: Ein Hauptnachteil des offline Schedulings ist die fehlende
Flexibilität. Das Hinzufügen neuer Tasks oder eine Änderung der Parameter beste-
hender Tasks erfordert die (teilweise komplexe) Neuberechnung der Taskliste und
deren Austausch auf dem Laufzeitsystem. Es existieren allerdings Ansätze, wie man
trotz rigider Struktur der Taskliste zusätzliche Aktivitäten durchführen kann (vgl.
Abschnitt 5.1.6). Dazu zählt z. B. das Ausführen sporadischer Tasks zur Laufzeit.

• Konservative Abschätzung: Die Berechnung der Taskliste erfolgt typischerwei-
se unter der Berücksichtigung der WCETs der einzelnen Tasks. Bei einer früheren
Terminierung eines Jobs kann das offline System die verfügbare Rechenzeit nicht
verwerten. Dieser Nachteil kann teilweise behoben werden, indem zusätzliche Aktivi-
täten des Schedulers zur Laufzeit des Systems stattfinden (vgl. Abschnitt 5.1.6 bzw.
Abschnitt 5.1.5).
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Scheduling ereignisgesteuerter Systeme

Für ereignisgesteuerte Systeme ist das Aufstellen einer offline Taskliste praktisch unmög-
lich, da die Ereignisse in beliebiger Reihenfolge und zu beliebigen Zeitpunkten Aktivitäten
des Echtzeitsystems auslösen können. Aus diesem Grund werden im Bereich der ereignisge-
steuerten Systeme online Scheduler eingesetzt, also solche, die die Entscheidung über das
nächste auszuführende Task während der Systemlaufzeit treffen.

Bei dem Vergleich der beiden Scheduling-Ansätze steht das Schedulen von zyklischen
Tasks im Mittelpunkt. Die Nutzung des ereignisgesteuertes Schedulings für aperiodische
Tasks ist zunächst nicht im Fokus, da das einhalten der Echtzeitanforderungen dafür zu-
sätzliche Annahmen über Tasks benötigen wie z. B. über deren Auftrittshäufigkeit.

Es kann offline überprüft werden, ob eine bestimmte Menge der Tasks von einem on-
line Scheduler fehlerfrei, d. h. z. B. unter der Einhaltung der Deadlines, für jeden Job ge-
scheduled werden kann. Eine solche Analyse wird „schedulability Analysis“ genannt. Im
Gegensatz zu einer vorberechneten Taskliste ist diese nicht konstruktiv. Stattdessen wird
das Verhalten des Schedulers anhand bestimmter Kriterien der Tasks, z. B. der Utilization-
Faktoren, abgeschätzt.

Die Vorteile des ereignisgesteuerten Schedulers können wie folgt zusammengefasst wer-
den [Foh12]:

• Flexibilität: Da die Entscheidungen zur Laufzeit getroffen werden, kann der Schedu-
ler auf die Änderungen der Menge der Tasks bzw. der Parameter einzelner Tasks ent-
sprechend reagieren. Der Algorithmus kann insbesondere auf die variierenden Lauf-
zeiten einzelner Jobs reagieren und die eventuell verfügbaren Ressourcen nutzen.

• Marktdurchdringung: Die meisten Echtzeitsysteme folgen dem ereignisgesteuerten
Ansatz [Kop11a]. Die vorhandenen Algorithmen und deren Implementierungen sind
über Jahre gereift und werden in unzähligen Systemen eingesetzt.

• Vorteile bei der Speichernutzung bei großer Anzahl von Tasks: Der für die
Implementierung des Schedulers und dessen Datenstrukturen verwendete Speicher
ist bei einer genügend großen Menge der Tasks kleiner als die explizite Speicherung
der Taskliste.

Zu den Nachteilen des ereignisgesteuerten Schedulers zählen:

• Komplexität der Implementierung und höherer Laufzeitaufwand: Die Im-
plementierung eines online Schedulers ist komplexer als die des offline Ansatzes.
Da ein online Algorithmus alle gültigen Taskmengen unter allen Bedingungen kor-
rekt schedulen muss, ist die Verifikation der Korrektheit und Analyse eines solchen
Verfahrens nichttrivial. Ferner steigt die Menge der Operationen, die zur Laufzeit
durchgeführt werden müssen – das ist der Tradeoff zwischen der Laufzeit und dem
Speicherbedarf im Vergleich zu einer vorberechneten Taskliste.

• Nur einfache Randbedingungen für die Taskmenge: Online Verfahren kön-
nen nur einfache Bedingungen für die Tasks berücksichtigen, z. B. gegenseitiger Aus-
schluss. Darüber hinaus erfordert das Hinzufügen neuer Bedingungen die Entwick-
lung neuer Algorithmen und der dazugehörigen schedulability Tests.
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• Beschränkte Vorhersagbarkeit: Auch wenn die Einhaltung der Deadlines durch
den schedulability Test garantiert werden kann, kann der genaue Ausführungszeit-
punkt eines einzelnen Jobs im Voraus nicht bestimmt werden.

Ein Beispiel für ein Scheduling Verfahren ist das Earliest Deadline First (EDF) Verfahren
[LL73]. Der Algorithmus führt bei jeder Aktivierung (z. B. das Erreichen eines neuen Tasks)
den Job aus, dessen Deadline am nächsten ist. Das Verfahren ist im unterbrechenden
Modus auf einem uniprozessor System optimal. Das heißt, es findet für jede schedulbare
Taskmenge einen Schedule, der die Deadline-Bedingungen der Tasks nicht verletzt. Für
periodische Tasks mit peri = deadi ist der schedulability Test für EDF recht einfach. Die
Menge der Tasks kann gescheduled werden, genau dann wenn:

U =
|T |∑
i=1

peri

deadi

≤ 1.

Der Bruch wird der Utilization-Faktor eines Prozesses, die Summe U der Utilization-Faktor
der Taskmenge genannt. Da die Priorität eines Tasks vom Abstand zur nächsten Deadline
und somit vom Zeitpunkt der Aktivierung des Schedulers abhängt, wird EDF der Klasse
der Verfahren mit dynamischen Prioritäten zugeordnet.

2.1.3. CPS und CPPS
In den letzten Jahren erhalten die Begriffe der CPS [KRS12] und deren Anwendung in der
industriellen Produktion unter dem Sammelbegriff CPPS [Mon14] Einzug in die Domäne
der Automatisierungstechnik.

Der Begriff der CPS in der Definition von Lee [Lee06] beinhaltete zunächst nur die
bidirektionale Interaktion eines Rechners oder eines eingebetteten Systems (cyber system)
mit einem physischen System (physical system). Aus der kybernetischen Sicht erfüllt dabei
in der Regel das cyber System die Rolle des steuernden und das physische System die
Rolle des gesteuerten Systems. Diese Aspekte beinhalten faktisch das Selbstverständnis
klassischer eingebetteter und automatisierungstechnischer Systeme der letzten Dekaden.

Für einen qualitativen Sprung sind jedoch weitere Eigenschaften des Systems notwendig
[KRS12]. Dazu zählen die Kopplung über geschlossene und offene Netze und eine domä-
nenübergreifende Funktionalität.

Die Zielsetzung dieser Arbeit für die Gestaltung eines flexiblen Rahmenwerks zur bes-
seren Nutzung verfügbarer Rechenressourcen spricht diese Punkte explizit an. Durch ein
adaptives System können z. B. echtzeitfähige und nicht-echtzeitfähige Anwendungen bzw.
Kommunikationsprotokolle kombiniert werden. Darüber hinaus versteht sich das Rahmen-
werk als ein Ergebnis der Integration vielfältiger Konzepte aus den Bereichen der Informa-
tik und der Automatisierungstechnik.

2.1.4. Timed Automata und Model-Checking
Die Zeit kann auf zwei fundamental unterschiedliche Arten modelliert werden. Die erste
Möglichkeit – die diskrete Zeitmodellierung – stellt die Zeit als Folge ganzzahliger Zeit-
punkte dar. Die Ereignisse in diesem Modell können nur zu diesen Zeitpunkten auftreten.
Ein Vorteil dieser Vorgehensweise ist die Möglichkeit des Rückgriffes auf andere diskrete

16

https://doi.org/10.51202/9783186257086 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:59:54. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186257086


2.1. Allgemeine Grundlagen

formale und semi-formale Modelle und somit deren einfache Erweiterung auf das Zeitver-
halten des zu untersuchenden Systems.

Die zweite Alternative ist die kontinuierliche Zeitmodellierung. Diese Vorgehensweise
betrachtet die Zeit als einen kontinuierlichen, linear wachsenden Wert. Das kontinuierli-
che Modell ist näher an den Systemen der physischen Welt, die Ereignisse zu beliebigen
Zeitpunkten auslösen können. Da die ganzen Zahlen Teilmenge der reellen Zahlen sind,
kann jedes diskrete Zeitmodell als ein Sonderfall eines kontinuierlichen Zeitmodells mit
entsprechender Diskretisierung, z. B. mittels Abtastung, betrachtet werden.

Timed Automata (TA) [AD94] sind ein formales Modell für die Abbildung der Systeme
mit einer endlichen Anzahl diskreter Zustände unter der Berücksichtigung eines kontinu-
ierlichen Zeitmodells. Dabei wird das klassische Model eines endlichen Automaten durch
eine Reihe reellwertiger, linear wachsender Variablen – der Uhren – erweitert. Eine tri-
viale Rücktransformation eines solchen Modells zu einem endlichen Automaten ist nicht
möglich, da in der Zeitdimension unendlich viele Zeitpunkte existieren.

Die praktische Handhabbarkeit der Timed Automata wird durch Modellierungsplattfor-
men erreicht, die auf dem Formalismus der TA basieren. Das zugrunde liegende Modell
wird dabei durch zusätzliche syntaktische Elemente erweitert. Diese tragen zur Erhöhung
der Nutzerfreundlichkeit und einer kompakten Darstellung der Modelle bei.

Die in dieser Arbeit eingesetzte Werkzeug-Plattform UPPAAL verwendet Netzwerke
von TA als Modellierungssprache [BDL04]. Diese Netzwerke bestehen aus mehreren TA, die
über sogenannte binäre Kommunikationskanäle kommunizieren bzw. synchronisiert werden
können. Durch die Kanäle kann ein Automat in mehrere kleinere orthogonale Automaten
unterteilt und somit kompakt dargestellt werden. Darüber hinaus wurden die Automaten
um weitere Elemente, wie z. B. Konstanten, ergänzt.

Neben der Möglichkeit Modelle mithilfe von TA aufzustellen, bietet UPPAAL die Option
den integrierten symbolischen Model Checker zu nutzen, um bestimmte Eigenschaften des
Modells zu beweisen bzw. zu widerlegen. Die Erfüllung der in einer Abfragesprache for-
mulierten Eigenschaften durch das TA wird mithilfe formaler Methoden zugesichert bzw.
durch die Generierung eines Gegenbeispiels widerlegt. Die in UPPAAL genutzte Abfrage-
sprache ist eine Untermenge der Timed Computation Tree Logic (TCTL) [BDL04].

2.1.5. Methoden der gemischt-ganzzahligen Optimierung
Ziel der mathematischen Optimierung ist das effiziente Bestimmen eines Extrempunktes
einer vorgegebenen Güterfunktion unter der Berücksichtigung gegebener Nebenbedingun-
gen. Methoden der mathematischen Optimierung werden in vielen Disziplinen als Grund-
bausteine für die Abbildung und Lösung domänenspezifischer Probleme eingesetzt. Als
Beispiel dafür dienen die Anwendungen in der Logistik und Produktionsplanung oder der
Berechnung von Tasklisten für das Scheduling der Echtzeitsysteme.

Die Grundform eines gemischt-ganzzahligen Optimierungsproblems ist wie folgt defi-
niert [Kal12]: Die Entscheidungsvariablen werden durch zwei Vektoren xT = (x1, · · · , xnc)
und yT = (y1, · · · , ynd

) repräsentiert. Vektor x enthält die reellen, y die ganzzahligen
Entscheidungsvariablen. Darüber hinaus enthält das Problem eine Menge der Gleichungs-
nebenbedingungen h(x, y) = 0 und der Ungleichheitsnebenbedingungen g(x, y) ≥ 0. Die
Vektorgleichungen h(x, y) = 0 und g(x, y) ≥ 0 werden dabei komponentenweise gelesen.

Das Optimierungsproblem besteht darin, ein Minimum (x′, y′) einer Gütefunktion J(x, y)
(jedes Maximierungsproblem lässt sich in ein Minimierungsproblem überführen) durch die
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Abbildung 2.4.: Softwaremodell eines PLS mit Angabe des Verantwortlichen [KM09, NAM02].

Belegung der Entscheidungsvariablen zu finden, sodass h(x′, y′) = 0 und die Ungleichheits-
nebenbedingungen g(x′, y′) ≥ 0 erfüllt sind.

Optimierungsprobleme können nach der Form der Gütefunktion, der Gleichungen der
Nebenbedingungen und den verfügbaren Entscheidungsvariablen klassifiziert werden. Zum
Beispiel sind die linearen Probleme eine für die Praxis relevante Unterklasse der Opti-
mierungsprobleme. In diesem Fall sind sowohl die Gütefunktion als auch die Nebenbe-
dingungen linear. Die Gütefunktion kann in diesem Fall als Vektormultiplikation und die
Vektorgleichungen der Nebenbedingungen als Matrixmultiplikation dargestellt werden.

Das Optimierungsproblem heißt ganzzahlig, falls es ausschließlich ganzzahlige Entschei-
dungsvariablen enthält, d. h. nc = 0. Sind Entscheidungsvariablen beider Klassen vorhan-
den, d. h. nc > 0 und nd > 0, heißt das Problem gemischt-ganzzahlig.

Ganzzahlige und gemischt-ganzzahlige Probleme haben generell eine höhere Komplexität
als entsprechende Probleme mit ausschließlich reellen Variablen. So ist z. B. die Klasse der
linearen Probleme mit reellen Variablen (LP) in polynomieller Zeit lösbar, während die
entsprechenden ganzzahligen Probleme (ILP) und somit auch die gemischt-ganzzahligen
Probleme (MILP) NP-hart (d. h. mit hoher Wahrscheinlichkeit nur mit exponentiellem
Aufwand lösbar) sind.

2.2. Laufzeitsysteme der Prozessleittechnik

2.2.1. Laufzeitsysteme
Eine allgemeine Definition des Begriffes „Laufzeitsystem“ (alternativ Laufzeitumgebung
oder runtime environment) ist in [App90] zu finden. Ein Laufzeitsystem implementiert
demnach grundlegende Konzepte der für die Programmierung verwendeten Programmier-
sprache. Die Definition umfasst die Rolle des Laufzeitsystems als Schicht zwischen dem
Betriebssystem und der von dem Anwender geschriebenen Anwendungen.

Eine Einordnung des Laufzeitsystems bietet die Abbildung 2.4 (in der Abbildung wird
das Laufzeitsystem als „Leitsystem-Betriebssystem“ bezeichnet). Das Laufzeitsystem baut
normalerweise auf einem Standard-Betriebssystem auf, das normalerweise bestimmte Echt-
zeitanforderungen erfüllt. Es existieren auch Anwendungen in denen Laufzeitsysteme die
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Aufgaben des Betriebssystems übernehmen und direkt auf der Hardware residieren (bare-
metal Anwendungen). „Nach oben“ bieten Laufzeitsysteme somit eine Schnittstelle für
vorkonfigurierte und anwendungsspezifische Programme. Aus der Sicht der Automatisie-
rungstechnik wird das Softwaresystem einer PNK als das Laufzeitsystem bezeichnet. Das
wichtigste Merkmal einer PNK ist der operative Eingriff in das kontrollierte System. Vor-
gänge innerhalb einer PNK haben unmittelbare Folgen im physischen System. Dabei spielt
die verwendete Hardwareplattform eine zweitrangige Rolle.

In [App90] werden die Standardbibliotheken einer Programmiersprache (z. B. die Menge
der standardisierten Funktionsbausteine aus der IEC 61131-3 [IEC11] oder die Funktionen
der C Standard-Bibliothek) nicht zum Laufzeitsystem dazu gezählt, da diese meistens in
der Programmiersprache selbst implementiert sind. In dieser Arbeit wird auf diese Unter-
scheidung verzichtet und die Implementierung der Standardfunktionen einer Programmier-
sprache zum Funktionsumfang eines Laufzeitsystems hinzugezählt.

Die typischen Funktionen eines allgemeinen Laufzeitsystems (eines, das nicht auf die
Leittechnik zugeschnitten ist) umfassen:

• Speicherallokation und -Freigabe: Die Mechanismen der Speicherverwaltung des
Betriebssystems werden auf die Abstraktion der jeweiligen Programmiersprache ab-
gebildet, z. B. durch einen Garbage Collector für Programmiersprachen ohne explizite
Speicherverwaltung wie Java. Der Speichermanagement erfolgt in enger Zusammen-
arbeit mit dem unterliegenden Betriebssystem.

• Abstraktion weiterer Betriebssystemfunktionen: Beispielsweise für den Zugriff
auf eine Echtzeituhr.

• Abstraktion und Unifikation der Hardware: Zum Beispiel I/O Handling oder
Anbindung an einen Feldbus.

• Speicherpersistenz: Die Speicherung des Systemzustands, insbesondere der Werte
der Variablen sowie der erstellten Objektinstanzen über den Neustart des Laufzeit-
systems hinweg. Dieses kann beispielsweise durch eine Synchronisation des Arbeits-
speichers mit einem nichtflüchtigem Speicher, z. B. einer Festplatte, realisiert werden.

• Profiling und Debuggen: Das Laufzeitsystem bietet Schnittstellen für den Zugriff
auf die aktuellen Performance-Indikatoren sowie Möglichkeiten der Feineinstellung
der Systemparameter zwecks Fehlersuche oder Optimierung des Systemverhaltens.

• Mechanismen der Introspektion und der Reflexion: Das Konzept der Intro-
spektion bezeichnet die Selbstauskunft über bestimmte Aspekte des Aufbaus und
des aktuellen Zustands des Systems durch das System selbst. Die Reflexion erweitert
die Introspektion durch die Möglichkeiten der dynamischen Strukturänderung des
Systems. Das Auslösen der Selbstauskunft kann entweder lokal oder über eine Kom-
munikationsschnittstelle erfolgen. Ein Meta-Modell wird dabei für die Modellierung
der Systemaspekte eingesetzt und macht das Softwaresystem „self-aware“ [BMR+96].

Eine Laufzeitumgebung muss nicht zwingend alle der aufgelisteten Funktionalitäten anbie-
ten. Beispielsweise gehören im Bereich der Leittechnik die Mechanismen der Introspektion
noch nicht zum Stand der Technik. Die Notwendigkeit der Selbstbeschreibung des Systems
für die Umsetzung von Meta-Modell-basierten Kommunikationsprotokollen, wie OPC UA,
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2. Grundlagen

erhöht allerdings den Druck auf die Hersteller der Laufzeitsysteme in Bezug auf diese
Funktionalität.

2.2.2. Models@run.time
Die am Ende des Abschnitts 2.2.1 erwähnten Mechanismen der Introspektion und der Re-
flexion eines Laufzeitsystems können zu dem Konzept des Models@run.time (alternativ
auch als Models@runtime bezeichnet) erweitert werden. Die Reflexion agiert im Kontext
einer Programmiersprache und ist damit im großen Maße an die Implementierung der aus-
geführten Anwendung gebunden. Im Gegensatz dazu existiert der Models@run.time An-
satz im Problemraum. Ein Beispiel dafür ist ein Regelkreis auf einem Rohrleitungs- und
Instrumentenfließschema (R&I Fließschema) und nicht seine Umsetzung mittels Baustein-
technik. Somit sind Models@run.time weitgehend unabhängig von der Implementierung
der Anwendung [BBF09]. Durch eine höhere Abstraktion des Modells und somit der Ob-
jekte der Selbstbeschreibung, weicht der Ansatz zunehmend die Grenzen zwischen den
Engineering- und den Laufzeitmodellen auf.

2.2.3. Speicherprogrammierbare Steuerungen
Die speicherprogrammierbaren Steuerungen (SPSen) oder Programmable Logic Control-
lers (PLC) gehören zu einer der wahrscheinlich wichtigsten Klasse der PNK-Hardware-
Plattformen für den Einsatz in der industriellen Automatisierungstechnik. Historisch gese-
hen entstanden die SPS als „überschaubarer Ersatz für einfache verbindungsprogrammier-
te Steuerungen, die vorher mit Schütz- und Relaistechnik (...) realisiert worden waren“
[TM09b]. Heute sind SPSen in unterschiedlichsten Leistungsklassen am Markt verfügbar
und decken unterschiedlichste Aufgaben sowohl im Bereich der Fertigungs- als auch der
Prozessautomatisierung ab.

Die speicherprogrammierbaren Steuerungen werden hauptsächlich auf der zweiten Ebe-
ne der Automatisierungspyramide eingesetzt, in der die einfachen Automatisierungsfunk-
tionen für die gesteuerten Prozesse bzw. die gesteuerten Maschinen mittels der SPSen
implementiert sind (die sogenannte Basisautomatisierung).

Die Grundstruktur einer SPS ist in der Norm IEC 61131-1 [IEC03a] beschrieben und
kann vereinfacht in Abbildung 2.5 dargestellt werden. Die wichtigsten drei Bereiche der
Grundstruktur umfassen die Schnittstellen für die Aktoren bzw. Sensoren, welche die Ver-
bindung zum gesteuerten System ermöglichen. Diese I/O-Anbindung kann entweder modu-
lar über spezielle I/O-Karten oder über Remote-I/O-Geräte realisiert werden. Remote-I/Os
werden normalerweise über ein Bussystem mit der SPS verbunden, z. B. PROFIBUS PA.

Die Signalverarbeitungsfunktionen beinhalten die internen Funktionen der SPS, die
Funktionen des Betriebssystems und die vom Anwendungsprogrammierer definierten an-
wendungsspezifischen Programme, die in den Sprachen der IEC 61131-3 beschrieben sind.

Die dritte Funktionsgruppe in Abbildung 2.5 sind die Kommunikationsfunktionen. Die-
se ermöglichen zum einen die Kommunikation mit weiteren Systemen, z. B. SPSen, zum
anderen werden die Schnittstellen zu dem Bediener bzw. dem Anwendungsprogrammierer
bereitgestellt. Die Kommunikation zu den weiteren Systemen ist in der Norm IEC 61131-5
spezifiziert [IEC01] und bildet die Grundlage für eine dezentrale Automation.

Die physische Ausführung der meisten SPSen erfüllt die Anforderungen an die PNKs,
z. B. in Bezug auf Elektromagnetische Verträglichkeit oder den lüfterlosen Betrieb. Somit
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Abbildung 2.5.: Funktionale Grundstruktur eines SPS-Systems nach IEC 61131-1 [IEC03a].
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Abbildung 2.6.: Zyklischer Betrieb eines SPS-ähnlichen Systems.

können SPSen auch nah am physischen Prozess eingesetzt werden.
Ein weiteres wesentliches Merkmal einer SPS ist der zyklische Betrieb (engl. cyclc scan

mode). Die in der SPS beinhaltete Signalverarbeitungslogik wird ununterbrochen in einem
Zyklus ausgeführt. Das heißt, dass jeder Zyklus aus folgenden Aktivitäten besteht [TM09b]:

• Einlesen der Eingänge: Die Eingänge werden in einen Puffer, das Prozessabbild,
kopiert und bleiben während des Zyklus unverändert.

• Abarbeitung der Programmlogik: Die Programmlogik operiert während der Aus-
führung auf dem konstanten Prozessabbild sowohl für die Eingabe- als auch für die
Ausgabeparameter.

• Schreiben der Ausgänge: Erst am Ende des Zyklus werden die Ausgangsvariablen
des Prozessabbildes auf die physischen Ausgänge der SPS übertragen.

Die worst-case Reaktionszeit der SPS, d. h. die Zeit bis eine Änderung des Eingangs eine
Änderung des Ausgangs bewirkt, kann sich somit auf die doppelte Zykluszeit belaufen.

Der zyklische Betrieb einer SPS ist in Abbildung 2.6 dargestellt. Aus Gründen der
Gleichmäßigkeit der Abtastung wird vor allem in der Prozessautomatisierung die Dau-
er des Grundzyklus konstant gehalten. In den meisten Fällen wird die CPU der SPS dabei
zwischen dem Ende der Ausführung der Logik und dem Beginn der Ausgabe nicht ge-
nutzt (unter der Annahme eines single-task Systems). Diese Zeit wird die Slackzeit (engl.
slack time) genannt und ist für die Zielsetzung dieser Arbeit von besonderer Bedeutung
(vgl. Abschnitt 1.1). Es wird zusätzlich zwischen der Funktionsreserve und der dynami-
schen Slackzeit unterschieden. Die Funktionsreserve oder statische Slackzeit entsteht auf-
grund der konservativen Auslegung des Systems und ist grundsätzlich in jedem Zyklus
vorhanden. Die dynamische Slackzeit entsteht aufgrund der Schwankungen der Laufzeit
der Programmlogik, somit variiert deren Ausmaß zwischen den einzelnen Grundzyklen des
Systems. Die Slackzeit im Allgemeinen ist daher die Summe aus der Funktionsreserve und
der dynamischen Slackzeit in jedem Zyklus.

2.2.4. IEC 61131-3 Sprachen – die Linguae francae der
Automatisierung

Die Norm IEC 61131-3 [IEC11] definiert fünf Programmiersprachen, die für die Definition
der Logik innerhalb der Program Organization Units (POUs) genutzt werden.

Die Sprachen der IEC 61131-3 (insbesondere die graphischen) sind universelle, weit ak-
zeptierte Programmier- bzw. Modellierungssprachen für die vielfältigen Anwendungen der
Automatisierungs- bzw. der Leittechnik. Aus diesem Grund werden neue Konzepte, wenn
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möglich, auf diese Sprachen abgebildet, um eine leichte Zugänglichkeit für die Endnutzer
zu gewährleisten. Als Beispiel dient die Darstellung von Regeln zur Modelltransformation
als ein Funktionsbausteinnetzwerk (FBN) [KQE11]. Die IEC 61131-3 beschreibt die fünf
folgenden Programmiersprachen:

Strukturierter Text (ST) Die textuelle Sprache strukturierter Text (ST) ist von Pascal
abgeleitet und ermöglicht die Programmierung der SPS in einer höheren Programmierspra-
che. Im Jahr 2013 wurde ST um die Paradigmen der Objektorientierung (OO) erweitert.
Es ist seitdem möglich Klassen und Interfaces in ST zu definieren. Es werden die Konzep-
te der OO wie Einfachvererbung, Polymorphismus und unterschiedliche Zugriffsarten der
Klassenelemente, wie z. B. Methoden oder Variablen, unterstützt.

Anweisungsliste (AWL) Im Gegensatz zu ST ist die textuelle Programmiersprache AWL
eine maschinennahe Sprache und ist mit Assembler vergleichbar. Die Sprache wird häufig
als Zwischensprache verwendet, auf die die übrigen Sprachen der Norm abgebildet werden
[JT09]. Die dritte Ausgabe der Norm hat AWL als veraltet erklärt. Es bedeutet, dass diese
Sprache in einer zukünftigen Ausgabe der Norm nicht mehr enthalten sein wird.

Kontaktplan (KOP) Die graphische Programmiersprache KOP ist in ihrer Darstellung
an Stromlaufpläne angelehnt. Die Sprache beinhaltet die sogenannten Kontakte und Spu-
len, die zwischen den Stromschienen geschaltet und mit booleschen Variablen verknüpft
werden. Beide Elemente drücken je nach Art der Verschaltung, z. B. sequentiell oder
parallel, boolesche Ausdrücke aus, z. B. eine logische UND- oder eine logische ODER-
Verknüpfung.

Ablaufsprache (AS oder engl. SFC) Sequential Function Chart (deutsch Ablaufspra-
che) (SFC) ist ein Beschreibungsmittel zur Ablaufsteuerung innerhalb einer SPS. Eine
detaillierte Beschreibung dieser Sprache ist in Abschnitt 3.4.1 zu finden.

Funktionsbausteinsprache (FBS oder engl. FBD) Der Einfachheit halber werden in
dieser Arbeit unter dem Begriff FBD die Funktionsbausteinsprache im engeren Sinne nach
der IEC 61131-3 und deren Erweiterung, die als Continuous Function Chart (CFC) bekannt
ist, zusammengefasst. Obwohl CFC nicht normiert ist, ist es eine gängige Programmier-
sprache, die von vielen Programmierumgebungen unterstützt wird [SVH13].

Die Kernelemente von FBD sind Funktionsbausteine, die zur Strukturierung der Pro-
grammlogik genutzt werden. Ein Funktionsbaustein kapselt einen ausführbaren Algorith-
mus und ggf. den Speicherbereich, auf dem der Algorithmus operiert, nach innen und
stellt wohldefinierte Ein- bzw. Ausgänge nach außen zur Verfügung. Dieser Ansatz trägt
zur komponentenbasierten Entwicklung der leittechnischen Anwendung bei. Man unter-
scheidet zwischen dem Bausteintyp, einer „Vorlage“ für den Baustein und seiner Logik,
und den Bausteininstanzen, die jeweils einen eigenen Speicherbereich besitzen. Die Typi-
sierung der Bausteine ermöglicht eine Wiederverwendung bewährter Algorithmen oder die
Nutzung von normierten Bausteintypen.

FBD dient zur signalorientierten Verschaltung von Eingängen bzw. Ausgängen der Funk-
tionsbausteininstanzen und beschreibt so den Datenfluss zwischen diesen bzw. den einge-
betteten Algorithmen. Signalorientierung bedeutet in diesem Kontext einen (aus der Sy-
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Abbildung 2.7.: Softwaremodell eines SPS-Systems nach IEC 61131-3 [IEC11]. Graue Recht-
ecke stellen Variablen dar, Pfeile stellen die Pfade des Variablenzugriffs dar.

stemsicht) quasi-kontinuierlichen Informationsaustausch zwischen den Bausteinports. Die
graphische Darstellung ist nicht nur für die intuitive Programmierung, sondern auch für
die Dokumentation [TM09a] des SPS-Programms von hoher Bedeutung. Diese Struktur
kann nicht nur für die Darstellung, sondern auch z. B. für Modelltransformationen genutzt
werden [GWE14].

Die Norm sieht Möglichkeiten zur Kombination der Programmiersprachen vor. So werden
typischerweise die Algorithmen innerhalb der Funktionsbausteine mittels ST beschrieben
und die Bausteininstanzen mittels FBD miteinander verschaltet.

Zusätzlich zu den Programmiersprachen definiert die Norm eine Menge von Funktions-
bausteintypen, die von den kompatiblen Systemen implementiert werden. Diese beinhalten
z. B. einfache Bausteintypen für arithmetische Operationen oder für die Zwischenspeiche-
rung boolescher Werte (Flipflops).

2.2.5. Softwarearchitektur eines Laufzeitsystems nach IEC 61131-3
Der dritte Teil des Standards IEC 61131 [IEC11] beschreibt neben den Programmierspra-
chen eine Software-Sicht auf eine SPS. Zusätzlich zu der Norm existiert der technische
Bericht IEC 61131-8 [IEC03b], der die Richtlinien für die Implementierung einer IEC
61131-3 kompatiblen Umgebung enthält. Das Softwaremodell ist in Abbildung 2.7 dar-
gestellt. Auf Grundlage dieses Modells basieren die meisten IEC 61131-3 kompatiblen oder
an die Norm angelehnten Laufzeitumgebungen. In der Abbildung entspricht die Konfigu-
ration der in Abschnitt 2.2.3 vorgestellten SPS. Die Ressourcen decken die Funktionen der
Signalverarbeitung, der Mensch-Maschinen-Schnittstelle und der I/O-Schnittstellen einer
SPS ab. Typischerweise bieten die Ressourcen eine Abstraktion für die CPUs einer SPS.

Die anwenderspezifische Anwendung wird laut der Norm in sogenannte POUs unter-
teilt, die die kleinsten voneinander unabhängigen Einheiten der Software-Anwendung bil-
den [JT09]. Die POUs werden hierarchisch aufgebaut: Ein Programm kann z. B. aus einem
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FBN bestehen, das aus weiteren Funktionsbausteinen oder Funktionen bestehen kann. Der
Unterschied zwischen den Funktionsbausteinen und den Funktionen liegt in der Abwesen-
heit eines internen Speichers bei den letzteren. Jede POU besteht aus einem Deklarations-
teil mit der Beschreibung lokaler Variablen und der externen Schnittstellen sowie einem
Anweisungsteil mit der Programmlogik.

Die unterschiedlichen Aspekte der Anwendung werden auf verschiedenen Ebenen der
POU-Hierarchie abgebildet. So hat z. B. nur das Programm die Möglichkeit des Zugriffs
auf die Peripherie einer SPS und stellt diese den enthaltenen POUs zur Verfügung.

Ressourcen enthalten POUs und einen oder mehrere Tasks. Die Tasks sind in der Lage,
die Ausführung einer Menge von Programmen oder untergeordneten POUs, z. B. Funk-
tionsbausteinen, anzustoßen. In der Praxis werden die Tasks periodisch (auch zyklisch
genannt) ausgeführt. Die Norm sieht jedoch auch eine Möglichkeit der Aktivierung durch
Ereignisse vor, z. B. durch Änderung eines I/O-Eingangs. Die Zuordnung der POUs zu
Tasks erfolgt in der Definition der Ressource.

Die Kommunikation zwischen den POUs kann auf unterschiedliche Art und Weise erfol-
gen. Bei POUs innerhalb eines Programms ist der direkte Datenfluss mittels Datenflussver-
bindungen möglich. Der Datenaustausch zwischen den unterschiedlichen Programmen in
einer Konfiguration kann mittels globaler Variablen realisiert werden. Der Datenaustausch
zwischen unterschiedlichen Konfigurationen oder einer SPS und einer nicht-SPS ist mittels
der Kommunikationsbausteine nach IEC 61131-5 [IEC01] oder Zugriffspfade umsetzbar.

2.2.6. Softwarearchitektur eines Laufzeitsystems nach IEC 61499
Die Norm IEC 61499 [IEC12] für verteilte Automatisierungssysteme erweitert bzw. ersetzt
die folgenden Aspekte der IEC 61131-3:

• Softwarearchitektur des verteilten Automatisierungssystems: Das Modell
der IEC 61131-3 bezieht sich auf eine Konfiguration, d. h. auf ein einzelnes SPS-
System. Fragestellungen der Verteilung einer Anwendung auf unterschiedliche Syste-
me werden nicht explizit angesprochen, sondern dem Nutzer überlassen bzw. über
Kommunikationsbausteine der oder Zugriffspfade realisiert. Die IEC 61499 definiert
dagegen ein Systemmodell für verteilte Anwendungen, das in Abbildung 2.8 zu finden
ist. Die meisten Elemente der Systemarchitektur, wie z. B. die Ressource oder das
Gerät, werden von der in dieser Arbeit vorgestellten einheitlichen Laufzeitsystemar-
chitektur wiederverwendet und daher detailliert in Abschnitt 6.1.1 behandelt.

• Ereignisgesteuerte Ausführungssemantik der Funktionsbausteine: Ähnlich
wie IEC 61131-3 nutzt die IEC 61499 FBNs als grundsätzliches Mittel zur Anwen-
dungsstrukturierung. Im Gegensatz zu einer Tasklisten-basierten Abarbeitung der
Bausteine, führt die Norm jedoch zusätzliche Ports bzw. Datenverbindungen zwi-
schen den Bausteinen ein. Diese ermöglichen den Austausch der Ereignisse zwischen
den Bausteinen. Die von den Bausteinen gekapselte Logik wird mittels ST und einem
Execution Control Chart (ECC) für die Ablaufsteuerung beschrieben. Die Ablauf-
steuerung durch den Ereignisfluss ist eine Voraussetzung für die verteilbare Archi-
tektur der Anwendung. Die Ereignisse können genau wie Daten über das Netzwerk
übertragen werden und sichern somit eine unveränderte Semantik der Anwendung
(abgesehen von der mit der Übertragung verbundenen Latenz).
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2. Grundlagen

Gerät 1 Gerät 2

Ressource 1 Ressource 2 Ressource 3

Prozessschnittstelle(n)

Kommunikationsschnittstelle(n)

Anwendung C

Anwendung A

Anwendung B

gesteuerter Prozess

Kommunikations-
netzwerk

Abbildung 2.8.: Softwaremodell verteilter Automatisierungssysteme nach IEC 61499 [IEC12].

Die Verbreitung und die Akzeptanz der Norm variieren je nach dem Anwendungsgebiet
und scheinen in der Fertigung größer als im Bereich der Prozesstechnik zu sein. Der Ver-
gleich zwischen den Konzepten der beiden Normen wird zusätzlich häufig durch Missver-
ständnisse erschwert [Thr13]. In den letzten Jahren wurde an Konzepten zur Koexistenz
beider Normen, z. B. in [ZSSB09], und an der automatischen, semantisch-korrekten Über-
setzung von IEC 61131-3 Programmen auf das Modell der IEC 61499, z. B. in [DDV14],
gearbeitet. Eine Übersicht über die Norm und die ihre Anwendung ist in [Vya11] zu finden.

2.2.7. Entwicklungsphasen leittechnischer Anwendungen
In der Domäne der Prozessleittechnik wird die Gesamtheit der Aktivitäten für die „Projek-
tierung und Konfiguration des Prozessleitsystems“ [TM09a] als das Engineering bezeichnet.
Die meisten Anwendungen werden dabei aus vorgefertigten Typen kombiniert und para-
metriert (vgl. Abbildung 2.4). Auch die Programmierung in den Sprachen der IEC 61131-3
kann, abhängig von der Betrachtungsweise, unter Aktivitäten der Engineering-Phase fallen.

Das Engineering kann abhängig von der „Transparenz“ des konfigurierten Objekts in
Black- und White-Box unterteilt werden. Bei einer Black-Box sind nur die äußeren Schnitt-
stellen eines Objekts sichtbar. Bei dem White-Box Ansatz ist hingegen die Betrachtung der
Elemente innerhalb der Systemgrenze möglich [Mey02, Alb03]. Der Kompromiss zwischen
den beiden Ansätzen, bei dem nur bestimmte Aspekte des Systems sichtbar sind, wird als
Gray-Box Engineering bezeichnet.

In [GE13b] wird neben dem Engineering zusätzlich die Aktivität der Typenentwicklung
der anwendungsspezifischen Bausteintypen aus Abbildung 2.4 hervorgehoben. Am anderen
Ende des Spektrums befindet sich die Tätigkeit der Orchestrierung komplexer Subsysteme
bzw. Dienste, die als Systems Engineering bezeichnet wird.

2.2.8. Akteure im Entwicklungsprozess leittechnischer Anwendungen
Das PLS unterliegen dem generischen Lebenszyklusmodell für technische Assets [VDI15b]
und hat somit unter anderem eine Errichtungs-, eine Inbetriebsetzungs- und eine Betriebs-
phase [NAM03]. Die während des Lebenszyklus anfallenden Aufgaben sind im Entwick-
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2.2. Laufzeitsysteme der Prozessleittechnik

lungsprozess der leittechnischen Anwendungen auf viele Akteure verteilt. Diese haben oft
nicht nur unterschiedliche fachliche Hintergründe, sondern sind auf mehre Unternehmen
verteilt. Typischerweise lassen sich die beteiligten Akteure in drei Gruppen unterteilen.

Hersteller Die Hersteller leittechnischer Komponenten können nach [VhKW09, NAM02]
in Leitsystem- und Feldgeräte-Hersteller sowie Tool-Lieferanten unterteilt werden. Die
Tool-Lieferanten entwickeln Software-Tools, die für das Engineering oder den Betrieb des
Leitsystems notwendig sind, z. B. eine Entwicklungsumgebung. Große Technologieherstel-
ler können die Hardware- und die Softwareplattform aus „einer Hand“ anbieten und somit
einen hohen Grad der Integration erreichen. Hersteller bieten unterschiedliche Produktlini-
en für die unterschiedlichen Anwenderbranchen an, die oft auf einem Kernprodukt basieren,
jedoch im Funktionsumfang erheblich variieren können.

Engineering-Dienstleister Die Dienstleister, auch Automation Contractor genannt, su-
chen die für die Anlagenautomatisierung benötigten Komponenten gemäß der vorgege-
benen Spezifikationen aus und begleiten die Anlage angefangen mit der Planung bis zu
ihrer Inbetriebnahme. In den Begriffen der NE 58 [NAM02] werden die Dienstleister als
„Errichter“ bezeichnet. Sowohl die Hersteller als auch die Anwender bzw. deren speziel-
len Abteilungen können diese Rolle übernehmen. Die Erstellung der Software-Anwendung
gehört auch zu den Pflichten des Engineering-Dienstleisters.

Betreiber Die Anwender des PLS Systems betreiben die Anwendung und die Anlage oh-
ne Änderungen in die Hardware- oder Softwarestruktur des PLS-Systems vorzunehmen.
Da aber typischerweise Änderungen während des gesamten Anlagenlebenszyklus notwendig
sind, übernehmen Betreiber bzw. spezielle Abteilungen oder beauftragte Firmen die Aufga-
ben des Engineerings. Die Anpassungen des Systems während der Betriebsphase wird auch
als Reengineering [LHFL14a, LHFL14b] bezeichnet. Insbesondere im Bereich der Anlagen-
automatisierung sind die vom Betreiber bzw. während des Betriebs eingebrachtes Know-
How äußerst anlagenspezifisch. Aus diesem Grund werden viele Engineering-Aufgaben vom
Betreiber der Anlage durchgeführt.

Eine grobe Übersicht über den mehrschichtigen Aufbau des Laufzeitsystems aus Sicht
der Anwender ist in Abbildung 2.4 zu finden. Der Aufbau des Laufzeitsystems ist demnach
in der Verantwortung des Herstellers eines solchen Systems. Der Errichter bzw. der Benut-
zer setzen in den meisten Fällen die vorkonfigurierten „Bausteine“ des Laufzeitsystems ein.
Dazu zählen vordefinierte Funktionsbausteintypen für Funktionsbeschreibung oder Face-
plates für das HMI. Die Entwicklung eigener Bausteintypen passiert nur in Spezialfällen
bzw. für die vom Hersteller nicht abgedeckte Funktionalität.
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3. Stand der Wissenschaft und Technik
Der Fokus dieses Kapitels liegt auf den gegenwärtigen Ansätzen der Flexibilisierung leit-
technischer Anwendungen und den verfügbaren Implementierungen industrieller Laufzeit-
systeme. Dem Leser wird ein Überblick über die Forschungsaktivitäten der letzten Jahre
und die Vorarbeiten des Autors geboten.

Die Forschungsaktivitäten werden in Kategorien der Beiträge zur Flexibilisierung leit-
technischer Anwendungen, der Arbeiten im Bereich der Laufzeitumgebungen in der Au-
tomatisierungstechnik und der Prozedurbeschreibungssprachen für leittechnische Anwen-
dungen unterteilt.

3.1. Eigene Vorarbeiten
Die für diese Arbeit relevanten Beiträge wurden im Rahmen der Tätigkeit als wissenschaft-
licher Mitarbeiter am Lehrstuhl für Prozessleittechnik der RWTH Aachen University und
der Mitgliedschaft im DFG Graduiertenkolleg „AlgoSyn“ (Algorithmische Synthese reak-
tiver und diskret-kontinuierlicher Systeme) angefertigt. Diese Beiträge lassen sich in drei
Themengebiete unterteilen, die für die Ausrichtung dieser Arbeit von Bedeutung sind: die
Architektur der Laufzeitumgebung, die Beschreibungsmittel der von der Laufzeitumgebung
ausgeführten Anwendungen und die leittechnischen Use-Cases, die nur mit rekonfigurier-
baren Laufzeitsystemen bzw. mit ressourcenadaptiven Algorithmen realisierbar sind.

Folgende relevante Ergebnisse wurden auf nationalen und internationalen Konferenzen
und Workshops veröffentlicht (nach Themengebieten und in chronologischer Reihenfolge
sortiert).

Softwarearchitektur der Laufzeitumgebung In [GKE12] wurde der Fortschritt des Lehr-
stuhls auf dem Gebiet modellbasierter Implementierung der auf der IEC 61131-3 basieren-
der graphischen Funktionsbausteinsprache (FBD) vorgestellt. Die Bausteinsprache ist eine
der sechs grundlegenden Beschreibungssprachen für Anwendungen in der Prozessleittech-
nik. Der Fokus der Arbeit liegt auf der Beschreibung des zugrunde liegenden objektori-
entierten Meta-Modells für die Funktionsbausteine sowie der groben Strukturierung des
Entwicklungsprozesses in eine Entwicklungs- und eine Engineeringphase (vgl. Abschnitt
2.2.7). Darüber hinaus wurden Gesichtspunkte des Baustein- und Bibliothekslebenszyklus
diskutiert.

Der als [GE13b] veröffentlichte Beitrag listet Anforderungen und Lösungsparadigmen für
ebenenübergreifende Laufzeitsysteme auf. Ebenso legt er einen Grundstein für die Struk-
turierung der Anwendungen durch die Einführung des Begriffs der „selbstständigen Kom-
ponente“. Diese nehmen eine Stellung zwischen den vorhandenen Organisationseinheiten
der Software aus der IEC 61131-3 und der IEC 61499 ein und stellen deswegen eine Mög-
lichkeit zur Homogenisierung der unterschiedlichen Ausführungssemantik beider Standards
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3.1. Eigene Vorarbeiten

dar. Die Komponenten schließen die Lücke zwischen dem verteilten Automatisierungssy-
stem und den (in den meisten Fällen) auf eine CPU bzw. Ressource zugeschnittenen An-
wendungen der IEC 61131-3. Diese Vorgehensweise erlaubt eine schrittweise Migration der
bestehenden Anwendungen auf die neu vorgeschlagene Architektur des Laufzeitsystems.
Eine detaillierte Beschreibung der selbständigen Komponenten und deren Einsatz im Kon-
text des Schedulings ist in Abschnitt 6.1.2 zu finden. Darüber hinaus wird das aus [GKE12]
bekannte Entwicklungsmodell unter den Aspekten der Black- und White-Box Modellierung
und Verifikation erläutert. Die überarbeitete Fassung des Beitrags erschien in deutscher
Sprache als [GE13a].

In [GE15] wurden die Möglichkeiten für den Einsatz von Echtzeiteigenschaften für den
Entwurf heterogener Systeme in der industriellen Automation aufgezeigt. Das Echtzeitsy-
stem wird dabei in eine Menge von End-to-End Flüssen unterteilt, die die gewünschten
End-to-End Systemverhalten beschreiben und implementierungsunabhängig sind. Unter
dem End-to-End Verhalten werden die erwünschten physischen Konsequenzen einer phy-
sischen Systemanregung verstanden. Dieses Verhalten aggregiert somit alle Aspekte der
Sensorik (z. B. die Signalverarbeitung), der Aktorik (z. B. das Losreißmoment) und der
tatsächlich ausgeführten Kontrolllogik (z. B. die Verzögerungen aufgrund der zyklischen
Abtastung). Die temporalen Eigenschaften der Flüsse werden mithilfe der angenomme-
nen und der worst-case Ausführungszeit sowie der Deadline-Charakteristik definiert. Der
dimensionslose Quotient beider Ausführungszeiten wird als der Kritikalitätsfaktor bezeich-
net und kann für die Auslegung des Systems verwendet werden. Diese Ansätze finden für
das Scheduling der selbstständigen Komponenten in Kapitel 6 Verwendung.

Prozedurbeschreibungsmittel für leittechnische Anwendungen und deren Semantik
In [YQGE12] wurde die Rolle der SFCs, einer zustandsorientierten graphischen Program-
miersprache aus der IEC 61131-3, als universelles Beschreibungsmittel für Anwendungen
in der Leittechnik diskutiert. Es wurde eine Reihe von Erweiterungen und Veränderungen
identifiziert, die benötigt werden, um diese Sprache für einen implementierungs- und do-
mänenübergreifenden Einsatz verallgemeinern zu können. Diese Erweiterungen umfassen
eine serviceorientierte Schnittstelle für SFC, die die Voraussetzungen für lose gekoppel-
te Anwendungen schafft sowie eine auf den Funktionsaufrufen basierende Variation der
Ausführungssemantik der Charts, welche eine effiziente und intuitive Ausführung der SFC-
Schritte und der enthaltenen Aktionen ermöglicht.

Die nachfolgende Publikation [YGE13] auf diesem Themengebiet führt eine Modifika-
tion der Syntax von SFC ein, die an UML Statecharts angelehnt ist. Die Sprache wird
als Sequential State Charts (SSC) bezeichnet und ist durch eine Kombination aus einem
universellen Beschreibungsmittel für Prozeduren in unterschiedlichen Bereichen der Leit-
technik mit einer eindeutigen Ausführungssemantik gekennzeichnet. Der Fokus der Arbeit
liegt auf der Einbettung der mithilfe von SSCs beschriebenen Prozeduren in ein auf IEC
61131-3 basiertes zyklisches Laufzeitsystem. Diese Aufgabe wird durch einen definierten
Ausführungsrahmen gelöst, der die Interaktion zwischen der Prozedur und den signal- so-
wie nachrichtenbasierten Kommunikationspartnern reglementiert. Die Semantik von SSCs
wurde mithilfe der UPPAAL Modellierungsumgebung für Timed Automata beschrieben.
Dieser pragmatische Ansatz ermöglicht eine knappe Beschreibung des Systemverhaltens,
die bei Bedarf in eine formale Form überführt werden kann. Darüber hinaus bietet das Tool
die Möglichkeiten der Simulation und der formalen Verifikation von Prozedureigenschaften.
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3. Stand der Wissenschaft und Technik

Die Sprache SSC wird im Rahmen dieser Arbeit mit zeitbehafteten Übergangstransitio-
nen und durch eine in-cycle Semantik erweitert. Die Formalisierung der Semantik erfolgt
ebenfalls unter Verwendung von UPPAAL (vgl. Abschnitt 6.2.4).

Leittechnische Anwendungen für rekonfigurierbare Laufzeitumgebungen In [GWE14]
wurde ein neuartiges regelbasiertes System vorgestellt, das für zahlreiche Aufgaben im Kon-
text der Automatisierung der Automatisierung (AdA) eingesetzt werden kann. Die Regeln
für das System werden mithilfe von Graphabfragen formuliert, die auf einer graphischen
NoSQL Datenbank ausgeführt werden. Die Datenbank kann verschiedenste Daten beinhal-
ten, die als attributierte Multigraphen dargestellt werden könnten. Eine solche Darstellung
ist für die meisten relevanten Modelle der Leittechnik in der Regel bereits vorhanden (vgl.
Sprachen der IEC 61131-3 in Abschnitt 2.2.4). Diese generische Vorgehensweise ermöglicht
das Formulieren von Regeln für ein breites Spektrum der Anwendungen. Da die Abfragen
Aussagen über partielle Graphen treffen, können diese jedenfalls graphisch formuliert und
dargestellt werden, was maßgeblich zur Akzeptanz der Lösung unter den Anwendern bei-
trägt. In der Publikation wurde ein R&I Fließschema als Datenquelle für die Regelanwen-
dung verwendet, das regelbasiert in eine funktionsbausteinbasierte Implementierung der
Basisautomatisierungsfunktionen, wie z. B. Einzelkontrollbausteinen und einfachen Regel-
kreisen, überführt wurde. Das Erzeugen dieser Kontrolllogik im laufenden Betrieb birgt
allerdings auch Gefahren, wie jeder Engineering-Eingriff. Aus diesem Grund wird das vor-
gestellte AdA-System als ein Anwendungsfall für die Transaktionskontrolle in Abschnitt
7.5 verwendet. Das regelbasierte System wurde zusätzlich im Rahmen eines Workshops
vorgestellt [GE14].

Ein weiterer Anwendungsfall für das adaptive Laufzeitsystem ist die nicht-echtzeitfähige
Kommunikation am Beispiel des OPC UA Kommunikationsprotokolls. Im Rahmen des
Projekts „open62541“ [PGP+15] wird am Lehrstuhl für Prozessleittechnik eine Open-
Source Implementierung eines OPC UA Kommunikationsstacks entwickelt, welche aus-
schließlich der standardisierten Spezifikation (IEC 62541 [IEC10]) des Protokolls folgt. Ein
wichtiger Aspekt des Projekts sind die Möglichkeiten der Einbettung des neuen Kommuni-
kationsstacks in vorhandene Anwendungen bzw. das Koppeln des OPC UA Meta-Modells
mit den vorhandenen Modellen. In dieser Arbeit werden die Möglichkeiten der Einbettung
eines open62541-Servers in die Laufzeitumgebung (vgl. Abschnitt 7.2) untersucht. Um den
Durchsatz des Servers zu erhöhen, wurde zusätzlich eine Reihe von Erweiterungen des
Standards für zustandslose OPC UA Kommunikation vorgestellt und deren Auswirkungen
untersucht [GPP15, GPP16].

Ein Ausschnitt der Anforderungsanalyse und der Use-Cases dieser Arbeit wurde vorab
auf einer Konferenz vorgestellt [GE16].

3.2. Ansätze zur Flexibilisierung leittechnischer
Anwendungen

3.2.1. Lose Kopplung der Komponenten durch Serviceorientierung
Die Anwendung einer serviceorientierten Architektur (SOA) im Umfeld der industriellen
Produktion wurde bereits 2005 in [JS05] vorgeschlagen. Das Ziel dieses Ansatzes ist es
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verteilte Systeme aufzubauen, die aus autonomen und gleichzeitig interoperablen Kom-
ponenten bestehen. Ein Augenmerk liegt dabei insbesondere auf Komponenten, die in
unterschiedlichen Verantwortungsbereichen z. B. Organisationen, Einheiten oder Anwen-
dungsdomänen liegen [OAS06].

Eine abstrakte Funktionalität wird als Dienst (engl. service) bezeichnet, der von einem
Dienstanbieter angeboten wird und von einem Dienstnutzer in Anspruch genommen wer-
den kann. Dazu muss jede Komponente eine wohldefinierte Schnittstelle besitzen, über
die der Dienst angeboten bzw. genutzt werden kann. Die Beschreibung dieser Schnittstelle
wird als Dienstbeschreibung bezeichnet und erfolgt unabhängig von der Implementierung
des Dienstes. Diese Abstraktion ermöglicht es die Schnittstellen eines Dienstes von dessen
interner Logik zu trennen. Das Kernmodell der Dienste [DIN14] sieht eine Möglichkeit vor,
Dienste zu typisieren sowie Anforderungen bzw. Zusicherung bestimmter Qualitätsmerk-
male an Dienste anzuknüpfen.

Während die Ideen eines standardisierten Interfaces der Software-Komponenten [TVK01]
bereits durch die Anwendung der Bausteinmuster aus der IEC 61131-3 eine weite Präsenz
in der Domäne der Automatisierungstechnik findet, bleiben die einzelnen Bausteine durch
die Signalverbindungen eng aneinander gekoppelt, was die Portabilität und die Flexibi-
lität der Anwendungen beeinträchtigt. Enge Kopplung bedeutet in diesem Kontext eine
statische Verbindung zwischen zwei Komponenten, die in der Engineering-Phase definiert
wurde und zur Laufzeit des Systems unveränderbar ist [EE13]. Aus dieser Perspektive
liegt der Vorteil von SOA in einer losen Kopplung der Komponenten, d. h. die einzelnen
Komponenten der Anwendung können flexibel und meist zur Laufzeit ihren Kommunikati-
onspartner aussuchen bzw. wechseln. Die Kommunikation erfolgt dabei üblicherweise über
einen diskreten Nachrichtenaustausch zwischen den Kommunikationspartnern. Die Erkun-
dung der verfügbaren Diensteanbieter und deren angebotene Dienste geschieht in der Regel
durch ein zentrales Dienstverzeichnis, bei dem sich die Anbieter anmelden [DMES14]. Die
Existenz eines Solchen ist aber nicht zwingend erforderlich [OAS06] z. B. falls alle Partner
bereits im Voraus bekannt sind.

Die Auswahl und Kopplung unterschiedlicher Diensteanbieter und Dienstnutzer durch
einen zentralen Manager wird als „Orchestrierung“ bezeichnet. Die passenden Kommunika-
tionspartner können automatisch mittels Ontologien [FLR+13, DMES14] oder durch Mo-
dellierung von Fähigkeiten einzelner Diensteanbieter und deren Abgleich mittels Computer-
aided Process Planning [PSA+15] identifiziert werden.

Die Anwendbarkeit des SOA-Ansatzes in der Fertigungstechnik wurde im Rahmen des
EU-Projekts SOCRADES untersucht und erfolgreich bewiesen [DSSG+08]. Dabei wurde ei-
ne Verbindung zwischen der Enterprise Resource Planning (ERP) Ebene und der Feldebene
mittels Web-Service-basierter Middleware hergestellt. Weitere Beispiele der SOA Anwen-
dung kommen aus den Domänen der Logistik und der Halbleiterherstellung [Kom06]. Eine
Studie bezüglich der Eignung von SOA für Programmierung industrieller Roboter-Zellen
[VPN09] stellte fest, dass die SOA-Ansätze den Ingenieuren helfen sich auf dem Gebiet
der eigenen Expertise zu fokussieren und den Schnittstellenaufwand zwischen unterschied-
lichen Komponenten der Zelle reduzieren. Zusätzlich war SOA weniger kostenaufwendig
als vergleichbare Techniken der OO. Darüber hinaus wird SOA als Architekturparadigma
für Industrie 4.0 postuliert [KWH13].

Auf dem Gebiet der Prozessautomatisierung und der Prozessleittechnik wurde ein uni-
verseller serviceorientierter Zugriff als Brücke zwischen der Prozessleitebene und der Funk-
tionalität auf höheren Ebenen der Automatisierungspyramide vorgeschlagen [SEE09] und
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ein Format für einen Nachrichtenaustausch spezifiziert [EE13]. Darüber hinaus wurde die
Anwendbarkeit einer SOA-basierten Middleware mit Fokus auf einer transparenten Ver-
teilung der Dienste [ME12] sowie die Nutzung der Dienste als Schnittstelle zwischen den
Batch- und MES-Systemen diskutiert [NAM12].

3.2.2. Agentensysteme
Agentensysteme folgen dem Grundgedanken komplexe Systeme als ein Verbund aus au-
tonomen, intelligenten Akteuren zu modellieren [Epp13]. Der Begriff kommt ursprünglich
aus dem Gebiet der künstlichen Intelligenz [WJ95, Woo09] und wird seit mehr als einer
Dekade im Kontext der Automatisierung verwendet [Epp00].

Für die Zwecke dieser Arbeit dient das Begriffssystem der [VDI10] als Grundlage. Eine
Diskussion alternativer Definitionen des Begriffes „Agent“ ist in [Yu16] zu finden. Laut
[VDI10] sind Agenten wie folgt definiert: „Ein [technischer] Agent ist eine abgrenzbare
(Hardware- oder/und Software-) Einheit mit definierten Zielen. Ein Agent ist bestrebt,
diese Ziele durch selbstständiges Verhalten zu erreichen und interagiert dabei mit seiner
Umgebung und anderen Agenten.“ Technische Agenten zeichnen sich durch folgende Ei-
genschaften aus, die in unterschiedlichem Maße ausgeprägt sein können [VDI10, Yu16]:

• Ein Agent arbeitet zielorientiert, d. h. er ändert sein Verhalten um das Ziel oder Ziele
zu erreichen.

• Reaktivität und Interaktion erlauben es dem Agenten sich an die Umgebung anzu-
passen bzw. mit anderen Agenten zu interagieren, um eigene Ziele zu erreichen.

• Ein Agent agiert innerhalb eines festgelegten Handlungsspielraums.

• Ein Agent kapselt seinen Zustand, sein Verhalten, die eigene Strategie und das Ziel
für den Zugriff von außen.

• Die Mobilität eines Agenten beschreibt seine Fähigkeit zwischen unterschiedlichen
physischen und logischen Ausführungskontexten zu wechseln.

• Autonomie und Persistenz erlauben dem Agenten selbständig zu handeln und den
inneren Zustand über seinen gesamten Laufzyklus zu konservieren.

Einige dieser Eigenschaften, wie z. B. die Kapselung, werden durch bereits vorgestellte
Paradigmen der komponentenbasierten Entwicklung, z. B. mittels der Funktionsbausteine,
abgedeckt. Aus diesem Grund existiert keine scharfe Trennlinie zwischen einem Programm
oder einer Anwendungskomponente und einem technischen Agenten. Die Eigenschaften der
Autonomie und der Interaktion sind allerdings aufgrund der verwendeten engen Kopplung
durch Signalverbindungen weniger ausgeprägt [Epp13]. Eine mögliche Lösung für diese
Problematik bietet die lose Kopplung der Agenten mittels SOA [Yu16].

Die Ausführung paralleler Aktivitäten auf Agentenbasis formt ein sogenanntes Multi-
Agenten System, das eine Alternative zu der traditionellen hierarchischen Anlagensteue-
rung darstellt. Diese Systeme können allerdings sowohl in hierarchischen, als auch in nicht
hierarchischen Systemen eingesetzt werden, z. B. im Kontext von CPPS [VHLL15].

Die Anwendbarkeit der Agentensysteme im Bereich der Leittechnik wurden im Laufe
der letzten Jahre untersucht [Epp00, Epp13, YSE14]. Ähnlich wie bei der Nutzung ande-
rer Technologien, spielen dabei insbesondere die domänenspezifischen Anforderungen eine
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herausragende Rolle. So sind beispielsweise die Handlungsspielräume der Agenten in der
industriellen Automatisierung bewusst sehr eng ausgelegt [Epp13]. Demnach sind Agenten,
die sich eigene Aufgaben selbst suchen, unerwünscht. Trotz dieser Einschränkungen wurde
eine Reihe von Aufgaben für Agentensysteme identifiziert und erfolgreich evaluiert [Yu16],
z. B. in den Aufgaben der Anlagensteuerung oder der Verwaltung von Modellen.

3.2.3. Modellgetriebene Ansätze

Ein weiterer Ansatz für die Flexibilisierung der leittechnischen Anwendungen ist deren
automatische Generierung aus höherwertigen Modellen. Solche höherwertige Modelle, z. B.
R&I Fließschemata, sind in der Domäne der Leittechnik nicht nur bereits vorhanden, son-
dern werden von den Anwendern zu unterschiedlichsten Zwecken, z. B. zur Dokumentati-
on, genutzt und gepflegt. Die für die Beschreibung solcher domänenspezifischen Modelle
verwendeten Sprachen werden als Domain-Specific Languages oder domänenspezifische
Sprachen (DSL) bezeichnet und sind oft speziell auf einen bestimmten Aspekt der Pro-
blemstellung zugeschnitten.

Meistens können die typischen Änderung der Umgebung einer Anwendung durch einfa-
che Änderungen des abstrakten Modells beschrieben werden. Als Beispiele dafür dienten
eine Änderung des kontrollierten physischen Systems oder eine Änderung des Rezepts ei-
nes Produkts. Kleine Änderungen auf der hohen Abstraktionsebene eines Modells können
allerdings drastische Änderungen in der Struktur bzw. dem Quellcode der leittechnischen
Anwendung auslösen.

Die Erzeugung dieser Änderungen bzw. der kompletten Anwendung soll durch modell-
getriebene Softwareentwicklung automatisiert werden. Diese ist wie folgt definiert: „Mo-
dellgetriebene Softwareentwicklung (Model Driven Software Development, MDSD) ist ein
Oberbegriff für Techniken, die aus formalen Modellen automatisiert lauffähige Software
erzeugen“ [SVE07]. „Formal“ bedeutet in diesem Kontext ein Modell, welches die kom-
plette Beschreibung eines Aspektes der Anwendung beinhaltet. Erzeugen von „lauffähiger
Software“ kann entweder durch die Generierung von Quelltext in einer anderen Sprache,
z. B. ST, oder durch Interpretation des Modells zur Laufzeit erfolgen. Die automatische Er-
zeugung der Anwendung heißt nicht zwangsläufig, dass die komplette Anwendung erzeugt
werden muss. Vielmehr können deren Strukturen nur bis zu einem bestimmten Grad der
Abstraktion erzeugt werden, z. B. bis zu der Abstraktion der Funktionsbausteininstanzen,
deren Typen manuell implementiert wurden.

Im Bereich der industriellen Automatisierung spielen die Sprachen der IEC 61131-3 oft
die Rolle der Zielplattform für modellgetriebene Ansätze bei der Verwendung eines Code-
generators. Es existieren Ansätze, die den kompletten SPS-Code ausgehend von Unified
Modeling Language (UML) Modellen [WVH11, FLR+13] bzw. Systems Modeling Langua-
ge (SysML) Modellen [TF11] generieren. Weitere Systeme erzeugen FB-basierte Logik für
Basisautomatisierung, z. B. Interlocks auf Basis von R&I Fließschemata [GWE14]. Die Me-
thoden der AdA zum automatischen Engineering, die auf Modellen basieren, können auch
als Teildisziplin der modellgetriebenen Softwareentwicklung behandelt werden, da das En-
gineering als Programmierung im Sinne des Software-Engineerings gesehen werden kann.
Eine Übersicht über den Einsatz modellgetriebener Softwareentwicklung in der Automati-
sierungstechnik ist in [Vya13] zu finden.
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3.2.4. Laufzeit-Rekonfiguration verteilter Automatisierungssysteme

Der effiziente Austausch bzw. ein Update der generierten Anwendung auf dem Laufzeit-
system stellt eine domänenspezifische Herausforderung dar. Im Gegensatz zu vielen gene-
rischen Softwaresystemen, kann die Beschaffenheit des kontrollierten physischen Systems
(z. B. hohe Kosten des Stillstandes) ein Update der Software zur Laufzeit bzw. in bestimm-
ten Zeitspannen erfordern.

Da die verteilten Automatisierungssysteme Gegenstand der IEC 61499 sind, kommen
erwartungsgemäß die meisten Beiträge aus der IEC 61499 Community, wie z. B. [BZXN02]
oder [LZVM11]. Die Anforderungen an den Vorgang der Rekonfiguration sind in [SMS+06]
anschaulich zusammengefasst. In [SZ11] wird ein Ansatz vorgestellt, der eine dedizierte
Rekonfigurationsanwendung vorsieht, die den Vorgang der Rekonfiguration überwacht. Da
die Rekonfigurationsanwendung auf der gleichen Ressource wie die zu konfigurierende Logik
ausgeführt wird, unterliegen beide den gleichen Echtzeitanforderungen. In [YV13] wurde
die Anwendbarkeit der Konfigurationsbefehle der Norm für die Zwecke der Rekonfiguration
untersucht und die vorhandenen Lücken auf der Anwendungsebene geschlossen.

Eine unterbrechungsfreie Rekonfiguration im Rahmen des FASA (Factory Automation
System Architecture) Rahmenwerks wurde in [WO14] vorgestellt. In einem Experiment
wurde der Algorithmus eines Funktionsbausteins bei einer Ausführungsfrequenz von 1 kHz
ausgetauscht. Dabei ging die Kontrolle über ein instabiles physisches System nicht verlo-
ren. Zur Synchronisation des Zustands des Funktionsbausteins wurde ein Algorithmus aus
[WRKO11] verwendet. Ein Überblick über das FASA Rahmenwerk ist in Abschnitt 3.3.3
zu finden.

3.2.5. Laufzeit-Rekonfiguration der IEC 61131-3-basierten
Laufzeitsysteme

Die Rekonfiguration zentralisierter leittechnischer Anwendungen auf Basis von standardi-
sierten IEC 61131-3 Umgebungen beinhaltet in der Regel das Anhalten des Laufzeitsystems
für die Änderung der Software. Darüber hinaus lassen manche kommerzielle Leitsysteme
den Austausch der Anwendung im beschränktem Maß zu (runtime-update oder delta-
update genannt).

Als methodische Erweiterung dazu kann ein übergeordnetes Supervision System
die Laufzeitumgebung in bestimmten „sicheren“ Zeitpunkten für ein Update anhalten
[PSVHM15]. Dieser Vorgang kann modellgestützt durchgeführt werden. Dabei wird an-
hand eines Modells die zu ersetzende Anwendung in einer IEC 61131-3 Sprache erstellt.
Anschließend wird eine Kommunikation mit der Laufzeitumgebung hergestellt und das si-
chere Anhalten initiiert. Das Laufzeitsystem hält nur in solchen Prozedur-Zuständen an,
die vom Nutzer explizit als sicher markiert wurden. Nach dem Anhalten kann die ausge-
führte Logik ausgetauscht werden und die zuvor gesicherten Zustände einzelner Bausteine
wiederhergestellt werden.

Weitere, an IEC 61131-3 angelehnte Laufzeitsysteme, wie z. B. ACPLT/RTE (vgl. Ab-
schnitt 3.3.4), lassen die Laufzeitänderung der gesamten Struktur der Anwendung mit dem
Models@run.time Ansatz zu. Diese Möglichkeiten wurden in [KQE11, GWE14] am Beispiel
des regelbasierten Engineerings erfolgreich demonstriert.
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3.3. Laufzeitsysteme der Automatisierungstechnik
Im folgenden Abschnitt werden exemplarisch vier Laufzeitsysteme unter den Gesichtspunk-
ten der Architektur und des Taskings kurz vorgestellt. Erwartungsgemäß sind die Aspekte
der Architektur der Systeme aus Bereichen der akademischen bzw. der industrienahen
Forschung durch Veröffentlichungen besser abgedeckt, als die der industriellen Laufzeitsy-
steme.

3.3.1. IEC 61131-3: CODESYS Runtime
Als Vertreter der IEC 61131-3 Softwarearchitektur wird die Laufzeitumgebung CODESYS
Runtime der Firma 3S-Smart Software Solutions GmbH vorgestellt. Es handelt sich dabei
um eine Soft-SPS. Das bedeutet, dass das eigentliche Laufzeitsystem auf unterschiedlichster
Hardware (sowohl aus dem industriellen als auch aus Konsumenten-Segment) lauffähig ist.
Die Anpassung der Software an die spezifische Hardware-Plattform erfolgt mithilfe von
einem Software Development Kit (SDK) [3S-15b]. So werden z. B. die I/O-spezifischen
Treiberbausteine angepasst. CODESYS Runtime dient als SPS-Kern für Plattformen vieler
Firmen, wie z. B. ABB, WAGO oder Festo.

Die Laufzeitumgebung läuft unter unterschiedlichen (Echtzeit-)Betriebssystemen (Win-
dows, Windows CE, Linux, VxWorks, QNX) [3S-15b]. Die Programmierung der Anwender-
logik erfolgt in einem dedizierten Entwicklungssystem (CODESYS Development System),
das den kompilierten Binärcode zur Laufzeitumgebung überträgt. Die Entwicklungsumge-
bung erlaubt die Einbettung vom C Programmen in IEC 61131-3 Projekte.

In Bezug auf Scheduling wird die Echtzeitfähigkeit des Systems in einer Windows-
Umgebung durch einen Systemtreiber, der auf die Hardware-Timer des Systems zugreift, si-
chergestellt [3S-15a]. Die Architektur der Laufzeitumgebung sieht einen IEC-Taskmanager
vor [3S-15b], der das zyklische Scheduling übernimmt. Es werden sowohl das Preemptive
als auch das Cooperative Scheduling-Modell des Betriebssystems seitens der Laufzeitum-
gebung unterstützt. Zwecks der erhöhten Zuverlässigkeit des gesamten Systems ist auch
ein redundanter Betrieb von zwei gekoppelten Laufzeitsystemen möglich.

Die CODESYS Umgebung dient als Testumgebung für diverse Forschungs- und Standar-
disierungsaktivitäten der Domäne der Automatisierungstechnik, z. B. für PLC-Statecharts
(vgl. Abschnitt 3.4.2) oder die objektorientierten Erweiterungen der Sprache ST [Wer09].

3.3.2. IEC 61499: 4DIAC FORTE
Das Eclipse-Projekt 4DIAC (The Framework for Distributed Industrial Automation and
Control) zielt auf die Entwicklung einer quelloffenen IEC 61499-kompatiblen Entwicklungs-
und Laufzeitumgebung [SZE10]. Die Laufzeitumgebung des Projekts heißt FORTE und
folgt dem Soft-SPS Prinzip bezüglich der Hardwareabstraktion. Das Laufzeitsystem wird
in C++ entwickelt und ist modular aufgebaut. Die meisten Erweiterungen sind somit als
FB-Bibliotheken zuladbar. Das Laufzeitsystem unterstützt diverse Betriebssysteme und
Hardwareplattformen, wie z. B. Lego Mindstorms nxt controller, Bachmann electronic M1
PLC und WAGO PFC200.

Die Umsetzung der IEC 61499 erfordert ein System der Ereignissteuerung. Diese wird
in FORTE über die sogenannten Event Chains [ZGSS07] implementiert. Unter gewissen
Einschränkungen können auch die Echtzeiteigenschaften der Chains zugesichert werden.
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Die grundlegende Architektur des Laufzeitsystems besteht aus einer Abstraktionsschicht,
einigen Systemdiensten wie Logging und einer Reihe von Bausteininstanzen, die aus den
mitgelieferten Bibliotheken stammen. Das Engineering und die Typenentwicklung erfolgt
über ein Eclipse-basiertes Integrated Development Environment (IDE) in Sprachen der
IEC 61131-3. Die Umgebung erlaubt die Kompilierung einzelner Bausteintypen für das
Zielsystem und stößt die Rekonfiguration der Laufzeitumgebung über die Dienste der IEC
61499 an.

Die quelloffene Laufzeitumgebung FORTE ist eine beliebte Plattform für die akademi-
sche und die industrienahe Forschung in der IEC 61499 Community.

3.3.3. FASA
Unter dem Namen FASA wird eine Softwarearchitektur für „die neue Generation der Auto-
matisierungssysteme“ [WRKO11, WO14, WGKO15] entwickelt. Diese wird von mehreren
Forschungszentren der Firma ABB entwickelt. FASA beinhaltet eine Referenzimplemen-
tierung eines Laufzeitsystems, die im Fokus dieser Zusammenfassung steht.

Die Architektur beschreibt ein verteiltes Automatisierungssystem, das zyklische Anwen-
dungen ausführt und somit einen Kompromiss zwischen den Ansätzen der beiden großen
Normen bildet. Das Ziel der Architektur ist eine flexible Zuordnung (eine n-zu-m Zuord-
nung) und Ausführung von mehreren Anwendungen auf mehrere Hardwareressourcen zu
erreichen. Die eigentliche Zuordnung der Anwendungen an einzelne Ressourcen und die
Berechnung der statischen Tabellen für das zyklische Scheduling einzelner CPUs involviert
die Lösung eines NP-harten Problems. Dieses wird mittels eines Constraint Programms
oder einer Heuristik gelöst [WGKO15].

Die C++ Referenzimplementierung der FASA-Laufzeitumgebung basiert auf einem
Mikrokernel-Prinzip, weshalb die meisten Features der Umgebung als Module zuladbar
sind. Der Kernel der Laufzeitumgebung enthält einen zyklischen Scheduler, der die zuge-
ordneten Blöcke aktiviert und bis zum Zeitpunkt der erneuten Ausführung schläft. Das
Scheduling unter Einsatz einer statischen Tabelle erlaubt die Nutzung der Slackzeit für
Verwaltungsaufgaben innerhalb des Systems, wie z. B. das Umschalten des Schedules zwi-
schen den Zyklen. Als IDE für die Systemkonfiguration wird die IDE des 4DIAC Projekts
verwendet [FDGV13].

3.3.4. ACPLT/RTE
Die quelloffene Laufzeitumgebung ACPLT/RTE wird am Lehrstuhl für Prozessleittech-
nik entwickelt und findet in unterschiedlichen Forschungs- und Industrieprojekten Einsatz.
Der Name besteht aus Abkürzungen: Aachener Prozessleittechnik (ACPLT) und Runtime
Environment (RTE). Die wichtigsten Differenzierungsmerkmale gegenüber den anderen
Laufzeitsystemen sind die ausgeprägten Möglichkeiten der Introspektion und der Reflexi-
on des Systems und der nutzerspezifischen Anwendung. Dieses ist durch den konsequenten
Einsatz des ACPLT/OV (Objektverwaltung) Meta-Modells [Mey02] möglich, das für die
Abbildung der Großzahl von Objekten innerhalb des Systems verwendet wird. Die Abfrage
der Meta-Informationen über die Objekte ist entweder durch ein Application Programming
Interface (API) durch die Anwendung selbst oder durch ein geeignetes Kommunikations-
protokoll mit Meta-Modell Unterstützung, wie z. B. ACPLT/KS (Kommunikationssystem)
[Alb03] oder OPC UA [IEC10], möglich.
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Abbildung 3.1.: Architektur der ACPLT/RTE Laufzeitumgebung mit Fokus auf das
Scheduling.

Das System ist in C99 umgesetzt, was eine hohe Flexibilität bezüglich der eingesetzten
Betriebssysteme und Hardwareplattformen ermöglicht. Zu den aktiv unterstützten Syste-
men zählen Windows und Linux Betriebssysteme sowie diverse Industrie-PCs der Firmen
WAGO und Siemens.

Eine Übersicht der Architektur des Laufzeitsystems ist in Abbildung 3.1 zu finden und
ähnelt in groben Zügen dem Aufbau der bereits vorgestellten Laufzeitsysteme. Das Lauf-
zeitsystem wird über einem Betriebssystem eingesetzt und stellt grundlegende „Dienste“
wie Speicherallokation, Persistenz und Hardware-Abstraktion der Anwendung zur Verfü-
gung. Die Modularität des Systems erlaubt das Laden vieler Klassen-Bibliotheken und
Instanzen. Diese Module können nicht nur auf der Anwendungsebene operieren, z. B. als
Funktionsbausteine im klassischen Sinne der IEC 61131-3, sondern auch den Funktions-
umfang des Systems erweitern, z. B. als Kapselung der Feldkommunikation durch Treiber-
bausteine oder als Implementierung eines Kommunikationsprotokolls.

Die Großzahl der Komponenten wird im Objektspeicher gelagert, dessen Persistenz von
der Laufzeitumgebung sichergestellt wird. Alle Objekte in diesem Speicher unterliegen
der Möglichkeit der Selbsterkundung. Es wird im Allgemeinen zwischen den passiven und
aktiven Objekten unterschieden [Mer16]. Zu der ersten Kategorie gehören Objekte, die
keinen ausführbaren Code beinhalten, wie z. B. die Klassen und die Objekte des HMI-
Modells. Die zweite Kategorie beinhaltet beispielsweise die Funktionsbausteine (FBs), die
FBDs und die selbstständigen Komponenten (SKs) mit den beinhalteten Algorithmen.
Das Scheduling ist in der Anlehnung an die IEC 61131-3 über einen zyklischen Scheduler
realisiert, dessen Scheduling-Tabelle sich ebenfalls im Objektspeicher befindet und somit
zur Laufzeit einsehbar und änderbar ist. Der Scheduler ruft die einzelnen Komponenten
nach dem Prinzip des hierarchischen Schedulings auf (vgl. Abschnitt 6.1.7).

Die Möglichkeiten der Reflexion beeinflussen den Entwicklungszyklus der Anwendun-
gen für ACPLT/RTE. Im Unterschied zur klassischen harten Unterteilung in Engineering-
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3. Stand der Wissenschaft und Technik

und Betriebsphasen eines Systems, können Anwendungen für ACPLT/RTE zur Laufzeit
engineert und migriert werden. Auch die Bibliotheken mit Bausteintypen können zur Lauf-
zeit geladen werden. Die Typenentwicklung geschieht in einer Eclipse-basierten IDE in C
[GE13b]. Darüber hinaus eröffnet die Betrachtung des ausführbaren Codes als generische
Objektstruktur Möglichkeiten für Modellinteraktionen der AdA [GWE14, WKS+16].

3.4. Prozedurbeschreibungssprachen für leittechnische
Anwendungen

Da im Rahmen dieser Arbeit eine Prozedurbeschreibungssprache für ressourcenadaptive
Anwendungen vorgestellt wird, folgt an dieser Stelle zunächst eine kurze Einführung in
die Prozedurbeschreibungssprachen, die in der Domäne der Automatisierungstechnik ein-
gesetzt werden. Die in diesem Kapitel dargestellten Sprachen beinhalten nur eine kleine
Auswahl aus der breiten Palette der Sprachen in der Automatisierungstechnik und dienen
zur Einordnung der im Rahmen dieser Arbeit erarbeiteten Konzepte. Eine umfassende
Analyse der Prozedurbeschreibungssprachen ist in [Yu16, Sch16] zu finden.

Die Grenze zwischen der konzeptionellen Beschreibung einer Prozedur und deren aus-
führbaren Implementierung verschwimmt zunehmend, da sich die meisten der vorgestell-
ten Sprachen für beide Aufgaben eignen. Damit ist eine Ähnlichkeit zu FBD festzustellen,
die sowohl für die Spezifikation der Programmlogik, als auch für deren Implementierung
eingesetzt wird. Aus diesem Grund wird an dieser Stelle auf die Beschreibung einiger spe-
zialisierten Programmiersprachen, wie z. B. ECC aus IEC 61499, verzichtet.

3.4.1. Sequential Function Chart
Eine Möglichkeit der Prozedurbeschreibung ist die Nutzung von Sprachen aus den existie-
renden Normen. Aus der IEC 61131-3 ist die Sprache SFC bekannt, die für die Definition
der Prozeduren auf zyklischen SPSs verwendet wird (vgl. Abschnitt 2.2.4).

SFC ist aus der Sprache GRAFCET [IEC13, SSF13] abgeleitet. Der syntaktische Aufbau
von SFC ähnelt im Groben einem endlichen Automaten. Ein SFC besteht aus Schritten,
Transitionen und gerichteten Kanten zwischen diesen. Zu Beginn der Ausführung ist der
initiale Schritt des SFCs aktiv. Der Übergang entlang einer Transition von einem aktiven
Schritt zum anderen kann nur dann passieren, wenn die mit der Transition verknüpfte
Transitionsbedingung gültig ist. SFC erlaubt auch parallele Verzweigungen – es können
also zu jedem Zeitpunkt auch mehrerer Schritte aktiv sein. Die Bedingungen können in
unterschiedlichen Sprachen formuliert sein, z. B. in KOP oder ST. Ist keine der Transitions-
bedingungen aktiv, so verbleibt der SFC in dem aktuell aktiven Zustand.

In [Bau04] wird zwischen zwei Ausführungssemantiken für SFC unterschieden: der
Maximal-Progress und der Lock-Step Semantik. Die Maximal-Progress Semantik führt
die Übergänge zwischen den Transitionen solange aus, bis keine Transition mehr wahr
ist. Die Lock-Step-Semantik erlaubt dagegen nur einen einmaligen Übergang jedes aktiven
Schrittes pro Aufruf, d. h. pro Zyklus der Laufzeitumgebung. Für zyklische Laufzeitsysteme
gehört die Lock-Step Semantik der SFCs zum Stand der Technik. Das Einführen einer un-
terschiedlicher Semantik ähnelt der Differenzierung zwischen der in- und der multi-cycle
Semantik für PLC-Statecharts (vgl. Abschnitt 3.4.2).
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3.4. Prozedurbeschreibungssprachen für leittechnische Anwendungen

Ein SFC führt Aktionen aus, die mit dem aktiven Schritt verknüpft sind. Die Wir-
kung der Aktionen ist durch sogenannte Aktionsbestimmungszeichen beschrieben. SFCs
operieren in einem Ausführungsrahmen (POU) und können somit die internen Werte ma-
nipulieren. Darüber hinaus haben SFCs die Möglichkeit, Eingänge bzw. Parameter anderer
Bausteine auf der globalen Ebene zu manipulieren, was ihnen das Orchestrieren baustein-
übergreifender Abläufe ermöglicht. Somit werden SFCs auch für die Definition der Abläufe
innerhalb einer SPS eingesetzt.

Die Manipulationen der Bausteine führen auf der globalen Ebene zu Abhängigkeiten
zwischen dem SFC und den manipulierten Bausteinen, welche die Portabilität der An-
wendungen negativ beeinflussen [GE13b]. Darüber hinaus haben SFCs eine Reihe weiterer
Nachteile, die bereits in [YGE13, Yu16] diskutiert werden. Dazu gehören die komplizier-
te Logik und die große Anzahl der Aktionsbestimmungszeichen der Schritte, mehrdeutige
Ausführungssemantik [Bau04] und die fehlenden Möglichkeiten der Hierarchisierung ein-
zelner Schritte.

Aus diesen Gründen wurde in den letzten Jahren an Sprachen gearbeitet, welche die
Vorteile, vor allem die Möglichkeit der direkten Einbettung in operative Laufzeitsysteme,
der SFCs beibehalten, jedoch besser in Bezug auf das Engineering und die formale Se-
mantik sind. Zu den zwei Alternativen gehören die PLC-Statecharts [WRKVH10] (vgl.
Abschnitt 3.4.2), sowie der am Lehrstuhl für Prozessleittechnik entwickelte Formalismus
namens Sequential State Chart (SSC) [YGE13] (vgl. Abschnitt 3.4.3). Beide Prozedurbe-
schreibungssprachen lehnen ihre Syntax an Harel’s Statecharts [Har87], eine in UML als
UML-Statechart übernommene Prozedurbeschreibungssprache [RJB04], an. Eine Anwen-
dung der an die Statecharts angelehnter Sprache zum Zweck der Prozedurbeschreibung
wurde bereits in den 90er Jahren vorgeschlagen [BCK98].

3.4.2. PLC-Statecharts
Die PLC-Statecharts wurden in [WRKVH10, Wit12] vorgestellt und passen die operative
Semantik der UML-Syntax an den Ausführungszyklus einer SPS-ähnlichen Laufzeitumge-
bung an. Die Anwendung des Modells der zyklischen Ausführung erlaubt den Verzicht auf
die ereignisorientierte Ablaufkontrolle innerhalb der PLC-Statecharts.

Es existieren zwei grundlegende Ausführungssemantiken für PLC-Statecharts. Durch die
Einbettung in den Takt der Laufzeitumgebung kann genau ein Schritt pro Zyklus besucht
werden, d. h. nur ein Zustandsübergang pro Zyklus ist möglich. Diese Semantik wird als
multi-cycle Semantik bezeichnet. Zusätzlich zu der multi-cycle Semantik kann auch eine
in-cycle Semantik für PLC-Statecharts eingeführt werden. Diese wird in Abschnitt 6.2.3
detailliert erläutert.

Aufgrund der Parallelen zum Abschnitt 3.4.1 folgt eine kurze Übersicht über die beiden
Arten der Semantik:

In-cycle bzw. Maximal-Progress Semantik: pro Zyklus der Laufzeitumge-
bung können mehrere Schritte des SFCs bzw. Zustände des Statecharts
besucht werden.

Multi-cycle bzw. Lock-Step Semantik: pro Zyklus der Laufzeitumgebung
kann nur ein Schritt des SFCs bzw. Zuständ des Statecharts besucht
werden.
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3. Stand der Wissenschaft und Technik

Ähnlich zu ihren Prototypen, den UML-Statecharts, unterstützen PLC-Statecharts
die Hierarchisierung der Zustände. Darüber hinaus beinhaltet die Definition der PLC-
Statecharts ein Modell zur formalen Verifikation des Verhaltens des Statecharts mithilfe
von UPPAAL. Dieses Modell beinhaltet eine minimalistische Abbildung des zyklischen
Abtastverhaltens einer SPS durch einen UPPAAL-Automaten. Die formale Definition der
Semantik adressiert eine Schwäche von SFCs.

Eine Referenzimplementierung der PLC-Statecharts erfolgte als ein Plugin für CODE-
SYS V3 – einer industriellen IEC 61131-3 Programmier- und Laufzeitumgebung.

3.4.3. Sequential State Chart
Die Prozedurbeschreibungssprache SSC wurde in [YGE13] vorgestellt und adressiert einige
Aspekte, die in der Definition der PLC-Statecharts unterspezifiziert wurden [Yu16].

Der erste Aspekt ist ein Ausführungsrahmen, der eine Kapselung des SSCs als ein FBN
und dessen signalorientierte Verbindung zu weiteren Bausteinen ermöglicht. Ein weiterer
Aspekt ist die Feinbeschreibung der Ausführungssemantik des Statecharts. Dazu gehört
z. B. eine angepasste Semantik der Aktionen in der do- und exit-Phasen eines Zustands
(so werden in SSC die Transitionsbedingungen nicht beim ersten Betreten des Zustands
überprüft). Das formale Verhalten von SSCs wurde basierend auf dem in [WRKVH10]
eingeführten UPPAAL-Modell beschrieben, damit die feinen semantischen Unterschiede
klar erkennbar sind.

Eine weitere Eigenschaft der SSCs ist die Möglichkeit der Beschreibung von Service-
orientierten Interaktionen aus den Aktionen der Zustände hinaus, sowie der Anschluss des
Ausführungsrahmens an eine SOA, die mittels nachrichtenorientierter Kommunikationen
umgesetzt wurde [YGE13].

Die syntaktischen Bestandteile der SSCs basieren sowohl auf der Syntax von Statecharts
als auch auf der Syntax von IEC 61131-3 SFCs, die folgenden Vereinfachungen unterzogen
wurden [YGE13, Yu16]:

• Keine Nebenläufigkeit: Da die SSCs mit dem Ziel einer strikten deterministischen
Ausführung im Kontext der Laufzeitsysteme ohne hardwareunterstützte Nebenläu-
figkeit entwickelt wurden, wird deren Syntax bewusst ohne Parallelverzweigungen
ausgelegt. Dem Programmierer bleibt somit nur die Möglichkeit Aktionen sequenzi-
ell in einem Zustand ablaufen zu lassen. Dies stellt die Ausführungsreihenfolge der
Aktionen sicher.

• Keine explizite Orthogonalität: Eine ähnliche Argumentation gilt für den Ver-
zicht auf explizite Modellierung orthogonaler Bereiche. Die Orthogonalität lässt sich
durch eine sequentielle Ausführung der Unterkomponenten „simulieren“.

• Keine Aktionen in den Transitionen: Die Syntax der Statecharts erlaubt sowohl
Ausführung von Zuweisungen bzw. Aktionen in den Transitionen als auch in den
Zuständen (genauer, in den „entry“, „do“ und „exit“ Phasen der Zustände). Somit
zeigen die Statecharts das Verhalten der Mealy- [Mea55] und der Moore-Automaten
[Moo56] bezüglich der Ausgabe. Da SSCs aber die Syntax von IEC 61131-3 SFCs
unterstützen sollten, die nur Moore-Verhalten zeigen (also keine Aktionen in den
Transitionen), wird auch nur dieses Verhalten in SSC übernommen.
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3.4. Prozedurbeschreibungssprachen für leittechnische Anwendungen

S1

T2

S0

T1

entry:
CALL FB

Abbildung 3.2.: Ein einfaches SSC im POU-Ausführungsrahmen.

• Verzicht auf die Hierarchisierung der Zustände: Explizite hierarchische Zu-
stände werden von SSC nicht unterstützt und sollen mithilfe eingebetteter Unter-
funktionen realisiert werden.

Im Zuge der weiteren Arbeit an der SSC-Spezifikation wurden die Statechart-Merkmale
durch das Entfallen der do- und exit-Phasen der Zustände weiter vereinfacht [WKS+16].

Ein Beispiel für die graphische Darstellung eines SSCs ist in Abbildung 3.2 zu finden.
Das SSC besitzt zwei Zustände, der Zustand „S1“ initiiert dabei einen Aufruf des Bausteins
„FB“ innerhalb seiner „entry“-Ausführungsphase.

Eine Referenzimplementierung der SSCs wurde für die Laufzeitumgebung ACPLT/RTE
umgesetzt und in mehreren Industriekooperationen erfolgreich validiert [WE15, Yu16].
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4. Anforderungsanalyse und
-spezifikation

Die Untersuchungen zum Stand der Wissenschaft und Technik in Kapitel 3 zeigen, dass in
der Domäne der Automatisierungstechnik viel Interesse an flexibler, verteilbarer Anwen-
dungsstruktur besteht. Zu diesem Thema wurden viele Beiträge geleistet, die teilweise in
bereits auf dem Markt verfügbaren Produkten zu finden sind. Dazu gehören z. B. durch
SOA lose gekoppelte Komponenten (vgl. Abschnitt 3.2.1) oder Agentensysteme (vgl. Ab-
schnitt 3.2.2). Die Aspekte der adaptiven Anwendungseigenschaften (insbesondere tempo-
raler Natur) und deren Anpassung wurden hingegen weitgehend außer Acht gelassen.

Aus diesem Grund werden in diesem Kapitel die Anforderungen an ein Modell für die
adaptive Anpassung der temporalen Eigenschaften leittechnischer Anwendungen erarbei-
tet.

Dazu werden zunächst die (domänen-)spezifischen Anforderungen aus der Perspekti-
ve der Automatisierungstechnik im Allgemeinen und der Prozessleittechnik im Speziellen
analysiert. Im zweiten Schritt werden aus diesen allgemeinen Anforderungen die spezi-
ellen Anforderungen an die zu erstellenden Methoden zur Flexibilisierung leittechnischer
Anwendungen in Bezug auf deren temporale Eigenschaften abgeleitet.

4.1. Analyse der domänenspezifischen Anforderungen
Im Folgenden werden die domänenspezifischen Merkmale der (Prozess-)Leittechnik vorge-
stellt, die für das zu definierende Konzept maßgeblich sind. Es wird kein Anspruch auf
deren Einzigartigkeit erhoben, da sicherlich viele dieser Merkmale auch für andere Anwen-
dungsdomänen zutreffen.

Lange Lebenszyklen der eingesetzten Komponenten Die unterschiedlichen Kompo-
nenten einer prozesstechnischen Anlage haben relativ lange Lebenszyklen. Nach [Li12]
besitzen mechanische Komponenten einen Lebenszyklus von mehreren Dekaden, während
elektrische/elektronische Anlagenkomponenten alle drei bis fünf Jahre erneuert werden. Die
Softwareelemente der Prozessleitebene werden am häufigsten aktualisiert – die Lebenszy-
klen der einzelnen Elemente werden mit 6 bis 12 Monaten angegeben. Auch wenn die
einzelnen Elemente häufiger aktualisiert werden, z. B. das Hinzufügen zusätzlicher Regel-
kreise, bleibt die Software-Plattform unverändert und ihr Lebenszyklus ist normalerweise
mit dem der prozessnahen Komponenten bzw. der elektronischen Anlagenkomponenten
vergleichbar. Die eigentliche anlagen- und prozessspezifische Logik ist dabei durch die se-
mantische Kopplung an die Anlage noch beständiger. Die langen Lebenszyklen erfordern
eine wandelbare Software, die über den gesamten Lebenszyklus der Anlage Anpassungen
unterliegen kann [VHDF+14, VHDB13].
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4.1. Analyse der domänenspezifischen Anforderungen

Lange Laufphasen ohne Unterbrechung Zusätzlich zu dem langen Lebenszyklus der An-
lage an sich kommen lange Betriebsphasen hinzu, in denen die Anlage ohne Unterbrechung
läuft bzw. laufen muss. Diese Phasen sind vor allem in der Prozessindustrie anzutreffen
und dauern bis zu mehreren Jahren am Stück, z. B. für eine Destillationskolonne [Fel01].
Die Ausfälle des Produktionssystems während einer solchen Phase sind mit allen Mitteln
zu vermeiden, denn auch die kürzesten Ausfälle sind mit erheblichen Folgekosten verbun-
den. Viele der Anlagen sind bereits automatisiert, daher erfordert jede Modernisierung eine
ökonomische Rechtfertigung sowohl in Bezug auf direkte Kosten, als auch für die durch die
Modernisierungsmaßnahme entstehenden Kosten der Betriebsunterbrechung [Kop11a].

Konsequenzen der Störungen Als Ergänzung des vorhergehenden Punktes ist es wich-
tig zu bemerken, dass auch die kürzesten Ausfälle erhebliche Kosten produzieren können.
Anders als bei der Fertigungstechnik, nimmt das Anfahren der Anlage nach einem unge-
planten Stillstand eine signifikante Zeit in Anspruch, während der kein (verkaufsfähiges)
Produkt produziert werden kann. Auch die Konsequenzen einer Störung können sowohl für
den Menschen, als auch für die Umwelt, deutlich gravierender sein als in anderen industriel-
len Bereichen. Aus diesen Gründen gilt die Automatisierungsbranche als „sehr konservativ“
und für neue Technologien „nicht empfänglich“ [KHAJ05].

Heterogene Nutzerkreise Da die Automatisierungstechnik eine klassische interdiszipli-
näre Domäne ist, haben die beteiligten Nutzer sowohl unterschiedlichste Hintergründe
als auch Qualifikationen vorzuweisen. So müssen z. B. unterschiedliche Kenntnisstände der
Nutzer in Regelungstechnik und im Bereich des Software Engineering berücksichtigt werden
[VHDB13, Anforderung T6]. Zusätzlich kommt das komplexe Zusammenspiel der Techno-
logiehersteller, Engineering-Dienstleister und der Endnutzer dazu (vgl. Abschnitt 2.2.8).
Aus diesem Grund wird eine Unterteilung der Nutzer in unterschiedliche Gruppen in den
NAMUR-Empfehlungen, wie z. B. in [NAM14], vorgenommen.

Jede Anlage ist ein Unikat Normalerweise handelt es sich bei jeder prozesstechnischen
Anlage um ein Unikat [Kop11a], das mit einem nicht zu vernachlässigbaren Aufwand er-
richtet wurde. Obwohl die Anlagen aus einer Menge der in ihrer Größe und Komplexität
variierenden Grundbausteine aufgebaut werden, bleiben viele Designentscheidungen und
Lösungen auf die individuelle Anlage zugeschnitten. Somit erfordert jede Anlage eine spe-
ziell auf sie angepasste Betriebs- und Wartungsstrategie.

Bestehende bewährte Ansätze und domänenspezifische Sprachen Wie in jeder Do-
mäne, existiert auch in der Leittechnik eine historisch geprägte Landschaft aus Sprachen
(Anforderung M1 aus [VHDB13]), bewährten Ansätzen und etablierten Mustern. Das Be-
folgen dieser Muster und Ansätze ist eine Grundvoraussetzung für die Akzeptanz einer
Technologie bzw. eines Produkts (Anforderung R3 aus [FVHF+15]) innerhalb der Domä-
ne. Die Anforderung bezieht sich nicht nur auf die eingesetzte Technologie, sondern auch
auf die Terminologie, die z. B. von den relevanten Normen oder dem jeweiligen Nutzerkreis
stark geprägt wird. Als Beispiel dienen die SPS Programmiersprachen aus der IEC 61131-3
(vgl. Abschnitt 2.2.4).
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4. Anforderungsanalyse und -spezifikation

Der Mensch als aktiver Systemgestalter Prozesstechnische Anlagen werden zentral
aus einer Leitwarte gesteuert [Fel01], in der Anlagenfahrer [VDI15a] die Aufgaben der Pro-
zessführung übernehmen bzw. überwachen. Auch wenn die Anlage automatisiert betreibbar
ist, haben die Bediener jederzeit die Möglichkeit alle Aspekte der Prozessführung zu beob-
achten bzw. die Automatik im manuellen Modus zu überstimmen. Die komplexen Vorgänge
werden teilweise immer noch manuell gesteuert [Fel01]. Die Rolle des Menschen wird auch
in den Umsetzungsempfehlungen für das Zukunftsprojekt „Industrie 4.0“ mehrfach unter-
strichen: „Der Mensch steht im künftigen smarten Produktionssystem im Mittelpunkt und
die Technik soll seine kognitive und physische Leistungsfähigkeit durch die richtige Balance
von Unterstützung und Herausforderung fördern“ [KWH13].

Neben diesen Merkmalen müssen zusätzlich die Unterschiede zwischen der Automatisie-
rungstechnik im Kontext der Verfahrens- und der Fertigungstechnik berücksichtigt werden
(vgl. Abschnitt 2.1.1).

4.2. Anforderungsspezifikation
Basierend auf den Ergebnissen der Anforderungs-Analyse, werden in diesem Abschnitt
Anforderungen an das zu erarbeitende Modell zur Flexibilisierung der leittechnischen An-
wendungen spezifiziert und in Kategorien der funktionalen sowie der nicht-funktionalen
Anforderungen unterteilt.

4.2.1. Funktionale Anforderungen
Die funktionalen Anforderungen spezifizieren die gewünschten Funktionalitäten eines Sy-
stems [Gli07] und beantworten die Frage: „Was soll das System leisten?“.

(F1) Anpassung der Struktur und (F2) Anpassung der Eigenschaften einer Anwen-
dung zur Laufzeit Anlagenänderungen, insbesondere Änderungen der Softwarekompo-
nenten, müssen wegen der langen Betriebsphasen im laufenden Betrieb vorgenommen wer-
den [Epp12, VHDF+14]. Dies sollte bereits bei der Entwicklung der Systeme berücksich-
tigt werden. Adaptive Softwarearchitekturen wurden auch im Kontext der CPS gefordert
[KRS12]. Sowohl die Struktur der Anwendung (F1), als auch deren Eigenschaften (F2),
müssen änderbar sein. Dieses muss insbesondere für anwenderspezifische Funktionen (An-
forderung T2 aus [VHDB13]) und unter den Gesichtspunkten des Ressourcenverbrauchs
gelten. Ein Beispiel für eine Strukturänderung kann das Hinzufügen einer Funktion sein,
die den Funktionsumfang der Anwendung erweitert, z. B. das Hinzufügen eines neuen Reg-
lers. Diese Änderungen bzw. Anpassungen gehen somit weit über das heute übliche Maß
der Anpassung bestimmter Parameter einer leittechnischen Anwendung hinaus. Die Ände-
rung der Eigenschaften einer Anwendung verändern Eigenschaften beinhalteter Funktio-
nen, ohne deren Anzahl zu verändern. So kann z. B. die Regelgüte eines Reglers durch ein
verbessertes Einschwingverhalten erhöht werden.

(F3) Anpassung an die äußeren Bedingungen (Adaptivität) Unter den äußeren Be-
dingungen sind im Kontext dieser Arbeit vor allem die (Rechen-)Ressourcen, die einer
Anwendung zur Verfügung stehen, gemeint. Die potentiellen Möglichkeiten einer Struktur-
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4.2. Anforderungsspezifikation

bzw. einer Eigenschaftsanpassung reichen für ein adaptives System nicht aus. Es müssen
zusätzlich eine Reihe von Regeln bzw. Algorithmen definiert sein, die diese Anpassungen
als Reaktion auf Änderungen der äußeren Bedingungen einleiten bzw. überwachen. Diese
Regeln betreffen sowohl die Struktur als auch die Eigenschaften einer Anwendung. Diese
Fluktuationen können nicht nur von transienter sondern auch von dauerhafter Natur sein.
So kann z. B. eine zusätzliche Applikation dauerhaft auf einer Plattform installiert wer-
den, was zu einer Abnahme der verfügbaren Ressourcen führt. Auf der anderen Seite kann
die gesamte Hardware-Plattform im Zuge einer Modernisierung aufgerüstet werden – die
Software muss von dieser Änderung ohne manuelle Rekonfiguration profitieren können.

(F4) Echtzeitfähigkeit Die Fähigkeit bestimmte Zusicherungen bezüglich des Zeitverhal-
tens eines Programms einhalten zu können, ist für die Beherrschung technischer Prozesse
essentiell. Die Softwaresysteme müssen auch während des Rekonfigurationsvorganges diese
Zusicherungen einhalten.

4.2.2. Nicht-funktionale Anforderungen
Die nicht-funktionalen Anforderungen beschreiben die Eigenschaften eines Systems [Gli07,
CNYM12] und beantworten die Frage: „Wie soll das System die funktionalen Anforderun-
gen umsetzen?“. Im Vergleich zu der Liste der funktionalen Anforderungen, ist die Liste der
nicht-funktionalen Anforderungen länger und stärker an das Gebiet der Prozessleittechnik
angepasst. Einige der aufgelisteten Aspekte finden sich in den standardisierten Richtlinien
für Bewertung der Softwarequalität wieder [ISO05].

(N1) Kompatibilität mit existierenden Laufzeitumgebungen Durch die Verarbeitung
analoger Signale sind die meisten Systeme und deren Architekturen auf den Einsatz zeit-
lich gesteuerter Systeme ausgelegt [VHDB13, Fel01]. Die eingesetzten Laufzeitumgebungen
der PNKs folgen den Paradigmen der zyklischen Ausführung und der Softwarearchitektur
der IEC 61131-3. Die zu erstellenden Konzepte dürfen diese Grundsätze nicht verändern
und müssen mit bereits existierenden Laufzeitsystemen kompatibel bzw. mit minimalen
Änderungen anpassbar sein.

(N2) Kompatibilität mit kooperativem Scheduling Auch wenn die IEC 61131-3 keine
Aussage bezüglich des Einsatzes eines bestimmten Scheduling-Verfahrens macht, werden in
den Umsetzungsempfehlungen [IEC03b] das unterbrechende und das kooperative Schedu-
ling miteinander verglichen (vgl. Einführung in Abschnitt 2.1.2). Die Vorteile des koopera-
tiven, von einer Taskliste gesteuerten Schedulers, sowie eine einfache Implementierung und
die Minimierung des Laufzeitaufwands, sprechen für den Einsatz eines solchen Systems für
die Laufzeitumgebungen der PNKs.

(N3) Minimaler Konfigurations- bzw. Migrationsaufwand Die Bewertung der Kom-
plexität der Konfiguration und der Migration steht aus Anwendersicht im Mittelpunkt der
Bewertung des gesamten Prozessleitsystems [TM09a]. Eine steigende Anzahl von Werkzeu-
gen und Oberflächen überfordert die Endnutzer und schafft Probleme bei der Nutzerakzep-
tanz [Jor11] des Systems bzw. der Lösung. Bei der Bedienung komplexer Funktionalität
sollte der Nutzer, wenn möglich, durch ein Assistenzsystem unterstützt werden. Der zu
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4. Anforderungsanalyse und -spezifikation

erstellende Vorschlag soll keinen „harten Bruch“ in Bezug auf die bestehende, anwen-
dungsspezifische Software darstellen [KM05]. Im Idealfall müssen die bereits existierenden
Anwendungen bei dem ersten Systemeinsatz übernommen werden können und ohne wei-
teres Zutun einsetzbar sein (zunächst auch ohne die zusätzliche Funktionalität, z. B. ohne
flexibles Zeitverhalten).

(N4) White-Box Engineering Dem Nutzer sollte es möglich sein, möglichst viele Aspek-
te des Systems zu untersuchen bzw. manuell verändern zu können. Diese nutzerorientierte
Vorgehensweise erfordert eine White-Box Implementierung, d. h. eine Implementierung, die
mit Mitteln der Introspektion und der Reflexion erkundbar bzw. änderbar ist. Diese Struk-
tur lässt nicht nur Änderungen durch den Nutzer, sondern auch durch andere Systeme,
z. B. regelbasierte Eingriffe oder andere Änderungen der Anwendungsstruktur im Rahmen
der AdA zu.

(N5) Verwendung akzeptierter Programmiersprachen bzw. Konzepte Das einfache
Engineering und die Nutzerakzeptanz setzen die Verwendung der in der Anwendungsdomä-
ne akzeptierter Programmier- bzw. Beschreibungssprachen voraus. Denn nur solche Spra-
chen bieten eine Voraussetzung für die hersteller- und branchenübergreifende Nutzung und
Dokumentation der erstellten Konzepte oder Programme. In der Domäne der Prozesslei-
ttechnik eignen sich für diese Zwecke insbesondere die graphischen Programmiersprachen
der IEC 61131-3 [JT00, TM09a] (vgl. Abschnitt 2.2.4).

(N6) Breite Anwendbarkeit Die Methoden und Konzepte sollen nicht nur im Kontext
einer bestimmten Aufgabe aus der Domäne der Leittechnik, wie z. B. der Implementierung
eines Reglers einsetzbar sein, sondern sich für mehrere Anwendungsszenarien eignen. Eine
weitere Möglichkeit der Erweiterung des Einsatzgebietes ist die Nutzung des Systems über
die Grenzen einzelner Schichten der Automatisierungspyramide hinweg, z. B. zwischen der
Betriebsleitebene und der Prozessleitebene.
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5. Analyse der Ansätze für
Anwendungen mit flexiblen
temporalen Eigenschaften

In diesem Kapitel werden existierende Ansätze für Anwendungen mit flexiblen Eigenschaf-
ten und deren operative Implementierung vorgestellt. Die Ansätze wurden in zwei Ka-
tegorien aufgeteilt. Die erste Kategorie in Abschnitt 5.1 beinhaltet Vorgehensweisen zur
dynamischer Änderung der temporalen Eigenschaften (vor allem der Ausführungszeit) ein-
zelner Anwendungskomponenten. Die zweite Kategorie in Abschnitt 5.2 fasst Verfahren zur
flexiblen Anpassung der Zykluszeit der Komponenten in zyklischen Systemen zusammen.
Die Ausführungszeit in jedem Zyklus bleibt dabei unverändert.

Im zweiten Schritt werden Potentiale dieser Ansätze aus dem Bereich der Echtzeitsyste-
me in Bezug auf die Anwendbarkeit im Bereich der Automatisierungstechnik in Abschnitt
5.3 untersucht. Die Eignung wird anhand der nicht-funktionalen Anforderungen aus Ab-
schnitt 4.2.2 beurteilt.

Durch den Fokus auf die temporalen Eigenschaften steht primär die Anforderung der
Flexibilisierung der Anwendungseigenschaften (F2) aus Abschnitt 4.2.2 im Mittelpunkt
der Betrachtung. Trotzdem darf die Struktur der Anwendung nicht vernachlässigt werden.
Schließlich dient sie als Bezugspunkt für die Komponenten mit flexiblen Eigenschaften.
Aus diesem Grund werden auch Ansätze für das Scheduling flexibler Komponenten und
deren Kopplung mit in die Betrachtung einbezogen (insbesondere in Abschnitt 5.1.6).

Darüber hinaus sind alle vorgestellten Ansätze mit der Ausführung in Echtzeit kompa-
tibel und erfüllen somit a priori die funktionale Anforderung F4.

5.1. Dynamische Änderung temporaler Eigenschaften
einzelner Anwendungskomponenten

Im Allgemeinen sind zwei Vorgehensweisen für die Flexibilisierung des Zeitverhaltens einer
Komponente erkennbar, die in jedem der vorgestellten Ansätze zu finden sind [GGH12]:

• Anpassung der Ausgabequalität der Komponente an die im Voraus bekannte Res-
sourcenverfügbarkeit und

• inkrementelle Verbesserung der Ausgabe bei unbekannter Ressourcenverfügbarkeit.

Unter Ressourcennutzung wird in dieser Arbeit primär die vom Algorithmus benötigte Re-
chenzeit verstanden. Der erste Ansatz passt die Qualität der Ausgabe eines Algorithmus an
die festgelegte Rechenzeit an. Das Ziel ist hier z. B. eine möglichst hohe Genauigkeit einer
numerischen Approximation der Lösung einer Differenzialgleichung bei einer vorgegebenen
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Rechenzeit zu erreichen. Die zweite Vorgehensweise hält zu jedem Zeitpunkt eine „akzep-
table“ Lösung bereit, die inkrementell verbessert wird, sodass die Berechnung jederzeit
abgebrochen werden kann.

Neben der Qualität der Ausgabe können auch weitere Kriterien über den Ressourcen-
verbrauch eines Algorithmus entscheiden. So kann, z. B. die Laufzeit eines Algorithmus
von bestimmten Eigenschaften der Eingabe abhängen (neben deren Größe). Sollte die-
se Eigenschaft im Voraus ermittelbar bzw. manipulierbar sein, so kann das System die
Ressourcennutzung des Algorithmus vorhersagen bzw. beeinflussen.

5.1.1. Adaptive Algorithmen
Adaptive Algorithmen sind Algorithmen, deren Laufzeit nicht nur von der Größe der Ein-
gabe, sondern auch von einem bestimmten Qualitätsmerkmal dieser abhängt [ECW92].
Ein Beispiel für eine Klasse solcher Algorithmen sind Sortieralgorithmen, die auf den „fast
sortierten“ Probleminstanzen weniger Rechenzeit benötigen als auf den komplett unge-
ordneten Instanzen gleicher Größe. Adaptive Verfahren eignen sich insbesondere für das
Problem des Sortierens, da viele Probleminstanzen in der Praxis bereits nah an der ge-
wünschten Reihenfolge vorsortiert sind. Das Qualitätsmerkmal, von dem die Laufzeit zu-
sätzlich abhängt, ist in diesem Fall die „Unordnung“ der Probleminstanz.

Eine Möglichkeit die Unordnung quantitativ auszudrücken, ist die Messung der Anzahl
der Inversionen in der Eingabesequenz (x1, . . . , xn). Ein Paar (i, j) ist eine Inversion genau
dann, wenn i < j und xi > xj [ECW92]. Die Anzahl der Inversionen für eine bereits
sortierte Folge ist null und hängt nur von der Ordnung der Elemente in der Eingabesequenz
ab.

Der Wert des Qualitätsmerkmals muss dem Algorithmus nicht im Voraus bekannt sein,
sondern wird zur Laufzeit von ihm „entdeckt“. Dieses geschieht z. B. durch die Anzahl der
Tauschoperationen während des Sortiervorgangs. Somit legt der Wert des Qualitätsmerk-
mals, neben der Eingabegröße, die tatsächliche Laufzeit des Algorithmus fest und kann in
die Analyse seiner Laufzeit einbezogen werden. Diese Analyse hängt stark von der genauen
Definition des Qualitätsmerkmals und dem untersuchten Algorithmus ab.

5.1.2. Anytime Algorithmen
Anytime Algorithmen [DB88] haben die Möglichkeit, Rechenzeit gegen Qualität der Aus-
gabe „einzutauschen“ und besitzen folgende charakteristische Merkmale [Zil96, Gra96,
Kop11a]:

• Qualitätsmaß der Lösung: Der Algorithmus liefert neben dem Ergebnis auch eine
Bewertung dessen Qualität. Dieser Wert muss relativ einfach zur Laufzeit berechen-
bar sein und kann von den abhängigen Systemen evaluiert werden. Die Qualität muss
kein quantitativer Wert sein.

• Vorhersagbarkeit: Der Zusammenhang zwischen der Laufzeit und der Qualität der
Ausgabe muss für die Ressourcenzuteilung bekannt bzw. vorhersagbar sein. Diese
Information kann entweder über eine Funktion der Qualität in Abhängigkeit von der
Laufzeit oder in Form einer Wahrscheinlichkeitsverteilung vorliegen.
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• Monotonie: Die Qualität der Lösung verbessert sich mit der steigenden Laufzeit
des Algorithmus monoton.

• Unterbrechbarkeit und Fortsetzung: Anytime Verfahren können jederzeit unter-
brochen werden und geben die bis zu dem Zeitpunkt beste Lösung aus. Ebenso kann
die Berechnung nach der Unterbrechung weiter fortgesetzt werden – die partiellen
Ergebnisse unterliegen dabei weiterer Verfeinerung.

Neben der im letzten Punkt erwähnten Unterbrechbarkeit des Algorithmus, existiert noch
ein zweiter Betriebsmodus der Ausführung über eine vereinbarte Zeit [Gra96] bzw. über
diese Zeit hinaus. Wegen der Monotonie kann das Verfahren die zusätzliche Rechenzeit
sinnvoll nutzen und die Lösung verbessern.

Im Allgemeinen kann man die inkrementelle, monotone Verbesserung der Lösung als das
Hauptmerkmal dieser Klasse der Verfahren ansehen. Veröffentlichungen zu Anytime Algo-
rithmen haben deswegen die Entwicklung solcher Verfahren für bereits bekannte Probleme
im Fokus. Typischerweise wird nur die Rechenzeit als Ressource angesehen.

5.1.3. Ressourcenadaptive Algorithmen
Ressourcenadaptive (Resource-Aware oder „multi-fidelity“ [PSGS04]) Algorithmen haben
die Möglichkeit, ihr Verhalten (z. B. über die Änderung der Parameter) in Abhängigkeit
von bekannten Einschränkungen bzw. der Verfügbarkeit von Ressourcen zu variieren. Die
Variation kann z. B. die Qualität der Lösung oder die benötigte Rechenleistung betreffen.

Anwendungen dieser Algorithmusklasse sind vor allem im Bereich des Cloud-Computings
und der drahtlosen Netzwerke zu finden. Zum einen unterliegt die verfügbare CPU-Zeit
Schwankungen. Zum anderen ist die verfügbare Bandbreite oder die Verbindungsquali-
tät der Netzwerkanbindung betroffen. Andere Anwendungsbeispiele kommen z. B. aus der
Softwareverifikation, wobei der verfügbare Arbeitsspeicher oft der limitierende Faktor ist
[ATV08].

Die Umsetzung eines ressourcenadaptiven (RA) Ansatzes erfordert die Implementierung
einer Ressourcenüberwachung, um die verfügbaren Ressourcen jederzeit erfassen zu kön-
nen und eines Entscheidungsmechanismus, um das eigene Verhalten bzw. die Qualität der
Lösung anzupassen [GGH12]. Die Formulierung der Regeln zur Anpassung kann entweder
dem Endnutzer überlassen werden oder von den Algorithmen gekapselt sein – die tatsäch-
lichen Mechanismen der Anpassung sind stark domänenspezifisch.

Ein Beispiel für ein RA-Framework aus dem Bereich der eingebetteten Systeme ist das
ACTORS Projekt [BBE+11]. Das Ziel des Projekts ist die Entwicklung eines adaptiven
Schedulers für das Linux Betriebssystem, der die Zuteilung der Ressourcen abhängig von
den Anforderungen der Anwendungen anpassen kann. Die Zuteilung passiert anhand der
vordefinierten diskreten Service-Levels der gemanagten Anwendungen, die im Dialog mit
dem Ressourcen-Manager stehen. Die einzelnen Anwendungen können dem Ressourcenma-
nager ihren Bedarf an Ressourcen über die Angabe ihrer „Zufriedenheit“ mitteilen. Der
Manager bekommt seinerseits die Übersicht über die verfügbaren Ressourcen des Systems.
Im Projekt werden zwei Ressourcenklassen benutzt – die Bandbreite der CPU-Nutzung
(d. h. der Anteil der gesamten CPU-Leistung, der der Anwendung zugeteilt wurde) und
die maximale Wartezeit der Anwendung auf die Zuteilung der Ressource.
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Es existieren weitere Beispiele für die Nutzung von RA-Algorithmen in Bereichen der
Service-Orchestrierung [PSGS04, NK12], bei der Analyse von Datenströmen [GY06] oder
im Rechencluster-Management [PCC+11].

Im Gegensatz zu Anytime Algorithmen steht bei ressourcensensitiven Ansätzen nicht die
inkrementelle Verbesserung der Lösung im Mittelpunkt. So können z. B. bei vordefinierten
Service-Levels unterschiedliche Versionen eines Algorithmus abgearbeitet werden, die die
Zwischenlösung nicht beliebig verbessern. Darüber hinaus ist die Betrachtung von anderen
Ressourcen als der Rechenzeit bzw. deren Kombination möglich. Als Beispiel dienen die
„Power-Aware“ Echtzeitsysteme, die den Energieverbrauch des Systems berücksichtigen
[AMM04].

5.1.4. Elastische Algorithmen
Als Kombination der ressourcensensitiven und Anytime Algorithmen für den Bereich des
Cloud Computings wurden in [GGH12] die elastischen Algorithmen vorgeschlagen, in deren
Definition der Begriff der Elastizität in seiner ökonomischer Bedeutung verstanden wird.
Somit bedeutet die Elastizität das Maß der Änderung einer Variable der Kostenfunktion
bei Änderung einer anderen Variable, z. B. wie reagiert der Preis der Cloud-Infrastruktur
auf die Änderung der Nachfrage.

Die Definition der elastischen Algorithmen geht von einer inkrementellen Berechnung
der Ergebnisse aus, wobei in jeder Iteration nicht nur der aktuell beste Wert des Ergebnis-
ses, sondern ein zusätzlicher, für die inkrementelle Verbesserung notwendiger, Kostenwert
berücksichtigt wird.

5.1.5. Imprecise Computation Model
Das Imprecise Computation Model wurde entwickelt um transiente, d. h. vorübergehende
Überlastungen eines Echtzeitsystems ausgleichen zu können [LLB+94, But11]. In einem
solchen Fall können die Ausführungszeiten der einzelnen Komponenten einer Anwendung
reduziert werden, um zusätzliche Ressourcen verfügbar zu machen. Die Voraussetzung
dafür ist aber ein auf diese Anpassbarkeit abgestimmter Entwurf der einzelnen Kompo-
nenten. Eine Möglichkeit dafür wäre z. B. die Nutzung von Anytime Verfahren, die durch
die Komponenten gekapselt werden.

Das Imprecise Computation Model stellt eine Verallgemeinerung der Anytime Algorith-
men dar [LLB+94] und hat nicht den eigentlichen Algorithmus bzw. seine Charakteristika,
wie die inkrementelle Verbesserung der Ergebnisse, sondern die Aspekte der Organisation
bzw. der Komposition solcher Algorithmen zu einem Gesamtsystem und dessen Betrieb
innerhalb eines Betriebssystems im Fokus.

Die Vorgehensweise des Modells leistet einen positiven Beitrag zu der Fehlerrobustheit
des Softwaresystems und ermöglicht die sogenannte „graceful degradation“, also eine ange-
messene Reaktion des Systems auf Fehler bzw. Überlastungen. In dem Kontext des Modells
führt die Systemüberlastung zu einer schrittweisen Reduktion der Systemleistung, jedoch
zu keinem Komplettausfall des Systems. Entfällt die Ursache für die Überlastung, kann
die Systemleistung wieder aufgebaut werden, bis der optimale Systemzustand wieder her-
gestellt ist.

Die einzelnen Elemente des Modells sind in Abbildung 5.1 dargestellt. Die Rechtecke
in der Abbildung stehen für einzelne Tasks, die während einer Berechnung ausgeführt
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cvccvc cvc

optional

monoton

mehrere
Versionen

Abbildung 5.1.: Schematische Darstellung des Imprecise Computation Models [LLB+94].

werden. Die Pfeile in der Abbildung symbolisieren den Vorrang bzw. die Abhängigkeiten
zwischen einzelnen Tasks. Im Allgemeinen werden drei „Grundmuster“ für den Aufbau
eines Imprecise Computation Systems unterschieden:

• 0/1 Ausführung: Unterschiedliche Tasks oder Systemkomponenten werden manuell
als „verbindlich“ (weiß) oder „optional“ (grau) kategorisiert. Die optionalen Kompo-
nenten werden im Fall einer Überlastung bzw. Störung des Systems ausgelassen. Da-
bei wird entschieden, ob ein Task immer oder eventuell ausgeführt wird. Im Falle der
Ausführung eines optionalen Tasks, muss das System sicherstellen, dass es genügend
Rechenzeit für seine Durchführung bekommt. Das klassische Beispiel für optionale
Tasks ist die eventuelle Neuberechnung bestimmter Werte, z. B. der Signalqualität
oder der Messunsicherheit. Im Falle einer Überlastung können oft auch ältere Werte
benutzt werden, die die Realität noch genügend genau abbilden.

• Mehrversionen-Methode: Von einem Rechenschritt werden mindestens zwei Vari-
anten mit dem gleichen Interface zur Verfügung gestellt. Die Versionen unterscheiden
sich in der Qualität des gelieferten Ergebnisses, benötigen dafür aber auch unter-
schiedliche Laufzeiten, was die Flexibilität des Schedulers erhöht. Ein Beispiel für
die Mehrversionen-Methode ist die prozessbegleitende Simulation, die auf zwei un-
terschiedlichen Modellen, einem einfachen und einem komplexen, durchgeführt wer-
den kann (vgl. Use-Case in Abschnitt 7.3). Während einer Systemüberlastung kann
der Simulation-Task auf das einfachere Modell umschalten und die nachfolgenden
Rechenschritte weiterhin mit aktuellen Daten versorgen.
Die Analyse der Mehrversionen-Tasks kann auf die Betrachtung von 0/1 Ausfüh-
rung reduziert werden: Die kürzeste Laufzeit einer Version wird dabei als verbindlich
angesehen und die Laufzeitdifferenz zwischen den Versionen als optional.

• Meilenstein-Methode bzw. Monotone Berechnung: Monotone Berechnungen
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„kapseln“ das Konzept der Anytime Algorithmen (vgl. Abschnitt 5.1.2). Dabei muss
ein bestimmter Hauptteil verbindlich ausgeführt werden. Dieser liefert ein hinrei-
chend gutes Ergebnis, das dann iterativ verbessert werden kann. Als Beispiel für
monotone Berechnungen dienen viele Verfahren der numerischen Mathematik.

Die monotone Verbesserung kann entweder jederzeit abgebrochen werden oder in
kurze ununterbrechbare Iterationen aufgeteilt werden, die das Ergebnis in diskreten
Schritten verbessern. Die monotonen Berechnungen sind aus der Scheduling-Sicht am
flexibelsten, da sie teilweise online gescheduled werden können [LLB+94].

Das Scheduling der Anwendung, die nach den oben beschriebenen Prinzipien aufgebaut
ist, wird anhand der Fehlerfunktionen der einzelnen Tasks statisch oder dynamisch durch-
geführt. Aus der Scheduling-Perspektive werden die einzelnen Tasks Ti jeweils in zwei
Untertasks unterteilt: einen verbindlichen Task Mi und einen darauf folgenden optiona-
len Task Oi. Die Summe der WCET der Untertasks ergibt die WCET des ursprünglichen
Tasks, falls der optionale Untertask kein monotoner Task ist. Monotone Tasks können be-
liebig lang ausgeführt werden und haben daher keine WCET. Der Scheduler muss dem
verbindlichen Task die benötigte Ausführungszeit garantieren. Die Ausführungsdauer des
optionalen Untertasks Oi wird von der Fehlerfunktion beeinflusst, die nur von dieser Dauer
abhängig ist. Fehlerfunktionen können z. B. linear, konvex oder konkav sein. Bei terminie-
renden optionalen Tasks verschwindet der Fehler, sobald deren Ausführungszeit der WCET
gleich ist. Bei monotonen Tasks konvergiert der Fehler mit fortschreitender Ausführungszeit
gegen Null.

Ein häufiges Ziel für das Scheduling solcher Probleme ist die Minimierung der Summe der
Fehler einzelner Tasks, die eventuell noch gewichtet sind, um Prioritäten der Tasks abzu-
bilden. Für unterbrechendes Scheduling sind optimale polynomielle Algorithmen bekannt
[LLS+91]. Das nicht-unterbrechende Scheduling-Problem ist NP-hart [LLS+91].

Die Forschungsarbeit im Bereich des Schedulings der Imprecise Tasks, basierend auf
der Unterteilung in verbindliche und optionale Tasks, brachte ein Feld des „Reward-Based
Scheduling“ hervor. Die Fehlerfunktionen für die Bewertung der Laufzeit der optionalen
Tasks werden in diesem Feld durch Belohnung-Funktionen ersetzt. Die Belohnung hängt
von der Laufzeit des Oi ab und kann, ähnlich zu der Fehlerfunktion, linear, konvex oder
konkav sein. Die Problemstellung ist demnach ein gültiger Schedule, welcher die Summe
der (gewichteten) Belohnungen der einzelnen Tasks maximiert. Eine Übersicht über die
Komplexität einzelner Problemklassen und die verfügbaren Heuristiken im Rahmenwerk
des Reward-Based Schedulings ist in [AMM04] zu finden.

Zusammengefasst bietet das Imprecise Computation Model drei unterschiedliche Grund-
muster für die Definition der bedingt ausführbaren Programmlogik bzw. des Verhaltens
einer Komponente, die im Zusammenspiel zwischen dem Programmierer (der die Tasks
auslegt und einer der drei Kategorien zuordnet) und dem Laufzeitsystem (das die Laufzei-
ten der Tasks einplant und ausführt) zu einer adaptiven Systemreaktion auf Überlastungen
führt. Trotz der ursprünglichen Auslegung des Modells auf die Amortisierung von Über-
lastungen, also der Ressourcenknappheit, kann der gleiche Ansatz auch für den sinnvollen
Verbrauch von sonst ungenutzten Kapazitäten angewendet werden.
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5.2. Dynamische Änderung der Zykluszeit einzelner Anwendungskomponenten

5.1.6. Predictably Flexible Real-Time Scheduling
Als Ergänzung zu den Scheduling-Verfahren für das Imprecise Computation Model wird ein
dynamischer Scheduling-Ansatz vorgestellt, der die entstehende Slackzeit berücksichtigen
und an Komponenten oder sporadische Tasks verteilen kann.

Dieser Ansatz für die Zusammenarbeit zwischen offline und online Scheduling-Verfahren
wurde in [Foh12] unter dem Namen „Predictably Flexible Real-Time Scheduling“ vorge-
stellt. Die Vorteile der tabellenbasierten Scheduler, wie Vorhersagbarkeit und die einfache
Implementierung, werden von den Nachteilen der fehlenden Flexibilität überschattet. Die
flexibel arbeitenden online Scheduling Verfahren sind hingegen schwerer vorherzusagen und
haben einen höheren Rechenaufwand während der Laufzeitphase.

Um von den Vorteilen beider Ansätze zu profitieren, schlägt das Modell eine Kombi-
nation aus online und offline Scheduling-Verfahren für das Systemdesign vor. Somit wird
innerhalb eines Echtzeitsystems die Koexistenz der Scheduling-Ansätze für zeit- und ereig-
nisgesteuerte Systeme ermöglicht.

In der offline Phase des Modells werden für die einzelnen Jobs eines Tasksets die er-
laubten Zeitfenster berechnet, in denen die Ausführung des Jobs stattfinden darf, ohne die
Echtzeitschranken zu verletzen.

In der online Phase bestimmt nun ein Algorithmus den tatsächlichen Ausführungszeit-
punkt eines Jobs innerhalb des gültigen Zeitfensters. Die so gewonnene Flexibilität wird
in dem Modell für die Ausführung aperiodischer Tasks angewendet, die ohne Anpassung
der im Voraus kalkulierten Scheduling-Tabelle möglich ist.

5.2. Dynamische Änderung der Zykluszeit einzelner
Anwendungskomponenten

Im Kontext der zyklischen Ausführung einzelner Anwendungskomponenten kann der Res-
sourcenverbrauch einer Komponente durch die Änderung ihrer Ausführungshäufigkeit bzw.
ihrer Zykluszeit verändert werden. In diesem Abschnitt werden die gängigen Methoden für
diese Anpassung vorgestellt.

5.2.1. Elastic Model
Die Grundannahme des Elastic Models [But11, BA02] geht von einer veränderlichen Peri-
ode einzelner Tasks aus, die in einem bestimmten Intervall variiert werden kann.

Ein elastischer Task ist ein periodischer Task, der neben der WCET wi eine nominale
peri0 und eine maximale perimax Periode, sowie einen Elastizitätskoeffizienten ei ≥ 0 ent-
hält. Der Letzte gibt Auskunft über die Elastizität bzw. die Steifigkeit eines Tasks. Die
Periode des Tasks kann frei in dem Intervall [peri0 , perimax ] variiert werden und hat so-
mit Einfluss auf die Utilization-Faktoren (vgl. Abschnitt 2.1.2) des Tasks und somit des
Gesamtsystems.

Im Falle einer Systemüberlastung können die Utilization-Faktoren der Tasks durch die
Variation ihrer Zykluszeit so angepasst werden, dass die gesamte Auslastung den gewünsch-
ten Vorgaben entspricht (z. B. eine bestimmte Schranke unterschreitet). Die Anpassung der
Zykluszeit eines Tasks passiert somit bei dem Hinzufügen neuer Tasks, der Terminierung
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5. Analyse der Ansätze für Anwendungen mit flexiblen temporalen Eigenschaften

Abbildung 5.2.: Drei Tasks mit Längenbeschränkungen im Elastic Model dargestellt als ela-
stische Feder [But11]. Oben: vor der Komprimierung (die Gesamtlänge L0 ≥ Lmax), unten:
nach der Komprimierung (die Gesamtlänge Ld ≤ Lmax).

eines periodischen Tasks oder einem Antrag auf eine Periodenänderung eines existieren-
den Tasks (im Rahmen des Intervalls). Alle Änderungen müssen durch einen Garantie-
Algorithmus auf ihre Zulässigkeit (die Einhaltung der Lastvorgaben des gesamten Tasksets)
überprüft werden.

Die Anpassung der Zykluszeit erfolgt anschaulich durch die Betrachtung der Menge der
Tasks, als einer Menge elastischer Federn, deren Länge dem Utilization-Faktor des Tasks
Ci

peri
entspricht, wobei peri ∈ [peri0 , perimax ] die tatsächliche Periode des Tasks i ist.

Die Kompression der Jobs ist in Abbildung 5.2 schematisch dargestellt. Die Länge ein-
zelner Federn Ld wird auf dem unteren Teil des Bildes durch die Ausübung der Kraft F
verkleinert. Die Berechnung der einzelnen Federlängen ist ausgehend vom Kräftegleich-
gewicht des Systems analytisch möglich. Im Falle der Längenbeschränkungen einzelner
Federn erfolgt diese Berechnung mithilfe eines iterativen Verfahrens. Mithilfe der gleichen
Berechnungen können die Federn auch dekomprimiert werden – dies geschieht z. B. bei
der Terminierung oder dem Hinzufügen eines Tasks. Die auf diese Weise errechneten Pe-
rioden der Tasks werden von dem untergeordneten unterbrechenden Echtzeit-Scheduler,
z. B. einem EDF-Scheduler, realisiert.

5.2.2. Quality-of-Control-basierte Betrachtung
Eine Anwendung der flexiblen temporalen Eigenschaften aus dem Aufgabenfeld der Rege-
lung bzw. der Integration der Regler in die Laufzeitsysteme wurde in [MFFR02, VFM03]
vorgestellt. In diesen Veröffentlichungen wurden die Auswirkungen der dynamischen Än-
derung der Zykluszeit einzelner Tasks auf den Regelfehler u.a. am Modell eines inversen
Pendels untersucht. Dieser Ansatz der Anpassung der Zykluszeit ist ähnlich zu dem Ansatz
des Elastic Models (vgl. Abschnitt 5.2.1). Der Unterschied besteht in der Qualitätsbewer-
tung und dem Auslöser für die Änderung der Zykluszeit eines Tasks.

Während im Fall des Elastic Modells Änderungen der Menge von Tasks die Änderung der
Ausführungsraten auslösen, waren es in [MFFR02] eine Perturbation der Regeldifferenz.
Somit wurde die Anpassung der Raten durch das physikalische System ausgelöst. In einem
solchen Fall wurde der Regler so lange mit erhöhter Rate ausgeführt, bis ein stabiler Zu-
stand der Strecke (wieder) erreicht wurde. Bei dieser Umverteilung der Ressourcen mussten
Tasks mit kleinerer Priorität temporär mit einer kleineren Rate ausgeführt werden.

Die Zielsetzung des Elastic Modells ist die Existenz eines gültigen Schedules, d. h. eines
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5.3. Diskussion in Bezug auf nicht-funktionale Anforderungen

Schedules, in dem alle Tasks die Echtzeitschranken einhalten. Das Ziel der Quality of Con-
trol (QoC)-basierten Betrachtung ist hingegen die Minimierung der integrierten normierten
Regelabweichung.

Die Integration der Konzepte aus den Bereichen der Regelungstechnik und der
Scheduling-Theorie wird im Allgemeinen als „Control-Scheduling Codesign“ bezeichnet.

5.2.3. Job Skipping
Ein anderer Ansatz für die Variation der Ausführungsrate eines Tasks ist die Methode des
Job Skippings, bei der bestimmte Jobs eines periodischen Tasks ausgelassen bzw. abge-
brochen werden. Die auf diese Weise kurzfristig gewonnene Rechenzeit kann für andere
Aufgaben eingesetzt werden, z. B. für die Ausführung sporadischer Tasks.

Ein Scheduling-Modell, das in der Lage ist die einzelnen Jobs auszulassen, wurde in
[KS95] vorgestellt. In diesem Modell haben die Tasks Ti neben den Periode einen Skip-
Parameter si, 2 ≤ si ≤ ∞. Dieser Parameter gibt an, wie häufig Jobs ausgelassen werden
dürfen. Dazu werden die Jobs eines Tasks in rote und blaue Jobs aufgeteilt. Ein roter Job
darf nicht abgebrochen oder ausgelassen werden und muss rechtzeitig terminieren, ein blau-
er Job darf hingegen durch einen Abbruch oder eine Deadline-Überschreitung ausgelassen
werden. Der Wert des Skip-Parameters si wird dann wie folgt gedeutet [BA02]:

• wurde ein blauer Job ausgelassen, so müssen die darauf folgenden si −1 Jobs rot sein
und

• wurde ein blauer Job nicht ausgelassen, so ist der darauf folgende Job ebenfalls blau.

Es kann gezeigt werden, dass das Schedulability-Problem NP-hart ist [KS95]. In [BA02]
werden Schranken für das Scheduling der Tasksets mit Skip-Parametern mithilfe von EDF
Scheduler aufgezeigt.

5.3. Diskussion in Bezug auf nicht-funktionale
Anforderungen

Die bewerteten Ansätze wurden in Bezug auf das Objekt der Flexibilisierung in zwei Kate-
gorien unterteilt. Die erste Gruppe der Ansätze hat das Ziel die Ausführungsdauer einzelner
Tasks zu modifizieren, die zweite Gruppe die Zykluszeit der Tasks bei konstanter Ausfüh-
rungszeit des einzelnen Tasks. Für die Anwendung in der Leittechnik sind die Ansätze aus
allen zwei Bereichen interessant bzw. sinnvoll.

Aus den Ansätzen der ersten Gruppe bildet nur das Rahmenwerk des Imprecise Compu-
tation Models eine flexible Grundlage für den Einsatz im Bereich der Prozessleittechnik.
Da es sich bei dem Modell nur um ein Rahmenwerk handelt, sind sowohl unterschiedliche
Algorithmen als Grundbausteine, wie z. B. Anytime Algorithmen, als auch unterschiedliche
Scheduling-Verfahren zu deren Ausführung, wie z. B. Reward-Based Scheduling oder Job
Skipping, beliebig miteinander kombinierbar. Somit können auch die Ansätze der zwei-
ten Gruppe in das Rahmenwerk eingebracht werden. Darüber hinaus kann das Konzept
des Predictable Flexible Scheduling für Scheduler angewendet werden, deren online Phase
für die Verteilung der anfallenden Slackzeit auf die einzelnen variablen Tasks übernehmen
kann.
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5. Analyse der Ansätze für Anwendungen mit flexiblen temporalen Eigenschaften

Die funktionalen Anforderungen des Kapitels 4 werden bis auf die Anforderung (F1)
offensichtlich von dem Rahmenwerk abgedeckt. Die strukturellen Änderungen der Anwen-
dung (z. B. das Hinzufügen neuer Komponenten) können problemlos durch die Mechanis-
men der 0/1 Ausführung in dem Rahmenwerk abgebildet werden.

Die in Kapitel 4 aufgestellten nicht-funktionalen Anforderungen werden wie folgt durch
das Rahmenwerk des Imprecise Computation Models abgedeckt:

(N1) Kompatibilität mit existierenden Laufzeitumgebungen Durch die zyklische Aus-
führung der Logik innerhalb der Laufzeitumgebung lässt sich die verfügbare Ausführungs-
zeit relativ einfach abschätzen bzw. sogar zur Laufzeit ermitteln. Somit ist die, für die
optionale Komponenten verfügbare, Ausführungszeit klar abgrenzbar und eine technische
Basis für die Ausführung dieser fast vollständig etabliert.

(N2) Kompatibilität mit kooperativem Scheduling Das Rahmenwerk setzt keinen spe-
zifischen Scheduler voraus, und ist auch für das kooperative Scheduling anwendbar. Einige
Elemente des Rahmenwerks erfordern dennoch Anpassungen. So kann z. B. eine Iteration
einer monotonen Berechnung nicht zwischen den Meilensteinen abgebrochen werden.

Darüber hinaus erfordert der Einsatz von Ansätzen aus der zweiten Gruppe, z. B. Job
Skipping, gewisse Anpassungen des Scheduling-Modells.

(N3) Minimaler Konfigurations- bzw. Migrationsaufwand Die bestehende Automa-
tisierungssoftware kann durch die Anwendung der 0/1 Ausführung in das Rahmenwerk
eingeführt werden. Die existierenden Tasks werden im Kontext des Rahmenwerks zu ver-
bindlichen Tasks erklärt. Somit ist deren Ausführung gesichert.

Dieser einfache Schritt ist die Voraussetzung für eine Migration und ist praktisch oh-
ne Engineering-Aufwand durchführbar. Die auf diese Weise entstandene Anwendung kann
sukzessiv um zusätzliche komplexe Elemente, z. B. Komponenten mit monotonen Berech-
nungen, erweitert werden, die die vorhandene Slackzeit ausnutzen. Der Konfigurationsauf-
wand für den Nutzer ist typischerweise nur auf das Setzen der Prioritäten bzw. Gewichte
einzelner Komponenten beschränkt.

(N4) White-Box Engineering Bereits die graphische Darstellung des Rahmenwerks in
Abbildung 5.1 deutet auf eine gute Möglichkeit der Introspektion einzelner Komponenten
hin. Die in Kapitel 6 vorgeschlagene Architektur zur Umsetzung des Rahmenwerks greift
auf die bewährten Methoden des komponentenorientierten Softwareengineerings bzw. der
auf Funktionsbausteinen basierenden Software zurück, die um einzelne Elemente des Im-
precise Computation Models erweitert werden. Die bestehenden Engineering-Methoden
sind somit weiterhin anwendbar.

(N5) Verwendung bekannter Programmiersprachen bzw. Konzepte Die Frage, wie die
variablen Verhalten der einzelnen Komponenten, z. B. die 0/1 oder die monotone Ausfüh-
rung beschrieben werden, ist nicht eindeutig gelöst. In der Literatur wird dieses Verhalten
typischerweise in höheren Programmiersprachen, wie z. B. Java oder C++, beschrieben.
Diese Sprachen sind weder domänenspezifisch für den Bereich der Leittechnik, noch eignen
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5.3. Diskussion in Bezug auf nicht-funktionale Anforderungen

sie sich für das White-Box Engineering (Anforderung N5). Eine domänenspezifische Spra-
che für die Beschreibung des Komponentenverhaltens, die auch White-Box Paradigmen
unterstützt, wird in Abschnitt 6.2 eingeführt.

(N6) Breite Anwendbarkeit Das Rahmenwerk schränkt den „Inhalt“ und somit die An-
wendung bzw. die Bestimmung der ausgeführten Komponenten nicht ein. Somit existieren
keine Anwendungseinschränkungen, wie z. B. die Einschränkung des QoC auf den Bereich
der Regelung.
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6. Ein Rahmenwerk für die Integration
von ressourcenadaptiven
Anwendungen

In diesem Kapitel wird ein Rahmenwerk für die Beschreibung von RA-Anwendungen und
deren nahtlose Einbettung in zyklische Laufzeitsysteme vorgestellt. Basierend auf den Er-
gebnissen der Analyse des vorherigen Kapitels, wurden die folgenden Ansätze für das vor-
gestellte Rahmenwerk ausgewählt:

• Imprecise Computation Model als grundlegende Architektur für den Aufbau von RA-
Anwendungen,

• Predictably Flexbile Scheduling als das Scheduling-Prinzip, das die Vorteile von
offline- und online-Scheduling vereint und

• Elastic Model für die heuristische Berechnung der vom Scheduler vorgegebenen Aus-
führungsdauer einzelner Komponenten im Rahmen des Schedulings.

Als Grundlage für die Koexistenz der RA-Anwendungen mit bereits eingesetzten Syste-
men dient eine flexible Softwarearchitektur des Laufzeitsystems, die in Abschnitt 6.1 unter
dem Begriff „einheitliche Laufzeitarchitektur“ vorgestellt wird.

Um die Anforderungen des Engineerings für die Definition und die Implementierung
zeitsensitiver Eigenschaften der Anwendung zu erfüllen, wird ein graphischer Beschrei-
bungsformalismus eingeführt. Dieser weist eine große Ähnlichkeit zu den bereits verwende-
ten Prozedurbeschreibungssprachen auf. Das eingeführte Meta-Modell wird in Abschnitt
6.2 diskutiert.

Die Zuteilung der Zeitressourcen an die einzelnen Anwendungen erfolgt durch einen
Systemscheduler, dessen Referenzarchitektur dem Prinzip des Predictably Flexible Sche-
dulings folgt. Der Scheduler ist im Fokus des Abschnitts 6.3.

6.1. Einheitliche Laufzeitarchitektur
Bevor ein Scheduling-Problem aufgestellt und ein Algorithmus zu dessen Lösung definiert
werden kann, muss eine Reihe von Annahmen über die auszuführenden Programmelemente
und deren Abhängigkeiten getroffen werden. Dieses Ziel wird im Folgenden durch eine, an
die beiden Programmiernormen IEC 61131-3 und IEC 61499 angelehnte, Softwarearchitek-
tur für leittechnische Anwendungen erfüllt. Die vorgestellte Architektur ist Voraussetzung
für eine flexible Programmausführung, sowie die Koexistenz der Ausführungskonzepte bei-
der Standards.

Wie in Abschnitt 3.1 erwähnt, wird in dieser Arbeit die in [GE13b] als „einheitliche
Laufzeitarchitektur“ eingeführte Systemarchitektur angewendet. Die Vorarbeiten haben
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Abbildung 6.1.: Strukturelle Darstellung der einheitlichen Laufzeitarchitektur.

sich auf die Aspekte der Verteilbarkeit der Anwendungen fokussiert. Im Gegensatz dazu
stehen im Rahmen dieser Dissertation die Scheduling-Aspekte der einzelnen Komponenten
im Vordergrund.

6.1.1. Grunddefinitionen
Die Laufzeitarchitektur wird grob in eine Software- und eine Hardwarearchitektur unter-
teilt. Zunächst wird die Softwarearchitektur vorgestellt, deren Aufbau, mit der Ausnahme
der selbständigen Komponenten, der Architektur der IEC 61499 (vgl. Abschnitt 2.2.6)
ähnelt.

Die strukturelle Darstellung der Architektur in einer UML-artigen Notation ist in Ab-
bildung 6.1 dargestellt. Die Softwarearchitektur besteht aus den folgenden Teilen:

• Anwendung: Eine Anwendung ist definiert als die Gesamtheit der Komponenten
(Bausteine, Komponenten und deren Kommunikationsverbindungen), die einen ge-
meinsamen Zweck haben. Diese Definition verleiht der Anwendung eine gewisse Se-
mantik und unterscheidet sich somit von der pragmatischen Definition einer Anwen-
dung im Kontext der IEC 61499: „eine Anwendung [besteht] aus einem FBN, dessen
Knoten Funktionsbausteine oder Unteranwendungen und deren Parameter sind und
dessen Kanten Datenverbindungen und Ereignisverbindungen sind“.
Die Anwendung ist ein logischer Namensraum, der zur Gruppierung von weiteren
Strukturierungseinheiten, wie z. B. den selbstständigen Komponenten (vgl. Abschnitt
6.1.2), benutzt wird. Die Vorstellung der Anwendung als einen logischen „Contai-
ner“, spiegelt die Möglichkeit der Wiederverwendbarkeit einzelner Anwendungsteile
in anderen Anwendungen wieder. Somit können z. B. mehrere Instanzen eines Stan-
dardbausteintypen in unterschiedlichen Anwendungen Verwendung finden.
Die Anwendung besitzt wegen ihrer logischen Natur keine direkten Schnittstellen
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

bzw. keinen Ausführungsrahmen. Für die Interaktion mit der Umgebung kann aller-
dings eine dedizierte Komponente als „Vertreter“ der Anwendung definiert werden.
Existiert dieser, so definieren die Schnittstellen des Vertreters die Schnittstellen der
Anwendung. In anderen Fällen wird die Vereinigung der beinhalteten Komponenten
als die Anwendungsschnittstelle definiert.

• Selbstständige Komponente: Die selbstständige Komponente (SK) wird im Ab-
schnitt 6.1.2 detailliert vorgestellt. Die SK ist eine neuartige POU-Klasse, die für die
Kapselung der Verteilbarkeits- und der Schedulingsaspekte genutzt wird.

• Funktionsbausteinnetzwerk: Ein FBN enthält die Grundeinheiten der Anwen-
dung bzw. der SK und spezifiziert Signalverbindungen zwischen diesen. Diese Bezie-
hungen beschreiben zum einen den Datenfluss zwischen einzelnen POUs durch die
Signalverbindungen. Zum anderen kann ein Bausteinnetzwerk Informationen über
das Scheduling der enthaltenen POUs enthalten.

Da sowohl die SKs, als auch die FBNs Informationen zum Scheduling enthalten, sind
beide POUs als Plattform für den Einsatz bzw. die Kapselung der RA-Algorithmen
bestens geeignet.

• Funktionsbaustein: Funktionsbausteine sind die Grundeinheiten der Anwendung.
Sie kapseln die einzelnen Algorithmen und stellen die Schnittstellen zur Verfügung.
Die IEC 61131-3 definiert zusätzlich noch Funktionen – das sind spezielle Bausteine
ohne interne Speicher. Durch die Abwesenheit der Speicher müssen keine Instanzen
der Funktionen gebildet werden. Es wird in dieser Arbeit keine explizite Unterschei-
dung zwischen Funktionsbausteinen und Funktionen vorgenommen.

Die vorgestellte Softwarearchitektur wird durch die folgende Hardwareabstraktion er-
gänzt, die mit der Systemarchitektur der IEC 61499 große Ähnlichkeit aufweist:

• Gerät: Ein Gerät entspricht einer PNK und stellt ein Hardware-Interface zwischen
der physischen- und der cyber-Welt bereit. Das Gerät enthält die genutzte I/O- und
Kommunikationshardware, z. B. I/O- und Feldbusbaugruppen bzw. Karten sowie
eine oder mehrere Ressourcen.

• Ressource: Eine Ressource ist die Abstraktion einer CPU, d. h. einer Rechen- bzw.
Ausführungseinheit. Die Ressourcen teilen die Infrastruktur des übergeordneten Ge-
räts, z. B. die I/O-Vorrichtungen.

Sind Anwendungen Typen oder Instanzen?

Es sind beide Sichten sind vertretbar, ob Anwendungen typisierbar sind. Es existieren
Anwendungen, die sowohl typisierbar als auch als einzigartige Instanzen, die aus Instan-
zen weiterer Unterteile zusammengesetzt sind. Die Fragestellung lässt sich auf weitere
POU-Untertypen übertragen und ist nur bei Funktionsbausteinen einheitlich von beiden
Standards adressiert: Beide definieren eine klare Typ-Instanz Beziehung auf der Ebene der
Funktionsbausteine. Die IEC 61499 erwähnt die Typisierung auf einer höheren Komposi-
tionsebene im Kontext einer „Unteranwendung“.
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6.1. Einheitliche Laufzeitarchitektur

Tabelle 6.1.: Grobe Korrespondenz der Begriffe der drei vorgestellten Architekturen.

Einheitliche Laufzeitarchitektur IEC 61131-3 IEC 61499

– „Projekt“ System
Gerät Konfiguration Gerät

Ressource Ressource Ressource
Anwendung – Anwendung

Selbstständige Komponente Task + Programm –
FBN Task + FBN FBN

Funktionsbaustein Funktionsbaustein/Funktion Funktionsbaustein

Die einheitliche Laufzeitarchitektur im Kontext der IEC 61131-3 und der IEC 61499

Es existieren viele Ansätze für die Migration und den Vergleich der Architekturen bei-
der Normen [DDV14, SWH+08, WZSS09]. Damit die vorgeschlagene Architektur besser
eingeordnet werden kann, werden die Begriffe der Normen in der Tabelle 6.1 gegenüber-
gestellt. Für den Vergleich zwischen der IEC 61131 und der IEC 61499 wurde der zweite
Ansatz aus [SWH+08] gewählt. Dieser basiert auf der syntaktischen Äquivalenz des Begrif-
fes „Ressource“. Im Gegensatz dazu, können auch funktionale Eigenschaften der einzelnen
Elemente im Vordergrund stehen, was zu einer anderen Korrespondenz führt (wie z. B.
der erste Ansatz in [SWH+08] oder [Yu16]). Die obere Hälfte der Tabelle repräsentiert die
Hardware-Hierarchie der jeweiligen Architektur, die untere Hälfte die Beziehungen zwi-
schen den einzelnen Software-Komponenten. Unter dem Begriff „Projekt“ in der mittleren
Spalte ist das Projekt des Engineering-Werkzeugs gemeint, das mehrere Konfigurationen
beinhalten kann [SWH+08].

6.1.2. Selbstständige Komponenten
In [GE13b] wurde der Begriff einer selbstständigen Komponente (SK) eingeführt, der im
Kontext der Softwarearchitektur der IEC 61131-3 eine gesonderte Rolle einnimmt. Um
eine bessere Verteilbarkeit und Portabilität der enthaltenen Programmlogik gewährleisten
zu können, werden einige der klassischen Aufgaben der Laufzeitumgebung an die SKs
delegiert. Dazu gehören z. B. der dedizierte Anschluss an ein nachrichtenorientiertes Kom-
munikationssystem und die Ablaufkontrolle der enthaltenen POUs.

Die Diskussion in [GE13b] bezog sich hauptsächlich auf die Verbesserungen der Verteil-
barkeit und Portabilität der leittechnischen Anwendungen (vgl. Abschnitt 6.1.2) und kon-
zentrierte sich auf die Strukturierung der Anwendungen. Eine verteilte, dienstorientierte
Architektur wird als eine der Voraussetzungen für die Umsetzung von Industrie 4.0 genannt
[FDT+15]. In diesem Abschnitt werden hingegen die SKs aus der operativen Perspektive
dargestellt. Dabei stehen die für die Ausführung relevanten Eigenschaften der Komponente
im Fokus der Betrachtung. Diese Eigenschaften umfassen z. B. die Ausführungsdauer und
-rate einer Komponente bzw. die Ausführung der enthaltenen POUs.

SKs und FBNs enthalten dedizierte Ausführungsvorschriften für die enthaltene Pro-
grammlogik und können die Ausführung dieser selbstständig steuern bzw. überwachen. Ob
die Ausführungskontrolle tatsächlich ganzheitlich an die einzelne POUs abgegeben wird
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

oder durch das Laufzeitsystem mit Mitteln der Introspektion als „Empfehlung“ für den
Systemscheduler interpretiert wird, ist eine Designentscheidung und hängt nicht zuletzt
davon ab, ob die POU überhaupt die Introspektion zulässt (d. h. ob die Komponente bzw.
das FBN zur Laufzeit als ein White-Box Modell vorliegt).

Die Vorteile einer gekapselten Ausführungsstruktur der SKs und FBNs umfassen unter
anderem:

• Koexistenz zwischen unterschiedlichen Ausführungsparadigmen: In einer
Laufzeitumgebung können mehrere Ausführungsparadigmen existieren. Ein Beispiel
dafür sind die der zeit- und der ereignisgesteuerten Systeme im Sinne der Kontroll-
logik nach IEC 61131-3 und IEC 61499.

• Verbesserte Portabilität: Durch gemeinsame Verwaltung der Programmelemente
und deren Ausführungsvorschrift in einer architektonischen Einheit wird die Porta-
bilität dieser gesteigert. Dies ist ein Gegensatz zur getrennten Verwaltung dieser in
Tasks und POUs nach dem Softwaremodell der IEC 61131-3.

• Flexibilisierung der Ausführungsstruktur: Durch beliebige Kombination un-
terschiedlicher Paradigmen der Ausführungskontrolle kann die Ausführungsstruktur
flexibel gestaltet werden.

Der letzte Punkt wurde in [GE13b] dem Themenkomplex „hierarchisches Scheduling“ zu-
geordnet. Dieses Prinzip wird in Abschnitt 6.1.7 vorgestellt. Ein ähnlicher Ansatz wurde
in einer späteren Publikation zur Migration der IEC 61131-3 Anwendungen auf die IEC
61499 vorgeschlagen [DDV14].

Die Komponenten bieten auch in Bezug auf die Anforderung der Migration bestehen-
der Anwendungen einen guten Ansatzpunkt, um diese durch geeignete „Kapselung“ zu
flexibilisieren (vgl. die Deployment-Facette einer Anwendung in Abschnitt 6.1.4).

6.1.3. Inter-Komponenten Kommunikation
Die Kommunikation zwischen den selbstständigen Komponenten folgt vorzugsweise dem
Prinzip der losen Kopplung, um die Verteilbarkeit der Komponenten auf unterschiedliche
Ressourcen bzw. Geräte zu ermöglichen bzw. zu erleichtern. Dieses kann z. B. durch nach-
richtenorientierte Kommunikation ermöglicht werden. Spezielle Koppler-Bausteine werden
benötigt, um eine Schnittstelle zwischen der nachrichtenorientierten Kommunikation auf
der Ebene der Komponenten und der signalorientierten Kommunikation auf der Ebene der
Funktionsbausteine zu erhalten. Beispiele für solche Bausteine sind die Kommunikations-
bausteine aus IEC 61131-5 sowie die Bausteine für OPC UA, die durch PLCopen und die
OPC Foundation spezifiziert wurden [PLC16].

Ist eine komplette Umstellung auf die Nachrichtenorientierung nicht möglich, so können
ebenfalls die Koppler-Bausteine verwendet werden, die allerdings bei einer Anpassung der
Anwendungsverteilung manuell oder durch ein Engineering-Werkzeug angepasst werden
müssen.

Diese zwei Kommunikationsarten sind schematisch in Abbildung 6.2 dargestellt. Auf
dem Bild ist die Kommunikation zwischen je zwei SKs innerhalb Anwendung 1 und An-
wendung 2 dargestellt. Da Anwendung 1 auf einer Ressource ausgeführt wird, läuft sowohl
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Gerät 2Gerät 1

Ressource 1

Anwendung 1

Ressource 2 Ressource 3

Anwendung 2

Nachrichtensystem Nachrichtensystem Nachrichtensystem

Nachrichtensystem Nachrichtensystem

Kommunikationsnetzwerk

SK 3 SK 4SK 2SK 1

Abbildung 6.2.: Inter-Komponenten Kommunikation innerhalb einer verteilten Anwendung
mittels einer Nachrichtenübertragung und signalorientierter Kommunikationsbausteine [GE13b].

die nachrichtenorientierte als auch die signalorientierte Kommunikation ausschließlich in-
nerhalb dieser Ressource ab. Im Falle einer verteilten Anwendung 2, wird die nachrich-
tenorientierte Kommunikation transparent von Nachrichtensystemen der Ressourcen bzw.
der Geräte übernommen. Für die signalorientierte Verbindung müssen dagegen Kommu-
nikationskanäle angelegt werden, die durch schwarze Rechtecke zwischen SK 3 und SK 4
dargestellt sind.

6.1.4. Facetten einer Anwendung bzw. einer selbstständigen
Komponente

Die Architektur einer verteilten leittechnischen Anwendung lässt sich aus unterschiedlichen
Perspektiven betrachten. Die Gesamtheit der für eine Perspektive relevanten Eigenschaf-
ten einer Anwendung wird als eine Facette dieser Anwendung bezeichnet. Die Facetten
an sich sind keineswegs eine ungeordnete Eigenschaftenmenge. Sie lassen sich auch feiner
strukturieren wie im Folgenden am Beispiel der Scheduling-Facette der Anwendung und
der Komponente gezeigt wird.

Es lassen sich drei grundlegende Perspektiven bzw. Facetten einer Anwendung identifi-
zieren, die in Abbildung 6.3 zusammengefasst sind:

Composition-Facette Die Composition-Facette beinhaltet die Unterteilung der Anwen-
dung in einzelne Strukturierungseinheiten (Komponenten). Sie beinhaltet die unterschied-
lichen Designmuster, die Untergliederung der Anwendung in weitere Untereinheiten (z. B.
in POUs in der Begriffswelt der Softwarearchitektur der IEC 61131-3), sowie die Definition
notwendiger Schnittstellen.

Die wichtigsten Aspekte dieser Facette sind die Wiederverwendbarkeit der einzelnen
Komponenten, die Wartbarkeit der Anwendung in ihrem Lebenszyklus, die Schnittstellen
einzelner Komponenten und deren Design (Black-, Gray- oder White-Box Design).
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

Abbildung 6.3.: Facetten einer Anwendung.

Deployment-Facette Die Deployment-Facette subsumiert Eigenschaften, die für die Zu-
ordnung bzw. Verteilung einzelner Komponenten auf unterschiedliche sogenannte Res-
sourcen von Bedeutung sind. Ressourcen können entweder unterschiedliche Hardware-
Plattformen darstellen oder logischer Natur sein (z. B. unterschiedliche CPU-Kerne einer
SPS oder gar Threads auf einer CPU). Aspekte der Verteilung werden vor allem im Kon-
text der IEC 61499 angesprochen, wurden aber bereits im Umfeld der modellgetriebenen
Entwicklung der IEC 61131-3 Software erwähnt [FT11].

Die Sicherstellung der Anwendungssemantik vor und nach der Verteilung beinhaltet
viele weitere, teilweise offene, Forschungsthemen. Dazu gehört z. B. die Anforderung an die
Kommunikation zwischen den einzelnen Komponenten auf unterschiedlichen Ressourcen.
Darüber hinaus könnten einzelne Komponenten nur begrenzt oder gar nicht verteilbar sein.

Die Anforderungen an die Verteilbarkeit einer Komponente auf einen Hardware-Knoten
können aus den unterschiedlichsten Domänen entspringen. Es werden beispielhaft die mög-
lichen Anforderungen aus den Domänen der technischen Realisierung, der Redundanz und
der funktionalen Sicherheit der Anwendung aufgelistet.

Beispiele für die Anforderungen aus dem Bereich der technischen Realisierung sind:

• Feste Lokalisierung einer Komponente bezüglich eines Geräts wegen der Anbindung
der Komponente an ein physisches Prozess bzw. I/O Modul, welches die Verbindung
zu der physischen Welt realisiert.

• Anforderungen an die Ressourcen eines Geräts, wie z. B. freier Speicher, verfügbare
Rechenkapazität aber auch die Verfügbarkeit der benötigten Software-Komponenten
bzw. Abhängigkeiten.

• Anforderungen an die Kommunikation zwischen den verteilten Komponenten impli-
zieren Anforderungen an die Kommunikationsinfrastruktur, wie z. B. Zuverlässigkeit,
Latenz, Bandbreite etc.

Beispiele für die Anforderungen aus dem Bereich der Redundanz sind:
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6.1. Einheitliche Laufzeitarchitektur

• Ist die Redundanz der Anwendung durch mehrere Instanzen sichergestellt, so dürfen
diese Instanzen nicht auf einem Hardware-Gerät laufen (dieses gilt gleichermaßen für
homogene und diversitäre Redundanz).

• Das vorherige Argument kann beliebig komplex erweitert werden. Zum Beispiel müs-
sen redundante Komponenten auf unterschiedlichen Hardware-Plattformen laufen,
die sich nicht in einem Schaltschrank befinden oder gar von einem Stromversor-
gungsstrang versorgt werden dürfen.

Ein Beispiel für die Anforderungen aus dem Gebiet der funktionalen Sicherheit lautet:

• Anwendungsteile dürfen sich räumlich nicht beliebig von dem gesteuerten physischen
System entfernen, damit ein ordnungsgemäßer Funktionsumfang auch im Fehlerfall
(z. B. Kommunikationszusammenbruch) sichergestellt ist.

Die Definition der SK aus [GE13b] hat Auswirkungen auf die Verteilbarkeit der An-
wendung und stellt diesbezüglich eine Änderung der Verteilungssemantik der IEC 61499
dar. Die Norm sieht eine beliebige Verteilung der leittechnischen Anwendung auf unter-
schiedliche Ressourcen vor und vereinfacht deren Implementierung durch den eindeutigen
Ereignisfluss. Die vorgestellte Architektur bietet dagegen einen Kompromiss zur Vertei-
lung von zeitgesteuerten Anwendungen, die der Philosophie der IEC 61131-3 folgen. Dabei
definiert die Einteilung der POUs auf die SKs die „Sollbruchstellen“ der Anwendung in
Bezug auf die Verteilung auf unterschiedliche Ressourcen. Die Komponente selbst bietet
eine „atomare“ Ausführungsumgebung, die eine unveränderte Semantik der zugeordneten
POUs sicherstellt (eine „virtuelle SPS“). Der Programmierer muss nur die Kommunikation
zwischen den einzelnen SKs überprüfen, um eine fehlerfreie Verteilbarkeit sicherzustellen.
Dabei liegen die Definition der SKs und deren Granularität in seiner Verantwortung. Der
triviale Migrationspfad von einer IEC 61131-3 Anwendung ist die komplette Übernahme
eines Programms in eine SK. Damit ist eine korrekte Ausführung, jedoch noch keine Ver-
teilbarkeit sichergestellt.

Eine umfassende Untersuchung aller Aspekte der Verteilbarkeit sowie die Synthese einer
Problemstellung und der Strategien liegen nicht im Fokus dieser Arbeit. Das entwickelte
Modell des Schedulings legt aber einen Grundstein für die technische Realisierung der
Komponenten-Migration im laufenden Betrieb (vgl. Abschnitt 6.3).

Scheduling-Facette Im Gegensatz zum Deployment, ist das Scheduling, also die
zeitliche Ausführung einer Anwendung und deren Komponenten, das Hauptthema
dieser Dissertation. Die Ausführung der Anwendung bzw. ihrer Komponenten muss die
Anforderungen der richtigen Reihenfolge der Ausführung, sowie der Rechtzeitigkeit der
Ausführung erfüllen. Es ist die Voraussetzung für das Einhalten der Echtzeitanforderungen
an die Anwendung. Der Aufbau dieser Facette wird in Abschnitt 6.1.5 detailliert diskutiert.

Die Idee der Segregation der Anwendungseigenschaften in unterschiedliche semi-
orthogonale Kategorien ist auch in anderen Quellen zu finden. So wird, z. B. in der IEC
61131-3 zwischen den POUs und deren Datenkopplung über Verbindungen bzw. Variablen
und den Tasks unterschieden, die die zwei der vorgestellten Aspekte darstellen. Die Vertei-
lung der POUs auf unterschiedliche Ressourcen wurde in IEC 61499 angesprochen. Diese
umfasst alle drei der vorgestellten Facetten.
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Die drei Facetten finden sich im 4+1 Sichten-Architekturmodell für Softwaresysteme
[Kru95] wieder. Die Composition-Facette entspricht dem “Logical view”, die Deployment-
Facette dem “Physical view” und die Scheduling-Facette dem “Process view”. Die im 4+1
Modell zusätzlich enthaltene Entwicklungssicht beschreibt das System aus der Perspektive
der Softwareentwicklung und steht nicht im Fokus dieser Arbeit.

Die Facetten werden als semi-orthogonal bezeichnet, da die Beeinflussung einzelner
Aspekte durch andere nicht vollkommen ausgeschlossen werden kann. So hat eine Än-
derung der Hardware-Plattform im Zuge eines Deployments direkte Auswirkungen auf die
plattformabhängigen der Scheduling-Facette, wie z. B. der WCET. Gleichzeitig implizieren
die Anforderungen der rechtzeitigen Ausführung Anforderungen an die Kommunikations-
infrastruktur und schränken die in Frage kommenden Möglichkeiten für die Auswahl der
Deployment-Ressourcen ein.

Darüber hinaus sind weitere Aspekte einer Anwendung identifizierbar, die nicht exklu-
siv einer, sondern mehreren Perspektiven zugeordnet werden können. Ein Beispiel dafür
sind die softwaretechnischen Abhängigkeiten einer Komponente, die von der funktionalen
Unterteilung und der Deployment-Perspektive einer Anwendung abhängen. Werden z. B.
bei einer Anwendung Black-Box Komponenten oder Funktionsbausteine benutzt, so muss
sichergestellt werden, dass auch nach der Verteilung die gleiche Version der Komponenten
bzw. deren Abhängigkeit verfügbar ist. Im anderen Fall wäre durch Versionskonflikte das
Gesamtverhalten der Anwendung, vor und nach dem Deployment-Vorgang, möglicherweise
nicht identisch.

6.1.5. Scheduling-Facette einer selbstständigen Komponente
(Task-Eigenschaften)

Die Task-Eigenschaften der selbstständigen Komponenten sind für den Scheduler und so-
mit für die Ausführung der SK im Allgemeinen relevant. Diese leiten sich aus der Literatur
zu Scheduling und zu den Echtzeitbetriebssystemen ab (vgl. Abschnitt 2.1.2). In diesem
Abschnitt werden die Task-Eigenschaften von SKs als die Scheduling-Facette der Kom-
ponenten bezeichnet. Zur Harmonisierung mit den Begriffen der Scheduling-Theorie wird
synonym dazu auch der Begriff „Task“ verwendet. Trotz namentlicher und inhaltlicher Ähn-
lichkeit, ist dieser Begriff nicht mit den Tasks aus dem Software-Modell der IEC 61131-3
zu verwechseln.

In dieser Arbeit wird grundsätzlich, wie auch im Kontext des Schedulings der zeitge-
steuerten Echtzeitsysteme, zwischen den zyklisch- und den sporadisch-ausgeführten Tasks
unterschieden. Während die Ersten dem Gedanken der zyklischen Aufgaben und auch dem
Hauptverwendungsmuster der SPS folgen, werden die Zweiten „nach Bedarf“, d. h. beim
Eintreten bestimmter Bedingungen ausgeführt. Zu jedem Zeitpunkt kann höchstens ei-
ne Instanz eines sporadischen Tasks ausgeführt werden bzw. auf die Ausführung warten.
Zu einem sporadischen Task kann eine Separationsdauer angegeben werden. Das ist die
minimale Zeitdauer zwischen dem Auftreten zwei aufeinanderfolgender Taskinstanzen.

In der Literatur [Mal09] wird darüber hinaus noch eine dritte Kategorie diskutiert –
die aperiodisch-ausgeführten Komponenten. Der Unterschied zwischen sporadischer und
aperiodischer Ausführung ist die fehlende Separation zwischen den Taskinstanzen. Als
Konsequenz können unbeschränkt viele Instanzen gleichzeitig auf die Ausführung warten,
was ein vorhersagbares Verhalten des Systems verhindert. Aus diesem Grund werden ape-
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riodische Tasks nur im Kontext der weichen Echtzeit betrachtet. Es wird zunächst davon
ausgegangen, dass alle Komponenten zyklischer Natur sind. Die zusätzliche Ausführung
sporadischer Tasks wird in Abschnitt 6.3.3 adressiert.

Die Scheduling-Eigenschaften einer Anwendung leiten sich aus den End-to-End Anfor-
derungen an diese ab [GE15]. Für die Fragestellungen dieser Arbeit sind jedoch primär die
Scheduling-Eigenschaften der SKs von Bedeutung. Da die Komponenten einer Anwendung
hierarchisch untergeordnet sind, fließen die Scheduling-Anforderungen an die Anwendung
auch in die Scheduling-Facetten der einzelnen SKs ein. Allerdings erfolgt bei diesem Prozess
eine Spezialisierung der Eigenschaften, die in diesem Abschnitt beschrieben wird.

Die Eigenschaften der Scheduling-Facette einer SK, die für das weitere Vorgehen, z. B.
für das Scheduling benötigt werden, können in drei Kategorien unterteilt werden:

• Anwendungsbezogene Eigenschaften: Zu den anwendungsbezogenen Eigen-
schaften gehören die initialen Eigenschaften einer SK, wie z. B. Priorität, Zykluszeit
als absolute Zeitdauer, Phase, Puffer-Verhalten (ob die Eingabe bzw. die Ausgabe
gepuffert werden oder direkt über I/O wirksam werden soll).
Zusätzlich können Angaben zur Variation der oben genannten Einschränkungen hin-
terlegt werden, wie z. B. die Veränderung der Phase (ob und in welchem Umfang die
Phase in Bezug auf die Zykluszeit geändert werden kann).

• Eigenschaften vor dem Deployment (bezogen auf eine Hardware-
Plattformklasse der Ressource): Diese Eigenschaften werden speziell für eine
Plattformklasse ermittelt. Sie enthalten beispielsweise die WCET dargestellt als
Anzahl der CPU-Zyklen und weitere Ressourcenanforderungen an die Plattform,
wie z. B. den Arbeitsspeicherbedarf, der von der eingesetzten CPU-Architektur der
Ressource abhängen kann. Zusätzlich können die Anforderungen an die Software-
Infrastruktur einer Ressource sowie Qualitäts- und Vertrauensmerkmale der Eigen-
schaften enthalten sein.

• Eigenschaften nach dem Deployment: Nach dem Deployment stehen die
Scheduling-Eigenschaften endgültig fest. So ist es möglich die WCET als absolu-
te Zeitdauer anzugeben, da die CPU Frequenz bekannt ist. Darüber hinaus ist die
Angabe der an den Grundzyklus der Ressource angepassten Zykluszeit möglich.

6.1.6. Kontrollfluss innerhalb der selbstständigen Komponenten und
der Funktionsbausteinnetzwerke

Die flexible Ausführungsstruktur der SKs und FBNs eröffnet Möglichkeiten zu deren Nut-
zung als Grundeinheit für das vorgestellte Modell der RA-Algorithmen und deren Aus-
führungssemantik. In [GE13b] wurden die drei Grundtypen des Kontrollflusses in einer
Komponente bzw. einem FBN unterschieden:

• Aufrufbasierter Kontrollfluss: Funktionsaufrufe sind aus den höheren Program-
miersprachen bekannt und auch im Kontext der IEC 61131-3 Sprachen verfügbar
(als Teil des strukturierten Texts). Bei einem Aufruf pausiert die Ausführung der
aufrufenden Einheit und der Kontext wird auf einem Stapel gespeichert, solange die
aufgerufene Funktion aktiv ist. Rekursive Aufrufe sind im Kontext der IEC 61131-3
untersagt [JT09].
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Der Funktionsaufruf schafft eine Abhängigkeit zwischen den beiden beteiligten Kom-
ponenten. Diese Abhängigkeit bezieht sich auf den Datenfluss, die Ausführungszeit
(die Ausführungszeit der Funktion trägt zu der Dauer der Ausführung des Aufrufers
bei) und die Softwareverteilung (die Komponente bzw. die Bibliothek, deren Funk-
tionen aufgerufen werden, muss verfügbar sein bzw. eine kompatible Version haben).
Bezüglich des Datenflusses steht der Funktionsaufruf in Konkurrenz mit den Daten-
verbindungen aus den graphischen Programmiersprachen. Im Gegensatz zu diesen ist
er implizit, d. h. nicht mithilfe der Baustein-Introspektion zu entdecken.

Es wird davon ausgegangen, dass Funktionsaufrufe nur innerhalb der Bausteinim-
plementierung sicher verwendbar sind und nicht für die Kopplung unterschiedlicher
Bausteine/Komponente verwendet werden. Eine Ausnahme bilden die Aufrufe aus
Schrittketten, die diskrete Prozeduren beschreiben, heraus.

• Tasklisten- oder tabellenbasierter Kontrollfluss: Die POUs werden nach einer
festen Reihenfolge in einer Liste aufgerufen. Im Gegensatz zu der aufrufbasierten
Steuerung, kehrt der Kontrollfluss nach dem Abarbeiten einer POU zurück zu dem
Scheduler. Diese Unterscheidung ist nicht ganz präzise, da POUs Funktionsaufrufe
verwenden können. Für diese Unterscheidung ist somit die Strukturierung des Pro-
gramms in eine Taskliste mit gekoppelten, fein granulierten POUs entscheidend.

Tasklistenbasierte Ausführungskontrolle ist der Ansatz aus der IEC 61131-3, in der
die Tasks ein dedizierter Bestandteil des Softwaremodells sind. Eine Taskliste ist
einfach implementierbar und kann entweder offline oder auch online berechnet bzw.
modifiziert werden. Ein weiterer Vorteil der Tasklisten ist die einfache Berechnung der
Ausführungsdauer. In diesem Fall werden einfach die Ausführungszeiten der enthal-
tenen Elemente aufaddiert. Ein Nachteil dieses Ansatzes ist die Rigidität der Listen.
Dadurch finden diese vor allem in zeitgesteuerten Systemen ihren Einsatz [TFB13].

Im Gegensatz zur Architektur der IEC 61131-3, gehören die Listen zu der SK und
dürfen nur auf die in der Komponente enthaltenen Elemente verweisen. Diese Forde-
rung trägt zu der Portabilität der SK und der Anwendung bei, da die Komponente
nur zusammen mit der Taskliste migriert werden kann.

• Ereignisgetriggerter Kontrollfluss: Die Ausführung einer Einheit kann Ereig-
nisse aussenden, die die Ausführung weiterer Einheiten anstoßen. Selbst wenn die
in Frage kommenden Empfänger der Ereignisse bekannt sind (wie im Fall der IEC
61499-basierten Bausteinsemantik), kann das Aussenden der Ereignisse und somit
die Ausführung einer Funktion im Empfänger von der Logik des Senders abhängen.
Diese Flexibilisierung wird durch die komplexere Implementierung und Analyse des
Ereignisflusses erkauft. So wird das Problem der Laufzeitabschätzung der Kompo-
nente nichttrivial und fordert den Einsatz komplexer Analysealgorithmen [Zoi08].

Neben diesen Grundtypen des Kontrollflusses sind auch weitere Kontrollflusstypen vor-
stellbar. So wird z. B. in Abschnitt 6.2 ein neues RA-Verfahren zur Steuerung des Kontroll-
flusses vorgestellt. Zunächst muss aber die Fragestellung der Koexistenz und der Kombi-
nation unterschiedlicher Modelle beantwortet werden. Diese Frage wird durch das Konzept
des hierarchischen Scheduling adressiert, das in Abschnitt 6.1.7 vorgestellt wird.
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6.1.7. Hierarchisches Scheduling
Die Idee des hierarchischen Schedulings basiert auf der Annahme von hierarchisch ange-
ordneten Tasks, denen die vorhandenen POUs der Anwendung zugeordnet sind. Durch die
Forderung einer festen Kopplung der Ausführungsvorschrift an die selbstständige Kompo-
nente (Abschnitt 6.1.2, Punkt 2), wird die Schachtelung der Tasks durch die Hierarchie
der POUs induziert. Die Reihenfolge der Komponentenausführung muss (typischerweise
während der Engineering-Phase) von dem Programmierer vorgegeben werden. Diese Ak-
tivität ist bereits ein Grundbestandteil der Softwareentwicklung nach der IEC 61131-3
(durch die Zuordnung der POUs zu den Tasks) und der IEC 61499 (durch das Anlegen der
Ereignisverbindungen) und ist somit für vorhandene Programme schon erfolgt.

Die Ausführung innerhalb eines Zyklus der Laufzeitumgebung beginnt mit der Abar-
beitung eines Wurzel-Tasks, der Verweise auf strukturierte (white-box) Tasks oder un-
strukturierte (black-box) Tasks enthält. Zum Beispiel enthalten die strukturierten Tasks
eigene Tasklisten, die die Ablaufkontrolle innerhalb des Tasks reglementieren. Bei den
unstrukturierten Tasks wird die Ausführungsvorschrift durch einen komponentenspezifi-
schen Scheduler realisiert, welcher z. B. durch eine Routine in ST vorgegeben ist. Wenn
alle Tasks „aufgelöst“ werden, lässt sich der Wurzel-Task als ein Baum darstellen, dessen
Blätter nur Verweise auf unstrukturierte und die inneren Knoten nur Verweise auf struk-
turierte Tasks sind. Die Blätter dieses imaginären Baumes werden dann vom Scheduler in
einem Tiefensuche-Durchlauf besucht. Der zu dem Blatt zugeordnete Task bekommt bei
dem Besuch die Kontrolle über die ausführende Ressource.

Die inneren Knoten des Baums werden nicht im Voraus, sondern erst zur Laufzeit aufge-
löst. In diesem Fall wird von der Übergabe der Ausführungskontrolle an den strukturierten
oder den unstrukturierten Task gesprochen. Der Task übernimmt somit bis zu seiner Ter-
minierung die Rolle des Schedulers für die beinhaltete POUs bzw. Tasks.

In den meisten Fällen wird eine solche Ausführung die Abarbeitung einer internen Taskli-
ste beinhalten. Dieses Standardverhalten kann durch einen rekursiven Aufruf des system-
weiten Tasklisten-Schedulers veranlasst werden (der z. B. im Falle einer objektorientierten
Implementierung der Komponenten geerbt werden kann), damit entfällt die Notwendigkeit
der Umsetzung der Scheduling-Schnittstelle für jede Komponente.

Allerdings ist es nicht die einzige denkbare Möglichkeit für das Scheduling. Vielmehr
kann jedes der in Abschnitt 6.1.6 zusammengetragenen Kontrollflussprinzipien eingesetzt
werden, um die interne Logik der POU abzuarbeiten. Zum einen können Optimierungen
bzw. Anpassungen der tasklistenbasierten Ablaufsteuerung in das Framework des hierarchi-
schen Schedulings eingebettet werden. Es kann eine Reihe von einfachen lokalen Optimie-
rungen angewendet werden, um die Ausführungszeit der Komponente zu verkürzen. Zum
Beispiel kann bei einem Funktionsbaustein ohne internen Speicher (einer „Funktion“ in der
Terminologie der IEC 61131-3) auf die Ausführung der Logik verzichtet werden, wenn es
seit dem letzten Zyklus keine Änderung der Eingangsports gegeben hat. Die Ausführungs-
dauer des Blocks beträgt in diesem Fall nur die Dauer der Überprüfung der Änderung, der
an den Eingangsports anlegenden Signale.

Zum anderen eröffnet die Möglichkeit der ereignisgesteuerten Abarbeitung der Unter-
komponente einen transparenten Weg für die Einbettung von IEC 61499-basierten Kon-
trolllogik in ein zyklisches Laufzeitsystem. Somit wird die zeitgesteuerte Aktivierung der
Komponente mit der ereignisgesteuerten Ausführung der internen Logik kombiniert. In
diesem Fall ruft die Komponente nicht den Standardscheduler für Tasklisten auf, sondern
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BA

• A
• B

A‘ B‘ B‘‘A‘‘

A: B:
unstrukturierte
Ausführungsvorschrift mit 
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Scheduler

strukturierte
Ausführungsvorschrift
(Taskliste)Ausführungsreihenfolge

strukturierte
Ausführungsvorschrift
(Ereignisfluss)

Abbildung 6.4.: Schematische Darstellung des Prinzips des hierarchischen Schedulings.

nutzt die interne bzw. die systemweite Implementierung eines ereignisgesteuerten Sche-
dulers für interne Kontrolllogik. Die Implementierung und die Verwaltung der für den
Ereignisfluss relevanten Unterstrukturen wird somit an den „inneren“ komponentenspezi-
fischen Scheduler übertragen. Die einzelne Anforderung an diesen Scheduler ist zunächst
die Einhaltung der WCET, die der ausgeführten Komponente zugeordnet wurde, damit
der übergeordnete Scheduler die Sicherstellung der Deadlines gewährleisten kann.

Die hierarchische Ausführung ist beispielhaft in Abbildung 6.4 dargestellt. Die Wurzel-
POU enthält zwei weitere POUs A und B, zwischen denen eine Signalverbindung besteht.
Die POUs beinhalten die Ausführungsvorschrift, die im oberen Teil der POUs in grau dar-
gestellt wird. Man kann bei der Vorschrift zwischen strukturierten und unstrukturierten
Tasks unterscheiden. Die Wurzel-POU und POU A sind strukturiert, während B unstruktu-
riert ist. Bei den strukturierten Tasks sind weiterhin zwei unterschiedliche Typen sichtbar.
Bei der Wurzel-POU ist es eine Taskliste, die von oben nach unten abgearbeitet wird. Bei
A ist es ein Ereignisfluss, der die Ausführung der untergeordneten Einheiten A’ und B’
regelt. Die Ausführungsreihenfolge der POUs ist durch eine gestrichelte Linie angedeutet.
Diese entspricht einer Tiefensuche im Baum, der in der Abbildung angedeutet ist.

Im Rahmen dieser Arbeit wird eine weitere Klasse der strukturierten RA-Tasks einge-
führt, die die temporalen Eigenschaften der Komponenten (vor allem ihre Ausführungs-
dauer) kontextabhängig (z. B. bezogen auf die aktuelle Systemauslastung) anpassen kann.
Dieser Scheduler und die Mittel für die Beschreibung der Variation des Verhaltens werden
in Abschnitt 6.2 vorgestellt.

Welche Scheduler-Klassen von dem Laufzeitsystem bereitgestellt werden und welche di-
rekt in eine Komponente eingebettet werden, ist eine Designentscheidung für das Lauf-
zeitsystem. Die optimale Antwort auf diese Frage hängt davon ab, welche Scheduling-
Prinzipien von den eingesetzten Komponenten genutzt werden und welche von dem Lauf-
zeitsystem zugelassen sind. Eine transparente Möglichkeit der Einbettung weiterer kom-
ponentenspezifischer Scheduler schränkt die Flexibilität des Gesamtsystems nicht ein.

Die Grundannahme im Rahmen dieser Arbeit ist die Existenz einer Wurzel-Taskliste,
die von einem Systemscheduler verarbeitet wird. Somit ist die Koexistenz der zyklischen
und der ereignisgesteuerten Ausführungskontrolle nur in einem zeitgesteuerten System si-

70

https://doi.org/10.51202/9783186257086 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:59:54. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186257086
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chergestellt. Nach der Klassifikation der Ansätze für die Koexistenz beider Philosophien,
die in [ZSSB09] vorgestellt wurde, fällt der Ansatz des hierarchischen Schedulings unter
die Gruppe der auf der IEC 61131-3 basierenden Lösungen. Die Prinzipien des hierarchi-
schen Schedulings haben dagegen auch im ereignisgesteuerten Kontext Bestand. Die einzige
Forderung ist die gemeinsame Verwaltung der Logik und der Ausführungsinformation. So-
mit können z. B. SKs mit einer eingebetteten Taskliste in ein ereignisgesteuertes System
eingebracht werden, solange die Abarbeitung der Liste durch ein Ereignis ausgelöst wird.

6.2. Meta-Modell für ressourcenadaptive Komponenten
In der Beschreibung des Prinzips des hierarchischen Schedulings in Abschnitt 6.1.7 wurde
auf die unterschiedlichen Ausführungsprinzipien innerhalb der SKs eingegangen. Die Ker-
nidee dieses Prinzips ist die Kapselung der Scheduling-Information durch die Komponente.
In diesem Abschnitt wird eine Ausführungsart vorgestellt, die sich von der tasklisten- und
der ereignisgesteuerten Ausführung unterscheidet. Als Grundlage für die Ausführung der
gekapselten Logik der Komponenten wird eine explizit formulierte Prozedur genutzt, die
zur Laufzeit evaluierbar ist.

6.2.1. Annahmen und Begriffsdefinitionen für das Scheduling
In diesem Abschnitt werden die Grundbegriffe und Rahmenbedingungen definiert, die für
das verwendete Systemmodell gelten. Diese sind sowohl für das Meta-Modell der ressour-
cenadaptiven Komponenten (Abschnitt 6.2), als auch für den ressourcenadaptiven Kom-
ponentenscheduler (Abschnitt 6.3) gültig. Folgende Eigenschaften werden für das Laufzeit-
system angenommen:

Diskrete zyklische Zeit Eine der grundlegenden Entscheidungen für das Modelldesign ist
die Wahl des zugrundeliegenden Zeitmodells. Grundsätzlich existieren zwei fundamentale
Philosophien der Zeitmodellierung: das dichte (engl. dense) und das diskrete (engl. discrete)
Zeitmodell. Beim ersten Ansatz wird die Zeit als eine dichte Menge modelliert, d. h. es
existiert ein Zeitpunkt zwischen zwei beliebigen Zeitpunkten. Beim zweiten Ansatz wird
die Zeitmenge als Menge diskreter Zeitpunkte modelliert, die eine feste zeitliche Auflösung
definieren.

Viele technische Systeme und Prozesse sind zyklisch. Ein zyklisches Verhalten ist durch
die immer wiederkehrenden Muster im Systemverhalten gekennzeichnet. In diesem Fall
kann zur Vereinfachung der Modellierung ein diskretes zyklisches Zeitmodell gewählt wer-
den [Kop11b]. Die Zeit wird in diesem Fall in gleichlange Perioden unterteilt. Ein Zeitpunkt
kann durch die Angabe der Periode und der Phase, d. h. einer relativen Angabe zum Pe-
riodenanfang, eindeutig referenziert werden.

Das definierte Meta-Modell nutzt die Annahme einer diskreten zyklischen Zeit. Die Zy-
klusdauer wird dabei durch die Abtastrate des physischen Systems, auf die Dauer des
Grundzyklus (vgl. Abschnitt 2.2.3), normiert. Diese Abtastrate ist an viele Nebenbedin-
gungen wie die eingesetzte Hardware, Kommunikationsinfrastruktur etc., aber auch an
die Zeitkonstanten des zu automatisierenden physischen Systems gekoppelt. Die Grund-
beziehung zwischen der Abtastrate und der Signalfrequenz wird durch das Abtasttheo-
rem hergestellt, was eine mindestens doppelte Abtastfrequenz vorschreibt. In der Praxis
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wird normalerweise eine noch etwas höhere, z. B. eine sechs- bis zehnfache Abtastfrequenz
[Abe06], gewählt.

Stabiler Grundzyklus während der Laufzeit Jede Ressource (vgl. Abschnitt 6.1.1) wird
in einem Grundzyklus betrieben, der während deren Laufzeit nicht verändert werden kann.
Die Dauer des Grundzyklus ist hauptsächlich von den Zeitkonstanten des physischen Pro-
zesses abhängig, mit dem die Ressource über die I/O-Hardware und die Sensoren bzw.
Aktoren interagiert. Da davon ausgegangen wird, dass die Eigenschaften und insbesondere
die Zeitkonstanten des kontrollierten physischen Systems stabil sind, wird die Dauer des
Grundzyklus ebenfalls als stabil angenommen.

Zeitgesteuertes Echtzeitsystem Es wird das zeitgesteuerte Modell eines Echtzeitsy-
stems verwendet. Somit hängen die Aktivitäten des Systems nur vom Fortschritt der Zeit
ab. Die Vor- und Nachteile dieses Ansatzes und der Alternativen wurden eingehend im
Abschnitt 2.1.2 diskutiert. Das gewählte Aktivierungsparadigma erlaubt das Scheduling
mittels einer Taskliste.

Stabilität des Prozessabbilds während einer Periode Es wird angenommen, dass das
Prozessabbild, d. h. die Werte der über die I/O Komponenten gelesenen Sensoren, sich
innerhalb einer Periode nicht verändern. Die gleiche Annahme gilt für die geschriebenen
Werte der Outputs der I/O Komponenten, die die Signale an die Aktoren übertragen.
Dieses Verhalten entspricht der Softwarearchitektur der IEC 61131-3 und somit den meisten
Implementierungen der SPSen. Das Prozessabbild wird in jedem Zyklus synchronisiert (vgl.
Abschnitt 2.2.3). Die Werte der I/O-Eingänge werden dabei am Anfang eines Zyklus in
einen Zwischenpuffer eingelesen und die Ausgänge am Zyklusende vom einen weiteren
Puffer auf die I/O-Ausgänge übertragen und somit in der physischen Welt wirksam.

Die Vorteile dieses Verhaltens umfassen eine einfache Synchronisierung der Zugriffe ein-
zelner Elemente der Kontrolllogik auf die Daten des Prozessabbilds. Es muss nicht auf die
Verfügbarkeit eines Eingangswertes gewartet werden. Auch die Konsistenz der Daten ist
für alle Zugriffe in einem Zyklus sichergestellt. Bei den Ausgangswerten wird jeweils die
letzte Änderung innerhalb eines Zyklus wirksam.

Der Nachteil der zyklischen Abtastung ist die vergleichsweise lange Reaktionszeit des
Systems auf die Stimuli aus der physischen Welt. Wie bereits in Abschnitt 2.2.3 bemerkt
wurde, kann diese im schlimmsten Fall das Zweifache der Zykluszeit betragen.

Uniprozessor-System Das Modell ist an die Architektur eines SPS-Systems angelehnt,
das typischerweise eine Ressource enthält [IEC11]. Im Falle der Verfügbarkeit mehrerer
Ressourcen, kann die Kommunikation zwischen diesen über einen gemeinsamen Speicher-
bereich erfolgen, der ähnlich wie das Prozessabbild für die Zyklusdauer konstant gehalten
wird (die Zykluszeit der Komponenten wird in diesem Fall auf die Dauer des systemwei-
ten Grundzyklus normiert). Eine weitere Möglichkeit ist der Einsatz eines komplexeren
Systems zur Interprozesskommunikation, wie z. B. eines Nachrichtensystems. Wie bereits
im letzten Paragraphen besprochen, sind diese Maßnahmen notwendig, um die Datenkon-
sistenz ohne Zuhilfenahme aufwändiger Synchronisationsmechanismen sicherzustellen.
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Abbildung 6.5.: Informationsaustausch und Aufrufsteuerung zwischen Komponenten und
Komponentenscheduler.

Nichtunterbrechbarkeit der Tasks Es gilt die Annahme, dass die Tasks während der
Ausführung nicht unterbrochen werden können. Die Vor- und Nachteile dieses Ansatzes
wurden in Abschnitt 2.1.2 diskutiert. Die Vorteile des kooperativen Schedulings, wie mi-
nimaler Jitter und eine bessere Vorhersagbarkeit des Systemverhaltens, sind für viele An-
wendungen in der industriellen Automatisierung überwiegend.

6.2.2. Ressourcenzuteilung durch den Komponentenscheduler zur
Laufzeit

Da in diesem Abschnitt nur die interne Ausführung der selbstständigen Komponente Ge-
genstand der Betrachtung ist, kann der Datenaustausch zwischen der Komponente und
dem übergeordneten Scheduler (dem Komponentenscheduler) auf das folgende einfache
Interface reduziert werden:

• WCET der Komponente auf der aktuellen Ressource w (Ausgangsparameter, kon-
stant im Betrachtungszeitraum, nicht zur Laufzeit ausgetauscht) und

• die vom Komponentenscheduler zugeteilte Zeit für die aktuelle Ausführung Δcurr ≥ w
(Eingangsparameter, konstant während einer Periode, explizit zur Laufzeit ausge-
tauscht).

Der erste Parameter w beschreibt im Kontext der RA-Algorithmen die maximale Zeit, die
zu einer minimalen konsistenten Ausführung der Komponente benötigt wird. Die Zusam-
menhänge zwischen den beiden Parametern sind in Abbildung 6.5 als Sequenzdiagramm
dargestellt.

Die Bedingung Δcurr ≥ w garantiert die Sicherstellung der Echtzeitanforderungen auf
der Komponentenebene und muss von dem Komponentenscheduler bei der Zuteilung der
Zeiten eingehalten werden. Für die Zuteilung der Rechenzeit existieren zwei Fälle:

• Δcurr = w: In diesem Fall kann die Komponente nur die intern akkumulierte Slackzeit
verwerten, die z. B. als Folge der zu pessimistischen Abschätzung der WCET oder
eines Ausführungspfades, der kürzer als der WCET-Fall ist, verfügbar ist.
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Dadurch ist eine effiziente Ressourcennutzung auch bei der Nutzung „starrer“ Sche-
duler möglich (d. h. solcher Scheduler, die einer Komponente nur die „minimale an-
gefragte“ Zeit w zuweisen).

• Δcurr > w: In diesem Fall teilt der Komponentenscheduler der Komponente mehr Zeit
als deren WCET zu. Somit kann die Komponente auch die Slackzeit verwerten, die im
aktuellen Zyklus während der Ausführung anderer Komponenten bereits entstanden
ist oder entstehen wird.

6.2.3. In-cycle Sequential State Chart (ISSC)
Nach den Prinzipien des hierarchischen Schedulings (vgl. Abschnitt 6.1.7) soll die ausge-
führte Kontrolllogik (die primär aus Funktionsbausteinen besteht) und die Vorschrift zu
deren Ausführung bzw. der Scheduler innerhalb einer Komponente zwar logisch getrennt
sein, aber gemeinsam in einer POU verwaltet werden. Es wurden zwei Möglichkeiten der
Darstellung bzw. Speicherung der Ausführungsvorschrift vorgestellt und diskutiert: die
Darstellung als Taskliste nach IEC 61131-3 sowie die Darstellung als Ereignisflussnetz
nach IEC 61499 (Ereignisfluss zwischen den „Köpfen“ der Funktionsbausteine).

In diesem Abschnitt wird eine Prozedurbeschreibungssprache vorgestellt, die für die
Beschreibung der ressourcenadaptiven Ausführungskontrolle innerhalb der FBDs und SKs
eingesetzt werden soll.

Durch die Zielsetzung der Arbeit, die Ressourcen und insbesondere die Slackzeit in-
nerhalb eines Zyklus effizienter zu nutzen, muss das Verhalten einer Komponente auch
innerhalb des Zyklus variierbar sein. Es ist somit offensichtlich, dass das Mittel für die Be-
schreibung dieser Verhaltensvariation die in-cycle Semantik und Zeitsensitivität unterstüt-
zen muss. Darüber hinaus muss die in-cycle Semantik das Durchlaufen mehrerer Zustände
bzw. Schleifen innerhalb der Prozedur ermöglichen. Dieses ist bereits für die Umsetzung
eines optionalen Zustands erforderlich, die z. B. für die Umsetzung des „Imprecise Compu-
tation Models“ (vgl. Abschnitt 5.1.5) vorausgesetzt wird.

Von den existierenden Prozedurbeschreibungssprachen wird die in-cycle Semantik von
PLC-Statecharts [WVH11, Wit12] sowie von einer möglichen Semantik für PLC unter-
stützt (vgl. Abschnitte 3.4.1 bzw. 3.4.2). Diese Semantik erlaubt die wiederholte Aus-
führung der Aktionen eines Zustands innerhalb eines Zyklus und abstrahiert somit die
eventuelle zyklische Ausführung des Laufzeitsystems (vgl. Abschnitt 3.4.2). In [WVH11]
wurde die in-cycle Semantik der PLC-Statecharts am Beispiel einer mehrfachen Ausfüh-
rung der Aktionen eines Zustands, die von einer Zählervariable abhing, demonstriert. Die
in-cycle PLC-Statcharts bieten allerdings weder die Möglichkeit mehrere Zustände inner-
halb eines Zyklus zu besuchen, noch die Möglichkeit das Verhalten des Charts von der
Ausführungszeit abhängig zu machen.

Im Folgenden wird eine Prozedurbeschreibungssprache eingeführt, deren Semantik den
benötigten Anforderungen der Zeitsensitivität und der in-cycle Semantik genügt. Es ist
sinnvoll die Syntax und die Ausdrucksstärke einer bestehenden Prozedurbeschreibungs-
sprache zu übernehmen und nur die nötigen Aspekte der Semantik anzupassen. Diese
Vorgehensweise hat sich im Falle der zyklischen Semantik für Statecharts am Beispiel von
PLC-Statecharts und SSCs bewährt. Für den Zweck der Beschreibung von RA-Algorithmen
wurde daher die Syntax der SSCs ausgewählt, die im Folgenden mit einer in-cycle Seman-
tik ausgestattet wird. Die aus dieser Kombination entstandene Sprache wird als In-cycle

74

https://doi.org/10.51202/9783186257086 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:59:54. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186257086
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Sequential State Chart (ISSC) bezeichnet. Um Mehrdeutigkeiten zu vermeiden, wird im
Folgenden zwischen den ISSCs und den klassischen SSCs differenziert, die auch im Fall
einer Mehrdeutigkeit als multi-cycle Sequential State Charts bezeichnet werden.

Der Einsatz von Prozedurbeschreibungssprachen in der Leittechnik ist an die folgenden
Anforderungen gebunden, die sich teilweise mit den Anforderungen an die flexiblen Algo-
rithmen in der Leittechnik im Allgemeinen (vgl. Kapitel 4) decken. Die Liste lehnt sich
an die Vorarbeiten [YQGE12, YGE13] in Co-Autorschaft sowie Anforderungsanalysen der
DSLs [KPKP06, Gro09] an:

• Die Sprache soll eine Kombination aus einer funktionalen Beschreibung und Program-
mierung durch graphische Repräsentation sein. Diese Repräsentation ist so präzise,
dass sie direkt operativ einsetzbar ist, d. h. sie kann interpretiert oder für die Synthese
des ausführbaren Codes verwendet werden.

• Die Sprache soll den domänenspezifischen Konzepten der Leittechnik folgen, den
Stand der Technik und die historische Entwicklung dieser Domäne berücksichtigen.

• Die Eindeutigkeit der Semantik muss durch Formalisierung bzw. eine Abbildung auf
ein formales Modell gewährleistet werden.

• Die Balance zwischen der Ausdrucksstärke und der Komplexität bzw. der Zweckmä-
ßigkeit und der Kompaktheit muss so gewählt werden, dass die vorhandenen syn-
taktischen Mittel gerade für die Beschreibung der benötigten Prozeduren ausreichen.
Jedes zusätzliche Element erhöht die Komplexität der Semantik und führt zu poten-
tiellen Problemen bei der Implementierung [Yu16].

Die Einhaltung der ersten zwei Anforderungen ist durch die Übernahme der Beschrei-
bungselemente und der Syntax der SSCs erfüllt. Die Eindeutigkeit der Semantik ist durch
die Abbildung auf TA bzw. auf die TA-Netzwerke von UPPAAL gewährleistet. Die letz-
te Anforderung wird durch die teilweise Reduktion der Beschreibungsstärke von SSC er-
reicht. Die Sprache SSC verzichtet ihrerseits bereits auf viele Elemente von SFC und UML-
Statecharts. Diese Einschränkungen sind nicht endgültig – bei Bedarf können die Syntax
und die Semantik angereichert werden.

Es können weitere Vereinfachungen der syntaktischen Elemente der ISSCs im Vergleich
zu SSC vorgenommen werden, ohne deren Eignung für die Definition der Ablaufsteuerung
von RA-Algorithmen negativ zu beeinflussen bzw. sich signifikant auf die Größe des Charts
oder dessen Komplexität auszuwirken:

• Vereinfachter Ausführungsrahmen: Da die ISSCs vielmehr mit Tasklisten als
mit einfachen Bausteinen vergleichbar sind, werden die Anforderungen an den Aus-
führungsrahmen eines Charts bzw. an seine externen Schnittstellen abgeschwächt.
Die ISSCs operieren im Rahmen der gesteuerten POU und verwenden somit dessen
Ausführungsrahmen als Schnittstelle.

• Aktionen nur in der entry-Phase: In SSC können die Aktionen drei Phasen
eines Zustands – „entry“, „do“ und „exit“ zugeordnet werden. Die Ausführung einer
Aktion in der do-Phase hat wegen der fehlenden multi-cycle Semantik der ISSCs
keine Bedeutung mehr – das Statechart kann nicht mehr in einem Zustand über
mehrere Zyklen verharren. Die Ausdrucksstärke von exit-Anweisungen ist wegen der
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CALL    OP1

H
TRUE

t > 10 ms

TRUE

CALL    OP2

Initialzustand

Zustand

Breakpoint

History-Breakpoint

Operation

Transition mit 
Guard

Abbildung 6.6.: Graphische Darstellung eines ISSCs.

Abbildung 6.7.: Klassendiagramm des ISSCs.

Abwesenheit der hierarchischen Zustände bereits eingeschränkt und kann durch eine
entry-Anweisung des nachfolgenden Zustands simuliert werden.

Basierend auf diesen Vorüberlegungen wird im Folgenden der syntaktische Aufbau der
ISSCs sowie deren graphische Darstellung informell präsentiert. In Abbildung 6.6 ist ein
einfaches ISSC mit jeweils zwei Zuständen und zwei Breakpoints dargestellt. Der untere
Zustand wird dabei nur dann betreten, wenn die verbliebene Ausführungszeit mehr als
10 ms beträgt. Sonst wird die Ausführung des Charts für den aktuellen Zyklus in dem obe-
ren Breakpoint abgebrochen. Weitere ISSC-Beispiele sind in darauffolgenden Abschnitten
zu finden.

Die Struktur des ISSCs wird der Vollständigkeit halber als UML-Klassendiagramm in
Abbildung 6.7 dargestellt. Die einzelnen Elemente sind:
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Zustände (oder Schritte) Die Zustände der ISSCs repräsentieren den Fortschritt der
damit beschriebenen Prozedur. Zu jedem Zeitpunkt ist genau ein Zustand des Charts
aktiv. Zustände enthalten Aktionen, die beim Betreten des Zustands ausgeführt werden.
Alle Aktionen eines Zustands werden in der vorgegebenen Reihenfolge innerhalb des Zyklus
ausgeführt.

Breakpoints Neben den Anfangszuständen wird eine spezielle Klasse von Zuständen de-
finiert, die „Breakpoints“ heißen. Dieser Klasse der Zustände können keine Aktionen zuge-
ordnet werden. Somit haben Breakpoints einen einzigen Zweck: sie definieren Zeitpunkte,
zu denen die Ausführung des ISSCs unterbrochen wird bzw. das ISSC verlassen werden
kann. Das „Verlassen“ des Statecharts übergibt den Kontrollfluss nach dem Prinzip des
hierarchischen Schedulings zurück zu dem übergeordneten Scheduler.

Transitionen und Guards Transitionen verbinden Zustände bzw. Breakpoints miteinan-
der. Die Transitionen sind mit Guards beschriftet. Guards sind Ausdrücke, die zu einem
booleschem Wert auswertbar sind. Eine Transition ist aktiv, falls der zugeordnete Guard zu
TRUE evaluiert wird. Aktive Transitionen erlauben Übergänge zwischen den Zuständen
entlang dieser. Die Guards haben keine Seiteneffekte und können auf unterschiedliche Art
und Weise realisiert werden, z. B. durch explizite boolesche Ausdrücke oder durch einfache
Funktionsbausteinketten. Eine Diskussion diesbezüglich ist in [Yu16] zu finden.

Transitionen besitzen eine eindeutige Evaluierungsreihenfolge und sichern somit einen
deterministischen Zustandsübergang zu.

Ein Zustand, der kein Breakpoint ist, muss immer verlassen werden können, d. h. es muss
sichergestellt werden, dass in jedem Fall mindestens eine aktive Transition existiert.

Aktionen Die SSCs nutzen zwei Typen von Aktionen: Aufrufe der lokalen Funktions-
bausteine und Variablenzuweisungen. Die Zuweisungen werden in zwei weitere Kategorien
unterteilt: die Zuweisungen an die Variablen des Ausführungsrahmens bzw. an die Varia-
blen des Interfaces des SSCs sowie die Zuweisungen der Werte an die Eingänge lokaler
Funktionsbausteine. Beide Typen werden von ISSC übernommen.

Im vorgestellten Meta-Modell werden Aktionen mit einer expliziten Ausführungsdauer
versehen und bleiben für die Dauer der Ausführung ununterbrechbar. Aus diesem Grund
wird auf die Unterscheidung zwischen Aktionen und Aktivitäten verzichtet. Die letzten
können z. B. nach der Semantik von PLC-Statecharts von dem Zyklus der Laufzeitumge-
bung „angehalten“ werden [WVH11].

Lauf eines ISSCs Ein Lauf beginnt in dem designierten Anfangszustand bzw. in dem zu-
letzt aktiven Breakpoint (vgl. den Punkt „History-Verhalten der Breakpoints“). Nach der
Ausführung der Aktionen werden die Guards der Transitionen in der vorgegebenen Rei-
henfolge ausgewertet. Bei dem ersten aktiven Guard folgt ein Übergang in den nächsten
Zustand bzw. Breakpoint. Eine wichtige Implikation dieser Forderung ist die Abwesenheit
der Deadlocks. Es muss immer ein Übergang zwischen zwei Zuständen (die keine Break-
points sind) existieren, d. h. mindestens eine ausgehende Transition muss immer aktiv sein.
Ein Lauf endet in einem Breakpoint, umgekehrt muss aber das Besuchen eines Breakpoints
den Lauf nicht notwendigerweise beenden. Zu einem konkreten ISSC existieren typischer-
weise mehrere Läufe, die sich je nach den befolgten Transitionen unterscheiden können.
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History-Verhalten der Breakpoints Breakpoints können explizit ein History-Verhalten
besitzen (ein Buchstabe „H“ in einem Kreis, die Notation ist den Harel’s Statecharts entlie-
hen [Har87]). Falls der Lauf eines ISSCs in einem History-Breakpoint unterbrochen wurde
(d. h. kein Guard der ausgehenden Transitionen aktiv war), beginnt die wiederholte Aus-
führung des ISSCs in diesem Breakpoint. Falls ein History-Breakpoint keine ausgehenden
Transitionen besitzt, „verbleibt“ der ISSC nach dem Erreichen des letzten Breakpoints im-
mer wieder in diesem Breakpoint. Das Chart muss in diesem Fall manuell zurückgesetzt
werden, z. B. auf den Initialzustand.

Endzustände ISSCs verfügen über keine expliziten Endzustände. Stattdessen wird auf
die Breakpoints zurückgegriffen. Die Konvention ist, dass der Breakpoint ohne ausgehende
Transitionen einem Endzustand gleichwertig angesehen wird. Bei der Frage wann ein ISSC
als „beendet“ oder „terminiert“ betrachtet wird, muss zwischen den Statecharts mit und
ohne History-Verhalten differenziert werden. Ein ISSC ohne History-Verhalten ist mit dem
Lauf beendet, weil der neue Durchlauf des Statecharts wiederum in dem Initialzustand
anfängt. Ein ISSC mit History-Verhalten ist dann beendet, wenn ein Breakpoint ohne
ausgehende Transitionen erreicht wurde.

Um zeitabhängiges Verhalten der Algorithmen beschreiben zu können, werden ISSCs
mit einer zeitbehafteten Semantik ausgestattet, die sie sehr ähnlich zu TA macht.

Das Zeitverhalten eines ISSCs folgt den nachstehenden Grundsätzen:

• Die Zeit vergeht nur während der Ausführung der Aktionen in den Zuständen. In
einem Zustand ohne Aktionen vergeht demnach keine Zeit.

• Transitionen sind zeitlos (die Dauer der Auswertung der einer Transition zugeord-
neter Guards kann bei Bedarf durch Aktionen des vorgehenden Zustands bei der
Modellierung berücksichtigt werden).

ISSCs werden mit einer speziellen Variable – einer Uhr – ausgestattet. Diese ermöglicht
das Abfragen der für die Komponente noch verfügbaren Ausführungszeit. Die Möglichkei-
ten der Auswertung dieser Zeit ist neben der in-cycle Semantik die grundlegende Erweite-
rung von Statecharts, die in keiner dem Autor bekannten Prozedurbeschreibungssprache
der Domäne der Prozessleittechnik verfügbar ist. Die Kombination dieser Eigenschaft, der
in-cycle Semantik und der Ausführungszeitsensitivität, macht Ablaufsteuerung der ressour-
cenadaptiven Anwendungen mit Mitteln der ISSCs erst möglich.

Es ist wichtig zwischen der Ausführungszeitsensitivität und der generellen Möglichkeit
Zeitverhalten in die Beschreibungsmittel für Prozeduren einfließen zu lassen genau zu un-
terscheiden. Die Möglichkeit Timer bzw. Pausen zwischen den einzelnen Schritten bzw.
Aktionen zu definieren, ist in den meisten Prozedurbeschreibungssprachen, wie z. B. IEC
61131-3 SFC vorhanden. Ein weiteres zeitabhängiges Verhalten existiert bei den SSCs:
Diese erlauben die Abfragen des Ausführungsstatus gestarteter Unterabläufe. Der Fort-
schritt der Prozedur kann durch die Nutzung dieser Abfragen von den Zeitpunkten der
Terminierung der Unterabläufe abhängen und ist somit auch implizit zeitsensitiv.

Diese Möglichkeiten reichen jedoch für die Beschreibung der Ablaufstruktur der RA-
Algorithmen mit einer in-cycle Semantik nicht aus. Bei dem Timer handelt es sich um
statische Pausen, die als absolute Zeitspannen ausgedrückt werden, z. B. fünf Sekunden.
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Daher sind sie nicht für Beschreibung variabler temporaler Verhalten geeignet. Die Ab-
fragen der Terminierung genügen diesem Ziel auch nicht, da sie keine Aussagen über den
absoluten Zeitpunkt der Terminierung zulassen. Stattdessen wird die multi-cycle Semantik
der SSCs verwendet: das Statechart überprüft die Terminierung durch das Abfragen einer
speziellen Variable genau einmal pro Zyklus und Unterablauf.

Zusammengefasst lassen sich die Eigenschaften der eingeführten ISSC-Sprache im Ver-
gleich zu SSC in der Notation der Veröffentlichungen [YGE13, Yu16] wie folgt beschreiben:

ISSC ≈ SSC + Breakpoints + Ausführungszeitsensitivität + in-cycle
Semantik − Zustandshierarchie − komplexer Ausführungsrahmen − do-
und exit-Phasen.

Formal gesehen kann ein ISSC I = (S, B, H, G, Δ, A, α, O, s0, c, w) als ein Tupel dar-
gestellt werden, wobei S eine Menge der Zustände, B eine zu S disjunkte Menge der
Breakpoints, H eine zu S und B disjunkte Menge der History-Breakpoints, G eine Menge
boolescher Guard-Variablen g ∈ B, Δ ⊆ (S ∪ B ∪ H) × G × (S ∪ B ∪ H) eine Transi-
tionsrelation, A eine Menge der Aktionen, α : S → 2A die Zuordnung der Aktionen zu
den Zustanden, O eine Menge der partiellen Ordnungen der Aktionen für jede Menge der
Aktionen α(s) mit s ∈ S und s0 ∈ S der Initialzustand ist. Eine einfache Zuordnung
der Aktionen auf Zustände ist ausreichend, da nur Aktionen in der entry-Phase eines Zu-
stands zugelassen sind. Es wird eine möglichst einfache mathematische Modellierung von
ISSC beabsichtigt. So werden z. B. die Variablen auf denen die Guards operieren nicht ex-
plizit modelliert, sondern nur als bereits ausgewertete Ausdrucke miteinbezogen. Es wird
angenommen, dass ISSCs deterministisch bezüglich der Transitionen sind. Diese Forde-
rung impliziert den wechselseitigen Ausschluss der Transitionen eines Zustands bzw. deren
Guards. Letzteres kann durch das Bilden zusätzlicher Guard-Variablen, die eine Konjuga-
tion negierter Guards benachbarter Transitionen oder die Zuordnung der Prioritäten an
die Transitionen, erreicht werden. Der letzte Weg wird oft bei der graphischen Definiti-
on der SSCs bzw. SFCs gewählt, z. B. durch eine explizite Nummerierung oder durch die
Priorisierung der Transitionen in der Reihenfolge „von links nach rechts“ bezüglich der
graphischen Darstellung des Zustands bzw. des Breakpoints.

Eine Uhr c, die vom Statechart selbst nicht zurückgesetzt wird, jedoch in die Guards
eingehen kann, erweitert das Modell. Die Uhr hat den Wert der Zeit, die seit dem Beginn
der von dem ISSC gesteuerten Komponente vergangen ist und kann jederzeit von einem
Guard abgefragt werden. Der letzte Eintrag des Tupels ist einer Funktion w : A → R

+,
die die WCET der Ausführung jeweiliger Aktionen darstellt.

Es ist dem aufmerksamen Leser aufgefallen, dass die Uhr c nicht der Uhr t für die
verbliebene Ausführungszeit der Komponente aus Abbildung 6.6 entspricht. Dieser Wert
kann einfach als Differenz t = Δcurr−c dargestellt werden, wobei Δcurr die aktuell zugeteilte
Ausführungszeit des ISSCs ist.

Die Ähnlichkeit der ISSCs zu TA lässt eine relativ einfache Abbildung der ISSCs auf
diese zu, was Gegenstand des nächsten Abschnitts ist.

6.2.4. Formalisierung der ISSC-Semantik mithilfe von Timed
Automata und UPPAAL

Die Forderung nach der Eindeutigkeit der Semantik von ISSC wird in diesem Abschnitt
durch die Abbildung der Charts auf die TA-Netzwerke des UPPAAL Toolkits adressiert.
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Abbildung 6.8.: Der Automat für den Hauptzyklus der Laufzeitumgebung.

Dieses Automatenmodell bietet einen pragmatischen Weg, formal eindeutige Modelle mit
einer komfortablen Syntax (wie z. B. Guards, Unterteilung der Logik in mehrere Automaten
sowie Kommunikationskanäle zwischen diesen) zu erstellen. In seiner hauptsächlichen An-
wendung als Model-Checker bietet UPPAAL weiterhin die Möglichkeit die Eigenschaften
der abgebildeten Automaten abzufragen.

Zunächst werden die Elemente des ISSC-Modells auf die Elemente des Automaten-
modells von UPPAAL abgebildet. Die Grundlage für dieses Modell bilden Vorarbeiten
[YGE13] bzw. Arbeiten von Witsch et al. [WRKVH10, WVH11], in denen das Verhal-
ten von SSCs bzw. PLC-Statecharts auf einer zyklischen Laufzeitumgebung mithilfe von
UPPAALs TA-Netzwerken formalisiert wurde.

In Abschnitt 2.1.4 wurde bereits eine kurze Einführung in UPPAAL präsentiert. Für die
Modellierung gelten die folgenden Konventionen der Benennung bzw. der Darstellung:

• Guards der Transitionen werden in Abbildungen immer in Klammern aufgeführt,
z. B. „(clCycle==paCycle_Time)“.

• Invarianten der Zustände (d. h. Bedingungen die während der Aktivität des Zustandes
gelten) stehen in unmittelbarer Nähe des Zustands und beinhalten einen Vergleichs-
operator, z. B. „clCycle<=paCycle_Time“.

• Namen der Zustände stehen in unmittelbarer Nähe dieser und beinhalten keine Ope-
ratoren.

• Synchronisationsaufrufe (d. h. Sende- und Empfangsoperationen auf den binären
Kommunikationskanälen) sind an den abschließenden Sende- (!) bzw. Empfangs-
operatoren (?) erkennbar, z. B. „chCycle_Call!“.

• Uhrenvariablen beginnen mit einem Präfix „cl“, Parameter beginnen mit einem Prä-
fix „pa“ und Kommunikationskanäle beginnen mit einem Präfix „ch“.

• In TA-Zuständen mit einer Markierung „C“ (committed) vergeht keine Zeit.

Zunächst wird der Hauptzyklus der Laufzeitumgebung modelliert, der in Abbildung 6.8
dargestellt ist. Der Lauf beginnt im Zustand „start“, in dem keine Zeit vergehen darf. Die
erste Transition emittiert ein Signal über den Kanal „chCycle_Call“. Danach wartet der
Automat solange, bis ein Signal über den Kanal „chCycle_Finished“ empfangen wird.
Durch eine Invariante verbleibt der Lauf solange in dem oberen Zustand bis die interne
Uhr „clCycle“ den Wert des Parameters „pCycle_Time“ – der Zykluszeit – erreicht. Im
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6.2. Meta-Modell für ressourcenadaptive Komponenten

Abbildung 6.9.: Der Automat für den Komponentenscheduler (in diesem Fall werden zwei
ISSCs innerhalb des Grundzyklus ausgeführt).

Abbildung 6.10.: Das Template für die Modellierung einer Aktion.

Anschluss daran vollzieht sich ein Übergang in den Startzustand und die Uhr wird zurück-
gesetzt. Im Gegensatz zu den Vorarbeiten wird der Einfachheit halber das Einlesen der
Ein- und Ausgänge der Laufzeitumgebung nicht explizit im Hauptzyklus modelliert. Bei
Bedarf kann dies komplikationslos hinzugefügt werden.

Im nächsten Schritt wird der Komponentenscheduler modelliert. Für die Zielsetzung der
einfachen Modellierung der ISSC-Semantik reicht ein einfacher Ansatz für den Kompo-
nentenscheduler aus. Dabei wird die Ausführung einer einfachen Liste nachgebildet. Der
Automat ist in Abbildung 6.9 zu finden. Der Lauf des Automaten wird ausschließlich durch
Synchronisationsaufrufe bestimmt. Der Beginn des Hauptzyklus, der vom Automaten in
Abbildung 6.8 durch das Senden auf dem Kanal „chCycle_Call“ kommuniziert wird, löst
die sequentielle Ausführung von zwei ISSCs durch die passenden Kommunikationssignale
aus. Nach dem Beenden des zweiten Statecharts wird das Ende des Zyklus durch den Kanal
„chCycle_Finished“ an den Hauptzyklus der Laufzeitumgebung (Automat in Abbildung
6.8) übermittelt.

Im Folgenden werden die Regeln für die Abbildung einzelner Elemente der ISSCs auf
die Elemente der TA-Netzwerke vorgestellt. Zunächst muss die Modellierung der Aktionen
angesprochen werden, die in den einzelnen Zuständen der Statecharts aufgerufen werden.
Bei der Modellierung werden die genauen Auswirkungen der Aktionen nicht berücksich-
tigt, da nur die Ausführungsdauer dieser im Mittelpunkt der Betrachtung steht. Somit
ist eine Aktion nach dem Template modellierbar, das in Abbildung 6.10 dargestellt ist.
Die Kommunikationskanäle „chAction_Finished“ und „chAction_Call“ sowie die Para-
meter „paWCET“ und „paBCET“ werden für die jeweilige Instanz der Aktion durch globale
Kanäle bzw. Parameter initialisiert. Die Parameter entsprechen der WCET bzw. der Best
Case Execution Time (BCET) einer Aktion. Die Ausführung der Aktion wird durch ein
Signal auf „chAction_Call“ initiiert. Dabei wird die interne Uhr „clAction“ zurück-
gesetzt. Danach erfolgt die Simulation der Ausführungszeit: durch das Zusammenspielen
der Zustandsinvariante „clAction <= paWCET“ mit dem Guard „clAction >= paBCET“
ist der Automat gezwungen in dem oberen Zustand für die Zeitdauer aus dem Intervall
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

Abbildung 6.11.: Transformation des Initialzustands.

Abbildung 6.12.: Transformation eines Zustands mit Aktionen.

[paBCET, paWCET] zu bleiben, bevor ein Signal auf „chAction_Finished“ ausgelöst wird
und damit das Ende der Ausführung der Aktion markiert. Die BCET wurde ausschließ-
lich für Testzwecke abgebildet und kann durch die Belegung mit Null aus dem Modell
„ausgeblendet“ werden.

Das Modellieren der ISSCs in UPPAAL kann wegen der großen Ähnlichkeit beider Mo-
delle mithilfe einfacher Überführungsmuster auf der Ebene einzelner Elemente stattfin-
den. Für die Modellierung wird davon ausgegangen, dass der Automat eine interne Uhr
„clInternal“ (die der Uhr c aus der formalen Definition von ISSC entspricht) und einen
Parameter „paD_T_Curr“ besitzt. Letzter enthält die für die Ausführung der ISSCs zur
Verfügung stehende Zeit und entspricht somit der Variable Δcurr aus Abschnitt 6.2.2.
Analog zum Modell der Aktionen stehen ferner zwei Kommunikationskanäle „chCall“
und „chFinished“ für das Model des ISSCs zur Verfügung.

Der Initialzustand des Statecharts wird auf die UPPAAL Konstruktion in Abbildung
6.11 überführt. Der Automat wartet in seinem Anfangszustand „intial“ auf die Syn-
chronisation über „chCall“ und setzt die interne Uhr zurück, um die Zeit der eigenen
Ausführung messen zu können. Die in einem Initialzustand des Charts enthaltene Aktions-
aufrufe können durch die im Folgenden beschriebene Abbildung der Zustände abgedeckt
werden.

Nicht-Breakpoint Zustände werden durch die Transformation in Abbildung 6.12 zu einer
Kette aus Automatenzuständen umgewandelt. Jeder Zustandsübergang löst eine Aktion
aus, die durch einen Automaten in Abbildung 6.10 modelliert wird. Die Aktionen werden
in der Reihenfolge „von oben nach unten“ abgearbeitet.

Als nächstes werden die Transitionen zwischen den Statechart-Zuständen abgebildet.

Abbildung 6.13.: Transformation der Transitionen (Priorisierung „von links nach rechts“).
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6.2. Meta-Modell für ressourcenadaptive Komponenten

Abbildung 6.14.: Transformation eines Breakpoints ohne History-Verhalten (Priorisierung der
Transitionen „von links nach rechts“).

Diese werden durch das Muster in Abbildung 6.13 überführt (beispielhaft für zwei Guards).
In der Abbildung wird die explizite Priorisierung der Transitionen in der Reihenfolge „von
links nach rechts“ angenommen. Es wird davon ausgegangen, dass die Guards des ISSCs
auf zwei Arten boolescher Variablen operieren. Diese sind Variablen der gesteuerten Funk-
tionsbausteine und Variablen der internen Uhr c, die den Fortschritt der Zeit während der
Ausführung des Statecharts misst. Die erste Kategorie der Variablen wird einfach auf eine
Menge boolescher Variablen in UPPAAL abgebildet und muss somit extern belegt werden.
Die Guards mit der Uhr-Variable werden dagegen ins UPPAAL Modell als Transitionen-
Guards direkt übernommen. Die Abfrage der für die Ausführung noch verfügbaren Zeit
kann im ISSC durch die Abfrage der Differenz (Δcurr − c) erfolgen wobei c die interne
Uhr des Statecharts ist. Diese Abfragen innerhalb der Guards können direkt in UPAALL
auf die Differenzen paD_T_Curr − clInternal abgebildet werden. Man stellt fest, dass in
der vorgestellten Transformation keine Möglichkeit existiert den Lauf des TA fortzusetzen,
wenn der letzte Guard (G2 im Beispiel in Abbildung 6.13) nicht erfüllt ist. Dieses Verhal-
ten bildet die in-cycle Semantik der ISSCs nach – die Ausführung der Charts darf nicht
außerhalb der Breakpoints unterbrochen werden.

Die verbliebenen Elemente der Statecharts sind die Breakpoints. Deren Verhalten hängt
davon ab, ob der Breakpoint ein History-Verhalten besitzt (also ob Breakpoint b in der
Menge H in der Definition des ISSCs enthalten ist). Es wird zunächst der Fall mit abge-
schaltetem History-Verhalten betrachtet. Ein Breakpoint wird beispielhaft in Abbildung
6.14 in die TA-Syntax überführt. Im Unterschied zu einem normalen Zustand, wird nach
der negativen Überprüfung des letzten Guards (hier, G2) die Ausführung des Charts durch
den Kanal „chFinished“ unterbrochen und das Chart springt zurück in den Initialzustand
des Automaten in Abbildung 6.11. Die Zeit darf nur im Initialzustand vergehen – somit
„wartet“ das Chart in diesem Zustand auf die nächste Ausführung.

History-Breakpoints werden durch die Transformation in Abbildung 6.15 umgewandelt.
Der hauptsächliche Unterschied zu der Transformation in Abbildung 6.14 sind die Eigen-
schaften des Zustands „breakpoint“. Nach der Auswertung des letzten Guards signalisiert
das Chart das Beenden des aktuellen Laufs durch den Kanal „chFinished“, wartet aber
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

Abbildung 6.15.: Transformation eines Breakpoints mit History-Verhalten (Priorisierung der
Transitionen „von links nach rechts“).

in diesem Zustand. Im Gegensatz zu der Transformation ohne History-Verhalten darf in
dieser Konfiguration nun die Zeit vergehen (der Zustand ist dementsprechend nicht expli-
zit als „committed“ markiert worden). Die erneute Ausführung des ISSCs beginnt somit
genau in diesem Zustand und nicht in dem Initialzustand des Charts. Dabei wird ähnlich
zu der Transformation in Abbildung 6.11 die interne Uhr zurückgesetzt. Im speziellen Fall,
dass der History-Breakpoint keine ausgehende Transitionen besitzt, erzeugt die Transfor-
mation eine nicht-blockierende Schleife in der keine Zeit verstreichen darf (vgl. Abbildung
6.15 unten). Damit verbleibt, der Semantik der ISSCs entsprechend, der Automat in einer
„Senke“.

Mit den beschriebenen Elementen ist die Transformation und somit das Verhalten der
ISSCs vollständig. Durch die Abbildung auf UPPAAL TA-Netzwerke ist aber nicht nur
das Verhalten formal beschrieben worden, sondern auch der Weg für die Anwendung des
im UPPAAL enthaltenen Computational Tree Logic (CTL) Model-Checkers offen. Die
möglichen Szenarien für dessen Nutzung während des Engineerings werden in Abschnitt
6.2.6 aufgeführt.

Die beschriebene Transformation ist für ein komplettes ISSC beispielhaft in Abbildung
6.16 dargestellt. Die Ähnlichkeit der Struktur des Charts im oberen Teil der Abbildung
und des UPPAAL-Automaten im unteren Teil ist nicht zu übersehen – die Zustände und
die Aktionen werden einfach übernommen. Die Guards sind übernommen worden und mit
zusätzlichen ausschließenden Bedingungen ergänzt worden, damit der UPPAAL-Automat
deterministisch ist. Ein komplettes Automatennetzwerk, welches diesen Automaten ent-
hält, ist in Abbildung 6.19 auf Seite 90 zu sehen.
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S1

CALL    A1 CALL    A3

TRUEms

TRUE

S2 S3

S4

B1

CALL    A2

TRUE

ms

TRUE

WCET der Aktionen:
A1 200 ms
A2 50 ms
A3 100 ms

Abbildung 6.16.: Transformation eines ISSCs nach UPPAAL an einem einfachen Beispiel.
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

6.2.5. Beschreibung ressourcenadaptiver Algorithmen mit ISSC –
Konventionen und Muster

Konventionen

Mit den vorgestellten In-cycle Sequential State Charts lässt sich die Ausführung verschie-
denster POUs komfortabel beschreiben. Die Beschreibung der Abläufe durch den Nutzer
bringt aber auch Gefahren mit sich. In diesem Abschnitt werden drei Konventionen für
ISSC vorgeschlagen, die diese Gefahren minimieren sollen. Diese Konventionen stellen kei-
ne Einschränkung der Beschreibungsstärke der Statecharts dar und erleichtern in vielen
Fällen das Engineering.

Eine Gefahr bei der Definition der ISSCs ist die Entstehung von Deadlocks, d. h. Zu-
ständen, die über keine aktive Transition verlassen werden können. Durch einen solchen
Zustand könnte, unter den angenommenen Bedingungen, ein Zyklus nicht terminieren bzw.
ein nicht-konsistenter Zustand entstehen, falls man den Deadlock gezwungenermaßen durch
den Abbruch der ISSC-Ausführung auflösen muss.

Eine zusätzliche Gefahr bietet die von SSC bzw. SFC teilweise geerbte Syntax des Be-
schreibungsmittels. Da sowohl SSC als auch SFC durch die multi-cycle Semantik keine Voll-
ständigkeit der Ausgangstransitionen fordern, könnten Nutzer in der Engineering-Phase
mögliche Deadlocks übersehen. Diese Problematik lässt sich mithilfe des UPPAAL Model-
Checkers lösen, durch den man die Abwesenheit von Deadlocks beweisen kann (vgl. Ab-
schnitt 6.2.6). Wegen der partiellen Abbildung der Guards in UPPAAL (es werden nur die
Guards abgebildet, die explizit über die Zeit quantifizieren) können aber nicht alle Guards
überprüft werden. Diese Problematik kann durch die explizite Einführung einer Standard-
Transition mit Guard „TRUE“, die als letztes für jeden Zustand ausgewertet wird und
immer aktiv ist, gelöst werden. Diese Konvention entspricht dem „else“ Konstrukt in den
Verzweigungen der strukturierten Programmiersprachen. Somit gilt:

Konvention 1: Jeder Zustand, der kein Breakpoint ist, muss mindestens
eine ausgehende Transition besitzen, deren Guard mit TRUE ausgewer-
tet wird.

Ein weiteres Problem sind die Zyklen innerhalb der Statecharts, die eventuell nie ver-
lassen werden können und für den Gesamtzyklus der Laufzeitumgebung somit ähnliche
Probleme wie Deadlocks verursachen können. Aus diesem Grund werden die Zyklen zwi-
schen Nicht-Breakpoints ausdrücklich verboten. Es ist wichtig zu bemerken, dass Zyklen,
bei denen die Häufigkeit der Ausführung zur Übersetzungszeit bekannt ist (z. B. eine 10-
fache Ausführung eines Zustands), nicht als Zyklen in diesem Kontext gelten, da sie einfach
„ausgerollt“ werden können und die Terminierung des Charts nicht gefährden. Zusammen-
gefasst:

Konvention 2: Ein ISSC darf nur Zyklen zwischen den Breakpoints
enthalten. Die Abschnitte zwischen den Breakpoints sind demzufolge
zykelfrei.

Diese Konvention erzwingt eine im Voraus bekannte obere Schranke für die Ausführungszeit
jedes Abschnittes zwischen den Breakpoints eines ISSCs.

Eine weitere Ursache für Deadlocks kann die fehlerhafte Formulierung der Zeitguards,
d. h. der Teilausdrücke der Guards, die über die interne Uhr quantifizieren, sein. Aus den
Beispielen im letzten Abschnitt wird sichtbar, dass die Guards für die interne Uhr häufig

86

https://doi.org/10.51202/9783186257086 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:59:54. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186257086


6.2. Meta-Modell für ressourcenadaptive Komponenten

CALL    MANDATORY

CALL    OPTIONAL

*

*

*

(a) 0/1-Ausführung

CALL    VER1 CALL    VER2

**

*
*

(b) Mehrversionen-Methode

Abbildung 6.17.: ISSC-Muster für ressourcenadaptive Algorithmen.

nur das „sichere Betreten“ des jeweiligen Zweigs garantieren. In diesem Fall kann die
Formulierung der Guards automatisch geschehen. Somit gilt:

Konvention 3: Soll nur das sichere Betreten des Zweiges/des Zustands
garantiert werden, so werden die entsprechenden Zeitguards automatisch
berechnet.

Im Falle der Abwesenheit der logischen Bedingungen reicht ein einfacher Algorithmus zur
Berechnung der Zeitguards aus. Dieser wird in Abschnitt 6.2.6 vorgestellt. In der graphi-
schen Darstellung wird aus diesem Grund im Folgenden auf die explizite Angabe dieser
Guards verzichtet.

ISSC-Muster für RA-Algorithmen innerhalb der POUs

In diesem Abschnitt werden die Grundmuster vorgestellt, die unter anderem für die Im-
plementierung der adaptiven Anwendungen nach den Paradigmen des Imprecise Compu-
tation Models (vgl. Abschnitt 5.1) notwendig sind. Dafür wird die 0/1-Ausführung, die
Mehrversionen-Methode und die Meilenstein-Methode in ISSC nachgebildet. Darüber hin-
aus wird die Implementierung von Transaktionen angesprochen.

Die dargestellten Muster machen von den Konventionen des letzten Abschnitts Ge-
brauch. So werden z. B. die Guards der Transitionen nicht um die Zeitguards erweitert.
Es wird davon ausgegangen, dass diese automatisch berechnet werden. Die zu berechneten
Guards wird im Folgenden durch den Platzhalter „*“ angedeutet. Das Ziel der Auflö-
sung der Platzhalter ist somit nur das gefahrlose Betreten des jeweiligen Zweigs bzw. des
Zustands sicher. Für die beispielhafte Anwendung der Muster und für viele Fälle in der
Praxis reicht dieses Verhalten aus. Die Charts können bei Bedarf um komplexere Guards
erweitert werden, die auch die Semantik der gesteuerten POU berücksichtigen können.
Das können z. B. die Ergebnisse der Berechnung einzelner Bausteine oder die Reaktion auf
einen externen Eingang der POU sein.

Als erstes wird die 0/1-Ausführung in Abbildung 6.17a vorgestellt. Das Chart besteht
aus zwei Zuständen, die die beiden Teile des Algorithmus repräsentieren: den verpflich-
tenden und den optionalen Teil. Der Initialzustand stößt die Ausführung des Pflichtteils
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CALL    INITIAL

CALL    MONOTONE

*

*

*

(a) Meilenstein-Methode

CALL    OP1

H
*

*

H
*

*

H
*

CALL    OP2

CALL    OP3
CALL    OP4

CALL    OP5
CALL    OP6

(b) Transaktion

Abbildung 6.18.: ISSC-Muster für ressourcenadaptive Algorithmen (Fortsetzung).

durch den Aufruf einer Aktion mit dem Namen „MANDATORY“ an. Durch den darauf
folgenden Breakpoint kann die Ausführung des ISSCs bereits nach dieser einen Aktion
terminieren bzw. terminiert werden. Sollte dies nicht der Fall sein, so kann die Ausführung
im zweiten Zustand mit dem Aufruf der Aktion „OPTIONAL“ fortgesetzt werden. Diese
ist dem optionalen Teil des Algorithmus zugeordnet. Danach wird der zweite Breakpoint
erreicht und die Ausführung zwangsweise terminiert. Dieses einfache Muster lässt bereits
die Ausdrucksstärke der ISSCs erahnen: Die Information zur Reihenfolge der Aktionen und
deren optionale bzw. verpflichtende Ausführung ist einfach und kompakt dargestellt.

Das nächste Muster stellt in Abbildung 6.17b die Ausführungssteuerung einer
Mehrversionen-Methode graphisch dar. Die Ausführung beginnt im Initialzustand. Da die-
ser keine Aktionen enthält, werden direkt die zwei ausgehenden Transitionen ausgewertet,
um entweder den linken oder den rechten Zweig des ISSCs zu betreten. Angenommen,
die WCET des linken Zweigs (der Version 1) ist kürzer als die des rechten (der Version
2). Der WCET Parameter w des Charts stellt die mögliche Ausführung des linken Zweigs
und damit der Aktion „VER1“ sicher – die dafür benötigte Zeit wird von dem Kompo-
nentenscheduler garantiert. Falls mehr Zeit zur Verfügung steht, kann eventuell auch der
rechte Zweig betreten werden. In diesem Fall wird die Aktion „VER2“ angestoßen. Der
Breakpoint im unteren Teil der Abbildung stellt eine Terminierung sicher und dient als
„Endzustand“.

Die beiden betrachteten Muster hatten eine begrenzte Höchstausführungsdauer. Im er-
sten Beispiel war das die Summe der Ausführungsdauer beider Algorithmen. Im zweiten
Beispiel war das deren Maximum. Das nächste Muster in Abbildung 6.18a implementiert
eine Meilenstein-Methode und kann somit beliebig lange ausgeführt werden. Der Chart
führt zunächst eine Aktion „INITIAL“ aus, in der ein Grundergebnis berechnet wird. Im
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weiteren Verlauf der Ausführung kann dieses Ergebnis durch die wiederholte Ausführung
der Aktion „MONOTONE“ des zweiten Zustands verbessert werden. Im Gegensatz zu Ab-
schnitt 5.1.5, wird in diesem einfachen Beispiel keine Trennung zwischen der Berechnung
an sich und dem Meilenstein gemacht. Diese ist durch das Einführen weiterer Zustände
und Breakpoints in der Chart-Schleife und somit einer Verfeinerung der nicht unterbrech-
baren Abschnitte problemlos möglich. Auch das Unterbrechen nach dem Erreichen eines
bestimmten Gütekriteriums, z. B. das Unterschreiten gewisser Fehlerabschätzung, kann
mithilfe eines weiteren Breakpoints mit einer entsprechenden Transition erfolgen.

Das letzte Muster in Abbildung 6.18b implementiert eine Prozedur, die nicht zum Impre-
cise Computation Model gehört. Dieses Beispiel setzt eine Transaktion mit vordefinierten
Unterbrechungspunkten um und macht dafür von Breakpoints mit History-Semantik Ge-
brauch. Die Transaktion stellt sicher, dass die in einem Zustand enthaltenen Aktionen
garantiert innerhalb eines Zyklus der Laufzeitumgebung ausgeführt werden. Das trifft bei-
spielsweise auf die Aktionen „OP1“ und „OP2“ zu. Die Ausführung kann zwischen den
Zuständen „pausieren“, d. h. für eine unbestimmte Anzahl Zyklen im History-Breakpoint
verbleiben. Ein Anwendungsszenario für dieses Muster ist das Laden von Instanzen in
das Laufzeitsystem. Ähnlich zu einer Datenbank müssen manche Aktionen, wie z. B. das
Einschalten der Bausteine, auf den Zyklus synchronisiert passieren. Nach dem Verlassen
des letzten Zustands verbleibt die Transaktion in dem untersten Breakpoint. Damit ist
eine einmalige Ausführung dieser sichergestellt. Die Anwendung dieses Musters wird im
Abschnitt 7.5 anhand eines Use-Cases demonstriert.

6.2.6. Engineering-Aspekte
Abschätzung der WCET

Die Abschätzung der WCET eines Programms ist eine nichttriviale Aufgabe und hängt
von vielen Faktoren ab, die die Laufzeit beeinflussen können. Einige Faktoren sind an das
Programm selbst gebunden. Dazu gehört, z. B. der Kontrollfluss innerhalb der Programm-
logik. Andere Faktoren hängen von der Hardware- und Softwareplattform des Systems
ab. Zur ersten Kategorie gehören, z. B. die Cache- und Speicherarchitektur der Plattform.
Zur zweiten Kategorie gehören die Architektur des Betriebssystems und die Eigenschaften
dessen Subsysteme, z. B. des Schedulers und der Speicherverwaltung.

Die methodische Analyse der Verfahren zur Berechnung der WCET einzelner Aktionen
bzw. Komponenten würde den Rahmen dieser Arbeit sprengen. Aus diesem Grund wird an
dieser Stelle eine bereits erfolgte Abschätzung angenommen. Eine Übersicht über gängige
Laufzeit-Analyseverfahren ist in [WEE+08] und [SOG14] zu finden.

Simulation der ISSCs mit UPPAAL

Die Abbildung der ISSCs auf UPPAAL erlaubt die Nutzung des Tools für die Simulation
und das Testen der Charts während des Engineerings. Der Funktionsumfang von UPPAAL
ermöglicht den simulierten Durchlauf der Charts bzw. der abgeleiteten Automaten sowie
das Aufzeichnen von Läufen des Charts.

Als Beispiel wird das System in Abbildung 6.19 betrachtet. Die einzelnen Automaten
in der Simulationssicht sind durch die Anwendung der Transformation entstanden, die in
Abschnitt 6.2.4 detailliert beschrieben wurde. Beispielsweise entspricht der als „ISSC1“
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

Abbildung 6.19.: Simulationssicht des UPPAAL-Tools, in der die zyklische Umgebung, ein
Komponentenscheduler, zwei ISSCs und die dazugehörigen Aktionen ausgeführt werden.
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bezeichnete Automat dem ISSC in Abbildung 6.16 auf Seite 85.

Anwendbarkeit des Model-Checkers

Neben der Simulation liegt eine weitere Anwendungsmöglichkeit von UPPAAL in der for-
malen Verifikation. Das Ziel ist es, bestimmte logische Aussagen zu dem definierten System-
modell, in diesem Fall das abgebildete Modell der zyklischen Laufzeitumgebung und der
darin eingebetteter ISSCs, zu bestätigen oder anhand eines Gegenbeispiels zu widerlegen.

Die Gefahren der Deadlocks wurden bereits in Abschnitt 6.2.5 angesprochen. Die Sicher-
stellung der Abwesenheit der Deadlocks ist die erste Anwendung des Model-Checkers und
kann durch eine einfache Anfrage „A[] not deadlock“ überprüft werden.

Eine weitere Anwendung des Model-Checkers ist die grobe Abschätzung der erreich-
baren Zustände der ausgeführten ISSCs. Beispielsweise kann mithilfe der Formel „E<>
ISSC1.optional“ die Existenz eines Laufes, in dem ein ISSC mit Namen „ISSC1“ den
Zustand „optional“ erreicht, überprüft werden. Der Quantor „E“ fordert die Existenz ei-
nes Pfades, der Diamond-Quantor „<>“ fordert das Erreichen des gewünschten Zustands
auf diesem Pfad. In ähnlicher Weise kann untersucht werden, ob z. B. optionale Zustände
immer besucht werden. In diesem Fall kann die Logik des Statecharts vereinfacht werden.
Die TCTL Formel dazu Lautet in UPPAAL-Syntax „A<> ISSC1.optional“, der Existenz-
Quantor wurde durch den All-Quantor „A“ ersetzt, der die Existenz der Eigenschaften auf
allen Pfaden fordert.

Der Model-Checker kann weiterhin für grobe Abschätzungen der Verwertung der
Zyklus-Zeit des Laufzeitsystems verwendet werden. Dazu wird der Wert der inter-
nen Uhr „clCycle“ der Laufzeitumgebung in Abbildung 6.8 untersucht. Man kann
die Zykluszeit nach unten bzw. nach oben abschätzen, indem die Formeln für das
Infimum „inf{PLC.finish}: PLC.clCycle“ bzw. das Supremum „sup{PLC.finish}:
PLC.clCycle“ ausgewertet werden. Um die Abschätzung realistischer zu gestalten, kom-
men die bereits vorgestellten BCET-Parameter der Aktionen („paBCET“ in Abbildung 6.10)
zum Einsatz. Diese Parameter können neben dem obligatorischen Parameter für die WCET
optional modelliert werden. Durch die Auswertung der angegebenen Formeln werden Sze-
narien für den kürzesten bzw. den längsten möglichen Zyklus der Laufzeitumgebung gene-
riert. Die Differenz des Supremums „sup{PLC.finish}: PLC.clCycle“ und der Zykluszeit
„paCycle_Time“ in Abbildung 6.8 ist die, in jedem Fall, ungenutzte Slackzeit. Diese Zeit
sollte im Rahmen der Systemauslegung minimiert werden.

Alle vorgestellten Überprüfungen können auch während des Engineering-Vorgangs durch
eine automatische Transformation nach UPPAAL kontinuierlich vorgenommen werden.

Automatische Belegung der Zeitguards für einfache ISSCs

Die letzte Konvention des Abschnitts 6.2.5 fordert eine automatische Berechnung der Zeit-
guards, falls diese nur das „sichere Betreten“ der Verzweigungen bzw. Zustände garantieren
sollen. Unter „sicher“ wird an dieser Stelle die Einhaltung der Echtzeitschranken verstan-
den. Diese Bedingung ist bei allen in Abschnitt 6.2.5 vorgestellten Mustern der Fall.

Da es nur um das sichere Betreten der Zustände geht, wird davon ausgegangen, dass bei
dieser Problemstellung die Guards des ISSCs mit „*“ vorbelegt sind. Algorithmus 1 stellt
eine skizzenhafte Implementierung der Berechnung der Zeitguards für ISSCs ohne History-
Breakpoints dar. Neben den Zeitguards wird auch die WCET des ISSCs ausgegeben.
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

Eingabe : ISSC I, alle Guards mit ∗ belegt
Ergebnis : Beschriftung der Transitionen mit Zeitguards, WCET w des ISSCs I

1 Markiere jeden Zustand si ∈ S mit WCET (si) := ∑
aj∈α(si) WCET (aj);

2 Markiere jeden Breakpoint bi ∈ B mit WCET (bi) := 0;
3 Markiere jeden Zustand/Breakpoint zi ∈ S ∪ B mit total(zi) := 0;
4 Unterteile I in azyklische Abschnitte It zwischen t ∈ B ∪ {s0};
5 foreach Abschnitt It do
6 foreach Zustand zi ∈ S von It in topologischer Reihenfolge do
7 if zi ist ein Blatt then
8 total(zi) := max{total(zi), WCET (si)};
9 else

10 min := ∞;
11 foreach Nachfolger si ∈ S von zi in Priorität-Reihenfolge do
12 if total(zi) < min then
13 min := total(zi);
14 end
15 end
16 total(zi) := max{total(zi), WCET (zi) + min};
17 end
18 end
19 end
20 foreach Transition t von s nach d mit s ∈ B und d ∈ S do
21 Setze den Zeitguard von t als „(Δcurr − c) ≥ total(d)“;
22 end
23 foreach Transition t von s nach d mit s ∈ S, s hat mehrere Nachfolger und d ∈ S do
24 Seien S ′ die Nachfolger von s;
25 Ordne s′ ∈ S ′ aufsteigend bezüglich total(s′) in eine Ordnung O′;
26 Sei p die Position von d in O′;
27 if d ist nicht des letzte Element in O′ then
28 Sei e ∈ S der Nachfolger von d bezüglich O′;
29 Setze den Zeitguard von t als „total(e) > (Δcurr − c) ≥ total(d)“;
30 end
31 end
32 Ersetze alle ∗ Bedingungen durch TRUE;
33 w = total(s0);

Algorithmus 1 : Skizzenhafte Berechnung der Belegung der Zeitguards für ISSCs ohne
History-Breakpoints.

Zunächst werden die WCET einzelner Zustände der Charts WCET (si) als Summe der
WCET der enthaltenen Aktionen initialisiert. Die WCET der Breakpoints werden mit
0 belegt. Danach läuft der Algorithmus die einzelnen azyklischen Abschnitte des Charts
topologisch „von unten nach oben“ entgegen der Ausführungsreihenfolge ab und berechnet
zu jedem Knoten die Zeit total, die nach dem Betreten des Knotens für die Abarbeitung
der Aktionen mindestens benötigt wird.

Die Abarbeitungszeit für die Blätter jedes Abschnittes wird gleich der WCET des jewei-
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CALL    VER1 CALL    VER2

**

*
*

CALL    PREP

CALL    INIT1
CALL    INIT2S1

S2

S3 S4

B1

*

*

WCET der Aktionen:
INIT1 10 ms
INIT2 10 ms
PREP 30 ms
VER1 40 ms
VER2 60 ms

Abbildung 6.20.: Beispiel-ISSC für eine automatische Berechnung der Zeitguards.

ligen Zustands gesetzt. Für Knoten, die Nachfolger haben, wird in Zeile 11 die minimal
benötigte Abarbeitungszeit für einen direkten Nachfolger berechnet. Die Abarbeitungszeit
des Knotens wird als Summe der WCET der Zustand-Aktionen und dem Minimum der
Zeiten der aktiven Nachfolger gesetzt.

Als nächster Schritt werden in der Schleife (Zeilen 20-22 des Algorithmus 1) die Guards
der aus Breakpoints ausgehenden Transitionen um die berechneten Zeitguards ergänzt.
Der Einfachheit halber werden nur die Transitionen von Zuständen mit mehreren Nachfol-
gern oder einem Breakpoint ausgehend ergänzt. Bei anderen, vor allem linear aufeinander
folgenden Zuständen, reicht die zugesicherte Zeit für die Ausführung aller Aktionen aus.
Transitionen, die in Breakpoint-Zuständen enden, werden nicht modifiziert – das Betreten
der Breakpoints soll immer möglich sein. Die auf diese Weise ergänzten Guards garantieren
zum einen die Abwesenheit der Deadlocks in dem Chart. Zum anderen werden die Zustände
bzw. Zweige des Charts nur dann betreten, wenn die Ausführungszeit für die Abarbeitung
der Zustände bzw. deren Aktionen ausreichend ist.

Die in die Zustände mit mehreren Nachfolgern eingehenden Transitionen werden in Zeilen
23-32 bearbeitet. Dort werden für jeden Zustand die nachfolgenden Zustände nach der
Abarbeitungszeit total sortiert und die Guards so gesetzt, dass der Zustand nur betreten
wird, falls für deren Abarbeitung die verbliebene Abarbeitungszeit ausreicht.

Die Anweisung in Zeile 33 schätzt die WCET w des gesamten Charts ab, die dem Kompo-
nentenscheduler mitgeteilt wird. Im Falle der Abwesenheit der History-Breakpoints gleicht
diese Zeit der Abarbeitungszeit des an dem Initialzustand s0 hängenden azyklischen Ab-
schnitts. Diese Zeit ist in der Variable total(s0) gespeichert.

Die Anwendung des Algorithmus wird am Beispiel des ISSCs in Abbildung 6.20 illu-
striert. Das Chart beschreibt ein gemischtes Zeitverhalten. Die Verzweigung vom Zustand
S2 zu den Zuständen S3 und S4 folgt dem Mehrversionen-Muster. Die Schleife vom Break-
point B1 zu dem Initialzustand S1 folgt dem Meilenstein-Muster. Die Abschätzung der
Laufzeiten einzelner Aktionen der Zustände sind ebenfalls in Abbildung dargestellt. Als
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**

*
*

S1

S2

S3 S4

B1

*
S1

*

B1

WCET 20 ms
total    90 ms

WCET 30 ms
total    70 ms

WCET 40 ms
total    40 ms

WCET 60 ms
total    60 ms

WCET 0 ms
total    0 ms

WCET 0 ms
total    90 ms

WCET 20 ms
total    90 ms

**

*
*

S2

S3 S4

B1

*

WCET 30 ms
total    70 ms

WCET 40 ms
total    40 ms

WCET 60 ms
total    60 ms

WCET 0 ms
total    0 ms

Abbildung 6.21.: Azyklische Abschnitte des ISSCs aus Abbildung 6.20 und die berechneten
Markierungen der Zustände.

CALL    VER1 CALL    VER2

TRUE60 ms > ( - c) 40 ms

TRUE
TRUE

CALL    PREP

CALL    INIT1
CALL    INIT2S1

S2

S3 S4

B1

TRUE

( - c) 90 ms 

Abbildung 6.22.: ISSC aus Abbildung 6.20 nach der Terminierung des Algorithmus 1 inklusive
der berechneten Zeitguards. Die WCET des ISSC beträgt 90 ms.
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erstes wird das Chart in azyklische Abschnitte zwischen den Breakpoints bzw. zwischen
dem Initialzustand und einem Breakpoint unterteilt. Das Ergebnis dieser Prozedur ist in
Abbildung 6.21 zu finden. In beiden Abschnitten werden die Beschriftungen der Zustände
WCET und total nach dem Algorithmus 1 „von unten nach oben“ berechnet. Aus diesen
Informationen werden die Guards für einzelne Transitionen berechnet, wie die Abbildung
6.22 zeigt. Man sieht, dass nur zwei der Transitionen zusätzliche Guards bekommen haben.
Damit ist ein Übergang aus dem Zustand S2 weiterhin sichergestellt bzw. der Breakpoint
B1 wird nur bei ausreichend verfügbarer Ausführungszeit verlassen. Die gesamte WCET
von 90 ms des Charts beläuft sich auf den WCET-Wert des Initialzustands S1.

Die History-Breakpoints fordern eine leichte Abwandlung des Algorithmus für die Be-
rechnung der WCET des gesamten Charts. Da die Ausführung des ISSCs theoretisch in je-
dem dieser Breakpoints starten kann, muss das Maximum der Abarbeitungszeit von jedem
azyklischen Abschnitt, der an dem Initialzustand oder einem History-Breakpoint hängt,
gebildet werden. Somit wird dem Chart vom Komponentenscheduler garantiert ausreichend
Ausführungszeit zur Verfügung gestellt.

Eine weitere abgewandelte Version des Algorithmus kann zu der Berechnung der maxi-
malen Laufzeit des ISSCs verwendet werden. Dieses ist nur bei zykelfreien Charts sinnvoll,
z. B. bei der Mehrversionen-Methode oder der 0/1 Ausführung.

6.3. Ressourcenadaptiver Komponentenscheduler für
zyklische Laufzeitsysteme

In den letzten zwei Abschnitten wurden eine Softwarearchitektur für die Ausführung und
ein Meta-Modell für die Beschreibung von RA-Algorithmen eingeführt. In diesem Abschnitt
wird ein Referenzmodell für einen Komponentenscheduler vorgestellt, der die Zuteilung der
Ausführungszeit an die RA-Komponenten übernimmt.

Für dieses Referenzmodell wurde ein Ansatz ausgewählt, dessen Grundprinzip dem Pre-
dictably Flexible Real-Time Scheduling Modell ähnelt (vgl. Abschnitt 5.1.6). Die Aktivi-
täten des Schedulers werden in eine offline und eine online Phase aufgeteilt. Damit werden
die Vorteile der Vorhersagbarkeit sowie einer relativ einfachen Laufzeitimplementierung
mit einer gewissen Flexibilität kombiniert. Die Flexibilität ist notwendig für die optimale
Ressourcennutzung des Systems. Der erfolgreiche Einsatz der offline Scheduler in den leit-
technischen Laufzeitsystemen, z. B. FASA oder ACPLT/RTE (vgl. Abschnitte 3.3.3 bzw.
3.3.4), spricht ebenfalls für die Anwendung eines solchen Verfahrens. Ein mit einem offline
Scheduler ausgestattetes Laufzeitsystem erfüllt somit die Erwartungen der Nutzerkreise in
der Domäne der Leittechnik (Anforderungen N1 und N5 aus Kapitel 4).

6.3.1. Nomenklatur
Für das Scheduling der Komponenten gelten weiterhin Grundannahmen, die im den Ab-
schnitten 2.1.2 und 6.2.1 erläutert wurden. Die klassische Definition des Tasks aus Ab-
schnitt 2.1.2 wird für die folgenden Ausführungen abgewandelt. Ein Task Ti ist ein Tupel,
der aus folgenden Komponenten besteht (diese Parameter sind der Tasking-Facette der
Komponente entnommen):

• WCET der Komponente wi ∈ R
+ in Zeiteinheiten,
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

• Periode peri ∈ N in Anzahl der Grundzyklen des Laufzeitsystems und

• der Flexibilitätsparameter flexi ∈ {0, 1} der Komponente.

Die Dauer des Grundzyklus wird als cyctime bezeichnet. Der boolesche Parameter flexi

gibt an, ob die Komponente mehr Rechenzeit als wi sinnvoll verwenden kann. Dieses ist
beispielsweise bei den durch ISSCs gesteuerten Komponenten aus dem Abschnitt 6.2 der
Fall. Tasks mit flexi = 0 werden für die Kapselung der bereits existierenden Software
verwendet. Der Parameter peri eines Tasks zeigt an, dass eine Menge periodischer Tasks T
gescheduled wird. Es wird zunächst angenommen, dass eine Task Instanz, ein Job, zwischen
dem ersten und dem letzten Grundzyklus der Task-Periode ausgeführt werden muss. Somit
gleicht die relative Deadline der Periode (deadi = peri) (vgl. Abbildung 2.3 auf Seite 11).

Durch den Einsatz eines offline Schedulers können die Randbedingungen an den zu
findenden Schedule weiter verfeinert werden, indem die Tasks in weitere, nicht disjunkte,
Mengen unterteilt werden:

• R ⊆ T ist die Menge Tasks mit speziellen Release- und Deadline-Zeiten. Sollen die
Jobs, von der Standarddefinition abweichende Release- und Deadline-Zeiten bekom-
men, so werden sie dieser Untermenge zugeordnet.

• A ⊆ T ist die Menge der Phasen-ausgerichteten (aligned) Tasks. Diese Tasks müssen
so gescheduled werden, dass die Phase, d. h. der Abstand zum Beginn der eigenen
Periode, immer konstant ist. Der Scheduler legt somit die Werte der Phasen fest. Die
Phasen-Ausrichtung kann für bestimmte Aufgaben des Tasks entscheidend sein, z. B.
für die zyklische Abtastung.

• F ⊆ A heißt die Menge der Phasen-fixierten (fixed) Tasks. Diese Tasks schränken die
Entscheidung des Schedulers weiter durch die explizite Vorgabe der Phase ein (die
Einschränkung der Phasen-Ausrichtung gilt weiterhin, da F ⊆ A). Die Fixierung der
Phase ist insbesondere für die Modifikation eines bestehenden Schedules relevant, da
dort bestimmte Tasks ihre Phase nicht mehr verändern dürfen.

Eine detaillierte Beschreibung dieser Mengen in deren Auswirkung auf die modellierte
Problemstellung ist im nächsten Abschnitt zu finden.

6.3.2. Aktivitäten der offline Phase
Das Ziel der offline Phase ist für eine Menge von Tasks T mit Ti = (wi, peri, f lexi) und
weiteren optionalen Randbedingungen, z. B. einer Reihenfolgebeziehung unter Tasks, eine
Scheduling-Tabelle über die sogenannte Hyperperiode zu bilden. Die Hyperperiode be-
zeichnet eine Periode, deren Länge das kgV der Perioden der einzelnen Tasks peri ist. Bei
der zyklischen Ausführung der Taskmenge T wiederholen sich die Ausführungen einzelner
Jobs in jeder Hyperperiode. Der Problematik einer eventuell zu langen Hyperperiode kann
durch die Wahl einer harmonischen Periodendauer für die einzelnen Tasks entgegengewirkt
werden. Die Scheduling-Tabelle ordnet die einzelnen Jobs dem jeweiligen Grundzyklus in-
nerhalb einer Hyperperiode zu. Gleichzeitig wird eine gültige Reihenfolge der Instanzen
sichergestellt, falls eine Reihenfolgebeziehung spezifiziert wurde. Zusätzlich kann die opti-
male Ausführungsdauer für adaptive Tasks mit flexi = 1 berechnet werden.
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Die Anzahl der Grundzyklen in der Hyperperiode wird im Folgenden als hyperperiod =
kgV (per1, . . . , per|T |) bezeichnet und die Länge eines Grundzyklus des Systems als cyctime.

Das nicht unterbrechende Scheduling-Problem für periodische Tasksets mit bekannten
Release-Zeiten ist NP-hart (d. h. mit existierenden Algorithmen nicht effizient lösbar)
[JSM91]. Die vorgestellte Problemstellung weicht von dem zitierten Scheduling-Problem
wegen der Annahme eines festen Grundzyklus etwas ab. Der Beweis der NP-Härte kann
aber durch eine polynomielle Reduktion auf die Entscheidungsvariante des Behälterpro-
blems (Bin Packing Problem) geführt werden. Dabei werden die Größe eines Behälters
auf die Länge des Grundzyklus und die einzelnen Objekte und deren Gewichte auf die
Tasks bzw. deren Ausführungsdauer abgebildet. Die Periode jedes einzelnen Tasks gleicht
der Anzahl der Behälter. Da die Periode aller Tasks nun gleich ist, entspricht die Hyper-
periode der Anzahl der zu füllenden Behälter. Das Scheduling-Verfahren muss nun jeden
Grundzyklus mit den Tasks „füllen“, was der Zuordnung der Objekte zu den Behältern
entspricht.

Die Berücksichtigung zusätzlicher Randbedingungen, wie z. B. der von der Periode abwei-
chender Deadline- oder Reihenfolgebeziehungen unter den Tasks, erhöhen die Komplexität
des Problems zusätzlich. Daher wird ein manuelles Scheduling sogar für kleinere Proble-
minstanzen unübersichtlich und ein automatisiertes Verfahren für die optimale Lösung
des Problems notwendig. Dieses wird mit Mitteln der gemischt-ganzzahligen Optimierung
umgesetzt.

Die Aktivitäten der offline Phase lassen sich wie folgt zusammenfassen:

• Aufstellung des Optimierungsproblems und dessen Lösung,

• Sicherstellung der Reihenfolge der Jobs innerhalb der einzelnen Grundzyklen und

• Dekomprimierung der Jobdauer mithilfe des elastischen Modells, bis die gesamte
Slackzeit innerhalb des Grundzyklus verbraucht ist.

Bis auf den ersten Schritt sind alle Aktivitäten in polynomieller Zeit lösbar. Das Opti-
mierungsproblem des ersten Schritts ist für Probleminstanzen mit |T | ≤ 500 praktisch
lösbar. Die Gründe für die Nutzung einer Heuristik (d. h. eines suboptimalen, aber effizi-
enten Lösungsverfahrens) für den letzten Schritt sowie deren Aufbau werden am Ende des
Abschnittes detailliert erläutert.

Formulierung des Schedulingproblems als ILP

Bei der Formulierung eines Optimierungsproblems ist die Frage nach den Entscheidungsva-
riablen und insbesondere nach deren Anzahl entscheidend. Die praktische Lösbarkeit eines
Problems hängt maßgeblich von der Zahl dieser Variablen ab.

Ein naiver Weg ist das Abbilden einzelner diskreter Zeiteinheiten, z. B. in Millisekunden
oder Sekunden, auf boolesche Entscheidungsvariablen, die genau dann wahr sind, wenn die
Ausführung eines Jobs zu dem genauen Zeitpunkt passieren soll. Dieser aus der Literatur
[Art12] bekannte Ansatz kann für die Abbildung komplexer Abhängigkeiten zwischen den
Tasks, wie z. B. das Warten auf eine gemeinsam genutzte Ressource, benutzt werden. Der
Nachteil des Ansatzes ist eine große Anzahl der Entscheidungsvariablen. Schließlich muss
jeder Zeitpunkt der Hyperperiode in der vorgegebenen Auflösung abgebildet werden. Somit
hängt die Anzahl der Entscheidungsvariablen von der tatsächlichen Dauer des Zyklus bzw.
deren Auflösung ab.
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

Ein alternativer Ansatz, um diesem Problem entgegenzuwirken, ist die Definition soge-
nannter Slots, die mehrere Zeiteinheiten zusammenfassen und auf Entscheidungsvariablen
abgebildet werden. Während die Berechnung der Slots für Problemstellungen mit Res-
sourcenzugriff nichttrivial ist [Foh12], lassen sich die Slots für die vorliegende Problem-
stellung sehr einfach definieren. In einem zyklischen System ohne Nebenläufigkeit und
einem während der Zyklusdauer konstanten Prozessabbild sind keine Ressourcenkonflikte
möglich. Aus diesem Grund muss kein Job auf ein Ereignis warten. Die Abwesenheit der
Notwendigkeit der Synchronisation innerhalb des Zyklus reduziert das Problem der Aus-
führungsplanung der einzelnen Jobs auf ein einfacheres Reihenfolgeproblem. Die Lösung
des Problems ist eine Ausführungsreihenfolge der Jobs innerhalb eines Zyklus. Die Kon-
sequenz ist die Reduktion der Anzahl der möglichen Slots innerhalb eines Zyklus von der
Anzahl der Zeiteinheiten auf die Anzahl der Tasks, d. h. |T |. Das ist durch die Tatsache zu
begründen, dass pro Zyklus höchstens eine Instanz jedes Tasks ausgeführt werden kann.

Diese Vereinfachung respektiert die RA-Algorithmen aus Abschnitt 6.2, die durchaus
bestimmte POUs mehrfach ablaufen lassen können. Denn bei der Ausführungsplanung
der Komponenten ist der interne Aufbau der Komponente opak und es gelten für das
Scheduling die Grundsätze der IEC 61131-3 inklusive einer Obergrenze für die Anzahl der
Komponentenausführungen pro Zyklus.

Ein weiterer Schritt in Richtung der Reduktion der Problemgröße ist die Reduktion der
Anzahl der Slots auf eins pro Grundzyklus. Somit wird nur die Zuordnung des Jobs zu dem
Grundzyklus berechnet. Die eventuellen Reihenfolgebeziehungen unter den Jobs werden
daher nicht mehr vom ILP, sondern von einem Postprocessing-Schritt berücksichtigt, der
eine legale Reihenfolge der Jobs innerhalb des Grundzyklus herstellt.

Mit diesen Vorüberlegungen wird eine Menge der Grundzyklen C = {1, . . . , hyperperiod}
(cycles) formuliert, in denen Jobs gescheduled werden können. Das zu lösende Optimie-
rungsproblem wird über der Menge boolescher Entscheidungsvariablen xc,t ∈ {0, 1} ∀ c ∈
C, t ∈ T definiert (bei der Modellierung wird der boolesche Ausdruck TRUE und 1 syn-
onym verwendet). Es gilt:

xc,t = 1 ⇔ Instanz des Tasks t wird im Zyklus c ausgeführt.

Zunächst wird eine einfache Gütefunktion bzw. deren Minimum genutzt:

min J1 =
|T |∑
t=1

|C|∑
c=1

c · xc,t (6.1)

das unter den folgenden Nebenbedingungen bestimmt werden soll:
|C|∑
c=1

xc,t = hyperperiod

pert

∀ 1 ≤ t ≤ |T | (6.2)

|C|∑
d=1

(c−1)·pert+1 ≤ d ≤ c·pert

xd,t ≤ 1 ∀ 1 ≤ t ≤ |T |, 1 ≤ c ≤ |C| (6.3)

|T |∑
t=1

xc,t · wt ≤ cyctime ∀ 1 ≤ c ≤ |C|. (6.4)

Die Gütefunktion aus der Gleichung 6.1 definiert die Kosten als Summe der aufeinander
folgenden Nummern der Grundzyklen, in denen Jobs ausgeführt werden. Somit verfolgt
der Solver das Ziel die Jobs möglichst früh und somit kompakt zu schedulen.
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0
Zeit

Abbildung 6.23.: Eine Hyperperiode des Laufzeitsystems mit den zugeteilten Jobs.

Das Nebenbedingungssystem 6.2 erzwingt, dass jeder Task t genau hyperperiod
pert

mal pro
Hyperperiode aufgerufen wird. Der Wert des Bruchs ist ganzzahlig, da die Hyperperiode
als kgV der Perioden einzelner Tasks gebildet wurde.

Das zweite Nebenbedingungssystem 6.3 schreibt vor, dass eine Taskinstanz nicht häufiger
als einmal pro Periode des Tasks ausgeführt wird. Zusammen mit Bedingungen 6.2 wird
somit ein Job genau einmal pro Periode des Tasks gescheduled. Die Phase der einzelnen
Jobs innerhalb der Periode ist dabei variierbar.

Das letzte Nebenbedingungssystem 6.4 sichert die Einhaltung der Länge des Grundzy-
klus zu. Die Summe der WCET der Tasks, die einem Grundzyklus zugeordnet sind, darf
somit die Konstante cyctime nicht überschreiten.

Das Optimierungsproblem besitzt |C| · |T | boolesche Entscheidungsvariablen und |C|2 ·
|T |2 viele Nebenbedingungen.

Zunächst wird die Problemformulierung und deren Lösung anhand eines einfachen Bei-
spieles illustriert. Sei die folgende Menge an Tasks gegeben: T1 = (90 ms, 6, 1), T2 =
(90 ms, 2, 1) und T3 = (30 ms, 3, 1). Die Dauer des Grundzyklus des Systems sei 100 ms.
Die Länge der Hyperperiode ist kgV ({6, 2, 3}) = 6. Die Formulierung des Problems als
General Algebraic Modeling System (GAMS) Instanz ist im Anhang A zu finden. Die
berechnete Lösung der Probleminstanz ist in Abbildung 6.23 dargestellt.

In Abbildung 6.23 sind unterschiedliche Phasen der Jobs des Tasks T2 zu erkennen. Die
Jobs des Tasks werden abwechselnd im ersten bzw. zweiten Zyklus des Task-Zyklus von
zwei Grundzyklen ausgeführt. Diese Schwankung kann abhängig von der Problemstellung
unerwünscht sein und lässt sich auf zwei Arten lösen. Die erste Lösung sind die vorgeschal-
teten bzw. nachgeschalteten „Puffer“-Bausteine, die das Prozessabbild zu den gleichen
Zeitpunkten in jeder Phase des Tasks speichern. Die zweite Lösung ist die Zuordnung der
Tasks zu der Menge A der phasenausgerichteten Tasks. Beide Lösungen haben ihre Nach-
teile. Die erste Alternative fügt die Puffer-Bausteine und die Reihenfolgeabhängigkeiten
hinzu. Die zweite Alternative schränkt den Scheduler ein. So ist das obere Problem unter
den Einschränkungen der Phasenausrichtung des Tasks T2 nicht lösbar.

Die vorgestellte einfache Formulierung reicht für viele Scheduling-Probleme bereits aus.
Sie kann jedoch weiter verfeinert werden, um weitere Randbedingungen an die Tasks be-
rücksichtigen zu können. Die im Beispiel angesprochene Phasenausrichtung ist eine solche
Randbedingung. Die Erweiterungen der vorgestellten Problemdefinition werden in folgen-
den Abschnitten erläutert.

Reihenfolgebeziehungen unter Tasks Trotz der virtuellen Unabhängigkeit der selbst-
ständigen Komponenten (SKs können auch auf unterscheiden Geräten verteilt sein), kann
die Optimierung deren Ausführungsreihenfolge auf einem Gerät für schnellere Reaktions-
zeiten der Anwendung sorgen und somit zu einem zusätzlichen Optimierungsziel erklärt
werden (im worst case ist es aber möglich, dass SKs auf unterschiedlichen Geräten in
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ungünstigster Reihenfolge ablaufen).
Diese Beziehung kann als eine Matrix P ∈ {0, 1}|T |×|T | ausgedrückt werden, sodass:

Pi,j = 1 ⇔ ti ist Vorgänger von tj.

Die Reihenfolgebeziehung kann zwischen Tasks bestehen. Es wird zusätzlich angenommen,
dass nur Tasks mit gleicher Periode in einer solchen Beziehung stehen können, d. h. Pi,j =
1 ⇒ peri = perj. Das Optimierungsproblem kann durch folgende Nebenbedingungen durch
die Matrix P ergänzt werden:

|C|∑
d=1

(c−1)·peri+1≤d≤c·peri

d · xd,i − d · xd,j ≤ 0 ∀ 1 ≤ c ≤ |C|, Pi,j = 1. (6.5)

Die Bedingung stellt sicher, dass in jeder Periode pert der Aufruf von ti in einem früheren
oder gleichen Grundzyklus wie der Aufruf von tj stattfindet.

Phasenausrichtung und fixierte Phase Die Problemformulierung lässt dem Scheduler
eine freie Wahl über die Phase des Jobs innerhalb der Periode des Tasks. Somit können die
Abstände zwischen den Ausführungen einzelner Jobs variieren, was für viele Anwendungen,
z. B. im Bereich der Regelungstechnik, unerwünscht ist. Die Freiheit des Schedulers in
Bezug auf die Phase wird in zwei Stufen eingeschränkt.

Als erstes wird eine Untermenge A ⊆ T (aligned) der Tasks mit Phasenausrichtung
gebildet. Diese Tasks müssen in jeder Periode eine fixierte Phase besitzen, die allerdings
vom Scheduler bestimmt werden kann. Eine weitere Einschränkung ist die Untermenge
F ⊆ A (fixed) der Tasks mit fixem Phasenparameter phasef ∈ [0, perf − 1].

Beide Mengen werden durch folgende Nebenbedingungen mit dem Optimierungsproblem
verknüpft:

xc,a = xc+pera,a ∀ 1 ≤ c ≤ |C| − pera, 1 ≤ a ≤ |A| (6.6)
x1+phasef ,f = 1 ∀ 1 ≤ f ≤ |F |. (6.7)

Die Gleichungen 6.6 erzwingen die gleiche Phase innerhalb der Periode des Tasks. Die
Gleichungen 6.7 setzen die Phase der ersten Periode fest. Durch die Tatsache, dass F ⊆ A
ist, propagieren die Gleichungen 6.6 diese Phase über weitere Perioden hinweg.

Release-Zeiten und Deadlines Eine der festen Phasenverschiebung ähnliche Einschrän-
kung kann mit der Angabe der Release-Zeiten und Deadlines erreicht werden. Bei den
zyklischen Tasks wurde bisher davon ausgegangen, dass die Ausführung zwischen dem
ersten und dem letzten Grundzyklus innerhalb der Periode erfolgen kann. Diese Annah-
me kann man für bestimmte Tasks lockern und explizite Release-Zeit relt ∈ [1, pert] und
deadt ∈ [1, pert] mit relt ≤ deadt angeben. Dazu wird eine Untermenge der Tasks R ⊆ T
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gebildet, für die folgende Nebenbedingungen gelten sollen:
|C|∑
d=1

(c−1)·perr+1≤d≤c·perr

d≤(c−1)·perr+relr

xd,r = 0 ∀ 1 ≤ c ≤ |C|, 1 ≤ r ≤ |r| (6.8)

|C|∑
d=1

(c−1)·perr+1≤d≤c·perr

d≥(c−1)·perr+1+deadr

xd,r = 0 ∀ 1 ≤ c ≤ |C|, 1 ≤ r ≤ |r|. (6.9)

Die Gleichungen 6.8 stellen sicher, dass in jeder Periode des Tasks r die Ausführung nicht
vor dem Grundzyklus relr bezüglich des Periodenanfangs beginnt. Bedingungen 6.9 arbei-
ten auf eine ähnliche Weise: sie erzwingen, dass keine Ausführung nach dem Grundzyklus
deadr in Bezug auf die Periode des Tasks stattfindet.

Im Gegensatz zu der Phasenausrichtung (Gleichungen 6.6 bzw. 6.7), bieten die Release-
Zeiten und Deadlines mehr Flexibilität: Zum einen sind die Bedingungen sowohl für Phasen
ausgerichtete Tasks, als auch für solche ohne Phasenausrichtung nutzbar. Zum anderen
bieten die Gleichungen die Möglichkeit „Fenster“ zu definieren, in denen die Ausführung
stattfinden soll. Somit ist die Gleichung 6.7 nur ein Sonderfall der obigen Gleichungen für
ein Task r mit relr = deadr, d. h. der vorgeschriebenen Ausführung in dem bestimmten
Grundzyklus bzw. mit einer festen Phase.

Komplexe Gütefunktionen: Gleiche Auslastung der Grundzyklen Die Gütefunktion 6.1
hatte das Ziel, die einzelnen Jobs möglichst kompakt auf die Grundzyklen zu verteilen. Da-
mit werden die Jobs so früh wie möglich vom Scheduler ausgeführt und die Grundzyklen
eventuell ungleich ausgelastet. Dieses Verhalten kann für manche Szenarien von Vorteil
sein, denn es werden eventuell große zusammenhängende freie Zeitabschnitte für die Aus-
führung sporadischer Tasks entstehen. Für andere Szenarien, gerade bei der Ausnutzung
der Slackzeit, kommt es jedoch auf eine möglichst gleichmäßige Auslastung der Grundzy-
klen an. Eine solche Nutzung kann durch die Einführung einer quadratischen Gütefunktion
zusammen mit einem Minimierungsproblem erreicht werden:

min J2 =
|C|∑
c=1

⎛
⎝(

|T |∑
t=1

xc,t · wt) −
∑|T |

t=1
∑|C|

d=1(xd,t · wt)
|C|

⎞
⎠

2

. (6.10)

Der quadratische Term ist die Abweichung der Zeitbelegung des aktuellen Grundzyklus
c von der arithmetisch durchschnittlichen Belegung aller Grundzyklen. Die quadratische
Abweichung wird über alle Grundzyklen aufsummiert. Das Minimum der Funktion erreicht
den Wert null, wenn alle Zyklen exakt mit der durchschnittlichen Belegung ausgefüllt
werden. Die Klasse des Optimierungsproblems verschiebt sich von (M)ILP zu Mixed Integer
Quadratic Program (MIQP).

Komplexe Gütefunktionen: Fehlerfunktionen Eine weitere Erweiterung des Problems
ist die Berücksichtigung einer Fehlerfunktion für einzelne Tasks, wie solche, die in Imprecise
Computation Model (vgl. Abschnitt 5.1.5) eingeführt wurden. Dabei wird die zu der WCET
zusätzlich kommende Ausführungszeit eines Tasks mit einem Fehler bewertet, der negativ
mit dieser Zeit korreliert und nur von dieser Zeit abhängt. Das Ziel ist die Minimierung des
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Gesamtfehlers des Schedules. Die Menge der Entscheidungsvariablen wird um Variablen
addc,t ≥ 0 ∀ c ∈ C, t ∈ T vergrößert. Die Variablen beinhalten den Wert der über die
WCET hinausragende Ausführungszeit, die dem Job t im Grundzyklus c zugeordnet wird.
Die Gleichung 6.4 wird durch die neuen Variablen ergänzt:

|T |∑
t=1

xc,t · wt +
|T |∑
t=1

xc,t · addc,t ≤ cyctime ∀ 1 ≤ c ≤ |C|. (6.11)

Somit wird sichergestellt, dass die zusätzliche Zeit die Dauer des Grundzyklus nicht über-
steigt. Als letztes kann die neue Gütefunktion des Optimierungsproblems aufgestellt wer-
den, die die exponentiell fallende Fehlerfunktion der einzelnen Jobs beinhaltet:

min J3 =
|T |∑
t=1

|C|∑
c=1

xt,c · prit · e−addc,t . (6.12)

Der Fehler sinkt exponentiell mit der Zunahme der zusätzlichen Ausführungszeit, die zu-
sätzliche Ausführungszeit kann dabei beliebig lang sein (es gilt die Annahme von sich
monoton-verbessernden Jobs). Die zusätzlich eingeführte Priorität des Tasks prit spielt
die Rolle eines Gewichtes bei der Summierung der Fehler einzelner Tasks zum Gesamt-
fehler. Die Klasse des Optimierungsproblems ändert sich zu Mixed Integer Nonlinearly
Constrained Program (MINLP).

Lineare und konkave Fehlerfunktionen können auf ähnliche Art und Weise berücksichtigt
werden. Ebenso können obere Schranken bezüglich der zusätzlichen Ausführungszeit addc,t

eingeführt werden, um neben den monotonen Funktionen auch die 0/1-Ausführung und
die Mehrvarianten-Methode erfassen zu können.

Praktische Lösbarkeit des Schedulingproblems Das vorgestellte ILP-Problem wur-
de mithilfe der algebraischen Modellierungssprache GAMS modelliert. Eine beispielhaf-
te Probleminstanz als GAMS-Datei ist im Anhang A zu finden. Ein Vorteil der Nut-
zung einer Modellierungssprache ist die Möglichkeit der Verwendung unterschiedlicher
Solver, die die Probleminstanzen direkt vom GAMS-Framework erhalten. Die Notwen-
digkeit der Solver-Spezifischen Problemformulierung entfällt somit. Das Problem wurde
für Testzwecke mit zwei Solvern, Gurobi und IBM CPLEX, gelöst. Ein weiterer Vor-
teil der GAMS-Formulierung ist die Möglichkeit der Nutzung der NEOS Infrastruktur
[CMM98, Dol01, GM97] für Optimierungsprobleme. Der NEOS Server stellt die Rechen-
kapazität und die Lizenzen für GAMS und Solver zur Lösung der Optimierungsprobleme
kostenlos zur Verfügung. Eine Probleminstanz kann einfach über eine Hypertext Transfer
Protocol (HTTP) oder Extensible Markup Language Remote Procedure Call (XML-RPC)
Schnittstelle hochgeladen werden. Die Lösung wird durch den Server, sobald verfügbar,
asynchron zur Verfügung gestellt. Die Nutzung der NEOS Infrastruktur ist eine elegante
Möglichkeit, Schedules in der Cloud (Schedule-as-a-Service) berechnen zu lassen (mehr zu
diesem Thema ist in Abschnitt 6.3.3 zu finden) um die Problematik der Softwarelizenzie-
rung und der Ressourcenverfügbarkeit zu umgehen.

Im Folgenden wird die Praktikabilität des vorgestellten Ansatzes, d. h. die Problem-
formulierung und deren Lösbarkeit durch den NEOS Server untersucht. Als Ziel für die
„Praktikabilität“ wurde eine Obergrenze von wenigen Minuten (1000 Sekunden) Rechen-
zeit auf dem NEOS Server gesetzt.
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Für die Untersuchung wurden zufällige Probleminstanzen mit einer variierenden Anzahl
der Tasks generiert und an den NEOS Server übermittelt. Die Periode der Tasks pert wurde
zufällig aus der Wertemenge {2, 4, 8, 16, 32} ausgewählt. Die WCET wurde zufällig aus
dem Intervall [10, 100] ausgewählt. Alle Tasks erhielten eine Phasenausrichtung und eine
zufällige Deadline aus dem Bereich [1, pert] für jeden Task t. Die Dauer des Grundzyklus
wurde mit |T | · 15 angesetzt, wobei T die Menge der Tasks bezeichnet.

Das Lösen der zufälligen Instanzen mit 500 Tasks und der Gütefunktion 6.1 mit Gurobi
war bei 50 Versuchen immer unter 130 Sekunden möglich. Der Mittelwert lag bei 95.6
Sekunden. Somit kann man von einer praktikablen Lösung der Probleme bis zu dieser
Größe ausgehen.

Der Einsatz der Gütefunktion 6.10 lässt Zweifel an der Praktikabilität der Lösbarkeit
aufkommen. Das Auswerten der 50 Zufallsinstanzen mit nur 9 Tasks ergab folgende Re-
sultate: 6 Instanzen konnten nicht innerhalb der 1000 Sekunden gelöst werden. Bei den
restlichen 44 Instanzen lag der Mittelwert bei 81.8 Sekunden. So ist festzustellen, dass die
Streuung viel größer ist, denn die maximale Lösungsdauer belief sich auf ca. 950 Sekun-
den, die minimale auf nur ca. eine Sekunde. Aus diesen Gründen wird das vorgestellte
Optimierungsproblem mit der Gütefunktion 6.10 nicht als praktisch lösbar bezeichnet.

Bei der dritten Gütefunktion 6.12 erfolgt das Lösen des Problems mit dem Solver na-
mens BARON [TS05]. Die Auswertung der 50 Instanzen mit 150 zufälligen Tasks und der
Gewichtung prit von 1 ergab einen Ausreißer, der innerhalb der 1000 Sekunden nicht gelöst
wurde. Bei den restlichen Instanzen beträgt der Mittelwert 159.7 Sekunden. Die Lösbarkeit
dieser Problemklasse wird daher als semi-praktikabel bezeichnet.

Für die folgende Evaluation wurde aus diesen Gründen der Weg der heuristischen Ergän-
zung der unter der Verwendung der „einfachen“ Gütefunktion 6.1 erstellten Problemlösung
gewählt. Diese Lösung stellt bereits einen validen Schedule bezüglich der Einhaltung der
Echtzeitschranken dar. Es werden allerdings nur die WCET-Laufzeiten der Jobs berück-
sichtigt, sodass noch „ungenutzte“ Zeitabschnitte innerhalb der Grundzyklen existieren.
Abgesehen von der Reihenfolgezuordnung der einzelnen Jobs, muss somit eine zusätzli-
che Strategie zur Ausnutzung dieser Zeitabschnitte definiert werden, die eine suboptimale
Lösung in Bezug auf das Ziel der globalen Fehlerminimierung ergibt. Die möglichen Heu-
ristiken werden im nächsten Abschnitt vorgestellt.

Heuristische Berechnung der zusätzlichen Ausführungszeiten einzelner
Komponenten für das offline Schedule

Nachdem die Zuteilung von Jobs unter der Berücksichtigung der Gütefunktion 6.1 zu
Grundzyklen geschehen ist, sind die einzelnen Grundzyklen möglicherweise nicht vollstän-
dig ausgefüllt. Diese geplante Slackzeit kann nun auf die Jobs aufgeteilt werden. Dafür
stehen mehrere Strategien zur Verfügung.

Die einfachste Möglichkeit ist die Nutzung einer Greedy-Strategie, bei der der Job des
Tasks i mit der höchsten Priorität und dem Parameter flexi = 1 die gesamte externe
Slackzeit des Grundzyklus zugewiesen bekommt. Die restlichen Instanzen bekommen nur
die WCET zugewiesen. Durch diese Benachteiligung der anderen Jobs ist dieser einfache
Ansatz im Allgemeinen nicht geeignet.

Eine weitere Strategie aus dem Bereich des Imprecise Computation Modells (vgl. Ab-
schnitt 5.1.5) würde die unterschiedlichen Nutzenfunktionen einzelner Komponenten be-
rücksichtigen und ein Schedule erzeugen, welcher den gesamten Nutzen für jeden Grundzy-
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

klus maximiert. Das problematische an diesem Ansatz ist die Notwendigkeit der Definition
der Nutzenfunktionen, die nicht-linear sein müssen (ähnlich zu der Gleichung 6.12), damit
diese Strategie nicht zu einer Greedy-Strategie degradiert. Denn wäre der Zeitgradient der
Nutzenfunktionen immer konstant und positiv, so würde die Komponente mit dem größten
Gradient die gesamte Slackzeit zugeordnet bekommen.

Die dritte Möglichkeit ist die Anwendung des elastischen Modells (vgl. Abschnitt 5.2.1)
das die einzelnen Jobs als Federn modelliert, deren Federkonstante proportional zu der
Priorität des Jobs ist. Dieses Modell sieht vor, dass flexible Komponenten i, also solche
mit flexi = 1, sich ihrer Priorität entsprechend ausdehnen und die gesamte Slackzeit des
Grundzyklus ausnutzen.

Das Modell kann nicht nur für die Kompression der Tasks verwendet werden, sondern
auch für die Dekompression. Im Gegensatz zu dem elastischen Modell ist die Länge der
Federn nicht der Utilization-Faktor des Tasks, sondern die tatsächlich zugeteilte Ausfüh-
rungsdauer Δcurr. Für die Berechnung der dekomprimierten Ausführungszeiten müssen
nur noch die Prioritäten einzelner Tasks bzw. Jobs prii in Federkonstanten ki umgewan-
delt werden. Diese Konstanten sind antiproportional zu der Priorität. Denn je höher der
Wert der Federkonstante, desto weniger zusätzlicher Zeit wird dem Job vom Scheduler
zugeteilt. Somit können die Federkonstanten wie folgt berechnet werden:

ki =
∑|T |

j=1 prij

prii

.

Die Ausführungsdauer Δcurr
i des Jobs i ist somit wie folgt berechenbar:

Δcurr
i = wi +

⎛
⎝cyctime −

|T |∑
j=1

wj

⎞
⎠ Kp

ki

, (6.13)

mit Kp = 1∑|T |
j=1

1
kj

. Die Indizes der Jobs beziehen sich auf den jeweiligen Grundzyklus

innerhalb der Hyperperiode. Da der Term cyctime − ∑|T |
j=1 wj immer nichtnegativ ist, ist

die Bedingung Δcurr
i ≥ wi garantiert.

Eine Erweiterung des Elastic Models sieht eine untere Längenbeschränkung der Feder-
länge vor (in der graphischen Anschauung als Klammern dargestellt, vgl. Abbildung 5.2).
In einer ähnlicher Weise kann auch die Dekompression nach oben durch den Parameter
upperi beschränkt werden. Dies ist z. B. bei der 0/1 Ausführung oder der Mehrversionen-
Methode der Fall (vgl. Abbildung 6.17). In diesem Fall ist der Job nicht in der Lage beliebig
viel Rechenzeit sinnvoll zu verbrauchen. Bei Tasks mit flexi = 0 stellt die WCET eine
solche obere Schranke dar, also upperi = wi. Die oberen Schranken können auf die gleiche
Weise wie die unteren behandelt werden: Die Gleichung 6.13 werden iterativ gelöst; über-
steigt die Dauer Δcurr

i die obere Schranke, wird der Job aus dem Grundzyklus „entfernt“
und dessen Dauer um wi verkürzt. Das Lösen wird so lange wiederholt bis für alle Jobs
Δcurr

i ≤ upperi gilt. Metaphorisch kann die obere Schranke upperi als die Länge eines Seils
interpretiert werden, das an den Enden der Feder befestigt ist (vgl. Abbildung 5.2).

6.3.3. Aktivitäten der online Phase
Der ausgewählte Ansatz des im Voraus berechneten offline Schedules hat den Nachteil der
eingeschränkten Flexibilität (vgl. Abschnitt 2.1.2). Um diesen Nachteil zu reduzieren, um-
fasst der entwickelte Scheduling-Algorithmus neben den diskutierten Vorgängen der offline
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Abbildung 6.24.: Ablauf der „mode change“-Prozedur.

Phase, auch eine Reihe Laufzeit-Aktivitäten. Dazu gehört eine Anzahl bereits vorgestellter
Techniken, die im Kontext des Gesamtsystems eingesetzt werden.

Acceptance Tests und Umstrukturierung des offline Schedules zur Laufzeit

Im Falle des starren offline Schedules für zyklische Systeme können Tasks nicht ohne eine
Neuberechnung der Scheduling-Tabelle hinzugefügt werden. Dieser Grundsatz muss durch
die ausgewählten System- und Scheduling-Paradigmen befolgt werden. Trotzdem muss das
Laufzeitsystem für die Umstrukturierung der Scheduling-Tabelle nicht zwingend angehal-
ten werden. Denn obwohl die Berechnung, d. h. die Lösung des Optimierungsproblems,
gewisse Zeit in Anspruch nehmen kann, kann die Umstrukturierung an sich, d. h. das Um-
schalten zwischen zwei Scheduling-Tabellen in kürzester Zeit erfolgen. In der Literatur
heißt dieser Ansatz „mode change“ [Foh93, BF11].

Die Berechnung des neuen Schedules erfolgt in der Zeit, in der der alte Schedule noch
aktiv ist. In Abschnitt 6.3.2 wurde demonstriert, dass die Optimierungsprobleme auch „in
der Cloud“ und somit nicht von dem in ihren Ressourcen eingeschränkten Laufzeitsystem
gelöst werden können. Der Ablauf der Prozedur der Umstrukturierung läuft wie folgt ab
(in Abbildung 6.24 als Sequenzdiagramm dargestellt):

1. Anstoßen der Änderung der aktuellen Scheduling-Tabelle,

2. Formulierung des neuen Tasksets und Übermittlung der Probleminstanz,

3. Lösen der Probleminstanz und Übermittlung der Lösung,

4. (optional) Verifikation der Lösung (Abbruch falls Lösung ungültig),

5. Laden der Ressourcen, z. B. des ausführbaren Codes der SK und die Erstellung des
neuen Schedules aus der Problemlösung und

6. Umschalten des Schedules – „mode change“.
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6. Ein Rahmenwerk für die Integration von ressourcenadaptiven Anwendungen

Im ersten Schritt werden dem Laufzeitsystem die Änderungswünsche mitgeteilt. Typi-
scherweise kommen sie aus dem Engineering, z. B. bei dem Anlegen einer neuen SK. Das
ist aber nicht das einzig denkbare Szenario. So kann die Änderungsanfrage von einem an-
deren System kommen, z. B. durch die Instanziierung eines Agenten als SK, oder durch das
Laufzeitsystem an sich, z. B. wenn Abhängigkeiten zwischen den SKs festgestellt wurden
und ein neuer Schedule diese Informationen berücksichtigen soll.

Der zweite Schritt kombiniert die Informationen aus der aktuellen Menge der Tasks mit
der beantragten Änderung. Dabei müssen taskabhängige Parameter berücksichtigt werden.
Ein Beispiel ist die Phase der phasenausgerichteten Tasks. Während bei der erstmaligen
Erstellung eines Scheduler die Phase eines Tasks beliebig sein kann, muss bei Veränderung
des Schedules sichergestellt werden, dass sich die Phase nicht bzw. nur in einem erlaubten
Maße verändert (vgl. die Eigenschaften der Scheduling-Facette einer selbständigen Kom-
ponente in Abschnitt 6.1.5). Die Erstellung der neuen Anfrage findet im Zeitslot für die
nicht echtzeitfähige Kommunikation statt.

Im dritten Schritt wird das Problem vom Scheduling-Server gelöst und an das Laufzeitsy-
stem übermittelt. Als Beispiel für den Scheduling-Server kann der NEOS-Server betrachtet
werden, der in Abschnitt 6.3.2 eingesetzt wurde.

Im nächsten Schritt wird die Lösung auf ihre Korrektheit überprüft. Wie bei jedem
NP-hartem Problem kann die Korrektheit einer Lösung effizient überprüft werden, somit
auch vom eingeschränkten Laufzeitsystem. Dieser Schritt kann übersprungen werden, falls
Vertrauen zwischen dem Scheduling-Server und dem Laufzeitsystem besteht. Im anderen
Fall sichert dieser Schritt insbesondere bei der Berechnung des Schedules in der Cloud das
System zusätzlich. Der Vorteil der Neuberechnung ist der implizite Acceptance Test der
neuen Menge der Tasks. Falls eine Lösung zu dem Optimierungsproblem des Abschnitts
6.3.2 existiert, so kann diese auch sicher ausgeführt werden.

Im fünften Schritt werden die benötigten Ressourcen geladen, ohne ausgeführt zu werden.
Beispielsweise wird beim Hinzufügen einer neuen SK deren ausführbarer Code herunterge-
laden. Auch das neue Schedule wird endgültig fertiggestellt.

Die Ausführung dieser Vorbereitungsschritte geschieht in der Slackzeit. Somit können
für diese Schritte keine Echtzeitschranken definiert werden. Nach dem erfolgreichen Ab-
schluss aller Vorbereitungen kann im letzten Schritt der neue Schedule aktiviert werden.
Im besten Fall erfolgt die Aktivierung durch das Ändern eines einzigen Zeigers. Dieser
Ansatz wird erfolgreich bei FASA (vgl. Abschnitt 3.3.3) eingesetzt und kann auch mit
Rollback-Funktionen ergänzt werden [WO14].

Ausführung der ISSCs

Die Ausführung der eingebetteten ISSCs ist ein maßgeblicher Teil des online Schedulings,
da während der Ausführung Laufzeitentscheidungen getroffen werden und als Folge die
eventuell anfallende Slackzeit verbraucht wird. Der Komponentenscheduler teilt einem IS-
SC die für seine Ausführung bestimmte Laufzeit Δcurr mit. Das Chart wird ausgehend von
dieser Dauer und den beinhalteten Guards ausgewertet.

Die durch eine zu frühe Terminierung einzelner Aktionen innerhalb des Charts entstehen-
de Slackzeit kann durch die „später“ folgenden Zustände und deren Aktionen verbraucht
werden. Das gleiche Verhalten kann auch auf der Ebene der einzelnen Jobs beobachtet
werden. Die innerhalb eines Grundzyklus folgenden Jobs können die nicht verbrauchte Re-
chenzeit der Vorgänger ausnutzen. Somit ist die erwartete zusätzliche Ausführungszeit für
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später folgende Jobs tendenziell höher. Dies kann durch die Änderung der Gewichte der
Tasks für das offline Optimierungsproblem berücksichtigt werden und als eine Maßnahme
zu der Priorisierung einzelner Tasks genutzt werden.

Ausführung sporadischer Tasks

Die verfügbare Rechenzeit kann nicht nur für RA-Algorithmen, sondern auch für die Aus-
führung sporadischer Tasks, d. h. azyklischer Tasks, die erst zur Laufzeit erstellt werden,
eingesetzt werden. Ein Beispiel für sporadische Tasks sind Transaktionen, die die Modelle
in der Laufzeitumgebung auf vorhersagbare und zugesicherte Art und Weise verändern.
Die Ausführung sporadischer Tasks im Kontext der offline Scheduling-Tabelle ist wahr-
scheinlich die wichtigste Maßnahme, um die Nachteile der fehlenden Flexibilität der offline
Ansätze zu kompensieren.

Die Beschreibungssprache ISSC sieht eine Möglichkeit vor, solche Transaktionen zu be-
schreiben. Ein vorhersagbares Verhalten von Transaktionen kann durch die vom Nutzer
definierten History-Breakpoints erreicht werden (vgl. Abschnitt 6.2.5, insbesondere Abbil-
dung 6.17b). Die WCET eines solchen ISSCs ergibt sich als maximale Ausführungszeit der
Abschnitte zwischen den History-Breakpoints.

Diese Vereinfachung ermöglicht ein effizientes online Scheduling. Falls ein sporadischer
Task zur Ausführung angemeldet wird, überprüft der Scheduler, ob mindestens einer der
Grundzyklen der Scheduling-Tabelle über genügend freie Zeit für die Ausführung des ge-
samten Tasks in der geplanten Slackzeit verfügt. Ist das der Fall, kann die Transaktion
sicher ausgeführt werden. Die Ausführungszeiten der elastischen Jobs werden für die Dau-
er der Ausführung der Transaktion temporär reduziert. Diese Kompression kann entweder
mithilfe des Elastic Models stattfinden oder mit einem anderen Verfahren, z. B. durch einen
gleichanteiligen Abzug der Rechenzeit von der Laufzeit einzelner Jobs, erreicht werden.

Ist die Ausführung einer Transaktion auf diese vereinfachte Weise nicht möglich, so muss
die Änderung des offline Schedules angestoßen werden. Die daraus resultierende temporäre
Scheduling-Tabelle wird dann bis zu der Terminierung des sporadischen Tasks ausgeführt.
Danach kann wieder zu dem ursprünglichen Schedule gewechselt werden.

Falls weder genügend statische Slackzeit vorhanden ist, noch eine Umstrukturierung des
offline Schedules möglich ist, kann die Ausführung des sporadischen Tasks nach einer best-
effort Strategie erfolgen. Der Scheduler räumt dabei den einzelnen RA-Komponenten nur
die garantierte Zeit w ein und überlässt die komplette übrig gebliebene Slackzeit dem spo-
radischen Task. Ein Use-Case, der die Ausführung einer Transaktion nach dieser Strategie
beinhaltet, wird in Abschnitt 7.5 vorgestellt. Bei dieser Strategie können keine Abschät-
zungen über die Dauer der Ausführung des sporadischen Tasks gemacht werden, da die
verfügbare Slackzeit nicht notwendigerweise für die Ausführung ausreicht.

Die Nutzung eines Ansatzes des Predictably Flexible Real-Time Scheduling (vgl. Ab-
schnitt 5.1.6) lässt die Nutzung komplexer Techniken aus diesem Bereich im eingeführten
Modell zu. Dazu gehören z. B. die Slot Shifting Verfahren, die zur optimalen Verteilung
der Rechenzeit einzelner Jobs genutzt werden können.
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7. Evaluierung und
Anwendungsszenarien

Das eingeführte RA-Rahmenwerk wurde zwecks Evaluierung und Machbarkeitsanalyse für
das Laufzeitsystem ACPLT/RTE prototypisch implementiert. Dieses Kapitel beinhaltet
eine kurze Beschreibung des Prototyps und des evaluierten Hardwaresystems.

Der wichtigere Beitrag besteht allerdings in den vier vorgestellten Use-Cases. Diese be-
legen die Einsatzmöglichkeiten des Rahmenwerks in verschiedenen Anwendungsszenarien
aus der Domäne der Prozessleittechnik.

7.1. Prototypische Implementierung
Die Prozedurbeschreibungssprache ISSC und der Komponentenscheduler wurden gemäß
der beschriebenen Spezifikationen in ACPLT/RTE umgesetzt. Die dafür benötigten OV-
Modelle, die UML-Klassendiagrammen entsprechen, sind im Anhang B zu finden.

Die Realisierung von ISSC folgt dem Klassendiagramm in Abbildung 6.7. Das Modell
wurde leichten implementierungsspezifischen Veränderungen unterworfen: Es wurde die
Möglichkeit der Ausführung der Aktionen in den Breakpoints eingeführt, die für die Be-
rechnung der Guard-Variablen benutzt werden.

Die Implementierung des Systemschedulers beinhaltet ein Objektmodell zur Darstellung
des offline Schedules, dessen Aufbau exemplarisch in Objektdiagrammen der folgenden
Use-Cases dargestellt wird. Zusätzlich zu der Darstellung des Schedules, leitet der Sche-
duler die Klassen für Funktionsbausteine und FBNs ab und erweitert die Signatur der
Aufruffunktion einer POUs um den Parameter Δcurr. Die Koexistenz zwischen dem bereits
vorhandenen tabellarischen Scheduling des Laufzeitsystems und dem RA-Scheduling ist
in beide Richtungen vorhanden. So kann der konventionelle Scheduler RA-Anwendungen
durch Polymorphe aufrufen. In diesem Fall wird nur die zugesicherte Zeit w an die RA-
Anwendung übergeben. Umgekehrt kann der RA-Scheduler konventionelle POUs ohne den
Parameter Δcurr aufrufen.

Zusätzlich zu der Implementierung des Schedulers und des ISSCs wurde eine Engi-
neeringumgebung auf Basis des ACPLT/csHMI (Client Side Human Machine Interface)
[JE13] Engineerings für SSCs aufgebaut. Da die Klassennamen der ISSC-Implementierung
den Namen der ISSC-Klassen folgen, waren die benötigten Änderungen der bestehenden
Engineering-Plattform minimal. Die Engineeringumgebung wurde für die Erstellung und
Dokumentation der Use-Cases verwendet.

Für die Evaluation der prototypischen Implementierung wurde ein WAGO 758-875
Industrie-PC mit einer 1 GHz Intel Celeron M CPU und 256 MB RAM eingesetzt. Das
System läuft unter 32-bit 2.6 Linux mit RT-Preempt Patch. Als Laufzeitsystem wurde
ACPLT/RTE mit dem Versionstand „5f7c61c“ aus dem GitHub-Repository1 verwendet.

1https://github.com/acplt/rte
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7.2. Use-Case 1: Nicht-echtzeitfähige Kommunikation

Abbildung 7.1.: WAGO 758-875 IPC eingebaut in einem Modul der Anlage M4P.AC.

0

O    I

Zeit

Zyklusdauer des Grundzyklus

Logik

statische Slackzeit bzw. Funktionsreserve
Übergabe der Kontrolle an das Betriebssystem

Abbildung 7.2.: Typischer Aufbau eines Grundzyklus der ACPLT/RTE Laufzeitumgebung.

Der typische Aufbau eines Grundzyklus des Laufzeitsystems ist in Abbildung 7.2 zu se-
hen. Im Unterschied zu dem in Abbildung 2.6 vorgestellten Zyklus einer SPS werden die
Ein- und Ausgabe-Aktivitäten in einem Task zusammengefasst und am Anfang jedes Zy-
klus ausgeführt. Dieses Vorgehen hat Vorteile bei der Implementierung und verändert das
Systemverhalten bis auf den ersten Zyklus nicht. Das Laufzeitsystem wird im Echtzeitbe-
trieb mit einer höheren Priorität als der Kernel des Betriebssystems ausgeführt und kann
von ihm nicht unterbrochen werden. Damit das Betriebssystem trotzdem seine Aufgaben
wahrnehmen kann, wird ihm ein vordefinierter Zeitschlitz am Ende des Grundzyklus des
Laufzeitsystems gewährt (statische Slackzeit oder Funktionsreserve genannt).

Für die folgenden Use-Cases ist die Zykluszeit auf 100 ms und die Funktionsreserve auf
4 ms eingestellt. Dem Systemscheduler stehen somit 96 ms für die Aufteilung an ressource-
nadaptive Tasks zur Verfügung. Dieser Wert gilt auch als eine harte Echtzeitschranke für
das Laufzeitsystem. Zwecks der übersichtlichen Darstellung der Messergebnisse wurde die
I/O-Aktivität für die folgenden Use-Cases abgeschaltet.

7.2. Use-Case 1: Nicht-echtzeitfähige Kommunikation
Eines der Hauptziele für die Motivation dieser Arbeit (vgl. Kapitel 1) war die Nutzung der
Slackzeit für den Betrieb einer nicht-echtzeitfähigen Kommunikationsschnittstelle neben
der Echtzeitfunktionalität des Laufzeitsystems. Die Vorstellung der möglichen Anwendun-
gen des vorgestellten Frameworks für RA-Anwendungen wird mit diesem Use-Case eröffnet.

In der aktuellen Version existieren im ACPLT/RTE zwei dedizierte Tasks: ein Task für
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die operative Bausteinlogik (der sogenannte „Urtask“) und ein Task für die Kommunikati-
onstreiber. Der operative Task läuft normalerweise mit einer Zykluszeit von einer Sekunde
und wird für die Ausführung von POUs und hierarchisch untergeordneten Tasks verwendet.
Der Kommunikationstask wird mit einer Frequenz von einem kHz ausgeführt und stößt
die Ausführung verschiedener untergeordneter Kommunikationssubsysteme an.

Die Implementierung der beiden zyklischen Tasks ist nahezu identisch. Dies ist in der
Repräsentation der Vertreter der Kommunikationstreiber als Funktionsbausteine zwecks
Introspektion begründet. Diese Treiber sind für eine minimale Laufzeit bzw. Unterbre-
chung ausgelegt. Es wird in der Regel pro Aufruf ein nach oben beschränkter Abschnitt
des Transmission Control Protocol (TCP)-Stroms bearbeitet bzw. zu einem Zwischenpuf-
fer hinzugefügt. Dadurch wird höchstens eine HTTP bzw. OPC UA Nachricht pro Auf-
ruf bearbeitet. Darüber hinaus werden bestimmte Annahmen über die Längen bzw. die
Komplexität der empfangenen Nachrichten angenommen, um sinnvolle Echtzeitschranken
annehmen zu können.

Da die Ausführung der POUs die Einhaltung des Taktes für den Kommunikationstask
eventuell „stören“ kann, wird die Überwachung seiner Zykluszeit auf der Systemebene
deaktiviert bzw. die Ausführungszeitpunkt zur Laufzeit angepasst. Für den Nutzer besteht
keine Möglichkeit die Ressourcenzuteilung an die Kommunikation zu beobachten bzw. zu
ändern. Im Gegensatz dazu werden beide Tasks durch das RA-Rahmenwerk auf die gleiche
Art und Weise aufgerufen. Die Zuteilung der Ressourcen ist durch ein explizites Scheduling
durch den Komponentenscheduler transparent und einstellbar.

In diesem Use-Case übernimmt das RA-Framework die Ausführungssteuerung der Task-
Ebene. Die Migration der existierenden Tasks kann vollkommen transparent für die nicht-
zeitsensitiven POUs erfolgen. Aus dieser Perspektive demonstriert der Use-Case auch die
Einfachheit der Migration und die Co-Existenz des Rahmenwerks mit bewährter Software
(Anforderung N3 in Kapitel 4).

Der Zyklus des Laufzeitsystems wird durch den Komponentenscheduler in zwei Abschnit-
te partitioniert: einen Abschnitt für die Programmlogik und einen für die Kommunikation.
Für das Beispiel wurde die folgende Aufteilung gewählt: Für einen Zyklus von 100 ms gehen
95 ms an die Programmlogik und 1 ms an den RA-Kommunikationstask, 4 ms bleiben somit
für die Funktionsreserve übrig, während der die Kontrolle zurück an das Betriebssystem
übergeben wird.

Die Task-Konfiguration für den Komponentenscheduler ist in Abbildung 7.3 dargestellt.
Der einzige wiederholte Zyklus besteht aus zwei Slots, denen jeweils ein Task zur Ausfüh-
rung zugeordnet ist. Der erste Slot führt den Logiktask „/Tasks/UrTask“ direkt aus. Der
zweite Slot führt das ISSC „/TechUnits/communication“ aus, welches das online Schedu-
ling der Kommunikationsschnittstellen übernimmt.

Dieses ISSC ist in Abbildung 7.4 dargestellt. Es entspricht dem Muster der Meilenstein-
Methode aus Abbildung 6.18a und besteht aus einem Initialzustand und einem Break-
point. Die erste Aktion des Initialzustands führt den Kommunikationstask „/communi-
cation/RootComTask“ aus, die zweite Aktion initiiert einen kurzen Sleep-Befehl von 10
μs über den beinhalteten Baustein „sleep“ aus, damit das Betriebssystem die Daten aus
dem Kommunikationsstack bereitstellen kann. Im Gegensatz zum abstrakten Modell des
ISSCs, können in der Implementierung auch die Breakpoints Aktionen ausführen, z. B.
die Überprüfung von Guards. In dem Use-Case stößt der Breakpoint die Ausführung des
„guard“ Bausteins an, der dem Ausdruck „(Δcurr − c) ≥ 1 ms“ entspricht. Somit kann
der Initialzustand nur bei einer verbleibenden Verarbeitungszeit von 1 ms wiederholt be-
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Abbildung 7.3.: Task-Konfiguration für den Use-Case.

Abbildung 7.4.: ISSC für das online Scheduling des Kommunikationstasks.
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treten werden. Der Wert von 1 ms ergab sich durch eine Abschätzung der WCET des
Kommunikationstasks, die durch Messungen gestützt wurde.

Für die erste Messreihe wurde der schwankende Ressourcenverbrauch des Logiktasks
durch einen Busy-Loop-Baustein simuliert, dessen Zeitverbrauch gleichverteilt im Intervall
[10, 95] ms lag. Dieser Baustein war der einzelne Eintrag in der „Urtask“ Taskliste.

Die Ergebnisse sind in Abbildung 7.5 dargestellt. Der Übersicht halber sind nur 100
Zyklen je 100 ms in der Abbildung zu sehen. Der ausgewählte Ausschnitt stellt eine Auswahl
aus einer größeren Messreihe (ca. 12000 Zyklen) dar.

Das oberste Diagramm in Abbildung 7.5 illustriert die Aufteilung der gesamten Zyklus-
zeit auf die beiden Tasks. Der hellgraue Teil entspricht dem Haupttask für die Logik („Ur-
task“) und der dunkelgraue Teil dem RA-Task für die Kommunikation bzw. dem ISSC. Es
ist deutlich zu beobachten, wie der RA-Task die Schwankungen des Logiktasks ausgleicht
und bei ca. 96 ms terminiert. Das oberste Diagramm zeichnet die reine Ausführungszeit
der Tasks auf. Die Scheduling-Overheads wurden herausgerechnet.

Das zweite Diagramm von oben gibt Auskunft über die gesamte verbrauchte Zykluszeit.
Da der Guard des ISSCs in Abbildung 7.4 auf 1 ms eingestellt ist, terminiert der Zyklus
stets bei Werten zwischen 95 ms und 96 ms. Der Wert von 96 ms gilt dabei als eine harte
Echtzeitschranke. Es ist zu sehen, dass diese nie erreicht wird (dies ist bei der gesamten
Messreihe der Fall). Die Tatsache, dass die Zeit über 95 ms liegt, ist mit den Scheduling-
Overheads zu erklären, die in diesem Diagramm miteinbezogen sind.

Das dritte Diagramm zeigt den Jitter des Beginns des Zyklus. Dieser Wert entspricht
der „Verspätung“ des tatsächlichen Zyklusanfangs im Vergleich zu der geplanten Zeit. Das
Jitter ist auf die Ungenauigkeit des Sleep-Befehls des Betriebssystems zurückzuführen.
ACPLT/RTE implementiert keine Maßnahmen zur Kompensation des Jitters. Aus diesem
Grund ist dieser immer positiv. Die absoluten Werte des Jitters befinden sich allerdings
maximal bei ca. 40 μs, was den meisten Anwendungen des Laufzeitsystems genügt.

Das letzte Diagramm gibt Auskunft über den expliziten Scheduling-Overhead. Dieser
setzt sich aus dem Overhead des internen Scheduler des ACPLT/RTE, dem Overhead
des Komponentenschedulers und der Auswertung des ISSCs zusammen. Der maximale
Overhead für das Scheduling liegt im Bereich von ca. 110 μs. Auch dieser Wert erscheint
für Anwendungen in der Domäne der Prozessleittechnik akzeptabel.

In der zweiten Messreihe wurde der Netzwerkdurchsatz der RA-gesteuerten Kommuni-
kation in Abhängigkeit von der Auslastung des Logiktasks gemessen. Im Unterschied zu der
ersten Messreihe wurde die Dauer des Logiktasks nicht zufällig, sondern manuell auf Werte
im Intervall [0, 95] ms eingestellt. Für die Demonstration des Vorgehens werden bereits im-
plementierte Kommunikationsschnittstellen des ACPLT/RTE Laufzeitsystems verwendet.
Diese Schnittstellen umfassen ein auf HTTP basierendes Protokoll ACPLT/KS-HTTP, so-
wie das binäre OPC UA Protokoll. Für die letzte Kommunikationsschnittstelle wird eine
offene OPC UA Implementierung open62541 [PGP+15] eingesetzt.

In der Messreihe wurde die Dauer einer Leseoperation beider Protokolle gemessen. Diese
Operation entspricht einer GET Operation in HTTP bzw. dem Aufruf des Read Dienstes
in OPC UA. Die Messung umfasst nur die Dauer des unmittelbaren Lesevorgangs und
nicht den Aufbau der Kommunikation, z. B. den Verbindungsaufbau in OPC UA. Bei dem
Informationsaustausch wurde der gleiche Payload übertragen. Es handelt sich dabei um
eine ca. 5,5 KB große HTML-Seite.

Die Messungen des HTTP-Protokolls erfolgten mit dem Apache Benchmark Tool. Die
Messungen der OPC UA Performance wurden mit einem auf dem open62541 Projekt ba-
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Abbildung 7.5.: Messungen der Aufteilung der Zykluszeit auf die einzelnen Tasks (von unten
nach oben: Logiktask mit zufälliger Ausführungszeit in hellgrau, RA-Task für die Kommunika-
tion in dunkelgrau), der verbrauchten Zeit innerhalb des gesamten Zyklus, des Jitters und des
Scheduling-Overheads in einem repräsentativen Zeitraum von 100 Zyklen je 100 ms.
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Abbildung 7.6.: Die Dauer einer Leseoperation für beide Protokolle in Abhängigkeit von der
Auslastung des Logiktasks (Mittelwert je 1000 Anfragen).

sierenden Client durchgeführt. Bei den Tests kommt es somit nicht auf das absolute er-
reichbare Maximum des Netzwerkdurchsatzes, sondern auf die Darstellung der Skalierbar-
keit des Durchsatzes in Abhängigkeit von der Auslastung des Logiktasks an. Aus diesem
Grund wurden beide Clients zwecks besserer Reproduzierbarkeit im single-threaded Mo-
dus ausgeführt. Der Client-PC (mit einer Intel Core i5-2520M CPU und Linux 3.13) und
die Hardwareplattform des Laufzeitsystems wurden mittels geswitschtem Fast Ethernet
verbunden.

Die Ergebnisse der Messung sind in Abbildung 7.6 als Mittelwerte je 1000 Anfragen
dargestellt. Auf der Abszisse ist der Zeitverbrauch des Logiktasks dargestellt. Diese Dauer
entspricht der Höhe des hellgrauen Balkens im oberen Diagramm der Abbildung 7.5. Es ist
eine lineare Zunahme der Dauer einer Leseoperation im Bereich von 0 bis 70 ms für beide
Kommunikationsprotokolle zu beobachten. Für Werte größer als 70 ms kommt es zu einem
signifikanten Anstieg der Latenz. Dieser ist insbesondere bei einer Auslastung des Urtasks
von 95 ms sichtbar. In diesem Fall kann die Kommunikation nur eine (Teil-)Nachricht pro
Grundzyklus des Laufzeitsystems verarbeiten. Trotz des relativ niedrigen Durchsatzes war
die Kommunikation auch unter diesen Bedingungen jedoch stets möglich.

Beide Messreihen belegen die erwarteten Ergebnisse. Die Slackzeit eines Laufzeitsystems
kann durch das online Scheduling effektiv für nicht-echtzeitfähige Kommunikation genutzt
werden, ohne die Einhaltung der Echtzeitschranken zu gefährden. Der Durchsatz hängt
dabei von der verfügbaren Slackzeit ab und sinkt bei besonders wenig verfügbarer Slackzeit
signifikant.

7.3. Use-Case 2: Prozessbegleitende Simulation mit
variabler Qualität

Die Einsatzgebiete der prozessbegleitenden Simulation umfassen die Überwachung von au-
tomatisierten Prozessen, das Schätzen der Systemzustände und die Erstellung kurzfristiger
Prognosen des Systemverhaltens.
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Abbildung 7.7.: Task-Konfiguration für den Use-Case.

Die eigentliche Simulation kann dabei entweder analytische oder heuristische Modelle
verwenden, die auf Messdaten basieren. Hybride Verfahren als Kombination beider Ansät-
ze sind auch möglich. Die meisten Simulationsverfahren beinhalten das Lösen von Diffe-
renzialgleichungen. Dieses erfolgt normalerweise numerisch mithilfe unterschiedlicher Lö-
sungsverfahren, die die Lösung iterativ approximieren.

Die Laufzeit des Lösungsverfahrens hängt von deren Parametrierung ab, wie z. B. der
gewünschten Genauigkeit der Approximation oder der Weite der diskretisierten Zeitschrit-
te. Ein mögliches Einsatzgebiet von RA-Verfahren kann dabei eine dynamische Auswahl
des eingesetzten Verfahrens bzw. des Parametersatzes sein. Die Genauigkeit der Simulation
kann dabei in Abhängigkeit von der verfügbaren Rechenzeit in diskreten Schritten variiert
werden.

Für diesen Use-Case wird eine einfache Auswahl zwischen zwei alternativen Verfahren im-
plementiert, die dem Mehrversionen-Muster aus Abbildung 6.17b entspricht. Im Gegensatz
zu dem ersten Use-Case in Abschnitt 7.2, ist es sinnvoll, die Ergebnisse des RA-Verfahrens
innerhalb des aktuellen Zyklus operativ einzusetzen. Dabei können z. B. die Schätzungen
des zukünftigen Systemverhaltens als eine zusätzliche Eingabe des Regelalgorithmus ge-
nutzt werden. Dieser Verarbeitungsschritt wurde in diesem Anwendungsfall der Einfachheit
halber nicht explizit modelliert.

Die Struktur des Tasks ist in Abbildung 7.7 dargestellt. Ähnlich zu dem ersten Use-
Case in Abschnitt 7.2 wird dabei die Schwankung des Logiktask im Intervall von [10, 85]
ms simuliert. Im zweiten Slot wird dabei das ISSC der Messwertvalidierung ausgeführt,
dessen WCET 10 ms beträgt. Das Chart ist in Abbildung 7.8 explizit dargestellt. Die
Engineering-Ansicht zeigt sowohl das ISSC als auch die ausgeführte Programmlogik. Die
Ausführungslogik ist dabei einfach: Im Initialzustand wird mithilfe eines Guards überprüft,
ob 20 ms für die Ausführung verfügbar sind. Ist das der Fall, so wird der Zustand „ver1“
betreten, sonst wird der Zustand „ver2“ ausgeführt. Die Aktionen der Zustände führen
dann die FBDs „ver1_fc“ bzw. „ver2_fc“ aus. Die Ausführung der ersten Version dauert
20 ms, die Ausführung der zweiten Version 10 ms. Die Dauer der Ausführung wird durch
parametrierte Bausteine simuliert. Die Synchronisation der Ausgabe der Simulationsver-
fahren erfolgt durch einen Multiplexer-Baustein „mux“, der von jeder Version ausgeführt
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7. Evaluierung und Anwendungsszenarien

Abbildung 7.8.: ISSC für das online Scheduling der prozessbegleitender Simulation.

wird. Je nach ausgeführter Version, wird dabei die Ausgabe entsprechend umgeschaltet.
Der Ausführungsrahmen des Charts entspricht dabei den Interfaces der FBDs der ein-
zelnen Versionen. „Von außen“ ist somit die Nutzung des ressourcenadaptiven Verfahrens
vollkommen transparent.

Die Ergebnisse der Messungen sind in Abbildung 7.9 dargestellt. Jede Spalte stellt dabei
einen Zyklus des Laufzeitsystems dar. Jede Spalte ist in drei Teile aufgeteilt: Der unte-
re hellgraue Teil entspricht der Dauer des Logiktasks, der mittlere graue Teil entspricht
der Dauer des RA-Tasks für prozessbegleitende Simulation und der obere hellgraue Teil
entspricht der Ausführungsdauer des Kommunikationstasks (vgl. Abschnitt 7.2). Es ist
deutlich zu erkennen, wie die Dauer des mittleren Abschnitts zwischen 10 und 20 ms vari-
iert, z. B. in Zyklen 99 und 100 der Abbildung 7.9. Der Jitter und die anderen Parameter
entsprechen denen der ersten Messreihe (vgl. Abbildung 7.5) und sind aus diesem Grund
nicht explizit abgebildet.

7.4. Use-Case 3: Mehrstufige Messwertvalidierung
Verfahren der Messwertvalidierung werden in der operativen Leittechnik eingesetzt, um die
„Zuverlässigkeit“ eines Messwertes festzustellen und gegebenenfalls auf fehlerhafte Messun-
gen proaktiv reagieren zu können. Dem tatsächlichen Messwert wird dabei ein Vertrauen-
sindex zugeordnet, der seine Qualität beschreibt. Dieser Index kann in den Regelungsalgo-
rithmus einfließen, beispielsweise durch das Umschalten der Stellgröße auf einen manuell
eingestellten Wert [Uec05].

Die Verfahren der Validierung sind vielfältig und reichen von einfacher Signalanalyse
bis zu komplexen modellgestützten Analyseverfahren. Im Regelfall werden die einzelnen
Verfahren sukzessive ausgeführt, dabei wird der Vertrauensindex jedes Verfahrens an das
nächste Verfahren weitergegeben und kann so berücksichtigt werden. Diese Konstellati-
on wird als „mehrstufige Messwertvalidierung“ [Uec05] bezeichnet und ist schematisch in
Abbildung 7.10 dargestellt.

Das Einsatzgebiet der Ressourcenorientierung umfasst die bedingte Ausführung der ein-
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Abbildung 7.9.: Messungen der Aufteilung der Zykluszeit auf die einzelnen Tasks (von unten
nach oben: Logiktask mit zufälliger Ausführungszeit in hellgrau, RA-Task für die alternative
Auswahl des Simulationsverfahren in dunkelgrau, RA-Task für die Kommunikation in hellgrau)
in einem repräsentativen Beobachtungszeitraum von 100 Zyklen je 100 ms.

zelnen Stufen der Validierung. Dabei kann beispielsweise die Ausführung der ersten Stufe
zugesichert werden, während die folgenden Stufen nur bei ausreichend vorhandener Slack-
zeit ausgeführt werden.

Für den Use-Case wurde die gleiche Task-Konfiguration wie im letzten Use-Case verwen-
det (vgl. Abbildung 7.7). Die Ausführung der prozessbegleitenden Simulation wurde durch
das ISSC in Abbildung 7.11 ersetzt. Das Chart folgt dem Muster der 0/1 Ausführung (vgl.
Abbildung 6.17) und enthält die Logik einzelner Validierungstufen und das Chart zu deren
Steuerung. Die Zustände des Charts führen die FBDs „tier1_fc“ bis „tier3_fc“ sowie den
Multiplexer für die Datenausgabe aus. Die Ausführung der Stufen wird mit je 10 ms simu-
liert. Durch die garantierte Ausführung der ersten Stufe beträgt die WCET des Charts 10
ms. Auf der Abbildung sind die Aktionen des dritten Zustands beispielhaft dargestellt. Die
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Abbildung 7.10.: Mehrstufige Messwertvalidierung [Uec05].
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Abbildung 7.11.: ISSC für das online Scheduling der mehrstufigen Messwertvalidierung.

optionale Ausführung der Stufen wird durch die Breakpoints und entsprechende Guards
gewährleistet. Die Breakpoints dürfen dabei nur verlassen werden, wenn die verfügbare
Ausführungszeit mehr als 10 ms beträgt.

Die Messreihe der Ausführung ist in Abbildung 7.12 dargestellt. Ähnlich zu Abbildung
7.9 wird dabei die gemessene Ausführungszeit (dunkelgrau) der Messwertvalidierung in
dunkelgrau von der schwankenden Ausführungszeit des Logiktasks unterhalb und der varia-
blen Ausführungszeit des Kommunikationstasks oberhalb (beide in hellgrau) eingerahmt.
Es ist klar erkennbar, wie die gemessene Ausführungszeit der Validierung diskret zwischen
10, 20 und 30 ms variiert, ohne die Echtzeitschranke von 96 ms zu verletzen. Damit ist die
Anwendbarkeit der RA-Verfahren auch im Kontext dieser Anwendung bestätigt.

7.5. Use-Case 4: Transaktionskontrolle für regelbasiertes
Engineering

Das regelbasierte Engineering wird vor allem im Kontext der AdA eingesetzt. Die Anwen-
dungsfälle für das regelbasierte System sind vielfältig, beinhalten aber immer die Erzeugung
bzw. die Modifikation der ausgeführten Programmlogik. Falls diese Logik zur Laufzeit des
Systems erstellt bzw. verändert wird, muss sichergestellt sein, dass das System sich zu
jedem Zeitpunkt in einem konsistenten Zustand befindet.

Normalerweise werden Engineering-Eingriffe über eine nicht-echtzeitfähige Kommunika-
tionsschnittstelle übermittelt. Aus diesem Grund ist eine einmalige Übertragung der ge-
samten Änderung oft nicht möglich. Daher wird diese bei einem zyklischen Laufzeitsystem
zwingend auf unterschiedliche Grundzyklen des Systems verteilt. Bei einem naiven An-
satz der direkten Logikänderung über die Kommunikationsschnittstelle besteht immer die
Möglichkeit, dass semantisch zusammenhängende Änderungen in unterschiedlichen Zyklen
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Abbildung 7.12.: Messungen der Aufteilung der Zykluszeit auf die einzelnen Tasks (von unten
nach oben: Logiktask mit zufälliger Ausführungszeit in hellgrau, RA-Task für die mehrstufige
Validierung in dunkelgrau, RA-Task für die Kommunikation in hellgrau) in einem repräsentativen
Beobachtungszeitraum von 100 Zyklen je 100 ms.

wirksam werden und somit einen unerwünschten Systemzustand hervorrufen. Ein Beispiel
für einen solchen Zustand ist eine partielle Aktivierung der Funktionsbausteine innerhalb
eines FBNs. Ein anderes Beispiel ist eine nicht komplette Parametrierung bzw. Erstellung
eines Objekts bzw. einer Komposition aus Objekten. Die besondere Bedeutung von Trans-
aktionssicherheit während der Modellveränderungen wurde auch bereits im Kontext der
verteilten Systeme angesprochen [Mer16].

Eine Möglichkeit der Zusicherung des konsistenten Systemzustands besteht darin, ei-
ne dedizierte Transaktion zu erstellen und sie unter Echtzeitbedingungen auszuführen.
Die Erstellung unterliegt dabei keinen Echtzeitanforderungen und wird durch die nicht-
echtzeitfähige Dienste abgewickelt. Die Ausführung hingegen muss im Echtzeitbetrieb
stattfinden. In diesem Use-Case wird die Nutzung des Transaktion-Musters aus Abbil-
dung 6.18 vorgeschlagen, um eine solche Transaktion zu definieren und auszuführen. Das
System muss eine Grundmenge an Operationen und deren Zeitabschätzungen, wie z. B.
das Anlegen und das Löschen von Objekten bereitstellen, die von den Aktionen des ISSCs
aufgerufen werden können.

Für die Zwecke der Evaluation wurde eine Task-Konfiguration aus dem vorhergehenden
Use-Case in Abschnitt 7.4 verwendet. Das ausgeführte ISSC ist in Abbildung 7.13 dar-
gestellt. Durch die Verwendung eines Zähler-Bausteins „add1“ wird der Initialzustand 50
mal betreten und stößt die Ausführung des „process“ Bausteins an, der 10 ms verbraucht
und die Aktivität der Transition simuliert. In dem History-Breakpoint „b1“ wird die ver-
bliebene Ausführungszeit durch den Guard überprüft. Nach der 50. Ausführung wird die
Transition „t1“ deaktiviert, das Transaktion-Chart betritt den History-Breakpoint „b2“
und terminiert.
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Abbildung 7.13.: ISSC für das online Scheduling der Transaktion.

Aus der Perspektive des Schedulings ist eine Transaktion ein sporadischer Task. Dieser
kann in der online Phase des Schedulers ausgeführt werden (vgl. Abschnitt 6.3.3). Da die
minimale WCET der Transaktion von 10 ms über der Funktionsreserve von 4 ms liegt,
kann die Ausführung nur nach einer best-effort Strategie erfolgen. Diese Strategie kann
anhand der folgenden Messreihe visualisiert werden.

Die Messreihe ist in Abbildung 7.14 dargestellt. Die Transaktion wurde durch den Kom-
munikationstask erstellt und liegt als ein Objektmodell im System vor. Die Ausführung der
Transaktion wurde im Zyklus Nummer 50 angestoßen. Der Scheduler versucht ab diesem
Zeitpunkt der Transaktion möglichst viel Slackzeit zuzusichern. Aus diesem Grund werden
den einzelnen Tasks nur die minimale benötigte Zeit w eingeräumt (vgl. Abbildung 7.7).
Diese Maßnahme betrifft die Messwertvalidierung und den Kommunikationstask. Diese
werden nun stets mit Δcurr von 10 ms bzw. 1 ms ausgeführt. Die Möglichkeit der Aus-
führung der Transaktion wird nach der Terminierung der regulären Tasks überprüft. Ob
die Transaktion ausgeführt werden kann oder nicht, hängt von der Schwankung des Logik-
tasks ab. Es ist zu sehen, dass die Transaktion erstmalig im 50. Zyklus für 10 ms ausgeführt
wurde. In Zyklen Nummer 51 und 52 war hingegen keine Zeit für die Ausführung der Trans-
aktion vorhanden. Im Zyklus Nummer 66 war die Ausführung der Transaktion beendet. Ab
diesem Zyklus teilt der Scheduler wieder die gesamte verfügbare Slackzeit den RA-Tasks
zu.
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7.5. Use-Case 4: Transaktionskontrolle für regelbasiertes Engineering
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Abbildung 7.14.: Messungen der Aufteilung der Zykluszeit auf die einzelnen Tasks (von unten
nach oben: Logiktask mit zufälliger Ausführungszeit RA-Task für die mehrstufige Validierung
und RA-Task für die Kommunikation in hellgrau, sowie die Transaktion in dunkelgrau) im
Zeitraum von 100 Zyklen je 100 ms.
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8. Diskussion der Ergebnisse
In dieser Dissertation wurde ein Rahmenwerk für die Integration von ressourcenadapti-
ven Anwendungen in die Laufzeitsysteme der operativen Prozessleittechnik vorgestellt.
Die Notwendigkeit des ressourcenadaptiven Einsatzes wurde aus den eingangs vorgestell-
ten wachsenden Anforderungen an die Funktionalität der Komponenten industrieller Pro-
duktionssysteme und insbesondere an die Laufzeitsysteme abgeleitet. Diese zusätzlichen
Anforderungen umfassen die Bereitstellung zusätzlicher Information bzw. die Ausführung
zusätzlicher nicht-echtzeitfähiger Funktionalität durch die Laufzeitumgebung. Eine regu-
läre Ausführung dieser Funktionen ist häufig aus Gründen der festen Ressourcenzuteilung
an die echtzeitkritischen Kern-Funktionen eines Laufzeitsystems nicht möglich. Ressour-
cenadaptive Anwendungen erlauben hingegen die Ausführung zusätzlicher Funktionalität
in der Slackzeit, der Zeit, die wegen der Fluktuationen der Ausführungszeiten der Kern-
Funktionen in den meisten Fällen ungenutzt bleibt. Das Konzept der Ressourcenadaptivität
erlaubt somit eine effizientere Nutzung der vorhandenen Rechenkapazität des Laufzeitsy-
stems bei gleichzeitiger Sicherstellung der garantierten Echtzeitanforderungen.

Die Idee der Inanspruchnahme der Slackzeit zyklischer Systeme ist nicht neu. So wird
diese Zeit bereits im Bereich der Echtzeitsysteme, z. B. PikeOS [KF06], oder von Lauf-
zeitsystemen der Automatisierungstechnik, z. B. FASA (vgl. Abschnitt 3.3.3), verwendet.
Der erste Ansatz verteilt die übrig gebliebene Zeit an wartende Threads mit niedrigerer
Priorität. Der zweite Ansatz nutzt die Slackzeit für Threads mit Verwaltungsaufgaben,
z. B. Aufgaben der Umstrukturierung der Scheduling-Tabelle. Die implizite „Abgabe“ der
ungenutzten Zeit an Tasks mit niedrigerer Priorität ist auch im Kontext der Implemen-
tierungen der IEC 61131-3 mit unterbrechendem Scheduling der Fall. Die Norm schreibt
die Möglichkeit eines solches Verhaltens explizit vor. Der Nachteil des Multi-Threading
Ansatzes ist die fehlende Sicherheit über die Ausführungsdauer der niedrig priorisierten
Tasks. Somit kann es keine Garantie über den Zeitpunkt der Terminierung einer Funktion
geben, dafür aber über die Eigenschaften des berechneten Ergebnisses.

Der Kernunterschied des vorgestellten Rahmenwerks zu diesen Ansätzen ist die vorhan-
dene Möglichkeit der Synchronisation der ressourcenadaptiven Anwendung mit dem Zyklus
des Laufzeitsystems. Das Ende des Zyklus steht als Zeitpunkt der Terminierung jeder Be-
rechnung fest und die „Qualität“ des Ergebnisses ist variabel. Mit diesem neuen Ansatz
sind deterministische operative Eingriffe der ressourcenadaptiven Logik in den Prozess
möglich, wie in Use-Cases 2 und 3 in Abschnitten 7.3 bzw. 7.4 demonstriert wurde. Der
„Einflussbereich“ der operativen Eingriffe ist insbesondere auf der Prozessleitebene sehr
weit ausgeprägt. Es gehören nicht nur explizite Funktionen mit Manipulationen der I/O
hinzu, sondern auch alle Daten, deren Änderung implizit auf das physische System wirken
kann. Falls beispielsweise eine Modelländerung implizite Auswirkungen auf das physische
System besitzt, z. B. über ein regelbasiertes System Verhaltensänderungen induziert, so
muss der Zugriff auf dieses Modell ähnlichen Anforderungen wie direkter I/O Zugriff un-
terliegen. Eine bisherige Nutzung der Slackzeit für die Realisierung des operativen Eingriffs
in den Prozess für Aufgaben der Automatisierungstechnik ist dem Autor unbekannt.
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Es ist nochmals zu betonen, dass die Verfügbarkeit der Slackzeit im Allgemeinen nicht ga-
rantiert werden kann. Aus diesem Grund eignen sich ressourcenadaptive Anwendungen vor
allem für nicht-echtzeitfähige Aufgaben bzw. Erweiterungen, wie z. B. nicht-echtzeitfähige
Kommunikation, oder fakultative Verbesserungen der Kern-Logik des Laufzeitsystems, wie
z. B. optionale zusätzliche Stufen eines Validierungsverfahrens für Messwerte. Auswertun-
gen der Messdaten einer realen Forschungsanlage zeigen Laufzeitschwankungen im zwei-
stelligen Prozentbereich, sodass durchaus umfangreiche Zusatzfunktionalitäten durch das
Rahmenwerk eingebettet werden können.

Der Nachteil der nicht garantierbaren Verfügbarkeit der Slackzeit ist gleichzeitig ein Vor-
teil der Ressourcenadaptivität bezüglich der Integration mit bereits existierenden leittech-
nischen Anwendungen. Ressourcenadaptive Algorithmen können als ein optionales Add-on
betrachtet werden und lassen die Semantik des existierenden Programms unverändert. Da-
mit hat die Migration bzw. das Hinzufügen der ressourcenadaptiven Anwendungen keine
Auswirkungen auf die echtzeitrelevante Funktionalität und erfordert keine erneute bzw.
zusätzliche Verifikation der existierenden Software.

Dieser Vorteil der transparenten Koexistenz ist der eingeführten einheitlichen Laufzeitar-
chitektur geschuldet (vgl. Abschnitt 6.1). Diese Architektur folgt dem Prinzip des hierarchi-
schen Schedulings und lässt somit die Kombination beliebiger Kontrollflusstypen zu. Auch
die prototypische Implementierung des Rahmenwerks hat gezeigt, dass beliebige Kombina-
tionen aus ressourcenadaptiven und nicht ressourcenadaptiven POUs in beide Richtungen
möglich sind. So können zum einen ressourcenadaptive Anwendungen aus bereits existie-
renden POUs zusammengestellt werden, die unter bestimmten Voraussetzungen ausgeführt
werden (vgl. Use-Cases 2 und 3 in Abschnitten 7.3 bzw. 7.4). Zum anderen können res-
sourcenadaptive Anwendungen von nicht zeitsensitiven Schedulern ausgeführt werden und
entfalten bei solcher Ausführung nur ihren minimalen Funktionsempfang.

Eine domänenspezifische Sprache für die Beschreibung des ressourcenadaptiven Verhal-
tens der POUs mit Namen In-cycle Sequential State Chart (ISSC) wurde in Abschnitt 6.2
eingeführt. Diese Prozedurbeschreibungssprache lehnt sich an die existierenden Sprachen
der Leittechnik an und erfüllt somit die Erwartungen der potentiellen Endnutzer. Neben
dem Vorteil eines leichten Einstiegs in die neue Sprache, können auch die existierenden
Engineering-Lösungen mit minimalen Anpassungen übernommen werden. Tatsächlich wur-
de eine Engineering-Umgebung der prototypischen Implementierung von einer existieren-
den Software abgeleitet. Trotz einer ähnlichen Syntax bleibt die Sensitivität in Bezug auf
die verfügbare Ausführungszeit das wichtigste Unterscheidungsmerkmal der ISSCs. Dem
Autor ist kein ähnliches Konzept im Bereich der Prozedurbeschreibung aus der Domäne
der Automatisierungstechnik bekannt.

Die in Abschnitt 6.3 vorgestellte Referenzarchitektur des Komponentenschedulers be-
dient sich der breiten Auswahl der existierenden Scheduling-Konzepte wie Predictably Fle-
xible Real-Time Scheduling und Elastic Model. Einige der beschriebenen Features dieser
Referenzarchitektur, wie beispielsweise die Möglichkeit des Wechsels der offline Scheduling
Tabelle, finden sich in anderen Laufzeitumgebungen, z. B. in FASA, wieder. Letztend-
lich wurde ein auf die Problemstellung zugeschnittenes Schedulingmodell entwickelt, das
die Vorteile einer einfachen Implementierung mit den Garantien des strikten Determinis-
mus und der praktischen Lösbarkeit der zugrundeliegenden Optimierungsprobleme vereint.
Diese in der Konzeptionsphase anvisierten Vorteile wurden durch die prototypische Imple-
mentierung bestätigt und konnten durch die Auswertung empirischer Messdaten belegt
werden.
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8. Diskussion der Ergebnisse

Die drei entwickelten Bestandteile des Rahmenwerk-Konzepts erfüllen die eingangs an-
visierten Ziele dieser Arbeit. Insgesamt ist mit dem Rahmenwerk und dessen Integration
in die Laufzeitumgebung ACPLT/RTE ein abgeschlossenes Paket entstanden, dessen Ein-
satzmöglichkeiten mithilfe mehrerer Use-Cases demonstriert wurden. Die Anwendungssze-
narien knüpfen dabei an die aktuellen bzw. kürzlich abgeschlossenen Forschungsarbeiten
des Lehrstuhls für Prozessleittechnik an und zeigen damit die praktische Relevanz der
Anwendung des ressourcenorientierten Ansatzes in der Domäne der Prozessleittechnik.

Im Folgenden werden die für diese Arbeit angenommenen Eigenschaften des Laufzeitsy-
stems bezüglich des Schedulings kritisch überprüft:

• Die Annahme einer konstanten Zyklusdauer ist die grundlegende Voraussetzung für
die Entstehung der Slackzeit. In Anwendungsgebieten der reinen Steuerungstechnik
sind am Markt Systeme mit flexibler Zykluszeit verfügbar. Bei solchen Systemen wird
ein neuer Zyklus direkt nach der Terminierung der Kontrolllogik gestartet. Die Be-
gründung einer festen Zykluszeit ist im Bereich der Prozessautomatisierung mit dem
Abtasttheorem, den Aufgaben der Regelung und der Forderung eines reproduzier-
baren dynamischen Verhaltens verbunden. Aus diesen Gründen wird die Annahme,
insbesondere in dieser Domäne, mit hoher Wahrscheinlichkeit weiterhin gültig sein.

• Die Annahme der Stabilität des Prozessabbildes ist in der IEC 61131-3 verankert
und wird somit in absehbarer Zeit Bestand haben.

• Die Annahme des kooperativen Schedulings und somit der Nichtunterbrechbarkeit
der Tasks ist in Bezug auf die IEC 61131-3 Umgebungen nur für manche Systeme
gültig. Die Vorteile der Nichtunterbrechbarkeit bezüglich der strikten Zyklussynchro-
nisation sind bereits erläutert worden. Für kommerzielle Systeme überwiegen oft aber
die Nachteile der Fragilität, sodass unterbrechende Scheduler der Echtzeitsysteme
eingesetzt werden. Von den entwickelten Bestandteilen des Rahmenwerks ist nur der
Komponentenscheduler von der Annahme der Nichtunterbrechbarkeit betroffen. Die
einheitliche Softwarearchitektur und die ISSCs sind auch im Kontext des unterbrech-
baren Schedulers weiterhin anwendbar.

• Die Annahme eines zeitgesteuerten Systems ist mit Hinblick auf die Entwicklung
der IEC 61499 zu überprüfen. Auch im Fall der wachsenden Anwenderakzeptanz der
Norm, können Teile der vorgestellten Arbeit, insbesondere die einheitliche Laufzeit-
architektur, im Kontext der Ereignissteuerung Anwendung finden.

• Eine ähnliche Argumentation gilt für das angenommene Uniprozessor-System. Die
Umsetzungsprobleme der Interprozesskommunikation und -synchronisation führen
dazu, dass die Mehrkernsysteme aus der Softwareperspektive als mehrere Ressour-
cen dargestellt werden. Das Rahmenwerk ist somit auch in diesem Fall weiterhin
anwendbar.

Abschließend werden Themen zukünftiger Arbeiten bzw. die Erweiterungen des vorge-
stellten Rahmenwerks besprochen: Eine feinere Modellierung der Guards der ISSCs im
UPPAAL-Toolkit ist die erste mögliche Forschungsrichtung. Die Guards werden bis dato
nur als externe Variablen betrachtet. Somit ist die Modellierung der gemischten Bedin-
gungen (Guards, die nicht nur von der verfügbaren Ausführungszeit, sondern auch von
den berechneten Ergebnissen einzelner Bausteine sowie Aktionen abhängen) erschwert bis
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unmöglich. Eine Berücksichtigung der tatsächlichen Logik der Funktionsbausteine und der
ISSCs würde zusätzlich die Anwendungsszenarien des Model-Checkers erweitern. Eine be-
sondere Herausforderung bei der Erweiterung des Modells wird die richtige Balance zwi-
schen der Aussagestärke und der Beschreibungskomplexität sein.

Eine weitere Verfeinerung der Modellierung kann darüber hinaus die genauere Erfas-
sung der einzelnen POU-Laufzeiten sein. Eine Möglichkeit wäre dabei die stochastische
Betrachtung der Ausführungszeiten, beispielsweise durch eine empirisch oder analytisch
ermittelte Wahrscheinlichkeitsverteilung der erwarteten Ausführungszeit. Der Wechsel in
die Domäne der stochastischen Analyse erfordert eine Untersuchung der verfügbaren Tools
bzw. Möglichkeiten der Modellierung und Abgleich dieser mit den domänenspezifischen
Anforderungen der Leittechnik.

Die automatische Berechnung der Guards der ISSCs beschränkt sich bislang auf die
Zusicherung des „sicheren Betretens“ der einzelnen Zustände bzw. Zweige. Als Ergebnis
einer besseren Modellierung des Zeitverhaltens des Systems bzw. der Anwendung könnte
ein Algorithmus entstehen, der komplexe Bedingungen durch die Guards beschreiben kann.
Somit wäre der erste Grundstein für ein Assistenzsystem für das ISSC-Engineering gelegt.

Die online Strategien des Systemschedulers können weiter ausgebaut werden. Ein Bei-
spiel für eine solche Erweiterung wäre die Ausführung sporadischer Tasks. Die aktuelle
Ausführungsstrategie des Prototyps lässt Raum für Verbesserung. In Abbildung 7.14 ist es
deutlich sichtbar, dass diese Strategie die Slackzeit nicht vollständig ausnutzen kann. Die
Tatsache wird insbesondere im letzten Zyklus der Transaktionsausführung deutlich. Eine
bessere Strategie bedarf der Modellierung zusätzlicher Eigenschaften der Tasks. So kann
beispielsweise gekennzeichnet werden, ob ein Task beliebig viel Slackzeit verbrauchen kann
und ob dieser mehrfach innerhalb eines Grundzyklus ausgeführt werden darf.

Die effiziente Konstruktion der offline Tabellen für den Scheduler wirft weitere For-
schungsfragen auf. Eine davon wäre die Suche nach geeigneten Heuristiken, die das effizi-
ente Erstellen der Scheduling-Tabellen auf dem Laufzeitsystem ermöglichen. Die Analyse
der Heuristiken muss neben der Laufzeit auch die Güte bzw. die Korrektheit der erstellten
Lösungen in Betracht ziehen.

125

https://doi.org/10.51202/9783186257086 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:59:54. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186257086


Anhänge

A. GAMS-Instanz für die offline Phase des
Komponentenschedulers

Dieses Modell implementiert das Beispiel aus Abschnitt 6.3.2. Die Probleminstanz bein-
haltet der Vollständigkeit halber den Aufbau für die komplette Problemformulierung aus
diesem Abschnitt, der teilweise von der Instanz des Beispiels ungenutzt bleibt.

Listing 1: example.gms
∗ a l low empty s e t s
$onempty

s c a l a r cyctime /100/ ;

$ i f not s e t hypercyc l e $ s e t hypercyc l e 6
s c a l a r hypercyc l e /%hypercyc l e %/;

$ i f not s e t ta sk s $ s e t ta sk s 3
s c a l a r ta sk s /%tasks %/;

$eva l t ime Ins tant s %tasks%∗%hypercyc l e%
s c a l a r t ime Ins tant s /%t imeIns tant s %/;

SETS
T tasks / t1 , t2 , t3 /
A(T) phase−a l i gned ta sk s //

∗ A(T) phase−a l i gned ta sk s /t1 , t2 , t3 /
F(A) phase−f i x e d ta sk s //
R(T) r e l e a s e −dead l ine //
C hypercyc l e /1∗%hypercyc l e %/;

ALIAS(T,U) ;
ALIAS(C,D) ;

∗ pe r i od s are m u l t i p l i e d with job s i z e

PARAMETERS
w(T) wcet time o f task t
/ t1 90

t2 90
t3 30

/
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GAMS-Instanz für die offline Phase des Komponentenschedulers

pr i o (T) p r i o r i t y o f the task ( eva luated only by the exponent i a l co s t
↪→ f unc t i on )

/ t1 1
t2 1
t3 1

/
per iod (T) per iod
/ t1 6

t2 2
t3 3

/
phase (F) f i x e d phase
/
/
r e l e a s e (R) r e l e a s e o f task t in ca s e s ( f i r s t s l o t to be executed )
/
/
dead l ine (R) dead l ine o f task t in ca s e s ( l a s t s l o t to be executed )
/
/
pred (T,T) execut ion dependenc ies ( only f o r ta sk s with same per iod )
/
/ ;

VARIABLES
x ( c , t ) t rue i f f task t i s scheduled in c y c l e c

∗ add ( c , t ) a d d i t i o n a l time f o r each task to run ( only used f o r the
↪→ exponent i a l co s t func t i on )

Z t o t a l co s t
BINARY VARIABLE x
POSITIVE VARIABLE add ;

EQUATIONS
PREDECESSOR(C,U,T) orde r ing
FIXEDPHASE(F) r e l e a s e f i x e d phase

↪→ task
PHASEALIGN(C,A) phase al ignment
OVERALL(T) every task i s executed a planned

↪→ number o f t imes
ONCEAPERIOD(C,T) every task i s executed once a

↪→ per iod
REL(C,R) r e s p e c t r e l e a s e time
DEAD(C,R) r e s p e c t dead l ine
OVERRUN(C) prevent overrun
COST;

PREDECESSOR(C,U,T) . . SUM(D$( pred (u , t ) EQ 1 AND ord (d) GE ( ord ( c )−1)
↪→ ∗ per iod ( t )+1 and ord (d) LE ord ( c ) ∗ per iod ( t ) ) , ord (d) ∗x (d , u) −
↪→ ord (d) ∗x (d , t ) ) =L= 0 ;

FIXEDPHASE(F) . . SUM(C$( ord ( c ) EQ phase ( f )+1) , x ( c , f ) ) =E= 1 ;
PHASEALIGN(C,A) . . SUM(D$( ord (d) GE ( ord ( c ) −1)+1 AND ord (d) LE ord ( c
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Anhänge

↪→ ) AND ord (d)+per iod ( a ) LE hypercyc l e ) , x (d , a ) ) =E= SUM(D$( ord (
↪→ d) GE ( ord ( c ) −1)+1 and ord (d) LE ord ( c ) AND ord (d)+per iod ( a )
↪→ LE hypercyc l e ) , x (d+per iod ( a ) , a ) ) ;

OVERALL(T) . . SUM(D, x (d , t ) ) =E= hypercyc l e / per iod ( t ) ;
ONCEAPERIOD(C,T) . . SUM(D$( ord (d) GE ( ord ( c ) −1)∗ per iod ( t )+1 and

↪→ ord (d) LE ord ( c ) ∗ per iod ( t ) ) , x (d , t ) ) =L= 1 ;
REL(C,R) . . SUM(D$( ord (d) GE ( ord ( c ) −1)∗ per iod ( r )+1 and

↪→ ord (d) LE ( ord ( c ) ∗ per iod ( r ) ) and ord (d) LT ( ord ( c ) −1)∗ per iod ( r
↪→ )+1+( r e l e a s e ( r ) −1) ) , X(d , r ) ) =E= 0 ;

DEAD(C,R) . . SUM(D$( ord (d) GE ( ord ( c ) −1)∗ per iod ( r )+1 and
↪→ ord (d) LE ( ord ( c ) ∗ per iod ( r ) ) and ord (d) GE ( ord ( c ) −1)∗ per iod ( r
↪→ )+1+dead l ine ( r ) ) , X(d , r ) ) =E= 0 ;

OVERRUN(C) . . SUM(T, x ( c , t ) ∗w( t ) ) =L= cyctime ;
∗ t h i s overrun equat ion system should only be used f o r the exponent i a l

↪→ co s t func t i on
∗ OVERRUN(C) . . SUM(T, x ( c , t ) ∗w( t ) ) + SUM(T, x ( c , t ) ∗add ( c , t ) ) =L=

↪→ cyctime ;
COST . . Z =E= SUM( (T,C) , ord ( c ) ∗x ( c , t ) ) ;

∗ COST . . Z =E= SUM(C, power [ [SUM(T, x ( c , t ) ∗w( t ) ) ] − [SUM( (T,D) , ( x (d
↪→ , t ) ∗w( t ) ) /Card (C) ) ] , 2 ] ) ;

∗ COST . . Z =E= SUM( (T,C) , x ( c , t ) ∗ pr i o ( t ) ∗ system . exp (( −1) ∗ add ( c , t
↪→ ) ) ) ;

MODEL SCHED /ALL/ ;
SOLVE SCHED USING MIP MINIMIZING Z ;

∗SOLVE SCHED USING MINLP MINIMIZING Z ;
∗SOLVE SCHED USING MIQCP MINIMIZING Z ;

B. ACPLT/OV Modelldateien für die
Referenzimplementierung

Folgende OV-Modelle definieren die Klassen und die Assoziationen des zeitsensitiven hier-
archischen Schedulers (Bibliothek „adaptiveShed“) und der ISSCs (Bibliothek „issc“).

Listing 2: adaptiveShed.ovm
#inc lude " ov . ovm"
#inc lude " fb . ovm"

LIBRARY adaptiveShed
VERSION = "V0 . 1 " ;
AUTHOR = " Sten Gruener " ;
COPYRIGHT = " " ;
COMMENT = " " ;

CLASS c y c l e : CLASS ov/domain
IS_INSTANTIABLE;
VARIABLES

s t a t i c S l a c k : TIME_SPAN HAS_GET_ACCESSOR FLAGS = " o " ;
END_VARIABLES;
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OPERATIONS
END_OPERATIONS;

END_CLASS;

/∗∗ A s t r u c t u r e to hold the contents o f the executed Task ∗/
CLASS task : CLASS ov/domain

IS_INSTANTIABLE;
COMMENT = " Adaptive Task " ;
VARIABLES

pActiveCycle : C_TYPE <OV_INSTPTR_adaptiveShed_cycle>
↪→ FLAGS = " hi " COMMENT = " po in t e r to the a c t i v e
↪→ c y c l e " ;

END_VARIABLES;
OPERATIONS

star tup : C_FUNCTION <OV_FNC_STARTUP>;
cons t ruc to r : C_FUNCTION <OV_FNC_CONSTRUCTOR>;

END_OPERATIONS;
END_CLASS;

/∗∗ A s i n g l e t o n to r ep r e s en t s chedu l e r i n t e r f a c e ∗∗/
CLASS manager : CLASS ov/ ob j e c t

IS_INSTANTIABLE;
COMMENT = " Adaptive Task manager " ;
VARIABLES

act iveTask : STRING HAS_SET_ACCESSOR HAS_GET_ACCESSOR
↪→ FLAGS = " i " COMMENT = " c u r r en t l y executed task " ;

pActiveTask : C_TYPE <OV_INSTPTR_adaptiveShed_task> FLAGS =
↪→ " h i " COMMENT = " po in t e r to the a c t i v e task " ;

a c t i v eTransac t i on : STRING HAS_SET_ACCESSOR
↪→ HAS_GET_ACCESSOR FLAGS = " i " COMMENT = " t r a n s a c t i o n
↪→ to execute " ;

activeTransactionW : TIME_SPAN HAS_SET_ACCESSOR
↪→ HAS_GET_ACCESSOR FLAGS = " i " COMMENT = " guaranteed
↪→ time f o r a t r a n s a c t i o n to execute " ;

pAct iveTransact ion : C_TYPE <OV_INSTPTR_ov_object> FLAGS =
↪→ " h i " COMMENT = " po in t e r to the executed t r a n s a c t i o n
↪→ " ;

nextTask : STRING HAS_SET_ACCESSOR HAS_GET_ACCESSOR FLAGS =
↪→ " i " COMMENT = " task to swt ich to asap " ;

cyctime : TIME_SPAN HAS_SET_ACCESSOR HAS_GET_ACCESSOR FLAGS
↪→ = " i " COMMENT = " c y c l e time " ;

proct ime : TIME HAS_SET_ACCESSOR HAS_GET_ACCESSOR FLAGS = "
↪→ i " COMMENT = " next execut ion time " ;

detachUrTask : BOOL HAS_SET_ACCESSOR HAS_GET_ACCESSOR FLAGS
↪→ = " i " COMMENT = " t r i g g e r to detach UrTask " ;

detachRootCommTask : BOOL HAS_SET_ACCESSOR HAS_GET_ACCESSOR
↪→ FLAGS = " i " COMMENT = " t r i g g e r to detach
↪→ RootCommTask " ;

END_VARIABLES;
OPERATIONS
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Anhänge

con s t ruc to r : C_FUNCTION <OV_FNC_CONSTRUCTOR>;
s ta r tup : C_FUNCTION <OV_FNC_STARTUP>; // r e g i s t e r s the

↪→ execut ion with ov
shutdown : C_FUNCTION <OV_FNC_SHUTDOWN>;
d e s t r u c t o r : C_FUNCTION <OV_FNC_DESTRUCTOR>;

END_OPERATIONS;
END_CLASS;

CLASS s l o t : CLASS ov/domain
IS_INSTANTIABLE;
VARIABLES

executedObject : STRING HAS_SET_ACCESSOR HAS_GET_ACCESSOR
↪→ FLAGS = " i " COMMENT = " ob j e c t to execute e . g . an fb /
↪→ task " ;

pExecutedObject : C_TYPE <OV_INSTPTR_ov_object> FLAGS = " hi
↪→ " COMMENT = " po in t e r to the executed ob j e c t " ;

w: TIME_SPAN HAS_ACCESSORS FLAGS = " i " ;
r e lStartTime : TIME_SPAN HAS_ACCESSORS FLAGS = " i " ;
relEndTime : TIME_SPAN HAS_ACCESSORS FLAGS = " i " ;
f l e x i b l e : BOOL HAS_ACCESSORS FLAGS = " i " INITIALVALUE=TRUE

↪→ ;
END_VARIABLES;
OPERATIONS

star tup : C_FUNCTION <OV_FNC_STARTUP>;
END_OPERATIONS;

END_CLASS;

CLASS func t i onb l o ck : CLASS fb / func t i onb l o ck
OPERATIONS

timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>
↪→ IS_ABSTRACT;

timedExecute : C_FUNCTION <AS_FNC_TIMEDEXECUTE>;
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

CLASS func t i oncha r t : CLASS adaptiveShed / func t i onb l o ck
IS_INSTANTIABLE;
FLAGS = " i " ;
COMMENT = " func t i on chart " ;
PARTS

in ta sk : CLASS fb / task ;
END_PARTS;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;
getpor t : C_FUNCTION <FB_FNC_GETPORT>;
s e t p o r t : C_FUNCTION <FB_FNC_SETPORT>;

END_OPERATIONS;
END_CLASS;
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CLASS demoFb : CLASS adaptiveShed / func t i onb l o ck
IS_INSTANTIABLE;
VARIABLES
END_VARIABLES;
OPERATIONS

timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

ASSOCIATION v a r i a b l e s : ONE_TO_MANY
PARENT timedfunchart : CLASS adaptiveShed / func t i oncha r t ;
CHILD port s : CLASS fb / port ;

END_ASSOCIATION;
END_LIBRARY;

Listing 3: adaptiveShed.ovf
#i f n d e f adaptiveShed_OVF_INCLUDED
#d e f i n e adaptiveShed_OVF_INCLUDED

typede f OV_DLLFNCEXPORT void AS_FNC_TIMEDTYPEMETHOD(
OV_INSTPTR_adaptiveShed_functionblock pfb ,
OV_TIME ∗ pl tc ,
OV_TIME_SPAN dCurr

) ;

typede f OV_DLLFNCEXPORT void AS_FNC_TIMEDEXECUTE(
OV_INSTPTR_adaptiveShed_functionblock pfb ,
OV_TIME ∗ pl tc ,
OV_TIME_SPAN dCurr

) ;

#e n d i f

Listing 4: issc.ovm
#inc lude " ov . ovm"
#inc lude " adaptiveShed . ovm"
#inc lude " ksbase . ovm"

LIBRARY i s s c
VERSION = "V0 . 1 " ;
AUTHOR = " Sten Gruener " ;
COPYRIGHT = " " ;
COMMENT = " " ;

CLASS incyc l eSequen t i a l S ta t eChar t : CLASS adaptiveShed /
↪→ f unc t i oncha r t

IS_INSTANTIABLE;
PARTS
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Anhänge

transConds : CLASS ov/domain ;
taskAct iveStep : CLASS fb / task ; // only the a c t i v e s tep

↪→ i s l i nked here
END_PARTS;

OPERATIONS
cons t ruc to r : C_FUNCTION <OV_FNC_CONSTRUCTOR>;

timedTypemethod : C_FUNCTION <
↪→ AS_FNC_TIMEDTYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

CLASS abs t rac tStep : CLASS adaptiveShed / func t i onb l o ck
COMMENT = " abs t rac tStep " ;
VARIABLES
END_VARIABLES;
PARTS

entry : CLASS fb / task ;
END_PARTS;
OPERATIONS

cons t ruc to r : C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

CLASS step : CLASS i s s c / abs t rac tStep
IS_INSTANTIABLE;
COMMENT = " step " ;
VARIABLES

i n t e r n a l R o l e : UINT HAS_GET_ACCESSOR IS_DERIVED FLAGS = "n"
↪→ COMMENT = " i n t e r n a l r o l e (0 s ta r t , 1 normal , 999 end )
↪→ " ;

END_VARIABLES;
OPERATIONS
END_OPERATIONS;

END_CLASS;

CLASS tGe : CLASS adaptiveShed / func t i onb l o ck
IS_INSTANTIABLE;
COMMENT = " Returns t rue i f f the remaining execut ion time i s

↪→ g r e a t e r or equal to the quer i ed one " ;
VARIABLES

query : TIME_SPAN HAS_ACCESSORS FLAGS = " i " ;
r e s u l t : BOOL HAS_ACCESSORS FLAGS = " o " ;

END_VARIABLES;
OPERATIONS

cons t ruc to r : C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;

END_OPERATIONS;
END_CLASS;
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CLASS breakpoint : CLASS i s s c / abs t rac tStep
IS_INSTANTIABLE;
COMMENT = " breakpo int " ;
VARIABLES
END_VARIABLES;
OPERATIONS
END_OPERATIONS;

END_CLASS;

CLASS h i s to ryBreakpo int : CLASS i s s c / breakpoint
IS_INSTANTIABLE;
COMMENT = " h i s t o r y breakpo int " ;
VARIABLES
END_VARIABLES;
OPERATIONS
END_OPERATIONS;

END_CLASS;

CLASS t r a n s i t i o n : CLASS adaptiveShed / func t i onb l o ck
IS_INSTANTIABLE;
COMMENT = " t r a n s i t i o n " ;
VARIABLES

r e s u l t : BOOL FLAGS = " i " COMMENT = "The r e s u l t o f the
↪→ executed t r a n s i t i o n " ;

v i sua l l ayoutPrev : STRING FLAGS = "p" COMMENT = " v i s u a l
↪→ l ayout in format ion f o r HMI" ;

v i sua l l ayoutNext : STRING FLAGS = "p" COMMENT = " v i s u a l
↪→ l ayout in format ion f o r HMI" ;

END_VARIABLES;
OPERATIONS

cons t ruc to r : C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

CLASS act ionBlock : CLASS adaptiveShed / func t i onb l o ck
COMMENT = " ac t i on block " ;
VARIABLES

w : TIME_SPAN HAS_ACCESSORS FLAGS = "p"
↪→ COMMENT = "WCET of the ac t i on " ;

END_VARIABLES;
OPERATIONS

cons t ruc to r : C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

CLASS s e t Va r i a b l e : CLASS i s s c / act ionBlock
IS_INSTANTIABLE;
COMMENT = " ac t i on block f o r s e t v a r i a b l e ac t i on " ;
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Anhänge

VARIABLES
v a r i a b l e : STRING HAS_SET_ACCESSOR FLAGS = "p"

↪→ COMMENT = "The v a r i a b l e name ( r e l a t i v e to the
↪→ ISSC or abso lu t e path ) " ;

va lue : ANY HAS_SET_ACCESSOR FLAGS
↪→ = " i " COMMENT = "The value to be s e t " ;

END_VARIABLES;
OPERATIONS

timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

CLASS execute : CLASS i s s c / act ionBlock
IS_INSTANTIABLE;
COMMENT = " ac t i on block execut ing a func t i on block " ;
VARIABLES

executedObject : STRING HAS_SET_ACCESSOR FLAGS = "p" COMMENT
↪→ = "The ob j e c t name ( r e l a t i v e to the ISSC or abso lu t e
↪→ path ) " ;

pExecutedObject : C_TYPE <OV_INSTPTR_ov_object> FLAGS = " hi "
↪→ COMMENT = " po in t e r to the executed ob j e c t " ;

END_VARIABLES;
OPERATIONS

timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;
s ta r tup : C_FUNCTION <OV_FNC_STARTUP>;

END_OPERATIONS;
END_CLASS;

CLASS executeTg : CLASS i s s c / act ionBlock
IS_INSTANTIABLE;
COMMENT = " ac t i on block execut ing a time guard " ;
VARIABLES

executedObject : STRING HAS_SET_ACCESSOR FLAGS = "p"
↪→ COMMENT = "The ob j e c t name ( r e l a t i v e to the ISSC or
↪→ abso lu t e path ) " ;

pExecutedObject : C_TYPE <OV_INSTPTR_ov_object> FLAGS = " hi "
↪→ COMMENT = " po in t e r to the executed ob j e c t " ;

END_VARIABLES;
OPERATIONS

timedTypemethod : C_FUNCTION <AS_FNC_TIMEDTYPEMETHOD>;
s ta r tup : C_FUNCTION <OV_FNC_STARTUP>;

END_OPERATIONS;
END_CLASS;

/∗ Connections from s t ep s to next t r a n s i t i o n s . ∗/
ASSOCIATION nextTrans i t i on s : ONE_TO_MANY

IS_LOCAL;
PARENT prevStep : CLASS i s s c / abs t rac tStep ;
CHILD nextTrans : CLASS i s s c / t r a n s i t i o n ;

END_ASSOCIATION;
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/∗ Connections from t r a n s i t i o n s to next s t ep s . ∗/
ASSOCIATION p re v i o u s T r a n s i t i o n s : ONE_TO_MANY

IS_LOCAL;
PARENT nextStep : CLASS i s s c / abst rac tStep ;
CHILD prevTrans : CLASS i s s c / t r a n s i t i o n ;

END_ASSOCIATION;
END_LIBRARY;
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