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Kurzfassung

Die aktuellen Entwicklungen der Prozessleittechnik und der Automatisierungstechnik, die
unter den Oberbegriffen ,Industrie 4.0“ und ,,Cyber-Physical Production Systems® sub-
sumiert werden, fordern die Verlagerung bzw. die Bereitstellung zusétzlicher Funktionen
auf die Prozessleitebene der Automatisierungspyramide. Diese Funktionen umfassen bei-
spielsweise Self-X Funktionalitdten wie Selbstoptimierung und Selbstdiagnose einzelner
Komponenten sowie die Bereitstellung zusétzlicher nicht-echtzeitrelevanter Daten wie die
Beschreibung der Fahigkeiten und Merkmale des Systems. Diese zusétzlichen Funktionen
machen den Unterschied zwischen herkdmmlichen Systemen und smarten Industrie 4.0-
Systemen aus.

Die Bereitstellung der zusétzlichen Funktionalitét erfordert iiberplanméfige Rechen- und
Kommunikationsressourcen, was insbesondere im Hinblick auf die echtzeitkritischen Lauf-
zeitumgebungen nichttrivial ist. Zum einen werden die verfiigharen Ressourcen einzelner
Systeme bereits vollstédndig genutzt bzw. reserviert, zum anderen konnten die Betreiber
den Aufwand der notwendigen Rekonfiguration des Systems unter anderem aus Grinden
der langen Betreibs- und Lebenszyklen der Systeme scheuen.

Die Laufzeitsysteme der Prozessleitebene werden in den meisten Féllen in einem kon-
stanten Zyklus betrieben, der dem zu kontrollierenden physischen System angepasst ist. Da
die Ausfithrungszeit der anwenderspezifischen Logik gewissen Fluktuationen sowie Uber-
abschétzungen in Bezug auf die maximale Laufzeit unterliegt, variiert die tatsachliche
Ausfithrungszeit innerhalb des Zyklus. Die tiberschiissige Zeit, Slackzeit genannt, bleibt
wegen der festen Zykluszeit haufig ungenutzt.

Die dynamische Anpassung der benétigten (Rechen-)Ressourcen ist eine Dimension der
Flexibilitat leittechnischer Anwendungen, die in der Doméne der Automatisierungstechnik
bislang unbeachtet blieb. In den Bereichen der Echtzeitsysteme und des Schedulings exi-
stieren dagegen bereits Konzepte, die den Ausgangspunkt fiir diese Arbeit darstellen. Die
Analyse dieser Ansétze, unter Berticksichtigung der aufgestellten spezifischen Anforderun-
gen der Leittechnik, bildet die Grundlage dieser Dissertation.

Die Zielsetzung dieser Arbeit ist ein Rahmenwerk fiir die nahtlose Integration von res-
sourcenadaptiven Anwendungen in die zyklischen Laufzeitsysteme. Diese Anwendungsklas-
se kann fir die Bereitstellung der zusitzlichen Funktionalitit wihrend der Slackzeit ge-
nutzt werden, ohne die Echtzeitanforderungen und den Funktionsumfang der existierenden
Kernanwendung einzuschranken.

Ein Beitrag der Arbeit ist eine Softwarearchitektur, die die Koexistenz unterschiedli-
cher Ausfithrungsparadigmen innerhalb eines Laufzeitsystems ermdoglicht. Die Paradigmen
umfassen die tasklistengesteuerte Ausfiihrung nach IEC 61131-3, die ereignisgesteuerte
Ausfithrung nach IEC 61499 sowie die Einbettung weiterer Ausfithrungsvorschriften, wie
z.B. der eingefithrten ressourcenadaptiven Ausfithrung. Dieses ist durch die konsequente
Kapselung der Daten und der Ausfithrungsvorschrift innerhalb der Komponenten sowie des
Prinzips des hierarchischen Schedulings méglich.
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Kurzfassung

Eine mogliche Ausfihrungsvorschrift wird durch das zusétzlich eingefithrte Meta-Modell
zur Beschreibung der Ausfiihrungszeitsensitivitéit fiir Funktionsbaustein-Anwendungen in-
nerhalb des Laufzeitsystems definiert. Dazu wird die Semantik der Prozedurbeschreibungs-
sprache Sequential State Chart angepasst, um die Auswertung des Charts innerhalb eines
Zyklus des Laufzeitsystems zu ermoglichen. Die Syntax der Sprache ist den meisten Nut-
zern bekannt, was positiv zu der Akzeptanz der Sprache beitrigt. Die Semantik der Pro-
zedur wird formal mithilfe des UPPAAL-Toolkits modelliert, das neben der Eindeutigkeit
auch zusatzliche Moglichkeiten fir das Engineering, wie z. B. die formale Validierung und
Simulation, erdffnet.

Anschliefend wird eine Referenzarchitektur fiir den systemweiten Komponentenschedu-
ler vorgestellt, der die Uberwachung und die dynamische Zuteilung der Slackzeit an die
einzelnen ressourcenadaptiven Komponenten sicherstellt. Fiir diesen Zweck wird eine Kom-
bination aus offline und online Scheduling verwendet. Die Berechnung des offline Schedules
beinhaltet das Losen eines NP-harten Problems, das mithilfe eines gemischt-ganzzahligen
linearen Programms und eines passenden Solvers aufgestellt bzw. gelost wird. Die Kombi-
nation aus einem offline und online Verfahren erméglicht die Ausfithrung der ressourcena-
daptiven Anwendungen sowie weitere Moglichkeiten der Flexibilisierung des Schedulings,
wie z. B. die Moglichkeit des dynamischen Austauschs des Schedules zur Laufzeit bei gleich-
zeitiger Sicherstellung der Echtzeitschranken.

Das eingefithrte Rahmenwerk inklusive einer Engineering-Umgebung wurde als Erwei-
terung der quelloffenen Laufzeitumgebung ACPLT/RTE prototypisch implementiert. Der
Mehrwert der ressourcenadaptiven Anwendungen fiir die Prozessleittechnik wird an meh-
reren Use-Cases demonstriert. Dazu zéhlen Anwendungen mit und ohne Zugriff in den
operativen Betrieb des Laufzeitsystems. Zu der ersten Kategorie gehoren die prozessbe-
gleitende Simulation mit variabler Simulationsgenauigkeit und die mehrstufige Messwert-
validierung. In die zweite Kategorie fallen die nicht-echtzeitfihige Kommunikation mittels
OPC UA und die Transaktionskontrolle fiir regelbasiertes Engineering im Rahmen der
Automatisierung der Automatisierung.
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Abstract

Resource-Aware Applications for Operative Process Control Engineering

Current developments in process control engineering and industrial automation that can
be subsumed under the umbrella terms “Industrie 4.0” and “Cyber-Physical Production
Systems”, require the provision of additional functionalities to the process control layer
of the automatization pyramid. These functionalities include, for example, Self-X functio-
nalities like self-optimization and self-diagnosis of single automation components as well
as the provision of additional non real-time information like the description of system ca-
pabilities and attributes. These additional functionalities make all the difference between
conventional and smart Industrie 4.0 production systems.

The deployment of these additional services requires supplementary computation- and
communication-resources. Providing these resources is non-trivial due to the hard real-time
requirements of industrial runtime environments. On one hand, the available resources may
already be completely utilized or reserved. On the other hand, operators may shy away
from the required costs of the system reconfiguration due to the long service- and life-cycles
of the utilized equipment.

Industrial runtime systems are usually operated with a fixed cycle time that is fitted to
the controlled physical system. The effectively utilized processing time of the whole system
varies due to fluctuations in the actual execution times of the application-specific control
logic as well as overestimations of its worst-case execution time. The unused processing
time at the end of a cycle, the so called slack time, is usually not utilized by current runtime
environments.

A dynamic adaptation of required (computational) resources is a dimension of flexi-
bility of industrial automation applications that has not been focused upon in process
control engineering research. However, some approaches for resource-awareness of appli-
cations exist in the research communities of real-time systems and scheduling theory. A
review of these approaches constitutes a starting point for this dissertation. The analysis of
the available approaches and frameworks has to be performed under the aspects of derived
domain-specific functional and non-functional requirements.

The goal of this work is to develop a framework for a seamless integration of resource-
aware applications into cyclic runtime environments. This class of industrial automation
applications can be used for the provision of additional functionality during the slack time
which per definition cannot violate the real-time requirements and the functionality of the
existing runtime’s core-application.

A first contribution of this work is a software architecture which allows the coexistence
of different execution control paradigms within one runtime environment. These paradigms
comprise a task list-based execution according to IEC 61131-3, an event-based execution
of IEC 61499 as well as embedding further execution control rules such as the introdu-
ced resource-aware execution mechanisms. This embedment is possible due to a rigorous
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encapsulation of dataflow and execution control flows within a program organization unit
and the utilization of mechanisms of hierarchical scheduling.

One possibility of realizing the resource-aware execution control is represented by the
introduced meta-model for describing the execution-time sensitivity of function block ap-
plications inside the runtime environment. The meta-model is built upon a procedure
description language called Sequential State Chars of which the semantics are adopted so
that they can be evaluated during the cycle of the runtime system. The syntax of the lan-
guage is familiar to most users in the industrial automation domain thus allowing a higher
acceptance of the introduced framework. The semantics of the procedure description lan-
guage is formalized by using a transformation to timed automata of the UPPAAL-toolkit.
This transformation not only allows an unambiguous semantics of the introduced meta-
model, but also adds additional possibilities for the engineering, e.g. formal validation and
simulation of modelled procedures.

Subsequently, a reference architecture for a resource-aware system level component sche-
duler is introduced. This architecture allows the monitoring and dynamic assignment of
slack time to single resource-aware components at runtime. The presented scheduler uses
a combination of offline and online scheduling. The computation of an offline scheduling
table requires solving an NP-hard problem. This task is accomplished by modelling the
scheduling problem as a mixed-integer program and solving it with available solvers. The
combination of offline and online scheduling techniques not only allows the execution of
resource-aware applications, but also the use of additional features like the dynamic ex-
change of offline scheduling tables at runtime and the execution of sporadic tasks.

The introduced resource-aware framework and the appendant engineering environment
were prototypically implemented as an extension of an open source industrial runtime
environment ACPLT/RTE. The additional value of resource-aware applications is demon-
strated in different use cases with and without operative process intervention. The first
category includes the process accompanying simulation with variable simulation precision
and multistage validation of measured values. The second category contains non real-time
communication with OPC UA and transaction control that is used for rule based enginee-
ring systems in the domain of automation of automation.

XIII

216.73.216.36, am 20.01.2026, 08:59:54. © Inhal.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186257086

216.73.216.36, am 20.01.2026, 08:59:54. ©
m mit, fr oder In KI-

tr



https://doi.org/10.51202/9783186257086

1. Einleitung

1.1. Motivation

Die wihrend der letzten Jahre zu beobachtenden Tendenzen in der Automatisierungs-
technik fordern die Ausweitung der Aufgabengebiete der eingesetzten Systeme und deren
Komponenten. Die Systeme sollen damit neben deren eigentlichen Kernfunktionen zuséatz-
liche Funktionalitdt beinhalten, um beispielsweise die vertikale und horizontale Integration
zu erleichtern bzw. zu ermoglichen.

Von diesen Entwicklungen sind alle Ebenen der Automatisierungspyramide betroffen.
Beispielsweise werden Feldgeréte zu ,intelligenten Feldgerdten® weiterentwickelt, die eine
Parametrierung bzw. Integration in ein Leitsystem ohne zusatzliche Programmierschnitt-
stellen ermoglichen. Auf der Prozessleitebene werden immer mehr Laufzeitsysteme mit
nicht-echtzeitfahigen Kommunikationsschnittellen ausgestattet, die iiber hybride Feldbus-
systeme realisiert sind. Diese Schnittstellen ermoglichen den Austausch von Meta-Daten
neben dem operativen Betrieb. Glucklicherweise sind die Kommunikationsprotokolle fiir
einen modellbasierten Zugriff auf solche Daten, wie z. B. Open Platform Communications
Unified Architecture (OPC UA) [IEC10], rechtzeitig standardisiert worden und erreichen
eine zunehmende Durchdringung des Marktes fiir die Automatisierungslosungen.

Die Aggregation und die Repriasentanz zusétzlicher Daten und Funktionen ist in dem
kiirzlich spezifizierten Referenzarchitekturmodell Industrie 4.0 [DIN16] als ,Verwaltungs-
schale® vorgestellt worden. Laut diesem Modell stellt die Schale die Laufzeitdaten, die da-
zugehorigen Informationen und die Dienste des Komponenten-Managers fiir jedes Industrie
4.0-Asset bereit. Die Spezifikation schreibt keine feste Verortung der Verwaltungsschale vor.
So konnen die Schalen eines Assets theoretisch auf einem beliebigen oder sogar verteilten
IT-System ausgefiithrt werden. Nichtsdestotrotz ist die Verortung der Funktionalitét der
Verwaltungsschale oder deren Teile auf dem Asset-Hardwaresystem ein naheliegender und
wegen des Zugriffes auf die Laufzeitinformationen oft unabdingbarer Weg.

Weitere besonders hervorzuhebende Kategorien der zusétzlichen Funktionalitdt sind zum
einen die sogenannten Self-X Funktionen, wie Selbstkonfiguration oder Selbstoptimierung,
die haufig zwingend auf dem Zielsystem ausgefithrt werden miissen. Zum anderen sind
Software-Agentensysteme zu erwéhnen, die wegen der Voraussetzung der Mobilitat einzel-
ner Agenten einen ,Lebensraum® auf dem ausfithrenden System bendtigen.

Zusammenfassend lasst sich sagen: Ressourcen fiir zusatzliche Funktionalitdt werden
dringend benotigt. Dieses gilt insbesondere fiir die Laufzeitsysteme auf der Prozessleitebene
der Automatisierungspyramide.

Auf den ersten Blick erscheint die Bereitstellung zusétzlicher Ressourcen (insbesonde-
re der Rechenzeit) auf der Prozessleitebene problematisch. Das liegt vor allem an den
harten Echtzeitanforderungen an die Laufzeitsysteme. Diese werden hiufig aus Griinden
der gleichméfiigen Abtastung in einem festen Zyklus betrieben, dabei wird die verfiighare
Rechenzeit oft bereits vollstandig genutzt bzw. reserviert. Die faktische Ausfithrungszeit
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1. Einleitung

der Logik kann jedoch aus mehreren, weiter unten aufgefiihrten, Griinden Fluktuationen
unterliegen. Wegen der festen Zykluszeit kann die, aufgrund dieser Fluktuationen eventu-
ell verfiighare, Zeit nicht fiir prozessrelevante Berechnungen genutzt werden. Somit sind
Szenarien moglich, in denen die verfiighare Rechenkapazitét des Laufzeitsystems am Ende
eines Zyklus ungenutzt bleibt. Diese ungenutzte Zeit wird in dieser Arbeit als Slackzeit
bezeichnet und ist insbesondere fiir die Ausfithrung zusétzlicher, nicht-echtzeitkritischer
Funktionalitit vielversprechend.

Im Folgenden werden Griinde fiir die Entstehung der Slackzeit als Folge der Schwankung
bzw. der Uberschitzung der Ausfithrungszeit der Logik aufgezihlt:

o Uberabschiitzungen: Worst Case Execution Time (WCET)-Analyse liefert eine
obere Schranke fiir die Laufzeit eines Programms. Diese Schranke kann bei analyti-
scher Abschétzung tiber der tatsichlich beobachtbaren maximalen Laufzeit liegen.

e Summierung der Uberabschitzungen: Falls die WCET-Abschitzungen fiir die
einzelnen Komponenten eines Programms vorliegen (z.B. fiir jeden Funktionsbau-
stein), so wird im einfachsten Fall die WCET des gesamten Programms durch eine
einfache Addition der einzelnen WCET berechnet. Diese Abschétzung lasst jedoch
die Abhéngigkeiten einzelner Komponenten voneinander aufler Betracht.

e Fluktuationen durch unterschiedliche Ausfiithrungspfade: Einfache Standard-
bausteine der IEC 61131-3, wie z. B. Additions- oder Logik-Bausteine, schwanken
kaum in ihrer Ausfithrungszeit. Die Ausfiihrungszeit komplexerer Funktionsbaustei-
ne, die vor allem in imperativen Programmiersprachen wie strukturierter Text oder
C implementiert sind, unterliegt Schwankungen, die durch unterschiedliche Ausfiih-
rungspfade einzelner Programme bedingt sind.

Als Beispiel gilt ein PID-Regler: auch wenn die Bestandteile des Reglers, z. B. ein
P-Glied, als einfachste Blocke erscheinen, so miissen bei einer tatsichlichen Imple-
mentierung viele Randfélle betrachtet werden. Dieses erzeugt Verzweigungen im Aus-
fithrungspfad. Tatsachlich beinhaltet die Implementierung eines PID-Reglers in der
VDI/VDE 3696 (Bausteinklasse ,C*) [VDI95] als strukturierter Text mehr als ein
dutzend Verzweigungen des Programmablaufs.

e Optimierung der Ausfiihrung: In den einzelnen Laufzeitumgebungen sind Opti-
mierungsansitze zu finden, die iiber die Spezifikation der IEC 61131-3 hinausgehen.
Beispielweise existiert in dem Funktionsbausteinsystem des ACPLT /RTE Laufzeitsy-
stems eine Moglichkeit die Bausteine nur bei Anderung ihrer Einginge auszufiihren.
Solche Optimierungen sorgen gerade in den stationdren Phasen das Prozesses fiir eine
relativ niedrige Auslastung des Laufzeitsystems.

e Diskretisierung der Systemauslastung: Zusétzlich zu der Kontrolllogik in der
Funktionsbausteinsprache kann in einer Laufzeitumgebung auch prozedurale Logik
enthalten sein. Fiir die Beschreibung der Prozeduren wird die Ablaufsprache der IEC
61131-3 oder eine Statechart-basierte Sprache verwendet. Da einzelne Zustande der
Prozedur unterschiedlichste unterlagerte Logik aktivieren bzw. deaktivieren kénnen,
fithren diese Ablaufe zur diskreten Verdanderung der Systemauslastung.

Die diskreten Spriinge der Auslastung werden von den ereignisorientierten Ablaufen
verstarkt und tragen zu den dynamischen Lastschwankungen bei. In der IEC 61131-3
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Abbildung 1.1.: Laufzeiten der Kontrolllogik eines Moduls der modularen Anlage M4P.AC
inklusive der maximalen und der minimalen Laufzeit des langeren Zyklustyps (gerade Zyklen)
innerhalb der kompletten Messreihe.

werden nicht-zyklisch aktivierbare Bausteine erwahnt, die on-demand als Reaktion
auf einen physikalischen Eingang ausgefiihrt werden kénnen.

e Seltenheit der worst-case Ereignisse: Falls die WCET sich auf ein seltenes Er-
eignis des physischen Systems, z. B. auf eine Notsituation, bezieht, lasst sich diese
Laufzeit aus Griinden der sicherheitsgerichteten Auslegung der Produktionssysteme
praktisch niemals beobachten.

Die Fluktuationen der Ausfithrungszeit lassen sich empirisch belegen. In Abbildung 1.1
ist die Dauer der Ausfithrung einer leittechnischen Anwendung in einem der Module der
modularen Anlage M4P.AC aufgezeichnet. Das Modul fithrt wahrend der Aufzeichnung ein
einfaches Rezept aus. Das Laufzeitsystem wird dabei von einem Echtzeitbetriebssystem
ausgefithrt. Es sind zwei Typen von Zyklen erkennbar, die unterschiedliche Laufzeiten
aufweisen. Der erste Typ wird in den ungeraden Zyklen der Abbildung dargestellt und
terminiert stets innerhalb von 1 ms. Der zweite Typ, der in geraden Zyklen der Abbildung
dargestellt ist, weist eine Laufzeit zwischen ca. 4 und 6 ms auf. Diese Laufzeit unterliegt
etwas groferen Schwankungen: innerhalb von ca. 18000 aufgezeichneten Zyklen betrug das
gemessene Maximum des zweiten Typs ca. 6 ms. Das Minimum hingegen betrug ca. 4 ms.
Somit konnten Fluktuationen bis zu 33 % der maximal gemessenen Laufzeit der Logik
festgestellt werden.

Die Laufzeitumgebungen verfiigen somit tiber eine Rechenkapazitit, die hiufig aber nicht
garantiert in jedem Zyklus zur Verfiigung steht. Diese Kapazitat eignet sich zum einen fiir
die Funktionalitit, die keinen Echtzeitanforderungen unterliegt. Zum anderen sind auch
optional auszufithrenden Zusatzfunktionen der Echtzeit-Logik denkbar, deren Ausfithrung
nur in Zyklen mit der ausreichend grofler Slackzeit stattfinden darf.
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1.2. Zielsetzung

Das Ziel der Arbeit ist die Definition eines neuen Konzepts zur Flexibilisierung des Lauf-
zeitverhaltens der leittechnischen Anwendungen, das eine sichere und effektive Nutzung
der Slackzeit der Laufzeitsysteme ermdéglicht. Anwendungen mit flexiblem Laufzeitverhal-
ten werden in dieser Dissertation als ressourcenadaptiv bezeichnet.

Die Recherche tiber die existierenden Konzepte fiir ressourcenadaptive Systeme aus der
Informatik bildet den Ausgangspunkt dieser Arbeit. Die Herausforderung besteht darin,
die geeigneten Konzepte und Tools aus den unterschiedlichsten Bereichen der Informatik
und der Mathematik, z. B. aus den Bereichen des Software-Engineerings, der Scheduling
Theorie, der Optimierung und der formalen Verifikation, zu identifizieren und zu einem
an die Randbedingungen der Leittechnik angepassten und realisierbaren Gesamtpaket zu
kombinieren. Diese Randbedingungen umfassen nicht nur die notwendigen implementie-
rungstechnischen und konzeptionellen Mafinahmen fiir die Umsetzung der funktionalen
Anforderungen, sondern auch insbesondere die Analyse der doménenspezifischen nicht-
funktionalen Anforderungen. Im Bereich der nicht-funktionalen Anforderungen spielen vor
allem die minimalen Migrationsaufwénde und die Akzeptanz der Nutzer eine besondere
Rolle.

Als Ergebnis soll ein Rahmenwerk entstehen, das eine nahtlose Integration von ressour-
cenadaptiven Konzepten in zyklische, an die IEC 61131-3 angelehnte, Laufzeitumgebun-
gen der Prozessleittechnik ermoglicht. Der Begriff Rahmenwerk suggeriert ein Gertist aus
mehreren Bestandteilen, die die Definition, die Einbettung und das Ausfithren ressourcen-
adaptiver Anwendungen im operativen Kontext ermoglichen.

Fir die Integration von ressourcenadaptiven Anwendungen werden folgende Bestandteile
bzw. Konzepte benétigt, die das Rahmenwerk zwingend enthalten soll:

e Fine Softwarearchitektur des Laufzeitsystems, die die Koexistenz zwischen den exi-
stierenden und ressourcenadaptiven Anwendungen innerhalb einer Laufzeitumgebung
ermoglicht.

e Eine doméanenspezifische Sprache fiir die Beschreibung des ressourcenadaptiven Ver-
haltens von Anwendungen. Da Funktionsbausteinnetzwerke speziell in der Doméne
der Automatisierungstechnik stark verbreitet sind, soll die zu erstellende Sprache ins-
besondere die Ausfithrung solcher Netzwerke steuern konnen. Die eingefiihrte Sprache
soll moglichst stark an die etablierten Prozedurbeschreibungssprachen der Automa-
tisierungstechnik angelehnt werden, um eine maximale Akzeptanz bei den Nutzern
zu erreichen.

e Ein Scheduling-Modell, das die Ausfithrung einzelner Anwendungskomponenten zur
Laufzeit iiberwachen und die Slackzeit an die adaptiven Anwendungen dynamisch
zuteilen kann. Das Modell soll mit den existierenden zyklischen Laufzeitumgebungen
kompatibel sein.

Die Umsetzbarkeit und die Anwendbarkeit des Rahmenwerks soll anhand einer proto-
typischen Implementierung und Einbettung des Rahmenwerks in ein existierendes Lauf-
zeitsystem bestétigt werden. Dieser Prototyp soll auf industrieller Hardware und anhand
synthetischer Tests sowie unterschiedlicher Anwendungsszenarien aus dem Umfeld der Pro-
zessleittechnik evaluiert werden.
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1.3. Aufbau der Arbeit

Der Rest dieser Dissertation ist wie folgt aufgebaut:

e Kapitel 2 beleuchtet die fiir diese Arbeit relevanten Grundlagen. Dazu gehort ei-
ne Vorstellung der Aufgaben der Automatisierungs- und der Prozessleittechnik, eine
Ubersicht iiber die unterschiedlichen Verfahren fiir das Scheduling von Echtzeitsyste-
men sowie eine kurze Einfiihrung in Timed Automata und die gemischt-ganzzahlige
Optimierung. AnschlieBend werden die Begriffe aus dem Umfeld der Laufzeitsysteme
und deren Softwarearchitekturen nach IEC 61131-3 und IEC 61499 eingefiihrt.

e Kapitel 3 stellt den Stand der Wissenschaft und Technik auf dem Gebiet der Flexi-
bilisierung leittechnischer Anwendungen zusammen. Neben den eigenen Vorarbeiten
stehen dabei die aktuellen Arbeiten zu Themen der losen Kopplung der Systeme
durch Serviceorientierung, die Agentensysteme, die modellgetriebenen Ansétze und
die Ansitze zur Laufzeit-Rekonfiguration der Laufzeitsysteme im Mittelpunkt. Ab-
geschlossen wird das Kapitel mit einer Gegeniiberstellung ausgewéhlter Laufzeitsy-
steme und Sprachen fiir die Prozedurbeschreibung. Die Untersuchungen zum Stand
der Technik zeigen eine Forschungsliicke beztiglich der adaptiven Ausfithrungszeit der
leittechnischen Anwendungen auf.

e In Kapitel 4 werden funktionale und nicht-funktionale Anforderungen an das zu
erstellende Rahmenwerk aufgestellt, die aus den doménenspezifischen Anforderungen
der Leittechnik abgeleitet werden.

e Kapitel 5 analysiert vielversprechende Kandidaten fiir das Schlieflen der aufgezeig-
ten Forschungsliicke aus dem Bereich der Informatik unter den Gesichtspunkten der
aufgestellten funktionalen und nicht-funktionalen Anforderungen.

e Kapitel 6 beschreibt das entwickelte Rahmenwerk als den Hauptbeitrag dieser Arbeit:

— Abschnitt 6.1 stellt eine Softwarearchitektur vor, die die gemeinsame Verwal-
tung der Logik und deren Ausfithrungsvorschrift innerhalb einzelner Kompo-
nenten vorschreibt. Damit wird eine Kapslung erreicht, die die Grundlage fir
die Integration weiterer Typen der Ausfithrungssteuerung schafft. Als Beispiel
dient die Koexistenz von IEC 61131-3 und IEC 61499 Anwendungen.

— In Abschnitt 6.2 wird ein Meta-Modell firr die Beschreibung des ressourcen-
adaptiven Verhaltens vorgestellt, das an eine bekannte Prozedurbeschreibungs-
sprache angelehnt ist. Die Semantik des Modells wird formal durch eine Uber-
fithrung auf Automatennetzwerke des UPPAAL-Toolkits beschrieben.

— In Abschnitt 6.3 wird ein Referenzmodell eines Schedulers fiir ressourcenadap-
tive Anwendungen vorgestellt. Dieser nutzt eine Kombination aus offline und
online Scheduling-Verfahren. Das offline Problem wird mithilfe der Methoden
der gemischt-ganzzahligen Optimierung aufgestellt und gelost.

o Kapitel 7 stellt die prototypische Implementierung des Rahmenwerks vor. Das Rah-
menwerk wird anhand von vier Use-Cases mit und ohne Prozesseingriff validiert.

e Kapitel 8 schliefit die Arbeit mit einer Diskussion der erzielten Ergebnisse und einem
Ausblick ab.
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In diesem Kapitel werden die benotigten Grundlagen vorgestellt. Die Zielsetzung der Dar-
stellung ist somit eine moglichst kompakte und konsistente Definition der verwendeten
Begriffe und Zusammenhénge. Fiir eine umfassende Einfiihrung in die angesprochenen
Themengebiete wird auf die zitierten Quellen verwiesen.

2.1. Aligemeine Grundlagen

2.1.1. Automatisierungstechnik und Prozessleittechnik

Der Begriff ,,Automatisierung® bezeichnet laut [LG99] den Prozess ,Maschinen, Gerite
oder technische Anlagen mit Hilfe von elektrischen, mechanischen, pneumatischen oder
hydraulischen Einrichtungen in die Lage zu versetzen, mehr oder weniger selbsttatig zu
arbeiten®. Je nach der zu automatisierenden Anlage wird der Begriff der Automatisierung
weiter spezialisiert.

Im Bereich der industriellen Produktion haben sich historisch zwei weitgehend getrenn-
te Doménen herauskristallisiert [MBS*11]: die diskrete Fertigung und die Prozesstech-
nik. Die daraus abgeleiteten spezialisierten Unterdisziplinen der Automatisierung heifien
Fertigungsautomatisierung bzw. Prozessautomatisierung. Neben den historisch gepréigten
Unterschieden der beiden Disziplinen, wie z. B. den Normen und den Begriffssystemen, exi-
stiert eine Reihe technischer Differenzierungsmerkmale, die in Tabelle 2.1 zusammengefasst
sind.

Als Prozessleittechnik bezeichnet man den Oberbegriff fir die Kernaufgaben der Au-
tomatisierung (wie z.B. Steuern und Regeln) im Bereich der Prozessautomatisierung
[Pol94, LG99, Mey02]. Die Leittechnik bindet den Menschen ,in angemessener Art und
Weise in seiner Verantwortlichkeit und seinen Werten in das Prozessgeschehen® ein [ASS97].
Dabei spielt vor allem die Informationsorientierung den entscheidenden Unterschied, denn
sie erlaubt die ganzheitliche Betrachtung aller operativen Aufgaben unter den Gesichts-
punkten der Integration in die Informationssysteme eines produzierenden Unternehmens.
Unter den ,operativen Aufgaben“ werden dabei Mafinahmen mit unmittelbaren Auswir-
kungen im physischen System verstanden [Mey02]. Die informationsorientierte Betrach-
tungsweise ermoglicht den Zugang zu komplexeren Aufgaben, wie z. B. der Instandhaltung,
der Produktverfolgung und dem Engineering. Der Begriff der Informationsorientierung be-
schreibt auch die Tatsache, dass die Methoden der Informatik und der Informationsverar-
beitung immer mehr an Bedeutung fiir die Leittechnik gewinnen.

Die Systeme und Funktionen bzw. die Aufgaben der Automatisierungstechnik lassen sich
in einem Ebenenmodell, der sogenannten Automatisierungspyramide, einordnen. Diese Py-
ramide ist in Abbildung 2.1 dargestellt. Die Breite der Ebenen stellt sowohl die Hierarchie
der Fithrung, als auch die Anzahl der eingesetzten Systeme dar — ein Unternehmensleitsy-
stem kann eine Anlage mit mehreren tausenden Feldgeriten leiten. Die Ubersicht iiber die
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Tabelle 2.1.: Fertigungs- und Prozessautomatisierung im Vergleich (nach [MBS™11, Fel01]).

2.1. Allgemeine Grundlagen

Merkmal Fertigungsautomatisierung Prozessautomatisierung
Aktoren Motoren Ventile, Pumpen
Transport Forderbander Pumpen, Kompressoren
Produkt Festkorper ungeordnete Menge
Prozesse bewirkt durch Aktoren laufen selbststandig
Reaktionszeiten kurz mittel bis lang
Bedienen und Be- dezentral zentral

obachten

dispositiv
Unternehmensleitebene Server Fihren des Unternehmens
Produktionsleitebene PCs und Server Fihren des Belrig bs
bzw. der Fabrik
i Prozessfiihrung
Prozessleitebene PLS, SPS
' M, S, R, Sicherheit
Feldebene Sensoren, Aktoren PLT-Feldfunktionen operativ

Ebenenmodell Funktion Qualitat der Funktion

Abbildung 2.1.: Automatisierungspyramide mit eingesetzten Hardware-Plattformen, Funktio-
nen und deren qualitativer Bewertung (angelehnt an [Pol94, Pol85]).

Qualitat der Funktion sagt aus, dass die Systeme auf den unteren Schichten zunehmend
operativ agieren. Damit werden auch Zeitschranken fiir den Echtzeitbetrieb zunehmend
kleiner.

Die Prozessleitebene ist fiir die Ausrichtung dieser Arbeit von besonderem Interesse.
Die Systeme auf dieser Ebene setzen die Produktionsauftrage tibergeordneter Ebenen in
operative Realisierungsprozesse um [Pol94], die mittels der angebundenen Sensorik und
Aktorik der Feldebene physisch bewirkt bzw. iiberwacht werden.

Der Einsatz der Prozessleitsysteme (PLS) auf der Prozessleitebene gehort zum heutigen
Stand der Technik in der Prozessautomatisierung. Der Haupteinsatzzweck ist unbestritten
das Messen-Steuern-Regeln Aufgabenfeld. Das Leitsystem besteht aus den Komponenten
die in Abbildung 2.2 dargestellt sind. Das PLS ist ein verteiltes System, dessen Mindestaus-
stattung aus folgenden Komponenten besteht: Die Anzeige- und Bedienkomponente (ABK)
ist die Schnittstelle zwischen dem Leitsystem und dem Bediener und ist normalerweise in
der Leitwarte installiert. Sie ermoglicht das Uberwachen der Anlage und kann fiir manu-
elle Eingriffe in die Prozessfithrung genutzt werden. Die Engineering Workstation (EWS)
ist eine dedizierte Software- oder Hardwareeinheit, die zur Konfiguration des PLS genutzt
wird. Die prozessnahe Komponente (PNK) bildet die Schnittstelle des Leitsystems zu der
Feldebene. Die Komponente enthélt in der Regel Input-Output (I/O)-Karten, die konven-
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Abbildung 2.2.: Grundstruktur eines Prozessleitsystems (angelehnt an [TMO09a, Pol94]).

tionell oder mittels eines Feldbuses mit den Sensoren und Aktoren verbunden sind. Die
Kommunikation zwischen den PNKs und anderen Komponenten des PLSs erfolgt mittels
eines echtzeitfahigen Systembuses. Die Ausfithrung der operativen Logik ist das definieren-
de Merkmal einer PNK.

Die PNK stellt die Hardware-Plattform fiir die ausgefiithrte Software bereit. Diese be-
steht aus der Laufzeitumgebung und der darin eingebetteten benutzer- und anlagenspezifi-
schen Anwendung. Eine verbreitete Plattform fiir die PNK ist die speicherprogrammierbare
Steuerung (SPS), die in Abschnitt 2.2.3 detailliert vorgestellt wird. Die primére Aufgabe
einer PNK ist das Ausfiihren der Steuer-, Regel-, sowie Interlocklogik. Aus diesen Aufgaben
lassen sich auch die nicht-funktionalen Anforderungen an die PNKs und die eingebette-
ten Laufzeitumgebungen ableiten, wie z. B. Echtzeitanforderungen, Anforderungen an die
Programmierung durch den typischen Nutzer, Stabilitat und Anforderungen an die Kom-
munikation. Einer genauen Anforderungsanalyse ist Kapitel 4 dieser Arbeit gewidmet.

2.1.2. Echtzeitsysteme und Scheduling
Echtzeitsysteme

Da die Hauptaufgabe der Automatisierungstechnik in der Beherrschung eines physikali-
schen Systems besteht, spielen die temporalen Eigenschaften des Systems eine kritische
Rolle im gesamten Lebenszyklus einer leittechnischen Anwendung. Das korrekte Verhalten
des gesteuerten Systems hangt somit nicht nur von der korrekten Ausgabe des steuernden
Systems, z. B. von dem richtigen Schaltsignal oder Stellwert, sondern auch von dem Zeit-
punkt der Wirksamkeit dieses Signals ab. Solche Systeme werden Echtzeitsysteme genannt.
Das kanonische Beispiel fiir ein Echtzeitsystem ist die Funktionalitiat der Airbag-Auslosung
in einem Kraftfahrzeug. Fiir die Sicherheit der Insassen ist nicht nur die Tatsache der Aus-
losung im Falle eines Unfalls, sondern auch der richtige Zeitpunkt dieser von immenser
Bedeutung. Es ist ersichtlich, dass sowohl Cyber-Physical Systems (CPS), als auch Cyber-
Physical Production Systems (CPPS) aufgrund der Kopplung mit der physikalischen Welt
einen Sonderfall der Echtzeitsysteme darstellen (die Definition beider Begriffe folgt im
Abschnitt 2.1.3).
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Fiir diese Arbeit wird die Definition eines Echtzeitsystems von Kopetz [Kop1la] genutzt:
»Ein Echtzeitsystem (...) muss auf die Stimuli der Umgebung in den, von der Umgebung
vorgegebenen, Zeitintervallen reagieren. Das einfachste Modell eines Echtzeitsystems for-
dert somit die Existenz einer garantierten oberen Zeitschranke fiir die Dauer der Reaktion
des Systems auf einen Stimulus. Die tatsachliche Dauer der garantierten Antwortzeit spielt
dabei keine Rolle und héngt alleine von der Umgebung des Systems und somit von der zu
losenden Aufgabe ab. Es ist hinzuzufiigen, dass die Definition keinen Prozessor oder Com-
puter innerhalb eines Echtzeitsystems fordert und somit auch weitere, z. B. mechanische
oder elektrische Systeme, abdeckt.

Die Umgebung des Echtzeitsystems besteht notwendigerweise aus dem gesteuerten phy-
sischen System. Neben diesem kénnen weitere Echtzeitsysteme Teil der Umgebung sein,
z.B. ein Human-Machine Interface (HMI), das mit den Bedienern interagiert und deren
Befehle aufnimmt.

Eine Dimension fir die Klassifikation der Echtzeitsysteme ist der abstrakte Nutzen der
gelieferten Antwort nach dem Ablauf der garantierten Echtzeitschranke (oder Deadline).
Hat die Antwort keinen Nutzen, so wird die Schranke eine feste Schranke genannt. Im
anderen Fall wird die Schranke als weich bezeichnet.

Die zweite Dimension der Klassifikation sind die Konsequenzen der Nichteinhaltung
der garantierten Schranke. Die Konsequenzen koénnen entweder sicherheitskritisch oder
nicht sicherheitskritisch sein. Welche Umsténde sicherheitskritisch sind, héngt von der
spezifischen Aufgabe ab. Typischerweise werden Schiden der eingesetzten Hardware, der
Umgebung und, vor allem der Menschen als sicherheitskritisch bewertet.

Sicherheitskritische Systeme mit festen Schranken werden Systeme mit harten Echtzeit-
bedingungen genannt. Nicht sicherheitskritische Systeme mit weichen Schranken werden
als Systeme mit weichen Echtzeitbedingungen bezeichnet. Die Begriffe ,hart* und ,weich®
werden somit in Abhéngigkeit vom Kontext unterschiedlich gedeutet. Der Entwurf der Sy-
steme mit harten Echtzeitbedingungen unterscheidet sich grundlegend von dem der weichen
Echtzeitsysteme [Koplla]. Die harte Echtzeit erfordert ein garantiertes Systemverhalten
des Systems fiir alle moglichen Zustande des Systems und der Umgebung.

Neben der Erfiillung der charakteristischen Anforderung, der Zusicherung der Echtzeit-
schranken, konnen Echtzeitsysteme in Bezug auf weitere Eigenschaften bewertet werden.
Die zwei wichtigsten Kriterien fiir diese Arbeit sind die Vorhersehbarkeit und die Flexibili-
tat. Diese werden wie folgt definiert [BH09]: ,Vorhersehbarkeit ist der Grad des Vertrauens
darin, dass korrekte, qualitative oder quantitative Prognosen tiber den Zustand eines Sy-
stems gemacht werden kénnen® und ,Flexibilitat stellt den Grad der Anpassungsfahigkeit
eines Systems an eine neue Umgebung dar“. Weitere Bewertungskriterien fiir Echtzeitsyste-
me sind in [BHO9] zu finden. Der Begriff Adaptivitat wird mit dem Begriff der Flexibilitat
synonym verwendet. Ein ausfithrlicher Vergleich der Begriffe Adaptivitdt und Flexibilitat
ist in [VMSS07] zu finden.

Aktivierungsparadigmen der Echtzeitsysteme

Im Allgemeinen wird zwischen den zwei grundlegenden Paradigmen der Aktivierung der
Echtzeitsysteme unterschieden: den zeit- und den ereignisgesteuerten Systemen [Koplla,
Foh12]. Der Trigger ist in diesem Sinne der Ausloser fiir eine bestimmte Systemaktion
[Kopllal]. Das Aktivierungsparadigma beantwortet die folgenden Fragen: wann werden die
Ereignisse erkannt, wer initiiert Aktivitdten des Systems und wann werden die Entschei-
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dungen getroffen [Foh12].

In den zeitgesteuerten Systemen hangen alle Aktivitédten von dem Fortschritt der physi-
schen Zeit (wall-clock time) ab. Genauer genommen werden die Aktivitidten an den vordefi-
nierten, periodischen Punkten der Zeit gestartet (den sogenannten Uhr-Ticks). Die duBeren
Stimuli des Echtzeitsystems kénnen somit nur wéihrend dieser Zeitpunkte verarbeitet wer-
den. Das klassische Beispiel fiir ein zeitgesteuertes System ist das Softwaremodell einer
SPS (vgl. Abschnitt 2.2.3). Die Implementierung eines zeitgesteuerten Systems beinhaltet
nur einen CPU-Interrupt — den Timer fir die Abstdnde zwischen den Zyklen.

In den ereignisgesteuerten Systemen werden die Aktivitdten durch ,signifikante Ereignis-
se, die keine Uhr-Ticks sind“, [Kop1lla] ausgelost. Signifikante Ereignisse kennzeichnen die
Veranderungen der Umgebung des Echtzeitsystems, auf die eine Systemreaktion erfolgen
muss [Kop93]. Dieses Verhalten wird durch unterschiedliche CPU-Interrupts des Systems
umgesetzt. Als Beispiel fiir ein ereignisgesteuertes System dienen viele der eingebetteten
Systeme die auf, die unterschiedlichen externen Stimuli, z. B. eine Eingangsédnderung, di-
rekt {iber einen Interrupt reagieren konnen.

Die Diskussionen der Vor- und Nachteile der beiden Anséitze auf der generellen Ebene
der Echtzeitsysteme werden seit Jahren gefiihrt [Foh12]. In der Doméne der Automati-
sierungstechnik finden sich diese zwei unterschiedlichen Paradigmen in den zwei Softwa-
rearchitekturen der Standards IEC 61131 und IEC 61499 wieder, die in Abschnitten 2.2.5
bzw. 2.2.6 genauer vorgestellt werden. Die Vor- und Nachteile der beiden Ansétze sind im
Kontext der doménenspezifischen Anforderungen ein Gegenstand der aktiven Diskussion.

Scheduling der Echtzeitsysteme

Aus der Perspektive des Schedulings kann ein Echtzeitsystem als eine Menge der Prozes-
soren (CPUs), einer Menge der Tasks und der Ressourcen definiert werden [Butll]. Zum
Zweck dieser Arbeit kann die Existenz eines einzelnen Prozessors (uniprozessor System)
angenommen werden. Dariiber hinaus ist die Modellierung der Ressourcen nicht erforder-
lich. Fir die Modellierung der Zeit wird ein diskretes Modell mit positiven Zeitpunkten
aus Ny angenommen.

Die Aufgabe des Schedulers ist somit, die Ausfiihrung der Tasks T; = T1, ..., T,, auf einem
Prozessor unter der Einhaltung bestimmter Bedingungen zu garantieren. Da ein Task auch
mehrfach ausgefithrt werden kann (z. B. bei zyklischen Tasks), wird zwischen den Tasks
und deren Instanzen (Jobs) unterschieden.

Eine grundlegende Bedingung ist das Einhalten der Ausfithrungsdeadlines fiir zyklische
Tasks. Dazu werden die Tasks als Tupel T; = (w;, per;, dead;) modelliert. Die k-te Instanz
des Tasks T;, k > 1, kann ab dem Zeitpunkt (k — 1) - per; ausgefithrt werden und muss
vor der Deadline (k — 1) - per; + dead; beendet werden. Der Parameter dead; bezeichnet
die relative Deadline des Jobs beztiglich der Periode. Der Parameter w; ist die WCET des
Jobs. Diese Zusammenhénge sind beispiclhaft in Abbildung 2.3 dargestellt.

Ein Schedule ist somit eine Funktion, die die Jobs an die CPU in Abhéngigkeit von
dem jeweiligen Zeitpunkt zuordnet. Ein Schedule ist zuldssig, wenn er die gewiinschten
Bedingungen erfillt. Eine Menge der Tasks heifit schedulbar, falls ein zuléssiger Schedule
existiert. Das zugehorige Entscheidungsproblem wird als Scheduling-Problem bezeichnet.
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Abbildung 2.3.: Korrekte Ausfiihrung eines zyklischen Tasks T; (iber zwei Perioden.

Preemptive und Cooperative Scheduling

Unter ,,Preemption“ versteht man die technische Moglichkeit die Ausfiihrung eines Tasks
zu unterbrechen und die Ressourcen der CPU an einen anderen Task zu tibertragen. Die-
ser Vorgang wird als ,Kontextwechsel* bezeichnet. Die Unterbrechung der Ausfiihrung
erfordert keine Kooperation seitens des Tasks und geschieht aus Sicht des unterbrochenen
Programms transparent. Scheduler, die Mechanismen der Preemption einsetzen, werden
als preemptive oder unterbrechende Scheduler bezeichnet.

Scheduling-Verfahren, die die laufenden Tasks nicht unterbrechen, werden cooperative
oder nicht-unterbrechende Scheduler genannt. In diesem Fall kann der Scheduler nur nach
der Terminierung des aktuell ausgefiihrten Tasks aktiv werden.

Die Vorteile der nicht-unterbrechenden Verfahren umfassen [BBY13]:

e Laufzeit-Effizienz und einfache Vorhersagbarkeit: Das nicht-unterbrechende
Scheduling vermeidet den Aufwand und die Unsicherheiten, die mit dem Kontext-
wechsel verbunden sind, wie z. B. die Auffrischung der Caches oder das Zurtickset-
zen der CPU-Pipeline. Die VergroBerung der gemessenen WCET, alleine wegen der
Cache-Auffrischung nach dem Kontextwechsel, kann bis zu 33% betragen [BBY13].

e Kleinerer Jitter: Bei einem cooperativen Scheduler gleicht die Ausfithrungszeit
eines Tasks der Differenz des Start- und Endzeitpunktes der Ausfithrung. Das hat
vor allem Vorteile bei dem Entwurf regelungstechnischer Systeme.

o Keine Mechanismen zur Synchronisation der Prozesse notwendig: Der ge-
genseitige Ausschluss der Zugriffe einzelner Tasks auf Ressourcen ist garantiert, somit
entfallt die Implementierung der Synchronisationsmechanismen und das Losen der
damit verbundenen Probleme, z. B. der Prioritatsinversion.

Aus der Perspektive der Leittechnik sind alle der oben genannten Aspekte relevant. Syste-
me mit hoher Vorhersagbarkeit und Anwendbarkeit fiir die Aufgaben der Regelungstechnik
sind fiir die Aufgaben der Leittechnik bestens geeignet. Der letzte Punkt erleichtert die
Programmierung der PNKs, da es zu keinen unerwiinschten Effekten durch die Kontext-
wechsel kommen kann.

Zu den Nachteilen des nicht-unterbrechenden Ansatzes ziahlen:

e Fragilitéit: Da die Kontrolle tiber die CPU des Systems komplett an ein Task bis zu

seiner Terminierung bzw. die Riickgabe der Kontrolle tibergeben wird, kann ein Task
nicht nur die anderen Tasks, sondern auch den Scheduler von dem Zugriff auf die
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CPU ausschliefilen und somit das gesamte System monopolisieren. Bestimmte Eigen-
schaften der Tasks, wie z. B. eine garantierte Terminierung, miissen somit wéahrend
der Entwicklung bzw. vor der Ausfithrung sichergestellt sein.

e Zusicherung der Eigenschaften aller Tasks notwendig: Als zusétzlicher Aspekt
des vorherigen Punktes, muss jeder Task auch die Einhaltung seiner Ausfithrungszeit
garantieren. Somit miissen alle Tasks mit gleicher Sorgfalt analysiert bzw. verifiziert
werden. Im Falle von preemptive Scheduling kann ein ,fehlerhafter Task, z.B. ei-
ner, der eine obere Laufzeitschranke tuberschreitet, durch den Scheduler terminiert
werden.

e Lange Antwortzeit: Das System ist wdhrend der Ausfiihrung eines Tasks
,blockiert* und kann auf keine externe Stimuli reagieren.

o Komplexitit des Scheduling-Problems: Die Komplexitit der nicht-
unterbrechenden Scheduling-Probleme, z.B. die Entscheidung, ob fiir eine Menge
der Tasks ein giiltiger Schedule existiert, ist im Gegensatz zu unterbrechendem Sche-
duling fiir die meisten Problemklassen nicht effizient losbar [Butll]. Die Schedules
werden aus diesem Grund entweder durch extensive Suche oder heuristisch erstellt.

Die notwendige Verifikation der ausgefithrten Programme macht das nicht-unterbrechende
Scheduling fiir allgemeine Zwecke unattraktiv. Im Falle einer gesicherten Entwicklungs- und
Ausfiihrungsumgebung, wie z. B. im Bereich der industriellen Produktion, konnen aber die
Vorteile des Ansatzes die Nachteile tibersteigen. Dariiber hinaus kommen die Beispiele der
Anwendung nicht-unterbrechender Scheduler aus den Bereichen der Sensornetzwerke (z. B.
TinyOS [LMP*05]) und der Agentensysteme (z. B. JADE [BPRO1]).

Die Kombination der Vorteile beider Ansétze ist durch die Einschrinkung der Méglich-
keiten fur Kontextwechsel moglich, z. B. durch die Angabe erlaubter Zeitpunkte fiir einen
Wechsel. Diese Scheduling-Verfahren werden unter dem Begriff des ,,Limited Preemptive
Schedulings“ zusammengefasst [BBY13].

Scheduling zeitgesteuerter Systeme

In diesem und im néchsten Abschnitt werden die Vor- und Nachteile der Scheduling-
Ansétze fir beide Aktivierungsparadigmen diskutiert. Die Grundlage fiir diese Auflistungen
bietet die Veroffentlichung von Fohler [Foh12]. Beide Ansitze kénnen sowohl im unterbre-
chenden, als auch im nicht-unterbrechenden Modus eingesetzt werden.

Zeitgesteuerte Systeme werden durch das Abarbeiten einer Taskliste (oder Tabelle), die
vor der Laufzeit des Echtzeitsystems erstellt wurde, gescheduled. Dieser Vorgang wird in
den Quellen auch als offline, static oder pre-runtime Scheduling bezeichnet. Die Taskliste
beinhaltet die zu dem Zyklusanfang relativen Zeitpunkte oder Intervalle der Ausfithrung
einzelner Tasks bzw. Jobs. Im Falle einfacher zyklischer Systeme mit einem Prozessabbild,
wie z. B. einer SPS, wird nur die Reihenfolge der Jobs benétigt, da es keine blockieren-
den Ressourceninteraktionen innerhalb des Systems gibt. Das gesamte Wissen iiber die
Systemarchitektur, z. B. die Anzahl und Parameter der ausgefithrten Tasks, sowie die Ei-
genschaften des kontrollierten physischen Systems, wie z. B. fiir die Wahl der Zykluszeit,
wird fiir die Erstellung der Tabelle benotigt.

Die Vorteile des Schedulings der zeitgesteuerten Systeme beinhalten [Foh12, Koplla]:
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e Determinismus: Durch die zyklische Abarbeitung der Taskliste werden die ein-
zelnen Jobs in unverdnderter Reihenfolge in jedem Zyklus ausgefithrt. Auch der
genauere Zeitpunkt der physischen Wirksamkeit der geschriebenen Ausgénge (das
»Erscheinen“ der Werte am physischen Ausgang des Systems) lasst sich bestimmen.
Diese Eigenschaften héngen nicht von den dufleren Einfliisssen auf das System ab
und definieren somit ein vorhersaghares Verhalten. Dieser Vorteil erlaubt einfache
Berechnungen der néichsten Ausfithrungszeit jedes Tasks und somit der maximalen
Wartezeit zwischen den Ausfithrungen. Deshalb sind auch einfache Abschédtzungen
der Reaktionszeit des gesamten Systems auf dufiere Stimuli moglich.

o Konstruktive Erstellung der Taskliste: Die Taskliste kann nach deren Erstellung
in Bezug auf die Einhaltung der geforderten Eigenschaften iiberpriift werden. Die
Komplexitat der Validierung ist in der Regel gering und umfasst im einfachsten Fall
nur die Sicherstellung der Zeitschranken (vgl. Abschnitt 6.3.3). Der Algorithmus
zur Erstellung einer Taskliste muss somit nur eine giiltige Losung finden, die den
geforderten Bedingungen geniigt.

¢ Komplexe Randbedingungen mdoglich: Da die Taskliste in einer Phase vor der
Laufzeit erstellt wird, konnen komplexe Bedingungen in Bezug auf die Eigenschaften
der Liste bei deren Erstellung berticksichtigt werden. Diese Eigenschaften kénnen
Reihenfolgebeziehungen der Tasks, deren Phase, sowie die Regelung der Ressour-
cenzugriffe umfassen. Die Algorithmen zur Konstruktion der Tasklisten konnen in
der Regel auch weitere Randbedingungen problemlos aufnehmen, da diese normaler-
weise auf der Losung eines Optimierungsproblems basieren, die eine globale Suche
im Losungsraum impliziert (die moglichen Randbedingungen fir den entwickelten
Komponentenscheduler werden in Abschnitt 6.3.2 vorgestellt).

e Minimaler Laufzeitaufwand: Durch die Tatsache, dass die Scheduling Taskliste
vor der Laufzeit erstellt werden kann, beschriankt sich der Laufzeit-Aufwand auf we-
nige einfache Operationen wie das Nachschlagen des néchsten Eintrages oder das
Ausrechnen einiger Differenzen zwischen bestimmten Zeitpunkten. Die Anzahl dieser
Operationen und deren Komplexitat hingen nicht von der Komplexitét der Randbe-
dingungen, die bei der Erstellung die Taskliste beriicksichtigt wurden, ab.

e Einfachere Implementierung: Dieser Vorteil folgt direkt aus dem letzten Punkt,
denn die Implementierung des Scheduler muss nur die oben erwéhnten Operationen
umfassen. Durch die einfachere Implementierung ist zu erwarten, dass Scheduler fir
zeitgesteuerte Systeme auch weniger anfillig fiir Implementierungsfehler sind und
eine einfache Fehlersuche ermoglichen.

e Einfacheres Testen: Die zyklischen Systeme sind einfacher zu testen, da nur alle
Szenarien innerhalb eines Zyklus getestet werden miissen [Koplla].

Die Nachteile eines solchen Ansatzes umfassen:

e Berechnungskomplexitit und Komplexitit des bendtigten Wissens: Fiir
das Aufstellen der Taskliste wird das komplette Wissen iiber das System benotigt.
Dazu gehoren die Auflistung der ausgefiihrten Tasks, deren Parameter, wie z. B. die
Periode, und vor Allem eine Abschatzung der Laufzeit der abgeleiteten Jobs. Diese
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Parameter sind nicht immer zu dem Zeitpunkt des Entwurfs des Systems bekannt
oder mit hohem Aufwand ermittelbar.

Dariiber hinaus ist allein das Aufstellen einer Probleminstanz zur Erstellung einer
Taskliste komplex, da alle Randbedingungen berticksichtigt werden miissen. Das Pro-
blem der konstruktiven Erstellung einer Taskliste ist typischerweise nicht effizient
(d.h. in polynomieller Zeit) losbar. In der Praxis werden die Tasklisten iiber eine
Uberfithrung des Problems auf ein Standardproblem der Optimierung geldst, z. B.
auf ein Integer Linear Program (ILP). Falls aber die Taskliste selten (im Extrem-
fall nur einmal) erstellt bzw. angepasst wird, ist die fir die Erstellung bendtigte
Rechenzeit vernachlassigbar.

Grofle der Taskliste: Die Taskliste enthélt Information iiber die Ausfiihrung ein-
zelner Tasks bzw. der abgeleiteten Jobs. Die Menge der Information hangt vom ge-
wiéhlten Algorithmus ab und variiert von den genauen Zeitpunkten der Ausfithrung
einzelner Jobs, bis zu einer groben Zuordnung der Jobs zu dem jeweiligen System-
zyklus. Eine Taskliste fiir zyklische Tasks muss tiber die Lange einer Hyperperiode
aufgestellt werden. Diese ist das kleinste gemeinsame Vielfache (kgV) der Perioden
einzelner Tasks. Die Ausfiihrung der Jobs innerhalb der Hyperperiode bleibt unver-
dndert, d. h. die Abarbeitung der Taskliste erfolgt zyklisch.

Die Grofle der Taskliste héngt somit von der Lange der Hyperperiode und der be-
notigten Information zur Ausfithrung einzelner Jobs ab. Gerade bei Systemen mit
eingeschréankten Speicherressourcen kann diese Grofle zum kritischen Punkt werden.
Um das Anwachsen der Linge der Hyperperiode bei der ungiinstigen Wahl der Pe-
rioden einzelner Tasks (z. B. als Primzahlen) vorzubeugen, kénnen harmonische Pe-
rioden der Tasks eingesetzt werden. Dies bedeutet, dass die Periode jedes Tasks ein
ganzes Vielfaches jeder kiirzeren Periode eines anderen Tasks ist. Die Information zur
Ausfiihrung des Jobs kann durch zusétzliche Annahmen tiber das Laufzeitsystem re-
duziert werden. Bei der nicht-unterbrechenden Ausfithrung der Logik innerhalb einer
SPS ist die Information tiber die Zuordnung eines Jobs zu dem jeweiligen Systemzy-
klus und innerhalb der Hyperperiode sowie deren Reihenfolge bereits ausreichend.

Fehlende Flexibilitdt: Ein Hauptnachteil des offline Schedulings ist die fehlende
Flexibilitit. Das Hinzufiigen neuer Tasks oder eine Anderung der Parameter beste-
hender Tasks erfordert die (teilweise komplexe) Neuberechnung der Taskliste und
deren Austausch auf dem Laufzeitsystem. Es existieren allerdings Anséitze, wie man
trotz rigider Struktur der Taskliste zusétzliche Aktivitaten durchfihren kann (vgl.
Abschnitt 5.1.6). Dazu zahlt z. B. das Ausfithren sporadischer Tasks zur Laufzeit.

Konservative Abschitzung: Die Berechnung der Taskliste erfolgt typischerwei-
se unter der Berticksichtigung der WCETSs der einzelnen Tasks. Bei einer fritheren
Terminierung eines Jobs kann das offline System die verfighbare Rechenzeit nicht
verwerten. Dieser Nachteil kann teilweise behoben werden, indem zusétzliche Aktivi-
taten des Schedulers zur Laufzeit des Systems stattfinden (vgl. Abschnitt 5.1.6 bzw.
Abschnitt 5.1.5).
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Scheduling ereignisgesteuerter Systeme

Fiir ereignisgesteuerte Systeme ist das Aufstellen einer offline Taskliste praktisch unmog-
lich, da die Ereignisse in beliebiger Reihenfolge und zu beliebigen Zeitpunkten Aktivitaten
des Echtzeitsystems auslésen konnen. Aus diesem Grund werden im Bereich der ereignisge-
steuerten Systeme online Scheduler eingesetzt, also solche, die die Entscheidung iiber das
néchste auszufiihrende Task wahrend der Systemlaufzeit treffen.

Bei dem Vergleich der beiden Scheduling-Ansétze steht das Schedulen von zyklischen
Tasks im Mittelpunkt. Die Nutzung des ereignisgesteuertes Schedulings fiir aperiodische
Tasks ist zunéchst nicht im Fokus, da das einhalten der Echtzeitanforderungen dafiir zu-
séitzliche Annahmen iiber Tasks benétigen wie z. B. iiber deren Auftrittshaufigkeit.

Es kann offline uberprift werden, ob eine bestimmte Menge der Tasks von einem on-
line Scheduler fehlerfrei, d.h. z. B. unter der Einhaltung der Deadlines, fiir jeden Job ge-
scheduled werden kann. Eine solche Analyse wird ,schedulability Analysis“ genannt. Im
Gegensatz zu einer vorberechneten Taskliste ist diese nicht konstruktiv. Stattdessen wird
das Verhalten des Schedulers anhand bestimmter Kriterien der Tasks, z. B. der Utilization-
Faktoren, abgeschétzt.

Die Vorteile des ereignisgesteuerten Schedulers kénnen wie folgt zusammengefasst wer-
den [Foh12]:

e Flexibilitit: Da die Entscheidungen zur Laufzeit getroffen werden, kann der Schedu-
ler auf die Anderungen der Menge der Tasks bzw. der Parameter einzelner Tasks ent-
sprechend reagieren. Der Algorithmus kann insbesondere auf die variierenden Lauf-
zeiten einzelner Jobs reagieren und die eventuell verfiigharen Ressourcen nutzen.

e Marktdurchdringung: Die meisten Echtzeitsysteme folgen dem ereignisgesteuerten
Ansatz [Koplla]. Die vorhandenen Algorithmen und deren Implementierungen sind
iiber Jahre gereift und werden in unzdhligen Systemen eingesetzt.

e Vorteile bei der Speichernutzung bei grofier Anzahl von Tasks: Der fiir die
Implementierung des Schedulers und dessen Datenstrukturen verwendete Speicher
ist bei einer geniigend groflen Menge der Tasks kleiner als die explizite Speicherung
der Taskliste.

Zu den Nachteilen des ereignisgesteuerten Schedulers zédhlen:

e Komplexitit der Implementierung und héherer Laufzeitaufwand: Die Im-
plementierung eines online Schedulers ist komplexer als die des offline Ansatzes.
Da ein online Algorithmus alle giiltigen Taskmengen unter allen Bedingungen kor-
rekt schedulen muss, ist die Verifikation der Korrektheit und Analyse eines solchen
Verfahrens nichttrivial. Ferner steigt die Menge der Operationen, die zur Laufzeit
durchgefiihrt werden miissen — das ist der Tradeoff zwischen der Laufzeit und dem
Speicherbedarf im Vergleich zu einer vorberechneten Taskliste.

e Nur einfache Randbedingungen fiir die Taskmenge: Online Verfahren koén-
nen nur einfache Bedingungen fiir die Tasks beriicksichtigen, z. B. gegenseitiger Aus-
schluss. Dartiber hinaus erfordert das Hinzufiigen neuer Bedingungen die Entwick-
lung neuer Algorithmen und der dazugehorigen schedulability Tests.
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e Beschrinkte Vorhersagbarkeit: Auch wenn die Einhaltung der Deadlines durch
den schedulability Test garantiert werden kann, kann der genaue Ausfithrungszeit-
punkt eines einzelnen Jobs im Voraus nicht bestimmt werden.

Ein Beispiel fiir ein Scheduling Verfahren ist das Earliest Deadline First (EDF) Verfahren
[LL73]. Der Algorithmus fiihrt bei jeder Aktivierung (z. B. das Erreichen eines neuen Tasks)
den Job aus, dessen Deadline am néchsten ist. Das Verfahren ist im unterbrechenden
Modus auf einem uniprozessor System optimal. Das heift, es findet fir jede schedulbare
Taskmenge einen Schedule, der die Deadline-Bedingungen der Tasks nicht verletzt. Fiir
periodische Tasks mit per; = dead; ist der schedulability Test fiir EDF recht einfach. Die
Menge der Tasks kann gescheduled werden, genau dann wenn:

T per,
U= . .

— dead; ~

Der Bruch wird der Utilization-Faktor eines Prozesses, die Summe U der Utilization-Faktor
der Taskmenge genannt. Da die Prioritét eines Tasks vom Abstand zur ndchsten Deadline
und somit vom Zeitpunkt der Aktivierung des Schedulers abhéngt, wird EDF der Klasse
der Verfahren mit dynamischen Prioritéten zugeordnet.

2.1.3. CPS und CPPS

In den letzten Jahren erhalten die Begriffe der CPS [KRS12] und deren Anwendung in der
industriellen Produktion unter dem Sammelbegriff CPPS [Mon14] Einzug in die Doméne
der Automatisierungstechnik.

Der Begriff der CPS in der Definition von Lee [Lee06] beinhaltete zundchst nur die
bidirektionale Interaktion eines Rechners oder eines eingebetteten Systems (cyber system)
mit einem physischen System (physical system). Aus der kybernetischen Sicht erfiillt dabei
in der Regel das cyber System die Rolle des steuernden und das physische System die
Rolle des gesteuerten Systems. Diese Aspekte beinhalten faktisch das Selbstverstdndnis
klassischer eingebetteter und automatisierungstechnischer Systeme der letzten Dekaden.

Fiir einen qualitativen Sprung sind jedoch weitere Eigenschaften des Systems notwendig
[KRS12]. Dazu zahlen die Kopplung tiber geschlossene und offene Netze und eine domé-
neniibergreifende Funktionalitét.

Die Zielsetzung dieser Arbeit fiir die Gestaltung eines flexiblen Rahmenwerks zur bes-
seren Nutzung verfiigbarer Rechenressourcen spricht diese Punkte explizit an. Durch ein
adaptives System konnen z. B. echtzeitfahige und nicht-echtzeitféhige Anwendungen bzw.
Kommunikationsprotokolle kombiniert werden. Dartiber hinaus versteht sich das Rahmen-
werk als ein Ergebnis der Integration vielfiltiger Konzepte aus den Bereichen der Informa-
tik und der Automatisierungstechnik.

2.1.4. Timed Automata und Model-Checking

Die Zeit kann auf zwei fundamental unterschiedliche Arten modelliert werden. Die erste
Moglichkeit — die diskrete Zeitmodellierung — stellt die Zeit als Folge ganzzahliger Zeit-
punkte dar. Die Ereignisse in diesem Modell konnen nur zu diesen Zeitpunkten auftreten.
Ein Vorteil dieser Vorgehensweise ist die Moglichkeit des Riickgriffes auf andere diskrete
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formale und semi-formale Modelle und somit deren einfache Erweiterung auf das Zeitver-
halten des zu untersuchenden Systems.

Die zweite Alternative ist die kontinuierliche Zeitmodellierung. Diese Vorgehensweise
betrachtet die Zeit als einen kontinuierlichen, linear wachsenden Wert. Das kontinuierli-
che Modell ist ndher an den Systemen der physischen Welt, die Ereignisse zu beliebigen
Zeitpunkten auslosen konnen. Da die ganzen Zahlen Teilmenge der reellen Zahlen sind,
kann jedes diskrete Zeitmodell als ein Sonderfall eines kontinuierlichen Zeitmodells mit
entsprechender Diskretisierung, z. B. mittels Abtastung, betrachtet werden.

Timed Automata (TA) [AD94] sind ein formales Modell fiir die Abbildung der Systeme
mit einer endlichen Anzahl diskreter Zustdnde unter der Berticksichtigung eines kontinu-
ierlichen Zeitmodells. Dabei wird das klassische Model eines endlichen Automaten durch
eine Reihe reellwertiger, linear wachsender Variablen — der Uhren — erweitert. Eine tri-
viale Riicktransformation eines solchen Modells zu einem endlichen Automaten ist nicht
moglich, da in der Zeitdimension unendlich viele Zeitpunkte existieren.

Die praktische Handhabbarkeit der Timed Automata wird durch Modellierungsplattfor-
men erreicht, die auf dem Formalismus der TA basieren. Das zugrunde liegende Modell
wird dabei durch zusétzliche syntaktische Elemente erweitert. Diese tragen zur Erhéhung
der Nutzerfreundlichkeit und einer kompakten Darstellung der Modelle bei.

Die in dieser Arbeit eingesetzte Werkzeug-Plattform UPPAAL verwendet Netzwerke
von TA als Modellierungssprache [BDL04]. Diese Netzwerke bestehen aus mehreren TA, die
iiber sogenannte bindre Kommunikationskanéile kommunizieren bzw. synchronisiert werden
konnen. Durch die Kanéle kann ein Automat in mehrere kleinere orthogonale Automaten
unterteilt und somit kompakt dargestellt werden. Dariiber hinaus wurden die Automaten
um weitere Elemente, wie z. B. Konstanten, erganzt.

Neben der Moglichkeit Modelle mithilfe von TA aufzustellen, bietet UPPAAL die Option
den integrierten symbolischen Model Checker zu nutzen, um bestimmte Eigenschaften des
Modells zu beweisen bzw. zu widerlegen. Die Erfiillung der in einer Abfragesprache for-
mulierten Eigenschaften durch das TA wird mithilfe formaler Methoden zugesichert bzw.
durch die Generierung eines Gegenbeispiels widerlegt. Die in UPPAAL genutzte Abfrage-
sprache ist eine Untermenge der Timed Computation Tree Logic (TCTL) [BDL04].

2.1.5. Methoden der gemischt-ganzzahligen Optimierung

Ziel der mathematischen Optimierung ist das effiziente Bestimmen eines Extrempunktes
einer vorgegebenen Giterfunktion unter der Berticksichtigung gegebener Nebenbedingun-
gen. Methoden der mathematischen Optimierung werden in vielen Disziplinen als Grund-
bausteine fiir die Abbildung und Losung doménenspezifischer Probleme eingesetzt. Als
Beispiel dafiir dienen die Anwendungen in der Logistik und Produktionsplanung oder der
Berechnung von Tasklisten fiir das Scheduling der Echtzeitsysteme.

Die Grundform eines gemischt-ganzzahligen Optimierungsproblems ist wie folgt defi-
niert [Kal12]: Die Entscheidungsvariablen werden durch zwei Vektoren 27 = (zy,- -+ , z,,)
und yT' = (y1,- - ,yn,) reprisentiert. Vektor z enthilt die reellen, y die ganzzahligen
Entscheidungsvariablen. Dartiber hinaus enthéilt das Problem eine Menge der Gleichungs-
nebenbedingungen A(z,y) = 0 und der Ungleichheitsnebenbedingungen g(z,y) > 0. Die
Vektorgleichungen h(z,y) = 0 und g(x,y) > 0 werden dabei komponentenweise gelesen.

Das Optimierungsproblem besteht darin, ein Minimum (2, 3/') einer Giitefunktion J(z, y)
(jedes Maximierungsproblem lésst sich in ein Minimierungsproblem tiberfiihren) durch die
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Applikationsbezogene Konfiguration

(Leitsystem-Errichter) frei programmiert Eﬂ
(Leitsystem- 3 §
vorkonfektionierte SW-Bausteine Errichter) § E
(Leitsystem-Hersteller) S §
Leitsystem-Betriebssystem c
(Leitsystem-Hersteller) L é
Standard Betriebssystem > nao
(Betriebssystem- / Leitsystem-Hersteller) E _§

Abbildung 2.4.: Softwaremodell eines PLS mit Angabe des Verantwortlichen [KM09, NAMO02].

Belegung der Entscheidungsvariablen zu finden, sodass h(z’,y") = 0 und die Ungleichheits-
nebenbedingungen g(z’,y’) > 0 erfillt sind.

Optimierungsprobleme konnen nach der Form der Giitefunktion, der Gleichungen der
Nebenbedingungen und den verfiigharen Entscheidungsvariablen klassifiziert werden. Zum
Beispiel sind die linearen Probleme eine fir die Praxis relevante Unterklasse der Opti-
mierungsprobleme. In diesem Fall sind sowohl die Giitefunktion als auch die Nebenbe-
dingungen linear. Die Giitefunktion kann in diesem Fall als Vektormultiplikation und die
Vektorgleichungen der Nebenbedingungen als Matrixmultiplikation dargestellt werden.

Das Optimierungsproblem heifit ganzzahlig, falls es ausschlieflich ganzzahlige Entschei-
dungsvariablen enthélt, d. h. n. = 0. Sind Entscheidungsvariablen beider Klassen vorhan-
den, d.h. n, > 0 und ng > 0, heift das Problem gemischt-ganzzahlig.

Ganzzahlige und gemischt-ganzzahlige Probleme haben generell eine hhere Komplexitét
als entsprechende Probleme mit ausschliellich reellen Variablen. So ist z. B. die Klasse der
linearen Probleme mit reellen Variablen (LP) in polynomieller Zeit 15sbar, wihrend die
entsprechenden ganzzahligen Probleme (ILP) und somit auch die gemischt-ganzzahligen
Probleme (MILP) NP-hart (d.h. mit hoher Wahrscheinlichkeit nur mit exponentiellem
Aufwand 16sbar) sind.

2.2. Laufzeitsysteme der Prozessleittechnik

2.2.1. Laufzeitsysteme

Eine allgemeine Definition des Begriffes ,Laufzeitsystem® (alternativ Laufzeitumgebung
oder runtime environment) ist in [App90] zu finden. Ein Laufzeitsystem implementiert
demnach grundlegende Konzepte der fir die Programmierung verwendeten Programmier-
sprache. Die Definition umfasst die Rolle des Laufzeitsystems als Schicht zwischen dem
Betriebssystem und der von dem Anwender geschriebenen Anwendungen.

Eine Einordnung des Laufzeitsystems bietet die Abbildung 2.4 (in der Abbildung wird
das Laufzeitsystem als , Leitsystem-Betriebssystem* bezeichnet). Das Laufzeitsystem baut
normalerweise auf einem Standard-Betriebssystem auf, das normalerweise bestimmte Echt-
zeitanforderungen erfiillt. Es existieren auch Anwendungen in denen Laufzeitsysteme die
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Aufgaben des Betriebssystems tibernehmen und direkt auf der Hardware residieren (bare-
metal Anwendungen). ,Nach oben“ bieten Laufzeitsysteme somit eine Schnittstelle fir
vorkonfigurierte und anwendungsspezifische Programme. Aus der Sicht der Automatisie-
rungstechnik wird das Softwaresystem einer PNK als das Laufzeitsystem bezeichnet. Das
wichtigste Merkmal einer PNK ist der operative Eingriff in das kontrollierte System. Vor-
génge innerhalb einer PNK haben unmittelbare Folgen im physischen System. Dabei spielt
die verwendete Hardwareplattform eine zweitrangige Rolle.

In [App90] werden die Standardbibliotheken einer Programmiersprache (z. B. die Menge
der standardisierten Funktionsbausteine aus der IEC 61131-3 [IEC11] oder die Funktionen
der C Standard-Bibliothek) nicht zum Laufzeitsystem dazu gezihlt, da diese meistens in
der Programmiersprache selbst implementiert sind. In dieser Arbeit wird auf diese Unter-
scheidung verzichtet und die Implementierung der Standardfunktionen einer Programmier-
sprache zum Funktionsumfang eines Laufzeitsystems hinzugezahlt.

Die typischen Funktionen eines allgemeinen Laufzeitsystems (eines, das nicht auf die
Leittechnik zugeschnitten ist) umfassen:

e Speicherallokation und -Freigabe: Die Mechanismen der Speicherverwaltung des
Betriebssystems werden auf die Abstraktion der jeweiligen Programmiersprache ab-
gebildet, z. B. durch einen Garbage Collector fiir Programmiersprachen ohne explizite
Speicherverwaltung wie Java. Der Speichermanagement erfolgt in enger Zusammen-
arbeit mit dem unterliegenden Betriebssystem.

e Abstraktion weiterer Betriebssystemfunktionen: Beispielsweise fiir den Zugriff
auf eine Echtzeituhr.

e Abstraktion und Unifikation der Hardware: Zum Beispiel I/O Handling oder
Anbindung an einen Feldbus.

e Speicherpersistenz: Die Speicherung des Systemzustands, insbesondere der Werte
der Variablen sowie der erstellten Objektinstanzen iiber den Neustart des Laufzeit-
systems hinweg. Dieses kann beispielsweise durch eine Synchronisation des Arbeits-
speichers mit einem nichtfliichtigem Speicher, z. B. einer Festplatte, realisiert werden.

e Profiling und Debuggen: Das Laufzeitsystem bietet Schnittstellen fiir den Zugriff
auf die aktuellen Performance-Indikatoren sowie Moglichkeiten der Feineinstellung
der Systemparameter zwecks Fehlersuche oder Optimierung des Systemverhaltens.

e Mechanismen der Introspektion und der Reflexion: Das Konzept der Intro-
spektion bezeichnet die Selbstauskunft tiber bestimmte Aspekte des Aufbaus und
des aktuellen Zustands des Systems durch das System selbst. Die Reflexion erweitert
die Introspektion durch die Méglichkeiten der dynamischen Strukturédnderung des
Systems. Das Auslésen der Selbstauskunft kann entweder lokal oder iiber eine Kom-
munikationsschnittstelle erfolgen. Ein Meta-Modell wird dabei fiir die Modellierung
der Systemaspekte eingesetzt und macht das Softwaresystem ,self-aware“ [BMRT96].

Eine Laufzeitumgebung muss nicht zwingend alle der aufgelisteten Funktionalitdten anbie-
ten. Beispielsweise gehoren im Bereich der Leittechnik die Mechanismen der Introspektion
noch nicht zum Stand der Technik. Die Notwendigkeit der Selbstbeschreibung des Systems
fiir die Umsetzung von Meta-Modell-basierten Kommunikationsprotokollen, wie OPC UA,
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erhoht allerdings den Druck auf die Hersteller der Laufzeitsysteme in Bezug auf diese
Funktionalitét.

2.2.2. Models@run.time

Die am Ende des Abschnitts 2.2.1 erwahnten Mechanismen der Introspektion und der Re-
flexion eines Laufzeitsystems kénnen zu dem Konzept des Models@run.time (alternativ
auch als Models@runtime bezeichnet) erweitert werden. Die Reflexion agiert im Kontext
einer Programmiersprache und ist damit im grofien Mafe an die Implementierung der aus-
gefithrten Anwendung gebunden. Im Gegensatz dazu existiert der Models@run.time An-
satz im Problemraum. Ein Beispiel dafiir ist ein Regelkreis auf einem Rohrleitungs- und
InstrumentenflieBschema (R&I Fliefschema) und nicht seine Umsetzung mittels Baustein-
technik. Somit sind Models@run.time weitgehend unabhéngig von der Implementierung
der Anwendung [BBF09]. Durch eine hohere Abstraktion des Modells und somit der Ob-
jekte der Selbstbeschreibung, weicht der Ansatz zunehmend die Grenzen zwischen den
Engineering- und den Laufzeitmodellen auf.

2.2.3. Speicherprogrammierbare Steuerungen

Die speicherprogrammierbaren Steuerungen (SPSen) oder Programmable Logic Control-
lers (PLC) gehoren zu einer der wahrscheinlich wichtigsten Klasse der PNK-Hardware-
Plattformen fiir den Einsatz in der industriellen Automatisierungstechnik. Historisch gese-
hen entstanden die SPS als ,iiberschaubarer Ersatz fiir einfache verbindungsprogrammier-
te Steuerungen, die vorher mit Schiitz- und Relaistechnik (...) realisiert worden waren®
[TMO09b]. Heute sind SPSen in unterschiedlichsten Leistungsklassen am Markt verfugbar
und decken unterschiedlichste Aufgaben sowohl im Bereich der Fertigungs- als auch der
Prozessautomatisierung ab.

Die speicherprogrammierbaren Steuerungen werden hauptséichlich auf der zweiten Ebe-
ne der Automatisierungspyramide eingesetzt, in der die einfachen Automatisierungsfunk-
tionen fiir die gesteuerten Prozesse bzw. die gesteuerten Maschinen mittels der SPSen
implementiert sind (die sogenannte Basisautomatisierung).

Die Grundstruktur einer SPS ist in der Norm IEC 61131-1 [IEC03a] beschrieben und
kann vereinfacht in Abbildung 2.5 dargestellt werden. Die wichtigsten drei Bereiche der
Grundstruktur umfassen die Schnittstellen fir die Aktoren bzw. Sensoren, welche die Ver-
bindung zum gesteuerten System ermaoglichen. Diese I/O-Anbindung kann entweder modu-
lar iiber spezielle I/O-Karten oder tiber Remote-1/O-Gerite realisiert werden. Remote-I/Os
werden normalerweise tiber ein Bussystem mit der SPS verbunden, z. B. PROFIBUS PA.

Die Signalverarbeitungsfunktionen beinhalten die internen Funktionen der SPS, die
Funktionen des Betriebssystems und die vom Anwendungsprogrammierer definierten an-
wendungsspezifischen Programme, die in den Sprachen der IEC 61131-3 beschrieben sind.

Die dritte Funktionsgruppe in Abbildung 2.5 sind die Kommunikationsfunktionen. Die-
se ermoglichen zum einen die Kommunikation mit weiteren Systemen, z. B. SPSen, zum
anderen werden die Schnittstellen zu dem Bediener bzw. dem Anwendungsprogrammierer
bereitgestellt. Die Kommunikation zu den weiteren Systemen ist in der Norm IEC 61131-5
spezifiziert [IEC01] und bildet die Grundlage fiir eine dezentrale Automation.

Die physische Ausfithrung der meisten SPSen erfillt die Anforderungen an die PNKs,
z.B. in Bezug auf Elektromagnetische Vertriglichkeit oder den lifterlosen Betrieb. Somit
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Abbildung 2.5.: Funktionale Grundstruktur eines SPS-Systems nach IEC 61131-1 [IEC03a].
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Abbildung 2.6.: Zyklischer Betrieb eines SPS-ahnlichen Systems.

koénnen SPSen auch nah am physischen Prozess eingesetzt werden.

Ein weiteres wesentliches Merkmal einer SPS ist der zyklische Betrieb (engl. cycle scan
mode). Die in der SPS beinhaltete Signalverarbeitungslogik wird ununterbrochen in einem
Zyklus ausgefiihrt. Das heift, dass jeder Zyklus aus folgenden Aktivitaten besteht [TM09b):

e Einlesen der Einginge: Die Eingéinge werden in einen Puffer, das Prozessabbild,
kopiert und bleiben wahrend des Zyklus unveréndert.

e Abarbeitung der Programmlogik: Die Programmlogik operiert wihrend der Aus-
fithrung auf dem konstanten Prozessabbild sowohl fiir die Eingabe- als auch fur die
Ausgabeparameter.

e Schreiben der Ausginge: Erst am Ende des Zyklus werden die Ausgangsvariablen
des Prozessabbildes auf die physischen Ausgénge der SPS tibertragen.

Die worst-case Reaktionszeit der SPS, d.h. die Zeit bis eine Anderung des Eingangs eine
Anderung des Ausgangs bewirkt, kann sich somit auf die doppelte Zykluszeit belaufen.

Der zyklische Betrieb einer SPS ist in Abbildung 2.6 dargestellt. Aus Griinden der
GleichméaBigkeit der Abtastung wird vor allem in der Prozessautomatisierung die Dau-
er des Grundzyklus konstant gehalten. In den meisten Fallen wird die CPU der SPS dabei
zwischen dem Ende der Ausfithrung der Logik und dem Beginn der Ausgabe nicht ge-
nutzt (unter der Annahme eines single-task Systems). Diese Zeit wird die Slackzeit (engl.
slack time) genannt und ist fiir die Zielsetzung dieser Arbeit von besonderer Bedeutung
(vgl. Abschnitt 1.1). Es wird zusatzlich zwischen der Funktionsreserve und der dynami-
schen Slackzeit unterschieden. Die Funktionsreserve oder statische Slackzeit entsteht auf-
grund der konservativen Auslegung des Systems und ist grundsitzlich in jedem Zyklus
vorhanden. Die dynamische Slackzeit entsteht aufgrund der Schwankungen der Laufzeit
der Programmlogik, somit variiert deren Ausmafl zwischen den einzelnen Grundzyklen des
Systems. Die Slackzeit im Allgemeinen ist daher die Summe aus der Funktionsreserve und
der dynamischen Slackzeit in jedem Zyklus.

2.2.4. IEC 61131-3 Sprachen - die Linguae francae der
Automatisierung

Die Norm IEC 61131-3 [IEC11] definiert finf Programmiersprachen, die fir die Definition
der Logik innerhalb der Program Organization Units (POUs) genutzt werden.

Die Sprachen der IEC 61131-3 (insbesondere die graphischen) sind universelle, weit ak-
zeptierte Programmier- bzw. Modellierungssprachen fiir die vielfaltigen Anwendungen der
Automatisierungs- bzw. der Leittechnik. Aus diesem Grund werden neue Konzepte, wenn
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moglich, auf diese Sprachen abgebildet, um eine leichte Zugénglichkeit fir die Endnutzer
zu gewdahrleisten. Als Beispiel dient die Darstellung von Regeln zur Modelltransformation
als ein Funktionsbausteinnetzwerk (FBN) [KQE11]. Die IEC 61131-3 beschreibt die funf
folgenden Programmiersprachen:

Strukturierter Text (ST) Die textuelle Sprache strukturierter Text (ST) ist von Pascal
abgeleitet und ermoglicht die Programmierung der SPS in einer héheren Programmierspra-
che. Im Jahr 2013 wurde ST um die Paradigmen der Objektorientierung (OO) erweitert.
Es ist seitdem moglich Klassen und Interfaces in ST zu definieren. Es werden die Konzep-
te der OO wie Einfachvererbung, Polymorphismus und unterschiedliche Zugriffsarten der
Klassenelemente, wie z. B. Methoden oder Variablen, unterstiitzt.

Anweisungsliste (AWL) Im Gegensatz zu ST ist die textuelle Programmiersprache AWL
eine maschinennahe Sprache und ist mit Assembler vergleichbar. Die Sprache wird héufig
als Zwischensprache verwendet, auf die die iibrigen Sprachen der Norm abgebildet werden
[JT09]. Die dritte Ausgabe der Norm hat AWL als veraltet erklart. Es bedeutet, dass diese
Sprache in einer zukiinftigen Ausgabe der Norm nicht mehr enthalten sein wird.

Kontaktplan (KOP) Die graphische Programmiersprache KOP ist in ihrer Darstellung
an Stromlaufpldne angelehnt. Die Sprache beinhaltet die sogenannten Kontakte und Spu-
len, die zwischen den Stromschienen geschaltet und mit booleschen Variablen verkniipft
werden. Beide Elemente driicken je nach Art der Verschaltung, z.B. sequentiell oder
parallel, boolesche Ausdriicke aus, z.B. eine logische UND- oder eine logische ODER-
Verkniipfung.

Ablaufsprache (AS oder engl. SFC) Sequential Function Chart (deutsch Ablaufspra-
che) (SFC) ist ein Beschreibungsmittel zur Ablaufsteuerung innerhalb einer SPS. Eine
detaillierte Beschreibung dieser Sprache ist in Abschnitt 3.4.1 zu finden.

Funktionsbausteinsprache (FBS oder engl. FBD) Der Einfachheit halber werden in
dieser Arbeit unter dem Begriff FBD die Funktionsbausteinsprache im engeren Sinne nach
der IEC 61131-3 und deren Erweiterung, die als Continuous Function Chart (CFC) bekannt
ist, zusammengefasst. Obwohl CFC nicht normiert ist, ist es eine gidngige Programmier-
sprache, die von vielen Programmierumgebungen unterstiitzt wird [SVH13].

Die Kernelemente von FBD sind Funktionsbausteine, die zur Strukturierung der Pro-
grammlogik genutzt werden. Ein Funktionsbaustein kapselt einen ausfiihrbaren Algorith-
mus und ggf. den Speicherbereich, auf dem der Algorithmus operiert, nach innen und
stellt wohldefinierte Ein- bzw. Ausgénge nach auflen zur Verfiigung. Dieser Ansatz tragt
zur komponentenbasierten Entwicklung der leittechnischen Anwendung bei. Man unter-
scheidet zwischen dem Bausteintyp, einer ,Vorlage®* fiir den Baustein und seiner Logik,
und den Bausteininstanzen, die jeweils einen eigenen Speicherbereich besitzen. Die Typi-
sierung der Bausteine ermoglicht eine Wiederverwendung bewéahrter Algorithmen oder die
Nutzung von normierten Bausteintypen.

FBD dient zur signalorientierten Verschaltung von Eingdngen bzw. Ausgéngen der Funk-
tionsbausteininstanzen und beschreibt so den Datenfluss zwischen diesen bzw. den einge-
betteten Algorithmen. Signalorientierung bedeutet in diesem Kontext einen (aus der Sy-
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Abbildung 2.7.: Softwaremodell eines SPS-Systems nach IEC 61131-3 [IEC11]. Graue Recht-
ecke stellen Variablen dar, Pfeile stellen die Pfade des Variablenzugriffs dar.

stemsicht) quasi-kontinuierlichen Informationsaustausch zwischen den Bausteinports. Die
graphische Darstellung ist nicht nur fir die intuitive Programmierung, sondern auch fiir
die Dokumentation [TM09a] des SPS-Programms von hoher Bedeutung. Diese Struktur
kann nicht nur fiir die Darstellung, sondern auch z. B. fiir Modelltransformationen genutzt
werden [GWE14].

Die Norm sieht Moglichkeiten zur Kombination der Programmiersprachen vor. So werden
typischerweise die Algorithmen innerhalb der Funktionsbausteine mittels ST beschrieben
und die Bausteininstanzen mittels FBD miteinander verschaltet.

Zuséatzlich zu den Programmiersprachen definiert die Norm eine Menge von Funktions-
bausteintypen, die von den kompatiblen Systemen implementiert werden. Diese beinhalten
z.B. einfache Bausteintypen fiir arithmetische Operationen oder fiir die Zwischenspeiche-
rung boolescher Werte (Flipflops).

2.2.5. Softwarearchitektur eines Laufzeitsystems nach IEC 61131-3

Der dritte Teil des Standards IEC 61131 [IEC11] beschreibt neben den Programmierspra-
chen eine Software-Sicht auf eine SPS. Zusatzlich zu der Norm existiert der technische
Bericht IEC 61131-8 [IEC03b], der die Richtlinien fir die Implementierung einer IEC
61131-3 kompatiblen Umgebung enthélt. Das Softwaremodell ist in Abbildung 2.7 dar-
gestellt. Auf Grundlage dieses Modells basieren die meisten IEC 61131-3 kompatiblen oder
an die Norm angelehnten Laufzeitumgebungen. In der Abbildung entspricht die Konfigu-
ration der in Abschnitt 2.2.3 vorgestellten SPS. Die Ressourcen decken die Funktionen der
Signalverarbeitung, der Mensch-Maschinen-Schnittstelle und der I/O-Schnittstellen einer
SPS ab. Typischerweise bieten die Ressourcen eine Abstraktion fir die CPUs einer SPS.
Die anwenderspezifische Anwendung wird laut der Norm in sogenannte POUs unter-
teilt, die die kleinsten voneinander unabhéngigen Einheiten der Software-Anwendung bil-
den [JT09]. Die POUs werden hierarchisch aufgebaut: Ein Programm kann z. B. aus einem
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FBN bestehen, das aus weiteren Funktionsbausteinen oder Funktionen bestehen kann. Der
Unterschied zwischen den Funktionsbausteinen und den Funktionen liegt in der Abwesen-
heit eines internen Speichers bei den letzteren. Jede POU besteht aus einem Deklarations-
teil mit der Beschreibung lokaler Variablen und der externen Schnittstellen sowie einem
Anweisungsteil mit der Programmlogik.

Die unterschiedlichen Aspekte der Anwendung werden auf verschiedenen Ebenen der
POU-Hierarchie abgebildet. So hat z.B. nur das Programm die Moglichkeit des Zugriffs
auf die Peripherie einer SPS und stellt diese den enthaltenen POUs zur Verfiigung.

Ressourcen enthalten POUs und einen oder mehrere Tasks. Die Tasks sind in der Lage,
die Ausfithrung einer Menge von Programmen oder untergeordneten POUs; z. B. Funk-
tionsbausteinen, anzustofen. In der Praxis werden die Tasks periodisch (auch zyklisch
genannt) ausgefiihrt. Die Norm sieht jedoch auch eine Méglichkeit der Aktivierung durch
Ereignisse vor, z.B. durch Anderung eines I/O-Eingangs. Die Zuordnung der POUs zu
Tasks erfolgt in der Definition der Ressource.

Die Kommunikation zwischen den POUs kann auf unterschiedliche Art und Weise erfol-
gen. Bei POUs innerhalb eines Programms ist der direkte Datenfluss mittels Datenflussver-
bindungen moglich. Der Datenaustausch zwischen den unterschiedlichen Programmen in
einer Konfiguration kann mittels globaler Variablen realisiert werden. Der Datenaustausch
zwischen unterschiedlichen Konfigurationen oder einer SPS und einer nicht-SPS ist mittels
der Kommunikationsbausteine nach IEC 61131-5 [IEC01] oder Zugriffspfade umsetzbar.

2.2.6. Softwarearchitektur eines Laufzeitsystems nach IEC 61499

Die Norm IEC 61499 [IEC12] fiir verteilte Automatisierungssysteme erweitert bzw. ersetzt
die folgenden Aspekte der IEC 61131-3:

e Softwarearchitektur des verteilten Automatisierungssystems: Das Modell
der TEC 61131-3 bezieht sich auf eine Konfiguration, d.h. auf ein einzelnes SPS-
System. Fragestellungen der Verteilung einer Anwendung auf unterschiedliche Syste-
me werden nicht explizit angesprochen, sondern dem Nutzer iiberlassen bzw. iiber
Kommunikationsbausteine der oder Zugriffspfade realisiert. Die IEC 61499 definiert
dagegen ein Systemmodell fiir verteilte Anwendungen, das in Abbildung 2.8 zu finden
ist. Die meisten Elemente der Systemarchitektur, wie z. B. die Ressource oder das
Gerat, werden von der in dieser Arbeit vorgestellten einheitlichen Laufzeitsystemar-
chitektur wiederverwendet und daher detailliert in Abschnitt 6.1.1 behandelt.

o Ereignisgesteuerte Ausfiihrungssemantik der Funktionsbausteine: Ahnlich
wie IEC 61131-3 nutzt die IEC 61499 FBNs als grundsétzliches Mittel zur Anwen-
dungsstrukturierung. Im Gegensatz zu einer Tasklisten-basierten Abarbeitung der
Bausteine, filhrt die Norm jedoch zusdtzliche Ports bzw. Datenverbindungen zwi-
schen den Bausteinen ein. Diese ermoglichen den Austausch der Ereignisse zwischen
den Bausteinen. Die von den Bausteinen gekapselte Logik wird mittels ST und einem
Execution Control Chart (ECC) fiir die Ablaufsteuerung beschrieben. Die Ablauf-
steuerung durch den Ereignisfluss ist eine Voraussetzung fiir die verteilbare Archi-
tektur der Anwendung. Die Ereignisse konnen genau wie Daten iiber das Netzwerk
ibertragen werden und sichern somit eine unverdnderte Semantik der Anwendung
(abgesehen von der mit der Ubertragung verbundenen Latenz).
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Abbildung 2.8.: Softwaremodell verteilter Automatisierungssysteme nach IEC 61499 [IEC12].

Die Verbreitung und die Akzeptanz der Norm variieren je nach dem Anwendungsgebiet
und scheinen in der Fertigung grofier als im Bereich der Prozesstechnik zu sein. Der Ver-
gleich zwischen den Konzepten der beiden Normen wird zuséatzlich haufig durch Missver-
standnisse erschwert [Thr13]. In den letzten Jahren wurde an Konzepten zur Koexistenz
beider Normen, z. B. in [ZSSB09], und an der automatischen, semantisch-korrekten Uber-
setzung von IEC 61131-3 Programmen auf das Modell der IEC 61499, z. B. in [DDV14],
gearbeitet. Eine Ubersicht iiber die Norm und die ihre Anwendung ist in [Vyall] zu finden.

2.2.7. Entwicklungsphasen leittechnischer Anwendungen

In der Doméne der Prozessleittechnik wird die Gesamtheit der Aktivitéiten fiir die ,,Projek-
tierung und Konfiguration des Prozessleitsystems® [TM09a] als das Engineering bezeichnet.
Die meisten Anwendungen werden dabei aus vorgefertigten Typen kombiniert und para-
metriert (vgl. Abbildung 2.4). Auch die Programmierung in den Sprachen der IEC 61131-3
kann, abhéangig von der Betrachtungsweise, unter Aktivitdten der Engineering-Phase fallen.

Das Engineering kann abhéngig von der ,Transparenz“ des konfigurierten Objekts in
Black- und White-Box unterteilt werden. Bei einer Black-Box sind nur die dufleren Schnitt-
stellen eines Objekts sichtbar. Bei dem White-Box Ansatz ist hingegen die Betrachtung der
Elemente innerhalb der Systemgrenze moglich [Mey02, Alb03]. Der Kompromiss zwischen
den beiden Ansétzen, bei dem nur bestimmte Aspekte des Systems sichtbar sind, wird als
Gray-Box Engineering bezeichnet.

In [GE13b] wird neben dem Engineering zusétzlich die Aktivitét der Typenentwicklung
der anwendungsspezifischen Bausteintypen aus Abbildung 2.4 hervorgehoben. Am anderen
Ende des Spektrums befindet sich die Tétigkeit der Orchestrierung komplexer Subsysteme
bzw. Dienste, die als Systems Engineering bezeichnet wird.

2.2.8. Akteure im Entwicklungsprozess leittechnischer Anwendungen

Das PLS unterliegen dem generischen Lebenszyklusmodell fiir technische Assets [VDI15b]
und hat somit unter anderem eine Errichtungs-, eine Inbetriebsetzungs- und eine Betriebs-
phase [NAMO3]. Die wéhrend des Lebenszyklus anfallenden Aufgaben sind im Entwick-
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lungsprozess der leittechnischen Anwendungen auf viele Akteure verteilt. Diese haben oft
nicht nur unterschiedliche fachliche Hintergriinde, sondern sind auf mehre Unternehmen
verteilt. Typischerweise lassen sich die beteiligten Akteure in drei Gruppen unterteilen.

Hersteller Die Hersteller leittechnischer Komponenten kénnen nach [VhKW09, NAMO02]
in Leitsystem- und Feldgerdte-Hersteller sowie Tool-Lieferanten unterteilt werden. Die
Tool-Lieferanten entwickeln Software-Tools, die fiir das Engineering oder den Betrieb des
Leitsystems notwendig sind, z. B. eine Entwicklungsumgebung. Grofie Technologieherstel-
ler konnen die Hardware- und die Softwareplattform aus ,einer Hand* anbieten und somit
einen hohen Grad der Integration erreichen. Hersteller bieten unterschiedliche Produktlini-
en fir die unterschiedlichen Anwenderbranchen an, die oft auf einem Kernprodukt basieren,
jedoch im Funktionsumfang erheblich variieren kénnen.

Engineering-Dienstleister Die Dienstleister, auch Automation Contractor genannt, su-
chen die fur die Anlagenautomatisierung benotigten Komponenten gemifl der vorgege-
benen Spezifikationen aus und begleiten die Anlage angefangen mit der Planung bis zu
ihrer Inbetriebnahme. In den Begriffen der NE 58 [NAMO02] werden die Dienstleister als
,Errichter” bezeichnet. Sowohl die Hersteller als auch die Anwender bzw. deren speziel-
len Abteilungen kénnen diese Rolle ibernehmen. Die Erstellung der Software-Anwendung
gehort auch zu den Pflichten des Engineering-Dienstleisters.

Betreiber Die Anwender des PLS Systems betreiben die Anwendung und die Anlage oh-
ne Anderungen in die Hardware- oder Softwarestruktur des PLS-Systems vorzunehmen.
Da aber typischerweise Anderungen wéihrend des gesamten Anlagenlebenszyklus notwendig
sind, iibernehmen Betreiber bzw. spezielle Abteilungen oder beauftragte Firmen die Aufga-
ben des Engineerings. Die Anpassungen des Systems wiahrend der Betriebsphase wird auch
als Reengineering [LHFL14a, LHFL14b] bezeichnet. Insbesondere im Bereich der Anlagen-
automatisierung sind die vom Betreiber bzw. wihrend des Betriebs eingebrachtes Know-
How &uflerst anlagenspezifisch. Aus diesem Grund werden viele Engineering-Aufgaben vom
Betreiber der Anlage durchgefiihrt.

Eine grobe Ubersicht iiber den mehrschichtigen Aufbau des Laufzeitsystems aus Sicht
der Anwender ist in Abbildung 2.4 zu finden. Der Aufbau des Laufzeitsystems ist demnach
in der Verantwortung des Herstellers eines solchen Systems. Der Errichter bzw. der Benut-
zer setzen in den meisten Fallen die vorkonfigurierten ,Bausteine® des Laufzeitsystems ein.
Dazu zéhlen vordefinierte Funktionsbausteintypen fir Funktionsbeschreibung oder Face-
plates fiir das HMI. Die Entwicklung eigener Bausteintypen passiert nur in Spezialféllen
bzw. fiir die vom Hersteller nicht abgedeckte Funktionalitét.
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3. Stand der Wissenschaft und Technik

Der Fokus dieses Kapitels liegt auf den gegenwértigen Ansétzen der Flexibilisierung leit-
technischer Anwendungen und den verfiigharen Implementierungen industrieller Laufzeit-
systeme. Dem Leser wird ein Uberblick iiber die Forschungsaktivititen der letzten Jahre
und die Vorarbeiten des Autors geboten.

Die Forschungsaktivitaten werden in Kategorien der Beitrédge zur Flexibilisierung leit-
technischer Anwendungen, der Arbeiten im Bereich der Laufzeitumgebungen in der Au-
tomatisierungstechnik und der Prozedurbeschreibungssprachen fiir leittechnische Anwen-
dungen unterteilt.

3.1. Eigene Vorarbeiten

Die fiir diese Arbeit relevanten Beitrige wurden im Rahmen der Tétigkeit als wissenschaft-
licher Mitarbeiter am Lehrstuhl fiir Prozessleittechnik der RWTH Aachen University und
der Mitgliedschaft im DFG Graduiertenkolleg ,,AlgoSyn* (Algorithmische Synthese reak-
tiver und diskret-kontinuierlicher Systeme) angefertigt. Diese Beitrige lassen sich in drei
Themengebiete unterteilen, die fiir die Ausrichtung dieser Arbeit von Bedeutung sind: die
Architektur der Laufzeitumgebung, die Beschreibungsmittel der von der Laufzeitumgebung
ausgefithrten Anwendungen und die leittechnischen Use-Cases, die nur mit rekonfigurier-
baren Laufzeitsystemen bzw. mit ressourcenadaptiven Algorithmen realisierbar sind.

Folgende relevante Ergebnisse wurden auf nationalen und internationalen Konferenzen
und Workshops veroffentlicht (nach Themengebieten und in chronologischer Reihenfolge
sortiert).

Softwarearchitektur der Laufzeitumgebung In [GKE12] wurde der Fortschritt des Lehr-
stuhls auf dem Gebiet modellbasierter Implementierung der auf der IEC 61131-3 basieren-
der graphischen Funktionsbausteinsprache (FBD) vorgestellt. Die Bausteinsprache ist eine
der sechs grundlegenden Beschreibungssprachen fiir Anwendungen in der Prozessleittech-
nik. Der Fokus der Arbeit liegt auf der Beschreibung des zugrunde liegenden objektori-
entierten Meta-Modells fir die Funktionsbausteine sowie der groben Strukturierung des
Entwicklungsprozesses in eine Entwicklungs- und eine Engineeringphase (vgl. Abschnitt
2.2.7). Dartiber hinaus wurden Gesichtspunkte des Baustein- und Bibliothekslebenszyklus
diskutiert.

Der als [GE13b] veréffentlichte Beitrag listet Anforderungen und Losungsparadigmen fiir
ebeneniibergreifende Laufzeitsysteme auf. Ebenso legt er einen Grundstein fir die Struk-
turierung der Anwendungen durch die Einfithrung des Begriffs der ,selbststandigen Kom-
ponente®. Diese nehmen eine Stellung zwischen den vorhandenen Organisationseinheiten
der Software aus der IEC 61131-3 und der IEC 61499 ein und stellen deswegen eine Mog-
lichkeit zur Homogenisierung der unterschiedlichen Ausfithrungssemantik beider Standards
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dar. Die Komponenten schlieen die Liicke zwischen dem verteilten Automatisierungssy-
stem und den (in den meisten Féllen) auf eine CPU bzw. Ressource zugeschnittenen An-
wendungen der IEC 61131-3. Diese Vorgehensweise erlaubt eine schrittweise Migration der
bestehenden Anwendungen auf die neu vorgeschlagene Architektur des Laufzeitsystems.
Eine detaillierte Beschreibung der selbsténdigen Komponenten und deren Einsatz im Kon-
text des Schedulings ist in Abschnitt 6.1.2 zu finden. Dariiber hinaus wird das aus [GKE12]
bekannte Entwicklungsmodell unter den Aspekten der Black- und White-Box Modellierung
und Verifikation erlautert. Die iiberarbeitete Fassung des Beitrags erschien in deutscher
Sprache als [GE13a].

In [GE15] wurden die Moglichkeiten fiir den Einsatz von Echtzeiteigenschaften fir den
Entwurf heterogener Systeme in der industriellen Automation aufgezeigt. Das Echtzeitsy-
stem wird dabei in eine Menge von End-to-End Flissen unterteilt, die die gewiinschten
End-to-End Systemverhalten beschreiben und implementierungsunabhéngig sind. Unter
dem End-to-End Verhalten werden die erwiinschten physischen Konsequenzen einer phy-
sischen Systemanregung verstanden. Dieses Verhalten aggregiert somit alle Aspekte der
Sensorik (z.B. die Signalverarbeitung), der Aktorik (z.B. das Losreiimoment) und der
tatsichlich ausgefithrten Kontrolllogik (z.B. die Verzogerungen aufgrund der zyklischen
Abtastung). Die temporalen Eigenschaften der Fliisse werden mithilfe der angenomme-
nen und der worst-case Ausfiihrungszeit sowie der Deadline-Charakteristik definiert. Der
dimensionslose Quotient beider Ausfiihrungszeiten wird als der Kritikalitatsfaktor bezeich-
net und kann fir die Auslegung des Systems verwendet werden. Diese Ansétze finden fiir
das Scheduling der selbststandigen Komponenten in Kapitel 6 Verwendung.

Prozedurbeschreibungsmittel fiir leittechnische Anwendungen und deren Semantik
In [YQGE12] wurde die Rolle der SFCs, einer zustandsorientierten graphischen Program-
miersprache aus der IEC 61131-3, als universelles Beschreibungsmittel fiir Anwendungen
in der Leittechnik diskutiert. Es wurde eine Reihe von Erweiterungen und Veranderungen
identifiziert, die benotigt werden, um diese Sprache fiir einen implementierungs- und do-
méneniibergreifenden Einsatz verallgemeinern zu kénnen. Diese Erweiterungen umfassen
eine serviceorientierte Schnittstelle fiir SFC, die die Voraussetzungen fir lose gekoppel-
te Anwendungen schafft sowie eine auf den Funktionsaufrufen basierende Variation der
Ausfiihrungssemantik der Charts, welche eine effiziente und intuitive Ausfithrung der SFC-
Schritte und der enthaltenen Aktionen ermdglicht.

Die nachfolgende Publikation [YGE13] auf diesem Themengebiet fithrt eine Modifika-
tion der Syntax von SFC ein, die an UML Statecharts angelehnt ist. Die Sprache wird
als Sequential State Charts (SSC) bezeichnet und ist durch eine Kombination aus einem
universellen Beschreibungsmittel fiir Prozeduren in unterschiedlichen Bereichen der Leit-
technik mit einer eindeutigen Ausfithrungssemantik gekennzeichnet. Der Fokus der Arbeit
liegt auf der Einbettung der mithilfe von SSCs beschriebenen Prozeduren in ein auf IEC
61131-3 basiertes zyklisches Laufzeitsystem. Diese Aufgabe wird durch einen definierten
Ausfiihrungsrahmen gel6st, der die Interaktion zwischen der Prozedur und den signal- so-
wie nachrichtenbasierten Kommunikationspartnern reglementiert. Die Semantik von SSCs
wurde mithilfe der UPPAAL Modellierungsumgebung fiir Timed Automata beschrieben.
Dieser pragmatische Ansatz erméglicht eine knappe Beschreibung des Systemverhaltens,
die bei Bedarf in eine formale Form tiberfiihrt werden kann. Dariiber hinaus bietet das Tool
die Moglichkeiten der Simulation und der formalen Verifikation von Prozedureigenschaften.
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Die Sprache SSC wird im Rahmen dieser Arbeit mit zeitbehafteten Ubergangstransitio-
nen und durch eine in-cycle Semantik erweitert. Die Formalisierung der Semantik erfolgt
ebenfalls unter Verwendung von UPPAAL (vgl. Abschnitt 6.2.4).

Leittechnische Anwendungen fiir rekonfigurierbare Laufzeitumgebungen In [GWE14]
wurde ein neuartiges regelbasiertes System vorgestellt, das fiir zahlreiche Aufgaben im Kon-
text der Automatisierung der Automatisierung (AdA) eingesetzt werden kann. Die Regeln
fiir das System werden mithilfe von Graphabfragen formuliert, die auf einer graphischen
NoSQL Datenbank ausgefiihrt werden. Die Datenbank kann verschiedenste Daten beinhal-
ten, die als attributierte Multigraphen dargestellt werden konnten. Eine solche Darstellung
ist fiir die meisten relevanten Modelle der Leittechnik in der Regel bereits vorhanden (vgl.
Sprachen der IEC 61131-3 in Abschnitt 2.2.4). Diese generische Vorgehensweise ermoglicht
das Formulieren von Regeln fiir ein breites Spektrum der Anwendungen. Da die Abfragen
Aussagen tiber partielle Graphen treffen, konnen diese jedenfalls graphisch formuliert und
dargestellt werden, was mafigeblich zur Akzeptanz der Losung unter den Anwendern bei-
trigt. In der Publikation wurde ein R&I Flieischema als Datenquelle fiir die Regelanwen-
dung verwendet, das regelbasiert in eine funktionsbausteinbasierte Implementierung der
Basisautomatisierungsfunktionen, wie z. B. Einzelkontrollbausteinen und einfachen Regel-
kreisen, uberfithrt wurde. Das Erzeugen dieser Kontrolllogik im laufenden Betrieb birgt
allerdings auch Gefahren, wie jeder Engineering-Eingriff. Aus diesem Grund wird das vor-
gestellte AdA-System als ein Anwendungsfall fiir die Transaktionskontrolle in Abschnitt
7.5 verwendet. Das regelbasierte System wurde zusétzlich im Rahmen eines Workshops
vorgestellt [GE14].

Ein weiterer Anwendungsfall fir das adaptive Laufzeitsystem ist die nicht-echtzeitfahige
Kommunikation am Beispiel des OPC UA Kommunikationsprotokolls. Im Rahmen des
Projekts ,open62541“ [PGP*15] wird am Lehrstuhl fiir Prozessleittechnik eine Open-
Source Implementierung eines OPC UA Kommunikationsstacks entwickelt, welche aus-
schlieBlich der standardisierten Spezifikation (IEC 62541 [IEC10]) des Protokolls folgt. Ein
wichtiger Aspekt des Projekts sind die Moglichkeiten der Einbettung des neuen Kommuni-
kationsstacks in vorhandene Anwendungen bzw. das Koppeln des OPC UA Meta-Modells
mit den vorhandenen Modellen. In dieser Arbeit werden die Moglichkeiten der Einbettung
eines open62541-Servers in die Laufzeitumgebung (vgl. Abschnitt 7.2) untersucht. Um den
Durchsatz des Servers zu erhdhen, wurde zusétzlich eine Reihe von Erweiterungen des
Standards fiir zustandslose OPC UA Kommunikation vorgestellt und deren Auswirkungen
untersucht [GPP15, GPP16].

Ein Ausschnitt der Anforderungsanalyse und der Use-Cases dieser Arbeit wurde vorab
auf einer Konferenz vorgestellt [GE16].

3.2. Ansatze zur Flexibilisierung leittechnischer
Anwendungen

3.2.1. Lose Kopplung der Komponenten durch Serviceorientierung

Die Anwendung einer serviceorientierten Architektur (SOA) im Umfeld der industriellen
Produktion wurde bereits 2005 in [JS05] vorgeschlagen. Das Ziel dieses Ansatzes ist es
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verteilte Systeme aufzubauen, die aus autonomen und gleichzeitig interoperablen Kom-
ponenten bestehen. Ein Augenmerk liegt dabei insbesondere auf Komponenten, die in
unterschiedlichen Verantwortungsbereichen z. B. Organisationen, Einheiten oder Anwen-
dungsdoménen liegen [OAS06].

Eine abstrakte Funktionalitiat wird als Dienst (engl. service) bezeichnet, der von einem
Dienstanbieter angeboten wird und von einem Dienstnutzer in Anspruch genommen wer-
den kann. Dazu muss jede Komponente eine wohldefinierte Schnittstelle besitzen, iiber
die der Dienst angeboten bzw. genutzt werden kann. Die Beschreibung dieser Schnittstelle
wird als Dienstbeschreibung bezeichnet und erfolgt unabhéngig von der Implementierung
des Dienstes. Diese Abstraktion ermoglicht es die Schnittstellen eines Dienstes von dessen
interner Logik zu trennen. Das Kernmodell der Dienste [DIN14] sieht eine Moglichkeit vor,
Dienste zu typisieren sowie Anforderungen bzw. Zusicherung bestimmter Qualitatsmerk-
male an Dienste anzukniipfen.

Weéhrend die Ideen eines standardisierten Interfaces der Software-Komponenten [TVKO01]
bereits durch die Anwendung der Bausteinmuster aus der IEC 61131-3 eine weite Préisenz
in der Doméne der Automatisierungstechnik findet, bleiben die einzelnen Bausteine durch
die Signalverbindungen eng aneinander gekoppelt, was die Portabilitat und die Flexibi-
litdt der Anwendungen beeintriachtigt. Enge Kopplung bedeutet in diesem Kontext eine
statische Verbindung zwischen zwei Komponenten, die in der Engineering-Phase definiert
wurde und zur Laufzeit des Systems unverdnderbar ist [EE13]. Aus dieser Perspektive
liegt der Vorteil von SOA in einer losen Kopplung der Komponenten, d.h. die einzelnen
Komponenten der Anwendung konnen flexibel und meist zur Laufzeit ihren Kommunikati-
onspartner aussuchen bzw. wechseln. Die Kommunikation erfolgt dabei tiblicherweise tiber
einen diskreten Nachrichtenaustausch zwischen den Kommunikationspartnern. Die Erkun-
dung der verfiigbaren Diensteanbieter und deren angebotene Dienste geschieht in der Regel
durch ein zentrales Dienstverzeichnis, bei dem sich die Anbieter anmelden [DMES14]. Die
Existenz eines Solchen ist aber nicht zwingend erforderlich [OAS06] z. B. falls alle Partner
bereits im Voraus bekannt sind.

Die Auswahl und Kopplung unterschiedlicher Diensteanbieter und Dienstnutzer durch
einen zentralen Manager wird als ,,Orchestrierung® bezeichnet. Die passenden Kommunika-
tionspartner konnen automatisch mittels Ontologien [FLR*13, DMES14] oder durch Mo-
dellierung von Fahigkeiten einzelner Diensteanbieter und deren Abgleich mittels Computer-
aided Process Planning [PSAT15] identifiziert werden.

Die Anwendbarkeit des SOA-Ansatzes in der Fertigungstechnik wurde im Rahmen des
EU-Projekts SOCRADES untersucht und erfolgreich bewiesen [DSSG*08]. Dabei wurde ei-
ne Verbindung zwischen der Enterprise Resource Planning (ERP) Ebene und der Feldebene
mittels Web-Service-basierter Middleware hergestellt. Weitere Beispiele der SOA Anwen-
dung kommen aus den Doménen der Logistik und der Halbleiterherstellung [Kom06]. Eine
Studie beztiglich der Eignung von SOA fir Programmierung industrieller Roboter-Zellen
[VPNO09] stellte fest, dass die SOA-Ansitze den Ingenieuren helfen sich auf dem Gebiet
der eigenen Expertise zu fokussieren und den Schnittstellenaufwand zwischen unterschied-
lichen Komponenten der Zelle reduzieren. Zusétzlich war SOA weniger kostenaufwendig
als vergleichbare Techniken der OO. Dartiber hinaus wird SOA als Architekturparadigma
fiir Industrie 4.0 postuliert [KWH13].

Auf dem Gebiet der Prozessautomatisierung und der Prozessleittechnik wurde ein uni-
verseller serviceorientierter Zugriff als Briicke zwischen der Prozessleitebene und der Funk-
tionalitat auf hoheren Ebenen der Automatisierungspyramide vorgeschlagen [SEE09] und
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ein Format fiir einen Nachrichtenaustausch spezifiziert [EE13]. Dartiber hinaus wurde die
Anwendbarkeit einer SOA-basierten Middleware mit Fokus auf einer transparenten Ver-
teilung der Dienste [ME12] sowie die Nutzung der Dienste als Schnittstelle zwischen den
Batch- und MES-Systemen diskutiert [NAM12].

3.2.2. Agentensysteme

Agentensysteme folgen dem Grundgedanken komplexe Systeme als ein Verbund aus au-
tonomen, intelligenten Akteuren zu modellieren [Epp13]. Der Begriff kommt urspriinglich
aus dem Gebiet der kinstlichen Intelligenz [WJ95, Woo09] und wird seit mehr als einer
Dekade im Kontext der Automatisierung verwendet [Epp00].

Fiir die Zwecke dieser Arbeit dient das Begriffssystem der [VDI10] als Grundlage. Eine
Diskussion alternativer Definitionen des Begriffes ,Agent“ ist in [Yul6] zu finden. Laut
[VDI10] sind Agenten wie folgt definiert: ,Ein [technischer] Agent ist eine abgrenzbare
(Hardware- oder/und Software-) Einheit mit definierten Zielen. Ein Agent ist bestrebt,
diese Ziele durch selbststédndiges Verhalten zu erreichen und interagiert dabei mit seiner
Umgebung und anderen Agenten.* Technische Agenten zeichnen sich durch folgende Ei-
genschaften aus, die in unterschiedlichem MaBe ausgepragt sein kénnen [VDI10, Yul6):

e Ein Agent arbeitet zielorientiert, d. h. er dndert sein Verhalten um das Ziel oder Ziele
zu erreichen.

e Reaktivitdt und Interaktion erlauben es dem Agenten sich an die Umgebung anzu-
passen bzw. mit anderen Agenten zu interagieren, um eigene Ziele zu erreichen.

e Ein Agent agiert innerhalb eines festgelegten Handlungsspielraums.

e Ein Agent kapselt seinen Zustand, sein Verhalten, die eigene Strategie und das Ziel
fiir den Zugriff von auflen.

e Die Mobilitat eines Agenten beschreibt seine Fahigkeit zwischen unterschiedlichen
physischen und logischen Ausfiihrungskontexten zu wechseln.

e Autonomie und Persistenz erlauben dem Agenten selbstdndig zu handeln und den
inneren Zustand iiber seinen gesamten Laufzyklus zu konservieren.

Einige dieser Eigenschaften, wie z.B. die Kapselung, werden durch bereits vorgestellte
Paradigmen der komponentenbasierten Entwicklung, z. B. mittels der Funktionsbausteine,
abgedeckt. Aus diesem Grund existiert keine scharfe Trennlinie zwischen einem Programm
oder einer Anwendungskomponente und einem technischen Agenten. Die Eigenschaften der
Autonomie und der Interaktion sind allerdings aufgrund der verwendeten engen Kopplung
durch Signalverbindungen weniger ausgepragt [Eppl3]. Eine mogliche Losung fir diese
Problematik bietet die lose Kopplung der Agenten mittels SOA [Yul6].

Die Ausfithrung paralleler Aktivitdten auf Agentenbasis formt ein sogenanntes Multi-
Agenten System, das eine Alternative zu der traditionellen hierarchischen Anlagensteue-
rung darstellt. Diese Systeme konnen allerdings sowohl in hierarchischen, als auch in nicht
hierarchischen Systemen eingesetzt werden, z. B. im Kontext von CPPS [VHLL15].

Die Anwendbarkeit der Agentensysteme im Bereich der Leittechnik wurden im Laufe
der letzten Jahre untersucht [Epp00, Eppl3, YSE14]. Ahnlich wie bei der Nutzung ande-
rer Technologien, spielen dabei insbesondere die doménenspezifischen Anforderungen eine
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herausragende Rolle. So sind beispielsweise die Handlungsspielraume der Agenten in der
industriellen Automatisierung bewusst sehr eng ausgelegt [Epp13]. Demnach sind Agenten,
die sich eigene Aufgaben selbst suchen, unerwiinscht. Trotz dieser Einschrénkungen wurde
eine Reihe von Aufgaben fiir Agentensysteme identifiziert und erfolgreich evaluiert [Yul6],
z.B. in den Aufgaben der Anlagensteuerung oder der Verwaltung von Modellen.

3.2.3. Modellgetriebene Ansdtze

Ein weiterer Ansatz fiir die Flexibilisierung der leittechnischen Anwendungen ist deren
automatische Generierung aus hoherwertigen Modellen. Solche hoherwertige Modelle, z. B.
R&I Flieischemata, sind in der Doméne der Leittechnik nicht nur bereits vorhanden, son-
dern werden von den Anwendern zu unterschiedlichsten Zwecken, z. B. zur Dokumentati-
on, genutzt und gepflegt. Die fiir die Beschreibung solcher doméanenspezifischen Modelle
verwendeten Sprachen werden als Domain-Specific Languages oder doménenspezifische
Sprachen (DSL) bezeichnet und sind oft speziell auf einen bestimmten Aspekt der Pro-
blemstellung zugeschnitten.

Meistens kénnen die typischen Anderung der Umgebung einer Anwendung durch einfa-
che Anderungen des abstrakten Modells beschrieben werden. Als Beispiele dafiir dienten
eine Anderung des kontrollierten physischen Systems oder eine Anderung des Rezepts ei-
nes Produkts. Kleine Anderungen auf der hohen Abstraktionsebene eines Modells kénnen
allerdings drastische Anderungen in der Struktur bzw. dem Quellcode der leittechnischen
Anwendung auslosen.

Die Erzeugung dieser Anderungen bzw. der kompletten Anwendung soll durch modell-
getriebene Softwareentwicklung automatisiert werden. Diese ist wie folgt definiert: ,Mo-
dellgetriebene Softwareentwicklung (Model Driven Software Development, MDSD) ist ein
Oberbegriff fiir Techniken, die aus formalen Modellen automatisiert lauffihige Software
erzeugen® [SVEO07]. ,Formal“ bedeutet in diesem Kontext ein Modell, welches die kom-
plette Beschreibung eines Aspektes der Anwendung beinhaltet. Erzeugen von ,lauffahiger
Software* kann entweder durch die Generierung von Quelltext in einer anderen Sprache,
z.B. ST, oder durch Interpretation des Modells zur Laufzeit erfolgen. Die automatische Er-
zeugung der Anwendung heifit nicht zwangslaufig, dass die komplette Anwendung erzeugt
werden muss. Vielmehr kénnen deren Strukturen nur bis zu einem bestimmten Grad der
Abstraktion erzeugt werden, z. B. bis zu der Abstraktion der Funktionsbausteininstanzen,
deren Typen manuell implementiert wurden.

Im Bereich der industriellen Automatisierung spielen die Sprachen der IEC 61131-3 oft
die Rolle der Zielplattform fiir modellgetriebene Ansétze bei der Verwendung eines Code-
generators. Es existieren Ansétze, die den kompletten SPS-Code ausgehend von Unified
Modeling Language (UML) Modellen [WVH11, FLR*13] bzw. Systems Modeling Langua-
ge (SysML) Modellen [TF11] generieren. Weitere Systeme erzeugen FB-basierte Logik fir
Basisautomatisierung, z. B. Interlocks auf Basis von R&I FlieBschemata [GWE14]. Die Me-
thoden der AdA zum automatischen Engineering, die auf Modellen basieren, konnen auch
als Teildisziplin der modellgetriebenen Softwareentwicklung behandelt werden, da das En-
gineering als Programmierung im Sinne des Software-Engineerings gesehen werden kann.
Eine Ubersicht iiber den Einsatz modellgetriebener Softwareentwicklung in der Automati-
sierungstechnik ist in [Vyal3] zu finden.
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3.2.4. Laufzeit-Rekonfiguration verteilter Automatisierungssysteme

Der effiziente Austausch bzw. ein Update der generierten Anwendung auf dem Laufzeit-
system stellt eine doménenspezifische Herausforderung dar. Im Gegensatz zu vielen gene-
rischen Softwaresystemen, kann die Beschaffenheit des kontrollierten physischen Systems
(z.B. hohe Kosten des Stillstandes) ein Update der Software zur Laufzeit bzw. in bestimm-
ten Zeitspannen erfordern.

Da die verteilten Automatisierungssysteme Gegenstand der IEC 61499 sind, kommen
erwartungsgemaf die meisten Beitrage aus der IEC 61499 Community, wie z. B. [BZXN02]
oder [LZVM11]. Die Anforderungen an den Vorgang der Rekonfiguration sind in [SMS*06]
anschaulich zusammengefasst. In [SZ11] wird ein Ansatz vorgestellt, der eine dedizierte
Rekonfigurationsanwendung vorsieht, die den Vorgang der Rekonfiguration iiberwacht. Da
die Rekonfigurationsanwendung auf der gleichen Ressource wie die zu konfigurierende Logik
ausgefiihrt wird, unterliegen beide den gleichen Echtzeitanforderungen. In [YV13] wurde
die Anwendbarkeit der Konfigurationsbefehle der Norm fiir die Zwecke der Rekonfiguration
untersucht und die vorhandenen Liicken auf der Anwendungsebene geschlossen.

Eine unterbrechungsfreie Rekonfiguration im Rahmen des FASA (Factory Automation
System Architecture) Rahmenwerks wurde in [WO14] vorgestellt. In einem Experiment
wurde der Algorithmus eines Funktionsbausteins bei einer Ausfithrungsfrequenz von 1 kHz
ausgetauscht. Dabei ging die Kontrolle iiber ein instabiles physisches System nicht verlo-
ren. Zur Synchronisation des Zustands des Funktionsbausteins wurde ein Algorithmus aus
[WRKO11] verwendet. Ein Uberblick iiber das FASA Rahmenwerk ist in Abschnitt 3.3.3
zu finden.

3.2.5. Laufzeit-Rekonfiguration der IEC 61131-3-basierten
Laufzeitsysteme

Die Rekonfiguration zentralisierter leittechnischer Anwendungen auf Basis von standardi-
sierten IEC 61131-3 Umgebungen beinhaltet in der Regel das Anhalten des Laufzeitsystems
fiir die Anderung der Software. Dariiber hinaus lassen manche kommerzielle Leitsysteme
den Austausch der Anwendung im beschranktem Maf zu (runtime-update oder delta-
update genannt).

Als methodische Erweiterung dazu kann ein {bergeordnetes Supervision System
die Laufzeitumgebung in bestimmten ,sicheren* Zeitpunkten fiir ein Update anhalten
[PSVHM15]. Dieser Vorgang kann modellgestiitzt durchgefiihrt werden. Dabei wird an-
hand eines Modells die zu ersetzende Anwendung in einer IEC 61131-3 Sprache erstellt.
Anschliefend wird eine Kommunikation mit der Laufzeitumgebung hergestellt und das si-
chere Anhalten initiiert. Das Laufzeitsystem hélt nur in solchen Prozedur-Zustédnden an,
die vom Nutzer explizit als sicher markiert wurden. Nach dem Anhalten kann die ausge-
fiihrte Logik ausgetauscht werden und die zuvor gesicherten Zustdnde einzelner Bausteine
wiederhergestellt werden.

Weitere, an IEC 61131-3 angelehnte Laufzeitsysteme, wie z. B. ACPLT/RTE (vgl. Ab-
schnitt 3.3.4), lassen die Laufzeitdnderung der gesamten Struktur der Anwendung mit dem
Models@run.time Ansatz zu. Diese Moglichkeiten wurden in [KQE11, GWE14] am Beispiel
des regelbasierten Engineerings erfolgreich demonstriert.
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3.3. Laufzeitsysteme der Automatisierungstechnik

Im folgenden Abschnitt werden exemplarisch vier Laufzeitsysteme unter den Gesichtspunk-
ten der Architektur und des Taskings kurz vorgestellt. Erwartungsgemaf sind die Aspekte
der Architektur der Systeme aus Bereichen der akademischen bzw. der industrienahen
Forschung durch Veroffentlichungen besser abgedeckt, als die der industriellen Laufzeitsy-
steme.

3.3.1. IEC 61131-3: CODESYS Runtime

Als Vertreter der IEC 61131-3 Softwarearchitektur wird die Laufzeitumgebung CODESYS
Runtime der Firma 3S-Smart Software Solutions GmbH vorgestellt. Es handelt sich dabei
um eine Soft-SPS. Das bedeutet, dass das eigentliche Laufzeitsystem auf unterschiedlichster
Hardware (sowohl aus dem industriellen als auch aus Konsumenten-Segment) lauffihig ist.
Die Anpassung der Software an die spezifische Hardware-Plattform erfolgt mithilfe von
einem Software Development Kit (SDK) [3S-15b]. So werden z.B. die I/O-spezifischen
Treiberbausteine angepasst. CODESYS Runtime dient als SPS-Kern fiir Plattformen vieler
Firmen, wie z. B. ABB, WAGO oder Festo.

Die Laufzeitumgebung lauft unter unterschiedlichen (Echtzeit-)Betriebssystemen (Win-
dows, Windows CE, Linux, VxWorks, QNX) [3S-15b]. Die Programmierung der Anwender-
logik erfolgt in einem dedizierten Entwicklungssystem (CODESYS Development System),
das den kompilierten Bindrcode zur Laufzeitumgebung tibertragt. Die Entwicklungsumge-
bung erlaubt die Einbettung vom C Programmen in IEC 61131-3 Projekte.

In Bezug auf Scheduling wird die Echtzeitfihigkeit des Systems in einer Windows-
Umgebung durch einen Systemtreiber, der auf die Hardware-Timer des Systems zugreift, si-
chergestellt [3S-15a]. Die Architektur der Laufzeitumgebung sieht einen IEC-Taskmanager
vor [3S-15b], der das zyklische Scheduling iibernimmt. Es werden sowohl das Preemptive
als auch das Cooperative Scheduling-Modell des Betriebssystems seitens der Laufzeitum-
gebung unterstiitzt. Zwecks der erhohten Zuverldssigkeit des gesamten Systems ist auch
ein redundanter Betrieb von zwei gekoppelten Laufzeitsystemen moglich.

Die CODESYS Umgebung dient als Testumgebung fiir diverse Forschungs- und Standar-
disierungsaktivitaten der Doméne der Automatisierungstechnik, z. B. fiir PLC-Statecharts
(vgl. Abschnitt 3.4.2) oder die objektorientierten Erweiterungen der Sprache ST [Wer09)].

3.3.2. IEC 61499: 4DIAC FORTE

Das Eclipse-Projekt 4DIAC (The Framework for Distributed Industrial Automation and
Control) zielt auf die Entwicklung einer quelloffenen IEC 61499-kompatiblen Entwicklungs-
und Laufzeitumgebung [SZE10]. Die Laufzeitumgebung des Projekts heifit FORTE und
folgt dem Soft-SPS Prinzip beziiglich der Hardwareabstraktion. Das Laufzeitsystem wird
in C++ entwickelt und ist modular aufgebaut. Die meisten Erweiterungen sind somit als
FB-Bibliotheken zuladbar. Das Laufzeitsystem unterstiitzt diverse Betriebssysteme und
Hardwareplattformen, wie z. B. Lego Mindstorms nxt controller, Bachmann electronic M1
PLC und WAGO PFC200.

Die Umsetzung der IEC 61499 erfordert ein System der Ereignissteuerung. Diese wird
in FORTE iiber die sogenannten Event Chains [ZGSS07] implementiert. Unter gewissen
Einschrankungen konnen auch die Echtzeiteigenschaften der Chains zugesichert werden.
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Die grundlegende Architektur des Laufzeitsystems besteht aus einer Abstraktionsschicht,
einigen Systemdiensten wie Logging und einer Reihe von Bausteininstanzen, die aus den
mitgelieferten Bibliotheken stammen. Das Engineering und die Typenentwicklung erfolgt
iiber ein Eclipse-basiertes Integrated Development Environment (IDE) in Sprachen der
IEC 61131-3. Die Umgebung erlaubt die Kompilierung einzelner Bausteintypen fir das
Zielsystem und st68t die Rekonfiguration der Laufzeitumgebung iiber die Dienste der IEC
61499 an.

Die quelloffene Laufzeitumgebung FORTE ist eine beliebte Plattform fiir die akademi-
sche und die industrienahe Forschung in der IEC 61499 Community.

3.3.3. FASA

Unter dem Namen FASA wird eine Softwarearchitektur fir ,,die neue Generation der Auto-
matisierungssysteme* [WRKO11, WO14, WGKO15] entwickelt. Diese wird von mehreren
Forschungszentren der Firma ABB entwickelt. FASA beinhaltet eine Referenzimplemen-
tierung eines Laufzeitsystems, die im Fokus dieser Zusammenfassung steht.

Die Architektur beschreibt ein verteiltes Automatisierungssystem, das zyklische Anwen-
dungen ausfithrt und somit einen Kompromiss zwischen den Ansétzen der beiden grofien
Normen bildet. Das Ziel der Architektur ist eine flexible Zuordnung (eine n-zu-m Zuord-
nung) und Ausfithrung von mehreren Anwendungen auf mehrere Hardwareressourcen zu
erreichen. Die eigentliche Zuordnung der Anwendungen an einzelne Ressourcen und die
Berechnung der statischen Tabellen fiir das zyklische Scheduling einzelner CPUs involviert
die Losung eines NP-harten Problems. Dieses wird mittels eines Constraint Programms
oder einer Heuristik gelost [WGKO15].

Die C++ Referenzimplementierung der FASA-Laufzeitumgebung basiert auf einem
Mikrokernel-Prinzip, weshalb die meisten Features der Umgebung als Module zuladbar
sind. Der Kernel der Laufzeitumgebung enthélt einen zyklischen Scheduler, der die zuge-
ordneten Blocke aktiviert und bis zum Zeitpunkt der erneuten Ausfithrung schléft. Das
Scheduling unter Einsatz einer statischen Tabelle erlaubt die Nutzung der Slackzeit fiir
Verwaltungsaufgaben innerhalb des Systems, wie z. B. das Umschalten des Schedules zwi-
schen den Zyklen. Als IDE fiir die Systemkonfiguration wird die IDE des 4DIAC Projekts
verwendet [FDGV13].

3.3.4. ACPLT/RTE

Die quelloffene Laufzeitumgebung ACPLT/RTE wird am Lehrstuhl fiir Prozessleittech-
nik entwickelt und findet in unterschiedlichen Forschungs- und Industrieprojekten Einsatz.
Der Name besteht aus Abkiirzungen: Aachener Prozessleittechnik (ACPLT) und Runtime
Environment (RTE). Die wichtigsten Differenzierungsmerkmale gegeniiber den anderen
Laufzeitsystemen sind die ausgepriagten Moglichkeiten der Introspektion und der Reflexi-
on des Systems und der nutzerspezifischen Anwendung. Dieses ist durch den konsequenten
Einsatz des ACPLT/OV (Objektverwaltung) Meta-Modells [Mey02] moglich, das fiir die
Abbildung der Grofizahl von Objekten innerhalb des Systems verwendet wird. Die Abfrage
der Meta-Informationen iiber die Objekte ist entweder durch ein Application Programming
Interface (API) durch die Anwendung selbst oder durch ein geeignetes Kommunikations-
protokoll mit Meta-Modell Unterstiitzung, wie z. B. ACPLT/KS (Kommunikationssystem)
[Alb03] oder OPC UA [IEC10], méglich.
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3.3. Laufzeitsysteme der Automatisierungstechnik
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Abbildung 3.1.: Architektur der ACPLT/RTE Laufzeitumgebung mit Fokus auf das
Scheduling.

Das System ist in C99 umgesetzt, was eine hohe Flexibilitét beztiglich der eingesetzten
Betriebssysteme und Hardwareplattformen ermoglicht. Zu den aktiv unterstiitzten Syste-
men zéhlen Windows und Linux Betriebssysteme sowie diverse Industrie-PCs der Firmen
WAGO und Siemens.

Eine Ubersicht der Architektur des Laufzeitsystems ist in Abbildung 3.1 zu finden und
dhnelt in groben Ziigen dem Aufbau der bereits vorgestellten Laufzeitsysteme. Das Lauf-
zeitsystem wird iiber einem Betriebssystem eingesetzt und stellt grundlegende ,,Dienste®
wie Speicherallokation, Persistenz und Hardware-Abstraktion der Anwendung zur Verfi-
gung. Die Modularitat des Systems erlaubt das Laden vieler Klassen-Bibliotheken und
Instanzen. Diese Module kénnen nicht nur auf der Anwendungsebene operieren, z. B. als
Funktionsbausteine im klassischen Sinne der IEC 61131-3, sondern auch den Funktions-
umfang des Systems erweitern, z. B. als Kapselung der Feldkommunikation durch Treiber-
bausteine oder als Implementierung eines Kommunikationsprotokolls.

Die Grofizahl der Komponenten wird im Objektspeicher gelagert, dessen Persistenz von
der Laufzeitumgebung sichergestellt wird. Alle Objekte in diesem Speicher unterliegen
der Moglichkeit der Selbsterkundung. Es wird im Allgemeinen zwischen den passiven und
aktiven Objekten unterschieden [Merl6]. Zu der ersten Kategorie gehoren Objekte, die
keinen ausfiihrbaren Code beinhalten, wie z.B. die Klassen und die Objekte des HMI-
Modells. Die zweite Kategorie beinhaltet beispielsweise die Funktionsbausteine (FBs), die
FBDs und die selbststandigen Komponenten (SKs) mit den beinhalteten Algorithmen.
Das Scheduling ist in der Anlehnung an die IEC 61131-3 iiber einen zyklischen Scheduler
realisiert, dessen Scheduling-Tabelle sich ebenfalls im Objektspeicher befindet und somit
zur Laufzeit einsehbar und dnderbar ist. Der Scheduler ruft die einzelnen Komponenten
nach dem Prinzip des hierarchischen Schedulings auf (vgl. Abschnitt 6.1.7).

Die Moglichkeiten der Reflexion beeinflussen den Entwicklungszyklus der Anwendun-
gen fir ACPLT/RTE. Im Unterschied zur klassischen harten Unterteilung in Engineering-
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3. Stand der Wissenschaft und Technik

und Betriebsphasen eines Systems, kénnen Anwendungen fir ACPLT/RTE zur Laufzeit
engineert und migriert werden. Auch die Bibliotheken mit Bausteintypen kénnen zur Lauf-
zeit geladen werden. Die Typenentwicklung geschieht in einer Eclipse-basierten IDE in C
[GE13b]. Dartiber hinaus eréffnet die Betrachtung des ausfilhrbaren Codes als generische
Objektstruktur Moglichkeiten fir Modellinteraktionen der AdA [GWE14, WKS*16].

3.4. Prozedurbeschreibungssprachen fiir leittechnische
Anwendungen

Da im Rahmen dieser Arbeit eine Prozedurbeschreibungssprache fiir ressourcenadaptive
Anwendungen vorgestellt wird, folgt an dieser Stelle zunéchst eine kurze Einfithrung in
die Prozedurbeschreibungssprachen, die in der Doméne der Automatisierungstechnik ein-
gesetzt werden. Die in diesem Kapitel dargestellten Sprachen beinhalten nur eine kleine
Auswahl aus der breiten Palette der Sprachen in der Automatisierungstechnik und dienen
zur Einordnung der im Rahmen dieser Arbeit erarbeiteten Konzepte. Eine umfassende
Analyse der Prozedurbeschreibungssprachen ist in [Yul6, Sch16] zu finden.

Die Grenze zwischen der konzeptionellen Beschreibung einer Prozedur und deren aus-
fiihrbaren Implementierung verschwimmt zunehmend, da sich die meisten der vorgestell-
ten Sprachen fiir beide Aufgaben eignen. Damit ist eine Ahnlichkeit zu FBD festzustellen,
die sowohl fiir die Spezifikation der Programmlogik, als auch fiir deren Implementierung
eingesetzt wird. Aus diesem Grund wird an dieser Stelle auf die Beschreibung einiger spe-
zialisierten Programmiersprachen, wie z. B. ECC aus IEC 61499, verzichtet.

3.4.1. Sequential Function Chart

Eine Méglichkeit der Prozedurbeschreibung ist die Nutzung von Sprachen aus den existie-
renden Normen. Aus der IEC 61131-3 ist die Sprache SFC bekannt, die fiir die Definition
der Prozeduren auf zyklischen SPSs verwendet wird (vgl. Abschnitt 2.2.4).

SFC ist aus der Sprache GRAFCET [IEC13, SSF13] abgeleitet. Der syntaktische Aufbau
von SFC dhnelt im Groben einem endlichen Automaten. Ein SFC besteht aus Schritten,
Transitionen und gerichteten Kanten zwischen diesen. Zu Beginn der Ausfithrung ist der
initiale Schritt des SFCs aktiv. Der Ubergang entlang einer Transition von einem aktiven
Schritt zum anderen kann nur dann passieren, wenn die mit der Transition verkniipfte
Transitionsbedingung giiltig ist. SFC erlaubt auch parallele Verzweigungen — es konnen
also zu jedem Zeitpunkt auch mehrerer Schritte aktiv sein. Die Bedingungen kénnen in
unterschiedlichen Sprachen formuliert sein, z. B. in KOP oder ST. Ist keine der Transitions-
bedingungen aktiv, so verbleibt der SFC in dem aktuell aktiven Zustand.

In [Bau04] wird zwischen zwei Ausfilhrungssemantiken fir SFC unterschieden: der
Maximal-Progress und der Lock-Step Semantik. Die Maximal-Progress Semantik fiihrt
die Ubergéinge zwischen den Transitionen solange aus, bis keine Transition mehr wahr
ist. Die Lock-Step-Semantik erlaubt dagegen nur einen einmaligen Ubergang jedes aktiven
Schrittes pro Aufruf, d. h. pro Zyklus der Laufzeitumgebung. Fiir zyklische Laufzeitsysteme
gehort die Lock-Step Semantik der SFCs zum Stand der Technik. Das Einfithren einer un-
terschiedlicher Semantik dhnelt der Differenzierung zwischen der in- und der multi-cycle
Semantik fiir PLC-Statecharts (vgl. Abschnitt 3.4.2).
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3.4. Prozedurbeschreibungssprachen fiir leittechnische Anwendungen

Ein SFC fihrt Aktionen aus, die mit dem aktiven Schritt verkniipft sind. Die Wir-
kung der Aktionen ist durch sogenannte Aktionsbestimmungszeichen beschrieben. SFCs
operieren in einem Ausfithrungsrahmen (POU) und konnen somit die internen Werte ma-
nipulieren. Dariiber hinaus haben SFCs die Moglichkeit, Einginge bzw. Parameter anderer
Bausteine auf der globalen Ebene zu manipulieren, was ihnen das Orchestrieren baustein-
ibergreifender Abldufe erméglicht. Somit werden SFCs auch fiir die Definition der Abldufe
innerhalb einer SPS eingesetzt.

Die Manipulationen der Bausteine fithren auf der globalen Ebene zu Abhédngigkeiten
zwischen dem SFC und den manipulierten Bausteinen, welche die Portabilitit der An-
wendungen negativ beeinflussen [GE13b]. Dariiber hinaus haben SFCs eine Reihe weiterer
Nachteile, die bereits in [YGE13, Yul6] diskutiert werden. Dazu gehéren die komplizier-
te Logik und die groBe Anzahl der Aktionsbestimmungszeichen der Schritte, mehrdeutige
Ausfithrungssemantik [Bau04] und die fehlenden Moglichkeiten der Hierarchisierung ein-
zelner Schritte.

Aus diesen Griinden wurde in den letzten Jahren an Sprachen gearbeitet, welche die
Vorteile, vor allem die Moglichkeit der direkten Einbettung in operative Laufzeitsysteme,
der SFCs beibehalten, jedoch besser in Bezug auf das Engineering und die formale Se-
mantik sind. Zu den zwei Alternativen gehoren die PLC-Statecharts [WRKVHI10] (vgl.
Abschnitt 3.4.2), sowie der am Lehrstuhl fiir Prozessleittechnik entwickelte Formalismus
namens Sequential State Chart (SSC) [YGE13] (vgl. Abschnitt 3.4.3). Beide Prozedurbe-
schreibungssprachen lehnen ihre Syntax an Harel’s Statecharts [Har87], eine in UML als
UML-Statechart iibernommene Prozedurbeschreibungssprache [RJB04], an. Eine Anwen-
dung der an die Statecharts angelehnter Sprache zum Zweck der Prozedurbeschreibung
wurde bereits in den 90er Jahren vorgeschlagen [BCK98].

3.4.2. PLC-Statecharts

Die PLC-Statecharts wurden in [WRKVH10, Wit12] vorgestellt und passen die operative
Semantik der UML-Syntax an den Ausfithrungszyklus einer SPS-édhnlichen Laufzeitumge-
bung an. Die Anwendung des Modells der zyklischen Ausfithrung erlaubt den Verzicht auf
die ereignisorientierte Ablaufkontrolle innerhalb der PLC-Statecharts.

Es existieren zwei grundlegende Ausfithrungssemantiken fiir PLC-Statecharts. Durch die
Einbettung in den Takt der Laufzeitumgebung kann genau ein Schritt pro Zyklus besucht
werden, d.h. nur ein Zustandstibergang pro Zyklus ist moglich. Diese Semantik wird als
multi-cycle Semantik bezeichnet. Zusétzlich zu der multi-cycle Semantik kann auch eine
in-cycle Semantik fir PLC-Statecharts eingefithrt werden. Diese wird in Abschnitt 6.2.3
detailliert erlautert.

Aufgrund der Parallelen zum Abschnitt 3.4.1 folgt eine kurze Ubersicht iiber die beiden
Arten der Semantik:

In-cycle bzw. Maximal-Progress Semantik: pro Zyklus der Laufzeitumge-
bung konnen mehrere Schritte des SFCs bzw. Zustdnde des Statecharts
besucht werden.

Multi-cycle bzw. Lock-Step Semantik: pro Zyklus der Laufzeitumgebung
kann nur ein Schritt des SFCs bzw. Zustéind des Statecharts besucht
werden.
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Ahnlich zu ihren Prototypen, den UML-Statecharts, unterstiitzen PLC-Statecharts
die Hierarchisierung der Zustdnde. Dariiber hinaus beinhaltet die Definition der PLC-
Statecharts ein Modell zur formalen Verifikation des Verhaltens des Statecharts mithilfe
von UPPAALL. Dieses Modell beinhaltet eine minimalistische Abbildung des zyklischen
Abtastverhaltens einer SPS durch einen UPPAAL-Automaten. Die formale Definition der
Semantik adressiert eine Schwiche von SFCs.

Eine Referenzimplementierung der PLC-Statecharts erfolgte als ein Plugin fiir CODE-
SYS V3 — einer industriellen IEC 61131-3 Programmier- und Laufzeitumgebung.

3.4.3. Sequential State Chart

Die Prozedurbeschreibungssprache SSC wurde in [YGE13] vorgestellt und adressiert einige
Aspekte, die in der Definition der PLC-Statecharts unterspezifiziert wurden [Yul6].

Der erste Aspekt ist ein Ausfiihrungsrahmen, der eine Kapselung des SSCs als ein FBN
und dessen signalorientierte Verbindung zu weiteren Bausteinen erméglicht. Ein weiterer
Aspekt ist die Feinbeschreibung der Ausfiihrungssemantik des Statecharts. Dazu gehort
z.B. eine angepasste Semantik der Aktionen in der do- und exit-Phasen eines Zustands
(so werden in SSC die Transitionsbedingungen nicht beim ersten Betreten des Zustands
iiberpriift). Das formale Verhalten von SSCs wurde basierend auf dem in [WRKVHI0]
eingefithrten UPPAAL-Modell beschrieben, damit die feinen semantischen Unterschiede
klar erkennbar sind.

Eine weitere Eigenschaft der SSCs ist die Moglichkeit der Beschreibung von Service-
orientierten Interaktionen aus den Aktionen der Zustéande hinaus, sowie der Anschluss des
Ausfithrungsrahmens an eine SOA, die mittels nachrichtenorientierter Kommunikationen
umgesetzt wurde [YGE13].

Die syntaktischen Bestandteile der SSCs basieren sowohl auf der Syntax von Statecharts
als auch auf der Syntax von IEC 61131-3 SFCs, die folgenden Vereinfachungen unterzogen
wurden [YGE13, Yul6]:

o Keine Nebenliaufigkeit: Da die SSCs mit dem Ziel einer strikten deterministischen
Ausfiihrung im Kontext der Laufzeitsysteme ohne hardwareunterstiitzte Nebenldu-
figkeit entwickelt wurden, wird deren Syntax bewusst ohne Parallelverzweigungen
ausgelegt. Dem Programmierer bleibt somit nur die Moglichkeit Aktionen sequenzi-
ell in einem Zustand ablaufen zu lassen. Dies stellt die Ausfiihrungsreihenfolge der
Aktionen sicher.

o Keine explizite Orthogonalitit: Eine dhnliche Argumentation gilt fiir den Ver-
zicht auf explizite Modellierung orthogonaler Bereiche. Die Orthogonalitit lasst sich
durch eine sequentielle Ausfiihrung der Unterkomponenten ,simulieren®.

e Keine Aktionen in den Transitionen: Die Syntax der Statecharts erlaubt sowohl
Ausfiihrung von Zuweisungen bzw. Aktionen in den Transitionen als auch in den
Zusténden (genauer, in den ,entry, ,do“ und ,exit“ Phasen der Zusténde). Somit
zeigen die Statecharts das Verhalten der Mealy- [Mea55] und der Moore-Automaten
[Moo56] beztiglich der Ausgabe. Da SSCs aber die Syntax von IEC 61131-3 SFCs
unterstiitzen sollten, die nur Moore-Verhalten zeigen (also keine Aktionen in den
Transitionen), wird auch nur dieses Verhalten in SSC tibernommen.
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3.4. Prozedurbeschreibungssprachen fiir leittechnische Anwendungen

3

SO

|| i |

|| 51 -
entry:
CALL FB

T2 [

Abbildung 3.2.: Ein einfaches SSC im POU-Ausfiihrungsrahmen.

e Verzicht auf die Hierarchisierung der Zustédnde: Explizite hierarchische Zu-
stande werden von SSC nicht unterstiitzt und sollen mithilfe eingebetteter Unter-
funktionen realisiert werden.

Im Zuge der weiteren Arbeit an der SSC-Spezifikation wurden die Statechart-Merkmale
durch das Entfallen der do- und exit-Phasen der Zustinde weiter vereinfacht [WKS*16].
Ein Beispiel fiir die graphische Darstellung eines SSCs ist in Abbildung 3.2 zu finden.
Das SSC besitzt zwei Zustande, der Zustand ,,S1¢ initiiert dabei einen Aufruf des Bausteins
,FB“ innerhalb seiner entry“-Ausfithrungsphase.
Eine Referenzimplementierung der SSCs wurde fiir die Laufzeitumgebung ACPLT /RTE
umgesetzt und in mehreren Industriekooperationen erfolgreich validiert [WE15, Yul6].
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4. Anforderungsanalyse und
-spezifikation

Die Untersuchungen zum Stand der Wissenschaft und Technik in Kapitel 3 zeigen, dass in
der Doméne der Automatisierungstechnik viel Interesse an flexibler, verteilbarer Anwen-
dungsstruktur besteht. Zu diesem Thema wurden viele Beitriage geleistet, die teilweise in
bereits auf dem Markt verfiigbaren Produkten zu finden sind. Dazu gehoren z. B. durch
SOA lose gekoppelte Komponenten (vgl. Abschnitt 3.2.1) oder Agentensysteme (vgl. Ab-
schnitt 3.2.2). Die Aspekte der adaptiven Anwendungseigenschaften (insbesondere tempo-
raler Natur) und deren Anpassung wurden hingegen weitgehend auler Acht gelassen.

Aus diesem Grund werden in diesem Kapitel die Anforderungen an ein Modell fir die
adaptive Anpassung der temporalen Eigenschaften leittechnischer Anwendungen erarbei-
tet.

Dazu werden zunéchst die (doménen-)spezifischen Anforderungen aus der Perspekti-
ve der Automatisierungstechnik im Allgemeinen und der Prozessleittechnik im Speziellen
analysiert. Im zweiten Schritt werden aus diesen allgemeinen Anforderungen die spezi-
ellen Anforderungen an die zu erstellenden Methoden zur Flexibilisierung leittechnischer
Anwendungen in Bezug auf deren temporale Eigenschaften abgeleitet.

4.1. Analyse der domanenspezifischen Anforderungen

Im Folgenden werden die doménenspezifischen Merkmale der (Prozess-)Leittechnik vorge-
stellt, die fiir das zu definierende Konzept mafigeblich sind. Es wird kein Anspruch auf
deren Einzigartigkeit erhoben, da sicherlich viele dieser Merkmale auch fiir andere Anwen-
dungsdoménen zutreffen.

Lange Lebenszyklen der eingesetzten Komponenten Die unterschiedlichen Kompo-
nenten einer prozesstechnischen Anlage haben relativ lange Lebenszyklen. Nach [Lil2]
besitzen mechanische Komponenten einen Lebenszyklus von mehreren Dekaden, wéihrend
elektrische/elektronische Anlagenkomponenten alle drei bis fiinf Jahre erneuert werden. Die
Softwareelemente der Prozessleitebene werden am héufigsten aktualisiert — die Lebenszy-
klen der einzelnen Elemente werden mit 6 bis 12 Monaten angegeben. Auch wenn die
einzelnen Elemente héufiger aktualisiert werden, z. B. das Hinzufiigen zusétzlicher Regel-
kreise, bleibt die Software-Plattform unverédndert und ihr Lebenszyklus ist normalerweise
mit dem der prozessnahen Komponenten bzw. der elektronischen Anlagenkomponenten
vergleichbar. Die eigentliche anlagen- und prozessspezifische Logik ist dabei durch die se-
mantische Kopplung an die Anlage noch bestandiger. Die langen Lebenszyklen erfordern
eine wandelbare Software, die iiber den gesamten Lebenszyklus der Anlage Anpassungen
unterliegen kann [VHDF 14, VHDB13|.

42

216.73.216.36, am 20.01.2026, 08:59:54. © Inhal.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186257086

4.1. Analyse der doménenspezifischen Anforderungen

Lange Laufphasen ohne Unterbrechung Zusétzlich zu dem langen Lebenszyklus der An-
lage an sich kommen lange Betriebsphasen hinzu, in denen die Anlage ohne Unterbrechung
lauft bzw. laufen muss. Diese Phasen sind vor allem in der Prozessindustrie anzutreffen
und dauern bis zu mehreren Jahren am Stiick, z. B. fiir eine Destillationskolonne [Fel01].
Die Ausfille des Produktionssystems wéhrend einer solchen Phase sind mit allen Mitteln
zu vermeiden, denn auch die kiirzesten Ausfille sind mit erheblichen Folgekosten verbun-
den. Viele der Anlagen sind bereits automatisiert, daher erfordert jede Modernisierung eine
6konomische Rechtfertigung sowohl in Bezug auf direkte Kosten, als auch fir die durch die
Modernisierungsmafinahme entstehenden Kosten der Betriebsunterbrechung [Kopl1la].

Konsequenzen der Storungen Als Ergénzung des vorhergehenden Punktes ist es wich-
tig zu bemerken, dass auch die kiirzesten Ausfille erhebliche Kosten produzieren kénnen.
Anders als bei der Fertigungstechnik, nimmt das Anfahren der Anlage nach einem unge-
planten Stillstand eine signifikante Zeit in Anspruch, wéhrend der kein (verkaufsfahiges)
Produkt produziert werden kann. Auch die Konsequenzen einer Stérung kénnen sowohl fir
den Menschen, als auch fiir die Umwelt, deutlich gravierender sein als in anderen industriel-
len Bereichen. Aus diesen Griinden gilt die Automatisierungsbranche als ,,sehr konservativ*
und fiir neue Technologien ,nicht empfanglich* [KHAJ05].

Heterogene Nutzerkreise Da die Automatisierungstechnik eine klassische interdiszipli-
nare Doméne ist, haben die beteiligten Nutzer sowohl unterschiedlichste Hintergriinde
als auch Qualifikationen vorzuweisen. So miissen z. B. unterschiedliche Kenntnissténde der
Nutzer in Regelungstechnik und im Bereich des Software Engineering berticksichtigt werden
[VHDBI13, Anforderung T6]. Zusétzlich kommt das komplexe Zusammenspiel der Techno-
logiehersteller, Engineering-Dienstleister und der Endnutzer dazu (vgl. Abschnitt 2.2.8).
Aus diesem Grund wird eine Unterteilung der Nutzer in unterschiedliche Gruppen in den
NAMUR-Empfehlungen, wie z. B. in [NAM14], vorgenommen.

Jede Anlage ist ein Unikat Normalerweise handelt es sich bei jeder prozesstechnischen
Anlage um ein Unikat [Koplla], das mit einem nicht zu vernachlassighbaren Aufwand er-
richtet wurde. Obwohl die Anlagen aus einer Menge der in ihrer Grofe und Komplexitét
variierenden Grundbausteine aufgebaut werden, bleiben viele Designentscheidungen und
Losungen auf die individuelle Anlage zugeschnitten. Somit erfordert jede Anlage eine spe-

ziell auf sie angepasste Betriebs- und Wartungsstrategie.

Bestehende bewdhrte Ansdtze und domanenspezifische Sprachen Wie in jeder Do-
méne, existiert auch in der Leittechnik eine historisch geprégte Landschaft aus Sprachen
(Anforderung M1 aus [VHDB13]), bewéhrten Ansétzen und etablierten Mustern. Das Be-
folgen dieser Muster und Anséitze ist eine Grundvoraussetzung fir die Akzeptanz einer
Technologie bzw. eines Produkts (Anforderung R3 aus [FVHF*15]) innerhalb der Domé-
ne. Die Anforderung bezieht sich nicht nur auf die eingesetzte Technologie, sondern auch
auf die Terminologie, die z. B. von den relevanten Normen oder dem jeweiligen Nutzerkreis
stark gepragt wird. Als Beispiel dienen die SPS Programmiersprachen aus der IEC 61131-3
(vgl. Abschnitt 2.2.4).
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Der Mensch als aktiver Systemgestalter Prozesstechnische Anlagen werden zentral
aus einer Leitwarte gesteuert [Fel01], in der Anlagenfahrer [VDI15a] die Aufgaben der Pro-
zessfuhrung ibernehmen bzw. iberwachen. Auch wenn die Anlage automatisiert betreibbar
ist, haben die Bediener jederzeit die Moglichkeit alle Aspekte der Prozessfiihrung zu beob-
achten bzw. die Automatik im manuellen Modus zu iiberstimmen. Die komplexen Vorgéange
werden teilweise immer noch manuell gesteuert [Fel01]. Die Rolle des Menschen wird auch
in den Umsetzungsempfehlungen fiir das Zukunftsprojekt , Industrie 4.0¢ mehrfach unter-
strichen: ,Der Mensch steht im kiinftigen smarten Produktionssystem im Mittelpunkt und
die Technik soll seine kognitive und physische Leistungsfidhigkeit durch die richtige Balance
von Unterstiitzung und Herausforderung férdern® [KWH13].

Neben diesen Merkmalen miussen zusétzlich die Unterschiede zwischen der Automatisie-
rungstechnik im Kontext der Verfahrens- und der Fertigungstechnik beriicksichtigt werden
(vgl. Abschnitt 2.1.1).

4.2. Anforderungsspezifikation

Basierend auf den Ergebnissen der Anforderungs-Analyse, werden in diesem Abschnitt
Anforderungen an das zu erarbeitende Modell zur Flexibilisierung der leittechnischen An-
wendungen spezifiziert und in Kategorien der funktionalen sowie der nicht-funktionalen
Anforderungen unterteilt.

4.2.1. Funktionale Anforderungen

Die funktionalen Anforderungen spezifizieren die gewtinschten Funktionalitdten eines Sy-
stems [Gli07] und beantworten die Frage: ,Was soll das System leisten?*

(F1) Anpassung der Struktur und (F2) Anpassung der Eigenschaften einer Anwen-
dung zur Laufzeit Anlageninderungen, insbesondere Anderungen der Softwarekompo-
nenten, mussen wegen der langen Betriebsphasen im laufenden Betrieb vorgenommen wer-
den [Eppl2, VHDF*14]. Dies sollte bereits bei der Entwicklung der Systeme beriicksich-
tigt werden. Adaptive Softwarearchitekturen wurden auch im Kontext der CPS gefordert
[KRS12]. Sowohl die Struktur der Anwendung (F1), als auch deren Eigenschaften (F2),
miissen dnderbar sein. Dieses muss insbesondere fiir anwenderspezifische Funktionen (An-
forderung T2 aus [VHDB13]) und unter den Gesichtspunkten des Ressourcenverbrauchs
gelten. Ein Beispiel fiir eine Strukturdnderung kann das Hinzufiigen einer Funktion sein,
die den Funktionsumfang der Anwendung erweitert, z. B. das Hinzufligen eines neuen Reg-
lers. Diese Anderungen bzw. Anpassungen gehen somit weit iiber das heute iibliche Ma8
der Anpassung bestimmter Parameter einer leittechnischen Anwendung hinaus. Die Ande-
rung der Eigenschaften einer Anwendung verdndern Eigenschaften beinhalteter Funktio-
nen, ohne deren Anzahl zu verdandern. So kann z. B. die Regelgiite eines Reglers durch ein
verbessertes Einschwingverhalten erhoht werden.

(F3) Anpassung an die duBeren Bedingungen (Adaptivitdt) Unter den &dufleren Be-

dingungen sind im Kontext dieser Arbeit vor allem die (Rechen-)Ressourcen, die einer
Anwendung zur Verfiigung stehen, gemeint. Die potentiellen Moglichkeiten einer Struktur-
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bzw. einer Eigenschaftsanpassung reichen fiir ein adaptives System nicht aus. Es miissen
zusitzlich eine Reihe von Regeln bzw. Algorithmen definiert sein, die diese Anpassungen
als Reaktion auf Anderungen der dufieren Bedingungen einleiten bzw. iiberwachen. Diese
Regeln betreffen sowohl die Struktur als auch die Eigenschaften einer Anwendung. Diese
Fluktuationen konnen nicht nur von transienter sondern auch von dauerhafter Natur sein.
So kann z.B. eine zuséatzliche Applikation dauerhaft auf einer Plattform installiert wer-
den, was zu einer Abnahme der verfligharen Ressourcen fiithrt. Auf der anderen Seite kann
die gesamte Hardware-Plattform im Zuge einer Modernisierung aufgeriistet werden — die
Software muss von dieser Anderung ohne manuelle Rekonfiguration profitieren kénnen.

(F4) Echtzeitfahigkeit Die Fahigkeit bestimmte Zusicherungen beziiglich des Zeitverhal-
tens eines Programms einhalten zu kénnen, ist fiir die Beherrschung technischer Prozesse
essentiell. Die Softwaresysteme miissen auch wahrend des Rekonfigurationsvorganges diese
Zusicherungen einhalten.

4.2.2. Nicht-funktionale Anforderungen

Die nicht-funktionalen Anforderungen beschreiben die Eigenschaften eines Systems [Gli07,
CNYM12] und beantworten die Frage: ,Wie soll das System die funktionalen Anforderun-
gen umsetzen?* Im Vergleich zu der Liste der funktionalen Anforderungen, ist die Liste der
nicht-funktionalen Anforderungen ldnger und stérker an das Gebiet der Prozessleittechnik
angepasst. Einige der aufgelisteten Aspekte finden sich in den standardisierten Richtlinien
fir Bewertung der Softwarequalitit wieder [ISO05].

(N1) Kompatibilitat mit existierenden Laufzeitumgebungen Durch die Verarbeitung
analoger Signale sind die meisten Systeme und deren Architekturen auf den Einsatz zeit-
lich gesteuerter Systeme ausgelegt [VHDB13, Fel01]. Die eingesetzten Laufzeitumgebungen
der PNKSs folgen den Paradigmen der zyklischen Ausfithrung und der Softwarearchitektur
der IEC 61131-3. Die zu erstellenden Konzepte diirfen diese Grundséitze nicht verdndern
und miissen mit bereits existierenden Laufzeitsystemen kompatibel bzw. mit minimalen
Anderungen anpassbar sein.

(N2) Kompatibilitat mit kooperativem Scheduling Auch wenn die IEC 61131-3 keine
Aussage beziiglich des Einsatzes eines bestimmten Scheduling-Verfahrens macht, werden in
den Umsetzungsempfehlungen [IEC03b] das unterbrechende und das kooperative Schedu-
ling miteinander verglichen (vgl. Einfithrung in Abschnitt 2.1.2). Die Vorteile des koopera-
tiven, von einer Taskliste gesteuerten Schedulers, sowie eine einfache Implementierung und
die Minimierung des Laufzeitaufwands, sprechen fiir den Einsatz eines solchen Systems fiir
die Laufzeitumgebungen der PNKs.

(N3) Minimaler Konfigurations- bzw. Migrationsaufwand Die Bewertung der Kom-
plexitit der Konfiguration und der Migration steht aus Anwendersicht im Mittelpunkt der
Bewertung des gesamten Prozessleitsystems [TM09a]. Eine steigende Anzahl von Werkzeu-
gen und Oberflachen tiberfordert die Endnutzer und schafft Probleme bei der Nutzerakzep-
tanz [Jorll] des Systems bzw. der Losung. Bei der Bedienung komplexer Funktionalitit
sollte der Nutzer, wenn moglich, durch ein Assistenzsystem unterstiitzt werden. Der zu
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erstellende Vorschlag soll keinen ,harten Bruch“ in Bezug auf die bestehende, anwen-
dungsspezifische Software darstellen [KMO5]. Im Idealfall miissen die bereits existierenden
Anwendungen bei dem ersten Systemeinsatz tibernommen werden kénnen und ohne wei-
teres Zutun einsetzbar sein (zunéchst auch ohne die zusitzliche Funktionalitét, z. B. ohne
flexibles Zeitverhalten).

(N4) White-Box Engineering Dem Nutzer sollte es moglich sein, moglichst viele Aspek-
te des Systems zu untersuchen bzw. manuell verdndern zu konnen. Diese nutzerorientierte
Vorgehensweise erfordert eine White-Box Implementierung, d. h. eine Implementierung, die
mit Mitteln der Introspektion und der Reflexion erkundbar bzw. dnderbar ist. Diese Struk-
tur lisst nicht nur Anderungen durch den Nutzer, sondern auch durch andere Systeme,

z. B. regelbasierte Eingriffe oder andere Anderungen der Anwendungsstruktur im Rahmen
der AdA zu.

(N5) Verwendung akzeptierter Programmiersprachen bzw. Konzepte Das einfache
Engineering und die Nutzerakzeptanz setzen die Verwendung der in der Anwendungsdomé-
ne akzeptierter Programmier- bzw. Beschreibungssprachen voraus. Denn nur solche Spra-
chen bieten eine Voraussetzung fiir die hersteller- und brancheniibergreifende Nutzung und
Dokumentation der erstellten Konzepte oder Programme. In der Doméne der Prozesslei-
ttechnik eignen sich fiir diese Zwecke insbesondere die graphischen Programmiersprachen
der IEC 61131-3 [JT00, TM09a] (vgl. Abschnitt 2.2.4).

(N6) Breite Anwendbarkeit Die Methoden und Konzepte sollen nicht nur im Kontext
einer bestimmten Aufgabe aus der Doméne der Leittechnik, wie z. B. der Implementierung
eines Reglers einsetzbar sein, sondern sich fiir mehrere Anwendungsszenarien eignen. Eine
weitere Moglichkeit der Erweiterung des Einsatzgebietes ist die Nutzung des Systems iiber
die Grenzen einzelner Schichten der Automatisierungspyramide hinweg, z. B. zwischen der
Betriebsleitebene und der Prozessleitebene.
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5. Analyse der Ansatze fiir
Anwendungen mit flexiblen
temporalen Eigenschaften

In diesem Kapitel werden existierende Ansétze fiir Anwendungen mit flexiblen Eigenschaf-
ten und deren operative Implementierung vorgestellt. Die Ansétze wurden in zwei Ka-
tegorien aufgeteilt. Die erste Kategorie in Abschnitt 5.1 beinhaltet Vorgehensweisen zur
dynamischer Anderung der temporalen Eigenschaften (vor allem der Ausfiihrungszeit) ein-
zelner Anwendungskomponenten. Die zweite Kategorie in Abschnitt 5.2 fasst Verfahren zur
flexiblen Anpassung der Zykluszeit der Komponenten in zyklischen Systemen zusammen.
Die Ausfithrungszeit in jedem Zyklus bleibt dabei unverdndert.

Im zweiten Schritt werden Potentiale dieser Ansétze aus dem Bereich der Echtzeitsyste-
me in Bezug auf die Anwendbarkeit im Bereich der Automatisierungstechnik in Abschnitt
5.3 untersucht. Die Eignung wird anhand der nicht-funktionalen Anforderungen aus Ab-
schnitt 4.2.2 beurteilt.

Durch den Fokus auf die temporalen Eigenschaften steht primér die Anforderung der
Flexibilisierung der Anwendungseigenschaften (F2) aus Abschnitt 4.2.2 im Mittelpunkt
der Betrachtung. Trotzdem darf die Struktur der Anwendung nicht vernachléssigt werden.
Schlieflich dient sie als Bezugspunkt fiir die Komponenten mit flexiblen Eigenschaften.
Aus diesem Grund werden auch Ansétze fiir das Scheduling flexibler Komponenten und
deren Kopplung mit in die Betrachtung einbezogen (insbesondere in Abschnitt 5.1.6).

Dariiber hinaus sind alle vorgestellten Ansitze mit der Ausfithrung in Echtzeit kompa-
tibel und erfiillen somit a priori die funktionale Anforderung F4.

5.1. Dynamische Anderung temporaler Eigenschaften
einzelner Anwendungskomponenten

Im Allgemeinen sind zwei Vorgehensweisen fiir die Flexibilisierung des Zeitverhaltens einer
Komponente erkennbar, die in jedem der vorgestellten Ansétze zu finden sind [GGH12]:

e Anpassung der Ausgabequalitidt der Komponente an die im Voraus bekannte Res-
sourcenverfiigharkeit und

e inkrementelle Verbesserung der Ausgabe bei unbekannter Ressourcenverfiigbarkeit.

Unter Ressourcennutzung wird in dieser Arbeit priméar die vom Algorithmus benétigte Re-
chenzeit verstanden. Der erste Ansatz passt die Qualitiat der Ausgabe eines Algorithmus an
die festgelegte Rechenzeit an. Das Ziel ist hier z. B. eine moglichst hohe Genauigkeit einer
numerischen Approximation der Losung einer Differenzialgleichung bei einer vorgegebenen
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Rechenzeit zu erreichen. Die zweite Vorgehensweise hélt zu jedem Zeitpunkt eine ,akzep-
table“ Losung bereit, die inkrementell verbessert wird, sodass die Berechnung jederzeit
abgebrochen werden kann.

Neben der Qualitat der Ausgabe konnen auch weitere Kriterien iiber den Ressourcen-
verbrauch eines Algorithmus entscheiden. So kann, z.B. die Laufzeit eines Algorithmus
von bestimmten Eigenschaften der Eingabe abhidngen (neben deren GroSe). Sollte die-
se Eigenschaft im Voraus ermittelbar bzw. manipulierbar sein, so kann das System die
Ressourcennutzung des Algorithmus vorhersagen bzw. beeinflussen.

5.1.1. Adaptive Algorithmen

Adaptive Algorithmen sind Algorithmen, deren Laufzeit nicht nur von der Groe der Ein-
gabe, sondern auch von einem bestimmten Qualitatsmerkmal dieser abhingt [ECW92].
Ein Beispiel fiir eine Klasse solcher Algorithmen sind Sortieralgorithmen, die auf den , fast
sortierten“ Probleminstanzen weniger Rechenzeit benétigen als auf den komplett unge-
ordneten Instanzen gleicher GroBe. Adaptive Verfahren eignen sich insbesondere fiir das
Problem des Sortierens, da viele Probleminstanzen in der Praxis bereits nah an der ge-
wiinschten Reihenfolge vorsortiert sind. Das Qualitdtsmerkmal, von dem die Laufzeit zu-
sétzlich abhangt, ist in diesem Fall die ,,Unordnung“ der Probleminstanz.

Eine Moglichkeit die Unordnung quantitativ auszudriicken, ist die Messung der Anzahl
der Inversionen in der Eingabesequenz (z1, ..., x,). Ein Paar (4, j) ist eine Inversion genau
dann, wenn ¢ < j und z; > z; [ECW92]. Die Anzahl der Inversionen fiir eine bereits
sortierte Folge ist null und hangt nur von der Ordnung der Elemente in der Eingabesequenz
ab.

Der Wert des Qualitatsmerkmals muss dem Algorithmus nicht im Voraus bekannt sein,
sondern wird zur Laufzeit von ihm entdeckt®. Dieses geschieht z. B. durch die Anzahl der
Tauschoperationen wihrend des Sortiervorgangs. Somit legt der Wert des Qualitatsmerk-
mals, neben der Eingabegrofie, die tatsachliche Laufzeit des Algorithmus fest und kann in
die Analyse seiner Laufzeit einbezogen werden. Diese Analyse hangt stark von der genauen
Definition des Qualitdtsmerkmals und dem untersuchten Algorithmus ab.

5.1.2. Anytime Algorithmen

Anytime Algorithmen [DB88] haben die Moglichkeit, Rechenzeit gegen Qualitit der Aus-
gabe ,einzutauschen* und besitzen folgende charakteristische Merkmale [Zil96, Gra96,
Kopllal:

e Qualitatsmafl der Losung: Der Algorithmus liefert neben dem Ergebnis auch eine
Bewertung dessen Qualitét. Dieser Wert muss relativ einfach zur Laufzeit berechen-
bar sein und kann von den abhéngigen Systemen evaluiert werden. Die Qualitat muss
kein quantitativer Wert sein.

e Vorhersagbarkeit: Der Zusammenhang zwischen der Laufzeit und der Qualitat der
Ausgabe muss fiir die Ressourcenzuteilung bekannt bzw. vorhersagbar sein. Diese
Information kann entweder iiber eine Funktion der Qualitat in Abhéngigkeit von der
Laufzeit oder in Form einer Wahrscheinlichkeitsverteilung vorliegen.
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e Monotonie: Die Qualitat der Losung verbessert sich mit der steigenden Laufzeit
des Algorithmus monoton.

e Unterbrechbarkeit und Fortsetzung: Anytime Verfahren kénnen jederzeit unter-
brochen werden und geben die bis zu dem Zeitpunkt beste Losung aus. Ebenso kann
die Berechnung nach der Unterbrechung weiter fortgesetzt werden — die partiellen
Ergebnisse unterliegen dabei weiterer Verfeinerung.

Neben der im letzten Punkt erwédhnten Unterbrechbarkeit des Algorithmus, existiert noch
ein zweiter Betriebsmodus der Ausfithrung iiber eine vereinbarte Zeit [Gra96] bzw. tiber
diese Zeit hinaus. Wegen der Monotonie kann das Verfahren die zusatzliche Rechenzeit
sinnvoll nutzen und die Lésung verbessern.

Im Allgemeinen kann man die inkrementelle, monotone Verbesserung der Losung als das
Hauptmerkmal dieser Klasse der Verfahren ansehen. Veréffentlichungen zu Anytime Algo-
rithmen haben deswegen die Entwicklung solcher Verfahren fiir bereits bekannte Probleme
im Fokus. Typischerweise wird nur die Rechenzeit als Ressource angesehen.

5.1.3. Ressourcenadaptive Algorithmen

Ressourcenadaptive (Resource-Aware oder ,multi-fidelity* [PSGS04]) Algorithmen haben
die Moglichkeit, ihr Verhalten (z. B. iiber die Anderung der Parameter) in Abhéngigkeit
von bekannten Einschrénkungen bzw. der Verfiigbarkeit von Ressourcen zu variieren. Die
Variation kann z. B. die Qualitat der Losung oder die benétigte Rechenleistung betreffen.

Anwendungen dieser Algorithmusklasse sind vor allem im Bereich des Cloud-Computings
und der drahtlosen Netzwerke zu finden. Zum einen unterliegt die verfiigbare CPU-Zeit
Schwankungen. Zum anderen ist die verfiigbare Bandbreite oder die Verbindungsquali-
tét der Netzwerkanbindung betroffen. Andere Anwendungsbeispiele kommen z. B. aus der
Softwareverifikation, wobei der verfiighare Arbeitsspeicher oft der limitierende Faktor ist
[ATVO08].

Die Umsetzung eines ressourcenadaptiven (RA) Ansatzes erfordert die Implementierung
einer Ressourceniiberwachung, um die verfiigharen Ressourcen jederzeit erfassen zu kon-
nen und eines Entscheidungsmechanismus, um das eigene Verhalten bzw. die Qualitit der
Losung anzupassen [GGH12]. Die Formulierung der Regeln zur Anpassung kann entweder
dem Endnutzer iiberlassen werden oder von den Algorithmen gekapselt sein — die tatséch-
lichen Mechanismen der Anpassung sind stark doméanenspezifisch.

Ein Beispiel fir ein RA-Framework aus dem Bereich der eingebetteten Systeme ist das
ACTORS Projekt [BBE*11]. Das Ziel des Projekts ist die Entwicklung eines adaptiven
Schedulers fiir das Linux Betriebssystem, der die Zuteilung der Ressourcen abhéngig von
den Anforderungen der Anwendungen anpassen kann. Die Zuteilung passiert anhand der
vordefinierten diskreten Service-Levels der gemanagten Anwendungen, die im Dialog mit
dem Ressourcen-Manager stehen. Die einzelnen Anwendungen kénnen dem Ressourcenma-
nager ihren Bedarf an Ressourcen iiber die Angabe ihrer Zufriedenheit* mitteilen. Der
Manager bekommt seinerseits die Ubersicht iiber die verfiigharen Ressourcen des Systems.
Im Projekt werden zwei Ressourcenklassen benutzt — die Bandbreite der CPU-Nutzung
(d.h. der Anteil der gesamten CPU-Leistung, der der Anwendung zugeteilt wurde) und
die maximale Wartezeit der Anwendung auf die Zuteilung der Ressource.
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Es existieren weitere Beispiele fiir die Nutzung von RA-Algorithmen in Bereichen der
Service-Orchestrierung [PSGS04, NK12], bei der Analyse von Datenstromen [GY06] oder
im Rechencluster-Management [PCC*11].

Im Gegensatz zu Anytime Algorithmen steht bei ressourcensensitiven Ansétzen nicht die
inkrementelle Verbesserung der Losung im Mittelpunkt. So kénnen z. B. bei vordefinierten
Service-Levels unterschiedliche Versionen eines Algorithmus abgearbeitet werden, die die
Zwischenlosung nicht beliebig verbessern. Dariiber hinaus ist die Betrachtung von anderen
Ressourcen als der Rechenzeit bzw. deren Kombination moglich. Als Beispiel dienen die
Power-Aware“ Echtzeitsysteme, die den Energieverbrauch des Systems beriicksichtigen
[AMMO4].

5.1.4. Elastische Algorithmen

Als Kombination der ressourcensensitiven und Anytime Algorithmen fiir den Bereich des
Cloud Computings wurden in [GGH12] die elastischen Algorithmen vorgeschlagen, in deren
Definition der Begriff der Elastizitét in seiner 6konomischer Bedeutung verstanden wird.
Somit bedeutet die Elastizitit das Maf# der Anderung einer Variable der Kostenfunktion
bei Anderung einer anderen Variable, z. B. wie reagiert der Preis der Cloud-Infrastruktur
auf die Anderung der Nachfrage.

Die Definition der elastischen Algorithmen geht von einer inkrementellen Berechnung
der Ergebnisse aus, wobei in jeder Iteration nicht nur der aktuell beste Wert des Ergebnis-
ses, sondern ein zusétzlicher, fiir die inkrementelle Verbesserung notwendiger, Kostenwert
berticksichtigt wird.

5.1.5. Imprecise Computation Model

Das Imprecise Computation Model wurde entwickelt um transiente, d.h. voriibergehende
Uberlastungen eines Echtzeitsystems ausgleichen zu kénnen [LLB*94, But11]. In einem
solchen Fall kénnen die Ausfithrungszeiten der einzelnen Komponenten einer Anwendung
reduziert werden, um zusitzliche Ressourcen verfiighar zu machen. Die Voraussetzung
dafiir ist aber ein auf diese Anpassbarkeit abgestimmter Entwurf der einzelnen Kompo-
nenten. Eine Moglichkeit dafiir wéire z. B. die Nutzung von Anytime Verfahren, die durch
die Komponenten gekapselt werden.

Das Imprecise Computation Model stellt eine Verallgemeinerung der Anytime Algorith-
men dar [LLB™94] und hat nicht den eigentlichen Algorithmus bzw. seine Charakteristika,
wie die inkrementelle Verbesserung der Ergebnisse, sondern die Aspekte der Organisation
bzw. der Komposition solcher Algorithmen zu einem Gesamtsystem und dessen Betrieb
innerhalb eines Betriebssystems im Fokus.

Die Vorgehensweise des Modells leistet einen positiven Beitrag zu der Fehlerrobustheit
des Softwaresystems und ermdglicht die sogenannte ,, graceful degradation®, also eine ange-
messene Reaktion des Systems auf Fehler bzw. Uberlastungen. In dem Kontext des Modells
fiithrt die Systemtberlastung zu einer schrittweisen Reduktion der Systemleistung, jedoch
zu keinem Komplettausfall des Systems. Entfillt die Ursache fiir die Uberlastung, kann
die Systemleistung wieder aufgebaut werden, bis der optimale Systemzustand wieder her-
gestellt ist.

Die einzelnen Elemente des Modells sind in Abbildung 5.1 dargestellt. Die Rechtecke
in der Abbildung stehen fiir einzelne Tasks, die wihrend einer Berechnung ausgefiihrt
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mehrere
Versionen

monoton

Abbildung 5.1.: Schematische Darstellung des Imprecise Computation Models [LLB194].

werden. Die Pfeile in der Abbildung symbolisieren den Vorrang bzw. die Abhéngigkeiten
zwischen einzelnen Tasks. Im Allgemeinen werden drei ,Grundmuster® fir den Aufbau
eines Imprecise Computation Systems unterschieden:

e 0/1 Ausfiihrung: Unterschiedliche Tasks oder Systemkomponenten werden manuell
als ,verbindlich® (weifl) oder ,optional“ (grau) kategorisiert. Die optionalen Kompo-
nenten werden im Fall einer Uberlastung bzw. Stérung des Systems ausgelassen. Da-
bei wird entschieden, ob ein Task immer oder eventuell ausgefithrt wird. Im Falle der
Ausfiihrung eines optionalen Tasks, muss das System sicherstellen, dass es geniigend
Rechenzeit fir seine Durchfithrung bekommt. Das klassische Beispiel fiir optionale
Tasks ist die eventuelle Neuberechnung bestimmter Werte, z. B. der Signalqualitit
oder der Messunsicherheit. Im Falle einer Uberlastung kénnen oft auch éltere Werte
benutzt werden, die die Realitdt noch geniigend genau abbilden.

e Mehrversionen-Methode: Von einem Rechenschritt werden mindestens zwei Vari-
anten mit dem gleichen Interface zur Verfiigung gestellt. Die Versionen unterscheiden
sich in der Qualitit des gelieferten Ergebnisses, benotigen dafiir aber auch unter-
schiedliche Laufzeiten, was die Flexibilitdt des Schedulers erhoht. Ein Beispiel fiir
die Mehrversionen-Methode ist die prozessbegleitende Simulation, die auf zwei un-
terschiedlichen Modellen, einem einfachen und einem komplexen, durchgefithrt wer-
den kann (vgl. Use-Case in Abschnitt 7.3). Wihrend einer Systemiiberlastung kann
der Simulation-Task auf das einfachere Modell umschalten und die nachfolgenden
Rechenschritte weiterhin mit aktuellen Daten versorgen.

Die Analyse der Mehrversionen-Tasks kann auf die Betrachtung von 0/1 Ausfiih-
rung reduziert werden: Die kiirzeste Laufzeit einer Version wird dabei als verbindlich
angesehen und die Laufzeitdifferenz zwischen den Versionen als optional.

e Meilenstein-Methode bzw. Monotone Berechnung: Monotone Berechnungen
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ykapseln“ das Konzept der Anytime Algorithmen (vgl. Abschnitt 5.1.2). Dabei muss
ein bestimmter Hauptteil verbindlich ausgefithrt werden. Dieser liefert ein hinrei-
chend gutes Ergebnis, das dann iterativ verbessert werden kann. Als Beispiel fur
monotone Berechnungen dienen viele Verfahren der numerischen Mathematik.

Die monotone Verbesserung kann entweder jederzeit abgebrochen werden oder in
kurze ununterbrechbare Iterationen aufgeteilt werden, die das Ergebnis in diskreten
Schritten verbessern. Die monotonen Berechnungen sind aus der Scheduling-Sicht am
flexibelsten, da sie teilweise online gescheduled werden kénnen [LLB*94].

Das Scheduling der Anwendung, die nach den oben beschriebenen Prinzipien aufgebaut
ist, wird anhand der Fehlerfunktionen der einzelnen Tasks statisch oder dynamisch durch-
gefithrt. Aus der Scheduling-Perspektive werden die einzelnen Tasks 7; jeweils in zwei
Untertasks unterteilt: einen verbindlichen Task M; und einen darauf folgenden optiona-
len Task O;. Die Summe der WCET der Untertasks ergibt die WCET des urspriinglichen
Tasks, falls der optionale Untertask kein monotoner Task ist. Monotone Tasks konnen be-
liebig lang ausgefithrt werden und haben daher keine WCET. Der Scheduler muss dem
verbindlichen Task die benétigte Ausfithrungszeit garantieren. Die Ausfiihrungsdauer des
optionalen Untertasks O; wird von der Fehlerfunktion beeinflusst, die nur von dieser Dauer
abhangig ist. Fehlerfunktionen konnen z. B. linear, konvex oder konkav sein. Bei terminie-
renden optionalen Tasks verschwindet der Fehler, sobald deren Ausfithrungszeit der WCET
gleich ist. Bei monotonen Tasks konvergiert der Fehler mit fortschreitender Ausfithrungszeit
gegen Null.

Ein haufiges Ziel fiir das Scheduling solcher Probleme ist die Minimierung der Summe der
Fehler einzelner Tasks, die eventuell noch gewichtet sind, um Prioritdten der Tasks abzu-
bilden. Fiir unterbrechendes Scheduling sind optimale polynomielle Algorithmen bekannt
[LLS*91]. Das nicht-unterbrechende Scheduling-Problem ist NP-hart [LLS91].

Die Forschungsarbeit im Bereich des Schedulings der Imprecise Tasks, basierend auf
der Unterteilung in verbindliche und optionale Tasks, brachte ein Feld des ,,Reward-Based
Scheduling® hervor. Die Fehlerfunktionen fir die Bewertung der Laufzeit der optionalen
Tasks werden in diesem Feld durch Belohnung-Funktionen ersetzt. Die Belohnung héangt
von der Laufzeit des O; ab und kann, dhnlich zu der Fehlerfunktion, linear, konvex oder
konkav sein. Die Problemstellung ist demnach ein giiltiger Schedule, welcher die Summe
der (gewichteten) Belohnungen der einzelnen Tasks maximiert. Eine Ubersicht iiber die
Komplexitit einzelner Problemklassen und die verfiigbaren Heuristiken im Rahmenwerk
des Reward-Based Schedulings ist in [AMMO04] zu finden.

Zusammengefasst bietet das Imprecise Computation Model drei unterschiedliche Grund-
muster fur die Definition der bedingt ausfithrbaren Programmlogik bzw. des Verhaltens
einer Komponente, die im Zusammenspiel zwischen dem Programmierer (der die Tasks
auslegt und einer der drei Kategorien zuordnet) und dem Laufzeitsystem (das die Laufzei-
ten der Tasks einplant und ausfiihrt) zu einer adaptiven Systemreaktion auf Uberlastungen
fithrt. Trotz der urspriinglichen Auslegung des Modells auf die Amortisierung von Uber-
lastungen, also der Ressourcenknappheit, kann der gleiche Ansatz auch fiir den sinnvollen
Verbrauch von sonst ungenutzten Kapazitidten angewendet werden.
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5.1.6. Predictably Flexible Real-Time Scheduling

Als Ergénzung zu den Scheduling-Verfahren fiir das Imprecise Computation Model wird ein
dynamischer Scheduling-Ansatz vorgestellt, der die entstehende Slackzeit berticksichtigen
und an Komponenten oder sporadische Tasks verteilen kann.

Dieser Ansatz fiir die Zusammenarbeit zwischen offline und online Scheduling-Verfahren
wurde in [Fohl12] unter dem Namen ,Predictably Flexible Real-Time Scheduling® vorge-
stellt. Die Vorteile der tabellenbasierten Scheduler, wie Vorhersagbarkeit und die einfache
Implementierung, werden von den Nachteilen der fehlenden Flexibilitéit iiberschattet. Die
flexibel arbeitenden online Scheduling Verfahren sind hingegen schwerer vorherzusagen und
haben einen hoéheren Rechenaufwand wéihrend der Laufzeitphase.

Um von den Vorteilen beider Ansétze zu profitieren, schligt das Modell eine Kombi-
nation aus online und offline Scheduling-Verfahren fiir das Systemdesign vor. Somit wird
innerhalb eines Echtzeitsystems die Koexistenz der Scheduling-Ansétze fiir zeit- und ereig-
nisgesteuerte Systeme ermoglicht.

In der offline Phase des Modells werden fiir die einzelnen Jobs eines Tasksets die er-
laubten Zeitfenster berechnet, in denen die Ausfithrung des Jobs stattfinden darf, ohne die
Echtzeitschranken zu verletzen.

In der online Phase bestimmt nun ein Algorithmus den tatséchlichen Ausfihrungszeit-
punkt eines Jobs innerhalb des giiltigen Zeitfensters. Die so gewonnene Flexibilitat wird
in dem Modell fir die Ausfithrung aperiodischer Tasks angewendet, die ohne Anpassung
der im Voraus kalkulierten Scheduling-Tabelle méoglich ist.

5.2. Dynamische Anderung der Zykluszeit einzelner
Anwendungskomponenten

Im Kontext der zyklischen Ausfithrung einzelner Anwendungskomponenten kann der Res-
sourcenverbrauch einer Komponente durch die Anderung ihrer Ausfithrungshaufigkeit bzw.
ihrer Zykluszeit verandert werden. In diesem Abschnitt werden die gingigen Methoden fiir
diese Anpassung vorgestellt.

5.2.1. Elastic Model

Die Grundannahme des Elastic Models [But11, BA02] geht von einer verénderlichen Peri-
ode einzelner Tasks aus, die in einem bestimmten Intervall variiert werden kann.

Ein elastischer Task ist ein periodischer Task, der neben der WCET w; eine nominale
per;, und eine maximale per; . Periode, sowie einen Elastizitétskoeffizienten e; > 0 ent-
hélt. Der Letzte gibt Auskunft iiber die Elastizitat bzw. die Steifigkeit eines Tasks. Die
Periode des Tasks kann frei in dem Intervall [per;,, per;,.,.] variiert werden und hat so-
mit Einfluss auf die Utilization-Faktoren (vgl. Abschnitt 2.1.2) des Tasks und somit des
Gesamtsystems.

Im Falle einer Systemiiberlastung konnen die Utilization-Faktoren der Tasks durch die
Variation ihrer Zykluszeit so angepasst werden, dass die gesamte Auslastung den gewtinsch-
ten Vorgaben entspricht (z. B. eine bestimmte Schranke unterschreitet). Die Anpassung der
Zykluszeit eines Tasks passiert somit bei dem Hinzufiigen neuer Tasks, der Terminierung
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&=F

Ld Lmax LO L

Abbildung 5.2.: Drei Tasks mit Langenbeschrankungen im Elastic Model dargestellt als ela-
stische Feder [Butll]. Oben: vor der Komprimierung (die Gesamtlange Ly > Line,), unten:
nach der Komprimierung (die Gesamtlange Ly < Lyyaz).

eines periodischen Tasks oder einem Antrag auf eine Periodendnderung eines existieren-
den Tasks (im Rahmen des Intervalls). Alle Anderungen miissen durch einen Garantie-
Algorithmus auf ihre Zuléssigkeit (die Einhaltung der Lastvorgaben des gesamten Tasksets)
iiberpriift werden.

Die Anpassung der Zykluszeit erfolgt anschaulich durch die Betrachtung der Menge der
Tasks, als einer Menge elastischer Federn, deren Lange dem Utilization-Faktor des Tasks
pg;z entspricht, wobei per; € [pery,, per;,..] die tatsiachliche Periode des Tasks ¢ ist.

Die Kompression der Jobs ist in Abbildung 5.2 schematisch dargestellt. Die Linge ein-
zelner Federn Ly wird auf dem unteren Teil des Bildes durch die Austibung der Kraft F
verkleinert. Die Berechnung der einzelnen Federlingen ist ausgehend vom Kréftegleich-
gewicht des Systems analytisch moglich. Im Falle der Langenbeschrinkungen einzelner
Federn erfolgt diese Berechnung mithilfe eines iterativen Verfahrens. Mithilfe der gleichen
Berechnungen koénnen die Federn auch dekomprimiert werden — dies geschieht z.B. bei
der Terminierung oder dem Hinzufiigen eines Tasks. Die auf diese Weise errechneten Pe-
rioden der Tasks werden von dem untergeordneten unterbrechenden Echtzeit-Scheduler,
z.B. einem EDF-Scheduler, realisiert.

5.2.2. Quality-of-Control-basierte Betrachtung

Eine Anwendung der flexiblen temporalen Eigenschaften aus dem Aufgabenfeld der Rege-
lung bzw. der Integration der Regler in die Laufzeitsysteme wurde in [MFFR02, VFMO03]
vorgestellt. In diesen Veroffentlichungen wurden die Auswirkungen der dynamischen An-
derung der Zykluszeit einzelner Tasks auf den Regelfehler u.a. am Modell eines inversen
Pendels untersucht. Dieser Ansatz der Anpassung der Zykluszeit ist ahnlich zu dem Ansatz
des Elastic Models (vgl. Abschnitt 5.2.1). Der Unterschied besteht in der Qualitatsbewer-
tung und dem Ausloser fiir die Anderung der Zykluszeit eines Tasks.

Waihrend im Fall des Elastic Modells Anderungen der Menge von Tasks die Anderung der
Ausfithrungsraten auslosen, waren es in [MFFRO02] eine Perturbation der Regeldifferenz.
Somit wurde die Anpassung der Raten durch das physikalische System ausgelost. In einem
solchen Fall wurde der Regler so lange mit erhohter Rate ausgefiihrt, bis ein stabiler Zu-
stand der Strecke (wieder) erreicht wurde. Bei dieser Umverteilung der Ressourcen mussten
Tasks mit kleinerer Prioritdt temporar mit einer kleineren Rate ausgefiithrt werden.

Die Zielsetzung des Elastic Modells ist die Existenz eines giiltigen Schedules, d. h. eines
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Schedules, in dem alle Tasks die Echtzeitschranken einhalten. Das Ziel der Quality of Con-
trol (QoC)-basierten Betrachtung ist hingegen die Minimierung der integrierten normierten
Regelabweichung.

Die Integration der Konzepte aus den Bereichen der Regelungstechnik und der
Scheduling-Theorie wird im Allgemeinen als ,,Control-Scheduling Codesign® bezeichnet.

5.2.3. Job Skipping

Ein anderer Ansatz fiir die Variation der Ausfiihrungsrate eines Tasks ist die Methode des
Job Skippings, bei der bestimmte Jobs eines periodischen Tasks ausgelassen bzw. abge-
brochen werden. Die auf diese Weise kurzfristig gewonnene Rechenzeit kann fiir andere
Aufgaben eingesetzt werden, z. B. fiir die Ausfithrung sporadischer Tasks.

Ein Scheduling-Modell, das in der Lage ist die einzelnen Jobs auszulassen, wurde in
[KS95] vorgestellt. In diesem Modell haben die Tasks 7T; neben den Periode einen Skip-
Parameter s;, 2 < s; < oo. Dieser Parameter gibt an, wie hdufig Jobs ausgelassen werden
diirfen. Dazu werden die Jobs eines Tasks in rote und blaue Jobs aufgeteilt. Ein roter Job
darf nicht abgebrochen oder ausgelassen werden und muss rechtzeitig terminieren, ein blau-
er Job darf hingegen durch einen Abbruch oder eine Deadline-Uberschreitung ausgelassen
werden. Der Wert des Skip-Parameters s; wird dann wie folgt gedeutet [BA02]:

e wurde ein blauer Job ausgelassen, so miissen die darauf folgenden s; — 1 Jobs rot sein
und

e wurde ein blauer Job nicht ausgelassen, so ist der darauf folgende Job ebenfalls blau.

Es kann gezeigt werden, dass das Schedulability-Problem NP-hart ist [KS95]. In [BA02]
werden Schranken fiir das Scheduling der Tasksets mit Skip-Parametern mithilfe von EDF
Scheduler aufgezeigt.

5.3. Diskussion in Bezug auf nicht-funktionale
Anforderungen

Die bewerteten Ansitze wurden in Bezug auf das Objekt der Flexibilisierung in zwei Kate-
gorien unterteilt. Die erste Gruppe der Ansétze hat das Ziel die Ausfithrungsdauer einzelner
Tasks zu modifizieren, die zweite Gruppe die Zykluszeit der Tasks bei konstanter Ausfiih-
rungszeit des einzelnen Tasks. Fiir die Anwendung in der Leittechnik sind die Ansatze aus
allen zwei Bereichen interessant bzw. sinnvoll.

Aus den Ansétzen der ersten Gruppe bildet nur das Rahmenwerk des Imprecise Compu-
tation Models eine flexible Grundlage fiir den Einsatz im Bereich der Prozessleittechnik.
Da es sich bei dem Modell nur um ein Rahmenwerk handelt, sind sowohl unterschiedliche
Algorithmen als Grundbausteine, wie z. B. Anytime Algorithmen, als auch unterschiedliche
Scheduling-Verfahren zu deren Ausfiihrung, wie z. B. Reward-Based Scheduling oder Job
Skipping, beliebig miteinander kombinierbar. Somit kénnen auch die Ansétze der zwei-
ten Gruppe in das Rahmenwerk eingebracht werden. Dariiber hinaus kann das Konzept
des Predictable Flexible Scheduling fiir Scheduler angewendet werden, deren online Phase
fiir die Verteilung der anfallenden Slackzeit auf die einzelnen variablen Tasks iibernehmen
kann.
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Die funktionalen Anforderungen des Kapitels 4 werden bis auf die Anforderung (F1)
offensichtlich von dem Rahmenwerk abgedeckt. Die strukturellen Anderungen der Anwen-
dung (z.B. das Hinzufiigen neuer Komponenten) kénnen problemlos durch die Mechanis-
men der 0/1 Ausfithrung in dem Rahmenwerk abgebildet werden.

Die in Kapitel 4 aufgestellten nicht-funktionalen Anforderungen werden wie folgt durch
das Rahmenwerk des Imprecise Computation Models abgedeckt:

(N1) Kompatibilitat mit existierenden Laufzeitumgebungen Durch die zyklische Aus-
fithrung der Logik innerhalb der Laufzeitumgebung lasst sich die verfugbare Ausfihrungs-
zeit relativ einfach abschéitzen bzw. sogar zur Laufzeit ermitteln. Somit ist die, fiir die
optionale Komponenten verfiigbare, Ausfithrungszeit klar abgrenzbar und eine technische
Basis fiir die Ausfithrung dieser fast vollstandig etabliert.

(N2) Kompatibilitat mit kooperativem Scheduling Das Rahmenwerk setzt keinen spe-
zifischen Scheduler voraus, und ist auch fiir das kooperative Scheduling anwendbar. Einige
Elemente des Rahmenwerks erfordern dennoch Anpassungen. So kann z. B. eine Iteration
einer monotonen Berechnung nicht zwischen den Meilensteinen abgebrochen werden.

Dariiber hinaus erfordert der Einsatz von Ansitzen aus der zweiten Gruppe, z. B. Job
Skipping, gewisse Anpassungen des Scheduling-Modells.

(N3) Minimaler Konfigurations- bzw. Migrationsaufwand Die bestehende Automa-
tisierungssoftware kann durch die Anwendung der 0/1 Ausfithrung in das Rahmenwerk
eingefiithrt werden. Die existierenden Tasks werden im Kontext des Rahmenwerks zu ver-
bindlichen Tasks erklart. Somit ist deren Ausfiihrung gesichert.

Dieser einfache Schritt ist die Voraussetzung fiir eine Migration und ist praktisch oh-
ne Engineering-Aufwand durchfithrbar. Die auf diese Weise entstandene Anwendung kann
sukzessiv um zusétzliche komplexe Elemente, z. B. Komponenten mit monotonen Berech-
nungen, erweitert werden, die die vorhandene Slackzeit ausnutzen. Der Konfigurationsauf-
wand fiir den Nutzer ist typischerweise nur auf das Setzen der Prioritaten bzw. Gewichte
einzelner Komponenten beschrankt.

(N4) White-Box Engineering Bereits die graphische Darstellung des Rahmenwerks in
Abbildung 5.1 deutet auf eine gute Moglichkeit der Introspektion einzelner Komponenten
hin. Die in Kapitel 6 vorgeschlagene Architektur zur Umsetzung des Rahmenwerks greift
auf die bewédhrten Methoden des komponentenorientierten Softwareengineerings bzw. der
auf Funktionsbausteinen basierenden Software zuriick, die um einzelne Elemente des Im-
precise Computation Models erweitert werden. Die bestehenden Engineering-Methoden
sind somit weiterhin anwendbar.

(N5) Verwendung bekannter Programmiersprachen bzw. Konzepte Die Frage, wie die
variablen Verhalten der einzelnen Komponenten, z. B. die 0/1 oder die monotone Ausfith-
rung beschrieben werden, ist nicht eindeutig gelost. In der Literatur wird dieses Verhalten
typischerweise in héheren Programmiersprachen, wie z. B. Java oder C++, beschrieben.
Diese Sprachen sind weder doménenspezifisch fir den Bereich der Leittechnik, noch eignen
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sie sich fir das White-Box Engineering (Anforderung N5). Eine doménenspezifische Spra-
che fir die Beschreibung des Komponentenverhaltens, die auch White-Box Paradigmen
unterstiitzt, wird in Abschnitt 6.2 eingefiihrt.

(N6) Breite Anwendbarkeit Das Rahmenwerk schriankt den ,Inhalt“ und somit die An-
wendung bzw. die Bestimmung der ausgefithrten Komponenten nicht ein. Somit existieren
keine Anwendungseinschrankungen, wie z. B. die Einschrinkung des QoC auf den Bereich
der Regelung.
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In diesem Kapitel wird ein Rahmenwerk fir die Beschreibung von RA-Anwendungen und
deren nahtlose Einbettung in zyklische Laufzeitsysteme vorgestellt. Basierend auf den Er-
gebnissen der Analyse des vorherigen Kapitels, wurden die folgenden Ansétze fiir das vor-
gestellte Rahmenwerk ausgewéahlt:

e Imprecise Computation Model als grundlegende Architektur fiir den Aufbau von RA-
Anwendungen,

e Predictably Flexbile Scheduling als das Scheduling-Prinzip, das die Vorteile von
offline- und online-Scheduling vereint und

e Elastic Model fiir die heuristische Berechnung der vom Scheduler vorgegebenen Aus-
fithrungsdauer einzelner Komponenten im Rahmen des Schedulings.

Als Grundlage fir die Koexistenz der RA-Anwendungen mit bereits eingesetzten Syste-
men dient eine flexible Softwarearchitektur des Laufzeitsystems, die in Abschnitt 6.1 unter
dem Begriff ,einheitliche Laufzeitarchitektur® vorgestellt wird.

Um die Anforderungen des Engineerings fiir die Definition und die Implementierung
zeitsensitiver Eigenschaften der Anwendung zu erfiillen, wird ein graphischer Beschrei-
bungsformalismus eingefiihrt. Dieser weist eine groBe Ahnlichkeit zu den bereits verwende-
ten Prozedurbeschreibungssprachen auf. Das eingefiihrte Meta-Modell wird in Abschnitt
6.2 diskutiert.

Die Zuteilung der Zeitressourcen an die einzelnen Anwendungen erfolgt durch einen
Systemscheduler, dessen Referenzarchitektur dem Prinzip des Predictably Flexible Sche-
dulings folgt. Der Scheduler ist im Fokus des Abschnitts 6.3.

6.1. Einheitliche Laufzeitarchitektur

Bevor ein Scheduling-Problem aufgestellt und ein Algorithmus zu dessen Losung definiert
werden kann, muss eine Reihe von Annahmen tiber die auszufithrenden Programmelemente
und deren Abhéngigkeiten getroffen werden. Dieses Ziel wird im Folgenden durch eine, an
die beiden Programmiernormen IEC 61131-3 und IEC 61499 angelehnte, Softwarearchitek-
tur fir leittechnische Anwendungen erfiillt. Die vorgestellte Architektur ist Voraussetzung
fiir eine flexible Programmausfithrung, sowie die Koexistenz der Ausfithrungskonzepte bei-
der Standards.

Wie in Abschnitt 3.1 erwdhnt, wird in dieser Arbeit die in [GE13b] als ,einheitliche
Laufzeitarchitektur® eingefithrte Systemarchitektur angewendet. Die Vorarbeiten haben
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Abbildung 6.1.: Strukturelle Darstellung der einheitlichen Laufzeitarchitektur.

sich auf die Aspekte der Verteilbarkeit der Anwendungen fokussiert. Im Gegensatz dazu
stehen im Rahmen dieser Dissertation die Scheduling-Aspekte der einzelnen Komponenten
im Vordergrund.

6.1.1. Grunddefinitionen

Die Laufzeitarchitektur wird grob in eine Software- und eine Hardwarearchitektur unter-
teilt. Zunéchst wird die Softwarearchitektur vorgestellt, deren Aufbau, mit der Ausnahme
der selbstéindigen Komponenten, der Architektur der IEC 61499 (vgl. Abschnitt 2.2.6)
dhnelt.

Die strukturelle Darstellung der Architektur in einer UML-artigen Notation ist in Ab-
bildung 6.1 dargestellt. Die Softwarearchitektur besteht aus den folgenden Teilen:

e Anwendung: Eine Anwendung ist definiert als die Gesamtheit der Komponenten
(Bausteine, Komponenten und deren Kommunikationsverbindungen), die einen ge-
meinsamen Zweck haben. Diese Definition verleiht der Anwendung eine gewisse Se-
mantik und unterscheidet sich somit von der pragmatischen Definition einer Anwen-
dung im Kontext der IEC 61499: ,eine Anwendung [besteht] aus einem FBN, dessen
Knoten Funktionsbausteine oder Unteranwendungen und deren Parameter sind und
dessen Kanten Datenverbindungen und Ereignisverbindungen sind*.

Die Anwendung ist ein logischer Namensraum, der zur Gruppierung von weiteren
Strukturierungseinheiten, wie z. B. den selbststandigen Komponenten (vgl. Abschnitt
6.1.2), benutzt wird. Die Vorstellung der Anwendung als einen logischen ,Contai-
ner®, spiegelt die Moglichkeit der Wiederverwendbarkeit einzelner Anwendungsteile
in anderen Anwendungen wieder. Somit konnen z. B. mehrere Instanzen eines Stan-
dardbausteintypen in unterschiedlichen Anwendungen Verwendung finden.

Die Anwendung besitzt wegen ihrer logischen Natur keine direkten Schnittstellen
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bzw. keinen Ausfihrungsrahmen. Fiir die Interaktion mit der Umgebung kann aller-
dings eine dedizierte Komponente als Vertreter der Anwendung definiert werden.
Existiert dieser, so definieren die Schnittstellen des Vertreters die Schnittstellen der
Anwendung. In anderen Féllen wird die Vereinigung der beinhalteten Komponenten
als die Anwendungsschnittstelle definiert.

e Selbststindige Komponente: Die selbststandige Komponente (SK) wird im Ab-
schnitt 6.1.2 detailliert vorgestellt. Die SK ist eine neuartige POU-Klasse, die fiir die
Kapselung der Verteilbarkeits- und der Schedulingsaspekte genutzt wird.

e Funktionsbausteinnetzwerk: Ein FBN enthilt die Grundeinheiten der Anwen-
dung bzw. der SK und spezifiziert Signalverbindungen zwischen diesen. Diese Bezie-
hungen beschreiben zum einen den Datenfluss zwischen einzelnen POUs durch die
Signalverbindungen. Zum anderen kann ein Bausteinnetzwerk Informationen tiber
das Scheduling der enthaltenen POUs enthalten.

Da sowohl die SKs, als auch die FBNs Informationen zum Scheduling enthalten, sind
beide POUs als Plattform fiir den Einsatz bzw. die Kapselung der RA-Algorithmen
bestens geeignet.

e Funktionsbaustein: Funktionsbausteine sind die Grundeinheiten der Anwendung.
Sie kapseln die einzelnen Algorithmen und stellen die Schnittstellen zur Verfiigung.
Die IEC 61131-3 definiert zusétzlich noch Funktionen — das sind spezielle Bausteine
ohne interne Speicher. Durch die Abwesenheit der Speicher miissen keine Instanzen
der Funktionen gebildet werden. Es wird in dieser Arbeit keine explizite Unterschei-
dung zwischen Funktionsbausteinen und Funktionen vorgenommen.

Die vorgestellte Softwarearchitektur wird durch die folgende Hardwareabstraktion er-
génzt, die mit der Systemarchitektur der IEC 61499 grofie Ahnlichkeit aufweist:

e Gerat: Ein Gerit entspricht einer PNK und stellt ein Hardware-Interface zwischen
der physischen- und der cyber-Welt bereit. Das Gerét enthélt die genutzte I/O- und
Kommunikationshardware, z.B. I/O- und Feldbusbaugruppen bzw. Karten sowie
eine oder mehrere Ressourcen.

e Ressource: Eine Ressource ist die Abstraktion einer CPU, d. h. einer Rechen- bzw.
Ausfithrungseinheit. Die Ressourcen teilen die Infrastruktur des iibergeordneten Ge-
rits, z. B. die I/O-Vorrichtungen.

Sind Anwendungen Typen oder Instanzen?

Es sind beide Sichten sind vertretbar, ob Anwendungen typisierbar sind. Es existieren
Anwendungen, die sowohl typisierbar als auch als einzigartige Instanzen, die aus Instan-
zen weiterer Unterteile zusammengesetzt sind. Die Fragestellung lasst sich auf weitere
POU-Untertypen tibertragen und ist nur bei Funktionsbausteinen einheitlich von beiden
Standards adressiert: Beide definieren eine klare Typ-Instanz Beziehung auf der Ebene der
Funktionsbausteine. Die IEC 61499 erwéihnt die Typisierung auf einer héheren Komposi-
tionsebene im Kontext einer ,Unteranwendung®.
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Tabelle 6.1.: Grobe Korrespondenz der Begriffe der drei vorgestellten Architekturen.

Einheitliche Laufzeitarchitektur IEC 61131-3 IEC 61499
- wProjekt® System
Gerat Konfiguration Gerat
Ressource Ressource Ressource
Anwendung — Anwendung
Selbststandige Komponente Task + Programm —
FBN Task + FBN FBN
Funktionsbaustein Funktionsbaustein/Funktion Funktionsbaustein

Die einheitliche Laufzeitarchitektur im Kontext der IEC 61131-3 und der IEC 61499

Es existieren viele Ansétze fiir die Migration und den Vergleich der Architekturen bei-
der Normen [DDV14, SWH*08, WZSS09]. Damit die vorgeschlagene Architektur besser
eingeordnet werden kann, werden die Begriffe der Normen in der Tabelle 6.1 gegeniiber-
gestellt. Fiir den Vergleich zwischen der IEC 61131 und der IEC 61499 wurde der zweite
Ansatz aus [SWHT08] gewithlt. Dieser basiert auf der syntaktischen Aquivalenz des Begrif-
fes ,Ressource®. Im Gegensatz dazu, konnen auch funktionale Eigenschaften der einzelnen
Elemente im Vordergrund stehen, was zu einer anderen Korrespondenz fithrt (wie z. B.
der erste Ansatz in [SWH*08] oder [Yul6]). Die obere Hilfte der Tabelle reprisentiert die
Hardware-Hierarchie der jeweiligen Architektur, die untere Haélfte die Beziehungen zwi-
schen den einzelnen Software-Komponenten. Unter dem Begriff ,Projekt“ in der mittleren
Spalte ist das Projekt des Engineering-Werkzeugs gemeint, das mehrere Konfigurationen
beinhalten kann [SWHT08].

6.1.2. Selbststandige Komponenten

In [GE13b] wurde der Begriff einer selbststandigen Komponente (SK) eingeftihrt, der im
Kontext der Softwarearchitektur der IEC 61131-3 eine gesonderte Rolle einnimmt. Um
eine bessere Verteilbarkeit und Portabilitdt der enthaltenen Programmlogik gewéhrleisten
zu konnen, werden einige der klassischen Aufgaben der Laufzeitumgebung an die SKs
delegiert. Dazu gehoren z. B. der dedizierte Anschluss an ein nachrichtenorientiertes Kom-
munikationssystem und die Ablaufkontrolle der enthaltenen POUs.

Die Diskussion in [GE13b] bezog sich hauptséchlich auf die Verbesserungen der Verteil-
barkeit und Portabilitat der leittechnischen Anwendungen (vgl. Abschnitt 6.1.2) und kon-
zentrierte sich auf die Strukturierung der Anwendungen. Eine verteilte, dienstorientierte
Architektur wird als eine der Voraussetzungen fiir die Umsetzung von Industrie 4.0 genannt
[FDT*15]. In diesem Abschnitt werden hingegen die SKs aus der operativen Perspektive
dargestellt. Dabei stehen die fiir die Ausfithrung relevanten Eigenschaften der Komponente
im Fokus der Betrachtung. Diese Eigenschaften umfassen z. B. die Ausfithrungsdauer und
-rate einer Komponente bzw. die Ausfiihrung der enthaltenen POUs.

SKs und FBNs enthalten dedizierte Ausfithrungsvorschriften fiir die enthaltene Pro-
grammlogik und kénnen die Ausfithrung dieser selbststandig steuern bzw. iiberwachen. Ob
die Ausfithrungskontrolle tatsichlich ganzheitlich an die einzelne POUs abgegeben wird
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oder durch das Laufzeitsystem mit Mitteln der Introspektion als ,,Empfehlung® fiir den
Systemscheduler interpretiert wird, ist eine Designentscheidung und héngt nicht zuletzt
davon ab, ob die POU iiberhaupt die Introspektion zuldsst (d. h. ob die Komponente bzw.
das FBN zur Laufzeit als ein White-Box Modell vorliegt).

Die Vorteile einer gekapselten Ausfithrungsstruktur der SKs und FBNs umfassen unter
anderem:

o Koexistenz zwischen unterschiedlichen Ausfithrungsparadigmen: In einer
Laufzeitumgebung kénnen mehrere Ausfithrungsparadigmen existieren. Ein Beispiel
dafiir sind die der zeit- und der ereignisgesteuerten Systeme im Sinne der Kontroll-
logik nach IEC 61131-3 und IEC 61499.

e Verbesserte Portabilitat: Durch gemeinsame Verwaltung der Programmelemente
und deren Ausfithrungsvorschrift in einer architektonischen Einheit wird die Porta-
bilitat dieser gesteigert. Dies ist ein Gegensatz zur getrennten Verwaltung dieser in
Tasks und POUs nach dem Softwaremodell der IEC 61131-3.

e Flexibilisierung der Ausfiithrungsstruktur: Durch beliebige Kombination un-
terschiedlicher Paradigmen der Ausfiihrungskontrolle kann die Ausfithrungsstruktur
flexibel gestaltet werden.

Der letzte Punkt wurde in [GE13b] dem Themenkomplex ,hierarchisches Scheduling® zu-
geordnet. Dieses Prinzip wird in Abschnitt 6.1.7 vorgestellt. Ein dhnlicher Ansatz wurde
in einer spéteren Publikation zur Migration der IEC 61131-3 Anwendungen auf die IEC
61499 vorgeschlagen [DDV14].

Die Komponenten bieten auch in Bezug auf die Anforderung der Migration bestehen-
der Anwendungen einen guten Ansatzpunkt, um diese durch geeignete ,Kapselung® zu
flexibilisieren (vgl. die Deployment-Facette einer Anwendung in Abschnitt 6.1.4).

6.1.3. Inter-Komponenten Kommunikation

Die Kommunikation zwischen den selbststandigen Komponenten folgt vorzugsweise dem
Prinzip der losen Kopplung, um die Verteilbarkeit der Komponenten auf unterschiedliche
Ressourcen bzw. Geréte zu erméglichen bzw. zu erleichtern. Dieses kann z. B. durch nach-
richtenorientierte Kommunikation ermoglicht werden. Spezielle Koppler-Bausteine werden
benétigt, um eine Schnittstelle zwischen der nachrichtenorientierten Kommunikation auf
der Ebene der Komponenten und der signalorientierten Kommunikation auf der Ebene der
Funktionsbausteine zu erhalten. Beispiele fir solche Bausteine sind die Kommunikations-
bausteine aus IEC 61131-5 sowie die Bausteine fir OPC UA, die durch PLCopen und die
OPC Foundation spezifiziert wurden [PLC16].

Ist eine komplette Umstellung auf die Nachrichtenorientierung nicht méglich, so kénnen
ebenfalls die Koppler-Bausteine verwendet werden, die allerdings bei einer Anpassung der
Anwendungsverteilung manuell oder durch ein Engineering-Werkzeug angepasst werden
miissen.

Diese zwei Kommunikationsarten sind schematisch in Abbildung 6.2 dargestellt. Auf
dem Bild ist die Kommunikation zwischen je zwei SKs innerhalb Anwendung 1 und An-
wendung 2 dargestellt. Da Anwendung 1 auf einer Ressource ausgefithrt wird, 1duft sowohl
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Abbildung 6.2.: Inter-Komponenten Kommunikation innerhalb einer verteilten Anwendung
mittels einer Nachrichteniibertragung und signalorientierter Kommunikationsbausteine [GE13b].

die nachrichtenorientierte als auch die signalorientierte Kommunikation ausschlielich in-
nerhalb dieser Ressource ab. Im Falle einer verteilten Anwendung 2, wird die nachrich-
tenorientierte Kommunikation transparent von Nachrichtensystemen der Ressourcen bzw.
der Geréte tibernommen. Fiir die signalorientierte Verbindung miissen dagegen Kommu-
nikationskanéle angelegt werden, die durch schwarze Rechtecke zwischen SK 3 und SK 4
dargestellt sind.

6.1.4. Facetten einer Anwendung bzw. einer selbststandigen
Komponente

Die Architektur einer verteilten leittechnischen Anwendung lésst sich aus unterschiedlichen
Perspektiven betrachten. Die Gesamtheit der fiir eine Perspektive relevanten Eigenschaf-
ten einer Anwendung wird als eine Facette dieser Anwendung bezeichnet. Die Facetten
an sich sind keineswegs eine ungeordnete Eigenschaftenmenge. Sie lassen sich auch feiner
strukturieren wie im Folgenden am Beispiel der Scheduling-Facette der Anwendung und
der Komponente gezeigt wird.

Es lassen sich drei grundlegende Perspektiven bzw. Facetten einer Anwendung identifi-
zieren, die in Abbildung 6.3 zusammengefasst sind:

Composition-Facette Die Composition-Facette beinhaltet die Unterteilung der Anwen-
dung in einzelne Strukturierungseinheiten (Komponenten). Sie beinhaltet die unterschied-
lichen Designmuster, die Untergliederung der Anwendung in weitere Untereinheiten (z. B.
in POUs in der Begriffswelt der Softwarearchitektur der IEC 61131-3), sowie die Definition
notwendiger Schnittstellen.

Die wichtigsten Aspekte dieser Facette sind die Wiederverwendbarkeit der einzelnen
Komponenten, die Wartbarkeit der Anwendung in ihrem Lebenszyklus, die Schnittstellen
einzelner Komponenten und deren Design (Black-, Gray- oder White-Box Design).
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Deployment

Composition

Abbildung 6.3.: Facetten einer Anwendung.

Deployment-Facette Die Deployment-Facette subsumiert Eigenschaften, die fiir die Zu-
ordnung bzw. Verteilung einzelner Komponenten auf unterschiedliche sogenannte Res-
sourcen von Bedeutung sind. Ressourcen koénnen entweder unterschiedliche Hardware-
Plattformen darstellen oder logischer Natur sein (z. B. unterschiedliche CPU-Kerne einer
SPS oder gar Threads auf einer CPU). Aspekte der Verteilung werden vor allem im Kon-
text der IEC 61499 angesprochen, wurden aber bereits im Umfeld der modellgetriebenen
Entwicklung der IEC 61131-3 Software erwihnt [FT11].

Die Sicherstellung der Anwendungssemantik vor und nach der Verteilung beinhaltet
viele weitere, teilweise offene, Forschungsthemen. Dazu gehort z. B. die Anforderung an die
Kommunikation zwischen den einzelnen Komponenten auf unterschiedlichen Ressourcen.
Dartiber hinaus kénnten einzelne Komponenten nur begrenzt oder gar nicht verteilbar sein.

Die Anforderungen an die Verteilbarkeit einer Komponente auf einen Hardware-Knoten
konnen aus den unterschiedlichsten Doménen entspringen. Es werden beispielhaft die mog-
lichen Anforderungen aus den Doménen der technischen Realisierung, der Redundanz und
der funktionalen Sicherheit der Anwendung aufgelistet.

Beispiele fiir die Anforderungen aus dem Bereich der technischen Realisierung sind:

e Feste Lokalisierung einer Komponente beziiglich eines Geréts wegen der Anbindung
der Komponente an ein physisches Prozess bzw. I/O Modul, welches die Verbindung
zu der physischen Welt realisiert.

e Anforderungen an die Ressourcen eines Geréts, wie z. B. freier Speicher, verfiigbare
Rechenkapazitit aber auch die Verfiigharkeit der benotigten Software-Komponenten
bzw. Abhéngigkeiten.

e Anforderungen an die Kommunikation zwischen den verteilten Komponenten impli-
zieren Anforderungen an die Kommunikationsinfrastruktur, wie z. B. Zuverléssigkeit,
Latenz, Bandbreite etc.

Beispiele fiir die Anforderungen aus dem Bereich der Redundanz sind:
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e Ist die Redundanz der Anwendung durch mehrere Instanzen sichergestellt, so diirfen
diese Instanzen nicht auf einem Hardware-Gerat laufen (dieses gilt gleichermafen fir
homogene und diversitare Redundanz).

e Das vorherige Argument kann beliebig komplex erweitert werden. Zum Beispiel miis-
sen redundante Komponenten auf unterschiedlichen Hardware-Plattformen laufen,
die sich nicht in einem Schaltschrank befinden oder gar von einem Stromversor-
gungsstrang versorgt werden diirfen.

Ein Beispiel fiir die Anforderungen aus dem Gebiet der funktionalen Sicherheit lautet:

e Anwendungsteile diirfen sich rdumlich nicht beliebig von dem gesteuerten physischen
System entfernen, damit ein ordnungsgeméfler Funktionsumfang auch im Fehlerfall
(z. B. Kommunikationszusammenbruch) sichergestellt ist.

Die Definition der SK aus [GE13b] hat Auswirkungen auf die Verteilbarkeit der An-
wendung und stellt diesbeziiglich eine Anderung der Verteilungssemantik der IEC 61499
dar. Die Norm sieht eine beliebige Verteilung der leittechnischen Anwendung auf unter-
schiedliche Ressourcen vor und vereinfacht deren Implementierung durch den eindeutigen
Ereignisfluss. Die vorgestellte Architektur bietet dagegen einen Kompromiss zur Vertei-
lung von zeitgesteuerten Anwendungen, die der Philosophie der IEC 61131-3 folgen. Dabei
definiert die Einteilung der POUs auf die SKs die ,,Sollbruchstellen® der Anwendung in
Bezug auf die Verteilung auf unterschiedliche Ressourcen. Die Komponente selbst bietet
eine jatomare” Ausfihrungsumgebung, die eine unverdnderte Semantik der zugeordneten
POUs sicherstellt (eine ,virtuelle SPS“). Der Programmierer muss nur die Kommunikation
zwischen den einzelnen SKs tiberpriifen, um eine fehlerfreie Verteilbarkeit sicherzustellen.
Dabei liegen die Definition der SKs und deren Granularitit in seiner Verantwortung. Der
triviale Migrationspfad von einer IEC 61131-3 Anwendung ist die komplette Ubernahme
eines Programms in eine SK. Damit ist eine korrekte Ausfiihrung, jedoch noch keine Ver-
teilbarkeit sichergestellt.

Eine umfassende Untersuchung aller Aspekte der Verteilbarkeit sowie die Synthese einer
Problemstellung und der Strategien liegen nicht im Fokus dieser Arbeit. Das entwickelte
Modell des Schedulings legt aber einen Grundstein fiir die technische Realisierung der
Komponenten-Migration im laufenden Betrieb (vgl. Abschnitt 6.3).

Scheduling-Facette Im Gegensatz zum Deployment, ist das Scheduling, also die
zeitliche Ausfiihrung einer Anwendung und deren Komponenten, das Hauptthema
dieser Dissertation. Die Ausfithrung der Anwendung bzw. ihrer Komponenten muss die
Anforderungen der richtigen Reihenfolge der Ausfithrung, sowie der Rechtzeitigkeit der
Ausfithrung erfiillen. Es ist die Voraussetzung fiir das Einhalten der Echtzeitanforderungen
an die Anwendung. Der Aufbau dieser Facette wird in Abschnitt 6.1.5 detailliert diskutiert.

Die Idee der Segregation der Anwendungseigenschaften in unterschiedliche semi-
orthogonale Kategorien ist auch in anderen Quellen zu finden. So wird, z.B. in der IEC
61131-3 zwischen den POUs und deren Datenkopplung tiber Verbindungen bzw. Variablen
und den Tasks unterschieden, die die zwei der vorgestellten Aspekte darstellen. Die Vertei-
lung der POUs auf unterschiedliche Ressourcen wurde in IEC 61499 angesprochen. Diese
umfasst alle drei der vorgestellten Facetten.
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Die drei Facetten finden sich im 4+1 Sichten-Architekturmodell fiir Softwaresysteme
[Kru95] wieder. Die Composition-Facette entspricht dem “Logical view”, die Deployment-
Facette dem “Physical view” und die Scheduling-Facette dem “Process view”. Die im 4+1
Modell zusitzlich enthaltene Entwicklungssicht beschreibt das System aus der Perspektive
der Softwareentwicklung und steht nicht im Fokus dieser Arbeit.

Die Facetten werden als semi-orthogonal bezeichnet, da die Beeinflussung einzelner
Aspekte durch andere nicht vollkommen ausgeschlossen werden kann. So hat eine An-
derung der Hardware-Plattform im Zuge eines Deployments direkte Auswirkungen auf die
plattformabhéngigen der Scheduling-Facette, wie z. B. der WCET. Gleichzeitig implizieren
die Anforderungen der rechtzeitigen Ausfithrung Anforderungen an die Kommunikations-
infrastruktur und schrianken die in Frage kommenden Méglichkeiten fiir die Auswahl der
Deployment-Ressourcen ein.

Dartiber hinaus sind weitere Aspekte einer Anwendung identifizierbar, die nicht exklu-
siv einer, sondern mehreren Perspektiven zugeordnet werden konnen. Ein Beispiel dafiir
sind die softwaretechnischen Abhéngigkeiten einer Komponente, die von der funktionalen
Unterteilung und der Deployment-Perspektive einer Anwendung abhdngen. Werden z. B.
bei einer Anwendung Black-Box Komponenten oder Funktionsbausteine benutzt, so muss
sichergestellt werden, dass auch nach der Verteilung die gleiche Version der Komponenten
bzw. deren Abhéngigkeit verfiigbar ist. Im anderen Fall ware durch Versionskonflikte das
Gesamtverhalten der Anwendung, vor und nach dem Deployment-Vorgang, moglicherweise
nicht identisch.

6.1.5. Scheduling-Facette einer selbststindigen Komponente
(Task-Eigenschaften)

Die Task-Eigenschaften der selbststindigen Komponenten sind fiir den Scheduler und so-
mit fiir die Ausfithrung der SK im Allgemeinen relevant. Diese leiten sich aus der Literatur
zu Scheduling und zu den Echtzeitbetriebssystemen ab (vgl. Abschnitt 2.1.2). In diesem
Abschnitt werden die Task-Eigenschaften von SKs als die Scheduling-Facette der Kom-
ponenten bezeichnet. Zur Harmonisierung mit den Begriffen der Scheduling-Theorie wird
synonym dazu auch der Begriff , Task® verwendet. Trotz namentlicher und inhaltlicher Ahn-
lichkeit, ist dieser Begriff nicht mit den Tasks aus dem Software-Modell der IEC 61131-3
zu verwechseln.

In dieser Arbeit wird grundsétzlich, wie auch im Kontext des Schedulings der zeitge-
steuerten Echtzeitsysteme, zwischen den zyklisch- und den sporadisch-ausgefiihrten Tasks
unterschieden. Wahrend die Ersten dem Gedanken der zyklischen Aufgaben und auch dem
Hauptverwendungsmuster der SPS folgen, werden die Zweiten ,nach Bedarf“, d.h. beim
Eintreten bestimmter Bedingungen ausgefiihrt. Zu jedem Zeitpunkt kann hochstens ei-
ne Instanz eines sporadischen Tasks ausgefiihrt werden bzw. auf die Ausfihrung warten.
Zu einem sporadischen Task kann eine Separationsdauer angegeben werden. Das ist die
minimale Zeitdauer zwischen dem Auftreten zwei aufeinanderfolgender Taskinstanzen.

In der Literatur [Mal09] wird dariiber hinaus noch eine dritte Kategorie diskutiert —
die aperiodisch-ausgefithrten Komponenten. Der Unterschied zwischen sporadischer und
aperiodischer Ausfithrung ist die fehlende Separation zwischen den Taskinstanzen. Als
Konsequenz kénnen unbeschrankt viele Instanzen gleichzeitig auf die Ausfiihrung warten,
was ein vorhersagbares Verhalten des Systems verhindert. Aus diesem Grund werden ape-
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riodische Tasks nur im Kontext der weichen Echtzeit betrachtet. Es wird zunéchst davon
ausgegangen, dass alle Komponenten zyklischer Natur sind. Die zusatzliche Ausfithrung
sporadischer Tasks wird in Abschnitt 6.3.3 adressiert.

Die Scheduling-Eigenschaften einer Anwendung leiten sich aus den End-to-End Anfor-
derungen an diese ab [GE15]. Fir die Fragestellungen dieser Arbeit sind jedoch primér die
Scheduling-Eigenschaften der SKs von Bedeutung. Da die Komponenten einer Anwendung
hierarchisch untergeordnet sind, flieBen die Scheduling-Anforderungen an die Anwendung
auch in die Scheduling-Facetten der einzelnen SKs ein. Allerdings erfolgt bei diesem Prozess
eine Spezialisierung der Eigenschaften, die in diesem Abschnitt beschrieben wird.

Die Eigenschaften der Scheduling-Facette einer SK, die fiir das weitere Vorgehen, z. B.
fiir das Scheduling benétigt werden, kénnen in drei Kategorien unterteilt werden:

¢ Anwendungsbezogene Eigenschaften: Zu den anwendungsbezogenen Eigen-
schaften gehoren die initialen Eigenschaften einer SK, wie z. B. Prioritat, Zykluszeit
als absolute Zeitdauer, Phase, Puffer-Verhalten (ob die Eingabe bzw. die Ausgabe
gepuffert werden oder direkt tiber I/O wirksam werden soll).

Zusétzlich konnen Angaben zur Variation der oben genannten Einschrankungen hin-
terlegt werden, wie z. B. die Verdnderung der Phase (ob und in welchem Umfang die
Phase in Bezug auf die Zykluszeit geéindert werden kann).

e Eigenschaften vor dem Deployment (bezogen auf eine Hardware-
Plattformklasse der Ressource): Diese Eigenschaften werden speziell fiir eine
Plattformklasse ermittelt. Sie enthalten beispielsweise die WCET dargestellt als
Anzahl der CPU-Zyklen und weitere Ressourcenanforderungen an die Plattform,
wie z. B. den Arbeitsspeicherbedarf, der von der eingesetzten CPU-Architektur der
Ressource abhingen kann. Zusétzlich konnen die Anforderungen an die Software-
Infrastruktur einer Ressource sowie Qualitéts- und Vertrauensmerkmale der Eigen-
schaften enthalten sein.

e Eigenschaften nach dem Deployment: Nach dem Deployment stehen die
Scheduling-Eigenschaften endgiiltig fest. So ist es moglich die WCET als absolu-
te Zeitdauer anzugeben, da die CPU Frequenz bekannt ist. Dariiber hinaus ist die
Angabe der an den Grundzyklus der Ressource angepassten Zykluszeit moglich.

6.1.6. Kontrollfluss innerhalb der selbststdandigen Komponenten und
der Funktionsbausteinnetzwerke

Die flexible Ausfithrungsstruktur der SKs und FBNs eroffnet Moglichkeiten zu deren Nut-
zung als Grundeinheit fiir das vorgestellte Modell der RA-Algorithmen und deren Aus-
fithrungssemantik. In [GE13b] wurden die drei Grundtypen des Kontrollflusses in einer
Komponente bzw. einem FBN unterschieden:

e Aufrufbasierter Kontrollfluss: Funktionsaufrufe sind aus den hoheren Program-
miersprachen bekannt und auch im Kontext der IEC 61131-3 Sprachen verfiighar
(als Teil des strukturierten Texts). Bei einem Aufruf pausiert die Ausfithrung der
aufrufenden Einheit und der Kontext wird auf einem Stapel gespeichert, solange die
aufgerufene Funktion aktiv ist. Rekursive Aufrufe sind im Kontext der IEC 61131-3
untersagt [JT09].
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Der Funktionsaufruf schafft eine Abhéngigkeit zwischen den beiden beteiligten Kom-
ponenten. Diese Abhédngigkeit bezieht sich auf den Datenfluss, die Ausfithrungszeit
(die Ausfithrungszeit der Funktion trigt zu der Dauer der Ausfiihrung des Aufrufers
bei) und die Softwareverteilung (die Komponente bzw. die Bibliothek, deren Funk-
tionen aufgerufen werden, muss verfiighar sein bzw. eine kompatible Version haben).
Beztiglich des Datenflusses steht der Funktionsaufruf in Konkurrenz mit den Daten-
verbindungen aus den graphischen Programmiersprachen. Im Gegensatz zu diesen ist
er implizit, d. h. nicht mithilfe der Baustein-Introspektion zu entdecken.

Es wird davon ausgegangen, dass Funktionsaufrufe nur innerhalb der Bausteinim-
plementierung sicher verwendbar sind und nicht fir die Kopplung unterschiedlicher
Bausteine/Komponente verwendet werden. Eine Ausnahme bilden die Aufrufe aus
Schrittketten, die diskrete Prozeduren beschreiben, heraus.

e Tasklisten- oder tabellenbasierter Kontrollfluss: Die POUs werden nach einer
festen Reihenfolge in einer Liste aufgerufen. Im Gegensatz zu der aufrufbasierten
Steuerung, kehrt der Kontrollfluss nach dem Abarbeiten einer POU zuriick zu dem
Scheduler. Diese Unterscheidung ist nicht ganz prazise, da POUs Funktionsaufrufe
verwenden konnen. Fiir diese Unterscheidung ist somit die Strukturierung des Pro-
gramms in eine Taskliste mit gekoppelten, fein granulierten POUs entscheidend.

Tasklistenbasierte Ausfithrungskontrolle ist der Ansatz aus der IEC 61131-3, in der
die Tasks ein dedizierter Bestandteil des Softwaremodells sind. Eine Taskliste ist
einfach implementierbar und kann entweder offline oder auch online berechnet bzw.
modifiziert werden. Ein weiterer Vorteil der Tasklisten ist die einfache Berechnung der
Ausfiihrungsdauer. In diesem Fall werden einfach die Ausfithrungszeiten der enthal-
tenen Elemente aufaddiert. Ein Nachteil dieses Ansatzes ist die Rigiditéat der Listen.
Dadurch finden diese vor allem in zeitgesteuerten Systemen ihren Einsatz [TFB13].

Im Gegensatz zur Architektur der IEC 61131-3, gehoren die Listen zu der SK und
diirfen nur auf die in der Komponente enthaltenen Elemente verweisen. Diese Forde-
rung tragt zu der Portabilitdt der SK und der Anwendung bei, da die Komponente
nur zusammen mit der Taskliste migriert werden kann.

e Ereignisgetriggerter Kontrollfluss: Die Ausfiihrung einer Einheit kann Ereig-
nisse aussenden, die die Ausfithrung weiterer Einheiten anstoffen. Selbst wenn die
in Frage kommenden Empfanger der Ereignisse bekannt sind (wie im Fall der IEC
61499-basierten Bausteinsemantik), kann das Aussenden der Ereignisse und somit
die Ausfiihrung einer Funktion im Empfinger von der Logik des Senders abhéngen.
Diese Flexibilisierung wird durch die komplexere Implementierung und Analyse des
Ereignisflusses erkauft. So wird das Problem der Laufzeitabschitzung der Kompo-
nente nichttrivial und fordert den Einsatz komplexer Analysealgorithmen [Zoi08].

Neben diesen Grundtypen des Kontrollflusses sind auch weitere Kontrollflusstypen vor-
stellbar. So wird z. B. in Abschnitt 6.2 ein neues RA-Verfahren zur Steuerung des Kontroll-
flusses vorgestellt. Zundchst muss aber die Fragestellung der Koexistenz und der Kombi-
nation unterschiedlicher Modelle beantwortet werden. Diese Frage wird durch das Konzept
des hierarchischen Scheduling adressiert, das in Abschnitt 6.1.7 vorgestellt wird.
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6.1.7. Hierarchisches Scheduling

Die Idee des hierarchischen Schedulings basiert auf der Annahme von hierarchisch ange-
ordneten Tasks, denen die vorhandenen POUs der Anwendung zugeordnet sind. Durch die
Forderung einer festen Kopplung der Ausfiihrungsvorschrift an die selbststandige Kompo-
nente (Abschnitt 6.1.2, Punkt 2), wird die Schachtelung der Tasks durch die Hierarchie
der POUs induziert. Die Reihenfolge der Komponentenausfithrung muss (typischerweise
wahrend der Engineering-Phase) von dem Programmierer vorgegeben werden. Diese Ak-
tivitat ist bereits ein Grundbestandteil der Softwareentwicklung nach der IEC 61131-3
(durch die Zuordnung der POUs zu den Tasks) und der IEC 61499 (durch das Anlegen der
Ereignisverbindungen) und ist somit fiir vorhandene Programme schon erfolgt.

Die Ausfithrung innerhalb eines Zyklus der Laufzeitumgebung beginnt mit der Abar-
beitung eines Wurzel-Tasks, der Verweise auf strukturierte (white-box) Tasks oder un-
strukturierte (black-box) Tasks enthélt. Zum Beispiel enthalten die strukturierten Tasks
eigene Tasklisten, die die Ablaufkontrolle innerhalb des Tasks reglementieren. Bei den
unstrukturierten Tasks wird die Ausfithrungsvorschrift durch einen komponentenspezifi-
schen Scheduler realisiert, welcher z. B. durch eine Routine in ST vorgegeben ist. Wenn
alle Tasks ,aufgelost werden, lasst sich der Wurzel-Task als ein Baum darstellen, dessen
Blatter nur Verweise auf unstrukturierte und die inneren Knoten nur Verweise auf struk-
turierte Tasks sind. Die Blétter dieses imaginidren Baumes werden dann vom Scheduler in
einem Tiefensuche-Durchlauf besucht. Der zu dem Blatt zugeordnete Task bekommt bei
dem Besuch die Kontrolle tiber die ausfiihrende Ressource.

Die inneren Knoten des Baums werden nicht im Voraus, sondern erst zur Laufzeit aufge-
16st. In diesem Fall wird von der Ubergabe der Ausfithrungskontrolle an den strukturierten
oder den unstrukturierten Task gesprochen. Der Task tibernimmt somit bis zu seiner Ter-
minierung die Rolle des Schedulers fiir die beinhaltete POUs bzw. Tasks.

In den meisten Féllen wird eine solche Ausfithrung die Abarbeitung einer internen Taskli-
ste beinhalten. Dieses Standardverhalten kann durch einen rekursiven Aufruf des system-
weiten Tasklisten-Schedulers veranlasst werden (der z. B. im Falle einer objektorientierten
Implementierung der Komponenten geerbt werden kann), damit entfallt die Notwendigkeit
der Umsetzung der Scheduling-Schnittstelle fiir jede Komponente.

Allerdings ist es nicht die einzige denkbare Moglichkeit fiir das Scheduling. Vielmehr
kann jedes der in Abschnitt 6.1.6 zusammengetragenen Kontrollflussprinzipien eingesetzt
werden, um die interne Logik der POU abzuarbeiten. Zum einen kénnen Optimierungen
bzw. Anpassungen der tasklistenbasierten Ablaufsteuerung in das Framework des hierarchi-
schen Schedulings eingebettet werden. Es kann eine Reihe von einfachen lokalen Optimie-
rungen angewendet werden, um die Ausfihrungszeit der Komponente zu verkiirzen. Zum
Beispiel kann bei einem Funktionsbaustein ohne internen Speicher (einer ,,Funktion® in der
Terminologie der IEC 61131-3) auf die Ausfilhrung der Logik verzichtet werden, wenn es
seit dem letzten Zyklus keine Anderung der Eingangsports gegeben hat. Die Ausfithrungs-
dauer des Blocks betrigt in diesem Fall nur die Dauer der Uberpriifung der Anderung, der
an den Eingangsports anlegenden Signale.

Zum anderen erdffnet die Moglichkeit der ereignisgesteuerten Abarbeitung der Unter-
komponente einen transparenten Weg fiir die Einbettung von ITEC 61499-basierten Kon-
trolllogik in ein zyklisches Laufzeitsystem. Somit wird die zeitgesteuerte Aktivierung der
Komponente mit der ereignisgesteuerten Ausfithrung der internen Logik kombiniert. In
diesem Fall ruft die Komponente nicht den Standardscheduler fir Tasklisten auf, sondern
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Abbildung 6.4.: Schematische Darstellung des Prinzips des hierarchischen Schedulings.

nutzt die interne bzw. die systemweite Implementierung eines ereignisgesteuerten Sche-
dulers fiir interne Kontrolllogik. Die Implementierung und die Verwaltung der fiir den
Ereignisfluss relevanten Unterstrukturen wird somit an den ,inneren® komponentenspezi-
fischen Scheduler tibertragen. Die einzelne Anforderung an diesen Scheduler ist zunéchst
die Einhaltung der WCET, die der ausgefithrten Komponente zugeordnet wurde, damit
der tibergeordnete Scheduler die Sicherstellung der Deadlines gewéhrleisten kann.

Die hierarchische Ausfiihrung ist beispielhaft in Abbildung 6.4 dargestellt. Die Wurzel-
POU enthalt zwei weitere POUs A und B, zwischen denen eine Signalverbindung besteht.
Die POUs beinhalten die Ausfithrungsvorschrift, die im oberen Teil der POUs in grau dar-
gestellt wird. Man kann bei der Vorschrift zwischen strukturierten und unstrukturierten
Tasks unterscheiden. Die Wurzel-POU und POU A sind strukturiert, wihrend B unstruktu-
riert ist. Bei den strukturierten Tasks sind weiterhin zwei unterschiedliche Typen sichtbar.
Bei der Wurzel-POU ist es eine Taskliste, die von oben nach unten abgearbeitet wird. Bei
A ist es ein Ereignisfluss, der die Ausfiihrung der untergeordneten Einheiten A’ und B’
regelt. Die Ausfiihrungsreihenfolge der POUs ist durch eine gestrichelte Linie angedeutet.
Diese entspricht einer Tiefensuche im Baum, der in der Abbildung angedeutet ist.

Im Rahmen dieser Arbeit wird eine weitere Klasse der strukturierten RA-Tasks einge-
fithrt, die die temporalen Eigenschaften der Komponenten (vor allem ihre Ausfithrungs-
dauer) kontextabhéngig (z. B. bezogen auf die aktuelle Systemauslastung) anpassen kann.
Dieser Scheduler und die Mittel fir die Beschreibung der Variation des Verhaltens werden
in Abschnitt 6.2 vorgestellt.

Welche Scheduler-Klassen von dem Laufzeitsystem bereitgestellt werden und welche di-
rekt in eine Komponente eingebettet werden, ist eine Designentscheidung fiir das Lauf-
zeitsystem. Die optimale Antwort auf diese Frage hdngt davon ab, welche Scheduling-
Prinzipien von den eingesetzten Komponenten genutzt werden und welche von dem Lauf-
zeitsystem zugelassen sind. Eine transparente Moglichkeit der Einbettung weiterer kom-
ponentenspezifischer Scheduler schrénkt die Flexibilitat des Gesamtsystems nicht ein.

Die Grundannahme im Rahmen dieser Arbeit ist die Existenz einer Wurzel-Taskliste,
die von einem Systemscheduler verarbeitet wird. Somit ist die Koexistenz der zyklischen
und der ereignisgesteuerten Ausfithrungskontrolle nur in einem zeitgesteuerten System si-
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chergestellt. Nach der Klassifikation der Ansétze fir die Koexistenz beider Philosophien,
die in [ZSSBO09] vorgestellt wurde, fillt der Ansatz des hierarchischen Schedulings unter
die Gruppe der auf der IEC 61131-3 basierenden Losungen. Die Prinzipien des hierarchi-
schen Schedulings haben dagegen auch im ereignisgesteuerten Kontext Bestand. Die einzige
Forderung ist die gemeinsame Verwaltung der Logik und der Ausfithrungsinformation. So-
mit kénnen z. B. SKs mit einer eingebetteten Taskliste in ein ereignisgesteuertes System
eingebracht werden, solange die Abarbeitung der Liste durch ein Ereignis ausgelost wird.

6.2. Meta-Modell fiir ressourcenadaptive Komponenten

In der Beschreibung des Prinzips des hierarchischen Schedulings in Abschnitt 6.1.7 wurde
auf die unterschiedlichen Ausfithrungsprinzipien innerhalb der SKs eingegangen. Die Ker-
nidee dieses Prinzips ist die Kapselung der Scheduling-Information durch die Komponente.
In diesem Abschnitt wird eine Ausfiihrungsart vorgestellt, die sich von der tasklisten- und
der ereignisgesteuerten Ausfithrung unterscheidet. Als Grundlage fiir die Ausfithrung der
gekapselten Logik der Komponenten wird eine explizit formulierte Prozedur genutzt, die
zur Laufzeit evaluierbar ist.

6.2.1. Annahmen und Begriffsdefinitionen fiir das Scheduling

In diesem Abschnitt werden die Grundbegriffe und Rahmenbedingungen definiert, die fiir
das verwendete Systemmodell gelten. Diese sind sowohl fiir das Meta-Modell der ressour-
cenadaptiven Komponenten (Abschnitt 6.2), als auch fir den ressourcenadaptiven Kom-
ponentenscheduler (Abschnitt 6.3) giiltig. Folgende Eigenschaften werden fiir das Laufzeit-
system angenommen:

Diskrete zyklische Zeit Eine der grundlegenden Entscheidungen fiir das Modelldesign ist
die Wahl des zugrundeliegenden Zeitmodells. Grundséatzlich existieren zwei fundamentale
Philosophien der Zeitmodellierung: das dichte (engl. dense) und das diskrete (engl. discrete)
Zeitmodell. Beim ersten Ansatz wird die Zeit als eine dichte Menge modelliert, d.h. es
existiert ein Zeitpunkt zwischen zwei beliebigen Zeitpunkten. Beim zweiten Ansatz wird
die Zeitmenge als Menge diskreter Zeitpunkte modelliert, die eine feste zeitliche Auflosung
definieren.

Viele technische Systeme und Prozesse sind zyklisch. Ein zyklisches Verhalten ist durch
die immer wiederkehrenden Muster im Systemverhalten gekennzeichnet. In diesem Fall
kann zur Vereinfachung der Modellierung ein diskretes zyklisches Zeitmodell gewdhlt wer-
den [Kop11b]. Die Zeit wird in diesem Fall in gleichlange Perioden unterteilt. Ein Zeitpunkt
kann durch die Angabe der Periode und der Phase, d.h. einer relativen Angabe zum Pe-
riodenanfang, eindeutig referenziert werden.

Das definierte Meta-Modell nutzt die Annahme einer diskreten zyklischen Zeit. Die Zy-
klusdauer wird dabei durch die Abtastrate des physischen Systems, auf die Dauer des
Grundzyklus (vgl. Abschnitt 2.2.3), normiert. Diese Abtastrate ist an viele Nebenbedin-
gungen wie die eingesetzte Hardware, Kommunikationsinfrastruktur etc., aber auch an
die Zeitkonstanten des zu automatisierenden physischen Systems gekoppelt. Die Grund-
beziehung zwischen der Abtastrate und der Signalfrequenz wird durch das Abtasttheo-
rem hergestellt, was eine mindestens doppelte Abtastfrequenz vorschreibt. In der Praxis

71

216.73.216.36, am 20.01.2026, 08:59:54. © Inhal.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186257086

6. Ein Rahmenwerk fiir die Integration von ressourcenadaptiven Anwendungen

wird normalerweise eine noch etwas hohere, z. B. eine sechs- bis zehnfache Abtastfrequenz
[Abe06], gewéhlt.

Stabiler Grundzyklus wahrend der Laufzeit Jede Ressource (vgl. Abschnitt 6.1.1) wird
in einem Grundzyklus betrieben, der wahrend deren Laufzeit nicht verdandert werden kann.
Die Dauer des Grundzyklus ist hauptséchlich von den Zeitkonstanten des physischen Pro-
zesses abhéingig, mit dem die Ressource tiber die I/O-Hardware und die Sensoren bzw.
Aktoren interagiert. Da davon ausgegangen wird, dass die Eigenschaften und insbesondere
die Zeitkonstanten des kontrollierten physischen Systems stabil sind, wird die Dauer des
Grundzyklus ebenfalls als stabil angenommen.

Zeitgesteuertes Echtzeitsystem Es wird das zeitgesteuerte Modell eines Echtzeitsy-
stems verwendet. Somit hidngen die Aktivitdten des Systems nur vom Fortschritt der Zeit
ab. Die Vor- und Nachteile dieses Ansatzes und der Alternativen wurden eingehend im
Abschnitt 2.1.2 diskutiert. Das gewéhlte Aktivierungsparadigma erlaubt das Scheduling
mittels einer Taskliste.

Stabilitiat des Prozessabbilds wahrend einer Periode Es wird angenommen, dass das
Prozessabbild, d.h. die Werte der iiber die I/O Komponenten gelesenen Sensoren, sich
innerhalb einer Periode nicht verdndern. Die gleiche Annahme gilt fiir die geschriebenen
Werte der Outputs der I/O Komponenten, die die Signale an die Aktoren iibertragen.
Dieses Verhalten entspricht der Softwarearchitektur der IEC 61131-3 und somit den meisten
Implementierungen der SPSen. Das Prozessabbild wird in jedem Zyklus synchronisiert (vgl.
Abschnitt 2.2.3). Die Werte der I/O-Eingénge werden dabei am Anfang eines Zyklus in
einen Zwischenpuffer eingelesen und die Ausginge am Zyklusende vom einen weiteren
Puffer auf die I/O-Ausginge iibertragen und somit in der physischen Welt wirksam.

Die Vorteile dieses Verhaltens umfassen eine einfache Synchronisierung der Zugriffe ein-
zelner Elemente der Kontrolllogik auf die Daten des Prozessabbilds. Es muss nicht auf die
Verfiigbarkeit eines Eingangswertes gewartet werden. Auch die Konsistenz der Daten ist
fiir alle Zugriffe in einem Zyklus sichergestellt. Bei den Ausgangswerten wird jeweils die
letzte Anderung innerhalb eines Zyklus wirksam.

Der Nachteil der zyklischen Abtastung ist die vergleichsweise lange Reaktionszeit des
Systems auf die Stimuli aus der physischen Welt. Wie bereits in Abschnitt 2.2.3 bemerkt
wurde, kann diese im schlimmsten Fall das Zweifache der Zykluszeit betragen.

Uniprozessor-System Das Modell ist an die Architektur eines SPS-Systems angelehnt,
das typischerweise eine Ressource enthélt [IEC11]. Im Falle der Verfiigbarkeit mehrerer
Ressourcen, kann die Kommunikation zwischen diesen iiber einen gemeinsamen Speicher-
bereich erfolgen, der ahnlich wie das Prozessabbild fur die Zyklusdauer konstant gehalten
wird (die Zykluszeit der Komponenten wird in diesem Fall auf die Dauer des systemwei-
ten Grundzyklus normiert). Eine weitere Moglichkeit ist der Einsatz eines komplexeren
Systems zur Interprozesskommunikation, wie z. B. eines Nachrichtensystems. Wie bereits
im letzten Paragraphen besprochen, sind diese Mainahmen notwendig, um die Datenkon-
sistenz ohne Zuhilfenahme aufwéndiger Synchronisationsmechanismen sicherzustellen.
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Abbildung 6.5.: Informationsaustausch und Aufrufsteuerung zwischen Komponenten und
Komponentenscheduler.

Nichtunterbrechbarkeit der Tasks FEs gilt die Annahme, dass die Tasks wiahrend der
Ausfiihrung nicht unterbrochen werden kénnen. Die Vor- und Nachteile dieses Ansatzes
wurden in Abschnitt 2.1.2 diskutiert. Die Vorteile des kooperativen Schedulings, wie mi-
nimaler Jitter und eine bessere Vorhersagbarkeit des Systemverhaltens, sind fiir viele An-
wendungen in der industriellen Automatisierung iiberwiegend.

6.2.2. Ressourcenzuteilung durch den Komponentenscheduler zur
Laufzeit

Da in diesem Abschnitt nur die interne Ausfiihrung der selbststéindigen Komponente Ge-
genstand der Betrachtung ist, kann der Datenaustausch zwischen der Komponente und
dem iibergeordneten Scheduler (dem Komponentenscheduler) auf das folgende einfache
Interface reduziert werden:

e WCET der Komponente auf der aktuellen Ressource w (Ausgangsparameter, kon-
stant im Betrachtungszeitraum, nicht zur Laufzeit ausgetauscht) und

e die vom Komponentenscheduler zugeteilte Zeit fir die aktuelle Ausfithrung A" > w
(Eingangsparameter, konstant wihrend einer Periode, explizit zur Laufzeit ausge-
tauscht).

Der erste Parameter w beschreibt im Kontext der RA-Algorithmen die mazimale Zeit, die
zu einer minimalen konsistenten Ausfithrung der Komponente benétigt wird. Die Zusam-
menhénge zwischen den beiden Parametern sind in Abbildung 6.5 als Sequenzdiagramm
dargestellt.

Die Bedingung A > w garantiert die Sicherstellung der Echtzeitanforderungen auf
der Komponentenebene und muss von dem Komponentenscheduler bei der Zuteilung der
Zeiten eingehalten werden. Fiir die Zuteilung der Rechenzeit existieren zwei Falle:

o AT = q: In diesem Fall kann die Komponente nur die intern akkumulierte Slackzeit
verwerten, die z.B. als Folge der zu pessimistischen Abschatzung der WCET oder
eines Ausfiihrungspfades, der kiirzer als der WCET-Fall ist, verfiigbar ist.
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Dadurch ist eine effiziente Ressourcennutzung auch bei der Nutzung ,starrer Sche-
duler moglich (d. h. solcher Scheduler, die einer Komponente nur die ,minimale an-
gefragte® Zeit w zuweisen).

o AT > q: In diesem Fall teilt der Komponentenscheduler der Komponente mehr Zeit
als deren WCET zu. Somit kann die Komponente auch die Slackzeit verwerten, die im
aktuellen Zyklus wahrend der Ausfithrung anderer Komponenten bereits entstanden
ist oder entstehen wird.

6.2.3. In-cycle Sequential State Chart (ISSC)

Nach den Prinzipien des hierarchischen Schedulings (vgl. Abschnitt 6.1.7) soll die ausge-
fithrte Kontrolllogik (die primér aus Funktionsbausteinen besteht) und die Vorschrift zu
deren Ausfihrung bzw. der Scheduler innerhalb einer Komponente zwar logisch getrennt
sein, aber gemeinsam in einer POU verwaltet werden. Es wurden zwei Moglichkeiten der
Darstellung bzw. Speicherung der Ausfithrungsvorschrift vorgestellt und diskutiert: die
Darstellung als Taskliste nach IEC 61131-3 sowie die Darstellung als Ereignisflussnetz
nach IEC 61499 (Ereignisfluss zwischen den ,Kopfen“ der Funktionsbausteine).

In diesem Abschnitt wird eine Prozedurbeschreibungssprache vorgestellt, die fiir die
Beschreibung der ressourcenadaptiven Ausfithrungskontrolle innerhalb der FBDs und SKs
eingesetzt werden soll.

Durch die Zielsetzung der Arbeit, die Ressourcen und insbesondere die Slackzeit in-
nerhalb eines Zyklus effizienter zu nutzen, muss das Verhalten einer Komponente auch
innerhalb des Zyklus variierbar sein. Es ist somit offensichtlich, dass das Mittel fiir die Be-
schreibung dieser Verhaltensvariation die in-cycle Semantik und Zeitsensitivitét unterstiit-
zen muss. Dariiber hinaus muss die in-cycle Semantik das Durchlaufen mehrerer Zusténde
bzw. Schleifen innerhalb der Prozedur ermoglichen. Dieses ist bereits fiir die Umsetzung
eines optionalen Zustands erforderlich, die z. B. fiir die Umsetzung des ,, Imprecise Compu-
tation Models“ (vgl. Abschnitt 5.1.5) vorausgesetzt wird.

Von den existierenden Prozedurbeschreibungssprachen wird die in-cycle Semantik von
PLC-Statecharts [WVH11, Wit12] sowie von einer moglichen Semantik fiir PLC unter-
stiitzt (vgl. Abschnitte 3.4.1 bzw. 3.4.2). Diese Semantik erlaubt die wiederholte Aus-
fiihrung der Aktionen eines Zustands innerhalb eines Zyklus und abstrahiert somit die
eventuelle zyklische Ausfiihrung des Laufzeitsystems (vgl. Abschnitt 3.4.2). In [WVHI11]
wurde die in-cycle Semantik der PLC-Statecharts am Beispiel einer mehrfachen Ausfiih-
rung der Aktionen eines Zustands, die von einer Zahlervariable abhing, demonstriert. Die
in-cycle PLC-Statcharts bieten allerdings weder die Moglichkeit mehrere Zustédnde inner-
halb eines Zyklus zu besuchen, noch die Moglichkeit das Verhalten des Charts von der
Ausfithrungszeit abhéngig zu machen.

Im Folgenden wird eine Prozedurbeschreibungssprache eingefiihrt, deren Semantik den
benodtigten Anforderungen der Zeitsensitivitdt und der in-cycle Semantik geniigt. Es ist
sinnvoll die Syntax und die Ausdrucksstéirke einer bestehenden Prozedurbeschreibungs-
sprache zu tibernehmen und nur die notigen Aspekte der Semantik anzupassen. Diese
Vorgehensweise hat sich im Falle der zyklischen Semantik fir Statecharts am Beispiel von
PLC-Statecharts und SSCs bewéhrt. Fiir den Zweck der Beschreibung von RA-Algorithmen
wurde daher die Syntax der SSCs ausgewéahlt, die im Folgenden mit einer in-cycle Seman-
tik ausgestattet wird. Die aus dieser Kombination entstandene Sprache wird als In-cycle
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Sequential State Chart (ISSC) bezeichnet. Um Mehrdeutigkeiten zu vermeiden, wird im
Folgenden zwischen den ISSCs und den klassischen SSCs differenziert, die auch im Fall
einer Mehrdeutigkeit als multi-cycle Sequential State Charts bezeichnet werden.

Der Einsatz von Prozedurbeschreibungssprachen in der Leittechnik ist an die folgenden
Anforderungen gebunden, die sich teilweise mit den Anforderungen an die flexiblen Algo-
rithmen in der Leittechnik im Allgemeinen (vgl. Kapitel 4) decken. Die Liste lehnt sich
an die Vorarbeiten [YQGE12, YGE13] in Co-Autorschaft sowie Anforderungsanalysen der
DSLs [KPKP06, Gro09] an:

e Die Sprache soll eine Kombination aus einer funktionalen Beschreibung und Program-
mierung durch graphische Représentation sein. Diese Reprasentation ist so prézise,
dass sie direkt operativ einsetzbar ist, d. h. sie kann interpretiert oder fir die Synthese
des ausfithrbaren Codes verwendet werden.

e Die Sprache soll den doménenspezifischen Konzepten der Leittechnik folgen, den
Stand der Technik und die historische Entwicklung dieser Doméne berticksichtigen.

e Die Eindeutigkeit der Semantik muss durch Formalisierung bzw. eine Abbildung auf
ein formales Modell gewéhrleistet werden.

e Die Balance zwischen der Ausdrucksstirke und der Komplexitat bzw. der Zweckmé-
Bigkeit und der Kompaktheit muss so gewdhlt werden, dass die vorhandenen syn-
taktischen Mittel gerade fiir die Beschreibung der benétigten Prozeduren ausreichen.
Jedes zusitzliche Element erhoht die Komplexitét der Semantik und fithrt zu poten-
tiellen Problemen bei der Implementierung [Yul6).

Die Einhaltung der ersten zwei Anforderungen ist durch die Ubernahme der Beschrei-
bungselemente und der Syntax der SSCs erfillt. Die Eindeutigkeit der Semantik ist durch
die Abbildung auf TA bzw. auf die TA-Netzwerke von UPPAAL gewéhrleistet. Die letz-
te Anforderung wird durch die teilweise Reduktion der Beschreibungsstérke von SSC er-
reicht. Die Sprache SSC verzichtet ihrerseits bereits auf viele Elemente von SFC und UML-
Statecharts. Diese Einschrankungen sind nicht endgiiltig — bei Bedarf kénnen die Syntax
und die Semantik angereichert werden.

Es konnen weitere Vereinfachungen der syntaktischen Elemente der ISSCs im Vergleich
zu SSC vorgenommen werden, ohne deren Eignung fiir die Definition der Ablaufsteuerung
von RA-Algorithmen negativ zu beeinflussen bzw. sich signifikant auf die Gréfle des Charts
oder dessen Komplexitit auszuwirken:

e Vereinfachter Ausfiihrungsrahmen: Da die ISSCs vielmehr mit Tasklisten als
mit einfachen Bausteinen vergleichbar sind, werden die Anforderungen an den Aus-
fithrungsrahmen eines Charts bzw. an seine externen Schnittstellen abgeschwécht.
Die ISSCs operieren im Rahmen der gesteuerten POU und verwenden somit dessen
Ausfithrungsrahmen als Schnittstelle.

e Aktionen nur in der entry-Phase: In SSC konnen die Aktionen drei Phasen
eines Zustands — ,entry“, ,do“ und ,exit* zugeordnet werden. Die Ausfithrung einer
Aktion in der do-Phase hat wegen der fehlenden multi-cycle Semantik der ISSCs
keine Bedeutung mehr — das Statechart kann nicht mehr in einem Zustand tiber
mehrere Zyklen verharren. Die Ausdrucksstérke von exit-Anweisungen ist wegen der
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/ Initialzustand
CALL oPL

Transition mit TRUE / History-Breakpoint
Guard <
Zustand
Operation /

CALL OP2

Breakpoint

Abbildung 6.6.: Graphische Darstellung eines ISSCs.

AbstractStep - predecessorStep Transition
1 0.*| + guard: boolean
-« successorStep
1 0.*
Breakpoint Step Action
o duration: time_span
1 0.*
HistoryBreakpoint InitialStep Call Set
+ objectName: String + variableName: String
+ value:any

Abbildung 6.7.: Klassendiagramm des I1SSCs.

Abwesenheit der hierarchischen Zusténde bereits eingeschrankt und kann durch eine
entry-Anweisung des nachfolgenden Zustands simuliert werden.

Basierend auf diesen Voriiberlegungen wird im Folgenden der syntaktische Aufbau der
ISSCs sowie deren graphische Darstellung informell préasentiert. In Abbildung 6.6 ist ein
einfaches ISSC mit jeweils zwei Zusténden und zwei Breakpoints dargestellt. Der untere
Zustand wird dabei nur dann betreten, wenn die verbliebene Ausfithrungszeit mehr als
10 ms betragt. Sonst wird die Ausfithrung des Charts fiir den aktuellen Zyklus in dem obe-
ren Breakpoint abgebrochen. Weitere ISSC-Beispiele sind in darauffolgenden Abschnitten
zu finden.

Die Struktur des ISSCs wird der Vollstandigkeit halber als UML-Klassendiagramm in
Abbildung 6.7 dargestellt. Die einzelnen Elemente sind:
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Zustdnde (oder Schritte) Die Zustande der ISSCs reprisentieren den Fortschritt der
damit beschriebenen Prozedur. Zu jedem Zeitpunkt ist genau ein Zustand des Charts
aktiv. Zustdnde enthalten Aktionen, die beim Betreten des Zustands ausgefithrt werden.
Alle Aktionen eines Zustands werden in der vorgegebenen Reihenfolge innerhalb des Zyklus
ausgefithrt.

Breakpoints Neben den Anfangszustédnden wird eine spezielle Klasse von Zusténden de-
finiert, die ,,Breakpoints“ heiflen. Dieser Klasse der Zustande konnen keine Aktionen zuge-
ordnet werden. Somit haben Breakpoints einen einzigen Zweck: sie definieren Zeitpunkte,
zu denen die Ausfithrung des ISSCs unterbrochen wird bzw. das ISSC verlassen werden
kann. Das ,Verlassen“ des Statecharts iibergibt den Kontrollfluss nach dem Prinzip des
hierarchischen Schedulings zuriick zu dem tibergeordneten Scheduler.

Transitionen und Guards Transitionen verbinden Zusténde bzw. Breakpoints miteinan-
der. Die Transitionen sind mit Guards beschriftet. Guards sind Ausdriicke, die zu einem
booleschem Wert auswertbar sind. Eine Transition ist aktiv, falls der zugeordnete Guard zu
TRUE evaluiert wird. Aktive Transitionen erlauben Ubergéinge zwischen den Zustinden
entlang dieser. Die Guards haben keine Seiteneffekte und konnen auf unterschiedliche Art
und Weise realisiert werden, z. B. durch explizite boolesche Ausdriicke oder durch einfache
Funktionsbausteinketten. Eine Diskussion diesbeziiglich ist in [Yul6] zu finden.

Transitionen besitzen eine eindeutige Evaluierungsreihenfolge und sichern somit einen
deterministischen Zustandstibergang zu.

Ein Zustand, der kein Breakpoint ist, muss immer verlassen werden kénnen, d. h. es muss
sichergestellt werden, dass in jedem Fall mindestens eine aktive Transition existiert.

Aktionen Die SSCs nutzen zwei Typen von Aktionen: Aufrufe der lokalen Funktions-
bausteine und Variablenzuweisungen. Die Zuweisungen werden in zwei weitere Kategorien
unterteilt: die Zuweisungen an die Variablen des Ausfithrungsrahmens bzw. an die Varia-
blen des Interfaces des SSCs sowie die Zuweisungen der Werte an die Eingédnge lokaler
Funktionsbausteine. Beide Typen werden von ISSC iibernommen.

Im vorgestellten Meta-Modell werden Aktionen mit einer expliziten Ausfithrungsdauer
versehen und bleiben fiir die Dauer der Ausfithrung ununterbrechbar. Aus diesem Grund
wird auf die Unterscheidung zwischen Aktionen und Aktivitaten verzichtet. Die letzten
konnen z. B. nach der Semantik von PLC-Statecharts von dem Zyklus der Laufzeitumge-
bung ,angehalten® werden [WVH11].

Lauf eines ISSCs Ein Lauf beginnt in dem designierten Anfangszustand bzw. in dem zu-
letzt aktiven Breakpoint (vgl. den Punkt ,History-Verhalten der Breakpoints®). Nach der
Ausfiihrung der Aktionen werden die Guards der Transitionen in der vorgegebenen Rei-
henfolge ausgewertet. Bei dem ersten aktiven Guard folgt ein Ubergang in den nichsten
Zustand bzw. Breakpoint. Eine wichtige Implikation dieser Forderung ist die Abwesenheit
der Deadlocks. Es muss immer ein Ubergang zwischen zwei Zustinden (die keine Break-
points sind) existieren, d. h. mindestens eine ausgehende Transition muss immer aktiv sein.
Ein Lauf endet in einem Breakpoint, umgekehrt muss aber das Besuchen eines Breakpoints
den Lauf nicht notwendigerweise beenden. Zu einem konkreten ISSC existieren typischer-
weise mehrere Laufe, die sich je nach den befolgten Transitionen unterscheiden kénnen.
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History-Verhalten der Breakpoints Breakpoints kénnen explizit ein History-Verhalten
besitzen (ein Buchstabe ,H* in einem Kreis, die Notation ist den Harel’s Statecharts entlie-
hen [Har87]). Falls der Lauf eines ISSCs in einem History-Breakpoint unterbrochen wurde
(d.h. kein Guard der ausgehenden Transitionen aktiv war), beginnt die wiederholte Aus-
fiihrung des ISSCs in diesem Breakpoint. Falls ein History-Breakpoint keine ausgehenden
Transitionen besitzt, ,verbleibt* der ISSC nach dem Erreichen des letzten Breakpoints im-
mer wieder in diesem Breakpoint. Das Chart muss in diesem Fall manuell zurtickgesetzt
werden, z. B. auf den Initialzustand.

Endzustande ISSCs verfiigen iiber keine expliziten Endzustdnde. Stattdessen wird auf
die Breakpoints zuriickgegriffen. Die Konvention ist, dass der Breakpoint ohne ausgehende
Transitionen einem Endzustand gleichwertig angesehen wird. Bei der Frage wann ein ISSC
als ,,beendet* oder ,terminiert” betrachtet wird, muss zwischen den Statecharts mit und
ohne History-Verhalten differenziert werden. Ein ISSC ohne History-Verhalten ist mit dem
Lauf beendet, weil der neue Durchlauf des Statecharts wiederum in dem Initialzustand
anfingt. Ein ISSC mit History-Verhalten ist dann beendet, wenn ein Breakpoint ohne
ausgehende Transitionen erreicht wurde.

Um zeitabhéngiges Verhalten der Algorithmen beschreiben zu kénnen, werden ISSCs
mit einer zeitbehafteten Semantik ausgestattet, die sie sehr dhnlich zu TA macht.
Das Zeitverhalten eines ISSCs folgt den nachstehenden Grundsétzen:

e Die Zeit vergeht nur wihrend der Ausfiihrung der Aktionen in den Zustdnden. In
einem Zustand ohne Aktionen vergeht demnach keine Zeit.

e Transitionen sind zeitlos (die Dauer der Auswertung der einer Transition zugeord-
neter Guards kann bei Bedarf durch Aktionen des vorgehenden Zustands bei der
Modellierung berticksichtigt werden).

ISSCs werden mit einer speziellen Variable — einer Uhr — ausgestattet. Diese erméglicht
das Abfragen der fir die Komponente noch verfiigbaren Ausfiihrungszeit. Die Moglichkei-
ten der Auswertung dieser Zeit ist neben der in-cycle Semantik die grundlegende Erweite-
rung von Statecharts, die in keiner dem Autor bekannten Prozedurbeschreibungssprache
der Doméne der Prozessleittechnik verfiighar ist. Die Kombination dieser Eigenschaft, der
in-cycle Semantik und der Ausfithrungszeitsensitivitét, macht Ablaufsteuerung der ressour-
cenadaptiven Anwendungen mit Mitteln der ISSCs erst moglich.

Es ist wichtig zwischen der Ausfiihrungszeitsensitivitdt und der generellen Moglichkeit
Zeitverhalten in die Beschreibungsmittel fiir Prozeduren einflieflen zu lassen genau zu un-
terscheiden. Die Moglichkeit Timer bzw. Pausen zwischen den einzelnen Schritten bzw.
Aktionen zu definieren, ist in den meisten Prozedurbeschreibungssprachen, wie z. B. IEC
61131-3 SFC vorhanden. Ein weiteres zeitabhéngiges Verhalten existiert bei den SSCs:
Diese erlauben die Abfragen des Ausfithrungsstatus gestarteter Unterabldufe. Der Fort-
schritt der Prozedur kann durch die Nutzung dieser Abfragen von den Zeitpunkten der
Terminierung der Unterabldufe abhingen und ist somit auch implizit zeitsensitiv.

Diese Moglichkeiten reichen jedoch fir die Beschreibung der Ablaufstruktur der RA-
Algorithmen mit einer in-cycle Semantik nicht aus. Bei dem Timer handelt es sich um
statische Pausen, die als absolute Zeitspannen ausgedriickt werden, z. B. fiinf Sekunden.
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Daher sind sie nicht fiir Beschreibung variabler temporaler Verhalten geeignet. Die Ab-
fragen der Terminierung geniigen diesem Ziel auch nicht, da sie keine Aussagen tiber den
absoluten Zeitpunkt der Terminierung zulassen. Stattdessen wird die multi-cycle Semantik
der SSCs verwendet: das Statechart iiberpriift die Terminierung durch das Abfragen einer
speziellen Variable genau einmal pro Zyklus und Unterablauf.

Zusammengefasst lassen sich die Eigenschaften der eingefiihrten ISSC-Sprache im Ver-
gleich zu SSC in der Notation der Veréffentlichungen [YGE13, Yul6] wie folgt beschreiben:

ISSC ~ SSC + Breakpoints + Ausfithrungszeitsensitivitat + in-cycle
Semantik — Zustandshierarchie — komplexer Ausfithrungsrahmen — do-
und exit-Phasen.

Formal gesehen kann ein ISSC T = (S, B, H,G, A, A, a, O, so,c,w) als ein Tupel dar-
gestellt werden, wobei S eine Menge der Zustédnde, B eine zu S disjunkte Menge der
Breakpoints, H eine zu S und B disjunkte Menge der History-Breakpoints, G eine Menge
boolescher Guard-Variablen g € B, A C (SUBUH) x G x (SUBU H) eine Transi-
tionsrelation, A eine Menge der Aktionen, o : S — 24 die Zuordnung der Aktionen zu
den Zustanden, O eine Menge der partiellen Ordnungen der Aktionen fiir jede Menge der
Aktionen a(s) mit s € S und sy € S der Initialzustand ist. Eine einfache Zuordnung
der Aktionen auf Zusténde ist ausreichend, da nur Aktionen in der entry-Phase eines Zu-
stands zugelassen sind. Es wird eine moglichst einfache mathematische Modellierung von
ISSC beabsichtigt. So werden z. B. die Variablen auf denen die Guards operieren nicht ex-
plizit modelliert, sondern nur als bereits ausgewertete Ausdrucke miteinbezogen. Es wird
angenommen, dass ISSCs deterministisch beziiglich der Transitionen sind. Diese Forde-
rung impliziert den wechselseitigen Ausschluss der Transitionen eines Zustands bzw. deren
Guards. Letzteres kann durch das Bilden zusétzlicher Guard-Variablen, die eine Konjuga-
tion negierter Guards benachbarter Transitionen oder die Zuordnung der Prioritéten an
die Transitionen, erreicht werden. Der letzte Weg wird oft bei der graphischen Definiti-
on der SSCs bzw. SFCs gewéhlt, z. B. durch eine explizite Nummerierung oder durch die
Priorisierung der Transitionen in der Reihenfolge ,von links nach rechts“ beztglich der
graphischen Darstellung des Zustands bzw. des Breakpoints.

Eine Uhr ¢, die vom Statechart selbst nicht zuriickgesetzt wird, jedoch in die Guards
eingehen kann, erweitert das Modell. Die Uhr hat den Wert der Zeit, die seit dem Beginn
der von dem ISSC gesteuerten Komponente vergangen ist und kann jederzeit von einem
Guard abgefragt werden. Der letzte Eintrag des Tupels ist einer Funktion w : A — R*,
die die WCET der Ausfiihrung jeweiliger Aktionen darstellt.

Es ist dem aufmerksamen Leser aufgefallen, dass die Uhr ¢ nicht der Uhr ¢ fir die
verbliebene Ausfithrungszeit der Komponente aus Abbildung 6.6 entspricht. Dieser Wert
kann einfach als Differenz t = A®""—c dargestellt werden, wobei A" die aktuell zugeteilte
Ausfihrungszeit des ISSCs ist.

Die Ahnlichkeit der ISSCs zu TA lisst eine relativ einfache Abbildung der ISSCs auf
diese zu, was Gegenstand des nichsten Abschnitts ist.

6.2.4. Formalisierung der ISSC-Semantik mithilfe von Timed
Automata und UPPAAL

Die Forderung nach der Eindeutigkeit der Semantik von ISSC wird in diesem Abschnitt
durch die Abbildung der Charts auf die TA-Netzwerke des UPPAAL Toolkits adressiert.

79

216.73.216.36, am 20.01.2026, 08:59:54. © Inhal.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186257086

6. Ein Rahmenwerk fiir die Integration von ressourcenadaptiven Anwendungen

clCycle<=paCycle_Time

clCycle:=0

Abbildung 6.8.: Der Automat fiir den Hauptzyklus der Laufzeitumgebung.

Dieses Automatenmodell bietet einen pragmatischen Weg, formal eindeutige Modelle mit
einer komfortablen Syntax (wie z. B. Guards, Unterteilung der Logik in mehrere Automaten
sowie Kommunikationskanéle zwischen diesen) zu erstellen. In seiner hauptséachlichen An-
wendung als Model-Checker bietet UPPAAL weiterhin die Moglichkeit die Eigenschaften
der abgebildeten Automaten abzufragen.

Zunachst werden die Elemente des ISSC-Modells auf die Elemente des Automaten-
modells von UPPAAL abgebildet. Die Grundlage fiir dieses Modell bilden Vorarbeiten
[YGE13] bzw. Arbeiten von Witsch et al. [WRKVH10, WVH11], in denen das Verhal-
ten von SSCs bzw. PLC-Statecharts auf einer zyklischen Laufzeitumgebung mithilfe von
UPPAALs TA-Netzwerken formalisiert wurde.

In Abschnitt 2.1.4 wurde bereits eine kurze Einfithrung in UPPAAL présentiert. Fir die
Modellierung gelten die folgenden Konventionen der Benennung bzw. der Darstellung:

e Guards der Transitionen werden in Abbildungen immer in Klammern aufgefiihrt,
2.B. ,,(c1Cycle==paCycle_Time)".

e Invarianten der Zustinde (d. h. Bedingungen die wiahrend der Aktivitat des Zustandes
gelten) stehen in unmittelbarer Nahe des Zustands und beinhalten einen Vergleichs-
operator, z. B. | ,c1Cycle<=paCycle_Time"

e Namen der Zustiande stehen in unmittelbarer Néhe dieser und beinhalten keine Ope-
ratoren.

e Synchronisationsaufrufe (d.h. Sende- und Empfangsoperationen auf den biniren
Kommunikationskanélen) sind an den abschlieBenden Sende- (!) bzw. Empfangs-
operatoren (?) erkennbar, z. B. ,,chCycle_Call!“

e Uhrenvariablen beginnen mit einem Préfix ,,c1“, Parameter beginnen mit einem Pra-
fix ,pa* und Kommunikationskanéle beginnen mit einem Préfix ,,ch®

e In TA-Zustanden mit einer Markierung ,,C* (committed) vergeht keine Zeit.

Zunichst wird der Hauptzyklus der Laufzeitumgebung modelliert, der in Abbildung 6.8
dargestellt ist. Der Lauf beginnt im Zustand ,start®, in dem keine Zeit vergehen darf. Die
erste Transition emittiert ein Signal tiber den Kanal ,,chCycle_Call® Danach wartet der
Automat solange, bis ein Signal {iber den Kanal ,chCycle_Finished“ empfangen wird.
Durch eine Invariante verbleibt der Lauf solange in dem oberen Zustand bis die interne
Uhr ,,c1Cycle” den Wert des Parameters ,pCycle_Time“ — der Zykluszeit — erreicht. Im
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Abbildung 6.9.: Der Automat fiir den Komponentenscheduler (in diesem Fall werden zwei
ISSCs innerhalb des Grundzyklus ausgefiihrt).

clAction <= paWCET

clAction := 0

©
@)

Abbildung 6.10.: Das Template fiir die Modellierung einer Aktion.

Anschluss daran vollzieht sich ein Ubergang in den Startzustand und die Uhr wird zuriick-
gesetzt. Im Gegensatz zu den Vorarbeiten wird der Einfachheit halber das Einlesen der
Ein- und Ausgénge der Laufzeitumgebung nicht explizit im Hauptzyklus modelliert. Bei
Bedarf kann dies komplikationslos hinzugefiigt werden.

Im néchsten Schritt wird der Komponentenscheduler modelliert. Fiir die Zielsetzung der
einfachen Modellierung der ISSC-Semantik reicht ein einfacher Ansatz fir den Kompo-
nentenscheduler aus. Dabei wird die Ausfithrung einer einfachen Liste nachgebildet. Der
Automat ist in Abbildung 6.9 zu finden. Der Lauf des Automaten wird ausschliefSlich durch
Synchronisationsaufrufe bestimmt. Der Beginn des Hauptzyklus, der vom Automaten in
Abbildung 6.8 durch das Senden auf dem Kanal ,,chCycle_Call® kommuniziert wird, 16st
die sequentielle Ausfiihrung von zwei ISSCs durch die passenden Kommunikationssignale
aus. Nach dem Beenden des zweiten Statecharts wird das Ende des Zyklus durch den Kanal
,chCycle_Finished“ an den Hauptzyklus der Laufzeitumgebung (Automat in Abbildung
6.8) iibermittelt.

Im Folgenden werden die Regeln fir die Abbildung einzelner Elemente der ISSCs auf
die Elemente der TA-Netzwerke vorgestellt. Zundchst muss die Modellierung der Aktionen
angesprochen werden, die in den einzelnen Zustianden der Statecharts aufgerufen werden.
Bei der Modellierung werden die genauen Auswirkungen der Aktionen nicht berticksich-
tigt, da nur die Ausfithrungsdauer dieser im Mittelpunkt der Betrachtung steht. Somit
ist eine Aktion nach dem Template modellierbar, das in Abbildung 6.10 dargestellt ist.
Die Kommunikationskanéle ,chAction_Finished“ und ,chAction_Call® sowie die Para-
meter ,paWCET“ und ,,paBCET* werden fiir die jeweilige Instanz der Aktion durch globale
Kanéle bzw. Parameter initialisiert. Die Parameter entsprechen der WCET bzw. der Best
Case Execution Time (BCET) einer Aktion. Die Ausfithrung der Aktion wird durch ein
Signal auf ,chAction_Call® initiiert. Dabei wird die interne Uhr ,clAction“ zuriick-
gesetzt. Danach erfolgt die Simulation der Ausfithrungszeit: durch das Zusammenspielen
der Zustandsinvariante ,clAction <= paWCET“ mit dem Guard ,clAction >= paBCET“
ist der Automat gezwungen in dem oberen Zustand fir die Zeitdauer aus dem Intervall

81

216.73.216.36, am 20.01.2026, 08:59:54. © Inhal.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186257086

6. Ein Rahmenwerk fiir die Integration von ressourcenadaptiven Anwendungen

chCall?
N clinternal:=0
initial@————@)

Abbildung 6.11.: Transformation des Initialzustands.

C O c

© O
T
c O ©

Abbildung 6.12.: Transformation eines Zustands mit Aktionen.

[paBCET, paWCET] zu bleiben, bevor ein Signal auf ,chAction_Finished“ ausgelost wird
und damit das Ende der Ausfithrung der Aktion markiert. Die BCET wurde ausschlief3-
lich fur Testzwecke abgebildet und kann durch die Belegung mit Null aus dem Modell
ausgeblendet* werden.

Das Modellieren der ISSCs in UPPAAL kann wegen der groBen Ahnlichkeit beider Mo-
delle mithilfe einfacher Uberfiihrungsmuster auf der Ebene einzelner Elemente stattfin-
den. Fiir die Modellierung wird davon ausgegangen, dass der Automat eine interne Uhr
»clInternal® (die der Uhr c aus der formalen Definition von ISSC entspricht) und einen
Parameter ,paD_T_Curr“ besitzt. Letzter enthilt die fir die Ausfithrung der ISSCs zur
Verfiigung stehende Zeit und entspricht somit der Variable A““" aus Abschnitt 6.2.2.
Analog zum Modell der Aktionen stehen ferner zwei Kommunikationskanéle ,,chCall®
und ,,chFinished® fiir das Model des ISSCs zur Verfiigung.

Der Initialzustand des Statecharts wird auf die UPPAAL Konstruktion in Abbildung
6.11 uberfiihrt. Der Automat wartet in seinem Anfangszustand ,intial“ auf die Syn-
chronisation tiber ,,chCall“ und setzt die interne Uhr zurtick, um die Zeit der eigenen
Ausfithrung messen zu kénnen. Die in einem Initialzustand des Charts enthaltene Aktions-
aufrufe kénnen durch die im Folgenden beschriebene Abbildung der Zustédnde abgedeckt
werden.

Nicht-Breakpoint Zusténde werden durch die Transformation in Abbildung 6.12 zu einer
Kette aus Automatenzustinden umgewandelt. Jeder Zustandstibergang l6st eine Aktion
aus, die durch einen Automaten in Abbildung 6.10 modelliert wird. Die Aktionen werden
in der Reihenfolge ,von oben nach unten“ abgearbeitet.

Als néchstes werden die Transitionen zwischen den Statechart-Zustdnden abgebildet.

&—®@ ®

Abbildung 6.13.: Transformation der Transitionen (Priorisierung ,von links nach rechts").
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breakpoint

O 5 initial

breakpoint

Abbildung 6.14.: Transformation eines Breakpoints ohne History-Verhalten (Priorisierung der
Transitionen ,von links nach rechts").

Diese werden durch das Muster in Abbildung 6.13 iiberfithrt (beispielhaft fir zwei Guards).
In der Abbildung wird die explizite Priorisierung der Transitionen in der Reihenfolge ,von
links nach rechts“ angenommen. Es wird davon ausgegangen, dass die Guards des ISSCs
auf zwei Arten boolescher Variablen operieren. Diese sind Variablen der gesteuerten Funk-
tionsbausteine und Variablen der internen Uhr ¢, die den Fortschritt der Zeit wahrend der
Ausfiihrung des Statecharts misst. Die erste Kategorie der Variablen wird einfach auf eine
Menge boolescher Variablen in UPPAAL abgebildet und muss somit extern belegt werden.
Die Guards mit der Uhr-Variable werden dagegen ins UPPAAL Modell als Transitionen-
Guards direkt iitbernommen. Die Abfrage der fir die Ausfithrung noch verfiigbaren Zeit
kann im ISSC durch die Abfrage der Differenz (A — ¢) erfolgen wobei ¢ die interne
Uhr des Statecharts ist. Diese Abfragen innerhalb der Guards kénnen direkt in UPAALL
auf die Differenzen paD_T_Curr — clInternal abgebildet werden. Man stellt fest, dass in
der vorgestellten Transformation keine Méglichkeit existiert den Lauf des TA fortzusetzen,
wenn der letzte Guard (G2 im Beispiel in Abbildung 6.13) nicht erfiillt ist. Dieses Verhal-
ten bildet die in-cycle Semantik der ISSCs nach — die Ausfithrung der Charts darf nicht
auflerhalb der Breakpoints unterbrochen werden.

Die verbliebenen Elemente der Statecharts sind die Breakpoints. Deren Verhalten héngt
davon ab, ob der Breakpoint ein History-Verhalten besitzt (also ob Breakpoint b in der
Menge H in der Definition des ISSCs enthalten ist). Es wird zunéchst der Fall mit abge-
schaltetem History-Verhalten betrachtet. Ein Breakpoint wird beispielhaft in Abbildung
6.14 in die TA-Syntax tberfiihrt. Im Unterschied zu einem normalen Zustand, wird nach
der negativen Uberpriifung des letzten Guards (hier, G2) die Ausfiihrung des Charts durch
den Kanal ,,chFinished* unterbrochen und das Chart springt zuriick in den Initialzustand
des Automaten in Abbildung 6.11. Die Zeit darf nur im Initialzustand vergehen — somit
ywartet das Chart in diesem Zustand auf die ndchste Ausfithrung.

History-Breakpoints werden durch die Transformation in Abbildung 6.15 umgewandelt.
Der hauptséchliche Unterschied zu der Transformation in Abbildung 6.14 sind die Eigen-
schaften des Zustands ,breakpoint“. Nach der Auswertung des letzten Guards signalisiert
das Chart das Beenden des aktuellen Laufs durch den Kanal ,chFinished®, wartet aber
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©——® ©

) ~
G1 -F< %— G2
clinternal:=0

breakpoint

© ©
@ N breakpoint

clinternal:=0

Abbildung 6.15.: Transformation eines Breakpoints mit History-Verhalten (Priorisierung der
Transitionen ,von links nach rechts*).

in diesem Zustand. Im Gegensatz zu der Transformation ohne History-Verhalten darf in
dieser Konfiguration nun die Zeit vergehen (der Zustand ist dementsprechend nicht expli-
zit als ,committed“ markiert worden). Die erneute Ausfithrung des ISSCs beginnt somit
genau in diesem Zustand und nicht in dem Initialzustand des Charts. Dabei wird &dhnlich
zu der Transformation in Abbildung 6.11 die interne Uhr zurtickgesetzt. Im speziellen Fall,
dass der History-Breakpoint keine ausgehende Transitionen besitzt, erzeugt die Transfor-
mation eine nicht-blockierende Schleife in der keine Zeit verstreichen darf (vgl. Abbildung
6.15 unten). Damit verbleibt, der Semantik der ISSCs entsprechend, der Automat in einer
»Senke*.

Mit den beschriebenen Elementen ist die Transformation und somit das Verhalten der
ISSCs vollstandig. Durch die Abbildung auf UPPAAL TA-Netzwerke ist aber nicht nur
das Verhalten formal beschrieben worden, sondern auch der Weg fiir die Anwendung des
im UPPAAL enthaltenen Computational Tree Logic (CTL) Model-Checkers offen. Die
moglichen Szenarien fiir dessen Nutzung wéhrend des Engineerings werden in Abschnitt
6.2.6 aufgefiihrt.

Die beschriebene Transformation ist fiir ein komplettes ISSC beispielhaft in Abbildung
6.16 dargestellt. Die Ahnlichkeit der Struktur des Charts im oberen Teil der Abbildung
und des UPPAAL-Automaten im unteren Teil ist nicht zu tibersehen — die Zustande und
die Aktionen werden einfach iibernommen. Die Guards sind iibernommen worden und mit
zusétzlichen ausschlieenden Bedingungen ergéanzt worden, damit der UPPAAL-Automat
deterministisch ist. Ein komplettes Automatennetzwerk, welches diesen Automaten ent-
hélt, ist in Abbildung 6.19 auf Seite 90 zu sehen.
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7

T
m—— (AT—c) =200 ms + TRUE
S2 CALL Al S3 | CALL A3 /
TRUE = TRUE
N
B1
(AT —c) = 50 ms
WCET der Aktionen:
Sa CALL A2 Al 200 ms
A2 50 ms
A3 100 ms

=== TRUE

intial

clinternal := 0

breakpoint G

Abbildung 6.16.: Transformation eines ISSCs nach UPPAAL an einem einfachen Beispiel.
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6.2.5. Beschreibung ressourcenadaptiver Algorithmen mit ISSC —
Konventionen und Muster

Konventionen

Mit den vorgestellten In-cycle Sequential State Charts lasst sich die Ausfithrung verschie-
denster POUs komfortabel beschreiben. Die Beschreibung der Ablédufe durch den Nutzer
bringt aber auch Gefahren mit sich. In diesem Abschnitt werden drei Konventionen fur
ISSC vorgeschlagen, die diese Gefahren minimieren sollen. Diese Konventionen stellen kei-
ne Einschrénkung der Beschreibungsstarke der Statecharts dar und erleichtern in vielen
Féllen das Engineering.

Eine Gefahr bei der Definition der ISSCs ist die Entstehung von Deadlocks, d.h. Zu-
stdnden, die iiber keine aktive Transition verlassen werden kénnen. Durch einen solchen
Zustand konnte, unter den angenommenen Bedingungen, ein Zyklus nicht terminieren bzw.
ein nicht-konsistenter Zustand entstehen, falls man den Deadlock gezwungenermafien durch
den Abbruch der ISSC-Ausfithrung auflésen muss.

Eine zusétzliche Gefahr bietet die von SSC bzw. SFC teilweise geerbte Syntax des Be-
schreibungsmittels. Da sowohl SSC als auch SFC durch die multi-cycle Semantik keine Voll-
stdndigkeit der Ausgangstransitionen fordern, kénnten Nutzer in der Engineering-Phase
mogliche Deadlocks iibersehen. Diese Problematik lasst sich mithilfe des UPPAAL Model-
Checkers 16sen, durch den man die Abwesenheit von Deadlocks beweisen kann (vgl. Ab-
schnitt 6.2.6). Wegen der partiellen Abbildung der Guards in UPPAAL (es werden nur die
Guards abgebildet, die explizit iber die Zeit quantifizieren) kénnen aber nicht alle Guards
iberprift werden. Diese Problematik kann durch die explizite Einfithrung einer Standard-
Transition mit Guard ,TRUE“, die als letztes fiir jeden Zustand ausgewertet wird und
immer aktiv ist, gelost werden. Diese Konvention entspricht dem ,else“ Konstrukt in den
Verzweigungen der strukturierten Programmiersprachen. Somit gilt:

Konvention 1: Jeder Zustand, der kein Breakpoint ist, muss mindestens
eine ausgehende Transition besitzen, deren Guard mit TRUE ausgewer-
tet wird.

Ein weiteres Problem sind die Zyklen innerhalb der Statecharts, die eventuell nie ver-
lassen werden konnen und fiir den Gesamtzyklus der Laufzeitumgebung somit dhnliche
Probleme wie Deadlocks verursachen kénnen. Aus diesem Grund werden die Zyklen zwi-
schen Nicht-Breakpoints ausdriicklich verboten. Es ist wichtig zu bemerken, dass Zyklen,
bei denen die Hiufigkeit der Ausfiihrung zur Ubersetzungszeit bekannt ist (z.B. eine 10-
fache Ausfithrung eines Zustands), nicht als Zyklen in diesem Kontext gelten, da sie einfach
wausgerollt® werden kénnen und die Terminierung des Charts nicht gefahrden. Zusammen-
gefasst:

Konvention 2: Ein ISSC darf nur Zyklen zwischen den Breakpoints
enthalten. Die Abschnitte zwischen den Breakpoints sind demzufolge
zykelfrei.

Diese Konvention erzwingt eine im Voraus bekannte obere Schranke fiir die Ausfithrungszeit
jedes Abschnittes zwischen den Breakpoints eines ISSCs.

Eine weitere Ursache fiir Deadlocks kann die fehlerhafte Formulierung der Zeitguards,
d.h. der Teilausdriicke der Guards, die iiber die interne Uhr quantifizieren, sein. Aus den
Beispielen im letzten Abschnitt wird sichtbar, dass die Guards fiir die interne Uhr haufig
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CALL MANDATORY/

* CALL VER1 CALL VER2

CALL OPTIONAL - *

(b) Mehrversionen-Methode
(a) 0/1-Ausfiithrung

Abbildung 6.17.: ISSC-Muster fiir ressourcenadaptive Algorithmen.

nur das ,sichere Betreten“ des jeweiligen Zweigs garantieren. In diesem Fall kann die
Formulierung der Guards automatisch geschehen. Somit gilt:

Konvention 3: Soll nur das sichere Betreten des Zweiges/des Zustands
garantiert werden, so werden die entsprechenden Zeitguards automatisch
berechnet.

Im Falle der Abwesenheit der logischen Bedingungen reicht ein einfacher Algorithmus zur
Berechnung der Zeitguards aus. Dieser wird in Abschnitt 6.2.6 vorgestellt. In der graphi-
schen Darstellung wird aus diesem Grund im Folgenden auf die explizite Angabe dieser
Guards verzichtet.

ISSC-Muster fiir RA-Algorithmen innerhalb der POUs

In diesem Abschnitt werden die Grundmuster vorgestellt, die unter anderem fiir die Im-
plementierung der adaptiven Anwendungen nach den Paradigmen des Imprecise Compu-
tation Models (vgl. Abschnitt 5.1) notwendig sind. Daftr wird die 0/1-Ausfihrung, die
Mehrversionen-Methode und die Meilenstein-Methode in ISSC nachgebildet. Dartiber hin-
aus wird die Implementierung von Transaktionen angesprochen.

Die dargestellten Muster machen von den Konventionen des letzten Abschnitts Ge-
brauch. So werden z.B. die Guards der Transitionen nicht um die Zeitguards erweitert.
Es wird davon ausgegangen, dass diese automatisch berechnet werden. Die zu berechneten
Guards wird im Folgenden durch den Platzhalter ,*“ angedeutet. Das Ziel der Aufls-
sung der Platzhalter ist somit nur das gefahrlose Betreten des jeweiligen Zweigs bzw. des
Zustands sicher. Fiir die beispielhafte Anwendung der Muster und fiir viele Félle in der
Praxis reicht dieses Verhalten aus. Die Charts konnen bei Bedarf um komplexere Guards
erweitert werden, die auch die Semantik der gesteuerten POU beriicksichtigen kénnen.
Das kénnen z. B. die Ergebnisse der Berechnung einzelner Bausteine oder die Reaktion auf
einen externen Eingang der POU sein.

Als erstes wird die 0/1-Ausfihrung in Abbildung 6.17a vorgestellt. Das Chart besteht
aus zwei Zustdnden, die die beiden Teile des Algorithmus représentieren: den verpflich-
tenden und den optionalen Teil. Der Initialzustand sto8t die Ausfithrung des Pflichtteils
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CALL OP1
CALL OP2

CALL MONOTONE

(a) Meilenstein-Methode (b) Transaktion

Abbildung 6.18.: ISSC-Muster fir ressourcenadaptive Algorithmen (Fortsetzung).

durch den Aufruf einer Aktion mit dem Namen ;MANDATORY*“ an. Durch den darauf
folgenden Breakpoint kann die Ausfithrung des ISSCs bereits nach dieser einen Aktion
terminieren bzw. terminiert werden. Sollte dies nicht der Fall sein, so kann die Ausfithrung
im zweiten Zustand mit dem Aufruf der Aktion ,OPTIONAL“ fortgesetzt werden. Diese
ist dem optionalen Teil des Algorithmus zugeordnet. Danach wird der zweite Breakpoint
erreicht und die Ausfiihrung zwangsweise terminiert. Dieses einfache Muster lasst bereits
die Ausdrucksstarke der ISSCs erahnen: Die Information zur Reihenfolge der Aktionen und
deren optionale bzw. verpflichtende Ausfiihrung ist einfach und kompakt dargestellt.

Das néchste Muster stellt in Abbildung 6.17b die Ausfithrungssteuerung einer
Mehrversionen-Methode graphisch dar. Die Ausfithrung beginnt im Initialzustand. Da die-
ser keine Aktionen enthilt, werden direkt die zwei ausgehenden Transitionen ausgewertet,
um entweder den linken oder den rechten Zweig des ISSCs zu betreten. Angenommen,
die WCET des linken Zweigs (der Version 1) ist kiirzer als die des rechten (der Version
2). Der WCET Parameter w des Charts stellt die mogliche Ausfithrung des linken Zweigs
und damit der Aktion ,VER1“ sicher — die dafir benétigte Zeit wird von dem Kompo-
nentenscheduler garantiert. Falls mehr Zeit zur Verfiigung steht, kann eventuell auch der
rechte Zweig betreten werden. In diesem Fall wird die Aktion ,VER2* angestoflen. Der
Breakpoint im unteren Teil der Abbildung stellt eine Terminierung sicher und dient als
,Endzustand*.

Die beiden betrachteten Muster hatten eine begrenzte Hochstausfithrungsdauer. Im er-
sten Beispiel war das die Summe der Ausfihrungsdauer beider Algorithmen. Im zweiten
Beispiel war das deren Maximum. Das nédchste Muster in Abbildung 6.18a implementiert
eine Meilenstein-Methode und kann somit beliebig lange ausgefiihrt werden. Der Chart
fithrt zunéchst eine Aktion ,,INITIAL® aus, in der ein Grundergebnis berechnet wird. Im
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weiteren Verlauf der Ausfithrung kann dieses Ergebnis durch die wiederholte Ausfithrung
der Aktion ,MONOTONE" des zweiten Zustands verbessert werden. Im Gegensatz zu Ab-
schnitt 5.1.5, wird in diesem einfachen Beispiel keine Trennung zwischen der Berechnung
an sich und dem Meilenstein gemacht. Diese ist durch das Einfiihren weiterer Zustande
und Breakpoints in der Chart-Schleife und somit einer Verfeinerung der nicht unterbrech-
baren Abschnitte problemlos méoglich. Auch das Unterbrechen nach dem Erreichen eines
bestimmten Giitekriteriums, z. B. das Unterschreiten gewisser Fehlerabschéitzung, kann
mithilfe eines weiteren Breakpoints mit einer entsprechenden Transition erfolgen.

Das letzte Muster in Abbildung 6.18b implementiert eine Prozedur, die nicht zum Impre-
cise Computation Model gehort. Dieses Beispiel setzt eine Transaktion mit vordefinierten
Unterbrechungspunkten um und macht dafiir von Breakpoints mit History-Semantik Ge-
brauch. Die Transaktion stellt sicher, dass die in einem Zustand enthaltenen Aktionen
garantiert innerhalb eines Zyklus der Laufzeitumgebung ausgefiihrt werden. Das trifft bei-
spielsweise auf die Aktionen ,OP1“ und ,,OP2“ zu. Die Ausfithrung kann zwischen den
Zustanden ,pausieren®, d.h. fiir eine unbestimmte Anzahl Zyklen im History-Breakpoint
verbleiben. Ein Anwendungsszenario fir dieses Muster ist das Laden von Instanzen in
das Laufzeitsystem. Ahnlich zu einer Datenbank miissen manche Aktionen, wie z. B. das
Einschalten der Bausteine, auf den Zyklus synchronisiert passieren. Nach dem Verlassen
des letzten Zustands verbleibt die Transaktion in dem untersten Breakpoint. Damit ist
eine einmalige Ausfithrung dieser sichergestellt. Die Anwendung dieses Musters wird im
Abschnitt 7.5 anhand eines Use-Cases demonstriert.

6.2.6. Engineering-Aspekte
Abschitzung der WCET

Die Abschitzung der WCET eines Programms ist eine nichttriviale Aufgabe und héngt
von vielen Faktoren ab, die die Laufzeit beeinflussen kénnen. Einige Faktoren sind an das
Programm selbst gebunden. Dazu gehort, z. B. der Kontrollfluss innerhalb der Programm-
logik. Andere Faktoren héngen von der Hardware- und Softwareplattform des Systems
ab. Zur ersten Kategorie gehoren, z. B. die Cache- und Speicherarchitektur der Plattform.
Zur zweiten Kategorie gehoren die Architektur des Betriebssystems und die Eigenschaften
dessen Subsysteme, z. B. des Schedulers und der Speicherverwaltung.

Die methodische Analyse der Verfahren zur Berechnung der WCET einzelner Aktionen
bzw. Komponenten wiirde den Rahmen dieser Arbeit sprengen. Aus diesem Grund wird an
dieser Stelle eine bereits erfolgte Abschitzung angenommen. Eine Ubersicht iiber géingige
Laufzeit-Analyseverfahren ist in [WEE*08] und [SOG14] zu finden.

Simulation der ISSCs mit UPPAAL

Die Abbildung der ISSCs auf UPPAAL erlaubt die Nutzung des Tools fiir die Simulation
und das Testen der Charts wiahrend des Engineerings. Der Funktionsumfang von UPPAAL
ermoglicht den simulierten Durchlauf der Charts bzw. der abgeleiteten Automaten sowie
das Aufzeichnen von Laufen des Charts.

Als Beispiel wird das System in Abbildung 6.19 betrachtet. Die einzelnen Automaten
in der Simulationssicht sind durch die Anwendung der Transformation entstanden, die in
Abschnitt 6.2.4 detailliert beschrieben wurde. Beispielsweise entspricht der als ,,ISSC1*
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Al A2 A3
clAction = g ClAction == 200 claction := g ClAction <= 50 claction := p ClAction <= 100
(claction == 1) (claction == 1] (claction == 1)
chAl_Csa chAl_Finished! chA2_Cal chA2_Finished! chA3_Ca chA3_Finished!
I55C1
intial
chlSsC1_call?
clinternal := 0
clinternal = paD T Curr - 20@
chlSSC1_Finish
clinternal <= paD_T_Curr - 200
chal_call! chaz_calll
breakpoin chAl_Finished?
chA3 Finished?
clinternal = paD_T_Curr -
clinternal == paD_T_Curr -50
chaz_Calll
chAZ_Finished?
Compontent_Scheduler
chiS5C1_CallichSSC1_Finished? chiSSc2_calll chiSSC2_Finished?
IS5C2
Initial chCycle_cCall? chCycle_Finished!
chisscz_call?
clinternal = 0
PLC
clCycle<=500
chal_calll {clCycle==500)
clCyele:=0
* @ start
L chAl_Finished?
break nternal = paD_T Curr {50~ finish chCycle_call!
reakporl =2 Einished!
chCyele_Finished?
clinternal := 0

clinternal <= paD_T_Curr -50

©

chaz_Calll

chlISSC2_Finished!

N

Abbildung 6.19.: Simulationssicht des UPPAAL-Tools, in der die zyklische Umgebung, ein
Komponentenscheduler, zwei ISSCs und die dazugehdrigen Aktionen ausgefiihrt werden.

chA2_Finished?
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bezeichnete Automat dem ISSC in Abbildung 6.16 auf Seite 85.

Anwendbarkeit des Model-Checkers

Neben der Simulation liegt eine weitere Anwendungsmoglichkeit von UPPAAL in der for-
malen Verifikation. Das Ziel ist es, bestimmte logische Aussagen zu dem definierten System-
modell, in diesem Fall das abgebildete Modell der zyklischen Laufzeitumgebung und der
darin eingebetteter ISSCs, zu bestatigen oder anhand eines Gegenbeispiels zu widerlegen.

Die Gefahren der Deadlocks wurden bereits in Abschnitt 6.2.5 angesprochen. Die Sicher-
stellung der Abwesenheit der Deadlocks ist die erste Anwendung des Model-Checkers und
kann durch eine einfache Anfrage ,A[] not deadlock® iiberpriift werden.

Eine weitere Anwendung des Model-Checkers ist die grobe Abschitzung der erreich-
baren Zustédnde der ausgefithrten ISSCs. Beispielsweise kann mithilfe der Formel ,E<>
ISSC1.optional” die Existenz eines Laufes, in dem ein ISSC mit Namen ,ISSC1¢ den
Zustand ,optional® erreicht, iiberpriift werden. Der Quantor  E“ fordert die Existenz ei-
nes Pfades, der Diamond-Quantor ,,<>* fordert das Erreichen des gewiinschten Zustands
auf diesem Pfad. In dhnlicher Weise kann untersucht werden, ob z. B. optionale Zustdnde
immer besucht werden. In diesem Fall kann die Logik des Statecharts vereinfacht werden.
Die TCTL Formel dazu Lautet in UPPAAL-Syntax ,A<> ISSC1.optional®, der Existenz-
Quantor wurde durch den All-Quantor ,A* ersetzt, der die Existenz der Eigenschaften auf
allen Pfaden fordert.

Der Model-Checker kann weiterhin fir grobe Abschédtzungen der Verwertung der
Zyklus-Zeit des Laufzeitsystems verwendet werden. Dazu wird der Wert der inter-
nen Uhr ,clCycle“ der Laufzeitumgebung in Abbildung 6.8 untersucht. Man kann
die Zykluszeit nach unten bzw. nach oben abschétzen, indem die Formeln fir das
Infimum ,inf{PLC.finish}: PLC.clCycle“ bzw. das Supremum ,sup{PLC.finish}:
PLC.clCycle“ ausgewertet werden. Um die Abschétzung realistischer zu gestalten, kom-
men die bereits vorgestellten BCET-Parameter der Aktionen (,,paBCET* in Abbildung 6.10)
zum Einsatz. Diese Parameter kénnen neben dem obligatorischen Parameter fiir die WCET
optional modelliert werden. Durch die Auswertung der angegebenen Formeln werden Sze-
narien fur den kiirzesten bzw. den langsten moglichen Zyklus der Laufzeitumgebung gene-
riert. Die Differenz des Supremums , sup{PLC.finish}: PLC.clCycle“ und der Zykluszeit
»,paCycle_Time“ in Abbildung 6.8 ist die, in jedem Fall, ungenutzte Slackzeit. Diese Zeit
sollte im Rahmen der Systemauslegung minimiert werden.

Alle vorgestellten Uberpriifungen kénnen auch wihrend des Engineering-Vorgangs durch
eine automatische Transformation nach UPPAAL kontinuierlich vorgenommen werden.

Automatische Belegung der Zeitguards fiir einfache ISSCs

Die letzte Konvention des Abschnitts 6.2.5 fordert eine automatische Berechnung der Zeit-
guards, falls diese nur das ,sichere Betreten“ der Verzweigungen bzw. Zusténde garantieren
sollen. Unter ,sicher” wird an dieser Stelle die Einhaltung der Echtzeitschranken verstan-
den. Diese Bedingung ist bei allen in Abschnitt 6.2.5 vorgestellten Mustern der Fall.

Da es nur um das sichere Betreten der Zustande geht, wird davon ausgegangen, dass bei
dieser Problemstellung die Guards des ISSCs mit ,*“ vorbelegt sind. Algorithmus 1 stellt
eine skizzenhafte Implementierung der Berechnung der Zeitguards fiir ISSCs ohne History-
Breakpoints dar. Neben den Zeitguards wird auch die WCET des ISSCs ausgegeben.
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6. Ein Rahmenwerk fiir die Integration von ressourcenadaptiven Anwendungen

Eingabe : ISSC I, alle Guards mit * belegt
Ergebnis : Beschriftung der Transitionen mit Zeitguards, WCET w des ISSCs I

Markiere jeden Zustand s; € S mit WCET(s;) := g, ca(s) WOET (ay);

[

2 Markiere jeden Breakpoint b; € B mit WCET(b;) := 0

3 Markiere jeden Zustand/Breakpoint z; € S'U B mit total(z;) := 0;
4 Unterteile I in azyklische Abschnitte I; zwischen ¢t € BU {sg};

5 foreach Abschnitt I, do

6 foreach Zustand z; € S von I; in topologischer Reihenfolge do
7 if z; ist ein Blatt then

8 | total(z) := max{total(z;), WCET(s;)};

9 else

10 min = oo;

11 foreach Nachfolger s; € S von z; in Prioritit-Reihenfolge do
12 if total(z;) < min then

13 | min := total(z;);

14 end

15 end

16 total(z;) := maz{total(z;), WCET(z;) + min};

17 end

18 end

19 end

20 foreach Transition t von s nach d mit s € B und d € S do

21 ‘ Setze den Zeitguard von ¢ als ,,(A“™ — ¢) > total(d)*;

22 end

[
w

foreach Transition t von s nach d mit s € S, s hat mehrere Nachfolger und d € S do

24 Seien S’ die Nachfolger von s;

25 Ordne s’ € S” aufsteigend beziiglich total(s') in eine Ordnung O;

26 Sei p die Position von d in O';

27 if d ist nicht des letzte Element in O' then

28 Sei e € S der Nachfolger von d beziiglich O';

29 Setze den Zeitguard von ¢ als ,total(e) > (A — ¢) > total(d)“;
30 end

31 end

«w
~

Ersetze alle * Bedingungen durch TRUF;
w = total(so);

[
w

Algorithmus 1 : Skizzenhafte Berechnung der Belegung der Zeitguards fir ISSCs ohne
History-Breakpoints.

Zunéchst werden die WCET einzelner Zustande der Charts WCET (s;) als Summe der
WCET der enthaltenen Aktionen initialisiert. Die WCET der Breakpoints werden mit
0 belegt. Danach lauft der Algorithmus die einzelnen azyklischen Abschnitte des Charts
topologisch ,von unten nach oben* entgegen der Ausfithrungsreihenfolge ab und berechnet
zu jedem Knoten die Zeit total, die nach dem Betreten des Knotens fiir die Abarbeitung
der Aktionen mindestens benotigt wird.

Die Abarbeitungszeit fir die Blétter jedes Abschnittes wird gleich der WCET des jewei-
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6.2. Meta-Modell fiir ressourcenadaptive Komponenten

WCET der Aktionen:
CALL INITL INTL  10ms
St | calL N2 INT2  10ms
PREP  30ms
- * VER1 40 ms

VER2 60 ms

S2 CALL PREP

* - - * +*

S3 CALL VER1 S4 | CALL VER2

Abbildung 6.20.: Beispiel-ISSC fiir eine automatische Berechnung der Zeitguards.

ligen Zustands gesetzt. Fiir Knoten, die Nachfolger haben, wird in Zeile 11 die minimal
benotigte Abarbeitungszeit fir einen direkten Nachfolger berechnet. Die Abarbeitungszeit
des Knotens wird als Summe der WCET der Zustand-Aktionen und dem Minimum der
Zeiten der aktiven Nachfolger gesetzt.

Als néchster Schritt werden in der Schleife (Zeilen 20-22 des Algorithmus 1) die Guards
der aus Breakpoints ausgehenden Transitionen um die berechneten Zeitguards ergénzt.
Der Einfachheit halber werden nur die Transitionen von Zusténden mit mehreren Nachfol-
gern oder einem Breakpoint ausgehend ergénzt. Bei anderen, vor allem linear aufeinander
folgenden Zustanden, reicht die zugesicherte Zeit fiir die Ausfithrung aller Aktionen aus.
Transitionen, die in Breakpoint-Zustédnden enden, werden nicht modifiziert — das Betreten
der Breakpoints soll immer méglich sein. Die auf diese Weise ergénzten Guards garantieren
zum einen die Abwesenheit der Deadlocks in dem Chart. Zum anderen werden die Zusténde
bzw. Zweige des Charts nur dann betreten, wenn die Ausfithrungszeit fiir die Abarbeitung
der Zustinde bzw. deren Aktionen ausreichend ist.

Die in die Zusténde mit mehreren Nachfolgern eingehenden Transitionen werden in Zeilen
23-32 bearbeitet. Dort werden fiir jeden Zustand die nachfolgenden Zustédnde nach der
Abarbeitungszeit total sortiert und die Guards so gesetzt, dass der Zustand nur betreten
wird, falls fiir deren Abarbeitung die verbliebene Abarbeitungszeit ausreicht.

Die Anweisung in Zeile 33 schatzt die WCET w des gesamten Charts ab, die dem Kompo-
nentenscheduler mitgeteilt wird. Im Falle der Abwesenheit der History-Breakpoints gleicht
diese Zeit der Abarbeitungszeit des an dem Initialzustand sg hdngenden azyklischen Ab-
schnitts. Diese Zeit ist in der Variable total(sy) gespeichert.

Die Anwendung des Algorithmus wird am Beispiel des ISSCs in Abbildung 6.20 illu-
striert. Das Chart beschreibt ein gemischtes Zeitverhalten. Die Verzweigung vom Zustand
Sy zu den Zusténden Sz und Sy folgt dem Mehrversionen-Muster. Die Schleife vom Break-
point Bj zu dem Initialzustand S; folgt dem Meilenstein-Muster. Die Abschatzung der
Laufzeiten einzelner Aktionen der Zustédnde sind ebenfalls in Abbildung dargestellt. Als
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6. Ein Rahmenwerk fiir die Integration von ressourcenadaptiven Anwendungen

B1 WCET 0 ms
total 90 ms
1 WCET 20 ms
total 90 ms
s WCET 20 ms
! total 90 ms
s2 WCET 30 ms *
total 70 ms
52 WCET 30 ms
* total 70 ms
s WCET 40 ms s WCET 60 ms
total 40ms total 60 ms
3 WCET 40 ms WCET 60 ms
N + * total 40 ms total 60 ms
B1 WCET 0 ms
total Oms
B1 WCET 0 ms

total Oms

Abbildung 6.21.: Azyklische Abschnitte des ISSCs aus Abbildung 6.20 und die berechneten

Markierungen der Zustande.

S1

S2
(ASUT-¢) > 90 ms mm—m

S3

CALL
CALL

INIT1
INIT2

CALL PREP

60 ms > (AT~ ¢) > 40 ms

+ TRUE

CALL VER2

CALL VER1 S4

=mmm  TRUE
TRUE

Abbildung 6.22.: ISSC aus Abbildung 6.20 nach der Terminierung des Algorithmus 1 inklusive
der berechneten Zeitguards. Die WCET des ISSC betragt 90 ms.
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6.3. Ressourcenadaptiver Komponentenscheduler fiir zyklische Laufzeitsysteme

erstes wird das Chart in azyklische Abschnitte zwischen den Breakpoints bzw. zwischen
dem Initialzustand und einem Breakpoint unterteilt. Das Ergebnis dieser Prozedur ist in
Abbildung 6.21 zu finden. In beiden Abschnitten werden die Beschriftungen der Zusténde
WCET und total nach dem Algorithmus 1 ,von unten nach oben“ berechnet. Aus diesen
Informationen werden die Guards fiir einzelne Transitionen berechnet, wie die Abbildung
6.22 zeigt. Man sieht, dass nur zwei der Transitionen zusétzliche Guards bekommen haben.
Damit ist ein Ubergang aus dem Zustand S, weiterhin sichergestellt bzw. der Breakpoint
B; wird nur bei ausreichend verfiigbarer Ausfiihrungszeit verlassen. Die gesamte WCET
von 90 ms des Charts belauft sich auf den WCET-Wert des Initialzustands S;.

Die History-Breakpoints fordern eine leichte Abwandlung des Algorithmus fiir die Be-
rechnung der WCET des gesamten Charts. Da die Ausfithrung des ISSCs theoretisch in je-
dem dieser Breakpoints starten kann, muss das Maximum der Abarbeitungszeit von jedem
azyklischen Abschnitt, der an dem Initialzustand oder einem History-Breakpoint héngt,
gebildet werden. Somit wird dem Chart vom Komponentenscheduler garantiert ausreichend
Ausfithrungszeit zur Verfiigung gestellt.

Eine weitere abgewandelte Version des Algorithmus kann zu der Berechnung der maxi-
malen Laufzeit des ISSCs verwendet werden. Dieses ist nur bei zykelfreien Charts sinnvoll,
z.B. bei der Mehrversionen-Methode oder der 0/1 Ausfithrung.

6.3. Ressourcenadaptiver Komponentenscheduler fiir
zyklische Laufzeitsysteme

In den letzten zwei Abschnitten wurden eine Softwarearchitektur fiir die Ausfithrung und
ein Meta-Modell fiir die Beschreibung von RA-Algorithmen eingefiihrt. In diesem Abschnitt
wird ein Referenzmodell fir einen Komponentenscheduler vorgestellt, der die Zuteilung der
Ausfiihrungszeit an die RA-Komponenten iibernimmt.

Fir dieses Referenzmodell wurde ein Ansatz ausgewéhlt, dessen Grundprinzip dem Pre-
dictably Flexible Real-Time Scheduling Modell dhnelt (vgl. Abschnitt 5.1.6). Die Aktivi-
téten des Schedulers werden in eine offline und eine online Phase aufgeteilt. Damit werden
die Vorteile der Vorhersagbarkeit sowie einer relativ einfachen Laufzeitimplementierung
mit einer gewissen Flexibilitat kombiniert. Die Flexibilitat ist notwendig fiir die optimale
Ressourcennutzung des Systems. Der erfolgreiche Einsatz der offline Scheduler in den leit-
technischen Laufzeitsystemen, z. B. FASA oder ACPLT/RTE (vgl. Abschnitte 3.3.3 bzw.
3.3.4), spricht ebenfalls fiir die Anwendung eines solchen Verfahrens. Ein mit einem offline
Scheduler ausgestattetes Laufzeitsystem erfiillt somit die Erwartungen der Nutzerkreise in
der Doméne der Leittechnik (Anforderungen N1 und N5 aus Kapitel 4).

6.3.1. Nomenklatur

Fir das Scheduling der Komponenten gelten weiterhin Grundannahmen, die im den Ab-
schnitten 2.1.2 und 6.2.1 erlautert wurden. Die klassische Definition des Tasks aus Ab-
schnitt 2.1.2 wird fiir die folgenden Ausfithrungen abgewandelt. Ein Task T} ist ein Tupel,
der aus folgenden Komponenten besteht (diese Parameter sind der Tasking-Facette der
Komponente entnommen):

e WCET der Komponente w; € RT in Zeiteinheiten,
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6. Ein Rahmenwerk fiir die Integration von ressourcenadaptiven Anwendungen

e Periode per; € N in Anzahl der Grundzyklen des Laufzeitsystems und
e der Flexibilitatsparameter flex; € {0,1} der Komponente.

Die Dauer des Grundzyklus wird als cyctime bezeichnet. Der boolesche Parameter flex;
gibt an, ob die Komponente mehr Rechenzeit als w; sinnvoll verwenden kann. Dieses ist
beispielsweise bei den durch ISSCs gesteuerten Komponenten aus dem Abschnitt 6.2 der
Fall. Tasks mit flexr; = 0 werden fiir die Kapselung der bereits existierenden Software
verwendet. Der Parameter per; eines Tasks zeigt an, dass eine Menge periodischer Tasks T’
gescheduled wird. Es wird zunéchst angenommen, dass eine Task Instanz, ein Job, zwischen
dem ersten und dem letzten Grundzyklus der Task-Periode ausgefithrt werden muss. Somit
gleicht die relative Deadline der Periode (dead; = per;) (vgl. Abbildung 2.3 auf Seite 11).

Durch den Einsatz eines offline Schedulers konnen die Randbedingungen an den zu
findenden Schedule weiter verfeinert werden, indem die Tasks in weitere, nicht disjunkte,
Mengen unterteilt werden:

e R C T ist die Menge Tasks mit speziellen Release- und Deadline-Zeiten. Sollen die
Jobs, von der Standarddefinition abweichende Release- und Deadline-Zeiten bekom-
men, so werden sie dieser Untermenge zugeordnet.

e A C T ist die Menge der Phasen-ausgerichteten (aligned) Tasks. Diese Tasks miissen
so gescheduled werden, dass die Phase, d.h. der Abstand zum Beginn der eigenen
Periode, immer konstant ist. Der Scheduler legt somit die Werte der Phasen fest. Die
Phasen-Ausrichtung kann fiir bestimmte Aufgaben des Tasks entscheidend sein, z. B.
fiir die zyklische Abtastung.

e I C A heifit die Menge der Phasen-fixierten (fixed) Tasks. Diese Tasks schréanken die
Entscheidung des Schedulers weiter durch die explizite Vorgabe der Phase ein (die
Einschrankung der Phasen-Ausrichtung gilt weiterhin, da F' C A). Die Fixierung der
Phase ist insbesondere fiir die Modifikation eines bestehenden Schedules relevant, da
dort bestimmte Tasks ihre Phase nicht mehr verdndern durfen.

Eine detaillierte Beschreibung dieser Mengen in deren Auswirkung auf die modellierte
Problemstellung ist im néchsten Abschnitt zu finden.

6.3.2. Aktivitaten der offline Phase

Das Ziel der offline Phase ist fir eine Menge von Tasks T mit T; = (w;, per;, flex;) und
weiteren optionalen Randbedingungen, z. B. einer Reihenfolgebeziehung unter Tasks, eine
Scheduling-Tabelle iiber die sogenannte Hyperperiode zu bilden. Die Hyperperiode be-
zeichnet eine Periode, deren Lange das kgV der Perioden der einzelnen Tasks per; ist. Bei
der zyklischen Ausfithrung der Taskmenge 7" wiederholen sich die Ausfithrungen einzelner
Jobs in jeder Hyperperiode. Der Problematik einer eventuell zu langen Hyperperiode kann
durch die Wahl einer harmonischen Periodendauer fiir die einzelnen Tasks entgegengewirkt
werden. Die Scheduling-Tabelle ordnet die einzelnen Jobs dem jeweiligen Grundzyklus in-
nerhalb einer Hyperperiode zu. Gleichzeitig wird eine giiltige Reihenfolge der Instanzen
sichergestellt, falls eine Reihenfolgebeziehung spezifiziert wurde. Zusétzlich kann die opti-
male Ausfithrungsdauer fiir adaptive Tasks mit flex; = 1 berechnet werden.
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6.3. Ressourcenadaptiver Komponentenscheduler fiir zyklische Laufzeitsysteme

Die Anzahl der Grundzyklen in der Hyperperiode wird im Folgenden als hyperperiod =
kgV (pery, ..., per) bezeichnet und die Lange eines Grundzyklus des Systems als cyctime.

Das nicht unterbrechende Scheduling-Problem fiir periodische Tasksets mit bekannten
Release-Zeiten ist NP-hart (d.h. mit existierenden Algorithmen nicht effizient 16sbar)
[JSMO1]. Die vorgestellte Problemstellung weicht von dem zitierten Scheduling-Problem
wegen der Annahme eines festen Grundzyklus etwas ab. Der Beweis der NP-Hérte kann
aber durch eine polynomielle Reduktion auf die Entscheidungsvariante des Behélterpro-
blems (Bin Packing Problem) gefiihrt werden. Dabei werden die GroSe eines Behélters
auf die Lange des Grundzyklus und die einzelnen Objekte und deren Gewichte auf die
Tasks bzw. deren Ausfithrungsdauer abgebildet. Die Periode jedes einzelnen Tasks gleicht
der Anzahl der Behélter. Da die Periode aller Tasks nun gleich ist, entspricht die Hyper-
periode der Anzahl der zu fiillenden Behélter. Das Scheduling-Verfahren muss nun jeden
Grundzyklus mit den Tasks ,fillen“, was der Zuordnung der Objekte zu den Behéltern
entspricht.

Die Berticksichtigung zusétzlicher Randbedingungen, wie z. B. der von der Periode abwei-
chender Deadline- oder Reihenfolgebeziehungen unter den Tasks, erhéhen die Komplexitit
des Problems zusatzlich. Daher wird ein manuelles Scheduling sogar fiir kleinere Proble-
minstanzen uniibersichtlich und ein automatisiertes Verfahren fiir die optimale Losung
des Problems notwendig. Dieses wird mit Mitteln der gemischt-ganzzahligen Optimierung
umgesetzt.

Die Aktivitdten der offline Phase lassen sich wie folgt zusammenfassen:

o Aufstellung des Optimierungsproblems und dessen Losung,
e Sicherstellung der Reihenfolge der Jobs innerhalb der einzelnen Grundzyklen und

e Dekomprimierung der Jobdauer mithilfe des elastischen Modells, bis die gesamte
Slackzeit innerhalb des Grundzyklus verbraucht ist.

Bis auf den ersten Schritt sind alle Aktivitaten in polynomieller Zeit losbar. Das Opti-
mierungsproblem des ersten Schritts ist fir Probleminstanzen mit |7 < 500 praktisch
losbar. Die Griinde fiir die Nutzung einer Heuristik (d. h. eines suboptimalen, aber effizi-
enten Losungsverfahrens) fir den letzten Schritt sowie deren Aufbau werden am Ende des
Abschnittes detailliert erlautert.

Formulierung des Schedulingproblems als ILP

Bei der Formulierung eines Optimierungsproblems ist die Frage nach den Entscheidungsva-
riablen und insbesondere nach deren Anzahl entscheidend. Die praktische Losbarkeit eines
Problems hangt maBgeblich von der Zahl dieser Variablen ab.

Ein naiver Weg ist das Abbilden einzelner diskreter Zeiteinheiten, z. B. in Millisekunden
oder Sekunden, auf boolesche Entscheidungsvariablen, die genau dann wahr sind, wenn die
Ausfithrung eines Jobs zu dem genauen Zeitpunkt passieren soll. Dieser aus der Literatur
[Art12] bekannte Ansatz kann fir die Abbildung komplexer Abhéngigkeiten zwischen den
Tasks, wie z. B. das Warten auf eine gemeinsam genutzte Ressource, benutzt werden. Der
Nachteil des Ansatzes ist eine grofie Anzahl der Entscheidungsvariablen. Schliefilich muss
jeder Zeitpunkt der Hyperperiode in der vorgegebenen Auflésung abgebildet werden. Somit
héngt die Anzahl der Entscheidungsvariablen von der tatséchlichen Dauer des Zyklus bzw.
deren Auflosung ab.
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Ein alternativer Ansatz, um diesem Problem entgegenzuwirken, ist die Definition soge-
nannter Slots, die mehrere Zeiteinheiten zusammenfassen und auf Entscheidungsvariablen
abgebildet werden. Wéhrend die Berechnung der Slots fiir Problemstellungen mit Res-
sourcenzugriff nichttrivial ist [Foh12], lassen sich die Slots fiir die vorliegende Problem-
stellung sehr einfach definieren. In einem zyklischen System ohne Nebenlaufigkeit und
einem wihrend der Zyklusdauer konstanten Prozessabbild sind keine Ressourcenkonflikte
moglich. Aus diesem Grund muss kein Job auf ein Ereignis warten. Die Abwesenheit der
Notwendigkeit der Synchronisation innerhalb des Zyklus reduziert das Problem der Aus-
fithrungsplanung der einzelnen Jobs auf ein einfacheres Reihenfolgeproblem. Die Lésung
des Problems ist eine Ausfithrungsreihenfolge der Jobs innerhalb eines Zyklus. Die Kon-
sequenz ist die Reduktion der Anzahl der méglichen Slots innerhalb eines Zyklus von der
Anzahl der Zeiteinheiten auf die Anzahl der Tasks, d. h. |T|. Das ist durch die Tatsache zu
begriinden, dass pro Zyklus hochstens eine Instanz jedes Tasks ausgefithrt werden kann.

Diese Vereinfachung respektiert die RA-Algorithmen aus Abschnitt 6.2, die durchaus
bestimmte POUs mehrfach ablaufen lassen kénnen. Denn bei der Ausfithrungsplanung
der Komponenten ist der interne Aufbau der Komponente opak und es gelten fir das
Scheduling die Grundsatze der IEC 61131-3 inklusive einer Obergrenze fiir die Anzahl der
Komponentenausfithrungen pro Zyklus.

Ein weiterer Schritt in Richtung der Reduktion der Problemgrofe ist die Reduktion der
Anzahl der Slots auf eins pro Grundzyklus. Somit wird nur die Zuordnung des Jobs zu dem
Grundzyklus berechnet. Die eventuellen Reihenfolgebezichungen unter den Jobs werden
daher nicht mehr vom ILP, sondern von einem Postprocessing-Schritt berticksichtigt, der
eine legale Reihenfolge der Jobs innerhalb des Grundzyklus herstellt.

Mit diesen Voriiberlegungen wird eine Menge der Grundzyklen C' = {1, ..., hyperperiod}
(cycles) formuliert, in denen Jobs gescheduled werden konnen. Das zu losende Optimie-
rungsproblem wird tiber der Menge boolescher Entscheidungsvariablen z., € {0,1} V ¢ €
C,t € T definiert (bei der Modellierung wird der boolesche Ausdruck TRUE und 1 syn-
onym verwendet). Es gilt:

zcy = 1 < Instanz des Tasks ¢ wird im Zyklus c ausgefiihrt.

Zunichst wird eine einfache Giitefunktion bzw. deren Minimum genutzt:
7| |C|

min J; = ZZC Ty (6.1)

t=1c=1
das unter den folgenden Nebenbedingungen bestimmt werden soll:
I

I jod

me _ wyperperiod Vo 1<t<|T| (6.2)
= pery

IC|

> 240 <1 V o 1<t<|T|, 1<e<|C] (6.3)

(c—l)-pem,ﬁlzé d < c-pery

7|
> wey - wy < cyctime vV o 1<e<|C|. (6.4)
=1

Die Giitefunktion aus der Gleichung 6.1 definiert die Kosten als Summe der aufeinander
folgenden Nummern der Grundzyklen, in denen Jobs ausgefiihrt werden. Somit verfolgt
der Solver das Ziel die Jobs méglichst frith und somit kompakt zu schedulen.
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Ts Tz Tz T3 T, Tz

T
0

Zeit

Abbildung 6.23.: Eine Hyperperiode des Laufzeitsystems mit den zugeteilten Jobs.

Das Nebenbedingungssystem 6.2 erzwingt, dass jeder Task ¢ genau w mal pro

Hyperperiode aufgerufen wird. Der Wert des Bruchs ist ganzzahlig, da die Hyperpcrlodc
als kgV der Perioden einzelner Tasks gebildet wurde.

Das zweite Nebenbedingungssystem 6.3 schreibt vor, dass eine Taskinstanz nicht haufiger
als einmal pro Periode des Tasks ausgefiihrt wird. Zusammen mit Bedingungen 6.2 wird
somit ein Job genau einmal pro Periode des Tasks gescheduled. Die Phase der einzelnen
Jobs innerhalb der Periode ist dabei variierbar.

Das letzte Nebenbedingungssystem 6.4 sichert die Einhaltung der Linge des Grundzy-
klus zu. Die Summe der WCET der Tasks, die einem Grundzyklus zugeordnet sind, darf
somit die Konstante cyctime nicht tiberschreiten.

Das Optimierungsproblem besitzt |C| - |T| boolesche Entscheidungsvariablen und |C|? -
|T'|? viele Nebenbedingungen.

Zunéchst wird die Problemformulierung und deren Losung anhand eines einfachen Bei-
spieles illustriert. Sei die folgende Menge an Tasks gegeben: Ty = (90ms,6,1), To =
(90ms,2,1) und T3 = (30ms, 3,1). Die Dauer des Grundzyklus des Systems sei 100 ms.
Die Lange der Hyperperiode ist kgV'({6,2,3}) = 6. Die Formulierung des Problems als
General Algebraic Modeling System (GAMS) Instanz ist im Anhang A zu finden. Die
berechnete Losung der Probleminstanz ist in Abbildung 6.23 dargestellt.

In Abbildung 6.23 sind unterschiedliche Phasen der Jobs des Tasks 75 zu erkennen. Die
Jobs des Tasks werden abwechselnd im ersten bzw. zweiten Zyklus des Task-Zyklus von
zwei Grundzyklen ausgefithrt. Diese Schwankung kann abhéngig von der Problemstellung
unerwiinscht sein und lasst sich auf zwei Arten losen. Die erste Losung sind die vorgeschal-
teten bzw. nachgeschalteten , Puffer“-Bausteine, die das Prozessabbild zu den gleichen
Zeitpunkten in jeder Phase des Tasks speichern. Die zweite Losung ist die Zuordnung der
Tasks zu der Menge A der phasenausgerichteten Tasks. Beide Losungen haben ihre Nach-
teile. Die erste Alternative fiigt die Puffer-Bausteine und die Reihenfolgeabhéngigkeiten
hinzu. Die zweite Alternative schrankt den Scheduler ein. So ist das obere Problem unter
den Einschriankungen der Phasenausrichtung des Tasks 75 nicht 19sbar.

Die vorgestellte einfache Formulierung reicht fir viele Scheduling-Probleme bereits aus.
Sie kann jedoch weiter verfeinert werden, um weitere Randbedingungen an die Tasks be-
riicksichtigen zu kénnen. Die im Beispiel angesprochene Phasenausrichtung ist eine solche
Randbedingung. Die Erweiterungen der vorgestellten Problemdefinition werden in folgen-
den Abschnitten erlautert.

Reihenfolgebeziehungen unter Tasks Trotz der virtuellen Unabhéngigkeit der selbst-
stdndigen Komponenten (SKs kénnen auch auf unterscheiden Geréten verteilt sein), kann
die Optimierung deren Ausfiihrungsreihenfolge auf einem Gerét fiir schnellere Reaktions-
zeiten der Anwendung sorgen und somit zu einem zusétzlichen Optimierungsziel erklért
werden (im worst case ist es aber moglich, dass SKs auf unterschiedlichen Geréten in
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ungiinstigster Reihenfolge ablaufen).
Diese Beziehung kann als eine Matrix P € {0, 1}T1XI71 ausgedriickt werden, sodass:

P,; =1 & t; ist Vorgénger von ¢;.

Die Reihenfolgebeziehung kann zwischen Tasks bestehen. Es wird zusétzlich angenommen,
dass nur Tasks mit gleicher Periode in einer solchen Beziehung stehen kénnen, d.h. P;; =
1 = per; = per;. Das Optimierungsproblem kann durch folgende Nebenbedingungen durch
die Matrix P ergénzt werden:

ic|
> dozg;—d-x4;<0 V1<c<|C|,Py;=1. (6.5)

d=1
(c—1)-per;+1<d<c-per;

Die Bedingung stellt sicher, dass in jeder Periode per; der Aufruf von ¢; in einem fritheren
oder gleichen Grundzyklus wie der Aufruf von t; stattfindet.

Phasenausrichtung und fixierte Phase Die Problemformulierung ldsst dem Scheduler
eine freie Wahl tiber die Phase des Jobs innerhalb der Periode des Tasks. Somit kénnen die
Absténde zwischen den Ausfithrungen einzelner Jobs variieren, was fiir viele Anwendungen,
z.B. im Bereich der Regelungstechnik, unerwtinscht ist. Die Freiheit des Schedulers in
Bezug auf die Phase wird in zwei Stufen eingeschrankt.

Als erstes wird eine Untermenge A C T (aligned) der Tasks mit Phasenausrichtung
gebildet. Diese Tasks miissen in jeder Periode eine fixierte Phase besitzen, die allerdings
vom Scheduler bestimmt werden kann. Eine weitere Einschrankung ist die Untermenge
F C A (fixed) der Tasks mit fixem Phasenparameter phasey € [0, per; — 1].

Beide Mengen werden durch folgende Nebenbedingungen mit dem Optimierungsproblem
verkniipft:

Lea = Letpera,a v o1 <c< |C‘ — PE€rg, 1 <a< |A‘ (66)
x1+pha86f,f =1 v o1 < f < |F‘ (67)

Die Gleichungen 6.6 erzwingen die gleiche Phase innerhalb der Periode des Tasks. Die
Gleichungen 6.7 setzen die Phase der ersten Periode fest. Durch die Tatsache, dass ' C A
ist, propagieren die Gleichungen 6.6 diese Phase iiber weitere Perioden hinweg.

Release-Zeiten und Deadlines Eine der festen Phasenverschiebung &éhnliche Einschran-
kung kann mit der Angabe der Release-Zeiten und Deadlines erreicht werden. Bei den
zyklischen Tasks wurde bisher davon ausgegangen, dass die Ausfilhrung zwischen dem
ersten und dem letzten Grundzyklus innerhalb der Periode erfolgen kann. Diese Annah-
me kann man fiir bestimmte Tasks lockern und explizite Release-Zeit rel; € [1, per;] und
dead; € [1,per;] mit rel; < dead; angeben. Dazu wird eine Untermenge der Tasks R C T
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gebildet, fiir die folgende Nebenbedingungen gelten sollen:

IC]
> Tap =0 V 1<ce<|Cl1<r<|r| (6.8)
(C*l)-perrdfllﬁdSc-pwr
d<(c—1)-perr+rel,
IC]
Z Zgr =0 V 1<e<|C,1<r<]r|. (6.9)
(C*l)wcv'rdfllSdSC-pwr
d>(c—1)-perr+1+dead,
Die Gleichungen 6.8 stellen sicher, dass in jeder Periode des Tasks r die Ausfithrung nicht
vor dem Grundzyklus rel, beztiglich des Periodenanfangs beginnt. Bedingungen 6.9 arbei-
ten auf eine dhnliche Weise: sie erzwingen, dass keine Ausfithrung nach dem Grundzyklus
dead, in Bezug auf die Periode des Tasks stattfindet.

Im Gegensatz zu der Phasenausrichtung (Gleichungen 6.6 bzw. 6.7), bieten die Release-
Zeiten und Deadlines mehr Flexibilitét: Zum einen sind die Bedingungen sowohl fiir Phasen
ausgerichtete Tasks, als auch fiir solche ohne Phasenausrichtung nutzbar. Zum anderen
bieten die Gleichungen die Méglichkeit ,,Fenster® zu definieren, in denen die Ausfiihrung
stattfinden soll. Somit ist die Gleichung 6.7 nur ein Sonderfall der obigen Gleichungen fiir
ein Task r mit rel, = dead,., d.h. der vorgeschriebenen Ausfithrung in dem bestimmten
Grundzyklus bzw. mit einer festen Phase.

Komplexe Giitefunktionen: Gleiche Auslastung der Grundzyklen Die Giitefunktion 6.1
hatte das Ziel, die einzelnen Jobs moéglichst kompakt auf die Grundzyklen zu verteilen. Da-
mit werden die Jobs so frith wie méglich vom Scheduler ausgefithrt und die Grundzyklen
eventuell ungleich ausgelastet. Dieses Verhalten kann fiir manche Szenarien von Vorteil
sein, denn es werden eventuell groffe zusammenhéngende freie Zeitabschnitte fiir die Aus-
fithrung sporadischer Tasks entstehen. Fiir andere Szenarien, gerade bei der Ausnutzung
der Slackzeit, kommt es jedoch auf eine moglichst gleichméfige Auslastung der Grundzy-
klen an. Eine solche Nutzung kann durch die Einfithrung einer quadratischen Giitefunktion
zusammen mit einem Minimierungsproblem erreicht werden:

lc| [ IT] 7| 2
; t=1 d 1($df wy)
min Jy = g (E Teyg - wy) T . (6.10)
t=1

c=1

Der quadratische Term ist die Abweichung der Zeitbelegung des aktuellen Grundzyklus
¢ von der arithmetisch durchschnittlichen Belegung aller Grundzyklen. Die quadratische
Abweichung wird tiber alle Grundzyklen aufsummiert. Das Minimum der Funktion erreicht
den Wert null, wenn alle Zyklen exakt mit der durchschnittlichen Belegung ausgefillt
werden. Die Klasse des Optimierungsproblems verschiebt sich von (M)ILP zu Mixed Integer
Quadratic Program (MIQP).

Komplexe Giitefunktionen: Fehlerfunktionen Eine weitere Erweiterung des Problems
ist die Berticksichtigung einer Fehlerfunktion fiir einzelne Tasks, wie solche, die in Imprecise
Computation Model (vgl. Abschnitt 5.1.5) eingefiihrt wurden. Dabei wird die zu der WCET
zusétzlich kommende Ausfiihrungszeit eines Tasks mit einem Fehler bewertet, der negativ
mit dieser Zeit korreliert und nur von dieser Zeit abhéngt. Das Ziel ist die Minimierung des
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Gesamtfehlers des Schedules. Die Menge der Entscheidungsvariablen wird um Variablen
add.; > 0V ¢ € C,t € T vergroBert. Die Variablen beinhalten den Wert der iiber die
WCET hinausragende Ausfithrungszeit, die dem Job ¢ im Grundzyklus ¢ zugeordnet wird.
Die Gleichung 6.4 wird durch die neuen Variablen ergénzt:

|T| 7|
ch,t “wy + Zl‘c)t -add.; < cyctime vV 1<e<|C| (6.11)
t=1 t=1

Somit wird sichergestellt, dass die zusétzliche Zeit die Dauer des Grundzyklus nicht iiber-
steigt. Als letztes kann die neue Giitefunktion des Optimierungsproblems aufgestellt wer-
den, die die exponentiell fallende Fehlerfunktion der einzelnen Jobs beinhaltet:

7| |C]|
min Js =Y e prig- e e (6.12)

t=1c=1

Der Fehler sinkt exponentiell mit der Zunahme der zusétzlichen Ausfithrungszeit, die zu-
sitzliche Ausfithrungszeit kann dabei beliebig lang sein (es gilt die Annahme von sich
monoton-verbessernden Jobs). Die zusétzlich eingefithrte Prioritdt des Tasks pri; spielt
die Rolle eines Gewichtes bei der Summierung der Fehler einzelner Tasks zum Gesamt-
fehler. Die Klasse des Optimierungsproblems dndert sich zu Mixed Integer Nonlinearly
Constrained Program (MINLP).

Lineare und konkave Fehlerfunktionen kénnen auf ahnliche Art und Weise berticksichtigt
werden. Ebenso kénnen obere Schranken beziiglich der zusétzlichen Ausfihrungszeit add.,
eingefithrt werden, um neben den monotonen Funktionen auch die 0/1-Ausfithrung und
die Mehrvarianten-Methode erfassen zu kénnen.

Praktische Losbarkeit des Schedulingproblems Das vorgestellte ILP-Problem wur-
de mithilfe der algebraischen Modellierungssprache GAMS modelliert. Eine beispielhaf-
te Probleminstanz als GAMS-Datei ist im Anhang A zu finden. Ein Vorteil der Nut-
zung einer Modellierungssprache ist die Moglichkeit der Verwendung unterschiedlicher
Solver, die die Probleminstanzen direkt vom GAMS-Framework erhalten. Die Notwen-
digkeit der Solver-Spezifischen Problemformulierung entfillt somit. Das Problem wurde
fiir Testzwecke mit zwei Solvern, Gurobi und IBM CPLEX, gelost. Ein weiterer Vor-
teil der GAMS-Formulierung ist die Moglichkeit der Nutzung der NEOS Infrastruktur
[CMM98, Dol01, GM97] fiir Optimierungsprobleme. Der NEOS Server stellt die Rechen-
kapazitét und die Lizenzen fiir GAMS und Solver zur Losung der Optimierungsprobleme
kostenlos zur Verfiigung. Eine Probleminstanz kann einfach tuber eine Hypertext Transfer
Protocol (HTTP) oder Extensible Markup Language Remote Procedure Call (XML-RPC)
Schnittstelle hochgeladen werden. Die Losung wird durch den Server, sobald verfiighar,
asynchron zur Verfiigung gestellt. Die Nutzung der NEOS Infrastruktur ist eine elegante
Moglichkeit, Schedules in der Cloud (Schedule-as-a-Service) berechnen zu lassen (mehr zu
diesem Thema ist in Abschnitt 6.3.3 zu finden) um die Problematik der Softwarelizenzie-
rung und der Ressourcenverfiigbarkeit zu umgehen.

Im Folgenden wird die Praktikabilitat des vorgestellten Ansatzes, d.h. die Problem-
formulierung und deren Lésbarkeit durch den NEOS Server untersucht. Als Ziel fir die
,Praktikabilitdt* wurde eine Obergrenze von wenigen Minuten (1000 Sekunden) Rechen-
zeit auf dem NEOS Server gesetzt.
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Fir die Untersuchung wurden zuféllige Probleminstanzen mit einer variierenden Anzahl
der Tasks generiert und an den NEOS Server tibermittelt. Die Periode der Tasks per; wurde
zuféllig aus der Wertemenge {2,4,8, 16,32} ausgewihlt. Die WCET wurde zufillig aus
dem Intervall [10,100] ausgewdhlt. Alle Tasks erhielten eine Phasenausrichtung und eine
zuféllige Deadline aus dem Bereich [1, pery| fiir jeden Task ¢. Die Dauer des Grundzyklus
wurde mit |T| - 15 angesetzt, wobei T' die Menge der Tasks bezeichnet.

Das Losen der zufélligen Instanzen mit 500 Tasks und der Giitefunktion 6.1 mit Gurobi
war bei 50 Versuchen immer unter 130 Sekunden méglich. Der Mittelwert lag bei 95.6
Sekunden. Somit kann man von einer praktikablen Losung der Probleme bis zu dieser
Grofe ausgehen.

Der Einsatz der Giitefunktion 6.10 lésst Zweifel an der Praktikabilitdat der Losbarkeit
aufkommen. Das Auswerten der 50 Zufallsinstanzen mit nur 9 Tasks ergab folgende Re-
sultate: 6 Instanzen konnten nicht innerhalb der 1000 Sekunden gelést werden. Bei den
restlichen 44 Instanzen lag der Mittelwert bei 81.8 Sekunden. So ist festzustellen, dass die
Streuung viel grofler ist, denn die maximale Losungsdauer belief sich auf ca. 950 Sekun-
den, die minimale auf nur ca. eine Sekunde. Aus diesen Grinden wird das vorgestellte
Optimierungsproblem mit der Gitefunktion 6.10 nicht als praktisch losbar bezeichnet.

Bei der dritten Giitefunktion 6.12 erfolgt das Losen des Problems mit dem Solver na-
mens BARON [TS05]. Die Auswertung der 50 Instanzen mit 150 zufélligen Tasks und der
Gewichtung pri; von 1 ergab einen Ausreifler, der innerhalb der 1000 Sekunden nicht gelést
wurde. Bei den restlichen Instanzen betragt der Mittelwert 159.7 Sekunden. Die Losbarkeit
dieser Problemklasse wird daher als semi-praktikabel bezeichnet.

Fir die folgende Evaluation wurde aus diesen Griinden der Weg der heuristischen Ergéan-
zung der unter der Verwendung der ,einfachen” Giitefunktion 6.1 erstellten Problemlésung
gewahlt. Diese Losung stellt bereits einen validen Schedule beziiglich der Einhaltung der
Echtzeitschranken dar. Es werden allerdings nur die WCET-Laufzeiten der Jobs bertick-
sichtigt, sodass noch ,ungenutzte* Zeitabschnitte innerhalb der Grundzyklen existieren.
Abgesehen von der Reihenfolgezuordnung der einzelnen Jobs, muss somit eine zusétzli-
che Strategie zur Ausnutzung dieser Zeitabschnitte definiert werden, die eine suboptimale
Losung in Bezug auf das Ziel der globalen Fehlerminimierung ergibt. Die moglichen Heu-
ristiken werden im néchsten Abschnitt vorgestellt.

Heuristische Berechnung der zusatzlichen Ausfiihrungszeiten einzelner
Komponenten fiir das offline Schedule

Nachdem die Zuteilung von Jobs unter der Beriicksichtigung der Giitefunktion 6.1 zu
Grundzyklen geschehen ist, sind die einzelnen Grundzyklen moglicherweise nicht vollstian-
dig ausgefiillt. Diese geplante Slackzeit kann nun auf die Jobs aufgeteilt werden. Dafiir
stehen mehrere Strategien zur Verfugung.

Die einfachste Moglichkeit ist die Nutzung einer Greedy-Strategie, bei der der Job des
Tasks ¢ mit der hochsten Prioritdt und dem Parameter fler; = 1 die gesamte externe
Slackzeit des Grundzyklus zugewiesen bekommt. Die restlichen Instanzen bekommen nur
die WCET zugewiesen. Durch diese Benachteiligung der anderen Jobs ist dieser einfache
Ansatz im Allgemeinen nicht geeignet.

Eine weitere Strategie aus dem Bereich des Imprecise Computation Modells (vgl. Ab-
schnitt 5.1.5) wiirde die unterschiedlichen Nutzenfunktionen einzelner Komponenten be-
riicksichtigen und ein Schedule erzeugen, welcher den gesamten Nutzen fiir jeden Grundzy-
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klus maximiert. Das problematische an diesem Ansatz ist die Notwendigkeit der Definition
der Nutzenfunktionen, die nicht-linear sein miissen (&hnlich zu der Gleichung 6.12), damit
diese Strategie nicht zu einer Greedy-Strategie degradiert. Denn wére der Zeitgradient der
Nutzenfunktionen immer konstant und positiv, so wiirde die Komponente mit dem groften
Gradient die gesamte Slackzeit zugeordnet bekommen.

Die dritte Moglichkeit ist die Anwendung des elastischen Modells (vgl. Abschnitt 5.2.1)
das die einzelnen Jobs als Federn modelliert, deren Federkonstante proportional zu der
Prioritat des Jobs ist. Dieses Modell sieht vor, dass flexible Komponenten 4, also solche
mit flex; = 1, sich ihrer Prioritét entsprechend ausdehnen und die gesamte Slackzeit des
Grundzyklus ausnutzen.

Das Modell kann nicht nur fir die Kompression der Tasks verwendet werden, sondern
auch fur die Dekompression. Im Gegensatz zu dem elastischen Modell ist die Lange der
Federn nicht der Utilization-Faktor des Tasks, sondern die tatsachlich zugeteilte Ausfiith-
rungsdauer A", Fir die Berechnung der dekomprimierten Ausfithrungszeiten miissen
nur noch die Prioritdten einzelner Tasks bzw. Jobs pri; in Federkonstanten k; umgewan-
delt werden. Diese Konstanten sind antiproportional zu der Prioritdt. Denn je héher der
Wert der Federkonstante, desto weniger zusétzlicher Zeit wird dem Job vom Scheduler
zugeteilt. Somit kénnen die Federkonstanten wie folgt berechnet werden:

Pl Lj=1Priy
pri;

Die Ausfithrungsdauer A" des Jobs i ist somit wie folgt berechenbar:

ki =

T\ g
AL = w; + | cyctime — Y w; k—p, (6.13)
=1 i
mit K, = T Die Indizes der Jobs beziehen sich auf den jeweiligen Grundzyklus

Y
innerhalb der Hyperperiode. Da der Term cyctime — Z‘j:‘l w; immer nichtnegativ ist, ist
die Bedingung A{*™ > w; garantiert.

Eine Erweiterung des Elastic Models sieht eine untere Léngenbeschrankung der Feder-
ldnge vor (in der graphischen Anschauung als Klammern dargestellt, vgl. Abbildung 5.2).
In einer dhnlicher Weise kann auch die Dekompression nach oben durch den Parameter
upper; beschrankt werden. Dies ist z. B. bei der 0/1 Ausfithrung oder der Mehrversionen-
Methode der Fall (vgl. Abbildung 6.17). In diesem Fall ist der Job nicht in der Lage beliebig
viel Rechenzeit sinnvoll zu verbrauchen. Bei Tasks mit flex; = 0 stellt die WCET eine
solche obere Schranke dar, also upper; = w;. Die oberen Schranken kénnen auf die gleiche
Weise wie die unteren behandelt werden: Die Gleichung 6.13 werden iterativ gelost; tiber-
steigt die Dauer A" die obere Schranke, wird der Job aus dem Grundzyklus ,entfernt®
und dessen Dauer um w; verkiirzt. Das Losen wird so lange wiederholt bis fiir alle Jobs
AT < ypper; gilt. Metaphorisch kann die obere Schranke upper; als die Lénge eines Seils
interpretiert werden, das an den Enden der Feder befestigt ist (vgl. Abbildung 5.2).

J

6.3.3. Aktivitdten der online Phase

Der ausgewéhlte Ansatz des im Voraus berechneten offline Schedules hat den Nachteil der
eingeschrankten Flexibilitat (vgl. Abschnitt 2.1.2). Um diesen Nachteil zu reduzieren, um-
fasst der entwickelte Scheduling-Algorithmus neben den diskutierten Vorgéngen der offline

104

216.73.216.36, am 20.01.2026, 08:59:54. © Inhal.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186257086

6.3. Ressourcenadaptiver Komponentenscheduler fiir zyklische Laufzeitsysteme

Scheduling-Server

Engineering-Werkzeug Laufzeitsystem

lo_/

Q
|
|
|

Abbildung 6.24.: Ablauf der ,mode change"“-Prozedur.

Phase, auch eine Reihe Laufzeit-Aktivitaten. Dazu gehort eine Anzahl bereits vorgestellter
Techniken, die im Kontext des Gesamtsystems eingesetzt werden.

Acceptance Tests und Umstrukturierung des offline Schedules zur Laufzeit

Im Falle des starren offline Schedules fiir zyklische Systeme konnen Tasks nicht ohne eine
Neuberechnung der Scheduling-Tabelle hinzugefiigt werden. Dieser Grundsatz muss durch
die ausgewahlten System- und Scheduling-Paradigmen befolgt werden. Trotzdem muss das
Laufzeitsystem fiir die Umstrukturierung der Scheduling-Tabelle nicht zwingend angehal-
ten werden. Denn obwohl die Berechnung, d.h. die Losung des Optimierungsproblems,
gewisse Zeit in Anspruch nehmen kann, kann die Umstrukturierung an sich, d. h. das Um-
schalten zwischen zwei Scheduling-Tabellen in kiirzester Zeit erfolgen. In der Literatur
heifit dieser Ansatz ,,mode change® [Foh93, BF11].

Die Berechnung des neuen Schedules erfolgt in der Zeit, in der der alte Schedule noch
aktiv ist. In Abschnitt 6.3.2 wurde demonstriert, dass die Optimierungsprobleme auch ,in
der Cloud* und somit nicht von dem in ihren Ressourcen eingeschrinkten Laufzeitsystem
gelost werden konnen. Der Ablauf der Prozedur der Umstrukturierung lauft wie folgt ab
(in Abbildung 6.24 als Sequenzdiagramm dargestellt):

1. AnstoBien der Anderung der aktuellen Scheduling-Tabelle,

2. Formulierung des neuen Tasksets und Ubermittlung der Probleminstanz,
3. Losen der Probleminstanz und Ubermittlung der Losung,

4. (optional) Verifikation der Losung (Abbruch falls Losung ungiiltig),

5. Laden der Ressourcen, z. B. des ausfithrbaren Codes der SK und die Erstellung des
neuen Schedules aus der Problemlésung und

6. Umschalten des Schedules — ,;mode change®.
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Im ersten Schritt werden dem Laufzeitsystem die Anderungswiinsche mitgeteilt. Typi-
scherweise kommen sie aus dem Engineering, z. B. bei dem Anlegen einer neuen SK. Das
ist aber nicht das einzig denkbare Szenario. So kann die Anderungsanfrage von einem an-
deren System kommen, z. B. durch die Instanziierung eines Agenten als SK, oder durch das
Laufzeitsystem an sich, z. B. wenn Abhéangigkeiten zwischen den SKs festgestellt wurden
und ein neuer Schedule diese Informationen berticksichtigen soll.

Der zweite Schritt kombiniert die Informationen aus der aktuellen Menge der Tasks mit
der beantragten Anderung. Dabei miissen taskabhéngige Parameter berticksichtigt werden.
Ein Beispiel ist die Phase der phasenausgerichteten Tasks. Wéhrend bei der erstmaligen
Erstellung eines Scheduler die Phase eines Tasks beliebig sein kann, muss bei Veranderung
des Schedules sichergestellt werden, dass sich die Phase nicht bzw. nur in einem erlaubten
MaBe verdndert (vgl. die Eigenschaften der Scheduling-Facette einer selbstandigen Kom-
ponente in Abschnitt 6.1.5). Die Erstellung der neuen Anfrage findet im Zeitslot fir die
nicht echtzeitfahige Kommunikation statt.

Im dritten Schritt wird das Problem vom Scheduling-Server gelost und an das Laufzeitsy-
stem iibermittelt. Als Beispiel fiir den Scheduling-Server kann der NEOS-Server betrachtet
werden, der in Abschnitt 6.3.2 eingesetzt wurde.

Im néchsten Schritt wird die Losung auf ihre Korrektheit iiberpriift. Wie bei jedem
NP-hartem Problem kann die Korrektheit einer Losung effizient iiberpriift werden, somit
auch vom eingeschrinkten Laufzeitsystem. Dieser Schritt kann iibersprungen werden, falls
Vertrauen zwischen dem Scheduling-Server und dem Laufzeitsystem besteht. Im anderen
Fall sichert dieser Schritt insbesondere bei der Berechnung des Schedules in der Cloud das
System zusétzlich. Der Vorteil der Neuberechnung ist der implizite Acceptance Test der
neuen Menge der Tasks. Falls eine Lésung zu dem Optimierungsproblem des Abschnitts
6.3.2 existiert, so kann diese auch sicher ausgefiihrt werden.

Im fiinften Schritt werden die benétigten Ressourcen geladen, ohne ausgefiihrt zu werden.
Beispielsweise wird beim Hinzuftigen einer neuen SK deren ausfithrbarer Code herunterge-
laden. Auch das neue Schedule wird endgiiltig fertiggestellt.

Die Ausfithrung dieser Vorbereitungsschritte geschieht in der Slackzeit. Somit kénnen
fiir diese Schritte keine Echtzeitschranken definiert werden. Nach dem erfolgreichen Ab-
schluss aller Vorbereitungen kann im letzten Schritt der neue Schedule aktiviert werden.
Im besten Fall erfolgt die Aktivierung durch das Andern eines einzigen Zeigers. Dieser
Ansatz wird erfolgreich bei FASA (vgl. Abschnitt 3.3.3) eingesetzt und kann auch mit
Rollback-Funktionen ergianzt werden [WO14].

Ausfiihrung der ISSCs

Die Ausfithrung der eingebetteten ISSCs ist ein mafBigeblicher Teil des online Schedulings,
da wahrend der Ausfitlhrung Laufzeitentscheidungen getroffen werden und als Folge die
eventuell anfallende Slackzeit verbraucht wird. Der Komponentenscheduler teilt einem IS-
SC die fir seine Ausfithrung bestimmte Laufzeit A““"” mit. Das Chart wird ausgehend von
dieser Dauer und den beinhalteten Guards ausgewertet.

Die durch eine zu frithe Terminierung einzelner Aktionen innerhalb des Charts entstehen-
de Slackzeit kann durch die ,spéter® folgenden Zustdnde und deren Aktionen verbraucht
werden. Das gleiche Verhalten kann auch auf der Ebene der einzelnen Jobs beobachtet
werden. Die innerhalb eines Grundzyklus folgenden Jobs konnen die nicht verbrauchte Re-
chenzeit der Vorganger ausnutzen. Somit ist die erwartete zusitzliche Ausfiihrungszeit fir
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spéter folgende Jobs tendenziell hoher. Dies kann durch die Anderung der Gewichte der
Tasks fiir das offline Optimierungsproblem beriicksichtigt werden und als eine Mafinahme
zu der Priorisierung einzelner Tasks genutzt werden.

Ausfiithrung sporadischer Tasks

Die verfiighare Rechenzeit kann nicht nur fiir RA-Algorithmen, sondern auch fiir die Aus-
fithrung sporadischer Tasks, d.h. azyklischer Tasks, die erst zur Laufzeit erstellt werden,
eingesetzt werden. Ein Beispiel fiir sporadische Tasks sind Transaktionen, die die Modelle
in der Laufzeitumgebung auf vorhersagbare und zugesicherte Art und Weise verandern.
Die Ausfithrung sporadischer Tasks im Kontext der offline Scheduling-Tabelle ist wahr-
scheinlich die wichtigste Mafinahme, um die Nachteile der fehlenden Flexibilitat der offline
Ansétze zu kompensieren.

Die Beschreibungssprache ISSC sieht eine Moglichkeit vor, solche Transaktionen zu be-
schreiben. Ein vorhersagbares Verhalten von Transaktionen kann durch die vom Nutzer
definierten History-Breakpoints erreicht werden (vgl. Abschnitt 6.2.5, insbesondere Abbil-
dung 6.17b). Die WCET eines solchen ISSCs ergibt sich als maximale Ausfithrungszeit der
Abschnitte zwischen den History-Breakpoints.

Diese Vereinfachung ermoglicht ein effizientes online Scheduling. Falls ein sporadischer
Task zur Ausfithrung angemeldet wird, tiberpriift der Scheduler, ob mindestens einer der
Grundzyklen der Scheduling-Tabelle iiber geniigend freie Zeit fir die Ausfithrung des ge-
samten Tasks in der geplanten Slackzeit verfiigt. Ist das der Fall, kann die Transaktion
sicher ausgefiihrt werden. Die Ausfithrungszeiten der elastischen Jobs werden fiir die Dau-
er der Ausfithrung der Transaktion temporér reduziert. Diese Kompression kann entweder
mithilfe des Elastic Models stattfinden oder mit einem anderen Verfahren, z. B. durch einen
gleichanteiligen Abzug der Rechenzeit von der Laufzeit einzelner Jobs, erreicht werden.

Ist die Ausfithrung einer Transaktion auf diese vereinfachte Weise nicht moglich, so muss
die Anderung des offline Schedules angestofien werden. Die daraus resultierende temporére
Scheduling-Tabelle wird dann bis zu der Terminierung des sporadischen Tasks ausgefiihrt.
Danach kann wieder zu dem urspriinglichen Schedule gewechselt werden.

Falls weder geniigend statische Slackzeit vorhanden ist, noch eine Umstrukturierung des
offline Schedules méglich ist, kann die Ausfiihrung des sporadischen Tasks nach einer best-
effort Strategie erfolgen. Der Scheduler rdumt dabei den einzelnen RA-Komponenten nur
die garantierte Zeit w ein und iiberldsst die komplette iibrig gebliebene Slackzeit dem spo-
radischen Task. Ein Use-Case, der die Ausfithrung einer Transaktion nach dieser Strategie
beinhaltet, wird in Abschnitt 7.5 vorgestellt. Bei dieser Strategie konnen keine Abschét-
zungen iiber die Dauer der Ausfithrung des sporadischen Tasks gemacht werden, da die
verfigbare Slackzeit nicht notwendigerweise fiir die Ausfithrung ausreicht.

Die Nutzung eines Ansatzes des Predictably Flexible Real-Time Scheduling (vgl. Ab-
schnitt 5.1.6) lasst die Nutzung komplexer Techniken aus diesem Bereich im eingefithrten
Modell zu. Dazu gehoren z. B. die Slot Shifting Verfahren, die zur optimalen Verteilung
der Rechenzeit einzelner Jobs genutzt werden konnen.
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7. Evaluierung und
Anwendungsszenarien

Das eingefithrte RA-Rahmenwerk wurde zwecks Evaluierung und Machbarkeitsanalyse fiir
das Laufzeitsystem ACPLT/RTE prototypisch implementiert. Dieses Kapitel beinhaltet
eine kurze Beschreibung des Prototyps und des evaluierten Hardwaresystems.

Der wichtigere Beitrag besteht allerdings in den vier vorgestellten Use-Cases. Diese be-
legen die Einsatzmoglichkeiten des Rahmenwerks in verschiedenen Anwendungsszenarien
aus der Doméne der Prozessleittechnik.

7.1. Prototypische Implementierung

Die Prozedurbeschreibungssprache ISSC und der Komponentenscheduler wurden geméfl
der beschriebenen Spezifikationen in ACPLT/RTE umgesetzt. Die dafiir benétigten OV-
Modelle, die UML-Klassendiagrammen entsprechen, sind im Anhang B zu finden.

Die Realisierung von ISSC folgt dem Klassendiagramm in Abbildung 6.7. Das Modell
wurde leichten implementierungsspezifischen Verdanderungen unterworfen: Es wurde die
Moglichkeit der Ausfithrung der Aktionen in den Breakpoints eingefiihrt, die fir die Be-
rechnung der Guard-Variablen benutzt werden.

Die Implementierung des Systemschedulers beinhaltet ein Objektmodell zur Darstellung
des offline Schedules, dessen Aufbau exemplarisch in Objektdiagrammen der folgenden
Use-Cases dargestellt wird. Zusétzlich zu der Darstellung des Schedules, leitet der Sche-
duler die Klassen fiir Funktionsbausteine und FBNs ab und erweitert die Signatur der
Aufruffunktion einer POUs um den Parameter A", Die Koexistenz zwischen dem bereits
vorhandenen tabellarischen Scheduling des Laufzeitsystems und dem RA-Scheduling ist
in beide Richtungen vorhanden. So kann der konventionelle Scheduler RA-Anwendungen
durch Polymorphe aufrufen. In diesem Fall wird nur die zugesicherte Zeit w an die RA-
Anwendung iibergeben. Umgekehrt kann der RA-Scheduler konventionelle POUs ohne den
Parameter A" aufrufen.

Zusétzlich zu der Implementierung des Schedulers und des ISSCs wurde eine Engi-
neeringumgebung auf Basis des ACPLT /csHMI (Client Side Human Machine Interface)
[JE13] Engineerings fir SSCs aufgebaut. Da die Klassennamen der ISSC-Implementierung
den Namen der ISSC-Klassen folgen, waren die bendtigten Anderungen der bestehenden
Engineering-Plattform minimal. Die Engineeringumgebung wurde fir die Erstellung und
Dokumentation der Use-Cases verwendet.

Fir die Evaluation der prototypischen Implementierung wurde ein WAGO 758-875
Industrie-PC mit einer 1 GHz Intel Celeron M CPU und 256 MB RAM eingesetzt. Das
System lauft unter 32-bit 2.6 Linux mit RT-Preempt Patch. Als Laufzeitsystem wurde
ACPLT/RTE mit dem Versionstand ,,5{7c61c* aus dem GitHub-Repository! verwendet.

Thttps://github.com/acplt/rte
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7.2. Use-Case 1: Nicht-echtzeitfihige Kommunikation

Abbildung 7.1.: WAGO 758-875 IPC eingebaut in einem Modul der Anlage M4P.AC.

statische Slackzeit bzw. Funktionsreserve
Ubergabe der Kontrolle an das Betriebssystem

'J_‘\

O | Logik

| ) Zeit
Y

Zyklusdauer des Grundzyklus

Abbildung 7.2.: Typischer Aufbau eines Grundzyklus der ACPLT/RTE Laufzeitumgebung.

Der typische Aufbau eines Grundzyklus des Laufzeitsystems ist in Abbildung 7.2 zu se-
hen. Im Unterschied zu dem in Abbildung 2.6 vorgestellten Zyklus einer SPS werden die
Ein- und Ausgabe-Aktivitaten in einem Task zusammengefasst und am Anfang jedes Zy-
klus ausgefiihrt. Dieses Vorgehen hat Vorteile bei der Implementierung und verdndert das
Systemverhalten bis auf den ersten Zyklus nicht. Das Laufzeitsystem wird im Echtzeitbe-
trieb mit einer héheren Prioritét als der Kernel des Betriebssystems ausgefiithrt und kann
von ihm nicht unterbrochen werden. Damit das Betriebssystem trotzdem seine Aufgaben
wahrnehmen kann, wird ihm ein vordefinierter Zeitschlitz am Ende des Grundzyklus des
Laufzeitsystems gewéhrt (statische Slackzeit oder Funktionsreserve genannt).

Fiir die folgenden Use-Cases ist die Zykluszeit auf 100 ms und die Funktionsreserve auf
4 ms eingestellt. Dem Systemscheduler stehen somit 96 ms fiir die Aufteilung an ressource-
nadaptive Tasks zur Verfigung. Dieser Wert gilt auch als eine harte Echtzeitschranke fir
das Laufzeitsystem. Zwecks der iibersichtlichen Darstellung der Messergebnisse wurde die
1/0O-Aktivitat fiir die folgenden Use-Cases abgeschaltet.

7.2. Use-Case 1: Nicht-echtzeitfahige Kommunikation

Eines der Hauptziele fir die Motivation dieser Arbeit (vgl. Kapitel 1) war die Nutzung der
Slackzeit fiir den Betrieb einer nicht-echtzeitfahigen Kommunikationsschnittstelle neben
der Echtzeitfunktionalitit des Laufzeitsystems. Die Vorstellung der moglichen Anwendun-
gen des vorgestellten Frameworks fiir RA-Anwendungen wird mit diesem Use-Case er6ffnet.

In der aktuellen Version existieren im ACPLT/RTE zwei dedizierte Tasks: ein Task fir
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die operative Bausteinlogik (der sogenannte , Urtask) und ein Task fiir die Kommunikati-
onstreiber. Der operative Task lauft normalerweise mit einer Zykluszeit von einer Sekunde
und wird fiir die Ausfithrung von POUs und hierarchisch untergeordneten Tasks verwendet.
Der Kommunikationstask wird mit einer Frequenz von einem kHz ausgefithrt und stofit
die Ausfithrung verschiedener untergeordneter Kommunikationssubsysteme an.

Die Implementierung der beiden zyklischen Tasks ist nahezu identisch. Dies ist in der
Reprasentation der Vertreter der Kommunikationstreiber als Funktionsbausteine zwecks
Introspektion begriindet. Diese Treiber sind fir eine minimale Laufzeit bzw. Unterbre-
chung ausgelegt. Es wird in der Regel pro Aufruf ein nach oben beschrankter Abschnitt
des Transmission Control Protocol (TCP)-Stroms bearbeitet bzw. zu einem Zwischenpuf-
fer hinzugefiigt. Dadurch wird hochstens eine HTTP bzw. OPC UA Nachricht pro Auf-
ruf bearbeitet. Dariiber hinaus werden bestimmte Annahmen tiber die Langen bzw. die
Komplexitat der empfangenen Nachrichten angenommen, um sinnvolle Echtzeitschranken
annehmen zu konnen.

Da die Ausfihrung der POUs die Einhaltung des Taktes fiir den Kommunikationstask
eventuell ,stéren” kann, wird die Uberwachung seiner Zykluszeit auf der Systemebene
deaktiviert bzw. die Ausfithrungszeitpunkt zur Laufzeit angepasst. Fiir den Nutzer besteht
keine Moglichkeit die Ressourcenzuteilung an die Kommunikation zu beobachten bzw. zu
dndern. Im Gegensatz dazu werden beide Tasks durch das RA-Rahmenwerk auf die gleiche
Art und Weise aufgerufen. Die Zuteilung der Ressourcen ist durch ein explizites Scheduling
durch den Komponentenscheduler transparent und einstellbar.

In diesem Use-Case tibernimmt das RA-Framework die Ausfithrungssteuerung der Task-
Ebene. Die Migration der existierenden Tasks kann vollkommen transparent fiir die nicht-
zeitsensitiven POUs erfolgen. Aus dieser Perspektive demonstriert der Use-Case auch die
Einfachheit der Migration und die Co-Existenz des Rahmenwerks mit bewéhrter Software
(Anforderung N3 in Kapitel 4).

Der Zyklus des Laufzeitsystems wird durch den Komponentenscheduler in zwei Abschnit-
te partitioniert: einen Abschnitt fiir die Programmlogik und einen fiir die Kommunikation.
Fiir das Beispiel wurde die folgende Aufteilung gewéhlt: Fiir einen Zyklus von 100 ms gehen
95 ms an die Programmlogik und 1 ms an den RA-Kommunikationstask, 4 ms bleiben somit
fiir die Funktionsreserve iibrig, wahrend der die Kontrolle zurtick an das Betriebssystem
itbergeben wird.

Die Task-Konfiguration fiir den Komponentenscheduler ist in Abbildung 7.3 dargestellt.
Der einzige wiederholte Zyklus besteht aus zwei Slots, denen jeweils ein Task zur Ausfiith-
rung zugeordnet ist. Der erste Slot fithrt den Logiktask ,,/Tasks/UrTask® direkt aus. Der
zweite Slot fithrt das ISSC ,/TechUnits/communication aus, welches das online Schedu-
ling der Kommunikationsschnittstellen iibernimmt.

Dieses ISSC ist in Abbildung 7.4 dargestellt. Es entspricht dem Muster der Meilenstein-
Methode aus Abbildung 6.18a und besteht aus einem Initialzustand und einem Break-
point. Die erste Aktion des Initialzustands fihrt den Kommunikationstask ,,/communi-
cation/RootComTask“ aus, die zweite Aktion initiiert einen kurzen Sleep-Befehl von 10
ps tber den beinhalteten Baustein ,sleep® aus, damit das Betriebssystem die Daten aus
dem Kommunikationsstack bereitstellen kann. Im Gegensatz zum abstrakten Modell des
ISSCs, koénnen in der Implementierung auch die Breakpoints Aktionen ausfiihren, z. B.
die Uberpriifung von Guards. In dem Use-Case stéBt der Breakpoint die Ausfithrung des
»guard® Bausteins an, der dem Ausdruck ,,(A“™ — ¢) > 1 ms“ entspricht. Somit kann
der Initialzustand nur bei einer verbleibenden Verarbeitungszeit von 1 ms wiederholt be-
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Abbildung 7.3.: Task-Konfiguration fiir den Use-Case.
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Abbildung 7.4.: ISSC fiir das online Scheduling des Kommunikationstasks.
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treten werden. Der Wert von 1 ms ergab sich durch eine Abschitzung der WCET des
Kommunikationstasks, die durch Messungen gestiitzt wurde.

Fir die erste Messreihe wurde der schwankende Ressourcenverbrauch des Logiktasks
durch einen Busy-Loop-Baustein simuliert, dessen Zeitverbrauch gleichverteilt im Intervall
[10,95] ms lag. Dieser Baustein war der einzelne Eintrag in der ,,Urtask® Taskliste.

Die Ergebnisse sind in Abbildung 7.5 dargestellt. Der Ubersicht halber sind nur 100
Zyklen je 100 ms in der Abbildung zu sehen. Der ausgewéhlte Ausschnitt stellt eine Auswahl
aus einer groferen Messreihe (ca. 12000 Zyklen) dar.

Das oberste Diagramm in Abbildung 7.5 illustriert die Aufteilung der gesamten Zyklus-
zeit auf die beiden Tasks. Der hellgraue Teil entspricht dem Haupttask fiir die Logik (,,Ur-
task®) und der dunkelgraue Teil dem RA-Task fiir die Kommunikation bzw. dem ISSC. Es
ist deutlich zu beobachten, wie der RA-Task die Schwankungen des Logiktasks ausgleicht
und bei ca. 96 ms terminiert. Das oberste Diagramm zeichnet die reine Ausfihrungszeit
der Tasks auf. Die Scheduling-Overheads wurden herausgerechnet.

Das zweite Diagramm von oben gibt Auskunft iiber die gesamte verbrauchte Zykluszeit.
Da der Guard des ISSCs in Abbildung 7.4 auf 1 ms eingestellt ist, terminiert der Zyklus
stets bei Werten zwischen 95 ms und 96 ms. Der Wert von 96 ms gilt dabei als eine harte
Echtzeitschranke. Es ist zu sehen, dass diese nie erreicht wird (dies ist bei der gesamten
Messreihe der Fall). Die Tatsache, dass die Zeit iiber 95 ms liegt, ist mit den Scheduling-
Overheads zu erkliren, die in diesem Diagramm miteinbezogen sind.

Das dritte Diagramm zeigt den Jitter des Beginns des Zyklus. Dieser Wert entspricht
der ,Verspatung® des tatséchlichen Zyklusanfangs im Vergleich zu der geplanten Zeit. Das
Jitter ist auf die Ungenauigkeit des Sleep-Befehls des Betriebssystems zuriickzufithren.
ACPLT/RTE implementiert keine Manahmen zur Kompensation des Jitters. Aus diesem
Grund ist dieser immer positiv. Die absoluten Werte des Jitters befinden sich allerdings
maximal bei ca. 40 us, was den meisten Anwendungen des Laufzeitsystems gentigt.

Das letzte Diagramm gibt Auskunft iiber den expliziten Scheduling-Overhead. Dieser
setzt sich aus dem Overhead des internen Scheduler des ACPLT/RTE, dem Overhead
des Komponentenschedulers und der Auswertung des ISSCs zusammen. Der maximale
Overhead fir das Scheduling liegt im Bereich von ca. 110 us. Auch dieser Wert erscheint
fiir Anwendungen in der Doméne der Prozessleittechnik akzeptabel.

In der zweiten Messreihe wurde der Netzwerkdurchsatz der RA-gesteuerten Kommuni-
kation in Abhéngigkeit von der Auslastung des Logiktasks gemessen. Im Unterschied zu der
ersten Messreihe wurde die Dauer des Logiktasks nicht zuféllig, sondern manuell auf Werte
im Intervall [0, 95] ms eingestellt. Fiir die Demonstration des Vorgehens werden bereits im-
plementierte Kommunikationsschnittstellen des ACPLT/RTE Laufzeitsystems verwendet.
Diese Schnittstellen umfassen ein auf HTTP basierendes Protokoll ACPLT /KS-HTTP, so-
wie das bindre OPC UA Protokoll. Fiir die letzte Kommunikationsschnittstelle wird eine
offene OPC UA Implementierung open62541 [PGP*15] eingesetzt.

In der Messreihe wurde die Dauer einer Leseoperation beider Protokolle gemessen. Diese
Operation entspricht einer GET Operation in HT'TP bzw. dem Aufruf des Read Dienstes
in OPC UA. Die Messung umfasst nur die Dauer des unmittelbaren Lesevorgangs und
nicht den Aufbau der Kommunikation, z. B. den Verbindungsaufbau in OPC UA. Bei dem
Informationsaustausch wurde der gleiche Payload iibertragen. Es handelt sich dabei um
eine ca. 5,5 KB grofle HTML-Seite.

Die Messungen des HTTP-Protokolls erfolgten mit dem Apache Benchmark Tool. Die
Messungen der OPC UA Performance wurden mit einem auf dem open62541 Projekt ba-
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Abbildung 7.5.: Messungen der Aufteilung der Zykluszeit auf die einzelnen Tasks (von unten
nach oben: Logiktask mit zufalliger Ausfilhrungszeit in hellgrau, RA-Task fiir die Kommunika-
tion in dunkelgrau), der verbrauchten Zeit innerhalb des gesamten Zyklus, des Jitters und des
Scheduling-Overheads in einem reprasentativen Zeitraum von 100 Zyklen je 100 ms.
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Abbildung 7.6.: Die Dauer einer Leseoperation fiir beide Protokolle in Abhéangigkeit von der
Auslastung des Logiktasks (Mittelwert je 1000 Anfragen).

sierenden Client durchgefithrt. Bei den Tests kommt es somit nicht auf das absolute er-
reichbare Maximum des Netzwerkdurchsatzes, sondern auf die Darstellung der Skalierbar-
keit des Durchsatzes in Abhangigkeit von der Auslastung des Logiktasks an. Aus diesem
Grund wurden beide Clients zwecks besserer Reproduzierbarkeit im single-threaded Mo-
dus ausgefiihrt. Der Client-PC (mit einer Intel Core i5-2520M CPU und Linux 3.13) und
die Hardwareplattform des Laufzeitsystems wurden mittels geswitschtem Fast Ethernet
verbunden.

Die Ergebnisse der Messung sind in Abbildung 7.6 als Mittelwerte je 1000 Anfragen
dargestellt. Auf der Abszisse ist der Zeitverbrauch des Logiktasks dargestellt. Diese Dauer
entspricht der Hohe des hellgrauen Balkens im oberen Diagramm der Abbildung 7.5. Es ist
eine lineare Zunahme der Dauer einer Leseoperation im Bereich von 0 bis 70 ms fiir beide
Kommunikationsprotokolle zu beobachten. Fiir Werte grofier als 70 ms kommt es zu einem
signifikanten Anstieg der Latenz. Dieser ist insbesondere bei einer Auslastung des Urtasks
von 95 ms sichtbar. In diesem Fall kann die Kommunikation nur eine (Teil-)Nachricht pro
Grundzyklus des Laufzeitsystems verarbeiten. Trotz des relativ niedrigen Durchsatzes war
die Kommunikation auch unter diesen Bedingungen jedoch stets moglich.

Beide Messreihen belegen die erwarteten Ergebnisse. Die Slackzeit eines Laufzeitsystems
kann durch das online Scheduling effektiv fiir nicht-echtzeitfahige Kommunikation genutzt
werden, ohne die Einhaltung der Echtzeitschranken zu gefahrden. Der Durchsatz héngt
dabei von der verfiigbaren Slackzeit ab und sinkt bei besonders wenig verfiigharer Slackzeit
signifikant.

7.3. Use-Case 2: Prozessbegleitende Simulation mit
variabler Qualitat
Die Einsatzgebiete der prozessbegleitenden Simulation umfassen die Uberwachung von au-

tomatisierten Prozessen, das Schétzen der Systemzustédnde und die Erstellung kurzfristiger
Prognosen des Systemverhaltens.
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w: float = 0.01 executedobject"f b
relStartTime: time_span = 0.085 =

relEndTime: time_span = 0.095
flexible: boolean = true

currentTask
s3:slot ]
adaptiveManager:manager w: float = 0.001 Objecte hart

relStartTime: time_span = 0.095
relEndTime: time_span = 0.096
flexible: boolean = true

ot o+

+ cyctime: time_span = 0.1

Abbildung 7.7.: Task-Konfiguration fiir den Use-Case.

Die eigentliche Simulation kann dabei entweder analytische oder heuristische Modelle
verwenden, die auf Messdaten basieren. Hybride Verfahren als Kombination beider Ansét-
ze sind auch moglich. Die meisten Simulationsverfahren beinhalten das Losen von Diffe-
renzialgleichungen. Dieses erfolgt normalerweise numerisch mithilfe unterschiedlicher Lo-
sungsverfahren, die die Losung iterativ approximieren.

Die Laufzeit des Losungsverfahrens hiangt von deren Parametrierung ab, wie z. B. der
gewtinschten Genauigkeit der Approximation oder der Weite der diskretisierten Zeitschrit-
te. Ein mogliches Einsatzgebiet von RA-Verfahren kann dabei eine dynamische Auswahl
des eingesetzten Verfahrens bzw. des Parametersatzes sein. Die Genauigkeit der Simulation
kann dabei in Abhéngigkeit von der verfiigbaren Rechenzeit in diskreten Schritten variiert
werden.

Fiir diesen Use-Case wird eine einfache Auswahl zwischen zwei alternativen Verfahren im-
plementiert, die dem Mehrversionen-Muster aus Abbildung 6.17b entspricht. Im Gegensatz
zu dem ersten Use-Case in Abschnitt 7.2, ist es sinnvoll, die Ergebnisse des RA-Verfahrens
innerhalb des aktuellen Zyklus operativ einzusetzen. Dabei konnen z. B. die Schétzungen
des zukunftigen Systemverhaltens als eine zusatzliche Eingabe des Regelalgorithmus ge-
nutzt werden. Dieser Verarbeitungsschritt wurde in diesem Anwendungsfall der Einfachheit
halber nicht explizit modelliert.

Die Struktur des Tasks ist in Abbildung 7.7 dargestellt. Ahnlich zu dem ersten Use-
Case in Abschnitt 7.2 wird dabei die Schwankung des Logiktask im Intervall von [10, 85]
ms simuliert. Im zweiten Slot wird dabei das ISSC der Messwertvalidierung ausgefiihrt,
dessen WCET 10 ms betragt. Das Chart ist in Abbildung 7.8 explizit dargestellt. Die
Engineering-Ansicht zeigt sowohl das ISSC als auch die ausgefiihrte Programmlogik. Die
Ausfithrungslogik ist dabei einfach: Im Initialzustand wird mithilfe eines Guards iiberprift,
ob 20 ms fiir die Ausfithrung verfugbar sind. Ist das der Fall, so wird der Zustand ,verl“
betreten, sonst wird der Zustand ,ver2“ ausgefiihrt. Die Aktionen der Zusténde fithren
dann die FBDs ,verl fc* bzw. ,ver2 fc“ aus. Die Ausfithrung der ersten Version dauert
20 ms, die Ausfithrung der zweiten Version 10 ms. Die Dauer der Ausfithrung wird durch
parametrierte Bausteine simuliert. Die Synchronisation der Ausgabe der Simulationsver-
fahren erfolgt durch einen Multiplexer-Baustein ,mux*“, der von jeder Version ausgefiihrt
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Abbildung 7.8.: ISSC fiir das online Scheduling der prozessbegleitender Simulation.
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wird. Je nach ausgefithrter Version, wird dabei die Ausgabe entsprechend umgeschaltet.
Der Ausfiihrungsrahmen des Charts entspricht dabei den Interfaces der FBDs der ein-
zelnen Versionen. ,Von auflen® ist somit die Nutzung des ressourcenadaptiven Verfahrens
vollkommen transparent.

Die Ergebnisse der Messungen sind in Abbildung 7.9 dargestellt. Jede Spalte stellt dabei
einen Zyklus des Laufzeitsystems dar. Jede Spalte ist in drei Teile aufgeteilt: Der unte-
re hellgraue Teil entspricht der Dauer des Logiktasks, der mittlere graue Teil entspricht
der Dauer des RA-Tasks fiir prozessbegleitende Simulation und der obere hellgraue Teil
entspricht der Ausfihrungsdauer des Kommunikationstasks (vgl. Abschnitt 7.2). Es ist
deutlich zu erkennen, wie die Dauer des mittleren Abschnitts zwischen 10 und 20 ms vari-
iert, z. B. in Zyklen 99 und 100 der Abbildung 7.9. Der Jitter und die anderen Parameter
entsprechen denen der ersten Messreihe (vgl. Abbildung 7.5) und sind aus diesem Grund
nicht explizit abgebildet.

7.4. Use-Case 3: Mehrstufige Messwertvalidierung

Verfahren der Messwertvalidierung werden in der operativen Leittechnik eingesetzt, um die
,Zuverlédssigkeit“ eines Messwertes festzustellen und gegebenenfalls auf fehlerhafte Messun-
gen proaktiv reagieren zu konnen. Dem tatséchlichen Messwert wird dabei ein Vertrauen-
sindex zugeordnet, der seine Qualitat beschreibt. Dieser Index kann in den Regelungsalgo-
rithmus einflieflen, beispielsweise durch das Umschalten der Stellgréfie auf einen manuell
eingestellten Wert [Uec05].

Die Verfahren der Validierung sind vielféltig und reichen von einfacher Signalanalyse
bis zu komplexen modellgestiitzten Analyseverfahren. Im Regelfall werden die einzelnen
Verfahren sukzessive ausgefiihrt, dabei wird der Vertrauensindex jedes Verfahrens an das
néchste Verfahren weitergegeben und kann so beriicksichtigt werden. Diese Konstellati-
on wird als ,mehrstufige Messwertvalidierung® [Uec05] bezeichnet und ist schematisch in
Abbildung 7.10 dargestellt.

Das Einsatzgebiet der Ressourcenorientierung umfasst die bedingte Ausfithrung der ein-
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7.4. Use-Case 3: Mehrstufige Messwertvalidierung

Aufteilung der Zykluszeit in ms

0 10 20 30 40 50 60 70 80 90 100

Abbildung 7.9.: Messungen der Aufteilung der Zykluszeit auf die einzelnen Tasks (von unten
nach oben: Logiktask mit zufalliger Ausfiihrungszeit in hellgrau, RA-Task fiir die alternative
Auswahl des Simulationsverfahren in dunkelgrau, RA-Task fir die Kommunikation in hellgrau)
in einem reprasentativen Beobachtungszeitraum von 100 Zyklen je 100 ms.

zelnen Stufen der Validierung. Dabei kann beispielsweise die Ausfithrung der ersten Stufe
zugesichert werden, wihrend die folgenden Stufen nur bei ausreichend vorhandener Slack-
zeit ausgefihrt werden.

Fiir den Use-Case wurde die gleiche Task-Konfiguration wie im letzten Use-Case verwen-
det (vgl. Abbildung 7.7). Die Ausfiihrung der prozessbegleitenden Simulation wurde durch
das ISSC in Abbildung 7.11 ersetzt. Das Chart folgt dem Muster der 0/1 Ausfithrung (vgl.
Abbildung 6.17) und enthélt die Logik einzelner Validierungstufen und das Chart zu deren
Steuerung. Die Zusténde des Charts fithren die FBDs ,tierl_fc“ bis ,tier3_fc“ sowie den
Multiplexer fiir die Datenausgabe aus. Die Ausfithrung der Stufen wird mit je 10 ms simu-
liert. Durch die garantierte Ausfithrung der ersten Stufe betrigt die WCET des Charts 10
ms. Auf der Abbildung sind die Aktionen des dritten Zustands beispielhaft dargestellt. Die

Zusatz- Zusatz-
Informationen Informationen
zu p'rufende' } N r{ L, {iberpriifte
Prozessinformation o L Prozessinformation
Validierungs- Validierungs- o R
Ursprungs- 4l stufe Ly stufe |, Validierungsindex
validierungsindex l l Nach Priifung
1. Status der n. Status der
Uberpriifung Uberpriifung

Abbildung 7.10.: Mehrstufige Messwertvalidierung [Uec05].
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Abbildung 7.11.: ISSC fiir das online Scheduling der mehrstufigen Messwertvalidierung.

optionale Ausfithrung der Stufen wird durch die Breakpoints und entsprechende Guards
gewéahrleistet. Die Breakpoints diirfen dabei nur verlassen werden, wenn die verfiighare
Ausfithrungszeit mehr als 10 ms betrégt.

Die Messreihe der Ausfithrung ist in Abbildung 7.12 dargestellt. Ahnlich zu Abbildung
7.9 wird dabei die gemessene Ausfithrungszeit (dunkelgrau) der Messwertvalidierung in
dunkelgrau von der schwankenden Ausfithrungszeit des Logiktasks unterhalb und der varia-
blen Ausfithrungszeit des Kommunikationstasks oberhalb (beide in hellgrau) eingerahmt.
Es ist klar erkennbar, wie die gemessene Ausfithrungszeit der Validierung diskret zwischen
10, 20 und 30 ms variiert, ohne die Echtzeitschranke von 96 ms zu verletzen. Damit ist die
Anwendbarkeit der RA-Verfahren auch im Kontext dieser Anwendung bestétigt.

7.5. Use-Case 4: Transaktionskontrolle fiir regelbasiertes
Engineering

Das regelbasierte Engineering wird vor allem im Kontext der AdA eingesetzt. Die Anwen-
dungsfille fiir das regelbasierte System sind vielfaltig, beinhalten aber immer die Erzeugung
bzw. die Modifikation der ausgefithrten Programmlogik. Falls diese Logik zur Laufzeit des
Systems erstellt bzw. verdandert wird, muss sichergestellt sein, dass das System sich zu
jedem Zeitpunkt in einem konsistenten Zustand befindet.

Normalerweise werden Engineering-Eingriffe iiber eine nicht-echtzeitfahige Kommunika-
tionsschnittstelle {ibermittelt. Aus diesem Grund ist eine einmalige Ubertragung der ge-
samten Anderung oft nicht méglich. Daher wird diese bei einem zyklischen Laufzeitsystem
zwingend auf unterschiedliche Grundzyklen des Systems verteilt. Bei einem naiven An-
satz der direkten Logikédnderung tiber die Kommunikationsschnittstelle besteht immer die
Moglichkeit, dass semantisch zusammenhéngende Anderungen in unterschiedlichen Zyklen
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Aufteilung der Zykluszeit in ms

0 10 20 30 40 50 60 70 80 90 100

Abbildung 7.12.: Messungen der Aufteilung der Zykluszeit auf die einzelnen Tasks (von unten
nach oben: Logiktask mit zufalliger Ausfilhrungszeit in hellgrau, RA-Task fiir die mehrstufige
Validierung in dunkelgrau, RA-Task fir die Kommunikation in hellgrau) in einem reprasentativen
Beobachtungszeitraum von 100 Zyklen je 100 ms.

wirksam werden und somit einen unerwiinschten Systemzustand hervorrufen. Ein Beispiel
fiir einen solchen Zustand ist eine partielle Aktivierung der Funktionsbausteine innerhalb
eines FBNs. Ein anderes Beispiel ist eine nicht komplette Parametrierung bzw. Erstellung
eines Objekts bzw. einer Komposition aus Objekten. Die besondere Bedeutung von Trans-
aktionssicherheit wahrend der Modellverdnderungen wurde auch bereits im Kontext der
verteilten Systeme angesprochen [Mer16].

Eine Moglichkeit der Zusicherung des konsistenten Systemzustands besteht darin, ei-
ne dedizierte Transaktion zu erstellen und sie unter Echtzeitbedingungen auszufithren.
Die Erstellung unterliegt dabei keinen Echtzeitanforderungen und wird durch die nicht-
echtzeitfiahige Dienste abgewickelt. Die Ausfiihrung hingegen muss im Echtzeitbetrieb
stattfinden. In diesem Use-Case wird die Nutzung des Transaktion-Musters aus Abbil-
dung 6.18 vorgeschlagen, um eine solche Transaktion zu definieren und auszufiihren. Das
System muss eine Grundmenge an Operationen und deren Zeitabschitzungen, wie z. B.
das Anlegen und das Loschen von Objekten bereitstellen, die von den Aktionen des ISSCs
aufgerufen werden kénnen.

Fir die Zwecke der Evaluation wurde eine Task-Konfiguration aus dem vorhergehenden
Use-Case in Abschnitt 7.4 verwendet. Das ausgefithrte ISSC ist in Abbildung 7.13 dar-
gestellt. Durch die Verwendung eines Zéhler-Bausteins ,,add1* wird der Initialzustand 50
mal betreten und stoBt die Ausfithrung des ,,process® Bausteins an, der 10 ms verbraucht
und die Aktivitdt der Transition simuliert. In dem History-Breakpoint ,b1“ wird die ver-
bliebene Ausfithrungszeit durch den Guard iiberprift. Nach der 50. Ausfithrung wird die
Transition ,t1“ deaktiviert, das Transaktion-Chart betritt den History-Breakpoint ,,b2
und terminiert.
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Abbildung 7.13.: ISSC fiir das online Scheduling der Transaktion.

Aus der Perspektive des Schedulings ist eine Transaktion ein sporadischer Task. Dieser
kann in der online Phase des Schedulers ausgefiihrt werden (vgl. Abschnitt 6.3.3). Da die
minimale WCET der Transaktion von 10 ms iiber der Funktionsreserve von 4 ms liegt,
kann die Ausfithrung nur nach einer best-effort Strategie erfolgen. Diese Strategie kann
anhand der folgenden Messreihe visualisiert werden.

Die Messreihe ist in Abbildung 7.14 dargestellt. Die Transaktion wurde durch den Kom-
munikationstask erstellt und liegt als ein Objektmodell im System vor. Die Ausfithrung der
Transaktion wurde im Zyklus Nummer 50 angestoflen. Der Scheduler versucht ab diesem
Zeitpunkt der Transaktion moglichst viel Slackzeit zuzusichern. Aus diesem Grund werden
den einzelnen Tasks nur die minimale benétigte Zeit w eingerdumt (vgl. Abbildung 7.7).
Diese Mafinahme betrifft die Messwertvalidierung und den Kommunikationstask. Diese
werden nun stets mit A" von 10 ms bzw. 1 ms ausgefiihrt. Die Moglichkeit der Aus-
fithrung der Transaktion wird nach der Terminierung der reguldren Tasks iiberpriift. Ob
die Transaktion ausgefiihrt werden kann oder nicht, héngt von der Schwankung des Logik-
tasks ab. Es ist zu sehen, dass die Transaktion erstmalig im 50. Zyklus fiir 10 ms ausgefiihrt
wurde. In Zyklen Nummer 51 und 52 war hingegen keine Zeit fiir die Ausfiihrung der Trans-
aktion vorhanden. Im Zyklus Nummer 66 war die Ausfihrung der Transaktion beendet. Ab
diesem Zyklus teilt der Scheduler wieder die gesamte verfiigbare Slackzeit den RA-Tasks
ZU.
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7.5. Use-Case 4: Transaktionskontrolle fiir regelbasiertes Engineering
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Abbildung 7.14.: Messungen der Aufteilung der Zykluszeit auf die einzelnen Tasks (von unten
nach oben: Logiktask mit zufalliger Ausfiihrungszeit RA-Task fiir die mehrstufige Validierung
und RA-Task fir die Kommunikation in hellgrau, sowie die Transaktion in dunkelgrau) im
Zeitraum von 100 Zyklen je 100 ms.
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8. Diskussion der Ergebnisse

In dieser Dissertation wurde ein Rahmenwerk fir die Integration von ressourcenadapti-
ven Anwendungen in die Laufzeitsysteme der operativen Prozessleittechnik vorgestellt.
Die Notwendigkeit des ressourcenadaptiven Einsatzes wurde aus den eingangs vorgestell-
ten wachsenden Anforderungen an die Funktionalitat der Komponenten industrieller Pro-
duktionssysteme und insbesondere an die Laufzeitsysteme abgeleitet. Diese zusétzlichen
Anforderungen umfassen die Bereitstellung zusétzlicher Information bzw. die Ausfithrung
zusétzlicher nicht-echtzeitfihiger Funktionalitidt durch die Laufzeitumgebung. Eine regu-
lare Ausfithrung dieser Funktionen ist hiaufig aus Griinden der festen Ressourcenzuteilung
an die echtzeitkritischen Kern-Funktionen eines Laufzeitsystems nicht méglich. Ressour-
cenadaptive Anwendungen erlauben hingegen die Ausfithrung zusétzlicher Funktionalitat
in der Slackzeit, der Zeit, die wegen der Fluktuationen der Ausfithrungszeiten der Kern-
Funktionen in den meisten Fallen ungenutzt bleibt. Das Konzept der Ressourcenadaptivitat
erlaubt somit eine effizientere Nutzung der vorhandenen Rechenkapazitat des Laufzeitsy-
stems bei gleichzeitiger Sicherstellung der garantierten Echtzeitanforderungen.

Die Idee der Inanspruchnahme der Slackzeit zyklischer Systeme ist nicht neu. So wird
diese Zeit bereits im Bereich der Echtzeitsysteme, z. B. PikeOS [KF06], oder von Lauf-
zeitsystemen der Automatisierungstechnik, z. B. FASA (vgl. Abschnitt 3.3.3), verwendet.
Der erste Ansatz verteilt die iibrig gebliebene Zeit an wartende Threads mit niedrigerer
Prioritdt. Der zweite Ansatz nutzt die Slackzeit fiir Threads mit Verwaltungsaufgaben,
z.B. Aufgaben der Umstrukturierung der Scheduling-Tabelle. Die implizite ,,Abgabe® der
ungenutzten Zeit an Tasks mit niedrigerer Prioritat ist auch im Kontext der Implemen-
tierungen der IEC 61131-3 mit unterbrechendem Scheduling der Fall. Die Norm schreibt
die Moglichkeit eines solches Verhaltens explizit vor. Der Nachteil des Multi-Threading
Ansatzes ist die fehlende Sicherheit iiber die Ausfithrungsdauer der niedrig priorisierten
Tasks. Somit kann es keine Garantie iiber den Zeitpunkt der Terminierung einer Funktion
geben, dafiir aber iiber die Eigenschaften des berechneten Ergebnisses.

Der Kernunterschied des vorgestellten Rahmenwerks zu diesen Ansétzen ist die vorhan-
dene Méglichkeit der Synchronisation der ressourcenadaptiven Anwendung mit dem Zyklus
des Laufzeitsystems. Das Ende des Zyklus steht als Zeitpunkt der Terminierung jeder Be-
rechnung fest und die ,Qualitdt” des Ergebnisses ist variabel. Mit diesem neuen Ansatz
sind deterministische operative Eingriffe der ressourcenadaptiven Logik in den Prozess
moglich, wie in Use-Cases 2 und 3 in Abschnitten 7.3 bzw. 7.4 demonstriert wurde. Der
Einflussbereich® der operativen Eingriffe ist insbesondere auf der Prozessleitebene sehr
weit ausgepragt. Es gehoren nicht nur explizite Funktionen mit Manipulationen der I/O
hinzu, sondern auch alle Daten, deren Anderung implizit auf das physische System wirken
kann. Falls beispielsweise eine Modellinderung implizite Auswirkungen auf das physische
System besitzt, z. B. iiber ein regelbasiertes System Verhaltensénderungen induziert, so
muss der Zugriff auf dieses Modell dhnlichen Anforderungen wie direkter I/O Zugriff un-
terliegen. Eine bisherige Nutzung der Slackzeit fiir die Realisierung des operativen Eingriffs
in den Prozess fiir Aufgaben der Automatisierungstechnik ist dem Autor unbekannt.
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Es ist nochmals zu betonen, dass die Verfiigbarkeit der Slackzeit im Allgemeinen nicht ga-
rantiert werden kann. Aus diesem Grund eignen sich ressourcenadaptive Anwendungen vor
allem fiir nicht-echtzeitfdhige Aufgaben bzw. Erweiterungen, wie z. B. nicht-echtzeitfadhige
Kommunikation, oder fakultative Verbesserungen der Kern-Logik des Laufzeitsystems, wie
z. B. optionale zusitzliche Stufen eines Validierungsverfahrens fiir Messwerte. Auswertun-
gen der Messdaten einer realen Forschungsanlage zeigen Laufzeitschwankungen im zwei-
stelligen Prozentbereich, sodass durchaus umfangreiche Zusatzfunktionalitdten durch das
Rahmenwerk eingebettet werden kénnen.

Der Nachteil der nicht garantierbaren Verfiigbarkeit der Slackzeit ist gleichzeitig ein Vor-
teil der Ressourcenadaptivitéit beztiglich der Integration mit bereits existierenden leittech-
nischen Anwendungen. Ressourcenadaptive Algorithmen konnen als ein optionales Add-on
betrachtet werden und lassen die Semantik des existierenden Programms unverandert. Da~
mit hat die Migration bzw. das Hinzufiigen der ressourcenadaptiven Anwendungen keine
Auswirkungen auf die echtzeitrelevante Funktionalitit und erfordert keine erneute bzw.
zusétzliche Verifikation der existierenden Software.

Dieser Vorteil der transparenten Koexistenz ist der eingefithrten einheitlichen Laufzeitar-
chitektur geschuldet (vgl. Abschnitt 6.1). Diese Architektur folgt dem Prinzip des hierarchi-
schen Schedulings und lasst somit die Kombination beliebiger Kontrollflusstypen zu. Auch
die prototypische Implementierung des Rahmenwerks hat gezeigt, dass beliebige Kombina-
tionen aus ressourcenadaptiven und nicht ressourcenadaptiven POUs in beide Richtungen
moglich sind. So kénnen zum einen ressourcenadaptive Anwendungen aus bereits existie-
renden POUs zusammengestellt werden, die unter bestimmten Voraussetzungen ausgefiihrt
werden (vgl. Use-Cases 2 und 3 in Abschnitten 7.3 bzw. 7.4). Zum anderen koénnen res-
sourcenadaptive Anwendungen von nicht zeitsensitiven Schedulern ausgefithrt werden und
entfalten bei solcher Ausfithrung nur ihren minimalen Funktionsempfang.

Eine doménenspezifische Sprache fiir die Beschreibung des ressourcenadaptiven Verhal-
tens der POUs mit Namen In-cycle Sequential State Chart (ISSC) wurde in Abschnitt 6.2
eingefithrt. Diese Prozedurbeschreibungssprache lehnt sich an die existierenden Sprachen
der Leittechnik an und erfiillt somit die Erwartungen der potentiellen Endnutzer. Neben
dem Vorteil eines leichten Einstiegs in die neue Sprache, kénnen auch die existierenden
Engineering-Losungen mit minimalen Anpassungen tibernommen werden. Tatsachlich wur-
de eine Engineering-Umgebung der prototypischen Implementierung von einer existieren-
den Software abgeleitet. Trotz einer dhnlichen Syntax bleibt die Sensitivitdt in Bezug auf
die verfigbare Ausfithrungszeit das wichtigste Unterscheidungsmerkmal der ISSCs. Dem
Autor ist kein dhnliches Konzept im Bereich der Prozedurbeschreibung aus der Doméne
der Automatisierungstechnik bekannt.

Die in Abschnitt 6.3 vorgestellte Referenzarchitektur des Komponentenschedulers be-
dient sich der breiten Auswahl der existierenden Scheduling-Konzepte wie Predictably Fle-
xible Real-Time Scheduling und Elastic Model. Einige der beschriebenen Features dieser
Referenzarchitektur, wie beispielsweise die Méglichkeit des Wechsels der offline Scheduling
Tabelle, finden sich in anderen Laufzeitumgebungen, z. B. in FASA, wieder. Letztend-
lich wurde ein auf die Problemstellung zugeschnittenes Schedulingmodell entwickelt, das
die Vorteile einer einfachen Implementierung mit den Garantien des strikten Determinis-
mus und der praktischen Losbarkeit der zugrundeliegenden Optimierungsprobleme vereint.
Diese in der Konzeptionsphase anvisierten Vorteile wurden durch die prototypische Imple-
mentierung bestdtigt und konnten durch die Auswertung empirischer Messdaten belegt
werden.
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8. Diskussion der Ergebnisse

Die drei entwickelten Bestandteile des Rahmenwerk-Konzepts erfiillen die eingangs an-
visierten Ziele dieser Arbeit. Insgesamt ist mit dem Rahmenwerk und dessen Integration
in die Laufzeitumgebung ACPLT/RTE ein abgeschlossenes Paket entstanden, dessen Ein-
satzmoglichkeiten mithilfe mehrerer Use-Cases demonstriert wurden. Die Anwendungssze-
narien kniipfen dabei an die aktuellen bzw. kiirzlich abgeschlossenen Forschungsarbeiten
des Lehrstuhls fiir Prozessleittechnik an und zeigen damit die praktische Relevanz der
Anwendung des ressourcenorientierten Ansatzes in der Doméne der Prozessleittechnik.

Im Folgenden werden die fiir diese Arbeit angenommenen Eigenschaften des Laufzeitsy-
stems beziiglich des Schedulings kritisch iiberprift:

e Die Annahme einer konstanten Zyklusdauer ist die grundlegende Voraussetzung fiir
die Entstehung der Slackzeit. In Anwendungsgebieten der reinen Steuerungstechnik
sind am Markt Systeme mit flexibler Zykluszeit verfiighar. Bei solchen Systemen wird
ein neuer Zyklus direkt nach der Terminierung der Kontrolllogik gestartet. Die Be-
griilndung einer festen Zykluszeit ist im Bereich der Prozessautomatisierung mit dem
Abtasttheorem, den Aufgaben der Regelung und der Forderung eines reproduzier-
baren dynamischen Verhaltens verbunden. Aus diesen Griinden wird die Annahme,
insbesondere in dieser Doméne, mit hoher Wahrscheinlichkeit weiterhin giiltig sein.

e Die Annahme der Stabilitit des Prozessabbildes ist in der IEC 61131-3 verankert
und wird somit in absehbarer Zeit Bestand haben.

e Die Annahme des kooperativen Schedulings und somit der Nichtunterbrechbarkeit
der Tasks ist in Bezug auf die IEC 61131-3 Umgebungen nur fiir manche Systeme
giiltig. Die Vorteile der Nichtunterbrechbarkeit beztiglich der strikten Zyklussynchro-
nisation sind bereits erldutert worden. Fir kommerzielle Systeme tiberwiegen oft aber
die Nachteile der Fragilitéit, sodass unterbrechende Scheduler der Echtzeitsysteme
eingesetzt werden. Von den entwickelten Bestandteilen des Rahmenwerks ist nur der
Komponentenscheduler von der Annahme der Nichtunterbrechbarkeit betroffen. Die
einheitliche Softwarearchitektur und die ISSCs sind auch im Kontext des unterbrech-
baren Schedulers weiterhin anwendbar.

e Die Annahme eines zeitgesteuerten Systems ist mit Hinblick auf die Entwicklung
der IEC 61499 zu tiiberpriifen. Auch im Fall der wachsenden Anwenderakzeptanz der
Norm, kénnen Teile der vorgestellten Arbeit, insbesondere die einheitliche Laufzeit-
architektur, im Kontext der Ereignissteuerung Anwendung finden.

e Eine dhnliche Argumentation gilt fiir das angenommene Uniprozessor-System. Die
Umsetzungsprobleme der Interprozesskommunikation und -synchronisation fithren
dazu, dass die Mehrkernsysteme aus der Softwareperspektive als mehrere Ressour-
cen dargestellt werden. Das Rahmenwerk ist somit auch in diesem Fall weiterhin
anwendbar.

Abschliefend werden Themen zukiinftiger Arbeiten bzw. die Erweiterungen des vorge-
stellten Rahmenwerks besprochen: Eine feinere Modellierung der Guards der ISSCs im
UPPAAL-Toolkit ist die erste mogliche Forschungsrichtung. Die Guards werden bis dato
nur als externe Variablen betrachtet. Somit ist die Modellierung der gemischten Bedin-
gungen (Guards, die nicht nur von der verfiigharen Ausfiihrungszeit, sondern auch von
den berechneten Ergebnissen einzelner Bausteine sowie Aktionen abhéngen) erschwert bis
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unmoglich. Eine Beriicksichtigung der tatsichlichen Logik der Funktionsbausteine und der
ISSCs wiirde zusétzlich die Anwendungsszenarien des Model-Checkers erweitern. Eine be-
sondere Herausforderung bei der Erweiterung des Modells wird die richtige Balance zwi-
schen der Aussagestirke und der Beschreibungskomplexitat sein.

Eine weitere Verfeinerung der Modellierung kann dariiber hinaus die genauere Erfas-
sung der einzelnen POU-Laufzeiten sein. Eine Moglichkeit wére dabei die stochastische
Betrachtung der Ausfiihrungszeiten, beispielsweise durch eine empirisch oder analytisch
ermittelte Wahrscheinlichkeitsverteilung der erwarteten Ausfithrungszeit. Der Wechsel in
die Doméne der stochastischen Analyse erfordert eine Untersuchung der verfiigharen Tools
bzw. Moglichkeiten der Modellierung und Abgleich dieser mit den doménenspezifischen
Anforderungen der Leittechnik.

Die automatische Berechnung der Guards der ISSCs beschrinkt sich bislang auf die
Zusicherung des ,sicheren Betretens® der einzelnen Zustinde bzw. Zweige. Als Ergebnis
einer besseren Modellierung des Zeitverhaltens des Systems bzw. der Anwendung koénnte
ein Algorithmus entstehen, der komplexe Bedingungen durch die Guards beschreiben kann.
Somit wére der erste Grundstein fiir ein Assistenzsystem fiir das ISSC-Engineering gelegt.

Die online Strategien des Systemschedulers kénnen weiter ausgebaut werden. Ein Bei-
spiel fiir eine solche Erweiterung wére die Ausfiihrung sporadischer Tasks. Die aktuelle
Ausfithrungsstrategie des Prototyps lasst Raum fiir Verbesserung. In Abbildung 7.14 ist es
deutlich sichtbar, dass diese Strategie die Slackzeit nicht vollsténdig ausnutzen kann. Die
Tatsache wird insbesondere im letzten Zyklus der Transaktionsausfihrung deutlich. Eine
bessere Strategie bedarf der Modellierung zusétzlicher Eigenschaften der Tasks. So kann
beispielsweise gekennzeichnet werden, ob ein Task beliebig viel Slackzeit verbrauchen kann
und ob dieser mehrfach innerhalb eines Grundzyklus ausgefithrt werden darf.

Die effiziente Konstruktion der offline Tabellen fiir den Scheduler wirft weitere For-
schungsfragen auf. Eine davon wére die Suche nach geeigneten Heuristiken, die das effizi-
ente Erstellen der Scheduling-Tabellen auf dem Laufzeitsystem ermdoglichen. Die Analyse
der Heuristiken muss neben der Laufzeit auch die Giite bzw. die Korrektheit der erstellten
Losungen in Betracht ziehen.
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Anhange

A. GAMS-Instanz fiir die offline Phase des

Komponentenschedulers

Dieses Modell implementiert das Beispiel aus Abschnitt 6.3.2. Die Probleminstanz bein-
haltet der Vollstdndigkeit halber den Aufbau fiir die komplette Problemformulierung aus
diesem Abschnitt, der teilweise von der Instanz des Beispiels ungenutzt bleibt.

Listing 1: example.gms

xallow empty sets
Sonempty

scalar cyctime /100/;

$if not set hypercycle $set hypercycle 6
scalar hypercycle /%hypercycle%/;

$if not set tasks $set tasks 3
scalar tasks /%tasks%/;

$eval timelnstants %tasks%+%hypercycle%
scalar timelnstants /%timelnstants%/;

SETS

T tasks /t1,t2,t3/

A(T) phase—aligned tasks //

#* A(T) phase—aligned tasks /tl1,t2,t3/
F(A) phase—fixed tasks //

R(T) release—deadline //

C hypercycle /1x%hypercycle%/;

ALIAS(T,U) ;
ALIAS(C,D) ;

xperiods are multiplied with job size

PARAMETERS
w(T) wcet time of task t
/ t1 90
t2 90
t3 30
/
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GAMS-Instanz fiir die offline Phase des Komponentenschedulers

prio(T) priority of the task (evaluated only by the exponential cost
— function)

/ t1 1
t2 1
t3 1
/
period (T) period
/ t1 6
t2 2
t3 3
/
phase (F) fixed phase
/
/
release (R) release of task t in cases (first slot to be executed)
/
/
deadline (R) deadline of task t in cases (last slot to be executed)
/
/
pred (T,T) execution dependencies (only for tasks with same period)
/
/
VARIABLES
x(c,t) true iff task t is scheduled in cycle ¢

* add(c,t) additional time for each task to run (only used for the
— exponential cost function)
Z total cost
BINARY VARIABLE x
POSITIVE VARIABLE add

EQUATIONS
PREDECESSOR/(C,U,T) ordering
FIXEDPHASE(F) release fixed phase
— task
PHASEALIGN(C,A) phase alignment
OVERALL(T) every task is executed a planned

— number of times

ONCEAPERIOD (C, T) every task is executed once a

< period
REL(C,R) respect release time
DEAD(C,R) respect deadline
OVERRUN(C) prevent overrun
COST;

PREDECESSOR(C, U, T)

. SUM(D$(pred(u,t) EQ 1 AND ord(d) GE (ord(c)-1)

— xperiod (t)+1 and ord(d) LE ord(c)speriod(t)), ord(d)*x(d,u) —
— ord(d)*x(d,t)) =L= 0;

FIXEDPHASE (F)
PHASEALIGN(C,A)

. SUM(C$(ord(c¢) EQ phase(f)+1), x(c,f)) =E= 1;
. SUM(D$(ord(d) GE (ord(c)—1)+1 AND ord(d) LE ord(c
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— ) AND ord(d)+period(a) LE hypercycle), x(d,a)) =E= SUM(D$(ord (
— d) GE (ord(c)—1)+41 and ord(d) LE ord(c) AND ord(d)+period(a)
— LE hypercycle), x(d+period(a),a));

OVERALL(T) .. SUM(D, x(d,t)) =E= hypercycle/period(t);

ONCEAPERIOD(C,T) .. SUM(D$(ord(d) GE (ord(c)—1)*period(t)+1 and
— ord(d) LE ord(c)xperiod(t)), x(d,t)) =L= 1;

REL(C,R) .. SUM(D$(ord(d) GE (ord(c)—1)speriod(r)+1 and
< ord(d) LE (ord(c)*period(r)) and ord(d) LT (ord(c)—1)*period(r
— )+1+(release(r)—1)), X(d,r)) =E= 0;

DEAD(C,R) .. SUM(D$(ord(d) GE (ord(c)—1)*period(r)+1 and
— ord(d) LE (ord(c)x*period(r)) and ord(d) GE (ord(c)—1)xperiod (r
— )+l+deadline(r)), X(d,r)) =E= 0;

OVERRUN(C) .. SUM(T, x(c,t)*w(t)) =L= cyctime;

% this overrun equation system should only be used for the exponential
— cost function

x  OVERRUN(C) .. SUM(T, x(c,t)*w(t)) + SUM(T, x(c,t)*add(c,t)) =L=
— cyctime;
COST .. Z =E= SUM((T,C), ord(c)*x(c,t));

x COST .. Z =F= SUM(C, power [[SUM(T, x(c,t)*w(t))] — [SUM((T,D), (x(d
= ,t)xw(t))/Card(C))],2]);

x COST .. 7 =F= SUM((T,C), x(c,t)xprio(t)*system.exp((—1) x add(c,t
= )));

MODEL SCHED /ALL/;

SOLVE SCHED USING MIP MINIMIZING Z;
*SOLVE SCHED USING MINLP MINIMIZING Z;
*SOLVE SCHED USING MIQCP MINIMIZING Z;

B. ACPLT/OV Modelldateien fiir die
Referenzimplementierung

Folgende OV-Modelle definieren die Klassen und die Assoziationen des zeitsensitiven hier-
archischen Schedulers (Bibliothek ,adaptiveShed“) und der ISSCs (Bibliothek . issc*).

Listing 2: adaptiveShed.ovm

#include "ov.ovm"
#include "fb.ovm"

LIBRARY adaptiveShed

VERSION = "V0.1";

AUTHOR = "Sten Gruener";
COPYRIGHT = "";

COMMENT = "";

CLASS cycle : CLASS ov/domain
IS _INSTANTIABLE;
VARIABLES
staticSlack : TIME SPAN HAS GET ACCESSOR FLAGS = "o';
END_VARIABLES;
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OPERATIONS
END_OPERATIONS;;
END_ CLASS;

/*x A structure to hold the contents of the executed Task */
CLASS task : CLASS ov/domain
IS _INSTANTIABLE;
COMMENT = "Adaptive Task";
VARIABLES
pActiveCycle: C_TYPE <OV_INSTPTR_ adaptiveShed_ cycle>
— FLAGS = "hi" COMMENT = "pointer to the active
— cycle";
END_VARIABLES;
OPERATIONS
startup: C_FUNCTION <OV_FNC_STARTUP>;
constructor: C_FUNCTION <OV_FNC_CONSTRUCTOR>;
END_OPERATIONS;
END CLASS;

/*% A singleton to represent scheduler interface x*x/
CLASS manager : CLASS ov/object
IS _INSTANTIABLE;
COMMENT = "Adaptive Task manager";
VARIABLES
activeTask : STRING HAS SET ACCESSOR HAS GET ACCESSOR
— FLAGS = "i" COMMENT = "currently executed task"';
pActiveTask: C TYPE <OV_INSTPTR_ adaptiveShed_task> FLAGS =
— "hi" COMMENT = "pointer to the active task";
activeTransaction: STRING HAS SET ACCESSOR
— HAS GET ACCESSOR FLAGS = "i" COMMENT = "transaction
— to execute";
activeTransactionW: TIME SPAN HAS SET ACCESSOR
— HAS GET ACCESSOR FLAGS = "i" COMMENT = "guaranteed
<~ time for a transaction to execute";
pActiveTransaction: C_TYPE <OV_INSTPTR_ov_object> FLAGS =
— "hi" COMMENT = "pointer to the executed transaction
= "
nextTask: STRING HAS SET ACCESSOR HAS GET ACCESSOR FLAGS =
— "i" COMMENT = "task to swtich to asap';
cyctime: TIME SPAN HAS SET ACCESSOR HAS GET ACCESSOR FLAGS
— = "i" COMMENT = "cycle time";
proctime: TIME HAS SET ACCESSOR HAS GET ACCESSOR FLAGS = "
— 1" COMMENT = "next execution time";
detachUrTask: BOOL HAS SET ACCESSOR HAS GET_ ACCESSOR FLAGS
— = "i" COMMENT = "trigger to detach UrTask"';
detachRootCommTask: BOOL HAS SET ACCESSOR HAS GET ACCESSOR
— FLAGS = "i" COMMENT = "trigger to detach
— RootCommTask " ;
END_ VARIABLES;
OPERATIONS
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constructor: C_FUNCTION <OV_FNC_CONSTRUCTOR>;
startup: C_FUNCTION <OV_FNC_STARTUP>; //registers the
— execution with ov
shutdown: C_FUNCTION <OV_FNC SHUTDOWN>;
destructor: C_FUNCTION <OV_FNC_ DESTRUCTOR>;
END_OPERATIONS;
END_ CLASS;

CLASS slot : CLASS ov/domain
IS _INSTANTIABLE;

VARIABLES
executedObject : STRING HAS SET ACCESSOR HAS GET ACCESSOR
— FLAGS = "i" COMMENT = "object to execute e.g. an fb/
— task";

pExecutedObject: C_TYPE <OV_INSTPTR_ov_object> FLAGS = "hi
— " COMMENT = "pointer to the executed object';
w: TIME_SPAN HAS ACCESSORS FLAGS = "i";
relStartTime: TIME SPAN HAS ACCESSORS FLAGS = "i";
relEndTime: TIME_SPAN HAS ACCESSORS FLAGS = "i";
flexible : BOOL HAS ACCESSORS FLAGS = "i" INITIALVALUE=TRUE
=
END_VARIABLES;
OPERATIONS
startup: C_FUNCTION <OV_FNC STARTUP>;
END OPERATIONS;
END_ CLASS;

CLASS functionblock : CLASS fb/functionblock
OPERATIONS
timedTypemethod: C_FUNCTION <AS FNC_ TIMEDTYPEMETHOD>
— IS _ABSTRACT;
timedExecute: C_FUNCTION <AS FNC TIMEDEXECUTE>;
typemethod: C_FUNCTION <FB FNC TYPEMETHOD>;
END_ OPERATIONS;
END_ CLASS;

CLASS functionchart : CLASS adaptiveShed/functionblock
IS _INSTANTIABLE;
FLAGS = "i";
COMMENT = "function chart";
PARTS
intask: CLASS fb/task;
END_PARTS;
OPERATIONS
typemethod: C_FUNCTION <FB FNC TYPEMETHOD>;
timedTypemethod: C_FUNCTION <AS FNC_ TIMEDTYPEMETHOD>;
getport: C_FUNCTION <FB FNC GETPORT>;
setport: C_FUNCTION <FB_FNC_SETPORT>;
END_ OPERATIONS;
END_ CLASS;
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CLASS demoFb : CLASS adaptiveShed/functionblock
IS INSTANTIABLE;
VARIABLES
END_VARIABLES;
OPERATIONS
timedTypemethod: C_FUNCTION <AS FNC TIMEDTYPEMETHOD>;
END OPERATIONS;
END_ CLASS;

ASSOCIATION variables: ONE TO MANY
PARENT timedfunchart: CLASS adaptiveShed/functionchart;
CHILD ports: CLASS fb/port;
END_ASSOCIATION;;
END_LIBRARY;

Listing 3: adaptiveShed.ovf

#ifndef adaptiveShed_ OVF_INCLUDED
#define adaptiveShed_ OVF__INCLUDED

typedef OV_DLLFNCEXPORT void AS FNC TIMEDTYPEMETHOD(
OV_INSTPTR_ adaptiveShed_ functionblock pfb,
OV_TIME xplte ,
OV_TIME SPAN dCurr

)

typedef OV_DLLFNCEXPORT void AS FNC TIMEDEXECUTE(
OV_INSTPTR_ adaptiveShed_ functionblock pfb,

OV_TIME *pltc ,
OV_TIME SPAN dCurr
)
#endif

Listing 4: issc.ovm

#include "ov.ovm"
#include "adaptiveShed.ovm'
#include "ksbase.ovm'

LIBRARY issc
VERSION = "V0.1";
AUTHOR = "Sten Gruener";
COPYRIGHT = "";
COMMENT = "";

CLASS incycleSequentialStateChart : CLASS adaptiveShed/
— functionchart
IS_INSTANTIABLE;
PARTS
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transConds: CLASS ov/domain;
taskActiveStep: CLASS fb/task; //only the active step
— is linked here
END PARTS;
OPERATIONS
constructor: C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timedTypemethod: C_FUNCTION <
— AS FNC TIMEDTYPEMETHOD>;
END_ OPERATIONS;
END_CLASS;

CLASS abstractStep : CLASS adaptiveShed/functionblock
COMMENT = "abstractStep ";
VARIABLES
END_VARIABLES:
PARTS
entry : CLASS fb/task;
END PARTS;
OPERATIONS
constructor: C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timed Typemethod: C_FUNCTION <AS FNC_TIMEDTYPEMETHOD>;
END_ OPERATIONS;
END_ CLASS;

CLASS step : CLASS issc/abstractStep
IS _INSTANTIABLE;
COMMENT = "step";
VARIABLES
internalRole: UINT HAS GET ACCESSOR IS DERIVED FLAGS = "n"
— COMMENT = "internal role (0 start, 1 normal, 999 end)
= "
END_VARIABLES;
OPERATIONS
END_OPERATIONS;
END_CLASS;

CLASS tGe : CLASS adaptiveShed/functionblock
IS INSTANTIABLE;

COMMENT = "Returns true iff the remaining execution time is
— greater or equal to the queried one';
VARIABLES

query: TIME SPAN HAS ACCESSORS FLAGS = "i'";
result : BOOL HAS ACCESSORS FLAGS = "o";
END_ VARIABLES;
OPERATIONS
constructor: C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timedTypemethod: C_FUNCTION <AS FNC TIMEDTYPEMETHOD>;
END_ OPERATIONS;
END_CLASS;
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CLASS breakpoint : CLASS issc/abstractStep
IS _INSTANTIABLE;
COMMENT = "breakpoint ";
VARIABLES
END_VARIABLES;
OPERATIONS
END_OPERATIONS;
END_CLASS;

CLASS historyBreakpoint : CLASS issc/breakpoint
IS _INSTANTIABLE;
COVMMENT = "history breakpoint";
VARIABLES
END_VARIABLES;
OPERATIONS
END_OPERATIONS;

END_ CLASS;

CLASS transition: CLASS adaptiveShed/functionblock
IS _INSTANTIABLE;
COVMMENT = "transition";
VARIABLES
result: BOOL FLAGS = "i" COMMENT = "The result of the
< executed transition";
visuallayoutPrev: STRING FLAGS = "p" COMMENT = "visual
< layout information for HMI",
visuallayoutNext: STRING FLAGS = "p" COMMENT = '"visual
< layout information for HMI";
END_VARIABLES;
OPERATIONS
constructor : C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timedTypemethod : C_FUNCTION <AS FNC_TIMEDTYPEMETHOD>;
END_OPERATIONS;
END_ CLASS;

CLASS actionBlock : CLASS adaptiveShed/functionblock
COMMENT = "action block";
VARIABLES

w : TIME_SPAN HAS ACCESSORS FLAGS = 'p"
— (OMMENT = "WCET of the action';
END_VARIABLES;
OPERATIONS

constructor: C_FUNCTION <OV_FNC_CONSTRUCTOR>;
timedTypemethod: C_FUNCTION <AS FNC TIMEDTYPEMETHOD>;
END_OPERATIONS;
END_ CLASS;

CLASS setVariable : CLASS issc/actionBlock
IS_INSTANTIABLE;
COMMENT = "action block for set variable action';
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VARIABLES
variable : STRING HAS SET_ACCESSOR FLAGS = "p'
— COMMENT = "The variable name (relative to the
— ISSC or absolute path)";

value : ANY HAS SET ACCESSOR FLAGS
— = "i" COMMENT = "The value to be set";
END_VARIABLES;
OPERATIONS

timedTypemethod : C_FUNCTION <AS FNC TIMEDTYPEMETHOD>;
END_OPERATIONS;
END_ CLASS;

CLASS execute : CLASS issc/actionBlock
IS INSTANTIABLE;
COMMENT = "action block executing a function block";

VARIABLES
executedObject : STRING HAS SET ACCESSOR FLAGS = "p" COMMENT
< = "The object name (relative to the ISSC or absolute
— path)";

pExecutedObject: C_TYPE <OV_INSTPTR_ov_object> FLAGS = "hi"
— COMMENT = "pointer to the executed object";

END_VARIABLES;

OPERATIONS
timedTypemethod : C_FUNCTION <AS FNC_TIMEDTYPEMETHOD>;
startup: C_FUNCTION <OV_FNC_STARTUP>;

END_OPERATIONS;

END_ CLASS;

CLASS executeTg : CLASS issc/actionBlock
IS_INSTANTIABLE;
COMMENT = "action block executing a time guard";
VARIABLES
executedObject : STRING HAS SET ACCESSOR FLAGS = "p"
— COMMENT = "The object name (relative to the ISSC or
— absolute path)";
pExecutedObject : C_TYPE <OV_INSTPTR_ov_object> FLAGS = "hi"
— C(OMMENT = "pointer to the executed object';
END_ VARIABLES;

OPERATIONS
timedTypemethod : C_FUNCTION <AS FNC_TIMEDTYPEMETHOD>;
startup : C_FUNCTION <OV_FNC_STARTUP>;
END_OPERATIONS;
END_ CLASS;

/# Connections from steps to next transitions. =/
ASSOCTIATION nextTransitions : ONE TO MANY
IS_LOCAL;
PARENT prevStep : CLASS issc/abstractStep;
CHILD nextTrans : CLASS issc/transition;
END_ASSOCIATION;;
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/* Connections from transitions to next steps. x/
ASSOCIATION previousTransitions : ONE TO MANY
IS LOCAL;
PARENT nextStep : CLASS issc/abstractStep;
CHILD prevTrans : CLASS issc/transition;
END_ ASSOCIATION;
END LIBRARY;
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