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ABSTRACT

The amount of transmitted video data is growing faster than the channel
capacity available for this purpose. This leads to the necessity of a con-
tinuous improvement of the coding methods for the used video codecs.
Modern video codecs are generally based on the principle of hybrid
coding, i.e. the combination of a prediction with a transformation coding
of the prediction error. The prediction methods can be roughly divided
into intra and inter prediction. In this work, two methods are proposed
for improving intra prediction.

The first contribution in this thesis is a stochastic contour model for
modeling and extrapolation of contours detected in the reference area.
A Gaussian process is used for the modeling. Expectations of typically
occurring contour shapes were taken into account by choosing the Squared
Exponential Kernel as covariance function of the prior of the Gaussian
process. The posterior Gaussian process resulted from the prior Gaussian
process by optimizing the hyperparameters of the covariance function
for each contour. A multivariate Gaussian distribution was formulated
for the contour extrapolation. The second contribution in this thesis is a
neural network-based method for sample value prediction. The neural
networks are used to process the adjacent reference sample values and the
results of contour modeling and extrapolation as input data to generate a
prediction of the sample values of the block to be coded. The contours
are required for the sample value prediction. The neural networks were
designed with an auto-encoder architecture and trained using a SATD cost
function.

The coding efficiency of the video codec HEVC was increased by up
to 5%. Averaged over all 55 test sequences, the All Intra configuration
resulted in BD-rates of —0.54% for high bit rates and —1.0% for low
bit rates. Compared to the methods from our own prior works, which
were already better than related works from the literature, an additional
increase in coding efficiency of 0.21 percentage points for high bit rates
and 0.27 percentage points for low bit rates was achieved.

Keywords — video coding, HEVC, intra prediction, machine learning,
Gaussian process.
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KURZFASSUNG

Die zur Ubertragung von Videos benétigte Ubertragungskapazitit wéchst
schneller als die hierfiir zur Verfiigung stehende Kanalkapazitdt. Hieraus
entsteht die Notwendigkeit einer stetigen Verbesserung der Codierungs-
verfahren fiir die verwendeten Videocodecs. Moderne Videocodecs be-
ruhen in der Regel auf dem Prinzip der Hybridcodierung, also der
Kombination von einer Pradiktion mit einer Transformationscodierung
des Pradiktionsfehlers. Die Pradiktionsverfahren kénnen grob in Intra-
und Inter-Pradiktion unterschieden werden. Fiir die Verbesserung der
Intra-Pradiktion werden in dieser Arbeit zwei Verfahren vorgeschlagen.

Der erste Beitrag in dieser Arbeit besteht aus einem stochastischen
Konturmodell zur Modellierung und Extrapolation von Konturen, die im
Referenzbereich detektiert werden. Fiir die Modellierung wird ein Gauf3-
Prozess verwendet. Die Erwartungen an typischerweise vorkommen-
de Konturverldufe werden durch die Wahl des Squared Exponential Ker-
nels als Kovarianzfunktion des Prior-Gauf3-Prozesses berticksichtigt. Der
Posterior-Gaufi-Prozess ergibt sich aus dem Prior-Gaufs-Prozess durch die
Optimierung der Hyperparameter der Kovarianzfunktion fiir jede Kon-
tur. Fiir die Konturextrapolation wird eine multivariate Gauf-Verteilung
formuliert. Der zweite Beitrag in dieser Arbeit ist ein auf neuronalen Netz-
werken basierendes Verfahren zur Abtastwertpradiktion. Mit den neuro-
nalen Netzwerken werden die benachbarten Referenzabtastwerte sowie
das Ergebnis der Konturmodellierung und -extrapolation als Eingabeda-
ten verarbeitet, um eine Pradiktion der Abtastwerte des zu codierenden
Blocks zu erzeugen. Die Konturen werden fiir die Abtastwertpradiktion
benotigt. Die neuronalen Netzwerke wurden mit einer Autoencoder-
Architektur entworfen und mittels einer saTp-Kostenfunktion trainiert.

Die Codierungseffizienz des Videocodecs HEvC wurde um bis zu 5%
gesteigert. Gemittelt tiber alle 55 Testsequenzen ergaben sich fiir die All
Intra-Konfiguration Bp-Raten von —0, 54% fiir hohe Datenraten und in
Hohe von —1,0% fiir niedrige Datenraten. Verglichen mit den Verfah-
ren aus eigenen Vorarbeiten, welche bereits besser waren als verwandte
Arbeiten aus der Literatur, wurde eine zusitzliche Steigerung der Codie-
rungseffizienz um 0, 21 Prozentpunkte fiir hohe Datenraten und um 0,27
Prozentpunkte fiir niedrige Datenraten erzielt.

Stichworte — Videocodierung, HEVC, Intra-Pradiktion, maschinelles Ler-
nen, Gauf3-Prozesse
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