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IX

Kurzfassung

In elektrischen Maschinen werden aufgrund der über dem Umfang periodisch wiederkeh-
renden Geometrien in der Regel wenige signifikante Einzeltöne erregt. Da derartige Ge-
räuschspektren für den Menschen lästig erscheinen, werden zum Beispiel bei Ventilatoren
die Schaufeln ungleichmäßig über dem Umfang angeordnet. Damit wird ein angenehme-
res breiteres Geräuschspektrum mit reduzierter Lautstärke der dominierenden Einzeltöne
erreicht.

Die vorliegende Arbeit beschäftigt sich damit, das Verfahren einer unregelmäßigen Anord-
nung der Ventilatorschaufeln auf zum Beispiel die Nutpositionen und -formen von Käfig-
läufern in Induktionsmaschinen zu übertragen. Hierzu wird zunächst ein Formelwerk zur
Berechnung der geräuschanregenden magnetischen Kräfte und Drehmomente aufgebaut,
welches insbesondere für unregelmäßig angeordnete oder geformte Nuten gilt.

Durch analytische Überlegungen sowie numerische Optimierungen, welche wiederum auf
der analytischen Formulierung der wesentlich zum Geräusch einer Maschine beitragenden
Effekte basieren, lassen sich optimierte unregelmäßige Geometrien finden. Anhand bei-
spielhaft ausgewählter optimierter Geometrien werden insbesondere einige Möglichkeiten
zur Beeinflussung des Geräuschs von Induktionsmaschinen mit Käfigläufern untersucht.
Die Beispiele sind dabei real vermessen beziehungsweise analytisch oder numerisch be-
rechnet. Dabei zeigt die Gegenüberstellung der errechneten Werte mit den Messungen die
Eignung der Berechnungsmethoden.

Zusätzlich zur Variation der Nutpositionen und -formen im Läufer wird eine auf den
Zahnhöhen des Ständers basierende Methode zur Variation der Luftspaltweite über dem
Umfang der Maschine hergeleitet und ebenfalls anhand einiger ausgewählter Beispiele
untersucht.

Im Ergebnis zeigt sich, dass mit Hilfe der Variation der Läufernutpositionen und -formen
für einige Maschinen ein deutlich angenehmeres Geräusch erzielbar ist. Für die meisten
Geometrien ist hingegen kein merklich angenehmeres Geräusch erreichbar. Keine Verbesse-
rung bezüglich des Geräuschs lässt sich durch die Variation der Luftspaltweite beobachten.
Diese Variation ist dennoch sinnvoll, um bei Maschinen mit niedriger läuferseitiger Feld-
erregung, also insbesondere bei Synchronreluktanzmaschinen, viele Induktionsoberwellen
abzuschwächen.

Schlagworte

Geräusch, Induktionsmaschine, Luftspaltweite, Modulation, ungleichmäßiger Nutabstand,
Nutposition
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Abstract

Due to periodically repeating geometric elements in electric machines, usually only a
few significant single tones will be emitted. As such noise spectra feel uncomfortable for
human beings, for example fans are built with uneven blade spacings. This results in a
more comfortable wider noise spectra with quieter dominant single tones.

This thesis deals with the idea to transfer the method of uneven blade spacings for example
to the slot positions or geometries of cage rotors in induction machines. Therefore, a set
of formulas to calculate the noise-exciting magnetic forces and torques of machines with
uneven slot spacings and slot geometries will be developed.

By analytic considerations as well as numeric optimizations, which are based on the
mathematical description of the main noise-causing effects in electric machines, optimized
uneven geometries can be found. Based on selected examples with optimized geometries,
several methods to influence the sound of cage induction machines will be investigated.
Thereby, the examples will be measured respectively calculated analytically or numerically.
The comparison of measurements and calculations shows applicability of the calculation
methods.

In addition to the variation of the slot positions and geometries, a method to vary the
air gap width by use of different stator tooth heights will be developed. It will also be
analyzed with the help of selected examples.

The results show, that for some machines a much more comfortable sound can be achieved
by varying the slot positions and geometries. But, for most geometries no appreciable more
comfortable sound can be reached. No improvement of the sound can be observed when
using the variation of the air gap width. Nevertheless, this method can be used to reduce
harmonics of the magnetic flux density of machines with low field excitation of the rotor,
that means especially synchronous reluctance machines.
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