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General Letter Symbols

Symbol Explanation
e error

=
<

extrapolation measure
transfer function

loss function, quality criterion
discrete time

factor

number of local models
number of data points

number of model inputs

Ss I gAEFTSQ

number of model outputs
time delay operator: x (k — 1) = ¢~ 'x (k)
coefficient of determination

=l xQI
e}

Laplace operator

Torzt time constant

dead time

process input, input variable
X-Tegressors

process output, output variable
weight

Z-Tegressors

feasible set of regressors
linearised form, deviation, measurement uncertainty
validity function

S >N g ® TN

parameter vector
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General Physical Quantities

Symbol
a

A

b

Cn

Cp

(&%
c
Cm

E NS gdCETNT RO 9T ERERI S TIENTARD

%= g 8
c B

Explanation

specific work

surface area

width

orifice discharge coefficient

heat capacity at constant pressure

heat capacity at constant volume
absolute velocity

meridional part of the absolute velocity
circumferential component of the absolute velocity
diameter

specific enthalpy

moment of inertia

heat transmission coefficient

length

mass flow rate

mass

molar mass

torque

pressure

power

specific heat transfer

heat flow

resistance

specific gas constant

time

temperature

circumferential velocity

internal energy

voltage

velocity

volume

volume flow rate

relative velocity

meridional part of the relative velocity
circumferential part of the relative velocity
air content (ratio of fresh air mass to total gas mass)
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J/(kg K)
m/s

m/s

m/s

m

J/kg

kg m?
W/(m?K)
m

kg/s or kg/h
kg
g/mol
Nm

Pa

w

Jkg

W

Q

J/(kg K)
s
Kor°C
m/s

m/s
m/s
m/s
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Symbol Explanation Unit

o heat transfer coefficient W/(m?K)
o absolute flow angle, guiding vane angle deg

B relative flow angle, rotor blade angle deg

sp differential pressure Pa or bar
K isentropic expansion factor 1

" slip factor 1

I1 pressure ratio 1

o density kg/m3

0] angular velocity rad/s

Letter Symbols for Combustion Engines

Symbol Explanation

Cinss micro soot sensor measurement

Chox NO, sensor measurement

Copa opacity measurement

kae load factor air filter

Kapt load factor DPF

L stoichiometric air requirement

Mair air mass per working cycle

Minss distance related particulate emissions (micro soot sensor)
Myox distance related nitrogen oxide emissions
Mpm distance related particulate emissions
Mg air mass flow rate

i, compressor gas mass flow rate

Hleng,in gas mass flow rate entering the cylinder
THeng,out gas mass flow rate exiting the cylinder
g estimated injected fuel mass flow rate
Tihp—cgr HP-EGR gas mass flow rate

My cor LP-EGR gas mass flow rate

Mmss particulate mass flow rate (micro soot sensor)
Mox NO, mass flow rate

iy turbine gas mass flow rate

Hig, throttle valve gas mass flow rate

M. turbocharger compressor torque

M turbocharger friction torque

Mg engine torque

M, turbocharger turbine torque

Meng engine rotational speed

Ny turbocharger rotational speed

op operation point
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1

1

mg/cyc
mg/km
mg/km
mg/km

kg/s or kg/h
kg/s or kg/h
kg/s or kg/h
kg/s or kg/h
kg/s or kg/h
kg/s or kg/h
kg/s or kg/h
mg/s

mg/s

kg/s or kg/h
kg/s or kg/h

Inhalt,

tr

tersagt, m mit, flir oder In KI-


https://doi.org/10.51202/9783186803122

X1

Symbol
P1

V25

Pai
Paic

D3

P4

Ps

Pa
Php—egr
Pip—egr
Prail

P,

Pe

P,

Qi |
Tegr
Fp—egr
Seth
Shp—egr
Sith
Slp—egr
Slp—egr/eth
Slp—egr/ith
Ssa

St

Sth

Si

T

T2c
T2ic

Ty

1;

T;

75

T,

Tcl
Thzo
Thpfegr
Tipfegr
Uice

Uij

Explanation

pressure before the compressor

pressure after the compressor

pressure in the intake manifold

pressure after the intercooler

pressure in the exhaust manifold

pressure before the particulate filter
pressure after the particulate filter
ambient pressure

pressure in the HP-EGR pipe

pressure in the LP-EGR pipe

pressure in the common rail injection system
turbocharger compressor power
turbocharger friction power

turbocharger turbine power

heat transmission to state i

EGR-rate

LP-EGR-rate

exhaust throttle valve position (normalised)
HP-EGR-valve position (normalised)
intake throttle valve position (normalised)
LP-EGR-valve position (normalised)

LP-EGR-valve combined with exhaust throttle valve position
LP-EGR-valve combined with exhaust intake valve position

swirl actuator position (normalised)
VGT-actuator position (normalised)
throttle valve position (normalised)
Actuator position i (measured)
temperature before the compressor
temperature after the compressor
temperature after the intercooler
temperature in the intake manifold
temperature in the exhaust manifold
temperature before the particulate filter
temperature after the particulate filter
ambient temperature

temperature cooling fluid
temperature engine coolant
temperature in the HP-EGR pipe
temperature in the LP-EGR pipe
control signal intercooler ventilator
desired injection quantity

216.73.216.96, am 13.01.2026, 21:09:54.

Inhalt,

Unit

Pa or bar
Pa or bar
Pa or bar
Pa or bar
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K or°C
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X1l

Symbol
Va
chg

X

X1

X2c
X2ic
X2i
-Xeng,in
xeng,out
X3

X4

Explanation
displacement volume
engine work

air content (ratio of fresh air mass to total gas mass)

air content before the compressor

air content after the compressor

air content after the intercooler

air content in the intake manifold

air content entering the cylinder

air content exiting the cylinder

air content in the exhaust manifold

air content before the particulate filter

air content after the particulate filter

air content in the HP-EGR pipe

air content in the LP-EGR pipe

number of cylinders per combustion cycle
air-fuel ratio

volumetric efficiency

start of main injection

crank angle of 50 % mass fraction burned
desired proportion of HP-EGR

pipe volume fraction

fraction of HP-EGR to total EGR
angular velocity turbocharger
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Xl

Subscripts

Index Explanation

1 state variables before compressor
2¢c state variables after compressor
2ic state variables after intercooler
2i state variables intake manifold
3 state variables exhaust manifold
4 state variables after turbine

5 exhaust pipe quantities

a actuator

acc acceleration

adi adiabatic

af air filter quantities

c compressor quantities

cj cold junction

ctl closed-loop control

cyl cylinder
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XIv

Index
des

dia

dpf
dyn
eng,in
eng,out
eth

f

fil

ffc

gas
h2o0
hp-egr
icc

in

ise

lim
Ip-egr
mair-ctl
measured
mi
mi,lp

mi,hp
min

nox
opa
opt

out

p

r

ref
regr-ctl
rsf

s

sim
stat

tc
th

Explanation

desired quantity

diabatic

Diesel particulate filter quantities
dynamical

entering cylinder

exiting cylinder

exhaust throttle valve quantities
friction

filtered

feedforward control

gas

engine coolant liquid

HP-EGR quantities

intercooler cooler

input, inflow

isentropic

limited

LP-EGR quantities

air mass flow rate control
measured

main injection / mean indicated pressure
mean indicated pressure intake and exhaust stroke
low pressure loop in p-V diagram
mean indicated pressure compression and power stroke
high pressure loop in p-V diagram
minimum

micro soot sensor quantities

NOy quantities

opacimeter quantities

optimised quantity

output, outflow

power, pipe

receiver

reference

EGR-rate control

reference shaping filtered

shunt

simulated

stationary

turbine quantities

turbocharger quantities

throttle valve quantities

216.73.216.96, am 13.01.2026, 21:09:54. Inhalt,

tersagt, m mit, fr oder in Ki-Syster


https://doi.org/10.51202/9783186803122

Xv

General Abbreviations

Abbreviations
°CA
CAN
CASEM
CLK

CO

cyc
DOC
DPF
ECU
EGR
EMF

HC
HCCI
HP-EGR
IMC
LOLIMOT
LOPOMOT
LP-EGR
LSB
MFB50
MVEM
NEDC
NO,

PM

PN
PRBS
RDE
RMSE
RSF
VGT
VVT
WLTP

Explanation

Unit of the Rotational Angle of the Crank Shaft
Controller Area Network

Crank Angle Synchronous Engine Models
Clock Generator Oscillator

Carbon Monoxide

Combustion Cycle

Diesel Oxidation Catalyst

Diesel Particulate Filter

Electronic Control Unit

Exhaust Gas Recirculation

Electro Magnetic Fields

Hydrocarbons

Homogeneous Charge Compression Ignition
High-Pressure Exhaust Gas Recirculation
Internal Model Control

Local Linear Model Tree

Local Polynomial Model Tree
Low-Pressure Exhaust Gas Recirculation
Least Significant Bit

50 % Mass Fraction Burned

Mean Value Engine Model

New European Driving Cycle

Nitrogen Oxides

Particulate Matter

Particulate Number

Pseudo Random Binary Signals

Real Driving Emissions
Root-Mean-Square Error

Reference Shaping Filter

Variable Geometry Turbine

Variable Valve Timing

Worldwide Harmonized Light-Duty Vehicles Test Procedure
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Mathematical Abbreviations

Abbreviations Explanation
JEO) function of -
froLmor (1) LOLIMOT model with the model inputs -
° modelled quantity -
: mean value of quantity -
scalar
X vector
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Abstract

Modern Diesel engines fulfil challenging requirements for emission limits, fuel consumption and
ride comfort by numerous modular combinable components and mechatronical actuators. These
components are utilised for precondition and aftertreatment of air, fuel and exhaust gas, which is
involved in the combustion process. In this dissertation a methodology for a model-based function
development with semi-physical engine models for control of air path quantities of an exemplary
Diesel engine with high-pressure (HP-EGR) and low-pressure exhaust gas recirculation (LP-EGR)
is developed. In this framework for function development black-box models for stationary and
dynamical emission formation are utilised to optimise reference values for the air path control and
to rate the developed control scheme with regard to the cumulated driving cycle emissions of the
new European driving cycle (NEDC).

A combination of HP-EGR and LP-EGR represents a novel approach to significantly lower the
particulate and NO, emissions of Diesel engines. A semi-physical mean value engine model with
lumped parameters is the base to analyse the system properties of the complex air path. In doing
so, the additional LP-EGR shows only minor influences to the quantities charge air pressure and
HP-EGR, while there are significant influences of these quantities on the LP-EGR mass flow rate.
Furthermore, the LP-EGR is characterised by significant gas propagation times in the intake and
exhaust system. These delays are modelled by a gas composition model, which is incorporated
into the control scheme.

NOjy and particulate emissions as well as engine torque are stationary modelled by local polyno-
mial models with input quantities of the combustion process. These quantities are air mass flow
rate, charge air pressure, intake temperature and crank angle of 50 % mass fraction burned. A
bilinear interpolation between engine speed and injection quantity transforms local polynomial
models into global models. Models for the dynamical emission formation are given by consider-
ing the combustion as a batch process. Consequently all dynamics are included in the quantities
of the cylinder charge at intake valve closing and the emission measurement dynamics. Thus, a
combination of a dynamical gas composition model, stationary emission models and models for
the emission measurement dynamics yield the dynamical course of the engine emissions.

The investigated system properties and the emission models deliver the control variables charge
air pressure, air content and intake temperature for the engine with VGT-turbocharger, HP- and
LP-EGR. A stationary optimisation with regard to emissions and engine torque delivers reference
values for the air path control and further shows the potential of the LP-EGR to lower the emis-
sions. Due to the multi-variable characteristics of the air path with different dynamics, there are
increased dynamical emissions at engine transients. These dynamical emissions are lowered by
dynamical optimised reference values for the air path control.
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XV

Generally, the air path is a strongly nonlinear process and the multitude of engine variants and
engine operation modes result in a trade-off between achievable control quality, control robust-
ness and number of control parameter sets. A semi-physical feedforward control, which is based
upon parameterised model relationships of the mean value engine model delivers a good response
to setpoint changes. Thus, the disturbance rejection can be achieved by relatively simple con-
trollers. This results in an significantly lower application effort of control parameters and allows
by its modular structure to exchange engine components without the drawback to completely re-
parameterise the control parameters. A reference value transformation with modelled states of the
gas composition model compensates long gas propagation times in the intake and exhaust system
and delivers an optimal air content in the cylinder charge. All control concepts are validated with
measurements at the engine test bench. Finally, the derived control concepts for the LP-EGR are
compared to the classical HP-EGR control with regard to the cumulated driving cycle emissions.
In this investigation the proportion of stationary and dynamical emissions is clearly quantified.

In a nutshell this dissertation is an important contribution for model-based optimisation and func-
tion development for the air path control of Diesel engines. The given combination of models for
dynamical emission formation, dynamically optimised reference values for the air path control
and semi-physical control design are a holistic framework to master the complexity and variance
of future Diesel and gasoline engines.
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XIX

Kurzfassung

Moderne Dieselmotoren erfiillen die hohen Anforderungen beziiglich Emissionen, Verbrauch
und Fahrkomfort durch eine Vielzahl von modular kombinierbaren Bauteilen und mechatron-
ischen Aktoren zur Vor- und Nachbehandlung der am Verbrennungsprozess beteiligten Stoffe
Frischluft, Kraftstoff und Abgas. In dieser Dissertation wird am Beispielprozess eines aufge-
ladenen Dieselmotors mit Hoch- (HD-AGR) und Niederdruck-Abgasriickfiihrung (ND-AGR) eine
Methodik zur modularen modellbasierten Funktionsentwicklung fiir die Luftpfadregelung mit
semi-physikalischen Modellen entwickelt. Black-Box-Modelle fiir die stationdren und dynamis-
chen Emissionen werden zur Optimierung der Sollwerte fiir die Luftpfadregelung und zur Bewer-
tung des entwickelten Regelungskonzepts anhand der kumulierten Emssionen des neuen Europis-
chen Fahrzyklus (NEFZ) verwendet.

Eine Kombination von Hoch- und Niederdruck-Abgasriickfithrung ist ein neuer Ansatz, die Ru3-
und Stickoxidemissionen von Dieselmotoren erheblich zu verringern. Ausgehend von einer semi-
physikalischen Modellierung des Luft- und Abgaspfades mit konzentrierten Parametern werden
die Systemeigenschaften des komplexen Luftpfades untersucht. Dabei zeigt das ND-AGR-System
geringen Einfluss auf Ladedruck und HD-AGR, wihrend selbige den ND-AGR-Massenstrom
stark beeinflussen. Weiterhin kann die ND-AGR durch lange Gaslaufzeiten im Einlass- und Ab-
gassystem charakterisiert werden. Diese Laufzeiten werden durch ein Gaszusammensetzungs-
modell abgebildet und spater in den Regelungsentwurf integriert.

Die Emissionen NO, , Rufl und das Motordrehmoment werden stationédr mit lokalen Polynomen
mit den Eingangsgrofien Luftmasse, Ladedruck, Ladungstemperatur und Schwerpunktlage der
Verbrennung modelliert. Eine bilineare Interpolation der lokalen Polynome iiber Motordrehzahl
und Einspritzmenge liefert stationire globale Emissionsmodelle. Betrachtet man die Verbrennung
als Chargenprozess, so ergibt sich der dynamisch messbare Verlauf der Emissionen durch die
dynamische Beschreibung der Zylinderfiillung beim SchlieBen der Einlassventile und der Mess-
dynamik der Emissionsmessung. Durch die Kombination des Gaszusammensetzungsmodells, der
stationdren Emissionsmodelle und Modellen fiir die Messdynamik wird der dynamische Emis-
sionsverlauf simuliert.

Aus den Systemeigenschaften und den Emissionsmodellen werden Ladedruck, Gaszusammenset-
zung und Einlasstemperatur als Regelgrofien fiir den Luftpfad mit Turbolader, HD- und ND-AGR
ausgewdhlt. Eine stationdre Optimierung beziiglich der Emissionen und des Motordrehmoments
liefert die Sollwerte fiir die Regelung und zeigt im Vergleich mit der HD-AGR Serienkonfigur-
ation das Potential der ND-AGR zur Verringerung der Emissionen. Durch die unterschiedlichen
Dynamiken der Regelgroflen im Luftpfad kommt es bei Arbeitspunktwechseln zu erhdhten Emis-
sionen. Dieses Verhalten wird durch eine dynamische Optimierung der Sollwerte der Luftpfadre-
gelung kompensiert.
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Der Luftpfad ist ein stark nichtlinearer Prozess und die Vielzahl von Motorvarianten und Mo-
torbetriebsmodi fithrt zu einem Zielkonflikt zwischen erreichbarer Regelgiite, Robustheit der Re-
gelung und der dazu notwendigen Anzahl von Reglerparametersitzen. Der Einsatz einer semi-
physikalischen Vorsteuerung basierend auf den parametrierten Modellgleichungen des Luftpfad-
modells liefert ein sehr gutes Fiihrungsverhalten, wahrend das Storverhalten durch einfache Regler
kompensiert werden kann. Dies verringert den Applikationsaufwand und erlaubt durch den modu-
laren Aufbau den Austausch einzelner Motorbauteile, ohne den Nachteil einer Neuparametrierung
aller Reglerkennfelder. Eine Sollwerttransformation mit modellierten Zustéinden des Gaszusam-
mensetzungsmodells kompensiert die langen Gaslaufzeiten im Einlass- und Auslasssystem des
Motors und sorgt fiir eine optimale Gaszusammensetzung der Zylinderfiillung. Alle Regelung-
skonzepte werden mit Messdaten vom Motorpriifstand validiert. Abschliefend werden die en-
twickelten Regelungskonzepte fiir die ND-AGR mit der klassischen Regelung einer HD-AGR
anhand der kumulierten Zyklusemissionen wihrend des NEFZ verglichen. In dieser Betrachtung
wird fiir alle Regelungskonzepte der Anteil von dynamischen Emissionen und stationdren Emis-
sionen quantifiziert.

Zusammenfassend leistet diese Dissertation einen wichtigen Beitrag zur modellbasierten Op-
timierung und Funktionsentwicklung der Luftpfadregelung von Dieselmotoren. Die Kombina-
tion von dynamischen Emissionsmodellen, einer dynamischen Optimierung der Sollwerte fiir die
Luftpfadregelung und der semi-physikalische Regelungsentwurf stellen ein ganzheitliches Vorge-
hen zur Beherrschung der Komplexitit und Varianz von zukiinftigen Diesel- und Ottomotoren
dar.
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1 Introduction

The goal of this thesis is a method for an integrated model-based framework to calibrate refer-
ence values and to develop series control functions for a turbocharged Diesel engine with high and
low-pressure exhaust gas recirculation. This chapter will give an introduction and will highlight the
unsolved problems in this field of research. Thereafter the thesis’ content will be outlined.

Diesel engines are the motor of our modern living. Their great energy efficiency, frugality on fuel
quality and reliability makes them the motor of choice in land and sea transportation and enables
the modern globalisation with daily exotic fruits, consumer electronics and cheap clothing from
overseas. During its more than 120 years of development, it changed from a thundering, vibrating
and polluting infernal working machine to a cultivated drive for a pleasant holiday trip. This
metamorphoses was driven by requirements for more comfort, lower system cost, more reliability,
less fuel consumption and legislative emission limitations.

A major driver of Diesel engine development are the steadily tightening legislative emission limit-
ations for each country. Typical restrictions for on-road applications limit the emissions compon-
ents carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOy ), particulate matter (PM)
and particulate number (PN) during a reference driving cycle, while prospective limitations are go-
ing to limit fuel consumption and the related carbon dioxide emissions (Regulation 443/2009/EC
of the European parliament). In Europe emission standards for passenger cars are benchmarked
over the New European Driving Cycle (NEDC), as depicted in Fig. 1.1a). The tolerated driving
cycle emissions are reduced constantly since 1992 from the EURO I emission standard to the
EURO 6 emission standard in 2014. Thus, Fig. 1.1b) shows the steadily decreasing emission lim-
its in mg/km for the Diesel engine’s major emission quantities particulate matter 772, and nitrogen
oxide emissions M,y

These limits are given in mg/km and consequently light engines with less fuel consumption can
achieve the emission limitations easier than more powerful engines. Accordingly, there is a large
variety in emission lowering measures, which are tailored to each engine with regard to deman-
ded emission targets, system cost, impact on engine efficiency and maintenance cost. Generally,
the engine tailpipe emissions can be reduced by engine internal provisions and exhaust gas after-
treatment. Milestones in exhaust gas aftertreatment are the series application of oxidation catalyst,
Diesel particulate filters (DPF), NO storage catalytic converter and selective catalytic reduction
with urea injection.

A main purpose of engine internal provisions is to positively influence the fuel-mixture generation
to avoid local rich fuel mixtures with lack of oxygen, which lead to an incomplete combustion with
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Figure 1.1: a) Velocity profile of the new European driving cycle NEDC b) European legis-
lative limitations for particulate and NOy emissions during the NEDC (Regulations 98/69/EC;
715/2007/EC of the European parliament)

large particulate emissions. Another often contrary target is to avoid high oxygen concentrations
in combination with high peak temperatures leading to enlarged NO, emissions. These engine
internal provisions can be separated into in-cylinder and intake and exhaust system measures.
In-cylinder measures cover the complex combustion chamber geometry, variable valve timings,
high-pressure fuel injection, injection patterns with up to eight injections for each engine working
cycle (Bischoff et al., 2012), closed-loop controlled combustion process and modern combustion
processes like homogeneous charge compression ignition (HCCI). The intake and exhaust system
has the tasks to supply the combustion process with a desired cylinder charge and to condition
the operation and regeneration of aftertreatment systems. In which turbocharging, charge cooling,
charge motion and exhaust gas recirculation (EGR) are the major measures to increase the engine
efficiency and to decrease the in-cylinder emissions.

Turbochargers have become state of the art in Diesel engines and are applied more and more in
spark ignition engines. Their working principle recuperates enthalpy from the exhaust gas to drive
a compressor, which allows higher charge-air pressures and consequently larger cylinder fillings.
On the one hand this decreases the charge cycle losses, on the other hand more fuel can be injected
at a given displacement volume. This downsizing results in smaller cylinders with less wall heat
losses, less friction, lighter engines, a higher efficiency in partial load and consequently less fuel
consumption. All measures of charge cooling increase the gas density of the cylinder charge and
are beneficial for the fuel consumption and usually result in lower NO, emissions. However, too
low gas temperatures can lead to condensation and slow down the combustion, so that the fuel does
not react completely and enlarged CO and HC emissions occur. Consequently, special measures
like switchable EGR coolers are necessary to avoid too low charge temperatures at engine warm-
up or states with low load, see Dworschak et al. (2009); Uesugi et al. (2009) and Werner et al.
(2011).

An exhaust gas recirculation is one of the most effective method to reduce the NO, emissions.
For this purpose a part of the cylinder charge is replaced by recirculated exhaust gas. This ex-
haust gas can be kept as internal EGR in the combustion chamber via valve timings or can be
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fed back as external EGR from the exhaust system to the intake system. Generally, recirculated
inert exhaust gas has a lower oxygen concentration and an enlarged heat capacity. This results in
a slower rate of combustion and in combination with a larger heat capacity in reduced combustion
peak temperatures with less NO, formation. In contrast, the resulting lower oxygen concentration
results in enlarged particulate emissions and a NOy particulate tradeoff occurs. Besides the rate
of recirculated exhaust gas, also charge-air pressure, intake temperature, injection and combus-
tion characteristics determine this tradeoff. Consequently, this tradeoff has to be stationary and
dynamically optimised by the engine calibration and the control strategy for the air path actuators
and the injection quantities.

The external EGR can be achieved in form of a classical high-pressure exhaust gas recirculation
(HP-EGR), in which the usually cooled exhaust gas is recirculated via a valve on high-pressure
level from exhaust manifold to intake manifold. As a drawback this approach extracts the gas
before it can drive the turbine and the turbocharger usually decelerates. At large charge-air pres-
sures and high HP-EGR rates the compressor operation moves towards its surge line and can be
operated in unstable regions of the turbocharger map (Weber et al., 2005). Consequently, in this
configuration high HP-EGR rates in conjunction with large charge-air pressures are not possible.
Furthermore, the pressure difference between intake and exhaust manifold limits feasible HP-EGR
rates. Finally, the HP-EGR has the drawback of a short mixing section, which can lead to cylinder
individual air contents between HP-EGR and fresh air.

A novel approach termed low-pressure exhaust gas recirculation (LP-EGR) recirculates the ex-
haust gas on low pressure side from turbine outlet to compressor inlet after it has recuperated its
energy. The LP-EGR is dosed via a valve and an additional throttle valve in either the intake or the
exhaust system can increase the pressure drop over the LP-EGR route to achieve higher LP-EGR
rates. In contrast to a HP-EGR, the LP-EGR results in lower charge temperatures, since it is triple
cooled by the turbine expansion process, a LP-EGR cooler and the charge air cooler. Due to the
longer route, changes in the LP-EGR mass flow rate reach the cylinders delayed, but show com-
pared to a HP-EGR a better mixing of exhaust gas with fresh air. This homogeneous gas mixing
can be advantageous for combustion modes with large proportions of recirculated gas like HCCI.
Since the LP-EGR is operated on the low pressure side of turbine and compressor, it has less
couplings to the turbocharger and allows simultaneously high LP-EGR rates at large charge-air
pressures. At a given air mass flow rate and pressure ratio the compressor is operated at a higher
isentropic efficiency with LP-EGR (Weber et al., 2005), but also has to compress both the fresh
air and the recirculated exhaust gas. In a LP-EGR configuration a Diesel particulate filter becomes
obligatory to protect the fast running compressor from impact of particulates. Further precautions
like a homogeneous mixture between exhaust gas and fresh air and a protective coating for ag-
gressive condensation and particulate impact are necessary to guard the compressor wheel from
wearing, see Miinz et al. (2008); Brune (2009). While the HP-EGR bypasses the particulate filter
and only the tailpipe emissions load the filter, the LP-EGR delivers an additional filter load, which
can lead to shorter filter regeneration intervals (Maiboom et al., 2009).

Investigations showed, that especially the NO, emissions can be significantly lowered by a LP-
EGR (Beatrice et al., 2009; Schoppe et al., 2009). However, a solely LP-EGR configuration leads
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to too low intake temperatures at engine warm-up and cold ambient conditions. Therefore, a com-
bination between a HP-EGR and LP-EGR seems to be a promising solution to reach future emis-
sions limits in conjunction with other engine improvements and a moderate exhaust gas after-
treatment, especially for small to medium power engines, see Rinolfi (2008), Ertl et al. (2009);
Genieser et al. (2010) and Nam et al. (2011). Also series engines with dual EGR paths fulfilling
the most stringent emission limits Tier 2 Bin5 respectively EUROG are available, see Hadler et al.
(2008); Liickert et al. (2013).

Future engine trends result in more and more complex engine systems and it is foreseeable
that two-stage turbochargers will become state of the art in series engines (Bischoff et al., 2012;
Wartha et al., 2012). Other developments are going even further and apply three-stage turbochar-
gers with up to 4 bar charge-air pressure in series (Eidenbock et al., 2012). If further less fuel
consumption is demanded, it is likely that engine cylinder deactivation for spark ignition en-
gines (Middendorf et al., 2012; Flierl and Lauer, 2013; Kortwittenborg and Walter, 2013) will be
adapted to the Diesel engine. This rising complexity forces the manufacturer to utilise more
common parts to tailor the single engines with different powers from predefined construction
kits (Dworschak et al., 2009; Crabb et al., 2013; Neusser et al., 2013). A further trend in engine
development shows, that market individual emission standards and engine adaptations lead to hun-
dreds of application variants for one and the same engine (Zimmermann et al., 2015). Besides the
mechanical reuse of common parts this will likely demand the reuse and interchange of mod-
els, model parameters, base calibrations, control and diagnosis algorithms between the different
engine variants and engines.

1.1 Thesis Objective

Considering the past and future development of Diesel engines there are several tasks, which are
solved in this thesis. The additional LP-EGR system increases the complexity of the intake and ex-
haust system and demands an investigation of the novel system properties like side-effects to other
air path quantities. Another problem is to identify suitable controlled variables for a dual EGR air
path configuration with turbocharger. After the controlled variables are identified and reference
values are derived, a control scheme is necessary to develop the controllers. Then the derived con-
trol concept needs to be benchmarked with regard to the resulting driving cycle emissions, since
the main driver for the LP-EGR system are the legislative emission limits.

Due to the system complexity these tasks can be hardly mastered manually and need support
by model-based methods, which demand a modelling of the engine air path and the emission
formation. In consideration of the utilisation of more and more common parts over different engine
types and engine variants, the models and parameters for the engine air path should be modular and
exchangeable. Models for the stationary and dynamical emissions as well as reference values for
the controllers are necessary to determine the controlled variables and to rate the control concepts.

The steadily decreasing emission limits require an engine control with high demands on refer-
ence following and disturbance rejection. The trend to a further engine downsizing can benefit
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from a fast charge-air pressure buildup in order to have a dynamical torque response. Especially
the air path quantities are coupled and strongly nonlinear, which requires a sophisticated multi-
variable control to control the single quantities to their setpoint. As a further side condition the
controllers have to be capable to meet these requirements under changing engine conditions like
varying ambient conditions, different particulate filter loads, several engine operation modes for
exhaust gas aftertreatment system maintenance and future requirements like a cylinder deactiva-
tion. These demands preferably have to be met with a minimum of controller calibration effort
and the controllers are ideally directly calibrated by flexible models in order to be able to handle
the strongly rising variance of a single engine for individual market adaptations. Since there are
deviations between stationary calibrated emissions and dynamical driving cycle emissions, there
is a last need for a dynamically optimised control with regard to the emissions.

1.2 Thesis Outline and new Contributions

Diesel engines have been and are still a nutritious field of research. Their tremendously risen and
rising complexity demands a deep system understanding for an efficient development and test of
control and diagnosis algorithms. The model-based design methodology is an efficient approach
to master this complexity and maybe its largest benefits are the capabilities to give a deep un-
derstanding of the investigated processes. However, to get even a small glimpse into the Diesel
engine process a solid base of knowledge is necessary. Considering the complete process is un-
derstood, many of the arising problems often can be solved with simple solutions. Therefore, a
complete methodology ranging from modelling, model analysis, model optimisation is necessary
for control function development. Consequently, this publication has to be separated into a brief
dissertation and an extensive version given in Mrosek (2017) to illuminate the engine interac-
tions and the process of function development for modern engines as a holistic approach. Main
contributions of this dissertation can be summarised to:

e Analysis of system properties for the turbocharged HP- and LP-EGR air path.

e Gas composition modelling with lumped parameter and pipe receiver approach. Validation
and comparison of different models with test bench measurements.

e System property and emission model based determination of controlled variables for the
HP- and LP-EGR air path.

Stationary and dynamical combustion and emission models are utilised to optimise stationary and
dynamical reference values for the air path control. Novelties in the application of stationary and
dynamical combustion and emission models are:

e Detailed investigation and separation of emission formation and emission measurement dy-
namics.
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e Combination of experimental stationary emission and combustion models with dynamical
models for the engine air path and measurement dynamics to simulate the engine behaviour.

o Investigation of the source of dynamical emission formation and comparison of different
control concepts with regard to dynamical emissions.

e On-line capable optimisation of reference values for the air path control with respect to
dynamical emission formation.

All knowledge is finally composed in the control concept wit the new findings:

e Modular semi-physical feedforward control for a charge-air pressure and HP-EGR mass
flow rate control with consideration of ambient conditions and different engine operation
modes. This masters the risen complexity of future engine control systems and allows an ef-
ficient management of engine variants. Extension to a semi-physical internal model control.

e Calibration friendly semi-physical LP-EGR mass flow rate control, which is invariant to the
engine operation point.

e Dynamical reference value generation for the HP- and LP-EGR mass flow rate control,
which masters the gas propagation effects introduced by the LP-EGR and is invariant to
modelling and measurement uncertainties.

e Evaluation, quantification and comparison of different control concepts with respect to dy-
namical driving cycle emissions and quasi-stationary emissions.

All work is carried out with the exemplary process of the turbocharged Diesel engine with HP-
and LP-EGR, but the shown methods are not limited to this process and can be easily applied
and extended to most air path configurations. The developed methods are valid for many kinds
of Diesel engine applications and not limited to automotive and truck applications. A further
application of the presented methods for the development of control functions for turbocharged
spark ignition engines is also possible.
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Outline

Objective of this work is to deliver an integrated approach for function development of engine
control functionalities. This approach is carried out with an exemplary engine configuration con-
sisting of a turbocharged Diesel engine with HP- and LP-EGR.

In Chap. 2 an introduction about the engine configuration is given. Chap. 3 covers the physical
relationships to model the ducts, valves, coolers, flow restrictions and the turbocharger in the
intake and exhaust system, as well as a mean value model for the in-cylinder processes.

Chap. 4 deals with the analysis of stationary and dynamical influences of turbocharger, HP-EGR
and LP-EGR-actuators to the intake and exhaust system quantities and the properties of different
LP-EGR configurations are shown. Major differences between a HP-EGR and a LP-EGR config-
uration are the gas propagation effects in the intake and exhaust system, which are represented by
a control-oriented model.

Chap. 5 focuses on stationary and dynamical emission formation and illustrates different sources
of process and measurement dynamics. The apparent process and measurement dynamics demand
a stationary measurement design to model the stationary emissions by polynomial models with the
cylinder charge composition as model input. A combination of these stationary emission models
with dynamical models for the cylinder charge and measurement dynamics allows to simulate the
dynamical emission formation and to derive advanced control functionalities.

The stationary series HP-EGR engine calibration is compared to a given LP-EGR engine calibra-
tion in Chap. 6. Further, the dynamical emissions for different control concepts are shown and a
method for the on-line optimisation of reference values for the air path control with regard to the
dynamical emission formation is given.

Chap. 7 composes the gained system knowledge to derive a semi-physical feedforward control
for charge-air pressure and HP-EGR mass flow rate and compares different control concepts for
these quantities. A non-linear controller based on a semi-physical relationship allows to control
the LP-EGR mass flow rate at all given engine operation points and different engine operation
modes. These control concepts are a replacement for state of the art controllers with numerous
interacting maps and are based on transparent semi-physical relationships. The modular structure
of the control law, which is based on semi-physical model equations, covers most process non-
liniearities and allows an efficient adaptation of the control to engine variants. Further, a reference
value transformation is derived, which supplies the cylinder with a desired air content consid-
ering the current air contents in the intake and exhaust system, which is characterised by long
gas propagation times of the LP-EGR. Finally, different control concepts are evaluated for the
NEDC with respect to the delivered engine work and the simulated dynamical emission quantities
NOy and particulates. Further, the emissions of the stationary engine calibration are quantitatively
compared to the dynamical emission formation during the driving cycle. Finally, the findings are
summarised in Chap. 8.
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2 Engine Configuration and Modelling

This chapter describes the investigated HP- and LP-EGR engine with all relevant process inputs,
states and outputs. Based upon the system design suitable modelling approaches to simulate the
engine air path and the emissions are chosen.

2.1 Engine Configuration with two EGR-Systems

The engine intake and exhaust system conditions the cylinder filling for the combustion process by
manipulating its pressure, temperature, air content and swirl. After an emission aftertreatment, the
exhaust gas is disposed via the exhaust pipe, see Pischinger et al. (2009); Mollenhauer and Tschoke
(2010); Reif (2012). Fig. 2.1 shows the system configuration of the test engine having a single
stage turbocharger with variable geometry turbine (VGT) and two exhaust gas recirculation sys-
tems. Fresh air enters the intake system and an air filter prevents that dust and particulates foul
the intake system and the combustion chamber and it further decreases the suction noise. Its load
results in an pressure drop and is simulated via the loading factor k,¢. An intake throttle valve is
part of the low pressure exhaust gas recirculation and lowers the intake pressure, to allow more
exhaust gas via the LP-EGR path.

The turbocharger is driven by exhaust gas and compresses the inflowing gas to larger pressures,
which result in higher gas densities. Consequently, at a given displacement volume more gas can
be filled in the cylinder and simultaneously more fuel can be injected and burned. This recupera-
tion of exhaust gas enthalpy has positive influences on the charge cycle and in combination with
an enlarged power per displacement volume the engine efficiency is improved. The compression
process increases the charge temperature, which is afterwards cooled by an intercooler to allow
higher gas densities, an improvement of the thermal engine efficiency and lower emissions. In the
intake manifold the inflowing gas is mixed with cooled recirculated exhaust gas, which is dosed
via a valve. Since the exhaust gas is recirculated on the high pressure level of compressor and tur-
bine, this kind of exhaust gas recirculation is termed high pressure exhaust gas recirculation. An
additional throttle valve in the intake manifold can enlarge the pressure drop over the HP-EGR-
valve and increases the amount of recirculated gas on the high pressure level. Further, it has the
objectives to reduce the air mass flow rate in case of a Diesel particulate filter regeneration and to
prevent engine shaking at switching off.
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2.1 Engine Configuration with two EGR-Systems
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Figure 2.1: System configuration for the investigated turbocharged engine with HP- and LP-
EGR

Before the gas enters the combustion chamber via the intake valves, a swirl actuator gives the
stream a favourable motion to allow a good mixture with the injected fuel. A desired fuel quant-
ity is injected in several pilot injections, a main injection and post injections via a common rail
injection system. After the combustion has taken place in the power stroke, the gas is pushed into
the exhaust manifold during the exhaust stroke. The exhaust gas is guided by the variable turbine
geometry and drives the turbine, which allows to operate the turbocharger in an optimal opera-
tion mode at low and high mass flow rates. At low mass flow rates the guiding vanes of the VGT
are closed, so that the gas is further accelerated and the turbine delivers more power to drive the
compressor. At high mass flow rates the guiding vanes are opened to a larger surface area with
a slower fluid velocity, so that the turbocharger stays within its specified speed limits. After the
expansion process, the exhaust gas passes the Diesel particulate filter and is cleaned. In which the
loading of the particulate filter can be simulated by the factor kg At a rather low pressure level
a part of the exhaust gas is cooled and recirculated via the low pressure exhaust gas recirculation.
The other part of the exhaust gas leaves the engine via the exhaust throttle valve.

For this dissertation the intake and exhaust system of the Opel DTH-Z19 common rail Diesel test
engine was extended by the author with a LP-EGR path. Additional to the series configuration a
Diesel particulate filter, a LP-EGR cooler, a LP-EGR-valve, an intake throttle valve and an exhaust
throttle valve were mounted to the engine. The LP-EGR cooler was kindly provided by Behr and
is connected to the testbed cooling system. With support of DES (Diesel Exhaust Systems GmbH)
a DPF solution with electric regeneration was retrofitted.

Usually the pressure drop over the LP-EGR-valve is not large enough to drive the demanded LP-
EGR mass flow rates. Consequently, the pressure over the LP-EGR-valve can be enlarged with the
help of additional throttle valves, which can be mounted either at the engine intake or the exhaust.
An intake throttle valve can lower the pressure after the air filter by throttling the inflowing air,
while the other option is to throttle the exhaust gas and rise the pressure after the DPF. Generally,
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Figure 2.2: a) Combination of actuators intake throttle valve and LP-EGR-valve to the com-
bined actuator position sj,—g/in b) combination of actuators exhaust throttle valve and LP-
EGR-valve to the combined actuator position s}, —cgr/itn ¢) mapping of the combined actuator
POsition sy, cor/em to the single actuator positions §jp—egr and Seg

a standard throttle valve can be utilised as intake throttle valve, while an exhaust throttle valve is
exposed to harsh conditions with hot exhaust gas and condensates. In this installation a dynamical
fast electric driven throttle valve with a sophisticated position control as given in Kopf (2014)
is utilised for the intake throttle valve, while a dynamical slow thermal robust pneumatic throttle
valve without position control is applied for exhaust throttling. Hence, all control results in Chap. 7
are derived with the intake throttle valve configuration.

All relevant air path actuators are equipped with a position sensor and most are position con-
trolled. Normalised positions are given for the intake throttle valve sy, throttle valve after com-
pressor sy, swirl actuator sg,, HP-EGR-valve sp,_cor, VGT-actuator s;, LP-EGR-valve s;;,_cgr and
exhaust throttle valve s.q,. All i actuator positions s; are normalised between 0 and 1 and meas-
ured positions are denoted by §;. The HP-EGR-valve is shaped according to Appx. C to have a
rather linear relationship between the normalised position and the potential controlled variables
Tipp—cgr aNd 714 Furthermore, the LP-EGR-valve is combined with either the intake throttle valve
or the exhaust throttle valve. This combination results in the combined actuator positions Sy, cgr/ith
in Fig. 2.2a) and sy, g/t in Fig. 2.2b). The combinations of the single actuators are shaped to
achieve a linear actuator characteristics with regard to the quantities 7i1,_csr and rit,;;, see exem-
plary Fig. 2.2¢) and the more detailed description in Appx. C.

Besides the air path actuators, the quantities engine speed 7.,q, desired injection quantity u;, and
start of the main injection ¢,,; are considered as model inputs for the air path model. Other influen-
cing variables for the combustion process are neglected to keep the model complexity reasonable.
Further, influencing quantities and model inputs are the quantities ambient pressure p,, ambient
temperature 7}, engine coolant temperature 7,,, loading of air filter k,¢ and loading of particulate
filter kgps. Overall this results in a model input dimensionality of 14. Further, the model states are
shown in Fig. 2.1. These states are pressures p;, temperatures 7; and air contents (ratio of fresh
air mass to total gas mass) x; in the storage elements i as well as the turbocharger speed 7. This
yields a model of order 28, if all states are modelled.
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Whenever simulated or estimated quantities are mixed with measured quantities, the simulated
quantities are denoted by the hat symbol. This is exemplary the case, if the HP-EGR mass flow rate
is estimated via a model (r;zhp_eg,), while the other quantities are directly measured ( pa;, #tair, - - .)-
When only simulated quantities are considered, the shown quantities are not necessarily marked
by the hat symbol.

In this dissertation there are two modelling tasks to model the emission formation and the engine
air path. The emission formation is a complex process and can only hardly be modelled by physical
and chemical laws. Consequently, a black-box modelling of the emissions is a promising approach.
There are various methods of statistical learning for experimental modelling, e.g. polynomi-
als (Nelles, 2000; Isermann and Miinchhof, 2011), support vector machines (Kecman, 2001; Vogt,
2008), neural networks (Nelles, 2000; Kecman, 2001) as well as fuzzy, neuro-fuzzy and local lin-
ear neural fuzzy models (Nelles, 2000; Isermann and Miinchhof, 2011). Local linear neural fuzzy
models of type local linear model tree (LOLIMOT), see Nelles (2000); Isermann and Miinchhof
(2011), showed promising results in modelling the emissions in Schiiler (2001) and Hafner (2002)
and the emission modelling capabilities have been improved by the local polynomial model tree
(LOPOMOT) as described in Sequenz (2013). Thus, these local polynomials will be utilised to
model the emission formation in Chap. 5.
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3 Semi-Physical Mean Value Engine Model

This chapter contains the fundamental physical relationships to describe a mean value engine model.
The overall mean value engine model is composed as an interconnection of several different submod-
els. First the intake and exhaust system with storage elements, flow restrictions and heat exchangers
is modelled. Then follow the mean value cylinder model and the turbocharger model. A block diagram
shows relationships and interactions between different submodels.

The proper choice of a model class depends upon the problem to be solved (Guzzella and Onder,

2010). Detailed investigations of flow phenomena in the intake and exhaust system demand dis-

tributed parameter models as one-dimensional models or even three-dimensional models with com-
putational fluid dynamics (Merker et al., 2006). These models are computational demanding and

usually not realtime-capable.

Hence, simplified models as control oriented models with lumped parameters are state of the
art for function development. In these models the gas system is modelled by ordinary differen-
tial equations, which describe the states in the intake and exhaust system and the input-output
behaviour with reasonable precision at low computational cost. These models include the sta-
tionary and the relevant dynamical characteristics of the air path and are therefore suitable
for modern control methods, system analysis and engine calibration, see e.g. Heywood (1988);
Guzzella and Onder (2010); Jung (2003); Ammann (2003); Eriksson (2007). The class of lumped
parameter engine models can be further divided into mean value engine models (MVEM) and
crank angle synchronous engine models (CASEM). Here, the accuracy of the cylinder model is
the major difference between these two modelling approaches. Mean value engine models usually
consist of a simplified cylinder model, where the gas mass and enthalpy flows entering and exit-
ing the engine are modelled as their mean value during the engine working cycle. Consequently,
pressure and flow pulsations in the intake and exhaust system are neglected and there is generally
no detailed combustion model.

Crank angle synchronous engine models can be categorised in their complexity between lumped
parameter models and one-dimensional models. Usually a simple combustion model delivers cyl-
inder individual crank angle synchronous in-cylinder measures like the in-cylinder pressure. Also
the influences of the charge cycle, like the pressure and mass flow oscillations in the intake and
exhaust system are modelled crank angle synchronously (Zahn, 2012). These CASEM models are
mainly necessary to design, calibrate and test the functionality of in-cylinder measurement based
combustion controls. A further field of application are system analysis, calibration and function
development for variable valve timing (VVT) engines. When it comes to the control of air path
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quantities, most requirements for modern control methodologies and system analysis can be sat-
isfied by a conventional mean value engine model. The following sections present the state of the
art modelling of the intake and exhaust system as given in Heywood (1988); Guzzella and Onder
(2010); Jung (2003); Ammann (2003); Eriksson (2007); Zahn (2012), while the parametric tur-
bocharger power models are mainly based upon the work of Zahn and Isermann (2008). After all
relevant submodels are derived, the signal flow diagram of the overall mean value engine model
is given in Sect. 3.4.

3.1 Intake and Exhaust System

A lumped parameter approach represents the intake and exhaust system as an alternating sequence
of storages (intake manifold, ducts, exhaust manifold) and throttles (valves, filter, coolers). Fig-
ure 2.1 shows the structure of the modelled elements in the mean value engine model. Only the
dynamical relevant states are modelled. Small storages like the duct of the HP-EGR path are not
modelled to keep the model complexity and model stiffness reasonable low (Guzzella and Onder,
2010).

Storage Elements

Fig. 3.1a) depicts a storage element in gas mass flow representation with its model inputs, model
states and model outputs. The model inputs are given as inflowing gas mass flow rates i, ;,
outflowing gas mass flow rates 71,y j, inflow temperatures 75, ; and inflow air contents x;, ;. Model
states are gas mass my, internal energy Uy and air content x in each storage element, while the
model outputs pressure py and temperature 7 follow by algebraic equations from the model
states. A further quantity are the wall heat losses Q'W,St, which are necessary to determine the
internal energy. Alternatively storage elements can be represented as a block diagram in input
output representation, as given in Fig. 3.1b).

a) b)

Min 1y« « « s Hlinp | M. Pyt | Mou1s - - - » Hloug gt i Pst
out,1, -+« Mout,q T.
Tin,l; ey Tin,p = Usls Tsl = Tst st

Tintseos Tingp '
Xin, 15+ -+ » Xin,p Xst Xst Xin, 15+« + » Xin,p Xst
Qw,st

Figure 3.1: a) Inputs, states, and outputs of a storage element in gas mass flow representation.
b) Block diagram of a storage element in input output representation

These lumped storage elements in the gas system can be regarded as open thermodynamic sys-
tems with p inflowing and ¢ outflowing mass and enthalpy flows. With the assumption that no
substantial changes in the potential or kinetic energy in the flow occur, the basic equations for
these storage components are the conservation laws for mass
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p q
d(’;s‘ =D it = 3 it G.1)

and energy

dU~ ~ N :
! Z in,iMin,i — Zhoutmout,j - Qw,st~ (32)

i=1 j=1

The change in energy is described by the wall heat losses Qlwgst and the enthalpy in- and outflows
which are determined by the specific enthalpies

hin,i = CpTin,i and hout = cstt (33)

and the corresponding mass flow rates 72, ; and 71, j. These specific enthalpies result from the
heat capacity at constant pressure ¢, and the temperatures 7T;, ; and T of in- and outflowing mass
flows. The totally stored energy in a storage element results from the storage temperature 7, the
stored gas mass mg and the heat capacity at constant volume cy.

Uy = evTamy (34)

In order to determine the temperature differential equation of a storage element, it follows from
Eq. (3.4)

dUy d(cv W) dT dmSt

= T, 3.5
a a =cym G +ovlg—— Q& (3.5)

Substitution in Eq. (3.2) leads to

dTS 1 ) dm,
= Z hm tmm i Z hout jn1out,] Qw,st - CVT;t_t . (36)

cving \ o dr

The calculation of the internal energy Uy, as well as the specific enthalpies /iy ; and /14, j are based
on the simplified assumption of constant heat capacities cy and ¢, for air. A variable heat capacity
for gas could be considered in each storage element for a more detailed model which demands
more computation time. This variable heat capacity of burned gas mainly depends on the gas
temperature and air-fuel ratio A and can be approximated by a polynomial approach (Merker et al.,
2006). This approach is supposed to go back on the tables for pure gases of Justi (1938), but it is
more likely based on the diagrams for combustion gases published in Lutz and Wolf (1938) which
are a further development of Justi’s tables. The consideration of a variable heat capacity would
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further result in a variable isentropic expansion factor  which is given as k = ¢,/cy and form a
complexer relationship Eq. (3.22).

The wall heat losses Q.W,Sl are modelled by Newton’s law of heat transfer

Qw,st = kw,stAw,st (Tst - Ta) (37)

with the overall heat transmission coefficient & &, the duct surface area A,, 4, the gas temperature
Ty and the ambient temperature 7,. For model simplification an additional state with wall heat
storage and wall temperature is neglected. These wall heat losses are only considered in the ex-
haust pipe with its large surface area in storage element 5. In all other storages the wall heat losses
are not of great significance and are neglected in the storage temperature derivation. However,
especially for the following turbocharger power models in Sect. 3.3.2 heat transfers will play an
important role.

Afterwards the pressure in every storage element results with the ideal gas law and the solution of
the mass balance (3.1) for the gas mass m as well as the integration of the temperature differential
equation (3.6) for the storage temperature T as

myTyR
- <,

v (3.8)

Dst =

where V; represents the lumped storage element volume and R is the specific gas constant. The
ideal gas law can be rearranged to yield the gas density py in each storage element

Mg Pst
¢ = — = X 3.9
Pst vV, T.R (3.9)

The air content x in each storage element allows to investigate the dynamic impact of the two
EGR-systems in the intake and exhaust system. The normalised air content can be expressed as
the proportion of the fresh air mass mg i and the total gas mass my in each storage element, see
also Mrosek and Isermann (2010a)

Xo = Mt air _ Mt air (3 10)
st = = . .
My Mg + My Ly + My

Furthermore, my can be divided into the sum of fresh air mass 114 ,ir, the burned gas mass contain-
ing no oxygen mg rLy and the amount of fuel m ¢ in each storage element. Herein L represents
the stoichiometric air requirement. Thus, xy = 1 represents pure fresh air, consisting of 20.9 %
oxygen, while xy = 0 stands for a totally consumed amount of fresh air. The air-fuel ratio

Miir

= 3.11
mest ( )
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is globally expressed as the ratio of fresh air m,;;, which enters the gas system and the amount of
air m¢Lg which is required to burn the injected fuel quantity. However, this only describes the air
fuel ratio with respect to the quantities which globally enter the combustion engine. For storages
after the combustion process, the global fresh air mass m1,; flowing into the engine can be divided
into a remaining fresh air mass 1 ,i; and a burned gas mass mg ¢L. Then the air-fuel ratio of a
storage element A can be rewritten as

_ mst,air + mst,fLst

A = (3.12)

mst,fLst

Accordingly the relationship between the air content (3.10) and the air fuel ratio (3.12) follows by
substituting m r as

Mt air (1—Xst)
A Mstair + ( X (1+Ly) )le Xg + Ly G.13)
st (mal.un(lfxa()) L - Lm — mem. '
X (14 Lg) st

In a lumped parameter approach the differential equation for the air content is given as derivative
of (3.10)

dmy dm
dxst d>t mmst — Migtair d;‘
= T Ty (3.14)
dr mg

in which the change of stored fresh air mass can be expressed with the air contents of inflows x;, ;
and outflows X,y ; as

q

A i > . .
% = Z Xin,iMin,i — Z Xout, jMout, j - (3.15)

i=1 j=1

Then (3.1) and (3.15) can be inserted in (3.14) and yield

p . q . P a .
dxst <Zi=] Xin,iMin,i — Zj:l xout,jmout,j) Mt — Mistair (Zi:l Min,;i — Zj:] mout,j)

dr ms

(3.16)

Given that x,y,; = X4 and substituting according to (3.10) m i = XyMmy finally leads to differ-
ential equation for the air content

dX st 1 > .
=— (Xin,i — Xst) Minj | - 3.17)
dr My ;
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Pipe Volume Fraction Receiver Volume Fraction
l’hin,i (t) rhin,i (t - Td,p,sl)
= = Yy o =
Xin,i (1) Xini (¢ — Tap,s0)

Figure 3.2: Pipe receiver air content model
Alternatively to the lumped parameter approach, the air content dynamics can be modelled as a
plug flow via a pipe receiver model (Benz, 2010), see Fig. 3.2. Dependent on the storage geometry

every lumped storage Vj; can be partitioned by the pipe volume fraction &, i into a pipe section
without storage

Vp,st = Vstép,st (3.18)

and a subsequent receiver volume
Ve = Va (1 — &) - (3.19)
In each pipe element the gas propagation time results as a variable dead time

pp,stV ,st
Mp,st

(3.20)

Td,p,st =

with the pipe volume V; , the mass flow rate 71, i and the gas density p, . For the receiver dy-
namics, temperature and pressure in every storage element are modelled by the lumped parameter
approach with the complete volume V; and allow to determine with (3.8) and (3.19) the gas mass
stored in each receiver element m, . Then the receiver air content dynamics results with (3.17)
and the corresponding stored gas mass in every receiver element 1, .

In the overall mean value engine model the air content is modelled with the lumped parameter
approach which considers only a receiver proportion. In Sect. 4.4 the lumped parameter approach
is compared to the pipe receiver approach and a control-oriented model for the air content based
upon the pipe and receiver approach is presented.

Flow Restrictions

The pressure difference between two storage elements and the resistance of the connecting flow
restriction cause a mass flow rate. This mass flow rate can be modelled by Bernoulli’s law for
incompressible fluids as

. 2pin
Titreg = Cp Arer R—_\/ Pin — Pout- (321)
in
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For compressible fluids the flow restriction can be treated as an isenthalpic throttle which yields

. N 2 e
Mypes = CDArefJI;?Lm :Tl I:(H)K - (n) “ :|
with I :min[max[m,( 2 )ﬁ],l]

Pin " \Kk+1

(3.22)

In which Cp is the orifice discharge coefficient, 4,.; denotes a reference flow area and « is the
isentropic expansion factor. p;, and T;, are the pressure and the temperature upstream the orifice,
while pgy is the pressure downstream the flow restriction. Orifices with a fixed flow area (filters,
coolers, ducts) are characterised by low flow velocities and a small pressure drop. They are mod-
elled by Eq. (3.21). These models have only the product Cp A ,.s as parameter, which is identified
with test bench measurements. In flow restrictions with a variable cross sectional area (throttle
valve, EGR-valves) large differential pressures and high flow velocities occur. Especially at high
pressure differences when the reference area is very narrow, the flow reaches sonic conditions. In
such cases Eq. (3.22) is applied and Cp A ¢ is modelled as a polynomial of the normalised actuator
position s. The temperatures before and after the orifice are approximately equal.

Heat Exchanger

Heat exchangers like the intercooler and both EGR-coolers cool down the inflowing gas 1,4, with
the temperature 7j, by heat dissipation to a cooling fluid with the temperature 7 to an outflow
temperature T,,, see Fig 3.3a).

a) I Tcl I b) Tw Qw,cl Tcl
ﬂn Tom 1
Tgas I/\I Ti1gas To i — Quasw Tom i
Dasss I t> 177 gas

Figure 3.3: a) Control oriented heat exchanger model with considered quantities to model the
heat transfer b) Internal dynamics in a lumped parameter heat exchanger model

For the EGR-coolers this cooling fluid is the engine coolant, while the intercooler is cooled by an
air flow. These heat exchangers are modelled as flow restrictions with heat transfer, whereas the
heat transfer can be represented as change in specific enthalpy

how = hin — @ (3.23)

Mgas

in which ri1g, represents the mass flow rate of the cooled gas and ans,w the total heat transfer
between gas and heat exchanger wall.

A simple lumped parameter model for heat exchangers with wall heat dynamics can be derived
according to VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (2010) as the com-
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bination of two heat transfers, see Fig. 3.3b). The heat transfer between intake and exhaust system
gas rig,s with inflowing temperature 7;, and heat exchanger wall is given as

ans,w = agas,w(Vgas)Agas,w (Tm - Tw) (324)

and the heat transfer between the heat exchanger wall and the cooling liquid as

Qw,cl = aw,cl(l./cl)Aw,cl (Tw - Tcl) . (325)

The averaged heat transfer coefficient between the gas and the heat exchanger wall @, and the
coefficient between the wall and the cooling fluid o, ¢ both depend on the volume flow rates of
the gas Vgas and the cooling fluid 1701, while the surface areas Ay, and Ay, ¢ are constant.! If no
dynamical heat storage is considered both in- and outflowing heat flows become equal.

Oguson = Oua (3.26)
Then the stationary heat transfer model can be simplified by solving (3.24) for 7, and substituting

itin (3.25) to

agas,w(Vgas) A gas,waw,cl(f/cl) Aw,cl
agas,w(Vgas) Agas,w + aw,cl(Vcl) Aw,cl

ans,w = (Tl - Tcl) = Aclkcl(Vcls I}gas) (Tm - Tcl) . (327)

Finally, it can be rewritten with the averaged cooler surface area A and the coefficient of heat
transmission k.. Then the specific enthalpy at the cooler outflow follows by inserting (3.27)
in (3.23).

3.2 Mean Value Cylinder Model

A semi-physical mean value engine model is characterised by a simplified cylinder model. In this
approach the mass flow rates entering #ieng,in and exiting #iteng,oue the cylinder, as well as the en-
thalpy flow and the air content exiting the cylinder are modelled as stationary models representing
their mean values during an engine combustion cycle.

The mean value of the mass flow rate entering the cylinder can be estimated utilising the model of
a volumetric pump

TNote that only the cooling fluid inflow temperature is measured with the given test bench instrumentation. Hence,
T has to approximated by the inflowing cooling fluid temperature. Otherwise Ty = (T¢iin + Ter,out) /2 Would count.
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pZinz neng
" RTy 602"

(3.28)

Meng,in =

with the displacement volume per cylinder V4, the number of cylinders per combustion cycle z
and the volumetric efficiency A, (Heywood, 1988; Jung, 2003; Guzzella and Onder, 2010). En-
gine speed and gas density in the intake manifold determine the theoretical cylinder filling, while
the volumetric efficiency describes deviations and losses which are not covered with the model
assumption of an ideal volumetric pump. These deviations include resonance effects in the intake
system, characteristics of inlet and outlet valve trajectories, charge motion like a swirl flap and
further nonlinearities. The volumetric efficiency is modelled as a LOLIMOT-model and shows the
best modelling results with the model inputs engine speed 71y, intake pressure p,; and position of
the swirl actuator ss,.

Aa = frLoLivor (nenga Pais Ssa) (3.29)

Since the injected fuel mass n?u is not measured, it has to be modelled from the desired injection
quantity i, and the engine speed. Then the mass flow rate exiting the cylinder follows directly
from riz¢ and (3.28) as

Meng,out = Meng,in + my. (330)

The temperature increase due to the combustion process is given by a semi-physical stationary
LOLIMOT-model. In Appx. B the significance of different model inputs is shown. Consequently,
the temperature after the combustion Ty oy is estimated as

Tcng,om =Ty + fLOLIMOT (ncngs Uinjs P2is Sﬂmi) . (3.31)

There are two advantages in modelling of Ty ou by the temperature rise of the combustion process
and the modelled intake temperature 75;. First a direct T, ot model would require the intake tem-
perature as additional model input, which increases the model dimensionality. Anymore, the intake
temperature strongly depends on the ambient conditions. These variations have to be considered
in the model parameterisation to avoid model extrapolation. Hence, this indirect T¢g ou modelling
is of lower dimensionality and it implicitly includes ambient condition influences. Therefore this
model structure demands less calibration effort.

Finally, the air content after the combustion process Xcng,out can be described with (3.10) by the
fresh air mass flow rate proportion entering the cylinder meng,mX2,, the burned air mass flow rate
L;lm ¢ and the gas mass flow exiting the cylinder riteng in + 7775 as

mair,cng,out mcng,inXZi - Lstmf
Xeng,out = T = N x . (332)
Meng,out Meng,in -+ mg¢
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Analogue to the global air-fuel ratio (3.11), also a stationary relationship between the air content in
the exhaust system (X3, X5, Xeng,out) and the quantities 71, and 71¢ entering the combustion engine
can be given by inserting the mass flow rate based form of (3.11) in (3.13).

Ftaistat — Mistat L
air, stat f,stat Lest ic {3, 5, eng, out} (333)

Xi,stat = x
Mir stat + M stat

In this relationship the numerator is the remaining gas mass flow rate with an air content of 1,
while the denominator describes the total gas mass flow rate. This corresponds to the definition of
the air content in Eq. (3.10), see also (3.32). A further transformation of (3.33) gives the stationary
dependency between air mass flow rate, air content and injection quantity.

Xi,sta Ls ntl staf .
Filai st = (‘]"L—X‘)“‘ i €13, 5, eng,out} (3.34)
— Aistat

Further, this relationship allows to determine the actual necessary dynamical air mass 71 gyn at
the intake valve to achieve a desired air content after the combustion.

. Xeng,out + L V;’l
Myir,dyn = M (335)

1 - xeng,out

3.3 Turbocharger

Adjacent to the combustion process itself, the turbocharger is one of the most complex devices
in the intake and exhaust system of combustion engines. Besides the cylinders and the two EGR-
paths, the turbocharger is a further connection between the intake and exhaust system and strongly
influences the air path dynamics.

Fig. 3.4 shows a turbocharger schematic with the utilised model in- and outputs for the turbochar-
ger simulation within a lumped parameter mean value engine model.? The demanded model out-
puts in the intake system are the compressor mass flow rate #1. and the temperature behind the
compressor 7. In the exhaust system, the model outputs turbine mass flow rate 71, and temperat-

ure after the turbine 7" have to be provided for the mean value engine simulation?.

2The utilised turbocharger is oil-cooled. However, there is no measurement for the oil temperature. The only
available quantities to model heat flows outside the turbocharger housing are the ambient temperature 7, and the
engine coolant temperature Th,.

3Note that especially for simulation purposes the turbocharger output temperatures 7, and 7, dynamically differ
from the temperatures 75, and Ty in the subsequent ducts and have to be indexed separately, see also Fig. 3.5.
However, in practice these dynamical fast differences cannot be measured with the given test bench temperature
sensors, which possess a significant measurement delay.
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Figure 3.4: VGT turbocharger scheme with fluid-dynamic system, thermodynamic system, an
illustration of heat flows inside the turbocharger housing and measured quantities

In order to model these quantities, the turbocharger is divided into a thermodynamic system and
a fluid-dynamic system. The block diagram of the fluid-dynamic turbocharger model is given in
Fig. 3.5 and comprises submodels for compressor and turbine mass flow rates as well as fluid-
dynamical compressor P, and turbine power P;. The turbocharger shaft is the link between com-
pressor and turbine side and further decelerates the turbocharger via friction losses of its bearings
Py Its rotational speed n,. is a driving input for the afore mentioned submodels and dominantly
influences the overall engine air path dynamics. A further submodel applies Newton’s second law
of motion to the momentum balance at the shaft and delivers the turbocharger speed.

Turbocharger Shaft S ps T3’ s p3paTs
mc P, [< Py f 2 2
erk—rif— 1 RN
Compressor Compressor Turbine Turbine
Mass Flow Power Power Mass Flow
- 1 1
D C 4n2licnie S | e B
7] LT ]
P pe Th P Ty

Figure 3.5: Block diagram of the fluid-dynamic turbocharger model

Additionally to the fluid-dynamical process with the i fluid-dynamical temperatures 7} in Fig. 3.4,
the heat transfers in the turbocharger housing have to be considered to model the overall thermody-
namical compression and expansion process with the temperatures Ti(*) (Rautenberg et al., 1983;
Malobabic, 1989; Shaaban, 2004). As depicted in Fig. 3.4, heat transfer occurs between com-
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Figure 3.6: a) Comparison between the compressor map from the turbocharger manufacturer
and the data distribution from test bench measurements of the NEDC b) Measured turbochar-
ger speed distribution in the NEDC c) Greitzer compressor mass flow rate model

pressor, engine block, cooling oil, turbine and ambient air. Thus, these heat transfers at the states
i are considered with simplified stationary heat transfer models by heat transmission Q.m and
radiation Q.. Finally, the thermodynamical system includes these heat transfers and relates the
fluid-dynamical temperatures 7} at the compressor and turbine rotor to measurable temperatures
Ti(*) outside the turbocharger housing.

State of the art turbocharger models are typically based on characteristic maps delivered by the tur-
bocharger manufacturers. Usually these maps are measured separately for the compressor and the
turbine on hot gas turbocharger test benches at stationary conditions. At these test benches the tur-
bine is commonly driven with a stationary hot gas flow rate from a burner at one fixed temperature,
usually 600 °C. However, the realistic gas conditions at engine operation are characterised by a
pulsating engine flow, a large temperature range and rapid exhaust temperature changes (Shaaban,
2004; Berndt, 2009; Guzzella and Onder, 2010).

As a further drawback the characteristic maps cover only a limited speed range and usually tur-
bocharger speeds above 40 % of the maximal turbocharger speed are represented. This limitation
results from measurement uncertainties which prevent a reliable determination of the isentropic
compressor efficiency (Shaaban, 2004; Berndt, 2009; Guzzella and Onder, 2010).

Figure 3.6a) exemplary shows a compressor mass flow rate map from the turbocharger manufac-
turer. In these maps mass flow rates and turbocharger speed are normalised by (3.36) and (3.37)
to reference conditions. The manufacturer measures only a few data points at constant speed
lines. Due to measurement uncertainties these measurements are typically carried out at large tur-
bocharger speeds. However, in a common engine operation this considered measurement range
is little covered, since most of the grey dotted data points from engine test bench measure-
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ments of the NEDC are located far below the lowest measured speed line with 90000 min ™', see
also Moraal and Kolmanovsky (1999); Berndt (2009). The data distribution in Fig. 3.6b) illustrates
the deviation between the manufacturer’s map and the typical engine conditions even more drastic.
As it can be seen, only a minority of data points exceed a turbocharger speed of 90000 min™'.
Therefore, some approaches try to interpolate and to extrapolate turbocharger maps into regions
not provided by the turbocharger manufacturer (Moraal and Kolmanovsky, 1999; Eriksson, 2007;
Guzzella and Onder, 2010). Other approaches utilise engine test bench measurements to paramet-
erise the turbocharger maps (Jung, 2003; Sidorow et al., 2011).

Besides the poor accordance between the operation area of the manufacturer’s maps and the rel-
evant area for engine applications, the manifold heat transfers in the turbocharger housing are
a further issue in turbocharger power modelling. These heat transfers have a certain effect on
the assumed compression and expansion process and their slow dynamics can severely influence
the temperature measurements for the model parameterisation of the fluid-dynamical turbochar-
ger models. Especially at engine operation points with low load these heat transfers can severely
deteriorate the model, see (Mrosek and Isermann, 2010c; Mrosek, 2017).

In the following a short excursion will present map-based mass flow rate models for the com-
pressor and the turbine. Afterwards, the focus will be set on the turbocharger power mod-
els and the effect of heat transfers. A parametric turbocharger model based upon the work
of Zahn and Isermann (2008) will be presented to model the fluid-dynamical compressor and tur-
bine power. Finally, the turbocharger modelling closes with additional stationary heat transfer
models.

3.3.1 Mass Flow Rate

The turbocharger mass flow rates are modelled by characteristic maps which are calibrated with
measurements from the engine test bench. First the compressor mass flow rate is modelled. In
order to minimise the effect of temperature and pressure changes, the compressor mass flow rate
model is described by the quantities reduced mass flow rate 71 req and reduced turbocharger speed
N red (Malobabic, 1989; Shaaban, 2004). These reduced quantities are related by the relationships

Tref
cred = My 3.36
Nic,red = My T, ( )
and
. T
Hered = e Ll | 2L (3.37)
D1\ Thet

to a reference pressure p.r and a reference temperature 7;.¢, which are defined as p..s = 1.013 bar
and Trr = 288.15 K (Malobabic, 1989).
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The reduced compressor mass flow rate 7 rq is usually given as a characteristic map of the pres-
sure ratio over the compressor wheel p,./p; and the reduced compressor speed 7. r.a. However,
in Fig. 3.6a) the proficient reader realises, that there is no unique functional relation between the
pressure ratio p,./ p1 and i req at a certain turbocharger speed. Which means that the compressor
mass flow rate cannot be clearly reconstructed from a given turbocharger speed and pressure ratio.
Especially at high turbocharger speeds the curves become flat and lose their monotonic character-
istics, which is necessary for a well fitting mass flow rate model with the model inputs pressure
ratio and turbocharger speed. This non-unique functional relationship is typical for automotive
compressors and can also be observed in the compressor mass flow rate maps given in Malobabic
(1989); Moraal and Kolmanovsky (1999); Eriksson (2007) and Berndt (2009).

Greitzer (1976) presents an alternative approach to overcome this issue, see
also Moraal and Kolmanovsky (1999) and Guzzella and Onder (2010). In Fig. 3.6¢c) this
compressor mass flow rate model is illustrated and will be utilised in the following. First the
stationary pressure ratio over the compressor wheel

Pl .
p2 = Jroumor (e reds Mic,red) (3.38)
1

is modelled with a LOLIMOT-model, in which the pressure pj; is an intermediate state. Then it
is assumed, that the compressor has some inherent dynamics in the rate its mass flow can change.
These dynamics are modelled with the one dimensional momentum equation and by simplifying
the compressor to an actuator disc with the upstream pressure pj,. Afterwards the volume between
the compressor wheel and the subsequent storage can be formulated by the equivalent duct length
b and the cross sectional area A,. and finally the compressor mass flow rate dynamics can be
expressed as

dmc,rcd _ AZC *
2= (). (3.39)

As a large benefit this inverse mass flow rate model (3.38) overcomes the drawbacks of the non-
unique relationship between pressure ratio and mass flow rate. With the model inputs reduced
mass flow rate and turbocharger speed, there is a strong functional relationship to the model output
pressure ratio, see Fig. 3.6a). On the other hand the overall mean value model gains one more state,
which might lead to a stiff system when the ratio 4,./ /. becomes too small for a given engine
configuration (Moraal and Kolmanovsky, 1999).

The turbine mass flow rate 71, is modelled with the flow equation for compressible fluids (3.22).
In which a stationary LOLIMOT-model with the model inputs s, and n,. represents the turbine’s
flow discharge coefficient and reference flow area (CpArs),. A more detailed investigation of the
turbine mass flow modelis given in Mrosek (2017).

216.73.216.96, am 13.01.2026, 21:09:54. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186803122

26 3 Semi-Physical Mean Value Engine Model

3.3.2 Turbocharger Power

As a fluid-dynamical device, the turbocharger is characterised by the enthalpy difference and the
pressure ratio over the turbine and the compressor wheel. Due to the large temperature gradients
between the hot turbine side, the cooling oil, the ambient and the rather cold compressor side
many heat transfers occur in the turbocharger housing, see Fig. 3.4. If the conventional adiabatic
turbocharger compression and expansion process assumptions are made, the present heat trans-
fers falsify the model parameterisation and the resulting models deliver unsatisfying simulation
results. Hence, in recent turbocharger research these heat transfers are also incorporated in the
assumed flow process extending it from adiabatic to diabatic (Rautenberg et al., 1983; Shaaban,
2004; Bohn et al., 2005; Berndt, 2009). Generally, heat transfers occur spatially over the entire
flow path and become unhandy for control-oriented simulation models. Thus, these heat transfers
are commonly simplified by two lumped heat transfers before and after the flow process (Shaaban,
2004; Bohn et al., 2005; Berndt, 2009; Zahn and Isermann, 2008).

a) Compressor b) Turbine
A A
h T;; h T3

/ * ise TZ,C z ~ qc2 / el

ise A o7 isentrop ¥

isentrop b - Aheaai ’I’? Ahiaai

1 rE’ | Pid T4,
real o7 : r = real < H ,:4 L
J/'/". P = P o A Py =D4 qua

T Ty I T T‘:SE I

s s

Figure 3.7: Schematic h-s diagram of the diabatic compression and expansion process with
isentropic 7 — T]i.‘“e, adiabatic 7} — ij and diabatic 7; — 7* change of condition

Consequently, the diabatic compression process can be described by the h-s diagram in Fig. 3.7a).
Then the diabatic rise of the specific enthalpy is given as

Ahegia = cp(Toe — T1) (3.40)

and can be also expressed as the result of an adiabatic irreversible compression process A/ ,qi
and the transfer of the specific heats g.,; and q.».

Ahc,dia = {c,1 + Ahc,adi + qc,2 (341)

The enthalpy difference Ak, ,qi can be expressed similar to (3.40) by the fluid-dynamical temper-
atures 7 and T,,. Note that additionally to the isentropic compression process A/ With the
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isentropic temperature T5° also flow and friction losses are incorporated in the adiabatic process
model.

In the following the adiabatic (fluid-dynamical) portion of the flow process is modelled with a
parametric turbocharger model based on the mean line theory as presented in Zahn and Isermann
(2008).

Compressor Model

The adiabatic irreversible change in enthalpy A/, ,qi represents the energy transferred to the im-
peller a.. It can be derived from Euler’s turbine equation

Ahc,adi =dc = UCcou — Uc1Cel - (342)

ue and u, are the circumferential velocities at compressor inlet and outlet. ¢, and ¢, are the
corresponding circumferential components of the flow velocities. The flow entering the impeller
normally has no prewhirl (c.;,, = 0). Hence, Eq. (3.42) simplifies to

de = UCc,u- (343)

The circumferential velocity at the compressor impeller outlet results from

Uy = TN (3.44)

in which d., is the impeller’s outer diameter. In Fig. 3.8b) the peripheral component of the absolute
velocity at the impeller outlet can be derived from the compressor velocity triangles as

Coou = UCuth = M (uc2 + Cc2,m COt(ﬂcLb)) . (345)

Using the continuity equation and neglecting blade blockage the meridional component ce m
in (3.45) results in

rite (3.46)

Coom = 7 .
p27Td<:2b<:2

In this connection pj is the fluid-dynamical gas density with the relevant temperature 7, at im-
peller exit not incorporating the subsequent heat transfer and b, is the width at impeller exit. The
slip factor p in (3.45) is a widely used method to describe deviations between the actual flow
angle B, and the theoretical blade angle B, . It is modelled by a classical approach proposed
by Stodola (1945). The slip factor can be derived from the velocity triangles by
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Figure 3.8: Compressor velocity triangles with following notation: ¢ absolute velocity, u cir-

cumferential velocity, w relative velocity; indices ¢ compressor, 1 impeller inlet, 2 impeller

outlet, m meridional part, u circumferential part, ¢/ theoretical

Ce2, Csli
. (3:47)
CcZ,u,th CcZ,u,th
and
Ce2,uth = U2 + Cc2,m cot (ﬂc2,b) - (348)

According to Stodola (1945) cg, can be expressed as cgi, = Kqiplic2 in which kg, is a constant
depending on the impeller geometry. Hence, applying (3.46), (3.47) and (3.48) the slip factor
results in

kslip Uep

Uy + ﬂcnt(ﬁczvb) ’
2 05 mdabe

p=1- (3.49)

Consequently, by substituting (3.44), (3.45) and (3.46) into (3.43), the fluid-dynamical power of
the compressor results in

j (4 C t C
P, = titeac = pune ((ndcznm)z + e M) . (3.50)
/02 ch

Thus, the compressor power model can be fully parameterised with only three parameters d.»,
% and kg, Whereas d,; is usually given from the turbocharger geometry.
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Figure 3.9: Turbine velocity triangles with following notation: ¢ absolute velocity, u circum-
ferential velocity, w relative velocity; indices ¢ compressor, 3 rotor inlet, 4 rotor outlet, m
meridional part, u circumferential part

Turbine Model

The diabatic turbine expansion process is presented in the h-s diagram in Fig. 3.7b). Similar to the
compression process the diabatic change in the specific enthalpy is given as

Ahygia = ¢y (T3 = T5). (3.51)
Further the turbine expansion process is assumed to be irreversible adiabatic A/, ,q and two

lumped specific heat transfers ¢, 3 and ¢4 before and after the expansion are introduced. Then
the diabatic expansion process can be expressed as

Aht,dia =qi3 + Ahl,adi + Gra- (3.52)
Similar to (3.51) the diabatic enthalpy difference Al 4 can also be expressed by the fluid-

dynamical temperatures 7’; and 7,. Note that due to flow and friction losses the adiabatic turbine
exit temperature 77, is higher than the temperature 7 of an isentropic expansion process A/ js.

Then the fluid-dynamical work transferred to the turbine wheel is expressed by Euler’s equation

= Ahyagi = Gy = UyCu — UBCa - (3.53)

The turbine is usually designed for no exit swirl, see Fig. 3.9b). Therefore ¢y, vanishes and
Eq. (3.53) can be simplified to

ay = —UaC3 - (3.54)

Consequently, only the rotor inlet velocities in Fig. 3.9a) contribute to the turbine blade work. The
outer turbine inlet diameter d; allows to calculate the circumferential velocity as
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ug = mdpny. (3.55)
The swirl velocity ¢, results from the trigonometrical relationship

_ C3,m
tan(os)

= ¢ moot(3), (3.56)

ct},u

in which a3 is the absolute flow angle at the rotor inlet. It is determined by the guiding vanes’
angle and can be modelled as function of the VGT-actuator position s;

ag = f(s). (3.57)

The meridional component ¢ ,, of the absolute velocity is given by the continuity equation

I (3.58)

Om = rdba
wherein p} is the gas density with the relevant temperature 7 at the turbine wheel. Further by; is
the blade width at the rotor inlet. A substitution of Egs. (3.55), (3.56) and (3.58) into (3.53) finally
results in the fluid-dynamical turbine power

ming cot(a)

P =ra = — 7
P by

(3.59)

The relation cot(e3)/bgs characterises the turbine and has to be parameterised with geometrical
data or test bench measurements. Mrosek and Isermann (2010c) showed that a simple third order
polynomial of the VGT-actuator position s; in the form

cot(a) ’
= ) ws (3.60)
B i=0

could deliver a reasonable modelling performance for the turbine model. Further-
more, Mrosek and Isermann (2010c) extended the model presented by Zahn and Isermann (2008)
empirically with the consideration of the exhaust gas density o} as additional model input. This
could significantly improve the model quality, so that a model in the form

3
cot(os .
b( w) _ Z WSt + Wil 15005 + W, 4% - (3.61)
3 ‘
i=0
will be utilised in the following.
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Turbocharger Shaft

At the turbocharger shaft the compressor P, and the turbine power P, respectively their resulting
torques aggregate and accelerate the turbocharger according to Newton’s second law of motion

dnge 1\ P+ P+ P
n‘:_( )L‘Ff (3.62)

dr E il

The turbocharger dynamics are determined by the shaft inertia /.. Further the journal bearing
friction losses Pr contribute to the power balance at the shaft. These losses are modelled with the
friction coefficient k¢ by a viscous friction approach as

Pr= (2ne) ke (3.63)

3.3.3 Turbocharger Heat Transfer

Additionally to the adiabatic compression and expansion process heat transfers on the compressor
side and the turbine side contribute to the diabatic compression (3.41) and expansion process (3.52)
in Fig. 3.7. As it is shown in Fig. 3.4, the overall heat transfer in the turbocharger housing con-
sists of several heat flows. In recent research these stationary heat transfers have been invest-
igated more detailed. The field ranges from stationary heat transfer assumptions in Malobabic
(1989), Shaaban (2004) and Berndt (2009) to the stationary calculation of the one- and three-
dimensional heat transfer in Romagnoli and Martinez-Botas (2012) and Bohn et al. (2005). A fur-
ther approach by Zahn (2012) even models the heat transfer dynamics with a simplified lumped
parameter model.

In this dissertation, the heat transfer models are limited to a stationary approach to keep the
overall model complexity reasonable. The heat transfer inside the turbocharger housing is mod-
elled as heat transmission, see VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen
(2010). All heat transfers between gas or cooling liquid and the turbocharger wall, as well as heat
conduction inside the turbocharger housing are summarised in the heat transmission coefficient
ki j,q. Thus, a heat transfer between a fluid with the temperature 7; and another fluid with the
temperature 7'; can be expressed as

Q‘i*)j,t = ki*)j,tAi%j,t (Tz - Tj) s (3.64)

in which 4;_, ;; can be regarded as averaged surface area for the heat transfer. However, the tur-
bocharger geometry is quite complicated and it is hard to divide surface area and heat transmission
coefficient into their physical meaningful proportions. Hence, the product k;_, ; (A;—;  is treated
and identified as one single parameter which describes the heat transmission. For a mored detailed
investigation of the single heat transfers and their contribution to the turbocharger power refer
to Mrosek and Isermann (2010c) and Mrosek (2017).
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3.4 Mean Value Engine Model Signal Flow Diagram

All previously described submodels are combined to the overall mean value engine model of
reduced order. Similar to Zahn (2012) a signal flow diagram is derived in Figure 3.5. This diagram
is extended for the LP-EGR path and adapted to the chosen modelling depth. As it can be seen, the
single submodels are strongly coupled. Especially the intake and exhaust system are coupled by
the LP-EGR path, the HP-EGR path, the turbocharger and the combustion process in the cylinders.

In order to reduce the model complexity, all volumes between coolers (HP-EGR cooler, LP-EGR
cooler, intercooler) and valves are neglected. This results in an algebraic loop, since the cooler
heat transfer coefficients depend on volume flow rates, respectively mass flow rates, through the
coolers. Further the subsequent flow equation which usually deliver this mass flow rate, demand
the gas temperature behind the cooler as a model input. Therefore the coolers’ outflow temperat-
ures are delayed for one simulation step to omit an algebraic loop and to allow for a numerical
solution of the differential algebraic equation system. For model simulation there is a dynamical
difference between the temperature behind a flow restriction e.g. Ty and the temperature in the
subsequent storage e.g. 7s. Due to sensor dynamics these dynamical fast differences between
these temperatures cannot be distinguished at the engine test bench, so that for the sake of sim-
plicity the temperature quantities in the volumes are utilised instead. Furthermore, the chosen
semi-physical engine model approach is capable of simulating varying ambient conditions, which
come into play for the submodels air filter and intake throttle, exhaust throttle and intercooler.
These ambient conditions strongly influence the stationary process behaviour (Mrosek, 2017) and
should be considered in the control concept. Moreover the heat transfer in the exhaust pipe is
modelled as wall heat transfer (3.7) in the component Diesel particulate filter. Finally, the chosen
model structure is also capable to model the engine warm-up with the consideration of the engine
coolant temperature Tj,, in the submodels turbocharger housing, LP-EGR cooler and HP-EGR
cooler. Different loadings of the Diesel particulate filter and the air filter can be simulated with the
parameters kgpr and kyy.

3.5 Summary

In this chapter the mathematical description of several submodels is presented. These submodels
are composed to the overall semi-physical mean value engine model. A challenge of semi-physical
models is the strongly coupled interaction of many low dimensional submodels to describe the
overall process behaviour. For a satisfying model quality these interactions between single sub-
models demand a sophisticated method to parameterise each single submodel. For further read-
ings on model parameterisation refer to Mrosek et al. (2009, 2010b) and Mrosek and Isermann
(2010c). A more comprehensive publication for measurement design, model parameterisation and
validation is given in Mrosek (2017). After a successful model parameterisation with the cited
methodology, a comparison between test bench measurements and model simulation in Fig. 4.2,
Fig. 4.3 and Fig. 4.5 results in a qualitatively good agreement between measured and simulated
quantities and validates the overall air path model.
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4 System Properties of the Air Path with HP-
and LP-EGR

In this chapter the stationary and dynamical system properties of the air path with HP- and LP-EGR
are analysed. The stationary system properties highlight couplings between actuators and control
variables and further show the operation range benefit of the LP-EGR system. A study of the dynam-
ical system properties shows that the major differences between HP- and LP-EGR can be seen in the
gas propagation times. Then the gained insights into the process behaviour are utilised to choose
the appropriate control variables and furthermore lay the foundation for the later presented control
concepts.

In the following, the stationary and dynamical system properties of the air path are analysed with
the purpose to identify appropriate control variables for the dual path EGR-system with a VGT
turbocharger. Furthermore, the gained system insight will be utilised for the later following control
concept design in Chap. 7.

First the system responses of the multivariable engine intake and exhaust system to step excita-
tion signals of the relevant HP-EGR, LP-EGR and VGT-actuators are physically motivated. An
investigation of two different LP-EGR configurations with an exhaust throttle valve and an in-
take throttle valve gives valuable insights into the stationary air path couplings. Finally, the gas
propagation times of HP- and LP-EGR are investigated and a control-oriented model to handle
these gas propagation effects for air path control and dynamical emission simulation is derived.

4.1 Air Path System Analysis by Step Responses

The dual EGR path control problem with VGT turbocharger can be regarded as a further extension
of the classical HP-EGR and VGT control problem and is a strongly coupled nonlinear multivari-
able system. Thus, for a deeper understanding the complex multi-port diagram of the mean-value
engine model from Fig. 3.5 is simplified to a signal flow diagram in Fig. 4.1. This simplified signal
flow diagram comprises all dominant states and shows the relevant couplings to understand the in-
teractions between HP-EGR, LP-EGR and VGT turbocharger. In the classical HP-EGR and VTG
control problem the major air path dynamics can be described by interaction of the fast pressure
dynamics of p,; and p;, which are superimposed by the slow turbocharger dynamics of 7. These
dynamics determine the output quantities like mass flow rates, which are calculated via nonlinear
algebraic relationships from the process states. Note, that the fast pressure dynamics of p,; and p;
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Figure 4.1: Simplified signal flow diagram based on the model equations from Chap. 3 and the
complete model description in Fig. 3.5 to illustrate couplings between the actuators spy—cgr,
Sip—egr and sy and the air path quantities. All storages and flow orifices, which do no dominantly
influence the air path dynamics as well as turbocharger heat transfers are neglected.

refer to the states m,; and m3, which represent the fast transients in the HP-EGR system. These
dynamics must not be be misunderstood as the slow charge air pressure build-up, which is caused
by superposition with the turbocharger dynamics in 7, influencing p,; by increasing and decreas-
ing 1., see Fig. 4.1. The LP-EGR mass flow rate 71, ¢, is driven by two additional pressures
p1 and ps. Besides the pressures, also the sketched temperatures are necessary to understand the
system responses in the intake and exhaust system.

While the classical HP-EGR and VTG control problem is extensively investigated
by Kolmanovsky et al. (1997); Jung (2003); Wahlstrém (2009) and von Pfeil (2011), additional
couplings are introduced by the LP-EGR path and are investigated by Mrosek and Isermann
(2011). In the following, the system responses for the extended dual path EGR system are phys-
ically motivated by measured step-responses and the signal flow diagram in Fig. 4.1. Besides the
already in Kolmanovsky et al. (1997); Jung (2003); Wahlstrém (2009) exploited stationary and
dynamical properties of the single loop EGR system with a non-minimal phase characteristics in
P2 and a sign-reversal in 71,; also unpublished effects like an air mass flow rate overshoot will
be discussed in the following. After the influences of the single air path actuators on the system
quantities are motivated, the results are summarised in a block diagram in p-canonical structure in
Sect. 4.1.5.

216.73.216.96, am 13.01.2026, 21:09:54.
m mit, flir oder In KI-

Inhalt,

tr


https://doi.org/10.51202/9783186803122

36 4 System Properties of the Air Path with HP- and LP-EGR

4.1.1 HP-EGR Actuator System Responses

First the system responses to three HP-EGR-valve sy, o €xcitations are given in Fig 4.2. The
HP-EGR-valve is the shortest connection between intake and exhaust system and recirculates
exhaust gas from exhaust manifold to intake manifold. The mass flow rate r;zhp,egr is the main
effect of syy_cgr, Which is basically determined by the pressure ratio between p; and p,; and the
valve orifice, see Eq.(3.22). Generally, it can be stated that the further the HP-EGR-valve sp,—cgr
is opened, the higher becomes r;zhp_cgr.

Another important influence of sy, —cgr s 72,5 Thus, the HP-EGR-valve is typically used to control
T, in an air mass flow rate control concept. In Fig. 4.2 it can be observed, that for a step of Shp—cgr
the decrease of ni1y; is larger than the simultaneous increase of r;%hp,egr. This can be motivated by
the signal flow diagram in Fig. 4.1. At constant pressure p,; and temperature 75; the mass flow rate
entering the engine 77eng,in (3.28) remains constant. Consequently, the mass flow rate through the
compressor decreases for the amount l%hp,egr increases. However, due to the increased HP-EGR
mass flow rate the intake temperature 75; rises and the pressure p,; drops, so that in steady state
the decrease in 71, and therefore the decrease in 71, is larger than the increase in rﬁlhp,eg,.

Stationary Side-Effects of sy, to ¢, Respectively ps;

When the HP-EGR-valve opens, the portion of recirculated exhaust gas r;zhp,eg, is missing to drive
the turbine wheel with r,, see Fig. 4.1. Consequently, less turbine power P; is transferred to the
compressor. On the compressor side less mass flow rate 71, has to be delivered to fill the cylinder
by #iteng,in, since it is replaced by recirculated exhaust gas. Thus, also less compressor power P is
demanded to maintain the charge-air pressure.

A comparison between the formulation of compressor power (3.50) and turbine power (3.59)
shows, that the turbine power rises quadratically with the mass flow rate 77, and only linearly
with the turbocharger speed 7., while the largest proportion of the compressor power rises quad-
ratically with n and only linearly with ri2.. Anymore, Fig. 3.6 shows that the compressor mass
flow rate maps are very flat in the relevant area, which means that at a lowered mass flow rate
the turbocharger speed has to be maintained to achieve a fixed pressure ratio over the compressor
wheel. These differences in the compressor power and the turbine power characteristics lead to
a turbocharger deceleration and a negative relationship between sp,—cer and 7y, respectively the
charge-air pressure p,;.

Further, the opening of sy, cr Widens a different flow route for the gas mass flow, which avoids
the turbine flow restriction, see Fig. 4.1. Due to the lowered overall flow resistance for outflows
of V3 the exhaust pressure p3 drops and as a consequence of the decreased compressor power the
temperature after the compressor 7> sinks as well.
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Figure 4.2: Measured and simulated step responses to a step input of Spp—cgr at 7eng =
2250 min™" and uip = 15mm>/cyc (se = 1, Sip—egr/em = 0.3, Uicc = 0)

Stationary Side-Effects of spp_c, to I;tlp_eg,-

Anymore, the HP-EGR-valve opening sy, influences the mass flow rate over the LP-EGR path
r;zlp,egr. These influences result from the opening of sy, - and the pressure before the compressor
wheel p; as well as the exhaust pipe pressure ps, see Fig. 4.1. If the orifices in the intake (air
filter; intake throttle valve) and orifices in the exhaust pipe (pipe flow restriction; exhaust throttle
valve) stay constant, these pressures depend only on mass flow rates entering 71,;, and exiting 7z,
the engine gas system.
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Hence, a rise in 71, is caused by lowering p;. On the other end this increased 71, is enriched
by burned fuel. This exhaust gas 7.y, has to leave the system via a flow resistance and enlarges
the pressure ps. These two opposed pressure changes and the influence of recirculated HP-EGR
t0 7iyir and e, result in an influence of sy, cgr to the LP-EGR mass flow rate. Therefore r;zlp,eg,
rises and falls with the course of 72,;; and sy,—,r has a negative system gain to rf’tlp,egr.

Dynamical System Responses

After the stationary influences to su,—cgr have been investigated, the dynamical system responses
in Fig. 4.2 are focused and motivated by the signal flow diagram in Fig. 4.1. In the HP-EGR
system the pressure p; can be considered as the driving state for the fastest process dynamics.
When the HP-EGR-valve suddenly opens, a high pressure difference between the states p,; and
p3 exists. This pressure difference increases the mass flow rate over the opening HP-EGR-valve
almost instantaneously and the exhaust manifold empties. As a result the pressure p; abruptly
sinks until a short-time equilibrium between #1,, r;zhp,egr, the corresponding flow orifices and their
counter pressures is reached. In the intake manifold the relative high exhaust pressure pj; drives
r;zhp_cgr, so that p,; rises. Furthermore, the recirculated exhaust gas significantly increases the
intake temperature, while the compressor is still delivering its mass flow rate .. These effects lead
to the non-minimum phase behaviour in p,;. For the compressor the dynamical increasing counter
pressure po; is a resistance, so that the mass flow rate over the compressor and the dependent mass
flow rate 1, steeply drop.

Shortly after the dynamical fast transients are settled, the slow turbocharger dynamics gets visible
in 1. The opening of sp, e bypasses the turbine and the turbine mass flow rate 7, drops. As a
result the turbine power drops more than the compressor power and the turbocharger decelerates
until a new equilibrium between compressor and turbine power is reached. During this transient
the turbocharger moment of inertia dominates the process dynamics. This dynamical slow tur-
bocharger deceleration can be observed in the turbocharger speed and all pressures and mass flow
rates in Fig. 4.2.

Similar observations can be made for the fast and the slow dynamics in case of a HP-EGR-valve
closing. During the dynamical fast HP-EGR-valve closing, the decreasing amount of r;zhp,egr can-
not be substituted by the compressor, which is still working against the relative high pressure py;,
respectively py.. At the same time the engine inflow 71¢ng in stays rather constant and 75; almost
instantaneously drops. Consequently, the engine inflow empties the intake manifold and this res-
ults in the non-minimal phase drop of py;. As a result the pressure ratio over the compressor wheel
sinks and larger gas flow rates 71, and r1,;; can be charged into the intake manifold. In the exhaust
system the HP-EGR-valve closing redirects the engine outflow over the turbine and the exhaust
pressure pj increases quickly due to the decreased overall flow area at constant volume flow rate.
This increased turbine mass flow rate establishes a dynamical slow turbocharger acceleration via
the raised turbine power.

Finally, due to the stationary relationship between the states p; and ps and #,;,, the dynamics in
the LP-EGR path are directly linked to the air mass flow rate.
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These stationary and dynamical couplings can be observed over the whole engine operation range
and the interested reader can gain further process insights with step responses to sy, oo taken at
different engine operation points in Mrosek (2017). It should be noted that the stationary and dy-
namical influences strongly vary with the engine operation point. Especially the stationary process
gain can easily vary by a factor of 3. .. 4, see exemplary the coupling between sy, _cgr and 71, over
the engine operation range in Fig. C.1.

Summing up, Snp—egr Positively influences 71, —er and negatively influences iz, r;zlp,egr and py;.
The process gains of these influences depend on the engine operation point and the position Sy, —cgr-
Generally, the influences to the mass flow rate quantities are dynamically fast and are superim-
posed by the slow dynamics of the turbocharger, which can be seen in the quantities py; and n.

4.1.2 VGT-Actuator System Responses

Next, the influences of the VGT-actuator s, to the gas system quantities are illustrated in Fig. 4.3
with step responses at three different positions of the HP-EGR-valve i, —cgr. In the beginning the
VGT-actuator is fully closed and then completely opens at a step time of 1s. This opening in-
creases the cross-sectional area for the turbine and decreases the swirl velocity c¢g,., see (3.56).
Consequently, less pressure is necessary to drive the turbine mass flow rate 71, and the exhaust
pressure p; rapidly drops. Furthermore, the reduced swirl velocity also reduces the turbine power
P, and the turbocharger decelerates its speed n.. The resulting consequences of the reduced tur-
bocharger speed can be observed with the assistance of Fig. 4.1 in the shown quantities charge-air
pressure py; as well as in the temperatures 75 and 75;., which represent the compressor’s enthalpy
increase. For a closing VGT-actuator these couplings appear vice versa. Generally, the actuator s
shows a positive coupling to the charge-air pressure, which strongly varies in process gain over the
engine working range. For more investigations about these varying process gains refer to (Mrosek,
2017).

Stationary Side-effects of s; to rfthp_egr and rir,;, as well as Sign-Reversal of 7,

A special role plays the HP- EGR valve opening Shy—cgr- When this valve is opened, the pressure
p3 drives the mass flow rate mhp cgr- The influence of s, to mhp cgr 18 throughout positive, since a
closing of s, (s¢ — 1) rises ps. Interestingly the sign of the stationary process gain between s, and
7i1,;; depends on the opening position sy, . For a fairly closed HP-EGR-valve in the left column
of Fig. 4.3 this process gain is positive and becomes almost zero at a certain position of Shp—cgr
in the middle column. Finally, for a more opened HP-EGR-valve in the right column this process
gain turns into a negative direction.

This sign-reversal of 71,;, has multiple effects and can be explained as follows. First the stationary
mass flow rate into the cylinder can be expressed by the balance equation

Mengin = Mair + Mip—egr + Mhp—egrs 4.1)
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Figure 4.3: Measured and simulated step responses to a s¢-step at three different spp—cgr posi-

tions (slp_cgr/mh = 0.3, Uice = 0, Neng &~ 2000 min~!, Uin) = 15mm3/cyc>

at which 71, j, is roughly proportional to the gas density in the intake manifold (3.28) and there-
fore proportional to the charge-air pressure and reciprocal to the intake temperature, see also
Fig. 4.1. For the sign-reversal of 71, the two quantities #ieng in and r;zhp,egr come into play. On
the one hand the closing of s increases the swirl velocity, the pressure ps, the turbine power and
consequently the charge-air pressure p,; and as a further result the quantity 71eng,in rises.

On the other hand the flow restriction over the turbine gets larger and furthermore the flow orifice
of Shp—cer has to be considered, since both orifices determine the exhaust manifold outflow. The
further sy, —cgr Opens, the more gas mass flow rate can recirculate from the exhaust manifold via
the HP-EGR route and less gas passes the turbine. This mass flow rate is missing at the turbine
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wheel and less power is transferred to the compressor, so that the increase of p,; for a closing
VGT-actuator becomes smaller with the opening of sy, _cgr While n%hp,eg, increases. Anymore, the
increasing mass flow rate i%hp_egr raises the intake temperature. These changes in py; and T
determine the variation of the mass flow rate into the engine iy in. Hence, three cases can be
considered. When #itepg i, Tises stronger than r;thp,egr, a positive cross-coupling can be observed
between s, and r1,;,. For an equal magnitude of change this cross-coupling becomes zero and
negative for a larger increase of r;zhp,egr. Finally, the LP-EGR mass flow rate is directly coupled to
m1,;; and also shows the sign-reversal characteristics.

Dynamical System Responses

The dynamical system properties for a s; actuation are comparable to the process dynamics result-
ing from sy, ¢, and show the fast process states p,; and p3 and the dynamical slow process state
ny. which drive the output quantities. Note, that influences on p,; via the HP-EGR path are dy-
namically fast, while the influences of 1, to p,; are dynamically slow. An excitation of s; has two
dynamical effects of a fast process response via the changed turbine flow orifice and a dynamical
delayed process response via the changed turbine power.

When the actuator s, moves, the flow restriction over the turbine changes first. In Fig. 4.3 an
opening of s, (s; — 0) widens the turbine’s cross sectional area and the pressure p; rapidly drops.
This rapid pressure drop in p; drastically lowers the pressure ratio over the HP-EGR path and
causes steep drops in r;zhp_eg, which can be noticed during the excitation steps two and three in
Fig. 4.3. In order to satisfy Eq. (4.1), the ebbing mass flow rate r;zhp,egr is taken over by the
compressor and a large overshoot in the quantities 71,, and nfup,sgr can be noticed. Naturally,
these overshoots have consequences for the emission formation, see Mrosek (2017). Hence, a
VGT control scheme, as given in Sect. 7.4.5, should limit the opening speed of s, to avoid an
overshoot of 71,

After the fast pressure dynamics are settled, the changed turbine power comes into play and the
turbocharger decelerates, see Fig. 4.1. The slowing turbocharger decreases the charging pressure
P2 and the mass flow rates settle to their steady state conditions. Along with p,; also the intake
temperatures 75, and 75;; show the course of the n,, dynamics. Whereas the measured temperat-
ures are further low pass filtered by the heat storage in the turbocharger and the sensors’ dynam-
ics. When s, closes (s; — 1), the pressure p; increases relatively slow compared to the pressure
course during the actuator opening. For this actuator closing the dynamics in p; show a dynam-
ical fast portion for the changed flow orifice and a dynamical slow portion which follows the
charge-pressure build-up. All in all the s, actuator manipulation results in a non-linear direction
dependent dynamics in the quantities 71, i%hp,eg,, r;tlp,eg, and p3. One reason is that p; can be
lowered almost instantaneously via the turbine’s cross sectional area, while the pressure build-up
is delayed by the exhaust manifold volume and the turbocharger dynamics. Another reason lies
in the asymmetrical VGT-actuator dynamics, as given in Fig. 4.4a) for the actuator opening and
Fig. 4.4b) for the actuator closing.
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Figure 4.4: Direction dependent dynamics of the VGT-actuator, zoom into Fig. 4.3 excitation
step 1. a) VGT-actuator opening b) VGT-actuator closing

The actuator opening takes about 100 ms, while the actuator closing process takes 300 ms. A
main reason for this dynamical asymmetry lies in the design of pneumatical actuators, which are
driven by the atmospheric pressure with an almost infinite volume for the opening direction and
the vacuum-system with a limited volume for the closing direction. These pressures drive the
actuator and result in the asymmetrical dynamics which shall not be further discussed here. For
further readings about modelling and control of pneumatic actuators refer to Moraal et al. (1999);
Schwarte (2007); Galindo et al. (2009). However, even if the asymmetrical dynamics will not be
further investigated in this dissertation, a simplified dynamical model for the asymmetrical VGT-
actuator dynamics will be utilised to achieve a better control quality in the semi-physical feed
forward control in Sect. 7.4.

In a nutshell s, influences the quantities p,; and rfzhp_cgr positively, while the influence to 71,
and l%lp,eg, can be negative, zero or positive. This change in sign depends on the opening of the
HP-EGR-valve and the engine operation point. For step changes of the VGT-actuator a superpos-
ition of a fast and a slow dynamics can be observed in the pressures and mass flow rates. The fast
dynamics are introduced via the HP-EGR path and the pressures p,; and ps;, while the slow dy-
namics results from turbocharger acceleration. Further, a fast opening of the VT G-actuator results
in a collapse of i hp—egr and can be seen in an overshoot of 77z

4.1.3 LP-EGR/ETH Actuator System Responses

The system responses to the combined actuator sy, cgr/etn (Fig. 2.2a)) complete the system analysis
by step responses. In Fig. 4.5 three excitation steps of $jy_cgr/etn are shown. In the first two step
responses only the LP-EGR-valve is active, whereas in the last excitation step also the exhaust
throttle valve is activated.

The stationary system responses of sy, /e can be described by the LP-EGR-valve (si,—cr) flow
restriction and the exhaust throttle valve (sey,) flow restriction at the engine exhaust pipe. First the
LP-EGR-valve opening determines the mass flow rate of the LP-EGR path via Eq. (3.22) mainly
via the pressure difference between p; and ps. These pressures are directly related to the mass
flow rate entering and exiting the engine gas system, see also Sect. 4.1.1. Thus, the lower the
pressure p; falls in relationship to p,, the more fresh air flows via the air filter into the engine gas
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Figure 4.5: Measured and simulated step responses to a step input of Sjp—cgr at 7eng =
2000 min™" and uipy = 15mm>/cyc (s; = 1, sShp—cgr = 0.2, ttice = 0)

system. This increased air mass flow rate causes a pressure rise in ps since the inflowing gas mass
flow rate and the injected fuel stationary have to exit the exhaust system.

An opening of sy, e bypasses the intake and exhaust system and the pressure difference between
p1 and ps drives 1y, co. This mass flow rate mlp cgr Tesults in a rlse of p; and 1, decreases.
Consequently, the actuator syp_cgr/cn Shows a positive process gain to mlp _cgr and a negative process
gain to 71,;. Furthermore, the rising LP-EGR mass flow rate increases the temperatures upstream
T, and downstream the compressor 7.

When the pressure difference over the LP-EGR path is too small to drive a desired rﬁzlp,egr, the
exhaust throttle valve can increase this pressure difference via an increased exhaust pressure ps,
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see Fig. 4.5 excitation step 3. During this operation a small coupling to the pressures p; and
p3 can be observed. Otherwise these states and the output quantity ffth,egr show only a minor
coupling to the actuator Sy, _egr/cin. Similar couplings can be observed for the alternative actuator
configuration sy, cgr/in, With an intake throttle valve s;;, which replaces the exhaust throttle valve

Seth-

The dynamical system properties are mainly determined by the fast transients of p; and ps. Hence,
there are no significant dynamics in the quantities 71, and iy —cgr.

In summary the LP-EGR actuators positively influence r;11p_cg, and ri1,;, dynamical fast, while there
is only a weak influence to the quantities on the high pressure side of the air path.

4.1.4 Time Constants and Process Gains of the Air Path Model

From control perspective there is a legitimate interest to formulate the arising system properties
of the mean value engine model in concrete quantities as process gains, time constants and eigen-
values of this process. For an air path control the quantities of interest are pressures and the mass
flow rates. The pressures can be considered as derived states of stored mass and energy, while the
mass flow rates represent output quantities.

The system dynamics in the utilised mean value engine model from Chap. 3 are modelled by the
states storage of gas masses (3.1), energy (3.2) and turbocharger speed (3.62). Further states are
air content of storages (3.17) and compressor mass flow rate dynamics (3.39). The measurable
quantities storage temperature and storage pressure, which are closely related to the system states,
follow by the relationships (3.4) and (3.8) from the stored gas masses and energy.

The differential equations for pressure changes and temperature changes in storages are given by
the adiabatic formulation as

dp KR u
t
¥ = met in,i Z mout J st (42)
i=1
and
dT, RT,
dtSt = . S; Z mm i m i —Cp Z mout,/ st —Cv Z mm i Z mnut J Tst - (43)
st %t \%

i=1 i=1

However, due to the nonlinear process characteristics of the in- and outflowing mass flow rates and
the dependency of Eq. (4.2) from Eq. (4.3), it is not trivial to derive a linear time constant for each
storage element. Thus, the filling time constant of a storage element is approximated according
to (Zahn, 2012) as
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Ty A ——, 4.4

in which #iy is the total mass flow rate passing through a storage element. In a typical engine
operation the mass flow rate passing through the storages in the intake and exhaust system varies
between 25 and 300 kg/h and yields with the identified storage volume Vj the filling time constants
in Tab. 4.1 for the single modelled storages.

Table 4.1: Approximated filling time constants of the storages in the intake and exhaust system

Storage Element Volume Time Constant
Vginem?® 7y inms

Vi 1400 12...144

Vae 3600 56...370

Vai 5600 101...461

Vi 1400 15...144

V4 1950 10...120

Vs 25400 130...1567

Next, the time constant of the turbocharger can be determined analytically by transforming the
turbocharger speed in its angular velocity

W = 27T Nye 4.5)

and replace the effective power P; at the turbocharger shaft by the acting torque M;

P,' = 2][}’[th,' ie {t, C, f} (46)

Substituting (4.5) and (4.6) in (3.62) yields a different form of turbocharger acceleration

o _ M+ M+ M

= 4.7
dr I @.7)
in which the friction torque M; can be replaced by (4.5), (4.6) and (3.63) as
dwtc
dr Ii. + wtckf = - (Mt + Mc) . (48)

This differential equation includes the turbocharger time constant t,. = I,/ k. With an identified
shaft inertia of 1.10e-5 kg m? and an identified friction factor k; of 3.23e-6 kg m?/s the time con-
stant is given as 3.4 s. However, as it can be observed in the step responses, this time constant does
not reflect the process behaviour of the nonlinear turbocharger dynamics, since both M, and M,
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are functions of the turbocharger speed and the resulting mass flow rates, see (3.50) and (3.59).
A more reasonable time constant of the turbocharger dynamics between 0.7s and 2.6 s can be
obtained by linearising the mean value engine model with the MATLAB linmod command. In
which the lower value refers to engine operation points with almost closed HP-EGR-valve, while
the larger time constant results from engine operation points with opened HP-EGR-valve.

Besides the time constants, also the process gains give valuable insights for the later control
design. Thus, the minimal and maximal values of the modelled process gains are determined at
three engine operation points' op; . .. ops by model linearisation and are summarised in Tab. 4.1.4.
Since the position of the air path actuators have a significant influence on the process gains, not
investigated actuators are kept at fixed positions (Spp—cgr = 0.5; 8¢ = 0.5; Sip—egr/in = 0.3), while
the actuators in the columns of Tab. 4.1.4 are varied between positions of 0..05...0.95 to avoid
a zero gain of a closed actuator. The range of process gains to the quantities p,;, 1, Hipp—cgr and
Tip_ger are listed in the column for each actuator.

The results in Tab. 4.1.4 confirm the investigations of the previous sections and show that the en-
gine air path is a multi-variable system with strong interactions between actuators and the single
considered quantities. The shown process gains strongly vary between single engine operation
points, at a fixed operation point and with variation of the other actuators.2 Especially the re-
lationship As, to Ap,; shows a strongly varying process gain between single engine operation
points, while the relationships As; to A7ty and As; to Anry, o, show the sign-reversal in the
process gain.

As a consequence of these strongly varying time constants and process gains, a suitable control
concept in Chap. 7 must handle these system properties and deliver a good response to setpoint
changes and disturbance rejection at all engine operation points and operation modes.

4.1.5 Summarised Air Path Couplings in P-Canonical Structure

As a summary the air path influences of the classical syp_cer and s, control problem (Schlofer,
2000; Riickert, 2004; von Pfeil, 2011) can be expanded in Fig. 4.6 to the dual EGR path control
problem with three actuators Shp—cgr, S, Sip—cgr/eth and Sip—cgr/itn and the output quantities 71y, —cgr,
Tiip_cgr> Hlair and p; (Mrosek and Isermann, 2011). In which simplified system transfer functions
are given in linearised form (A) and p-canonical structure with their corresponding step responses.

In order to describe the complete system behaviour, both possible LP-EGR-actuator configurations
with exhaust throttle valve Asj,—cgr/em and intake throttle valve Asy,—cgr/in are given as inputs for
the i transfer functions G3;. These process gains are of the same sign for both actuators. Further,
the output quantities A7z, and Arizy, ., are shown as the same process output. The process gains
between actuators and output quantities only differ for the LP-EGR transfer function G353, where

1opl : Meng = 1000min™", ui = 10mm?/eyc, 0pa: feng = 2000min~!, uj = 15mm3/cyc,

0p3: Neng = 3000min™", uj; = 20 mm?3/cyc

2For simplification a variation of other actuators is not considered in Tab. 4.1.4.
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Table 4.2: Minimal and maximal process gain of the linearised mean value engine model with
actuators in normalised position (dimensionless) at the engine operation points 0p : feng =
1000 min—', Uin) = 1Omm3/cyc, 0p2: Neng = 2000 min~', Uin) = 15mm3/cyc, 0p3: Neng =
3000min~ ', ui,y = 20mm?/cyc. Not investigated actuators are kept at fixed positions
Shp—egr = 0.5; 8¢ = 0.5; S1p—egr/in = 0.3

i € {t, hp—egr, Ip—egr/eth, lpfegr/ith} Asy AShpfegr ASlpfegr/eth ASlpfegr/ith
Apai/ Asi inbar  op; 0.01...0.06 -0.06...-0.02 -0.04...0.02 -0.01...0.001
Apai/ Asi inbar  opy 02...05 -0.4...-0.1 -0.2...0.02 -0.06...0.02
Apai/As; inbar  ops 09...2.0 -0.3...-0.1 -04...0.2 -0.35...0.2
Avitgir/ Asi inkg/h op;  -18...-3  -50...-20  -50...-40  -50...-24
Aritgir/ As; inkg’/h  op; -30...20 -100...-20  -115...-100 -95...-70
Aritgir/ Asi inkg/h  op; 60...140 -150...-33 -260...-200  -200...-150
Aty e/As; inkgh opy  5...20 15...60 02...4 02...2
Abitpy—egr/As;  inkg/h  ops 20...32 15...115 -0.5...5 -0.5...5
Atitgy—cge/Asi inkgh ops  20...50 20...250 10...1 1.6
Aityy—cgr/Asi inkg/h  opy 8...-1 -18...-5 38...50 24...38
Anityp—_eg/As;  inkg/h  ops -12...8 -40...-11 72...100 62...100
Aritp—cgr/As;  inkg/h  ops3 21...51 -70...-20 50...250 126...210

the process gain between the LP-EGR-actuators and Ariny,_e, is positive, while it is negative for
Amiy;. The weak LP-EGR process gains G531 and G, are displayed in a dashed line. Finally, G,;
denotes the transfer function between As; and the two output quantities Ar,; and Anty, . For
these influence the sign of the process gain depends on the engine operation point and the opening
of Spp—cgr, s€€ Sect. 4.1.2.

In anticipation of Chap. 7 the influence of the different actuators to the output quantities will be
handled by two separate control concepts. A first control concept handles the actuation of HP-
EGR-valve and VGT-actuator, while a second control concept controls the LP-EGR-actuator and
handles all disturbances via G13 and G,3 of the first control concept.

4.1.6 Summary

An investigation of the step responses to steps of the actuators sp,—cgr, S; and Sjp_cgr/en Showed,
that measurements and simulations of the mean value engine model agree well. Consequently,
the model is capable to simulate the relevant engine air path quantities. The engine air path is a
nonlinear process with strongly varying stationary process gains and dynamics. These quantities
vary with the engine operation point and the position of the air path actuators. While there are
strong influences of the HP-EGR-valve and VGT-actuator to the air path quantities, there are
only weak influences of the LP-EGR-actuators to the quantities on the high-pressure side of the
air path (Wny—cgr, Pai. P3.Mc). Thus, in Chap. 7 two separate control concepts will control the

216.73.216.96, am 13.01.2026, 21:09:54. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186803122

48 4 System Properties of the Air Path with HP- and LP-EGR

Aritgi
ASlpfegr/eth 1
Anity,—,
AS1p—cgr/ith lp—egr
p—egr/i _— A"nhpfegr
Apsi

[] control concept 1
[] control concept 2

Figure 4.6: Signal flow and step responses between the actuators for the two EGR paths, the
VGT-actuator and the resulting output variables HP-EGR mass flow rate, LP-EGR mass flow
rate, air mass flow rate and charging pressure in linearised p-canonical structure.

nonlinear engine process, while the first control concept handles the actuation of HP-EGR-valve
and VGT-actuator, the second controls the LP-EGR-actuator.

4.2 Stationary System Properties

After the system couplings have been investigated by means of step responses, in the following a
special attention will be paid to stationary differences between different EGR configurations. Due
to this dissertation’s compactness some stationary system properties have to be briefly summarised
in the following. The interested reader can find further readings about these stationary system
properties in Mrosek (2017)

HP- and LP-EGR Operation Range

HP- and LP-EGR operation show large differences in the feasible operation range in i, and
P2i. While a HP-EGR operation substantially decreases the charging pressure there are only small
influences of a LP-EGR operation in the charging pressure, see Fig. 4.2 and Fig. 4.5. Further, a
LP-EGR operation with exhaust throttle valve is favourable to an operation with intake throttle
valve with respect to the feasible operation area in the 71,;;/ pyi-plane (Mrosek, 2017).
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HP- and LP-EGR Charge Cycle Losses

A comparison between Siy_cgr/eth and Sip—cgr/icn 10 in Mrosek (2017) shows, that at a constant air
mass flow rate and charging pressure the exhaust throttle valve is advantageous over the intake
throttle valve configuration with respect to the charge cycle losses. At rather low charging pres-
Sures Spy—cgr 18 advantageous over the LP-EGR configurations, while this benefit turns to a dis-
advantage when a rather high charging pressure needs to be maintained during a simultaneous
HP-EGR or LP-EGR-operation.

Influence of the Ambient Conditions

Ambient conditions have a strong effect on the air path quantities (Mrosek, 2017). Therefore the
ambient conditions should be incorporated in the engine model to reliably simulate the engine
during the current present ambient conditions. Otherwise a test bench conditioning with a defined
air pressure and a defined gas temperature can help to get reproducible measurements and simu-
lation results. In order to get improved feedforward control signals, these ambient conditions are
incorporated into the semi-physical feedforward control scheme in Chap. 7.

4.2.1 Properties of the Combined LP-EGR Actuators

Next, the influences of the combined actuators sy, cgr/ith and Sip—cer/etn are investigated in the
following with simulations of the mean value engine model at four exemplary engine operation
points 0p; ... o0pa, as given in Tab. C.1. In Fig. 4.7a) the stationary characteristics of the combined
actuator Sy, /ity With regard to the quantities 7., p1, ps and the low pressure EGR-rate

Mip—egr

0 4.9)
Mip—egr + Hlair

Fp—egr =

are shown. The topmost plot in Fig. 4.7a) shows a strong increase in 7i1,; for operation points with
a higher load and engine speed. Furthermore, it can be seen, that the actuator shaping in Appx. C
gives a quite linear relationship between actuator position and #1,;,. Obviously the stationary gain
between actuator position and air mass flow rate depends highly on the engine operation point and
varies by factor 4 between op; and opy.

In the middle plot of Fig. 4.7a) the influences of sj, /it On exhaust pressure ps and intake
pressure p; are investigated. These influences can be divided into two regions. At Si,—cg/in €
[0,0.28] only the LP-EGR-valve is active, while otherwise the intake throttle valve is actuated.
When the LP-EGR-valve opens, the pressure in the intake system rises, since the exhaust excess
pressure routes the exhaust gas mass flow rate into the intake manifold. This results in a decreased
mass flow rate through the air filter and therefore in an increase of p;. Anymore, less of the
remaining gas has to pass the exhaust pipe, which results in the decrease of ps. For a higher
LP-EGR mass flow rate, the pressure drop over the LP-EGR-valve has to be enlarged. This is
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Figure 4.7: Mean value engine model simulations at four engine operation points op; ...o0p4,
as given in Tab. C.1. The further simulated grid data points show that the LP-EGR-rate is fairly
invariant to the engine operation point and mainly depends on the positions of a) sy, _cgr/itn and

b) Slp—egr/eth-

achieved with the intake throttle valve for sy, cgr/in € ]0.28, 1], which throttles the intake system
after the air filter by closing si. Then the cylinder and the compressor suction generate a partial
vacuum p;, which drives the LP-EGR mass flow rate and results in a further decrease of ps.
Especially at engine operation points with high LP-EGR mass flow rates (ops, ops) the pressure
p1 becomes very low. Hence, the system’s pressure tolerances to p; give the limitations for this
LP-EGR configuration and will determine the amount of LP-EGR which can be recirculated at
engine operation points with high gas mass flow rates entering the engine.

The bottom graph in Fig. 4.7a) shows the relationship between the actuator position Sy, —cgr/im and
the low pressure EGR-rate (4.9). It can be clearly seen, that ry,_,; is fairly invariant to the engine
operation point. For all four engine operation points the curves overlap and the single curves are
hard to distinguish. For a further analysis the LP-EGR-rate is simulated in the whole modelled
engine operation range (Meng, Uinj), considering a large full factorial set of combinations between
Sip—egr/ith St and Spp_egr. These simulations are added as grid data points to the bottom graph and
confirm the 1y, invariance from the engine operation point.

Interestingly, ri,—cgr almost exclusively depends on the position of the combined actuator si,—cgr/ith-
This is mainly caused by the relationship between the air mass flow rate and the pressures p; and
ps and can be described by the couplings between 71y, ¢, and the actuators sp, ¢, and s, see
Sect. 4.1. Anymore, a more detailed explanation for this largely operation point invariant charac-
teristics between riy_cgr and Sip—cgr/itn 1S given in the following. The mass flow rate through the LP-
EGR-valve (3.22) is mainly determined by the flow coefficient (Cp A cf)ip—cer and the pressure drop
over the valve itself. The gas temperature plays also a role, but this can be considered as minor,
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since on the one hand the model sensitivity to the gas temperature is rather small (Mrosek et al.,
2010b) and on the other hand the gas is cooled, so that temperature variations after the LP-EGR
cooler are moderate.

A change in the engine operation point or the air path actuators result in a change of 7i,;. In
order to satisfy Eq. (3.22) this mass flow rate entering the gas system results from an altered
pressure p;. Furthermore, in stationary engine conditions the inflowing gas flow has to leave the
system via the exhaust pipe, being enriched by the injected fuel mass. A change in the outflowing
exhaust gas flow rate also changes the exhaust pressure ps. Fortunately, the pressures p; and ps
are influenced in opposite directions by #1,;,. For a rise in #1,;, the pressure p; decreases and the
pressure ps increases and vice versa. These characteristics also influence the pressure drop over
the LP-EGR-valve, so that 71y, ¢, changes in the same direction as 7i,;;. This means that also
Fip—ecgr 18 fairly invariant to the engine operation point, since all external changes of 7, result
in a change of #itj,_cg. In the later following Sect. 7.7 this coherence will be utilised to derive a
semi-physical control scheme for the LP-EGR path.

A combination between a LP-EGR-valve and an exhaust throttle valve gives the second option for
a LP-EGR system. Similar to the previous analysis the actuator sy, _cgr/cin is analysed in Fig. 4.7b).
In the topmost plot the relationship between the air mass flow rate and the actuator position shows
a comparable operation point dependent stationary gain between the actuator position and #1,;.
In the middle plot first differences between the intake throttle valve and the exhaust throttle valve
can be observed. When the exhaust throttle valve is in operation for si,—egr/en € ]0.28, 1] a rise in
p1 and ps can be observed. Also in this configuration the strong rising pressure ps seems to be a
limiting factor for high LP-EGR mass flow rates at engine operation points with a high air mass
flow rate, e.g. op; and op,.

In the bottom plot of Fig. 4.7b) the relationship between ry,—_,r and the actuator position siy_cgr/eth
is shown. Also for this sensor configuration ry,_cs is quite dependent on the actuator position.
Further, the simulations over the whole engine operation range with the full factorial actuation of
the other air path actuators confirm this dependency in the grid data points. In comparison to the
other curves only the curve for op; shows small variations. These variations become larger for a
further closed exhaust throttle valve (s,—cgr/en — 1) and very high LP-EGR-rates. Investigations
have shown, that the exhaust gas temperature 7’5 is the main reason for these deviations. Contrary
to the intake throttle valve configuration the flow orifice of the exhaust throttle valve is exposed
to the rather hot tailpipe temperatures. A strong change in the exhaust temperature in Eq. (3.22)
changes the gas density and also the necessary pressure drop between ps and p, to maintain a
defined mass flow rate through the flow orifice (Cp A f)em- This temperature dependency gets even
larger for an orifice with a small effective diameter and larger pressure drops, see Mrosek et al.
(2010b) and Mrosek (2017). At op; the engine is operated with no injection, so that the exhaust
temperature is comparable low. This readjusts the pressure relationship between p; and ps and
results in small variations to the other curves.

However, the deviations between the actuator position and 7y, . are comparable small and occur
mostly in engine overrun state with no demand for an air path control. Further, the deviations are
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only significant for large LP-EGR-rates. Thus, also the 7, ., invariance to the exhaust throttle
valve position can be utilised for a control scheme as presented in Sect. 7.7.

4.3 Air Content Dynamics

After the system properties of the dual path EGR system have been investigated by means of step
functions and stationary system properties, the air content dynamics will be investigated in the
following. The main differences between the HP- and LP-EGR system can be seen in different
operation ranges in charging pressure and air mass flow rate, different charge temperature and
gas propagation times in the intake and exhaust system. The fastest way to influence the cylinder
charge is given via the charge cycle by the internal EGR. Then follows the HP-EGR which directly
connects the intake and exhaust manifold. Finally, the gas propagation through the LP-EGR path
gives the dynamical slowest option to influence the cylinder charge, since the gas has to circle
around almost the whole intake and exhaust system.

Section 1 Section 2 Zoom Section 1 Zoom Section 2
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gb 120 i i
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Figure 4.8: Mean value engine model simulation of the dynamical impact for step excitations
Of Shp—cgr aNd Sjp—cgr/crh to the air mass flow rate iz, the air contents (ratio of fresh air mass
to total gas mass) in the intake x»; and exhaust manifold x3 (7eng = 2000 min~1, Upnj =
15mm?3/cyc)

Fig. 4.8 illustrates the air content dynamics of the HP- and LP-EGR system with step excitations
of Spp—cor and $j;_cor/en Which result in step responses of equal size in 7, At a time of 0s the
HP-EGR-valve closes and the air mass flow rate increases in the first milliseconds from 80 kg/h
to 117.5 kg/h. Then the slow turbocharger acceleration further increases the air mass flow rate
to its stationary end value of 120 kg/h. For the valve opening at a time of 3 s a similar course of
71, can be observed. In comparison to the sp,—.r response, the response to the step in Sip—cgr/eth
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shows a significant faster dynamics in 71,4, as it can be seen more detailed in the zoomed sections.
This is due to the direct injection of 71, .4 behind the air mass flow rate sensor, see Fig. 2.1. In
contrast, the influence of the HP-EGR has to propagate through the whole intake volume and is
filtered by the intake system states. Hence, the air mass flow rate dynamics of the LP-EGR system
is significantly faster than the HP-EGR step response. Further, the LP-EGR system influences the
turbocharger dynamics less.

When the air content step responses in the intake manifold x,; and the exhaust manifold x; are
investigated, the fast and the slow system dynamics are opposite. With regard to these quantities,
the HP-EGR system has the faster system dynamics, since the HP-EGR path is a short connection
between the exhaust manifold and the intake manifold. For the LP-EGR path, the exhaust gas
has to pass the whole exhaust and intake system until it is recirculated into the intake manifold.
Furthermore, the air content dynamics is direction dependent. A total EGR-valve closing directly
disconnects the intake manifold from the exhaust system and the intake system is directly flushed
with fresh air. On the other hand an EGR-valve opening first recirculates exhaust gas with a larger
proportion of oxygen to the intake system and lowers the intake air content. Then this gas has to
pass the cylinder before it can lower the air content in the exhaust system to be recirculated into
the intake system again. Due to this recirculation process it usually takes a longer time until all
transients are settled and an equilibrium is reached for the EGR-valve opening. A further com-
parison between the air mass flow rate and the air content dynamics shows that especially in the
LP-EGR configuration the air content dynamics settles much slower than the 71,;, dynamics.

In Fig. 4.8 it can be further observed, that a fixed air mass flow rate in conjunction with a fixed
injection quantity generally results in a fixed air content after the combustion process xs3. This
observation corresponds to the definition of the air-fuel ratio (3.11) and its relationship to the air
content (3.13). However, at a constant 71,; and x; the air content in the intake manifold varies
with the charging pressure and the intake temperature in a way that x,; differs for HP- and LP-
EGR operation. This means that at a constant #1,;;, a lowered intake temperature or an increased
charging pressure demand a larger EGR mass flow rate to fill-up the increasing engine inflow
Teng,in, S€€ (3.28). Consequently, the air content x; in the intake manifold sinks. These changes
In Mengin and X,; compensate each other so that stationary the air contents Xepg ou and x3 stay
constant for an equal injection quantity and a constant 71,

In summary the air content shows an inherent dynamics, which can not be expressed by the air
path quantities mass flow rate and pressure. Thus, in the following section these inherent system
states are modelled by a air content model.
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4.4 Air Content Model

The main dynamical difference between the HP- and the LP-EGR system stays hidden from most
series sensors in the air content dynamics in the intake and exhaust system. These dynamics de-
termine the oxygen concentration in the cylinder charge and it will be later shown that the air
content influences the emission formation. Hence, it is advisable to derive a simplified control-
oriented model for these air content dynamics. Later it will be applied for the dynamical emission
simulation in Sect. 5.4 and to consider the air content dynamics in the air path control scheme in
Sect. 7.8. This model will utilise measured quantities to determine the air contents in the intake
and exhaust system.

The air content dynamics have been longer in the interest of research. Diop et al. (1999) model
the intake and exhaust air content for a turbocharged Diesel engine with HP-EGR with a lumped
parameter approach and a two volume air path discretisation. Wang (2009) further extends this
lumped parameter model for a HP- and LP-EGR system, discretises the air path into four volumes
and determines the air content dynamics with measurements of pressure and temperature in each
volume, an air mass flow rate measurement and the EGR mass flow rate determination via the flow
equation (3.22) for both EGR paths. Bessai et al. (2011) model the intake oxygen concentration
with dead times for the HP- and LP-EGR path.

Tl pile spol/Zc (T ) Tz (P2i)
S n‘[[h mengm

C) Measured

A Modelled
’neng out :
T3 xeng,oul Dead time

Figure 4.9: Control-oriented model for the air content in the intake (X, /2c5 X7i) and exhaust
system (X3, X5).

In the following a lumped parameter and a pipe receiver model for the air content dynamics with a
minimal sensor configuration will be described and validated with measurements from the engine
test bench according to Mrosek and Isermann (2010a). The lumped parameter and pipe receiver
model differ only by the pipe volume fraction &, which turns zero for the lumped parameter
model, see Eq. (3.18), Eq. (3.19) and Eq. (3.20).

Fig. 4.9 gives the model structure with four volumes and explicitly separates measured from mod-
elled quantities. The measured quantities are ambient pressure p, and temperature 7, air mass
flow rate r1,;, temperature after the intercooler 75;. and temperature after the HP-EGR cooler
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Thp—cer» charging pressure p,; and exhaust pressure ps. A similar temperature measurement struc-
ture with a T5;c and a Ty, e sensor are also utilised in Schommers et al. (2008) and Ertl et al.
(2009). Anymore, the position of the HP-EGR-valve sy, and either the exhaust throttle valve
position sy, or the intake throttle valve s;y, position need to be measured. Anymore, the ECU con-
tributes the series measurements Uipj, Ssa, @mi and neng. At last, the measured air-fuel ratio A will
only be used to validate the air content model with the test bench measurements.

The air path dynamics is modelled via the system states for the stored gas masses 71y and the
air contents Xy in the volumes V. Generally, the estimated gas mass in each volume can be
determined via the ideal gas law (3.8) from pressure, temperature and storage volume. Whereas
the storage volume is given by the air path geometry and follows by the pipe volume fraction &;
and Eq. (3.19) as the receiver volume. The pipe volume (3.18) contributes to the gas transport
delay time T, as given in (3.20). Setting the pipe volume fraction &, of all storages to zero
results in the lumped parameter model. Next, the differential equation for the storage air content
dynamics (3.17) can be rewritten with the consideration of the single transport delays 7, ; in each
pipe element i as

d : .
53551 (t) My ([) |:Z pot — Xst (t)) Min,i (l - Td,p,i)i| s (410)

i=1

where both the inflowing mass flow rates 7, ; and the inflowing air contents x;,; are delayed
by the gas propagation time. When the pipe receiver approach turns to the lumped parameter
approach these gas propagation times become zero. Note that both the inflowing air contents
and the inflowing mass flow rates have to be delayed by the same dead time Tj,,;, since the
delay is modelled at receiver inflow, see Fig. 3.2. If the mass flow rate would not be delayed,
an exemplary opening of the HP-EGR-valve would instantaneously change the air content of
the intake manifold, instead being delayed by its gas propagation time through the HP-EGR-
pipe. All considered dead times are shown in Fig. 4.9, in which an additional dead time Ty ;
considers the gas propagation time to the A-sensor. A further dead time Ty ng is caused by the
engine cycling time and considers the delay of the four stroke engine working cycle for both
modelling approaches.

The single volumes V,; interact via their air contents xy and the mass flow rates in the pipes. In
this connection the cylinder is a driving force in the system and delivers the burnt air content
Xeng,out (3.32) and the estimated mass flow rates entering rﬁzcng,in (3.28) and exiting rﬁzcng,om (3.30)
the cylinders. As a further simplification the estimated exhaust temperature Ty is set equal to the
temperature at engine exit T. eng,out (3.31). Then the HP-EGR mass flow rate can be determined
from the measured quantities via the flow equation (3.22) as

Py egr = min (Eq.(3.22), Eq.(4.12))

in 2 . 4.11
= min (((CDArcf)hpegr \/‘;—T\/ X [(H)K — (n) ]) ,mhp—cgr,max) ( )
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and is further limited by the maximal possible additional mass flow rate into the engine system by
the intake system balance equation

2 2 dpasi [ Vac Vai .
Mhp—egr,max = Meng,in + T (TZicR + j"ZiR — Majr. (412)

Besides the mass flow rates entering and exiting the system, also the dynamical gas storage via
pressure changes in the intake manifold are considered according to Eq. (D.1). Further, the gas
storage dynamics is dived into the two volumes V5. and Vy; with their distinct temperatures 75;. and
T:. This limitation of l%hp,egr to the balance equation (4.12) is necessary, since there is a certain
degree of measurement uncertainty in the estimated quantities and otherwise the later estimated
r;zlp_cgr would tend to have negative values for some uncertainty distribution. Accordingly the
LP-EGR mass flow rate can be determined with the balance equation

2 2 . 2 dpai Vae Vai
Myp—egr = Meng,in — Mair — Mpp—egr + ? (TzicR fZiR - (413)

Due to the limitation of rfu,p_cgr via (4.11) usually no negative LP-EGR mass flow rates (4.13) oc-
cur. However, when the engine is operated without any EGR it can happen that the measured value
of n1,;, is greater than the estimated value of I;’leng,in, In this special case the estimated LP-EGR
mass flow rate will become negative and the intake air content will reach values greater than 1.
Contrary to the other publications in the field of air content models the truncation of the estimated
HP-EGR mass flow rate and the possible air contents larger than one are the key to master the ex-
isting measurement uncertainties. It will be proven in Sect. 7.8.2, that these precautions lead to an
stationary correct estimated X3 and a measurement uncertainty tolerant reference value generation
for the air path control. Further, the estimated mass flow rate through the intake throttle valve

Py = Nleng,in — Mip—egr + 4V (4.14)
dr 7R
and the mass flow rate through the turbine
’;ll = ’%eng,out - r;lhp—egr (4.15)

follow by means of balance equations. For the turbine mass flow rate the effect of gas storage can
be neglected, since the exhaust manifold volume V3 is rather small. The mass flow rates (4.11)
and (4.14) as well as the measured temperature after the intercooler 7%;. and the HP-EGR temper-
ature i, allow a dynamical fast model of the intake gas temperature.

’fzi _ mthTZi:: + n"ll*ip—cngilp—cgr (416)

muy, + Mpp—cgr
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In contrast to a temperature measurement in the intake manifold, this model is less affected by
the significant temperature sensor dynamics, since the major dynamics of the temperature To;
is caused by the proportion of the dynamical fast estimated mass flow rates rizg, and 7itpy—cgr.
Afterwards 7 at the end of the exhaust pipe is modelled in two steps. First a simplified polynomial
model

f4 = u)fho + wf"lf} + wp3’1[73 (417)

describes the temperature T, after the turbocharger with the exhaust manifold temperature Ty
and the exhaust pressure p; as model mputs Then the exhaust pipe heat transfer model (3.23)
and (3.27) models the temperature T5 from 7. 4, T, and mt

The stored gas mass in the exhaust pipe is modelled with the differential equation

dm PN A
TS = M — Mp—egr — Meth, (418)

in which rfu and nflep,egr are given by (4.15) and (4.13). With the estimated gas mass 715 and f’5
the pressure js can be estimated by the ideal gas law (3.8). Then the mass flow rate .y, can be
determined via the flow equation for compressible fluids (3.22).

Finally, the states in the combined volume V7, are determined. The estimated gas mass propor-
tion, which is stored upstream the compressor is determined with the quantities 75 and ps;. The
stored gas mass proportion downstream the compressor can be given by the estimated temperature
T and the estimated pressure pj. T follows similar to (4.16) from ambient temperature, LP-EGR
gas temperature f]p,eg, and corresponding mass flow rates. In which f]p,egr is estimated via the
LP-EGR cooler model (3.23) and (3.27). For the pressure p; the flow equation for compressible
fluids (3.22) cannot be easily solved. However, s;, should throttle the mass flow rate only moder-
ate. Hence, the flow equation for incompressible fluids (3.21) is rearranged to estimate the intake
pressure p; as

. 2
A pa— ( Mair ) RTa with Codus = f(su). (4.19)
CoArer) 2pa

After the air content has been modelled with a lumped parameter model and a pipe receiver model,
these two models are validated with test bench measurements in Fig. 4.10. In the topmost plot the
mass flow rates for the measured air mass flow rate n1,;, and the step excitation signals n%hp,egr
and r;zlp_cgr are shown. During the operation without any EGR it can be seen, that the estimated
LP-EGR mass flow rate (4.13) compensates some of the model and measurement uncertainties in
rfzeng,;,,. At this time both the HP- and LP-EGR-valve are closed and the apparent value of rlep,egr
compensates these accumulated modelling uncertainties. This compensation ensures that the air
content after the combustion process stationary corresponds to the value which would be reached
with the currently measured air mass flow rate and injection quantity, see Sect. 7.8.2.
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Figure 4.10: Model validation with HP- and LP-EGR step responses for two air content mod-
els with a lumped parameter and a pipe receiver modelling approach (11eng & 1000 min~",

uinj = 16 mm?/cyc)

In the next plot the system response is given by two estimates of the air-fuel ratio (3.11) and
the measured air-fuel ratio A in the exhaust system, see Fig. 4.9. One estimate for the air fuel
ratio is determined by (3.11) from the injection quantity and the measured air mass flow rate. The
second estimate results from the air content model in lumped parameter form and is transformed
to the air-fuel ratio via Eq. (3.13). The air-fuel ratio, which is based on the pure air mass flow
rate measurement represents the effect of a classical air mass flow rate control scheme and hurries
ahead of the real air content dynamics. For both steps in HP- and LP-EGR the measured air-fuel
ratio is dynamically much slower than the 71,;; based one which is &~ 0.3 s ahead of the measured
HP-EGR response and precedes the LP-EGR response for ~ 1s. Then the lumped parameter
air content model is shown. It meets the intake and exhaust system dynamics much better and
fits well for the HP-EGR step response and delivers satisfying results for the LP-EGR system
response. During the LP-EGR response a distinctive dead time can be observed, which posses a
further step in the A-signal at a time between 21 s and 24 s. The simulation results for the lumped
parameter X-model average this measured dead time afflicted A-signal with satisfying results.

Better validation results can be reached with the pipe and receiver model, which separates the
air content dynamics into a transport delay pipe contribution and afterwards filters the signal in a
subsequent receiver. The third plot shows the validation results for the pipe receiver X-model. It
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gets obvious, that this model fits both the HP- and the LP-EGR step response well and also models
the A-signal step between 21 s and 24 s.

This step is caused by the inherent dynamics in the intake and exhaust system and can be explained
by the plotted air contents X/, and Xs in the bottom plot. At an intake and exhaust system equi-
librium with %5 & 0.55 and X/, ~ 1 the LP-EGR-valve is opened at a time of 20s. Then
exhaust gas X5 is recirculated into the intake system and lowers the intake system air content to
X1/2¢ & 0.85. This changed air content first has to propagate through the whole intake system,
is further lowered by the combustion process and has to pass the whole exhaust system until it
further lowers X5. Then the recirculation loop through the intake and exhaust system begins again
and stepwise lowers the air contents towards an equilibrium state. When the LP-EGR-valve is
fully closed at a time of 30s only the intake system needs to be flushed with fresh air and the
stationary condition is reached after the intake gas propagation time is settled.

This inherent air content dynamics is existent in the whole engine operation range and can be
observed in delay and step effects in the measured air-fuel ratio A. For more measurements with
these effects, which also contain their influence on the emission formation refer to Mrosek (2017).

In a nutshell the inherent dynamics of the air contents in the intake and exhaust system show a
major difference between the HP-EGR and the LP-EGR system. These dynamics can be success-
fully modelled by a pipe receiver air content model, which also reflects the long dead times of
more than 2.5 s and the step wise change in the air contents for step responses of LP-EGR. The
dynamics for a pure HP-EGR configuration are in the range of 150 ms and can be neglected for
standard engines. When it comes to combustion modes, which demand the dynamical precise con-
trol of large EGR-rates like homogeneous charge compression ignition (HCCI) or dual path EGR
system where the gas propagation times become large, it is advisable to consider these dynamics
in the air path control scheme.

Consequently the air content model and the related knowledge about the internal air content states
will be incorporated in the reference value generation for the air path control in Sect. 7.8. Contrary
to a reactive feedback control strategy of the air content in the intake or exhaust manifold this
reference value generation will allow a preemptive intervention in the dead time system. Anymore,
the pipe receiver air content model will be utilised for the simulation of the dynamical emissions
in Sect. 5.4.
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4.5 Summary

This chapter analyses the stationary and dynamical system properties of the dual path EGR system.
In this multi-variable system the actuation of one single actuator results in system responses of
many output quantities and process states. Besides the system responses of the classical HP-EGR
system, there are novel interactions with the additional LP-EGR path. These effects and the engine
operation point dependent process gains should be incorporated in an appropriate air path control
structure to achieve a good quality of control.

A LP-EGR system can be achieved with an intake throttle valve and an exhaust throttle valve. In
both LP-EGR configurations the achieved LP-EGR-rate is fairly invariant to the engine operation
point and mostly depends on the actuator position. This insight will later be incorporated to derive
the LP-EGR control scheme.

Finally, the air content dynamics are a main difference between a LP-EGR system and a HP-EGR
system. These dynamics can been modelled with a lumped parameter model and a pipe receiver
model. Both models are capable to describe the dynamic characteristics of the process, whereas the
more detailed pipe receiver model is more accurate in simulating the gas transport delays. Finally,
the intake air content could be identified as controlled variable for the HP-EGR and LP-EGR air
path.
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5 Emission and Combustion Models

Stationary and dynamical models for the NO, and particulate emissions as well as the combustion
quantities are given in this chapter. At first, sources of dynamics in the intake and exhaust sys-
tem as well as emission measurement dynamics are highlighted. Stationary global-local emission
and combustion models are introduced and finally extended to models for the dynamical emission
formation.

Emission and combustion models are widely used in the engine development process and there
exist a wide range of model classes, which differ in their complexity and their application for dif-
ferent tasks. Stiesch (2003) gives an overview of models with a high complexity, which model the
combustion process by computational fluid dynamics, multi-zone or single-zone models. These
models utilise chemical reaction kinetics or phenomenological models to describe the emission
formation. Depending on the model complexity these models allow to simulate the rate of heat
release and the emission formation for different injection patterns and combustion chamber geo-
metries in spatial and temporal resolution before the engine physically exists. However, these
models require a high modelling effort and they can be computationally demanding.

Besides these physically motivated models, experimental black-box models can be applied to
model the emissions and the combustion characteristics. They usually demand less modelling
effort and computational cost, but have to be trained with measurements from existing engines.
Limitations in model extrapolation capabilities can demand a new model training whenever the
engine configuration is modified. Therefore, black-box models are generally utilised quite late in
the engine development process, but their universal approximation of complex chemical kinetics in
the emission formation makes them a powerful instrument in the development phase. Especially
in the stationary engine calibration process black-box emission and combustion models can be
considered as state of the art, see Isermann (2010); Ropke et al. (2009).

In this chapter, black-box models are utilised to model the stationary and the dynamical emission
formation as well as the engine torque. Modelled emission quantities are the NO, emissions ¢pox
measured by a NGK NO; sensor and the particulate emissions ¢, which are measured by a
micro soot sensor. One objective of these models is to find a suitable control variable for the LP-
EGR path. Furthermore, these models will be utilised to optimise the engine control in stationary
and dynamical engine operation. In the following a comprehensive methodology to model the
stationary and dynamical emission formation and the engine torque will be given. It is based upon
several publications by Sequenz and Mrosek. At first, the process and measurement dynamics
in the intake and exhaust system are investigated (Mrosek et al., 2010a). Based on an algorithm
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for local polynomial regression and subset selection (Sequenz et al., 2009) a global-local' model
structure is introduced and stationary global models for the emissions and the combustion process
are given (Sequenz et al., 2010a,b). Finally, these combustion models are utilised to model the
dynamical emission formation (Mrosek et al., 2010a).

The emission measurement dynamics are detailed investigated in  Mrosek et al. (2011b)
and Mrosek (2017). In a nutshell these dynamics depend on engine speed, gas volume flow in
the exhaust system and the sensor itself. The micro soot measurement shows a dead time T tot,mss
between 2 s and 3.5s and a first order lag with a time constant in the range of 0.8 s, while the
NO, measurement posses a dead time Ty onox between 0.25s and 0.55s and is second order
filtered with time constants in the range of 0.2 s and 0.45s. Finally, an extensive description of
the innovative measurement design and preprocessing of measurement data is given in Mrosek
(2017).

5.1 Intake and Exhaust System Dynamics

There are various sources for process and sensor dynamics, which affect the emission formation
and the emission measurement in the intake and exhaust system (Mrosek et al., 2010a, 2011b).
Regarding these continuous dynamics, the combustion process can be simplified as a batch pro-
cess, in which the outcome of each combustion cycle is determined by the cylinder charge at intake
valve closing and the injection characteristics. Furthermore, the combustion outcome can be in-
fluenced by the conditions in the cylinder, like the cylinder wall temperature. In order to achieve
a good model quality, the emission model parameterisation demands a detailed investigation of
sensor and process dynamics. Since the cylinder charge composition is important for the emis-
sion formation it needs to be determined without being corrupted by process or sensor dynamics.
Consequently, Fig. 5.1 gives an overview of the different sources of process and sensor dynamics.

The fastest process dynamics are gas transport and mixing delays in the intake and the exhaust
system, see Sect. 4.3. Then the turbocharger acceleration and the much slower heat storage dy-
namics of turbocharger housing, coolers, engine block and ducts influence the cylinder charge.
These dynamics are additionally superimposed by significant measurement dynamics of temper-
ature sensors in the intake and exhaust system, while pressures and mass flow rate can be measured
without significant measurement dynamics (Mrosek et al., 2010b; Mrosek, 2017). In order to de-
termine the cylinder charge dynamically correct, the states x,;, p,; and T»; in the intake manifold
are chosen, because these states contain the most relevant information about the gas in the com-
bustion chamber. Note that in the following the air content Xy; is estimated by the pipe receiver air
content model of Sect. 4.4 and the intake temperature Ty is estimated by Eq. (4.16) to reduce the
temperature sensor delay.

U1n this context global-local stands for the interpolation of local models at a constant engine operation point (72cn,
uin;) to describe the global engine behaviour by superimposing local models over the dimensions 71¢ng and uiy;.
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Figure 5.1: Process and measurement dynamics in the intake and exhaust system

Besides the cylinder charge also the injection characteristics influence the combustion and the
emission formation. Quantities of the combustion characteristics are desired injection quantity
Uin, start of main injection gy, pressure on the common rail injection system py,; and crank angle
of 50 % mass fraction burned @qso. These are discrete time quantities at each injection event and
can be determined without any significant measurement dynamics. The engine speed 7., has also
an influence on the emission formation can be measured dynamically fast.

All dynamics from the instant of emission formation to the moment of measurement are con-
sidered as measurement dynamics. These dynamics consist of engine cycling time, gas transport
and mixing delay as well as sensor dynamics and are investigated in Mrosek et al. (2011b); Mrosek
(2017).

5.2 Measurement Design

In order to eliminate process and measurement dynamics, a grid based fast stationary measurement
with holding times of 155 is carried out to generate data points for emission and combustion
modelling. At fixed engine operation points in 7eng and ui, the quantities iy, pai, Pso and T
are closed-loop controlled? to reference values of a full factorial design. In this measurement
design the data points are reduced to the feasible engine operation space, which is essentially

2In order to control the intake temperature, the desired air mass flow rate is transformed by Eq. (7.40) into a
reference value for 7ityy—cgr and by Eq.(7.43) into a reference value for 7i1y,—s, see Sect. 7.8. The controllers for
the air path quantities p»; and 7ty are according to Sect. 7.3 decentralized PI(D)-controllers, while rityy—cg; is
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determined by the mean-value engine model from Chap. 3. This closed-loop control results in
faster settling air path quantities and consequently allows shorter holding times for each data
point. A summer (7, = 22...52°C) and a winter (7, = 4...16°C) measurement delivered 4543
data points for model training and 2264 data points for model validation. In Mrosek (2017) a more
detailed description of measurement design and data preprocessing is given.

5.3 Stationary Emission and Combustion Models

The emission formation is a highly nonlinear process and can either be modelled by chemical
kinetic reactions and phenomenological laws (Stiesch, 2003) or by black-box models. Compared
to the complex and computational demanding chemical and phenomenological models, the here
applied black-box models are based on measured data and describe the unknown relations with a
relatively small amount of process knowledge.

In several publications the NO, are modelled, but only a few publications show models for the
particulate emissions. Schiiler (2001) presents stationary LOLIMOT models for a stationary en-
gine optimisation with the optimised quantities EGR actuator up, ., VGT-actuator u; control
signals and ¢, Validation results of a NO, model and a fuel consumption model with the air
path actuator control signals as model inputs are shown. Then the validation results of an opacity
model and a HC model with air path quantities as model inputs are given. Furthermore, dynamical
emission models are parameterised with step functions and holding times of 5-10 s. Hafner (2002)
excites the engine with an amplitude-modulated pseudo-random binary signal (APRBS) with 500
input combinations and an average holding time of 7 s to obtain global stationary and dynamical
NOy, opacity and torque models. Stationary models with air path actuator control signals and the
start of the injection as model inputs are trained. First the models are trained by stationary data
points which are generated by averaging the dynamically excited measurements. Other stationary
emission models are derived from the stationary process gain of identified dynamical models with
external dynamics.

In Benz (2010) the NO, emission, the particulate emissions and the engine torque are modelled.
The utilised model structure is based on a base map which describes the model outputs at sta-
tionary engine operation and multiplicative correction terms which model the deviations from
these stationary conditions. Model inputs for the deviation model are gas system quantities and
combustion characteristics. Appropriate low order input transformations are identified with a gen-
eric algorithm by a symbolic regression approach. Wenzel (2006) presents models based on a
power series with multiplicative and exponential coefficients for the filter smoke number and the
NOy emissions. The utilised model inputs are mainly based on characteristic values from the rate
of heat release. Since these model inputs are hard to excite, a D-optimal measurement design with
200 data points for model training and 28 data points for model validation is generated with a
candidate set of air path quantities and injection quantities.

controlled by a semi-physical controller as described in Sect. 7.7. A cylinder-individual closed-loop control controls
the location of mass fraction burned 50 %, see Kohlhase (2011).
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5.3.1 Suitable Model Inputs and Outputs

The task of the emission and combustion model restricts the set of feasible model inputs, the model
dimensionality and the modelled quantity. In this dissertation models for simulation of measured
quantities and models to optimise reference values for the air path control are considered.

Models for simulation of measured quantities are relatively unrestricted to type and number of
utilised model inputs and the chosen model inputs can freely vary for each modelled quantity. On
the other hand models for an engine optimisation have to be restricted to adjustable model inputs
and engine states. These model inputs have to correspond to the sum of manipulatable variables
and the number of quantities describing the engine state, e.g. engine speed and injection quantity
for the engine state and air mass flow rate and charging pressure for the manipulated variables.
An exemplary reference value optimisation for a control of 71, and py; can utilise only these two
manipulate variables as model inputs, even if better models can be achieved by considering more
influences with a higher model complexity.

After considering the model inputs, also suitable model outputs have to be chosen, since the quant-
ities of the emission measurement and the legislative standards for engine approval can differ.
Statutory provisions for driving cycles can be defined as g/km, g/s, g/kWh, while the sensors de-
liver usually an emission concentration in the exhaust gas. These concentrations can be measured
as volume fraction like parts per million, or as mass per volume like kg/m>. A volume fraction
for the emission component x can be transformed by the ratio of molar masses and the exhaust
gas mass flow rate into the single emission component’s mass flow rate by

. —6 My .
My = Cx10 Mlexh- 5.1
exh
Hix emission component mass flow rate in kg/s
Cx emission component in volume fraction in ppm
M,  molar mass emission component in  g/mol
Mgy molar mass exhaust gas in g/mol
Mexn  exhaust gas mass flow rate in kg/s

Commonly the emission components NOy, carbon monoxide and the hydrocarbons are measured
in parts per million or a similar volume fraction. The molar mass of the exhaust gas can be sim-
plified to the molar mass of air (28.96 g/mol) (Sequenz et al., 2011b). The molar mass of NOy is
given as NO; equivalent (46.01 g/mol) for the European emission limits (European Commission,
2007). Other emission components like the particulate concentration of the micro soot sensor are
measured as mass per volume. In this case the gas density at the measurement cell is the determin-
ing factor to transform the measured concentration into a mass flow rate. The emission mass flow
rate can be derived from the mass per volume measurement by
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. mexh
Hix = Cx 5.2)
Pmeas
My emission component mass flow rate in  kg/s
Cx emission component in mass per volume in kg/m?

Pmeas  €Xhaust gas density at the measuring cell in  kg/m?
Mexh  e€xhaust gas mass flow rate in  kg/s

As the emission models shall be used for the simulation of the emission formation, the emissions
should be modelled in the same quantity as they are measured. For optimisation purpose the fa-
voured model output is an emission mass flow rate. After the modelling approach is presented
in the following, the utilised model in- and outputs for the emission and combustion models are
motivated in Sect. 5.3.4.

5.3.2 Global-Local Polynomial Model Approach

All following stationary quantities are modelled with a global-local polynomial ap-
proach (Sequenz et al., 2010b; Sequenz, 2013), which is summarised in the following. In this ap-
proach a global model output is superimposed of several local polynomial models (LPMs). Local
engine operation points are defined by the engine speed 7., and the desired injection quantity uy;.
At these operation points /ocal polynomial models are trained and composed to a global model by
means of a bilinear interpolation. This model structure is motivated by the working principle of
common ECUs, where control parameters and reference values are generally stored in grid map
structures. Inputs for the grid map structures are often defined by the engine operation point and
the output is derived as a bilinear interpolation between the grid points.

“ 512 ) g 17
) Gis @) 413 (2)
L S
5 Chr (@) (2
é 20 iis (x) B $ﬁlg(x)
£1s
" %> Local Model $; (x)
x ®  Training Data

C
1000 1500 2000 2500 3000

o ©  Validation Data
Tleng N min

1

Figure 5.2: Global-local model structure with bilinear interpolation between the local models

Fig. 5.2 illustrates the global-local model structure with bilinear interpolation. The local polyno-
mial models are located in the 72¢n,/ uin; plane. The training data is centred at each local polynomial
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model and the placement of the validation data has been chosen with a maximal distance to the
local models. A bilinear interpolation between the j local model outputs J; (x) results in the
global model output y. The model input is divided into the x-regressors x and the z-regressors
z. The z-regressors are defined by the engine operation point z = (neng ui“j) and determine
the validity ¢; (z) for each local model. The x-regressors contain the local model inputs, e.g.
X = (fczi Dai YA’Z; (pQ50>. Thus, the stationary global model is a weighted summation of the M
local polynomial models and is given as

M
Fax) =) ¢ @5 K. (53)

Jj=1

The local model y; (-) is a polynomial in x with dimension p and the regressors of these local
models are derived by a Taylor series up to order three, which means that the sum of exponents in
each regressor is limited to a maximum of three.

Vi (X) = wo,; +wy jx; + wz,jxlz + w3, jx1X2 + w4,]~x§ + ws,jxle +...+ w(‘A‘_l):jx;} 5.4)

Cross terms are limited to a maximum of two inputs (xlxz, xlxg, .. ) Then the feasible set of
regressors A for a four dimensional local model has 31 potential regressors.

A={l,x],xlz,xlxz,xg,x]xf,...,xi} |A| = 31 (5.5)

The significant regressors from that set are selected by an algorithm composed of forward selec-
tion, backward selection and replacement of regressors, see Sequenz (2013). 3 The weights for the
local models are calculated by a normalised pyramidal validity function

dd AZ,'
wi@ =11 (1 - d,-,,-) (5.6)

i=1
adj,i)

with Az; = min (|Zi — 20,j,i

and are normalised to unit sum

wj(2) .
Zj]‘il wj (z)

3Note that the number of chosen regressors depends on the training data distribution and differs for each modelled

$; (2) = (5.7)

quantity and each local model. An overview about the total number of regressors for the emission and combustion
models can be found in Appx. E.
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In which d; ; is the width and z, ; ; is the centre coordinate of the j-th local model in the z;-th
dimension. 7, is the number of z-regressors. For equidistant operation points this weighting can
be interpreted as a bilinear interpolation of the local models. Note that the training data has not
necessarily to be centred in local models, since the weighting functions (5.7) determine the mem-
bership to each local model. With this membership the local model regressors can be determined
as the weighted least squares solution, see Sequenz (2013). Anymore, due to the bilinear interpol-
ation between the models in the 7¢ng/uinj plane, no more than four local polynomial models have
to be evaluated at once to obtain the global model output.

Fig. 5.3a) shows the network structure of the static global-local model structure. The z-regressors
Neng and uj,; determine the validity of the local polynomial models with a pyramidal weighting
function. Polynomial models with the x-regressors as local model inputs derive the local models’
outputs. In this example, the x-regressors are given as x = (fcza Dai To; (pQ50). Then the global
model output j results from the superposition of the weighted local models ¢; J;. In this ex-
ample three global-local models for the quantities ¢,ox, Cmss and Meng are shown. In comparison to
the well established LOLIMOT modelling approach, the novel modelling approach increases the
model complexity with local polynomials and it can reach a comparable model quality with less
parameters (Sequenz, 2013). This is especially advantageous for emission and combustion mod-
els, where a stationary measurement is recommended and the number of data points for model
training is limited to a low quantity.
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M) c% [ I
g N 2 . (. .
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Z xi’ —*emss - ! = ! =
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2 p,\LV > eng
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Figure 5.3: a) Network structure of the static global-local model structure with M local poly-
nomial models, p model inputs divided into z-regressors and x-regressors and a pyramidal
weighting function. b) Exemplary extrapolation measure estimation for a bilinear interpola-
tion between three polynomial models with only 7¢ng as z-regressor and the local x-regressors
’hair and P2i.
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5.3.3 Extrapolation Measure

Black-box models like neural networks, characteristic maps, support vector machines and polyno-
mials can model the training space well, but generally show poor model extrapolation capabilities
outside the training area. Especially high order polynomial models tend to plus and minus infinity
if the model input leaves the model training space. Therefore, measures shall be taken to avoid this
undesired model behaviour. The output of each local polynomial model is bounded between the
maximal and minimal output value in the training data. Furthermore, the model input is limited to
the minimum bounding box of the training data. This input constraint is widened for 10 % to allow
some model extrapolation.

These input and output limitations are an easy to implement and a computationally fast to calcu-
late measure to avoid model extrapolation. However the feasible model input space shape differs
considerably from the minimum bounding box. Especially for a model based engine optimisation,
a more detailed knowledge of the feasible model input space is necessary to limit the optimiser to
physical reachable quantities. Otherwise offline optimised reference values may not be reachable
at the engine test bench if they are outside the drivability space. Hence, an extrapolation measure
is introduced in the following (Mrosek et al., 2010a; Sequenz et al., 2010b).

A convex hull determines the training space for each local polynomial model and it is stored
with the model. Thus, it can be tested whether a local data point x is within the jth local hull
(extrapolation; = 0) or outside the local convex hull (extrapolation; = 1). Consequently,
the global extrapolation measure EM of a data point for all M local models follows as

M
EM (z) = Zextrapolationj (x)¢; (2), (5.8)

j=1

with ¢; (z) being the membership function for the local model j. The calculation of the extra-
polation measure is clarified in Fig. 5.3b).% Three exemplary convex hulls at Neng = 1500 min~",
Neng = 2000 min~! and feng = 2500 min~! are shown. These hulls surround the training space
in the input dimensions 7i1,;; and p;. An extrapolation for the data point can be observed at the
local model 2. For the other two models there is no extrapolation, since these data points are
within the local convex hulls. Further the membership functions for the three local models and the
global extrapolation measure £ M are shown. There is no extrapolation for engines speeds below
1500 min~! and above 2500 min~'. In case the validity of local model 2 rises, the extrapolation
measure rises concurrently with its maximum at n1¢,, = 2000 min~'. At this point the model is in
pure extrapolation.

This model extrapolation measure will be later utilised to indicate the model confidence region
for models of the dynamical emissions in Sect. 5.4. Anymore, in Sect. 6.1 the possible parameter
space for a stationary reference value optimisation is restricted by the extrapolation measure.

4As a simplification the z-regressor consists only of 71¢,,, While the x-regressor has the inputs 772,; and p;.
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5.3.4 Model Results

In the global-local model structure the engine operation point in 7¢,, and ujy; determines the valid-
ity of each local model to superimpose the local model outputs to the global model output. The
local model inputs describe the cylinder charge and the combustion characteristics. One important
variable to describe the combustion is a measure for the oxygen concentration or the oxygen mass.
This could be the air mass flow rate #1,;;, the estimated air content in the intake manifold X; or the
estimated air content after the combustion Xeng,out, s€€ Sect. 4.4.

The air contents are dynamically advantageous, since they implicitly include the gas propagation
times in the intake and exhaust system, see Sect. 4.4. On the other hand, the air mass flow rate
can be directly measured and it is free from modelling errors. Besides an information about the
oxygen mass or concentration, the cylinder charge is determined with (3.28) by the charge-air
pressure p,; and the estimated intake temperature Toi. Alternatively to Ty the cylinder charge can
be described with the total EGR-rate

Mpp—cgr +m Ip—egr

Mpp—egr + Mp—egr + M

(5.9)

Fegr =

as an additional model input, since it implicitly includes the mass flow rate entering the engine in
stationary conditions

’heng,in = n./lhpfegr + ”hlpfegr + ’hair- (510)

Other potential variables like the fraction of HP-EGR to the total EGR mass flow rate

mhpfegr

Mpp—cgr +m Ip—egr

Xhp—egr = (51 1)

or the fraction #ityy_cgr/Hip—cgr are not suitable as model inputs, since they become singular at
engine operation points without EGR. Additionally to the states in the intake system, the start of
the main injection ¢,; and the MFB50 ¢qs, are considered as local model inputs to describe the
combustion characteristics.

The possible local model inputs shall model the local nonlinearities in different emission
and combustion quantities and shall further be capable to model the global engine behaviour.
In Sequenz et al. (2010a) suitable model inputs are investigated for global emission models and
it is shown that suitable model inputs for local emission models do not necessarily give good
validation results for global validation data. Especially the air mass flow rate r,; in kg/s is dis-
advantageous compared to the air mass per working cycle m1,;, in mg/cyc. In comparison to 71,
the air mass flow rate working cycle is more independent of ., since it describes the cylinder
charge. Further investigations in Sequenz et al. (2011a) show that the model input Xepg o is ad-
vantageous for model regularisation of the particulate emission models and it allows to predict the
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particulate validation dataset more accurate. Additionally to 71, the model input Xepg ou 2180 con-
tains information about the remaining oxygen concentration after the combustion and it implicitly
considers the injection quantity. This information improves the global model validation in the u;y
direction. Thus, the set of investigated local inputs x; for the local polynomial models with four
inputs Xy ... x4 is given as

X =[xy, X2, X3, X4] with (5.12)
X1 € {Mair, X2, X, } X2 € {pa} X3 € {Toi, Fegr} X4 € {Qmi }. '
1 UTtairs A2is Aeng,out 2 P2 3 2is Tegr 4 @mi» (/’0501

Models for a stationary engine optimisation are given for the emission mass flow rates 1, and
Tinox as well as the engine torque M,,,. For simulation purposes the measured particulate and
NOy concentrations ¢pss and cyox are modelled. Furthermore, the global-local modelling approach
is applied to the combustion characteristics prmi,ip, Pmihps PQs0 and @i. In which pp,; i, is the mean
indicated pressure of the charge cycle loop and pu,i i, is the mean indicated pressure of the power
stroke.

The particulate emissions cmss and 7y rise extremely steep when a critical cylinder charge is
reached. Therefore Sequenz et al. (2010a) present a logarithmic output transformation for the
measured particulate emissions Vs

y;:'()ss =In (ymss + 05) Ymss € {"hmssv Cmss}- (513)

A subsequent local polynomial modelling of y enhances the model quality especially for low
particulate emissions and it is used for the following particulate models.

Tab. 5.1 shows the model qualities for stationary emission and combustion models for simulation
and engine optimisation tasks with the best suitable model inputs. The first three rows show the
model qualities for simulation purposes, for which the emissions are modelled as concentrations.
Then models for the engine optimisation are shown, where the emissions are modelled as emis-
sion mass flow rates. These models either use the air mass flow rate or the air content Xeng,ou as
model input, depending which of those leads to better model qualities. For every modelled quant-
ity y the chosen x-regressors are displayed. The model quality is evaluated by the coefficient of
determination R? and the root mean square error (RMSE). These quality criteria are given for the
training dataset (R2 RMSE4iy), for a 10-fold cross-validation on the local training data (R2

train® cval®

RMSE,,,) and for a global validation with the validation dataset (R2,, RMSE,,).

val®

The cross-validation denotes the prediction quality of local models, while the global engine beha-
viour is reflected by global model validation. Generally, the quality of the local model validation is
in the same range as the model training, while the global model validation throughout shows a de-
crease in the achievable model quality. The NO, emissions and the engine torque can be modelled
with a high model quality, while the qualities of the particulate models are worse. In comparison to
the NO, emissions, it is well known that the particulate emissions are hard to model, see e.g. Benz
(2010). If the measured model input ¢qsy is replaced by the control signal ¢, the model quality
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Table 5.1: Emission and combustion model quality of the chosen models for simulation and
engine optimisation purpose

X-Tegressors training local validation global validation
? X1 x> x3 x4 R2,  RMSEgm R2%, RMSEwqaq R2%,  RMSEy
model structure for simulation
Chox  Xoi pi Ty @oso 0992 23.1ppm 0991  248ppm 0978  35.8ppm
Cmss  Xengout P2 T @oso 0949 249mg/m®  0.945 2.67mg/m3 0912 1.77mg/m3
Meng ,‘22; P2 i}i (pQ50 0.997 1.51 Nm 0.997 1.55Nm 0.978 3.05Nm

model structure for optimisation

Mpox  Mair Dai Ty @gso 0996  149mg/s  0.995 1.59mg/s 0987 2.21mg/s
Flmss  Xengout D2 To; woso 0968  1.85ug/s  0.960 2.29ug/s 0902  1.59 ug/s
Meng My o T woso  0.997 1.47Nm  0.997 1.52Nm 0979  2.94Nm

of most quantities gets slightly worse, see Sect. E. However, at test benches applied for engine
optimisation, an indicating system measurement of ¢qso is usually existent. Therefore ¢qso is a
suitable model input. For the interested reader a full overview about the reachable model qualities
with various model inputs is given in Appx. E. Furthermore, the model qualities of the stationary
combustion characteristics pPminp, Pmi,lp> ¥oso and ¢, are given in Appx. E.

Fig. 5.4 visualises the achieved model qualities of the models with simulation purpose (¢hox, Cmsss
Mg 3) in the measured versus predicted plot with training and validation data. Also the distribu-
tion of the training and the validation error is shown for each modelled quantity. In Fig. 5.4a) the
Cnox data have similar distributed training and validation errors. The validation data shows some
outliers at ¢,,x emissions near to zero, which might be due to model extrapolation. The error dis-
tribution in Fig. 5.4b) has the shape of a normal distribution. Especially for high emissions in the
training and the validation data, the model for the ¢, emissions scatters. However, Fig. 5.4d) ex-
hibits that many data points have an error close to zero and only a few data points deteriorate the
model quality. This behaviour reflects the high nonlinearity of the particulate emissions. Finally,
the engine torque model quality is shown in Fig. 5.4e) and f). The training data is met well, but
there are some model inaccuracies in the validation data above 105 Nm. This inaccuracy in the
validation data can also be seen as an asymmetry in the error distribution shown in Fig. 5.4f). A
similar illustration with measured versus predicted plots and error distribution of the models for
engine optimisation can be found in Appx. E.

SMeng = f(Reng, tinj» X2i, Pais fzi,wQsﬂ)
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Figure 5.4: Measured versus predicted plots and error distributions for the modelled quantities
Cnox» Cmss and Meng~ Cnox = f(nenga Uinj, X2, Pai» $Qs50, Ts);
émss = f(nenga Uinj, XA‘eng,uuta D2i> ©Q50, T2i); Meng = f(nenga Uinj, )EZia D2i, Q505 TZi)
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In summary, the global-local modelling approach is capable to model the emission and combustion
quantities well. Two different sets of models for simulation and engine optimisation purpose are
given in Tab. 5.1 and will be utilised in the following. All quantities and especially the demanding
particulate emissions can be modelled satisfactorily. In contrast to a professional industrial test
bench environment, the assessment of the model quality has to consider the side conditions at the
engine test bench. The engine test bench at the institute of automatic control is not conditioned
and it is directly ventilated with the ambient air. That implies that the measurements are taken at
largely differing ambient pressures, ambient temperatures and humidity. Especially the measure-
ments at summer and winter time, during dry periods and rainy days show a great variance in the
side conditions. Furthermore, the fuel quality and temperature differ between summer and winter
measurement, see DIN EN 590 (2010).

One remaining issue is to choose either 7.y or f"zi as an additional control variable for the LP-
EGR system. The models in Tab. 5.1 show that the estimated intake temperature is a suitable
model input to model the engine emissions and the combustion characteristics. The choice of this
model input is mainly motivated by the summarised model qualities for the particulate emissions
in Tab. 5.2.

With regard to the training data there is no 51gn1ﬁcant difference between the two possible model
inputs 7, and T5;. In contrast the model input To; shows a large improvement in the model quality
for the model validation. For the other modelled quantities in Sect. E there is no significant differ-
ence whether 7, or T, % is chosen as a model input. Due to the better model validation results in
the particulate emissions, fZi is selected as an additional control variable for the LP-EGR system.
Furthermore, the quantity r.,, cannot consider the dynamical effects of gas propagation in the in-
take and exhaust system and it is therefore not suitable as controlled variable for an LP-EGR air
path, see Sect. 4.3.

Table 5.2: Comparison of the potential model inputs Ty and Tegr

X-regressors

¥y X1 X2 X3 X4 thmm RMSE i, in mg/s Rsal RMSE,, in mg/s
Cmss  Xengout P2 PQ50 fz; 0.94958 2.4873 0.91239 1.7652
Cmss  Xengout P2i PQ50 Ftegr 0.95477 2.2311 0.78939 4.2434

Mimss  Xengout P2i ®Qso T2 0.96809 0.0018544 0.90223 0.0015898
Mmss  Xengout P2 PQ50 Tegr 0.96275 0.0021646 0.85322 0.0023867
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5.3.5 Intersection Plots of the Emission Model

In order to get a deeper insight into the emission formation, Fig. 5.5 depicts the influence of the
different local model inputs to the modelled particulate ¢,s, and NO, concentrations ¢,ox. In each
plot the quantity of the abscissa and either the air mass flow rate or the charge-air pressure are
varied within the feasible limits denoted by the extrapolation measure (5.8). The intersection lines
of the corresponding r1,;, and p,; quantities are given in the left box below the plot, while the
other quantities are kept constant as denoted in the right box with the side conditions. For a better
understanding and as a reference to previously shown plots, the air mass flow rate instead of the
intake air content is applied as model input.

a) A A . b) A A
Cnoxs Cmss = f (n'lair’ Pzi) Cnoxs Cmss = f (‘pQ50’ ])Zi)
e 800 E £ 400\| T L 4 E
[ Y o ] Y
.8 4001 £ 8 200 =412 =
<b= 0 . 0 <§ (@ 0 1 <\'aé
90 155 220 189 195 201
"hair in kg/h PQs50 in °CA
c) PO . d) a o .
Cnox> Cmss = f (I’Ziv mair) Cnox,> Cmss = f (T2iv muir)
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Figure 5.5: Simulated Cy0x and ¢ngs intersection plots with the model input quantities #,i;,

" and uj; = 20 mm?/cyc

©Q50, D2i and T»; at Neng = 2500 min—
In Fig. 5.5a) the dependency of the emissions to 71,;; is shown at three different values of p,;. This
plot reveals the trade-off between soot and NO, with changes in the air mass flow rate and the
charging pressure, whereas a decrease in one emission quantity usually results in the increase of
the other one. The NOy emissions are lowered almost linear with a lowered quantity #i,;,, while
there is a strong nonlinear increase in ¢y for low air mass flow rates. At a fixed value of 71, the
NOy emissions decrease with a rising charge-air pressure, while the particulate emissions rise. This
enlarged charging pressure increases the gas mass in the cylinder and results in more recirculated
exhaust gas. Consequently, the local oxygen concentration within the combustion chamber drops.
On the one hand this lowered oxygen concentration results in a rise of the particulate emissions, on
the other hand the NO, emissions are decreased. The strong increase of ¢y, for low air mass flow
rates at pp; = 1.2 bar is a key problem of the particulate emission modelling. At this critical point,
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small deviations in 71,; lead to a tremendous increase of the particulate emissions. Especially at
these critical points even small deviations of EGR-distributions or injection quantities between the
single cylinders can lead to great deviations in the particulate emissions and make the particulate
modelling a demanding task.

Fig. 5.5b) highlights the dependency of the single emission components on @qso and ps;, all other
quantities are kept constant. The NO, emissions increase with ¢gso moving in direction to the top
dead centre (180 °CA), while the particulate emissions show a maximum around a ¢qgsp of 195 °CA
and they tend to be lower with late ¢qso. However, a combustion process with a late ¢qs) where
both emission components are simultaneously lowered is not of practical relevance since also the
generated torque strongly decreases. These influences on the generated torque will be subject of
the next investigations in Fig. 5.6. Finally, ¢,ox also falls with a rising charge-air pressure, while
Cinss TiSeS.

The results in Fig. 5.5¢) are comparable with Fig. 5.5a). The charge-air pressure is varied continu-
ously while three intersections at different air mass flow rates of 110 kg/h, 130 kg/h and 170 kg/h
are shown. Fig. 5.5d) reveals the influence of the intake temperature to the emissions at three
different air mass flow rates. For the NO, emissions the influence of f}i is almost affine and a
lowered intake temperature results in lowered NO, emissions. With regard to the particulate emis-
sions a rise in the intake temperature results in a rise of ¢ygs. As it can be seen for the air mass
flow rate of 110 kg/h indicated by the solid line, this relationship becomes strongly nonlinear for
low air mass flow rates. In wide areas the quantities 7i1,ir, p2; and @qso result in a trade-off between
NOjy and particulate emissions, while solely a lowered intake temperature 75; gives the possibility
to simultaneously lower both emission quantities ¢,ox and Cpgs-

Besides the influences of the air path (si,;r, pai, T2) and combustion quantities (¢qso) on the emis-
sion formation, these quantities also show an influence on the generated torque. First of all the
influence of #1,;, on the modelled torque Mcng is shown in Fig. 5.6a) at three different charge-air
pressures. When the air mass flow rate is lowered, the generated torque first increases and de-
creases after a maximum is reached. This torque generation is a complex process and it depends
on the course of the charge cycle losses as well as the combustion speed which usually is decreased
for low air mass flow rates and larger amounts of recirculated exhaust gas. In this engine config-
uration, an increased charging pressure usually results in a loss of generated engine torque, since
at a larger pressure py; and a constant #1,; more inert exhaust gas is mixed to the cylinder charge.
This inert gas decreases the combustion speed and efficiency. Furthermore, an enlarged charging
pressure demands a closed VGT-actuator, which rises the exhaust pressure and consequently the
necessary work during during the exhaust stroke rises.

Next the influence of ¢qso on Mcng is shown for three pressures py; in Fig. 5.6b). The torque
rises with ¢qso moving towards the top dead centre (180 °CA) and depending on the wall heat
losses would reach a maximum some degrees after the top dead centre (Pischinger et al., 2009).
Locations of ¢qso close to the top dead centre generally result in a major NO, formation and large
combustion pressure peaks inside the cylinder. Thus, operation points with an early ¢qso should be
avoided for mechanical stability reasons (Pischinger et al., 2009). Hence, only locations of MFB50
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Figure 5.6: Simulated Meng intersection plots with the model input quantities 7i4ir, 9Qs0, P2i
and T; at nepg = 2500 min~' and ujj = 20 mm®/cyc

between 189 °CA and 201 °CA have been measured and modelled. Further it can be observed, that
a larger charging pressure is disadvantageous for the torque generation which further gets obvious
in the next plot Fig. 5.6b) with variations of p,; and rz,;,. In the last plot Fig. 5.6d) it can be
seen, that the torque increases with a lowered intake temperature. Consequently, a lowered intake
temperature is favourable for the engine torque and the emission formation, see Fig. 5.5.

Note that engine torque and the NO, formation show a comparable course over the varied quant-
ities in Fig. 5.5 and Fig. 5.6. Consequently the course of engine torque can be implicitly con-
sidered in a quality criteria for a multi-criteria optimisation by considering the NO, emissions, see
Sect. 6.2.2.

Stationary emission and combustion models are important to analyse the stationary engine be-
haviour and to optimise stationary reference values for the air path control systems. However, a
stationary engine operation is rather rare in commonly used driving cycles for engine certification
and in real life driving cycles. A large proportion of these driving cycles consists of transients in
engine speed and torque demand. Hence, in the following stationary emission models for sim-
ulation and optimisation purpose from Tab. 5.1 are extended to model the dynamical emission
formation.
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5.4 Models for the Dynamical Emissions

The steadily tightening emission standards and the large proportion of transients during certific-
ation and real life driving cycles demand the consideration of dynamical emissions in the engine
development process. Thus, models for the dynamical particulate and NO, emissions, as well as
models for the engine torque are necessary. The modelling of these quantities can be roughly di-
vided into two groups. A first approach utilises dynamical models which incorporate the intake
and exhaust system dynamics, as well as the sensor dynamics to model the overall process from
the emission formation to the emission measurement. Thompson et al. (2000) model the emission
components CO, CO,, NOy, opacity the particulate matter with a neural network and external
dynamics. The presented models utilise eight to ten model inputs which are states in the intake
and exhaust system, the engine speed, the acceleration pedal position, the injection pressure and
the start of the injection. A similar approach based upon LOLIMOT neural networks with external
dynamics is presented in Schiiler (2001) and Hafner (2002), see also Hafner et al. (2000). Schiiler
(2001) identifies dynamical models from a step excitation with holding times of 5-10s. Model
inputs are the control signals of the air path actuators i, c,, #; and the start of the main injection
¢mi- Hafner et al. (2000) excite the engine with an amplitude modulated pseudo random binary
signal. Dynamical emission models with either air path states or actuator control signals as model
inputs are presented.

Instead of modelling all dynamics together in one overall engine model, a second approach sep-
arates the various dynamical effects by simplifying the combustion as a batch process (Brace,
1998). That implies that the emission formation is predictable when the conditions within the
combustion chamber are known. Accordingly, the quality of knowledge about the cylinder charge
and the combustion determines the quality of the modelled emissions. Since the combustion is
regarded as a batch process, all dynamics in the emission formation are included in the cylinder
charge at intake valve closing. Further dynamics in the measured emissions are caused by the gas
transportation delay in the exhaust system and the emission measurement (Mrosek et al., 2011b;
Mrosek, 2017). This approach has the advantage, that the emission formation is dynamically sep-
arated from the system and sensor dynamics. Furthermore, stationary emission models, which are
necessary for stationary engine optimisation, are also applied to simulate the dynamical emission
formation using the dynamical correct model inputs for the cylinder charge.

In Brace (1998) a neural network is utilised to model the emissions from stationary data. Dynam-
ical validation results are shown for a simultaneous step in engine speed and injection quantity
for the modelled quantities NOy , particulates and hydrocarbons. Hirsch and del Re (2009) utilise
stationary polynomial emission models with air path quantities as model inputs. Dynamical data
is used for the training of stationary opacity and NO, emission models. Validation results for these
models are shown with data from the NEDC. Schilling (2008), Benz (2010) and Tschanz et al.
(2010) model the dynamical emissions with stationary emission models and external dynamics.
Model inputs are dynamical data quantities, which describe the cylinder charge and the injection,
respectively the combustion process. These models utilise a base map for the emissions at a sta-
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Figure 5.7: Model structure to simulate dynamical emission and combustion quantities with
the separation of dynamical and stationary models. Chap. 3 mean value engine model,
Sect. 4.4 pipe and receiver air content model, Sect. 5.3 stationary emission and combus-
tion model with description of model structure in Tab. 5.1, emission measurement dynamics
model (Mrosek et al., 2011b; Mrosek, 2017)

tionary calibrated engine operation point. Deviations from the standard conditions are modelled
by correction terms.

Modelling Approach

In the following stationary emission models for simulation purpose, as given in Tab. 5.1, are
utilised to model the dynamical emissions and the combustion characteristics. Possible dynamics
of the recirculated emissions in the exhaust gas are neglected and it is further assumed that the
cylinder wall temperature has no significant dynamics (Mrosek et al., 2010a). In the following a
detailed separation of the single dynamics is made and their source is clearly stated.

Fig. 5.7 gives an overview about the model structure for dynamical emission and combustion
models. One objective in emission modelling is the dynamical correct estimation of the cylinder
charge. For simulation purposes, the dynamical cylinder charge is estimated by a mean value en-
gine model, as presented in Chap. 3. When the engine’s combustion outcome shall be predicted
at a test bench or in a car, the cylinder charge can be determined by measurements of the intake
manifold and the pipe receiver air content model from Sect. 4.4. Especially in a LP-EGR configur-
ation with significant dynamics in the air content it is important to model or measure the intake air
content for the cylinder charge estimation dynamically correct. In a solely HP-EGR configuration
it might be sufficient to neglect some of the air content dynamics and utilise the measured air mass
flow rate instead of the intake air content.

In this approach all dynamics from air path actuators are included in the quantities which de-
scribe the cylinder charge. With the dynamical characteristics of the intake manifold quantities,
the engine speed and the injection parameters, the stationary emission and combustion models
from Sect. 5.3 allow to predict the dynamical engine raw emissions. These emissions are fur-
ther filtered by models for measurement dynamics as given in Mrosek et al. (2011b) and Mrosek
(2017) to dynamical agree with the measured quantities. Note that all models except the particu-
late model are simulated with the cylinder intake air content X,;, while the air content at engine
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eXit Xeng,out 18 utilised as model input for the particulate models, since this results in a significantly
improved model quality, see Tab. 5.1. As long as no in-cylinder pressure indicating is available,
@mi can be utilised as alternative model input to ¢qso.

Model Validation

In the following, the model structure of Fig. 5.7 to simulate the dynamical emission formation
and combustion quantities is validated with measurements of the NEDC in series calibration.
First, the urban part of the NEDC is shown in Fig. 5.8. The first four plots represent the engine
operation point in n¢ng and ui,; as well as the series controlled variables 71, and p,;. Further, the
cylinder charge describing quantities @qso, fZi, Xai and Xeng,ou are shown. In which the quantities
Xoi and Xeng o are determined by the pipe receiver air content model from Sect. 4.3, while T o 18
determined by Eq. (4.16).

In the subsequent plots the simulated raw emissions and combustion quantities (sim.) are com-
pared to the measurements (meas.). According to Fig. 5.7 the quantities Cyox and i are filtered
(filt.) by the measurement dynamics model as given in Mrosek et al. (2011b) and Mrosek (2017)
to the quantities Cnox fiir and Cmss fir- The measurement dynamics model consists of a lowpass fil-
ter and a variable dead time. For the micro soot measurement the dead time 7T omss ranges
between 2s and 3.5s and the first order lag has a time constant in the range of 0.8 s, while the
NO, measurement posses a dead time Ty o,nox between 0.25s and 0.55s and is second order
filtered with time constants in the range of 0.2 s and 0.45 s.

The results for the filtered simulated NO, emissions fit the measurements well. A further zoom in-
side the section between 725 s and 745 s reveals, that the measurement dynamics is smoothing the
simulated raw emissions. In the simulated raw emissions, peaks are much larger than in measured
and filtered quantities. Further the zoomed section shows, that the combination of the air content
model, the stationary emission model and the measurement dynamics model is capable to model
the dynamical NO, measurement well.

The next plot in Fig. 5.8 illustrates the validation results of the measured micro soot concentration.
Compared to the simulated NO, emissions, the particulate emissions are harder to model, see also
Tab. 5.1. Consequently, larger deviations between measured and simulated particulate emissions
can be observed. In the zoomed section the large dead time of the micro soot measurement gets
obvious, which is met by the measurement dynamics model. Only the dead time for the second
peak seems to be overcompensated. This peak is also not met exactly in its full height by the ¢y
model. Generally, the simulated raw emission peaks are smoothed by the measurement dynamics
model. These measurement delays decrease the magnitude of the simulated raw emission peaks
almost by factor two. Hence, based on the assumption of a smoothing measurement dynamics, the
measured particulate emissions are supposed to have a similar magnitude at engine exit.

Next the validation results for the engine torque M, are illustrated. The torque sensor has no
significant measurement dynamics and is mounted at the shaft connecting combustion engine
with test bench induction engine. The engine torque model agrees well with the measured data.
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However, this model reflects only the torque which is contributed by the combustion engine, ac-
celeration and deceleration of the engine result in inertia torques of the drive train, which are
measured as additional torque decrease or torque increase from the sensor. This gets obvious at
the marked time stamps 730.5s (m) and 741.9 s () in the 7., plot. At these times the engine is
strongly decelerated. In the zoomed engine torque section, deviations between measurement and
model can be observed. Consequently, the engine torque cannot be parameterised with dynamical
engine measurements as long as large variations in the engine speed are apparent.

Alternatively to the shaft torque, the mean indicated pressure represents a measure for the engine
work (Mrosek, 2017). The mean indicated pressure of compression and expansion Stroke pumi np
is illustrated in the plot below the torque. This quantity is calculated without significant delay by
an indicating system. The modelled and the measured pp;, fit well and there are no effects of
engine deceleration at the times 730.5s and 741.9s. The mean indicated pressure of the charge
cycle pmip is shown next. Two models are utilised to model the quantity ppi,. The first model
(model 1) describes the charge cycle losses as a function of engine operation point (Feng, Uinj),
swirl actuator position sy, charging pressure p,; and exhaust pressure p; (Mrosek, 2017). With
these two pressures, the model is capable to model the influence of the intake and exhaust system
transients to the measured indicated pressure of the charge cycle well. The second model (model
2) with the local model inputs X»i, pai, fzi and @qso meets the stationary engine behaviour well,
but fails on the dynamical transients. For dynamical py,;, models, the influence of the pressure
before and after the cylinder are essential for a good model quality and they have to be included
as model inputs. Finally, the extrapolation measure EM is shown for the given models and it
reveals that there is a large proportion of model extrapolation (£M >0). The cause for this model
extrapolation will be discussed after the model validation with the extra-urban part of the NEDC.

Fig. 5.9 shows the performance of the dynamical emission and combustion models with meas-
urements of the extra-urban part of the NEDC. This part covers a large range of engine operation
points in 1y, and ujy; but contains less dynamics than the previously investigated urban part from
Fig. 5.8. The local model inputs ps;, @qgso, ﬁi and ritg;, respectively Xo; and Xeng ou are depicted.
For all modelled quantities a section between 1005s and 1015 s is zoomed. The NO emissions
are modelled well, while there are some deviations in the more demanding particulate models ¢pygs.
However, the particulate model qualitatively agrees with the measurement and it can be regarded
as satisfying. The Mepg, Pminp and ppijp (model 1) models show almost no deviations from the
measurements, while the py,, model (model 2) shows the afore mentioned deviations between
simulation and measurements during transients.
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Figure 5.9: Extra-urban part of the NEDC for dynamical emission and combustion model
validation
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Model extrapolation can become a severe problem in black-box model evaluation. Especially at
dynamical engine operations it is difficult to decide whether deviations result from a poor model
quality or from model extrapolation. Provided that input data is situated in a model’s extrapolation
region, the model quality can be improved with measurement of additional data in the affected
regions of the input space and by re-training the model with the refined dataset. Therefore the
extrapolation measure (5.8) is an important tool to analyse the performance of black-box models.
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Figure 5.10: a) Local convex hull (¢, = 2500 min~!, uppj = 30 mm3/cyc) indicating the
model training space and the dynamical data from the NEDC showing extrapolation in the
intake temperature Ty dimension. b) Corresponding convex hull and dynamical data in the
Pai and my;; dimension

In Fig. 5.8 and Fig. 5.9 the extrapolation measure £ M often indicated a model extrapolation. One
reason for this extrapolation is the insufficiently covered area of engine operation points in 7¢,g
and uj,;. Further model extrapolation can be attributed to the intake temperature. The stationary
training of the summer measurement was measured at hot summer days, while the NEDC meas-
urement was undertaken at a chilly summer day. All global data points without a corresponding
winter measurement show model extrapolation then. Fig. 5.10a) evaluates a local convex hull,
which determines the training space. The corresponding NEDC data points which contribute to
this local model with a local validity (5.7) larger than 0.1 are depicted as dots. The measurements
leave the input space in the dimension of the intake temperature. A projection of the input dimen-
sions py; and m,;, in Fig. 5.10b) clarifies this. Hence, this method allows to analyse the weaknesses
of the utilised models in respect of model extrapolation and thus identifies the relevant regions for
model improvement. However, even with model extrapolation in the temperature dimension, the
combination of stationary global-local emission models with dynamical estimates of the cylinder
charge and measurement dynamics models allows to simulate the dynamical emission formation
and combustion quantities satisfactory.
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5.5 Summary

Emission and combustion modelling is a challenging task in the field of engine modelling. Largely
varying system dynamics in the intake and exhaust system are superimposed by significant meas-
urement dynamics. Anymore, the emission formation process is strongly nonlinear. Therefore
small modifications in the influencing variables can lead to large changes in the emissions. Fur-
thermore, small cylinder individual differences in air contents, injection quantities, cylinder wall
temperature and others can lead to a great variance of the single cylinder emissions. Especially
the rise in the particulate emissions is very steep, if the air mass flow rate, respectively the local
oxygen concentration, reaches a critical value. Further the soot formation is strongly dependent
on the dynamical slow intake temperature and the particulate measurement possesses the largest
measurement dynamics.

First different sources of dynamics in the intake and exhaust system, as well as the measure-
ment dynamics are identified and especially the emission measurements possess significant dy-
namics.Stationary emission and combustion models are modelled with a global-local polynomial
modelling approach. At local engine operation points in 72¢,, and u,j, polynomial models for the
emission and combustion quantities are trained. Afterwards these models are superimposed to
model the global engine behaviour. Models are given for NOy and particulate emissions, engine
torque, start of the main injection, MFB50 and mean indicated pressure. Based upon the validation
quality of different model inputs, the intake temperature 75; is chosen as an additional controlled
variable for the air system with HP-EGR and LP-EGR, since it describes the particulate emissions
best.

Finally, the air content model, the stationary emission models and the measurement dynamics
models are coupled to model the dynamical measured emissions of the engine test bench. The
comparison between simulated and measured emissions reveals a good agreement in stationary
and dynamical parts of the NEDC. This proves the assumption, that the combustion process can
be simplified as a batch process, which implies that the combustion outcome can be mainly de-
scribed by the cylinder charge at intake valve closing and the injection characteristics. Models of
the dynamical emissions are given as the combination of the dynamical quantities describing the
cylinder charge and the injection, a stationary emission model and a subsequent filtering with a
measurement dynamics model. Especially for the dynamical simulation, the extrapolation meas-
ure gives important information about room for model improvement with regard to the utilised
training data and helps to separate effects of model extrapolation from model weaknesses.

The stationary emission models are applied in Sect. 6.1 to optimise stationary reference values
for the air path control. In Sect. 6.2 models for the dynamical emissions motivate the dynamical
emission course of different control concepts and are utilised to derive optimised reference values
for engine transients. Finally in Sect. 7.9, the driving cycle emissions of different control concepts
are rated by models for the dynamical emissions and allow to compare the classical HP-EGR with
the dual loop EGR consisting of HP-EGR and LP-EGR.
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6 Optimisation of the Reference Values for
the Air Path Control

Subject of this chapter are deviations of stationary and dynamical reference values for the air path
control. First, optimised stationary reference values are given for a dual EGR air path control. These
optimised reference values are compared to the HP-EGR series calibration and the emission lower-
ing potential of a LP-EGR engine configuration is highlighted. Afterwards, the dynamical emission
formation and deviations between the courses of different control concepts’ dynamical emissions
are illustrated. Finally, a dynamical optimised reference value trajectory for the air mass flow rate,
respectively the air content, is derived based on local polynomial emission models.

Generally, the reference values for the engine air path control and combustion control can be
considered as process inputs for the combustion process and aim to give a desired engine char-
acteristics. On the one hand these engine characteristics are demanded by legislation as emission
and fuel consumption limits, on the other hand the car manufacturer has the possibility to tailor
the engine behaviour to its desired vehicle characteristics, e.g. torque response and noise. The first
objective for reference values can be easily described by numerical quantities, while the second
objective is mainly based on brand individual expert knowledge. This expert knowledge is usually
not published and consequently the reference value derivation in this dissertation will be lim-
ited to the objectives emission limits and fuel consumption. In this chapter stationary reference
values for the dual EGR engine configuration are given. These reference values are utilised to
compare the potential of the additional LP-EGR path with the series calibration of a solely HP-
EGR configuration. The second part of this chapter is about the dynamical emission formation
at engine transients. Investigations with three different control concepts (7i1,3-control, eg-control,
xpi-control) illustrate the deviations between stationary and dynamical engine emission course.
Based on this knowledge reference values for the air mass flow rate, respectively the air content,
are dynamically optimised.

6.1 Stationary Reference Value Optimisation

This section briefly presents the stationary reference value optimisation results of Sequenz (2013),
which are necessary to finally evaluate the results of the control concepts in Sect. 7.9. A more de-
tailed discussion of the optimisation and its results with regard to the emission lowering potential
of a LP-EGR can be found in Mrosek (2017).
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Figure 6.1: Cycle emissions for the NEDC from accumulated local multi-criteria optimisa-
tions (black) with additional consideration of series variations and model uncertainties (grey),
as given in Sequenz (2013) by using stationary models. Regularised robust global optimisa-
tion results for the LP-EGR engine configuration (O) (Sequenz, 2013), reachable LP-EGR
calibration () and series HP-EGR calibration (o).

In Fig. 6.1 the optimisation results of Sequenz (2013) are given. Two curves present the local
optimisation results summed for the considered 21 engine operation points and the emission area
allowed by the Euro 5 emission limits. The black curve is the Parefo optimum and displays the
maximal potential to simultaneously lower NOy and particulate emissions. The grey curve also
considers model uncertainties and series variations.

After a local optimisation determines the initial values for a subsequent global engine optim-
isation, Sequenz (2013) gets a globally optimised robust LP-EGR calibration. This calibration
is further postprocessed for a smooth curvature and results as LP-EGR cal. (O) in Fig. 6.1. In
comparison to the Euro 4 series calibration (¢) with only a HP-EGR system, these optimised ref-
erence values for the dual path EGR show a large potential to reduce the NO, emissions into the
Euro 5 emission window. The consideration of robustness constraints and the dynamical emission
increase leave some safety margin to the legislative emission limits. However, the calibrated ref-
erence values of Sequenz (2013) are too stringent limited, since the emission models for many
operation points have been parameterised with the same data sets as utilised in Chap. 5. These
data points have been partly measured during hot summer days at the unconditioned test bench.
Consequently, the temperature limitations of the engine optimisation are too large, why there is
further potential to lower to emissions for the ambient temperatures as defined in the legislation.
Therefore, the optimised temperature reference values are manually decreased to a feasible range
(* LP-EGR cal. reachable) and show the further lowered emission level. These reference values
are the base for all following investigations.
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Table 6.1: Optimisation results for the LP-EGR engine configuration

Myox in mg/km Mg in mg/km ~ Wepe in kWh

HP-EGR series 244.8 2.74 1.53
LP-EGR (Sequenz, 2013) 99.2 2.94 1.61
LP-EGR reachable 79.3 2.32 1.64

Tab. 6.1 quantitatively summarises the global optimisation results of Sequenz (2013) and the
reachable LP-EGR calibration and compares these results to the series HP-EGR calibration with
respect to the NO, and particulate emissions as well as the delivered engine work W.,,.

M

! Z kj Weng, j Mmg!j (Xj) in kWh (6 1)

Weng = e
" 1000 - 3600:

j=1

It can be seen, that the additional LP-EGR path has a large potential to lower the NO, emissions,
while the particulate emissions stay almost at a constant level. Furthermore, the delivered engine
work during the driving cycle increases at constant injection quantity for more than 5 %.

6.2 Dynamical Reference Value Optimisation

A main objective of air path control systems is to positively influence the emission formation.
State of the art air path control systems work well in stationary engine operation. But there are
deviations to the stationary calibrated emissions during engine transients. In this section a brief
analysis of the existing work on the field of dynamical emissions is given, then the discrepancy
between transient and stationary emissions is analysed and a real-time capable solution, which
generates dynamical optimised reference values for the air path control is presented. These dy-
namical optimised reference values are optimal to any trajectory in engine speed and the driver’s
torque demand and can be calculated online by analytical solution of the quality criterion.

A deep understanding of the dynamical emission formation is rather new in the field of engine
control and there are only a few approaches which address this topic. Basically there are three
approaches to improve the transient emission behaviour, which can be separated into the groups
emission control, alternative control concepts and optimisation of engine transients.

Some approaches focus on the direct emission control. Alfieri (2009) presents a first step to-
wards the fully emission controlled engine. A NO,-sensor and the measured air-fuel ratio as a
substitute for the particulate emissions are the controlled variables. The manipulated variables
are HP-EGR-valve and start of the injection. The charge-air pressure is controlled independently.
Objective of this work is to compensate manufacturing tolerances, ageing and the drift of engine
components. Further researches in Tschanz (2012) use the combination of stationary emission
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models, emission measurements and a Kalman filter to estimate the current emissions as con-
trolled quantities. In this approach the Kalman filter compensates measurement dynamics of the
sensors and model uncertainties of the emission models. The particulate and NO, emissions are
controlled decentralised. A Pl-controller controls the particulate emissions via the swirl actuator,
while the NO, emissions are controlled by proportionally manipulating the start of the injection.
Furthermore, an integral controller adapts the reference values of a burned gas rate controller to
maintain the desired NO, emissions. Stolting et al. (2008) utilise an in-house control concept to
control more manipulated variables than controlled variables. The NO, emissions are manipulated
with Shy—eer and the crank angle of mass fraction burned 50 %, while the particulate emissions
are controlled by the charge-air pressure and the pressure of the common rail system. A further
development would be a direct emission control of the dynamical emissions. However, the emis-
sion formation is highly nonlinear and strongly coupled with the air path states. Anymore there
is a tradeoff between NOy and particulate emissions, which deteriorates one emission component
when the other one is improved. Besides the question for the optimal reference values for an emis-
sion control, the emission sensors involve additional costs and are dynamical not well suited for
an air path control (Mrosek et al., 2011b; Mrosek, 2017).

The emissions lowering potential of different control concepts is investigated in the following
publications. Nakayama et al. (2003) compare a 1z, and p,; control scheme to a control of intake
manifold air content x,; and p,;. The r1,;, control scheme shows larger dynamical NO, emissions,
while a control of x,; decreases these NO, emissions on the cost of larger particulate emis-
sions. Herrmann (2005) investigates the influence of different air path control concepts to sim-
ulated qualitative characteristics of the transient NOy and soot emissions. The investigated air path
consists of a VGT-turbocharger and a HP-EGR system. At a controlled charge-air pressure, the
differences between a HP-EGR-rate control, a HP-EGR mass flow rate control, an air mass flow
rate control and a NO, control are compared. With respect to the transient emissions the air mass
flow rate control results in dynamical high NO, but low soot emissions. The results for the HP-
EGR-rate control, the HP-EGR mass flow rate and the NO, control are vice versa. The NO, control
concept has the dynamical best results. In test bench results the NOy control suffered from sensor
dead time and the slow sensor dynamics. In comparison to the air mass flow rate the NOy control
required 2 s longer to reach steady state. Therefore, the air mass flow rate is chosen as second con-
trol variable besides the charge-air pressure. Schoppe et al. (2009) choose the air fuel ratio and the
HP-EGR-rate as control variables. The main influence of the HP-EGR-rate are the NO, emissions
and the air fuel ratio mainly influences the particulate emissions. In comparison to the controlled
variables charge-air pressure and air mass flow rate the cross couplings are supposed to be smal-
ler, which simplifies the engine calibration process. Further, the HP-EGR-rate control yields lower
dynamical NO, emissions during transient engine operation. Naber et al. (2011) compare the dy-
namical NOy and soot emissions of an air mass flow rate control scheme with a HP-EGR-rate
control. A load step is applied and the activated smoke limitation results in two different injection
characteristics. The injection quantity has a step shape with an air mass flow rate control, while
the HP-EGR-rate control gets a ramp shaped injection quantity with a rise time of approximately
6s. In the shown transient the air mass control scheme is favourable with respect to soot emissions
but causes large NO, emissions, while the HP-EGR-rate control scheme results in low NOy emis-
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sions at larger soot emissions. The engine management system is extended to include transient
corrections to the air mass flow rate setpoints. These dynamical corrections are block shaped and
added or subtracted from the calibrated stationary setpoints and have to be calibrated depending
on the behaviour of the dynamic engine operation. Anymore, the impact of the start of the main
injection on the dynamical NO, emissions and the torque generation is investigated.

A first step in the optimisation of the transient emissions behaviour is a smoke limitation. Usually
a smoke limitation restricts the maximal injection quantity, so that the engine does not under-
shoot a certain air fuel ratio. Hence, the particulate emissions are limited. However, the limiting
of the fuel quantity during the smoke limitation can lead to an undesired torque response. There-
fore, von Pfeil (2011) optimises control variables for the transient engine operation in the smoke
limitation, see also Renninger et al. (2006). Optimised variables are a maximal HP-EGR-valve
position, the begin of the injection and the limit for the air fuel ratio during the smoke limitation
operation mode. These can be considered as stationary enhancements and are capable to calibrate
a more favourable operation point in the particulate-NO tradeoff. A further step towards a dynam-
ical optimised engine control is presented in Hafner (2002). Dynamical LOLIMOT-models for the
emissions and the engine torque of a Diesel engine are identified. An offline optimisation delivers
dynamical enhancements for the feed-forward control of HP-EGR-valve, wastegate turbocharger
and start of injection. These dynamical enhancements are in form of derivative lag elements (DT1
elements) and are calibrated depending on the engine operation point. These dynamical correc-
tions significantly improve the dynamical emission formation for a feed-forward controlled air
path. However, with the uprising closed-loop control of air path quantities this approach becomes
obsolete.

Other publications examine the offline optimisation of air path actuator trajectories with a priori
knowledge of the demanded torque and engine speed. Alberer and del Re (2009) optimise piece-
wise affine trajectories of s, Shp—eor and u;, for one single load step with respect to Cpox, Copa
and Méng. The optimisation is model-free with test bench measurements as objective function,
which means that for every objective function call at least one trajectory has to be measured at
the engine test bench. Then the summed Cpox, Copa and /\;Ieng measurements give the effectiveness
criterion for each optimisation step. Benz (2010) optimises the emissions offline with the com-
bination of a dynamical semi-physical air path model and stationary emission models for three
example transients. Considered are a load step case, a load drop case and a drivability case. The
first case considers the injection quantity shaped by the series smoke limitation, which leads to
a moderate increase of engine torque during the transient. Different input trajectories are optim-
ised for several combinations of the air path inputs s; and sy, cgr With the injection system inputs
Prail and start of the injection. Considered emissions are NO, and particulates. In order to reduce
the complexity of the optimisation problem the chronological sequences of input trajectories are
discretised. For the load step a significant reduction of particulate emissions could be reached
on cost of increased NOy emissions. Regarding the load drop test case the optimisation results
are vice versa. Sequenz et al. (2011b) follow a similar approach with comparable results. Besides
discretised actuator trajectories also splines are utilised to reduced the complexity of the actuator
trajectories. Both approaches show the potential of optimised actuator trajectories for transient
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engine operation. However, a priori knowledge of engine speed and torque demand is necessary
to optimise these trajectories. Further the optimisation is computational demanding and the integ-
ration of these optimised trajectories into commonly used air and fuel path control systems is still
unsolved.

6.2.1 Dynamical Emissions of Different Air Path Control Concepts

The dynamical emissions contribute to the overall emissions during a transient engine driving
cycle. In order to find appropriate measures to reduce dynamical emissions the cause of their
formation needs to be investigated, see also (Mrosek et al., 2011a,c).

A direct closed-loop control of the engine emissions and torque should be the major objective of
the Diesel engine air path control system. Though, a direct control of these quantities is costly,
since NOy and particulate sensors bear additional costs and measure the quantities delayed. Instead
air path quantities are commonly used as controlled variables and represent the emission formation
sufficiently at stationary engine conditions. Fig. 6.2a) shows a general air path control structure
with the controlled variables air mass flow rate 7, and charge-air pressure py;. In this general
structure the stationary reference values are stored in characteristic maps and a control system
manipulates the variables su,—eor and s;, which influence the air path quantities #z,;; and p,;. These
air path quantities determine the cylinder charge and with the injection parameters the formation
of emissions and the torque response, see Sect. 5.4. Consequently, the closed-loop control of air
path quantities can be considered as a feed-forward emission control, since the course of the
emissions is not fed back and the emissions are only open-loop controlled by the course of the
air path quantities. Anymore, this consideration is also valid for alternative controlled variables
and complexer control systems with two-stage turbochargers or low-pressure EGR. These control
systems can have additional reference values, air path actuators and controlled variables.

Further, the air path control is a multivariable system with different dynamics in the controlled
variables. These different dynamics usually result in an unsatisfying transient emission formation.
Fig. 6.2b) depicts a transition between two stationary engine operation points at constant en-
gine speed. During the engine transient the quantity u;,; is changed almost instantaneously, while
the controlled variable 71, reaches its calibrated reference value relatively fast and p,; follows
delayed. These dynamical characteristics of the cylinder charge affect the emission formation dur-
ing the combustion process. Due to the different dynamics of the injection parameters and the
single air path quantities, the dynamical emission formation differs from the stationary optimised
emission level, in the same as shown in the right plot of Fig. 6.2b), where a particulate and a
NOy peak arise.

Thus, the selected controlled variables for the air path quantities directly influence the chrono-
logical sequence of the dynamical emission formation. In the following the influences of three
control concepts on the emission formation are compared. An air mass flow rate control 71,y in
combination with a charge-air pressure control py; is a common control concept (SchloBer, 2000;
Jung, 2003; von Pfeil, 2011). Alternatively to 7i,i;, an EGR-rate control 7, ¢ Or an intake air con-
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a) Closed-loop control of air path quantities

Reference Values Air Path Actuators  Air Path Quantities Emissions / Torque
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b) Schematic transition between two stationary optimal setpoints
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/— o e NO,
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Figure 6.2: a) General structure of an air path control with air mass flow rate and charge-
air pressure as exemplary controlled variables and open-loop controlled emission formation
b) Schematic deviations between stationary emissions and dynamical emissions due to the
multivariable control of the air path quantities 77, and py; and the injection parameter u;,; for
an injection step at constant engine speed

tent control x; g can be used, see Nakayama et al. (2003); Wang (2009); Mrosek and Isermann
(2010a). Also other combinations of controlled variables might be suitable, but for simplification
the following analysis is limited to these three concepts.

Fig. 6.3 compares three control concepts 7i,ircil, Fegr,cn aNd Xaj ey With simulations of a load step
in u;,; at constant engine speed. In this multivariable control the second controlled variable is ps;.
In the following comparison all control concepts are realised with PI(D)-controllers similar to
Sect. 7.3. Besides the controlled variables 7i1,ir, p—cer and X; additionally the air path quantities
Xeng,out and #tp, o, are shown. The emission quantities are given in the concentration measures
Cnox aNd Cres as well as in the emission mass flow rates l;:’lmx and r;1mss. Anymore, the engine torque
ll;lmg is presented.

The reference values for all illustrated control concepts result stationary in equal values for air
path quantities, emissions and torque. Also the charge-air pressure shows a similar dynamical
characteristic for all control concepts. Though, there are considerable deviations in the course of
the air mass flow rate related quantities and the emissions between the different control concepts in
the transient responses. In the first 150 ms all control concepts have strongly increased particulate
€MmiSSions Cgs (r;zmss). This soot-peak results from the steep rise in the injection quantity and the
limited dynamics of the HP-EGR-valve and the gas system. It can be reduced by a low-pass filtered
injection quantity or a limited injection quantity based on a smoke limitation as e.g. given by the
model-based approach in Sequenz et al. (2011a). However, a limitation of the injection quantity
will not be considered and the first 150 ms of time containing the soot-peak are neglected in the
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following discussion, since the soot-peak arises from the limited air path dynamics of HP-EGR-
valve closing and flushing the intake manifold with fresh air, which is similar for all compared
control concepts.

In comparison to the other control concepts the air mass flow rate control 71, .q reduces the mass
flow rate through the HP-EGR-valve 7y, oo the most. This yields to a large fresh air content in
the intake manifold x,; and consequently large NOy emissions can be observed ¢y (r;zm,x). On
the other hand, the dynamical particulate emissions ¢pss (r;zmss) are the lowest. The mass flow rate
of recirculated exhaust gas 71, ¢, first decreases and then slowly rises with the dynamics of the
charge-air pressure py;. During the engine transient the simulated exhaust components ¢;ox (n%mx)
and Cpngs (r?lmss) converge from different directions to their stationary calibrated value. It can further
be seen, that the air mass flow rate control can be stationary considered as an air content control
at engine exit Xeng,oue OF With (3.11) as an air-fuel ratio control, since the quantity X ou reaches
its stationary value as fast as #71,;,. In summary, the fast controlled air mass flow rate results in
large dynamical NOy emissions, while the transient particulate emissions are clearly below their
calibrated stationary value in the considered time range after the soot-peak.

In contrast the EGR-rate control reg cq results in the lowest air content in the intake manifold x,;.
The lowered oxygen concentration of the cylinder charge results in dynamical increased partic-
ulate emissions, while the transient NO, emissions are the lowest of all shown control concepts.
In the reg cq control concept the EGR-rate reaches its calibrated reference value fast. On the other
hand the air mass flow rate displays a dynamical characteristic similar to py;. Next, the control of
Xp; can be considered as a compromise between the afore mentioned control concepts. The dynam-
ical ¢,ox cOncentration (rfflnox) is moderately higher than its stationary concentration, whereas the
dynamical ¢, concentration (n%mss) is below its stationary value. In respect of the engine torque
Mcng the air mass flow rate control shows slight advantages followed by the x,; control concept
and the r.g, control. However, the differences in engine torque between the different control sys-
tems are small. Compared to the emission concentrations ¢mss, Cnox, the tailpipe emission mass
flow rates rﬁzmss, r;zmx have dynamical a similar characteristics.

The comparison between the three control concepts 7i,ir,ci, Fegr,ct and Xai g shows, that the dynam-
ical emissions during an engine transient differ from the stationary emissions. In anticipation of
the following section, the interested reader can find the quantitative rating of the different control
concepts and the results of the following optimisation in Tab. 6.2. Depending on the controlled
variables dynamically either the NOy or the particulate emissions are favoured, while the other
component is deteriorated. During transients the NO, emissions and the particulate emissions
reach their final value from different directions with the dynamics of the charge-air pressure. Con-
sequently, the course of charge-air pressure dynamics determines the time course of the emission
formation. In the following trajectories for Xcng out, T€spectively 71, are optimised with respect to
Cnox and Cps. This optimisation utilises global-local emission models from Sect. 5.3.
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Figure 6.3: Comparison of different control concepts with regard to the simulated air path
quantities, emissions and torque. The control concepts for the air mass flow rate 72, q1, the
EGR-rate regrcq and the intake air content x;cq are compared for a load step from uj,j =

10mm3 /cyc to Uin) = 27mm? /cyc at Neng = 2250 min~!

6.2.2 Multi-Criteria Optimisation of Dynamical Reference Values

A comparison of different control concepts shows, that during engine transients the dynamical
course of the cylinder air content determines the dynamical emissions. Representative quantities
describing the cylinder air content can be the air mass flow rate 71,;;, the EGR-rate r.,, the air
content before x,; or after the combustion Xeng ou. With regard to the air path, these quantities
can be manipulated dynamical fast, while the charge-air pressure dynamics is delayed by the
turbocharger’s inertia and the gas volume in the intake system.
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In the following optimised reference values for an air mass related quantity (72, Fegr, X2i OF
Xeng,out) are generated based on polynomial emission models, see Eq. (5.3). A special transform-
ation drastically reduces the model order of the polynomials and achieves an analytical real-time
capable optimisation for one single quantity. This approach demands emission models with the
same set of model inputs, which directly model the emission quantities NOy and particulates.

As aresult of the model quality in Tab. E.1 and Tab. E.3, the air content after the combustion Xeng ou
is chosen as variable for dynamical optimised reference values. At stationary engine operation
this quantity is a direct transformation of air mass flow rate and injection quantity, allows a good
interpolation of the particulate emissions (Sect. 5.3.4) and since it is a transformation of air mass
flow rate and injection quantity it is not affected by effects like engine ageing, engine misfire
and so forth. In comparison to 7, Or 12, this variable comprises most dynamical effects in the
intake and exhaust system, see Sect. 4.4. Xng o can be either controlled by a dynamical reference
value generation as given in Sect. 7.8 or it acts as an intermediate control variable, which can be
transformed into a reference value for an air mass flow rate control, see Eq. (6.9). Anymore, ¢y
is utilised as model input for utilised models, since most series engines are currently not equipped
with in-cylinder pressure indication.

Multi-Criteria Optimisation Criterion

In order to optimise reference values for Xeng oui, @ multi-criteria optimisation criterion of the form

den (Z7 x) = wnox (Z) (’/:HOX (Z’ x) + meS (Z) émss (Z7 x) (6'2)

with

7= [neng (t) s Uinj (Z)] and x (t) = [xeng,out (t) s Poi (l) ’ ’fZi (Z) » Pmi (t)] (63)

can be defined as loss function for the engine transient at each point in time z. The loss function
Jayn depends on the z-regressors, which denote the engine operation point and the x-regressors
which are the local inputs of the stationary global-local emission models, see Eq. (5.3) and
Fig. 5.3a). Due to the dynamic model inputs in the z-regressors and x-regressors the emission
models predict the dynamical engine emissions, see Sect. 5.4. Consequently the quality criterion
Jayn describes the dynamical loss function of the engine transient. At each engine operation point
the modelled emissions ¢ox and ¢ are weighted by the weights wyx and wy,e and determine the
loss function Jyyp.

As discussed in Sect. 5.3.5, the NO, emissions and the engine torque have a similar dependency
to the model inputs in the x-regressors, see Fig. 5.5 and Fig. 5.6. Consequently, the consideration
of the engine torque in the loss function is implicitly included with the NO emission model. Fur-
thermore, the engine torque differs not too much with different courses of the air mass flow rate,
respectively the cylinder air content, see Fig. 6.3. Thus, in a first step the quality criterion (6.2)
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is limited to the quantities NO, emissions and particulate emissions, but this global loss func-
tion could be further extended to consider influencing variables like engine torque, hydrocarbon
emissions or engine noise.

Analytical Solution of the Optimisation Criterion
Both emission models ¢,0, and ¢, are bilinear interpolated polynomials of order 3, see Eq. (5.3).

Consequently, the loss function Jyy, is also such a stationary polynomial function. When all model
inputs except Xeng oue are given, Eq. (6.2) can be rewritten as

den (xeng,nut (t))

oy = @ (2X) X3 00 () + b (2.X') X3y g (1) + € (2.X) Xengout (1) + dl (2,X)
(6.4)

with

7= [neng (t) s Uinj (t)] and X = [pZi (t) s 7’:‘2i (t) s @Pmi (l)] (65)

The dynamical inputs z and x’ allow to express the third order polynomial loss function
Jayn (xeng,m,t (l)) at every instant of time during a transient. Its coefficients a, b, ¢ and d are de-
termined by the engine operation point z and the remaining air path and injection quantities x’.
The composition of the coefficients @ ... d in (6.4) can be clarified as follows. The extracting of
Xeng,out alias x; out of the set of model inputs in Eq. (6.3) shifts all other quantities x; in Eq. (6.5)
by 1

Xj=xj41 for i=1...3 (6.6)

The local coefficients a; ...d; are determined by the structure of the local polynomial mod-
els (5.4) and they are subsequently superimposed (5.3) by their global validity (5.7) to the global
coefficients a . . . d. The weighting of the local NOy and particulate model according to (6.2) can
by given for instance for the local coefficient ¢; by (5.4) as

/ ! 2
Cj (X) =Whnox (wl,j,n(\x + W3, j noxXy + W3, jnoxXy - - ) +

2
Wnss (wl,j,mss + w],j,mssx; + wS,j,mssx; .. ) . (67)

Next, the weights of this relationship are summarised to one weight per regressor, e.g.
Wi,j = WnoxW1,jnox + WmssWi,j,mss- Further, the feasible set A of 31 regressors for a four dimen-
sional local model (5.5) can be separated into feasible sets of regressors for the single coefficients

a...d.
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lAal =1 Mol =4 [A[=7  |Aal =19 (6.8)

Thus, the maxima and minima of the loss function (6.4) can be solved analytically, as the roots of
its derivative with respect to Xeng,out- In Which maxima and minima are assigned to the roots with
help of it the second derivative with respect to Xeng,out-

These derivatives with respect to Xeng,out i are achieved offline and eliminate the coefficient d
with its 19 feasible regressors for the first derivative and the coefficients ¢ and d for the second
derivative. Thus, the first derivative contains only 12 remaining regressors, while 5 regressors
remain for the second derivative.

Having dynamical model inputs in z and x’, the determined minima for each time step is the dy-
namical optimal reference value Xeng,out,opt With respect to the loss function (6.2). In comparison
to other optimisations, where a complex loss function similar to (6.2) has to be calculated several
times to optimise a single time step, this ingenious approach utilises the properties of the poly-
nomial models for an analytical optimisation and reduces the computation demand dramatically.
This gets obvious in the comparison of the set of feasible regressors. A single calculation of (6.2)
demands the calculation of the NO, model and particulate model with 31 feasible regressors, while
the analytical optimisation method depends on the calculation of the derived loss function with 12
and 5 regressors for the first and second derivative.

Control Concept with Optimised Reference Values

According to the control concept Xeng ouiopt €an be controlled directly by a dynamical reference
value generation as given in Sect. 7.8 or it can be transformed to a demanded air mass flow
rate 7 op. 1his reference value consists of a dynamical air mass flow rate at the intake valve
Tigir dyn,opt (3.35) and compensates gas storage in the intake volumes V5; + Va. by the partial deriv-
ative of the ideal gas law, see Eq. (D.1).

, , dpy; Vai + V- Xengioutopt + Lst) e dpai Vai + V-
Vnair,des,opt ~ n'lair,dyn,opt + D2 Vai _ 2c _ ( eng,out,opt i[) + DP2i Vai _ 2c (69)
dr RTz‘l 1- xeng,out,opt dr RTZi

A special emphasis should be placed on the appropriate choice of the loss function weights w;
in (6.2). Generally, the engine calibration process results in optimised stationary reference values
for the controlled variables. These reference values can be optimal with regard to an objective
mathematical quality criterion or optimal with respect to the subjective objective criterion of the
calibration engineer. Thus, the major objective of a dynamical optimisation should be to reach the
calibrated stationary reference values in steady state. For this reason the weights w; are chosen
in every engine operation point z, such that a local minimum occurs in (6.4) with the stationary
calibrated reference values of x. Consequently, the optimisation of (6.4) delivers the stationary
calibrated reference value of Xcqg out, if the quantities neng, iy, pais T 2, @mi are in steady state.
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Figure 6.4: Control structure considering the dynamics of air path quantities to obtain optim-
ised reference values for the air mass flow rate control

Fig. 6.4 shows the control concept to generate transient optimised reference values for an air mass
flow rate control. The measured air path quantities py; and fZi in the intake manifold as well as ¢,
are inputs for the stationary emission models. The weights w; superimpose the emission models
and form the multi-criteria loss function (6.2). With the given air path and injection quantities,
this loss function can be reduced to an one-dimensional polynomial of order 3 with the input
Xeng,out (6.4). The local minima Xyeng,out,opt Of (6.4) can be determined analytically from its first
and second derivative under the conditions Jgy, (xmg,mn)/ = 0 and Jyy, (xsng,omsom)// > (. This
optimised reference value Xeng out,opt can be transformed with (6.9) to an optimised reference value
for an air mass flow rate control. The use of measured air path quantities for reference value
generation can be considered as partial optimisation of the dynamical air path control. At each
instant of time during an engine transient an optimal reference value to control the quantities 71,
respectively Xeng out is derived. In the following comparison of results, this control structure with
optimised reference values from Fig. 6.4 is termed Xpt cq-

Dynamical Optimised Versus Stationary Optimised Reference Values

Sect. 6.2.1 compared the course of air path, emission and combustion quantities for the con-
trol concepts 1,ir cil, Tegretl> X2icn- Next, this comparison is expanded for the course of dynamical
optimised reference values xop,cq and follows the same engine transient as given in Fig. 6.3. In
Fig. 6.5a) the excitation signal u,; and the time behaviour of the air path quantities Xcng out and #z,ir,
as well as the emission quantities ¢,ox and ¢y, are shown. The time marks (*, O, +, *, X) connect
the emission time responses chronologically with their projection on the particulate-NO, tradeoff
in Fig. 6.5b). During the first 0.75 s of the time response Xqp,cq delivers reference values for
Xeng,out Which are between the references for regcq and x; cq. Subsequently, the optimised ref-
erence values have a similar characteristics as the results of the EGR-rate control. The different
characteristics of the control concepts in Xqpci can also be transferred by (6.9) to the air mass flow
rate 7i1,;,. In terms of the emissions’ time responses the control concept with optimised reference
values has dynamical emissions, which are almost settled after 0.5 s to their stationary quantity
and only a small decreasing trend in the ¢,,x concentration remains. For the conventional control
concepts, the dynamical emissions are settled after 2 s, see also Fig. 6.3. A projection of the time
responses to the particulate-NOj tradeoff in Fig. 6.5b) distinguishes the differences between the
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control concepts with respect to the particulate ¢, and NO, emissions ¢yox. The marker symbols
define equal instants of time. Since the engine operation point is stationary in n¢n, and ujy, the
air mass flow rate control 71, cq proceeds near a Pareto optimum with low accumulated emis-
sions. Disadvantageous are the long-lasting high NO, emissions, which result on the other hand in
lower particulate emissions. The control concept x»; .y has less dynamical NO, emissions and after
1's an emission level is reached, for which #i1,;cq takes more than 1.5 s. Though, the dynamical
particulate emissions are larger than these of an air mass flow rate control. Among the three con-
ventional control concepts, the EGR-rate control results in the lowest dynamical NOy emissions
at the expense of higher particulate emissions.

a) b)
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Figure 6.5: a) Time signals of the air path quantities and the emissions with different control
concepts (Sect. 6.2.1) and dynamical optimised reference values for a load step from u;y; =
10 mm? /cyc to Uinj = 27mm?3 /cyc at Neng = 2250 min~!. b) Projection of the time signals to
the Particualte-NOy tradeoff

The trajectory for the optimised reference values Xp,cq points straight towards the stationary emis-
sion level. Enlarged particulate and NO emissions are optimised with respect to the quality cri-
terion (6.2) in approximately equal proportions. As opposed to conventional control concepts, this
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control concept favours neither of the emission components. A zoom in the section of the equi-
librium indicates, that the dynamical emissions are almost at a level of the stationary emissions
after 0.5 s with X,p,cq. The conventional control concepts reach a similar emission level after 1s
(regr,ctl), 1.5s (Xz() and2s (mair,ctl)'

Table 6.2: Normalised and accumulated quantities for emissions and torque with different
control concepts

Emission Concentrations Mairetl  Tegretl  X2ictl  Xopttl
Cnox,dyn/ Cox,stat 1.633 1.114 1.294 1.078
Crnss,dyn/ Cmss.stat 0467 1.244 0.854 1.076
Meng,dyn/Meng,s[at 1.083 1.053 1.065 1.073

Accumulated Tailpipe Emissions

Ppox IN Mg 64.68 40.67 48.40 39.04
Mmss i Mg 0.33 082 058 073

Tab. 6.2 summarises the dynamical characteristics of emissions and engine torque for the con-
sidered load step. The mean value of all quantities is normalised to their stationary value at the
load step end. Furthermore, the accumulated tailpipe emissions are given for the different con-
trol concepts. Due to the limited air path and actuator dynamics the optimised reference values
of Xpi,ca cannot be reached within the first 150 ms after the load step. Consequently, this would
result in too small emissions during this period of time. For a fair comparison mean values and
accumulated emissions are therefore estimated between 150 ms and 2 s. The quantitative analyse
reflects the visual impressions from Fig. 6.3 and Fig. 6.5. For the investigated load step #it,ircu
has increased NO, emissions on the benefit of lowered particulate emissions. A reg control has
slightly deteriorated NO, emissions and significantly enlarged particulate emissions, while X; cq
can be regarded as a compromise between both control concepts. The dynamically optimised
reference values Xqp,cq result in an emission level, which neither favours one of the emission com-
ponents and can be regarded as rather neutral. Regarding the delivered engine torque, there are
no significant deviations between the control concepts. Also the given tailpipe emissions reflect
the observations of the emission concentrations. Generally, dynamical emissions of different con-
trol concepts differ from stationary calibrated emissions and disarrange the stationary calibrated
emission level. Such a dynamical shifting of the particulate-NOy tradeoff can be considered in the
optimisation by penalising Anyex,ayn and ARty ayn in the optimisation constraints. Or it can be
avoided by dynamical optimised reference values X,p,cq. For these dynamical optimised reference
values no additional calibration effort is necessary, since they are derived from the stationary en-
gine calibration. The chosen analytical optimisation is low on computational demand, since the
number of feasible regressors of the quality criterion is drastically reduced from 31 to 12 by the
utilised derivative of the polynomial emission models. Further investigations and a rating of the
dynamical emission formation of #itir,cq, Tegren ad Xopy,cq during the complete driving cycle are
given in Sect. 7.9.
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6.3 Summary

This chapter focuses on the optimisation of reference values for the air path control and the injec-
tion timing. The dual EGR path optimisation results of Sequenz (2013) are compared in Fig. 6.1
to the series HP-EGR calibration and show the potential of a LP-EGR system to further lower the
engine’s raw emissions.

An analysis of the dynamical emission formation lays the foundation to derive a dynamical ref-
erence value optimisation with respect to the emissions. The raw emissions of an air mass flow
rate control, an EGR-rate control and an intake air content control are compared during a load
step. It is shown, that the dynamical emission formation deviates from the stationary calibrated
emission level. Anymore, the transient emissions differ significantly from control concept to con-
trol concept. These deviations result from the different dynamics in the intake and exhaust system
and are mainly driven by the slow charge-air pressure dynamics and the faster cylinder air con-
tent. As consequence the air mass flow rate control has larger NO, emissions at lower particulate
emissions, the EGR-rate control emissions are vice versa and the air content control has equally
enlarged emissions. Based on these researches optimised reference values for the air path control
are derived. In this optimisation the charge-air pressure is controlled conventional and the fast
adjustable cylinder charge is optimised with respect to the current influencing variables py;, Ty;
and ¢,,;. The optimisation is carried out analytically by superimposing a polynomial loss function
of order three with respect to the weighted NO, and particulate emissions. The key feature of this
optimisation is the analytical solution of the optimisation problem given by the roots of the loss
function’s first derivative. The first derivative of polynomials can be analytically determined in
advance and notably reduces the number of regressors. This simplified model can be implemented
in an ECU and a real-time capable optimisation can be carried out. These optimised reference
values neither favour NOy nor particulate emissions and result in a dynamical emission level close
to a stationary engine calibration.

In the next chapter the control structure with stationary and dynamical optimised reference values
is presented in Fig. 7.1. Afterwards in Sect. 7.9 the contribution of the dynamical emissions on
the accumulated driving cycle emissions is evaluated and discussed.
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7 Air Path Control Design and Dynamical
Reference Value Generation

After the control variables of the dual EGR path system have been identified, this chapter covers
the control design. First an overview about state of the art air path control structures is given. Then
different classical PID and novel semi-physical motivated control structures for the air path quantities
are derived and validated with test bench measurements. The final part of this chapter is devoted
to the reference value generation for the LP-EGR control with consideration of the gas propagation
dynamics. This chapter closes with a combination between reference value generation and air path
control scheme and rates different control concepts by their dynamical emissions during the driving
cycle. As a final result the increase of the accumulated driving cycle emissions by dynamical engine
operation is compared to the stationary engine operation for all considered control concepts.

The air path control of Diesel engines with HP-EGR and turbocharger has been an intensive field
of research and many control concepts have been developed to control the strongly coupled gas
system quantities. A first overview of general design methods and application areas for the control
of Diesel engines is given in Guzzella and Amstutz (1998). In the beginning of air path con-
trol with HP-EGR and manipulable turbocharger it was mostly sufficient to have a closed-loop
control for only one air path quantity. Isermann et al. (2000) show a model-based approach for
a gain scheduled charge-air pressure control with stationary feedforward control. A further map-
based PID-control scheme for the charge-air pressure control of truck engines is given in Schaftnit
(2002). van Nieuwstadt et al. (2000) compare different multi-variable control strategies with de-
centralised PI-controllers, a control Lyapunov function and a rank one controller with regard to
the tailpipe emissions.

SchloBer (2000) introduces an attempt for a decoupling multi-variable control of the air mass flow
rate and the charge-air pressure. Decentralised decoupling PID-controllers are parameterised with
a simplified linearised process model with fixed time constant and operation point dependent pro-
cess gain. Furthermore, the potential of a model predictive control is shown with simulation res-
ults. Riickert (2004) simplifies the coupled system of air mass flow rate and charge-air pressure to a
system of operation point varying first order lag elements and derives a gain-scheduled model pre-
dictive control for these quantities. Richert (2006) optimises the air path actuator trajectories with
a model predictive control, which is based upon a step-wise linearisation of a semi-physical air
path model. Ortner and del Re (2007) present a further model predictive control approach based
on linear parameter varying models. Even more applications of model predictive control can be
found in Herceg et al. (2006) and Drews et al. (2009).
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Several control concepts for the multi-variable control of air mass flow rate and charge-air pres-
sure are presented and compared in von Pfeil (2011). The basis for most of these control concepts
are local linear engine models which are either parameterised by an experimental engine identi-
fication or by linearisation of a mean value engine model. The shown control concepts are gain
scheduled decentralised PID-controllers, gain scheduled PID-controllers with additional decoup-
ling controllers, state-space controllers with partial decoupling and a state-space based internal
model control. Also Kohlhase (2011) utilises gain scheduled decentralised PID-controllers with
stationary coupling terms to control the quantities 7y, and 71, Jung (2003) presents a H,, robust
multi-variable control, while a further Hy, gain schedule control approach based on linear para-
meter varying models is given in Wei (2006). Another approach in Rajamani (2005) utilises an
observer-based nonlinear feedback control to control the air path quantities air-fuel ratio and air
content in the intake manifold. A further nonlinear control based on a control Lyapunov function
is shown in Jankovic et al. (2000) and further extended with integral action in Wahlstrom (2009).

First approaches for a physical motivated control scheme use a reference value transforma-
tion of the air mass flow rate and the charge-air pressure into intermediate controlled vari-
ables. Schwarte et al. (2007) and von Pfeil (2011) propose to control the exhaust back pres-
sure p;3 as intermediate control variable for the charge-air pressure p,;. With this p;-control a
VGT-trajectory results from an inverted turbine mass flow rate model. A control signal for the
HP-EGR-valve is given by model inversion of the HP-EGR flow equation for compressible flu-
ids (3.22). Ammann (2003) presents a semi-physical air management system, which controls the
measured quantities exhaust back pressure pj, charge-air pressure p,; and air mass flow rate 7.
The p;-controller provides a fast turbine power build up in an inner cascade, while the charge-
air pressure controller corrects the reference value for the p;-controller in an outer control-loop.
In this control structure several control-oriented models of the turbocharger power and the gas
system quantities adapt the reference values for the controllers.

Semi-Physical Control Law

A further development in physical control results in the inversion of the turbocharger power
balance to determine a nonlinear control law for the turbocharger actuator. Schopp et al. (2009)
present the combination of an inverse control of the stationary turbocharger power balance with
nonlinear PID-controllers to control the charge-air pressure. Youssef et al. (2007) motivates the
inversion of the turbocharger power balance with the flatness methodology and utilises 12 as the
flat model output to obtain a control law for the VGT-actuator. In a similar manner Schwarzmann
(2008) derives a flatness based internal model control with a model inversion of the turbocharger
maps to solely control the charge-air pressure. In Moulin and Chauvin (2011) the turbocharger
power balance approach of Youssef et al. (2007) is simplified with a singular perturbation method
to a first order reference system with the compressor pressure ratio as state variable. A dynamical
inversion of this simplified model results in a feedback linearisation and an additional integral term
is added to compensate model uncertainties. An extension of this turbocharger model inversion
control scheme also accounts for disturbances from either HP- or LP-EGR on the turbocharger
power balance in Moulin et al. (2010). Zimmermann et al. (2015) show that a single engine can
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lead to hundreds of application variants tailored for individual market applications and propose
to replace conventional engine map-based approaches by physical model-based approaches. In
this approach physically-oriented equations master the complexity of the coupled nonlinear air
path with a global approximation of the system behaviour. Due to the modular structure of the
physically-oriented model, single components are easily interchangeable for different market ap-
plications.

Feedforward Control

The closed-loop air path control of Diesel engines with various control concepts has attrac-
ted much attention in the research community, while the development of appropriate feedfor-
ward control structures has been neglected. State of the art feedforward control structures for
the air path control are mainly restricted to stationary characteristic maps, which usually cor-
respond to the actuator control signals during stationary engine operation (Isermann et al., 2000;
Nitzke and Rebohl, 2000). Some approaches extend these stationary feedforward controllers by
a PDT;-element to achieve a dynamical feedforward control (Hafner, 2002; Isermann, 2010;
von Pfeil, 2011). However, there is no method for a systematic calibration of these PDT;-elements
for all possible engine transients in a map based control structure yet (Isermann, 2010; von Pfeil,
2011).

Further advantages in the feedforward control of Diesel engines are made in Kohlhase (2011)
and von Pfeil (2011), who utilise a model follow-up control structure for the control of the air
path quantities. Their control structure combines a feedforward control with filtered reference val-
ues, which both result from the state feedback control of a linear-parameter varying model. This
dynamical feedforward control also partly decouples the air path quantities and further accounts
for actuator saturation. Furthermore, the controlled outputs of this model act as filtered reference
values for underlying controllers, which only have to compensate the deviations between the feed-
forward model and the engine process.

LP-EGR Control

Various control concepts are applied for turbocharged Diesel engines with HP-EGR, but only a
few publications consider the recent development towards turbocharged Diesel engines with two
EGR paths. In Mueller et al. (2005) a model-based predictive controller consisting of a state ob-
server, a prediction and an optimisation algorithms is used to control the two path EGR-system.
An optimised actuator position of two controlled variables i, and po;, respectively 7z, and reg
is determined by a heuristic algorithm. Another approach in Heuck et al. (2008) presents a pre-
dictive air management system with the LP-EGR fraction of the collective EGR-mass flow rate
as a calibration parameter. The desired position of the air path actuators are determined by a pre-
dictive model-based method. Non-measured states are modelled by a real time air path model. In
the latter approach the charge-air pressure is not controlled. Both approaches require high com-
putation time and the algorithms to calculate the values of the manipulated variable are not trace-
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able. Another nonlinear approach based on model inversion of a semi-physical model is presented
in Chauvin et al. (2011). Either HP-EGR or LP-EGR and the charge-air pressure are controlled.
However, to reach future emission limits both EGR-paths should be controlled simultaneously.

7.1 Air Path Control Scheme

Based on the findings of the previous chapters, a control scheme for the air path with HP- and
LP-EGR is derived in the following and depicted in Fig. 7.1. In the LP-EGR system there are sig-
nificant dynamics of the air content with dead times of up to 2.5 s for one cycle through the intake
and exhaust system, which are caused by long gas transportation times, see Sect. 4.4. Further, the
air content between single storages has the characteristics of a plug flow, which results in abrupt
changes in the air content of single storages. The air content model with a pipe receiver approach
from Sect. 4.4 is capable to model these air content dynamics and utilises measured quantities
as model inputs. The air content shows inherent dynamics, which can’t be described by stand-
ard control variables like the air mass flow rate or EGR-rate. Thus, the air content can be either
closed-loop controlled or considered by a feedforward control.

{} Xeng,out,opt

Dynamical Optimisation Air Content
Sect. 6.2 Model Sect. 4.4 x
Whnox > Wmss . {} . - -
’ Mair,des Mip—egr,des, Titip—ege-control | Sp—egr/ith,des Mp—egr
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Figure 7.1: Air path control scheme

A closed-loop control is always reacting to compensate disturbances and it is assumed that it reacts
too slow on the abrupt changes in the approaching air contents. Furthermore, these sudden air con-
tent changes are strong changes in the gain of the controlled process, which complicate a control
design with good disturbance rejection and necessary robustness. Thus, the modelled air content
is utilised in a feedforward control. In Fig. 7.1 this feedforward control is termed dynamical ref-
erence value generation. It utilises the modelled air contents of several storages from Sect. 4.4 as
intermediate control variables to transform stationary optimised reference values for the air mass
flow rate and intake temperature from Sect. 6.1 into reference values for a LP-EGR and a HP-EGR
mass flow rate controller. On demand, the dynamical reference value generation can replace the
setpoint of the air mass flow rate by dynamical optimised reference values Xeng,out,opt> a5 given in
Sect. 6.2.

As aresult of the system analysis from Sect. 4.1, it is shown that the LP-EGR-actuators have only
minor interactions to the quantities 71, ¢ and ps;, while there is a strong interaction between
HP-EGR-valve, VGT-actuator and the quantities 72y, —cgr, Hitnp—egr and p,;. Hence, the controllers
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for LP-EGR can be designed independently from the controllers of HP-EGR and charge-air pres-
sure, see Fig. 7.1. In which the derived LP-EGR controller implicitly incorporates all interactions
from HP-EGR-valve and VGT-actuator, while the 7i2yy_cer and py;i controller design decouples the
interactions between HP-EGR-valve and VGT-actuator.

After the air path control scheme is motivated, follows an outline of the succeeding chapter. At
first a control structure to control the quantities 7y, o and p,; is presented in Sect. 7.2. The
control structure contains of a feedforward control and a decentralised PI(D)-control.! These
PI(D)-controller are designed in Sect. 7.3. Next in Sect. 7.4, the semi-physical relationships of the
parameterised mean value engine model from Chap. 3 are converted into a novel semi-physical
feedforward control, which decouples the controlled quantities. This feedforward control is trans-
formed in Sect. 7.5 to a nonlinear semi-physical internal model control of ritp, o and p,;. After-
wards in Sect. 7.6, the controllers and feedforward control are evaluated with measurements of
the engine test bench.

In Sect. 7.7 the LP-EGR mass flow rate is controlled separately by a semi-physical control, which
utilises the dependency of the LP-EGR rate on the actuator position and its invariance to other
air path quantities as control law, see Sect. 4.2.1. This coherence copes for changes in the engine
operation point, compensates influences from the HP-EGR-valve and VGT-actuator and simplifies
the resulting controller.

Later in section 7.8 a dynamical reference value generation is motivated. This reference value gen-
eration transforms stationary 7it,ir,qes and 75; qes reference value maps from Sect. 6.1 or dynamical
optimised reference values for Xeng out,opt (Sect. 6.2) into reference values for the HP- and LP-EGR
controllers. By considering the states of the air content model from Sect. 4.4, the air contents act
as intermediate control variables and the inherent air content dynamics of the singles storages are
incorporated into the reference value generation.

Finally, in Sect. 7.9 the different control concepts are rated with regard to their driving cycle emis-
sions and generated engine torque. In this comparison the contribution of dynamical and stationary
driving cycle parts are separated and compared to the emissions expected from a stationary engine
operation in the operation points covered by the driving cycle.

7.2 Control Structure for HP-EGR and Charge-Air Pressure

The main purpose of the air path control is to supply the combustion process with the optimal
air content, so that the driver’s torque demand can be met while the emissions stay within their
calibrated limits. In this context, the dynamical rather slow charge-air pressure control loop seems
to be the limiting factor to reach a fast torque response. This slow turbocharger dynamics is also
a reason for the deviations between the stationary and the dynamical emission formation, see
Sect. 6.2. In order to improve this behaviour, a dynamical fast and accurate reference following

ln'th,eg, is controlled by a PI-controller and p»; is controlled by a PID-controller. The PI-controller is chosen, to
avoid a noise amplification in the rather disturbed signal rizpp—eg by the derivative characteristics of a PID-controller
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for the control loops of all controlled air path quantities is demanded. However, there is usually a
trade-off between the controller’s reachable reference following performance and the controller’s
robustness to nonlinearities, model uncertainties and disturbances so that the reachable controller
performance has to be limited (Follinger, 1994).

In state of the art engine control systems the nonlinear process behaviour is generally taken into
account by gain-scheduled PID-controllers, whose parameters are stored in engine operation point
and operation mode dependent characteristic maps (van Nieuwstadt et al., 2000; Isermann, 2010).
Indeed this practice gets limited in its applicability, when the number of controlled variables, in-
fluencing quantities like ambient conditions and engine operation modes increase, since simultan-
eously the number of control parameters for the engine calibration rises. For modern engines the
number of engine operation modes can count up to ten (Hadler et al., 2008) and will probably rise
in the further engine development. Furthermore, the reachable controller performance with these
PID-controllers stays limited. Hence, a novel control structure which can handle different engine
operation modes with a moderate calibration effort and simultaneously good control performance
is desirable.

Feedforward Control & Decentralised Actuator Shaping Engine Process
Reference Shaping Filter PI(D)-Control
Usfe
ni:ng Tinj Ssa Pmi }ilcng lfinj Neng Uinj Ssa Pmi
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Figure 7.2: Two-degree of freedom control structure for the multivariable control of the air
path quantities #pp—egr and poi, consisting of a feedforward control with reference shaping
filter (Sect. 7.4), a decentralised PI(D)-control (Sect. 7.3) and an actuator shaping (Appx. C).
Titlp—egr is controlled separately, but considered in the feedforward control via 7itp—egr,des-

In comparison to a reactive closed-loop control, a preemptive feedforward control can actuate the
process with a good performance and is not affected by feedback effects of model uncertainties
and disturbances. Assuming a rather accurate feedforward control, only a minor control effort has
to be spent by a closed-loop control to ensure that the process meets a given reference following
and the closed-loop controller can be designed rather simple for disturbance rejection. Hence,
the combination between a sophisticated feedforward control and a simple closed-loop control is
promising, see von Pfeil (2011).
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Fig. 7.2 illustrates the control structure to control the quantities HP-EGR and charge-air pressure.
It consists of a two-degree of freedom control structure (Horowitz, 1963; Kreisselmeier, 1999) with
a semi-physical feedforward control and decentralised PI(D)-controllers (G¢11; Gcaz). The non-
linear model-based feedforward control utilises the reference value vector yges to simultaneously
derive a feedforward actuation ug, and filtered reference values y,s for the engine operation point
dependent PI(D)-controllers. This filtering avoids an overcompensation by the PI(D)-controllers,
which shall only account for deviations between feedforward control and process. The normalised
control signal sq.s consists of a contribution from the feedforward control ug, and the closed-loop
control ugy and is transformed by an inverse actuator shaping, as given in Appx. C, to the setpoint
S4es for the actuator position controllers. These position controllers and the actuator shaping can be
seen as an integral part of the engine process and are not further considered in the following. The
engine process delivers the controlled variables y dependent on engine operation point, engine
operation mode, ambient conditions and actuation of the air path actuators.

The realisation of this control structure is an enhancement of Kohlhase (2011) and von Pfeil
(2011), with a novel feedforward control based on model inversion of a semi-physical mean value
engine model, see Sect. 7.4. Kohlhase (2011) and von Pfeil (2011) realise the feedforward control
with identified local affine models, which are state space controlled to generate control signals and
filtered reference values. However, with a rising engine complexity the dimensionality of models
describing the engine process rises. While the input dimensionality rises linear, the volume of
the model space rises exponentially, which is known as curse of dimensionality (Hastie et al.,
2011). Consequently, the amount of training data and the model complexity have to rise expo-
nentially with the dimensionality of the input space, if a constant coverage of the input volume is
desired. This fact can limit experimental models to problems with a rather low input dimensional-
ity (Mrosek, 2017). Consequently, a future-proof concept for a feedforward control is necessary,
which can also handle the rising complexity of future combustion engines.

Further, given the trends for a modular engine development, at which engines are constructed from
equal parts of construction kits, an easy exchange of models and parameters between engine types
is preferable. Especially, when one and the same engine has to meet hundreds of application vari-
ants tailored for individual market applications (Zimmermann et al., 2015), it is no longer feasible
to model each single engine variant by a black-box identification. In that case a semi-physical ap-
proach, where only single submodels have to be replaced or parametrised for each engine variant
seems to be more productive. Thus, a feedforward control consisting of semi-physical relation-
ships, as given in the model derivation in Chap. 3, seems to be a promising approach. In this
approach additional model inputs can be easily introduced by usually low dimensional physical
relationships and models can be adapted to different engine variants by replacing the parameters
and models for the differing components without the need to parametrise a complete engine model
for every change of a component.

Such a novel feedforward control based on model inversion of the semi-physical mean value en-
gine model is illustrated in Fig. 7.2. Contrary to the limited input dimensionality of von Pfeil
(2011) with engine speed, injection quantity, HP-EGR-valve and VGT-actuator as model inputs,
this feedforward control is capable to include further influences of the decentralised LP-EGR-
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Figure 7.3: a) Decentralised control structure for the air path quantities in linearised form b)
Internal model control structure

control (777jp_cgr,des) and varying ambient conditions p, and 7, (Mrosek, 2017) into the feedforward
signals. Further, the engine conditions T, and kqyr as well as influences of special engine opera-
tion modes, which exemplary result in different swirl actuator positions s, and injection timings
®mi, are included in the feedforward actuation.

7.3 Decentralised PI(D)-Controllers for HP-EGR and Charge-Air
Pressure

In this section the parameterisation of the decentralised PID-controllers for the quantities #itp,—cgr
and p,;, which follows directly after the method proposed in von Pfeil (2011), is briefly summar-
ised.

Decentralised PI(D)-controllers can be utilised for the control of multi-variable processes, when
the couplings between the single actuators and the controlled variables are not too strong. In that
case the multi-variable control problem is reduced to several single-input single-output (SISO)
systems with rather simple controllers. Especially the industrial widespread PI(D)-controllers are
easy to implement and to understand. They offer the calibration engineer the possibility for a later
fine tuning at the engine test bench. Since in the control scheme from Fig. 7.2 most of the response
to setpoint changes and the decoupling of the controlled variables iy, ¢, and p,; are undertaken
by the semi-physical feedforward control, a simple control structure like the decentralised PI(D)-
controllers is sufficient for the compensation of the remaining model inaccuracies and process
disturbances.

Fig. 7.3a) shows the linearised block diagram of the decentralised control for iy, —cgr,rsr and po; rer
with the linearised quantities A. In this control structure the HP-EGR-valve governs Arityp_cgr and
the VGT-actuator controls Ap,;. The transfer functions are derived by operation point dependent
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linearisation of the mean value engine model and the controllers are parameterised in the continu-
ous frequency-domain. For the later implementation these continuous controllers are transformed
into discrete form. In case of this coupled system, both controllers G¢;; and Gy, influence each
other via the coupling terms G, as well as G, and complicate the decentralised control. Hence,
these influences have to be incorporated into the process model for the controller design. Accord-
ingly, the process transfer function Gp; for the HP-EGR mass flow rate control

A”i’lhpﬂegr rsf (S) ( GCZZ (?) GZZ (Y) )
————=Gp () =G )| —k(s) ———————————— 7.1
AShp—cgr (5) o ( ) ! ( ) ( 1+ GC22 (5) G22 (5) ( )
is also influenced by the controller G¢,, via the coupling factor
G G
K (s) = 2120 G () (1.2)

G11 (5) G2 (5)

This coupling factor (Isermann, 1991) is a quantity for the coupling between the different control
loops and it quantifies the interaction between both controllers. Analog to (7.1) also the charge-air
pressure process can be expressed as

ADai st (s)

= (7.3)

=G () = G 0) (1= () P OB D)

1+ Geri (s) G (s)

The controller design is performed according to the sequential loop closing method, in which
the single control loops are closed sequentially (Knapp, 1993; Mayne, 1973). In this procedure
the dynamical fastest control loop is closed at first and considers only its main coupling. Then
the second control loop is designed and incorporates the first controller. In order to achieve a
higher control quality, the sequential closing can be repeated iteratively with the consideration of
the afore designed controllers (Huang et al., 2003). This iterative procedure is repeated until all
control parameters have converged.

The controller parameterisation is achieved by an internal model control (IMC) design with
subsequent model reduction approach. Fig. 7.3b) shows the block diagram of the IMC control-
ler (Morari and Zafiriou, 1989), where a plant model Gy is calculated parallel to the controlled
process Gp. In contrast to a standard control loop, the controller G has only to compensate de-
viations between the modelled y and the measured process output y, so that in case of an ideal
model this controller yields a pure feedforward control. Generally this IMC-controller shows no
control deviation, when the stationary gain of the IMC-filter G, is equal to the inverse station-
ary gain of the plant model Gy (Morari and Zafiriou, 1989). Anymore, the complete IMC-control
structure is stable, if both the controller G, and the process Gp are stable (Morari and Zafiriou,
1989).

Analog to a feedforward control the IMC-filter is designed as
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Go = (Gy) ™' G, (7.4)

where Gy is the stable invertible part of the plant model Gy and Gy is usually a lowpass filter. In
case that the plant model is exact, this yields the reference action of the control loop

Gw = GuGq = Gy (Gg) ™" Gr. (7.5)
Generally the filter

1

Gy=—
T Tws+ 1)

(7.6)

can be chosen as a lowpass filter with the only calibration parameter Ty, which can be tuned as
a compromise between control performance and control robustness. The order r has to be chosen
such that G, can be realised, which means that the degree of the nominator has to be at least as
large as the degree of the denominator. For the design of the IMC-filter (7.4) it is necessary to
invert the plant model Gy. In case that the plant model has non-minimum phase characteristics
this inverse is unstable. Hence, most common practice is to mirror the non-minimum phase zeros
(positive) at the imaginary axis and replace them by their negative counterparts, which results in
the stable invertible part of the plant model Gg.

This IMC-based controller design yields a compensator with the order of the controlled plant,
which is not suitable for a series implementation and a later fine tuning at the engine test
bench. Hence, these high-order controllers for HP-EGR and charge-air pressure are according
to Lee and Edgar (2004) reduced to PI(D)-controllers with the parameters kp, k1, kp, so that the
squared deviation between the IMC-controller step response ypc and the PID-controller step re-
sponse ypip gets minimal

. Y _ 2
(k})ryrllchr;m)-](kp,kl,kn) —/0 (yimc — ypin)~ de. (1.7)

The HP-EGR mass flow rate signal is rather noisy. Consequently, this controller is designed as
a Pl-controller. Further, the derivative part of the charge-air pressure PID-controller is low pass
filtered, in order to be less sensitive to measurement noise. After the PI(D)-controller paramet-
erisation has been covered, the derivation of the semi-physical feedforward control follows in the
next section.
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Figure 7.4: a) Classical feedforward control with invertible inverse plant model Gl\f/ll, calib-

rated filter function G and reference shaping filter Grsr to avoid overcompensation of feed-
forward signal by closed-loop controller b) Semi-physical nonlinear model inversion with
simplified mean value model for feedforward control and reference value shaping

7.4 Semi-Physical Feedforward Control for HP-EGR and Charge-
Air Pressure

In this section a feedforward control for the HP-EGR-valve and the VGT-actuator is derived based
on the semi-physical relationships of the mean value engine model as described in Chap. 3. This
feedforward control directly utilises the identified parameters of the engine model and generates
its control signals by model inversion. Thus, it can implicitly account for all uprising applications
variants resulting from a change of air path components, which can be modelled by the mean
value engine model. Further, it comprises the nonlinearities of the engine process, decouples the
quantities 7itp,—eer and p; and contributes to most of the reference action of the control loop.
Consequently, the relatively simple PI(D)-controllers from last section are used for disturbance
rejection and to compensate for modelling uncertainties of the feedforward control.

A closed-loop control with one degree of freedom is generally not capable to simultaneously at-
tain a desired reference following and a sufficient rejection of disturbances and process parameter
variations (Horowitz, 1963). However, for processes with two access points (process input and
process output) there are exactly two degrees of freedom to design the desired reference following
and disturbance rejection (Horowitz, 1963; Kreisselmeier, 1999). Generally the closed-loop con-
trol is utilised for disturbance rejection and to cope for process variations, while the feedforward
control provides the reference following, see also Fig. 7.2. A common structure of a SISO feed-
forward controller is given in Fig. 7.4a), in which the feedforward controller is composed of the
transfer functions G (s)G]\f/[1 (s) and Ggrsr(s) (Astrom and Hagglund, 2005). This structure gener-
ates the feedforward control signal u, for setpoint changes of y4.s and applies it to the process,
see Fig. 7.2, where feedforward control, closed-loop control and process form the overall control
structure. Furthermore, setpoint changes are filtered by a reference shaping filter to y,s, which
represents the remaining dynamics. Consequently, under ideal conditions the feedforward control
perfectly matches the process and the control deviation e = y, i — y in Fig. 7.2 becomes zero.
However, under real conditions with modelling errors, process nonlinearities, plant variations and
disturbances this error is apparent and has to be compensated by a subsequent closed-loop control.
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The filters for a classical feedforward control are usually designed comparable to the IMC-filter
design (7.4) as a combination of the stable invertible part of the plant model Gy; and a filter G,
so that the resulting transfer function G(s) GI\;II (s) is realisable. The reference shaping filter Grsr
avoids an overcompensation of the feedforward signal by the subsequent closed-loop controller
and can be designed separately, but is often chosen with the same dynamics as G¢. The achievable
quality of such a linear SISO feedforward control structure is limited, especially if the process
becomes nonlinear and multivariable with strong couplings between the controlled quantities. As
a further drawback, this structure cannot consider input saturation in the derivation of the control
signal u ., since there is no information feedback that a control signal has been limited. There-
fore, the influence of input saturation can have negative effects on the response to setpoint changes
with this feedforward structure and cannot be compensated sufficiently. Especially if a fast feed-
forward action is demanded, a physically truncated actuation signal can lead to an undesired slow
setpoint response, see Kohlhase (2011) and von Pfeil (2011). A better reference action of the con-
trol loop under actuator saturation can be achieved with the structure in Fig. 7.4b), where a model
of the plant is controlled by a closed-loop control of the model internal states Xey and the impli-
citly generated actuator signals ug, act as feedforward signals. Such a feedforward control which
implicitly results from a closed-loop controlled model is called model follow-up control (Hippe,
2006; Wurmthaler and Kiihnlein, 2009; Roppenecker, 2009). A similar control structure with mul-
tivariable decoupling state space controllers and local affine models is successfully applied as a
feedforward control for the air path of Diesel engines in Kohlhase (2011) and von Pfeil (2011).

When it comes to the recent and future Diesel engine development, the system complexity stead-
ily rises and the air path control has to fulfil stricter requirements. These requirements demand an
increased number of influencing variables and engine operation modes which all should be incor-
porated into the control structure. At this point the local affine models seem not to be manageable
anymore with a reasonable effort, since the input dimensionality and the amount of measurements
for a reliable model calibration rapidly grows. Hence, a semi-physical engine model can be the
key to keep the modelling and parameterisation effort manageable and consequently the control
structure from Kohlhase (2011) and von Pfeil (2011) is modified for a semi-physical feedforward
control scheme. This control scheme is based on a model inversion of the semi-physical mean
value engine model with a decoupling of the quantities charge-air pressure and HP-EGR mass
flow rate. In that case the controller in Fig. 7.4b) has to be replaced by the model inversion control
and the simplified model represents a control-oriented mean value model.

The derivation of the semi-physical feedforward control is structured as follows. First the tur-
bocharger power balance inversion is derived. Then follows the combination of the turbocharger
model inversion with a control-oriented engine model to a model follow-up control. Afterwards
a feedforward scheme for the HP-EGR actuation signal is derived and the overall semi-physical
feedforward control functionality is analysed with simulations. Then some further aspects on the
charge-air pressure control are solved. Finally, the control is validated with engine test bench
measurements.
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7.4.1 Turbocharger Model Inversion

Fig. 7.5 illustrates the scheme for the feedforward control of the VGT-actuator position s g
with regard to the two controlled variables compressor mass flow rate #itc ges and pa; des,fi- The
fundamental idea of this model-based control is an inversion of the turbocharger power bal-
ance (Schopp et al., 2009; Youssef et al., 2007). As novelties a turbocharger model based upon
Euler’s equation for turbomachinery is utilised, the VGT-actuator transfer function G, (s) is con-
sidered and a limitation of the VGT-actuator control signal s i is introduced. Furthermore, the
previous publications implemented the inverted turbocharger model in the form of a closed-loop
control. In the following, this turbocharger model inversion is implemented into a model follow-up
control structure with the objective to generate a feedforward control for the VGT-actuator. Then
this control signal is not affected by feedback of modelling uncertainties and measurement noise
and can generate a better response to setpoint changes. Anymore, this feedforward control scheme
considers the 7i1p,_¢er controller couplings, derives a feedforward signal for the HP-EGR-valve
with a novel control strategy and decouples the two quantities charge-air pressure and #itp, g
Note that in the following all gas system quantities are estimated quantities and denoted with the
hat symbol.

Dides Didesfil  DP2ides,il T2c Mlc,des

Tile,des St ffc
=,

Gag (5)7!

Pc,des Pf,dcs

Figure 7.5: Model inversion to achieve a control signal for the VGT-actuator by inverting the
compressor mass flow rate model and the turbo charger power balance

According to Fig. 7.5 a trajectory for the VGT-actuator s, g, is given dependent on the reference
values for the mass flow rate through the compressor 7. qes and the filtered desired charge-air
pressure po; des,fii- The filtering of pyi 4es determines the response to setpoint changes and is mo-
tivated later in Eq. (7.21). However, in a two EGR-loop configuration the quantity 7 ges is nOt
directly controlled. In this configuration the controlled variables are the quantities 77y, —cgr,des and
Tiip—egr,des- Hence, the desired value for 71 4cs has to be determined by the stationary mass flow
rate balance in the intake system

M des = ’neng,in,des - ’nhpfegr,des,lim (78)

from the estimated desired mass flow rate entering the cylinder #1¢ng in.des (7.9) and the currently
feasible HP-EGR mass flow rate reference value 7itpy—cgrdes,lim (7.11). The desired mass flow
rate entering the cylinder #itengin,des follows with the filtered desired charge-air pressure p;i des i
and (3.28) as
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P2i,des,filleng Vaz

- 7.9
R7, (7.9)

Meng,in,des = )\a (nengs D2i,des,fils Ssa)

At fully opened HP-EGR-valve (Cp A the currently maximum mass flow rate n%hp_eg,,max

can be determined with Eq. (3.22) and the estimated quantities py;, p; and fhp_cgr by

ref)hpfegr,max’

2 3 2 rtl
}’I’Ihpfsgr,max = (CDAref)hp—cgr,max ﬁ\/% [(H)K — (H) I3 ] (7 10)
with TT = min |:max [@, (L)KKT'} , 1]

p3 k+1

and gives the limitation for the currently feasible desired HP-EGR mass flow rate

Mpp—cgr,des,lim = MIN (mhpfegr,deSs mhpfegr,max) . (7 1 1)

In order to determine a reference value for the turbocharger speed 7y gcs, the compressor model (3.38)
is inverted to

Nic,des = fLOLIMOT (mc,deSs PZi,des,ﬁl/pl,des) (7.12)

and the input quantities are replaced by the demanded reference values 7i¢ des, Pai.des.ii and 1 des-
Contrary to the compressor model from (3.38) this model directly incorporates the pressure drop
over the charge air cooler by considering the pressure pa; des a1. Further, this simplified reference
value generation utilises no normalised quantities (3.36) and (3.37) to determine the desired tur-
bocharger speed. A further model input is the expected pressure before the compressor pi ges. It
can be determined in two steps. First the expected air mass flow rate f;lair,des can be determined by
a balance equation and the reference value for the LP-EGR mass flow rate controller 7y, gr,des s

Myir,des = Mec,des — Mip—egr,des- (713)

Then, the desired pressure before the compressor p; 45 can be approximated by rearranging the
flow equation (3.21) for incompressible fluids as

~ 2

mair des RTa

Pas @ pa— | =7 | 5 (7.14)
' ((CDAM)M) 2p,

with the flow parameter2 for the intake throttle valve (CDAmf);[h, the ambient pressure p, and
the ambient temperature 7, as model inputs. In which this approximation only holds for relative

2Note that (CDA,Cf)i’th is the identified flow parameter for Eq. (3.21) and (Cp Ayef);y, corresponds to the identified
parameter of Eq. (3.22). The quantity of both flow parameters is a function of the cross sectional area, which is
determined by sig.
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small pressure drops over the intake throttle valve. After the desired turbocharger speed (7.12)
has been determined, one can calculate the demanded compressor power P 4.5 from (3.44), (3.49)
and (3.50) to reach the demanded pressure 1ise pa; des,fil/ P1,des With the desired compressor mass
flow rate #it ges.

kslip”ddntc,dss

Ml des Cm(ﬁcz«h)
p2.des mdaba

Pc,des = Ml¢ des 1—

Mg, desh cot
((ﬂdczl’lm,deg)z + c,des’ttc,des (,Bc2,b))

P2,des bc2
(7.15)

”dcﬂ’llc,des +

In which the desired gas density p, 4.5 demands the estimated temperature after the compressor
T). as a further model input

Prdes = p2i,dfs,ﬁlt. (1.16)
RT,,

Furthermore, the expected friction losses Prqes (3.63) contribute to the stationary power balance.
So far only the stationary contributions of P, 4es and Py qes to the turbocharger power balance have
been regarded. This is sufficient to reach the reference values with the given system dynamics,
but the system dynamics are not significantly increased. Thus, also a proportion of the desired
turbocharger acceleration P 4es can be considered in the power balance to increase the dynamics
of the controlled system. According to Newton’s second law of motion, the shaft acceleration
results with the shaft inertia from (3.62) and a power balance unequal to zero. Hence, the desired
power for the turbocharger acceleration can be approximated by replacing the derivative 71, with
the finite difference (¢ ges — tc) Kic,acc 88

Pacc,dcs = 4772]tcﬁtc (ntc,dcs - ﬁtc) ktc,acc- (717)
In this equation ki .. is a tuning parameter, which allows to speed up the turbocharger by pen-
alising deviations between the desired turbocharger speed and the modelled turbocharger speed.
Suitable values for ki acc are 0...5s ' Finally, the summation of all stationary (7.15), (3.63) and
dynamical (7.17) power demands gives the power, which is demanded from the turbine

Pt,des = - (Pc,des + Pf,des + Pacc,des) . (718)

This desired power can be transformed with (3.59) and the quantities f"3, D3, r;zt and 7 to

¢ N
(CO (05:3)) __ Apz Praes. (7.19)
bt3 des rhfﬁtc

Note that the fraction term before the desired turbine power P ¢ characterises the currently avail-
able quantities to drive the turbine and therefore does not contain any desired quantities. Anymore,
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the effects of heat transfer are not incorporated into the determination of ps in this control-oriented
model. Finally, an inversion of the simplified VGT-model (3.60) by a look-up table results in the
desired trajectory of the VGT-actuator sy ..

Stwe = [ ((Cm (a”)) ) (7.20)
b13 des

The final control signal s g is then derived after a further signal limitation with the signal s jim

and a partly compensation of the actuator dynamics G,,(s)~'. This further limitation prevents
the charge-air pressure control from lowering the pressure drop over the HP-EGR path, so that

it becomes inoperative. These further actions to finally derive the feedforward signal s g will be
discussed later on in Sect. 7.4.5.

So far the generation of s; ;. is similar to the semi-physical turbocharger controls in Schopp et al.
(2009) and Youssef et al. (2007) and differs only in the utilised turbocharger model. However,
there are some issues in this approach which will be improved in the following. Due to model
simplifications and model inaccuracies this semi-physical turbocharger control will most likely
show a steady-state error. Consequently, Youssef et al. (2007) introduce a parallel working integ-
ral controller into the control scheme. Schopp et al. (2009) eliminate this control-deviation with
an additional PID-controller. On the one hand these additional controllers eliminate the control-
deviation, on the other hand they can show a poor performance for set point changes. For sudden
reference value changes both the semi-physical controller and the additional controller will try
to eliminate the control-deviation. Therefore, large control-deviations can tend to be overcom-
pensated by these two parallel working controllers. This effect could be reduced by an appropriate
reference shaping filtering or a weaker tuning of the additional controller. However, these struc-
tural deficits demand some fiddling to coordinate the semi-physical turbocharger control and the
parallel working linear controller. Hence, another way to overcome steady-state deviations and
performance limitations of a closed-loop control is chosen.

7.4.2 Model-Inversion Model Follow-Up Control

For the semi-physical control by model-inversion many quantities are necessary
(fZC,ﬁm,f;. ﬁg.’;lt) and have to be either modelled or measured. Assuming that only a
few additional quantities are simulated, one can obtain a control-oriented mean value model
for the major system dynamics. Thus, the control by model-inversion can be applied to the
control-oriented model in form of a model follow-up control, as shown in Fig. 7.2 and Fig. 7.4b).
Then all feedback loops to the engine intake and exhaust system are disconnected and the
nonlinear control turns into a feedforward control. Further, the control-oriented model acts as a
reference shaping filter for the charge-air pressure control and generates the set points for the
underlying PI(D)-controllers in Fig. 7.2, which only has to compensate the deviations between
the model and the process quantities.
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Engine Operation Point / Engine Conditions

Turbocharger Inversion
-1 D2i,des,fil

P2ides D2ides,fil

R I Gp2i,rsf (3)
Mhp—egr,des

P2irst

Mip—egr,des g
—_— Mhp—egr,des,lim
mlp—egr,des
Mhp—egr,des Shp—egr,ffc

HP-EGR Inversion

mhp—egr,des n.'lhpfegr,rsf

Figure 7.6: Block diagram of the model-inversion model follow-up control, which generates
the feedforward control signals Shp—egr,fic, St.fic and the filtered reference values itpy—cgr, rst,
Daist for the subsequent closed-loop controllers.

Fig. 7.6 illustrates the overall structure of the model follow-up control based on model-inversion.
It basically consists of the four parts reference shaping filters, turbocharger inversion, HP-EGR
inversion and a control-oriented model. This feedforward control considers the couplings between
HP-EGR, LP-EGR and the turbocharger and generates control signals and reference values for the
underlying charge-air pressure and HP-EGR controllers. The functionality of the HP-EGR-valve
inversion and the separate LP-EGR control will be discussed later in Sect. 7.4.3 and Sect. 7.7.

In this structure the quantities pa; ges and 7itpy—cgr,des are filtered by G rst and Ghp—cgr.rst. The HP-
EGR filter Ghp—cgr,rs¢ is designed to adjust the reference value for the subsequent PI-controller to
the feedforward action process response. So that the PI-controller does only compensate deviations
between feedforward control and engine process. It is designed as a first-order lag element with the
time constant Ty, cgr rsr. Next, the charge-air pressure filter Gpy; s determines the desired reference
value trajectory for the turbocharger model inversion. The dynamics of the charge-air pressure
are of higher order and are determined by the VGT-actuator dynamics (see Fig. 4.4) and the
turbocharger momentum of inertia. Hence, a second order reference shaping filter

i,des. J 1
Graist (5) = Peides1(5) = 2 (7.21)
P2ides(s) (TpZi,rsfs +1)

with the time constant T}, s is applied to give the trajectory pa; des,fi for the turbocharger power
model-inversion in Fig. 7.5. Afterwards, iy, —cgr s 1S transformed by (7.8) to (7.11) into 7z ges
and the inverted turbocharger power balance from Fig. 7.5 results in the control signal s . This
control signal, the reference values 7itjp_cgr,des and 7ithp—cgr,des,im @s Well as the engine operation
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Feedforward Control and Reference Shaping Filter

Control-Oriented Model Reference Shaping Filter

Semi-Physical Model-Inversion Control

3
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Meng  Uinj  @Pmi  Ssa
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e, Tac, p3, T, iy

Engine Operation Point  (J Model-Inversion Control

Intermediate Reference Values

Figure 7.7: Model structure of the semi-physical model-based feedforward control and the
reference shaping filter

point quantities and the engine conditions are inputs for a mean value engine model, which simu-
lates the necessary quantities X for the turbocharger model-inversion and the HP-EGR inversion.
Furthermore, this controlled model also yields the reference value py; . for the underlying PID
charge-air pressure control.

A more detailed view of this feedforward control and the control-oriented model is given in
Fig. 7.7. The model delivers all quantities to derive the control signals s, and Spp—cgr,rc as well as
a feasible course of the charge-air pressure pa; r¢. With the aim that the resulting feedforward sig-
nals also implicitly consider the engine operation mode and the engine conditions, these quantities
are utilised as further model inputs for the control-oriented model. The engine conditions cover
coolant temperature 7j,,, ambient pressure p,, ambient temperature 7, and load of the Diesel
particulate filter k4. Different engine operation modes are characterised by engine speed ¢,
desired injection quantity ui,;, start of the main injection @, position of the swirl actuator s, and
actual intake or exhaust throttling of the LP-EGR system. This LP-EGR throttling depends on
the system configuration and can be either implemented as intake throttle valve s;, or as exhaust
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throttle valve s.,. With the consideration of these additional influences no more additional calib-
ration of the feedforward control for engine warm-up or strongly varying process gains resulting
from changes in the ambient conditions is necessary (Mrosek, 2017).

As a special feature the mass flow rates in both EGR-paths are not modelled with the flow equa-
tion for compressible fluids. Instead, the mass flow rates corresponding to the reference values
Hlhp—cgr,des,lim ANd 7jy_cgr des are directly impressed into the model. This has mainly two advant-
ages. First it is possible to compensate the feedback loop for the later derived model inversion of
the HP-EGR-valve, see Sect. 7.4.3. Second the necessary states to model the mass flow rate before
and after the LP-EGR-valve have not to be modelled as states and can be alternatively described
with algebraic expressions. This reduces the modelling effort for the control-oriented model. Nev-
ertheless, this simplified model can still consider couplings between LP-EGR system, HP-EGR
system and charge-air pressure in the feedforward control signals. Given the states pressures and
temperatures, the LP-EGR path mainly influences the gas temperature before the compressor as
well as the pressures p; and ps. The estimated mixing temperature T, can be approximated by
the balance equation

j.‘, ~ mairTa + n/llpfegr,des’rlpfegr

1=

= - (7.22)
Mair + Mip—cgr,des

and (7.13) by replacing the variable of the desired value 71, 4es With the simulated quantity rfac.
The effect of the LP-EGR on the pressure p; can be estimated similar with (7.13) and (7.14). If
the LP-EGR is manipulated with an exhaust throttle valve, one only has to consider the fixed air
filter orifice in Eq. (7.14). The pressure ps can be approximated analogue to p; with the modified
flow orifice (Cp Arer).y by solving Eq. (3.21) for the upstream pressure? as

~ ~ 2
2 RTS (mt - 7hlp—cgr,dcs)
Pa pa) + (7.23)

2 ((CDAref);m)z

where the mass flow rate through the exhaust pipe follows as the difference between st and
Tiip—cgr,des- Then, the pressure upstream the DPF can be determined accordingly as

N PP

RT:

Pa = Ps oy (_%) + ;’"12 (7.24)
2 ((CDAref)dpfkdpf)

Supposing that no exhaust throttle valve is used, Eq. (7.23) becomes obsolete and the pressure ps
in Eq. (7.24) can be approximated by p,. All other quantities in Fig. 7.7 are modelled similar to the

3Note that solving Eq. (3.21) for the upstream pressure has two solutions, in which only one is physically mean-
ingful.
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mean value engine model in Chap. 3. As a final feature the VGT-actuator has a dynamics, which
depends on the direction of actuation, see Fig. 4.4. This dynamical characteristics is approximated
in the control-oriented model in Fig. 7.7 by the nonlinear transfer function

with T, = 7:"a,t, for sy () — 5. (1) > 0
T,i, for sy (1) —5:(t) <0

Si(s) 1

Gy (s) = =
+(5) Sy (8)  Tas + 1

(7.25)

and incorporated into the feedforward control scheme.

Contrary to the turbocharger model-inversion control schemes in the literature, this approach does
not need an additional controller to achieve stationary accuracy. Instead of an uncertain process,
this model-inversion approach controls the exactly known model. Thus, no noteworthy control-
deviations between model and model inversion can be observed, since the significant maps for
VGT-actuator (3.60) and compressor mass flow rate (7.12) are used in their original and in-
verse form. Hence, the inversion control can manipulate its exact counterpart, the control-oriented
model, in a way that all reachable reference values can be achieved within the numerical precision
and no additional parallel controller is necessary. Furthermore, in this structure almost® all feed-
back loops to the process are broken. Thus, this feedforward control scheme can be designed for
a high-performance response to setpoint changes.

7.4.3 HP-EGR Model-Inversion

The second controlled variable in the model-inversion approach is the HP-EGR mass flow rate.
In recent literature about semi-physical HP-EGR control, a HP-EGR mass flow rate control based
on a feedback inversion is commonly suggested (Wahlstrom and Eriksson, 2007; Schwarte et al.,
2007; von Pfeil, 2011). Such a feedback approach is depicted in Fig. 7.8, where the reference value
Tihp—cgr,des and the fed back quantities5 X5t are inserted into Eq. (3.22) to derive (CDAref)hpfegr,des.
Then a further inversion of the valve’s characteristic curve delivers the desired actuator posi-
tion Spp—egr,iic- The achievable position Syp—egr i follows delayed by the actuator transfer function

Ga,hpfegr-

Shp—egr,ffc

Shp—egr,ffc
Mhp—egr,des

Shp—egr,ffc

Figure 7.8: Structure of the HP-EGR model inversion control by feedback inversion

4S;m. Seth and in case of a closed-loop combustion control ¢, feedback some process signals into the feedforward
control.
5 Depending on the utilised approach p3, pa; and Thp—cqr are directly measured or modelled quantities.
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Figure 7.9: Simulated comparison of the HP-EGR feedforward control by feedback model-
inversion and feedforward model-inversion structure at 7¢pg = 2250 min~! and Uinj =

15mm3 /cyc for a step of Hithp—cgr,des a0d P2ides

This approach comes with several issues, which are introduced via the feedback loop. First for
an ideal model-inversion the reference value ritpy—cor des, the system states Xy and the actuator
POSition Shp—egr, e have to chronologically match. However, due to the apparent actuator dynamics
this cannot be achieved and the achievable actuator position Syp—cgr i follows delayed to the ideal
POSItion Suy—cr.rc. Secondly the HP-EGR actuator position has a strong and dynamical fast impact
on the pressures py; and ps, see Fig. 4.2 and Sect. 4.1.1. These dynamical fast influences are fed
back to the signal generation of sp,—cer, i and result in not fully satisfactory control results.

In this dissertation the model follow-up control structure offers novel possibilities to break the
feedback loop of the HP-EGR-valve model inversion and allows to rearrange it to a pure feed-
forward control. Fig. 7.6 and Fig. 7.7 show the structure of the feedforward model inversion. In
the model follow-up mean value model the HP-EGR-valve is not modelled by the flow equation
for compressible fluids. Instead the limited mass flow rate 7y, _cgr,des,im 18 directly impressed into
the mean value model and the quantities p;, fhp,egr and ps result from this impressed mass flow
rate, see Fig. 7.7. In Fig. 7.6 these quantities are part of the vector X, which allows to invert the
flow equation (3.22) for the feedforward signal Syp_cgr,ire. This approach allows to eliminate the
feedback loop and creates a pure feedforward control.

The differences between the commonly utilised feedback inversion and the novel feedforward in-
version approach are illustrated in Fig. 7.9 with simulations of the model follow-up model for the
reference value followings of a simultaneous step in pyjges and 7ithp_cgr,aes- In case of the feed-
back inversion approach the HP-EGR mass flow rate is modelled by the flow equation. It can be
clearly noticed, that the feedback inversion approach from Fig. 7.8 shows an overshoot and under-
shoot behaviour in r}%hp,egr until the stationary reference value can be reached. This unsatisfying
response to setpoint changes is caused by the finite actuator dynamics and the feedback effects of
the quantities p;, p; and f"hp,eg,.

The novel feedforward model inversion approach has a smooth response to setpoint changes and
the controlled variable 71y, g reaches its setpoint significantly faster. However, both approaches
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Figure 7.10: Model-inversion control kicacc = 057!, kicace = 4571, Heng = 2250 min~!

Uinj = 20 mm? /cyc

show a comparable actuation of sy, _cgr.frc. Hence, in the case of a feedforward control where
an additional controller compensates the deviations between the feedforward controller and the
setpoint also the conventional feedback inversion approach can deliver reasonable feedforward
signals. Nevertheless, this counts only for feedforward signals for the HP-EGR control variable.
In the multivariable case with a concurrent charge-air pressure control, the over- and undershoots
of the HP-EGR feedback approach disturb the feedforward control of the coupled charge-air pres-
sure control. Thus, one should prefer the novel feedforward model inversion approach since it
delivers more accurate control signals and does not disturb the charge-air pressure control loop
with unnecessary disturbances.

7.4.4 Model Follow-Up Control Simulation

Fig. 7.10 reveals an example to clarify the principle of the model follow-up control scheme from
Fig. 7.6 to derive the feedforward control signals Shp—cgr,iec and s{’ﬁcc. Several reference value steps
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are applied to the quantities HP-EGR mass flow rate and charge-air pressure. Besides these quant-
ities also the exhaust pressure p; and the corresponding actuator signals Spp—egr, e and s{ﬁc are
shown. Note that in Fig. 7.10 only the functionality of the inverse turbocharger power balance
from Fig. 7.5 for the signal s/ . is investigated. All further aspects to derive the final control
signal s, s are motivated in the subsequent section.

At first a step on pa; qes is applied at a time of 1 s. The step signal is filtered by the reference shaping
filter (7.21) and yields the reference ps; des for the turbocharger model inversion control from
Fig. 7.5. Depending on the intake and exhaust system conditions the turbocharger model inversion
control derives the control signals for the VGT-actuator. This control scheme can be configured
by the reference shaping filter time constant T}, and the acceleration factor ki .. The time
constant in (7.21) solely determines the response to setpoint changes, while the parameter ki acc
in (7.17) acts as a proportional controller, which reduces deviations between the desired and the
estimated turbocharger speed. Hence, this parameter influences both, the reference action of the
control loop and the disturbance rejection of the model inversion control. In Fig. 7.10 the control
results are shown for the control with no additional turbocharger acceleration (k¢ = 0s™")
and a moderate turbocharger acceleration (ki acc = 4s7!). In the response to setpoint changes it
can be noticed, that the acceleration factor brings the controlled signal p,; . closer to its reference
value pi ges, i, but results in a larger actuation of the control signal s{m, Furthermore, with a larger
factor ki acc the influences to the exhaust pressure p; and consequently the HP-EGR feedforward
control signal Spp_cgr,;rc becomes larger. Hence, the factor k... should be limited to achieve a
reasonable demand of control energy and moderate couplings to the other control variables.

The control signal for the HP-EGR-valve is derived by impressing the filtered HP-EGR mass
flow rate into the control oriented model. Then the feedforward position sy, —cgr, e can be calcu-
lated from the resulting air path states, see Fig. 7.6. The achieved control signals can be seen in
Fig. 7.10. Anymore, it gets obvious that the novel combination of the charge-air pressure and the
HP-EGR mass flow rate control in the model follow-up control structure implicitly compensates
the strong couplings between these two quantities and the corresponding control signals. Only
minor couplings remain in the charge-air pressure at a time of 6 and 8s. These couplings are
caused by the non-minimum phase characteristics of the HP-EGR-valve and can be hardly com-
pensated by the VGT-actuator with its limited actuation speed.

7.4.5 Further Aspects on Charge-Air Pressure Control

In the derivation of the turbocharger control signal s s in Sect. 7.4.1 some aspects in the charge-
air pressure control have been left open. So far only the derivation of the control signal s; . in
Fig. 7.5 has been covered. This control signal is further limited to keep the HP-EGR control loop
operable and a further inverse filtering can partly compensate actuator dynamics.

First the limitation with regard to an operable HP-EGR control is motivated. The previous in-
vestigations of the VGT-actuator couplings in Sect. 4.1.2 showed, that a too fast opening of the
VGT-actuator dynamically decreases the pressure p; so fast, that the pressure drop over the HP-
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EGR-valve rapidly decreases and even a negative pressure drop (p, > p3) can occur. In this case
the HP-EGR mass flow rate drops and can even change direction, while an overshoot in 71,;; can
be observed. As a consequence the HP-EGR-valve is not capable to drive the desired mass flow
rate anymore and a NOy overshoot can be observed (Mrosek, 2017). The scenario of an opening
VGT-actuator with a decreasing charge-air pressure occurs mainly during a load drop, when the
injection quantity is decreased. During this transient it is more important to recirculate a large
amount of exhaust gas to maintain low NOy emissions than to quickly decrease the charge-air
pressure. Thus, in the following the opening of the VGT-actuator is limited in a way, such that the
pressure drop over the HP-EGR-valve is large enough to drive the desired mass flow rate.

a ~ ’ 2, ~ 5 ~
Thp—egr Dai (CDAref)hp_egr!max T3 P4 Meng,out Ny

-1

/|
Mhp—egr,des (CDArcf)l,max :

P3,min

Turbine Turbine
Flow Equation for Flow Equation for Mass Flow
Incompressible Fluids Compressible Fluids Rate Model

Figure 7.11: Limitation of the VGT-actuator to avoid an insufficient pressure ratio to maintain
a desired mass flow rate through the HP-EGR-valve

Fig. 7.11 shows the scheme to keep the HP-EGR-valve operational via a limitation of the VGT-
actuator position Sy jim. At first the minimal necessary pressure to drive the desired HP-EGR mass
flow rate ps min is derived. It is approximated by modelling the flow restriction as incompressible
and rearranging Eq. (3.21) as

N . a2 . 2 .
Proin ~ B0+ (’]72) + ( ( Cﬂ"jh"’)fg"d“ ) RThz"*eg‘. (7.26)
ref, hp—egr,max

The input quantities are given as the currently demanded mass flow rate 7itp,—cgr,des, the estimated
states in the air path p,; and fhp,eg, and the product of flow coefficient and reference area for a
maximal opened valve (CDAref)I:piegr’max, which is parameterised by the flow equation for incom-
pressible fluids. Next, the turbine flow equation (3.22) is solved for the currently allowed maximal
turbine opening (Cp Aref); may» i Which the turbine mass flow rate is estimated via (4.15) from
Tihp—cgr,des and rfzeng,om. Afterwards, the minimal VGT-actuator opening s jim can be determined
by an inverted mass flow rate model for the turbine, see Sect 3.3.1. Finally, this VGT-actuator
limitation can be implemented into the turbocharger model inversion from Sect. 7.4.1.

In Fig. 7.12 the effectiveness of the VGT-actuator limitation is compared to a conventional charge-
air pressure control. Both approaches are implemented into the model follow-up control scheme
to generate the feedforward signals s s and Shy—cgr,irc- At a time of 1 s the desired injection quant-
ity is decreased. This typically results in a decreased demand of charge-air pressure ps;i ¢es and an
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Figure 7.12: Effect of the VGT-actuator limitation on the model inversion control for a
typical simultaneous step in injection quantity, HP-EGR and charge-air pressure at r1¢,, =
2250 min~ )

increased demand of HP-EGR mass flow rate. In case the charge-air pressure is controlled con-
ventionally (p»), the controller opens the VGT-actuator (s, — 0) to lower the turbine power
and to decrease the charge-air pressure as it is desired. This controller action also decreases the
pressure ps in the exhaust manifold. At the same time the HP-EGR-valve Shp—cgr,iic Widely opens
in order to maintain the desired increase in mass flow rate. However, due to the charge-air pressure
controller action the pressure drop over the HP-EGR-valve is not large enough to drive any mass
flow rate n%hp_egr. Only after p,; has fallen below p; at a time of 2 s the quantity r;zhp_egr begins to
rise and after it reaches its reference value at a time of 2.2 s the HP-EGR-valve becomes capable
to control again and slowly closes.

In comparison to the conventional control, the novel introduced limitation of the VGT-actuator
control signal s s im keeps the HP-EGR-valve operational over most of the transient. In Fig. 7.12
this limitation results in a delayed opening of s, s im and consequently the pressures poiim and
P3im are slower decreasing. At the same time the HP-EGR-valve is still operational and can
deliver the demanded mass flow rate, as it can be seen in the quantities Shp—cgr,frc,lim and i hp—cgr,lim-
Only at the beginning, this limitation is not capable to handle the non-minimum phase effects in
Pailim» Which result in an inoperative HP-EGR-valve for the first 200 ms of this setpoint change
(1...1.2s). During the remaining transient a small control reserve prevents the HP-EGR-valve
from being fully opened (1.2...3.1s). This control reserve is situated in Eq. (7.26) and can be
calibrated by the factor (Cp A
the real process with apparent modelling uncertainties. In contrast to the conventional charge-air

,ef);p,egnmax. It is necessary to allow the complete valve operation at

pressure control this limitation extends the necessary time for the charge-air pressure drop, but
keeps the HP-EGR path operational.
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As a second aspect a partial compensation of the VGT-actuator dynamics Ga,t (s)™" is applied to
derive the final feedforward control signal in Fig. 7.5. This actuator compensation shows deriv-
ative characteristics. Due to the absence of fed back measurement noise it can be applied to the
feedforward control scheme. For this reason the limited signal s{ ;. ,;, is inverse filtered by the
transfer function

Stgre () _ 0.5 (Ta,t + Ta,t) s+1 727
St/,ffc,lim (‘3) Ta,ts + 1 ’

éa,t (5)71 =

in which numerator roots compensate the averaged poles of (7.25). The time constant TM is a tun-
ing parameter and allows to calibrate the trade-off between actuator compensation and actuating
energy. Typical values for 7, are 0.25...0.5 times the numerator roots.

7.4.6 Signal Flow Diagram

In a nutshell Fig. 7.13 shows the interaction between semi-physical feedforward control by model
inversion and control-oriented mean value engine model to generate the actuation variables s g
and Spp—egr, e a8 Well as filtered reference values pai rsr and gy —cgr, st for the subsequent closed loop
controllers. Note the special model inversion of the HP-EGR-valve, in which the feedback loop
of an inverted flow equation and the engine model is avoided by impressing the desired mass flow
rate r%hp,egr,des,]im directly into the engine model. Afterwards, the model reaction to the impressed
mass flow rate is utilised to derive the actuation signal Sy, —cgr e by model inversion, compare to
Fig. 7.8 and Fig.7.9. Furthermore the incorporation of modelled quantities in the model inversion
allows to derive control signals, which consider a decoupling of charge-air pressure and HP-EGR
mass flow rate.

7.4.7 Conclusions on the Semi-Physical Feedforward Control

In summary, this feedforward control derives the control signals s and Sp,—cgr i to control the
quantities p; and niy, . It is achieved as model follow-up control, where a control oriented
mean value model is controlled by a model inversion of the turbocharger power balance and a
novel HP-EGR mass flow rate inversion strategy. A decoupling between the strongly interacting
turbocharger and HP-EGR-valve and actuator saturation are implicitly included into this control
scheme. Anymore the model follow-up control structure delivers feasible trajectories as reference
values for the subsequent PI(D)-controllers. These controllers are only utilised to compensate the
minor deviations between the feedforward control and the measured quantities. Hence, in this
two degree of freedom structure the feedforward control can be designed for a good response to
setpoint changes without considering modelling and measurement disturbances, while rather con-
servatively tuned controllers cope for the compensation of the remaining deviations. This semi-
physical feedforward control approach is the consequent continuation of a model-based design
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Figure 7.13: Signal flow diagram of the semi-physical feedforward control of py; and 77tpp—cgr
as model follow up control with a control-oriented mean value engine model

and allows to reuse the mean value engine model for controller implementation. The feedfor-
ward approach offers the opportunity to easily tune the control with only three major parameters
(To2irst Kicaces 7:“,() for the charge-air pressure control and one parameter (7p,,—cgr,rsr) for the HP-
EGR control. All further influences like changing ambient conditions, a loaded particulate filter
and different engine operation modes are implicitly covered by the control oriented model and
its corresponding model inversion. Hence, the often laborious tuning of a multitude of control
parameters can be omitted with this approach. As a further benefit the feedforward control can
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solely provide the combustion process with a fairly sufficient charge composition in case of de-
tected sensor faults and a switched off closed-loop control. After the extension to a semi-physical
internal model control the presented controllers will be evaluated with engine test bench measure-
ments.

7.5 Semi-Physical Internal Model Control for HP-EGR and
Charge-Air Pressure

In the previous section a control structure with two degrees of freedom is designed. A semi-
physical model inversion controls a simplified process model, which generates feedforward sig-
nals and reference values for PI(D) closed-loop controllers. This feedforward control consists of
a model inversion and a simplified controlled plant model. Referring to Fig. 7.3b), the IMC-filter
Gq(s) can be replaced by the semi-physical model inversion and the plant model Gy (s) can be
substituted by the simplified mean value engine model. This yields a semi-physical internal model
control, as given in Fig. 7.14. Note, that the IMC charge-air pressure reference value is pa; des il
which gives a smooth response to setpoint changes and fast disturbance rejection. A comparable
IMC-control scheme, which is based on local linear state space models and state space control-
lers is utilised in von Pfeil (2011) to control the quantities #1,; and p,;. Other state space based
IMC-controllers with a similar structure are called model-state feedback control and are given
in Mhatre and Brosilow (2000) and Wright and Kravaris (2000).

Model Inversion Simplified Model Process
IMC

Ydes -1 Uffe y
axo .
—

A4

Xest T (Feedforward Control
Closed-Loop Control
Ydes = I:n:lhpfegr,des p2i,des,ﬁl] Uffe = [uhp—cgr‘ﬁc ut,ﬂc]
Vst = [Thhp—cgr,rsf p?i,rsf] Y= [mhp—egr p2i]

Figure 7.14: Model-inversion model follow-up control internal model control scheme

The semi-physical internal model control structure easily extends the feedforward control scheme
to a closed-loop control and makes additional controllers superfluous. In comparison to linear
PI(D)-controllers this IMC-controller is nonlinear and covers all modelled process nonlinearities.
On condition the model inversion is stationary exact, no control deviation occurs. Comparable
to von Pfeil (2011) this IMC-control structure in Fig. 7.14 can be switched into a pure feedforward
control to actuate the air path in case of sensor faults.
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7.6 Engine Test Bench Control Results for HP-EGR and Charge-
Air Pressure

In the following different control structures to control the quantities #itp, e and po; are validated
at the engine test bench. The investigated control structures are decentralised PI(D)-controllers
without feedforward control (Sect. 7.3), two degree of freedom control structure with a semi-
physical model follow-up control and PI(D)-controllers (Sect. 7.4) and semi-physical internal
model control (Sect. 7.5). Test signals are a series of reference value steps in the quantities pai ges
and 71y —cgr,des At an engine operation point of 7o, ~ 2250 min~' and Uy = 15mm? /cyc.

PI(D)-Controllers without Feedforward Control

First, validation results of decentralised PI(D)-controllers without feedforward control are illus-
trated in Fig. 7.15. In this case the control has only one degree of freedom and the decentralised
PI(D)-controllers have to handle both reference action of the control loop and disturbance rejec-
tion. Consequently, the feedforward control in Fig. 7.2 is switched off, which yields y.sf = Yes
and ug, = 0. In the two topmost plots of Fig. 7.15 the controlled variables charge-air pressure
and HP-EGR mass flow rate are shown. The positions of the manipulated actuators s, and spy—cgr
are displayed below. In the topmost plot the filtered reference value p; s for the subsequent
semi-physical model inversion is further shown, to allow a better comparison to the other con-
trol concepts, see Eq. (7.21) with Ty .+ = 0.45s. In this subplot the charge-air pressure ps; has
some problems to follow the reference value at the steps at 5s and 20 s and the integral part of the
PID-controller slowly adjust the VGT-actuator, which can be seen in the position s;. In this multi-
variable control the couplings of riy, ¢, act as disturbances to the decentralised ps;-controller.
These couplings are compensated rather well at the times 0's and 25 s, while there are significant
control deviations between pyi4es and p,i during the steps at 10s and 15s. The Pl-controller of
the HP-EGR mass flow rate shows a good response to setpoint changes and also the disturbances
from the charge-air pressure controller are compensated well.

Semi-Physical Feedforward Control with PI(D)-Controllers

Fig. 7.16 presents the model-inversion model-follow up control with PI(D)-controllers. The charge-
air pressure is mainly controlled by the feedforward control, which is indicated by the small de-
viations between the modelled reference value pi . and the measured pressure p;i. The PID-
controller only has to compensate the deviations between these quantities. It can be clearly seen,
that the reference action of the control loop and the disturbance rejection are much better than the
control results without a feedforward control in Fig. 7.15. The reference signal pa; ¢ for the un-
derlying PID-controller also contains the non-minimum phase coupling between HP-EGR mass
flow rate and charge-air pressure. Consequently, the controller is not irritated by this coupling
and no misdirected control action tries to compensate the non-minimum phase course of p;. The
VGT-actuator plot also gives an indication about the quality of the feedforward control. The feed-
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forward control signal s g shows only small deviations to the overall control signal s g + Stct,
which acts as setpoint for the underlying proportional position controller of the VGT-actuator.
This controlled position s, follows its setpoint well. Compared to the 7ityy_cer PI-controllers, the
two degree of freedom structure with feedforward control follows its reference values slightly
faster but shows small overshoots for the steps at 10s and 25s. Especially for these two steps
the manipulated sh,_c Variable is actuated stronger. In the control signal of the HP-EGR-valve,
there are small deviations between the feedforward control signal sp, g, and the overall control
signal Shp—cgr,fic + Shp—cgr,ci- In comparison to the VGT-actuator, the proportional position control-
ler of the HP-EGR-valve has a larger deviation between its setpoint (the overall control signal
Shp—cgr,fic 1 Shp—cgr.ct) and the measured position Spy—cgr.

Semi-Physical Internal Model Control

In Fig. 7.17 the semi-physical internal model control structure of Fig. 7.14 is implemented at
the engine test bench. In this control structure p,; shows a good response to setpoint changes
and disturbance rejection. The additional signal p,; ¢ represents a measure for the quality of the
internal model and its deviation from the measured pressure py; is the feedback proportion of
the controller. The HP-EGR mass flow rate shows a fast reference action of the control loop and
less overshoots than the model-inversion model-follow-up control scheme. Also for HP-EGR-path
the quantity 7y, cgr,rsr represents the working principle of the internal model control, compare to
Fig. 7.14. The charge-air pressure control delivers comparable results to the two degree of freedom
structure with feedforward control and PID-control.

All feedforward controllers and the IMC-controllers have been parameterised by the filtered ref-
erence value po; qes,a1 for a moderate reference action of the control loop (Eq. (7.21) with T rr =
0.45s). However, a feedforward control can also be designed with a high-performance reference
action. In Fig. 7.18 the reference value pa; des a1 Of the semi-physical model inversion is unfiltered
(Toizst = 05). Consequently, the feedforward control utilises all potential in the VGT-actuator
and controls p,; close to time optimality with a hard switching on and switching off. As a result
Poi rises in a ramp and shows a small overshoot at ~ 6s. This overshoot is caused by the reopen-
ing dynamics of the VGT-actuator (s, — 0). Furthermore, the VGT-actuator becomes dynamical
very slow, if the actuator is almost fully closed (s; — 1) at a time of 65, see also Fig. 4.4b). This
lack in dynamics leads to a large deviation between control signal s and actuator position s;.
The stronger VGT-control action leads to stronger couplings with 7itp, ., Which especially can be
seen for the rising step of 7itp, cgrrsr at a time of 5s. At these sequences, the control performance
of the semi-physical internal model controller can be rated as fully satisfying. However, for the
change in reference values at 25 s some disturbances can be observed in the VGT-actuation. These
couplings can result from an insufficiently modelled HP-EGR dynamics, a too large bandwidth of
the HP-EGR feedback signal, side effects of the simultaneously fed back signals p,; and #iy, o
and need further investigations. One solution can be to feed back each controlled variable (i —cgr,
P2i) to a separate model, or to feed back only one variable, e.g. py;. Since, two separate models
are computationally too demanding, only the charge air pressure is fed back for an internal model
control in the following. In this selected control concept the HP-EGR is controlled by the semi-
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physical feedforward control from the model of the p,; internal model control with subsequent
PI-Controllers.

Selected Control Concept with p,; Internal Model Control and Semi-Physical Feedforward Control
with Pl-Controllers for #izpy_egr

Consequently, the complete series of steps to setpoint changes is implemented as IMC to control
P2 and as a semi-physical feedforward control with subsequent PI-controller for the control of
Hpp—cgr- It 1s illustrated in Fig. 7.19 with moderate reference action of the control loop (7t =
0.45s) and in Fig. 7.20 with fastest response to setpoint changes (7} = 0s). In Fig. 7.19
the charge-air pressure follows its reference value pyj es,si Well and the couplings of ritp, g are
mainly limited to the non-minimum phase influences. Also the HP-EGR mass flow rate follows
its reference value well and is only little disturbed by the VGT-actuation. Only at the step at
45s a small overshoot is observable in 7itpy_cgr. In Fig. 7.20 py; is controlled with fast response
to setpoint changes. This high-performance control shows a good response to setpoint changes
and some couplings to 71y, . At the times of 45s and 55 s the actuation limitation s g, jim from
Sect. 7.4.5 is active. This pressure limitation obtains the differential pressure above the HP-EGR-
valve, so that the demanded HP-EGR mass flow rate can be delivered with an almost opened HP-
EGR-valve. Its effects can be seen in the ramp-shaped s; signal, compare to Fig. 7.12, and in the
almost fully opened HP-EGR-valve. With moderate response to setpoint changes in Fig. 7.19 this
pressure limitation is not active for the given sequence, since the VGT-actuator is opened slower.
In summary the semi-physical internal model controller is capable to deliver good response to
setpoint changes and disturbance rejection for the quantities p,; and #itp,—ce. The feedforward
control allows a fast response to setpoint changes and the model-based limitation of the VGT-
actuator opening allows to keep #it,, e controllable.

Comparison of Concepts for the Control of #itp,_eqr and py;

In Tab. 7.1 the control concepts are rated with regard to the objective of function development for
a modern combustion engine with more than 10 operation modes and up to 100 engine variants
for different markets (Hadler et al., 2008; Zimmermann et al., 2015). In this context, the applica-
tion effort for classical PI(D)-controllers can not be handled anymore, since due to the nonlinear
engine process, see Sect. 4.1, a separate controller calibration for each engine operation point,
engine operation mode, engine variant and changes of the ambient conditions seems to be neces-
sary to achieve a sufficient control quality. Furthermore, the achievable control quality of PI(D)-
controllers for nonlinear processes is improvable.

Both the semi-physical model follow-up control, as a combination of semi-physical feedforward
control and PI(D)-controllers and the semi-physical internal model control show an outstanding
control quality. For the model follow-up control a set of simple PI(D)-controllers is necessary to
compensate deviations between feedforward control and engine process. These controllers also
account for disturbances and can be designed rather simple, since the reference action of the
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Table 7.1: Comparison of control concepts for control of 7itpy—cg; and po; with regard to con-
trol quality, overall application effort and the manageability of engine variants. Evaluation:
positive ++ neutral 0 and negative — —

control overall appli- manageability of
quality  cation effort  engine variants

PI(D)-controllers Sect. 7.3 0 - —-=
Semi-physical model follow-up control ~ Sect. 7.4 ++ + +
Semi-physical internal model control Sect. 7.5 ++ ++ ++

control loop is given by the feedforward control. The internal model controller is directly given
by a parameterised mean-value engine model and needs no more additional controllers. Thus, its
overall application effort and the manageability of engine variants is favourable to the model-
follow up control structure.

Summary

In summary, the simplest control concept with PI(D)-controllers delivers the worst results. Es-
pecially the response to setpoint changes and disturbance rejection of p,; is not satisfying. The
PI-control of 71y, can be considered as good. A combination of a semi-physical feedforward
control and PI(D)-controllers is relative complex, since both the feedforward control and the
closed-loop control have to be designed. However, it delivers very good control results and the
couplings between p,; and 7ity, o can almost be compensated. As a further advantage the re-
sponse to setpoint changes of the p,;-controller can be tuned close to a time optimal control. The
semi-physical internal model controller is easier to implement, but shows some weaknesses at the
engine test bench, if the two quantities p,; and 7itp, ., are controlled simultaneously. As long as
the charge-air pressure is controlled as single controlled variable in the internal model controller
and #ity, g is controlled in a semi-physical feedforward control, it delivers fully satisfactory res-
ults. Consequently, a combination of a p,; IMC and a semi-physical 71, . feedforward control
with PI-controllers is the suggested choice for control. Further control results at different engine
operation points are given in Fig. 7.23, Fig. 7.25, Fig. 7.31 and Fig.7.32 by subsequently embed-
ding the ps; and 7i1p,_er control in the overall control structure of Fig. 7.1. In order to complete
this overall control structure, the controller for LP-EGR-control is derived next.
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7.7 Semi-Physical Control for the LP-EGR Path

After the control schemes for the quantities charge-air pressure and HP-EGR mass flow rate have
been derived in the previous sections, the control for the LP-EGR path is presented. The invest-
igation of the system properties of the LP-EGR system showed, that an additional EGR loop has
only minor couplings to the charge-air pressure and the HP-EGR mass flow rate, while there are
significant couplings of charge-air pressure and HP-EGR, respectively air mass flow rate to the
LP-EGR mass flow rate, see Sect. 4.1.3. In Sect. 4.2.1 it is further shown, that the LP-EGR-rate
Fip—cgr mainly depends on the position of the LP-EGR-actuator and is fairly invariant from the en-
gine operation point and the actuation of the other air path actuators. Hence, this coherence will be
utilised in the following to derive a control scheme for the quantity 71y, g, which also considers
the couplings of the charge-air pressure and the HP-EGR mass flow rate control. This novel control
scheme is a further extension of the newly derived feedforward control from Mrosek and Isermann
(2011). In this dissertation the control law is derived with respect to an intake throttle valve with
LP-EGR-valve sy, cgr/ith, it also can be applied to a configuration with exhaust throttle valve by

replaCing Slp—egr/ith by Slp—egr/eth-

According to the investigations in Sect. 4.2.1, the LP-EGR-rate (4.9) is fairly invariant to the
engine operation point, engine operation mode, position of other air path actuators and essentially
depends on the position of the LP-EGR-actuator. Thus, it can be reasonably approximated as a
function of the LP-EGR-actuator opening.

Fp—egr ~° f (Slpfcgr/ith) (728)

Then the control deviation of the LP-EGR mass flow rate Ay, . follows as the difference
between the demanded LP-EGR mass flow rate 1), g, des and the measured quantity 7y, g,

A}'hlp—egr = ’hlp—egr,des - n'llp—egp (729)
At a constant mass flow rate through the compressor (7.13), this control deviation can only be

compensated by a rise of 71y _cgr fOr Arit, o, Which results in a decrease for the same mass flow
rate in 7.

lite 1= const = 7ty = (Htyie — Alityy—cer) + (Mp—cer + Ality—cer) (7.30)

gt des Mip—egr,des

Thus, with Eq. (4.9) and Eq. (7.30) a desired LP-EGR-rate can be derived from the relationships
for mair,des and ’hlpfegr,des as
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’ _ n"llpfegr,des _ n.’llpfegr + A}’}.’llpfegr
Ip—egr,des — = = 7. . L .
Mip—cgr,des + Mair,des (mlv*egr + Amlp*egr) + (mair - Amlp*egr) (7.31)
_ n'/l]pfegr + An'/llpfegr
mlp—egr + 7hair
With this desired LP-EGR-rate, the relationship (7.28) can be inverted to
Slp—egr/ith,ffc = ,fﬁl (rlpfegr,des) (732)

and delivers the control signal for the feedforward control. A further underlying ry,—c controller
G 33 with proportional and integral action compensates the deficits of the feedforward control.
This controller has only a single set of parameters and is sufficient for the whole engine operation
range. A reference shaping filter (RSF) further filters the controller’s reference value, so that the
feedforward control actions are settled before the controller acts on changes in the reference val-
ues. The complete scheme for the LP-EGR control is depicted in Fig. 7.21, where the control loop
is transformed into an outer #it,_cg and an inner 7yp_cg control loop.

Tp—cgr-Control Engine Process

Slp—egr/ith,ffc

f_l (rlpfegr,des)

rh]p—egr,deﬂ An.'llp—egr ; ;
S~ Hlip—egr+ AMip—egr ,
. d s —
o o O-| G () =O——
- I - Slp—egr/ith,ctl .

Fip—egr,des

Mip—egr Mir | Mip—egr ' Fp—egr Slp—egr/ith,des

Figure 7.21: Transformation of the 7i7jp—cg, control into a rip—cgr control with feedforward
control, which is almost invariant to the actual engine operation point and further considers

the couplings with s; and spp—cgr

This transformation has the large advantage, that contrary to the strongly engine operation point
and operation mode dependent gain between 11y, ¢ and sy, cgr/in from Fig. C.3, this transformed
Tp—cgr cONtrol is fairly invariant to changes in engine operation, see also Fig. 4.7. Consequently,
the software calibration and testing effort can be drastically reduced, since only the curve of the
feedforward signal and the inner LP-EGR-rate controller need to be calibrated and tested. Note
that for a smooth operation of the ry,_, control without glitches it is necessary, that the quantities
Tilair and 711y, e, have the same measurement dynamics and should not dynamical be shifted against
each other.

Fig. 7.22 illustrates the working principle of the semi-physical control for the LP-EGR path with
measurements from the engine test bench. In the topmost plots the course of the directly controlled
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variable 71, g, the transformed LP-EGR-rate and the air mass flow rate are shown. The bottom
plots present the actuator signals. On the left side the contributions from the feedforward control
Sip—egr/ith,fic and the controller Si,—cgr/it,cu to the overall control signal Si,—cgr/ith,des are shown. In the
right bottom plot, the virtually combined actuator position sy, cgr/in i divided into the physical
positions of the LP-EGR-valve §j,_cs and the intake throttle valve Sig.
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g r——— — P 04
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£ oo . MMipyegrdes T 60 0
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Figure 7.22: Test bench results of the transformation of the 7i,—cg control into
a Ip—egr control to be invariant of engine operation point and operation mode
(nmg ~ 2250 min~', Uinj = 15 mm3/cyc)

The response to setpoint changes of the LP-EGR control has a good performance and the quantity
Tiip_cgr teaches its reference value 71y, _cgr,ges Within 200 ms for rising and falling setpoints. Also the
intermediate control variable 7y, reaches its reference value ry;_cgr,des in the same time. It can be
further noticed that the air mass flow rate shows approximately the opposite course as the LP-EGR
mass flow rate. The control signals display, that the major control action is achieved by the feed-
forward control Sy,—cgr/ith, e, While only a minor part is contributed by the controller sy, cgr/ith,ct-
The major controller action can be observed during setpoint changes and try to compensate de-
viations between the reference value ry,_cgr,es and the controlled quantity ry,_,. However, these
control actions are only of minor magnitude and can be tolerated. On condition less control action
is demanded, a better filtering of the reference value 7y, g 4es for the controller Gs3 can adjust
the reference signal better to the intervention of the feedforward control and reduce the remaining
control action. As a final remark the measured quantity 77y, .y sShows a minor step at a time of
~ 100 ms. This step is caused by the limited adjustment rate of the intake throttle valve actuator
sim and the small influence on the quantity 7i1,_c,, for positions of sy, below 40 %, see Fig. C.3.
During the increasing step of 71y, ¢, the intake throttle has to close from a fully opened position
(sin = 0 %) to a position of sy, &~ 70 %, after the LP-EGR-valve has been closed. Consequently,
there is only a small influence on 7i1,_cg during the time the throttle valve passes this adjusting
range and a small step occurs.

So far only the response to setpoint changes of the LP-EGR control has been investigated. In
Fig. 7.23 the LP-EGR control is combined with the charge-air pressure control (IMC) and the
HP-EGR mass flow rate control (PI) to show the control performance with all controlled air path
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Figure 7.23: Test bench results of the multivariable control of ps; (IMC), ritpy—cg: (PI) and
7itp—egr With the corresponding control and actuator signals for changes in the reference values
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variables and the occurring couplings. In the topmost plots the reference values and the controlled

variables for charge-air pressure, HP-EGR mass flow rate and LP-EGR mass flow rate are illus-
trated. Then follow the air mass flow rate and the actuator positions sp, g and s; to indicate the
manipulated variables of the HP-EGR and charge-air pressure controllers. The manipulated vari-

ables for the semi-physical LP-EGR mass flow rate control are displayed more detailed in the both
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bottommost plots. In the first plot the contribution of the feedforward control sy, cgr/im, e and the
closed-loop control Sy, cgr/ith,ctl to the overall control signal sy, cgr/ith,des are shown. The last plot is
more of informative nature and presents the division of the control signal into the LP-EGR-valve
Sip—egr and the intake throttle valve §jy, positions.

During the first 30 s only the reference value of a single quantity is changed at a time, while in the
last part two reference values are changed instantaneous. It can be seen that all quantities follow
their reference values well and furthermore the controllers show a good disturbance rejection of
the coupling effects. Only in the charge-air pressure minor couplings can be observed for the two
reference value excitations of #iy, .. The actuator signals s, ¢, and s; confirm the previous
investigations about the system couplings and depict that there are only small influences from the
LP-EGR loop to the other air path quantities. In the actuator signal Sy, cgr/ith,aes it can be noticed
that there are some small couplings of 71y, g and py;. This plot further shows, that transformation
to an intermediate ry,_cg control with semi-physical feedforward control is well suited to control
the quantity 7i1y,_cgr, since the control signal Si,—cgr/ith,ca Temains small.

In summary, the system analysis from Sect. 4.2.1 showed, that the LP-EGR-rate is mostly depend-
ent from the actuator position and fairly invariant from engine operation point, operation mode,
other air path actuators and ambient conditions. This allows to design a simple semi-physical
control scheme based on the relationship between actuator position and LP-EGR-rate with a well
suiting response to setpoint changes and disturbance rejection. A further controller compensates
minor deviations in the modelled relationship between LP-EGR-actuator position and LP-EGR-
rate. This approach allows to design and calibrate a control of the additional LP-EGR-path with a
minimal effort for all engine operation points and modes. Next, the reference values for HP-EGR
and LP-EGR are derived with regard to the air content dynamics in the intake and exhaust system.

7.8 Dynamical Reference Value Generation for HP- and LP-EGR

After the air path control structure and the control design of the quantities pyi, iy —cgr and 77, g
have been successfully validated with test bench measurements, the last missing fragment between
the stationary and dynamical optimised reference values from Chap. 6 and the air path control will
be given in this section, see Fig. 7.1.

The investigated dynamical system properties in Sect. 4.3 showed, that a major difference between
the HP-EGR system and the LP-EGR system lies hidden in the gas propagation delays of the short
and the long route exhaust gas recirculation. These inherent system dynamics with their abrupt
stepwise changes in the single storages’ air contents are modelled and successfully validated with
measurements from the engine test bench in Sect. 4.4. In order to always provide an optimal
cylinder charge for a low-emission combustion process and to suppress the gas propagation effects
of both EGR paths, an optimal air content in the intake manifold x,; should be maintained during
the engine operation.
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Figure 7.24: Dynamical reference value generation for the air path controllers. In order to
cope for gas propagation effects, it converts stationary reference value maps for 724 ges and
T>i,des under consideration of the current air content and temperatures in the intake and exhaust
system into reference values for HP-EGR and LP-EGR. As extension dynamical optimised

reference values according to Sect. 6.2 can be utilised for the reference value generation.

This optimised air content can be achieved by a closed-loop control of the measured or modelled
quantity x,;. However, such a pure closed-loop control shows generally a more or less reactive
behaviour in disturbance rejection and is characterised by the trade-off between control perform-
ance and robustness. For a x,; closed-loop control there are two major aspects which have to
be considered in the control design. First the long route and the short route EGR path introduce
stepwise changes in the intake air content which act as disturbances for the closed-loop control.
Furthermore, the process gains for the recirculated exhaust gas control paths vary suddenly with
the inherent air contents in the single storages, see Fig. 4.10. Hence, these two aspects have to be
incorporated into a air content control scheme with a good disturbance rejection and robustness.

Alternatively to a rather complex closed-loop control of the air content, it is possible to separate
the control problem into an open-loop control of x,; with a reference value transformation for
an underlying 7itpy—egr and #itjp_eg control (Mrosek and Isermann, 2010a). This reference value
generation comprises the air content model from Sect. 4.4 and governs the complex knowledge
about the inherent system states and the varying process gains to deliver setpoints for the rather
simple 71y, _cgr and 72y,_ce controllers. Contrary to a reactive closed-loop control this reference
value generation considers the process states and acts preemptive.
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7.8.1 Reference Value Generation Scheme

Fig. 7.24 summarises the reference value generation, which will be derived in the following. In a
nutshell this reference value generation transforms setpoints of the air mass flow rate 7, ges into
setpoints of the intermediate control variable X; 4es, Which is further transformed into a reference
value 7ty —cgr,ges for the HP-EGR mass flow rate control. In this control strategy, the dynamical
fast HP-EGR governs the air content in the intake manifold. A further transformation converts set-
points of the intake temperature 7%; 45 into a desired value of the LP-EGR mass flow rate controller
Ty —cor,des- The charge-air pressure setpoint is not affected by these setpoint transformations and
controlled separately via its characteristic map. The untransformed setpoints 7 des, 12i,des and
Dai.des are stored in characteristic maps depending on engine speed and desired injection quantity.
Further expansions to special engine operation modes like Diesel particulate filter regeneration
and others can be considered as additional map inputs and are denoted with dots. As an alternative
to the stationary reference values for 72, 4cs also the dynamical optimised setpoints Xeng,out,opt from
Sect. 6.2 can be utilised in this reference value generation scheme.

After the main ideas for this reference value generation have been given, the single transformations
to obtain the controller setpoints 7itp,—egr des aNd 7ljy_cgr des OUL Of the characteristic maps 7, des
and Ty 45 are deduced in the following. First, the reference value of the air mass flow rate is
transformed into a reference value for an intermediate control variable, which considers the long
gas propagation times in the intake and exhaust system. This intermediate control variable is the
air content in the intake manifold x,;. Generally, there are two options to derive reference values
for this quantity from the given setpoint maps. A first approach results in a control of the intake
air content (X, 1), while the second approach results in an air mass flow rate control (#air.cq),
which also considers the air contents, see Sect. 6.2.1. A control of the intake air content reaches its
stationary calibrated air mass flow rate, when p,; and 7»; have reached their steady-state condition,
compare to Fig. 4.8 and Fig. 6.3. Whenever deviations between the calibrated reference values and
the controlled variables p,; and T5; occur, e.g. at ambient conditions where either temperature or
pressure are not reachable, the calibrated air mass will also not be reached. Further, the summed
emissions of the intake air content control (x; 1) are worse than the emissions of the air mass flow
rate control (71,ir,cu ), see Tab. 6.2. Hence, reference values for the intermediate control variable x;
are derived according to an air mass flow rate control scheme.

Next, 7it,ir,qes 1S transformed via the relationship between air mass and Xeng,out into a reference value
for X, ¢es- In an engine air path with no significant gas propagation dynamics like a HP-EGR-
system, both 7y, and Xeng o Show a similar characteristic during transients in p»; and 75, see
Fig. 6.3. Thus, maintaining a constant air content at the exhaust valve, corresponds to a constant
air mass in the cylinder, when the injection quantity stays constant. In order to maintain a fixed
air content after the combustion process Xengou, the air mass flow rate reference value can be
transformed via Eq. (3.33) into its reference value.

i air,des — Ls g
Paiedes 7 2l (7.33)

Xeng,out,des = - ~
Mair,des + mg
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This reference value of Xeng out,des can be further transformed into a desired air content in the intake
manifold

xeng,nut,des (meng,in + mf) + lemf

(7.34)

X2i,des = B
Meng,in

by rearranging Eq. (3.32) and using the estimated quantities for n%eng,in and r;zf from Sect. 4.4.
In this reference value generation, the setpoint for the air content x; 4es acts as an intermediate
control variable. When the fast dynamics in the intake system are neglected, the estimated air
content X»; can be approximated by the air contents and the amounts of the inflowing mass flow
rate through the throttle valve rfalh and r;%hp_egr as

X3Mpp—eqr + X1/2cMth

)%Zi ~ x ~ (735)
Mpp—egr + my,
and can be rewritten by substituting iy with the stationary form of Eq. (4.14) as
. 323mhp—egr + 1‘%1/20 (’heng,in - ﬁ1hp—egr)
X & = . (736)

Meng,in

Afterwards X,; can be replaced by its setpoint and Eq. (7.36) can be rearranged for the desired
HP-EGR mass flow rate, which then yields the reference value

(X2i,des - )%l/Zc) ’;':leng,in

= — (7.37)
X3 — X1/2¢

Mpp—ecgr,des =

This setpoint 71, cgr,qes implicitly includes all gas propagation dynamics, which are included in
the modelled states X5, and X3. Anymore, also sudden changes in the inherent gas system states
are covered by this setpoint transformation.

In the next transformation the setpoints 1, ¢es and T5; qes are converted into a reference value for
the LP-EGR mass flow rate. For this purpose first the total demanded EGR mass flow rate can be
expressed as

. . . x
Megr,des = Mip—egr,des,unlim + mhp—cgr,dcs’ (738)

which in stationary form can be rearranged via (4.13) and the reference value #1,ir, ges t0

megr,des = Meng,in — Mair,des- (739)
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This desired total EGR mass flow rate demand can be divided by &u,—c,r into a HP-EGR proportion

I,h:pfegr,des = éhpfegr”hegr,des (740)

and an unlimited LP-EGR proportion

mlpfegr,des,unlim = (1 - ‘i:hpfegr) megr,des~ (741)

In which the quantity ri1,_,. 4. is an intermediate variable for the derivation of the unlimited
setpoint 7y, —cgr,des,untim and does not correspond to the setpoint in (7.37). On assumption that r;zlh
can be stationary approximated as rﬁle“g,m — rf'lhp,egr from Eq. (4.14), it can be substituted in (4.16).
Furthermore, the HP-EGR mass flow rate in (4.16) can be substituted by (7.39) and (7.40) and
finally yields the desired proportion of HP-EGR &, for a temperature setpoint 7%; 4e and an air
mass flow rate setpoint 72 ges.

Ti cszic r;.:len ,in
Shp*egr = ( 24 2 ) £ (742)

Thp—cor = Taic ) titeng,in — Mlair des

In doing s0, &pp—cgr is limited between 0 and 1. This proportion &y finally delivers with the
relationships (7.39) and (7.41) the unlimited setpoint 72y, —cgr,des,untim for the LP-EGR mass flow
rate controller.

’hlp—cgr,dcs,unlim = (1 - Shp—cgr) (mcng,in - rhair,dcs) (743)

In this reference value generation scheme the control of the air content in the intake manifold
X2i,des 18 superior to the resulting intake temperature 7>;, which is implicitly controlled by the de-
manded distributions of HP- and LP-EGR. Hence, the LP-EGR mass flow rate can be regarded as
a disturbance for the superior air content control. Only when all gas transport dynamics are settled,
the intake temperature will reach its calibrated setpoint. During transients the air content control
leads to an arbitrary intake temperature. This favouring of the air content control over the desired
intake temperature is permissible, since the air content has a stronger influence on the emission
formation than the inferior intake temperature, see Fig. 5.5. On condition the intake temperature
shall be controlled with priority, one obtains the appropriate reference values by controlling the
HP-EGR mass flow rate with the reference value (7.40) and the LP-EGR mass flow rate by (7.43).
In this configuration the air mass flow rate and the intake temperature are the controlled quantities
and the internal gas propagation effects are neglected.

However, in some special cases of the air content control, the reference value generation for
Tilip—cgr,des,untim €an dynamical result in an intake air content X/, which is lower than the de-
manded reference value X 4es. In that case the superior air content control has no chance to rise
the intake air content with fresh air and the engine is choked. Hence, the LP-EGR mass flow rate
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demand has to be limited, so that the air content control is always capable to react and further
lower the air content of the inflowing gas mass flow rate. This can be achieved by the inequality

Meng,inX2i,des = Mair,des + X5Mp—cgr,des,max » (744)

which expresses that the desired equivalent fresh air mass flow rate into the cylinder rﬁteng,iani,des
is smaller or equal than the equivalent air mass flow rate passing the compressor. This yields such
conditions in the intake system, that additional HP-EGR can be mixed with the inflowing gas mass
flow rate to further reduce the portion of fresh air. In Eq. (7.44) #i,ir qes can be substituted by (7.38)
and (7.39). Further rig,_ ... e 18 set to zero, so that the desired intake air content will not fall below
its setpoint without any HP-EGR mass flow rate and results in

Meng,inX2i,des S Meng,in — Mip—egr,des,unlim + X 5Mp—egr,des,max - (745)

Then the maximal allowed LP-EGR mass flow rate, which satisfies (7.45) is given with

Myp—cgr,des,unlim = ip—cgr,des,max 48

i,des — 1 <
xzﬁ’d Meng,in, (746)
X5 — 1

rhlp—cgr,dcs,max =
where it shall be noted that the denominator X5 — 1 is negative. Finally, the setpoint for the LP-
EGR mass flow rate controller can be derived as the minimum between the temperature dependent
demand (7.43) and the air content related limitation (7.46) as

rnlpfegr,des = min (mlpfegr,des,unlimv n’llpfegr,des,max) . (747)

At some operation points with low injection quantities, like the engine overrun state, the denomin-
ator of Egs. (7.37), (7.42) and (7.46) can turn to zero. Hence, in a practical implementation some
precautions have to be undertaken to avoid this division by zero and the air content control should
be switched to a temperature control with the reference values (7.40) and (7.43).

Finally, also the dynamical optimised reference values from Sect. 6.2 can be easily introduced
into the reference value generation by opening the switches in Fig. 7.24 and replacing Xeng,out,des i
Eq. (7.34) by Xeng,out,opt and by substituting 71, qes in Eq. (7.42) by 124, des,opt from Eq. (6.9). After
a short investigation of the influence of modelling and measurement uncertainties follow the test
bench results for the given reference value generation.

7.8.2 Invariance to Modelling and Measurement Uncertainties

After the detailed investigations of the modelling and measurement uncertainties in Mrosek et al.
(2010b) and Mrosek (2017), the question of the practical relevance for the control of a modelled
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quantity X»; and the reference value generation with many modelled quantity arises. Contrary
to the control of a directly measured quantity, this reference value generation scheme seems to
accumulate the measurement and modelling uncertainties of each single submodel. However, as it
will be proved in the following the special form of the air content model in conjunction with the
reference value generation is invariant to modelling and measurement uncertainties.

In stationary engine conditions the air contents in the exhaust manifold are settled (¥s = %3)
and the air content in the intake manifold can be expressed analogue to Eq. (3.10) as the ratio of
remaining fresh air mass flow rate and total mass flow rate.

N N mair + X3 (n'/llpfegr + An'/llpfegr + mhpfegr + A’hhpfegr)
X2i <Amlp*€grv An’lhpfegrv .. ) = ; x S x x (748)
Myir + Mip—cgr + AWllpfegr + Mhp—egr + AW’hpfegr

In this context Ar;zlp,egr and Ar;zhp,egr are the summarised modelling and measurement uncertain-
ties for both EGR mass flow rates. A substitution of the LP-EGR mass flow rate and its uncertainty
with the stationary form of Eq. (4.13) eliminates both EGR mass flow rates and their uncertain-
ties. Instead the modelled mass flow rate entering the engine with its uncertainty Az%eng,in has to
be considered now.

~ ’hair + /%3 (’/;leng,in + Anzeng,in - ’hair)
),eZi (An.,leng,inv .. ) = (749)

}/neng,in + A}/neng,in

In stationary engine condition counts Xene o = X3 and Eq. (3.32) can be inserted into Eq. (7.49),
whereas the uncertainties for 7izeng in are also introduced in (3.32). This elimination of all air con-
tents then yields

mair <r;lf + Lst’/;lf) + (n?/leng,in + An%eng,in) (’hair - Lstn?/lf)

(meng,in + Ameng,in) (mair + ’71f)

o (Amg) - (7.50)

Similar to the air content estimation also the reference value generation of x»; 45 can be expressed
with measurement uncertainties A#iteng in and delivers with (7.33) and (7.34)

e s~ Lo (( A 7 i
—ainde S (Mleng,in + Alleng.in + Hig) + Lghitg
g, 2,

Mair des + 111

Xides (An%eng,in,...) = (7.51)

(’;leng,in + Ar;leng,in)

After the influences of measurement uncertainties to the intermediate control variable (7.50) and
the reference value (7.51) have been defined, it can be claimed that no control deviation shall exist
between these quantities
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X2ides (A’/;Zeng,inv .. ) — X2 (Arf’leng,in, .. ) =0. (7.52)

A substitution of (7.50) and (7.51) in (7.52) then results in

mair,dcs = n.7air (753)

and proves that the combination of the dynamical reference value generation in conjunction with
the special form of the air content model of Sect. 4.4 stationary results in an air mass flow rate
control, which is not affected by measurement and modelling uncertainties in the intermediate
quantities. A main reason for this invariance lies in the determination of the LP-EGR mass flow
rate by the balance equation (4.13). This balance equation compensates all uncertainties in the
EGR mass flow rate estimation and reduces the uncertainty influence to An%eng,,-n which is later
compensated by the form of the reference value generation. Contrary to this approach a direct
control of a modelled quantity X»; would suffer from the apparent measurement uncertainty and
deliver a falsified air content to the engine.

7.8.3 Engine Test Bench Measurements

After the theoretical foundation is laid, the dynamical reference value generation is applied to
the engine at the test bench. The implementation of the air content model in conjunction with
the reference value generation demands some minor modifications of the air content model from
Sect. 4.4. This air content model can be modelled by a lumped parameter approach and by a
pipe receiver model. The pipe receiver model showed better model validation results, since it
could describe the plug like flow effects in the intake and exhaust system more detailed, while the
lumped parameter model smoothed the sudden changes in the air content more. When it comes
to the implementation of the reference value generation, the transport delays 7,172/ and T pnp
in Fig. 4.9 complicate a precise control of X;, since on the one hand these delays determine the
chronological sequence of the inflowing air contents and on the other hand these delays are directly
dependent from the controlled variable i%hp,egr, respectively r;zth. These couplings result in fast
stepwise changes in the reference value for the HP-EGR controller which cannot be controlled fast
enough, so that the HP-EGR controller is always delayed and the control results are unsatisfying
and fast varying. Hence, in the following a mixed model structure is utilised for the control of the
air content. In this model the intake air content is modelled by the lumped parameter approach and
the transport delays 74 p,1/2/c and Ty, pp are set to zero. All other gas transport delays are modelled
by the pipe receiver approach.

Fig. 7.25 presents the implementation of reference value generation at the engine test bench. The
topmost plot contains the reference value for the air mass flow rate 71, q.s and the measured air
mass flow rate. Then follow the desired values for the intake temperature 7%; 4.s and the inter-
mediate control variable X, ¢s With their corresponding modelled quantities. The next two plots
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illustrate the directly controlled variables r;thp,eg, and n%lp,egr and their reference values. In this en-
gine configuration the measured air fuel ratio A is the most suitable quantity which can be utilised
to evaluate the performance of the air content control scheme. In the next plot the measured air
fuel ratio (meas.), the equivalent air fuel ratio of the air content model (X-model) and the estimated
air fuel ratio of the air mass flow rate measurement and the injection quantity (3.11) are presented.
Finally, the course of the actuator positions Shp—cgr and $jy_cgr/itn complete the regarded quantities.

In the illustrated sequence first the reference value for the air mass flow rate is decreased stepwise
from 72 kg/h to 47 kg/h at a time of 0s. This demand is transformed into a demand for the inter-
mediate control variable x; ¢es and further delivers the setpoint for the HP-EGR mass flow rate
controller. At the step time the exhaust system contains a fairly air content and the desired intake
air content demands a huge amount of recirculated exhaust gas r;1hp,eg, after the first second of the
setpoint change. However, due to the systems limitations the demanded HP-EGR mass flow rate
cannot be delivered, since sp,—c,r is already fully opened. Then the recirculated exhaust gas circles
around the intake and exhaust system and is recirculated via the short route EGR and the long
route EGR. These gas propagation effects are included in the reference value s, —cgr ges and can
be further noticed in the steps of 7, and r;thp,egr. Approximately 3.5 s after the reference value
step all internal gas propagation dynamics are settled and #1,;, reaches its reference value. During
this rather long dwell time the intermediate control variable X,; reached its reference value already
after 1.2's. Whereas some portion of this long dwell time is caused by the systems inability to de-
liver the demanded HP-EGR mass flow rate. A comparison between the modelled (X-model) and
the measured air fuel ratio A confirms the effectiveness of the reference value generation, since the
measured and modelled air fuel show only minor differences. In contrast to the air content model,
the air fuel ratio model based on the air mass flow rate sensor is largely affected by the internal
gas transport dynamics and dynamically does not match the measurement.

During the reference value step in ity ges at a time of 0's also the reference value generation for
the intake temperature is involved. This reference value generation considers the increased total
EGR demand and adjusts the reference value 7i1j,—cgr,des to a larger value. In the engine system the
intake temperature cannot be controlled independently from the air content, since either the LP-
EGR and HP-EGR mass flow rate ratio can be adjusted in order to meet a desired temperature or a
given air content. In this reference value generation the air content control objective has the larger
priority, since it has a stronger influence on the emission formation. This prioritisation can be seen
in the temperature course T, which only meets its reference value after all air content dynamics
are settled. In this configuration, the reference value 71j,—cgr,es Can be seen as a disturbance for the
air content control and forces it to meet the given temperature in stationary conditions.

During the next setpoint change at 5 s the desired temperature changes from 27 °C to 42 °C. This
demand for an increased intake temperature results in an almost instantaneous decrease of n?ﬂp,egr
and the formerly by the large LP-EGR mass flow rate occupied proportion of intake volume is
flushed with fresh air. This results in the overshoot in 71,;.. Shortly after the LP-EGR effects have
passed the intake system, also the HP-EGR mass flow rate reference value reacts on the changed
intake states and a larger demand is set for 7itp,_cgr,des- A similar behaviour can be observed for
the opposite setpoint change at a time of 10s. For this setpoint change rﬁzlp,cgr increases and the
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Figure 7.25: Test bench measurement for the dynamical reference value genera-

tion for changes of the reference values migirdes and T3 ges according to Fig. 7.24

(nerlg ~ 1500 min~!, Uinj = 15mm3/cyc)

intake system is flushed with exhaust gas, which results in the undershoot in 7,;.. Shortly after

the LP-EGR intervention also the reference value generation adjusts 71, —cgr,des. For both setpoint

changes the desired temperature is reached and the superior air content reference value generation
ensures that the air content after the combustion process stays rather constant, as it can be seen in

the measured air fuel ratio A. Finally, the setpoint 72, qcs is set back to its initial value at 15 s and
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the intake and exhaust system are flushed with fresh air, so that the HP-EGR-valve is fully closed.
This results in the undershoot in fZi and after all air content dynamics are settled the setpoint
YA‘Zi,des is met. This fully closed HP-EGR-valve results in a sudden shift of the modelling error of
r;zlp,eg, in (4.13), so that this additional deviation has to be adjusted by the integral part of the
LP-EGR controller from Fig. 7.21. However, this integral proportion is calibrated too weak, so
that the deviations between n?'zlp,eg, and 71— cgr,des are compensated only slow.

In summary, the combination of the air content model, the reference value transformation and the
rather simple mass flow rate controllers for mhp cgr and mlp cer 18 capable to supply the combus-
tion process with a calibrated air content. This gets evident when the modelled air fuel ratio is
compared to the measured air fuel ratio, which agree well, while the reconstructed air-fuel ratio
from the 71,;, measurement emphasises the dynamical effects of the internal air contents. In or-
der to supply the combustion process with a defined air content, the air content in the whole gas
system has to be considered preemptively in the setpoint generation for the HP-EGR mass flow
rate controller. This can result in fast and largely varying HP-EGR mass flow rate demands and is
an indicator for the strongly varying process gain of a air content control. Furthermore, it can be
seen, that the combination of the air content model with the reference value transformation is in-
variant to measurement and modelling uncertainties because the modelled air fuel ratio (X-model)
stationary meets the modelled air fuel rate from #z,;, and nAat Hence, comparable to a classical
air mass flow rate control scheme this reference value transformation is only dependent on the
measurement uncertainty of the air mass flow rate sensor and the injection quantity. In contrast to
this classical control scheme the novel reference value generation is capable to handle the inherent
process dynamics of the air contents in the intake and exhaust system and transiently delivers the
demanded oxygen concentration to the combustion process. A quantitative comparison between
the stationary emissions, an intake temperature control without consideration of gas propagation
dynamics and the reference value generation is given in the subsequent Sect. 7.9.2.

7.9 Dynamical Driving Cycle Emissions of Different Control
Concepts

In order to rate the different control concepts for HP-EGR and dual EGR-path configuration,
they are compared with regard to emissions and engine work Weng (6.1) during simulations of
the NEDC. Base for this comparison are the stationary series calibration for the HP-EGR con-
trol concepts and the optimised engine maps for the dual EGR-path configuration from Sect. 6.1.
All control concepts are simulated with the mean value engine model and the dynamical emis-
sion models from Chap. 5. Considered control concepts for HP-EGR operation are a #1,;,-control
scheme, a r,-control scheme and according to Sect. 6.2 dynamically optimised reference values
with regard to the emissions (X,y-control). In dual EGR-path operation the dynamical reference
value generation from Sect. 7.8 is compared to a control of the intake temperature and dynamically
optimised reference values (xop-control) from Sect. 6.2.
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Figure 7.26: The NEDC can be separated into 62.1 % dynamical proportion and 37.9 % sta-
tionary proportion of time, while 69.9 % of the fuel quantity is injected in the dynamical part
and 30.1 % in the stationary part.

In this dissertation the NEDC is the benchmark driving cycle to rate different control concepts.
It consist of parts with stationary and dynamical engine operation and their proportions are illus-
trated in Fig. 7.26. A stationary driving cycle part is defined by derivations of both engine speed
and injection quantity close to zero. Consequently, the driving cycle time can be separated in
62.1 % dynamical proportion and 37.9 % stationary proportion. As it can be seen in the injected
fuel quantity n%, there is more fuel injected during the dynamical parts of the driving cycle. Hence,
69.9 % of the total fuel quantity is injected during the dynamical part, while only 30.1 % is injec-
ted in stationary operation. Furthermore, the driving cycle emissions are usually rated in emission
quantity per km. Thus, the NEDC covers a distance of 6.68 km in dynamical driving mode and
4.33 km at constant velocity. In the following investigations, the driving cycle emissions are given
as overall distance related emissions during the driving cycle and emission proportions of the sta-
tionary and dynamical driving cycle parts. All control concepts are compared with regard to the
dynamical cylinder charge, which is determined by simulations of the pipe receiver air content
model from Sect. 4.4. A transformation of the differential form of (3.10) gives the dynamical air

mass equivalent

A~ Xeng,outnclf + rﬁfLst
Mir,dyn = 1 ~ (754)
- Xeng,out

in air mass per working cycle for all control concepts. For a solely HP-EGR configuration the devi-
ations between the measured quantity 71,;; and 771, 4y are small, while they have to be considered
with additional LP-EGR. Note, that in case of no injection quantity, Eq. (7.54) is not capable to
simulate the dynamical air mass equivalent.
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7.9.1 Dynamical Emissions of the HP-EGR Series Calibration

In this section, the results of a 7i1,i-control, a rg-control and quasi-stationary simulations are com-
pared for the series calibration of the investigated DTH-Z19 engine, since this is the reference for
the dual path EGR system. The 7i1,;-control and re,-control are realised with operation point de-
pendent decentralised PI-controllers and are parameterised according to Sect. 7.3 by replacing the
HP-EGR-quantities by the appropriate control variables and their reference values. The charge-air
pressure is controlled in two degrees of freedom with semi-physical feedforward control and oper-
ation point dependent decentralised PID-controllers. In order to achieve a semi-physical feedfor-
ward control, as given in Sect. 7.4, its reference value 71hy—cgr,des has to be approximated with (7.9)
as

mhpfegr,des,(mairfcﬂ) = ’neng,in,des — Mair,des (755)

for the 7i1,;,-control and

Mpp—egr,des, (regr—ctl) = Mleng,in,des * Fegr,des (756)

for the 7q4-control. These approximations do not cover the air mass storage effects in the intake
system and can consequently not be utilised to generate a feedforward signal Shp—cgr, fre-

In Fig. 7.27 the air path control is simulated in the urban part of the NEDC. The controlled quant-
ities Mlir,dyn, Teer and po; are shown for both control concepts 7i1,;-control and rey-control and
compared to their quasi stationary reference values, which result from the reference value map
outputs of a given ncn, and ujy; profile. For both control concepts the actuator positions s; and
Shp—cgr are presented. In the bottom plots the emission quantities 71,0 and 7y, as well as the
engine torque M., are illustrated for the two control concepts and the quasi-stationary simulation
of the engine maps (quasi-stat.).

In the air mass flow rate plot it can be seen, that the 71,;-control follows its reference value 11, ges
well, while the corresponding air mass flow rate of the r.g-control scheme dynamically follows a
different trajectory. At some points (614 s, 650, 680 s 735 s), the 71,;-control is not capable to fol-
low its reference values, since the HP-EGR-valve is saturated. Similar investigations can be made
for the quantity reg,. In this plot the 7¢4-controller follows its reference value regr, ges, While there are
dynamical variations of the 71,;-control. In the charge-air pressure p,; there are no significant de-
viations between both control schemes, while both controllers follow the reference values delayed
by the relative slow turbocharger dynamics. In the emission quantities there are some deviations
between the control schemes and the quasi-stationary simulations. These deviations are apparent
during the acceleration phases, e.g. in the zoomed section. At these peaks the 71,;,-control shows
larger NO, emissions than the r.g-control, while vice versa the particulate emissions are larger for
the reg-control, see Sect. 6.2.1. During the dynamical phases the quasi-stationary emissions are
often smaller than the emissions of both control concepts. In the engine torque M., there are no
significant deviations between the different control concepts.
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Fig. 7.28 highlights the same quantities in the extra urban part of the NEDC. Alike in the urban
part it can be noticed, that both control concepts follow their reference values well, while there
are dynamical deviations in the uncontrolled quantity. In this part the NO, emissions for the reg-
control are smaller than the emissions of the #1,;,-control and the quasi-stationary simulations,
while especially at times between 1110s and 1120's the particulate emissions of the 7,-control
are larger. Generally, the NO, emissions of the r,;-control fit the quasi-stationary emissions in
the sections with low dynamics well, while there are some deviations in the emissions of the 7~
control. One reason for these deviations is the interpolation of the reference value maps for 171, ges
and 7egr ges. At the supporting points, a given air mass flow rate can be directly transformed into
the corresponding r.q-rate. However, between these supporting points both reference values are
bilinear interpolated. Due to the nonlinear relationship between the two quantities 72,;; and rg,, the
achieved air mass flow rate resulting from a m1,r,qes-map and a re,-map differ in the interpolation
range.

This fact gets obvious at the time range between 1078 s and 1100s, where both the rg-control
and the iz ;-control are settled to their reference value, but deviate in 772, ayn. Furthermore, the
achieved air mass flow rate from a re,-control strongly varies at fixed p,; with changes in the
ambient temperature, since at changed ambient temperatures the intake temperature changes and
according to (3.28) the mass flow rate entering the engine. Thus, at varying engine mass flow rates
and fixed EGR-rate the resulting quantity 71, varies.

Dynamically there are some differences between the control concepts. Hence, the zoomed load
steps at 1101s and 1120s are discussed in the following. As analysed in Sect. 6.2.1, the first
zoomed step at 1101 s represents an acceleration activity, compare to Fig. 7.26, with a rise in
injection quantity. During this transient the #1,;,-control rises the air mass flow rate fast to meet
its reference value, while the air mass flow rate resulting from the r,-control follows delayed.
For the #i1,;,-control this increase of air mass flow rate results in a NO, peak, but lowered partic-
ulate emissions. In comparison to the quasi-stationary emissions, the 7., emissions are larger,
while the particulate emissions 71y are lowered for this transient. The r,-control has lower
NOy emissions, while the particulate emissions are similar to the quasi-stationary course. In the
second zoomed section at 1120 s a deceleration is investigated. In this transient #1,, shows an
undershoot for the air mass flow rate control, while 71, is in the same range as the particulate
emissions of the 7, -control. For the r.,-control the NO, emissions are at a level with the quasi-
stationary simulations and larger than the NOy emissions of the other control scheme.

As conclusion, a ri1,;,-control has dynamical enlarged NO, emissions for load steps of rising injec-
tion quantity, but compensates it with decreased NO, emissions for load steps of falling injection
quantity. In respect of particulate emissions the 71,;,-control benefits from the increased air mass
at rising load steps and is not penalised for missing air at falling load steps. Consequently, the dy-
namical NOy balance for the 71,;-control is rather neutral, while there are some advantages with
respect to the particulate emissions. The NO, balance for the r.g-control benefits from rising loads
and is neutral with respect to falling loads. With respect to the particulate emissions a rising injec-
tion quantity results in dynamical increased particulate emissions, which cannot be compensated
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by decreased particulate emissions for falling injection quantities. Thus, a rg-control achieves its
favourable NOy emissions on the cost of larger particulate emissions.
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Figure 7.27: Simulated comparison of an air mass flow rate and EGR-rate control scheme with
regard to the dynamical emissions in the urban part of the NEDC (HP-EGR configuration)
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Figure 7.28: Simulated comparison of an air mass flow rate and EGR-rate control scheme

with regard to the dynamical emissions in the extra-urban part of the NEDC (HP-EGR con-

figuration)
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These characteristics of both control concepts can be visualised in Fig. 5.5a), where the
NOy emissions and the particulate emissions are plotted over the air mass flow rate. It can be
seen, that ¢,,x forms a relative straight line, while ¢y, rises exponentially with decreasing rz,;,. A
m,;i-control concept dynamically avoids the exponential particulate peak of a rising load step, by
delivering more #,;,. During a falling load step less air is delivered, which is not penalised, since
at small injection quantities, respectively large air mass flow rates, the course of Cy is rather
flat. Due to the straight course of ¢, the dynamical benefits and drawbacks with regard to the
NOy emissions are virtually compensated. A r,-control hits the exponential particulate increase
during rising injection quantities and cannot compensate it with significantly lower emissions at
falling injection quantities.
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Figure 7.29: Simulated comparison of an air mass flow rate control and dynamical optimised
reference values with regard to the dynamical emissions in the urban part of the NEDC (HP-
EGR configuration)

Next, the results of the #1,;,-control are compared with the trajectories of dynamically optimised
reference values (xp-control), as given in Sect. 6.2.2. Fig. 7.29 compares these control concepts
in the urban part of the NEDC and shows the quantities 7air,ayn, /inox and #ity. It can be noted,
that the optimised air mass flow rate trajectory dynamically slightly differs from the 71,;,-control.
These deviations result in larger 71,,, emission peaks, while the 71, emissions peaks are smaller.
A further comparison of the extra urban part of the NEDC is given in Fig. 7.30. During this section
at times between 1077 s and 1100s the dynamically optimised air mass flow rate favours the
NO, emissions without significant increase in the particulate emissions. At the load step at 1103 s
the dynamical optimisation avoids the #1,0x-peak from the 7i1,;-control. In the further course at the
times between 1110s and 1130 s the optimised reference values shift the NO, particulate tradeoff
towards lower particulate emissions and larger NO, emissions.
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Figure 7.30: Simulated comparison of an air mass flow rate control and dynamical optimised
reference values with regard to the dynamical emissions in the extra-urban part of the NEDC
(HP-EGR configuration)

A quantitative comparison of the different investigated control concepts is given in Tab. 7.2 with
respect to the overall distance related driving cycle emissions (over.), the distance related emis-
sions at stationary sections (stat.), and the distance related emissions during the dynamical phases
of the driving cycle (dyn.). It can be noted, that a great proportion of the quasi-stationary emissions
is contributed during the dynamical driving cycle proportions with large injection quantities. This
emission increase is independent from the air path dynamics and results from the calibrated engine
maps at these injection quantities and engine speeds. With the different control concepts, the air
path dynamics are considered in the emission quantities. The air mass flow rate control results in
emissions, which only vary slightly from the quasi-stationary emissions. The 7.4-control lowers
the NO, emissions on the cost of larger particulate emissions, while the optimised reference val-
ues Xqp-control slightly move the quasi-stationary NO particulate tradeoff in direction of lower
particulate emissions. As conclusion for the HP-EGR-configuration it can be stated, that a large
part of the emissions is contributed in the dynamical part of the driving cycle. A reason for these
increased emissions are larger injection quantities, while the air path dynamics and the choice of
the control concept have only minor impact on the distance related emissions. An air mass flow
rate control delivers distance related emissions, which agree in their magnitude well with the sta-
tionary calibrated engine maps. The reg-control scheme can be utilised, if lower NO, emissions
are demanded on the cost of larger particulate emissions. Dynamical optimised reference values
have no significant advantage over a r1,;-control. It is shown, that dynamical optimised reference
values have only a small potential to further lower the emissions of the HP-EGR configuration
with series calibration, but are optimal with regard to the quality criterion.
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Table 7.2: Overall, stationary and dynamical distance related emissions of the HP-EGR series
calibration during the NEDC for different controlled variables

quasi-stationary Mgip-control Fegr-control Xopt-control
Mnox Mimss Weng  Minox Mimss Weng Mnox Minss Weng Mnox Mimss Weng
in mg/km mg/km kWh  mg/km glkm kWh  mg/km mgkm kWh mgkm mgkm kWh
over. 2448 2.74 1.53 244.1 2.74 1.54 2286 291 1.54 2455 2.71 1.54
stat. 139.5 0.29 0.44 135.9 0.29 0.44 130.5 0.29 0.44 128.5 0.30 0.44
dyn. 313.0 4.33 1.09 314.1 4.32 1.09 292.1 4.61 1.09 3213 427 1.10

deviations between quasi-stationary and controlled engine operation in dynamical related emissions (dyn.)

+0.4%  -0.02% *0% -72%  +6.5% £0% +2.7% -14%  +0.9%

7.9.2 Dynamical Emissions of the Dual EGR-Path Calibration

In this section, the dynamical emissions of the dual EGR-path calibration are analysed for quasi-
stationary reference values, the air content control x-control from Sect. 7.8, the intake temperature
control T5-control from Sect. 7.8 and dynamically optimised reference values (xq-control) from
Sect. 6.2. In order to achieve the control objective, reference values for the intermediate control
variables #itp, e and 7ity,_cgr are controlled according to (7.40) and (7.43) for the 75-control,
respectively according to (7.37) and (7.47) for the x-control. Stationary reference values for the
dual EGR-path configuration are given in Sect. 6.1. The quantities #i1,_cer and po; are controlled
with the semi-physical internal model control from Sect. 7.5, while the semi-physical control from
Sect. 7.7 controls the LP-EGR mass flow rate. In order to determine the emission and combustion
quantities dynamically correct, the air content pipe-receiver model from Sect. 4.4 is utilised to
determine the cylinder charge. For visualisation the dynamical air mass equivalent (7.54) r;zair,dyn
is utilised.

Fig. 7.31 compares the quasi-stationary driving cycle results with the air content control and intake
temperature control in the urban part of the NEDC. The control results are given for the primarily
controlled variables air mass flow rate, respectively dynamical air mass equivalent /1, 4y, intake
temperature and charge-air pressure. It can be seen, that the control results of the x-control meet
the demanded air mass flow rates m,i. 4. dynamical well, while the 7%-control scheme shows
some deviations in 7,irqn. This gets obvious in the zoomed section. The 7hi-control scheme
has not the objective to meet the dynamical air mass equivalent. Its objective is to follow the
demanded intake temperature trajectory, which is met well in the 7%; plot. In the x-control scheme
T>;i is the inferior control variable and it dynamically has deviations to the reference values 75; ges.
However, in stationary condition both control concepts show no deviations between the controlled
quantity and the reference value of the inferior control variables. The last controlled quantity p;
is controlled equally well in both control concepts. For completeness, also the actuator positions
Shp—egrs Stp—egr/ith and s; are given for both control concepts.
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Figure 7.31: Simulated comparison of a x-control, a 7»;-control with regard to the dynamical
emissions in the urban part of the NEDC (HP-EGR and LP-EGR configuration)
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With respect to the NO, emissions, there are dynamical significant deviations between the quasi-
stationary emissions and the emissions of both control concepts. While the #1,,c-peaks of the
x-control are significantly smaller, there are larger peaks for the 75;-control. The particulate emis-
sions 71, sShow a rather mixed characteristics, which does neither favour the x-control nor the 75;-
control. Though, both control schemes have dynamical larger emissions than the quasi-stationary
simulation, these short emission peaks contribute only minor to the overall driving cycle emis-
sions. The resulting engine torque shows almost no deviation between all investigated control
concepts.

In Fig. 7.32 the control concepts are compared in the extra-urban part of the NEDC. Significant
deviations between the x-control and the 75;-control can be only observed in the zoomed section,
where the x-control scheme prevents a 71,,, peak. Furthermore, there are some minor differences
in the emission quantities between the control concepts and the quasi-stationary simulation results
at the acceleration part at the time range from 1100 s to 1120 s. In the rest of this section no notably
deviations can be observed between the two control concepts and the quasi-stationary simulations.
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Figure 7.33: Simulated comparison of a air content control and dynamical optimised reference
values with regard to the dynamical emissions in the urban part of the NEDC (HP-EGR and
LP-EGR configuration)

Next, in Fig. 7.33 dynamical optimised reference values (Xcng,opt-control), according to Sect. 6.2,
are compared to the results of the x-control scheme during the urban part of the NEDC. It can be
noted, that the dynamically optimised reference values, result in a dynamical air mass equivalent,
which differs from the results of the x-control. These optimised trajectories especially avoid 71,5
emission peaks on the cost of increased particulate emissions. A comparison to Fig. 7.31 shows,
that the benefits of optimised reference values get effective at transients where p,; follows its
reference value delayed by the inherent process dynamics.
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Fig. 7.34 compares the potential of the x,y-control to the x-control for the extra-urban part of
the NEDC. It can be seen, that there is only minor room for improvement in this section. A
small 71,4, peak is optimised at 1037 s and the course of the emissions during the acceleration
part between 1100s and 1120s is smoothed with optimised reference values. In comparison to
Fig. 7.32, dynamically optimised reference values deliver an emission course, which follows the
quasi-stationary emissions closer.
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Figure 7.34: Simulated comparison of a air content control and dynamical optimised reference
values with regard to the dynamical emissions in the extra-urban part of the NEDC (HP-EGR
and LP-EGR configuration)

Finally, in Tab. 7.3 the investigated control concepts are quantitatively evaluated with regard to the
distance related emissions and the delivered engine work during the overall driving cycle (over.),
the stationary proportions (stat.) and the dynamical proportions (dyn.). The 7»;-control scheme can
be applied without significant effort and shows the largest NO emissions. Its overall particulate
emissions are lower than the emissions of the quasi-stationary simulation.

At this point the additional effort for the air content model and the dynamical reference value
generation from Sect. 7.8 pays off. The NO, emissions are significantly lower than the emissions
of the Ty;-control scheme, while there is only a tiny increase in the particulate emissions. How-
ever, these quantities of 11, are still smaller than the quasi-stationary emission level. The largest
effort is needed for dynamically optimised reference values and it delivers NO, emission, which
are closest to the quasi-stationary simulations, while the particulate emissions are slightly better.
With regard to the engine work, all control concepts have comparable results. In stationary engine
operation there are no notable emission deviations between the different control concepts, while
most deviations are contributed during the dynamical proportions of the driving cycle. As con-
clusion it can be stated that the effort for a x-control scheme and dynamical optimised reference
values pays off and delivers lower NO, emissions than the 75-control at almost no rise in partic-

216.73.216.96, am 13.01.2026, 21:09:54. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186803122

164 7 Air Path Control Design and Dynamical Reference Value Generation

ulate emissions. A further decrease in the dynamical emissions can be achieved with additional
effort by the x,p-control scheme. These x-control and x,-control concepts aim at the dynamical
part of driving cycles and their benefit will probably be larger for driving cycles with a greater
dynamical engine excitation. Thus, in future research these control concepts could be evaluated in
respect to driving cycles having larger proportions of dynamics.

Table 7.3: Overall, stationary and dynamical distance related emissions of the LP-EGR calib-
ration during the NEDC for different controlled variables

quasi-stationary T»i-control x-control Xopt-control

Mlnox Muss  Weng Mnox Mimgs Weng Mlnox Mimgs Weng  Minox Mimgs Weng
in mg/km  mgkm kWh  mg/km  mgkm  kWh mg/km  mg/km  kWh  mgkm mgkm  kWh

over. 79.3 2.32 1.64 98.4 225 1.64 88.3 2.26 1.64 84.5 2.28 1.64
stat. 42.1 0.34 0.50 42.0 0.34 0.50 423 0.34 0.50 413 0.31 0.50
dyn. 103.5 3.61 1.14 1349 3.48 1.14 118.2 3.50 1.14 112.5 3.56 1.14

deviations between quasi-stationary and controlled engine operation in dynamical related emissions (dyn.)

+303%  -3.7%  +0% +142% -3.1% £0% +8.7% -14%  £0%

7.9.3 Essential Findings of Sect. 7.9

In a nutshell, stationary and dynamical proportions of a driving cycle are defined. The example of
the NEDC shows, that this driving cycle can be separated into 62.1 % of dynamical proportion and
37.9 % of stationary proportion, while 69.9 % of the fuel quantity is injected in the dynamical part
and 30.1 % in the stationary part. Due to larger injection quantity and longer time, the emissions
of the dynamical driving cycle part are larger than the emissions of the stationary part.

In the reference engine calibration with only a HP-EGR, the quasi-stationary emissions of
the driving cycle are compared to the emission level of a dynamical simulation with two air
path control concepts r,;-control and r.4-control, see Fig. 7.29 and Fig. 7.30. Interestingly,
the emission level of the dynamical engine operation differs only slightly from the quasi-
stationary driving cycle emissions. In which the 7i,;-control shows slight benefits in the dynam-
ical NO, emissions at unvaried particulate emissions, while the r,.-control shows 7.2 % decreased
dynamical NOy emissions with a 6.5 % increase in the particulate emissions. Further, dynamical
optimised reference values show a decrease of 1.4 % in the particulate emissions with an increase
of 2.7 % in the NO, emissions.
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Two control structures for HP- and LP-EGR are compared with regard to the quasi-stationary
emissions of the driving cycle. A simple control of air mass flow rate and intake temperature
without consideration of air content dynamics (75;-control) and a control structure with a dynam-
ical reference value generation to consider gas propagation times in the in- and exhaust system
(x-control), see Fig. 7.31 and Fig. 7.32. Compared to the quasi-stationary emission level, the
simple Th;-control shows a 30.3 % increase in the dynamical NO, emissions, while the particulate
emissions sink for 3.7 %. As results of the x-control, the dynamical NOy emissions are 14.2 %
increased, while the particulate emissions decrease for 3.1 %. Dynamical optimised reference val-
ues show the best results and have 8.7 % increased NO, emissions and 1.4 % lowered particulate
emissions.

Interestingly, the postulated strong deviations between emission of a stationary and dynamical
engine operation can not be shown with the given combination of engine, air path control, engine
calibration and driving cycle. Generally, the investigated emission level of a dynamical engine
operation only slightly differs from the stationary engine operation. Thus, there is only a small
potential for an improved emission level with for dynamical optimised reference values for the
air path control, with the given test conditions. Though, recent legislative matters tend to driving
cycles like the worldwide harmonized light-duty vehicles test procedure (WLTP) or real driving
emissions (RDE), which incorporate more dynamics in engine speed and injection quantity than
the NEDC. These novel driving cycles and tighter emission limits give the demand to on-line
optimise reference values for arbitrary driving situations.

Finally, the investigations of the 7%-control showed, that gas propagation times in the intake and
exhaust system have a negative influence on the emission formation. These gas propagation effects
are considered by the dynamical reference value generation from Sect. 7.8 and deliver good results
for the dynamical emission formation. Finally, in comparison to the 71,;,-control with only a HP-
EGR configuration, the derived control concept x-control with additional LP-EGR is capable to
lower the overall NO, emissions to 36.2 % and the particulate emissions to 82.5 %, while the
delivered engine work W, rises to 107.2 %.

216.73.216.96, am 13.01.2026, 21:09:54. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186803122

166 7 Air Path Control Design and Dynamical Reference Value Generation

7.10 Summary

In this chapter different control concepts for the air path of engines with dual EGR are presented.
The quantities HP-EGR mass flow rate and charge-air pressure are controlled decentralised from
the LP-EGR mass flow rate. For the classical HP-EGR mass flow rate and charge-air pressure
control problem, a two degree of freedom control concept with semi-physical feedforward control,
reference shaping filters and decentralised PI(D)-controllers is presented. For this control, the
PI(D)-controllers are automatically calibrated by a linearisation of the mean-value engine model
and a subsequent internal model control design with model reduction to PI(D)-controllers.

The semi-physical feedforward control is based upon a model inversion of the semi-physical air
path model. This model inversion allows a control design with minor calibration effort, since
parameterised engine models are usually available. The feedforward control further decouples the
air path quantities and implicitly considers the side effects of different engine operation modes,
LP-EGR operation and changes in the ambient conditions. Further, its modularity is well suited
for a modern engine development process by construction kits. The two degree of freedom control
concept allows to fulfil both common control objectives having simultaneously a good response to
setpoint changes and a well suiting disturbance rejection. Anymore, the semi-physical feedforward
control is extended to a semi-physical internal model control, which makes additional PI(D)-
controllers superfluous.

The different control concepts are compared with test bench measurements. A solely control with
decentralised PI(D)-controllers shows moderate reference following and strong couplings in the
charge-air pressure. The control of the quantity HP-EGR mass flow rate shows better control res-
ults. The two degree of freedom structure as combination of a semi-physical feedforward control
and subsequent PI(D)-control have a very good reference following and couplings are damped to
a minimum. Similar results could be achieved by the semi-physical internal model control. One
large benefit of the semi-physical feedforward control is the potential to speed up the reference
following of the charge-air pressure close to the results of a time optimal control.

A decentralised semi-physical control is utilised to control the LP-EGR mass flow rate. This con-
trol applies the invariance of the LP-EGR-rate to the LP-EGR-actuator position at all engine opera-
tion points to generate a control signal. Further, the control is validated at the engine test bench and
shows good control results with the simultaneous control of the other air path quantities r;zhp,egr
and Dai.

The reference values for the HP- and LP-EGR mass flow rate controllers are derived from station-
ary maps for air mass flow rate and intake temperature by a dynamical reference value generation
with the intake air content as intermediate control variable. This reference value generation con-
siders the inherent dynamics of gas propagation in the intake and exhaust system to supply the
cylinders with the proper amount of fresh air. Test bench results validate this reference value gen-
eration and show, that it is capable to handle the inherent gas propagation effects of the LP-EGR
system. In this control scheme the intake air content is the primary control variable, while the in-
take temperature is controlled inferior. It is proven, that the combination of the air content model
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and the reference value generation is stationary invariant to modelling and measurement uncer-
tainties and stationary delivers the desired air mass flow rate. Alternatively, the reference value
generation can be modified, so that the intake temperature is controlled as primary control vari-
able. Consequently, in this configuration the intake air content is controlled with minor priority.

Finally, different control concepts for a solely HP-EGR operation and a dual EGR configuration
are simulated and compared with regard to the emissions and the delivered engine work. For the
HP-EGR series calibration the air mass flow rate control yielded emissions, which were close
to the quasi-stationary emissions of the engine calibration. The r.g-control delivered favourable
NOy emissions, while the particulate emissions were enlarged. Dynamically optimised reference
values (Sect. 6.2) almost reached the quasi-stationary NO, emission level and could further reduce
the particulate emissions. All control concepts delivered comparable results with respect to the en-
gine work. In the dual EGR configuration the simple intake temperature control had the largest
increase in the NO, emissions. These emissions could be reduced by the more complex air con-
tent control (Sect. 7.8) and the dynamically optimised reference value concept (Sect. 6.2), which
yielded the lowest NO, emissions of all investigated control concepts. The particulate emissions
of all investigated control concepts were slightly lower than the emissions of the quasi-stationary
simulations, while the engine work was almost equal for all control concepts.
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8 Conclusions

The objective of this dissertation is to derive a modern model-based framework for engine control
development and calibration considering the exemplary process of a turbocharged Diesel engine
with HP- and LP-EGR. The Diesel engine is a complex process and many facts are not known,
but necessary to understand the whole system. Thus, there is an extended version of this disser-
tation in Mrosek (2017), which gives more details and especially covers the approach of model
parameterisation.

Well fitting engine and emission models are the essential basis to optimise reference values for
engine control, to determine controlled variables and to develop, calibrate and rate controllers for
the air path quantities. Based upon a semi-physical mean value engine model the system properties
of the engine air path with HP- and LP-EGR are analysed and modular model-based controllers
to master the rising complexity and variance of future engine configurations are developed. Fi-
nally, the performance of different control concepts is quantitatively rated by a comparison of
the stationary calibrated emission level with the emission output of an engine operation during a
dynamical driving cycle.

System Properties

As a first step in control development the system properties are analysed by step responses to
the relevant air path actuators HP-EGR-valve, LP-EGR-actuator and VGT-actuator. Besides the
known effects of HP-EGR-valve and VGT-actuator, new effects are introduced by the LP-EGR
system. There are strong influences from HP-EGR and VGT to the LP-EGR quantities, while
there are only small influences resulting from the LP-EGR system. An analysis shows, that the
LP-EGR rate is mainly dependent from its actuator position and not from the engine operation
point. This allows to derive a simple control law for the LP-EGR quantities. A main difference
between a HP-EGR and a LP-EGR are the gas transportation dynamics in the intake and exhaust
system. These dynamics can be modelled by a control oriented pipe receiver air content model.
Suitable control variables for the dual EGR system are the air content in the intake system and the
intake temperature. According to the emission modelling this air content is a strong indicator for
the particulate emissions.

Emission and Combustion Models

The legislative emission limitations are a main driver of Diesel engine development and many
control functionalities are benchmarked by their resulting emissions. Consequently, models are
necessary, to optimise and evaluate the stationary and dynamical engine operation.
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It is shown, that the emission formation can be simplified to a batch process, whose output is
determined by the cylinder filling at intake valve closing and the injection characteristics. Most of
the resulting dynamics result from the air path dynamics in the cylinder filling and the emission
measurement dynamics. These measurement dynamics are composed of gas propagation times
and sensors dynamics. A closed loop control of the relevant model inputs for stationary emission
models allows a fast stationary measurement design. Stationary NOy and particulate emissions as
well as the engine torque are modelled with a global-local modelling approach, consisting of local
polynomial models which are globally superimposed weighted by the engine operation point. A
combination of a air content model describing the cylinder filling dynamics, stationary emissions
models and emission measurement dynamics models allows the simulate the dynamical emission
formation.

Optimisation of the Emissions

A calibration for a system with HP- and LP-EGR shows large emission benefits compared to the
series calibration with only HP-EGR. A comparison of different controlled variables (7, Tegr, X2i)
shows strong deviations between the stationary and dynamical emissions during operation point
changes. These deviations are caused by the multi-variable control problem and the different dy-
namics in the engine air path. The compared quantities can be controlled relatively fast to their
setpoint, while the charge-air pressure follows delayed by the turbocharger dynamics. This yields
different trajectories in the cylinder charge and either NOy or particulate emissions are favoured. A
novel real-time capable optimisation utilises a multi-criteria loss function of weighted polynomial
emission models. Its weights are derived from a stationary engine calibration. The optimum of this
superimposed loss function can be determined analytically. As a result, the dynamical optimised
reference values for the controller neither favour NOy or particulate emissions during an engine
transient.

Reference Value Generation

A reference value generation transforms reference values for the air mass flow rate into the inter-
mediate control variable intake air content and the directly controlled variable HP-EGR mass flow
rate. A desired intake temperature is transformed to a LP-EGR mass flow rate demand. Contrary
to an air content control, this reference value generation is not affected by suddenly changing pro-
cess gains of the air content in the intake and exhaust system. It is proven, that the reference value
transformation is invariant from measurement and modelling uncertainties and stationary results
in an air mass flow rate control.

Semi-Physical Air Path Control

A semi-physical air path control is the key to master the rising demand for controller performance
and to handle variants of engines at a low calibration effort. It is applied to control the HP-EGR
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mass flow rate and the charge-air pressure. Changing engine operation modes and the influence of
ambient conditions, particulate filter loading are implicitly incorporated into the control concept.
Its modularity allows to interchange single submodels during the engine development process
and to adapt for engine variants without recalibrating the complete controller maps. Further, it is
well suited for a modern engine development process by construction kits and allows the reuse of
parameterised submodels. A semi-physical feedforward control in conjunction with simple PI(D)-
controllers delivers a very good response to setpoint changes, decoupling of controlled variables
and good disturbance rejection. Further it can be tuned to achieve an almost time optimal response
to setpoint changes. This control scheme can be further transformed into a semi-physical IMC.
Also the LP-EGR mass flow rate is controlled by a semi-physical relationship, which utilises
the system property that the LP-EGR rate mainly depends on its actuator position and is fairly
independent from the other engine states.

Dynamical Emissions of Different Control Concepts

Finally, the dynamical emissions of different control concepts are evaluated during the NEDC.
The NEDC can be separated into proportions with dynamical and stationary engine operation.
Given that a large proportion of the driving cycle is of dynamical nature, also the proportion
of dynamical emission formation is relatively large. Considering the injected fuel mass, there
is no significant emission increased during the dynamical parts of the driving cycle. In series
calibration with HP-EGR an air mass flow rate control is compared to a EGR rate control and to
dynamical optimised reference values. The overall driving cycle emissions of the air mass flow
rate control are close to the dynamical optimised reference values, while the EGR rate control
has decreased NOy emissions on the cost of higher particulate emissions. Generally with the given
combination of engine, air path control, engine calibration and driving cycle, the investigated
emission level during dynamical engine operation only slightly differs from stationary engine
operation. Thus, there is only a small potential for an improved emission level with for dynamical
optimised reference values for the air path control. More room to improve the dynamical emissions
by a dynamical optimisation will given with future driving cycles like the WLPT and RDE, which
contain more and stronger transients. In a dual EGR configuration an intake temperature control
yields the worst results. Good results can be achieved with a dynamical reference value generation,
which considers the gas propagation times. Compared to a 7,,-control with and a single HP-
EGR, this control concept with additional LP-EGR is capable to lower the overall NO, emissions
to 36.2 % and the particulate emissions to 82.5 %, while the delivered engine work Wy, rises to
107.2 %.
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Outlook

Semi-physical models are a key to master current and future tasks in system understanding and
function development. Their modularity makes them easy adjustable to new engine configurations.
Certainly, for a well suiting engine model several submodels interact and have to be parameterised
well to achieve satisfying simulation results. Currently all models have to be parameterised as best
as possible and a method to achieve this is given in this thesis. However, it is not likely that each
single submodel contributes equally large to the overall model quality. Consequently, a sensitivity
analysis of single submodels can identify the relevant submodels for a well suiting overall model
and simplify the overall model parameterisation process.

A semi-physical control concept is easy to calibrate and delivers good response to setpoint changes
and disturbance rejection. Beyond the successful control of a engine with VGT turbocharger and
HP-EGR, this semi-physical control concept can be further adapted to engines having waste gate
or two-stage turbochargers. Furthermore, the HP-EGR mass flow rate control could be extended
to handle different controlled variables like e.g. the air mass flow rate.
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A Test Facilities

The institute of automatic control at the Technische Universitidt Darmstadt owns and operates a dy-
namical engine test bench to acquire measurements for engine modelling as well as for algorithm
validation. This test bench allows to validate theoretically developed algorithms for measurement
strategies, fault detection and diagnosis, engine optimisation and engine control at the real-world
engine process.

All combustion engines are mounted on roll carts and are equipped with quick connectors for
the external cooling circuit. Several electrical connectors allow a fast connection of test engine’s
sensors and the ECU to the test bench automation system. This engine setup allows a fast exchange
of the investigated test engine. An inverter-fed asynchronous motor (160 kW rated power, 300 Nm
nominal torque, 5000 min~' maximum speed) acts as dynamometer and is connected via a syn-
chronising shaft and a resilient coupling to the combustion engine. The closed-loop controlled
asynchronous machine can drive the engine independently from the injection quantity at a desired
speed and it generates the necessary resistive torque with a settling time smaller than 5 ms.
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Figure A.1: Test bench automation scheme
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Figure A.1 illustrates the test bench automation scheme and the rapid control prototyping (RCP)
environment for algorithm validation and data acquisition. One rapid control prototyping system
is utilised for test bench automation. It supervises test bench conditions, controls coolant flow,
coolers, test cell ventilation and it delivers the engine speed setpoint 7¢ng qes for the inverter and
the accelerator pedal signals a4 for the ECU. These signals can be set either via the user interface
of the test bench automation system or are set via CAN-bus signals from other RCP-systems.

All other RCP-systems are used for function development and data acquisition. First the com-
bination of an ES1000 prototyping system with an ETK (Emulatortastkopf; emulator test probe)
from ETAS makes it possible to read and modify ECU-internal quantities in real-time. Further
these systems allow to bypass some ECU-functionalities and execute prototyping software on the
ES1000 system. Whereat bypass indicates that external measurements or ECU-quantities can be
used as function inputs for a prototyping function, which writes its output back to an ECU-internal
variable. In this case the original ECU-internal function outputs which usually write these vari-
ables are bypassed. The ES1000 system is programmed with ASCET (Advanced Simulation and
Control Engineering Tool), and ECU-internal quantities and calibration parameters are measured
and modified by the software INCA (Integrated Calibration and Acquisition System). In this dis-
sertation the ES1000 system is mainly used for data acquisition, to modify the injection parameters
and to execute a cylinder-individual closed-loop control of the location of mass fraction burned
50 %, see Kohlhase (2011).

The indicating system is based on dSPACE rapid control prototyping hardware and allows a real-
time estimation of combustion quantities like the mean indicated pressure and the location of
mass fraction burned 50 %. Furthermore, a crank-angle synchronous data acquisition of analogue
signals is possible. This crank-angle synchronous data capturing via trigger events of an angle
transmitter and phase signal demands a special timer board, which was developed at the institute
of automatic control. A detailed description of combustion quantity estimation from in-cylinder
pressure signals and the indicating system with the timer board is given in Kohlhase (2011).

A further RCP-system from dSPACE executes automatically generated code from MATLAB Sim-
ulink. This system is utilised to manipulate intake and exhaust system actuators, for data acquis-
ition of series and additional sensors and for implementation of control algorithms. This RCP-
system is visualised and operated with the dSPACE software ControlDesk.

Finally, the fuel consumption, the fuel conditioning and the emission measurement devices are
controlled via the appropriate manufacturers’ software on separate computers. The test bench is
equipped with an AVL SESAM FTIR (Fourier transform infrared spectroscopy) multi component
exhaust measurement system, an AVL 439 opacimeter to measure the exhaust-gas opacity, an AVL
483 microsoot-sensor to measure the soot concentration and NOy-sensors from NGK. Anymore,
the fuel temperature can be regulated with an AVL 753 fuel conditioning system and the fuel
consumption can be measured with an AVL 735 fuel mass flow meter.

The test engine is a 1.91 Opel DTH Z19 common rail Diesel engine with cooled high-pressure
exhaust gas recirculation and variable turbine turbocharger and fulfils the emission standard Euro
4. Tab. A.1 summarises the technical engine data. In order to be able to parameterise single sub-
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models of the mean value engine model, the test engine was equipped with several additional
pressure and temperature sensors in all relevant storage elements and ducts. For the indicating
system in-cylinder pressure sensors have been mounted in the glow plug bores. Further the high-
pressure EGR-actuator was replaced by a state of the art actuator with position measurement and
the VGT-actuator was equipped with an external position sensor.

Table A.1: Technical data of the test engine

Manufacturer GM Powertrain
Engine type DTH-Z19
Number of cylinders 4
Displacement 1910 cm?
Number of valves 16

Maximal power 110kW
Maximal torque 315Nm
Compression ratio 17.5

The engine was extended with a low-pressure exhaust gas recirculation by the author. Consequently,
a Diesel particulate filter, a low-pressure EGR-cooler, a second EGR-valve, a pneumatic actuated

exhaust gas throttle valve and a conventional throttle valve in the intake system were retrofitted to

the engine. All actuators are state of the art actuators with position measurement. A DPF solution

with electrical regeneration system was installed with support of DES (Diesel Exhaust Systems

GmbH). The LP-EGR cooler was kindly provided by Behr GmbH & Co. KG and was connected

to the test bench cooling system. In comparison to the dynamically slow pneumatic exhaust gas

throttle valve, the electrical intake throttle valve is capable to react dynamically fast to setpoint

changes and is equipped with a sophisticated two-degree of freedom control, see Kopf (2014).
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B Exhaust Temperature Model

The temperature after the combustion process is influenced by the cylinder charge and the rather
complex combustion characteristics. For the mean value engine model the engine exhaust temper-
ature is modelled according to Eq. (3.31) as stationary temperature increase in the cylinder group,
in which the nonlinear relationship between different factors of influence and the temperature in-
crease is modelled by a LOLIMOT-model. In this modelling approach the cylinder charge can be
described by the quantities p,; and x,;, while the quantities 7¢ng, Uinj, Pmi and @qso can be used as
influencing variables for the combustion characteristics.

Table B.1: Engine exhaust temperature model quality with different model inputs

Model structure RZ.  RMSEwin RZ, RMSEw
in °C in °C
Teng,out — T2i = frorimor ()
froLimor (Minj) 0.939 28.77 0.938 29.15
Srorimor (tinj. P2i) 0958 2395 0958  24.02
SroLimor (i, Pai. Neng) 0.977 17.85 0977  17.83
Srorimor (tinj, P2i. Neng. @mi) 0.984  14.41 0.985  14.54
SrorLimor (Ui, P21i, Heng, 9Q50) 0.98  13.64 0986  13.83
fLoLimor (uinj. D2i» Neng» Q50+ x2i) 0.988 12.87 0.988 12.96

Tab. B.1 gives an overview of different model inputs’ relevance and the achievable model quality
on the training and validation data. The relevance of different model inputs can be exemplary in-
terpreted with the models having only one model input. For that case the best model quality could
be achieved with the model input u;y, all other investigated model inputs (pai, X2i, Meng, Pmis PQ50)
have delivered worse results on the given training and validation datasets. The training and val-
idation datasets have consisted of stationary measurements of the turbocharger parameterisation
and the stationary measurements to determine the emission models. In Tab. B.1 it can be observed
that the model improved in model training and model validation with the number of model inputs.
However, for the last model with the additional model input x,; the improvement was rather small,
so that this additional model input was neglected in the mean value engine model. Anymore, it can
be observed that the model input quantity location of mass fraction burned 50 % ¢qso delivered
better modelling and validation results than the model input start of the main injection ¢,,;, since
it contains some information about the course of the combustion process.

The exhaust temperature model (3.31) (Tengoue — T2 = frorimor (neng, Uinj, Dais (pmi)) per-
formance on the training and validation dataset is given in Fig. B.1a) in form of a measured versus
predicted plot and as the error distribution in Fig. B.1b). These plots and the quality criteria in
Tab. B.1 indicate that the exhaust temperature can be fully satisfactorily modelled with the given
model.
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B Exhaust Temperature Model
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Figure B.1: a) Measured versus predicted combustion temperature increase model b) Error

distribution for the combustion temperature increase model
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C EGR-Valve Characteristic Shaping

The position of both EGR-valves is coupled nonlinear with the air mass flow rate and the exhaust
gas mass flow rate in the engine operation range. This nonlinearity determines the static gains of
the control loops and can result in an unsatisfying control performance or instability of the closed-
loop control. In the following, the static characteristic of both EGR-valves is shaped to achieve an
almost linear coupling to the air mass flow rate and the exhaust gas mass flow rate.
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Figure C.1: Shaping of the HP-EGR-valve characteristics a) Shp—cgr gain to the air mass flow
rate b) nonlinear normalisation of the HP-EGR-valve characteristics ¢) gain of the normalised

valve Spp—egr Characteristics to the air mass flow rate d) gain of the normalised valve Shp—cgr
characteristics to the HP-EGR mass flow rate

Fig. C.1a) presents the simulated couplings of the valve position Sy, g to 12, at four different
engine operation points. The considered engine operation points op; are listed in Tab. C.1 and
represent a representative cross section through the covered engine operation area in the NEDC.
At all illustrated operation points the nonlinearity between Sy, —cgr and 72,;; has a similar shape.

As long as Spp_cgr 18 in the range of 0...1.8 mm, the air mass flow rate drops steeply, then the
nonlinearity becomes very flat. This nonlinearity is compensated by a polynomial, which shapes
Shp—cgr to the normalised actuator position Sy, g in Fig. C.1b).
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Fig. C.1 ¢) and d) reflect the couplings of the normalised actuator position Sh, cgr t0 724, and
Hlpp—cgr. In both figures an almost linear static characteristics of sp, ¢, can be observed. Only if
Shp—cgr 1S almost opened at ~ 0.95 the curves of syy_cg flatten. This is caused by the insufficient
compensated small gain of the HP-EGR-valve at positions where it is almost opened. However, a
complete linearisation in this operation range is not of practical relevance.

Table C.1: Considered engine operation points

Heng in min~! Uipj in mm?/cyc
op1 1000 0
op2 2000 15
op3 2500 225
opa 3000 30

For the LP-EGR path, the two actuators LP-EGR-valve and exhaust throttle valve have to be
considered. Both actuators are treated as one combined actuator with the normalised position
Sip—cgr/eth- In Fig. C.2a) the operation range of both actuators is equally divided to the signal
Sip—cgr/eth- First the LP-EGR-valve (Sjy—cgr) Opens for Sip_cgr/em € [0, 0.5[. Thereafter the exhaust
throttle valve (Sen) increases the exhaust pressure ps for Sy, _cgr/em € [0.5, 1]. At the investigated
engine operation points these in series connected actuators result in one combined actuator with a
strongly nonlinear characteristic to the air mass flow rate. In the range of i, —cgr/en € [0.35, 0.65]
the gain of this combined actuator is very small, while it is significantly higher in the rest of the
operation range. Comparable to the HP-EGR-valve, the characteristic of §j,_csr and Seq, is normal-
ised, to achieve a relative linear characteristic between the normalised actuator position Sy, —cgr/cth
and the air mass flow rate, respectively the LP-EGR mass flow rate.

Fig. C.2b) represents the shaping of the normalised actuator Si,—cgr/en to the positions of Si,—cgr
and 3. With this shaping the LP-EGR-valve is actuated for sip—cgr/em € [0, 0.3[ and the exhaust
throttle valve is active for sip—cgr/ctn € [0.3, 1]. At Sjp—cor/en = 0.3 both actuators have a gain close
to zero, which cannot be linearised. Thus, a small overlap between LP-EGR-valve actuation and
exhaust throttle valve actuation has to be accepted. In Fig. C.2¢) and d) the coupling between the
normalised and shaped characteristics of Siy—cgr/cth tO 7i2,ir and 1y, o, is revealed. For both mass
flow rates the stationary coupling is mostly linear. Only some small ripples are visible during the
superposition of §j,_cgr and Sep.

Finally, the two actuators LP-EGR-valve §j,_, and intake throttle valve iy, can be treated similar
to the combined actuator sy, cer/em. For completeness the combination of these actuators to the
normalised actuator Sy, _cgr/in 18 illustrated in Fig. C.3a)-d). In these plots it gets obvious that this
actuator coupling results in a rather linear characteristics between syp_cgr/itn and the quantities i,
and 711, In the body of this dissertation the actuators Shp—cgr, Sip—cer/eth aNd Sip—cgr/ith are shown
in their normalised form, otherwise the measured position is denoted by the symbols Siy—cgr, Sip—cer»
Sern and Sig,.
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Figure C.2: Shaping of the characteristics of the series connected LP-EGR-valve and exhaust

throttle valve a) 51, cgr/en gain to the air mass flow rate b) nonlinear normalisation of the

LP-EGR-valve and the exhaust throttle valve characteristics ¢) gain between the normalised

combined actuator characteristics and the air mass flow rate d) gain between the normalised
combined actuator characteristics and the LP-EGR mass flow rate
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Figure C.3: Shaping of the characteristics for the series connected LP-EGR-valve and intake
throttle valve a) 5, cgr/in gain to the air mass flow rate b) nonlinear normalisation of the
LP-EGR-valve and the intake throttle valve characteristics ¢) gain between the normalised
combined actuator characteristics and the air mass flow rate d) gain between the normalised
combined actuator characteristics and the LP-EGR mass flow rate
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D Gas Mass Storage in Intake Volumes

During transients in pressure and temperature, storages in the intake system accumulate and de-
liver significant gas masses. This effect should be incorporated into the following mass flow rate
balance equations (4.13), (4.14) and it can be modelled as follows. Schwarte (2007) determines
the dynamically accumulated gas mass in a storage by the total derivative of the ideal gas law (3.8)
as

dr  dr

dmg d (Pstvst) _ dpse Vi _ dT ps Vs ~ dps Vi (D.1)

RT, dt RT, dt RT?2 dr RT, :
and neglects the term considering changes in the intake temperature. This simplification holds,
since temperature sensors possess significant measurement dynamics, so that the derivative of
the measured signal is small and can be neglected. On the other hand the intake temperature can
be determined dynamically fast by the modelled temperature (4.16), which is derived from the
noisy ratio of mass flow rates. Thus, also the derivation of fZi is not advisable and the gas mass
accumulation model has to be restricted to the derivation of the intake pressure.

Another way to derive the dynamical gas mass storage (D.1) can be given by the adiabatic formu-
lation. The adiabatic formulation is given as pressure changes

dpst
t

KR [ o
d = 7 Z Mip i T‘in,i - Z Myt, j T\'t (Dz)
S \i=1 j=1

and temperature changes

p q p q
dTy RTy . . . )
= cpE min,iTin,i_CpE Ttgu,j Ty — Cv E '71in,i_E fow,j | Ta | (D.3)
dr DPstVaev ey = =

i=1

in storages, see Guzzella and Onder (2010). If the heat capacity ratio ¢,/cy is replaced by the
isentropic expansion factor «, Eq. (D.3) is solved for

» q ATy puV. » q

. . st st Vst . .

K Z Min,i Tin,i - Z Mout, j Tst = dt R T«t + Z Min,i — Z Mout, j Tst (D4)
i=1 j=1 s i=1 j=1

and then substituted in (D.2) follows with the mass balance equation for storages (3.1) eventually
the relation (D.1).
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E Emission and Combustion Models

In this section suitable model inputs for different emission and combustion models are compared
more detailed than in Sect. 5.3.4. The set of possible model inputs includes three possible inputs
to describe the in-cylinder oxygen mass (Mair, X2i, Xeng,out), distinguishes if in-cylinder pressure
measurement is available (¢qso, ¢mi) and includes either f“Zi Or 7'egr as additional controlled variable
for the LP-EGR system. In the following tables models for the different emission and combustion
quantities are presented and quantified with the coefficient of determination and the root mean
square error for training data and validation data. Further the number of parameters n for the
particular models is given. Note that the number of parameters # results from the 21 local models
and the number of chosen regressors for each local polynomial model, see Sect.5.3.2. Models
printed in bold are utilised for simulation of the dynamical emissions (Sect. 5.4) and stationary
engine optimisation (Sect. 6.1).

In Tab. E.1 and Tab. E.2 the quality criteria for the NO, models are given. The NO, concentration
Cnox and NOy mass flow rate 71, are two quantities, which can be modelled with good results
on training and validation data. Between the model inputs m1,; and Xy there is no significant
difference in the reachable model quality, while the input fceng,om delivers slightly worse results.
Generally, all investigated model inputs ¢qgso Or @i and 7A“21 Of Fegr result in a good model quality.

For the particulate emissions in Tab. E.3 and E.4 the best model quality can be achieved with the
model input Xeng ou. The other two equivalents for the air mass m1,;, respectively the air content
in the cylinder charge X,; deliver worse training and validation results. Especially for model val-
idation the input Xeng,ou Shows its potential. In comparison to the other input quantities it contains
information about the injected fuel quantity and the air content in the cylinder, see Eq. (3.32). This
results in better interpolation capabilities for model validation. ! With respect to the model quality
the model inputs ¢qso and fZi are advantageous compared to the model inputs @p,; and 7.

The engine torque in Tab. E.5 is best modelled with m1,; or X; and the quantities p,i, ¢qso and f"Zi
as model inputs. In the following tables (Tab. E.6 — E.9) one can get a good overview about the
reachable model qualities of the quantities pminp, Pmi,ip> Pso and @r,;. These quantitative overviews
for the single modelled quantities are further visualised with measured versus predicted plots and
the histograms of the error distributions in Fig. E.1 and Fig. E.2.

In a nutshell this section gives an overview about reachable model qualities with different model
inputs for the interested reader and further contains models for the quantities pminp, Pmitp> ¥Q50
and @p,;.

INote that the quantity X ou can be stationary derived from the measured air mass flow rate and the desired
injection quantity, respectively the injected fuel mass by substituting the air-fuel rate definition of the global engine
system Eq. (3.11) into the air-fuel ratio definition of storage elements Eq. (3.13), see also Eq. (7.33). It is not affected
by side-effects like cylinder-individual combustion, incomplete combustion, engine ageing and others.
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Table E.1: c,ox model quality

X-regressors thmin RMSEain R\Z/al RMSE, 4 n

X1 X2 X3 X4 in ppm in ppm
Mair P2 PQ50 Ty 099214 232023 097918  34.8799 392
Mair  P2i @Qs0  Tegr 0.99222  23.0796  0.98141  32.9587 348
Mair  P2i Pmi Ty 099122 245258 097541 379131 360
Mair  P2i @mi Tegr 099226 23.0223 0.98032 339173 334
Xoi P2 9Qs0 Ty 0.99221 23.0945 097805  35.8207 340
Xoi D2 PQs50 Tegr 0.98804  28.6198  0.96651  44.2436 370
Xoi i omi Ty 099178  23.7271 0.97433  38.7345 336
Xoi P2 @mi Tegr 098522 31.8107  0.97119  41.0342 338
Xengout  P2i 9Q50 Ty 098725  29.5501 0.95050  53.7884 345
Xengout  P2i PQs0  Tegr 0.99040  25.6327  0.96855  42.8704 436
Xengout P2 Omi Ty 098669 301912 095119 534133 340
Xengout P2i Pmi Fegr 0.98977 264689 096714 438218 394

Table E.2: 7i1,0x model quality
X-regressors thmn RMSEain R%al RMSE, 4 n

X1 X2 X3 Xg in mg/s in mg/s
Myir P2i (pQ50 fZi 0.99572 1.4937 0.98745 2.2146 378
Mair P2 @Q50 Tegr 0.99672 1.3080 0.98910  2.0632 341
Mair P2 @mi Ty 0.99543 1.5432 0.98667 22816 385
Mair  P2i @mi Tegr  0.99685 1.2814 0.98834  2.1343 350
Xoi P2 9Qs0 Ty 0.99509 1.6001 0.98651 22952 328
Xoi D2 9Q50 Fegr 0.99384 1.7930 0.97989  2.8028 337
Xoi 2 omi Iy 099512 1.5956 0.98618  2.3235 380
Xoi P2 @mi Tegr 0.99309 1.8984 0.98039  2.7680 335
Xengout  P2i 9Q50 Ty 0.98727 2.5768 0.95765 4.0674 306
Rengout  P2i PQs0  Tegr  0.99438 1.7121 0.97503 3.1234 400
Xengout  P2i ¢mi T2 0.99013 2.2688 0.95986 3.9595 340
Xengout P2i @Omi Fegr 0.99432 1.7210 0.97805 2.9281 389
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Table E.3: cpg model quality

RMSEtrain R2

val

X-regressors R? RMSE, n

train

X1 X2 X3 Xq in mg/m3 in mg/m?

Mair P2 @Qso  Ini 093222 3.3436 0.85556 2.9102 352
Mair P2 @Qs50  Tegr 0.93211 3.3489 0.80416 3.9458 320
Mair P2 Omi Ty 091159 43612 0.86141 2.7924 333
Mair  P2i @mi Tegr 091982 3.9554 0.71430 5.7563 326

Xoi P2 @gso  Tai 0.94978 24774 0.63370 7.3803 396
Xoi P2 9Qs0 Tegr 0.85303 7.2502 0.36438 12.807 334
Xoi i omi  Tn 091364 4.2600 0.69874 6.0699 341
Xoi P2 @mi Tegr 0.81591 9.0812 0.18199 37.919 318

Xengout  P2i @Qso  Tr  0.94958 2.4873 0.91239 1.7652 381
Rengout  P2i PQs0  Tegr  0.95477 22311 0.78939 4.2434 389
Xengout P2i @mi Ty 0.93992 2.9638 0.83194 3.3861 360
Xengout P2i @mi Fegr 0.94217 2.8526 0.64964 7.0590 376

Table E.4: 11y, model quality

RMSEqrain R?

val

X-regressors R? RMSE, n

train

X1 X2 X3 Xg in mg/s in mg/s

Mair P2 @Qso Iz 0.94039  0.0034643  0.76638  0.0037988 324
Mair P2 @Qs0  Tegr 0.94783  0.0030318  0.74754  0.0041051 330
Mair P2 Omi Ty 094100 0.0034284  0.75732  0.0039460 341
Mair P2 @mi Tegr 093937 0.0035232  0.76008  0.0039012 310

Xoi P2 @gso  Tai 095932 0.0023643  0.82689  0.0028148 344
Xoi D2 9Qs0 Tegr 0.91005  0.0052270  0.64633  0.0057508 341
Xoi P2 omi Ty 094993 0.0029100  0.82746  0.0028055 354
Xoi P2 @mi Tegr 0.90041  0.0057872  0.59884  0.0065229 342

Xengout P2i @Qso Tz 0.96809  0.0018544  0.90223  0.0015898 393
Rengout  P2i PQs0  Tegr 0.96275  0.0021646  0.85322  0.0023867 396
Xengout  P2i @mi Ty 096281  0.0021610  0.86731  0.0021576 378
Rengout  P2i Pmi Tegr 0.95831  0.0024225  0.76488  0.0038232 388
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Table E.5: M, model quality

X-Tegressors RZ..  RMSEuin R2, RMSE,y n
X1 X2 X3 X4 in Nm in Nm
Myir P2 9Qs0 Tgi 0.99734 1.4675 0.97984 2.9366 189
Mair P2 9Qs0  Fegr  0.99664 1.6479 0.98012 29164 170
Mair P2 @Pmi Ty 0.99717 1.5126 0.97806 3.0636 211
Myir P2 Pmi Tegr 0.99660 1.6584 0.98006 2.9208 197
X2 P2 9Qs0 T 0.99719 1.5072 0.97823 3.0514 183
X2 P2 PQs0 Teer  0.99546 1.9162 0.97202 34594 213
X P2 Omi Ty 0.99715 1.5185 0.96860  3.6646 208
X2 P2 Pmi Tegr  0.99549 1.9094 0.96891 3.6466 249
Xengout  P2i 9Q50 Ty 0.99704 1.5478 0.95611 4.3327 265
Xengout  P2i 9Q50 Ftegr 0.99576 1.8516 0.95337 4.4660 385
Xengout  P2i Pmi Ty 0.99678 1.6148 0.95267 4.4997 276
Xengout P2i @mi Fegr 0.99576 1.8509 0.95608 4.3341 392
Table E.6: pminp model quality
X-regressors Rfmin RMSEain R%al RMSE,, n
X1 X2 X3 X4 in bar in bar

Maic P2 9Q50 T» 099838  0.08623 0.98780 0.17177 212

Mair P2 @Qs0 Fegr 0.99680  0.12111  0.98509  0.18992 205

Mair P2 Pmi f"gi 0.99820  0.09075 0.98706 0.17693 235

Mair P2 Pmi Fegr 0.99663  0.12424 098499  0.19057 213

X2 P2 9Qs0 T5  0.99839  0.08595  0.98475 0.19205 205

X2 D2 PQ50 Tegr 099642  0.12816  0.98166 0.21064 229

X2 P omi T» 099819  0.09129  0.98601 0.18397 225

X2 P2 Pmi Tegr 099649 0.12683  0.97967 022177 273

Xengout  P2i 9Q50 Toi 0.99824  0.08976 0.96531 028967 267

Rengout  P2i PQs0  Tegr 0.99608  0.13404  0.96738 0.28091 353

Xengout  P2i @mi Toi 0.99789  0.09843  0.96905 027360 282

,‘%eng,out P2 Pmi Tegr 0.99589  0.13737  0.97038  0.26766 351
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Table E.7: pu;,1jp model quality

RMSEuin  R2

val

X-regressors R2 RMSE, n

train

X1 Xy X3 X4 in bar in bar

mair  p2i @Qso I 0.97615  0.057324  0.90386 0.095777 251
Mair  P2i @Qs0  Tegr 0.97787  0.055218  0.91537 0.089859 307
Mair  P2i Pmi Ty 097616 005731 090308 0.096164 269
Mair P2 @mi Tegr  0.97850  0.054425 0.91190 0.091683 319

Xoi P2 ®oso T2 097563  0.057939 0.90111 0.097136 251
Xoi P2 9Qs50 Tegr 0.96738  0.067034  0.90126 0.097060 248
Xai pai omi Tx 097597 0.057534 0.89613 0.099552 275
Xoi D2 @mi Tegr 096916  0.065177 0.90201 0.096694 280

Xengout P2i @50 T2 0.97568  0.057880 0.89089 0.102030 279
Rengout  P2i PQs0 Tegr 0.97251  0.061541  0.90931 0.093021 334
Xengout P2 Pmi Ty 097495 0.058746 0.90093 0.097225 285
Xengout  P2i Pmi Tegr 0.97325  0.060704 0.90166 0.096865 321
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Table E.8: ¢gso model quality

X-regressors thmin RMSE;;ain R\zzal RMSE,, n
X1 X2 X3 X4 in °CA in °CA
My P2 Pmi fgi 0.99012  0.36625 0.96883 0.65029 365
Mair P2 Pmi Tegr 098794 040473 0.95939 0.74229 328
X2i P2 Pmi fZi 0.99118 0.34611 0.96914 0.64702 361
X P2 Pmi Tegr 0.98784  0.40631  0.96830 0.65581 307
Xengout P2 @mi f"zi 0.99040  0.36095  0.94369 0.87406 352
Xengout P2 Pmi Tegr 0.98791 040514  0.95826  0.75256 368
Table E.9: ¢, model quality
X-regressors thmm RMSEqain Rsal RMSE,,, n
X1 X2 X3 Xga in °CA in °CA
Mair P2 PQs0 T5 099773 020038  0.98931 0.38763 361
Mair P2 ®Qs0  Tegr 0.99710  0.22658  0.98655 0.43477 320
X2 D2 9Qs0 f"zi 0.99791  0.19220 0.98845 0.40290 351
X2 P2 ®Qs0  Tegr 0.99690  0.23434 098794 0.41170 319
Rengout  P2i PQ50 f"zi 0.99793  0.19134  0.97062 0.64261 325
Xengout  P2i PQs0  Tegr 0.99706 022811  0.98503 0.45863 340

216.73.216.96, am 13.01.2026, 21:09:54.
m

Inhalt,

mit, fr oder in Ki-Syster


https://doi.org/10.51202/9783186803122

188 E Emission and Combustion Models

N Measured versus predicted b) Error Distribution
T T T T T 1200 T T T T L
160 « training = M training
= validation . B validation
900 1
. 1201 7 ;
2 : £
E gl o o 600
H =
=3 a
40 7 300
0 - -
1 1 1 1 1 U
0 40 80 120 160 =10 =3 0 5 10
©) Hitgoy I Mgls d) (’hm‘x e r;fnm) in mg/s
3 T T T 2000 T T T :
+ (raining M training
+ validation W validation
1500 b
w 2 M 1M
d . a
? ‘. . = £
£ & 2 1000
oz I - X a
- 500
o
U - -
1 1 1 U
0 1 2 3 —0.4 —0.2 0 0.2 0.4
e) Mg 0 mg/ls ) (""m» - "i"mn) in mg/s
I 2 T T T T T T T T
= training 600 M training
« validation M validation
(J - -
450+ -
= u
2 Z
£ 6k B 1 g
£ 7 s 300F -
2 E
o,
3r ) 150 E
0 1 1 L 0
0 3 G 9 12 -1 -0.5 0 0.5 1
Prigp In bar { Puishp — Pumip) in bar

Figure E.1: Measured versus predicted plots and error distributions for the modelled quantities
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Figure E.2: Measured versus predicted plots and error distributions for the modelled quantities
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