Fortschritt-Berichte VDI

iy

Reihe 8
Mess-, Dipl.-Inform. Henning Mersch,
Steuerungs- und Bielefeld

Regelungstechnik

NF. 1245 Deterministische, dyna-
mische Systemstrukturen

in der Automatisierungs-
technik

Lehrstuhl fir
Prozessleittechnik

AACHENER der RWTH Aachen

|||||||

https://doi.org/10.51202/9783186245083

Inhalt,

216.73.216.36, am 20.01.2026, 08:43:53.
m

mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Deterministische, dynamische Systemstrukturen in der
Automatisierungstechnik

Von der Fakultat fir Georessourcen und Materialtechnik
der Rheinisch-Westfalischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Inform.
Henning Mersch

aus Bielefeld

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr.-Ing. habil. Martin Wollschlaeger

Tag der miindlichen Prifung: 26. November 2015

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfligbar.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Inhalt,

216.73.216.36, am 20.01.2026, 08:43:53.
m

mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Fortschritt-Berichte VDI

| Reihe 8

Mess-, Steuerungs- Dipl.-Inform. Henning Mersch,
und Regelungstechnik Bielefeld

[Nr. 1245 | Deterministische, dyna-
mische Systemstrukturen

in der Automatisierungs-
technik

Lehrstuhl fur
Prozessleittechnik

AACHENTER der RWTH Aachen

https://doi.org/10.51202/9783186245083

Mersch, Henning

Det}(‘errlr(\inistische, dynamische Systemstrukturen in der Automatisierungs-
techni

Fortschr.-Ber. VDI Reihe 8 Nr. 1245. Dusseldorf: VDI Verlag 2016.

142 Seiten, 77 Bilder, 3 Tabellen.

ISBN 978-3-18-524508-4, ISSN 0178-9546,

€ 52,00/VDI-Mitgliederpreis € 46,80.

Fir die Dokumentation: Anlagen — Automatisierungstechnik — Systemstrukiur — Modelle -
Verteilte Systeme — Dynamik — Nachvollziehbarkeit — Flexibilitat — OPC-UA

Fir die Weiterentwicklung der Automatisierungstechnik ist die erweiterte Zusammenarbeit der
automatisierungstechnischen Gerdte wichtig. Viele aktuelle Themen, wie ,Industrie 4.0” oder
,Cyber Physical Systems” gehen davon aus, dass Informationen aus dem Engineering zur
Produkfionszeit bereit stehen. In der Automatisierungstechnik wird dafiir immer mehr angestrebt,
Modelle zur Beschreibung der unterschiedlichsten Sachverhalle zu nutzen. Dabei werden
Themen-spezifische Modelle entwickelt, die unabhéngig voneinander eigene Blickwinkel der
Automatisierungstechnik auf eine Anlage beschreiben. Die vorliegende Arbeit beschreibt Mittel,
um diese Modelle zur Anwendung zu bringen, verzichtet dabei aber auf ein zentralistisches
Modell: Existierende, heferogene Modelle werden durch eine verteilte, dynamische Ausfihrungs-
umgebung fir Modelle und Dienste in der Automatisierungstechnik nutzbar gemacht, welche
kollaborative Ansétze zur gemeinsamen Datenhaltung auf unterschiedlichen Gerdten erméglichen.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Infernet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Infemnet at

http://dnb.ddb.de.

D 82 (Diss. RWTH Aachen University, 2015)

© VDI Verlag GmbH - Disseldorf 2016

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollsténdigen Wiedergabe
[Fotokopie, Mikrokopiel, der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.

ISSN 01789546

ISBN 978-3-18-524508-4

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Vorwort

Diese Dissertation entstand durch meine Tétigkeit als wissenschaftlicher Angestellter am Lehr-
stuhl flr Prozessleittechnik der RWTH Aachen. An dieser Stelle méchte ich mich bei denen
bedanken, die zum Gelingen der Arbeit beigetragen haben.

Mein besonderer Dank gilt Herrn Professor Dr.-Ing. Ulrich Epple. Die von ihm am Lehrstuhl
geschaffene, offene und angenehme Arbeitsatmosphéare in einer konstruktiven und gut aus-
gestatteten Umgebung sind der Ausgangspunkt firr diese Arbeit. Die fachlichen und teilweise
auch kontroversen Diskussionen waren immer erfrischend und inspirierend fir weitere Arbei-
ten.

Ebenso bedanke ich mich bei Herrn Professor Dr.-Ing. habil. Martin Wollschlaeger, Inhaber
der Professur Prozesskommunikation der Technischen Universitat Dresden, fir die freundliche
Ubernahme der Rolle des Zweitgutachters.

Fir intensive Diskussionen und die kooperative Arbeitsatmosphare danke ich weiterhin meinen
ehemaligen Kollegen, den Mitarbeiterinnen und Mitarbeitern des Lehrstuhls. Besonders erwéh-
nen méchte ich hier Reiner Jorewitz, Martin Mertens, Gustavo Quirés und Markus Schliter

FUr die vielen organisatorischen Arbeiten gilt Martina Uecker und im Sekretariat Frau Bey der
besondere Dank. Nicht unerwahnt bleiben sollen auch die vielen studentischen Hilfskrafte, die
viele Tatigkeiten erst umsetzbar machen.

Weiterhin méchte ich gerne Leon Urbas, Andreas Gdssling, Christian Kleegrewe und Wolfgang
Mahnke danken, die immer wieder erfrischende Gedanken in privaten Gesprachen oder der
gemeinsamen VDI-GMA Fachausschussarbeit geweckt haben.

Meiner Frau Tina danke ich von ganzem Herzen fir die Geduld und die Zeit sowie den fachli-
chen Diskussionen und lektographischen Anmerkungen. Unserem Sohn Liam muss ich flr so
manche Stunde danken, die er schon in den frihen Jahren in Geduld (iben musste.

SchlieBlich danke ich meinen Eltern Birgit und Werner Mersch, die mich zu diesem berufli-
chen und privaten Weg gefiihrt haben und in vielen Situationen zum Gelingen dieser Arbeit
beigetragen haben.

Verl, im Dezember 2015 Henning Mersch

1

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

v

»S0 you do what you do best. And you link to the rest.«
Jeff Jarvis, 22. Februar 2007 [Jar]

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,

tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Inhaltsverzeichnis

Inhaltsverzeichnis
1 Einleitung 1
1.1 Zieleund Vision 3
1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung 4
1.3 Ubersichtdes Vorgehens 8
2 Stand der Wissenschaft und Technik - mit Begriffskldrung 10
2.1 Vom Wissen zu Maschinen-verarbeitbaren Modelleninder AT 10
2.1.1 (Modell-)Relationen 12
2.1.2 Instanz-Struktur: Komponenten als Gruppierung 14
2.1.3 Bestandteile einer Modell-Beschreibung 15
2.2 Existierende Modelle der Automatisierungstechnik 15
2.3 Kommunikation in der Automatisierungstechnik 18
2.3.1 Kommunikations-Medien: Bussysteme und Alternativen 19
2.3.2 Formender Kommunikation, 21
2.3.3 Kommunikations-Systeme flr den Zugriff auf Modelle 22
2.4 InstanzumgebungderModelle L. 24
2.4.1 Existierende Instanzumgebungen fir Modelle indie AT 25
2.41.1 ACPLT-Technologien 26
2412 OPC-UA 26
2.4.2 Aktive Komponenten im Modell: Dienste 27
2.4.2.1 Dienste - ein Versuch der Erfassung des Begriffes 28
2.4.3 Existierende Ausfihrungsumgebungen fir Dienste 31
2.4.4 Aspekte von Anwendungen, Dienstenund Apps 32
2.4.5 Existierende Ausfilhrungsumgebungen fir Modelle und Dienste 35
25 \Verteilte Systeme 35
3 Analyse der Anforderungen 37
3.1 Erganzende Anforderungen an Gerate und Umgebung 37
3.2 Ergénzende Anforderungen an Meta-Modell und Instanzumgebung 37
3.3 Ergénzende Anforderungen an die Kommunikation 39
3.3.1 Einheitliche, allgemeine Adressierung 40
3.4 Bezugder Anforderungen 41
3.5 Nachvollziehbarkeit und Verstandlichkeit 42

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,

tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Inhaltsverzeichnis

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

4.1 Beispiel-Modell: AT-Gerate-Struktur L.
411 Erweiterung:Routing

4.2 Abbildung der Realitat: Reprasentationenim Modell
4.2.1 Zustandsmaschine fir aktive Komponenten
4.2.2 Die Komponenten-Reprasentation
4.2.3 Unspezifizierte, flexible Annotationen fiir Reprasentationen
4.2.4 Unterschiedliche Komponenten-Reprasentationen
4.2.5 Beispiel: AT-Gerate-Struktur als Komponenten-Reprasentation

4.3 Kommunikation im automatisierungstechnischen Kontext
4.3.1 Referenzierung Uber Systemgrenzen hinweg
4.3.2 Kommunikations-Medien
4.3.3 Nachrichten-basierte Kommunikation
4.3.4 Typ 1:singulare Kommunikation
4.3.5 Typ 2: Aufruf/Antwort Kommunikation
4.3.6 Typ 3: Subskription/Benachrichtigungs-Kommunikation
4.3.7 Typ 4: Indirekte Kommunikation per Intents
4.3.8 Lokale Kommunikation. o o

4.4 Dienst-Modell: aktive, dynamische Komponenten
4.5 Die modellgetriebene Instanzumgebung Lo
4.5.1 Vom Modell zum Instanz-Modell
4511 Modell-Master

452 Sprache der Modell-Anderungen
453 Anderungs-Benachrichtigungen
4.5.3.1 Alternative Realisierung: Intents

4.5.4 Ausfihrungsumgebung: Dienste als partielle, Aufgaben-orientierte Teil-
Anwendungen

4.6 Modell-und Gerategrenzen
4.6.1 Modelle in Relation: Modell-Interkonnektion
4.6.1.1 Beispiel: AT-Gerate-Struktur und Anlagenstruktur.

4.6.2 Uber Gerategrenzen hinweg: Verteilte (Modell-)Laufzeiten
4.6.2.1 Externe Verbindungen.

4.6.2.2 Anderungs-Benachrichtigungen

4.6.2.3 Zugriff auf die verteilte Modell-Instanzen

4.6.2.4 Dienst-Orchestrierung auf Basis der verteilten Modelle

4.6.2.5 Beispiel: Verteilte Modellierung der AT-Geréate-Struktur

4.6.2.6 Transparenter Zugriff auf verteilte Modell-Instanzen

4.7 EffizienzderKonzepte
4.7.1 Modell-Interkonnektionen und ihre Etablierung
4.7.2 \Verteilungsaspekte

4.8 Integrationsmdglichkeiten in die bestehende AT-Gerate-Landschaft

5 Komponenten einer verteilten, modellgetriebenen Ausfithrungsumgebung

5.1 Ressourcen-Abstraktion: IMLAUF-Kern

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Inhaltsverzeichnis

5.2 Die modellgetriebene Instanzumgebung Lo oL 97
5.3 Nachrichten-basierte Kommunikation in IMLAUF: MsgSys 98
5.4 Transparente Erkundung von Daten — Modell-Explorer 100
5.5 Prinzip der Modell-Interkonnektions-Komponenten (MIK) 102
5.5.1 Problem: Schleifenbildung 103
5.5.2 Beispiel: MIK AT-Gerate-Dienste 104
5.6 Uberwachung der Umgebung - Remote-Model-Inspektor (RMI) 104
5.7 Verwaltung der Dienste und Gerate - Dienst/Geréate-Inspektor (DGI) 106
5.8 Migration von traditioneller Datenhaltung zur Représentation der Information in

einer verteilten, modellgetriebenen Instanzumgebung 107
5.9 Prototypen der Komponenten 108

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausfiihrungs-
umgebung 110
6.1 Verteilung in der Automatisierungstechnik als Suche 110
6.2 Migrationvon Komponenten L. 112
6.3 Anwendungsfall 1: Abbildung einer Remote I/O 114
6.4 Anwendungsfall 2: Vorbereitung auf Ausfélle. 115
6.5 Anwendungsfall 3: Adressierung durch PLT-Stelle 116
6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell 117
6.6.1 Probleme der konsequenten Umsetzung 118
7 Zusammenfassung 120
7.1 Ausblick 121
Begriffsverzeichnis 122
Literaturverzeichnis 125
Normen und Richtlinien 128
VII

tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Kurzfassung

Kurzfassung

Fir die Weiterentwicklung der Automatisierungstechnik ist die erweiterte Zusammenarbeit der
automatisierungstechnischen Gerate wichtig. Dieses gilt fir alle Phasen einer Anlage: Von der
Planung Uber die Produktion bis zur Wartung. Ebenso auch fir die horizontale und vertikale
Integration wéhrend der Produktion. Viele aktuelle Themen, wie ,Industrie 4.0“ oder ,Cyber
Physical Systems" gehen davon aus, dass Informationen aus dem Engineering zur Produkti-
onszeit bereit stehen. Hierzu leistet diese Arbeit einen Beitrag.

Informationen werden heutzutage noch h&ufig entweder nicht elektronisch auswertbar gespei-
chert (beispielsweise als Grafiken) oder sind so abgelegt, dass nur einzelne Programme auf
sie zugreifen kdnnen. Hierdurch sind die existierenden Informationen nicht so weit zugreifbar,
wie sie es eigentlich sein kénnten.

Modelle spielen hierbei eine entscheidende Rolle: Sie beschreiben Sachverhalte der Anlagen.
Die meisten der heutigen Modelle werden bei ihrer Spezifikation in einem elektronisch abbild-
und auswertbaren Format definiert, sodass ein Computer die Informationen sowohl bereitstel-
len, wie auch auswerten und damit nutzen kann. Werden diese Modelle zur Produktionszeit
bereitgestellt und genutzt, werden hierdurch dynamische Anderungen erméglicht, die heutzu-
tage nicht Ublich sind. In der Automatisierungstechnik wird deswegen immer mehr angestrebt,
Modelle zur Beschreibung der unterschiedlichsten Sachverhalte zu nutzen. Modelle beschrei-
ben unter anderem Systemstrukturen einer Anlage. Dabei werden Themen-spezifische Modelle
entwickelt, die unabhangig voneinander jeweils eigene Blickwinkel der Automatisierungstech-
nik auf eine Anlage beschreiben.

Im Gegensatz dazu wurden Versuche, bei denen eine Doméane als Ganzes (wie beispielsweise
Automatisierungstechnik) abgebildet werden soll, nicht von Erfolg gekrént.

Die Modelle konnten sich beispielsweise nicht etablieren, weil eine Verbreitung nicht erreicht
wurde. Dieses mag insbesondere daran gelegen haben, dass die jeweiligen Detaillierung von
umfassenden Modellen (sogenannten ,Welt-Modellen®) fiir spezifische Anwendungsfalle nicht
ausreichend waren. Da diese Modelle in dem Fall nicht eingesetzt werden konnten, wurde wie-
derum auf Eigenentwicklungen gesetzt, was den Bestrebungen des Welt-Modells widersprach.
Die vorliegende Arbeit beschreibt Mittel, um die gleichen Ziele zu erreichen, aber auf ein zen-
tralistisches Modell zu verzichten: Existierende, heterogene Modelle werden in allen Phasen
und Ebenen einer verteilten Umgebung, wie in einem automatisierungstechnischen System,
nutzbar gemacht.

Hierzu wird zum einen eine verteilte, dynamische modeligetriebene Instanzumgebung beschrie-
ben. Sie kann als Erweiterung von existierenden Technologien begriffen werden, wird aber un-
abhéngig von diesen dargestellt. Durch diese modellgetriebene Instanzumgebung wird erreicht,

VIII

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Teile eines Modells auf unterschiedlichen Geréaten bereitzustellen. Diese sind in einer einheit-
lichen Weise abfragbar und erkundbar. Hierdurch kénnen die im Modell abgebildeten System-
strukturen an einem ,sinnvollen“ Ort abgelegt werden, der nach Kriterien, wie der haufigsten
Nutzung, der héchsten Ausfallsicherheit oder der schnellsten Verfligbarkeit beim Zugriff erfol-
gen kann. Gleichzeitig bietet eine solche Ausfihrungsumgebung der Modelle die Mdglichkeit
dynamisch auf Anderungen zu reagieren: kollaborativ erfolgen Anderungen von unterschiedli-
chen Anwendungen. Dabei muss jedoch insbesondere die Transaktionssicherheit sowie Nach-
vollziehbarkeit (Determinismus) der Anderungen gegeben sein.

Zum anderen beschreibt die Arbeit ein Konzept zur Interkonnektion von Modellen. Hierbei wer-
den Teile von Modellen, die unabhéngig voneinander entworfen wurden, in Relation zueinander
gesetzt. Interkonnektionen stellen dabei eine Form von Relationen dar, die jedoch keinerlei Ab-
h&ngigkeit an Ausgangs- sowie Zielpunkt voraussetzen. Dieses erlaubt die Modellierung von
zusétzlichen Sachverhalten, sodass die Interkonnektion von Modellen wiederum ein Modell ist.

Durch die Kombination dieser beiden Aspekte ergibt sich eine verteilte, deterministische und
dynamische Ausflihrungsumgebung fiir Systemstrukturen. Voraussetzung ist ein gemeinsames
Meta-Modell sowie Verstandnis der Problematik. Als Folge kénnen Modelle unabhéangig vonein-
ander entworfen werden. Eine solche Ausflihrungsumgebung muss dabei Schnittstellen bereit-
stellen, um die Informationen abzufragen und entsprechende Anderungen vorzunehmen. Erst
hierdurch kénnen aufbauende Anwendungen einen realen Nutzen aus den Konzepten ziehen.

Insgesamt ergibt sich so eine Lésung, um Modelle zu den unterschiedlichen Phasen und Ebe-
nen einer Anlage - insbesondere auch zur Produktionszeit - zu nutzen. Die Integration der
verteilten, unterschiedlichen Modelle beschreibt die informationstechnische Basis, um dyna-
misch auf Anderungen in den Systemstrukturen zu reagieren. Hierunter werden beispielsweise
Anderungen der Anlagenstruktur durch Umbauten ebenso verstanden, wie unterschiedliche
Produktionsauftrage.

IX

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Abstract

Abstract

For the future development of automation technology the enhanced collaboration of automa-
tion devices is important. This is true for all phases of a plant, from planning to production to
maintenance, as well as for the horizontal and vertical integration during the production. A lot
of current topics like “Industry 4.0” or “Cyber Physical Systems” act on the assumption that
engineering information is available during the production phase, which is not the case today.
The dissertation addresses this topic.

Nowadays information is often stored not electronic analyzable (e.g. as graphic) or accessible
only by single programs. So existing information is not accessible as far as it could be.

Models are acting as an important part: They describe characteristics of a plant. Most of today’s
models are defined in an electronically representable and evaluable format by their specificati-
on. So a computer could host and provide these models as well as evaluate and use them. If
they are provided and used during the production phase, dynamical changes are made possi-
ble, which is not usually the case nowadays.

Therefore, in automation technology models are used for the description of different topics.
Topic-specific models are developed, that are independent from each other and describe diffe-
rent aspects of the domain of automation technology.

In contrast attempts to describe the whole domain of automation technology in one model were
not successful. Those models could not be widely established since their adoption could not be
achieved. This could be due to the fact that models describing a whole domain (“World-Models”)
are not detailed enough to be used for specific cases. So specific models were required to be
defined, which contradicts the purpose of whole domain model.

This work describes instruments without a centralized model: Existing, heterogeneous models
can be used in all phases and levels of a distributed system like a plant in a homogenous
way. Therefore a distributed, dynamic, model-driven execution environment is described. This
could be seen as a further development of existing technologies, but is described independent
of those. In this model-driven execution environment parts of a model could be provided by
distributed devices. In a common way models are discover- and query-able. Therefore, infor-
mation could be stored in a judicious place, that is defined by most frequent usage, highest
reliability or fastest availability. At the same time such a model-driven execution environment
provides for the possibility of dynamic changes: Changes are established in a collaborative way
from different applications. For that purpose transaction security as well as comprehensibility
(determinism) needs to be assured.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Additionally, this work describes the concept of interconnections of models: Parts of models,
which are designed independent of each other, are put in relation. Interconnections are a spe-
cial type of relations not having dependencies at start- or endpoint. This enables modeling of
additional aspects, so interconnections of models are models again.

This combination of instruments represents a distributed, deterministic and dynamic model
execution environment of system structures. A requirement for this is a common used meta-
model as well as a complete understanding of the topic. Models can be specified independent
of each other. A model execution environment will provide interfaces for querying information
and for making changes to all models. Applications will be based on this.

The overall result is a solution, which makes the use of models feasible during all phases of
a plant - especially during production time. The integration of the distributed models provides
an information-technology foundation for dynamic changes on system architecture. This covers
changes of plants due to rebuilding as well as production orders.

XI

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Inhalt,

216.73.216.36, am 20.01.2026, 08:43:53.
m

mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1 Einleitung

Plédne sind nichts, Planung ist alles.
Dwight D. Eisenhower

Vielfach wird Uber Modellierung in der Automatisierungstechnik berichtet. Dabei werden Ein-
zelaspekte der Automatisierungstechnik bzw. der zu automatisierenden Anlagen durch Modelle
beschrieben. Im Wesentlichen hat dieses drei Griinde, die sich nicht gegenseitig ausschlieBen:

Verstandnisbildung Im Bereich der Forschung wird versucht die Formalisierung von Sach-
verhalten durch Modelle zu erreichen. Ziel ist dabei eher das Versténdnis, sodass sich
Folgerungen aus gewonnenen Zusammenhangen fiir neuartige Technologien erschlie-
Ben.

Datenaustausch In Standardisierungsgremien geht es um die gemeinsame Darstellung von
Sachverhalten, die zwischen Komponenten (elektronisch) ausgetauscht werden sollen.

Datenhaltung Modelle werden zur kontinuierlichen Abbildung der Realitat formuliert: Aspekte
der Realitdt werden im Modell festgehalten, um sie durch Computer-Programme abfrag-
bar und veranderbar zu machen.

In der Praxis zeigen insbesondere die Modelle zum Datenaustausch meist einen hohen Detai-
lierungsgrad. Dabei sind sie jedoch als heterogen zu bezeichnen, da sie keinerlei gemeinsame
Elemente enthalten. Es gibt jedoch immer wiederkehrende Konstrukte, die sich teilweise nach
und nach als eine Art Meta-Modell etabliert haben.

Meistens sind es spezielle Lésungen, damit beispielsweise zwei Anwendungen miteinander
Daten austauschen kénnen. Das Potenzial der Modelle wird so nur unzureichend genutzt.

Die vorliegende Arbeit soll die Potenziale der heterogenen Modelle weitreichend erschlieBbar
machen. Dabei wird vorgeschlagen, eine Instanzumgebung zu etablieren, die von unterschied-
lichen Anwendungen kollaborativ genutzt werden kann. Verschiedene Modelle werden in der
Instanzumgebung reprasentiert und sind so zugreifbar. Drei Konzepte liegen der Arbeit zugrun-
de:

1. Die Modelle selber kénnen aufgrund des Meta-Modells der Modellverwaltungsumgebung
verteilt in der Anlagenstruktur (d.h. in der Engineering-Phase genau wie in der Produkti-
ons-Phase) abgelegt werden.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1 Einleitung

2. Die Modelle kdnnen, ohne selber eine Grundlage dafir bereitstellen zu mussen, unterein-
ander in Relation gesetzt werden. Diese Interkonnektionen zwischen Modellen ist dabei
selber wieder ein Modell, welches auf mindestens zwei Ausgangs-Modellen basiert.

3. Anderungen an den Modellen kénnen automatisiert als Anderungen von Interkonnektio-
nen formuliert werden, sodass diese Interkonnektionen einen wirklichen Mehrwert ge-
genuber den Einzelmodellen darstellen.

Abbildung 1.1 verdeutlicht diese Denkweise. Dabei wird besonders veranschaulicht, dass die
Anwendungen von der méglichen Verteilung mdglichst abstrahiert entwickelt werden sollten.

Anwendung

Modell-
verwaltungs-

umgebung Modell

Modell-Ubergreifende
Relation

Gerate-lbergreifende, transparente

Modell-lnteraktiOV

Anwendung

Gerate- und Modell-tibergreifende

Relation

Abbildung 1.1: Konzeptuelles Schema der modellgetriebenen, verteilten Modellverwaltungsumgebung

Durch eine verteile Instanzumgebung, in der unterschiedliche Modelle veranderbar hinterlegt
werden kénnen, werden neue Anwendungsbereiche erschlossen.

Der Ansatz geht davon aus, dass die Anwendungen mdglichst viele Daten als Modell in der
Instanzumgebung ablegen und im Idealfall nur das Verhalten im Programm selber liegt. Diese
Teilung von aktivem Verhalten und passiven Daten entspricht dabei der Uiblichen Denkweise
eines Programmierers und Ingenieurs in der Projektierung.

Strukturanderungen in der Anlage kénnen zur Laufzeit von nutzenden Anwendungen erkannt
werden, wenn sie entsprechend durch Modelle abgebildet sind und diese angepasst werden.
Diese Anderungsinformationen liegen in der Instanzumgebung nicht nur als Anderungsmittei-
lung vor, sondern sind aufgrund der abgebildeten Systemstruktur direkt analysierbar.

216.73.216.36, am 20.01.2026, 08:43:53.
m

Inhalt,

mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1.1 Ziele und Vision

Die Folgen aus einer solchen Instanzumgebung - wenn sie eine entsprechende Verbreitung
erreicht hat - adressieren zum einen modellbasiertes Engineering, wie es auch in [CHF14] ana-
lysiert wird. Aber auch Aspekte in der Produktionsphase wie Wandlungsfahigkeit von Anlagen
werden ermdglicht, wie es durch einen ,desktriptiven Ansatz" der Automatisierung in [Nig14]
beschrieben wird.

Zusammenfassend kann also formuliert werden, dass eine Vielzahl von Modellen fiir die Au-
tomatisierungstechnik entwickelt wurden und werden. Diese Modelle entstehen zwar aus un-
terschiedlicher Motivation heraus, kdnnten aber immer fir die Abbildung von Spezifika der Au-
tomatisierungstechnik verwendet werden. Heute wird dieses Potenzial viel zu wenig genutzt.
Eine Bereitstellung einer Instanzumgebung fiir diese Modelle, die unabhéngig von konkreten
Anwendungen einen kollaborativen Zugriff erlaubt, birgt erhebliche Potenziale.

Das gilt umso mehr, wenn die Anwendungen als aktive Teile der Modelle verstanden werden
und wie die Modelle in einer Anlage verteilt verwaltet werden kénnen.

Im Folgenden werden die Ziele der Arbeit konkret formuliert und entstehende Potenziale vor-
gestellt.

1.1 Ziele und Vision

Vision — Die effizientere und geschicktere Nutzung von bereits existierenden Informatio-
nen ermdglicht neuartige Anwendungen in den unterschiedlichen Phasen und Ebenen
einer Anlage.

Aus der Vision I&sst sich ableiten, dass Mechanismen zur Informationsbereitstellung entwickelt
werden mussen. Diese sollten dabei sowohl fir die unterschiedlichen Phasen einer Anlage (vgl.
[19]) wie auch fur die unterschiedlichen Ebenen nach der Automatisierungspyramide [Pol94]
einsetzbar sein. Modelle werden, wie auch in aktueller Lehrliteratur [Urb12] beschrieben, heut-
zutage bereits verwendet, jedoch bei weitem nicht so effektiv, wie es sein kénnte.

Es lassen sich somit drei Ziele formulieren, um die Bereitstellung der Informationen zu charak-
terisieren:

Ziel 1 — Verbesserung der horizontalen Integration:
ErschlieBung neuer Diagnose-, Analyse- und Reaktions-Mdglichkeiten in der Produktions-
Phase

Klassischerweise wird von horizontaler Integration gesprochen, wenn wahrend der Produktion
innerhalb einer Ebene der Automatisierungspyramide eine Integration verstarkt wird.

Durch das Auffinden von Geréaten und einer Kommunikation ohne weitere Konfiguration, kann
beispielsweise auf Sensor/Aktor-Ebene eine erweiterten Diagnose- und Analyse-Mdglichkeit
geschaffen werden.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1 Einleitung

Ziel 2 — Verbesserung der vertikalen Integration:
Nutzung gemeinsamer Dienste und Modelle fiir &quivalente Aufgaben

Es wird von vertikaler Integration gesprochen, wenn eine Interaktion zwischen mehreren Ebe-
nen angestrebt wird.

Beispielsweise ist hier die standardisierte Bereitstellung von Messdaten vom Sensor direkt in
die MES oder ERP Ebene zu nennen. Aber auch die gemeinsame Nutzung von Funktionen (wie
z.B. die ,Allgemeinen Systemdienste” nach [Pol94]) von unterschiedlichen Ebenen kann eine
Verbesserung erzielen. Ein einheitlicher ,Meldedienst” beispielsweise kann fiir die Archivierung
von Messdaten ebenso geeignet sein, wie fir die Protokollierung von Buchungsanfragen auf
ERP Ebene [SME10].

Ziel 3 — Verbesserung der zeitlichen Integration (entlang des Anlagenlebenszyklus):
Engineering-Informationen auch wdhrend der Produktions-Phase.

Als zeitliche Integration kann verstanden werden, dass Informationen aus der Engineer-ing-
Phase auch zur Produktionszeit (und in weiteren Phasen) nutzbar sind und damit auch far
Anderungen an der bereits in Betrieb genommenen Anlage bereitstehen.

Beispielsweise ist hier die (teil-)automatisierte Inbetriebnahme von Anlagen-Modulen, die flr
unterschiedliche Produkte neu angeordnet werden mussen, zu nennen.

1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung

Zur Errichtung und zum Betrieb einer produktionstechnischen Anlage gehért heutzutage eine
groBe Anzahl von Geraten (Sensoren, Aktoren, Engineering-, BuB-Station, ...) und Program-
men (Automatisierungsausfiihrung, Visualisierung, Verwaltung, Protokollierung, ...), die auf
teilweise spezialisierten Geraten ausgefuhrt werden. Fir sich genommen hat heutzutage je-
des Gerat und jedes Programm seine spezielle, legitime Aufgabe. Diese Trennung fihrt zu
separaten Datensétze, die voneinander unabhéngig sind und durch andere Programme nicht
zugreifbar sind. Eine spatere Verkniipfung der Daten ist aufwandig und sollte, soweit es geht,
vermieden werden.

Im Folgenden sind Konzepte beschrieben, die im spateren Verlauf der Arbeit aufgegriffen wer-
den:

Hoheit liber Daten aufgeben Die hier vorgestellten Konzepte sehen vor, dass die Programme
die Hoheit Giber ihre Daten aufgeben und mdglichst weitreichend in Form von Modellen
in einer zu beschreibenden Instanzumgebung ablegen, sodass sie von anderen genutzt
werden kénnen
Dafir ist aus Vorarbeiten bekannt, dass ein gemeinsames - méglichst schmales - Me-
ta-Modell genutzt werden kann. Entsprechende Modelle konkretisieren das Meta-Modell.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung

Somit kdnnen Elemente der Modelle in einer Instanzumgebung instanziiert werden. Bietet
die Instanzumgebung Uber das Meta-Modell definierte Manipulations- und Erkundungs-
Méglichkeiten, kénnen zu einem Zeitpunkt mehrere Modelle verwaltet und veréndert wer-
den. Da Informationen als Objekte von Modellen abgebildet sind, kénnen diese durch
spezielle Komponenten in Relation zwischen den Modellen gesetzt werden, wodurch
letztendlich eine Struktur entsteht, die fiir andere Anwendungen erkundbar ist.

Verteilung der Daten Ein automatisierungstechnisches System wird als verteiltes System ge-
sehen. Viele unterschiedliche Teilnehmer in einem Netzwerk operieren aktuell mit lokalen
Daten. Um einen einheitlichen Modell-Raum zu erhalten, ist es wichtig die Instanzumge-
bung mit Verteilungsmaoglichkeiten auszustatten. Somit kann jede Anwendung ihre Daten
lokal bearbeiten und verwalten. Entsprechende Relationen Uber die Systemgrenzen hin-
weg sorgen fur die Verknupfungen.

Im Folgenden werden Argumente dargestellt, die Potenziale und Méglichkeiten einer verteilten,
modellgetriebenen Instanzumgebung charakterisieren und so die Vorteile aufzeigen.

»Standardisierung“ als Chance Eine Mdglichkeit der vereinheitlichten Darstellung der Daten

ist die Standardisierung. Die IT-Branche verzichtet (teilweise) hierauf und arbeitet mit un-
scharfen Begriffen. Selbst Quasi-Normen werden nicht als solche bezeichnet: Die W3C
verwaltet ,Standards“ mit weltweiter Bedeutung, wie beispielsweise das htfp-Protokoll.
Sie nennt lhre Dokumente ,Recommendation®, also Empfehlungen. Viele Vereinbarun-
gen fiir Unix Systeme sind in ,Request for comment* (RFC) festgehalten’.
Auch fur die Ingenieurswissenschaften stellt sich deswegen die Frage, ob die klassischen
Standards in allen Themen die richtige Mdglichkeit sind. Oder ob es nicht sinnvoller ist,
dass jede Anwendung und jeder Hersteller eigene Modelle und Reprasentationen nutzt,
diese jedoch in einem offentlich zuganglichen System, damit eine Integration der Daten
ermdoglicht wird. Jeder Hersteller ist frei genau die Daten offen - im Sinne von zugreifbar
- zu legen, die er flr sinnvoll erachtet.

Alle diese Abbildungen wirden in einer modellgetriebenen Instanzumgebung als Modelle
verstanden. Die einzelnen Datensatze kdnnten nachtraglich von allen Teilnehmern aus-
gewertet und auch verkniipft werden.

Unterbindung von Inkonsistenzen Heutige Engineering-Software in der Automatisierungs-
technik speichert Daten in eigenen Formaten, sodass ein Zugriff von anderen Anwen-
dungen nicht méglich ist. Da die Anwendungen jedoch Daten untereinander austauschen
muissen, werden Schnittstellen geschaffen.

"Noch weiter gehen Initiatoren der OpenData-Projekte: Hier werden Daten grundsitzlich zwar strukturiert und Maschinen-
verarbeitbar angeboten, jedoch wird bewusst auf vorgeschriebene Standards verzichtet. Hauptsichlich sollen Behorden und
ffentliche Einrichtungen dazu gebracht werden, moglichst vollkommen ihre Daten einer breiten Offentlichkeit anzubieten.
Also beispielsweise das Gewerbeamt eine Liste der lokalen Firmen, das Katasteramt die StraBennamen oder auch die
Einwohnermeldeémter statistische Kennzahlen der gemeldeten Einwohner.

Der Zugriff und die Aggregation der Daten (und damit eine Form von ,,Informationsgenerierung*) liegt folglich bei den
Nutzenden, wie beispielsweise den Journalisten.
Durch den Verzicht auf feste Standards fiir die Daten wird die Teilnahme aus Sicht der Behdrden erheblich vereinfacht.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1 Einleitung

Export/lmport

% \ Relation
&L

(a) Ein Modell fiir alle Anwendungen: (b) Expon/lmpon durch Datei: Inkon- (c) Modell-Interkonnektion mit ge-
nicht beschreibbar sistenz durch Kopie meinsamem Meta-Modell

Abbildung 1.2: Datenaustausch zwischen Anwendungen

Die erste Mdglichkeit ist eine gemeinsame Datenbasis zu definieren; also ein gemeinsa-
mes Datenmodell, welches von den beteiligten Anwendungen genutzt wird. Bei vielen An-
wendungen wird das Modell sehr komplex, sodass die Akzeptanz des Modells wiederum
sinkt. (Abbildung 1.2 (a)). Eine andere, weit verbreitete Méglichkeit ist ein Austauschfor-
mat zu definieren. Dabei exportiert eine Anwendung in einem definierten Modell (Format)
die bendtigten Daten; eine weitere Anwendung liest diese Daten ein. Nachher existiert
also eine Kopie der Daten, sodass Inkonsistenzen durch die unterschiedliche Weiter-
verarbeitung entstehen. Diese missen entweder aufwandig synchronisiert werden, oder
es muss einen unidirektionalen Arbeitsfluss geben, sodass dieser Prozess nur einmalig
stattfindet (Abbildung 1.2 (b)).

Sinnvoller und in dieser Arbeit angestrebt ist es, Verbindungen zwischen einzelnen Da-
tensatzen der Anwendungen zu schaffen (Abbildung 1.2 (c)). Hierbei verbleiben die Daten
in dem Modell der Anwendungen, jedoch sind Elemente davon zugéanglich und kénnen
zwischen den Modellen in Relation gesetzt werden, wodurch auch ein Zugriff stattfinden
kann. Ein gemeinsames Instanzsystem ersetzt durch den gemeinsamen Datenraum den
bisherigen Datenaustausch.

Analogie: Strukturierte Festplatte Insgesamt kann so eine Analogie zu einer strukturierten
Festplatte gezogen werden: Traditionell speichern alle Anwendungen in ihrem eigenen
Format Dateien auf die lokale Festplatte. In groBBen Installationen ist eine verteilte Lésung
in Form eines Netzwerk-Laufwerks oder NFS Systems (blich - allerdings hauptsachlich
aus Grinden der Daten-Sicherung (Backup) und fir die flexible Nutzung von Arbeitsplat-
zen.

Die abgelegten Daten sind in ihren proprietdren Formaten als Datei gespeichert. Eine
Verbindung zwischen einzelnen (Modell-)Teilen ist nicht maglich.

Die beschriebene Instanzumgebung bietet eine Mdglichkeit, dieses Problem zu umgehen.
Daten werden durch Anwendungen in die Instanzumgebung geschrieben, dhnlich wie in
eine Datei. Durch die Zugriffsmechanismen ist es anderen Anwendungen aber mdglich
in diese Daten hineinzublicken und Beziehungen zu den Teildaten aufzubauen. Ebenso
kénnen Riickschliisse aus den Daten oder den Anderungen der Daten gezogen werden.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung

Dienste — ohne Schnittstellenproblematik Vielfach wurde in den vergangen Jahren Uber ei-
ne Dienstorientierung auf Basis von ,Dienst-orientierten Architekturen“ (kurz: SOA fir
~Service-oriented Architecture”; beispielsweise [SEEQ09]) gesprochen. Ziel ist es, Funktio-
nalitat in Dienste zu kapseln, sodass diese als ,Blackbox” ihre Aufgabe verrichten. Der
interne Aufbau ist somit fir den Nutzenden nicht wichtig.

Kern des Konzeptes ist es also, dass unabhangige Software-Komponenten Gber Schnitt-
stellen sich gegenseitig aufrufen. Die Orchestrierung (also Verknlipfung) von Diensten
fihrt dann zu héherwertigen Anwendungen, die eine Gesamtaufgabe erledigen.

Diese Dienst-basierte Architektur bedingt dabei wesentliche Standardisierung: Schnitt-
stellen missen auf mehreren Ebenen (von binarer Kodierung tber Ausfihrungslogik bis
hin zu den Aufruf- und Riickgabe-Parametern) spezifiziert werden. Zusatzlich muss in der
Automatisierungstechnik bedacht werden, dass zu den Standardisierungsarbeiten auch
noch unterschiedliche Kommunikations-Medien mit unterschiedlichen Eigenschaften be-
rlicksichtigt werden mussen.

Anwendungen in logischer Nahe der Instanzumgebung Bisher wurden nur in Modellen ab-
gelegte ,passive” Informationen betrachtet. Wenn Informationen konzeptuell in der mo-
dellgetriebenen Instanzumgebung abgelegt sind, liegt es nahe, dass auch fir die An-
wendungen selber eine Ausflihrungsumgebung spezifiziert wird, die auf den gleichen
Mechanismen beruht. Der Vorteil ist, dass ein einheitliches Konzept zur Kommunikation
zwischen Anwendungen etabliert werden kann. Auch wird sich hier anbieten, die Anwen-
dungen in einzelne Komponenten, die zwischen einander kommunizieren, abzubilden.
Eine solche Ausfiihrungsumgebung wird sich erstmal nicht wesentlich von den Dienst-
orientierten Architekturen unterscheiden, wie sie schon vielfach auch flr die Automatisie-
rungstechnik untersucht werden.

Aus diesem Grund beschrénkt sich diese Arbeit auf die Mdglichkeiten der modellge-
triebenen Instanzumgebung und stellt die Moglichkeit der integrierten Ausfiihrungsum-
gebung am Rande vor. N&her betrachtet wird allerdings die Méglichkeit aktive Kompo-
nenten (ob innerhalb einer Ausfiihrungsumgebung oder auBerhalb ausgeflhrt) in der
Modell-Landschaft abzubilden (zu reprasentieren) und dadurch eine Erkundungsfunktion
zu schaffen. Dieses ist eine der wesentlichen Herausforderungen (genannt ,Discovery*),
die die SOA zu meistern hat.

Dynamik und Determinismus zur Produktions-Phase Die oben beschrieben Informationen
in der modellgetriebenen Instanzumgebung kénnen nicht nur in der Planungs- und Engi-
neering-Phase genutzt werden, sondern auch zur Laufzeit.

Erst durch eine gegenseitige Uberwachung der Informations-Anderungen und Reaktion
auf diese Anderungen ist eine konsistente Gesamterfassung der Informationen méaglich.
Es entsteht also eine dynamische Modelllandschaft, die sich zur Laufzeit an Anderungen
anpassen kann.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1 Einleitung

Diese Anderungen kénnen von beliebiger Struktur sein. Hierbei ist fiir die Akzeptanz ins-
besondere wichtig, dass die Reaktionen auf die Anderungen deterministisch sind, d.h.
entscheidbar und auch nachvollziehbar: Wird unter den gleichen Umstanden die gleiche
Anderung gemacht, wird das System mit der gleichen Reaktion antworten.

Auf Basis dieser dynamischen Modell-Anderungen zusammen mit dem Determinismus
wird es mdglich, die ,Self-X* Konzepte, wie sie von IBM [Hor01] beschrieben wurden,
in einer Weise zu definieren, dass sie auch in der Automatisierungstechnik Anwendung
finden kdénnen.

Flr das Erreichen der Vision ist es dabei wichtig, dass die Schnittstellen insbesondere zur
modellgetriebenen Instanzumgebung frei verfligbar sind. Nur hierdurch kénnen Spezialanwen-
dungen beispielsweise von kleineren Engineering-Firmen zuséatzlich integriert werden. Dieses
hilft im Umkehrschluss auch den groBBen Herstellern, da fur sie uninteressante Spezialanwen-
dungen durch externe Dienstleister erbracht werden kénnen.

1.3 Ubersicht des Vorgehens

Nachdem die Einleitung eine grundlegende Motivation und Einordnung der Problematik vorge-
nommen hat, wird im Folgenden der Stand der Technik dargestellt (Kapitel 2). Dabei werden
zum einen Begriffe und Konzepte beschrieben, die im Kontext der Arbeit wichtig sind. Hier-
zu z&hlt insbesondere das Abbilden von Informationen in Modellen. Da eine Interaktion von
unterschiedlichen Software-Systemen unabdingbar ist, wird auch die Kommunikation betrach-
tet. Bevor neuartige Konzepte dargestellt werden, erfolgt aufgrund der Ausgangssituation eine
Analyse der Anforderungen (Kapitel 3), die zur Umsetzung der Eingangs beschriebenen Ziele
und Vision bertiicksichtigt werden mussen. Zur Umsetzung dieser Anforderungen sind Wei-
terentwicklungen und neuartige Konzepte notwendig. Diese beziehen sich zum einen auf die
Verteilung der Modelle auf unterschiedliche Gerate. Zum anderen sollen existierende, Modell-
artig abgebildete Informationen in Zukunft in Verbindung gesetzt werden (Kapitel 4). Um die-
se Konzepte vor dem Hintergrund der Verteilung anwendbar zu machen, werden Software-
Komponenten beschrieben, die entsprechende Schnittstellen zur Abstraktion bereitstellen (Ka-
pitel 5). Sie beziehen sich dabei zum einen auf die Verteilung und zum anderen wiederum auf
die Verbindungen zwischen den Informationen, also die Suche Uber den Modell-Raum. Mit Hil-
fe dieser Basis-Komponenten kénnen Anwendungen skizziert werden, die die Konzepte nutzen
(Kapitel 6). Anwendungsbeispiele verdeutlichen abschlieBend die Potenziale der aufgezeigten
Konzepte und Ziele.

Als Uberblick sind die wichtigsten Begriffe in der Abbildung 1.3 als Stichpunkte dargestellt.
Dabei wurde eine Einordnung in die jeweiligen Kapitel vorgenommen. Auch die Anordnung in-
nerhalb der Abschnitte wei3t auf Zusammenhange zu den Uberliegenden oder unterliegenden
Schichten hin.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

1.3 Ubersicht des Vorgehens

o Produktion =

Engineering =3

- . Gerate S 5
Integration Kommunikation S

« Modelle Informationen Kommunikaton %
Laufzeit Meta-Modell Verteilung a2

Modelle zur Laufzeit Verteilung §

™ Modell-Interkonnektion Externe Verbindung | §
Reprasentation Uberwachung E

5

Kapitel

Abbildung 1.3: Ubersicht der wichtigsten Begriffe im Kontext dieser Arbeit

Notationen in der Arbeit:

e Einzufiihrende Begriffe aus fremden Quellen werden durch ,“ dargestellt.
e Eigene Begriffe werden bei erster Verwendung in kursiv dargestellt.
o typisierte Relationen werden mit _ Platzhaltern notiert.

e Hintergrund“-Boxen: Diese erlautern den Ursprung einer Idee oder liefern eine

Referenz mit einer kurzen Erklarung.

e Grafiken basieren auf UML, werden jedoch um eigene Elemente (z.B. Pfeile)

erweitert.

e Erste Verwendung von Symbolen (wie Pfeilen) wird beschrieben.

am 20.01.2026, 08:43:53.
m mit, f0r oder In KI-

ter

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

2 Stand der Wissenschaft und Technik - mit
Begriffsklarung

Interestingly, according to modern astronomers, space is finite. This is a
very comforting thought — particularly for people who can never remember
where they have left things.

Woody Allen

Die in dieser Arbeit vorgestellte L6sung beschreibt eine gemeinsame Datenbasis, die als struk-
turierte, verteilte Festplatte verstanden werden kann. Hierfiir werden Modelle basierend auf
Objekten und Klassen verwendet. Um einen Austausch sicherzustellen, ist als Grundlage wich-
tig, die unterschiedlichen Kommunikationssysteme, wie sie heute in der Automatisierungstech-
nik anzutreffen sind, darzustellen und auf ihre wesentlichen Unterschiede hin zu untersuchen.
Weiterhin existieren bereits Systeme, um Modelle zur Laufzeit zu verwalten und Anderungen
vorzunehmen. Sie stellen die technologische Basis der hier beschriebenen Lésung dar. Mit
diesen existierenden Konzepten beschaftigen sich die folgenden Abschnitte.

Hintergrund:

Die hier adressierten Informationen sollen nicht nur zum Engineering genutzt werden.
Wahrend es bei dem Automation Service Bus [BMM12] oder auch dem Siemens TIAC-
Portal hauptséchlich um die Integration bzw. Synchronitat von Informationen wéahrend des
Engineering-Prozesses geht, adressieren die hier beschriebenen Konzepte Informationen
auch zu anderen Phasen, wie Inbetriebnahme / Produktion / Wartung /... ..

2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT

Die VDI-Richtlinie 5610 [10] beschreibt den Zusammenhang der Begriffe ,Wissen®, ,Informa-
tion* und ,Daten®. Hier wird formuliert, dass Daten ,objektive Fakten* darstellen, die jedoch
ohne weiteres Wissen nicht deutbar sind. Sie sind als ,Rohmaterial® zu verstehen. Informatio-
nen werden verstanden als ,strukturierte Daten®, die in einen Kontext gebracht werden kénnen.
Wissen schlussendlich ist ,vernetzte Information®, sodass Vergleiche angestellt werden kénnen
und Entscheidungen getroffen werden. Abbildung 2.1 verdeutlicht den Zusammenhang.

10

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT

Wissen

4
i Voraussetzung fiir

Information

i Voraussetzung fiir

Daten

Abbildung 2.1: Verstdndnis der Begriffe Daten, Information und Wissen nach VDI-Richtlinie 5610

In Sinne dieser Richtlinie beschreibt ein Modell Wissen Uber die Realitdt bzw. einen Aus-
schnitt der Realitat. Damit bildet es Informationen ab, die von Anwendungen im Sinne der
VDI-Richtlinie 5610 genutzt werden kénnen, um Entscheidungen zu treffen.

Definition: In dieser Arbeit wird unter Modell eine Objekt-orientierte Beschreibung eines
Ausschnitts der Realitét verstanden.

Eine solche Modell-Beschreibung besteht dabei aus ihren Teilen wie auch den Bezie-
hungen unter ihnen. Zum anderen wird unter einem Modell aber auch die Anwendung des
Modelles auf einen konkreten Sachverhalt verstanden. Diese Modell-Instanz hat einen
Bezug zu genau einem Sachverhalt der Realitat.

Im Objekt-orientierten Sinne handelt es sich bei der Modell-Beschreibung um Klassen und
Relationen zwischen den Klassen. Die Instanzen dieser Klassen sind die Objekte und beziehen
sich auf den konkreten Sachverhalt. In Abbildung 2.2 werden die gelaufigsten Begriffe aus der
Objektorientierung knapp dargestellt, werden jedoch vom Verstandis her vorausgesetzt. Eine

<<erbt_von>> ! .
! <<instanz_von>>
i

<<besteht_aus>>

’ Variablen Methoden ‘

T
i
| <<realisiert>>
i
y

BasisVariablen
Abbildung 2.2: Aufbau von Objekten, sowie ihre Instanziierung
ausflhrlichere Darstellung ist vielfach in der Literatur beschrieben - beispielsweise in [Mey03].

Ein wichtiger Punkt ist, dass zeitliche Ablaufe (wie ein Produktionsablauf) selber einen Aus-
schnitt der Realitat darstellen und in Modellen abgebildet werden kénnen.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

Damit die unterschiedlichen Ausschnitte der Realitdt in Modellen abgebildet werden kénnen,
macht es Sinn, ein gemeinsames Meta-Modell zu nutzen.

Definition: Ein Meta-Modell beschreibt, wie Modelle aufgebaut und strukturiert sind.
Dazu z&hlen auch Sprachkonstrukte wie Klassen und Relationen.

Eine genauere Beschreibung einer Architektur der Meta-Modell-Hierarchie mit unterschiedli-
chen Ebenen hat die ,Object Management Group* (OMG) in ihrer ,Meta Object Facitlity* (MOF)
Spezifikation [24] beschrieben. In groBen Teilen ist sie hier anwendbar.

Die genutzten Konzepte sind Uibliche Konzepte insbesondere der Objekt-orientierten Program-
miersprachen. Sie werden hier als Basis verwendet und deswegen in aller Kiirze beschrieben.

2.1.1 (Modell-)Relationen

Um Abhéangigkeiten zwischen Klassen und damit auch ihre Instanzen darstellen zu kénnen,
existieren Relationen.

Definition: Eine Relation ist eine gerichtete Verbindung zwischen mindestens zwei Ob-
jekten. Sie ist selber ein Objekt, wird instanziiert. Die Klasse der Relation stellt deren Typ
dar - es handelt sich also um typisierte Relationen. Sie wird im Modell beschrieben.

Objekt

0
[

| <<instanz_von>>
i

grafische Darstellung
Relation einer Relation

Abbildung 2.3: Aufbau von Relationen zwischen Objekten

Relationen werden typischerweise lediglich begriffen als ,Nutzung®, d.h. wenn ein Objekt ei-
ne Funktion eines anderen Objektes aufruft, besteht zwischen ihnen eine Relation. Modelle
bringen ihre eigenen Relationen mit. Daneben werden aber auch im Meta-Modell Relationen
beschrieben: Weiter oben ist bereits die instanz_von Relation der Objekt-Orientierung erwéahnt
worden.

12

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT

Allgemein in der Objekt-Orientierung bekannte Relationen sind beispielsweise die Aggregation
oder Komposition. In dieser Arbeit werden die Relationen jedoch aktiv im Modell zur Beschrei-
bung eingesetzt. D.h. die vom Meta-Modell bereitgestellte Klasse der Assoziationen ,Relation”
hat immer Quellen und Ziele, gegebenenfalls jeweils mehrere davon (vgl. Abbildung 2.3). Von
,Relation* werden in den Modellen entsprechende Relationsklassen abgeleitet. Diese beschrei-
ben jeweils

e Typen

e Quelle (und Multiplizitét; in der Regel 1)
e Ziel (und Multiplizitat)

e Eigenschaften.

der Relation. Die Eigenschaften kénnen Aussagen Uber die Relation treffen. Beispielsweise
kénnten Relationen einen Zustand besitzen oder auch Qualitaten beschreiben.

Relationen sind nicht Bestandteil des Objektes, d.h. ein Objekt kann von einer Relation wis-
sen, muss es jedoch nicht. Sollte eine Relation jedoch Bestandteil des eigenen Modells sein,
so kann das Objekt die Relation nutzen.

Hierdurch wird das spater vorgestellte Konzept der Integration von Modellen zur Laufzeit (vgl.
Kapitel 4.5) moglich. Bereits bekannt ist ein &hnliches Verstandnis aus dem Objektverwaltungs-
system der ACPLT-Technologien ACPLT/OV [Mey03].

Modelle besitzen zwei Formen der Relationen. Fir die beschriebene Aufgabenstellung ist es
inh&rent wichtig, beide in einer Form abzubilden, damit diese zur Laufzeit des Gesamtsystems
erkundbar und somit nutzbar sind.

Die eine Form der Relation ist strukturell bedingt. Ein Beispiel fir eine solche Abhangigkeit
ist die Vererbung. D.h. eine Klasse eines Modells erbt Eigenschaften aus einem Obermodell,
welches ggf. auch in anderen Modellen genutzt werden kann. Oder ein Modell definiert eine
Relation zu einer Klasse eines anderen Modells. Solche Relationen sind blich und auch viel-
fach verwendet.

Zum anderen gibt es aber auch Relationen, die bei der Modellierung (im Sinne von Entwick-
lung der Modelle), aber auch auf der Instanz-Ebene weitestgehend unberiicksichtigt bleiben.
Sie kdnnen als anwendungsspezifische Abhangigkeiten bezeichnet werden: Modelle sind tech-
nisch und semantisch unabhéngig und werden durch unterschiedliche Gremien entwickelt, so-
wie auf Instanz-Ebene auch von unterschiedlichen Ingenieuren flir konkrete Anlagen umge-
setzt. Beispielsweise gibt es sehr wohl eine Verbindung zwischen den zu erfiillenden Prozess-
schritten eines Rezeptes zu den Anlagenteilen, die diese Prozessschritte ausfliihren kénnen.
Wahrend diese VerknUpfung durch die IEC-61512 [3] Rezepte abgedeckt wird, wird eine Zuord-
nung von Elektroverkabelung zur Produktionszeit meist nicht vorgehalten. Die Verkniipfung der
Engineering Daten der Elektroverkabelung mit Automatisierungsgeraten fehlt somit zur Laufzeit
und wesentliche Aufgaben z.B. zur Diagnose bei Kommunikationsproblemen kénnen nicht au-

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

tomatisiert erfolgen, obwohl die Daten in Modellform vorliegen. Somit sind die Modelle fir sich
betrachtet unabhangig, in der Anwendung sollten sie jedoch untereinander in Relation gebracht
werden.

Eine wesentliche Wertschdpfung flr eine schnellere Inbetriebnahme liegt in diesem Bereich:
Der Integration von bisher unabhéngigen Daten, sodass Anderungen in einem Datensatz zu-
mindest semi-automatisch Anderungen in den anderen Datensatzen nach sich ziehen.

Gleichzeitig miissen Anderungen an einzelnen Elementen oder Relationen konsistent gehalten
werden, d.h. es miissen Technologien bereitgestellt werden, um Anderungen zu erkennen; im
Idealfall auch um hierauf (teil-)automatisiert reagieren zu kénnen.

Waéhrend die strukturelle Abhéngigkeit explizit im Modell hinterlegt ist und schon bei dem Ent-
wurf von Modellen beriicksichtigt wird, ist die implizite oder anwendungsspezifische Abhangig-
keit der Modelle ein bisher weitgehend ungeldstes Problem.

Einige Arbeiten zielen in Richtung der Modell-Integration: So werden unterschiedliche, existie-
rende Modelle wie die IEC 61850 [LMRU11], ISA-95 [BHMO13] und AutomationML [Sch13]
in OPC-UA abgebildet, um eine hdéhere Integration der Daten zu erreichen und diese gleich-
zeitig in dem verteilten System der Anlagen zugreifbar zu machen. In Zusammenhang mit
Konzepten wie ,Plug&Play” (Inbetriebnahme von automatisierungstechnischen Geraten ohne
manuelle Konfiguration; vgl. beispielsweise [Hod13]) kann eine wesentliche Beschleunigung
des Engineerings sowie der Instandhaltung erreicht werden.

2.1.2 Instanz-Struktur: Komponenten als Gruppierung

@ Komponente %3\
t

’ Objekt H Relation ‘

Abbildung 2.4: Komponenten fassen Objekte und Relationen zusammen

Ein wesentlicher Hintergrund der Objekt-Orientierung ist die Kapselung. Dabei werden meh-
rere Objekte (und Relationen) nur durch eine Schnittstelle angesprochen, sodass die interne
Struktur verborgen wird. lhre Architektur ist in Abbildung 2.4 dargestellt.

Definition: Eine ,Komponente* ist eine vorgefertigte, in sich strukturierte und unabhédngig
hantierbare Einheit, die zur Realisierung einer konkreten Rolle in einem System vorgese-
hen ist (nach [12]).

Somit kann es sich z.B. um eine nicht naher festgelegte Menge von Objekten und Relatio-
nen handeln, die Uber eine Aufgabe und eine Schnittstelle verfigen. Ebenso kann es sich um

14

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.2 Existierende Modelle der Automatisierungstechnik

ein Klassen-Modell handeln, welches im Gesamtsystem zur Beschreibung eines bestimmten
Sachverhaltes eingesetzt wird.

Zum einen werden hierdurch Komponenten austauschbar, wenn sie die gleiche Schnittstelle
anbieten. Zum anderen muss ein Nutzer nur die Schnittstelle kennen und das Verstandnis
haben, welchen Zweck eine Komponente verfolgt.

2.1.3 Bestandteile einer Modell-Beschreibung

In Abbildung 2.5 wird dargestellt, welche Bestandteile eine Modell-Beschreibung im Aligemei-
nen ausmachen. Hierbei handelt es sich um ,typische* Bestandteile, wie sie vielfach in der
Literatur vorkommen. Ein Modell beschreibt eine Menge von Klassen sowie die zugehdrigen

Komponente =]
/N

Klassen und Relationen

eitere Anforderungen:

formale Modellbeschreibung
/ Grammatik

W

Abbildungsvorschrift
Realitat-Modell

Abbildung 2.5: Ein Modell als strukturierende Komponente

Relationen. Diese werden instanziiert, um eine konkrete Auspragung der Realitat abzubilden.
Weiterhin ist es nétig, dass eine formale Modell-Beschreibung vorliegt, die mégliche Strukturen
der Klassen und Relationen beschreibt (Syntax). Ebenso muss die Abbildungsvorschrift von
der Realitdt zum Modell enthalten sein (Semantik).

Damit die Existenz eines Modells in der Instanzumgebung erkundet werden kann, kann eine
Modell-Beschreibung als Objekt im Modell-Raum représentiert werden, die selber instanziiert
wird und gewissen Eigenschaften genugt (vgl. Abbildung 2.5).

Existierende Systeme reprasentieren das Modell selber nicht unbedingt als Instanz - jedoch ist
eine meist &quivalente Struktur méglich?.

2.2 Existierende Modelle der Automatisierungstechnik

Die im Folgenden kurz dargestellten Modelle haben eine weitreichende Sichtbarkeit in der Au-
tomatisierung, sind aber lediglich eine Auswahl. Sie werden nur &uBert knapp beschrieben,

'OPC-UA: .Namespace* und ACPLT-OV: , Library*

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

da ihre konkrete Verwendung flr das weitere Verstandnis der beschriebenen Konzepte nicht
relevant ist. Die Liste soll als Anregung flr die Verwendung des beschriebenen Systems ver-
standen werden.

Viele weitere Modelle sind in [SMS11] beschrieben. Auch Blatt 1 der VDI Richtlinie 3690 [1]
beinhaltet hier eine sinnvolle Ubersicht existierender Modelle. Ein Vergleich gerade in Bezug
auf Unterschiede zwischen Fertigungstechnik und Prozesstechnik wird in [MBS™*11] beschrie-
ben.

AutomationML [13] Die IEC 62714 beschreibt AutomationML: Topologie, Geometrie, Kine-
matik und Logik werden in einem gemeinsamen XML Dokument reprasentiert. Hierfir
werden andere Subformate genutzt, die durch andere Gruppen spezifiziert werden. Auto-
mationML setzt diese dann in Relation. Hintergrund ist der Austausch dieser Informatio-
nen zwischen Engieneeringsystemen fiur eine Steigerung der Effizienz in der Planungs-
Phase.

IEC 62424: CAEX [7] & PandIX [ERD11] Wahrend CAEX eine allgemeine XML-Darstellung
fur hierarchische Systemstrukturen darstellt, bildet PandIX einen Vorschlag fiir die funk-
tionale Strukturbeschreibung einer verfahrenstechnischen Anlage.

SysML [22] Basierend auf UML bietet SysML eine Beschreibungssprache fiir komplexe Sys-
teme aller Art. Neben der System-Struktur selber sind auch Kriterien wie das Verhalten
des Systems reprasentierbar.

ISA-95 [11] Die ISA-95 basiert auf der ISA-88. Die ISA-95 beschreibt eine Schnittstelle des
MES Systems zum ERP-System. Hierdurch werden u.a. auch Ressourcen, wie Men-
schen [BHMO13], erfasst und abgebildet.

Geréate-Konfigurationen Beispielsweise bieten FDI oder FDTv2 Beschreibungen fir Geréate-
Konfigurationen an. Insgesamt gibt es eine Vielzahl, die aktuell unterstltzt werden mus-
sen. So spricht [Gs14] von dreizehn von den Herstellern zu unterstiitzenden Formaten.
[Gds14] beschreibt dazu auch einen Ontologie-basierten Ansatz um dieses Problem zu
adressieren.

XML Formats for IEC 61131-3 [28] Die IEC 61131 Teil 3 [4] beschreibt Sprachen fiir die Pro-
grammierung einer SPS. Durch diese Sprachen werden Konstrukte wie konkrete Funk-
tionsbausteine definiert. Von einem 61131-3-kompatiblen Automatisierungssystem wird
folglich verlangt, dass es eine Programmierschnittstelle fur die definierten Sprachen be-
reitstellt. Basierend auf diesen Sprachen definiert die PLCopen eine formale Abbildung
einer Steuerungsprogrammierung in XML. Diese kann (im Idealfall) als Austauschformat
von Steuerungsprogrammen zwischen unterschiedlichen Automatisierungssystemen ver-
wendet werden.

VDI Richtlinie 3682: Formalisierte Prozessbeschreibung [5] Die VDI Richtlinie 3682 stellt
eine formale Abbildung zur Prozessbeschreibung bereit, die auf UML-Darstellungen ba-
siert. Es werden sowohl kontinuierliche- wie auch chargen-orientierte Prozesse abbildbar.

16

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.2 Existierende Modelle der Automatisierungstechnik

Die Richtlinie adressiert gleichbleibende Prozesse und kann dadurch wesentlich kompak-
ter gehalten werden, als beispielsweise WS-BPEL.

WS-BPEL [21] & andere WS-* Beschreibungen WebService-Beschreibungen (als WS* be-

zeichnet) beschreiben Schnittstellen, die zwischen Kommunikationspartnern genutzt wer-
den um unterschiedliche Sachverhalte zu kommunizieren. Hierzu stehen eine Vielzahl
von separaten, kombinierbaren Beschreibungen bereit.
Als Beispiel fur solche Sachverhalte kann ,WS-Business Process Execution Language”
(kurz WS-BPEL) angesehen werden. Diese stellt eine Beschreibungssprache fir Ge-
schéftsprozesse dar. Sie kann flr die Reprasentation von Ablaufen auf ERP Ebene ver-
wendet werden. Eine Adaption auf Rezepte oder sogar ,Sequential Function Charts” —
also Ablaufe auf Steuerungsebene — ist vorstellbar.

Vielen Normen liegt ein Objekt-orientiertes Modell zugrunde, welches sie selber beschreiben.
Diese Tatsache bringt zwei wesentliche Nachteile mit sich:

Umfang wachst Es fiihrt zu Akzeptanz-Problemen, da die Normen nicht mehr schnell erfasst
und Uberblickt werden kénnen.

Werke in Details inkompatibel zueinander Dieses erschwert die Integration der beschrie-
ben Modelle sowie die Interaktion der Modelle untereinander.

Durch gemeinsame Basis-Modelle werden sich diese Probleme fiir alle Seiten vereinfachen
lassen.

Bestrebungen in diese Richtung auf formaler Seite gibt es durch den DKE-Arbeitskreis 931.0.4
in dem sogenannte ,Kernmodelle* [KE12] beschrieben werden, die genau diese Aufgaben
Ubernehmen. Sie sollen dabei kompakt auf wenigen Seiten beschrieben werden, sodass sie
fachlich fundiert und prézise sind, jedoch auch schnell Gberblickt werden kénnen.

Zusatzlich gibt es Bestrebungen Modelle in OPC-UA (vgl. folgender Abschnitt) zu reprasentie-
ren, welches die Probleme ebenso begegnet. Wenn viele Modelle eine Abbildung in OPC-UA
besitzen, haben diese auf Meta-Modell-Ebene einen gemeinsamen Nenner und eine kompati-
ble, technische Repréasentation.

Als Forschungsprojekt strebt beispielsweise ,Secure plug and work” [Sau13] eine Integration
von AutomationML in OPC-UA an. [BHMO13] beschreibt das Konzept zu Integration von ISA-
95 in OPC-UA und sieht Anwendungsgebiete im Bereich der MES; insbesondere wird dabei
auf QualitdtsmaBnahmen und Wartungsarbeiten sowie Verwaltungs-Anwendungen verwiesen.
Die XML-Darstellung der 61131-Funktionsbausteine durch die PLCopen wurde auch fiir OPC-
UA entworfen [27]; zusatzlich definiert die PLCopen auch Kommunikationsbausteine, mit denen
OPC-UA Kommunikation direkt aus der SPS ausgefiihrt werden kann. Hierdurch wird die immer
starker werdende Verzahnung von Steuerungen mit Informationen, die als Modell vorliegen,
deutlich.

17

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

2.3 Kommunikation in der Automatisierungstechnik

Die derzeitigen Kommunikations-Technologien in automatisierungstechnischen Anlagen sind
auBerst heterogen. Eine einheitliche, transparente Kommunikation wird zwar immer wieder
adressiert, ist aber heute in der realen Anlage nicht existent.

In den letzten Jahren kommen immer mehr Technologien auf Ethernet-Basis auf den Markt,
die zumindest auf der physikalischen Ebene kompatibel sind. Aufgrund der Natur der Mérkte -
Verkauf wird Giber Alleinstellungsmerkmale gewonnen - divergieren diese Produkte aber sowohl
auf Hardware-Ebene (unterschiedliche Stecker) wie auch auf informationstechnischer Ebene,
sodass sie im Endeffekt zwar gleiche Wurzeln haben, jedoch nicht kompatibel sind. Das Buch
Datenkommunikation in der Prozessindustrie von Enste und Mdller [EM07] bietet hier einen
guten Uberblick, der auf die in der Prozessindustrie tiblichen Netze fokussiert.

Anwendungen

Kommunikations-
Systeme

einige AT-Bus-Systeme

Kommunikations-
Medien

Abbildung 2.6: Grundsitzliche Teilung der Kommunikation

Abbildung 2.6 teilt diese Problematik in drei? Bereiche auf, die jeweils unterschiedliche Aufga-
ben haben. Auf der Anwendungsebene sollten die Abldufe und Daten im Vordergrund stehen.
Die Forderung nach einer transparenten Kommunikation spielt hier ihre Vorziige aus. So mus-
sen Anwendungen sich nicht um die Zustellung der einzelnen Nachrichten kimmern.

In der Automatisierungstechnik werden immer unterschiedliche Bus-Systeme und Netzwerke
far die unterschiedlichen Anforderungen wie Echtzeit-Verhalten oder Explosionsschutz existie-
ren, weswegen es sinnvoll erscheint, aufbauend ein (mdglichst nur ein einziges) Kommunikati-
ons-System zu haben, welches unabhangig von den unterliegenden Kommunikations-Medien
eine einheitliche Vorstellung der Kommunikation abbildet.

? Abstraktion iiber das ISO/OSI Schichtenmodell [2], welches an dieser Stelle in dem Detailgrad nicht benétigt wird.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.3 Kommunikation in der Automatisierungstechnik

Hintergrund:

Aktuelle Kommunikations-Technologien versuchen in Richtung Anwendung zu wachsen,
also Dienste fiir konkrete Anwendungsfélle bereitzustellen. Beispiel: Gerateidentifikation
und Ausfallerkennung.

Dieses hat jedoch zwei entscheidende Nachteile: Zum einen schrénkt es die Nutzbar-
keit der Kommunikations-Technologie ein. Zum anderen sind die Anwendungen, die die
Dienst-Schnittstellen nutzen, an diese Kommunikations-Technologie gebunden. Sie mis-
sen zur Unterstiitzung von einer anderen Kommunikations-Technologie gleich eine neue,
zusatzliche Anbindung bekommen.

Es erscheint also sinnvoll, unterschiedliche Ebenen zu etablieren und Technologien auf
jeweils eine Ebene zu beschranken.

Im Folgenden werden generelle, existierenden Anséatze und Unterschiede der Markt-tblichen
Lésungen in der industriellen Automation aufgezeigt und verglichen. Dabei wird verdeutlicht,
dass existierende Konzepte bereits weitgehend vorhanden sind und genutzt werden kdnnen,
um diese Ziele zu erreichen.

2.3.1 Kommunikations-Medien: Bussysteme und Alternativen

In der Automatisierung gibt es eine Vielzahl von Kommunikations-Technologien. Aus unter-
schiedlichen Griinden kommen die Mdglichkeiten zumindest in verfahrenstechnischen Anla-
gen meistens gemischt vor. Zum einen sind meistens Umbauten und dadurch unterschiedliche
Generationen in den Anlagen zu finden. Zum anderen haben die unterschiedlichen Kommu-
nikations-Technologien auch unterschiedliche Anwendungsfélle, die sie abdecken. Einige sind
z.B. fiir den Ex-Bereich geeignet und bringen eine eigene Energieversorgung mit oder zeichnen
sich durch Kosten der Installation aus.

Diese unterschiedlichen Technologien werden im Folgenden als Kommunikations-Me-dien be-
zeichnet.

Definition: Als Kommunikations-Medium werden sowoh! die physischen Komponenten
(Kabel, Ausrtistung in Geréten) wie auch die Software und Protokolle verstanden, welche
die physischen Komponenten verwenden. Insgesamt bietet ein Kommunikations-Medium
so die Méglichkeit, Daten von einem Gerdt zum Anderen zu transportieren.

Konventionelle (4..20mA) Verkabelung Traditionell ist die konventionelle 2-Draht-Verdrah-
tung zu sehen. Hier werden Signale direkt auf einem Kabel Ubertragen. Fir digitale Signale
gibt es sowohl eine Realisierung auf Basis der elektrischen Spannung wie auch auf Basis des
Stroms. Im Gegensatz dazu hat sich fur analoge Werte ein Strom zwischen 4..20mA durch-
gesetzt. Hier existiert aufbauend das HART Protokoll, welches eine zusatzliche, bidirektionale
Kommunikation erméglicht.

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

Auf elektrotechnischer Ebene handelt es sich bei der konventionellen Verdrahtung immer um
eine 1:1 Verbindung von der I/O Karte zu einem Sensor/Aktor. Eine Kommunikation unter meh-
reren Geraten ist nicht moglich. Es gibt auch keine Mdglichkeit eine Kommunikation zu anderen
Teilnehmern als den I/O Karten aufzubauen. Damit handelt es sich bei der konventionellen Ver-
drahtung nicht um eine vollwertige Kommunikationsméglichkeit, wie sie firr die Instanzumge-
bung bendtigt wird. Sie wird also fiir das beschriebene Gesamtsystem insofern ausgeschlos-
sen, dass die hier betrachteten Gerate nicht per konventioneller Verdrahtung angeschlossen
sein kdénnen. Es kdénnen aber lbergeordnete Gerate eine Schnittstelle zu konventionell ange-
schlossenen Geraten darstellen (typischerweise als Remote I/O bezeichnet).

Bussysteme Weit verbreitet in heutigen Anlagen sind Bussysteme. Dabei handelt es sich um
eine vollwertige, bidirektionale Kommunikation zwischen den angeschlossenen Geraten, wo-
bei die Teilnehmer (nach IEV 351-20-10) nicht an der Weiterleitung der Daten mitwirken. Auf
einem Bus kann somit zu einem Zeitpunkt elektrisch nur ein Geréat senden. Dieses wird meist
von einem Master koordiniert. Bei einigen Systemen wird durch das Protokoll die technisch
mdgliche Kommunikation zwischen allen Teilnehmern auf die Kommunikation von Geraten zu
dem Master begrenzt. In einem solchen System kann folglich auch nur der Master - &hnlich der
oben beschriebenen I/O Karte - als Gerat im Sinne der modellgetriebenen Instanzumgebung
gesehen werden.

Netzwerke Viele neuere Entwicklungen in der Automatisierung basieren auf dem Gedanken
von (IT-)Netzwerken. Abgesehen von unterschiedlichen Verkabelungsformen existiert bei ei-
nem Netzwerk im Gegensatz zu einem Bussystem eine direkte Kommunikationsmdglichkeit
von zwei (oder mehr) angeschlossenen Geraten, die diskrete Nachrichten austauschen. Dabei
sind auch aktive Komponenten zur Weiterleitung von Daten zulassig (Gateways, Router, Swit-
che)d.

Im Gegensatz zu einem Bussystem kann ein Netzwerk zu einem Zeitpunkt somit meistens
auch von unterschiedlichen Geréaten gleichzeitig genutzt werden, sodass keine exklusive Nut-
zung des gesamten Netzwerks zu einem Zeitpunkt existiert.

Gemein ist den letzten zwei Technologien von Kommunikations-Medien, dass sie (auch wenn
sie flr den Echtzeit-Betrieb vorgesehen sind) immer eine Nicht-Echtzeit-Kommu-nikations-
Méglichkeit mitbringen. Diese wird durch eine asynchrone Kommunikation erreicht, sodass der
Sender sich nicht auf eine Antwort in einer definierten Zeitspanne verlassen kann: Diese Kom-
munikation wird zwischen der Echtzeit-Kommunikation Gbermittelt, wenn Ressourcen frei sind.
Diese Nicht-Echtzeit-Kommunikation kann fur die Instanzumgebung genutzt werden.

Gemeinsam haben Bus- und Netzwerksysteme auch, dass sie die verschiedenen Teilnehmer
mit Adressen organisieren.

3Nach IEV 131-11-06 wird ein Netzwerk allgemein als ,,Menge von miteinander verbundenen Netzwerkelementen® verstan-
den

20

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.3 Kommunikation in der Automatisierungstechnik

Definition: Eine Adresse ist eine Mdéglichkeit Teilnehmer innerhalb eines Gruppe zu iden-
tifizieren sowie zu adressieren. Eine Adresse ist also zum einen eindeutig einem Teilneh-
mer zuzuordnen, beschreibt aber auch, wie dieser auf Basis eines Kommunikationssys-
tems zu erreichen ist.

Die Kommunikation selber findet dann durch Nachrichten statt, die an diese Adressen gesendet
werden.

Definition: Eine Nachricht ist ein Datensatz, der von einem Teilnehmer an einen oder
mehrere andere Teilnehmer gesendet wird. Eine Nachricht enthélt zum einen Transport-
Informationen (z.B. Ziel, Zeitpunkt, Sender) und zum anderen die zu transportierenden
Nutzdaten.

Kontinuierliche vs. diskrete Kommunikation Ein konzeptueller Unterschied zwischen der
4..20mA Verkabelung und den Bussystemen/Netzwerken besteht in der Kommunikation selber.

Bei einer direkten Verkabelung liegt mit einer analogen Anderung des Stroms (4..20mA) per-
manent zu jedem Zeitpunkt am Ziel ein Wert an. Dieser kann als ,kontinuierliche* oder ,Signal-
orientierte” Kommunikation bezeichnet werden. Ein solches Verhalten muss bei Bussystemen
und Netzwerken ,aufwandig“ nachgebildet werden, da diese in Nachrichten kommunizieren.
Es kann also als ,diskrete® Kommunikation bezeichnet werden. Hierfur werden zyklisch die
entsprechenden Werte tibertragen. Uber den benétigten Zyklus muss sich dabei zur Zeit der
Anlagenplanung und des Engineerings verstandigt werden. Dieses ist also ein Nachteil fir die
modernen Kommunikationssysteme.

2.3.2 Formen der Kommunikation

Wenn ein Medium eine Kommunikation zwischen den angeschlossenen Teilnehmern zulasst,
gibt es unterschiedliche Formen der Kommunikation.

Definition: Eine Kommunikations-Form gibt an, welche Kardinalitdt zwischen Sender
und Ziel besteht. Prinzipiell sind Unicast (1:1), Multicast (1:N) und Broadcast (1:*) dblich.

Die unterschiedlichen Formen werden typischerweise wie folgt charakterisiert.

Unicast - 1:1 Unter Unicasting wird eine gerichtete Kommunikation zwischen genau zwei
Kommunikationspartnern verstanden. Meistens erfolgt die Kommunikation dabei durch eine
Verbindung, die erst aufgebaut wird und dann fir mehrere Vorgénge verwendet werden kann
bevor sie wieder abgebaut wird. Die Verbindung Gbernimmt dabei Aufgaben der Transaktions-
sicherung, d.h. das Erkennen und erneute Senden verloren-gegangener Nachrichten.

21

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

Davon abweichend ist beispielsweise eine UDP Kommunikation, die eine Unicasting-Kommuni-
kation bereitstellt, ohne eine Verbindungs-orientierte Absicherung der Kommunikation, sodass
ein Paketverlust nicht erkannt wird. Aufbauend gibt es ,reliable UDP* um dieses Manko zu
beheben, sodass hier ohne eine Verbindung aufzubauen eine Transaktions-gesicherte Kom-
munikation zu Stande kommt.

Multicast - 1:N Beim Multicasting wird eine fest definierte Gruppe von Empféngern mit ei-
ner Nachricht versorgt. Das Prinzip existiert in der Realitat selten, ideale Anwendungsfélle fir
TCP/IP-basiertes Multicasting sind Anwendungen wie beim Internetradio. Leider werden die
noétigen Routing-Standards, die die Pakete zu den Empfangern bringen, nicht allgemein bereit-
gestellt.

Broadcast - 1:* Beim Broadcasting wird, wie der Name schon sagt, von einem Sender meh-
rere Empfanger angesprochen, die dem Sender nicht bekannt sein miissen. Broadcast Nach-
richten bringen immer das Problem mit, dass sie eingeddmmt werden miissen, damit sie nicht
zu viel Kommunikationslast erzeugen. Gleichzeitig bringen Sie aber den Vorteil der Kontakt-
aufnahme ohne Vorprojektieren: Auf eine Broadcast-Nachricht kénnen sich Teilnehmer melden
und somit ist eine initiale Kommunikation méglich.

Bekanntestes Beispiel ist die Konfiguration per DHCP [16], wie sie im TCP/IP Netzwerk fiir die
Vergabe der Kommunikations-Adressen eingesetzt wird.

Fir die hier vorgestellten Konzepte ist die Unicast Kommunikation vorgesehen.

2.3.3 Kommunikations-Systeme fiir den Zugriff auf Modelle

>
o ¢ S5 Anwendungen
E 8 52
1 ‘g OF5
?5 @ % o keine Implementierung
< /Anwendungen
@ 5
o2& 2%
' £ = 2 i3 @ 5
¢ DGRl S i Rt
2 of § 8Esp ELEL ELETQ
g o5 § 28%L gggP gopge
g 8522 8558 29506 29506
EE AS5¢ O>3dm MOnO wono
2 . .. keine Reprédsentations-
£ 3
Q(% RPC(XDR) XML|binar vk

ACPLT/KS OPC/UA NE139 NE141

Kommunikations- zB.Tcpip-
Med ien Ethernet

Abbildung 2.7: Zusammenfassung einiger Kommunikations-Realisierungen
In Abbildung 2.7 ist die vorherige Abbildung 2.6 fiir einige aktuelle Kommunikations-Systeme

detaillierter dargestellt. Dabei wurde eine Auswahl getroffen, die sich auf Kommunikation fr
die Manipulation von ganz allgemeinen Objekt-Strukturen beschrankt. Die beiden konkreten

22

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.3 Kommunikation in der Automatisierungstechnik

Systeme ACPLT und OPC-UA sind dabei gleichzeitig auch die Instanzumgebungen fiir die
Modelle, wie sie spater vorgestellt werden.

ACPLT/KS ACPLT/KS ist das Kommunikationssystem des ACPLT-Technologiepaketes. Die ur-
spriingliche Implementierung basiert auf Remote-Procedure-Calls (kurz: RPC [15]), um die ei-
gentlichen Befehle auf TCP/IP abzubilden. Die Remote-Procedure-Calls sind dabei in ihrer ur-
springlichen Form nur auf TCP/IP spezifiziert, jedoch existiert mittlerweile von ACPLT/KS eine
2. Version, die auch die Unterstltzung fur unterschiedliche Kommunikations-Medien mitbringt,
dabei aber weiterhin auf die RPC-Repréasentation setzt.

OPC-UA OPC Unified-Architecture bietet durch entsprechende Dienste Zugriff auf Objekt-
strukturen. Dabei ist hervorzuheben, dass die Dienste selber durch einem ,Kanal“ gesendet
werden, der sowohl die Verschliisselung / Signierung wie auch das Erkennen eines Verbin-
dungsabbruches (und Wiederaufnahme der Kommunikation) bernimmt.

NE 139 und NE141 Die Namur hat sich in diesen beiden Empfehlungen mit dem Kommuni-
kations-Bedarf von Systemen in der Prozesstechnik beschéftigt. Die NE141 spezifiziert dabei
Details der NE 139 aus. Sie stellen bewusst nur Konzepte fiir Kommu-nikations-Systeme auf
und abstrahieren dabei von den unterliegenden Kommunikations-Medien. Statt konkreten Re-
prasentationen werden Anforderungen an ein unterliegendes Mediums beschrieben.

Die NE141 beschreibt ganz konkrete ,,SystemBasisDienste“, mit der ein System erkundet (Mo-
dell-Erkundungsfunktionen) und verandert werden kann (Modell-Anderungs-Funktionen), ge-
rade ohne sich dabei auf ein Medium zu beschranken. Die NE141 beinhaltet selber auch einen
Vergleich mit der Kommunikation aus der ISA-S95 [11], sodass diese Norm hier nicht weiter
betrachtet werden muss.

Alle Kommunikations-Systeme definieren eine Schnittstelle um einen einheitlichen Zugriff auf
die interne (Objekt-)Struktur zu ermdglichen. Diese Struktur kann durch die Dienste der Schnitt-
stelle bei allen Systemen sowohl erkundet, wie auch abgefragt und manipuliert werden. Wie
schon in Abbildung 2.7 zu sehen ist, unterscheiden sich alle vier Systeme in einigen Details.
Diese sind in der folgenden Tabelle zusammenfassend dargestellt.

ACPLT/KS OPC-UA NE 139 NE 141
Beispiel fiir SystemBasisDienste:

Hole Variablenwert GetVar Read Lese Var.
Erzeuge Objekt CreateObj AddNodes Erzeuge Obj.
Struktur-Erkundungs-Dienst GetEP Browse Browse Attrib.
Eigenschaften:

Erweiterbar (neu Schnittstellen) v v v v
Subskription/Benachrichtigung X v v v

Alle vier Systeme beschreiben Nachrichten und deren Interaktion. Die NE 139 beschreibt dabei
als elementare Form die einfachen Nachrichten, bei denen keinerlei Riickmeldung zu erwarten

23

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

sind. Eine solche Kommunikationsform kennen die anderen drei Systeme nicht. Hier hat jeder
Aufruf einen Rlckgabewert.

Alle vier Systeme definieren einen Satz von Schnittstellen-Diensten, der ausreichend ist um
den Objektraum zu erkunden, abzufragen und zu verdndern. Auch wenn die konkrete Benen-
nung der Dienste unterschiedlich ist, gibt es hier einen weitreichenden Konsens uber die Basis-
Dienste, welche von den beiden Namur-Empfehlungen deswegen auch SystemBasisDienste
genannt werden.

Dariiber hinaus bieten alle Dienste bis auf ACPLT/KS ein Subskription/Benachrichtigungs-Me-
chanismus an. Dieser ist unterschiedlich stark ausgepragt. Wahrend die NE 139 den Mecha-
nismus selber beschreibt, jedoch keine konkreten Befehle hierauf, beschreibt die NE141 und
OPC-UA ganz konkrete Dienst-Schnittstellen z.B. um Benachrichtigungen tber Abweichungen
von Variablen zu erhalten.

Alle vier Systeme bieten die Mdglichkeit erweiterte Dienste zu spezifizieren. In OPC-UA wird
dieses beispielsweise flir Methoden und Programme genutzt. In ACPLT/KS wird es derzeit je-
doch nicht verwandt. Stattdessen werden allgemeine Nachrichten in einem atomaren Datentyp
abgebildet und als serialisierte Variante (ibertragen®. So gibt es unterschiedliche Wege, um
komplexe Daten-Typen als Aufrufstruktur zu Gbermitteln.

Die Anwendungen, die diese Kommunikation ausnutzen, existieren fir ACPLT/KS und OPC-
UA. Die Méglichkeiten der Objekt-Verwaltung als Instanzumgebung werden dabei im folgenden
Kapitel betrachtet.

Insgesamt gesehen sind diese vier Systeme ahnlich, gréBtenteils sogar dquivalent. Es existiert
also auf Kommunikations-System-Ebene ein allgemein gebrauchliches Verstandnis von den
Dienst-Aufrufen fiir die Abfrage, Erkundung und Manipulation einer Objekt-Struktur.

2.4 Instanzumgebung der Modelle

Modelle sind in erster Linie Beschreibungen von Daten. Um diese aktiv nutzen zu kénnen,
werden gerade in einem dynamischen Umfeld ,Instanzen” der Modelle gebraucht.

Definition: Der Modell-Raum ist ein Speicherplatz, an dem Modelle und Klassen/Re-
lationen der Modelle instanziiert werden. Es werden durch die vorliegenden Modell-
Beschreibungen also Modell-Instanzen erzeugt. Die Klassen und Relationen werden dabei
selber im Modell-Raum représentiert, sodass eine Erkundung dieser mdglich ist.

Die Objekte einer Instanz haben innerhalb des Modell-Raums eine Identifizierungsmdg-
lichkeit (genannt Adresse), was ihre Eindeutigkeit widerspiegelt.

“*Vergleiche Kapitel 5.3.

24

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

Zum einen wird also eine Instanzumgebung flir Modelle auf Basis des zuvor beschrieben Meta-
Modells benétigt. Zum anderen ist es aber ebenso wichtig, die Modell-Instanz-en im Modell-
Raum automatisiert nutzbar zu machen. Diese Instanzen missen zugreifbar und verédnderbar
sein. Sie brauchen also eine Kommunikationsschnittstelle. Diese beiden Aspekte, sowie deren
Integration in die Dynamik werden im Folgenden beschrieben. Ebenso wird untersucht, in wie
weit die Aspekte durch existierende Systeme abgedeckt werden.

Im Normalfall werden heutige Modelle und Strukturen als Datenstrukturen verstanden. Dabei
kénnen diese Datenstrukturen zwar auch einen Prozess beschreiben (z.B. IEC 61512 [3]),
jedoch sieht man die Instanzen als ,tote” Objekte an, die von auBBen verandert werden.

Definition: Als Instanzumgebung werden Systeme verstanden, die Klassen zu Objekten
zu instanziieren und eine Schnittstelle zur Kommunikation anbieten. Hierzu z&hlt insbeson-
dere die Mdglichkeit einzelne Objekte und Relationen innerhalb des Objektbaums durch
ihre Identifizierungsmdglichkeit zu adressieren und hiertiber auch zu manipulieren.

Eine (modellgetriebene) Instanzumgebung bietet dieses flir Modell-Beschreibungen
und ist somit eine Modellverwaltungsumgebung’.

Damit sind die modellgetriebenen Instanzumgebungen die Programme, die einen Modell-
Raum darstellen.

Es ist wichtig, dass nahezu alle Modelle der Automatisierungstechnik sich in das Meta-Modell
abbilden lassen und damit in der Instanzumgebung représentiert werden kénnen. In Kapitel
4.5.1 wird hierfur ein entsprechendes Vorgehensmodell aufgezeigt.

2.4.1 Existierende Instanzumgebungen fiir Modelle in die AT

Als Basis sind zwei wesentliche Technologien zu nennen, auf denen die Konzepte dieser Arbeit
aufbauen. Da im spateren Verlauf Details der Systeme zum Thema Kommunikation und Objekt-
Verwaltung genauer analysiert werden, wird hier nur eine kurze Einfihrung Uber die Historie
gegeben.

Fir beide Systeme gilt, dass eine Referenzimplementierung durch ihre jeweiligen Organisa-
tionen bereitgestellt wird. Diese Referenzimplementierung ist fir beide Systeme kostengiinstig
und relativ ,frei* verfligbar, sodass eine weite Verbreitung unterstitzt wird.

Dieses Konzept verspricht, dass ein GroBteil der grundlegenden Implementierungen gut getes-
tet ist. Durch die gleiche Referenzimplementierung sind Produkte unterschiedlicher Hersteller
einfacher zu entwickeln, wodurch sie eher kompatibel zu einander sind, da sie auf einer ge-
meinsamer Softwarebasis aufbauen.

'In dieser Arbeit werden ausschlieBlich modellgetriebene Instanzumgebungen betrachtet.

25

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

2.4.1.1 ACPLT-Technologien

Die ACPLT-Technologien wurden am Lehrstuhl fiir Prozessleittechnik der RWTH Aachen ent-
wickelt. Hierbei handelt es sich um eine Instanzumgebung, in der Modell-Instanzen verwaltet,
erkundet und verandert werden kénnen.

Die wesentlichen Grundlagen wurden in zwei Dissertationen [Alb03], [Mey03] beschrieben.
Waéhrend sich [AIb03] auf die Schnittstellen bzw. Dienste, die als ACPLT-Kommunikations-
System (ACPLT/KS) bezeichnet wird, fokussiert, werden in [Mey03] die Objektverwaltung (AP-
CPLT/OV) beschrieben. Diese beiden Arbeiten erganzen sich, jedoch ist beispielsweise das
Kommunikationssystem auch ohne Objektverwaltung nutzbar.

Diese Basis-“Pakete” der ACPLT-Technologien, die vom Lehrstuhl als Open-Source bereitge-
stellt, weiterentwickelt und gepflegt werden, werden an verschiedenen Stellen durch (kommer-
zielle) Produkte ergénzt. So existieren Funktionsbaustein-Systeme und ACPLT-KS-Server, die
eine Kopplung an alle géngigen Prozess-Leitsysteme anbieten.

2.4.1.2 OPC-UA

OPC-UA stellt ebenso wie ACPLT eine Instanzumgebung mit Verwaltungs-, Erkundungs- und
Manipulations-Schnittstellen fir Modelle dar. Modelle werden dabei in einem Objekt-orientier-
ten Meta-Modell beschrieben.

Die OPC Foundation definiert unterschiedliche Kommunikationsschnittstellen fiir die Automati-
sierungstechnik. Die bekannteste ist OPC, welches in seiner klassischen Form auf Windows-
Technologien basiert und hauptséchlich zum Datenzugriff in unterschiedlichen Automatisie-
rungs-Geraten eingesetzt wird.

OPC-UA stellt dafiir ein umfassendes Meta-Modell bereit, welches in unterschiedlichen Verfei-
nerungen fur viele Einsatzzwecke genutzt werden kann. Die Verfeinerungen — Profile genannt —
beziehen sich dann beispielsweise auf eine Geratebeschreibungsreprasentation. Dabei basiert
das Meta-Modell auf genau den Objekt-orientierten Prinzipien, die oben beschrieben sind. Zu-
satzlich werden Dienste beschrieben, um die zur Laufzeit zu verwaltenden Modelle abzufragen
und zu erkunden. Anzumerken ist hierbei die erstmals in der Automatisierungstechnik verwen-
deten Verschliisselungs- und Authentifizierungs-Verfahren mittels X.509 [17] Zertifikaten. Eine
Datentibertragung (z.B. Uber das Internet) ist damit in der gleichen Weise abgesichert, wie
beispielsweise auch Online-Banking abgesichert ist.

Weitergehende Standards nutzen OPC-UA mittlerweile als Basis. Als Beispiele seien hier Ge-
ratekonfigurationen per FDI oder FDT in Version 2 genannt.

Nicht unerwahnt bleiben soll aber auch mindestens ein ausbauwdrdiger Punkt in der aktuellen
OPC-UA Spezifikation: Es wird haufig bemangelt, dass keine Mechanismen bereitgestellt wer-
den, um einen Teilbereich des aktuellen Instanz-Modells in einem OPC-UA-System zu laden

26

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

oder zu entladen, was z.B. bei einer Aktualisierung eines Teilsystems erforderlich sein kann.
ACPLT stellt im Gegensatz dazu entsprechende Mechanismen bereit.

2.4.2 Aktive Komponenten im Modell: Dienste

Das hier beschriebene Konzept geht einen Schritt weiter als eine Instanzumgebung und lasst
auch aktive Komponenten zu. Dieses sind Objekte, die selber ein Verhalten haben und ggf.
auch Strukturverdnderungen des Modell-Raums vornehmen kénnen. Es erfolgt also eine Ver-
schmelzung der Modelle zur Datenhaltung und zu Ablaufe.

Definition: Wenn eine Instanzumgebung fir Modelle auch in der Lage ist eine Ausfih-
rung fiir Objekte oder Komponenten anzubieten, kann von einer Ausfiihrungsumgebung
gesprochen werden.

Als kleinste Einheit kénnen dabei aktive Komponenten verstanden werden.

Definition: Aktive Komponenten kénnen Aktionen auslésen. Die Ausfiihrungsumgebung
stellt dafiir nétige Ressourcen und Schnittstellen bereit.

Waéhrend die zuvor beschriebenen Ansétze der Kapselung durch Klassen und Komponenten
auf Variablen beschrankt wurden, riicken die Schnittstellen und ihre Aufrufe in den Fokus.

Methoden, Funktionen, Prozeduren Eines der rudimentéaren Paradigmen der Programmie-
rung sind die Prozeduren oder Methoden (auch: Funktionen)S. Sie sind in Programmierspra-
chen seit circa 1970 Standard und mit den Objekt-orientierten Erweiterungen, die ab circa 1990
hinzukamen, vereinbar.

Methoden sind analog zu mathematischen Funktionen einfache Konstrukte: Sie bestehen aus
Aufrufparametern und Rickgabewerten. Im Sinne der Kapselung verbergen sie ihre interne
Realisierung. Eine Methode

Liste sortierteListe = sortiere(Liste unsortierteListe)

beispielsweise kann eine Sortierung anbieten ohne etwas (ber den verwendeten Sortieralgo-
rithmus auszusagen.

Funktionsbausteine Funktionsbausteine werden zur Programmierung von Speicherprogram-
mierbaren Steuerungen (SPS) eingesetzt und in der IEC 61131-3 [4] spezifiziert. Sie werden
- teilweise in grafischer Notation - verbunden, indem Ausgénge mit Eingangen anderer Funkti-
onsbausteine vernetzt werden.

*Die Informatik unterscheidet innerhalb dieser Begriffe. In Bezug auf das Thema Kapselung, was hier beschrieben wird, ist
dies jedoch nicht relevant.

27

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

Funktionsbausteine kapseln dabei ebenso wie Methoden ihre Funktion, wobei die Kapselung
bei ihnen weniger auf alternative, algorithmische Implementierung ausgerichtet ist. Stattdes-
sen wird von der Ausfiihrungsumgebung auf der SPS abstrahiert. So kénnen unterschiedliche
SPSen durch eine einheitliche (oder ahnlich aussehende) Programmiersprache der Funktions-
bausteine vorgenommen werden.

Aus diesem Grund gibt es auch standardisierte Funktionsbausteine in der IEC61131-3, die von
nahezu allen Engineering-Systemen angeboten werden.

Hintergrund:

Die IEC 61499 ermdglicht die Projektierung von Funktionsbausteinen in einer verteilten
Umgebung. Im Gegensatz zu der Signal-orientierten Kommunikation in der IEC 61131-3
werden hier zusatzlich Nachrichten / Events gesendet. Die bisher hauptsachlich im aka-
demischen Bereich betrachtete Norm wird in dieser Arbeit nicht weiter analysiert.

Anwendungen stellen eine Ldsung fiir ein Problem bereit. Sie dienen also beispielsweise
dazu, dass ein Mensch mit einer Maschine interagieren kann, oder auch, dass ein Wertebereich
Uberwacht wird und ggf. ein Alarm ausgeldst wird.

Definition: Eine Anwendung stellt eine Lésung fiir eine Aufgabe bereit. Es ist ein Pro-
gramm, welches eine modellgetriebenen Instanzumgebung oder Dienste nutzt.

Dabei wird nicht ndher spezifiziert, ob sie Teil einer Ausflihrungsumgebung ist (beispielsweise
durch sich nutzende Dienste), ein einzelner Dienst ist oder sogar eine externe Anwendung ist,
die die Instanzumgebung (zur Modell-Reprasentation) nutzt.

2.4.2.1 Dienste - ein Versuch der Erfassung des Begriffes

Aufbauend auf den aktiven Komponenten kann ein Dienst beschrieben werden.

Es wird hier versucht eine allgemeinversténdliche, weitrdumige Definition zu liefern, da der
Begriff selber im Sprachgebrauch nicht konkret festgelegt werden kann. Es gibt in der Literatur
viele, teilweise auch widerspriichliche Definitionen des Begriffes ,Dienst‘ oder ,Service". Der
Begriff leitet sich dabei aus ,Dienst-orientierten Architektur® von OASIS [26] ab, wo der Begriff
jedoch nicht scharf definiert wird.

Definition: Ein Dienst ist eine in sich abgeschlossene, logische Einheit. Er wird auf einem
Gerdét instanziiert oder ,,deployed“. Er ist in dieser Arbeit eine aktive Komponente, die eine
Schnittstelle anbietet. Zum Aufruf der Dienst-Schnittstelle wird zusétzlich die Adresse des
Dienstes, also die Adresse der aktiven Komponente benétigt.

Es existiert immerhin ein nicht-scharfes, allgemeines Verstandnis von einem Dienst:

28

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

Verteiltes System Eine Dienst-orientierte Architektur adressiert immer ein verteiltes System.
Es kann sich auch bestehend aus mehreren Programmen auf einem Gerét befinden. Es
wird immer Uber eine zu Grunde liegende Kommunikationsstruktur zwischen unterschied-
lichen physikalischen Geraten gesprochen oder eine solche als Basis definiert. Ein Dienst
ist dabei ein Teil einer Gesamtfunktionalitat eines Geréates.

Keine unterschiedliche Bezeichnung fiir Klassen und Instanzen Im Gegensatz zu der Ob-
jekt-Orientierung wird bei Diensten zwischen der Beschreibung des Dienstes und seiner
Instanz im Wortlaut nicht unterschieden. Es ergibt sich aus dem Kontext, ob es sich um
eine Instanz eines Dienstes, die dann auch eine Adresse hat, gesprochen wird, oder um
eine ,Dienst-Klasse*, die ggf. instanziiert werden kann.

Interner Zustand Dienste kénnen einen internen Zustand haben und bieten durch die Me-
thoden Zugriffs- und Manipulationsméglichkeiten fir diesen Zustand und die verwalteten
Daten.

Ausfiihrungsumgebung / Container Ein Dienst selber basiert auf einer Ausfihrungsumge-
bung, die von der konkreten Hardware des Gerates abstrahiert. Dieses ist notwendig, um
einen Dienst auf unterschiedlichen Geraten deployen zu kénnen.

Gegenseitiger Aufruf Dienste kdnnen sich gegenseitig aufrufen. Hierdurch kénnen, durch die
Verschaltung von Diensten mit einfachen Funktionen, insgesamt héherwertige Funktio-
nen dargestellt werden.

Klassen von Diensten In Abbildung 2.8 wird versucht eine Klassifikation der unterschiedli-
chen Versténdnisse von Diensten darzustellen. Im Wesentlichen gibt es hierbei drei Klassen

Schnittstellen-
Dienste

Funktions-
Dienste

Datenzugriffs-
Dienste

Abbildung 2.8: Versuch der Klassifizierung der Verstindnisse zum Begriff ,,Dienst*.

von Diensten, wobei diese Klassen aufeinander aufbauen.

Die speziellste Klasse wird dabei Schnittstellen-Dienste genannt. Bei allen Verstéandnissen des
Wortes ,Dienst” wird immer eine Aussage Uber Schnittstellen getroffen. Sie sind elementarer
Bestandteil vor dem Hintergrund der Dienst-orientierten Architekturen.

29

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

Definition: Unter einer Dienst-Schnittstelle wird die Aufruf-/Riickgabestruktur verstan-
den. Hierbei handelt es sich fiir einen Dienst um Aufrufparameter und ggf. das Antwortver-
halten. Wenn (iber eine konkrete Instanz eines Dienstes gesprochen wird, beinhaltet die
Schnittstelle zusétzlich die Adresse.

Es existieren véllig unterschiedliche Vorstellungen, wie Schnittstellen zu spezifizieren sind.
Beispielsweise bestehen WebServices meistens neben ihrer XML-basierten Kommunikation
aus Schnittstellen-Spezifikationen in der WSDL-Sprache [31], die es ermdglicht WebServices-
Aufrufe zu generieren und Antworten auszuwerten, also die syntaktischen Schnittstellenbe-
schreibung.

Als Vorlaufer der WebServices kdnnen die Remote-Procedure-Calls (RFC 5322 [18]) gesehen
werden. Auch hier existiert eine Schnittstellensprache, die jedoch zur Laufzeit nicht mehr ge-
nutzt wird. Der Gedanke hinter den RPCs war jedoch weniger die Dienst-Orientierung sondern
eher einfache Methoden, wie sie oben beschrieben sind, tiber Netzwerk erreichbar zu machen.
Im heutigen Sinne handelt es sich hierbei jedoch um einen Schnittstellen-Dienst. ©

Eine Ubergeordnete Klasse der Schnittstellen-Dienste wird als Funktions-Dienste bezeichnet.
Hierbei wird nicht nur Uber eine Schnittstelle gesprochen, sondern auch Uber die zu erbringen-
de Funktion. Durch den internen Zustand eines Dienstes sind die Aufrufe nicht zwangsweise
unabhé&ngig voneinander.

Beispielsweise kann hier ein Inkrementierungs-Dienst gesehen werden: Bei jedem Aufruf gibt
er einen erhoéhten Wert zurlick. Aber auch ein Archivierungs-Dienst kann hierunter fallen. Er
stellt eine besondere Schnittstelle zu einem permanenten Datenspeicher dar und schreibt bzw.
liest die Daten von dort.

Eine weitere Klasse der Dienste sind die Datenzugriffs-Dienste. Hierbei wird neben der Schnitt-
stellenbeschreibung und der Funktion auch eine Aussage Uber die zu verwaltenden Daten ge-
macht. Datenzugriffs-Dienste teilen sich eine gemeinsame Datenbasis und bieten bestimmte
Operationen auf dieser Datenbasis an.

So existieren beispielsweise Dienste in OPC-UA, um Daten abzufragen oder zu verandern.
Alle manipulierten Daten der Dienste liegen dabei in dem einen OPC-UA Server, also der
Instanzumgebung oder in dem Modell-Raum.

Orchestrierung & Choreographie: Dynamische Anwendungen Dienste kdnnen, wie oben
beschrieben, sich untereinander aufrufen. Da viele Dienste existieren, existieren auch unter-
schiedliche Méglichkeiten des Ablaufs von Dienstaufrufen. Die Betrachtung dieser Méglich-
keiten wird als Orchestrierung bezeichnet. Der konkrete Ablauf eines Vorgangs von Dienst-
Aufrufen hingegen als Choreographie. In der IT-Welt existieren fir beide Begriffe entsprechende
Sprachen, die die Mdglichkeiten weitestgehend beschreiben. Eine bekannte Orchestrierungs-
sprache ist WS-BPEL [21] zu nennen. Fir die Choreographie ist WS-CDL [33] ein Beispiel.

Eine Komponente, welche einen Remote-Procedure-Call anbietet, ist im Sinne dieser Arbeit eine aktive Komponente. Der
im spiteren Verlauf vorgestellte Zustand einer solchen verhindert den Aufruf einer RPC, wenn der Dienst nicht bereit ist.

30

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

An dieser Stelle gibt es einige Arbeiten wie [Pel03], die versuchen die Begriffe im direkten Ver-
gleich zu unterscheiden. Im allgemeinen Sprachgebrauch kann man aber nicht davon ausge-
hen, dass die Begriffe trennscharf verwendet werden, sodass von der allgemeinsten Annahme
ausgegangen werden muss.

Definition: Eine Verschaltung von Diensten beschreibt insgesamt eine (Dienst-
orientierte) Anwendung.

Um eine Verschaltung zu erreichen, missen Dienste verwaltet werden; es muss also Kompo-
nenten geben, die Wissen liber die Instanzen von Diensten verwalten. Diese mlssen abfragbar
sein.

Ein weiterer wichtiger Punkt ist die Beschreibung der Dienste: Eine einfache, untypisierte Lis-
te der Adressen von Diensten ist nicht zielfihrend. Fragen nach dem Typ von Dienst sollten
gestellt werden. Diese Aufgaben Ubernehmen Technologien, wie das Yellow-Paging. Hierbei
werden (in Anlehnung an ein Branchen-Telefonbuch) die Dienste inkl. ihrer Typen verwaltet.
Im einfacheren Fall ist das Wissen naturlichsprachlich hinterlegt, sodass Menschen (manuell)
die Verschaltung vornehmen. Sinnvoller erscheint, dass das Wissen Maschi-nen-auswertbar
abgelegt wird. Nicht immer wird dabei eine reine Typ-Information ausreichend sein.

Herausforderungen Unabhéngig von dem konkreten Verstandnis von einem Dienst existie-
ren Herausforderungen, die eine Dienst-Orientierung adressieren muss. In vielen (Forschungs-
)Projekten sind immer wieder neue Konzepte fur die Realisierung von Diensten fir die Auto-
matisierung entstanden. Hauptaufgabe ist dabei die Definition der Schnittstellen zwischen den
Diensten. Dieses Problem ist auch heute noch ungelést. So gibt es vielfach tragfahige Aus-
fihrungsumgebungen fiir Dienste, die konkrete Umsetzung der automatisierungstechnischen
Funktionen bleibt aber aus.

Dazu ist insbesondere zu beriicksichtigen, dass dieses Problem nicht ganzheitlich geldst wer-
den kann: Wahrend Gerate auf den héheren Ebenen ausreichend Ressourcen bereitstellen,
um beispielsweise auch Grammatiken zu verwalten und eine Uberpriifung der Eingaben und
Ausgaben vorzunehmen, stehen diese Ressourcen naher am Prozess nicht zur Verfligung.
Weiterhin ist die einfachere Integration von Geraten zwar wiinschenswert, wird von der Indus-
trie jedoch nur soweit unterstitzt, wie es die eigenen Produkte nicht angreift. Die standardisierte
Austauschbarkeit von Software und Hardware durch standardisierte Schnittstellen wiirde aber
eine Austauschbarkeit ermdglichen, die Alleinstellungsmerkmale verhindert.

Mit diesen und anderen Argumenten ist eine Dienst-orientierte Architektur als Basis fir die
Automatisierung vom Feldgerat bis zur ERP Ebene nur schwer zu realisieren.

2.4.3 Existierende Ausfiihrungsumgebungen fiir Dienste

Fur Dienste aus der klassischen Informationstechnik gibt es unterschiedliche Ausfiihrungsum-
gebungen; dort meist als ,Container” bezeichnet. Sie versuchen einem Entwickler von Diensten

31

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

umfangreiche Aufgaben abzunehmen und gleichzeitig eine Schnittstelle bereitzustellen, sodass
sich der Entwickler auf seine eigentliche Aufgabe konzentrieren kann.

Zu den Ublichen Aufgaben, die von einer solchen Ausfihrungsumgebung Gbernommen werden,
zahlen insbesondere:

Hardware-Abstraktion Durch ein unterlagertes Betriebssystem sowie die Ausflihrungsumge-
bung wird eine Abstraktion von der Hardware geschaffen.

Kommunikation Es werden Kommunikations-Mittel bereitgestellt, die auf einfachste Weise
genutzt werden kdénnen. So werden Datenverbindungen verwaltet. Eintreffende Daten
werden durch einfache Methodenaufrufe an den Code eines Entwicklers weitergereicht.

(De)Installations-Management Es wird eine einfache Méglichkeit bereitgestellt, einen Dienst
zu installieren und anzubieten. Hierzu zahlt auch, dass unterschiedliche Dienste verwaltet
werden.

Erkundungsfunktion Die installierten Dienste kénnen von auBBen gefunden, erkannt und an-
gesprochen werden.

Am verbreitetsten sind die Servlet-Container, die eine Ausfiihrungsumgebung flir Java-Klassen
bereitstellen. Als Beispiel fir eine solche Ausflihrungsumgebung sei hier der ,Apache Jakarta
Tomcat Server“ [tom] genannt. Im Sinne der vorangegangenen Dienst-Definition handelst es
sich also um einen Funktions-Dienst.

Im Gegensatz zu der oben beschriebenen Ausfiihrungsumgebung fiir Modelle werden in einem
Servlet-Container die Dienste jedoch gegeneinander abgeschottet. Das Ziel ist nicht gemeinsa-
me Operationen auf Daten anzubieten, sondern vielmehr unabhangig voneinander die gleichen
Ressourcen zu nutzen.

2.4.4 Aspekte von Anwendungen, Diensten und Apps

Zuvor sind die Begriffe der Anwendung und des Dienstes definiert worden. Die aktuell auf-
kommende Bezeichnung von Programmen als Apps (z.B. [ZGPU12]) stammt aus dem ,Mobile-
Bereich®, also von Smartphones und Tablets.

Im Endeffekt kombiniert eine ,App“ einige Aspekte von Anwendungen, aber auch von Diens-
ten. Ein endgultiges Verstandnis, was eine App ist, ist derzeit nicht zu finden. So fehlt auch
eine konkrete Definition. Unterschiedliche Arbeitsbereiche und Anbieter stellen verschiedene
Aspekte in den Vordergrund.

Apps setzen das Thema der Einfachheit gezielt um. Sie sind fiir den Endkunden-Markt entwi-
ckelt, wo Nicht-IT-Experten Apps erwerben und nutzen. Die Anwendungen in der Automatisie-
rung werden von Experten ihrer jeweiligen Doméne entwickelt, jedoch von Domé&nen-fremden
angewendet. Somit bieten die Prinzipien der Apps auch Mdglichkeiten fir die Automatisie-
rungstechnik.

32

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

Im Rahmen dieser Arbeit sind einige wichtige Parallelen und Unterschiede zwischen Anwen-
dungen, Diensten und Apps zu sehen.

Verzicht auf Konfiguration zur Inbetriebnahme Eine Anwendung auf einem klassischen Be-
triebssystem wird durch eine Installation auf dem Gerét betriebsbereit gestellt. Wahrend der
Installation bestimmt der Nutzer gewisse Auspragungen der Anwendung - vom Installationsort
auf der Festplatte bis zum Installationsumfang von optionalen Teilen der Anwendung.

Jede Ausfiihrungsumgebung fiir Dienste bietet im Gegensatz dazu eine Konfigurations-freie
Installations-Mdglichkeit von Diensten. Je nach Realisierung werden unterschiedliche Mecha-
nismen bereitgestellt, jedoch wird zur Installation eines Dienstes letztendlich immer nur eine
Datei bendtigt. Diese enthalt neben dem eigentlichen auszufiihrenden Programm-Code auch
entsprechende Meta-Informationen, die zur Installation nétig sind. Bei der Installation ist somit
keinerlei zusétzliche Information nétig.

Apps stellen ebenso die Konfigurations-freie Installation bereit. Hierzu ist jedoch eine abso-
lut einheitliche Ausflihrungsumgebung und Ressourcenbereitstellung auf allen Geraten nétig,
welches nur durch eine starke Standardisierung oder Monopolstruktur (Ein Betriebssystem-
Anbieter eines Smartphones definiert die Umgebung und Ressourcen zusammen mit dem
Umgang mit den Ressourcen) realisiert werden kann.

Verzicht auf Kommunikation untereinander Anwendungen kommunizieren im urspringli-
chen Sinne nicht untereinander. Es gibt jedoch Mechanismen um dieses zu ermdglichen. Sie
werden im klassischen Umfeld jedoch wenig genutzt. Wenige Kommunikations-Standards zwi-
schen Anwendungen haben es zu einer weitreichenden Verbreitung gebracht und viele diese
Standards sind auf Netzwerk-Ebene definiert, d.h. sie sind gleichzeitig fiir die Kommunikation
zwischen Systemen konzipiert. Beispielsweise sei hier COM / DCOM von Microsoft genannt.

Mit dem Begriff Dienst im Rahmen der Dienst-orientierten Architekturen wird verstanden, dass
alleinstehende Komponenten auch untereinander direkt kommunizieren kénnen. Die Orche-
strierung, also die Verknilpfung von Diensten zu komplexeren Programmen, ist ein wesentli-
cher Bestandteil dieser Architektur.

Hierfir missen Schnittstellen spezifiziert werden und diese Spezifikation wird auf Sender- wie
auch Empfangerseite bei der Programmierung umgesetzt.

Viele Projekte zur Standardisierung beschaftigen sich ausschlieBlich mit der Definition von
Schnittstellen. Zum Teil geschieht dies sogar auf Meta-Ebenen. Als Beispiel sei hier das WS-
RF genannt, welches einen asynchronen Aufruf von WebServices definiert. Erst auf WS-RF
aufbauend werden dann konkrete Nachrichten definiert.

Im Gegensatz zu Diensten interagieren Apps nicht (oder kaum) miteinander. Sie sind aus dieser
Sicht eher traditionelle Anwendungen. Dieser bewusste Verzicht auf Schnittstellen stellt einen
wesentlichen Erfolgsfaktor dar. Ein Entwickler programmiert gegen Schnittstellen des Betriebs-
systems, welche von einem Hersteller bereitgestellt werden. Fur unterschiedliche Versionen
eines Betriebssystems gibt es so auch entsprechende Dokumentation ber die Unterschiede.

33

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

Verzicht auf spezifische Schnittstellen Wie bereits geschrieben kommunizieren Anwendun-
gen nicht direkt untereinander. Durch die unterlagerte Schicht sind jedoch indirekte Kommu-
nikationsformen vorgegeben, die genutzt werden. Die erfolgreichsten sind der gegenseitige
Aufruf von Anwendungen oder der Austausch von Nutzerdaten. Es handelt sich also um gene-
rische Schnittstellen.

Im Gegensatz dazu verfolgen Dienste das Konzept der spezifischen Schnittstellen. Fiir jede
Interaktion von Diensten kann und wird eine eigene Sprache definiert und verwendet.

Im Bereich der Apps werden nun neue, generische Formen durch Betriebssysteme eingefiihrt,
die eine Kommunikation zwischen den Apps direkt ermdglichen, sich dabei jedoch auf einfachs-
te Formen beschranken.

Hier seien die Intents’ (vgl. Kapitel 4.3.7) genannt. Der Beispiel-Intent url-open: http: //www.
plt.rwth-aachen.de sorgt dafir, dass alle installierten Apps, die eine URL 6ffnen kdnnen
(also beispielsweise alle Browser) die Moglichkeit haben, den Intent zu bearbeiten.

Auf diese Weise erfolgt eine komplette Entkopplung der Apps. Eine direkte Interaktion ist tech-
nisch zwar meist méglich, wird aber in den seltensten Fallen genutzt. Dieses ist gleichzeitig eine
der Hauptunterschiede zwischen den sogenannten Apps von modernen Betriebssystemen und
den Dienst-orientierten Architekturen.

Verzicht auf Verteilung Anwendungen sind von sich aus nicht-verteilt. Dienst-orientier-te Ar-
chitekturen definieren sich Uber die Verschaltung (Orchestrierung) von einzelnen Dienst-In-
stanzen. Ein wesentlicher Aspekt der entsprechenden Ausflihrungsumgebung geht deswegen
immer in Richtung ,Discovery” (Auffinden von Diensten) und Verwaltung der Dienste.

Bei einer Ausflihrungsumgebung fiir Apps entféllt dieser wesentliche Aspekt. Apps sind unab-
héngig voneinander ausfiihrbar. Sie basieren einzig und allein auf der Ausflihrungsumgebung
und ihren Fahigkeiten. Wenn eine Fahigkeit durch die Plattform nicht gegeben ist (beispiels-
weise veraltete Version), wird die App schon nicht zur Installation angeboten. Apps enthalten
hierfur eine Meta-Beschreibung von ihren Anforderungen.

Apps selber kommunizieren somit auch ausschlieBlich mit festgelegten, expliziten Servern bei-
spielsweise Cloud-Anbieter im Internet. Eine Verteilung auf unterschiedliche Gerate aus Ska-
lierungsgriinden erfolgt fiir Apps transparent und intern von den Cloud-Anbietern.

Fazit der Aspekte Alle Aspekte zeigen, dass Einfachheit der Schliissel zum Erfolg ist. Dienste
ohne ihre komplexen Aufruf- und Verteilungs-Mechanismen entsprechen im Wesentlichen den
Apps, wie sie heute weit verbreitet sind. Auch Anwendungen ohne |hren Installationsaufwand
und ohne ihre Hardware-Abhéangigkeit kdnnen als Apps angesehen werden.

Die im spateren beschriebenen, konkreten Dienste integrieren den Gedanken des Verzichtes
auf komplexe Mechanismen ohne ihn zu verbieten. Denn flr einzelne Probleme kann es immer
sinnvoll sein, eine Ausnahme von der angestrebten Einfachheit vorzuziehen.

"Namensgebung aus dem Android Betriebssystem

34

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2.5 Verteilte Systeme

2.4.5 Existierende Ausfiihrungsumgebungen fiir Modelle und Dienste

Die schon zuvor referenzierten Systeme OPC-UA und ACPLT sind nicht nur Instanzumgebun-
gen fir Modelle sondern auch Ausfiihrungssysteme mit einigen Besonderheiten.

ACPLT/OV Die Objektverwaltung von ACPLT bietet eine Instanzumgebung fiir Modelle. Model-
le kbnnen geladen und wieder entladen werden. Die Selbstbeschreibung ist in vollem Umfang
vorhanden. Von jedem Objekt kann also erkundet werden, von welcher Klasse es instanziiert
wurde und ebenso wie die Klassen untereinander vererbt sind.

Methoden-Aufrufe selber sind in ACPLT/OV nur innerhalb des Systems erlaubt. Da aber Va-
riablen-Werte gesetzt werden kdnnen, kann hierliber ein interner Methoden-Aufruf initiiert wer-
den. Somit entfallen die Schnittstellenbeschreibungen bzw. diese werden vom System nicht
unterstitzt.

Die Ausfiihrungsumgebung fiir ACPLT/OV ist prinzipiell erweiterbar, jedoch der normalen Be-
triebsart einer SPS nachempfunden. Nach einer Registrierung kénnen Objekte sich zyklisch
aufrufen lassen. Eine Scheduling-Komponente tibernimmt dabei die Aufgabe der Verwaltung.

OPC - Unified Architecture Die Spezifikation von OPC-UA bietet durch ,Programs” (Part 10)
eine Ausfiihrungsumgebung fir Modelle. Sie verlésst sich aktuell auf die Betriebssystem-Mittel.
Es findet keine Abstraktion hiervon statt. Da OPC-UA jedoch aktuell hauptséachlich als Schnitt-
stelle zu unterlagerten Systemen (wie einer SPS) verstanden wird, ist diese Funktion meistens
in das unterlagerte System ausgelagert - und Eigenschaften der Ausflihrung sind in OPC-UA
nur eingegrenzt abgebildet.

2.5 Verteilte Systeme

In vielen Bereichen finden sich verteilte Systeme. Insbesondere in der Informationstechnik ha-
ben sich dabei Bereiche gebildet, die grundsatzlich mit der Aufgabenstellung Ahnlichkeiten
besitzen. Insbesondere zu nennen sind hier das ,Grid-Computing“ und die aktuellen Themen
des ,Cloud-Computing“. Ihnen ist jedoch gemein, dass sie nicht die Verknipfung von struktu-
rierten Daten oder sogar Modellen adressieren. Wahrend das Grid-Computing ganz klassisch
im Bereich der Dienst-orientierten Architekturen Schnittstellen definiert um eine Interoperabi-
litdt zu schaffen, steht beim Cloud-Computing eher die Anwendung zum Anwender im Fokus.
Diese soll immer verfligbar und hochgradig skalierbar sein.

In der Automatisierungstechnik ist aus verschiedenen Griinden der Einsatz solch hoch-dyna-
mischer Systeme bisher nicht erfolgt. Die Dynamik des Internet mit permanent hinzukommen-
den und wegfallenden Teilnehmern, mit unterschiedlichen Kommunikationswegen der gleichen
Teilnehmer und mit einem hohen Datenaufkommen zu unterschiedlichen Zielen sind Anforde-
rungen, die in einer Produktionsanlage in der Auspragung aktuell nicht zu sehen sind.

35

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriftsklirung

Bisher ist es in der Automatisierungstechnik nicht Ublich, dass existierende Systeme ausge-
hende, eigenstédndige Kommunikation mit anderen, gleichartigen Systemen aufnehmen. Die
Kommunikation erfolgt im Sinne der Automatisierungspyramide immer von oben nach unten, in
seltenen Fallen auch innerhalb einer Ebene. Insbesondere OPC-UA bietet zwar Konzepte, um
dieses aufzuweichen, jedoch wird es in realen Anlagen meist eher - wie auch traditionelles OPC
- als zentrale Sammelstelle fiir Daten einer (Teil-)Anlage eingesetzt. Es stellt also beispielswei-
se mittels der realisierten Modelle bestimmte Prozesswerte bereit, die ein OPC-UA-Server aus
dem Feld bzw. den Steuerungen aggregiert hat. Diese werden dann von Uberlagerten Syste-
men abgeholt. OPC-UA und der Modell-Raum stehen hierbei eher als Interoperabilitdts-Schicht
zwischen Herstellern.

Die Verteilung von Modellen auf unterschiedliche Geréte ist in der Automatisierungstechnik
hingegen bisher nicht adressiert. Sie wird auch in keinen existierenden Instanzumgebungen
unterstutzt.

Das aufkommende Thema ,BigData“ - der Analyse von groBen Datenmengen - kénnte fir
Modelle und ihren Einsatz in der Realitat in vielen Fachbereichen einen Fortschritt liefern. Da
bei dem Thema insbesondere Daten im Fokus stehen, die nicht in Modellen abgelegt sind, ist
es denkbar, dass die Modelle als Annotationen fiir die unstrukturierten Daten dienen.

Hintergrund:

Selbst, wenn die eigentliche Kommunikationsrichtung umgekehrt ist (z.B. SPS benétigt
Qualitatsdaten uber ein Produktionsgut aus dem MES System), wird davon nicht abge-
wichen: Die SPS stellt eine Anfrage als Variablen-Werte im OPC-UA-Server bereit und
das MES-System ,pollt“, ob eine Anfrage vorliegt und stellt die benétigten Informationen
in einer anderen Variable bereit.

Um dieses Problem zu adressieren, bieten die Hersteller unterschiedliche, proprietare L6-
sungen an. Eine standardisierte Losung durch eine ausgehende Kommunikation von einer
SPS ist nicht vorgesehen.

Die von der PLCopen und OPC Foundation spezifizierten OPC-UA-
Kommunikationsbausteine erméglichen dieses ineffiziente Verhalten umzudrehen:
Per Methoden-Aufruf wird zu dem Zeitpunkt, wenn die SPS die Werte bendtigt, ei-
ne Funktion auf MES-Ebene angestoBenen und direkt die benétigten Informationen
abgefragt.

36

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

3 Analyse der Anforderungen

Perfektion ist nicht dann erreicht, wenn man nichts mehr hinzufiigen,
sondern wenn man nichts mehr weglassen kann.
Antoine de Saint-Exupéry

Die aufgezeigten Aspekte der derzeitigen Automatisierungstechnik und insbesondere des En-
gineerings bergen erhebliche Entwicklungspotenziale. Ausgehend von Erfahrungen an die zu
unterstiitzenden Modelle wie auch die vorhandenen Instanzumgebungen (Kapitel 2.4.5) wer-
den zusatzliche Anforderungen an die zu formulierende, verteilte und modellgestutzte Ausflh-
rungsumgebung gestellt.

3.1 Ergédnzende Anforderungen an Gerate und Umgebung

In Bezug auf die Hard- und Software gelten gleiche Voraussetzungen, wie fiir die vorgestellten
Ausgangssysteme ACPLT und OPC-UA.

Es missen Rechenkapazitaten bereitstehen, die dynamisch genutzt werden kdnnen, um die
eintreffenden Dienst-Aufrufe sowohl an die Anwendungen wie auch die Instanzumgebung ab-
zuarbeiten. Arbeitsspeicher muss bereitstehen, um die Modelle und ihre Informationen vorzu-
halten. Fir die Kommunikation im verteilten System miissen entsprechende Ressourcen be-
reitstehen. Alle diese Ressourcen werden fur die Konzepte vorausgesetzt, da sie sich an das
unterlagerte System richten.

3.2 Ergdnzende Anforderungen an Meta-Modell und
Instanzumgebung

Von unterschiedlicher Hardware- oder Software-Basis, die unterschiedliche Anforderungen an
Realisierungen (wie z.B. Programmiersprachen oder APIs) stellt, wird an dieser Stelle abstra-
hiert. Die jeweilige Implementierung entscheidet tiber die konkreten Moglichkeiten.

Wie schon fir die Ausgangssysteme gilt, dass ein Meta-Modell bereitgestellt werden muss.
Entsprechende Instantziierungs-Vorgange und Abfragen (Dienste) miissen existieren.

37

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

3 Analyse der Anforderungen

Komponenten sollen zur Laufzeit nachgeladen werden kénnen. Damit ergibt sich ein Art Biblio-
theks-Konzept, welches hinzufiigen und entfernen von Bibliotheken ermdglicht. Entsprechende
Dienste zur Manipulation der existierenden Komponenten sind dementsprechend zu definieren.
Hierdurch kénnen Modelle geladen / entladen werden.

Hintergrund:

OPC-UA bietet hierfir weder in der Spezifikation Konzepte noch in der Stack-
Implementierung eine Lésung. Ein Server muss immer angehalten und wieder gestar-
tet werden um eine Anderung an den Bibliotheken vorzunehmen. Bei ACPLT/OV ist das
Bibliotheks-Nachladen eine Standard-Funktion, die sowohl programmtechnisch wie auch
manuell genutzt wird.

Wichtig sind Relationen Uber Grenzen von Geraten hinweg. Im Idealfall bietet das System
sowohl zur Erkundung, wie auch zu Anderung von Relationen transparente Mechanismen,
sodass das Gerét, welches die Informationen selber speichert, unerheblich fir den Zugriff ist.
Diese Eigenschaft sollte im Meta-Modell abgebildet sein, um eine transparente Verteilung zu
erreichen.

Die Komponenten - also Instanzen von Objekten mit allen ihren Eigenschaften - sollten migriert
werden kénnen. Dieses ist wichtig, wenn sich eine Anderung in der Anlage ergeben hat, so-
dass eine Reorganisation sinnvoll ist. Die Relationen der Objekte werden dabei beibehalten.
Wichtige Eigenschaften gerade hierbei sind die Nachvollziehbarkeit und Atomitat, sodass zwi-
schenzeitlich inkonsistente Zustande vermieden werden oder die Nutzung in diesem Zeitraum
verhindert wird. Hierfir kénnen die AKID-Eigenschaften (Atomitat, Konsistenz, Isolation und
Dauerhaftigkeit; vergleiche [HR01]) herangezogen werden.

Gleichzeitig sind die AKID-Eigenschaften wichtiger Bestandteil fiir den kollaborativen Zugriff,
also den Zugriff von mehreren Anwendungen zu konkurrierenden Zeitpunkten.

Hintergrund:

Die Entwicklungen im Bereich der foéderierten und verteilten Datenbanken haben auch
Konzepte der AKID-Eigenschaften fir verteilte Systeme beschrieben. Diese kdnnen hier
zur Anwendung kommen. Eine gute Ubersicht bietet [Con97].

Es erscheint sinnvoll, in einer Instanzumgebung sowohl die Ablaufe (Programme, Anwendun-
gen), wie auch die ,passiven“ Modelle zu verwalten. Dabei nutzen nur die Abldufe die zeitliche
Ausfihrungsmadglichkeiten. Durch eine technologisch einheitliche Basis fiir passive Modelle
und Ablaufe wird ein Zugriff einfacher und letztendlich auch effizienter sein. Trotzdem ist es
selbstverstandlich mdglich, dass externe Komponenten, durch die Zugriffsmechanismen mit
den Modell-Instanzen kommunizieren.

Anforderung ist also im Idealfall die beiden Arten von Objekten - namlich passive Reprasenta-
tionen und aktive Komponenten - in einer gemeinsamen Ausfihrungsumgebung zu beheima-
ten.

38

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

3.3 Erginzende Anforderungen an die Kommunikation

Ein wichtiger Aspekt um eine sinnvolle Verteilung automatisiert zu erreichen, ist die Ressour-
cenverwaltung. Durch die Quantifizierung und den Vergleich von vorhandenen Ressourcen las-
sen sich Rlckschliisse ziehen, wie eine Verteilung auszusehen hat.

Die Verteilung kann jedoch auch nach statischen Regeln erfolgen, die weniger an der Gerate-
Auslastung sondern an anderen Merkmalen festgemacht wird. Beispielsweise kénnen bestimm-
te Modelle im Instanzsystem genau dort abgelegt werden, wo ihre entsprechende Anwendung
hauptséchlich ausgefiihrt wird.

In [ME11] wird ein entsprechendes Ressourcenmodelle vorgestellt, welches auf diese Instan-
zumgebung angewendet werden kann.

3.3 Erganzende Anforderungen an die Kommunikation

Die Kommunikation ist fir ein verteiltes System die entscheidende Komponente. Vorausset-
zung fur die Erfillung aller Funktionen ist eine bidirektionale Kommunikation - im Normalfall
also ein Netzwerk, welches eine Kommunikation zwischen den Systemen ermdglicht. Fir ent-
sprechende Basisdienste zum Hinzufligen und Entfernen der Modelle kann die NAMUR Emp-
fehlung 139 [20] herangezogen werden. Sie wird in Kapitel 4.3 ausflhrlicher besprochen.

Ein wichtiger Punkt bei der Ubertragung zwischen Geréten ist die semantisch definierte Uber-
tragung von Datentypen. Eine Zahl sollte also beim Empfénger wieder als Zahl kodiert sein und
dieses sollte durch das Kommunikationssystem sichergestellt werden. Dabei ist zu gewahr-
leisten, dass nicht nur atomare Datentypen (Zahlen, Zeichenketten, ...) zu Ubertragen sind,
sondern auch komplexe Datentypen (Strukturen oder fest definierte Reihen von Datentypen).

Hintergrund:

ACPLT stellt derzeit nur konzeptuell Datenstrukturen bereit, die der Nutzer definieren und
atomar Ubertragen kann. OPC-UA kennt entsprechende Konstrukte. Gutes Beispiel sind
hier die Methoden-Aufrufe, die dazu verwendet werden kénnen einen Datensatz en-Block
zu Ubertragen, zu verarbeiten und eine entsprechende Antwort zu liefern.

Hintergrund:

Ausgangspunkt fir die Reprasentation ist in unterschiedlichen Anséatzen eine Beschrei-
bung in Form einer XML Grammatik. Das zu Ubertragene XML Dokument stellt dann
einen komplexen Datentypen dar. Die Ubertragung selber erfolgt nicht zwangslaufig in
XML. OPC-UA hat beispielsweise eine optimierte Binardarstellung definiert, die auch im
Normalfall verwendet wird.

Damit eine Kommunikation erfolgen kann, muss ein Kommunikationsmedium gegeben sein.
Als Voraussetzung an das unterlagerte System wird davon ausgegangen, dass alle Teilnehmer
untereinander direkt kommunizieren kénnen, d.h. eine ,Vollvermaschung® der Teilnehmer auf
logischer Ebene wird vorausgesetzt. Sobald ein einheitliches Netzwerk verfugbar ist, ist diese
Bedingung erfullt.

39

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

3 Analyse der Anforderungen

Damit die Komponenten und Anwendungen in einem verteilten System die Lokalitat des Kom-
munikations-Zieles nicht beriicksichtigen missen, soll eine transparente Kommunikation gege-
ben sein. Explizit gilt hierfir, dass eine Kommunikation zu einer lokalen Komponente mit den
gleichen Mitteln zu erfolgen hat, wie eine zu einer Entfernten. Zusétzlich kénnen auch Kom-
munikationsmittel bereitgestellt werden, die nicht transparent sind - beispielsweise nur lokal
zugreifbar sind.

Das Kommunikationsmedium sollte nach Méglichkeit eine Empfangsgarantie bieten. Dabei wird
sichergestellt, dass eine gesendete Nachricht auch bei der Empfangskomponente angekom-
men ist, d.h. dass zum einen das Zielgerét erreichbar ist und zum anderen die Ziel-Komponente
existiert. Ist dieses nicht der Fall, bekommt der Sender eine entsprechende Fehlermeldung. Die
Empfangsgarantie sagt jedoch nichts Uber die Verarbeitung bzw. den Verarbeitungszeitpunkt
aus.

Eine dem Kommunikations-Medium Uberlagerte Schicht kann hier durch eine zusétzliche Quit-
tierung eine solche Empfangsgarantie fir die Kommunikation anbieten, wenn sie benétigt wird.
Bietet das Kommunikations-Medium von sich aus jedoch schon eine Empfangsgarantie, sollte
diese unbedingt genutzt werden.

Auch wenn die Ressourcenverwaltung in dieser Arbeit nicht im Fokus steht, sei insbesonde-
re auf die Herausforderungen der Laufzeiten in Bezug auf die Kommunikation, also das Ant-
wortverhalten, hingewiesen. Diese missen in einem Ressourcenmodell ggf. reprasentiert und
bericksichtigt werden.

Die Instanzumgebung sollte Kommunikation zwischen Geraten grundsétzlich nutzen, um Infor-
mationen Uber den Zustand des Kommunikationspartners zu erfahren. Auf diese Weise kann
ggf. eine explizite Uberwachung indirekt erreicht werden.

3.3.1 Einheitliche, allgemeine Adressierung

Eine weitere, wichtige Anforderung im Bereich der Kommunikation ist die Adressierung. Unter
Adressierung wird verstanden, die Partner einer Kommunikation festzulegen. Wichtig ist dabei
in jedem Fall, dass die Partner eindeutig identifiziert werden kénnen.

Eigentlich ist die Adressierung damit eine Identifizierung, d.h. in erster Linie deutet eine unter-
schiedliche Adresse auf unterschiedliche Kommunikationspartner hin. Erst in zweiter Linie ist
eine Adresse ein Mittel, um Kommunikation an diesen Kommunikationspartner zu richten.

Durch die unterschiedlichen Kommunikations-Medien wird deutlich, dass es auch unterschiedli-
che Adressierungsarten gibt. Dabei ist wichtig, dass Anwendungen, die auf einer Ausfihrungs-
umgebung aufbauen, eine Adresse durchaus als atomares Datenkonstrukt handhaben kénne,
d.h. es betrachtet die interne Struktur einer Adresse nicht. Damit muss die Anwendung kei-
ne Kenntnisse um das Kommunikations-Medium haben, welches die Realisierung einer trans-
parenten Kommunikation Uber unterschiedliche Medien férdert. Daraus folgt direkt, dass die
Anwendungen entkoppelt sind von dem Medium, lber das sie kommunizieren. Wichtig ist wei-

40

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

3.4 Bezug der Anforderungen

terhin, dass Adressen unterschieden werden kénnen. Wenn eine entsprechende einheitliche
Reprasentation definiert wurde, missen auch innerhalb des Kommunikationssystems Kompo-
nenten lediglich Wissen Uber einzelne Teile haben.

Zu beachten ist, dass die Adressierung nichts mit den Formen der Kommunikation (unicast,
multicast oder broadcast - vgl. Kapitel 2.3.2) zu tun hat. Adressierung dient ausschlielich
dem Identifizieren des Kommunikationspartners sowie dem Kommunikations-Aufbau durch das
unterliegende Medium.

Somit ist es aus Sicht der Anwendungen erstrebenswert, ein Medien-Ubergreifende, einheitli-
ches Adressierungs-Schema zu haben, Uber dessen internen (je nach Medium unterschiedli-
chen) Aufbau eine Anwendung keine Informationen haben muss.

3.4 Bezug der Anforderungen

Die beschriebenen Anforderungen sind nicht gleichberechtigt nebeneinander zu sehen. Die
Anforderungen werden in zwei Weisen in einen Bezug gesetzt. Dieses wird in der Tabelle 3.4
dargestellt.

Zum einen wird ein Bezugspunkt beschrieben. Hierunter wird verstanden, ob die Anforderung
an das unterlagerte System gestellt wird oder an das System, wie es in den folgenden Kapi-
teln beschrieben wird. Zum anderen wird eine Gewichtung vorgenommen. Dazu werden drei
Prioritatsklassen definiert:

Voraussetzung (kurz: V) Eine solche Anforderung ist unerlasslich, damit ein entsprechendes
System realisiert werden kann.

Optional (kurz: O) Eine solche Anforderung ist nicht unerlésslich, wiirde aber zu erheblichen
EinbuBen in dem Funktionsumfang flhren, wenn sie nicht vorhanden ist.

Zusatz (kurz: Z) Eine solche Anforderung ist grundsatzlich verzichtbar, jedoch erméglicht sie

weitergehende Verwendung oder einfachere Handhabung.

Bezugspunkt = Gewichtung
Gerate und Umgebung:

Rechenkapazitaten unterlagert \Y
Arbeitsspeicher unterlagert \
Kommunikation unterlagert \
Meta-Modell und Instanzumgebung:

Meta-Modell unterlagert \"
Nachladbarkeit unterlagert (0]
System-Ubergreifende Relation hier \
Migration von Objekten hier 4
Aktive Komponenten unterlagert / hier o}
Verwaltung der Ressourcen hier O

41

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

3 Analyse der Anforderungen

Bezugspunkt Gewichtung
Kommunikation:

Vollvermaschung unterlagert "
(Basis-)Datentypen unterlagert '
Komplexe Datentypen unterlagert O
Transparente Kommunikation hier \
Empfangsgarantie unterlagert (0]
Antwortverhalten hier z
Uberwachung hier z
Adressierung der Systeme unterlagert \Y

3.5 Nachvollziehbarkeit und Verstandlichkeit

Eine wichtige Anforderung, die durch viele Aspekte beeintrachtigt wird, ist die Nachvollziehbar-
keit.

Hierunter mlssen zwei wesentliche Aspekte verstanden werden. Zum einen ist eine theoreti-
sche Nachvollziehbarkeit zu nennen. Das System darf daflr keine Reaktionen zuféllig treffen.
Zusammen mit einer Protokollierung aller Anderungen und Ereignisse ist das Verhalten des
Systems nachvollziehbar oder deterministisch.

Es bietet sich an fur Entwicklung, Engineering und Betrieb unterschiedliche Ebenen der Proto-
kollierung einzufiihren.

Allerdings wird gerade in einem verteilten System eine solche theoretische Nachvollziehbarkeit
schnell durch die Nutzer nicht anerkannt, da sie nicht mehr den Eindruck haben, das Sys-
tem verstehen zu kdnnen. Es sollte also darauf geachtet werden, dass zusatzlich die Reaktio-
nen verstandlich sind. Ein Nutzer, der eine Anderung beobachtet oder auch initiiert, sollte die
Reaktionen im System also erahnen und verstehen kdnnen, ohne dass dafiir Protokolle und
ahnliches zu lesen sind.

Insgesamt kann man also sagen, dass die Versténdlichkeit wichtig ist fir die Akzeptanz des
Gesamtsystems. Die Nachvollziehbarkeit jedoch ist fir die Entwicklung wichtig und ggf. auch
um Zulassungsaspekte zu erreichen.

42

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fir dynamische, verteilte
Systemstrukturen

Nutzen Sie das Wissen und Entwickeln Sie Systeme mit Stolz und
Leidenschaft.
Maik Pfingsten, http://www.zukunftsarchitekten-podcast.de

In diesem Kapitel werden Konzepte fir (Meta-)Modelle, deren Verteilung und Verwaltung vor-
gestellt. Der Fokus dieses Kapitels liegt dabei auf den Konzepten der Systemstruktur und ins-
besondere deren Reprasentationen; nicht auf den Schnittstellen- und Komponenten-Beschrei-
bungen. Das folgende Kapitel 5 beschreibt Basis-Komponenten, die zur Verwaltung einer ver-
teilten, modellgetriebenen Instanzumgebung nétig sind, sodass sich eine System-Architektur
ergibt.

Dabei verdeutlicht ein Modell der AT-Gerate-Struktur als Beispiel, wie die Konzepte anzuwen-
den sind. Dieses einfach gehaltene Modell wird eingangs beschrieben. Anzumerken ist da-
bei, dass dieses Modell auch von der Instanzumgebung selber verwendet wird, da es eine
Kommunikations-Struktur der adressierbaren, automatisierungstechnischen Geréate reprasen-
tiert.

Somit verdeutlicht das Beispiel zum einen die vorgestellten Konzepte, zum anderen wird es
durch die in Kapitel 5 beschriebenen Basis-Komponenten genutzt und ist damit selber Be-
standteil der Instanzumgebung.

4.1 Beispiel-Modell: AT-Gerate-Struktur

Als automatisierungstechnische Geréte einer Anlage werden die Geréate verstanden, die ins-
gesamt die Steuerung der Anlage Ubernehmen, d.h. diese Geréte reichen von den Sensoren
und Aktoren, die direkt in den Prozess eingreifen, Uiber die Automatisierungsstationen (SPS)
und entsprechende Engineering-Systeme bis zu den MES- und Asset-Management-Geraten.

Eine modellgetriebene Instanzumgebung bendtigt dieses Modell der AT-Gerate-Struktur, um
Aussagen Uber Geréate abbildbar zu machen. Dieses wird erreicht, indem Relationen von an-
deren Modellen zu Geréaten dieses Modells erstellt werden. Gleichzeitig werden intern die ent-
sprechenden Informationen des Modells benétigt; beispielsweise zur Modellierung von Kom-
munikationsverbindungen oder zur Darstellung der Komponenten-Verteilung.

43

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Reale-WeIﬂ Informations-Welt

“a (Gerate-Reprasentation

;l Kommunikations-Adresse ‘

Abbildung 4.1: Vereinfachte Modellierung des AT-Gerite-Struktur Modells

Wie in der Abbildung 4.1 verdeutlicht, wird jedes Gerat, welches im Sinne des Konzeptes an-
sprechbar sein soll, als eine Instanz der Gerate-Reprasentation dargestellt. Als einziger Para-
meter wird die Kommunikations-Adresse modelliert. Sie reicht aus, um das Geréat selber ein-
deutig zu identifizieren.

Die hierdurch abgebildeten Gerate kénnen durch weitere in der Instanzumgebung genutzte
Modelle in Bezug gesetzt werden.

4.1.1 Erweiterung: Routing

Sollte keine Vollvermaschung der Kommunikation (vgl. Anforderungen in Kapitel 3.3) vorliegen,
kann eine Ergénzung erfolgen.

In realen Anlagen existiert eine Vielzahl von unterschiedlichen Kommunikations-Medien. Eine
Menge von auf dem Markt erhéltlichen Kopplern oder Gateways zwischen den Kommunikati-
ons-Medien verdeutlicht diese Heterogenitat.

Um diese Gegebenheit zu adressieren und gleichzeitig die Machtigkeit der modellgetriebe-
nen Instanzumgebung zu verdeutlichen, kann das AT-Geratemodell durch eine route nach-
Relation erweitert werden. Wenn hierdurch die Gateway Komponenten erfasst und entspre-
chend in Relation gesetzt werden, kann ein zu realisierender Routing-Algorithmus als Teil einer
Kommunikations-Komponente auch tiber Gateways hinweg eine Kommunikation herstellen.

4.2 Abbildung der Realitit: Reprasentationen im Modell

Wie in Kapitel 2.1 beschrieben, bilden Modelle Teile der Realitat ab. Hierdurch wird klar, dass
zu jeder Komponente, aber auch zu jeder Aufgabe / jedem Vorgang aus der Realitat eine Mog-
lichkeit geschaffen werden kann, um diese in dem Modell zu reprasentieren. Diese Teilung in
passive und aktive Reprasentationen wird angewendet, weil sie grundséatzlicher Natur ist: Wah-
rend die abgebildete Struktur ,nur” als (passive) Objekte in Modellen existieren und fiir andere
zugreifbar / &nderbar sind, sind abzubildende Aufgaben als Anwendungen zu modellieren, die
somit die Verhaltensstruktur darstellen. Hierbei handelt es sich also um zeitliche Ablaufe. Die
kénnen lediglich abgebildet sein, also als weitere passive Objekte im Modell-Raum existieren.

44

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realitit: Reprisentationen im Modell

Struktur; Verhaltensstruktur
(passive Komponenten): (aktive Komponenten)

iy =]
N &' Realitat
"""""" abbiden | § " abbiiden Représentation
Modelle <52, = ©® Anwendungen
instanziieren l l installieren
Instanzumgebung Ausflihrungsumgebung

verteilen / verkniipfen verteilen / verknlpfen

]]
=1 =i

Gerate

[

Abbildung 4.2: Realitit von Komponenten und Ausfiithrungen auf Geriten

Weiterfuhrend ist es jedoch, wenn es sich um aktive Komponenten handelt, die entweder auf
Anderungen hin reagieren oder auch pro-aktiv handeln kénnen. Abbildung 4.2 stellt beide Ar-
ten gegentiber.

Diese Teilung von Struktur und Verhalten entspricht dem gewohnten Prinzip der Programmie-
rung. Zum Vergleich: SPSen auf Basis von IEC 61131-3 verdndern durch ihre programmierte
Steuerung (aktives Element) Prozessabbilder von Ein- und Ausgangen (passives Element), die
in jedem Zyklus gelesen und geschrieben werden. Programme in der IT (aktive Elemente) ar-
beiten haufig auf Datensatzen (passive Elemente). Auch im Software-Engineering erkennt man
diese Teilung beispielsweise am Modell-View-Controller Entwurfsmuster (siehe [Bal08]).

In Kapitel 2.4 wurde bereits dargestellt, dass flr eine Verwendung der Modelle eine Instanzum-
gebung sinnvoll ist. Hier werden die Objekte, aber auch die zugehdérigen Modell-Informationen
(Klassen) zugreifbar. Als Erweiterung soll eine Ausflilhrungsumgebung existieren - optional als
Bestandteil der Instanzumgebung - die auch zeitliche Ablaufe, wie die Anwendungen, zulasst.

Definition: In der Informations-Welt existieren passive Komponenten. Sie représentie-
ren Informationen der realen Welt, nehmen aber selber keine Anderungen an dieser oder
den Informationen in der Instanzumgebung vor. Im Normalfall werden passive Kompo-
nenten der Informations-Welt durch Modelle in ihrer Form und Abhdngigkeit beschrieben.
Entsprechende Instanzen werden in der Instanzumgebung verwaltet und kénnen dort
durch entsprechende Schnittstellen abgefragt und verédndert werden.

Definition: Aktive Komponenten gehdren zu der Ausfihrungs-Welt. Hier werden Aufga-
ben, die in der Anlage zu vollbringen sind, durch Anwendungen abgebildet. Diese Anwen-
dungen kénnen in einer zu beschriebenen Ausfiihrungsumgebung installiert werden.
Die Ausfiihrungsumgebung bestimmt einen Ort der Ausfiihrung indem eine Verteilung auf
den Geréten verwaltet wird.

45

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

’ Komponente & ‘

passive &

Struktur Komponente

Struktur + Verhalten Komponente

aktive o) & Zustands &
’ maschine

Abbildung 4.3: Modell der passiven und aktiven Komponenten
Diese beiden Umgebungen nutzen schlussendlich Ressourcen auf den bereitstehenden Gera-
ten sowie die Kommunikations-Medien zwischen den Geraten.

Als Anschluss an existierende Begriffe wird in Abbildung 4.3 verdeutlicht, dass aktive und pas-
sive Komponenten beides Spezialisierung einer Komponente sind.

. Komponenten .
’ Zustandsmaschine @‘ extern intern
T T -
angeforderter
’ Zustand ‘ Zustand <=

Abbildung 4.4: Grundlagen der Zustandsmaschine einer aktiven Komponente

Aktive Komponenten besitzen grundsétzlich eine Zustandsmaschine (Abbildung 4.4. Damit wird
das Verhalten' selbst zu einem erkund- und &nderbaren Strukturmodell. Ein solches Prinzip ist
flr passive Komponenten nicht wichtig, jedoch kann ein Zustand (keine Zustandsmaschine!)
zur Repréasentation auch erforderlich sein.

Eine Besonderheit gilt fir Programme, die auBerhalb der Ausfilhrungsumgebung laufen: Sie
kénnen eine Reprasentation einer aktiven Komponente besitzen um am Gesamtsystem teil-
zunehmen. Dabei sind sie selbst fiir die Synchronitat der Zustandsmaschine (und weiterer
Informationen) verantwortlich.

4.2.1 Zustandsmaschine fiir aktive Komponenten

Da aktive Komponenten im Sinne der vorangegangenen Definition einen Ablauf haben, beinhal-
ten sie auch einen sich verandernden Zustand. Dieser wird in der Reprasentation abgebildet,
sodass er im Laufzeitmodell erkundbar ist. Insbesondere ist ein solcher Zustand wichtig bei der
Instanziierung. Eine Komponente hat so beispielsweise die Méglichkeit, wahrend des Instan-
ziierungsvorgangs schon erkundbar aber nicht ansprechbar zu sein. In dieser Phase kénnen
beispielsweise Relationen aufgebaut werden oder Kommunikationspartner gefunden werden.

!Soweit es in der Zustandsmaschine abgebildet ist, denn der eigentliche ausgefiihrte Programmcode ist hierdurch nicht repri-
sentiert.

46

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realitit: Reprisentationen im Modell

| 1
[lade][Tentlade]

[aktiviere][deaktiviere]

Abbildung 4.5: Beispiel einer einfachen Zustandsmaschine fiir die Interaktion mit der Ausfithrungsum-
gebung

Danach werden z.B. minimale Zustandsmaschinen fur Dienste definiert, sodass die Ausfih-
rungsumgebung sich dieser Zustande, z.B. zur Migration von Diensten, bedienen kann.

Als Basis werden in einer Zustandsmaschine zwei Typen von Zustédnden gesehen: Zustdnde
und angeforderte Zustidnde. Durch diese Ubergangszustande werden die Ubergange zwischen
den Zusténden zeitlos. Ein Zugriff von auBBerhalb der Komponente kann die Zustandsmaschine
nur in einen angeforderten Zustand bringen, worauf die Komponente folglich reagieren sollte
und den zugehdrigen ,Zustand“ schlussendlich erreichen sollte. Die Komponente selber hinge-
gen kann nur Ubergénge zu einem Zustand vollziehen. Abbildung 4.4 verdeutlicht dieses.

Zustandsmaschine fiir aktive Komponenten und die Interaktion mit der Ausfiihrungsum-
gebung Die Granularitdt mit der der Zustand abgebildet wird, hangt von der Komponente und
dem Anwendungsfall ab. An dieser Stelle wird ein allgemeines Zustandsmodell beschrieben.
Je nach Auspragung des Gesamtsystems sind dabei einige Zustande nicht sinnvoll realisierbar,
welches im Folgenden beschrieben wird. Hierdurch wird verdeutlicht, welche Voraussetzungen
zum einen an die Entwicklung der aktiven Komponente, wie auch an die Ausfihrungsumge-
bung gestellt werden.

Die Instanziierung einer aktiven Komponente kann als /aden bezeichnet werden. Hiernach be-
findet sich die Komponente erst mal in einem angehaltenen Zustand, womit sie ,lediglich” die
Eigenschaften einer passiven Komponente hat. Sie kann von anderen Komponenten als aktive
Komponente erst genutzt werden, wenn sie durch den Befehl aktivieren in den aktiven Zustand
gebracht wird. Beim Laden kdnnen also einmalige Initialisierungsvorgange vorgenommen wer-
den - beispielsweise Ressourcen-Allokation. Beim Aktivieren werden hingegen wiederkehren-
de Initialisierungsvorgénge wie Verbindungsaufbauten vorgenommen. Durch den deaktivieren
Befehl begibt sich die Komponente wieder in den gleichen Zustand wie nach dem /aden und
kann von hier aus auch entladen werden, sodass sie nicht weiter existiert. Abbildung 4.5 ver-
anschaulicht die Zustande mit den entsprechenden Ubergangen.

Dieses Modell ist auf die wesentlichen Aspekte, die zum Realisieren von Dynamik benétigt
werden, begrenzt. Es stellt somit eine einfache Méglichkeit dar, die typischen Lebenszyklen
mit den Anforderungen abzudecken. Es ist jedoch nicht als allumfassendes Zustandsmodell

47

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

gedacht. Wenn die Zusténde selber als Klassen modelliert werden, kdnnen spezialisierte Zu-
standsmaschinen durch Vererbung geschaffen werden indem abgeleitete Klassen eine interne
(feinere) Zustandsmaschine besitzen. So kann die Ausflihrungsumgebung lediglich die gene-
rischen, hier beschriebenen Zustande kennen; intern kdnnen jedoch feiner granulierte Ablaufe
modelliert werden.

Hintergrund:

Ein ahnliches Modell (speziell fir Funktionsbausteine in verteilten Systemen) ist in der
IEC61499 Part1 [6] definiert.

In OPC-UA sind solche Zustandsmodelle allgemein abbildbar. Dabei wird durch OPC-
UA ein allgemeines Meta-Modell bereitgestellt, in dem Zustande und Ubergénge definiert
werden. Ein solches konkretes Zustandsmodell kann an beliebige Objekte, vornehmlich
+LOPC-UA Programs® (Part 10 von [9]) angehangen werden, um den Verlauf abzubilden.

4.2.2 Die Komponenten-Reprasentation

In vorangegangenen Kapiteln wurde bereits die Abbildung der physikalischen, automatisie-
rungstechnischen Geréte in einem Modell erlautert. An dieser Stelle wird eine allgemeine Re-
prasentation fir Komponenten beschrieben, da eine Reprasentation nicht nur fiir Komponenten
der realen Welt von Vorteil ist. Genauso werden auch Reprasentationen fiir aktive und auch
passive Komponenten benétigt.

Reale- oder Informations—WeIﬂ Informations-Welt

Komponente%:‘ Komponenten &3
& : Reprasentation

N
..eé\.\\@
&
&
[
Name:STRING
ID Version
«{ :Zustand
HerstellerID ‘ Haupt-Nummer
TypelD ‘ Unter-Nummer
Aktualitat: TIME
key |value|-

-

Annotationsliste

Abbildung 4.6: Detailaufbau einer Reprisentation

48

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realitit: Reprisentationen im Modell

Elemente einer Komponenten-Reprasentation In Abbildung 4.6 ist die Struktur einer allge-
meinen Komponenten-Reprasentation veranschaulicht. Es handelt sich also selber um eine
passive Komponente, die alle statischen oder dynamischen Daten, die einer realen Kompo-
nente zugehdrig sind, hélt und so einheitlich zugreifbar macht.

Dabei bietet eine Reprasentation immer eine ID. Eine ID ist vom Versténdnis her eine UUID im
Sinne von [30], also eine systemweit (ggf. sogar weltweit) eindeutige Identifikations-Mdglichkeit
fur ein konkretes Gerat. Sie wird hier als Struktur aus drei Teilen - jeweils als String abbildbar -
aufgebaut. Eine Hersteller-ID sorgt dafiir, dass Hersteller von Komponenten identifiziert werden
kénnen und gleichzeitig auch, dass sie unabhéngig voneinander ihre IDs verwalten kénnen.
Ferner gibt es eine TypelD, die unterschiedliche Geratetypen festlegt. Dabei spezifiziert der
Hersteller eine ggf. interne Struktur des Typs und auch die Semantik, die in dieser Struktur
liegt. SchlieBlich ergibt eine Serien-Nummer die Moglichkeit, Instanzen gleichen Typs eindeutig
zu identifizieren.

Hintergrund:
Das Prinzip einer solchen strukturierten Identifikations-Mdoglichkeit ist weit verbreitet - Bei-
spiele sind die USB-Spezifikation oder ISOBUS (ISO11783, [8]).

Versionen kénnen ebenfalls strukturiert werden. Eine Hauptnummer gibt dabei die eigentliche
Version an, eine Unterversion in erster Linie die Strukturierung in einer Produktreihe. Dazu
wird hier verlangt, dass gleiche Unterversionen auch technisch kompatible, d.h. vor allem aqui-
valente Versionen bezeichnen. Um prinzipiell unterschiedliche, jedoch aquivalente Versionen
auseinander zu halten kann eine Build-Nummer als dritter Teil hinzugezogen werden.

Hintergrund:
Ahnlich wird es in Quellcode-Verwaltungssystemen oder auch fiir Software-Produkte all-
gemein gehandhabt.

Um auch einen sprechenden Namen fiir eine Komponente angeben zu kénnen, ist ein Feld Na-
me vorgesehen. Als wichtig wird erachtet, dass dieses Datum nicht als Referenz dient, sondern
nur der visuellen Darstellung fir menschliche Nutzer. Als Referenz dient insgesamt hingegen
die Adresse 2.

Hintergrund:

Entsprechend hat jede Node in OPC-UA einen Displaynamen definiert, welcher fur Anzei-
gen (auch internationalisiert) bereitsteht. Fur die Referenzierung wird eine Nodeld genutzt,
welche eine Node eindeutig in einem Server identifiziert.

Mitteils einer ID kénnen Komponenten identifiziert, aber nicht adressiert (d.h. angesprochen) werden. Es miisste zusitzlich
der ,.Speicherort” der ID gesucht werden. Eine Adresse liefert beides. Der Typ der Adresse hidngt vom Instanzsystem ab.
Laut Anforderung miissen dort Instanzen zu identifizieren sein. Das Prinzip der EPRs im spiteren Kapitel 4.3.1 stellt eine
Moglichkeit der Strukturierung dar.

49

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Der Zustand einer Reprasentation stellt den eigentlichen Zustand einer Komponente dar; ist
hier jedoch nur ein Datenfeld.

In den spater abgeleiteten Klassen der Komponenten-Reprasentation wird auf spezifische
Uberlagerungen dieses generischen Prinzips hingewiesen.

4.2.3 Unspezifizierte, flexible Annotationen fiir Reprasentationen

Einer der wichtigsten Teile einer Komponenten-Reprasentation ist seine Annotations-Liste (Ab-
bildung 4.7), um zuséatzliche Daten - allgemein und dynamisch - von den Komponenten bei
deren Reprasentation ablegen zu kénnen.

passive &

Komponente grafische Darstellung:

key |value|:

Annotationsliste

’ Objekt ‘ ’ Annotationsliste

Annotation Erweiterungsmaglichkeit:
Spezifische Klassen von

Wert: String Annotation

Abbildung 4.7: Liste von Annotationen zu einer Komponente - grafisch vereinfacht als Schliissel-Wert-
Tabelle

Dieses kann auf konzeptueller Ebene mit den Stereotypen von UML (vgl. UML-Profile in [25])
verglichen werden. Anwendungen annotieren Komponenten also an ihrer Komponenten-Re-
prasentation und ordnen ihnen so Eigenschaften zu. Diese sind veranderlich und dynamisch
zur Laufzeit.

Diese Annotationen werden dabei allgemein als Schlissel-Wert-Paar reprasentiert, welche ge-
sammelt als Liste von der Komponenten-Reprasentation im Modell (vgl. Kapitel 4.2.3) verwaltet
und abgelegt werden, sodass sie dort zugreifbar sind.

Hintergrund:

Die Idee fiir diese Liste ist abgeleitet aus den Headern nach der RFC 5322 ,Internet Mes-
sage Format” [18], wie sie unter anderem auch fiir Mails verwendet werden.

Hier werden einige verpflichtende, einige freiwillige Schlissel mit ihren Bedeutungen flr
den Mail-Versand definiert. Beispiel-Schliissel sind From, To oder auch Reply-To, die ent-
sprechende eMail-Adressen darstellen. Auf der anderen Seite sind alle Mail-Systeme
berechtigt, neue Schliissel-Wert-Paare in den Mail-Header einzufiigen. Dieses passiert
beispielsweise durch Spam-Erkennungs-Systeme. Der Empfanger einer Nachricht muss
demzufolge wissen, mit welchem Spam-Erkennungs-System seine Mails untersucht wur-
den.

50

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realitit: Reprisentationen im Modell

Durch eine Klasse Annotation, deren Instanzen den Namen des Schlissels tragen und ei-
ne Variable Wert haben, wird eine minimale Basis-Eigenschaft definiert. Hiervon kénnen sich
die Anwendungen, die Annotationen hinzufligen, eigene Annotations-Klassen ableiten, die zu-
satzliche, Wert-Reprasentationen oder auch mehrere Werte unter einem Schliissel ablegen.
Daraus folgt also, dass jede Anwendung seine eigenen Annotations-Formate sowie Semantik
fur die Interpretation der ablegten Eintrage in der Annotations-Liste mit sich bringt.

Beim Zugriff gilt ein kooperativer Ansatz, d.h. Komponenten sollten keine Werte Uberschrei-
ben, die sie nicht selber angelegt haben. Ebenso sollten nicht weiter gepflegte Werte geldéscht
werden. Man kann, wenn auch konzeptuell nicht notwendigerweise, den schreibenden Zugriff
beschranken.

So kdnnen beispielsweise Gerateeigenschaften, die in einer solchen Liste abgelegt werden,
nachtraglich mit Informationen angereichert werden, die ein Gerat von Haus aus nicht Uber
sich eintragen kann. So kann ein Betriebsstundenzahler installiert werden, der kontinuierlich
als Annotation der Gerate-Reprasentation den Zeitraum des Betriebes unter einem vom Be-
triebsstundenzéhler-Dienst definierten Schliissel anhangt.

Auch kdnnen komplexe Erweiterungen wie Schnittstellenbeschreibungen von Diensten hier hin-
terlegt werden.

Vorteile der Annotationen Die Annotations-Liste stellt also eine zentrale Sammelstelle fir
Annotationen zu einer Komponente dar, die von unterschiedlichen anderen Komponenten zu-
geschrieben werden. Traditionell wirde man dieses als interne Datenhaltung der anderen Kom-
ponenten verstehen, sodass jede Komponente seinen eigenen Daten-Raum schafft und in sich
verwaltet.

Im Gegensatz zu einer internen Datenhaltung der Komponenten bietet dieser zentrale Ablage-
Punkt von Annotationen mehrere Vorteile:

Zum einen kénnen andere Komponenten hier ihre zu der Komponente gehérenden Annotatio-
nen ablegen, ohne selber eine Liste der Komponenten verwalten zu missen.

Zum anderen werden die Annotationen in einem semi-formalen Format abgelegt und sind all-
gemein zuganglich, wobei ohne das Wissen lber die Semantik der Schliissel, die Werte nicht
sinnvoll ausgewertet werden kénnen. Auf diese Weise werden Annotationen von ,fremden*®
Komponenten einfach ignoriert. Etwas anders sieht es aus, wenn eine Anwendung den Inhalt
einem Menschen reprasentiert. Dieser kann direkt dem Schlissel eine Semantik und damit
eine (vermutete) Bedeutung zuordnen.

Welche Daten als Annotation; welche als Datenfelder (abgeleitete Klassen) modellie-
ren? Prinzipiell kdnnten auch die Elemente wie ID, Version, Aktualitat, EPR und Name einer
Komponenten-Représentation als Annotations-Element abgelegt werden.

51

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

; Instanzumgebung passive &
: Komponente
Komponentens=»
Reprasentation
=
Q
s ; -
% | Reprasentiert durch\| Geréate =o
e : Repréasentation
Geréte
= i .
g akti ©|_ | Reprasentiert durch\| aktive Komp. @»
- Komponente : Représentation
s 2.B. Ablaufe!
= H
g H
5 passive & | Reprasentiert durch\| passive Komp.&<9e
b= Komponente : Repréasentation

z.B. Modell-Beschreibungen

ggf. Instanzumgebung

Abbildung 4.8: Konzept der Trennung von Komponenten und ihren allgemeinen Haushaltsdaten

Da es sich hierbei aber um grundsétzliche Elemente handelt, die jede Komponente als Repra-
sentation haben sollte, werden diese nicht in der Annotations-Liste hinterlegt. In dieser sind
also ausschlieBlich Daten erfasst, die aus Sicht der Komponenten-Repréasentation optionale
Informationen enthalten.

4.2.4 Unterschiedliche Komponenten-Reprasentationen

Das Prinzip der Reprasentationen l&asst sich konsequent auf Komponenten im Allgemeinen an-
wenden, wie in Abbildung 4.8 dargestellt: Sowohl ein Gerat (etwas aus der realen Welt), wie
auch aktive und passive Komponenten innerhalb der Modell-Landschaft besitzen eine Repréa-
sentation. Teilweise fallt die Reprasentation mit der eigentlichen Komponente zusammen, da
hierdurch weniger Verwaltungsaufwand entsteht.

Es ist jedoch auch mdglich die Komponente und ihre Repréasentation zu trennen. Hierdurch
wird es zum einen méglich, externe Komponente zu erkunden oder auch zu interagieren. Bei-
spielsweise hat eine externe Anwendung eine Reprasentation und kann damit gefunden und
genutzt werden. Zum anderen unterstliitzen separate Reprasentationen auch eine Verteilung
des Modell-Landschaft auf unterschiedliche Gerate.

So wird es mdglich, Relationen zwischen Modellen und den Komponenten darzustellen. Dabei
spielt es keine Rolle, ob eine Komponenten-Reprasentation eine Reprasentation fiir eine aktive
Software-Komponente (z.B. Anwendung oder Dienst), ein Gerét oder eine passive Software-
Komponente, wie ein Modell, darstellt.

Damit eine Zuordnung der Komponenten-Représentation gegeben sein kann, wird die Relation
reprdsentiert_durch definiert. Sie zeigt von der eigentlichen Komponente auf ihre Reprasenta-

52

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realitit: Reprisentationen im Modell

tion. Somit ist eine eindeutige Zuordnung zwischen der Komponente und ihrer Reprasentation
gegeben. Selbstverstandlich ist eine solche Relation nur realisierbar, wenn sowohl die Re-
prasentation als auch die eigentliche Komponente auf einer gemeinsamen Instanzumgebung
aufbauen.

Eine der wichtigen Eigenschaften dieser Représentation ist, dass sie alle Eigenschaften und
Informationen Uber eine Komponente modelliert, ohne die Komponente selber zu sein. Eine
Repréasentation kann also z.B. auch entfernt verwaltet werden.

Ein weiterer Anwendungsfall ist eine Représentations-Kopie, die alle Eigenschaften der Re-
prasentation spiegelt - z.B. aus Performancegrinden. Um die Aktualitét vermerken zu kénnen,
verflgen die Reprasentations-Kopien Uber das Datenfeld Aktualitdt, in welchem der Zeitpunkt
der letzten Aktualisierung hinterlegt wird.

4.2.5 Beispiel: AT-Gerate-Struktur als Komponenten-Reprasentation

Das AT-Gerate-Struktur-Modell basiert auf einer Reprasentation von Geraten im Modell-Raum,
ist also selber ein Beispiel fur diese Reprasentationen. Fir die Verwendung des Modells zur

Komponenten &3
Repréasentation
/\

Geréate =
Reprasentation

Reale-Welt

Abbildung 4.9: Das AT-Gerite-Struktur-Modell auf Basis der Trennung von Informationswelt und Rea-
litat

Laufzeit, wie sie genauer im spateren Kapitel beschrieben ist, wird jedem Geréat eine Instanz
der Geréate-Repréasentation Self (Abbildung 4.9) zugeordnet. Dieses Objekt reprasentiert damit
die Eigenschaften des Gerates. Primar stellt es, wie zuvor beschrieben, die Kommunikations-
Adresse dar. Aber auch ein Status, der durch die Oberklasse Komponenten-Reprasentation
vorhanden ist, kann hier den allgemeinen Betriebszustand abbilden.

Werden aus anderen Modellen Aussagen Uber dieses Gerat getroffen, kénnen diese durch
entsprechende Relationen oder Annotationen dem Gerat zugeordnet werden, wodurch sie fir
Dritte erkundbar werden.

53

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Als Annotationen kénnte beispielsweise der aktuelle Ressourcenverbrauch der Gerate be-
schrieben werden. Sollten Anwendungen eine Auswahimdglichkeit fir das Deployment haben,
kdnnen sie entsprechend wenig belastete Gerate nutzen.

4.3 Kommunikation im automatisierungstechnischen Kontext

Kommunikation ist das wichtigste Mittel in einem verteilten System. Es aktiv einzusetzen, ist
eine der wichtigsten Grundlagen fur die Automatisierung von Anlagen, basierend auf verteil-
ten Modellen. Deswegen soll an dieser Stelle eine Einordnung der Kommunikationsschichten
vorgenommen werden. Gleichzeitig werden Formen der Kommunikation beschrieben, die auf
Anwendungsebene genutzt werden kénnen. Die Unterschiede werden diskutiert und beschrie-
ben.

Ziel ist es, die unterschiedlichen Eigenschaften der Kommunikation darzustellen. Bei einer Rea-
lisierung miissen die Ahnlichkeiten des Kommunikationssystems (Feldbus / Ethernet) mit den
hier beschriebenen Anforderungen in Einklang gebracht werden.

Anwendungen
, K] 2
) 2 S
. €2 Eel a2
Nachrichten-Typen =~ 3 @ [=:) 52 Intent-
o9 % 2 a2 basierte
=4l 2.2 S hatn
[2)=])= Kommunikation
Kommunikations-Typen singulér Aufruf/Antwort Sub/Not
Kommunikations-Schema nachrichten-orientiert

Kommunikations-
Medien

Abbildung 4.10: Zusammenfassendes Kommunikations-Verstidndnis

In Kapitel 2.3 wurde aufgezeigt, dass es in vielen Bereichen eine mehr oder weniger einheitli-
che Vorstellung von der Kommunikationsstruktur insgesamt gibt. Wie ebenfalls dort beschrie-
ben, ist insbesondere die Mischung des reinen Transports von Kommunikations-Medien mit der
Anwendungsebene kritisch zu sehen, da hierdurch eine Erweiterbarkeit sowie eine unabhangi-
ge Entwicklung von unterschiedlichen Produkten verhindert wird.

Um die unterschiedlichen Aufgaben und Anforderungen der Kommunikation in einer Automa-
tisierung zu adressieren, sind unterschiedliche Bus- und Netzwerksysteme notwendig und Ub-
lich.

Das im Folgenden beschriebene Konzept beriicksichtigt bisherige Arbeiten und versucht gleich-
zeitig die semantischen Ebenen in einer Weise aufzuteilen, dass zukuinftige Entwicklungen sich
klar in die drei Schichten einordnen lassen. Es ist als Uberblick in Abbildung 4.10 dargestellt.

54

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

© &
@@“ w”&
singulare Nachrichten
O Aufruf/Antwort-Nachrichten
SBDI SBD SystemBasisDienst-Nachrichten
sub/not Nachrichten
Intent ment Intent-basierte Kommunikation

lokale Aufrufe

alle Kommunikations-Typen
(unspezifisch)

Abbildung 4.11: Visuelle Darstellung der Kommunikationstypen

Gleichzeitig wird flr die Referenzierung und Adressierung eine einheitliche Adressierungsform
auf Basis der ,EndPointReferences” vorgestellt 3.

Abbildung 4.11 stellt die im Weiteren verwendete grafische Notation dar. Zuséatzlich zu den vier
im Folgenden dargestellten Kommunikations-Typen wird als Sonderfall die lokale Kommunika-
tion dargestellt. Eine allgemeine Notation soll unspezifisch darstellen, dass eine Komponente
grundsétzlich kommunizieren kann.

4.3.1 Referenzierung liber Systemgrenzen hinweg
Die transparente Kommunikation wurde in den Anforderungen in Kapitel 3 formuliert. Ebenso
wurde beschrieben, dass eine einheitliche, allgemeine Adressierung bendtigt wird.

Es ist sinnvoll, ganz allgemein eine Adresse zu definieren, die nicht durch das Kommunikations-
Medium selber beschrieben wird und damit auch nicht von diesem System abhéangig ist.

Durch Medien-spezifische Erweiterungen oder unterschiedliche Nutzung der Datenfelder einer
solchen Adresse wird allen Komponenten im Gesamtsystem eine Handhabung der Adressen
maoglich und das ohne, dass sie sich um den Inhalt einer Adresse kiimmern missen.

Im Gesamtsystem gibt es drei unterschiedliche Arten von Adressen:

Kommunikations-Adresse Adresse (abhangig vom Kommunikations-Medium) um ein Gerat
zu identifizieren. (Beispiel: Ethernet IP Adresse)

Dienst-Adresse Zugriffspunkt auf einen Dienst, oder ein Programm innerhalb eines Gerates.
(Beispiel: Ethernet Port)

3Viele der Aspekte im Folgenden sind #hnlich zu den in Kapitel 2.3 vorgestellten Systemen - es geht in diesem Kapi-
tel also auch um ein einheitliches Verstiandnis, sodass fiir die modellgetriebene Instanzumgebung die Kommunikations-
Anforderungen erortert werden.

55

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Komponenten-Adresse Referenz auf ein Element innerhalb des Dienstes; innerhalb des In-
stanzsystems eine Komponente/Objekt. (Beispiel: Pfad in einer URL, also ,/unterme-
nue/webseite.html*)

Die zuvor beschriebene Adresse soll genau eine Komponente auf einem Gerat identifizieren
kdnnen. Um eine begriffliche Eindeutigkeit zu erreichen, wird flr eine solche Systemweit-
eindeutige Adresse der Begriff EndPointReference (EPR) in Anlehnung an die Spezifikation
in ,WS-Addressing“ genommen: Eine EPR (Abbildung 4.12) beschreibt den Zugriffspunkt auf

Kommunikations
Adresse

End
Point
Reference

Dienst
Adresse

Komponenten-
Adresse

Sender EPR Empfanger EPR

Abbildung 4.12: Verstindnis des grundsitzlichen Aufbaus einer Adresse als End Point Reference

ein Ziel; eine Referenz. Das Ziel kann dabei unterschiedlicher Art sein, wie aus den obigen
Begriffen hervorgeht.

Es kann wichtig sein, dass die Komponenten unterschiedliche Adressen auseinander halten
kénnen, indem sie die Datenfelder der Adresse vergleichen. Unterscheidet sich ein Datenfeld,
sind es im Sinne der Adresse unterschiedliche Referenzen.

Sollte eine Komponente eine EPR zur Kommunikation nutzen, muss diese EPR zu dem Kom-
munikations-Medium passen. Andernfalls sind entsprechende Router-Dienste zu spezifizieren,
die eine Briicke herstellen.

Mapping auf EPRs Eine solche Adressierungsmdglichkeit Gber die Systemgrenzen ist im
Endeffekt neuartig. Jedoch bietet beispielsweise die EPR aus der W3C Empfehlung Web Ser-
vices Addressing [34] eine sinnvolle Ausgangsbasis flir eine Formulierung des allgemeinen
Datensatzes ,Adresse”.

56

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

WebServices sind - wie Eingangs beschrieben - ausschlieBlich auf XML definierte Kommuni-
kationen und Beschreibungen. So sind auch EPRs laut [34] als XML definiert:

<wsa:EndpointReference>
<wsa:Address>xs:anyURI</wsa:Address>
<wsa:ReferenceParameters>xs:any*</wsa:ReferenceParameters> ?
<wsa:Metadata>xs:any*</wsa:Metadata>?
</wsa:EndpointReference>

Dieses heif3t jedoch nicht zwangslaufig, dass auch eine XML-basierte Kodierung verwendet
werden muss. Aus Performance-Griinden kann eine effizientere Reprasentation erfolgen, wie
bereits in der Anforderungs-Phase ausgefiihrt.

Um die oben beschrieben Verkniipfung zu erreichen, erfolgt eine Abbildung der Teile einer
EndPointReference auf die WS-Addressing Definition.

Kommunikations-Adresse <wsa:Address>
Dienst-Adresse <wsa:ReferenceParameters>
Komponenten-Adresse <wsa:Metadata>xs:any*</wsa:Metadata>

Die Kommunikations-Adresse muss dabei durch Ihren Typen xs : anyURT ein Protokoll definie-
ren, welches eindeutig einem Kommunikations-Medium im Sinne von Kapitel 4.3.2 zuzuordnen
ist.

Zutreffend ist auch die Erweiterbarkeit durch @any Elemente z.B. an Stelle des Adress-Ele-
ments. Hierdurch wird sichergestellt, dass die unterschiedlichen Belange der Kommunikati-
ons-Medien auch repréasentiert werden kénnen. Als Beispiel ist hier IP zu nennen, welche
in erster Naherung durch eine Protokollangabe in dem <wsa:Address>-Feld in der Form
http://127.0.0.1 zwar zuldssig ist. Aber sie ist in dem Beispiel nur deswegen eindeutig,
weil implizit von einer TCP/IP Kommunikation ausgegangen wird. Es kann also, falls das Pro-
tokoll http: per UDP verwendet werden soll, eine entsprechende Annotation an der Adresse
vorgenommen werden.

Wichtig ist, dass dieses nur eine Mdéglichkeit ist, eine allgemeine Adressierung darzustellen.
Es wird auch klar, dass in anderen Problemfeldern aquivalente Probleme auf &hnliche Weisen
geldst wurden.

4.3.2 Kommunikations-Medien

Wie im Kapitel 2.3 beschrieben, existiert auf Ebene der Kommunikations-Medien ein Bus- oder
Netzwerk-System, welches sich ausschlieBlich um den Transport der Daten kiimmern sollte.

57

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Hierfir ist auf einem Geréat neben den eigentlich zu transportierenden Daten eine Kommunika-
tions-Adresse flr die Schnittstelle auf dem Geréat befindlicher Komponenten wichtig.

Eine solch minimale Schnittstelle des Kommunikations-Mediums nach oben kann durch ggf.
nétige Parameter zur Echtzeit-Behandlung oder zum Fehlerverhalten optional ergénzt werden.
Diese Erganzungen kénnen durch die aufbauenden Schichten folglich genutzt werden, wenn
sie entsprechende Anforderungen haben.

Technische Details - wie beispielsweise ob die Kommunikation selber Verbindungs-orientiert im
Sinne von TCP realisiert wird oder nicht, werden von dieser Ebene intern gehandhabt?.

Eine Fehlerschnittstelle stellt einen Riickkanal bereit. Dabei kann das Medium eine fehlgeschla-
gene Kommunikation den aufbauenden Komponenten mitteilen.

Nach NE139 [20] sollten die aufbauenden Systeme jedoch auch ohne diesen Riickkanal aus-
kommen, d.h. nur wenn es fiir die Anwendung besonders wichtig ist, ist eine Quittierung des
Empfangs zu realisieren.

4.3.3 Nachrichten-basierte Kommunikation

Bei dieser Ebene handelt es sich eher um eine imagindre Ebene. Im Endeffekt wird sie von allen
Bus- und Netzwerksystemen, die in der Automatisierungstechnik eine Rolle spielen, umgesetzt.

Definition: Eine Nachricht ist ein Datensatz, welcher zu einem Zeitpunkt von einem Sen-
der erzeugt, ggf. durch ein Kommunikations-Medium, versendet wird, um von einem Emp-
fénger verarbeitet zu werden. Als Sender und Empfénger sind in der Modell-Welt Kompo-
nenten zu verstehen.

Weitergehende Vereinbarungen - beispielsweise eine Zuordnung von Anfrage-Nachricht und
Antwort-Nachricht eines Dienstes - erfolgt aufbauend auf Anwendungsebene. Dabei werden
grundsatzlich die Nachrichten unabhéngig voneinander versandt. Dieses begriindet ein asyn-
chrones Verhalten: Es werden sowohl auf Sender-, wie auch auf Empfanger-Seite, keine Res-
sourcen blockiert. Die Systeme laufen ungehindert weiter, bis die eintreffende Antwort verar-
beitet wird.

Hintergrund:
Wie in der NE139 beschrieben, wird jegliche Kommunikation als Nachricht angesehen.
Auch OPC-UA versendet Dienstaufrufe asynchron als Nachricht.

“In der NE139 wird eine Kommunikation immer basierend auf einer Verbindung gesehen. Allerdings handelt es sich dabei
nicht zwangsweise um eine technische Realisierung einer Verbindung im Sinne von Auf-/Abbau einer TCP-Verbindung,
sondern eher um eine ,,Kennen*-Verbindung. Die miteinander kommunizierenden Teilnehmer kennen also gegenseitig ihre
Adressierung.

58

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

Nachricht

Kopf
SenderEPR
EmpfangerEPR
Zeitpunkt
ID

unspezifiziert

Abbildung 4.13: Datenfelder einer Nachricht

Prinzipieller Aufbau einer Nachricht Um eine Vorstellung davon zu bekommen, was eine
Nachricht ist, wird hier eine Beschreibung geliefert. Nicht alle Daten miissen dabei explizit
Ubermittelt werden - vielfach kann beispielsweise durch das Kommunikations-Medium der Ab-
sender einer Nachricht bereitgestellt werden, sodass der Transport diese Daten nicht explizit
zusatzlich notwendig ist.

Eine Nachricht besteht im Wesentlichen aus zwei Teilen, wie auch in Abbildung 4.13 dargestellt:
Einem Kopf und einem Rumpf.

Der Rumpf einer Nachricht enthalt die eigentlichen Nutzdaten. Die Kommunikation Ubertragt
diesen Teil der Nachricht unverdndert. Der Empfanger einer Nachricht spezifiziert das Format;
der Sender muss also dieses Format der Nachricht kennen und beriicksichtigen.

Im Kopf der Nachricht befinden sich folgende Felder:

Sender: EPR Eine EndPointReference auf die Absender-Komponente und damit Ersteller ei-
ner Nachricht.

Empféanger: EPR Eine EndPointReference auf die Empfanger-Komponente einer Nachricht.

Zeitstempel: TIME Zeitstempel des Erstellens. Hierdurch kann der Empfanger Nachrichten
anhand des Eingangs oder des Erstellens abarbeiten.

ID: int Eine Nummerierung der Nachrichten durch den Sender. Auf diese Weise kann der
Empfanger auf eine potenzielle Antwort Bezug nehmen. Der Sender muss seine IDs der
aktuell verschickten Nachrichten zum einen eindeutig halten und zum anderen auch ver-
walten, sodass er einen Bezug zwischen gesendeter Nachricht und einer empfangenen
Antwortnachricht herstellen kann.

Format: int Das Format kodiert die Struktur des Rumpfes auf Anwendungsebene. Die Emp-
fanger-Komponente kann anhand des Formates also erkennen, in welcher Struktur der
Rumpf abgelegt ist. Eine Nutzung der Information auf Transportebene wird nicht vorge-
nommen.

Hintergrund:

Die Teilung von Daten, die zum Transport relevant sind (Kopf), vom fiir die kommunizie-
renden Partner relevanten Daten ist der RFC 5322 “Internet Message Format, [18] nach-
empfunden. Hier hat sich diese strikte Separation bewahrt.

59

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Struktureller Ablauf Eine Nachricht wird von der versendenden Komponente erzeugt. Die-
ses kann als Instanziierung eines Objektes ,Nachricht” im Objekt-orientierten Instanzsystem
erfolgen oder als ,struct” in einer 61131-3-Sprache. Folgend wird die Parametrisierung vorge-
nommen, bevor die Nachricht der Kommunikations-Komponente des sendenden Gerates zum
Versand Ubergeben wird. Nach einer Serialisierung der Nachricht erledigt diese durch Nut-
zung der Kommunikation mit der Ressourcenverwaltung den Transport zum Zielgerat. Hier ist
die lokal vorhandene Kommunikations-Komponente wéahrend des Empfangs in der Lage, die
Existenz der Empfénger-Kompo-nente zu Uberprifen und einen Empfang der Nachricht ggf.
abzulehnen. Der Kommunikationskanal wird also lediglich kurzfristig gebraucht und kann je
nach Transportmedium aufrecht erhalten oder abgebaut werden.

Auf diese Weise bekommt die sendende Komponente mit, dass sowohl das Empfanger-Gerat,
wie auch die Empfanger-Komponente existieren. Die geforderten Eigenschaften der transpa-
renten Kommunikation sowie der Empfangsgarantie sind damit gegeben. Wichtig ist dabei zu
bedenken, dass der Empfang einer Nachricht keine Garantie Uber die Verarbeitung oder Beant-
wortung nach sich zieht. Die Verantwortung und ggf. erforderliche Garantien hierflr sind durch
eine Qualitdtsbeschreibung durch den Anwenderdienst abbildbar, jedoch in dem beschriebe-
nen Nachrichten-basierten Paradigma explizit nicht vorgesehen.

Durch die pro Geréat zentrale Rolle der Kommunikations-Komponente werden mehrere Vortei-
le erschlossen. Zum einen kdnnen die versendeten und empfangenen Nachrichten selber zur
Uberwachung der Gerate genutzt werden, nach dem Gedanken ,Wenn ein Gerat eine Nach-
richt gesendet oder empfangen hat, wird es aktuell erreichbar und aktiv sein“. Zum anderen
ist die Nachrichten-basierte Kommunikation gerade dazu da, eine asynchrone Kommunikati-
on zu ermdglichen. Also ist eine bewusste Toleranz von Verzégerungen auf Anwendungsseite
prinzipiell akzeptabel. Andernfalls wiirde auf eine synchrone Kommunikationsform zurtickge-
griffen werden. Durch die Kommunikations-Komponente kann eine zentrale Komponente den
maximalen Kommunikationsbedarf des Gerates gegeniiber dem Kommunikations-Medium re-
glementieren, sodass die einzelnen Komponenten hiervon genauso entlastet werden, wie von
der Verwaltung der Kommunikation selber.

Status als lokale Variable Das Kommunikations-Medium bietet meistens die Méglichkeit Feh-
ler zu erkennen und zu beheben bzw. bietet einen Rickkanal, wenn das Empfangsgerat nicht
erreichbar ist. Diese Information kann in eine Status-Variable des Nachrichten-Kopfes auf loka-
ler Ebene abgebildet werden.

Hierdurch kann insgesamt eine sendende Komponente mitbekommen, wenn entweder das
Zielgerat nicht erreichbar ist oder die dort adressierte Komponente nicht existent ist.

Die Verarbeitung der empfangenen Nachricht sowie auch der Fehler-Status der zu senden-
den Nachricht ist dabei auf Anwendungsebene zu realisieren, da unterschiedliche Reaktionen
mdglich und sinnvoll sind.

Aus Sicht der Instanzumgebung und des Kommunikationssystems sind insbesondere folgende
Fehlerquellen denkbar

60

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

e Zugriffsverweigerung: Die empfangene Komponente akzeptiert von dem Absender diese
/ alle Nachrichten nicht.

e Ressourcen-Problem: Der Empfanger kann die Anfrage derzeit nicht verarbeiten, da kei-
ne Ressourcen bereitstehen.

e Typ-Verletzung (,Mismatch“): Der Rumpf entspricht nicht dem vom Empfénger spezifizier-
ten Format

Diese Gruppen von Problemen bieten einen Ansatz-Punkt fiir eine allgemein versténdliche
Formulierung von Fehler-Antworten.

Aufbauend auf dieser Nachrichten-basierten ,Denkweise” lassen sich unterschiedliche Typen
fur die Kommunikation beschreiben.

Dienste, die ihre Schnittstellen mittels dieser Typen anbieten, kénnen aufbauend auf den Typen
beschrieben werden. Dabei ist festzustellen, dass flr einige Typen bereits gemeinsame Kon-
zepte vorhanden und in Nutzung sind. Fiir andere Typen scheint die Verwendung eher marginal
zu sein.

Weiterhin ist zu beachten, dass auch diese Typen ggf. durch weitere Typen erweitert werden
konnen. Beispielhaft wird hier der Typ 4: Intent-basierte Kommunikation beschrieben, der eine
weitergehende Entkopplung der kommunizierenden Software-Komponenten beschreibt, in der
Automatisierungstechnik aber noch nicht existent ist.

Unterschiedliche Repréasentationen In dieser Arbeit wird bewusst auf die Abbildung der
Nachrichten in z.B. XML oder eine andere Sprache verzichtet. Eine solche Reprasentation zum
Transport kann zum einen beliebig gewahlt werden. Zum anderen kann sie aber auch durch
das Kommunikations-Medium vorgegeben sein.

Darstellung von Nachrichten-Typ-Definitionen Als Darstellung fir Nachrichten-Typen und
Formate wird folgende Notation vorgeschlagen:

TYP - Nachricht | NAME | PARAMETER
BESCHREIBUNG

Der TYP bezeichnet die (im Folgenden definierten) Typen von Kommunikations-Nachrichten.
Es werden also ggf. mehrere Nachrichten (Anfrage und Antwort) in einer Darstellung beschrie-
ben.

Der NAME ist eine Bezeichnung des Nachrichten-Typs. Er dient lediglich dem besseren Ver-
sténdnis.

Die PARAMETER bezeichnen die Schnittstelle selbst, d.h. die Daten, die dort Gbermittelt wer-
den mussen. Die Darstellung ist vom Kommunikations-Typ abhangig.

Eine BESCHREIBUNG gibt eine Erklarung vom Inhalt der Nachricht.

61

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

4.3.4 Typ 1: singulare Kommunikation

Die einfachste Form der Kommunikation sind Meldungen vom Sender zum Empfanger, ohne
eine Antwort. Diese Form ist auch in der NE139 beschrieben, wird bisher jedoch im AT-Umfeld
nicht genutzt. Wichtig ist, dass die Meldungen hier nicht mit Leitsystem-technischen Meldungen
im Sinne von Melden und Alarmieren verwechselt werden. An dieser Stelle sind Meldungen
eine einfache Einweg-Nachrichten-Ubermittlung.

singulér - Nachricht | NAME | PARAMETER
Diese Mitteilungen werden ohne Antwort dem Empfénger zugestellt. Fehler auf Ebene des
Kommunikations-Mediums werden, soweit feststellbar, mitgeteilt.

Die PARAMETER bezeichnen die Daten, die im Kdrper der Nachricht Gibertragen werden.

4.3.5 Typ 2: Aufruf/Antwort Kommunikation

Diese Form der Kommunikation ist die typische Form flr Dienst-orientierte Architekturen, sowie
auch nahezu alle aktuellen Kommunikationsformen im AT-Umfeld.

Auf eine Aufruf-Nachricht folgt eine festgelegte Antwort-Nachricht, d.h. es gibt immer Paare
von Aufruf-Antwort-Kommunikation. Die Antwort erfolgt zeitverzégert. Fehlerfalle werden durch
entsprechende Antworten kommuniziert. Erfolgt keine Antwort, ist dieses ein Fehlverhalten des
Empféangers.

Die vom Prinzip in NE 139 und konkret in NE 141 beschriebenen ,SystemBasisDienste” (SBD)
sind Beispiele fur diesen Typ. Sie definieren unter anderem den Zugriff, die Erkundung und die
Manipulation von Objekt-orientierten Strukturen.

AJA - Nachricht | NAME | EINGABE — AUSGABE
Hier wird ein Tupel von Aufruf- und Antwort-Nachrichten beschrieben.

Die EINGABE bezeichnet dabei die PARAMETER der Aufruf-Nachricht; die AUSGABE ent-
sprechend die PARAMETER der Antwort-Nachricht.

4.3.6 Typ 3: Subskription/Benachrichtigungs-Kommunikation

Basierend auf der Nachrichten-basierten Kommunikation ist auch eine Subskription/Benach-
richtigungs-Kommunikation zu sehen. Dabei meldet sich ein Kommunikationspartner bei einem
Informationsanbieter an. Er abonniert also Neuigkeiten bei dem Informationsanbieter. Dieser
antwortet mit den Benachrichtigungs-Nachrichten. Je nach verwendeter Sprache kénnen bei
der Subskription-Nachricht auch Qualifizierungen angegeben werden. Es ist beispielsweise
denkbar, dass ein delta-Faktor angegeben wird, der eine Minimal-Abweichung eines Messwer-
tes definiert, bei der eine Benachrichtigung erfolgen soll.

62

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

Ein typischer Anwendungsfall ist (gerade fir OPC-UA) die Visualisierung: Hier werden per
~Subscription“ Prozesswerte dem Bediener einer Anlage aktuell angezeigt, selbst wenn die-
se sich nur selten &ndern.

Genau genommen handelt es sich bei dieser Kommunikation um einen zusétzlichen Typen,
der als optional bezeichnet werden kann. Durch eine entsprechend hoch-frequen-tierte Auf-
ruf/Antwort Kommunikation kann eine Subskription/Benachrichtigungs-Kom-munikation ersetzt
werden. Allerdings lberwiegen die Vorteile dieses Kommunikations-Typen, wenn bei seltenen
Ereignissen der Kommunikations-Partner schnell in Kenntnis gesetzt werden muss.

Hintergrund:

Bekannteste Vertreter dieser Kommunikationsform fiir Endanwender sind die RSS-Feeds
von Webseiten. Sie bieten in einem ,standardisierten* Format [29] Informationen {ber An-
derungen auf einer Webseite.

Bei den RSS-Feeds wird auch gleichzeitig dargestellt, wie unterschiedlich dieser Kommu-
nikationstyp realisiert werden kann: Wéhrend es fur den Endanwender aussieht, als ob
sein RSS-Programm von den Webseiten-Anbietern (iber die Anderungen informiert wird,
holt das RSS-Klienten-Programm technisch gesehen zyklisch die RSS-Feeds ab und iber-
prift so die Aktualitat.

Technisch handelt es sich also um ein klassisches ,Polling“ (zyklisches Abholen), wah-
rend es sich dem Endanwender gegenliber wie ein Subskription/Benachrichtigungs-
Kommunikationstyp verhalt.

Aufgrund der unterschiedlichen Realisierungsmdglichkeiten der internen Verwaltung, sowie
der Verbreitung der Benachrichtigungs-Nachrichten, wird hier auf eine konkrete Beschreibung
verzichtet. OPC-UA spezifiziert eine Reihen von konkreten Subskription/Benachrichtigungs-
Schnittstellen in den jeweiligen Teilen. Die NE139 nennt auf diesem Typ aufbauende Dienste
Subskriptionsdienste.

Ganz allgemein hat die OMG in ihre ,Enterprise Collaboration Architecture [23] eine umfas-
sende Modellierung eines Subskription/Benachrichtigungs-Systems beschrieben.

Nachrichten bei Subskription/Benachrichtigungs-Kommunikation An dieser Stelle sollen
die prinzipiellen Informationsinhalte der Subskription- sowie Benachrichtigungs-Nachrichten
beschrieben werden.

singulér - Nachricht \ SUBSCRIPTION \ EPR, SUB-BESCHREIBUNG
Eine Aufforderung an den Empfénger, Benachrichtigungen zu versenden, wenn Bedingun-
gen zutreffen.

Die Subskription-Nachricht besteht aus einem Tupel: Zum einen muss eine EPR fiir den Emp-
fang von Benachrichtigungs-Nachrichten gegeben sein. Zum anderen muss eine Beschreibung
der Informationen existieren. Als Beispiel ist bereits ein Prozesswert und ein zugehdriger delta-

63

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Faktor erklart worden. Diese Beschreibungssprache ist Anwendungs-spezifisch. Die anbieten-
de Komponente muss also eine entsprechende Verwaltung erledigen.

Es ergibt sich automatisch die Méglichkeit, diese Subskription zu beenden:

singulér - Nachricht \ DE-SUBSCRIPTION | EPR, SUB-BESCHREIBUNG
Eine Aufforderung an den Empfénger, keine weiteren Benachrichtigungen zu versenden

Es bietet sich gerade bei den SUBSCRIPTION wie auch DE-SUBSCRIPTION Nachrichten an,
dass sie als Typ 2 realisiert werden, sodass der Aufbau und Abbau der Benachrichtigungen
quittiert wird. Hierdurch erhélt der Empféanger der Benachrichtigungen auch einen Zeitpunkt,
ab wann er mit Benachrichtigungen rechnen kann.

Falls die per SUB-BESCHREIBUNG definierten Kriterien zutreffen, wird EPR durch eine Nach-
richt informiert.

singulér - Nachricht | NOTIFICATION | NOTIFICATION-BESCHREIBUNG
Information der EPR, dass ein Ereignis eingetreten ist.

Die NOTIFICATION-BESCHREIBUNG erfolgt wiederum auf Anwendungsebene und beschreibt
das Ereignis, welches aufgetreten ist. Der Anwendungs-Entwickler muss hier entscheiden, wel-
che Details des Ereignisses in der NOTIFICATION enthalten sind, also welche Informationen
eine Anwendung sinnvollerweise bekommt.

Vereinfachte Darstellung Auf das Wesentliche konzentriert, kann eine Subskription/Benach-
richtigungs-Kommunikation wie folgt dargestellt werden:

S/N - Nachricht ‘ NAME ‘ SUB-BESCHREIBUNG ~~» NOT-BESCHREIBUNG
Eine Aufforderung an den Empfanger Benachrichtigungen zu versenden, wenn Bedingun-
gen zutreffen.

4.3.7 Typ 4: Indirekte Kommunikation per Intents

An dieser Stelle wird ein weiterer, neuer Kommunikations-Typ vorgeschlagen: Die Intent-ba-
sierte Kommunikation.

Um Komponenten weitgehender zu entkoppeln, sind Verwaltungskomponenten notwendig. Die-
se ,vermitteln* Kommunikation zwischen Komponenten, die sich direkt auf Kommunikations-
ebene nicht kennen und auch nicht miteinander kommunizieren.

Es handelt sich bei der Intent-basierten Kommunikation im Wesentlichen um eine spezielle
Form der Subskription/Benachrichtigungs-Kommunikation.

Dafir wird fir die Benachrichtigung eine spezielle NOTIFICATION-Nachricht definiert, die
eine besonders einfache Form hat: Lediglich ein Schliissel-Wert-Paar, wobei beide Teile aus
einer einfachen Zeichenkette bestehen.

64

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

- Singleton im
U];Svr\;talter (o] Gesamtsystem,

keine Historie!
% Intent

— 0
Empfénger@l Sender @I

Abbildung 4.14: Konzept ~ der Intent-basierten =~ Kommunikation als Erweiterung der
Subskription/Benachrichtigungs-Kommunikation

Intent - Nachricht | INTENT-SCHLUESSEL | WERT
Eine Information einer Anwendung Uber das Auftreten eines Ereignisses.

Diese Nachrichten werden Intents genannt und von Informationsanbietern an eine zentrale
Komponente gesendet. Komponenten lassen sich durch diese zentrale Stelle informieren, wenn
sie mit flr sie interessanten Schlusseln eintreffen.

Im Sinne des Subskription/Benachrichtigungs-Prinzips handelt es sich also um das Subskribie-
ren auf bestimmte Schliissel an einer systemweit einheitlichen Intent-Kommunikations-Kompo-
nente.

Der Schllssel definiert das Ereignis selber. Wenn eine Anwendung diesen Schllssel kennt,
weiss sie auch um den WERT bzw. mit den enthaltenen Informationen umzugehen.

Durch die einfache Subskription/Benachrichtigungs-Kommunikation kénnen Anwendungen In-
tents empfangen:

S/N - Nachricht | INTENTSUBSKRIPTION | EPR, INTENT-SCHLUSSEL ~ INTENT
Eine Aufforderung an den Intent-Verwalter, Benachrichtigungen Uber eintreffende Intents
zu versenden

Der INTENT-SCHLUSSEL ist dabei genau der SCHLUSSEL, den die gesendeten Intent-Nach-
richten auch haben. INTENT beinhaltet als Benachrichtigung sowohl den Schliissel, wie auch
den Wert. Da eine EPR ggf. fir unterschiedliche SCHLUSSEL angemeldet ist, wird SCHLUS-
SEL hier analog zum Typen einer Nachricht verwendet: Er beschreibt den Inhalt des INTENT.

Ablauf Eine Anwendung kann eine Absicht (engl. Intent) &uBBern, indem sie eine Nachricht an
eine systemweit zentrale Komponenten, den Intent-Verwalter, versendet. Dieser leitet die Nach-
richt entsprechend an Empfénger weiter. Daflir melden sich Empfénger mit fir sie interessanten
Schlisseln an dem Intent-Verwalter vorab an, sodass aus ihrer Sicht eine Subskription/Benach-
richtigungs-Kommunikation entsteht. Abbildung 4.14 verdeutlicht den Vorgang, wobei auch klar
wird, dass die Empféanger von Intents als Subskription/Benachrichtigungs-Kommunikation rea-
lisiert werden, das Senden jedoch auf singularen Nachrichten basiert.

65

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Es ist dabei sinnvoll, dass die Intent-Nachrichten sofort zugestellt werden und es keine Historie
und dadurch keine nachtréglichen Reaktionen gibt. Hierdurch wird klar, dass es sich um eine
aktuelle Absicht einer Anwendung fiir die zu dem Zeitpunkt ,interessierten* Empfénger handelt.

Hintergrund:

Der Begriff Intent stammt insbesondere aus dem Android-Betriebssystem. Die Subskripti-
on einer Anwendung wird hier durch ihre META-INF Datei ,erledigt®, d.h. schon die Basis-
Beschreibung einer Android-App hat die Méglichkeit zu spezifizieren, bei welchen Intent-
Nachrichten eine App benachrichtigt werden méchte. Es erfolgt keine standardisierte Fest-
legung der Schliissel und auch keinerlei Beschreibung der Nachrichteninhalte.

Das Prinzip scheint insbesondere fiir die Benachrichtigung bei Modell-Anderungen sinnvoll,
wenn - wie eingangs beschrieben - viele Komponenten auf Anderungen in der Modell-Instanz
reagieren sollten. Kapitel 4.5.3 beschreibt deswegen die Nutzung dieser Schnittstelle als ein
Anwendungsfall fir Modelldnderungen.

Wer definiert die Intent-Schliissel? Es erscheint sinnvoll, hier keine Hierarchie oder festge-
legte Schliissel-Liste zu pflegen. Das Konzept hat sich bei modernen Betriebssystemen genau
ohne eine vorab Festlegung bewiesen: So kénnen Komponenten-Entwickler sich bilateral auf
einen Schlissel einigen. Dieser kann durch den Intent-Verwalter eine Kommunikation zwischen
den Komponenten darstellen. Fir den Intent-Verwalter ist jeder Schliissel lediglich ein String,
der mit zuvor empfangenen Subskriptionen verglichen wird.

Durch dieses Prinzip wird eine ,Einfachst-Kommunikation® realisiert. Die sendenden sowie
empfangenden Komponenten werden komplett von der Adressaten-Verwaltung freigestellt. Die-
ses geht auf Kosten der Nachvollziehbarkeit, da eine sendende Instanz nicht sicher sein kann,
dass es Uberhaupt einen Empfanger gibt.

Das System bietet sich also fiir eine Art gezielte Broadcast-Nachrichten-System an.

4.3.8 Lokale Kommunikation

Auch ein Aufruf einer Methode, die durch eine API bereitgestellt wird, kann als Kommunikation
zwischen Komponenten betrachtet werden. Im Sinne des allgemeinen Verstédndnisses ist dann
beispielsweise das Objekt oder die Objeki-Referenz die Definition des Empfangers.

Zwei Aspekte sind grundsétzlich einfacher bei der lokalen Kommunikation, als bei den zuvor
beschriebenen.

1. Kein Erreichbarkeits-Problem - Kommunikation muss so konzeptioniert sein, dass ein
Ausfall des jeweiligen Gegenlibers berlcksichtigt wird. Bei einer lokalen Kommunikati-
on ist dies nicht der Fall.

66

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.4 Dienst-Modell: aktive, dynamische Komponenten

2. Enge Bindung: Durch eine lokale Schnittstelle sind die beiden Kommunikationspartner
technologisch ahnlich. Beispielsweise sind Kodierungsvorschriften durch eine gemeinsa-
me Plattform gleich, oder es kann sogar auf einen gemeinsamen Speicherbereich zuge-
griffen werden, sodass nur Zeiger auf Speicher Gibergeben werden und die Daten selber

nicht transportiert werden missen.
Es erscheint deswegen sinnvoll, lokale Kommunikation getrennt zu betrachten:

Hier wird aber auch ersichtlich, dass eine lokale Kommunikation in aktuellen Systemen durch-
aus auch als entfernte Kommunikation realisiert werden kann: Wenn eine Kommunikation zwi-
schen autarken Prozessen auf einem Gerét stattfindet, kdnnen ahnliche Probleme auftreten,
wie bei einer entfernten Kommunikation der anderen Typen.

Das heif3t auch, dass als lokale Kommunikation in diesem Sinne nur die Kommunikation der
Komponenten innerhalb einer Umgebung verstanden wird. Sobald beispielsweise unabhangige
Programme gestartet werden, handelt es sich um eine Interprozesskommunikation. Fir eine
solche kénnen die Typen 1-4 verwendet werden, da wiederum die (A)Synchronitét beachtet

werden muss.

4.4 Dienst-Modell: aktive, dynamische Komponenten

Bereits in der Motivation wurde verdeutlicht, dass der Fokus dieser Arbeit nicht auf der Model-
lierung der aktiven Komponenten liegt. Jedoch ist die klassische Dienst-Orientierung mit ihrer
Schnittstellen-orientierten Kommunikation eine Herausforderung, die angegangen werden soll-
te. SchlieBlich missen auch die fur die Instanzumgebung vorgesehenen aktiven Komponenten

kommunizieren.
Eine Anwendung wird als eine Gruppe von Diensten verstanden. Ein Dienst hat im Wesentli-

chen aktive Komponenten. Damit sind Dienste also zum einen eine Strukturierungs-Méglich-
keit, zum anderen aber auch eine technologische Realisierung von verteilten Anwendungen.

Dienst
(Verteilungs-)
@ Management
N Funktionen n >
£ Dienst °
% | = Funktionen >
i
0 i
o
5 Lokale ©
S o : 5%
=) Funktionen
Q
€

Abbildung 4.15: Aufteilung eines Dienstes in Funktionen

67

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Zum einen kann ein Dienst lokal wirken, d.h. lokale Funktionen eines unterliegenden (Betriebs-
)Systems aufrufen oder Werte von lokal angeschlossenen Sensoren/Aktoren ermitteln. Diese
Schicht ist die unterste Schicht der lokalen Kommunikation.

Ein Dienst nutzt dabei die in Kapitel 2 beschriebenen Variablen. Dabei kann zwischen zwei
Variablenarten unterschieden werden. Zum einen existieren statische Variablen, die beispiels-
weise eine Parametrierung beinhalten. Sie sind vorgegeben und kdnnen bei Verlust nicht neu
berechnet werden. Zum anderen existieren dynamische Variablen, die durch andere Dienste
oder den Dienst selber berechnet / bereitgestellt werden. Beispielsweise werden Prozesswerte,
die sich permanent &ndern, als solche angesehen.

Damit bilden statische Variablen zusammen mit den internen Variablen die Konfiguration eines
Dienstes, wahrend die dynamischen Variablen das Verhalten beeinflussen. Dieses kann als
Eigenschaften der Dienste modelliert werden. Zur Sicherung (und damit auch zur Verlagerung
auf ein anderes Gerat) eines Dienstes ist es lediglich nétig die statischen Variablen sowie den
internen Zustand (Stichwort: Serialisierung) zu sichern.

Aufbauend sind die eigentlichen Dienst-Funktionen zu sehen. Hierunter werden die Vorgange
verstanden, die den Dienst selber ausmachen. Dazu gehéren zum einen nétige Berechnungen,
zum anderen auch die Anwendungs-orientierte Kommunikation - ggf. basierend auf der lokalen
Kommunikation.

Getrennt von den eigentlichen Funktionen der Anwendung sollten die Management-Funktionen
aufgefasst werden. Hierbei handelt es sich um Funktionen zur Verwaltung der Dienste. Bei-
spielsweise gehoért dazu das Deployment, also das Starten und Stoppen eines Dienstes. Aber
auch ein Algorithmus zur Bestimmung der Verteilung (und damit der Orchestrierung der Diens-
te) wirde in diese Kategorie fallen.

Aus diesem Grund kann die Management-Funktion eines Dienstes auch durchaus auf einem
anderen System ausgefiihrt werden, wenn eine entsprechende Bindung von Management-
Funktion zu den zu verwaltenden Dienst-Funktionen bzw. Komponenten realisiert wird.

Die unterschiedlichen Funktions-Arten sind in Abbildung 4.15 dargestellt.

Hintergrund:
Die Trennung von Management-Funktionen von den eigentlichen Funktionen ist angelehnt
an das Konzept von IBM im Bereich des Autonomic Computing [Hor01].

Abbildung 4.16 stellt die Kommunikations-Mdglichkeiten eines Dienstes schematisch dar.

Abbildung der Dienste in die Représentations-Welt Dienste sind aktive Komponenten und
erhalten nach Kapitel 4.2.2 also eine eigenen Eintrag als Dienst-Reprasentation.

Hierdurch werden sie zum einen auffindbar im Gesamtsystem, zum andern kénnen die aktuel-
len Beziehungen zu anderen Diensten durch die Management-Funktion auch im Modell durch

68

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.5 Die modellgetriebene Instanzumgebung

{7

Ausfuhrungsumgebung

Abbildung 4.16: Schematische Darstellung der Dienst-Kommunikation

Dienste

@ Modell-Instanzen

—[]J
; Modell-
Ausfiihrung @ ! (% Instanz-Container

Instanzumgebung

Abbildung 4.17: Aufbau einer Instanzumgebung fiir Modelle und Dienste

entsprechende Zugriffs-Relationen reprasentiert werden. Hierdurch wird es z.B. auch mdglich,
Umschaltungen im Modell abzulegen (z.B. als Vorbereitung auf Ausfélle, vgl. Kapitel 6.4) und
Uberwachen zu lassen (vgl. Kapitel 4.6.2.1).

4.5 Die modellgetriebene Instanzumgebung

Nachdem sowohl die Komponenten-Représentationen, wie auch das Konzept der aktiven Kom-
ponenten beschrieben sind, wird folgend die verteilte, modellgetriebene Instanzumgebung vor-
gestellt. Die Verteilung der Modelle auf unterschiedliche Gerate und die Verbindung von unab-
hé&ngigen Modellen werden im spéteren Verlauf erganzt.

Es handelt sich bei einer Instanzumgebung um weiterentwickelte, existierende Konzepte, wie
sie in Kapitel 2.4 beschrieben sind. Ein Instanz-Container wird als Programm bereitgestellt,
welches in der Lage ist, alle vom Meta-Modell abgeleiteten Modelle darzustellen. Dafur wer-
den Klassen und Relationen zur Laufzeit aus Bibliotheken instanziiert. Diese Instanziierung
und Verkniipfung erfolgt dabei entweder intern durch Abldufe oder durch externe Befehle zur
Manipulation der Objektstruktur.

Einige wichtige Aspekte sollten bei der Entwicklung der modellgetriebenen Instanzumgebung
beachtet werden:

Selbst-Beschreibung Klassen in den Komponenten-Bibliotheken sollten erkundbar sein, also
selber durch Objekt-Reprasentationen dargestellt werden.

Ausfiihrung Im Idealfall wird - wie in Abbildung 4.17 verdeutlicht - eine Instanzumgebung so-
wohl fur die Modell-Instanzen, wie auch fiir die aktiven Komponenten (Dienste, Anwendungen)

69

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

bereitgestellt. Durch die zuvor beschriebenen Reprasentationen dieser Komponenten ist es
aber mdglich aktive Komponenten neben der eigentlichen Instanzumgebung auszufiihren.

Dynamische Ergédnzung der Fahigkeiten Fir eine Realisierung ist es wichtig, dass die ent-
sprechenden Komponenten-Bibliotheken nachgeladen werden kénnen. Dieses ist insbeson-
dere dann wichtig, wenn eine dynamische Systemstruktur aktiv genutzt wird - z.B. auch zur
Laufzeit neue Funktionen in einem System etabliert werden sollen.

Kommunikation Sie sollte ebenso wie Objekte im Modell-Raum reprasentiert werden, d.h. of-
fene Kommunikations-Kanale sollten im Modell-Raum dargestellt werden. Somit wird die Kom-
munikation erkundbar.

4.5.1 Vom Modell zum Instanz-Modell

Wie im Kapitel 2.2 beschrieben, werden heutzutage vielfach Modelle als Abbildung von be-
stimmten Eigenschaften der Anlagen entworfen und teilweise auch standardisiert. Wie bereits
geschildert, gibt es dabei Modelle, die sehr formal beschrieben sind, und andere, die weniger
formal beschrieben sind.

Damit ein Modell hier einsetzbar ist, muss es in eine Struktur aus Klassenbeschreibungen
mit Eigenschaften sowie Relationen zwischen den Objekten der Klassen Uberflihrbar sein
(Klassen-Modell). Instanzen einer solchen Modell-Beschreibung werden im Kontext der Instan-
zumgebung als Instanz-Modell bezeichnet.

Der Grad der Formalitat ist dabei untergeordnet: Ist eine Struktur beschrieben bzw. das Modell
in eine solche Uberflhrbar, ist sie auch im Sinne der Instanzumgebung nutzbar. Selbstverstand-
lich steigt bei einer formaleren, genaueren Abbildung der Informationen (vgl. Kapitel 2.1) auch
der Nutzen.

Systematisches Vorgehen Es stellt sich die Frage, wie ein Modell fir die Umgebung nutzbar
gemacht wird. Wie zuvor beschrieben, werden viele Modelle heutzutage als XML spezifiziert,
d.h. es gibt eine XML Grammatik, die die Sprache syntaktisch beschreibt und eine Spezifikati-
on, die das Verstandnis der Sprache beisteuert.

Dazu gibt es eine Vorgehensbeschreibung, wie eine Abbildung der Modelle in XML vorgenom-
men werden kann. Welche Probleme dabei beriicksichtigt werden mussen ist in der VDI Richtli-
nie 3690 [1] beschrieben: Das Ergebnis der Vorgehensbeschreibung ist im Erfolgsfall eine XML
Schema Beschreibung, die eine XML Struktur beschreibt.

Die Nutzung einer solchen XML Struktur im Instanzsystem ist einfach: Beispielsweise sind
DOM-Parser in der Lage, eine Objekt-Struktur aus einem XML Dokument bereitzustellen. Voll-
automatisch (z.B. durch einen gangigen XML-Parser) werden alle XML-Elemente als Objekte
abgebildet. Diese sind untereinander analog zum XML-Dokument verschachtelt. Es existiert

70

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.5 Die modellgetriebene Instanzumgebung

Realitats
vorstellung
; Realitat
Modell
R
v
formalisiertes [, Klassen- L_’ Instanz-
Modell [" Modell Modell

Management-
Strategie

Abbildung 4.18: Entwicklungs-Phasen eines Modells fiir die Instanzumgebung

also eine Relation contains; weitere Relationen sind ebenfalls mdglich. Dieses Verfahren zeigt,
dass zumindest alle Modelle nach der VDI-Richtlinie 3690 prinzipiell als Laufzeit-Modelle nutz-
bar sind.

In Anlehnung an die VDI Richtlinie 3690 ist in Abbildung 4.18 dargestellt, wie ein Modell fiir die
hier verwendete Instanzumgebung entstehen kann. Nachdem die Ubergénge von der Realitat
zum Modell und auch zum formalisierten Modell in der Richtlinie abgehandelt sind, erfolgt ein
semi-automatisierter Schritt zum Klassen-Modell. Hierbei werden insbesondere Strategien fir
die Verteilung zum Modell hinzugefligt - dieses beinhaltet das Konzept des Modell-Masters,
welches im Folgenden beschrieben wird. Das Klassen-Modell wird in der Instanzumgebung
etabliert. Damit ist dieses Modell nachher zugreifbar und erkundbar, wie man es auch aus
ACPLT (normalerweise als ,Library“ bezeichnet) oder OPC-UA (Bezeichnung: ,Namespace®)
gewohnt ist. Werden die enthaltenen Klassen fur die Nutzung in Bezug auf die Realitat instan-
ziiert, kann von einem Instanz-Modell gesprochen werden.

4.5.1.1 Modell-Master

passive &
Komponente

/N

Modell &

Klassen und Relationen
des Laufzeit-Modells

<<Singleton>>
Modell Master

Abbildung 4.19: Elemente eines Modells fiir die flexible Instanzumgebung

Eine wichtige Rolle fir ein Instanz-Modell spielt der Modell-Master, dargestellt in Abbildung
4.19. Diese Komponente, die in einer Instanzumgebung einmalig pro Modell instanziiert wird

71

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

(als Entwicklungspattern ,Singleton” nach [Bal08]), stellt den Einstiegspunkt fir die Erkundung
der Instanzen des Modells dar. Die Instanz kann also mit der vorgestellten Instanz des Modells
aus Kapitel 2.1.3 gleichgestellt werden.

Definition: Jedes Laufzeit-Modell besitzt neben den Klassen und Relationen einen
Modell-Master, der die zentrale Verwaltung der Modell-Beschreibung (Klassen) sowie
auch der verteilten Instanzen (bernimmt. Er existiert genau einmal pro Modell in einem
(verteilten) System und stellt auch den Einstiegspunkt fiir die Modellerkundung von An-
wendungen dar.

4.5.2 Sprache der Modell-Anderungen

Die Manipulation von Modell-Instanzen zur Laufzeit selber ist durch wenige Grund-Befehle aus-
reichend beschreibbar, das heif3t, es genlgt eine Sprache von wenigen Kommandos, um die
Modelle zu erstellen und zu veréndern.

An dieser Stelle werden die Modell-Anderungsfunktionen in aller Kiirze beschrieben, da sie
entsprechend der NE 139 und 141 definiert sind. Sie entsprechen also dem Aufruf/Antwort
(Typ 2) der vorherigen Typisierung der Kommunikation.

Anlegen von Objekt Legt ein Objekt von gegebenen Typen an.

Entfernen von Objekt Entfernt ein Objekt und alle in Verbindung stehenden Relationen.
Anlegen von Relation Legt eine Relation von gegebenen Typen zwischen zwei Objekten an.
Entfernen von Relation Entfernt die Relation.

Setzen Wert Setzt einen Variablen-Wert.

Hole Wert Holt einen Variablen-Wert.

Kombination Atomare Ausfiihrung einer Reihe der vorstehenden Befehle. Auch die Modell-
Erkundungsfunktionen kénnen hier verwendet werden.

Aufbauende Operationen, die beispielsweise haufige Kombinationen aus Befehlen vereinfacht
ausfuhren, sind denkbar und kénnten fir eine Realisierung auch als Dienst nachgeladen wer-
den.

Hintergrund:

Datenbanken kennen eine solche Mdglichkeit mit ,stored procedures”. Dieses sind Pro-
gramme, die in der Datenbank selber ablaufen, wenn sie aufgerufen werden.

OPC-UA kennt dieses Konzept ebenso, indem Methoden spezifiziert werden kénnen, die
Schnittstellen bereitstellen.

72

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.5 Die modellgetriebene Instanzumgebung

Wichtig ist dabei, dass es zuné&chst keinerlei Annahmen Uber existierende Objekte oder Rela-
tionen gibt.

So impliziert ACPLT durch die verwendeten Pfade eine Relation ,/* (,0v_contains®), die als
Unter-Objekt interpretiert werden kann. Eine solche allgegenwartige Relation kann ggf. bei der
Abbildung von existierenden Modellen zu Problemen fiihren, da nicht alle Modelle eine Relati-
on mit dieser Semantik verwenden oder diese auch in unterschiedlicher Weise verwenden. Aus
diesem Grund verzichtet die hier beschrieben Instanzumgebung auf die Vorgabe einer solchen
Basis-Relation.

Nicht zu jedem Zeitpunkt kdnnen ausschlieBlich valide Modelle, d.h. Modelle, deren Gdltigkeit
Gberpriift werden kann, existieren. Anderungen zur Laufzeit durch einzelne Aktionen werden
immer wieder zu Inkonsistenzen filhren®.

Hiermit missen grundsatzlich die Anwendungen umgehen kdnnen. Sie sollten den Teil des
Modells soweit ignorieren, wie nétig. Implizite Annahme ist, dass nicht valide Teilmodelle gera-
de in Bearbeitung durch einen anderen Dienst sind.

Trotz der grundséatzlichen Mdglichkeit eines inkonsistenten Zustandes kénnen beliebige Befeh-
le in einer ununterbrochenen (d.h. atomaren) Kombination ausgefiihrt werden. Dies ist insbe-
sondere wichtig, um die zuvor definierten AKID-Eigenschaften einhalten zu kénnen. Um diese
AKID-Eigenschaften einhalten zu kénnen, sind entsprechende Konzepte aus der Datenbank-
Welt wichtig: ,Semaphoren®, ,Locking“ und ,Rollback‘-Mechanismen helfen, eine Folge von
Befehlen entweder ganz oder nicht auszufiihren.

Eine Anwendung kann durch die Atomitat der AKID-Eigenschaften den fir sie wichtigen Be-
reich des Modells validieren, bevor Anderungen vorgenommen werden. Hierfiir wird ein Tupel
aus Erkundungs-Funktion (zur Validierung) und Modell-Anderung als Kombinations-Basisope-
ration vorgenommen. Schlégt die Erkundungs-Funktion fehl, wird die Modell-Anderung nicht
ausgefihrt.

4.5.3 Anderungs-Benachrichtigungen

Um Anderungen in einer modellgetriebenen Instanzumgebung nutzen zu kénnen, miissen
Komponenten von den Anderungen erfahren und somit reagieren kénnen.

Das einfachste Vorgehen ware, wenn Anwendungen, die Objekte erkunden, diese mit dem
vorherigen (bekannten) Zustand vergleichen und entsprechende Anderungen vornehmen wiir-
den. Dieses wiirde jedoch dazu flhren, dass die Anwendungen den vorherigen Zustand aller
interessanten Modell-Teile speichern muissten. Zusatzlich misste dieses Vorgehen zyklisch
ausgefihrt werden, wodurch Performance-Engpésse entstehen kdnnten.

*Dieses ist vergleichbar mit der Programmierung - wihrend einer Programmierung entstehen immer wieder ungiiltige Anwei-
sungen - erst zu diskreten Zeitpunkten werden Ubersetzungen angestoBen.

73

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Aus diesem Grund wird eine Nachrichten-basierte Schnittstelle auf Basis der Subskription/Be-
nachrichtigungs-Typs (Typ 3) vorgeschlagen. Eine Anwendung kann sich somit fiir Anderungen
in den Modell-Instanzen am Instanzsystem subskribieren und bekommt eine Nachricht, wenn
sich etwas fir die Anwendung entscheidendes geandert hat. Durch die Analyse der Befehle
und Parameter konnen die Empfanger-Dienste entscheiden, ob eine Reaktion erforderlich ist.

Damit stellt sich die Frage nach einer Sprache in der die ,interessanten Teile der Objekte
spezifiziert werden kénnen, sodass mdglichst wenige Benachrichtigungs-Nachrichten versandt
werden missen. An dieser Stelle sind vielfache Mdglichkeiten denkbar - beispielsweise auch
wieder spezifische Erweiterungen der Instanzumgebung als zusétzliche, nachladbare Funktion.

Als ,Einfachst-Realisierung” kdnnen samtliche Befehle, die zur Manipulation der Modell-Instan-
zen an die Instanzumgebung abgesandt werden, an alle angemeldeten Dienste weitergeleitet
werden. Wenn nur wenige Dienste Interesse an Anderungen haben, kann es auch durch so
eine ,Einfachst-Realisierung” zu einem wesentlichen Geschwindigkeitsvorteil kommen.

Bei dieser einfach gehaltenen Sprache steht eine Referenz auf ein existierendes Objekt im
Mittelpunkt und wird um eine Anderungsbedingung ergénzt, die Ausldser fiir eine Benachrich-
tigung ist.

Eine Subskription-Nachricht fir Anderungen ist damit ein Tupel:

S/N - Nachricht | Modell-Anderungen | REFERENZ, VAR || REL — ANDERUNG
Subskribiert den Sender beim Empfanger fiir durch die Eingabe-Parameter bestimmte An-
derungen in der Modell-Struktur.

Mit Bezug auf das in REF EREN Z definierte Objekt werden entweder Anderungen der Varia-
blen oder der Relationen mitgeteilt. Implizit ist immer eine Benachrichtigung enthalten, welches
Uber das Léschen des REFERN Z-Objektes informiert.

Da, wie vorausgesetzt, auch die Klassen im Modell-Raum abgebildet und mit den Instanzen
verbunden werden, kann auch das Erzeugen neuer Objekte Gberwacht werden: Eine Subskrip-
tion auf das Klassenobjekt als Referenz sowie der Eigenschaft REL bewirkt, dass lber das
Anlegen eines Objektes benachrichtigt wird.

Eine Benachrichtigungs-Nachricht ist dabei &hnlich wie eine Subskription-Nachricht:

singulér - Nachricht | Modell-Anderung | Quelle, (Value V Ziel)
Information tiber die Modell-Anderung (vgl. Text).

Neben dem Objekt, von dem die Anderung ausgeht (Referenz Quelle) und der Art der Ver-
anderung wird auch ein Ziel der Anderung tbermittelt. Bei Variablen ist dieses der neue Wert
(Value), bei Verbindungen das neue Ziel-Objekt, und bei dem Erzeugen einer Instanz wird die
Referenz auf das neue Objekt (Referenz Ziel) Uberliefert.

74

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.5 Die modellgetriebene Instanzumgebung

An dieser Stelle wird auch klar, dass diese Sprache einfach gehalten ist. So sind sinnvolle Er-
weiterungen aus dem leittechnischen Umfeld denkbar: Fiir die Anderung eines Variablenwertes
kénnte ein delta-Faktor angegeben werden, welcher geringe Abweichungen fiir Prozesswerte
von einer Benachrichtigung ausschlief3t.

Komplexere Beschreibungssprachen fiir Anderungen sind denkbar. Sie kénnten nach dem
Prinzip von XPATH [32] als Muster, also Teile der Modellstruktur — Objekte, Variablenwerten
und (typisierten) Relationen — beschrieben werden. Sollte in der Instanzumgebung eine Ande-
rung auf diese Beschreibung zutreffen, wird eine Anderungs-Benachrichtigung erzeugt.

Insgesamt ist dabei zu beachten, dass das Ausfiihren dieser Muster-Suche nicht mehr Res-
sourcen verbraucht, als insgesamt eingespart werden.

Wichtig ist an dieser Stelle, dass die Schnittstelle selber entfernt zugreifbar ist, sodass die
Uberwachungen auch von entfernten Diensten ausgefiihrt werden kann. Insgesamt wird durch
diese entfernten Zugriffe eine Anderungs-Reaktion des Gesamtsystems erreicht, die auch ins-
gesamt auf lokale Anderungen reagieren kann.

4.5.3.1 Alternative Realisierung: Intents

Eine andere Méglichkeit, gerade in Bezug auf die Verbreitung der Anderungs-Benachrichtigun-
gen, sind die Intents, wie sie in Kapitel 4.3.7 als zusatzlichen Kommunikationstyp vorgestellt
wurden.

Dabei wird ein Intent-Typ Modell-Anderung definiert. Fiir diesen kénnen sich alle interessier-
ten Komponenten anmelden. Sie bekommen daraufhin alle Anderungen des Modells mit. Die
Intent-Nachrichten werden dabei durch eine Instanziierung der Basis-Klasse des Meta-Modells
initiiert: Wenn ein Objekt / eine Relation des interessanten Modells erzeugt wird, wird eine
Intent-Nachricht versandt.

Zu beriicksichtigen fiir eine Abwagung ist dabei die Anzahl der Anderungs-Benachrichtigun-
gen, sowie die Verteilung der Modelle. Durch die zentralisierte Bearbeitung der Intent-Nach-
richten kann es, verglichen mit der oben beschriebenen Lésung, zu einem gréBeren Kommu-
nikationsbedarf fihren.

Auf der anderen Seite steht die geringere Grundlast: Eine interessierte Komponente muss sich
lediglich fiir Modell-Anderungen anmelden. Die spater erfolgenden Subskriptionen auf Objekte,
die Gberwacht werden mussen, entfallen.

Diese Realisierungs-Beschreibung verdeutlicht, wie unterschiedlich die Intent-basierte Kommu-
nikation von der klassischen Kommunikation ist. Sie entkoppelt die interessierten Komponenten
von den zu beobachtenden Ereignissen.

75

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

4.5.4 Ausfiihrungsumgebung: Dienste als partielle, Aufgaben-orientierte
Teil-Anwendungen

Im Gegensatz zu den passiven Komponenten, die zwar dynamisch verandert werden kénnen,
jedoch selber keinerlei Aktionen ausldsen (vgl. Kapitel 4.2), bietet ein Dienst die Mdglichkeit,
Ablaufe auszufihren.

Anwendung

Anwendung, ... Anwendung, BuB...

Anwendung

i
ﬁm}% Z@DF;J oo O
+> .
=0 | (=7

=1

magliche Systemgrenze

Abbildung 4.20: Orchestrierte Dienste als Anwendung

Ein Dienst ist eine aktive Komponente auf einem Gerat. Er erfillt eine (Teil-)Aufgabe. Unter
Anwendungen werden Kombinationen aus Diensten verstanden, die eine Gesamtaufgabe er-
flllen, wie sie vom Endanwender verlangt wird. Unter Orchestrierung wird das Verbinden von
Diensten, also das gegenseitige bekanntmachen, verstanden. Damit kénnen solche Orche-
strierungen von Diensten als verteilte Anwendung verstanden werden, wie es in Abbildung
4.20 dargestellt ist.

Integration im Laufzeitmodell

Durch seine Dienst-Repréasentation ist ein Dienst selber auffindbar und damit auch nutzbar.
Auf diese Weise kann auf aufwandige Registrierungs-Komponenten, wie sie normalerweise in
SOA-Systemen ein elementarer Bestandteil sind, verzichtet werden. Eine Registrierung eines
Dienstes erfolgt durch das Anlegen seiner Dienst-Reprasentation im Laufzeitmodell.

Vielfach werden auch Beschreibungen der Fahigkeiten als eigene Schnittstelle eines Dienstes
spezifiziert und diese in (ggf. zentralen) Komponenten verwaltet. Diese kénnen zwar existieren,
sind aber als Annotationen in der Dienst-Reprasentation (allgemeiner aktive Komponenten-
Représentationen) abzulegen, sodass sie dort direkt durch die Dienst-Représentation zugehé-
rig zum Dienst erkundbar und auch aktualisierbar sind.

76

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.6 Modell- und Geritegrenzen

Andere Sichtweise: Dienste als komplexe Modell-Anderungs-Schnittstellen

Wenn ein Dienst als Modell-verarbeitende Teil-Anwendung verstanden wird, der - wie der
grundlegende Gedanke - alle seine Daten im Laufzeitmodell ablegt, ist auch eine andere Sicht-
weise auf die Funktion eines Dienstes zulassig:

Ein Dienst, der alle seine Daten im Laufzeitmodell ablegt und keinen weiteren Zustand oder
weitere Variablen hat, stellt eine spezialisierte Schnittstelle zum Laufzeitmodell dar. Er ist aqui-
valent zu Basis-Operationen, die direkt im Laufzeitmodell ausgefiihrt werden zzgl. seines eige-
nen Verhaltens.

Dieses gilt nicht fur alle Dienste - beispielsweise wiirde ein Dienst zur Erfassung von Messwer-
ten seine Daten nicht aus dem Modell beziehen, sondern von einem am Geréat angeschlosse-
nen Sensor.

4.6 Modell- und Gerategrenzen

Klassisch liegen Modelle unabh&ngig (d.h. ohne Relationen zwischeneinander) auf Instanzum-
gebungen, die jeweils auf einem Gerat existieren.

Eingangs wurde beschrieben, dass die beiden Begrenzungen aufgehoben werden sollen:

Modelle in Relation Modelle untereinander in Relation setzen zu kénnen hat den Vorteil, dass
einzelne Modelle unabhéngig voneinander entwickelt werden kénnen. Aufbauend kénnen
dann weitere Modelle Relationen zwischen den Modellen beschreiben.

Uber Gerategrenzen hinweg Gerate separieren bisher Informationen, die in unterschiedli-
chen Modellrdumen vorliegen. Diese Trennung erscheint hinderlich, denn verteilt abge-
legte Daten z.B. unterschiedlicher Anwendungen, stehen im Sinne von Modellen durch-
aus in Beziehung.

Im Folgenden wird fir beide Problemstellungen jeweils ein Losungskonzept vorgestellt.

4.6.1 Modelle in Relation: Modell-Interkonnektion

Eine der wesentlichen Vorteile, die durch die Modelle zur Laufzeit entstehen, ist die Verfligbar-
keit von Informationen. H&ufig liegen diese Informationen derzeit in unterschiedlichen Program-
men bzw. deren Dateien und eigenen Formaten unverknUpft und unzugénglich vor. Dieses be-
trifft insbesondere Engineering-Systeme, deren Daten traditionell zur Produktions-Phase nicht
verfligbar sein mussten.

Wenn eine modellgetriebene Instanzumgebung diese Informationen in strukturierter Weise
- in mehreren, unabhéngigen Modellen - zuganglich bereithalt, stehen die Modell-Instanzen

77

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Instanz-

Modell zusétzliches
4 benutzt Wissen
8/)/7
‘M /'
2

Modell Interkonnektions
Modell

J beschreibt (1..*)

Relationen zwischen Instanzen
unterschiedlicher Modelle

Abbildung 4.21: Relationen zwischen unabhingigen Modellen - Konzept der Modell-Interkonnektion

nebeneinander und sind fir alle Anwendungen erkundbar. Hierdurch kénnen Engineering-
Informationen in der Produktions-Phase genutzt werden.

Einen weiteren Mehrwert wird geschaffen, wenn auch Beziehungen zwischen den strukturier-
ten Detail-Informationen der Modelle abgebildet werden. Es erscheint also sinnvoll die Modell-
Instanz-Teile untereinander zu verknlpfen.

Definition: Eine Verkniipfung zwischen Komponenten verschiedener Modelle wird
Modell-Interkonnektion genannt.

Um Teile von Modellen untereinander in Beziehung setzen zu kénnen, muss zusatzliches Wis-
sen vorliegen, welches die Verbindung reprasentiert. Dieses kann insgesamt wieder als eige-
nes Modell verstanden werden.

Somit werden die folgenden Informationen fir ein Modell von Modell-Interkonnektionen bend-
tigt:

o Verstandnis beider Modellen, die in Verbindung gesetzt werden sollen.

Versténdnis von der Verbindung, die zwischen den Modell-Instanzen aufgebaut werden
soll (eigener Modell-Inhalt).

Beschreibung der Interkonnektionen (Interkonnektions-Klassen).

Meistens wird eine dritte Informationsquelle nétig sein, d.h. zusatzliches Wissen, welches
aussagt, welche Relation zwischen welchen Modell-Instanz-Teilen anzulegen ist (repra-
sentiertes Wissen).

Dieses Modell ist von den Modellen, dessen Komponenten verbunden werden, abhéngig. Ver-
einfacht wird die Idee der Modell-Interkonnektionen in Abbildung 4.21 verdeutlicht.

Damit besteht eine Modell-Interkonnektion zu einem Teil aus einem eigenen Modell, welches
auf Basis von (zwei oder mehr) Modellen beschreibt, welche Relationen existieren. Eine ent-

78

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.6 Modell- und Geritegrenzen

sprechende Realisierung der Modell-Interkonnektion kann demzufolge eigene Relationen mit-
bringen, die zwischen Elementen der anderen Modelle in der Instanzumgebung angelegt wer-
den. Das Modell der Modell-Interkonnektionen zwischen den Modellen kann aber selbstver-
standlich auch komplexere Beschreibungen als einfache Relationen zwischen Modell-Instanz-
Teilen enthalten.

Daraus lasst sich folgende Definition fir ein Modell von Modell-Interkonnektionen ableiten:

Definition: Modell-Interkonnektionen werden in Modell-Interkonnektions-Modellen
(MIM) beschrieben. Ein MIM bezieht sich mindestens auf zwei Modelle (abhdngige Mo-
delle). Ein MIM hédngt von diesen zwei Modellen ab, nutzt sie zur Selbstbeschreibung und
bringt Wissen in das Gesamtsystem ein (reprdsentiertes Wissen) aufgrund dessen Inter-
konnektionen instanziiert werden kénnen.

Die Reaktion auf Modell-Anderungen (Anlegen/Léschen der Modell-Interkonnektionen) ist Auf-
gabe der Modell-Interkonnektions-Komponenten, die spater beschrieben werden.

4.6.1.1 Beispiel: AT-Gerate-Struktur und Anlagenstruktur

Als praktisches Beispiel soll wiederum das AT-Geréate-Struktur-Modell dienen.

Wéhrend das AT-Gerate-Struktur-Modell lediglich Aussagen Uber die Existenz sowie Adressen
der AT-Gerate einer Anlage macht, kann ein Anlagenstrukturmodell in PandIX (vgl. 2.2) die
Anlage selber abbilden.

’ Engineering-System %‘

KommAdr:Rolle
2.B. durch Elektro-Plan

AT-Gerate-
PandiX-Modell-Interkonnektion

verwaltet
— Rollen-Geréat-Zuordnung
Geréte = > PandiX-
Reprasentation Rolle

‘ Kommunikations-Adresse ‘

Abbildung 4.22: Skizze der Modell-Interkonnektion AT-Geréte-Struktur mit PandIX
Sinnvoll erscheint eine Verbindung zwischen den Rollen der Gerate aus der Anlagenstruktur

und den Kommunikations-Adressen bzw. den Modell-Instanz-Objekten des AT-Geratestruktur-
Modells aufzubauen. Das représentierte Wissen, welches Gerat zu welcher Rolle gehért, muss

79

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

die Modell-Interkonnektion aus dem Engineering-System beziehen. Abbildung 4.22 verdeutlicht
die Interkonnektion.

4.6.2 Uber Geritegrenzen hinweg: Verteilte (Modell-)Laufzeiten

Die Integration von Modellen auf einem Gerat ermdglicht den Zugriff auf die Informationen
durch unterschiedliche Anwendungen. In den heutigen Anlagen existieren eine gro3e Anzahl
von Geraten, die ein Interesse haben kénnen, auf diese Informationen zuzugreifen bzw. selber
Informationen in der Instanzumgebung abzulegen. Das Ziel dieses Kapitels ist es eine gemein-
same, verteilte Modell-Instanzumgebung zu konzipieren, in der sich die zuvor beschriebenen
Modelle abbilden und Uber Gerategrenzen hinweg in Verbindung setzen lassen.

Hierdurch kénnen zur Laufzeit Neuerungen dynamisch eingebracht werden, indem das Modell
zuerst instanziiert wird und nachtraglich in der Anlage auf den verteilten Geréaten in Relation
gesetzt wird. Es folgt, dass es sinnvoll ist, Verteilungsaspekte fir Modell-Instanzsystem zu
konzipieren. Die Anlage selber wird also als ein verteiltes System mit Modell-Instanzsystem
verstanden.

Verteilte Anwendungen kénnen so eine verteilte Modell-Laufzeit selbstverstandlich nutzen - ins-
besondere um Erkundungen Uber die Reprasentationen der Dienste durchzufuhren, wie in Ka-
pitel 6.1 beschrieben wird. Durch eine entsprechende verteilt Ausfihrungsumgebung kénnen
die Anwendungen selber die Verteilung nutzen, wodurch der SOA-Kerngedanke aufgenommen
wird.

Eine alternative, naheliegende Lésung ware, dass - dhnlich wie im traditionellen OPC-Ansatz -
alle Daten auf einem zentralen Server abgebildet werden und alle Gerate als Klienten Zugriff
bekommen. An dieser Stelle sollen jedoch Konzepte zur realen Verteilung der Modell-Instanzen
Uber Gerategrenzen hinweg konzipiert werden. Hierdurch ist es beispielsweise mdglich, die
klassische Datenhaltung beizubehalten. Jedes Geréat behalt also die Informationen lokal auf
seinem Speichermedium, die es hauptsachlich bearbeitet. Diese Informationen werden ledig-
lich in Relation zu anderen gebracht und mussen dabei ggf. Gber Gerategrenzen hinweg gezo-
gen werden.

4.6.2.1 Externe Verbindungen

Fur eine Realisierung bedarf es also eines Konzeptes um die Elemente eines modellgetriebe-
nen Instanzsystems untereinander auf unterschiedlichen Geraten in Relation zu bringen: Es
sind Verbindungen von einzelnen Modell-Instanz-Objekten und -Relationen auf unterschiedli-
chen Geraten bereitzustellen.

Dafiir wird das Konzept der Externen Verbindungen entworfen. Dabei ist wichtig zu verstehen,
dass diese Kommunikation aus Sicht der Modelle sowie auch der Modell-Erkundung (vgl. Ka-

80

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.6 Modell- und Geritegrenzen

pitel 5.4) transparent sein muss, d.h. es existiert eine Kommunikationsmdglichkeit, die diese
externe Verbindungen als normale Verbindungen erscheinen Iasst.

Hintergrund:

Mit der ,ExpandedNodeld"” bietet OPC-UA &hnliche Méglichkeiten an: Hier wird das Ziel in
der Namespace-URI abgelegt und bezieht sich auf eine ,Nodeld" eines anderen Servers.
Im Gegensatz zu dem hier vorgestellten Konzept ist dieses jedoch ein einseitiger Verweis.
Das Ziel hat keinerlei Méglichkeit festzustellen, dass auf dieses verwiesen wird. Hierdurch
fehlt die Moglichkeit, bei einer Modell-Erkundung vom Ziel auf die Quelle zu schlieBen.

Das Konzept sieht vor, dass Kopien eines Objektes auf unterschiedlichen Geraten existieren.
Diese beiden Objekte werden durch die Klasse Externe Verbindung (Ext.-Verbindung) als &qui-
valent dargestellt. Nebenbedingung ist dafiir, dass beide Geréate iber die entsprechenden Klas-
senbeschreibungen verfligen.

‘ Externe Verbindung‘

grafische Représentation
R einer Ext.-Verbindung
Ziel: EPR zwischen 2 Objekten

primér: BOOL remote_aquivalent

Abbildung 4.23: Ext.-Verbindung fiir die Reprisentation eines entfernten Zugriffspunktes

Das zentrale Objekt ist eine Instanz der Klasse Ext.-Verbindung (Abbildung 4.23). Dieses spei-
chert als EPR die Objekt-Referenz (Kapitel 4.3.1) auf einem entfernten System. Dabei ist die
EPR eine Referenz auf ein Objekt im entfernten Daten-Modell. Ein Paar von Ext.-Verbindungs-
Objekten kann so selber als Relation remote_&quivalent verstanden werden.

Das Meta-Modell beschreibt Objekte und Relationen zwischen Objekten. Damit diese per Ext.-
Verbindung Uber Systemgrenzen hinweg als dquivalent dargestellt werden, muss flr beide die
Verteilung durch das Ext.-Verbindung Konzept beschrieben werden:

Ext.-Verbindung: Objekte Damit beide Objekte aquivalent behandelt werden kdnnen, ist es
nétig, dass immer auf beiden Seiten ein Ext.-Verbindungs-Objekt angelegt wird, das jeweils auf
das andere Objekt referenziert (vgl. Abbildung 4.24).

Wichtig ist, dass hierdurch nur die Aquivalenz dargestellt wird. Es wird keine Synchronisation
der Daten vorgenommen. Ein Ext.-Verbindungs-Objekt hat deswegen einen Boolean primér,
welches angibt, ob das lokale Objekt als primér anzusehen ist.

Im Falle, dass zwei Objekte als aquivalent markiert werden, handelt es sich bei der Ext.-
Verbindung also (vorlaufig) um eine 1 : 1 Beziehung.

81

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

-

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Objekt Retzerk Objekt

\Lremote_équivalent remote_&quivalent

Ext. Verbindung |«--ovvves ~| Ext. Verbindung
gegenseitig

andere EPR
des Objektes

A
/
/
/
/
/
/

<—<

Abbildung 4.24: Abbildung des Konzeptes Ext.-Verbindung auf ein Objekt iiber Gerite-Grenzen hinweg

Ext.-Verbindung: Relationen Dieses Prinzip ist Ubertragbar auf Relationen. Hier ist vorstell-
bar, dass eine Quelle auf einem Gerét liegt, wahrend ein Ziel sich auf einem anderen Gerat
befindet.

Netzwerk

ObjQuelle [=—> =—>[ObiZiel

4
X~ S,
(\ K
& %
N N§
& 9%
o
S %
g,
& r

Ext. Verbindung [«--os »| Ext. Verbindung
gegenseitig

andere EPR
des Objektes

Abbildung 4.25: Abbildung des Konzeptes auf eine Relation iiber Geréte-Grenzen hinweg

Abbildung 4.25 zeigt, dass die Verbindung, die auf ein entferntes Objekt zeigt, selber ein Objekt
ist und damit als Quelle fir die remote_&quivalent-Relation dienen kann. Eine Relation, die
auf ein entferntes Objekt zeigt, hat lokal ,offene Enden®: Entweder hat sie keine Quelle oder
kein Ziel. Die fehlende Information wird mittels der Ext.-Verbindungs-Objekte abgebildet: Per
remote_d&quivalent-Relation werden die ,offenen Enden” miteinander verknlpft. Es wird also
das Relations-Objekt als entfernte Kopie per Ext.-Verbindung dargestellt, was insgesamt zu
der Modellierung fiihrt, dass die Verbindung auf einem anderen Gerat ,weitergefihrt” wird.

Damit eine 1 : N Relation abgebildet werden kann, muss eine Quelle mit mehreren Ext.-
Verbindung Objekten zu ihren N Zielen abgebildet werden. Hieraus ergibt sich, dass auch
remote_d&quivalent eine 1 : N Relation sein muss.

82

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.6 Modell- und Geritegrenzen

4.6.2.2 Anderungs-Benachrichtigungen

In Kapitel 4.5.3 wurde eine Schnittstelle beschrieben, die, basierend auf dem Subskription/Be-
nachrichtigungs-Typ, Anderungen in der Objekt-Struktur in der modellgetriebenen Instanzum-
gebung aktiv entsprechenden Komponenten mitteilt.

Diese Schnittstelle kann im verteilten Umfeld genutzt werden: Die Ext.-Verbindungs-Objekte
miissen sich bei dem als primér markierten Objekt fir Anderungen subskribieren. Hierdurch
werden Anderungen auf dem entfernten Gerat bekannt.

Durch das Konzept der Annotationen (vgl. Kapitel 4.2.3) ist auch die Synchronisation von
Objekt-Kopien mit ihrem Original realisierbar: Es mussen lediglich die Schliissel-Wert-Paare
Ubertragen werden.

4.6.2.3 Zugriff auf die verteilte Modell-Instanzen

In einem nicht-verteilten Szenario ist das Auffinden einer Modell-Instanz vergleichsweise ein-
fach. Je nach Implementierung kénnen entweder vorgegebene Identifikationsmechanismen &
als Einstiegspunkt vereinbart werden, oder es kann Uber die vorhandenen Klassen-Definitionen
der Instanzen ermittelt werden.

Im verteilten Fall ist das Vorgehen komplizierter. Es muss die Frage beantwortet werden, wie
eine Anwendung eine oder alle Modell-Instanz(en) von einem Modell finden kann.

Es gibt im Wesentlichen vier Losungs-Ansatze:

Vorprojektierte Kommunikations-Adresse & Einstiegspunkt auf Geraten Erweiterung der
Lésung fir das lokale Finden der Modell-Instanzen. Ein Nachteil ist, dass eine Adresse
auf allen Teilnehmern vorprojektiert werden muss.

Suche auf Kommunikationsebene Spezielle Nachrichten fiir die Suche von Komponenten
kdnnen etabliert werden, um Modell-Instanzen zu finden. Diese Lésung wiirde die An-
wendungen direkt von der unterliegenden Kommunikation abhangig machen und die in
Kapitel 2.3 geforderte Unabhangigkeit der Kommunikation von den Daten in Frage stellen.

Such-Dienst Ein Dienst mit speziellen Nachrichten fir die Suche von Komponenten kann eta-
bliert werden um Modell-Instanzen zu finden. Eine solche Lésung bietet die volle Flexibi-
litdt, jedoch muss der entsprechende Dienst zur Ausfiihrung gebracht werden und belegt
somit selber Ressourcen. Diese Lésung wurde in [Dri05] ausfuhrlich dargestellt.

Suche liber gemeinsames Meta-Modell Das Meta-Modell beinhaltet Verwaltungs-Strukturen
um geladene Modelle und daraus instanziierte Objekte aufzufinden. Wenn diese Infor-
mationen system-Ubergreifend genutzt werden kénnen, ergibt sich eine Form des Yellow-

In ACPLT wiire dieses ein OV-Pfad; in OPC-UA eine Nodeld

83

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

System-Master (SM)

Eine Instanz pro Anlage (Singleton)
1

ist_modellmaster

Modell-Master (MM)

Eine Instanz pro Modell
1

ist_modellinstanz

Modell-Instanzen (M)

Viele Instanzen pro Modell, ggf. verteilt

Abbildung 4.26: Relationen um Modelle verteilt zu handhaben

Paging-Konzeptes: Das Meta-Modell kann genutzt werden um alle Modelle auf allen Ge-
raten aufzufinden.

An dieser Stelle wird sich auf die vierte mogliche Lésung konzentriert. Dabei wird jedoch in dem
verteilten Modell-Raum eine zentrale, vorprojektierte Yellow-Paging-Adres-se (EPR) definiert.
Hier werden die Einstiegspunkt fiir die jeweiligen Modelle; also die Modell-Master durch ihre
EPR erkundbar.

Ein wesentlicher Vorteil dieser Lésung ist, dass keine explizite Schnittstellenbeschreibung bzw.
Nachrichten-Spezifikation notwendig ist. Die im Folgenden beschriebene Lésung bildet sowohl
den initialen Einstiegspunkt fur ein Modell, wie auch fir die Verteilung der Modell-Instanzen
eine interne Erkundungsmdglichkeit. Auf diese Weise ist das System unabhangig von dem
verwendeten Kommunikations-Medium realisierbar.

Die Suche nach in Modellen abgelegten Informationen l&sst sich fir Anwendungen in drei
Schritte aufteilen:

1. Suche nach einem zentralen Einstiegspunkt fiir das jeweilige Modell (Modell-Master) des
gesuchten Modells an der Yellow-Paging-Adresse.

2. Suche mit Hilfe der Modell-Master nach der oder den Instanz(en) des Modells.

3. Suche nach den gewinschten Informationen innerhalb der gefundenen Modell-Instanz
ist dann &quivalent zu der Suche auf einem lokalen System.

Die ersten beiden Stufen werden genauer betrachtet, die dritte Stufe ist Modell-spezifisch und
bedarf hier also keiner weiteren Beschreibung.

Suche nach Modell-Master: Organisation der verteilten Modelllandschaft Es wird eine
vorprojektierte, gemeinsame Adresse als gemeinsamer Einstiegspunkt angenommen (Abbil-
dung 4.26).

84

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.6 Modell- und Geritegrenzen

<<Singleton>> &+
System Master

AN

<<Singleton>> g
MIK

Instanzumgebung

Abbildung 4.27: Vorschlag fiir die Realisierung des Zusammenspiels aus MIK und Modell mit Modell-
Master.

Unter dieser Yellow-Paging-Adresse ist eine Komponente System-Master (SM) ansprechbar.
Im Sinne des Yellow-Paging verwaltet dieser eine ,Liste“ der Modell-Master. Im Sinne der
hier vorstellten modellgetriebene Instanzumgebung wird diese Liste durch Relationen vom Typ
ist_modellmaster vom System-Master zu den einzelnen Modell-Master der Modelle reprasen-
tiert.

Anfragende Anwendungen mussen also lediglich den Relationen ist_modellmaster zu den
Modell-Mastern folgen.

Fir neu installierte Modelle oder genauer ihre Modell-Master gilt hingegen, dass sie eine solche
Relation ist_modellmaster anlegen missen, womit sie sich in die Liste der Modelle eintragen.
Sie kann - und wird im Normalfall - eine Ext.-Verbindung sein, da der Modell-Master auf einem
anderen Gerét liegt als der System-Master.

Die zentrale Rolle dieser System-Master Komponente ist aus Verfligbarkeits- sowie Ressour-
cen-Sicht nicht weiter kritisch, da eine Erkundung der Modell-Instanzen nur selten erfolgt -
beispielsweise bei der Inbetriebnahme eines neuen Gerates oder bei der Umstrukturierung
von Anwendungen.

Suche mit Hilfe der Modell-Master nach der oder den Instanz(en) des Modells Da an-
fragende Anwendungen von dem zu erkundenden Modell eine Modell-Vorstellung benétigen,
ist es auch hinnehmbar, dass spezifische Realisierungen des Modell-Masters existieren - die
Anwendungen missen also spezielle Kenntnisse Uber den Modell-Master besitzen. Die Modell-
Master kénnen so auf unterschiedliche Weise realisiert werden.

An dieser Stelle wird lediglich eine Realisierung-Mdéglichkeit beschrieben.

85

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Viele Modelle, wie auch das Beispiel-Modell der AT-Geréate-Struktur, werden durch ihre Anwen-
dung nur einen Wurzelknoten in einem System haben.

Fir den Modell-Master heif3t dieses, dass er gleichzeitig das Wurzel-Element beinhalten oder
sogar darstellen kann. Damit ist in diesem Fall eine Suche nach der richtigen Modell-Instanz
hinféllig. Eine suchende Anwendung kann also durch ihr Modell-Wissen, ausgehend vom durch
den Modell-Master gefundenen Wurzel-Knoten die Informationen suchen. In diesem Fall gibt
es also lediglich eine Modell-Instanz (MI), wie auch in Abbildung 4.27 dargestellt.

Es gibt jedoch auch Modelle, welche mehre Modell-Instanzen aufweisen. Vorstellbar sind hier
beispielsweise Konfigurations-Datensatze fliir Geréate. Diese kdnnen in einer Struktur als Modell
abgelegt werden. So wird fur jedes Gerat unabhangig von anderen Geréaten die Konfiguration
darstellbar sein.

Eine suchende Anwendung findet also durch den System-Master den Modell-Master, der eine
Liste von Relationen vom Typ ist_modellinstanz unterhalt. Hierber kann die suchende Anwen-
dung die gewlinschte Instanz finden.

Die Modell-Instanzen kénnen dabei entweder lokal auf dem Modell-Master organisiert werden,
oder es werden entsprechende Relationen zu anderen Geraten hergestellt, auf denen andere
Teile der Modell-Instanzen abgelegt sind. Diese Verbindungen werden durch das zuvor be-
schrieben Ext.-Verbindung Konzept realisiert.

4.6.2.4 Dienst-Orchestrierung auf Basis der verteilten Modelle

Von diesem Konzept kénnen auch aktive Komponenten / Dienste profitieren.

Aquivalent zu der Suche nach im Modell abgelegten Informationen durch den System-Master,
den Modell-Master und die Modell-Instanzen, kann auch eine Suche nach Diensten erfolgen.
Diese Suche erfolgt dabei durch die Suche nach dem Modell-Master flr das Dienste-Modell.
Dieser enthélt dabei - im einfachsten Fall - eine Relation zu allen in der Anlage verfligbaren
Dienst-Reprasentationen. Hierdurch sind also die Dienste prinzipiell auffindbar.

Die Suche gestaltet sich jedoch aufwandig, da im Endeffekt alle Reprasentationen (selbst wenn
diese auf einem Gerat zentralisiert abgelegt sein sollten) durchsucht werden mussen. Einen
Ausgangspunkt zur Reduktion kénnen auch die Klassenbeschreibungen der Dienste und die
instanz_von-Relation sein.

Vielversprechender ist es, wenn Modelle fir die Aufgabenbeschreibung existieren wirden. Die
Dienst-Reprasentationen kénnten entsprechend mit den Aufgabenbeschreibungen, die sie er-
fallen kénnen, in Relation gesetzt werden. Eine solche Aufgabenbeschreibung fir Dienste ist
jedoch aufwandig und nur sinnvoll, wenn eine entsprechende Standardisierung betrieben wird
- entsprechende Versuche der Dienst-Beschreibung sind im Bereich der Dienst-orientierten
Architekturen bisher leider nicht von Erfolg gekront.

86

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.6 Modell- und Geritegrenzen

4.6.2.5 Beispiel: Verteilte Modellierung der AT-Gerate-Struktur

ist_bekannt:Relation

x x AT-Geratestruktur
Von * ‘ [Nach ‘ Wurzelknoten
L |
Aanm
[V

Self Lroute_nach

-

[von

L
ist_bekannt _l

ist_bekannt

formations-Welt

|9
=

Kommunikation

Abbildung 4.28: Das AT-Gerite-Struktur-Modell auf Basis der Trennung von Informationswelt und Rea-
litit

Zu jedem Gerét gehoért eine Instanz ,Self“. Unter dieser Instanz vom Typ Geréte-Repré-sen-
tation verwaltet ein Gerat seine eigene Addressierungsmdglichkeit in Form der EPR, sodass
sie im Modell-Raum erkundbar ist. Dieses Objekt ist zum einen flr die Handhabung der An-
notationen auf einem Geréat vorhanden, also z.B. damit eine aktive Komponente bestimmen
kann, unter welcher Adresse sie erreichbar ist: Die EPR einer Komponente ergibt sich aus der
Kommunikations-Adresse der Self-Komponente und der lokalen Dienstadresse, wie in Kapitel
4.3.1 definiert.

Zum anderen kann es aber auch durch den Basis-Zugriff der Instanzumgebung von auf3en
erkundet werden. Dabei wird eine zentrale Instanz in einer Anlage fur die Modell-Instanzen
vorgeschlagen. Die grundlegende AT-Geréate-Struktur wird also auf einem zentralen Gerat ab-
gelegt. Teil-Anlagen oder auch komplexe andere Teilnehmer kénnen sich aber von diesem
Gerat durch die Mechanismen der verteilten Modelle auf anderen Geréaten befinden und dort
erkundbar bleiben. Die Adresse des zentralen Einstiegspunktes um die AT-Gerate-Struktur zu
erkunden wird per System-Master zugreifbar gemacht werden.

Abbildung 4.28 stellt fir die Struktur-Abbildung zwei Relationen dar: Die ist_bekannt Relation,
die die Liste der Gerate darstellt und die route_nach Relation, die die Verbindungen zu anderen
Geraten, also insgesamt die Kommunikationsstruktur, darstellt.

4.6.2.6 Transparenter Zugriff auf verteilte Modell-Instanzen

Aus dem bisherigen Beschriebenen leitet sich ab, dass eine Anwendung, die verteilte Modelle
erkunden will, den Ext.-Verbindung Relationen folgen muss, d.h. sie muss selber in der Lage
sein, lokale von externen Verbindungen zu unterscheiden. Bei Ext.-Verbindungen muss die Re-

87

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

ferenz des gegenuberliegenden Ext.-Verbindungs-Objektes entsprechend ber die hinterlegte
Adresse bezogen werden und dort die weitere Erkundung vorgenommen werden.

Diese Problematik kann jedoch aufgelést werden, indem die Kommunikation mit dem eigent-
lichen modellgetriebenen Instanzsystems nicht direkt, sondern durch eine besondere Schnitt-
stelle erfolgt. Beide Lésungen sind in Abbildung 4.29 dargestellt.

o™ | ”
Anwendung
@ ()

[MT-Dienst ©] [MT-Dienst @]

@)

@ SystemBasisDienst SystemBasisDienst (SBD’) mit EPR als Referenz

Abbildung 4.29: Zugriff einer Anwendung auf die Modell-Laufzeit: Entweder direkt per SystemBasis-
Dienst oder mittels des MT-Dienstes

Dieser Modell-Transparenz-Dienst (MT-Dienst) bietet alle SystemBasisDienste an, nutzt als Re-
ferenz sowohl flr Aufrufe, wie auch fir Antworten, eine EndPointReference, die neben der
Kommunikations-Adresse auch mit der internen Referenz des Zielsystems versehen ist. Sie
wird als SystemBasisDienst’ (SBD’) bezeichnet. Die Schnittstelle leitet dabei SystemBasis-
Dienst-Aufrufe, die lokal erfolgen, entsprechend an das Zielsystem, welches in der EPR ver-
merkt ist, weiter.

Dadurch, dass die Antworten - egal ob sie lokal ausgefiihrt wurden oder auf einem anderen
System - immer EPRs enthalten, kann die aufrufende Anwendung diese EPRs als Referenz
nutzen. Das heiB3t, dass die EPR mit ihren verschiedenen Elementen nicht auf ihre Bestandteile
untersucht wird, sondern insgesamt als Referenz genutzt wird.

Die Komponente Modell-Explorer in Kapitel 5.4 realisiert spater dieses Konzept fiir ein Gerét.

Hieraus folgt, dass Anwendungen, wenn sie auf Informationen in potenziell verteilte Modell-
Instanzen zugreifen wollen, immer gegen den MT-Dienst entwickelt werden, nicht jedoch gegen
die SystemBasisDienste selber.

Selbst Verbindungen tber Systemgrenzen hinweg kénnen von dieser Schnittstelle durch ent-
sprechendes Anlegen der Ext.-Verbindungs-Relationen instanziiert werden, ohne, dass die auf-
rufende Anwendung die Verteilung beriicksichtigen muss. Die vorgeschlagene Modell-Interkon-
nektion basiert also sinnvollerweise auf dieser Schnittstelle.

Im Gegensatz dazu sind Anwendungen zu nennen, die die Verteilung aktiv steuern. Sie ben6-
tigen den direkten Zugriff auf die realen SystemBasisDienste, um die Modell-Instanzen direkt
anlegen zu kénnen.

88

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.7 Effizienz der Konzepte

Einhalten der AKID-Eigenschaften liber Systemgrenzen hinweg In Kapitel 4.3.5 wurden
die SystemBasisDienste beschrieben.

Werden diese verteilt ausgefiihrt, so missen die AKID-Eigenschaften auch hier berlicksichtigt
werden. In der Literatur gibt es weitreichende MaBnahmen um Anderungen auf verteilten Sys-
temen unter Berlcksichtigung der AKID-Eigenschaften auszuflihren. Hier sind insbesondere
Konzepte aus dem Bereich der foderierten Datenbanksysteme zu sehen, wie in Kapitel 2.5
erwahnt.

4.7 Effizienz der Konzepte

An dieser Stelle kann keine konkrete Abschatzung fir die Effizienz der Konzepte vorgenom-
men werden, da bisher weder die unterliegenden Gerate und Kommunikations-Medien fest-
gelegt sind, noch die konkreten Realisierungen der Modelle und ihrer Interaktion sowie deren
Verteilung fest stehen.

Im Wesentlichen sind zwei der présentierten Konzepte fir eine Effizienz-Einschéatzung relevant:

Zum einen bieten die Modell-Interkonnektionen eine Méglichkeit, Verbindung zwischen bisher
getrennten Informationen durch ein eigenes Modell darzustellen. Die Verbindungen innerhalb
der Daten-Modelle der Anwendungen sind dabei von untergeordneter Bedeutung, da sie nur
einen geringen Speicherbedarf und (in der lokalen Variante) keinen Kommunikationsbedarf
bendtigen. Kritischer missen hier die Verwaltung der Modell-Interkonnektionen betrachtet wer-
den. Durch die geforderte Dynamik muss einem Hinzufligen eines Objektes in einem Modell
ggf. eine neue Modell-Interkonnektion erstellt oder geléscht werden. Damit miissen Anderun-
gen im modellgetriebenen Instanzsystems aktiv durch entsprechende Komponenten (in Kapitel
5.5 vorgestellt) Gberwacht werden. Dieses kann in Bezug auf die Laufzeiteffizienz kritisch sein.

Zum anderen ist das Verteilen von Modell-Instanzen iber Systemgrenzen hinweg je nach An-
wendungsfall zu analysieren, also die verteilte Modell-Instanzumgebung insbesondere das
Ext.-Verbindungs-Konzept. Die fir die Manipulationen der Modell-Instanzen vorzunehmende
Kommunikation selber ist &quivalent zu den existierenden Umgebungen. Zusatzlich ist jedoch
der Kommunikations-Bedarf des Suchens und der Synchronisation durch die Ext.-Verbindungs-
Objekte zu betrachten.

4.7.1 Modell-Interkonnektionen und ihre Etablierung

Modell-Interkonnektionen sind Relationen und damit lediglich einfache Objekte. Sie bendtigen
im Verhéltnis zu den Modell-Instanzen also kaum Speicher. Da es sich um Abbildungen im
Modell handelt, benétigen sie selber, solange es keine Ext.-Verbindungen sind, keinerlei Re-
chenzeit.

89

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4 Modell-Architektur fiir dynamische, verteilte Systemstrukturen

Anders sieht es da bei den Komponenten aus, die die Modell-Interkonnektionen verwalten. Sie
benétigen zum einen Rechenleistung, um aus Anderungen ggf. neue Relationen zu etablieren.
Zum anderen werden sie Gebrauch von der Subskription/Benachrichtigungs-Schnittstelle der
modellgetriebenen Instanzumgebung machen. Dieses kann ein Problem werden, denn im Ide-
alfall sollten alle involvierten Modelle auf einem Geréat lokal instanziiert werden, sodass lediglich
lokale Kommunikation nétig ist.

Zusammenfassend gilt:
e Modell-Interkonnektionen selber bendtigen einen geringen Speicher.

e Die Verwaltung der Modell-Interkonnektionen bendtigen Speicher-, Rechen- und Kom-
munikations-Ressourcen fiir Anderungs-Benachrichtigungen durch die Subskription/Be-
nachrichtigungs-Schnittstelle der modellgetriebenen Instanzumgebung.

o Instanziierung der Verwaltungs-Komponenten ist méglichst auf den Geraten vorzuneh-
men, auf denen entsprechende Modell-Instanzen zu beriicksichtigen sind.

4.7.2 Verteilungsaspekte

Wie eingangs bereits beschrieben, sind unterschiedliche Varianten fir die Verteilung der Mo-
dell-Instanzumgebungen denkbar. Hieraus ergibt sich, dass Uber die nétige Kommunikation
zwischen den Geréaten keine endgiiltige Aussage getroffen werden kann.

So kann eine zentrale Laufzeit, wie es klassischem OPC Umfeld ist, dazu fiihren, dass kei-
nerlei Kommunikation zur Verwaltung der verteilten Modelle auf Netzwerkebene vorgenommen
werden muss. Wenn ein solcher zentralistischer Ansatz jedoch auch fir die Modelle des En-
gineerings genutzt werden soll, ist dieses schwer vorstellbar, da eine Vielzahl von Geraten
existiert, die eigene Modelle bzw. Daten beheimaten.

Es macht Sinn, dass Modelle und Modell-Instanzen méglichst lokal auf genau dem Gerét in-
stalliert werden, auf dem sie am meisten genutzt werden, d.h. auf genau den unterschiedlichen
Rechnern der Engineering-Systeme.

Es kénnen also Kriterien beschrieben werden, die bei einer Verteilung zu beriicksichtigen sind.

Ein lokaler Zugriff von einer Anwendung auf eine Modell-Instanz ist in jedem Fall vorzuziehen.
Insbesondere in der Engineering-Phase ist eine Hauptaufgabe der Anwendungen die Ande-
rung der Modell-Instanzen, sodass hier eine Verteilung der Modelle auf die jeweiligen Gera-
te der Anwendungen sinnvoll ist. Hierdurch werden die Modell-Anderungen im Effizienzsinne
Lgunstiger”, wahrend die Modell-Interkonnektionen haufiger durch Ext.-Verbindungen realisiert
werden mussen.

Grundsatzlich ist aber die Minimierung der Ext.-Verbindungen ein wesentlicher Aspekt - da
diese Verbindungen zum einen ggf. aktiv Uberwacht werden mussen (vgl. Kapitel 5.6), zum

90

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

4.8 Integrationsmdoglichkeiten in die bestehende AT-Gerdéte-Landschaft

anderen auch entsprechende Ressourcen belegen. Eng verknipfte Modelle kénnen so besser
auf einem Gerat instanziiert werden.

Es ergibt sich, dass der Grad der Verteilung eine wesentliche Rolle spielt. Da zur Engineering-
Phase andere Arbeitsablaufe/Programme auf die Modelle zugreifen, als zur Produktions-Phase,
kann eine Reorganisation des Gesamtmodells zwischen Engi-neering- und Produktions-Phase
sinnvoll sein.

Zusammenfassend gilt also:
e Minimierung der externen Kommunikation fur Gerate
e Minimierung der Ext.-Verbindungen

e Migration von verteiltem Engineering zu einer zentralen Struktur zur Laufzeit

4.8 Integrationsmaoglichkeiten in die bestehende
AT-Geréate-Landschaft

In den vorstehenden Kapiteln wurde allgemein Uber ein Gerat in der Automatisierungstechnik
gesprochen. Hieraus ergibt sich die Frage, auf welchen Geréaten die beschrieben Instanzum-
gebung sinnvoll zu realisieren ist.

Die Voraussetzungen in Bezug auf die Hardware (Speicher, Rechenleistung und Kommunikati-
on) mussen selbstverstandlich erfillt sein. Im Prinzip I1&sst sich also eine solche Instanzumge-
bung fir die Systemstrukturen auf Sensor- oder Aktor-Ebene realisieren. Auch Szenarien wie
Jntelligente Produkte” aus dem Kontext ,Industrie 4.0 sind denkbar. So existieren beispiels-
weise RFID-Leser (also Sensoren), die ihre Daten per OPC-UA als Server bereitstellen. Die in
Zukunft vorhandenen Ressourcen und Anwendungsfalle werden hier jedoch Grenzen auflésen,
die heute nicht absehbar sind.

Durch die Entkopplung von physikalischem Gerat und Reprasentation in der Informations-Welt
ist es nicht nétig, dass jedes Gerét ,seine” Instanzumgebung mit sich bringt. Nach entsprechen-
der Initialisierung beispielsweise in der Inbetriebnahme-Phase ist es mdglich, dass samtliche
Handhabungen der Modelle entsprechend ,entfernt” auf einem anderen Gerét erfolgt.

91

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

5 Komponenten einer verteilten,
modellgetriebenen Ausfihrungsumgebung

Das Ganze ist mehr als die Summe seiner Teile.
Aristoteles

Nachdem zuvor die Modelle und Konzepte fiir die verteilte, modellgetriebene Instanzumge-
bung vorgestellt wurden, liegt der Fokus dieses Kapitels auf den Basis-Komponenten, die die
Systemstruktur nutzbar und anwendbar machen - also der System-Architektur.

Diese Komponenten (ibernehmen dabei zum Grofteil Verwaltungs- und Abstraktionsaufgaben,
d.h. es handelt sich um lokale - méglicherweise auf allen Geraten instanziierte Komponenten,
die den letztendlichen Anwendungen eine Schnittstelle bereitstellen. Wichtig ist hierbei die Mo-
dularitét der Umgebung in drei Richtungen:

Modell Die im vorangegangenen Kapitel beschriebenen Konzepte zur Modell-Interkonnektion,
sowie der Verteilung von Modellen. Sie sind auch unabh&ngig von den hier vorgeschla-
genen Komponenten anwendbar.

Komponenten Die im Folgenden beschrieben Komponenten sind unabhangig voneinander
realisierbar, d.h. auch wenn das Gesamtkonzept nicht umgesetzt werden kann oder soll,
sind die Ideen anwendbar.

Realisierung Um am Gesamtsystem teilzunehmen, missen nicht alle Komponenten auf al-
len Geréten instanziiert sein. Es kann also insbesondere bei Ressourcen-Problemen im-
mer zu Geraten mit geringerem Funktionsumfang kommen - bis hin zu reinen Klienten-
Geréten, die das Gesamtsystem lediglich erkunden und selber nicht teilnehmen. lhre
Repréasentation wiirde also auf anderen Geraten verwaltet werden.

Insgesamt wird so eine verteilte Modell-Instanzumgebung beschrieben. Diese wird IMLAUF
genannt - Interkonnektion von Modellen zur Laufzeit. Auf die Modelle der Instanzumgebung
kénnen zum einen externe Programme durch die beschriebenen SystemBasisDienste aus
Kapitel 4.3.5 zugreifen. Es kénnen aber auch Dienste als Komponenten in einer IMLAUF-
Instanzumgebung als Ausflihrungsumgebung realisiert werden, die wiederum hdherwertige
Aufgaben anbieten.

92

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Daten-
IMLAUF Komponenten Modelle MIKs

o
e
=
o

Ausflihrungs-
umgebung

R

Inspektor

Remote-Modell-

Nachrichtenbasierte
Kommunikation
Modell-Explorer
Dienst/Gerate-Inspektor
AT-Geriite-Modell 53,

Dienste-Modell

Instanz- I
umgebung

IMLAUF Kern

‘ Betriebssystem / Hardware Ebene E ‘

Abbildung 5.1: Eine grobe Ubersicht der Basiskomponenten und Architektur des Ausfithrungssystems

Ubersicht iiber die IMLAUF Komponenten Abbildung 5.1 gibt einen Uberblick der Kompo-
nenten. Vor der eigentlichen Komponentenbeschreibung wird hier eine Ubersicht gegeben. Der
Fokus liegt dabei auf dem Zusammenspiel und den Rollen der einzelnen Komponenten:

Als Ausgangspunkt, wie in den Anforderungen in Kapitel 3 definiert, dient eine Softwarekompo-
nente, die Zugriff auf die Ressourcen des Gerates ermdglicht. Die jeweiligen Anbieter der Ge-
rate sind an dieser Stelle gefordert, eine Ausflihrungsmaoglichkeit bereitzustellen. Diese Ebene
wird durch ein Betriebssystem wie Microsoft Windows, Linux oder eine Firmware dargestellt.

Die grundlegendste, wichtigste Komponente ist der IMLAUF Kern. Diese Komponente stellt
die Schnittstelle zwischen dem Hersteller des Gerates und einer einheitlichen Ausflihrungs-
umgebung dar, auf denen die hier beschriebenen Modelle und Anwendungen ausgefihrt und
verwaltet werden.

Dabei werden die verwalteten, wesentlichen Ressourcen in die Kategorien Speicher, Rechen-
leistung und Kommunikationsleistung eingeteilt. Diese Ressourcen werden den aufbauenden
Diensten bereitgestellt, sodass diese die Ressourcen nutzen kénnen. Die Klassifikation und
Verwaltung dieser Ressourcen wird als Option bei der detaillierteren Beschreibung im Kapitel
5.1 dargestellt.

Obwohl alle im Folgenden beschriebenen Dienste, sowie auch alle Dienste einer Anwendung
im Endeffekt diese Komponente nutzen, gibt es zwei Haupt-Komponenten, die die Basisaufga-
ben abbilden:

Das Instanzsystem bietet die Umgebung, um die Modell-Instanzen zu verwalten. Im Wesent-
lichen besteht es aus dem in Kapitel 4.5 beschriebenen Container, der die Objekte und Re-

'Diese Verwaltung der lokalen Ressourcen hat dabei mit einem verteilten Ressourcenmanagement, welches in den Anforde-
rungen als optional gekennzeichnet wurde, nur insofern etwas gemein, dass es die Informationen iiber lokale Ressourcen
bereitstellen muss.

93

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

lationen der Modelle verwaltet und eine entsprechende Erkundung dieser - lokal - ermdglicht.
Hier wird durch das im Kapitel 4.6.1 beschriebene Konzept der Modell-Interkonnektion ein ge-
meinsamer Instanzraum fir alle aktiven Dienste geschaffen: Die Ausflihrungsumgebung. Der
einheitliche Objekt-Raum, der die gemeinsame Verwaltung der passiven und aktiven Kompo-
nenten in der Ausflihrungsumgebung darstellt, wurde in Kapitel 4.5.4 beschrieben. Hierbei ist
zu beachten, dass die Daten im Modell-Raum abgelegt werden sollen. Gerade ausgehend von
bisherigen Anwendungen, ist dies ein groBer Wandel: Bisher halten Programme ihre Daten
intern und verhindern den Zugriff.

Die Ausflihrungsumgebung bietet die Schnittstelle fir Instanziierung, Anmeldung und Erkun-
dung der aktiven Komponenten bzw. den zuvor definierten Diensten. Im Gegensatz zur Instan-
zumgebung ist eine Erkundung der Dienste selber nicht vorgesehen, da das Prinzip der Dienste
eine Kapselung vorsieht; also einen Dienst als Blackbox ansieht, der sich Uber seine Schnitt-
stellen definiert und nicht tiber seine interne Realisierung. Uber die vorgestellte Représentation
der Dienste ist eine Erkundung méglich. Eine weitergehende Erkundung kann auf eine seman-
tische Beschreibung ihrer Funktionalitat basieren, die als Annotation an den Reprasentationen
hinterlegt wird.

Aufbauend werden drei Typen von Komponenten realisiert. Alle greifen dabei auf die Haupt-
Komponenten zurlick.

Der erste Typ sind die Klassen-/Instanz-Modelle, die die im Instanzsystem abgelegten Repra-
sentanzen beschreiben. Hier sind in der modellgetriebenen Instanzumgebung insbesondere
das Dienst- sowie Gerdtemodell zu nennen. Das Gerdtemodell stellt ein (einfaches) Modell fr
die Verwaltung von bekannten Geraten dar, welches in Kapitel 4 entwickelt wurde.

Der zweite Typ von Komponenten stellen Dienste dar. In einer modellgetriebenen Instanzum-
gebung existieren einige wichtige Dienste:

o Direkt mit der Ausfiihrungsumgebung ist das Lokale Service Management verbunden.
Es bietet lokale Funktionen, die von den Diensten zu Verwaltungszwecken genutzt wer-
den kdénnen. Nach auBBen hin bietet es Schnittstellen an, um Dienste zu laden und zu
entladen, sowie eine Ubertragungsméglichkeit fiir die benétigten Daten der Diensttypen.
Es nutzt dabei zur Verwaltung entsprechende Relationen vom AT-Geréate-Struktur-Modell
und Dienste-Modell in der Instanzumgebung.

Die Nachrichten-basierte Kommunikation stellt eine zentrale Komponente des Versandes
und des Empfangs fir asynchrone Nachrichten zwischen den Geréaten dar. Diese wird
von allen Diensten genutzt.

Die beiden Komponenten Dienst-/Geréte Inspektor und Remote-Modell-Inspektor ver-
walten andere Gerate und lberwachen ihre Verfligbarkeit. Aufbauende Dienste kdnnen
hier ihr Interesse an entfernten Diensten oder Gerédten anmelden und werden bei einem
gewollten oder ungewollten Strukturwandel von der Anderung informiert. Es handelt sich
also um Komponenten zur Vereinfachung der Verteilung.

94

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5.1 Ressourcen-Abstraktion: IMLAUF-Kern

IMLAUF Kern o

Speicher
Rechenzeit
Energie
...weitere

c
el
T
=
c
IS
S
O
X

U

[Hardware/OS-Ressourcen@J

Abbildung 5.2: Ressourcen werden von der Hardware / dem Betriebssystem genutzt. Die Verwaltung
und Bereitstellung wird durch den IMLAUF Kern abgebildet.

e Fir die Erkundung der Modell-Instanzen bietet der Modell-Explorer eine Schnittstelle an.
Hierbei wird eine Abstraktion von lokaler und entfernter Modell-Erkundung geschaffen,
sodass Dienste, die den Modell-Explorer nutzen, keine eigene Verwaltung der Verteilung
der Modelle bzw. Modell-Relationen benétigen.

Der dritte Typ von Komponenten ist aufbauend auf den Haupt-Komponenten sowie den Model-
len in der Instanzumgebung zu verstehen: Die Modell-Interkonnektions-Komponen-ten (MIK) -
sie realisieren und tberwachen die Modell-Interkonnektionen aus Kapitel 4.6.1.

Als Teil der modellgetriebenen Instanzumgebung wird hier ein Ext.-Verbindungs-MIK vorge-
stellt, welches Verbindungen Uber Gerategrenzen hinweg anlegt und verwaltet. Es stellt die
Basis fir die transparente Erkundung des Modell-Explorers bereit.

Im Weiteren werden die Komponenten im Detail beschrieben und spezifiziert.

5.1 Ressourcen-Abstraktion: IMLAUF-Kern

Der IMLAUF-Kern (Abbildung 5.2) stellt die eigentliche Instanzumgebung bereit, also die Kopp-
lung und Abstraktion der Hardware bzw. des unterliegenden Betriebssystems. Nach oben bietet
sie den aufbauenden Komponenten die Schnittstelle an. So werden die Hardware-Ressourcen
an dieser Stelle den aufbauenden Komponenten bereitgestellt. Da sie stark implementierungs-
abhéangig ist, kann an dieser Stelle wenig lber die Realisierung gesagt werden.

Ressourcen-Verwaltung Es kann sinnvoll sein, dass die Ressourcen selber explizit verwaltet
werden. Dieses beinhaltet das Allokieren und Freigeben der Ressourcen, sowie das Beobach-
ten von Engpéssen. Alle diese Informationen kénnen in einem Ressourcen-Modell abgebildet
werden, womit sie in der Instanzumgebung den Modellen zur Verfligung stehen.

95

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

Hintergrund:

Ansatze, diese Verwaltung der Ressourcen zu realisieren, ohne die Anwendungsentwick-
lung hiermit zu verkomplizieren, bietet die Doméane der virtuellen Maschinen, wie sie bei
allen Cloud-Computing Lésungen eingesetzt werden.

Es sind mindestens die folgenden Ressourcen-Kategorien auf einem Gerat zu beriicksichtigen:
Rechenleistung Die bereitstehende, allgemeine Rechenleistung.

Speicher Der bereitstehende Speicher. Aufgeteilt in fliichtigen und permanenten Speicher.
Kommunikation Die Kommunikationsméglichkeiten und deren Bandbreite.

Energie Der Energiekonsum, ggf. in Relation zur den anderen Ressourcen.

weitere Weitere Ressourcen, beispielsweise geratespezifische Ressourcen (remanenter Spei-
cher etc.)

Die Beschreibung dieser Ressourcen muss quantifizierbar sein, das hei3t es muss eine Metrik
vorliegen. Gleichzeitig missen die Relationen zwischen den Ressourcen beschreibbar sein - so
héngt beispielsweise der Energiebedarf einer CPU von seiner angeforderten Rechenleistung
ab. Auf diese Weise kdnnen Dienste entwickelt werden, die (teil-)automatisch die Verteilung
von Diensten ermdglichen. Auch kann ein Ressourcen-Mangel im Modell erkannt und entspre-
chende Alarme oder Umorganisationen ausgelést werden.

In der Automatisierungstechnik werden einfachere Modelle fiir die Ressourcenabbildung nur
sehr begrenzt und abstrakt eingesetzt. Als ein Beispiel kann die SPS Programmierung ge-
nommen werden. Hier wird bei vielen Engineering-Firmen die beim Engineering entstehende
Code-GroBe oder der allozierte Speicher zur Laufzeit als Referenz genutzt, um zu erkennen
inwieweit eine SPS ausgelastet ist. Rechen-Ressourcen werden dabei ebenso abstrahiert, wie
Kommunikationsbedarf und Energie.

Die so vorgenommene Vereinfachung ist flr die Beschaffung und den Vergleich von Geraten
sicherlich sinnvoll - fir die Planung von Ressourcen zur Laufzeit jedoch ggf. nicht hinreichend.

Eine detaillierte Definition solcher Metriken scheint heute aber nicht mdglich. Insbesondere
auf Seiten der Programme, die Ihren Bedarf beschreiben missen, ist dieses (basierend auf
der theoretischen Informatik) nur in Abhangigkeit vom internen Zustand, sowie der Eingabe
mdglich. Hier gilt es also einen geschickten Zwischenweg fiir eine Ressourcenbeschreibung
fur die Automatisierungstechnik zu finden.

Hintergrund:

Siemens stellt zur Laufzeit Probleme mit Rechen-Ressourcen einer SPS im OB82 bereit,
wobei man im OB80 eine Reaktion definieren kann - beispielsweise einen Diagnosealarm.
Es kénnen also Alarme und Reaktionen zur Laufzeit definiert werden, sobald ein Schwell-
wert erreicht wurde und die Erflllung der Zykluszeit in Gefahr ist.

96

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5.2 Die modellgetriebene Instanzumgebung

Ein sinnvoller und bewusster Umgang mit den Ressourcen erfordert zum einen eine weitge-
hende Kenntnis der Realisierung und damit der bereitstehenden Ressourcen. Zum anderen ist
aber auch eine Ressourcen-Kalkulation der konsumierenden Komponenten notwendig. Beides
wurde im IT-Umfeld, gerade im Bereich des Grid-Computing — beispielsweise durch JSDL [14]
— vollzogen. Bei Bedarf kann sie also adaptiert werden, wie es bereits in [ME11] konzeptuell
beschrieben ist.

5.2 Die modellgetriebene Instanzumgebung

,

s

%
%

L,
¥
Y, %
A
% ((9@%@
6
&%& 8, 7

lo..

::::: tanz_von>> | | <cinstanz_von>>

IMLAUF |,
Kern

Abbildung 5.3: Schnittstellen der Instanzumgebung

Die in Kapitel 4.5 beschriebene Instanzumgebung der Modelle verwaltet die Modell-Instanzen,
also Objekte und Relationen der Modelle.

Sie nutzt dabei Ressourcen und bietet die SystemBasisDienste (vgl. Kapitel 4.3) an, um die
Modell-Instanzen zu manipulieren, wie in Abbildung 5.3 dargestellt.

Die interne Architektur der Komponente wird an dieser Stelle aus zwei Grlinden nicht kon-
kret beschrieben: Zum einen existieren bereits Industrie-taugliche Lésungen (Kapitel 2.4.1), die
die Aufgabe Ubernehmen kénnen und so als Realisierungen bzw. Realisierungsspezifikationen
angesehen werden kénnen. Da der interne Aufbau nur durch die SBD einsehbar ist, kénnen
zum anderen aber auch unterschiedliche Prinzipien im Detail ausgearbeitet werden. Zusétz-
lich ist es wichtig, dass die Realisierung méglichst Speicher- und Rechenleistungs-sparsam
geschieht, d.h. ggf. auch angepasst an die entsprechenden unterliegenden Gegebenheiten.

Wie in der Ubersicht beschrieben, werden auch aktive Komponenten — also Ablaufe — in IM-
LAUF zur Ausfiihrung gebracht.

Hintergrund:

Die Instanzumgebung ist die Objektverwaltung der Modell-Instanzen und kann damit mit
dem Objektverwaltungssystem ACPLT/OV und der Server-Komponente von OPC-UA ver-
glichen werden. Uber die Ausfiihrungsmédglichkeiten dieser Lésungen ist zuvor bereits in
Kapitel 4.5.4 berichtet worden.

97

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

bl

lokale Anfragen

Kommunkation

emtfernte Anfragen
entfernte Antworten

lokale Antworten

1
<} S/N: Nachrichten
tber Kommunikation

Abbildung 5.4: Schnittstellen der Kommunikations-Komponente

Wichtig fiir die Reaktion auf Anderungen und damit die Dynamik des Gesamtsystems ist die
Anderungs-Benachrichtigung, wie sie in Kapitel 4.5.3 spezifiziert ist. So muss es fiir Kom-
ponenten méglich sein, bei beliebigen Anderungen an dem Modell informiert zu werden und
hierauf reagieren zu kénnen.

5.3 Nachrichten-basierte Kommunikation in IMLAUF: MsgSys

Im Kapitel 4.3 wurde ein einheitliches Verstédndnis der Kommunikation beschrieben.

Die Kommunikations-Komponente MsgSys realisiert die Nachrichten-basierte Kommunikation,
wie sie in Kapitel 4.3 dargestellt ist. Die unterschiedlichen Kommunikations-Typen (Abbildung
5.4) sowie die Nachrichten-Formate werden auf Basis dieser Komponente durch die Dienste
beschrieben und realisiert - die Kommunikations-Komponente ist also hiervon unabhéngig.

Einzig die Intent-basierte Kommunikation benétigt neben dieser Kommunikations-Kompo-
nente eine weitere, zentrale Komponente zum Empfang und Weiterleiten der Intent-Nachrich-
ten. Der prinzipielle Aufbau wurde dabei in Kapitel 4.3.7 bereits dargestellt. Die Umsetzung
hiervon bedarf keiner gesonderten Beschreibung.

Diese IMLAUF-Komponente bietet zuséatzlich zu der Nachrichten-basierten Kommunikation lo-
kale Schnittstellen an, die es den lokalen Anwendungen mdglichst einfach machen, Nachrich-
ten abzuschicken bzw. zu empfangen. Nach auB3en hin bietet die Komponente die Nachrichten-
orientierte Schnittstelle zum Empfang aller Nachrichten fiir das lokale Gerat an.

Durch die zentrale Rolle auf einem Gerat kdnnen auch lokal zuzustellende Nachrichten durch
die gleichen Schnittstellen versandt werden. Da die Komponente die Lokalitdt der Kommu-
nikation durch Analyse des Nachrichten-Kopfes feststellt, kann hierbei auf eine Nutzung des
Kommunikations-Mediums verzichtet werden. Dieses Vorgehen bietet die Eigenschaft einer
transparenten Kommunikation. Der Sender muss also nicht erst beriicksichtigen, ob eine Nach-
richt lokal oder entfernt zuzustellen ist.

MsgSys-Realisierung In Abbildung 5.5 wird verdeutlicht, dass aktive Komponenten durch
Nachrichten kommunizieren. Nachrichten sind dabei in erster Linie Objekte mit bestimmten

98

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5.3 Nachrichten-basierte Kommunikation in IMLAUF: MsgSys

i Gerét

serialisierte Nachrlch % M Sg SyS [|][> serialisierte Nachrich

Erstellung ! \Zﬂugriff
notify| | |notify
i
0 i
Zugriff [Komponente| Erstellung
T

Empfang E Versand

Abbildung 5.5: Ubertragung einer Nachricht von einer Sender-Komponente zum Empfinger

Gerat Gerat

’ MsgSys MsgSys
aktive ° aktive 0

Komponente Komponente

Abbildung 5.6: Aufbau einer Nachricht, Nachrichten-Verarbeitung in einem Gerét

Datenfeldern, wie sie in Kapitel 4.3.3 beschrieben sind. Der Umgang mit diesen Objekten -
letztendlich eine Ubertragung der Objekte von einem Gerat auf ein anderes - kann durch eine
zentrale Komponente erfolgen. Hierdurch wird die Handhabung innerhalb der aktiven Kompo-
nenten eingespart. Die Objekte werden von der versendenden Komponente instanziiert und
parametriert. Folgend wird die MsgSys Komponente informiert, dass die Nachricht versandt
werden soll. Diese greift auf das Objekt zu und serialisiert es, falls es Uber Gerategrenzen
hinweg Ubertragen wird. Auf Empfangerseite wird das Objekt wieder hergestellt und eine Be-
nachrichtigung geht an die empfangende Komponente.

Die Abbildung 5.6 verdeutlicht das Vorgehen aus Sicht eines Gerates beim Senden und Emp-
fangen einer Nachricht durch das MsgSys. Hauptaufgabe ist eine Kommunikations-M&glichkeit
durch das entsprechende Kommunikations-Medium zu ermdglichen, wie es die Nachricht als
Kommunikations-Adresse der EPR spezifiziert. Dabei wird keine direkte Verbindung zur Emp-
fanger-Komponente aufgebaut, sondern eine serialisierte Version des Nachrichten-Objektes
wird an die MsgSys-Komponente des Zielsystems gesandt. Diese kann aus der serialisierten
Nachricht wieder ein Nachrichten-Objekt erstellen und die im Kopf spezifizierte Empfanger-
Komponente lber den Erhalt der Nachricht informieren.

Hintergrund:

Fur das in der Realitat verbreitete Ethernet mit TCP/IP bedeutete eine solche Realisierung
zusatzlich, dass in ggf. vorhandenen Firewalls nur der eine, explizite Port gedffnet werden
muss, was eine wesentliche Vereinfachung fur die Inbetriebnahme darstellt.

99

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

Entsprechend schnell kann auch eine lokale Nachrichten-basierte Kommunikation erfolgen:
Hier wird auf die Serialisierung verzichtet und nur die Referenz auf das Nachrichten-Objekt an
die Ziel-Komponente weitergereicht.

Modellierung der Kommunikation innerhalb der Instanzumgebung Im Sinne der Repra-
sentation ist es insbesondere fir zukinftige Anwendungsfélle mit flexiblen Kommunikations-
Strukturen sinnvoll, die Kommunikation selber auch in der Instanzumgebung abzulegen. D.h.
sowohl Kommunikations-Kanéle der Kommunikations-Medien werden dort als Objekt abruf-
und erkundbar, wie auch die Aufrufe (Nachrichten) selber.

Durch eine so weitreichende Abbildung der Kommunikation im Modell-Raum werden fir an-
dere Anwendungen auch Reaktionen auf neue und fehlgeschlagene Verbindungen sichtbar
und dadurch handhabbar. Spezielle Komponenten kdnnen hierauf reagieren und MaBnahmen
einleiten.

Beobachtungs-Schnittstelle Die IMLAUF-Komponente bietet eine Schnittstelle auf Basis von
der Subskription-/Benachrichtigungs-Kommunikation (Typ 3) an. Beliebige Komponenten kén-
nen sich hier auf Ereignisse von ein-/ausgehenden Nachrichten subskribieren?.

Das heif3t, dass der Status der Nachrichten publiziert wird. Hierzu zahlen insbesondere auch
Fehler-Zustande. Hierdurch kann eine Komponente, wie beispielsweise das im spéateren Verlauf
beschrieben DGI eine Uberwachung von Gerate realisieren. Ebenso ist aber denkbar, dass
Reaktionen auf das Antwortverhalten (Zeitverzug) allgemein sichtbar gemacht werden.

Hintergrund:

Diese Abbildung der Kommunikation selber ist nicht verbreitet. ACPLT/KS bildet — in der
Version KS2nd — fir TCP/IP Verbindungen eintreffende Verbindungen als Objekte ab, so-
dass auch eintreffende Dienst-Aufrufe die aktuelle Kommunikationsumgebung erkunden
kénnen.

Bei OPC-UA hingegen wird die Kommunikation selber strikt von dem Objektraum getrennt.
Zwar gibt es in der aktuellsten Version der Spezifikation ,SessionDiagnosticsSummary*,
jedoch ist diese dem Administrator vorbehalten und steht somit nicht fir die Modellierung
bzw. Programme, die aufgrund von den Informationen agieren, zur Verfligung.

5.4 Transparente Erkundung von Daten — Modell-Explorer

Als grundlegende Eigenschaften wurden sowohl das eigentliche Meta-Modell der Informationen
auf einem Gerét, Modelle, die dieses Meta-Modell nutzen, wie auch Verbindungen der Modell-
Instanzen zwischen Geréaten dargestellt.

Durch diese Schnittstelle hat jeder Dienst Zugriff auf alle Nachrichten. Eine Vertraulichkeit ist also nicht gegeben. Da die
kollaborative Manipulation der Daten im Fokus steht, ist dieses im Normalfall zu vertreten. Beschrinkungen und Zugriffs-
rechte, wie sie in OPC-UA vorhanden sind, lassen sich auch hier anwenden.

100

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5.4 Transparente Erkundung von Daten — Modell-Explorer

Netzwerk

SBD

SBD'

Klin

SBD' | SBD'

&3

Modellfxplorer

Q 5 O
%/Iodell—Explorer

Abbildung 5.7: Nachrichten-basierte, transparente Kommunikation fiir die verteilte Modell-Erkundung

Um einen transparenten Zugriff —im Sinne der Kommunikation — zu den Informationen zu erhal-
ten, bietet der Modell-Explorer eine Schnittstelle an, die auf der Schnittstelle der SBD beruht.
Der Zugriff muss, da eine nicht-lokale Kommunikation benétigt wird, asynchron erfolgen, wes-
wegen die Nachrichten-basierte Lésung hier genutzt wird, wie sie in Kapitel 4.6.2.6 vorgestellt
wurde.

Hierdurch kénnen Anfragen an das Modell unabhéngig von der Lokalisierung des Objektes
gestellt werden. D.h. erhalt ein Modell-Explorer eine Nachricht, analysiert dieser als erstes,
ob die lokale Instanzumgebung angesprochen wird. Sollte dieses der Fall sein, kann jeder
Nachrichten-Typ auf einen SBD der Instanzumgebung abgebildet werden. Sollte eine entfernte
Instanzumgebung angesprochen werden, wird der Inhalt der Nachricht an das Zielsystem wei-
tergeleitet, dort bearbeitet und eine Antwort-Nachricht an den ersten Model-Explorer geschickt,
sodass dieser die Antwort an den Anfragenden erzeugen kann.

Fir dieses Weiterleiten mussen die urspriinglichen Nachrichten erst mal gespeichert werden.
Bei der Weiterleitungs-Nachricht werden Typ und Inhalt beibehalten, jedoch die Empfangs-
adresse auf den aktuelle Modell-Explorer gesetzt, sodass die Antwort an diesen zuriickkommt.
Die IDs in den Kdpfen der Nachrichten erméglichen dabei die Zuordnung der Weiterleitungs-
Antwort-Nachrichten zu den urspriinglichen Anfragen.

Handhabung von Ext.-Verbindungen

Gleichzeitig /6st der Modell-Explorer die Ext.-Verbindungen auf. Das heif3t, sollte eine Anfrage
auf eine Ext.-Verbindung stoBBen, wird diese verfolgt, der SBD’-Aufruf entsprechend abgeéan-
dert. Beispielsweise wird eine Liste Relations-Verbindungen, die auf einem entfernten System
fortgefiihrt wird, als gemeinsames Ergebnis zurlickgeliefert. Dabei werden unterschiedliche
EPRs fir die Elemente des Ergebnisses verwandt.

Auch das Anlegen von Relationen, welches unterschiedliche Systeme betrifft, wird durch den
Modell-Explorer transparent geregelt. Hierfir muss der Modell-Explorer die entsprechenden
Objekte der Ext.-Verbindung im Instanzsystem anlegen und parametrieren. AuBerdem muss
die Nachricht auch dem Modell-Explorer auf dem Zielsystem weitergeleitet werden, damit hier
der zweite Teil der Ext.-Verbindung angelegt wird.

101

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

abhangig von

’Anwendung@‘ ’ MIK e/ bringt mit zu_sétzliches
by Wissen
%‘
Interkonnektions
Modell 2,

Jo}BMIBA

D¢
2
< R
2
&

Modell é% Relation Modell é@,

Abbildung 5.8: Konzept der Modell-Interkonnektion zur Laufzeit

Dienste oder Anwendungen, die also auf ein verteiltes Datenmodell zugreifen wollen, aber
das Ext.-Verbindung-Konzept nicht selber beachten wollen, haben hier die Méglichkeit einen
transparenten Zugriff zu erhalten. Lediglich die gelieferte Kommunikations-Adresse muss mit
berilcksichtigt - aber nicht weiter verarbeitet - werden.

Keine Anderungs-Benachrichtigungen zwischen Geraten

Anderungs-Benachrichtigungen, die nicht per Modell-Explorer angeboten werden, sind nur rea-
listisch zu spezifizieren, wenn entweder GbermaBig viele Kommunikations-Ressourcen bereit-
stehen oder eine effektive Mdglichkeit der Einddmmung von Anderungs-Benachrichtigungen
gefunden wurde. An dieser Stelle sollen die Anderungen im Modell deswegen nur lokal fiir
Komponenten bereitstehen. Anderungen auf Kommunikationsebene - also hinzukommende
oder weggefallene Kommunikationspartner selber - werden daflr durch andere Komponenten
verwaltet, die im Folgenden beschrieben werden.

Insgesamt erfullt der Modell-Explorer also die Aufgabe, die Verteilung der Daten auf unter-
schiedliche Instanzumgebungen zu abstrahieren - die eingesetzte EPR ist ein eindeutiger Be-
zeichner flr ein Objekt, muss aber von der Anwendung nicht im Detail betrachtet werden. Zu
seinen Aufgaben gehéren also zum einen die Auflésung der EPR und das Ausfiihren der Befeh-
le auf lokalen oder entfernten Systemen. Zum anderen auch die Abstraktion tber die Verteilung
selber, indem das Mittel der Ext.-Verbindung beriicksichtigt wird.

5.5 Prinzip der Modell-Interkonnektions-Komponenten (MIK)

Im Kapitel 4.6.1 wurde das Konzept der Modell-Interkonnektionen vorgestellt. Es sorgt fur Ver-
bindungen von bisher unverbundenen Informationen zwischen Modell-Instanzen.

Um solche Verbindungen zur Laufzeit aufzubauen und aktuell zu halten, wird hier das Prinzip
der Modell-Interkonnektions-Komponente (MIK) beschrieben.

102

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5.5 Prinzip der Modell-Interkonnektions-Komponenten (MIK)

Es handelt sich hierbei um eine bestimmte Gruppe von Diensten, die im eigentlichen Sinne
selber keine Schnittstellen anbieten. Diese Modell-Interkonnektions-Komponenten beobach-
ten die Instanzumgebung der Modelle. Sollten fiir sie relevante Veranderungen in den Modell-
Instanzen auftreten, reagieren sie entsprechend ihres eigenen Modells.

Anwendungen sollen diese zuséatzlichen Informationen, die in den Modell-Interkonnektions-Re-
lationen vorhanden sind, nutzen. Damit hdngen diese Anwendungen zum einen von den Model-
len ab, die sie klassisch verarbeiten, zum anderen aber auch von den MIKs, da sie sich auf das
Vorhandensein der Modell-Interkonnektions-Relationen verlassen. Abbildung 5.8 verdeutlicht
das Prinzip der MIK zur Laufzeit.

Verteilte Modelle und das MIK Um die Modell-Instanzen in der verteilten Instanzumgebung
zu finden, wurde bereits das Konzept der Modell-Master (Kapitel 4.5.1.1), sowie das damit
verbundene Yellow-Paging vorgestellt. Dieses wird von den MIK genutzt, um Instanzen von fur
sie interessanten Modelle aufzufinden. Das Konzept der Ext.-Verbindungen wurde bereits bei
den Basismodellen beschrieben, ebenso das generische Prinzip der MIKs.

Um Anderungen von allen Geréaten erhalten zu kénnen, miissen die MIK sich aktiv bei allen
Geraten fir Modell-Anderungen bei der dortigen Instanzumgebung anmelden, da nach dem
vorherigen Kapitel Modell-Anderungen nicht generell verbreitet werden.

Fir einen einfachen Fall, dass eine MIK zwei Modelle beobachtet und bei Bedarf Relationen
anlegt, ist dieses handhabbar: Wenn die Modelle jeweils auf einem Gerat instanziiert sind und
das MIK auch auf einem der Gerate instanziiert wurde, miissen nur die Modell-Anderungen
des anderen Gerates (mit Bezug auf das zweite Modell) Gbertragen werden.

Ein MIK sollte die Modell-Anderungen sowie Beobachtungen immer durch den Modell-Explorer
vornehmen. Auf diese Weise werden Ext.-Verbindungen automatisch angelegt, falls diese nétig
sind.

5.5.1 Problem: Schleifenbildung

Nicht nur durch die Modell-Interkonnektionen, sondern eigentlich immer, wenn unterschiedli-
che Komponenten Veranderungen an gemeinsamen Daten vornehmen, gilt es eine Schleifen-
bildung der Anderungen zu vermeiden.

Mit Schleifenbildung ist hier gemeint, dass eine Komponente A eine Aktion z ausfiihrt. Diese
Veréanderung der Daten bedingt, dass Komponente B eine Aktion ! ausfiihrt. Daraus folgt,
dass Komponente A wiederum die Aktion x ausflihrt. Es entsteht also eine unendliche Schleife.
Solche Schleifen kdnnen durchaus auch tiber mehrere Modelle und Aktionen entstehen.

Theoretische Losungsskizze: Vorab-Analyse Theoretisch kdnnten solche potenziell auftau-
chenden Schleifen vorab untersucht werden. Es wird also aufgrund der Anderungen an den

103

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

Modellen und ihren Relationen untersucht, ob durch die Veranderungen ein Zyklus entstehen
kann.

Hierfir sind allerdings die Modelle, Modell-Interkonnektions-Modelle und auch Modell-Transfor-
mationen (d.h. Anderungen der Modelle durch die Anwendungen) erforderlich. Da die Modelle
durch weitere MIK voneinander abhé&ngen kénnen, sind auch diese notwendig zu untersuchen.
Damit ergibt sich in der Praxis das Problem, dass im Endeffekt wieder ein ,Welt-Modell* bendtigt
wird, also ein einheitliches Verstandnis von allen Informationen, die in den Modellen abgelegt
sind.

Theoretische Lésungsskizze: Schleifenerkennung zur Laufzeit Eine weitere Losung ist ei-
ne Schleifenerkennung zur Laufzeit. Dafiir werden Anderungen am Modell protokolliert. Sollten
gleiche Anderungen wiederholt auftreten, werden diese erkannt. Hierfiir knnen existierende
Lésungen aus dem Themengebiet der Termersetzungssysteme angewendet werden [Ohl02].

Praktisch gesehen... In der Praxis sollten solche Schleifen jedoch kaum eine Rolle spielen,
denn die Modelle sind in sich geschlossen. Die Modell-Interkonnektionen flihren Verbindungen
zwischen Modellen ein, die eine zuséatzliche Information einbringen, d.h. sie beeinflussen selber
nicht die unterliegenden Modelle. Auch ist es unwahrscheinlich, dass unterschiedliche Modell-
Interkonnektionen gegenseitig Schleifen beschreiben, denn sie sollten eigene Aufgaben und
damit einen jeweiligen Mehrwert erbringen.

Trotzdem besteht die Gefahr der Schleifenbildung - zumindest in der Theorie.

5.5.2 Beispiel: MIK AT-Geréate-Dienste

Diese Modell-Interkonnektions-Komponente verbindet die Dienstreprasentationen mit den ent-
sprechenden AT-Geréate-Komponenten.

Durch die entstehenden Verbindungen kénnen aufbauende Anwendungen erkunden, welche
Dienste auf einem Gerat laufen. Hierdurch kénnen beispielsweise Dienste gefunden werden,
die mdglichst nahe sind. Ebenso kénnen Dienste gefunden werden, die auf Geraten mit vielen
freien Ressourcen laufen.

5.6 Uberwachung der Umgebung - Remote-Model-Inspektor (RMI)

Mit den oben beschriebenen Komponenten kénnen die Elemente der Modelle miteinander ver-
bunden werden. Dabei kann eine Erkundung Uber die Systemgrenzen hinweg transparent er-
folgen, wenn die Kommunikation (iber den Model-Explorer erfolgt. Lokale Anderungen sind
direkt erkennbar, indem die Subskription/Benachrichtigungs-Schnittstelle Anderungen der In-
stanzumgebung genutzt wird.

104

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5.6 Uberwachung der Umgebung - Remote-Model-Inspektor (RMI)

holeVariablenWert
(Ext.Verbindung/Status)

. o
©
Kommunikation 8 §
(NachrichtenEingang) =%
g
Anderungen g <
(anlegen/Iéschen Ext.Verbindung) &

N etzWerk

setzeVariable SBD
(Ext.Verbindung/Status)

Abbildung 5.9: Uberwachung der Ext.-Verbindungen durch den RMI

Als eine Aufgabe wurde in den Anforderungen zusétzlich die Dynamik beschrieben. Hierzu
gehdren neben dem Hinzukommen von neuen Geraten auch der geplante oder ungeplante
Ausfall von Geréten. Dieser wird ebenso nutzbar gemacht, wie andere strukturelle Anderungen
im Modell.

Auf Ebene der Instanzumgebung sind Ext.-Verbindungen ein Indikator dafir, dass ein Interesse
von einer lokalen Komponente an dem Fortbestand des Zielsystems liegt. Die beschriebene
Komponente Remote-Model-Inspektor existiert als Basis-Komponente auf jedem Gerat.

Sie geht von allen Instanzen der Ext.-Verbindungen auf ihrem Gerét aus. Sie bildet aus der
Liste der Ext.-Verbindungs-Objekte eine Geréateliste der zu Gberwachenden Geréte, indem sie
lokale Représentationen fir die Gerate anlegt. Alle diese Gerate werden Uberwacht.

Durch die Zusammenfassung in einer Komponente werden zwei Ziele erreicht:

e Die nétige Kommunikation wird minimiert: Zum einen wird anderweitige Kommunikation
berlcksichtigt, zum anderen wird ein Gerat auch nur einmal berwacht.

« Die interessierten Komponenten miissen nicht selber eine Uberwachung realisieren.

Dieses Konzept hat also nur etwas mit der Erkennung einer Anderung zu tun. Es bildet in keiner
Weise einen Schutz vor Datenverlust.

Die RMI Komponente wird durch das MsgSys von eintreffenden Nachrichten unterrichtet, wie
in Abbildung 5.9 dargestellt. Beriicksichtigt man, dass Gerate nur insgesamt ausfallen (nicht
jedoch Software-Komponenten auf ihnen, wie in Kapitel 5.3 beschrieben) kann der RMI aus
eintreffenden Nachrichten schlieBen, dass die Ext.-Verbindung-Instanzen, die auf den Absen-
der zeigen, weiterhin gliltig sind. Der RMI kann also in diesem Fall die Aktualitats-Zeit aller
Ext.-Verbindungs-Instanzen auf die aktuelle Uhrzeit setzen.

Dieses stellt eine passive Uberwachung dar. Sie erzeugt keinerlei Kommunikationslast. Dieses
hat jedoch den Nachteil, dass keine Aussagen Uber die Erreichbarkeit der Ext.-Verbindungs-
Zielsysteme gemacht werden kénnen, wenn nicht ,zufallig“ eine Kommunikation stattfindet.

105

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

Deshalb kénnen Komponenten die Ext.-Verbindungs-Instanzen mit einer Annotation Uberwa-
chungs-Intervall ausstatten. In diesem Fall iberprift der RMI die Existenz des Ziels im entspre-
chenden Zeitrahmen. Dafiir wird durch einen Aufruf des SBD’ zum Holen einer Status-Variablen
der Ext.-Verbindungs-Instanz auf der entfernten Instanzumgebung durchgefiihrt. Hierbei han-
delt es sich also um eine qualifizierte, aktive Uberwachung.

Die folgende Komponente Dienst/Geréate-Inspektor nutzt dieses Konzept um eine allgemeine
Uberwachungsfunktion von Diensten und Geréten anzubieten.

5.7 Verwaltung der Dienste und Geréte - Dienst/Gerate-Inspektor
(DGl)

Dienst/Gerate-Inspektor

MetalS/ErzeugeObjekt
(Ext.Verbindung)

MetalS/Anderungen
(Ext.Verbindung/Status)

register O
unregister O
monitor O
unmonitor O

neuer Status

Abbildung 5.10: Schnittstelle des Dienst/Gerite-Inspektor

Der DGl stellt die zentrale Schnittstelle zwischen den Diensten, sowie der modellgetriebenen
Instanzumgebung dar. Er Gbernimmt dabei mehrere Aufgaben. Seine Schnittstellen sind in
Abbildung 5.10 zusammengefasst.

Zum einen Ubernimmt er die Rolle einer lokalen, zentralen Anmeldestelle fiir Dienste, d.h.
Dienste registrieren sich selber bei dieser lokalen DGl Komponente. Diese Ubernimmt eini-
ge Arbeitsschritte, um den Dienst ins Gesamtsystem einzubinden. Hierzu zahlen insbesondere
das Anlegen der Dienst-Représentation im Dienst-Modell der Instanzumgebung.

Der zuvor dokumentierte RMI Uberwacht den Zustand aller Ext.-Verbindungs-Objekte in der
lokalen Instanzumgebung in Bezug auf deren zugehdrigen Ext.-Verbindungs-Objekte auf den
entfernten Systemen. Damit auch eine Anderung der Dienste und Gerate erkannt werden kann,
sorgt der DG fiir eine entsprechende Uberwachung dieser Komponenten.

Deren Aufgabe ist es also, auf Anfrage von Diensten Anderung an der Dienstverteilung an die
anfragenden Dienste weiterzuleiten. Auf diese Weise kdnnen die Dienste auf Strukturanderun-
gen reagieren ohne selber eine Uberwachung zu realisieren. Dienste miissen lediglich fiir sie
interessante ,Partner* bei dem DGI anmelden. Anderungen beziehen sich dabei - wie auch bei
der Ext.-Verbindungs-Uberwachung des RMI - auf den Zustand, wie er in Kapitel 4.2.1 definiert
ist. Damit wird auch klar, dass alle aktiven Komponenten bzw. deren Reprasentationen, Gber-
wacht werden kénnen.

Implizit nimmt der DGI dabei an, dass ein einmal instanziierter Dienst immer auf einem Gerat
lauft. Wenn also ein Interesse an einem Dienst besteht, zieht so ein Ausfall des zugehérigen
Gerates auch eine entsprechende Benachrichtigung nach sich.

106

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5.8 Migration von traditioneller Datenhaltung zur Représentation der Information in einer verteilten,
modellgetriebenen Instanzumgebung

Zum Erfillen der Rolle der lokalen, zentralen Anmeldestelle wird vom DGl die lokale Schnitt-
stelle register() angeboten. Nutzt ein startender Dienst diese, wird seine Reprasentation ,Self*
angelegt. Gleichzeitig wird er mit dem Modell-Master des Dienst-Modells verbunden, sodass er
auffindbar (Kapitel 4.4) ist.

Sollte ein Dienst geldscht (deregister()) werden, wird die Repréasentation entsprechend ge-
I6scht. Durch die Anderungsmitteilung werden auch andere Komponenten iiber diese Ande-
rung informiert - damit also auch die Kommunikations-Komponente, sodass fir diesen Dienst
keine Mitteilungen mehr entgegen genommen werden.

Ein Dienst, der eine Abh&ngigkeit zu einem anderen Dienst oder Gerét hat, kann diese durch
den DGI Uberwachen lassen. Dafur nutzt er die monitor()-Schnittstelle. Bei Aufruf wird der
DGl eine entsprechende Zuordnung von dem abhangigen Dienst zu dem zu Uberwachenden
Dienst im Daten-Modell per interesse_an-Relation ablegen. Falls es sich um eine RemoteLink-
Verbindung zu einem externen Dienst handelt, wird er dabei auch ein entsprechendes Uber-
wachungs-Intervall definieren. Der RMI sorgt so wieder fiir eine entsprechende Uberwachung
des Status. Durch die Schnittstelle unmonitor() wird die entsprechende Verbindung wieder auf-
gehoben.

Sollte sich der Status eines Ext.-Verbindungs-Objektes andern, informiert der DGI entweder
Uber eine Aufruf- oder Nachrichten-orientiert Schnittstelle neuerStatus den abhangigen Dienst.

5.8 Migration von traditioneller Datenhaltung zur Reprasentation
der Information in einer verteilten, modellgetriebenen
Instanzumgebung

Alle vorgestellten Komponenten sowie Konzepte basieren auf der Annahme, dass Anwendun-
gen und deren Hersteller bereit sind, ihr properitédtren Datenablagen aufzugeben, damit die
Anwendungs-Daten in der Instanzumgebung abgelegt werden kénnen.

Um eine solche Anderung der Datenhaltung zu ermdglichen, ist ein Migrationspfad unverzicht-
bar. Insbesondere stellt sich bei Anderungen dieser GréBenordnung immer die Frage, ab wann
sich die Anderungen fiir die Beteiligten auszahlen.

Durch die Verbindungen von den einzelnen Informationen ergibt sich die Mdglichkeit, dass
selbst der Datenaustausch zwischen zwei Anwendungen, der bisher klassisch Uber Export-
Import-Funktionen realisiert wurde, profitieren kann. Wenn beide Anwendungen ihre bisheri-
gen Strukturen in die gemeinsame Modell-Instanzumgebung ablegen und entsprechende Re-
lationen zwischen den Einzel-Informationen schaffen, ist der Benefit sofort erkennbar: Eine
doppelte Datenhaltung und damit Inkonsistenzen werden vermieden.

107

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Austiihrungsumgebung

Die nétigen Anderungen an den internen Programmstrukturen sollten — je nach Realisierung
— nicht allzu komplex sein. Im Prinzip muss eine Abbildung des bisherigen Modells auf das
Meta-Modell passieren, welches von der Instanzumgebung bereitgestellt wird.

Wenn der Zugriff auf das Meta-Modell offen gestaltet wird, kénnen weiter Anwendungen di-
rekt ihre Daten ablegen und Relationen zu existierenden Informationen setzen, um damit neue
Informationen auch selber auszunutzen. Ein Benefit ist also unmittelbar erkennbar.

Fur die Umsetzung einer gemeinsamen, modellgetriebenen Instanzumgebung kann ein Kon-
sortium gegriindet werden, wie es das fiir die Kommunikationssysteme in der Automatisie-
rungstechnik schon langer gibt. Es ermdglicht allen Interessierten sich einzubringen und erhéht
damit die Akzeptanz des Gesamtansatzes. Ansatze fir solche Kooperationen von Experten
sind bereits vorhanden. Da in der Arbeit auch beschrieben, seien hier beispielhaft PLCopen,
AutomationML und die OPC Foundation genannt.

5.9 Prototypen der Komponenten

Die beschriebenen Komponenten wurden gréBtenteils prototypisch realisiert. Die Implemen-
tierung fokussierte dabei auf die Aufgabenstellungen, die durch 6ffentliche sowie industrielle
Forschungsprojekte am Lehrtuhl fir Prozessleittechnik vorhanden waren.

Technologisch wurde dabei ACPLT (Kapitel 2.4.1.1) gewahlt. Die Verfligbarkeit sowie Offenheit
waren ein ausschlaggebender Grund fir diese Entscheidung. Zusatzlich konnten so grundle-
gende Kommunikations-Implementierungen friihzeitig auch in Projekten eingesetzt werden, die
mit den hier beschriebenen Komponenten ansonsten wenig zu tun hatten.

Die folgenden Komponenten wurden prototypisch realisiert.

KS2nd Die urspriingliche Kommunikation ACPLT/KS bietet eine Schnittstelle um eine Instan-
zumgebung zu beherbergen. Die Kommunikation selber ist also nicht als Objekte in der
Instanzumgebung modelliert, da es eine unterliegende Schicht war. KS2nd bietet die
Méglichkeit, Objekte in der Instanzumgebung anzulegen, zu parametrieren und hierdurch
Kommunikation (sowohl eingehende, wie auch ausgehende) zu nutzen.

MsgSys (Kapitel 5.3) Die Nachrichten-basierte Kommunikation mit ihren Verwaltungskompo-
nenten auf Basis von KS2nd ermdglicht es Anwendungen das Konzept zu nutzen. Es
hat sich gerade in einem verteilten Umfeld zur Reaktion auf Gerate-Struktur-Anderungen
bewéhrt.

Modell-Explorer (Kapitel 5.4) Modell-Erkundungen kénnen mittels des Modell-Explorers Uber
Instanzumgebungen hinweg ohne Beriicksichtigung der Verteilung erfolgen. Daflr wur-
den auch das Konzept der entfernten Verbindungen (Kapitel 4.6.2.1) ansatzweise reali-
siert.

108

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

5.9 Prototypen der Komponenten

RMI (Kapitel 5.6) Der Remote-Model-Inspektor kann bisher die Uberwachung von konkreten
Datensatzen (Konfigurationsdaten) auf lokalen und entfernten Geraten vornehmen.

DGI (Kapitel 5.7) Zur Gerateliberwachung wurde der Dienst/Gerate-Inspektor teilweise reali-
siert. Hierbei wird ein Ausfall eines Gerates erkannt, sodass Reaktionen zur Neustruktu-
rierung erfolgen.

Die Prototypen wurden im Rahmen von Forschungsauftrdgen an realen Demoanlagen in Be-
trieb genommen, womit die Einsatzfahigkeit sowohl der Konzepte, wie auch der Realisierung
Uberprift wurde. Die Ergebnisse flossen in die Verdffentlichungen [ME12], [ME11], [MKE10]
und [MKEQ9] ein.

109

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Austiihrungsumgebung

6 Anwendungen: Dynamik auf Basis der
verteilten, modellgetriebenen
Ausfihrungsumgebung

A distributed system is a collection of independent computers that
appears to its users as a single coherent system.
Andrew S. Tanenbaum

Um die Anwendbarkeit, sowie die Machtigkeit der verteilten, modellgetriebenen Instanzumge-
bung zu demonstrieren, werden in diesem Kapitel unterschiedliche Anwendungen aufgezeigt.
Ziel ist es, nicht nur abstrakt die Vorteile im Raum stehen zu lassen, sondern ganz konkret
greifbar zu machen.

Als erstes wird beschrieben, wie eine Anwendung zur allgemeinen Suche nach Strukturen rea-
lisiert werden kann. Dieses ist eine der wichtigsten Funktionen um eine Dynamik im Gesamt-
system realisieren zu kdnnen. Hierdurch wird die Mdglichkeit geschaffen, automatisch oder
semi-automatisch eine Verknipfung von Informationen und Diensten zu erreichen und somit
auf Anderungen reagieren zu kénnen.

Folgend wird eine Anwendung zur Verlagerung von Software-Komponenten beschrieben. Die-
ses verdeutlicht die Dynamik des Gesamtsystems, nicht nur in Bezug auf die Struktur der An-
lage (Reaktion auf Umbauten), sondern auch die Méglichkeiten, unterschiedliche Verteilungen
nachtréglich zu &ndern - beispielsweise das in Kapitel 4.7.2 beschrieben Umverteilen zwischen
Engineering- und Produktions-Phase.

Diese beiden Anwendungen sind aufbauend auf der Instanzumgebung zu sehen und nicht Be-
standteil dieser.

Darauf folgende Anwendungsfélle existieren als alltédgliche Aufgabe in der Anlagenplanung, so-
wie Inbetriebsetzung. Hier soll méglichst beispielhaft ein breites Spektrum abgedeckt werden,
welches Lésungen fiir heutzutage alltégliche Probleme beschreibt.

6.1 Verteilung in der Automatisierungstechnik als Suche

Durch die Verteilung der Komponenten entsteht das Problem des Auffindens. Allgemein gese-
hen ist dies kein neues Problem. Es wird durch die Verteilung auf Gerate nur deutlicher. Auch
in klassischen Anlagenarchitekturen ist es immer wieder schwierig festzustellen, an welchem

110

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6.1 Verteilung in der Automatisierungstechnik als Suche

Port einer 1/0 Karte welches Geréat verbunden ist und - viel wichtiger - wie die Zuordnung im
Prozess (also zu der PLT-Stelle) zu sehen ist.

Da das modellgetriebene Instanzsystem aktiv mit der Verteilung umgeht, kénnen solche Fragen
von Anwendungen durch Wissen von den entsprechenden Modellen beantwortet werden.

SystemSuch
Anw. Dienst a
I3
O

Modell-Explorer

8 a
_ [Model- |2 3

=)
@
173

O Modell-Explorer

\Si

c
8
®
o
S
b3
w
©
<
3
=2 a
2
&
ﬂ '—' A
SBD'

3
£
2
=17}
33
%o
33
<
®
2
S
E]
(%)

I? Suchanfrage

Abbildung 6.1: Der Suchdienst iibernimmt die Auswertung einer Suchanfrage auf Basis einer
Strukturbeschreibungs-Sprache, die auf dem Meta-Modell basiert.

Eine Anwendung sucht einen Dienst. Hierflr wendet sich der suchende Dienst mit einer Such-
anfrage an einen SystemSuchDienst. Im Sinne der Kommunikation handelt es sich dabei um ei-
ne asynchrone Kommunikation; formuliert in der Schnittstellensprache des SystemSuchDiens-
tes. Fur die Formulierung der Suchanfrage benétigt die Anwendung das Wissen des Modells
Uber das sie sucht.

Durch die Mdglichkeit eines gemeinsamen Meta-Modells lassen sich alle Anfragen in einer
Sprache, die auf dem Meta-Modell aufbaut, formulieren, d.h. die Ausfiihrung einer Suche ist
nicht mehr von den konkreten Modellen abhangig und kann von einem SystemSuchDienst fir
alle Modelle ausgefiihrt werden.

Hintergrund:

Die Trennung ist &quivalent zu Datenbank-Sprachen zu sehen: Datenbank-Sprachen wie
SQL sind unabhéngig vom Datenbankschema formuliert. Ihre Aufrufe enthalten entspre-
chende Konstrukte, um die zu lesenden/schreibenden Daten zu formulieren.

In Abbildung 6.1 ist der Ablauf einer Such-Anfrage dargestellt. Durch den lokalen SystemSuch-
Dienst kann ein Dienst eine Suchanfrage bearbeiten lassen, ohne dass sich ein anfragender
Dienst Uberhaupt um die Auswertung der Anfrage oder die Verteilung des Modells selber kim-
mern muss. Dafiir ibernimmt der SystemSuchDienst die Auswertung der Anfrage und stellt
entsprechende Modell-Explorations-Anfragen an den lokalen Modell-Explorer, der ggf. diese
Anfragen verteilt bearbeitet. Wahrend die Formulierung der Suchanfragen eine eigene Sprache
darstellt, ist die Kommunikation zu dem Modell-Explorer in den SystemBasisDiensten’ (SBD’)
formuliert.

111

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Austiihrungsumgebung

Formulierung der Suchanfragen

Somit wird die Suchanfrage also in einer Form der Strukturbeschreibung mit folgenden Ele-
menten bestehen

Klassen und Relationen sind die Hauptbeschreibungsmerkmale der Suchanfrage, sie be-
schreiben die Grundstruktur des Zielsystems.

Variablen-Werte kdnnen als Bedingungen vorgegeben werden (z.B. "Variable PV <= 4.2").
Referenzen auf Instanzen werden insbesondere als absolute Ausgangspunkte verwendet.

Dabei ist es wichtig zu verstehen, dass diese Strukturbeschreibung zwar von den Modellbe-
schreibungen eingegrenzt wird, diese jedoch in keiner Weise eine valide (Teil-)Struktur des
oder der Modelle selber sind. Sie stellen vielmehr ein Muster dar, was durch den SystemSuch-
Dienst gefunden werden soll.

Hintergrund:

In der IT-Welt existieren vergleichbare Sprachen zur Suche in XML Daten. Durch XPATH
[32] werden die Elemente, Kindelemente und Werte/Namen beschrieben. Ein entspre-
chender Prozessor liefert eine Liste aller XML Elemente mit den formulierten Eigenschaf-
ten innerhalb eines XML Dokumentes.

Beispielanfragen

Die folgenden Beispiele sind natlrlich-sprachlich formuliert und sollen Ideen fir Suchanfragen
geben, aber auch die Machtigkeit der Such-Anfrage-Sprache aufzeigen.

Welche Ventile sind offen? Suche Uber Anlagenstruktur-Modell, Aktualwerte per Relationen
in einem Steuerungs-Modell.

Wie hoch ist Temperatur in B1? Suche (ber Anlagenstruktur-Modell nach Temperatursen-
soren von B1, dann Dienst-Modell fir den Sensor um dort per AT-Geréate-Struktur die
EPR abzufragen und durch den Dienst den Aktualwert zu ermitteln.

Welche Gerate haben Ihre MTBF erreicht? Suche Uber AT-Gerate-Struktur oder der Anla-
genstruktur, dann der Annotationen der Dienst-Reprasentationen fur die Gerate.

6.2 Migration von Komponenten

Die Migration von Komponenten wurde in unterschiedlichen Zusammenh&ngen angesprochen.
An dieser Stelle wird sie als Anwendung firr die modellgetriebene, verteilte Instanzumgebung
beschrieben.

112

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6.2 Migration von Komponenten

Definition: Eine Migration ist, eine Komponente durch eine andere zu ersetzen. Dabei ist
klar definiert, welche internen Informationen (ibernommen werden und welche durch die
Migration verloren gehen.

Es geht dabei um die Verschiebung von Komponenten. Dabei werden an dieser Stelle insbe-
sondere zwei Szenarien betrachtet:

Ortliche Migration Die Verlagerung einer Komponente von einem Gerét auf ein anderes. Bei-
spielsweise zur Optimierung der Modell-Verteilung.

Versions-Migration Versionsupgrade einer Komponente unter Beibehaltung ihrer Eigenschaf-
ten / Konfiguration. Beispielsweise als Software-Update.

In beiden Fallen soll eine Instanziierung einer Komponente erfolgen, die die Aufgaben und
damit die Konfiguration in Form von Variablen und Relationen einer Vorganger-Komponente
Ubernimmt. Vorteil einer solchen Anwendung ist insbesondere, dass Unterbrechungen des ge-
samten Systems minimiert werden. Bei bisherigen Systemen ist eine Migration von existieren-
den Instanzen nicht realisiert.

Einige Voraussetzungen fir eine Migration in der modellgetriebenen Instanzumgebung miissen
erfullt sein:

e Die Klassenbeschreibungen der Instanzen missen auf den beteiligten Geraten vorhan-
den sein.

e Eine Definition der zu libernehmenden Variablen und Annotationen ist bereitzustellen.

e Die Zustandsmaschine der Komponenten bietet einen Zustand zur Konfiguration an. Die-
ser Zustand entkoppelt die Instanz vom restlichen System insoweit, dass die Komponente
konfiguriert werden kann, ohne dass Zugriffe / Nutzungen erfolgen. In der vorgeschlage-
nen Zustandsmaschine aus Kapitel 4.2.1 kann das der Zustand /aden sein.

Der Ablauf einer Migration ist nun:
1. Instanziierung der neuen Instanz. Sie verbleibt in dem Konfigurations-Zustand.
2. Versetzen der alten Instanz in den Konfigurationszustand.

3. Kopieren der Konfiguration (statische und interne Variablen; vgl. Kapitel 4.4) und Annota-
tionen.

4. Loschen der Relationen zur alten Instanz mit gleichzeitigem Anlegen der Relationen zur
neuen Instanz.

5. Aktivieren der neuen Instanz (vom Konfigurationszustand in den normalen Zustand).

6. Loschen der alten Instanz.

113

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Austiihrungsumgebung

6.3 Anwendungsfall 1: Abbildung einer Remote I/0
Um eine bestmdgliche Integration der Laufzeit-Modelle zu schaffen, ist es sinnvoll auch die
Anbindung an den Prozess und damit der Aktualwerte im Modell-Raum abzubilden.

Dafir wird hier ein Dienst beschrieben, der Aktualwerte in die modellgetriebene Instanzumge-
bung abbildet, welche beispielsweise von einem Sensor erfasst werden.

Dienst RIO
(Verteilungs-) O05 Mm: ATStruktur
MgtFkt
Konfiguration
PLTStellenDienst
P
\Eﬂ S MagtFkt @ Modell-Master:
. Anlagenstruktur
| Konfiguration Il
Konfiguration I3 ‘ (e}

| Dienst

= Funktionen API
[

Messwert
Abfrage

Lokale
Funktionen pp)
!

Abbildung 6.2: Messwerte fiir die Instanzumgebung

Ausgegangen wird von einem Gerét, welches die Funktionen einer Remote 1/O ibernimmt,
also einzelne (Mess-)Werte auf einem normalerweise digitalen Bus- oder Netz-werk-System
bereitstellt.

Ein solches Gerat ist bei diesem Beispiel das ,unterste“ Gerat, welches in der Lage ist, die
modellgetriebene Instanzumgebung auszufiihren. Entsprechend werden die einzelnen Signale,
die an der Remote I/O angeschlossen sind, als physikalisch verfigbare, lokale Ressourcen
angesehen.

Als erstes wird ein Dienst vorgesehen, der die Remote I/O selber abbildet. Er meldet sich - wie
im AT-Gerate-Struktur-Modell vorgesehen - am Modell-Master an und wird in die flache Struktur
des Modells integriert. Fortan ist die Remote I/O im Dienstsystem als Ressource bekannt und
kann verwendet werden.

Aufbauend wird pro Kanal an der Remote I/O ein Dienst vom Typ PLTStellenDienst verwen-
det. Dieser Dienst, der z.B. bei einer Hardware-Konfiguration instanziiert werden kann, stellt
die Briicke zwischen Messsignal und Instanzumgebung dar. Dieser Dienst sollte entsprechend
bekannt gemacht werden. Am naheliegensten ist es, dass er in der Anlagenstruktur, z.B. al-
so am PandIX-Modell mit einer entsprechenden Relation zu einem PLCPoint verbunden wird.
Dieses ware die Aufgabe eines MIK, welches als Zusatzinformationen die Relation PLT-Stelle

114

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6.4 Anwendungsfall 2: Vorbereitung auf Austille

im Prozess zu Geréat kennt - wie sie in Kapitel 4.6.1.1 beschrieben ist. Anwendungen kénnen
so die EPR dieses Dienstes entdecken und auf die PLT-Stelle und damit den entsprechenden
Wert zugreifen.

Konfiguration

Neben diesen Schnittstellen ist es naheliegend, auch eine Konfigurations-Schnitt-stelle fir die
Geréte anzubieten. Idealerweise werden existierende Modelle zur Geratekonfiguration wie FDI
/ FDTv2 in die modellgetriebene Instanzsystem integriert und die Konfiguration der Sensoren
kann durch Verbindung mit den entsprechenden Informationen der Modellinstanzen vorgenom-
men werden (Konfiguration | in der Abbildung 6.2).

Wenn eine solche Schnittstelle angeboten wird, kann diese zur Konfiguration z.B. eines spe-
ziellen Dienstes genutzt werden. Es kann aber auch als Management-Funktion angesehen
werden. Dabei kdnnen die Konfigurationsdaten mit der Anlagenstruktur verknipft abgelegt und
von hier bezogen werden (Konfiguration Il in der Abbildung 6.2).

Ziel

Wenn die Aktualwerte der Sensorik und die Stellwerte der Aktoren im Modell verkn(ipft abgelegt
werden, kénnen diese Uber weitere Modelle in Relation gesetzt werden. Dadurch ergeben sich
vielfaltige Diagnose und Uberwachungsméglichkeiten, insbesondere kénnen auch Abfragen
formuliert werden, die nicht vorprojektiert sind.

Als Beispiel kann hier die ,OPC UA Information Model for IEC 61131-3" [27] dienen, die die
Steuerungsbausteine einer 61131-3 Programmierung mit Aktualwerten der Ein-/Ausgéange in
dem OPC-UA Objektraum abbildet.

6.4 Anwendungsfall 2: Vorbereitung auf Ausfélle

In der zuvor beschriebenen Architektur wurde durch das Ext.-Verbindungs-Konzept eine Még-
lichkeit geschaffen, die Komponenten tiber Anderungen der Struktur - ob geplant oder nicht - zu
informieren. Es macht Sinn, dass bei einer Verédnderung nicht jede Komponente informiert wird,
sondern nur die Komponenten, die auch reagieren missen. Diese subskribieren sich nach dem
Ext.-Verbindungs-Konzept mit dem entsprechenden Gegeniiber und bekommen die Anderung
per Benachrichtigung mit, wie in Kapitel 4.6.2.1 beschrieben.

Um in angemessener Zeit und mit gewiinschter Zuverlassigkeit Reaktionen ausfiihren zu kén-
nen, bedarf es ggf. einer Vorbereitung in Form eines Vorgehens-Konzeptes. Hier wird ein grund-
satzliches Konzept fir die Management-Funktionen des Dienstes beschrieben, um diesen mit
einem Redundanz-Ansatz auszustatten. Dargestellt ist das Szenario in Abbildung 6.3. Aus-
gangspunkt ist ein Dienst, der ein regelmaBiges Interesse an einem anderen Dienst hat —
potenziell auf einem anderen Geréat. Deren Dienst-Reprasentationen sind durch eine Relation

115

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Austiihrungsumgebung

0 D
g 2
5 MetalS g2
= oo
) c N
= 2 |5
i s |5
—
0|2
5 >
MgtFkt 2 |53 %)
5 |8
Rekonf c | 28
8|5
A Dienst © ol
Funktionen E o«
_ |

Systerﬁgrenze

Abbildung 6.3: Vorbereitung auf eine Umschaltung aus Sicht der Managementfunktionen

- also ggf. auch eine Ext.-Verbindung - miteinander verkniipft. Hierdurch ist eine Uberwachung
durch die DGI-Komponente gegeben.

Eine zusétzliche, und von den restlichen Aufgaben der Management-Funktionen des Dienstes
unabhéangige, Redundanz-Komponente sorgt dafiir, dass der Status der Ext.-Verbindung lber-
wacht wird. Wird hier bemerkt, dass der Zieldienst nicht weiter erreichbar ist, kann auf einen
alternativen Dienst umgeschaltet werden.

Die Auswahl des alternativen Dienstes ist dabei durch den Dienst selber gegeben und vorab
vorbereitet: Die Suche nach Kommunikationspartnern im Bereich der Orchestrierungsaufga-
be der Management-Komponente kann sogar im Voraus eine Suche nach einem alternativen
Kommunikations-Partner starten und dessen EPR vorhalten.

Es besteht auch die Mdéglichkeit eine vorzeitige Reservierung der Ressourcen im zweiten Ziel-
dienst vorzunehmen, sodass die Umschaltung schneller ist. Dafir muss die Zielanwendung
jedoch ,Kenntnis“ von dem Redundanz-Konzept haben in dem Sinne, dass eine Reservierung
von Ressourcen, ohne diese zu nutzen, erfolgen kann.

6.5 Anwendungsfall 3: Adressierung durch PLT-Stelle

Aufbauend auf der Kommunikation kann ein weitergehender, héherwertiger Kommunikations-
dienst realisiert werden, der verdeutlicht, welches Potenzial in der Interkonnektion von Modellen
steckt (Abbildung 6.4).

In Kapitel 4.6.1.1 wurde bereits die prinzipielle Verknlipfung von dem im Kapitel 4.1 vorgestell-
ten AT-Gerate-Struktur-Modell mit einem Anlagen-Struktur-Modell, wie z.B. das CAEX-basierte
PandIX (vgl. Kapitel 2.2), dargestellt.

Wenn diese Interkonnektion als gegeben angesehen wird, kann ein Dienst PLTStellenKommu-
nikation definiert werden, der hierauf aufbaut. Er nimmt Nachrichten mit einer Adressierung an

116

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell

g TU23/L10
PLTStellenKommunikation % R —1)
5 =0
P E2 o
PLTStelle E % Ziel-Dienst
< —r-of

Adr-Auflésung ®

j=2]

B S| AT-Struktur-Modell <2,

MIK 3 Anlagen-Struktur-Modell
=

Abbildung 6.4: Schematischer Ablauf der Auflosung von PLT-Stelle zu Kommunikations-Adresse

die PLT-Stelle (also z.B. TU70.T12) entgegen und I6st diese durch die verbundenen Modelle in
Kommunikations-Adressen zu dem PLTStellenDienst auf.

Der Vorteil eines solchen Dienstes liegt auf der Hand: Dienste oder ganze Anwendungen kon-
nen, basierend auf der Anlagenstruktur, Inre Kommunikation projektieren - die Zustellung der
Nachrichten wird von dem beschriebenen Dienst Gbernommen.

Hiermit ist es zum Beispiel mdéglich die Kommunikation auch schon zu planen und zu projektie-
ren, wenn die AT-Struktur noch nicht installiert bzw. geplant ist. Die PLT-Stellen-Namen stehen
in der Anlagenplanung schon fest und kénnen so bereits verwandt werden.

6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell

In der Konzeption wurde ein Eingriff der verteilten Instanzumgebung in die Steuerung sel-
ber ausgeschlossen, da traditionell eine Steuerungsprogrammierung keine wirkliche Verteilung
adressiert. Wenn mehrere SPSen gemeinsam eine Anlage steuern, haben die einzelnen Ge-
rate einzelne Teilaufgaben und kommunizieren explizit.

Im Verstandnis der verteilten Instanzumgebung stellt die Steuerung im Sinne der IEC 61131-
3, ausgefihrt auf einer SPS weiterhin - in erster Linie - eine monolithische Komponente dar.
Im Folgenden werden Integrationsanséatze gezeigt, wie eine Interaktion mdglich ist, ohne die
bewahrten Konzepte und Programmierparadigmen der SPS-Programmierung zu verlassen.

Grundsitzliches Ein Steuerungsprogramm wird beim Engineering erstellt und wird traditionell
auf eine SPS Uibertragen - meistens, nachdem ein Kompiliervorgang eine Programmiersprache
der IEC 61131-3 in ein Hardware-nahes Kompilat der SPS (ibersetzt hat (Abbildung 6.5). Diese
Programmierung wird dann auf der SPS fortwahrend ausgefiihrt. Fiir eine Anderung der Steue-
rung muss diese meist angehalten werden. Ausgenommen sind sogenannte ,Live-Updates” /
,Online-Changes*, welche aber Hersteller-abhangig nur bestimmte Veranderungen des Steue-
rungsprogramms zulassen.

117

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Austiihrungsumgebung

Zugriff auf das Modell der Steuerung Im Sinne der modellgetriebenen Instanzumgebung
kann eine Steuerung selber z.B. als Instanz des in Kapitel 2.2 beschriebenen PLCopen For-
mates abgebildet werden.

Engineering
=0

61131-Ausfiihrungs-Dienst

Lc—1 laden ol

pXo)

Modellierung »B\D

Steuerung
é% Programmierung
Steuerungs-Modell SBD)H ——— O1{Soft-SPS|

Abbildung 6.5: Schematischer Ablauf der modellgestiitzten Steuerungsprogrammierung

Legt ein Engineering System diese Steuerung in der modellgetriebenen Instanzumgebung ab,
kann es durch eine Relation ausgefiihrt_auf eine Assoziation zu einem 61131-Ausfiihrungs-
Dienst aufbauen. Dieser existiert flir jede beteiligte SPS genau einmal, sodass eine eindeutige
Zuordnung gegeben ist. Der 61131-Ausflihrungs-Dienst wird durch das Engineering informiert,
sobald eine neue Version der Steuerung auf die Soft-SPS geladen werden soll.

Eine dynamische Erkennung einer Anderung mit sofortiger Inbetriebnahme der neuen Steue-
rung verbietet sich, da beim Programmieren zwischenzeitlich Inkonsistenzen auftauchen. Das
heiB3t auch, dass eine Beobachtung der Modellstruktur an dieser Stelle nicht sinnvoll ist - das
Engineering muss zu einem diskreten Zeitpunkt einen Befehl geben, die Anderungen zu tber-
nehmen.

Kommunikation zwischen SPS & modellgetriebener Instanzumgebung Betrachtet man
das Vorausgegangene, bleibt also die SPS. Sie verarbeitet ein Programm in einer IEC 61131-3
Sprache und flhrt dieses ab einem diskreten Zeitpunkt ggf. nach einer Kompilierung aus.

Trotzdem kann es fiir zuklnftige Anwendungen sinnvoll sein, Zugriff auf die Informationen, die
in der modellgetriebenen Instanzumgebung abgelegt sind, zu ermdglichen.

Einen Vorschlag fir die Kommunikation zwischen einer solchen Umgebung mit einer SPS ist
in [ME12] beschrieben. Von diesem Punkt ausgehend, kdnnen Konstrukte innerhalb der SPS
geschaffen werden, um auf die Modell-Instanzen zuzugreifen zu kénnen. Die vorliegende, mo-
dellgetriebene Instanzumgebung abstrahiert von der Verteilung, sodass die SPS Programmie-
rung im Endeffekt nur entsprechende Nachrichten an den Modell-Explorer stellt, um auf alle
Modelle und Informationen Zugriff zu haben.

6.6.1 Probleme der konsequenten Umsetzung

Naheliegend wére in einer konsequenten Umsetzung auf das Kompilat der Programmierung in
Form einer 61131-3-Sprache zu verzichten und eine komplette Modell-Reprasentation der Pro-

118

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell

grammierung anzustreben. Die Bausteine und Konstrukte eines Steuerungsprogramms wiirden
so als einzelne Elemente eines ,61131-Modells* im Modell-Raum abgelegt und damit auch ein
Abfrage erméglichen.

Hierdurch kénnten Dienste aus dem Modell heraus die Kontrolle Gber den Prozess Uberneh-
men und direkten Zugriff auf Sensoren und Aktoren erhalten. Im Extremfall kdnnte man Funk-
tionsbausteine als einzelne Dienste, die miteinander kommunizieren, modellieren und so eine
Steuerung darstellen.

Gegeben wére so die komplette und nahtlose Integration der Steuerung in die Modellland-
schaft, wobei der Zugriff auf sdmtliche Informationen der modellgetriebenen Instanzumgebung
als Vorteil im Vordergrund stehen.

Es sind zwei wesentliche Probleme fiir eine komplette Integration zu beachten:

Zum einen wird eine Anderung durch das Engineering direkt und unmittelbar Auswirkungen
auf die Steuerung haben. Temporéare inkompatible Zusténde, wie sie bei einer Programmie-
rung durchaus Ublich sind, missten erkannt und abgefangen werden. Um den Prozess in je-
dem Fall sinnvoll weiterfiihren zu kénnen, muss also in jedem Fall die letzte, bekannte sinnvoll
Steuerungsprogrammierung vorgehalten werden und zu einem vom Engineering vorgegeben
Prozess umgeschaltet werden. Dieser Zeitpunkt ist auch im traditionellen Umfeld als das La-
den / Download bekannt. In diesem Punkt ist das Kompilieren also in der einen oder anderen
Form notwendig und eine unmittelbare Ausflihrung der Funktionsbausteine nicht méglich. Zum
anderen ist auch der Performance-Gewinn durch eine Kompilierung auf das Zielsystem nicht
zu vernachlassigen. Dabei werden neben den Ausflihrungsoptimierungen auch Ressourcen-
Abschatzungen vorgenommen.

Zusammengenommen kann also festgehalten werden, dass ein diskreter Zeitpunkt existieren
muss, um eine Umschaltung von einer Version der Steuerung zu einer neueren Version vorzu-
nehmen. Zu diesem Zeitpunkt kann ohne Probleme auch eine Kompilierung auf das Zielsystem
erfolgen. Die oben vorgestellte Abbildung der Modellierung der Steuerung zur Laufzeit mit an-
schlieBendem Ubertragen auf die SPS in traditionellen Programmiersprachen erscheint damit
ideal.

119

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

7 Zusammenfassung

7 Zusammenfassung

The best way to predict the future is to invent it.
Alan Kay

Zusammenfassend formuliert, beschreibt die Arbeit Konzepte und Methoden, die vielfaltigen
Modelle in der Automatisierungstechnik effizienter zu nutzen.

In der Automatisierungstechnik existieren eine Vielzahl von unabhangig voneinander entwickel-
ten Modellen, die gréBtenteils auf Basis sehr &hnlicher Meta-Modelle formuliert werden.
Ausgegangen wird von einer modellgetriebenen Instanzumgebung. Die bisher existierenden
Konzepte sehen dabei vor, dass Modelle in einer Instanzumgebung verwaltet werden. Diese
bietet Kommunikationsschnittstellen zur Abfrage, Erkundung und Manipulation der Modelle an
und ist eine abgeschlossene Umgebung.

Da die Modelle unabhéngig entwickelt wurden, stehen sie selbst, wenn sie in einer gemein-
samen Instanzumgebung verwaltet werden, nicht in Relationen zueinander. Hierdurch werden
teilweise wesentliche Informationen nicht abgebildet bzw. Modelle mit ambiguenten Informatio-
nen werden genutzt.

Die Arbeit stellt das Konzept der Modell-Interkonnektionen vor. Hierbei werden Modelle formu-
liert, die aufbauend auf anderen Modellen Relationen, zwischen diesen beschreiben. Ambigui-
taten werden hierdurch vermieden und die Modelle kénnen weiterhin unabhangig voneinander
entwickelt werden, was aufgrund des Expertenwissens der Modelle unbedingt notwendig ist.

Wenn Relationen zwischen Modellen aufgebaut werden sollen, ist es sinnvoll auch Relationen
zwischen Instanzumgebungen und damit Geraten zuzulassen. Konzepte und Mechanismen um
dieses transparent aus Sicht der Modelle zu realisieren sind bisher nicht existent, da Modelle in
ihrer jeweiligen Instanzumgebung betrachtet werden. Die Externen Verbindungen beschreiben
das Konzept der Verteilung Uber Gerategrenzen hinweg. Vorgestellte Komponenten bieten ent-
sprechende Schnittstellen, sodass beim Abfragen die Verteilung nicht beachtet werden muss.

Die vorgeschlagenen Konzepte und Komponenten wurden gréBtenteils prototypisch im Rah-
men von Forschungsprojekten realisiert und an Demonstrationsanlagen in Betrieb genommen.
Hiermit wurde die Einsatzfahigkeit zumindest im Rahmen der begrenzten Mdéglichkeiten nach-
vollziehbar dargelegt.

Zusatzlich wurden Kommunikationstypen formuliert, welche z.B. fir die nétige Synchronitat
eingesetzt werden kénnen. Hierzu z&hlt auch der Vorschlag von Intent-basierten Kommunika-
tion, welche fir modellgetriebene Instanzumgebungen eingesetzt werden kann. Dabei verteilt

120

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

7.1 Ausblick

eine Basiskomponente Modell-Anderungen auf Basis von ,Schliisseln®, sodass eine indirekte
Kommunikation von Modell und Dienst/Anwendung stattfinden kann, ohne dass zurvor eine
Erkundung des Modells stattfinden muss.

7.1 Ausblick

Eine Software, welche die vorgeschlagenen Konzepte realisiert, sollte nicht Uberstlrzt reali-
siert werden. Die verwendeten Technologien, um die Kommunikation abzubilden, stellen eine
gemeinsame Plattform dar, die spater von allen Anwendern unterstiitzt werden muss. Entspre-
chende Vorarbeiten und Untersuchungen zur Geréteunterstiitzung sind hier wichtig.

Auf Seiten der Modelle sind Abbildungen auf das Meta-Modell der Instanzumgebung zu volizie-
hen. Diese sollten durch die entsprechenden Experten der Modelle geschehen. Im Nachgang
werden dann durch eine Kombination der Experten die entsprechenden Interaktionsmodelle
beschrieben. Die Abbildung selber wird dabei z.B. fiir OPC-UA bereits erstellt — so existieren
Arbeitsgruppen, um AutomationML auf OPC-UA abzubilden, wie es auch in [Sch13] beschrie-
ben ist.

Fir die Verteilung Uber Instanzumgebungen hinweg, ist einer der wesentlichen Arbeitspunkte
die Transaktionssicherheit (AKID-Eigenschaften) der Modell-Verdnderungen gerade im verteil-
ten Umfeld sicherzustellen.

Ein weiterer, wichtiger Punkt ist die Adressierung von Ambiguitaten zwischen Modellen. Bilden
Modelle gleiche Informationen ab, ist die einfachste Lésung, entsprechende Interkonnektionen
zu definieren - beispielsweise dquivalent_zu. Weitergehende Arbeiten kénnen hier jedoch auch
dafiir sorgen, dass unterschiedliche Sichtweisen auf die gleichen Daten existieren, also die
Daten nicht doppelt in den Modellen abgelegt werden.

121

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Begriffsverzeichnis

Begriffsverzeichnis

Adresse Mdglichkeit einen Kommunikationspartner sowohl zu identifizieren, wie auch anzu-
sprechen. 21, 49

Aktive Komponente Komponente mit Verhalten (Ablauf). 27, 45

Anwendung Erfillt einen Zweck dem Anwender gegenlber. 28

Ausfithrungsumgebung Aufbauend auf Instanzumgebung auch eine zeitliche Komponente
(Scheduler) um aktive Komponenten auszufiihren. 27

Dienst (Teil-)Anwendung, die entfernt Gber Schnittstellen angesprochen werden kann, siehe
Kapitel 2.4.2.1. 28

Dienst-/Geréate-Inspektor (DGI) Dienst, welcher im Auftrag von Anwendungen/Diensten die
Uberwachung von entfernten Geraten oder Diensten auf Geréaten tibernimmt. 94, 106

Dienst-Schnittstelle Aufruf-Beschreibung eines Dienstes. 30

End-Point-Ressource (ERP) Eine strukturierte Adresse. 51, 55, 56, 81

Externe Verbindung Verbindung zwischen zwei Instanzumgebungen. 80, 81, 85, 87, 89, 101,
104, 115

Gerate-Reprasentation Modell-Reprasentation eines Gerates. 79

Instanzumgebung Anwendung zum Modell-Raum mit Schnittstellen zur Manipulation der Mo-
delle / Instanzen. 25

Intent indirekte Kommunikation tber eine Systemkomponente. 65, 75, 98

Kommunikations-Medium Ebene aus physikalischem Ubertragungsmedium ggf inkl. Softwa-
re zur Nutzung. 18, 19

Komponente vorgefertigte, in sich strukturierte und unabhéngig hantierbare Einheit]...] (nach
[12]). 14

122

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Begriffsverzeichnis

Lokale Service Management Dienst, welcher die lokale Verwaltung der Dienste auf einem
Gerat Ubernimmt. 94

Meta-Modell Konstrukte um Modelle zu beschreiben. 12

Migration Abldsung einer Komponente durch eine andere - entweder zeitlich (Versionsupdate)
oder ortlich (Verlagerung). 113

Modell (Teil-) Abbildung der Realitat. 11

Modell-Erkundungsfunktion Dienst-Schnittstelle um die existierenden Modelle / Instanzen
zu erkunden. 23, 72

Modell-Explorer Dienst, welcher die SystemBasisDienste durch eine transparente Kommuni-
kation ermdglicht. 95

Modell-Instanz (MI) Modell in einem Modell-Raum oder Instanzumgebung. 86, 95
Modell-Interkonnektion Verbindung zwischen zwei unabhéangigen Modellen. 78
Modell-Interkonnektions-Modell (MIM) Modell, das Modell-Interkonnektionen beschreibt. 79

Modell-Interkonnketions-Komponente (MIK) Komponente, die die Verwaltung der Modell-
Interkonnektionen eines Modells Gbernimmt. 95, 102

Modell-Master Verwalter eines Modells und seiner Verteilung. 72, 84, 114
Modell-Raum Speicherort fir Modell. 24

Modell-Anderungsfunktion Dienst-Schnittstelle um die existierenden Modelle / Instanzen zu
manipulieren. 72

Nachricht Datensatz, der zwischen Anwendungen/Diensten tbertragen wird. 21, 58
Objekt-Referenz Referenz auf ein Objekt. 81
Passive Komponenten Komponenten ohne eigene Handlung zur reinen Datenhaltung. 45

Remote-Modell-Inspektor (RMI) Dienst, welcher im Auftrag von Modellen oder Diensten die
Uberwachung eines entfernten Modells tibernimmt. 94, 104

Remote_aquivalent Relation, die zwei Objekte als aquivalent kennzeichnet. 82

SystemBasisDienst (SBD) Schnittstelle zur Modell-Erkundung oder -Manipulation nach NE
139/141. 24, 62, 88, 97, 101

123

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Begriffsverzeichnis

Transparente Kommunikation Empfanger unbeachtet der Verteilung ansprechen. 18, 40, 42,
55, 60, 98, 101

Verschaltung (von Diensten) auch: Orchestierung. Dienstaufrufe untereinander festlegen. 31

124

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Literaturverzeichnis

[AIb03] ALBRECHT, Harald: On Meta-Modeling for Communication in Operational Process
Control Engineering, RWTH Aachen University, Diss., 2003. — ISBN 3-18-397508-4

[Bal08] BALZERT, Helmut: Lehrbuch der Softwaretechnik: Softwaremanagement. Spek-
trum Akademischer Verlag, 2008. — ISBN: 978-3827411617

[BHMO13] BRANDL, Dennis ; HUNKAR, Paul ; MAHNKE, Wolfgang ; ONO, Toshio: OPC UA and
ISA 95. In: atp - Automatisierungstechnische Praxis 01/02 (2013)

[BMM12] BIFEL, Stefan ; MORDINYI, Richard ; MOSER, Thomas: Integriertes Engineering mit
Automation Service Bus. In: alp - Automatisierungstechnische Praxis 12 (2012)

[CHF14] CHRISTIANSEN, L. ; HOERNICKE, M. ; FAY, A: Modellgestiitztes Engineering - Basis
fir die Automatisierung der Automatisierung. In: atp 03 (2014), S. 18-26

[Con97] CONRAD, Stefan: Fdéderierte Datenbanksysteme. Konzepte der Datenintegration.
Springer-Verlag, 1997. — ISBN 3-540-63176-3

[Dri05] DRINJAKOVIC, Dino: Zugriff auf Informationen und Dienste in einem verteilten Au-
tomatisierungssystem mit selbstkonfigurierenden, semantischen Ordnungsstruktu-
ren. VDI-Verlag, 2005 (Fortschritt-Beriche VDI: Reihe 8, Mess-, Steuerungs- und
Regelungstechnik). — ISBN 9783185057083

[EMO7] ENSTE, Udo. ; MULLER, Jochen: Datenkommunikation in der Prozessindustrie: Dar-
stellung und anwendungsorientierte Analyse. Oldenbourg Industrieverlag, 2007. —
ISBN 9783835631168

[ERD11] EPPLE, Ulrich ; REMMEL, Markus ; DRUMM, Oliver: Modellbasiertes Format fir RI-
Informationen - Verbesserter Datenaustausch flir das PLT-Engineering. In: atp -
Automatisierungstechnische Praxis 1/2 (2011)

[GOs14] GOSSLING, Andreas: Device Information Modeling in Automation - A computer-
scientific approach. 2014. — Thttp://slubdd.de/katalog?TN_libero_
mab216034823

[Hod13] HODEK, Stefan: Methode zur vollautomatischen Integration von Feldgeréten in in-
dustrielle Steuerungssysteme, Techn. Univ. Kaiserslautern, Diss., 2013. — ISBN
978-3-943995-35-0

125

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Literaturverzeichnis

[Hor01] HORN, Paul: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. (2001). www.research.ibm.com. — (letzter Besuch: 1. Februar
2013)

[HRO1] HARDNER, Theo ; RAHM, Erhard: Datenbanksysteme - Konzepte und Techniken
der Implementierung (2nd Edition). Springer, 2001. — ISBN: 978-3-540-42133-7

[Jar] JARvis, Jeff: New rule: Cover what you do best Link to
the rest Website. http://buzzmachine.com/2007/02/22/
new-rule-cover—-what-you-do-best-link-to-the-rest/. — (letzter

Besuch: 26. November 2015)

[KE12] KAMPERT, David ; EPPLE, Ulrich: Kernmodelle fur die Systembeschreibung - Ein
Konzept zur Vereinfachung. In: atp - Automatisierungstechnische Praxis 7/8 (2012)

[LMRU11] LEHNHOFF, Sebastian ; MAHNKE, Wolfgang ; ROHJANS, Sebastian ; USLAR, Mathi-
as: IEC 61850 based OPC UA Communication - The Future of Smart Grid Auto-
mation. In: Proceedings of 17th Power Systems Computation Conference (2011)

[MBS*11] MERSCH, Henning ; BEHNEN, Daniel ; SCHMITZ, Dominik ; EPPLE, Ulrich ; BRE-
CHER, Christian ; JARKE, Matthias: Gemeinsamkeiten und Unterschiede der
Prozess- und Fertigungstechnik - Commonalities and Differences of Process and
Production Technology. In: at - Automatisierungstechnik 1 (2011), Januar, Nr. 1, 7-
17. http://www.oldenbourg-link.com/doi/abs/10.1524/auto.2011.
0891

[ME11] MERSCH, Henning ; EPPLE, Ulrich: Requirements on Distribution Management for
Service-Oriented Automation Systems. In: Proceedings of Emerging Technologies
and Factory Automation (ETFA) 2011 (2011). — ISBN: 978-1-4577-0016-3

[ME12] MERSCH, Henning ; EPPLE, Ulrich: Concepts of service-orientation for process
control engineering. In: Proceedings of IEEE Multi-Conference on Systems, Signals
& Devices: Systems, Analysis and Automatic Control 2012 (2012). — ISBN: 978-1-
4673-1589-0

[Mey03] MEYER, Dirk: Objektverwaltungskonzept fiir die operative Prozessleittechnik, RW-
TH Aachen University, Diss., 2003. — ISBN: 3-18-397508-4

[MKEOQ9] MERSCH, Henning ; KLEEGREWE, Christian ; EPPLE, Ulrich: Neue Konzepte zur
Selbstkonfiguration leittechnischer Komponenten. In: VDI-Berichte 2067 - AUTO-
MATION 2009 1 (2009), S. 105ff.. — ISBN: 978-3-18-092067-2

[MKE10] MERSCH, H. ; KLEEGREWE, C. ; EPPLE, U.: Service-orientation on behalf of self-
configuration for the automation environment. In: Proceedings of The 36th Annual
Conference of the IEEE Industrial Electronics Society (Phoenix, AZ) 0 (2010), S.
1373-1378. — ISBN 978-1-4244-5226-2

126

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Literaturverzeichnis

[Nig14] NIGGEMANN, Oliver: Industrie 4.0 ohne modellbasierte Softwareentwicklung - Und
warum es ohne Modelle nicht gehen wird... In: alp - Automatisierungstechnische
Praxis 05 (2014), S. 22-29

[Ohl02] OHLEBUSCH, Enno: Advanced Topics in Term Rewriting. Springer, 2002. — ISBN:
978-0387952505

[Pel03] PELTZ, Chris: Web Services Orchestration and Choreography. In: IEEE Computer
(2003)

[Pol94] POLKE, Martin: Prozessleittechnik. Oldenbourg, 1994. — ISBN: 978-3486225495

[Sau13] SAUER, Olaf: Forschungsprojekt,,Secure plug and work”. Website. http://www.
bmbf.de/de/14626.php. Version:2013. — (letzter Besuch: 26. November 2015)

[Sch13] SCHLEIPEN, Miriam: Adaptivitdt und semantische Interoperabilitdt von Manufactu-
ring Execution Systemen (MES), KIT Scientific Publishing, Karlsruhe, Diss., 2013.
— ISBN: 978-3-86644-955-8

[SEEQ09] SCHLUTTER, Markus ; EPPLE, Ulrich ; EDELMANN, Thomas: Dienstesysteme fiir die
Leittechnik - Ein Einblick. In: VDI-Berichte 2067 - Automation 2009: Fit for Efficiency
(2009)

[SME10] SCHLUTTER, Markus ; MERSCH, Henning ; EPPLE, Ulrich: Ordnungsschemata flr
Dienste in der Leittechnik. In: Proceedings of Entwurf komplexer Automatisierungs-
systeme - EKA 2010 0 (2010), S. 317-325. — ISBN: 978-3-940961-41-9

[SMS11] SCHLEIPEN, Miriam ; MUNNEMANN, Ansgar ; SAUER, Olaf: Interoperabilitat von
Manufacturing Execution Systems (MES) - Durchgangige Kommunikation in un-
terschiedlichen Dimensionen der Informationstechnik in produzierenden Unterneh-
men. In: at - Automatisierungstechnik 07 (2011), S. 413-424

[tom] Apache Tomcat. http://tomcat .apache.org/.— (letzter Besuch: 26. Novem-
ber 2015)

[Urb12] URBAS, Leon: Process Control Systems Engineering. Oldenbourg Industrieverlag,
2012. — ISBN 978-3-8356-3198-4

[ZGPU12] ZIEGLER, Jens ; GRAUBE, Markus ; PFEFFER, Johannes ; URBAS, Leon: Beyond
app-chaining: Mobile app orchestration for efficient model driven software genera-
tion. In: Proceedings of Emerging Technologies and Factory Automation (ETFA)
20120 (2012)

127

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Normen und Richtlinien

Normen und Richtlinien

[1] VDI/VDE 3690: XML in der Automation.

[2] ISO/IEC 7498: Information technology - Open Systems Interconnection - Basic Reference
Model: The basic model., 1994.

[3] IEC/ DIN EN 61512: Batch control, 1997.

[4] IEC 61131-3: Programmable Controllers - Part 3: Programming languages, 2nd edition,
2003.

[5] VDI/VDE 3682: Formalisierte Prozessbeschreibungen, 2005.
[6] IEC 61499: Funktionsbaustrine fur industrielle Leitsysteme, 2006.

[7] IEC PAS 62424: Representation of process control engineering - Requests in P&l dia-
grams and data exchange between P&ID tools and PCE-CAE, 2007.

[8] IEC/ISO 11783: Tractors and machinery for agriculture and forestry - Serial control and
communications data network. Norm, 2007.

[9] IEC 62541: OPC Unified Architecture Part 1-10, 2008.
[10] VDI/VDE 5610: Wissensmanagement im Ingenieurwesen, 2009.
[11] ISA-95 - Enterprise Control Systems, 2010.
[12] DIN SPEC 40912: Kernmodelle - Beschreibung und Beispiele, 2014.

[13] IEC 62714: Datenaustauschformat fiir Planungsdaten industrieller Automatisierungssys-
teme - Automation markup language. Norm, 2015.

[14] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough,
Darren Pulsipher, and Andreas Savva. Job Submission Description Language (JSDL)
Specification, 2005.

[15] ITU Telecommunication Standardization Sector (ITU-T). RFC 1050: RPC: Remote Proce-
dure Call Protocol specification, 1988. http://www.ietf.org/rfc/rfcl050 (letzter
Besuch: 26. November 2015).

[16] ITU Telecommunication Standardization Sector (ITU-T). RFC 2131: Dynamic Host Confi-
guration Protocol, 1997. http://www.ietf.org/rfc/rfc2131.txt (letzter Besuch:
26. November 2015).

128

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Normen und Richtlinien

[17] ITU Telecommunication Standardization Sector (ITU-T). RFC 2459: Internet X.509 Public
Key Infrastructure, 1999. http://www.ietf.org/rfc/rfc2459 (letzter Besuch: 26.
November 2015).

[18] ITU Telecommunication Standardization Sector (ITU-T). RFC 5322: Internet Message
Format, 2008. http://www.ietf.org/rfc/rfc5322 (letzter Besuch: 26. November
2015).

[19] Namur. NA 35 - Abwicklung von PLT-Projekten (Handling PCT Projects), 2003.

[20] Namur. NE 139 - Informationsschnittstellen in der Prozessautomatisierung; Betriebliche
Eigenschaften, 2012.

[21] OASIS Web Services Business Process Execution Language (WSBPEL) TC. Web
Services Business Process Execution Language Version 2.0 (WS-BPEL). Website.
http://docs.oasis—-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html (letzter
Besuch: 26. November 2015).

[22] Object Management Group. Systems Modeling Language (SysML). http://www.
sysml.org/docs/specs/OMGSysML-v1.3-12-06-02.pdf (letzter Besuch: 26. No-
vember 2015).

[23] Object Management Group. Enterprise Collaboration Architecture (ECA) Specification,
022004. http://www.omg.org/cgi-bin/doc?formal/04-02-01.pdf (letzter Be-
such: 26. November 2015).

[24] Object Management Group. MetaObject Facility (MOF), 2005. http://www.omg.org/
mof/ (letzter Besuch: 26. November 2015).

[25] Object Management Group. Unified Modeling Language (UML). Website, 2012. http:
//www.uml .org/ (letzter Besuch: 26. November 2015).

[26] Organization for the Advancement of Structured Information Standards. Reference Mo-
del for Service Oriented Architecture 1.0., OASIS Standard , 2006. http://docs.
oasis-open.org/soa-rm/vl1.0/ (letzter Besuch: 26. November 2015).

[27] PLCopen. OPC UA Information Model for IEC 61131-3. http://www.plcopen.org/
pages/tc4_communication/ (letzter Besuch: 26. November 2015).

[28] PLCopen. XML Formats for IEC 61131-3, 2009. http://www.plcopen.org/pages/
tc6_xml/downloads/tc6_xml_v201_technical_doc.pdf (letzter Besuch: 26. No-
vember 2015).

[29] RSS Advisory Board. RSS 2.0 Specification. Website, 2009. http://www.rssboard.
org/rss-2-0 (letzter Besuch: 26. November 2015).

[30] The Open Group. Distributed Computing Environment. http://www.opengroup.org/
dce/ (letzter Besuch: 26. November 2015).

129

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Normen und Richtlinien

[31] W3C. Web Services Description Language (WSDL) 1.1. W3C Recommendation. http:
//www.w3.0rg/TR/wsdl.html (letzter Besuch: 26. November 2015).

[32] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation, 11 1999. http:
//www.w3.org/TR/xpath/ (letzter Besuch: 26. November 2015).

[33] W3C. Web Services Choreography Description Language Version 1.0. W3C Recom-
mendation, 2004. http://www.w3.0rg/TR/2004/WD-ws—cdl-10-20041217/ (letz-
ter Besuch: 26. November 2015).

[34] W3C. Web Services Addressing 1.0 - Core. W3C Recommondation, 2006. http://
www.w3.org/TR/ws—addr-core/ (letzter Besuch: 26. November 2015).

130

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Lebenslauf - Henning Mersch

Personliche Daten

Geburtsdatum:
Geburtsort:

Ausbildungsdaten

Schulausbildung:

Zivildienst:

Hochschulausbildung:

Tatigkeiten

wiss. Angestellter:

wiss. Angestellter:

wiss. Angestellter:

Produktmanager:

12. April 1978
Bielefeld

bis 06/1997
Max-Planck-Gymnasium, Bielefeld
Abschluss: Allgemeine Hochschulreife

07/1997 — 07/1998

10/1998 — 10/2004

Studium naturwissenschaftliche Informatik
Universitat Bielefeld

Abschluss: Diplom-Informatik

11/2004 — 09/2005
Praktische Informatik, Technische Fakultat
Universitat Bielefeld

09/2005 — 06/2007

Verteilte Systeme und Grid Computing,
Zentralinstitut fir angewandte Mathematik
Forschungszentrum Jilich

07/2007 — 08/2012
Lehrstuhl fir Prozessleittechnik
RWTH Aachen University

seit 10/2012
Beckhoff Automation GmbH & Co. KG, Verl

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,
m

mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Inhalt,

216.73.216.36, am 20.01.2026, 08:43:53.
m

mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

HE VDI nachrichten

Fachliteratur und mehr -
jetzt bequem online recher-
chieren & bestellen unter:
www.vdi-nachrichten.com/
Der-Shop-im-Ueberblick

m= [

B
| e

Fahrzeughonzepte fye
93z 2. Jahrhundert
Automobiltachnik

VDi-Berichte 353'

Taglich aktualisiert:
Neuerscheinungen
VDI-Schriftenreihen

'

Fa Fortsc |rrr ﬁurthre vl

H E ﬂ Fortsehepus 8
L= ﬂ Prichte ypj

I
i

vpi nachrichten

Online-Buchshop fir Ingenieure

BUCH |

Im Buchshop von vdi-nachrichten.com finden Ingenieure
und Techniker ein speziell auf sie zugeschnittenes, um-
fassendes Literaturangebot.

Mit der komfortablen Schnellsuche werden Sie in den
VDI-Schriftenreihen und im Verzeichnis lieferbarer
Bucher unter 1.000.000 Titeln garantiert flindig.

Im Buchshop stehen flir Sie bereit:

VDI-Berichte und die Reihe Kunststofftechnik:

Berichte nationaler und internationaler technischer
Fachtagungen der VDI-Fachgliederungen

Fortschritt-Berichte VDI:

Dissertationen, Habilitationen und Forschungsberichte
aus samtlichen ingenieurwissenschaftlichen Fachrich-
tungen

Newsletter ,Neuerscheinungen”:

Kostenfreie Infos zu aktuellen Titeln der VDI-Schriften-
reihen bequem per E-Mail

Autoren-Service:

Umfassende Betreuung bei der Veroffentlichung Ihrer
Arbeit in der Reihe Fortschritt-Berichte VDI

Buch- und Medien-Service:

Beschaffung aller am Markt verfligbaren Zeitschriften,
Zeitungen, Fortsetzungsreihen, Handblcher, Technische
Regelwerke, elektronische Medien und vieles mehr —
einzeln oder im Abo und mit weltweitem Lieferservice

BUCHSHOP www.vdi-nachrichten.com/Der-Shop-im-Ueberblick

Inhalt,

216.73.216.36, am 20.01.2026, 08:43:53.
m

tersagt, mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
T Stromungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kaltetechnik

20 Rechnerunterstiitzte Verfahren (CAD, CAM, CAE CAQ, CIM ...

21 Elektrotechnik
22 Mensch-Maschine-Systeme
23 Technische Geb&udeausristung

ISBN 978-3-18-524508-4

216.73.216.36, am 20.01.2026, 08:43:53. Inhalt,

tersagt, m mit, fir oder in Ki-Syster

https://doi.org/10.51202/9783186245083

	Cover
	1 Einleitung
	1.1 Ziele und Vision
	1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung
	1.3 Übersicht des Vorgehens

	2 Stand der Wissenschaft und Technik - mit Begriffsklärung
	2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT
	2.1.1 (Modell-)Relationen
	2.1.2 Instanz-Struktur: Komponenten als Gruppierung
	2.1.3 Bestandteile einer Modell-Beschreibung

	2.2 Existierende Modelle der Automatisierungstechnik
	2.3 Kommunikation in der Automatisierungstechnik
	2.3.1 Kommunikations-Medien: Bussysteme und Alternativen
	2.3.2 Formen der Kommunikation
	2.3.3 Kommunikations-Systeme für den Zugriff auf Modelle

	2.4 Instanzumgebung der Modelle
	2.4.1 Existierende Instanzumgebungen für Modelle in die AT
	2.4.1.1 ACPLT-Technologien
	2.4.1.2 OPC-UA

	2.4.2 Aktive Komponenten im Modell: Dienste
	2.4.2.1 Dienste - ein Versuch der Erfassung des Begriffes

	2.4.3 Existierende Ausführungsumgebungen für Dienste
	2.4.4 Aspekte von Anwendungen, Diensten und Apps
	2.4.5 Existierende Ausführungsumgebungen für Modelle und Dienste

	2.5 Verteilte Systeme

	3 Analyse der Anforderungen
	3.1 Ergänzende Anforderungen an Geräte und Umgebung
	3.2 Ergänzende Anforderungen an Meta-Modell und Instanzumgebung
	3.3 Ergänzende Anforderungen an die Kommunikation
	3.3.1 Einheitliche, allgemeine Adressierung

	3.4 Bezug der Anforderungen
	3.5 Nachvollziehbarkeit und Verständlichkeit

	4 Modell-Architektur für dynamische, verteilte Systemstrukturen
	4.1 Beispiel-Modell: AT-Geräte-Struktur
	4.1.1 Erweiterung: Routing

	4.2 Abbildung der Realität: Repräsentationen im Modell
	4.2.1 Zustandsmaschine für aktive Komponenten
	4.2.2 Die Komponenten-Repräsentation
	4.2.3 Unspezifizierte, flexible Annotationen für Repräsentationen
	4.2.4 Unterschiedliche Komponenten-Repräsentationen
	4.2.5 Beispiel: AT-Geräte-Struktur als Komponenten-Repräsentation

	4.3 Kommunikation im automatisierungstechnischen Kontext
	4.3.1 Referenzierung über Systemgrenzen hinweg
	4.3.2 Kommunikations-Medien
	4.3.3 Nachrichten-basierte Kommunikation
	4.3.4 Typ 1: singuläre Kommunikation
	4.3.5 Typ 2: Aufruf/Antwort Kommunikation
	4.3.6 Typ 3: Subskription/Benachrichtigungs-Kommunikation
	4.3.7 Typ 4: Indirekte Kommunikation per Intents
	4.3.8 Lokale Kommunikation

	4.4 Dienst-Modell: aktive, dynamische Komponenten
	4.5 Die modellgetriebene Instanzumgebung
	4.5.1 Vom Modell zum Instanz-Modell
	4.5.1.1 Modell-Master

	4.5.2 Sprache der Modell-Änderungen
	4.5.3 Änderungs-Benachrichtigungen
	4.5.3.1 Alternative Realisierung: Intents

	4.5.4 Ausführungsumgebung: Dienste als partielle, Aufgaben-orientierte Teil- Anwendungen

	4.6 Modell- und Gerätegrenzen
	4.6.1 Modelle in Relation: Modell-Interkonnektion
	4.6.1.1 Beispiel: AT-Geräte-Struktur und Anlagenstruktur

	4.6.2 Über Gerätegrenzen hinweg: Verteilte (Modell-)Laufzeiten
	4.6.2.1 Externe Verbindungen
	4.6.2.2 Änderungs-Benachrichtigungen
	4.6.2.3 Zugriff auf die verteilte Modell-Instanzen
	4.6.2.4 Dienst-Orchestrierung auf Basis der verteilten Modelle
	4.6.2.5 Beispiel: Verteilte Modellierung der AT-Geräte-Struktur
	4.6.2.6 Transparenter Zugriff auf verteilte Modell-Instanzen

	4.7 Effizienz der Konzepte
	4.7.1 Modell-Interkonnektionen und ihre Etablierung
	4.7.2 Verteilungsaspekte

	4.8 Integrationsmöglichkeiten in die bestehende AT-Geräte-Landschaft

	5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung
	5.1 Ressourcen-Abstraktion: IMLAUF-Kern
	5.2 Die modellgetriebene Instanzumgebung
	5.3 Nachrichten-basierte Kommunikation in IMLAUF: MsgSys
	5.4 Transparente Erkundung von Daten – Modell-Explorer
	5.5 Prinzip der Modell-Interkonnektions-Komponenten (MIK)
	5.5.1 Problem: Schleifenbildung
	5.5.2 Beispiel: MIK AT-Geräte-Dienste

	5.6 Überwachung der Umgebung - Remote-Model-Inspektor (RMI)
	5.7 Verwaltung der Dienste und Geräte - Dienst/Geräte-Inspektor (DGI)
	5.8 Migration von traditioneller Datenhaltung zur Repräsentation der Information in einer verteilten, modellgetriebenen Instanzumgebung
	5.9 Prototypen der Komponenten

	6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausführungsumgebung
	6.1 Verteilung in der Automatisierungstechnik als Suche
	6.2 Migration von Komponenten
	6.3 Anwendungsfall 1: Abbildung einer Remote I/O
	6.4 Anwendungsfall 2: Vorbereitung auf Ausfälle
	6.5 Anwendungsfall 3: Adressierung durch PLT-Stelle
	6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell
	6.6.1 Probleme der konsequenten Umsetzung

	7 Zusammenfassung
	7.1 Ausblick

	Begriffsverzeichnis
	Literaturverzeichnis
	Normen und Richtlinien

