
Fortschritt-Berichte VDI

Dipl.-Inform. Henning Mersch,
Bielefeld

Nr. 1245

Mess-,
Steuerungs- und
Regelungstechnik

Reihe 8

Deterministische, dyna-
mische Systemstrukturen
in der Automatisierungs-
technik

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Deterministische, dynamische Systemstrukturen in der
Automatisierungstechnik

Von der Fakultät für Georessourcen und Materialtechnik

der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Inform.

Henning Mersch

aus Bielefeld

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple

Univ.-Prof. Dr.-Ing. habil. Martin Wollschlaeger

Tag der mündlichen Prüfung: 26. November 2015

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Fortschritt-Berichte VDI

Deterministische, dyna-
mische Systemstrukturen
in der Automatisierungs-
technik

Dipl .-Inform. Henning Mersch,
Bielefeld

Mess-, Steuerungs-
und Regelungstechnik

Nr. 1245

Reihe 8

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

D 82 (Diss. RWTH Aachen University, 2015)

© VDI Verlag GmbH · Düsseldorf 2016
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9546
ISBN 978-3-18-524508-4

Mersch, Henning
Deterministische, dynamische Systemstrukturen in der Automatisierungs-
technik
Fortschr.-Ber. VDI Reihe 8 Nr. 1245. Düsseldorf: VDI Verlag 2016.
 142 Seiten, 77 Bilder, 3 Tabellen.
ISBN 978-3-18-524508-4, ISSN 0178-9546,
¤ 52,00/VDI-Mitgliederpreis ¤ 46,80.
Für die Dokumentation: Anlagen – Automatisierungstechnik – Systemstruktur – Modelle –
 Verteilte Systeme – Dynamik – Nachvollziehbarkeit – Flexibilität – OPC-UA

Für die Weiterentwicklung der Automatisierungstechnik ist die erweiterte Zusammenarbeit der
 automatisierungstechnischen Geräte wichtig. Viele aktuelle Themen, wie „Industrie 4.0“ oder
„Cyber Physical Systems“ gehen davon aus, dass Informationen aus dem Engineering zur
Produktionszeit bereit stehen. In der Automatisierungstechnik wird dafür immer mehr angestrebt,
Modelle zur Beschreibung der unterschiedlichsten Sachverhalte zu nutzen. Dabei werden
Themen-spezifische Modelle entwickelt, die unabhängig voneinander eigene Blickwinkel der
Automatisierungstechnik auf eine Anlage beschreiben. Die vorliegende Arbeit beschreibt Mittel,
um diese Modelle zur Anwendung zu bringen, verzichtet dabei aber auf ein zentralistisches
Modell: Existierende, heterogene Modelle werden durch eine verteilte, dynamische Ausführungs-
umgebung für Modelle und Dienste in der Automatisierungstechnik nutzbar gemacht, welche
kollaborative Ansätze zur gemeinsamen Datenhaltung auf unterschiedlichen Geräten ermöglichen.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
http://dnb.ddb.de.

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Vorwort

Diese Dissertation entstand durch meine Tätigkeit als wissenschaftlicher Angestellter am Lehr-

stuhl für Prozessleittechnik der RWTH Aachen. An dieser Stelle möchte ich mich bei denen

bedanken, die zum Gelingen der Arbeit beigetragen haben.

Mein besonderer Dank gilt Herrn Professor Dr.-Ing. Ulrich Epple. Die von ihm am Lehrstuhl

geschaffene, offene und angenehme Arbeitsatmosphäre in einer konstruktiven und gut aus-

gestatteten Umgebung sind der Ausgangspunkt für diese Arbeit. Die fachlichen und teilweise

auch kontroversen Diskussionen waren immer erfrischend und inspirierend für weitere Arbei-

ten.

Ebenso bedanke ich mich bei Herrn Professor Dr.-Ing. habil. Martin Wollschlaeger, Inhaber

der Professur Prozesskommunikation der Technischen Universität Dresden, für die freundliche

Übernahme der Rolle des Zweitgutachters.

Für intensive Diskussionen und die kooperative Arbeitsatmosphäre danke ich weiterhin meinen

ehemaligen Kollegen, den Mitarbeiterinnen und Mitarbeitern des Lehrstuhls. Besonders erwäh-

nen möchte ich hier Reiner Jorewitz, Martin Mertens, Gustavo Quirós und Markus Schlüter

Für die vielen organisatorischen Arbeiten gilt Martina Uecker und im Sekretariat Frau Bey der

besondere Dank. Nicht unerwähnt bleiben sollen auch die vielen studentischen Hilfskräfte, die

viele Tätigkeiten erst umsetzbar machen.

Weiterhin möchte ich gerne Leon Urbas, Andreas Gössling, Christian Kleegrewe und Wolfgang

Mahnke danken, die immer wieder erfrischende Gedanken in privaten Gesprächen oder der

gemeinsamen VDI-GMA Fachausschussarbeit geweckt haben.

Meiner Frau Tina danke ich von ganzem Herzen für die Geduld und die Zeit sowie den fachli-

chen Diskussionen und lektographischen Anmerkungen. Unserem Sohn Liam muss ich für so

manche Stunde danken, die er schon in den frühen Jahren in Geduld üben musste.

Schließlich danke ich meinen Eltern Birgit und Werner Mersch, die mich zu diesem berufli-

chen und privaten Weg geführt haben und in vielen Situationen zum Gelingen dieser Arbeit

beigetragen haben.

Verl, im Dezember 2015 Henning Mersch

III

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

»So you do what you do best. And you link to the rest.«

Jeff Jarvis, 22. Februar 2007 [Jar]

IV

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung 1
1.1 Ziele und Vision . 3
1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung 4
1.3 Übersicht des Vorgehens . 8

2 Stand der Wissenschaft und Technik - mit Begriffsklärung 10
2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT 10

2.1.1 (Modell-)Relationen . 12
2.1.2 Instanz-Struktur: Komponenten als Gruppierung 14
2.1.3 Bestandteile einer Modell-Beschreibung 15

2.2 Existierende Modelle der Automatisierungstechnik 15
2.3 Kommunikation in der Automatisierungstechnik 18

2.3.1 Kommunikations-Medien: Bussysteme und Alternativen 19
2.3.2 Formen der Kommunikation . 21
2.3.3 Kommunikations-Systeme für den Zugriff auf Modelle 22

2.4 Instanzumgebung der Modelle . 24
2.4.1 Existierende Instanzumgebungen für Modelle in die AT 25

2.4.1.1 ACPLT-Technologien . 26
2.4.1.2 OPC-UA . 26

2.4.2 Aktive Komponenten im Modell: Dienste 27
2.4.2.1 Dienste - ein Versuch der Erfassung des Begriffes 28

2.4.3 Existierende Ausführungsumgebungen für Dienste 31
2.4.4 Aspekte von Anwendungen, Diensten und Apps 32
2.4.5 Existierende Ausführungsumgebungen für Modelle und Dienste 35

2.5 Verteilte Systeme . 35

3 Analyse der Anforderungen 37
3.1 Ergänzende Anforderungen an Geräte und Umgebung 37
3.2 Ergänzende Anforderungen an Meta-Modell und Instanzumgebung 37
3.3 Ergänzende Anforderungen an die Kommunikation 39

3.3.1 Einheitliche, allgemeine Adressierung . 40
3.4 Bezug der Anforderungen . 41
3.5 Nachvollziehbarkeit und Verständlichkeit . 42

V

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Inhaltsverzeichnis

4 Modell-Architektur für dynamische, verteilte Systemstrukturen 43
4.1 Beispiel-Modell: AT-Geräte-Struktur . 43

4.1.1 Erweiterung: Routing . 44
4.2 Abbildung der Realität: Repräsentationen im Modell 44

4.2.1 Zustandsmaschine für aktive Komponenten 46
4.2.2 Die Komponenten-Repräsentation . 48
4.2.3 Unspezifizierte, flexible Annotationen für Repräsentationen 50
4.2.4 Unterschiedliche Komponenten-Repräsentationen 52
4.2.5 Beispiel: AT-Geräte-Struktur als Komponenten-Repräsentation 53

4.3 Kommunikation im automatisierungstechnischen Kontext 54
4.3.1 Referenzierung über Systemgrenzen hinweg 55
4.3.2 Kommunikations-Medien . 57
4.3.3 Nachrichten-basierte Kommunikation . 58
4.3.4 Typ 1: singuläre Kommunikation . 62
4.3.5 Typ 2: Aufruf/Antwort Kommunikation . 62
4.3.6 Typ 3: Subskription/Benachrichtigungs-Kommunikation 62
4.3.7 Typ 4: Indirekte Kommunikation per Intents 64
4.3.8 Lokale Kommunikation . 66

4.4 Dienst-Modell: aktive, dynamische Komponenten 67
4.5 Die modellgetriebene Instanzumgebung . 69

4.5.1 Vom Modell zum Instanz-Modell . 70
4.5.1.1 Modell-Master . 71

4.5.2 Sprache der Modell-Änderungen . 72
4.5.3 Änderungs-Benachrichtigungen . 73

4.5.3.1 Alternative Realisierung: Intents 75
4.5.4 Ausführungsumgebung: Dienste als partielle, Aufgaben-orientierte Teil-

Anwendungen . 76
4.6 Modell- und Gerätegrenzen . 77

4.6.1 Modelle in Relation: Modell-Interkonnektion 77
4.6.1.1 Beispiel: AT-Geräte-Struktur und Anlagenstruktur 79

4.6.2 Über Gerätegrenzen hinweg: Verteilte (Modell-)Laufzeiten 80
4.6.2.1 Externe Verbindungen . 80
4.6.2.2 Änderungs-Benachrichtigungen 83
4.6.2.3 Zugriff auf die verteilte Modell-Instanzen 83
4.6.2.4 Dienst-Orchestrierung auf Basis der verteilten Modelle 86
4.6.2.5 Beispiel: Verteilte Modellierung der AT-Geräte-Struktur 87
4.6.2.6 Transparenter Zugriff auf verteilte Modell-Instanzen 87

4.7 Effizienz der Konzepte . 89
4.7.1 Modell-Interkonnektionen und ihre Etablierung 89
4.7.2 Verteilungsaspekte . 90

4.8 Integrationsmöglichkeiten in die bestehende AT-Geräte-Landschaft 91

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung 92
5.1 Ressourcen-Abstraktion: IMLAUF-Kern . 95

VI

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Inhaltsverzeichnis

5.2 Die modellgetriebene Instanzumgebung . 97
5.3 Nachrichten-basierte Kommunikation in IMLAUF: MsgSys 98
5.4 Transparente Erkundung von Daten – Modell-Explorer 100
5.5 Prinzip der Modell-Interkonnektions-Komponenten (MIK) 102

5.5.1 Problem: Schleifenbildung . 103
5.5.2 Beispiel: MIK AT-Geräte-Dienste . 104

5.6 Überwachung der Umgebung - Remote-Model-Inspektor (RMI) 104
5.7 Verwaltung der Dienste und Geräte - Dienst/Geräte-Inspektor (DGI) 106
5.8 Migration von traditioneller Datenhaltung zur Repräsentation der Information in

einer verteilten, modellgetriebenen Instanzumgebung 107
5.9 Prototypen der Komponenten . 108

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausführungs-
umgebung 110
6.1 Verteilung in der Automatisierungstechnik als Suche 110
6.2 Migration von Komponenten . 112
6.3 Anwendungsfall 1: Abbildung einer Remote I/O 114
6.4 Anwendungsfall 2: Vorbereitung auf Ausfälle . 115
6.5 Anwendungsfall 3: Adressierung durch PLT-Stelle 116
6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell 117

6.6.1 Probleme der konsequenten Umsetzung 118

7 Zusammenfassung 120
7.1 Ausblick . 121

Begriffsverzeichnis 122

Literaturverzeichnis 125

Normen und Richtlinien 128

VII

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Kurzfassung

Kurzfassung

Für die Weiterentwicklung der Automatisierungstechnik ist die erweiterte Zusammenarbeit der

automatisierungstechnischen Geräte wichtig. Dieses gilt für alle Phasen einer Anlage: Von der

Planung über die Produktion bis zur Wartung. Ebenso auch für die horizontale und vertikale

Integration während der Produktion. Viele aktuelle Themen, wie „Industrie 4.0“ oder „Cyber

Physical Systems“ gehen davon aus, dass Informationen aus dem Engineering zur Produkti-

onszeit bereit stehen. Hierzu leistet diese Arbeit einen Beitrag.

Informationen werden heutzutage noch häufig entweder nicht elektronisch auswertbar gespei-

chert (beispielsweise als Grafiken) oder sind so abgelegt, dass nur einzelne Programme auf

sie zugreifen können. Hierdurch sind die existierenden Informationen nicht so weit zugreifbar,

wie sie es eigentlich sein könnten.

Modelle spielen hierbei eine entscheidende Rolle: Sie beschreiben Sachverhalte der Anlagen.

Die meisten der heutigen Modelle werden bei ihrer Spezifikation in einem elektronisch abbild-

und auswertbaren Format definiert, sodass ein Computer die Informationen sowohl bereitstel-

len, wie auch auswerten und damit nutzen kann. Werden diese Modelle zur Produktionszeit

bereitgestellt und genutzt, werden hierdurch dynamische Änderungen ermöglicht, die heutzu-

tage nicht üblich sind. In der Automatisierungstechnik wird deswegen immer mehr angestrebt,

Modelle zur Beschreibung der unterschiedlichsten Sachverhalte zu nutzen. Modelle beschrei-

ben unter anderem Systemstrukturen einer Anlage. Dabei werden Themen-spezifische Modelle

entwickelt, die unabhängig voneinander jeweils eigene Blickwinkel der Automatisierungstech-

nik auf eine Anlage beschreiben.

Im Gegensatz dazu wurden Versuche, bei denen eine Domäne als Ganzes (wie beispielsweise

Automatisierungstechnik) abgebildet werden soll, nicht von Erfolg gekrönt.

Die Modelle konnten sich beispielsweise nicht etablieren, weil eine Verbreitung nicht erreicht

wurde. Dieses mag insbesondere daran gelegen haben, dass die jeweiligen Detaillierung von

umfassenden Modellen (sogenannten „Welt-Modellen“) für spezifische Anwendungsfälle nicht

ausreichend waren. Da diese Modelle in dem Fall nicht eingesetzt werden konnten, wurde wie-

derum auf Eigenentwicklungen gesetzt, was den Bestrebungen des Welt-Modells widersprach.

Die vorliegende Arbeit beschreibt Mittel, um die gleichen Ziele zu erreichen, aber auf ein zen-

tralistisches Modell zu verzichten: Existierende, heterogene Modelle werden in allen Phasen

und Ebenen einer verteilten Umgebung, wie in einem automatisierungstechnischen System,

nutzbar gemacht.

Hierzu wird zum einen eine verteilte, dynamische modellgetriebene Instanzumgebung beschrie-

ben. Sie kann als Erweiterung von existierenden Technologien begriffen werden, wird aber un-

abhängig von diesen dargestellt. Durch diese modellgetriebene Instanzumgebung wird erreicht,

VIII

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Teile eines Modells auf unterschiedlichen Geräten bereitzustellen. Diese sind in einer einheit-

lichen Weise abfragbar und erkundbar. Hierdurch können die im Modell abgebildeten System-

strukturen an einem „sinnvollen“ Ort abgelegt werden, der nach Kriterien, wie der häufigsten

Nutzung, der höchsten Ausfallsicherheit oder der schnellsten Verfügbarkeit beim Zugriff erfol-

gen kann. Gleichzeitig bietet eine solche Ausführungsumgebung der Modelle die Möglichkeit

dynamisch auf Änderungen zu reagieren: kollaborativ erfolgen Änderungen von unterschiedli-

chen Anwendungen. Dabei muss jedoch insbesondere die Transaktionssicherheit sowie Nach-

vollziehbarkeit (Determinismus) der Änderungen gegeben sein.

Zum anderen beschreibt die Arbeit ein Konzept zur Interkonnektion von Modellen. Hierbei wer-

den Teile von Modellen, die unabhängig voneinander entworfen wurden, in Relation zueinander

gesetzt. Interkonnektionen stellen dabei eine Form von Relationen dar, die jedoch keinerlei Ab-

hängigkeit an Ausgangs- sowie Zielpunkt voraussetzen. Dieses erlaubt die Modellierung von

zusätzlichen Sachverhalten, sodass die Interkonnektion von Modellen wiederum ein Modell ist.

Durch die Kombination dieser beiden Aspekte ergibt sich eine verteilte, deterministische und

dynamische Ausführungsumgebung für Systemstrukturen. Voraussetzung ist ein gemeinsames

Meta-Modell sowie Verständnis der Problematik. Als Folge können Modelle unabhängig vonein-

ander entworfen werden. Eine solche Ausführungsumgebung muss dabei Schnittstellen bereit-

stellen, um die Informationen abzufragen und entsprechende Änderungen vorzunehmen. Erst

hierdurch können aufbauende Anwendungen einen realen Nutzen aus den Konzepten ziehen.

Insgesamt ergibt sich so eine Lösung, um Modelle zu den unterschiedlichen Phasen und Ebe-

nen einer Anlage - insbesondere auch zur Produktionszeit - zu nutzen. Die Integration der

verteilten, unterschiedlichen Modelle beschreibt die informationstechnische Basis, um dyna-

misch auf Änderungen in den Systemstrukturen zu reagieren. Hierunter werden beispielsweise

Änderungen der Anlagenstruktur durch Umbauten ebenso verstanden, wie unterschiedliche

Produktionsaufträge.

IX

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Abstract

Abstract

For the future development of automation technology the enhanced collaboration of automa-

tion devices is important. This is true for all phases of a plant, from planning to production to

maintenance, as well as for the horizontal and vertical integration during the production. A lot

of current topics like “Industry 4.0” or “Cyber Physical Systems” act on the assumption that

engineering information is available during the production phase, which is not the case today.

The dissertation addresses this topic.

Nowadays information is often stored not electronic analyzable (e.g. as graphic) or accessible

only by single programs. So existing information is not accessible as far as it could be.

Models are acting as an important part: They describe characteristics of a plant. Most of today’s

models are defined in an electronically representable and evaluable format by their specificati-

on. So a computer could host and provide these models as well as evaluate and use them. If

they are provided and used during the production phase, dynamical changes are made possi-

ble, which is not usually the case nowadays.

Therefore, in automation technology models are used for the description of different topics.

Topic-specific models are developed, that are independent from each other and describe diffe-

rent aspects of the domain of automation technology.

In contrast attempts to describe the whole domain of automation technology in one model were

not successful. Those models could not be widely established since their adoption could not be

achieved. This could be due to the fact that models describing a whole domain (“World-Models”)

are not detailed enough to be used for specific cases. So specific models were required to be

defined, which contradicts the purpose of whole domain model.

This work describes instruments without a centralized model: Existing, heterogeneous models

can be used in all phases and levels of a distributed system like a plant in a homogenous

way. Therefore a distributed, dynamic, model-driven execution environment is described. This

could be seen as a further development of existing technologies, but is described independent

of those. In this model-driven execution environment parts of a model could be provided by

distributed devices. In a common way models are discover- and query-able. Therefore, infor-

mation could be stored in a judicious place, that is defined by most frequent usage, highest

reliability or fastest availability. At the same time such a model-driven execution environment

provides for the possibility of dynamic changes: Changes are established in a collaborative way

from different applications. For that purpose transaction security as well as comprehensibility

(determinism) needs to be assured.

X

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Additionally, this work describes the concept of interconnections of models: Parts of models,

which are designed independent of each other, are put in relation. Interconnections are a spe-

cial type of relations not having dependencies at start- or endpoint. This enables modeling of

additional aspects, so interconnections of models are models again.

This combination of instruments represents a distributed, deterministic and dynamic model

execution environment of system structures. A requirement for this is a common used meta-

model as well as a complete understanding of the topic. Models can be specified independent

of each other. A model execution environment will provide interfaces for querying information

and for making changes to all models. Applications will be based on this.

The overall result is a solution, which makes the use of models feasible during all phases of

a plant - especially during production time. The integration of the distributed models provides

an information-technology foundation for dynamic changes on system architecture. This covers

changes of plants due to rebuilding as well as production orders.

XI

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1 Einleitung

Pläne sind nichts, Planung ist alles.
Dwight D. Eisenhower

Vielfach wird über Modellierung in der Automatisierungstechnik berichtet. Dabei werden Ein-

zelaspekte der Automatisierungstechnik bzw. der zu automatisierenden Anlagen durch Modelle

beschrieben. Im Wesentlichen hat dieses drei Gründe, die sich nicht gegenseitig ausschließen:

Verständnisbildung Im Bereich der Forschung wird versucht die Formalisierung von Sach-

verhalten durch Modelle zu erreichen. Ziel ist dabei eher das Verständnis, sodass sich

Folgerungen aus gewonnenen Zusammenhängen für neuartige Technologien erschlie-

ßen.

Datenaustausch In Standardisierungsgremien geht es um die gemeinsame Darstellung von

Sachverhalten, die zwischen Komponenten (elektronisch) ausgetauscht werden sollen.

Datenhaltung Modelle werden zur kontinuierlichen Abbildung der Realität formuliert: Aspekte

der Realität werden im Modell festgehalten, um sie durch Computer-Programme abfrag-

bar und veränderbar zu machen.

In der Praxis zeigen insbesondere die Modelle zum Datenaustausch meist einen hohen Detai-

lierungsgrad. Dabei sind sie jedoch als heterogen zu bezeichnen, da sie keinerlei gemeinsame

Elemente enthalten. Es gibt jedoch immer wiederkehrende Konstrukte, die sich teilweise nach

und nach als eine Art Meta-Modell etabliert haben.

Meistens sind es spezielle Lösungen, damit beispielsweise zwei Anwendungen miteinander

Daten austauschen können. Das Potenzial der Modelle wird so nur unzureichend genutzt.

Die vorliegende Arbeit soll die Potenziale der heterogenen Modelle weitreichend erschließbar

machen. Dabei wird vorgeschlagen, eine Instanzumgebung zu etablieren, die von unterschied-

lichen Anwendungen kollaborativ genutzt werden kann. Verschiedene Modelle werden in der

Instanzumgebung repräsentiert und sind so zugreifbar. Drei Konzepte liegen der Arbeit zugrun-

de:

1. Die Modelle selber können aufgrund des Meta-Modells der Modellverwaltungsumgebung

verteilt in der Anlagenstruktur (d.h. in der Engineering-Phase genau wie in der Produkti-

ons-Phase) abgelegt werden.

1

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1 Einleitung

2. Die Modelle können, ohne selber eine Grundlage dafür bereitstellen zu müssen, unterein-

ander in Relation gesetzt werden. Diese Interkonnektionen zwischen Modellen ist dabei

selber wieder ein Modell, welches auf mindestens zwei Ausgangs-Modellen basiert.

3. Änderungen an den Modellen können automatisiert als Änderungen von Interkonnektio-

nen formuliert werden, sodass diese Interkonnektionen einen wirklichen Mehrwert ge-

genüber den Einzelmodellen darstellen.

Abbildung 1.1 verdeutlicht diese Denkweise. Dabei wird besonders veranschaulicht, dass die

Anwendungen von der möglichen Verteilung möglichst abstrahiert entwickelt werden sollten.

Modell-
verwaltungs-

umgebung
Modell

Anwendung

Geräte- und Modell-übergreifende
Relation

Geräte-übergreifende, transparente
Modell-Interaktionen

Modell-übergreifende
Relation

Anwendung

Abbildung 1.1: Konzeptuelles Schema der modellgetriebenen, verteilten Modellverwaltungsumgebung

Durch eine verteile Instanzumgebung, in der unterschiedliche Modelle veränderbar hinterlegt

werden können, werden neue Anwendungsbereiche erschlossen.

Der Ansatz geht davon aus, dass die Anwendungen möglichst viele Daten als Modell in der

Instanzumgebung ablegen und im Idealfall nur das Verhalten im Programm selber liegt. Diese

Teilung von aktivem Verhalten und passiven Daten entspricht dabei der üblichen Denkweise

eines Programmierers und Ingenieurs in der Projektierung.

Strukturänderungen in der Anlage können zur Laufzeit von nutzenden Anwendungen erkannt

werden, wenn sie entsprechend durch Modelle abgebildet sind und diese angepasst werden.

Diese Änderungsinformationen liegen in der Instanzumgebung nicht nur als Änderungsmittei-

lung vor, sondern sind aufgrund der abgebildeten Systemstruktur direkt analysierbar.

2

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1.1 Ziele und Vision

Die Folgen aus einer solchen Instanzumgebung - wenn sie eine entsprechende Verbreitung

erreicht hat - adressieren zum einen modellbasiertes Engineering, wie es auch in [CHF14] ana-

lysiert wird. Aber auch Aspekte in der Produktionsphase wie Wandlungsfähigkeit von Anlagen

werden ermöglicht, wie es durch einen „desktriptiven Ansatz“ der Automatisierung in [Nig14]

beschrieben wird.

Zusammenfassend kann also formuliert werden, dass eine Vielzahl von Modellen für die Au-

tomatisierungstechnik entwickelt wurden und werden. Diese Modelle entstehen zwar aus un-

terschiedlicher Motivation heraus, könnten aber immer für die Abbildung von Spezifika der Au-

tomatisierungstechnik verwendet werden. Heute wird dieses Potenzial viel zu wenig genutzt.

Eine Bereitstellung einer Instanzumgebung für diese Modelle, die unabhängig von konkreten

Anwendungen einen kollaborativen Zugriff erlaubt, birgt erhebliche Potenziale.

Das gilt umso mehr, wenn die Anwendungen als aktive Teile der Modelle verstanden werden

und wie die Modelle in einer Anlage verteilt verwaltet werden können.

Im Folgenden werden die Ziele der Arbeit konkret formuliert und entstehende Potenziale vor-

gestellt.

1.1 Ziele und Vision

Vision – Die effizientere und geschicktere Nutzung von bereits existierenden Informatio-

nen ermöglicht neuartige Anwendungen in den unterschiedlichen Phasen und Ebenen

einer Anlage.

Aus der Vision lässt sich ableiten, dass Mechanismen zur Informationsbereitstellung entwickelt

werden müssen. Diese sollten dabei sowohl für die unterschiedlichen Phasen einer Anlage (vgl.

[19]) wie auch für die unterschiedlichen Ebenen nach der Automatisierungspyramide [Pol94]

einsetzbar sein. Modelle werden, wie auch in aktueller Lehrliteratur [Urb12] beschrieben, heut-

zutage bereits verwendet, jedoch bei weitem nicht so effektiv, wie es sein könnte.

Es lassen sich somit drei Ziele formulieren, um die Bereitstellung der Informationen zu charak-

terisieren:

Ziel 1 – Verbesserung der horizontalen Integration:

Erschließung neuer Diagnose-, Analyse- und Reaktions-Möglichkeiten in der Produktions-

Phase

Klassischerweise wird von horizontaler Integration gesprochen, wenn während der Produktion

innerhalb einer Ebene der Automatisierungspyramide eine Integration verstärkt wird.

Durch das Auffinden von Geräten und einer Kommunikation ohne weitere Konfiguration, kann

beispielsweise auf Sensor/Aktor-Ebene eine erweiterten Diagnose- und Analyse-Möglichkeit

geschaffen werden.

3

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1 Einleitung

Ziel 2 – Verbesserung der vertikalen Integration:

Nutzung gemeinsamer Dienste und Modelle für äquivalente Aufgaben

Es wird von vertikaler Integration gesprochen, wenn eine Interaktion zwischen mehreren Ebe-

nen angestrebt wird.

Beispielsweise ist hier die standardisierte Bereitstellung von Messdaten vom Sensor direkt in

die MES oder ERP Ebene zu nennen. Aber auch die gemeinsame Nutzung von Funktionen (wie

z.B. die „Allgemeinen Systemdienste“ nach [Pol94]) von unterschiedlichen Ebenen kann eine

Verbesserung erzielen. Ein einheitlicher „Meldedienst“ beispielsweise kann für die Archivierung

von Messdaten ebenso geeignet sein, wie für die Protokollierung von Buchungsanfragen auf

ERP Ebene [SME10].

Ziel 3 – Verbesserung der zeitlichen Integration (entlang des Anlagenlebenszyklus):

Engineering-Informationen auch während der Produktions-Phase.

Als zeitliche Integration kann verstanden werden, dass Informationen aus der Engineer-ing-

Phase auch zur Produktionszeit (und in weiteren Phasen) nutzbar sind und damit auch für

Änderungen an der bereits in Betrieb genommenen Anlage bereitstehen.

Beispielsweise ist hier die (teil-)automatisierte Inbetriebnahme von Anlagen-Modulen, die für

unterschiedliche Produkte neu angeordnet werden müssen, zu nennen.

1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung

Zur Errichtung und zum Betrieb einer produktionstechnischen Anlage gehört heutzutage eine

große Anzahl von Geräten (Sensoren, Aktoren, Engineering-, BuB-Station, . . .) und Program-

men (Automatisierungsausführung, Visualisierung, Verwaltung, Protokollierung, . . .), die auf

teilweise spezialisierten Geräten ausgeführt werden. Für sich genommen hat heutzutage je-

des Gerät und jedes Programm seine spezielle, legitime Aufgabe. Diese Trennung führt zu

separaten Datensätze, die voneinander unabhängig sind und durch andere Programme nicht

zugreifbar sind. Eine spätere Verknüpfung der Daten ist aufwändig und sollte, soweit es geht,

vermieden werden.

Im Folgenden sind Konzepte beschrieben, die im späteren Verlauf der Arbeit aufgegriffen wer-

den:

Hoheit über Daten aufgeben Die hier vorgestellten Konzepte sehen vor, dass die Programme

die Hoheit über ihre Daten aufgeben und möglichst weitreichend in Form von Modellen

in einer zu beschreibenden Instanzumgebung ablegen, sodass sie von anderen genutzt

werden können

Dafür ist aus Vorarbeiten bekannt, dass ein gemeinsames - möglichst schmales - Me-

ta-Modell genutzt werden kann. Entsprechende Modelle konkretisieren das Meta-Modell.

4

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung

Somit können Elemente der Modelle in einer Instanzumgebung instanziiert werden. Bietet

die Instanzumgebung über das Meta-Modell definierte Manipulations- und Erkundungs-

Möglichkeiten, können zu einem Zeitpunkt mehrere Modelle verwaltet und verändert wer-

den. Da Informationen als Objekte von Modellen abgebildet sind, können diese durch

spezielle Komponenten in Relation zwischen den Modellen gesetzt werden, wodurch

letztendlich eine Struktur entsteht, die für andere Anwendungen erkundbar ist.

Verteilung der Daten Ein automatisierungstechnisches System wird als verteiltes System ge-

sehen. Viele unterschiedliche Teilnehmer in einem Netzwerk operieren aktuell mit lokalen

Daten. Um einen einheitlichen Modell-Raum zu erhalten, ist es wichtig die Instanzumge-

bung mit Verteilungsmöglichkeiten auszustatten. Somit kann jede Anwendung ihre Daten

lokal bearbeiten und verwalten. Entsprechende Relationen über die Systemgrenzen hin-

weg sorgen für die Verknüpfungen.

Im Folgenden werden Argumente dargestellt, die Potenziale und Möglichkeiten einer verteilten,

modellgetriebenen Instanzumgebung charakterisieren und so die Vorteile aufzeigen.

„Standardisierung“ als Chance Eine Möglichkeit der vereinheitlichten Darstellung der Daten

ist die Standardisierung. Die IT-Branche verzichtet (teilweise) hierauf und arbeitet mit un-

scharfen Begriffen. Selbst Quasi-Normen werden nicht als solche bezeichnet: Die W3C

verwaltet „Standards“ mit weltweiter Bedeutung, wie beispielsweise das http-Protokoll.

Sie nennt Ihre Dokumente „Recommendation“, also Empfehlungen. Viele Vereinbarun-

gen für Unix Systeme sind in „Request for comment“ (RFC) festgehalten1.

Auch für die Ingenieurswissenschaften stellt sich deswegen die Frage, ob die klassischen

Standards in allen Themen die richtige Möglichkeit sind. Oder ob es nicht sinnvoller ist,

dass jede Anwendung und jeder Hersteller eigene Modelle und Repräsentationen nutzt,

diese jedoch in einem öffentlich zugänglichen System, damit eine Integration der Daten

ermöglicht wird. Jeder Hersteller ist frei genau die Daten offen - im Sinne von zugreifbar

- zu legen, die er für sinnvoll erachtet.

Alle diese Abbildungen würden in einer modellgetriebenen Instanzumgebung als Modelle

verstanden. Die einzelnen Datensätze könnten nachträglich von allen Teilnehmern aus-

gewertet und auch verknüpft werden.

Unterbindung von Inkonsistenzen Heutige Engineering-Software in der Automatisierungs-

technik speichert Daten in eigenen Formaten, sodass ein Zugriff von anderen Anwen-

dungen nicht möglich ist. Da die Anwendungen jedoch Daten untereinander austauschen

müssen, werden Schnittstellen geschaffen.

1Noch weiter gehen Initiatoren der OpenData-Projekte: Hier werden Daten grundsätzlich zwar strukturiert und Maschinen-
verarbeitbar angeboten, jedoch wird bewusst auf vorgeschriebene Standards verzichtet. Hauptsächlich sollen Behörden und
öffentliche Einrichtungen dazu gebracht werden, möglichst vollkommen ihre Daten einer breiten Öffentlichkeit anzubieten.
Also beispielsweise das Gewerbeamt eine Liste der lokalen Firmen, das Katasteramt die Straßennamen oder auch die
Einwohnermeldeämter statistische Kennzahlen der gemeldeten Einwohner.
Der Zugriff und die Aggregation der Daten (und damit eine Form von „Informationsgenerierung“) liegt folglich bei den
Nutzenden, wie beispielsweise den Journalisten.
Durch den Verzicht auf feste Standards für die Daten wird die Teilnahme aus Sicht der Behörden erheblich vereinfacht.

5

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1 Einleitung

(a) Ein Modell für alle Anwendungen:
nicht beschreibbar

Export/Import

(b) Export/Import durch Datei: Inkon-
sistenz durch Kopie

Relation

(c) Modell-Interkonnektion mit ge-
meinsamem Meta-Modell

Abbildung 1.2: Datenaustausch zwischen Anwendungen

Die erste Möglichkeit ist eine gemeinsame Datenbasis zu definieren; also ein gemeinsa-

mes Datenmodell, welches von den beteiligten Anwendungen genutzt wird. Bei vielen An-

wendungen wird das Modell sehr komplex, sodass die Akzeptanz des Modells wiederum

sinkt. (Abbildung 1.2 (a)). Eine andere, weit verbreitete Möglichkeit ist ein Austauschfor-

mat zu definieren. Dabei exportiert eine Anwendung in einem definierten Modell (Format)

die benötigten Daten; eine weitere Anwendung liest diese Daten ein. Nachher existiert

also eine Kopie der Daten, sodass Inkonsistenzen durch die unterschiedliche Weiter-

verarbeitung entstehen. Diese müssen entweder aufwändig synchronisiert werden, oder

es muss einen unidirektionalen Arbeitsfluss geben, sodass dieser Prozess nur einmalig

stattfindet (Abbildung 1.2 (b)).

Sinnvoller und in dieser Arbeit angestrebt ist es, Verbindungen zwischen einzelnen Da-

tensätzen der Anwendungen zu schaffen (Abbildung 1.2 (c)). Hierbei verbleiben die Daten

in dem Modell der Anwendungen, jedoch sind Elemente davon zugänglich und können

zwischen den Modellen in Relation gesetzt werden, wodurch auch ein Zugriff stattfinden

kann. Ein gemeinsames Instanzsystem ersetzt durch den gemeinsamen Datenraum den

bisherigen Datenaustausch.

Analogie: Strukturierte Festplatte Insgesamt kann so eine Analogie zu einer strukturierten

Festplatte gezogen werden: Traditionell speichern alle Anwendungen in ihrem eigenen

Format Dateien auf die lokale Festplatte. In großen Installationen ist eine verteilte Lösung

in Form eines Netzwerk-Laufwerks oder NFS Systems üblich - allerdings hauptsächlich

aus Gründen der Daten-Sicherung (Backup) und für die flexible Nutzung von Arbeitsplät-

zen.

Die abgelegten Daten sind in ihren proprietären Formaten als Datei gespeichert. Eine

Verbindung zwischen einzelnen (Modell-)Teilen ist nicht möglich.

Die beschriebene Instanzumgebung bietet eine Möglichkeit, dieses Problem zu umgehen.

Daten werden durch Anwendungen in die Instanzumgebung geschrieben, ähnlich wie in

eine Datei. Durch die Zugriffsmechanismen ist es anderen Anwendungen aber möglich

in diese Daten hineinzublicken und Beziehungen zu den Teildaten aufzubauen. Ebenso

können Rückschlüsse aus den Daten oder den Änderungen der Daten gezogen werden.

6

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung

Dienste – ohne Schnittstellenproblematik Vielfach wurde in den vergangen Jahren über ei-

ne Dienstorientierung auf Basis von „Dienst-orientierten Architekturen“ (kurz: SOA für

„Service-oriented Architecture“; beispielsweise [SEE09]) gesprochen. Ziel ist es, Funktio-

nalität in Dienste zu kapseln, sodass diese als „Blackbox“ ihre Aufgabe verrichten. Der

interne Aufbau ist somit für den Nutzenden nicht wichtig.

Kern des Konzeptes ist es also, dass unabhängige Software-Komponenten über Schnitt-

stellen sich gegenseitig aufrufen. Die Orchestrierung (also Verknüpfung) von Diensten

führt dann zu höherwertigen Anwendungen, die eine Gesamtaufgabe erledigen.

Diese Dienst-basierte Architektur bedingt dabei wesentliche Standardisierung: Schnitt-

stellen müssen auf mehreren Ebenen (von binärer Kodierung über Ausführungslogik bis

hin zu den Aufruf- und Rückgabe-Parametern) spezifiziert werden. Zusätzlich muss in der

Automatisierungstechnik bedacht werden, dass zu den Standardisierungsarbeiten auch

noch unterschiedliche Kommunikations-Medien mit unterschiedlichen Eigenschaften be-

rücksichtigt werden müssen.

Anwendungen in logischer Nähe der Instanzumgebung Bisher wurden nur in Modellen ab-

gelegte „passive“ Informationen betrachtet. Wenn Informationen konzeptuell in der mo-

dellgetriebenen Instanzumgebung abgelegt sind, liegt es nahe, dass auch für die An-

wendungen selber eine Ausführungsumgebung spezifiziert wird, die auf den gleichen

Mechanismen beruht. Der Vorteil ist, dass ein einheitliches Konzept zur Kommunikation

zwischen Anwendungen etabliert werden kann. Auch wird sich hier anbieten, die Anwen-

dungen in einzelne Komponenten, die zwischen einander kommunizieren, abzubilden.

Eine solche Ausführungsumgebung wird sich erstmal nicht wesentlich von den Dienst-

orientierten Architekturen unterscheiden, wie sie schon vielfach auch für die Automatisie-

rungstechnik untersucht werden.

Aus diesem Grund beschränkt sich diese Arbeit auf die Möglichkeiten der modellge-

triebenen Instanzumgebung und stellt die Möglichkeit der integrierten Ausführungsum-

gebung am Rande vor. Näher betrachtet wird allerdings die Möglichkeit aktive Kompo-

nenten (ob innerhalb einer Ausführungsumgebung oder außerhalb ausgeführt) in der

Modell-Landschaft abzubilden (zu repräsentieren) und dadurch eine Erkundungsfunktion

zu schaffen. Dieses ist eine der wesentlichen Herausforderungen (genannt „Discovery“),

die die SOA zu meistern hat.

Dynamik und Determinismus zur Produktions-Phase Die oben beschrieben Informationen

in der modellgetriebenen Instanzumgebung können nicht nur in der Planungs- und Engi-

neering-Phase genutzt werden, sondern auch zur Laufzeit.

Erst durch eine gegenseitige Überwachung der Informations-Änderungen und Reaktion

auf diese Änderungen ist eine konsistente Gesamterfassung der Informationen möglich.

Es entsteht also eine dynamische Modelllandschaft, die sich zur Laufzeit an Änderungen

anpassen kann.

7

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1 Einleitung

Diese Änderungen können von beliebiger Struktur sein. Hierbei ist für die Akzeptanz ins-

besondere wichtig, dass die Reaktionen auf die Änderungen deterministisch sind, d.h.

entscheidbar und auch nachvollziehbar: Wird unter den gleichen Umständen die gleiche

Änderung gemacht, wird das System mit der gleichen Reaktion antworten.

Auf Basis dieser dynamischen Modell-Änderungen zusammen mit dem Determinismus

wird es möglich, die „Self-X“ Konzepte, wie sie von IBM [Hor01] beschrieben wurden,

in einer Weise zu definieren, dass sie auch in der Automatisierungstechnik Anwendung

finden können.

Für das Erreichen der Vision ist es dabei wichtig, dass die Schnittstellen insbesondere zur

modellgetriebenen Instanzumgebung frei verfügbar sind. Nur hierdurch können Spezialanwen-

dungen beispielsweise von kleineren Engineering-Firmen zusätzlich integriert werden. Dieses

hilft im Umkehrschluss auch den großen Herstellern, da für sie uninteressante Spezialanwen-

dungen durch externe Dienstleister erbracht werden können.

1.3 Übersicht des Vorgehens

Nachdem die Einleitung eine grundlegende Motivation und Einordnung der Problematik vorge-

nommen hat, wird im Folgenden der Stand der Technik dargestellt (Kapitel 2). Dabei werden

zum einen Begriffe und Konzepte beschrieben, die im Kontext der Arbeit wichtig sind. Hier-

zu zählt insbesondere das Abbilden von Informationen in Modellen. Da eine Interaktion von

unterschiedlichen Software-Systemen unabdingbar ist, wird auch die Kommunikation betrach-

tet. Bevor neuartige Konzepte dargestellt werden, erfolgt aufgrund der Ausgangssituation eine

Analyse der Anforderungen (Kapitel 3), die zur Umsetzung der Eingangs beschriebenen Ziele

und Vision berücksichtigt werden müssen. Zur Umsetzung dieser Anforderungen sind Wei-

terentwicklungen und neuartige Konzepte notwendig. Diese beziehen sich zum einen auf die

Verteilung der Modelle auf unterschiedliche Geräte. Zum anderen sollen existierende, Modell-

artig abgebildete Informationen in Zukunft in Verbindung gesetzt werden (Kapitel 4). Um die-

se Konzepte vor dem Hintergrund der Verteilung anwendbar zu machen, werden Software-

Komponenten beschrieben, die entsprechende Schnittstellen zur Abstraktion bereitstellen (Ka-

pitel 5). Sie beziehen sich dabei zum einen auf die Verteilung und zum anderen wiederum auf

die Verbindungen zwischen den Informationen, also die Suche über den Modell-Raum. Mit Hil-

fe dieser Basis-Komponenten können Anwendungen skizziert werden, die die Konzepte nutzen

(Kapitel 6). Anwendungsbeispiele verdeutlichen abschließend die Potenziale der aufgezeigten

Konzepte und Ziele.

Als Überblick sind die wichtigsten Begriffe in der Abbildung 1.3 als Stichpunkte dargestellt.

Dabei wurde eine Einordnung in die jeweiligen Kapitel vorgenommen. Auch die Anordnung in-

nerhalb der Abschnitte weißt auf Zusammenhänge zu den überliegenden oder unterliegenden

Schichten hin.

8

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

1.3 Übersicht des Vorgehens

Modelle Informationen
Laufzeit Meta-Modell

Kommunikation

Verteilung
Modell-Interkonnektion

Repräsentation
Externe Verbindung

Modell-Interkonnektions-
Komponenten

Modell-Explorer Remote-Model-
Inspektor

Dienst/Geräte-
Inspektor

Überwachung

Modelle zur Laufzeit

M
o
tiv

a
tio

n
...

S
ta

n
d

...
K

o
n
z
e
p
te

...
K

o
m

p
o
n
e
n
te

n
...

A
n
w

e
n
d
u
n
g

Integration

Verteilung als
Suche

Migration von
Komponenten

Anwendungsfälle

Geräte
Kommunikation

Produktion
Engineering

Verteilung
K

a
p
it
e
l

5
4

1
3

2

Abbildung 1.3: Übersicht der wichtigsten Begriffe im Kontext dieser Arbeit

Notationen in der Arbeit:

• Einzuführende Begriffe aus fremden Quellen werden durch „“ dargestellt.

• Eigene Begriffe werden bei erster Verwendung in kursiv dargestellt.

• typisierte Relationen werden mit _ Platzhaltern notiert.

• „Hintergrund“-Boxen: Diese erläutern den Ursprung einer Idee oder liefern eine

Referenz mit einer kurzen Erklärung.

• Grafiken basieren auf UML, werden jedoch um eigene Elemente (z.B. Pfeile)

erweitert.

• Erste Verwendung von Symbolen (wie Pfeilen) wird beschrieben.

9

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

2 Stand der Wissenschaft und Technik - mit
Begriffsklärung

Interestingly, according to modern astronomers, space is finite. This is a
very comforting thought – particularly for people who can never remember

where they have left things.
Woody Allen

Die in dieser Arbeit vorgestellte Lösung beschreibt eine gemeinsame Datenbasis, die als struk-

turierte, verteilte Festplatte verstanden werden kann. Hierfür werden Modelle basierend auf

Objekten und Klassen verwendet. Um einen Austausch sicherzustellen, ist als Grundlage wich-

tig, die unterschiedlichen Kommunikationssysteme, wie sie heute in der Automatisierungstech-

nik anzutreffen sind, darzustellen und auf ihre wesentlichen Unterschiede hin zu untersuchen.

Weiterhin existieren bereits Systeme, um Modelle zur Laufzeit zu verwalten und Änderungen

vorzunehmen. Sie stellen die technologische Basis der hier beschriebenen Lösung dar. Mit

diesen existierenden Konzepten beschäftigen sich die folgenden Abschnitte.

Hintergrund:
Die hier adressierten Informationen sollen nicht nur zum Engineering genutzt werden.

Während es bei dem Automation Service Bus [BMM12] oder auch dem Siemens TIAC-

Portal hauptsächlich um die Integration bzw. Synchronität von Informationen während des

Engineering-Prozesses geht, adressieren die hier beschriebenen Konzepte Informationen

auch zu anderen Phasen, wie Inbetriebnahme / Produktion / Wartung /

2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT

Die VDI-Richtlinie 5610 [10] beschreibt den Zusammenhang der Begriffe „Wissen“, „Informa-

tion“ und „Daten“. Hier wird formuliert, dass Daten „objektive Fakten“ darstellen, die jedoch

ohne weiteres Wissen nicht deutbar sind. Sie sind als „Rohmaterial“ zu verstehen. Informatio-

nen werden verstanden als „strukturierte Daten“, die in einen Kontext gebracht werden können.

Wissen schlussendlich ist „vernetzte Information“, sodass Vergleiche angestellt werden können

und Entscheidungen getroffen werden. Abbildung 2.1 verdeutlicht den Zusammenhang.

10

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT

Wissen

Information

Daten

Voraussetzung für

Voraussetzung für

Abbildung 2.1: Verständnis der Begriffe Daten, Information und Wissen nach VDI-Richtlinie 5610

In Sinne dieser Richtlinie beschreibt ein Modell Wissen über die Realität bzw. einen Aus-

schnitt der Realität. Damit bildet es Informationen ab, die von Anwendungen im Sinne der

VDI-Richtlinie 5610 genutzt werden können, um Entscheidungen zu treffen.

Definition: In dieser Arbeit wird unter Modell eine Objekt-orientierte Beschreibung eines

Ausschnitts der Realität verstanden.

Eine solche Modell-Beschreibung besteht dabei aus ihren Teilen wie auch den Bezie-

hungen unter ihnen. Zum anderen wird unter einem Modell aber auch die Anwendung des

Modelles auf einen konkreten Sachverhalt verstanden. Diese Modell-Instanz hat einen

Bezug zu genau einem Sachverhalt der Realität.

Im Objekt-orientierten Sinne handelt es sich bei der Modell-Beschreibung um Klassen und

Relationen zwischen den Klassen. Die Instanzen dieser Klassen sind die Objekte und beziehen

sich auf den konkreten Sachverhalt. In Abbildung 2.2 werden die geläufigsten Begriffe aus der

Objektorientierung knapp dargestellt, werden jedoch vom Verständis her vorausgesetzt. Eine

Objekt

Variablen Methoden

BasisVariablen

nach ISO 10404

<<realisiert>>

:Klasse

<<instanz_von>

:Klasse

<<erbt_von>>
<<instanz_von>>

<<besteht_aus>>

Abbildung 2.2: Aufbau von Objekten, sowie ihre Instanziierung

ausführlichere Darstellung ist vielfach in der Literatur beschrieben - beispielsweise in [Mey03].

Ein wichtiger Punkt ist, dass zeitliche Abläufe (wie ein Produktionsablauf) selber einen Aus-

schnitt der Realität darstellen und in Modellen abgebildet werden können.

11

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

Damit die unterschiedlichen Ausschnitte der Realität in Modellen abgebildet werden können,

macht es Sinn, ein gemeinsames Meta-Modell zu nutzen.

Definition: Ein Meta-Modell beschreibt, wie Modelle aufgebaut und strukturiert sind.

Dazu zählen auch Sprachkonstrukte wie Klassen und Relationen.

Eine genauere Beschreibung einer Architektur der Meta-Modell-Hierarchie mit unterschiedli-

chen Ebenen hat die „Object Management Group“ (OMG) in ihrer „Meta Object Facitlity“ (MOF)

Spezifikation [24] beschrieben. In großen Teilen ist sie hier anwendbar.

Die genutzten Konzepte sind übliche Konzepte insbesondere der Objekt-orientierten Program-

miersprachen. Sie werden hier als Basis verwendet und deswegen in aller Kürze beschrieben.

2.1.1 (Modell-)Relationen

Um Abhängigkeiten zwischen Klassen und damit auch ihre Instanzen darstellen zu können,

existieren Relationen.

Definition: Eine Relation ist eine gerichtete Verbindung zwischen mindestens zwei Ob-

jekten. Sie ist selber ein Objekt, wird instanziiert. Die Klasse der Relation stellt deren Typ

dar - es handelt sich also um typisierte Relationen. Sie wird im Modell beschrieben.

Relation

ZielQuelle

*

<<instanz_von>>

Objekt

grafische Darstellung
einer Relation

RelTyp

*

Abbildung 2.3: Aufbau von Relationen zwischen Objekten

Relationen werden typischerweise lediglich begriffen als „Nutzung“, d.h. wenn ein Objekt ei-

ne Funktion eines anderen Objektes aufruft, besteht zwischen ihnen eine Relation. Modelle

bringen ihre eigenen Relationen mit. Daneben werden aber auch im Meta-Modell Relationen

beschrieben: Weiter oben ist bereits die instanz_von Relation der Objekt-Orientierung erwähnt

worden.

12

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT

Allgemein in der Objekt-Orientierung bekannte Relationen sind beispielsweise die Aggregation

oder Komposition. In dieser Arbeit werden die Relationen jedoch aktiv im Modell zur Beschrei-

bung eingesetzt. D.h. die vom Meta-Modell bereitgestellte Klasse der Assoziationen „Relation“

hat immer Quellen und Ziele, gegebenenfalls jeweils mehrere davon (vgl. Abbildung 2.3). Von

„Relation“ werden in den Modellen entsprechende Relationsklassen abgeleitet. Diese beschrei-

ben jeweils

• Typen

• Quelle (und Multiplizität; in der Regel 1)

• Ziel (und Multiplizität)

• Eigenschaften.

der Relation. Die Eigenschaften können Aussagen über die Relation treffen. Beispielsweise

könnten Relationen einen Zustand besitzen oder auch Qualitäten beschreiben.

Relationen sind nicht Bestandteil des Objektes, d.h. ein Objekt kann von einer Relation wis-

sen, muss es jedoch nicht. Sollte eine Relation jedoch Bestandteil des eigenen Modells sein,

so kann das Objekt die Relation nutzen.

Hierdurch wird das später vorgestellte Konzept der Integration von Modellen zur Laufzeit (vgl.

Kapitel 4.5) möglich. Bereits bekannt ist ein ähnliches Verständnis aus dem Objektverwaltungs-

system der ACPLT-Technologien ACPLT/OV [Mey03].

Modelle besitzen zwei Formen der Relationen. Für die beschriebene Aufgabenstellung ist es

inhärent wichtig, beide in einer Form abzubilden, damit diese zur Laufzeit des Gesamtsystems

erkundbar und somit nutzbar sind.

Die eine Form der Relation ist strukturell bedingt. Ein Beispiel für eine solche Abhängigkeit

ist die Vererbung. D.h. eine Klasse eines Modells erbt Eigenschaften aus einem Obermodell,

welches ggf. auch in anderen Modellen genutzt werden kann. Oder ein Modell definiert eine

Relation zu einer Klasse eines anderen Modells. Solche Relationen sind üblich und auch viel-

fach verwendet.

Zum anderen gibt es aber auch Relationen, die bei der Modellierung (im Sinne von Entwick-

lung der Modelle), aber auch auf der Instanz-Ebene weitestgehend unberücksichtigt bleiben.

Sie können als anwendungsspezifische Abhängigkeiten bezeichnet werden: Modelle sind tech-

nisch und semantisch unabhängig und werden durch unterschiedliche Gremien entwickelt, so-

wie auf Instanz-Ebene auch von unterschiedlichen Ingenieuren für konkrete Anlagen umge-

setzt. Beispielsweise gibt es sehr wohl eine Verbindung zwischen den zu erfüllenden Prozess-

schritten eines Rezeptes zu den Anlagenteilen, die diese Prozessschritte ausführen können.

Während diese Verknüpfung durch die IEC-61512 [3] Rezepte abgedeckt wird, wird eine Zuord-

nung von Elektroverkabelung zur Produktionszeit meist nicht vorgehalten. Die Verknüpfung der

Engineering Daten der Elektroverkabelung mit Automatisierungsgeräten fehlt somit zur Laufzeit

und wesentliche Aufgaben z.B. zur Diagnose bei Kommunikationsproblemen können nicht au-

13

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

tomatisiert erfolgen, obwohl die Daten in Modellform vorliegen. Somit sind die Modelle für sich

betrachtet unabhängig, in der Anwendung sollten sie jedoch untereinander in Relation gebracht

werden.

Eine wesentliche Wertschöpfung für eine schnellere Inbetriebnahme liegt in diesem Bereich:

Der Integration von bisher unabhängigen Daten, sodass Änderungen in einem Datensatz zu-

mindest semi-automatisch Änderungen in den anderen Datensätzen nach sich ziehen.

Gleichzeitig müssen Änderungen an einzelnen Elementen oder Relationen konsistent gehalten

werden, d.h. es müssen Technologien bereitgestellt werden, um Änderungen zu erkennen; im

Idealfall auch um hierauf (teil-)automatisiert reagieren zu können.

Während die strukturelle Abhängigkeit explizit im Modell hinterlegt ist und schon bei dem Ent-

wurf von Modellen berücksichtigt wird, ist die implizite oder anwendungsspezifische Abhängig-

keit der Modelle ein bisher weitgehend ungelöstes Problem.

Einige Arbeiten zielen in Richtung der Modell-Integration: So werden unterschiedliche, existie-

rende Modelle wie die IEC 61850 [LMRU11], ISA-95 [BHMO13] und AutomationML [Sch13]

in OPC-UA abgebildet, um eine höhere Integration der Daten zu erreichen und diese gleich-

zeitig in dem verteilten System der Anlagen zugreifbar zu machen. In Zusammenhang mit

Konzepten wie „Plug&Play“ (Inbetriebnahme von automatisierungstechnischen Geräten ohne

manuelle Konfiguration; vgl. beispielsweise [Hod13]) kann eine wesentliche Beschleunigung

des Engineerings sowie der Instandhaltung erreicht werden.

2.1.2 Instanz-Struktur: Komponenten als Gruppierung

Objekt Relation

Komponente

Abbildung 2.4: Komponenten fassen Objekte und Relationen zusammen

Ein wesentlicher Hintergrund der Objekt-Orientierung ist die Kapselung. Dabei werden meh-

rere Objekte (und Relationen) nur durch eine Schnittstelle angesprochen, sodass die interne

Struktur verborgen wird. Ihre Architektur ist in Abbildung 2.4 dargestellt.

Definition: Eine „Komponente“ ist eine vorgefertigte, in sich strukturierte und unabhängig

hantierbare Einheit, die zur Realisierung einer konkreten Rolle in einem System vorgese-

hen ist (nach [12]).

Somit kann es sich z.B. um eine nicht näher festgelegte Menge von Objekten und Relatio-

nen handeln, die über eine Aufgabe und eine Schnittstelle verfügen. Ebenso kann es sich um

14

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.2 Existierende Modelle der Automatisierungstechnik

ein Klassen-Modell handeln, welches im Gesamtsystem zur Beschreibung eines bestimmten

Sachverhaltes eingesetzt wird.

Zum einen werden hierdurch Komponenten austauschbar, wenn sie die gleiche Schnittstelle

anbieten. Zum anderen muss ein Nutzer nur die Schnittstelle kennen und das Verständnis

haben, welchen Zweck eine Komponente verfolgt.

2.1.3 Bestandteile einer Modell-Beschreibung

In Abbildung 2.5 wird dargestellt, welche Bestandteile eine Modell-Beschreibung im Allgemei-

nen ausmachen. Hierbei handelt es sich um „typische“ Bestandteile, wie sie vielfach in der

Literatur vorkommen. Ein Modell beschreibt eine Menge von Klassen sowie die zugehörigen

Modell

Modell Master

formale Modellbeschreibung
/ Grammatik

<<Singleton>>

weitere Anforderungen:

Abbildungsvorschrift
Realität-Modell

Klassen und Relationen

Komponente

Abbildung 2.5: Ein Modell als strukturierende Komponente

Relationen. Diese werden instanziiert, um eine konkrete Ausprägung der Realität abzubilden.

Weiterhin ist es nötig, dass eine formale Modell-Beschreibung vorliegt, die mögliche Strukturen

der Klassen und Relationen beschreibt (Syntax). Ebenso muss die Abbildungsvorschrift von

der Realität zum Modell enthalten sein (Semantik).

Damit die Existenz eines Modells in der Instanzumgebung erkundet werden kann, kann eine

Modell-Beschreibung als Objekt im Modell-Raum repräsentiert werden, die selber instanziiert

wird und gewissen Eigenschaften genügt (vgl. Abbildung 2.5).

Existierende Systeme repräsentieren das Modell selber nicht unbedingt als Instanz - jedoch ist

eine meist äquivalente Struktur möglich1.

2.2 Existierende Modelle der Automatisierungstechnik

Die im Folgenden kurz dargestellten Modelle haben eine weitreichende Sichtbarkeit in der Au-

tomatisierung, sind aber lediglich eine Auswahl. Sie werden nur äußert knapp beschrieben,

1OPC-UA: „Namespace“ und ACPLT-OV: „Library“

15

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

da ihre konkrete Verwendung für das weitere Verständnis der beschriebenen Konzepte nicht

relevant ist. Die Liste soll als Anregung für die Verwendung des beschriebenen Systems ver-

standen werden.

Viele weitere Modelle sind in [SMS11] beschrieben. Auch Blatt 1 der VDI Richtlinie 3690 [1]

beinhaltet hier eine sinnvolle Übersicht existierender Modelle. Ein Vergleich gerade in Bezug

auf Unterschiede zwischen Fertigungstechnik und Prozesstechnik wird in [MBS+11] beschrie-

ben.

AutomationML [13] Die IEC 62714 beschreibt AutomationML: Topologie, Geometrie, Kine-

matik und Logik werden in einem gemeinsamen XML Dokument repräsentiert. Hierfür

werden andere Subformate genutzt, die durch andere Gruppen spezifiziert werden. Auto-

mationML setzt diese dann in Relation. Hintergrund ist der Austausch dieser Informatio-

nen zwischen Engieneeringsystemen für eine Steigerung der Effizienz in der Planungs-

Phase.

IEC 62424: CAEX [7] & PandIX [ERD11] Während CAEX eine allgemeine XML-Darstellung

für hierarchische Systemstrukturen darstellt, bildet PandIX einen Vorschlag für die funk-

tionale Strukturbeschreibung einer verfahrenstechnischen Anlage.

SysML [22] Basierend auf UML bietet SysML eine Beschreibungssprache für komplexe Sys-

teme aller Art. Neben der System-Struktur selber sind auch Kriterien wie das Verhalten

des Systems repräsentierbar.

ISA-95 [11] Die ISA-95 basiert auf der ISA-88. Die ISA-95 beschreibt eine Schnittstelle des

MES Systems zum ERP-System. Hierdurch werden u.a. auch Ressourcen, wie Men-

schen [BHMO13], erfasst und abgebildet.

Geräte-Konfigurationen Beispielsweise bieten FDI oder FDTv2 Beschreibungen für Geräte-

Konfigurationen an. Insgesamt gibt es eine Vielzahl, die aktuell unterstützt werden müs-

sen. So spricht [Gös14] von dreizehn von den Herstellern zu unterstützenden Formaten.

[Gös14] beschreibt dazu auch einen Ontologie-basierten Ansatz um dieses Problem zu

adressieren.

XML Formats for IEC 61131-3 [28] Die IEC 61131 Teil 3 [4] beschreibt Sprachen für die Pro-

grammierung einer SPS. Durch diese Sprachen werden Konstrukte wie konkrete Funk-

tionsbausteine definiert. Von einem 61131-3-kompatiblen Automatisierungssystem wird

folglich verlangt, dass es eine Programmierschnittstelle für die definierten Sprachen be-

reitstellt. Basierend auf diesen Sprachen definiert die PLCopen eine formale Abbildung

einer Steuerungsprogrammierung in XML. Diese kann (im Idealfall) als Austauschformat

von Steuerungsprogrammen zwischen unterschiedlichen Automatisierungssystemen ver-

wendet werden.

VDI Richtlinie 3682: Formalisierte Prozessbeschreibung [5] Die VDI Richtlinie 3682 stellt

eine formale Abbildung zur Prozessbeschreibung bereit, die auf UML-Darstellungen ba-

siert. Es werden sowohl kontinuierliche- wie auch chargen-orientierte Prozesse abbildbar.

16

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.2 Existierende Modelle der Automatisierungstechnik

Die Richtlinie adressiert gleichbleibende Prozesse und kann dadurch wesentlich kompak-

ter gehalten werden, als beispielsweise WS-BPEL.

WS-BPEL [21] & andere WS-* Beschreibungen WebService-Beschreibungen (als WS* be-

zeichnet) beschreiben Schnittstellen, die zwischen Kommunikationspartnern genutzt wer-

den um unterschiedliche Sachverhalte zu kommunizieren. Hierzu stehen eine Vielzahl

von separaten, kombinierbaren Beschreibungen bereit.

Als Beispiel für solche Sachverhalte kann „WS-Business Process Execution Language“

(kurz WS-BPEL) angesehen werden. Diese stellt eine Beschreibungssprache für Ge-

schäftsprozesse dar. Sie kann für die Repräsentation von Abläufen auf ERP Ebene ver-

wendet werden. Eine Adaption auf Rezepte oder sogar „Sequential Function Charts“ –

also Abläufe auf Steuerungsebene – ist vorstellbar.

Vielen Normen liegt ein Objekt-orientiertes Modell zugrunde, welches sie selber beschreiben.

Diese Tatsache bringt zwei wesentliche Nachteile mit sich:

Umfang wächst Es führt zu Akzeptanz-Problemen, da die Normen nicht mehr schnell erfasst

und überblickt werden können.

Werke in Details inkompatibel zueinander Dieses erschwert die Integration der beschrie-

ben Modelle sowie die Interaktion der Modelle untereinander.

Durch gemeinsame Basis-Modelle werden sich diese Probleme für alle Seiten vereinfachen

lassen.

Bestrebungen in diese Richtung auf formaler Seite gibt es durch den DKE-Arbeitskreis 931.0.4

in dem sogenannte „Kernmodelle“ [KE12] beschrieben werden, die genau diese Aufgaben

übernehmen. Sie sollen dabei kompakt auf wenigen Seiten beschrieben werden, sodass sie

fachlich fundiert und präzise sind, jedoch auch schnell überblickt werden können.

Zusätzlich gibt es Bestrebungen Modelle in OPC-UA (vgl. folgender Abschnitt) zu repräsentie-

ren, welches die Probleme ebenso begegnet. Wenn viele Modelle eine Abbildung in OPC-UA

besitzen, haben diese auf Meta-Modell-Ebene einen gemeinsamen Nenner und eine kompati-

ble, technische Repräsentation.

Als Forschungsprojekt strebt beispielsweise „Secure plug and work“ [Sau13] eine Integration

von AutomationML in OPC-UA an. [BHMO13] beschreibt das Konzept zu Integration von ISA-

95 in OPC-UA und sieht Anwendungsgebiete im Bereich der MES; insbesondere wird dabei

auf Qualitätsmaßnahmen und Wartungsarbeiten sowie Verwaltungs-Anwendungen verwiesen.

Die XML-Darstellung der 61131-Funktionsbausteine durch die PLCopen wurde auch für OPC-

UA entworfen [27]; zusätzlich definiert die PLCopen auch Kommunikationsbausteine, mit denen

OPC-UA Kommunikation direkt aus der SPS ausgeführt werden kann. Hierdurch wird die immer

stärker werdende Verzahnung von Steuerungen mit Informationen, die als Modell vorliegen,

deutlich.

17

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

2.3 Kommunikation in der Automatisierungstechnik

Die derzeitigen Kommunikations-Technologien in automatisierungstechnischen Anlagen sind

äußerst heterogen. Eine einheitliche, transparente Kommunikation wird zwar immer wieder

adressiert, ist aber heute in der realen Anlage nicht existent.

In den letzten Jahren kommen immer mehr Technologien auf Ethernet-Basis auf den Markt,

die zumindest auf der physikalischen Ebene kompatibel sind. Aufgrund der Natur der Märkte -

Verkauf wird über Alleinstellungsmerkmale gewonnen - divergieren diese Produkte aber sowohl

auf Hardware-Ebene (unterschiedliche Stecker) wie auch auf informationstechnischer Ebene,

sodass sie im Endeffekt zwar gleiche Wurzeln haben, jedoch nicht kompatibel sind. Das Buch

Datenkommunikation in der Prozessindustrie von Enste und Müller [EM07] bietet hier einen

guten Überblick, der auf die in der Prozessindustrie üblichen Netze fokussiert.

Kommunikations-
Medien

Kommunikations-
Systeme

Anwendungen

e
in

ig
e

A
T

-B
u

s
-S

y
s
te

m
e

Abbildung 2.6: Grundsätzliche Teilung der Kommunikation

Abbildung 2.6 teilt diese Problematik in drei2 Bereiche auf, die jeweils unterschiedliche Aufga-

ben haben. Auf der Anwendungsebene sollten die Abläufe und Daten im Vordergrund stehen.

Die Forderung nach einer transparenten Kommunikation spielt hier ihre Vorzüge aus. So müs-

sen Anwendungen sich nicht um die Zustellung der einzelnen Nachrichten kümmern.

In der Automatisierungstechnik werden immer unterschiedliche Bus-Systeme und Netzwerke

für die unterschiedlichen Anforderungen wie Echtzeit-Verhalten oder Explosionsschutz existie-

ren, weswegen es sinnvoll erscheint, aufbauend ein (möglichst nur ein einziges) Kommunikati-

ons-System zu haben, welches unabhängig von den unterliegenden Kommunikations-Medien

eine einheitliche Vorstellung der Kommunikation abbildet.

2Abstraktion über das ISO/OSI Schichtenmodell [2], welches an dieser Stelle in dem Detailgrad nicht benötigt wird.

18

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.3 Kommunikation in der Automatisierungstechnik

Hintergrund:
Aktuelle Kommunikations-Technologien versuchen in Richtung Anwendung zu wachsen,

also Dienste für konkrete Anwendungsfälle bereitzustellen. Beispiel: Geräteidentifikation

und Ausfallerkennung.

Dieses hat jedoch zwei entscheidende Nachteile: Zum einen schränkt es die Nutzbar-

keit der Kommunikations-Technologie ein. Zum anderen sind die Anwendungen, die die

Dienst-Schnittstellen nutzen, an diese Kommunikations-Technologie gebunden. Sie müs-

sen zur Unterstützung von einer anderen Kommunikations-Technologie gleich eine neue,

zusätzliche Anbindung bekommen.

Es erscheint also sinnvoll, unterschiedliche Ebenen zu etablieren und Technologien auf

jeweils eine Ebene zu beschränken.

Im Folgenden werden generelle, existierenden Ansätze und Unterschiede der Markt-üblichen

Lösungen in der industriellen Automation aufgezeigt und verglichen. Dabei wird verdeutlicht,

dass existierende Konzepte bereits weitgehend vorhanden sind und genutzt werden können,

um diese Ziele zu erreichen.

2.3.1 Kommunikations-Medien: Bussysteme und Alternativen

In der Automatisierung gibt es eine Vielzahl von Kommunikations-Technologien. Aus unter-

schiedlichen Gründen kommen die Möglichkeiten zumindest in verfahrenstechnischen Anla-

gen meistens gemischt vor. Zum einen sind meistens Umbauten und dadurch unterschiedliche

Generationen in den Anlagen zu finden. Zum anderen haben die unterschiedlichen Kommu-

nikations-Technologien auch unterschiedliche Anwendungsfälle, die sie abdecken. Einige sind

z.B. für den Ex-Bereich geeignet und bringen eine eigene Energieversorgung mit oder zeichnen

sich durch Kosten der Installation aus.

Diese unterschiedlichen Technologien werden im Folgenden als Kommunikations-Me-dien be-

zeichnet.

Definition: Als Kommunikations-Medium werden sowohl die physischen Komponenten

(Kabel, Ausrüstung in Geräten) wie auch die Software und Protokolle verstanden, welche

die physischen Komponenten verwenden. Insgesamt bietet ein Kommunikations-Medium

so die Möglichkeit, Daten von einem Gerät zum Anderen zu transportieren.

Konventionelle (4..20mA) Verkabelung Traditionell ist die konventionelle 2-Draht-Verdrah-

tung zu sehen. Hier werden Signale direkt auf einem Kabel übertragen. Für digitale Signale

gibt es sowohl eine Realisierung auf Basis der elektrischen Spannung wie auch auf Basis des

Stroms. Im Gegensatz dazu hat sich für analoge Werte ein Strom zwischen 4..20mA durch-

gesetzt. Hier existiert aufbauend das HART Protokoll, welches eine zusätzliche, bidirektionale

Kommunikation ermöglicht.

19

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

Auf elektrotechnischer Ebene handelt es sich bei der konventionellen Verdrahtung immer um

eine 1:1 Verbindung von der I/O Karte zu einem Sensor/Aktor. Eine Kommunikation unter meh-

reren Geräten ist nicht möglich. Es gibt auch keine Möglichkeit eine Kommunikation zu anderen

Teilnehmern als den I/O Karten aufzubauen. Damit handelt es sich bei der konventionellen Ver-

drahtung nicht um eine vollwertige Kommunikationsmöglichkeit, wie sie für die Instanzumge-

bung benötigt wird. Sie wird also für das beschriebene Gesamtsystem insofern ausgeschlos-

sen, dass die hier betrachteten Geräte nicht per konventioneller Verdrahtung angeschlossen

sein können. Es können aber übergeordnete Geräte eine Schnittstelle zu konventionell ange-

schlossenen Geräten darstellen (typischerweise als Remote I/O bezeichnet).

Bussysteme Weit verbreitet in heutigen Anlagen sind Bussysteme. Dabei handelt es sich um

eine vollwertige, bidirektionale Kommunikation zwischen den angeschlossenen Geräten, wo-

bei die Teilnehmer (nach IEV 351-20-10) nicht an der Weiterleitung der Daten mitwirken. Auf

einem Bus kann somit zu einem Zeitpunkt elektrisch nur ein Gerät senden. Dieses wird meist

von einem Master koordiniert. Bei einigen Systemen wird durch das Protokoll die technisch

mögliche Kommunikation zwischen allen Teilnehmern auf die Kommunikation von Geräten zu

dem Master begrenzt. In einem solchen System kann folglich auch nur der Master - ähnlich der

oben beschriebenen I/O Karte - als Gerät im Sinne der modellgetriebenen Instanzumgebung

gesehen werden.

Netzwerke Viele neuere Entwicklungen in der Automatisierung basieren auf dem Gedanken

von (IT-)Netzwerken. Abgesehen von unterschiedlichen Verkabelungsformen existiert bei ei-

nem Netzwerk im Gegensatz zu einem Bussystem eine direkte Kommunikationsmöglichkeit

von zwei (oder mehr) angeschlossenen Geräten, die diskrete Nachrichten austauschen. Dabei

sind auch aktive Komponenten zur Weiterleitung von Daten zulässig (Gateways, Router, Swit-

che)3.

Im Gegensatz zu einem Bussystem kann ein Netzwerk zu einem Zeitpunkt somit meistens

auch von unterschiedlichen Geräten gleichzeitig genutzt werden, sodass keine exklusive Nut-

zung des gesamten Netzwerks zu einem Zeitpunkt existiert.

Gemein ist den letzten zwei Technologien von Kommunikations-Medien, dass sie (auch wenn

sie für den Echtzeit-Betrieb vorgesehen sind) immer eine Nicht-Echtzeit-Kommu-nikations-

Möglichkeit mitbringen. Diese wird durch eine asynchrone Kommunikation erreicht, sodass der

Sender sich nicht auf eine Antwort in einer definierten Zeitspanne verlassen kann: Diese Kom-

munikation wird zwischen der Echtzeit-Kommunikation übermittelt, wenn Ressourcen frei sind.

Diese Nicht-Echtzeit-Kommunikation kann für die Instanzumgebung genutzt werden.

Gemeinsam haben Bus- und Netzwerksysteme auch, dass sie die verschiedenen Teilnehmer

mit Adressen organisieren.

3Nach IEV 131-11-06 wird ein Netzwerk allgemein als „Menge von miteinander verbundenen Netzwerkelementen“ verstan-
den

20

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.3 Kommunikation in der Automatisierungstechnik

Definition: Eine Adresse ist eine Möglichkeit Teilnehmer innerhalb eines Gruppe zu iden-

tifizieren sowie zu adressieren. Eine Adresse ist also zum einen eindeutig einem Teilneh-

mer zuzuordnen, beschreibt aber auch, wie dieser auf Basis eines Kommunikationssys-

tems zu erreichen ist.

Die Kommunikation selber findet dann durch Nachrichten statt, die an diese Adressen gesendet

werden.

Definition: Eine Nachricht ist ein Datensatz, der von einem Teilnehmer an einen oder

mehrere andere Teilnehmer gesendet wird. Eine Nachricht enthält zum einen Transport-

Informationen (z.B. Ziel, Zeitpunkt, Sender) und zum anderen die zu transportierenden

Nutzdaten.

Kontinuierliche vs. diskrete Kommunikation Ein konzeptueller Unterschied zwischen der

4..20mA Verkabelung und den Bussystemen/Netzwerken besteht in der Kommunikation selber.

Bei einer direkten Verkabelung liegt mit einer analogen Änderung des Stroms (4..20mA) per-

manent zu jedem Zeitpunkt am Ziel ein Wert an. Dieser kann als „kontinuierliche“ oder „Signal-

orientierte“ Kommunikation bezeichnet werden. Ein solches Verhalten muss bei Bussystemen

und Netzwerken „aufwändig“ nachgebildet werden, da diese in Nachrichten kommunizieren.

Es kann also als „diskrete“ Kommunikation bezeichnet werden. Hierfür werden zyklisch die

entsprechenden Werte übertragen. Über den benötigten Zyklus muss sich dabei zur Zeit der

Anlagenplanung und des Engineerings verständigt werden. Dieses ist also ein Nachteil für die

modernen Kommunikationssysteme.

2.3.2 Formen der Kommunikation

Wenn ein Medium eine Kommunikation zwischen den angeschlossenen Teilnehmern zulässt,

gibt es unterschiedliche Formen der Kommunikation.

Definition: Eine Kommunikations-Form gibt an, welche Kardinalität zwischen Sender

und Ziel besteht. Prinzipiell sind Unicast (1:1), Multicast (1:N) und Broadcast (1:*) üblich.

Die unterschiedlichen Formen werden typischerweise wie folgt charakterisiert.

Unicast - 1:1 Unter Unicasting wird eine gerichtete Kommunikation zwischen genau zwei

Kommunikationspartnern verstanden. Meistens erfolgt die Kommunikation dabei durch eine

Verbindung, die erst aufgebaut wird und dann für mehrere Vorgänge verwendet werden kann

bevor sie wieder abgebaut wird. Die Verbindung übernimmt dabei Aufgaben der Transaktions-

sicherung, d.h. das Erkennen und erneute Senden verloren-gegangener Nachrichten.

21

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

Davon abweichend ist beispielsweise eine UDP Kommunikation, die eine Unicasting-Kommuni-

kation bereitstellt, ohne eine Verbindungs-orientierte Absicherung der Kommunikation, sodass

ein Paketverlust nicht erkannt wird. Aufbauend gibt es „reliable UDP“ um dieses Manko zu

beheben, sodass hier ohne eine Verbindung aufzubauen eine Transaktions-gesicherte Kom-

munikation zu Stande kommt.

Multicast - 1:N Beim Multicasting wird eine fest definierte Gruppe von Empfängern mit ei-

ner Nachricht versorgt. Das Prinzip existiert in der Realität selten, ideale Anwendungsfälle für

TCP/IP-basiertes Multicasting sind Anwendungen wie beim Internetradio. Leider werden die

nötigen Routing-Standards, die die Pakete zu den Empfängern bringen, nicht allgemein bereit-

gestellt.

Broadcast - 1:* Beim Broadcasting wird, wie der Name schon sagt, von einem Sender meh-

rere Empfänger angesprochen, die dem Sender nicht bekannt sein müssen. Broadcast Nach-

richten bringen immer das Problem mit, dass sie eingedämmt werden müssen, damit sie nicht

zu viel Kommunikationslast erzeugen. Gleichzeitig bringen Sie aber den Vorteil der Kontakt-

aufnahme ohne Vorprojektieren: Auf eine Broadcast-Nachricht können sich Teilnehmer melden

und somit ist eine initiale Kommunikation möglich.

Bekanntestes Beispiel ist die Konfiguration per DHCP [16], wie sie im TCP/IP Netzwerk für die

Vergabe der Kommunikations-Adressen eingesetzt wird.

Für die hier vorgestellten Konzepte ist die Unicast Kommunikation vorgesehen.

2.3.3 Kommunikations-Systeme für den Zugriff auf Modelle

Kommunikations-
Medien

z.B. TCP/IP-
Ethernet

Anwendungen

A
C

P
L
T

/O
V

a
n
d
e
re

O
P

C
/U

A
S

e
rv

e
r

keine Implementierung

/ Anwendungen

ACPLT/KS OPC/UA NE139 NE141

XML|binärRPC(XDR)
keine Repräsentations-

vorschrift

D
ie

n
s
te

v
o

rd
e

fi
n

ie
rt

u
n

d
e

rw
e

it
e

rb
a

r

D
ie

n
s
te

:
v
o

rd
e

fi
n

ie
rt

e
rw

e
it
e

rb
a

r ,
s
u

b
/n

o
t

S
y
s
te

m
B

a
s
is

D
ie

n
s
te

:r
e

q
/r

e
s

S
u

b
s
k
rp

.
D

ie
n

s
te

S
y
s
te

m
B

a
s
is

D
ie

n
s
te

:
k
o

n
k
.

S
u

b
s
k
ri
p

.
D

ie
n

s
te

K
o

m
m

u
n

ik
a

ti
o

n
s
-

S
y
s
te

m
e

Abbildung 2.7: Zusammenfassung einiger Kommunikations-Realisierungen

In Abbildung 2.7 ist die vorherige Abbildung 2.6 für einige aktuelle Kommunikations-Systeme

detaillierter dargestellt. Dabei wurde eine Auswahl getroffen, die sich auf Kommunikation für

die Manipulation von ganz allgemeinen Objekt-Strukturen beschränkt. Die beiden konkreten

22

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.3 Kommunikation in der Automatisierungstechnik

Systeme ACPLT und OPC-UA sind dabei gleichzeitig auch die Instanzumgebungen für die

Modelle, wie sie später vorgestellt werden.

ACPLT/KS ACPLT/KS ist das Kommunikationssystem des ACPLT-Technologiepaketes. Die ur-

sprüngliche Implementierung basiert auf Remote-Procedure-Calls (kurz: RPC [15]), um die ei-

gentlichen Befehle auf TCP/IP abzubilden. Die Remote-Procedure-Calls sind dabei in ihrer ur-

sprünglichen Form nur auf TCP/IP spezifiziert, jedoch existiert mittlerweile von ACPLT/KS eine

2. Version, die auch die Unterstützung für unterschiedliche Kommunikations-Medien mitbringt,

dabei aber weiterhin auf die RPC-Repräsentation setzt.

OPC-UA OPC Unified-Architecture bietet durch entsprechende Dienste Zugriff auf Objekt-

strukturen. Dabei ist hervorzuheben, dass die Dienste selber durch einem „Kanal“ gesendet

werden, der sowohl die Verschlüsselung / Signierung wie auch das Erkennen eines Verbin-

dungsabbruches (und Wiederaufnahme der Kommunikation) übernimmt.

NE 139 und NE141 Die Namur hat sich in diesen beiden Empfehlungen mit dem Kommuni-

kations-Bedarf von Systemen in der Prozesstechnik beschäftigt. Die NE141 spezifiziert dabei

Details der NE 139 aus. Sie stellen bewusst nur Konzepte für Kommu-nikations-Systeme auf

und abstrahieren dabei von den unterliegenden Kommunikations-Medien. Statt konkreten Re-

präsentationen werden Anforderungen an ein unterliegendes Mediums beschrieben.

Die NE141 beschreibt ganz konkrete „SystemBasisDienste“, mit der ein System erkundet (Mo-

dell-Erkundungsfunktionen) und verändert werden kann (Modell-Änderungs-Funktionen), ge-

rade ohne sich dabei auf ein Medium zu beschränken. Die NE141 beinhaltet selber auch einen

Vergleich mit der Kommunikation aus der ISA-S95 [11], sodass diese Norm hier nicht weiter

betrachtet werden muss.

Alle Kommunikations-Systeme definieren eine Schnittstelle um einen einheitlichen Zugriff auf

die interne (Objekt-)Struktur zu ermöglichen. Diese Struktur kann durch die Dienste der Schnitt-

stelle bei allen Systemen sowohl erkundet, wie auch abgefragt und manipuliert werden. Wie

schon in Abbildung 2.7 zu sehen ist, unterscheiden sich alle vier Systeme in einigen Details.

Diese sind in der folgenden Tabelle zusammenfassend dargestellt.

ACPLT/KS OPC-UA NE 139 NE 141

Beispiel für SystemBasisDienste:
Hole Variablenwert GetVar Read Lese Var.

Erzeuge Objekt CreateObj AddNodes Erzeuge Obj.

Struktur-Erkundungs-Dienst GetEP Browse Browse Attrib.

Eigenschaften:
Erweiterbar (neu Schnittstellen) � � � �
Subskription/Benachrichtigung × � � �

Alle vier Systeme beschreiben Nachrichten und deren Interaktion. Die NE 139 beschreibt dabei

als elementare Form die einfachen Nachrichten, bei denen keinerlei Rückmeldung zu erwarten

23

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

sind. Eine solche Kommunikationsform kennen die anderen drei Systeme nicht. Hier hat jeder

Aufruf einen Rückgabewert.

Alle vier Systeme definieren einen Satz von Schnittstellen-Diensten, der ausreichend ist um

den Objektraum zu erkunden, abzufragen und zu verändern. Auch wenn die konkrete Benen-

nung der Dienste unterschiedlich ist, gibt es hier einen weitreichenden Konsens über die Basis-

Dienste, welche von den beiden Namur-Empfehlungen deswegen auch SystemBasisDienste

genannt werden.

Darüber hinaus bieten alle Dienste bis auf ACPLT/KS ein Subskription/Benachrichtigungs-Me-

chanismus an. Dieser ist unterschiedlich stark ausgeprägt. Während die NE 139 den Mecha-

nismus selber beschreibt, jedoch keine konkreten Befehle hierauf, beschreibt die NE141 und

OPC-UA ganz konkrete Dienst-Schnittstellen z.B. um Benachrichtigungen über Abweichungen

von Variablen zu erhalten.

Alle vier Systeme bieten die Möglichkeit erweiterte Dienste zu spezifizieren. In OPC-UA wird

dieses beispielsweise für Methoden und Programme genutzt. In ACPLT/KS wird es derzeit je-

doch nicht verwandt. Stattdessen werden allgemeine Nachrichten in einem atomaren Datentyp

abgebildet und als serialisierte Variante übertragen4. So gibt es unterschiedliche Wege, um

komplexe Daten-Typen als Aufrufstruktur zu übermitteln.

Die Anwendungen, die diese Kommunikation ausnutzen, existieren für ACPLT/KS und OPC-

UA. Die Möglichkeiten der Objekt-Verwaltung als Instanzumgebung werden dabei im folgenden

Kapitel betrachtet.

Insgesamt gesehen sind diese vier Systeme ähnlich, größtenteils sogar äquivalent. Es existiert

also auf Kommunikations-System-Ebene ein allgemein gebräuchliches Verständnis von den

Dienst-Aufrufen für die Abfrage, Erkundung und Manipulation einer Objekt-Struktur.

2.4 Instanzumgebung der Modelle

Modelle sind in erster Linie Beschreibungen von Daten. Um diese aktiv nutzen zu können,

werden gerade in einem dynamischen Umfeld „Instanzen“ der Modelle gebraucht.

Definition: Der Modell-Raum ist ein Speicherplatz, an dem Modelle und Klassen/Re-

lationen der Modelle instanziiert werden. Es werden durch die vorliegenden Modell-

Beschreibungen also Modell-Instanzen erzeugt. Die Klassen und Relationen werden dabei

selber im Modell-Raum repräsentiert, sodass eine Erkundung dieser möglich ist.

Die Objekte einer Instanz haben innerhalb des Modell-Raums eine Identifizierungsmög-

lichkeit (genannt Adresse), was ihre Eindeutigkeit widerspiegelt.

4Vergleiche Kapitel 5.3.

24

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

Zum einen wird also eine Instanzumgebung für Modelle auf Basis des zuvor beschrieben Meta-

Modells benötigt. Zum anderen ist es aber ebenso wichtig, die Modell-Instanz-en im Modell-

Raum automatisiert nutzbar zu machen. Diese Instanzen müssen zugreifbar und veränderbar

sein. Sie brauchen also eine Kommunikationsschnittstelle. Diese beiden Aspekte, sowie deren

Integration in die Dynamik werden im Folgenden beschrieben. Ebenso wird untersucht, in wie

weit die Aspekte durch existierende Systeme abgedeckt werden.

Im Normalfall werden heutige Modelle und Strukturen als Datenstrukturen verstanden. Dabei

können diese Datenstrukturen zwar auch einen Prozess beschreiben (z.B. IEC 61512 [3]),

jedoch sieht man die Instanzen als „tote“ Objekte an, die von außen verändert werden.

Definition: Als Instanzumgebung werden Systeme verstanden, die Klassen zu Objekten

zu instanziieren und eine Schnittstelle zur Kommunikation anbieten. Hierzu zählt insbeson-

dere die Möglichkeit einzelne Objekte und Relationen innerhalb des Objektbaums durch

ihre Identifizierungsmöglichkeit zu adressieren und hierüber auch zu manipulieren.

Eine (modellgetriebene) Instanzumgebung bietet dieses für Modell-Beschreibungen

und ist somit eine Modellverwaltungsumgebung1.

Damit sind die modellgetriebenen Instanzumgebungen die Programme, die einen Modell-

Raum darstellen.

Es ist wichtig, dass nahezu alle Modelle der Automatisierungstechnik sich in das Meta-Modell

abbilden lassen und damit in der Instanzumgebung repräsentiert werden können. In Kapitel

4.5.1 wird hierfür ein entsprechendes Vorgehensmodell aufgezeigt.

2.4.1 Existierende Instanzumgebungen für Modelle in die AT

Als Basis sind zwei wesentliche Technologien zu nennen, auf denen die Konzepte dieser Arbeit

aufbauen. Da im späteren Verlauf Details der Systeme zum Thema Kommunikation und Objekt-

Verwaltung genauer analysiert werden, wird hier nur eine kurze Einführung über die Historie

gegeben.

Für beide Systeme gilt, dass eine Referenzimplementierung durch ihre jeweiligen Organisa-

tionen bereitgestellt wird. Diese Referenzimplementierung ist für beide Systeme kostengünstig

und relativ „frei“ verfügbar, sodass eine weite Verbreitung unterstützt wird.

Dieses Konzept verspricht, dass ein Großteil der grundlegenden Implementierungen gut getes-

tet ist. Durch die gleiche Referenzimplementierung sind Produkte unterschiedlicher Hersteller

einfacher zu entwickeln, wodurch sie eher kompatibel zu einander sind, da sie auf einer ge-

meinsamer Softwarebasis aufbauen.

1In dieser Arbeit werden ausschließlich modellgetriebene Instanzumgebungen betrachtet.

25

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

2.4.1.1 ACPLT-Technologien

Die ACPLT-Technologien wurden am Lehrstuhl für Prozessleittechnik der RWTH Aachen ent-

wickelt. Hierbei handelt es sich um eine Instanzumgebung, in der Modell-Instanzen verwaltet,

erkundet und verändert werden können.

Die wesentlichen Grundlagen wurden in zwei Dissertationen [Alb03], [Mey03] beschrieben.

Während sich [Alb03] auf die Schnittstellen bzw. Dienste, die als ACPLT-Kommunikations-

System (ACPLT/KS) bezeichnet wird, fokussiert, werden in [Mey03] die Objektverwaltung (AP-

CPLT/OV) beschrieben. Diese beiden Arbeiten ergänzen sich, jedoch ist beispielsweise das

Kommunikationssystem auch ohne Objektverwaltung nutzbar.

Diese Basis-“Pakete“ der ACPLT-Technologien, die vom Lehrstuhl als Open-Source bereitge-

stellt, weiterentwickelt und gepflegt werden, werden an verschiedenen Stellen durch (kommer-

zielle) Produkte ergänzt. So existieren Funktionsbaustein-Systeme und ACPLT-KS-Server, die

eine Kopplung an alle gängigen Prozess-Leitsysteme anbieten.

2.4.1.2 OPC-UA

OPC-UA stellt ebenso wie ACPLT eine Instanzumgebung mit Verwaltungs-, Erkundungs- und

Manipulations-Schnittstellen für Modelle dar. Modelle werden dabei in einem Objekt-orientier-

ten Meta-Modell beschrieben.

Die OPC Foundation definiert unterschiedliche Kommunikationsschnittstellen für die Automati-

sierungstechnik. Die bekannteste ist OPC, welches in seiner klassischen Form auf Windows-

Technologien basiert und hauptsächlich zum Datenzugriff in unterschiedlichen Automatisie-

rungs-Geräten eingesetzt wird.

OPC-UA stellt dafür ein umfassendes Meta-Modell bereit, welches in unterschiedlichen Verfei-

nerungen für viele Einsatzzwecke genutzt werden kann. Die Verfeinerungen – Profile genannt –

beziehen sich dann beispielsweise auf eine Gerätebeschreibungsrepräsentation. Dabei basiert

das Meta-Modell auf genau den Objekt-orientierten Prinzipien, die oben beschrieben sind. Zu-

sätzlich werden Dienste beschrieben, um die zur Laufzeit zu verwaltenden Modelle abzufragen

und zu erkunden. Anzumerken ist hierbei die erstmals in der Automatisierungstechnik verwen-

deten Verschlüsselungs- und Authentifizierungs-Verfahren mittels X.509 [17] Zertifikaten. Eine

Datenübertragung (z.B. über das Internet) ist damit in der gleichen Weise abgesichert, wie

beispielsweise auch Online-Banking abgesichert ist.

Weitergehende Standards nutzen OPC-UA mittlerweile als Basis. Als Beispiele seien hier Ge-

rätekonfigurationen per FDI oder FDT in Version 2 genannt.

Nicht unerwähnt bleiben soll aber auch mindestens ein ausbauwürdiger Punkt in der aktuellen

OPC-UA Spezifikation: Es wird häufig bemängelt, dass keine Mechanismen bereitgestellt wer-

den, um einen Teilbereich des aktuellen Instanz-Modells in einem OPC-UA-System zu laden

26

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

oder zu entladen, was z.B. bei einer Aktualisierung eines Teilsystems erforderlich sein kann.

ACPLT stellt im Gegensatz dazu entsprechende Mechanismen bereit.

2.4.2 Aktive Komponenten im Modell: Dienste

Das hier beschriebene Konzept geht einen Schritt weiter als eine Instanzumgebung und lässt

auch aktive Komponenten zu. Dieses sind Objekte, die selber ein Verhalten haben und ggf.

auch Strukturveränderungen des Modell-Raums vornehmen können. Es erfolgt also eine Ver-

schmelzung der Modelle zur Datenhaltung und zu Abläufe.

Definition: Wenn eine Instanzumgebung für Modelle auch in der Lage ist eine Ausfüh-

rung für Objekte oder Komponenten anzubieten, kann von einer Ausführungsumgebung
gesprochen werden.

Als kleinste Einheit können dabei aktive Komponenten verstanden werden.

Definition: Aktive Komponenten können Aktionen auslösen. Die Ausführungsumgebung

stellt dafür nötige Ressourcen und Schnittstellen bereit.

Während die zuvor beschriebenen Ansätze der Kapselung durch Klassen und Komponenten

auf Variablen beschränkt wurden, rücken die Schnittstellen und ihre Aufrufe in den Fokus.

Methoden, Funktionen, Prozeduren Eines der rudimentären Paradigmen der Programmie-

rung sind die Prozeduren oder Methoden (auch: Funktionen)5. Sie sind in Programmierspra-

chen seit circa 1970 Standard und mit den Objekt-orientierten Erweiterungen, die ab circa 1990

hinzukamen, vereinbar.

Methoden sind analog zu mathematischen Funktionen einfache Konstrukte: Sie bestehen aus

Aufrufparametern und Rückgabewerten. Im Sinne der Kapselung verbergen sie ihre interne

Realisierung. Eine Methode

Liste sortierteListe = sortiere(Liste unsortierteListe)

beispielsweise kann eine Sortierung anbieten ohne etwas über den verwendeten Sortieralgo-

rithmus auszusagen.

Funktionsbausteine Funktionsbausteine werden zur Programmierung von Speicherprogram-

mierbaren Steuerungen (SPS) eingesetzt und in der IEC 61131-3 [4] spezifiziert. Sie werden

- teilweise in grafischer Notation - verbunden, indem Ausgänge mit Eingängen anderer Funkti-

onsbausteine vernetzt werden.

5Die Informatik unterscheidet innerhalb dieser Begriffe. In Bezug auf das Thema Kapselung, was hier beschrieben wird, ist
dies jedoch nicht relevant.

27

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

Funktionsbausteine kapseln dabei ebenso wie Methoden ihre Funktion, wobei die Kapselung

bei ihnen weniger auf alternative, algorithmische Implementierung ausgerichtet ist. Stattdes-

sen wird von der Ausführungsumgebung auf der SPS abstrahiert. So können unterschiedliche

SPSen durch eine einheitliche (oder ähnlich aussehende) Programmiersprache der Funktions-

bausteine vorgenommen werden.

Aus diesem Grund gibt es auch standardisierte Funktionsbausteine in der IEC61131-3, die von

nahezu allen Engineering-Systemen angeboten werden.

Hintergrund:
Die IEC 61499 ermöglicht die Projektierung von Funktionsbausteinen in einer verteilten

Umgebung. Im Gegensatz zu der Signal-orientierten Kommunikation in der IEC 61131-3

werden hier zusätzlich Nachrichten / Events gesendet. Die bisher hauptsächlich im aka-

demischen Bereich betrachtete Norm wird in dieser Arbeit nicht weiter analysiert.

Anwendungen stellen eine Lösung für ein Problem bereit. Sie dienen also beispielsweise

dazu, dass ein Mensch mit einer Maschine interagieren kann, oder auch, dass ein Wertebereich

überwacht wird und ggf. ein Alarm ausgelöst wird.

Definition: Eine Anwendung stellt eine Lösung für eine Aufgabe bereit. Es ist ein Pro-

gramm, welches eine modellgetriebenen Instanzumgebung oder Dienste nutzt.

Dabei wird nicht näher spezifiziert, ob sie Teil einer Ausführungsumgebung ist (beispielsweise

durch sich nutzende Dienste), ein einzelner Dienst ist oder sogar eine externe Anwendung ist,

die die Instanzumgebung (zur Modell-Repräsentation) nutzt.

2.4.2.1 Dienste - ein Versuch der Erfassung des Begriffes

Aufbauend auf den aktiven Komponenten kann ein Dienst beschrieben werden.

Es wird hier versucht eine allgemeinverständliche, weiträumige Definition zu liefern, da der

Begriff selber im Sprachgebrauch nicht konkret festgelegt werden kann. Es gibt in der Literatur

viele, teilweise auch widersprüchliche Definitionen des Begriffes „Dienst“ oder „Service“. Der

Begriff leitet sich dabei aus „Dienst-orientierten Architektur“ von OASIS [26] ab, wo der Begriff

jedoch nicht scharf definiert wird.

Definition: Ein Dienst ist eine in sich abgeschlossene, logische Einheit. Er wird auf einem

Gerät instanziiert oder „deployed“. Er ist in dieser Arbeit eine aktive Komponente, die eine

Schnittstelle anbietet. Zum Aufruf der Dienst-Schnittstelle wird zusätzlich die Adresse des

Dienstes, also die Adresse der aktiven Komponente benötigt.

Es existiert immerhin ein nicht-scharfes, allgemeines Verständnis von einem Dienst:

28

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

Verteiltes System Eine Dienst-orientierte Architektur adressiert immer ein verteiltes System.

Es kann sich auch bestehend aus mehreren Programmen auf einem Gerät befinden. Es

wird immer über eine zu Grunde liegende Kommunikationsstruktur zwischen unterschied-

lichen physikalischen Geräten gesprochen oder eine solche als Basis definiert. Ein Dienst

ist dabei ein Teil einer Gesamtfunktionalität eines Gerätes.

Keine unterschiedliche Bezeichnung für Klassen und Instanzen Im Gegensatz zu der Ob-

jekt-Orientierung wird bei Diensten zwischen der Beschreibung des Dienstes und seiner

Instanz im Wortlaut nicht unterschieden. Es ergibt sich aus dem Kontext, ob es sich um

eine Instanz eines Dienstes, die dann auch eine Adresse hat, gesprochen wird, oder um

eine „Dienst-Klasse“, die ggf. instanziiert werden kann.

Interner Zustand Dienste können einen internen Zustand haben und bieten durch die Me-

thoden Zugriffs- und Manipulationsmöglichkeiten für diesen Zustand und die verwalteten

Daten.

Ausführungsumgebung / Container Ein Dienst selber basiert auf einer Ausführungsumge-

bung, die von der konkreten Hardware des Gerätes abstrahiert. Dieses ist notwendig, um

einen Dienst auf unterschiedlichen Geräten deployen zu können.

Gegenseitiger Aufruf Dienste können sich gegenseitig aufrufen. Hierdurch können, durch die

Verschaltung von Diensten mit einfachen Funktionen, insgesamt höherwertige Funktio-

nen dargestellt werden.

Klassen von Diensten In Abbildung 2.8 wird versucht eine Klassifikation der unterschiedli-

chen Verständnisse von Diensten darzustellen. Im Wesentlichen gibt es hierbei drei Klassen

Schnittstellen-
Dienste

Funktions-
Dienste

Datenzugriffs-
Dienste

Abbildung 2.8: Versuch der Klassifizierung der Verständnisse zum Begriff „Dienst“.

von Diensten, wobei diese Klassen aufeinander aufbauen.

Die speziellste Klasse wird dabei Schnittstellen-Dienste genannt. Bei allen Verständnissen des

Wortes „Dienst“ wird immer eine Aussage über Schnittstellen getroffen. Sie sind elementarer

Bestandteil vor dem Hintergrund der Dienst-orientierten Architekturen.

29

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

Definition: Unter einer Dienst-Schnittstelle wird die Aufruf-/Rückgabestruktur verstan-

den. Hierbei handelt es sich für einen Dienst um Aufrufparameter und ggf. das Antwortver-

halten. Wenn über eine konkrete Instanz eines Dienstes gesprochen wird, beinhaltet die

Schnittstelle zusätzlich die Adresse.

Es existieren völlig unterschiedliche Vorstellungen, wie Schnittstellen zu spezifizieren sind.

Beispielsweise bestehen WebServices meistens neben ihrer XML-basierten Kommunikation

aus Schnittstellen-Spezifikationen in der WSDL-Sprache [31], die es ermöglicht WebServices-

Aufrufe zu generieren und Antworten auszuwerten, also die syntaktischen Schnittstellenbe-

schreibung.

Als Vorläufer der WebServices können die Remote-Procedure-Calls (RFC 5322 [18]) gesehen

werden. Auch hier existiert eine Schnittstellensprache, die jedoch zur Laufzeit nicht mehr ge-

nutzt wird. Der Gedanke hinter den RPCs war jedoch weniger die Dienst-Orientierung sondern

eher einfache Methoden, wie sie oben beschrieben sind, über Netzwerk erreichbar zu machen.

Im heutigen Sinne handelt es sich hierbei jedoch um einen Schnittstellen-Dienst. 6

Eine übergeordnete Klasse der Schnittstellen-Dienste wird als Funktions-Dienste bezeichnet.

Hierbei wird nicht nur über eine Schnittstelle gesprochen, sondern auch über die zu erbringen-

de Funktion. Durch den internen Zustand eines Dienstes sind die Aufrufe nicht zwangsweise

unabhängig voneinander.

Beispielsweise kann hier ein Inkrementierungs-Dienst gesehen werden: Bei jedem Aufruf gibt

er einen erhöhten Wert zurück. Aber auch ein Archivierungs-Dienst kann hierunter fallen. Er

stellt eine besondere Schnittstelle zu einem permanenten Datenspeicher dar und schreibt bzw.

liest die Daten von dort.

Eine weitere Klasse der Dienste sind die Datenzugriffs-Dienste. Hierbei wird neben der Schnitt-

stellenbeschreibung und der Funktion auch eine Aussage über die zu verwaltenden Daten ge-

macht. Datenzugriffs-Dienste teilen sich eine gemeinsame Datenbasis und bieten bestimmte

Operationen auf dieser Datenbasis an.

So existieren beispielsweise Dienste in OPC-UA, um Daten abzufragen oder zu verändern.

Alle manipulierten Daten der Dienste liegen dabei in dem einen OPC-UA Server, also der

Instanzumgebung oder in dem Modell-Raum.

Orchestrierung & Choreographie: Dynamische Anwendungen Dienste können, wie oben

beschrieben, sich untereinander aufrufen. Da viele Dienste existieren, existieren auch unter-

schiedliche Möglichkeiten des Ablaufs von Dienstaufrufen. Die Betrachtung dieser Möglich-

keiten wird als Orchestrierung bezeichnet. Der konkrete Ablauf eines Vorgangs von Dienst-

Aufrufen hingegen als Choreographie. In der IT-Welt existieren für beide Begriffe entsprechende

Sprachen, die die Möglichkeiten weitestgehend beschreiben. Eine bekannte Orchestrierungs-

sprache ist WS-BPEL [21] zu nennen. Für die Choreographie ist WS-CDL [33] ein Beispiel.

6Eine Komponente, welche einen Remote-Procedure-Call anbietet, ist im Sinne dieser Arbeit eine aktive Komponente. Der
im späteren Verlauf vorgestellte Zustand einer solchen verhindert den Aufruf einer RPC, wenn der Dienst nicht bereit ist.

30

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

An dieser Stelle gibt es einige Arbeiten wie [Pel03], die versuchen die Begriffe im direkten Ver-

gleich zu unterscheiden. Im allgemeinen Sprachgebrauch kann man aber nicht davon ausge-

hen, dass die Begriffe trennscharf verwendet werden, sodass von der allgemeinsten Annahme

ausgegangen werden muss.

Definition: Eine Verschaltung von Diensten beschreibt insgesamt eine (Dienst-

orientierte) Anwendung.

Um eine Verschaltung zu erreichen, müssen Dienste verwaltet werden; es muss also Kompo-

nenten geben, die Wissen über die Instanzen von Diensten verwalten. Diese müssen abfragbar

sein.

Ein weiterer wichtiger Punkt ist die Beschreibung der Dienste: Eine einfache, untypisierte Lis-

te der Adressen von Diensten ist nicht zielführend. Fragen nach dem Typ von Dienst sollten

gestellt werden. Diese Aufgaben übernehmen Technologien, wie das Yellow-Paging. Hierbei

werden (in Anlehnung an ein Branchen-Telefonbuch) die Dienste inkl. ihrer Typen verwaltet.

Im einfacheren Fall ist das Wissen natürlichsprachlich hinterlegt, sodass Menschen (manuell)

die Verschaltung vornehmen. Sinnvoller erscheint, dass das Wissen Maschi-nen-auswertbar

abgelegt wird. Nicht immer wird dabei eine reine Typ-Information ausreichend sein.

Herausforderungen Unabhängig von dem konkreten Verständnis von einem Dienst existie-

ren Herausforderungen, die eine Dienst-Orientierung adressieren muss. In vielen (Forschungs-

)Projekten sind immer wieder neue Konzepte für die Realisierung von Diensten für die Auto-

matisierung entstanden. Hauptaufgabe ist dabei die Definition der Schnittstellen zwischen den

Diensten. Dieses Problem ist auch heute noch ungelöst. So gibt es vielfach tragfähige Aus-

führungsumgebungen für Dienste, die konkrete Umsetzung der automatisierungstechnischen

Funktionen bleibt aber aus.

Dazu ist insbesondere zu berücksichtigen, dass dieses Problem nicht ganzheitlich gelöst wer-

den kann: Während Geräte auf den höheren Ebenen ausreichend Ressourcen bereitstellen,

um beispielsweise auch Grammatiken zu verwalten und eine Überprüfung der Eingaben und

Ausgaben vorzunehmen, stehen diese Ressourcen näher am Prozess nicht zur Verfügung.

Weiterhin ist die einfachere Integration von Geräten zwar wünschenswert, wird von der Indus-

trie jedoch nur soweit unterstützt, wie es die eigenen Produkte nicht angreift. Die standardisierte

Austauschbarkeit von Software und Hardware durch standardisierte Schnittstellen würde aber

eine Austauschbarkeit ermöglichen, die Alleinstellungsmerkmale verhindert.

Mit diesen und anderen Argumenten ist eine Dienst-orientierte Architektur als Basis für die

Automatisierung vom Feldgerät bis zur ERP Ebene nur schwer zu realisieren.

2.4.3 Existierende Ausführungsumgebungen für Dienste

Für Dienste aus der klassischen Informationstechnik gibt es unterschiedliche Ausführungsum-

gebungen; dort meist als „Container“ bezeichnet. Sie versuchen einem Entwickler von Diensten

31

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

umfangreiche Aufgaben abzunehmen und gleichzeitig eine Schnittstelle bereitzustellen, sodass

sich der Entwickler auf seine eigentliche Aufgabe konzentrieren kann.

Zu den üblichen Aufgaben, die von einer solchen Ausführungsumgebung übernommen werden,

zählen insbesondere:

Hardware-Abstraktion Durch ein unterlagertes Betriebssystem sowie die Ausführungsumge-

bung wird eine Abstraktion von der Hardware geschaffen.

Kommunikation Es werden Kommunikations-Mittel bereitgestellt, die auf einfachste Weise

genutzt werden können. So werden Datenverbindungen verwaltet. Eintreffende Daten

werden durch einfache Methodenaufrufe an den Code eines Entwicklers weitergereicht.

(De)Installations-Management Es wird eine einfache Möglichkeit bereitgestellt, einen Dienst

zu installieren und anzubieten. Hierzu zählt auch, dass unterschiedliche Dienste verwaltet

werden.

Erkundungsfunktion Die installierten Dienste können von außen gefunden, erkannt und an-

gesprochen werden.

Am verbreitetsten sind die Servlet-Container, die eine Ausführungsumgebung für Java-Klassen

bereitstellen. Als Beispiel für eine solche Ausführungsumgebung sei hier der „Apache Jakarta

Tomcat Server“ [tom] genannt. Im Sinne der vorangegangenen Dienst-Definition handelst es

sich also um einen Funktions-Dienst.

Im Gegensatz zu der oben beschriebenen Ausführungsumgebung für Modelle werden in einem

Servlet-Container die Dienste jedoch gegeneinander abgeschottet. Das Ziel ist nicht gemeinsa-

me Operationen auf Daten anzubieten, sondern vielmehr unabhängig voneinander die gleichen

Ressourcen zu nutzen.

2.4.4 Aspekte von Anwendungen, Diensten und Apps

Zuvor sind die Begriffe der Anwendung und des Dienstes definiert worden. Die aktuell auf-

kommende Bezeichnung von Programmen als Apps (z.B. [ZGPU12]) stammt aus dem „Mobile-

Bereich“, also von Smartphones und Tablets.

Im Endeffekt kombiniert eine „App“ einige Aspekte von Anwendungen, aber auch von Diens-

ten. Ein endgültiges Verständnis, was eine App ist, ist derzeit nicht zu finden. So fehlt auch

eine konkrete Definition. Unterschiedliche Arbeitsbereiche und Anbieter stellen verschiedene

Aspekte in den Vordergrund.

Apps setzen das Thema der Einfachheit gezielt um. Sie sind für den Endkunden-Markt entwi-

ckelt, wo Nicht-IT-Experten Apps erwerben und nutzen. Die Anwendungen in der Automatisie-

rung werden von Experten ihrer jeweiligen Domäne entwickelt, jedoch von Domänen-fremden

angewendet. Somit bieten die Prinzipien der Apps auch Möglichkeiten für die Automatisie-

rungstechnik.

32

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.4 Instanzumgebung der Modelle

Im Rahmen dieser Arbeit sind einige wichtige Parallelen und Unterschiede zwischen Anwen-

dungen, Diensten und Apps zu sehen.

Verzicht auf Konfiguration zur Inbetriebnahme Eine Anwendung auf einem klassischen Be-

triebssystem wird durch eine Installation auf dem Gerät betriebsbereit gestellt. Während der

Installation bestimmt der Nutzer gewisse Ausprägungen der Anwendung - vom Installationsort

auf der Festplatte bis zum Installationsumfang von optionalen Teilen der Anwendung.

Jede Ausführungsumgebung für Dienste bietet im Gegensatz dazu eine Konfigurations-freie

Installations-Möglichkeit von Diensten. Je nach Realisierung werden unterschiedliche Mecha-

nismen bereitgestellt, jedoch wird zur Installation eines Dienstes letztendlich immer nur eine

Datei benötigt. Diese enthält neben dem eigentlichen auszuführenden Programm-Code auch

entsprechende Meta-Informationen, die zur Installation nötig sind. Bei der Installation ist somit

keinerlei zusätzliche Information nötig.

Apps stellen ebenso die Konfigurations-freie Installation bereit. Hierzu ist jedoch eine abso-

lut einheitliche Ausführungsumgebung und Ressourcenbereitstellung auf allen Geräten nötig,

welches nur durch eine starke Standardisierung oder Monopolstruktur (Ein Betriebssystem-

Anbieter eines Smartphones definiert die Umgebung und Ressourcen zusammen mit dem

Umgang mit den Ressourcen) realisiert werden kann.

Verzicht auf Kommunikation untereinander Anwendungen kommunizieren im ursprüngli-

chen Sinne nicht untereinander. Es gibt jedoch Mechanismen um dieses zu ermöglichen. Sie

werden im klassischen Umfeld jedoch wenig genutzt. Wenige Kommunikations-Standards zwi-

schen Anwendungen haben es zu einer weitreichenden Verbreitung gebracht und viele diese

Standards sind auf Netzwerk-Ebene definiert, d.h. sie sind gleichzeitig für die Kommunikation

zwischen Systemen konzipiert. Beispielsweise sei hier COM / DCOM von Microsoft genannt.

Mit dem Begriff Dienst im Rahmen der Dienst-orientierten Architekturen wird verstanden, dass

alleinstehende Komponenten auch untereinander direkt kommunizieren können. Die Orche-

strierung, also die Verknüpfung von Diensten zu komplexeren Programmen, ist ein wesentli-

cher Bestandteil dieser Architektur.

Hierfür müssen Schnittstellen spezifiziert werden und diese Spezifikation wird auf Sender- wie

auch Empfängerseite bei der Programmierung umgesetzt.

Viele Projekte zur Standardisierung beschäftigen sich ausschließlich mit der Definition von

Schnittstellen. Zum Teil geschieht dies sogar auf Meta-Ebenen. Als Beispiel sei hier das WS-

RF genannt, welches einen asynchronen Aufruf von WebServices definiert. Erst auf WS-RF

aufbauend werden dann konkrete Nachrichten definiert.

Im Gegensatz zu Diensten interagieren Apps nicht (oder kaum) miteinander. Sie sind aus dieser

Sicht eher traditionelle Anwendungen. Dieser bewusste Verzicht auf Schnittstellen stellt einen

wesentlichen Erfolgsfaktor dar. Ein Entwickler programmiert gegen Schnittstellen des Betriebs-

systems, welche von einem Hersteller bereitgestellt werden. Für unterschiedliche Versionen

eines Betriebssystems gibt es so auch entsprechende Dokumentation über die Unterschiede.

33

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

Verzicht auf spezifische Schnittstellen Wie bereits geschrieben kommunizieren Anwendun-

gen nicht direkt untereinander. Durch die unterlagerte Schicht sind jedoch indirekte Kommu-

nikationsformen vorgegeben, die genutzt werden. Die erfolgreichsten sind der gegenseitige

Aufruf von Anwendungen oder der Austausch von Nutzerdaten. Es handelt sich also um gene-

rische Schnittstellen.

Im Gegensatz dazu verfolgen Dienste das Konzept der spezifischen Schnittstellen. Für jede

Interaktion von Diensten kann und wird eine eigene Sprache definiert und verwendet.

Im Bereich der Apps werden nun neue, generische Formen durch Betriebssysteme eingeführt,

die eine Kommunikation zwischen den Apps direkt ermöglichen, sich dabei jedoch auf einfachs-

te Formen beschränken.

Hier seien die Intents7 (vgl. Kapitel 4.3.7) genannt. Der Beispiel-Intent url-open: http://www.

plt.rwth-aachen.de sorgt dafür, dass alle installierten Apps, die eine URL öffnen können

(also beispielsweise alle Browser) die Möglichkeit haben, den Intent zu bearbeiten.

Auf diese Weise erfolgt eine komplette Entkopplung der Apps. Eine direkte Interaktion ist tech-

nisch zwar meist möglich, wird aber in den seltensten Fällen genutzt. Dieses ist gleichzeitig eine

der Hauptunterschiede zwischen den sogenannten Apps von modernen Betriebssystemen und

den Dienst-orientierten Architekturen.

Verzicht auf Verteilung Anwendungen sind von sich aus nicht-verteilt. Dienst-orientier-te Ar-

chitekturen definieren sich über die Verschaltung (Orchestrierung) von einzelnen Dienst-In-

stanzen. Ein wesentlicher Aspekt der entsprechenden Ausführungsumgebung geht deswegen

immer in Richtung „Discovery“ (Auffinden von Diensten) und Verwaltung der Dienste.

Bei einer Ausführungsumgebung für Apps entfällt dieser wesentliche Aspekt. Apps sind unab-

hängig voneinander ausführbar. Sie basieren einzig und allein auf der Ausführungsumgebung

und ihren Fähigkeiten. Wenn eine Fähigkeit durch die Plattform nicht gegeben ist (beispiels-

weise veraltete Version), wird die App schon nicht zur Installation angeboten. Apps enthalten

hierfür eine Meta-Beschreibung von ihren Anforderungen.

Apps selber kommunizieren somit auch ausschließlich mit festgelegten, expliziten Servern bei-

spielsweise Cloud-Anbieter im Internet. Eine Verteilung auf unterschiedliche Geräte aus Ska-

lierungsgründen erfolgt für Apps transparent und intern von den Cloud-Anbietern.

Fazit der Aspekte Alle Aspekte zeigen, dass Einfachheit der Schlüssel zum Erfolg ist. Dienste

ohne ihre komplexen Aufruf- und Verteilungs-Mechanismen entsprechen im Wesentlichen den

Apps, wie sie heute weit verbreitet sind. Auch Anwendungen ohne Ihren Installationsaufwand

und ohne ihre Hardware-Abhängigkeit können als Apps angesehen werden.

Die im späteren beschriebenen, konkreten Dienste integrieren den Gedanken des Verzichtes

auf komplexe Mechanismen ohne ihn zu verbieten. Denn für einzelne Probleme kann es immer

sinnvoll sein, eine Ausnahme von der angestrebten Einfachheit vorzuziehen.

7Namensgebung aus dem Android Betriebssystem

34

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2.5 Verteilte Systeme

2.4.5 Existierende Ausführungsumgebungen für Modelle und Dienste

Die schon zuvor referenzierten Systeme OPC-UA und ACPLT sind nicht nur Instanzumgebun-

gen für Modelle sondern auch Ausführungssysteme mit einigen Besonderheiten.

ACPLT/OV Die Objektverwaltung von ACPLT bietet eine Instanzumgebung für Modelle. Model-

le können geladen und wieder entladen werden. Die Selbstbeschreibung ist in vollem Umfang

vorhanden. Von jedem Objekt kann also erkundet werden, von welcher Klasse es instanziiert

wurde und ebenso wie die Klassen untereinander vererbt sind.

Methoden-Aufrufe selber sind in ACPLT/OV nur innerhalb des Systems erlaubt. Da aber Va-

riablen-Werte gesetzt werden können, kann hierüber ein interner Methoden-Aufruf initiiert wer-

den. Somit entfallen die Schnittstellenbeschreibungen bzw. diese werden vom System nicht

unterstützt.

Die Ausführungsumgebung für ACPLT/OV ist prinzipiell erweiterbar, jedoch der normalen Be-

triebsart einer SPS nachempfunden. Nach einer Registrierung können Objekte sich zyklisch

aufrufen lassen. Eine Scheduling-Komponente übernimmt dabei die Aufgabe der Verwaltung.

OPC - Unified Architecture Die Spezifikation von OPC-UA bietet durch „Programs“ (Part 10)

eine Ausführungsumgebung für Modelle. Sie verlässt sich aktuell auf die Betriebssystem-Mittel.

Es findet keine Abstraktion hiervon statt. Da OPC-UA jedoch aktuell hauptsächlich als Schnitt-

stelle zu unterlagerten Systemen (wie einer SPS) verstanden wird, ist diese Funktion meistens

in das unterlagerte System ausgelagert - und Eigenschaften der Ausführung sind in OPC-UA

nur eingegrenzt abgebildet.

2.5 Verteilte Systeme

In vielen Bereichen finden sich verteilte Systeme. Insbesondere in der Informationstechnik ha-

ben sich dabei Bereiche gebildet, die grundsätzlich mit der Aufgabenstellung Ähnlichkeiten

besitzen. Insbesondere zu nennen sind hier das „Grid-Computing“ und die aktuellen Themen

des „Cloud-Computing“. Ihnen ist jedoch gemein, dass sie nicht die Verknüpfung von struktu-

rierten Daten oder sogar Modellen adressieren. Während das Grid-Computing ganz klassisch

im Bereich der Dienst-orientierten Architekturen Schnittstellen definiert um eine Interoperabi-

lität zu schaffen, steht beim Cloud-Computing eher die Anwendung zum Anwender im Fokus.

Diese soll immer verfügbar und hochgradig skalierbar sein.

In der Automatisierungstechnik ist aus verschiedenen Gründen der Einsatz solch hoch-dyna-

mischer Systeme bisher nicht erfolgt. Die Dynamik des Internet mit permanent hinzukommen-

den und wegfallenden Teilnehmern, mit unterschiedlichen Kommunikationswegen der gleichen

Teilnehmer und mit einem hohen Datenaufkommen zu unterschiedlichen Zielen sind Anforde-

rungen, die in einer Produktionsanlage in der Ausprägung aktuell nicht zu sehen sind.

35

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

2 Stand der Wissenschaft und Technik - mit Begriffsklärung

Bisher ist es in der Automatisierungstechnik nicht üblich, dass existierende Systeme ausge-

hende, eigenständige Kommunikation mit anderen, gleichartigen Systemen aufnehmen. Die

Kommunikation erfolgt im Sinne der Automatisierungspyramide immer von oben nach unten, in

seltenen Fällen auch innerhalb einer Ebene. Insbesondere OPC-UA bietet zwar Konzepte, um

dieses aufzuweichen, jedoch wird es in realen Anlagen meist eher - wie auch traditionelles OPC

- als zentrale Sammelstelle für Daten einer (Teil-)Anlage eingesetzt. Es stellt also beispielswei-

se mittels der realisierten Modelle bestimmte Prozesswerte bereit, die ein OPC-UA-Server aus

dem Feld bzw. den Steuerungen aggregiert hat. Diese werden dann von überlagerten Syste-

men abgeholt. OPC-UA und der Modell-Raum stehen hierbei eher als Interoperabilitäts-Schicht

zwischen Herstellern.

Die Verteilung von Modellen auf unterschiedliche Geräte ist in der Automatisierungstechnik

hingegen bisher nicht adressiert. Sie wird auch in keinen existierenden Instanzumgebungen

unterstützt.

Das aufkommende Thema „BigData“ - der Analyse von großen Datenmengen - könnte für

Modelle und ihren Einsatz in der Realität in vielen Fachbereichen einen Fortschritt liefern. Da

bei dem Thema insbesondere Daten im Fokus stehen, die nicht in Modellen abgelegt sind, ist

es denkbar, dass die Modelle als Annotationen für die unstrukturierten Daten dienen.

Hintergrund:
Selbst, wenn die eigentliche Kommunikationsrichtung umgekehrt ist (z.B. SPS benötigt

Qualitätsdaten über ein Produktionsgut aus dem MES System), wird davon nicht abge-

wichen: Die SPS stellt eine Anfrage als Variablen-Werte im OPC-UA-Server bereit und

das MES-System „pollt“, ob eine Anfrage vorliegt und stellt die benötigten Informationen

in einer anderen Variable bereit.

Um dieses Problem zu adressieren, bieten die Hersteller unterschiedliche, proprietäre Lö-

sungen an. Eine standardisierte Lösung durch eine ausgehende Kommunikation von einer

SPS ist nicht vorgesehen.

Die von der PLCopen und OPC Foundation spezifizierten OPC-UA-

Kommunikationsbausteine ermöglichen dieses ineffiziente Verhalten umzudrehen:

Per Methoden-Aufruf wird zu dem Zeitpunkt, wenn die SPS die Werte benötigt, ei-

ne Funktion auf MES-Ebene angestoßenen und direkt die benötigten Informationen

abgefragt.

36

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

3 Analyse der Anforderungen

Perfektion ist nicht dann erreicht, wenn man nichts mehr hinzufügen,
sondern wenn man nichts mehr weglassen kann.

Antoine de Saint-Exupéry

Die aufgezeigten Aspekte der derzeitigen Automatisierungstechnik und insbesondere des En-

gineerings bergen erhebliche Entwicklungspotenziale. Ausgehend von Erfahrungen an die zu

unterstützenden Modelle wie auch die vorhandenen Instanzumgebungen (Kapitel 2.4.5) wer-

den zusätzliche Anforderungen an die zu formulierende, verteilte und modellgestützte Ausfüh-

rungsumgebung gestellt.

3.1 Ergänzende Anforderungen an Geräte und Umgebung

In Bezug auf die Hard- und Software gelten gleiche Voraussetzungen, wie für die vorgestellten

Ausgangssysteme ACPLT und OPC-UA.

Es müssen Rechenkapazitäten bereitstehen, die dynamisch genutzt werden können, um die

eintreffenden Dienst-Aufrufe sowohl an die Anwendungen wie auch die Instanzumgebung ab-

zuarbeiten. Arbeitsspeicher muss bereitstehen, um die Modelle und ihre Informationen vorzu-

halten. Für die Kommunikation im verteilten System müssen entsprechende Ressourcen be-

reitstehen. Alle diese Ressourcen werden für die Konzepte vorausgesetzt, da sie sich an das

unterlagerte System richten.

3.2 Ergänzende Anforderungen an Meta-Modell und
Instanzumgebung

Von unterschiedlicher Hardware- oder Software-Basis, die unterschiedliche Anforderungen an

Realisierungen (wie z.B. Programmiersprachen oder APIs) stellt, wird an dieser Stelle abstra-

hiert. Die jeweilige Implementierung entscheidet über die konkreten Möglichkeiten.

Wie schon für die Ausgangssysteme gilt, dass ein Meta-Modell bereitgestellt werden muss.

Entsprechende Instantziierungs-Vorgänge und Abfragen (Dienste) müssen existieren.

37

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

3 Analyse der Anforderungen

Komponenten sollen zur Laufzeit nachgeladen werden können. Damit ergibt sich ein Art Biblio-

theks-Konzept, welches hinzufügen und entfernen von Bibliotheken ermöglicht. Entsprechende

Dienste zur Manipulation der existierenden Komponenten sind dementsprechend zu definieren.

Hierdurch können Modelle geladen / entladen werden.

Hintergrund:
OPC-UA bietet hierfür weder in der Spezifikation Konzepte noch in der Stack-

Implementierung eine Lösung. Ein Server muss immer angehalten und wieder gestar-

tet werden um eine Änderung an den Bibliotheken vorzunehmen. Bei ACPLT/OV ist das

Bibliotheks-Nachladen eine Standard-Funktion, die sowohl programmtechnisch wie auch

manuell genutzt wird.

Wichtig sind Relationen über Grenzen von Geräten hinweg. Im Idealfall bietet das System

sowohl zur Erkundung, wie auch zu Änderung von Relationen transparente Mechanismen,

sodass das Gerät, welches die Informationen selber speichert, unerheblich für den Zugriff ist.

Diese Eigenschaft sollte im Meta-Modell abgebildet sein, um eine transparente Verteilung zu

erreichen.

Die Komponenten - also Instanzen von Objekten mit allen ihren Eigenschaften - sollten migriert

werden können. Dieses ist wichtig, wenn sich eine Änderung in der Anlage ergeben hat, so-

dass eine Reorganisation sinnvoll ist. Die Relationen der Objekte werden dabei beibehalten.

Wichtige Eigenschaften gerade hierbei sind die Nachvollziehbarkeit und Atomität, sodass zwi-

schenzeitlich inkonsistente Zustände vermieden werden oder die Nutzung in diesem Zeitraum

verhindert wird. Hierfür können die AKID-Eigenschaften (Atomität, Konsistenz, Isolation und

Dauerhaftigkeit; vergleiche [HR01]) herangezogen werden.

Gleichzeitig sind die AKID-Eigenschaften wichtiger Bestandteil für den kollaborativen Zugriff,

also den Zugriff von mehreren Anwendungen zu konkurrierenden Zeitpunkten.

Hintergrund:
Die Entwicklungen im Bereich der föderierten und verteilten Datenbanken haben auch

Konzepte der AKID-Eigenschaften für verteilte Systeme beschrieben. Diese können hier

zur Anwendung kommen. Eine gute Übersicht bietet [Con97].

Es erscheint sinnvoll, in einer Instanzumgebung sowohl die Abläufe (Programme, Anwendun-

gen), wie auch die „passiven“ Modelle zu verwalten. Dabei nutzen nur die Abläufe die zeitliche

Ausführungsmöglichkeiten. Durch eine technologisch einheitliche Basis für passive Modelle

und Abläufe wird ein Zugriff einfacher und letztendlich auch effizienter sein. Trotzdem ist es

selbstverständlich möglich, dass externe Komponenten, durch die Zugriffsmechanismen mit

den Modell-Instanzen kommunizieren.

Anforderung ist also im Idealfall die beiden Arten von Objekten - nämlich passive Repräsenta-

tionen und aktive Komponenten - in einer gemeinsamen Ausführungsumgebung zu beheima-

ten.

38

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

3.3 Ergänzende Anforderungen an die Kommunikation

Ein wichtiger Aspekt um eine sinnvolle Verteilung automatisiert zu erreichen, ist die Ressour-

cenverwaltung. Durch die Quantifizierung und den Vergleich von vorhandenen Ressourcen las-

sen sich Rückschlüsse ziehen, wie eine Verteilung auszusehen hat.

Die Verteilung kann jedoch auch nach statischen Regeln erfolgen, die weniger an der Geräte-

Auslastung sondern an anderen Merkmalen festgemacht wird. Beispielsweise können bestimm-

te Modelle im Instanzsystem genau dort abgelegt werden, wo ihre entsprechende Anwendung

hauptsächlich ausgeführt wird.

In [ME11] wird ein entsprechendes Ressourcenmodelle vorgestellt, welches auf diese Instan-

zumgebung angewendet werden kann.

3.3 Ergänzende Anforderungen an die Kommunikation

Die Kommunikation ist für ein verteiltes System die entscheidende Komponente. Vorausset-

zung für die Erfüllung aller Funktionen ist eine bidirektionale Kommunikation - im Normalfall

also ein Netzwerk, welches eine Kommunikation zwischen den Systemen ermöglicht. Für ent-

sprechende Basisdienste zum Hinzufügen und Entfernen der Modelle kann die NAMUR Emp-

fehlung 139 [20] herangezogen werden. Sie wird in Kapitel 4.3 ausführlicher besprochen.

Ein wichtiger Punkt bei der Übertragung zwischen Geräten ist die semantisch definierte Über-

tragung von Datentypen. Eine Zahl sollte also beim Empfänger wieder als Zahl kodiert sein und

dieses sollte durch das Kommunikationssystem sichergestellt werden. Dabei ist zu gewähr-

leisten, dass nicht nur atomare Datentypen (Zahlen, Zeichenketten, ...) zu übertragen sind,

sondern auch komplexe Datentypen (Strukturen oder fest definierte Reihen von Datentypen).

Hintergrund:
ACPLT stellt derzeit nur konzeptuell Datenstrukturen bereit, die der Nutzer definieren und

atomar übertragen kann. OPC-UA kennt entsprechende Konstrukte. Gutes Beispiel sind

hier die Methoden-Aufrufe, die dazu verwendet werden können einen Datensatz en-Block

zu übertragen, zu verarbeiten und eine entsprechende Antwort zu liefern.

Hintergrund:
Ausgangspunkt für die Repräsentation ist in unterschiedlichen Ansätzen eine Beschrei-

bung in Form einer XML Grammatik. Das zu übertragene XML Dokument stellt dann

einen komplexen Datentypen dar. Die Übertragung selber erfolgt nicht zwangsläufig in

XML. OPC-UA hat beispielsweise eine optimierte Binärdarstellung definiert, die auch im

Normalfall verwendet wird.

Damit eine Kommunikation erfolgen kann, muss ein Kommunikationsmedium gegeben sein.

Als Voraussetzung an das unterlagerte System wird davon ausgegangen, dass alle Teilnehmer

untereinander direkt kommunizieren können, d.h. eine „Vollvermaschung“ der Teilnehmer auf

logischer Ebene wird vorausgesetzt. Sobald ein einheitliches Netzwerk verfügbar ist, ist diese

Bedingung erfüllt.

39

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

3 Analyse der Anforderungen

Damit die Komponenten und Anwendungen in einem verteilten System die Lokalität des Kom-

munikations-Zieles nicht berücksichtigen müssen, soll eine transparente Kommunikation gege-

ben sein. Explizit gilt hierfür, dass eine Kommunikation zu einer lokalen Komponente mit den

gleichen Mitteln zu erfolgen hat, wie eine zu einer Entfernten. Zusätzlich können auch Kom-

munikationsmittel bereitgestellt werden, die nicht transparent sind - beispielsweise nur lokal

zugreifbar sind.

Das Kommunikationsmedium sollte nach Möglichkeit eine Empfangsgarantie bieten. Dabei wird

sichergestellt, dass eine gesendete Nachricht auch bei der Empfangskomponente angekom-

men ist, d.h. dass zum einen das Zielgerät erreichbar ist und zum anderen die Ziel-Komponente

existiert. Ist dieses nicht der Fall, bekommt der Sender eine entsprechende Fehlermeldung. Die

Empfangsgarantie sagt jedoch nichts über die Verarbeitung bzw. den Verarbeitungszeitpunkt

aus.

Eine dem Kommunikations-Medium überlagerte Schicht kann hier durch eine zusätzliche Quit-

tierung eine solche Empfangsgarantie für die Kommunikation anbieten, wenn sie benötigt wird.

Bietet das Kommunikations-Medium von sich aus jedoch schon eine Empfangsgarantie, sollte

diese unbedingt genutzt werden.

Auch wenn die Ressourcenverwaltung in dieser Arbeit nicht im Fokus steht, sei insbesonde-

re auf die Herausforderungen der Laufzeiten in Bezug auf die Kommunikation, also das Ant-

wortverhalten, hingewiesen. Diese müssen in einem Ressourcenmodell ggf. repräsentiert und

berücksichtigt werden.

Die Instanzumgebung sollte Kommunikation zwischen Geräten grundsätzlich nutzen, um Infor-

mationen über den Zustand des Kommunikationspartners zu erfahren. Auf diese Weise kann

ggf. eine explizite Überwachung indirekt erreicht werden.

3.3.1 Einheitliche, allgemeine Adressierung

Eine weitere, wichtige Anforderung im Bereich der Kommunikation ist die Adressierung. Unter

Adressierung wird verstanden, die Partner einer Kommunikation festzulegen. Wichtig ist dabei

in jedem Fall, dass die Partner eindeutig identifiziert werden können.

Eigentlich ist die Adressierung damit eine Identifizierung, d.h. in erster Linie deutet eine unter-

schiedliche Adresse auf unterschiedliche Kommunikationspartner hin. Erst in zweiter Linie ist

eine Adresse ein Mittel, um Kommunikation an diesen Kommunikationspartner zu richten.

Durch die unterschiedlichen Kommunikations-Medien wird deutlich, dass es auch unterschiedli-

che Adressierungsarten gibt. Dabei ist wichtig, dass Anwendungen, die auf einer Ausführungs-

umgebung aufbauen, eine Adresse durchaus als atomares Datenkonstrukt handhaben könne,

d.h. es betrachtet die interne Struktur einer Adresse nicht. Damit muss die Anwendung kei-

ne Kenntnisse um das Kommunikations-Medium haben, welches die Realisierung einer trans-

parenten Kommunikation über unterschiedliche Medien fördert. Daraus folgt direkt, dass die

Anwendungen entkoppelt sind von dem Medium, über das sie kommunizieren. Wichtig ist wei-

40

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

3.4 Bezug der Anforderungen

terhin, dass Adressen unterschieden werden können. Wenn eine entsprechende einheitliche

Repräsentation definiert wurde, müssen auch innerhalb des Kommunikationssystems Kompo-

nenten lediglich Wissen über einzelne Teile haben.

Zu beachten ist, dass die Adressierung nichts mit den Formen der Kommunikation (unicast,

multicast oder broadcast - vgl. Kapitel 2.3.2) zu tun hat. Adressierung dient ausschließlich

dem Identifizieren des Kommunikationspartners sowie dem Kommunikations-Aufbau durch das

unterliegende Medium.

Somit ist es aus Sicht der Anwendungen erstrebenswert, ein Medien-übergreifende, einheitli-

ches Adressierungs-Schema zu haben, über dessen internen (je nach Medium unterschiedli-

chen) Aufbau eine Anwendung keine Informationen haben muss.

3.4 Bezug der Anforderungen

Die beschriebenen Anforderungen sind nicht gleichberechtigt nebeneinander zu sehen. Die

Anforderungen werden in zwei Weisen in einen Bezug gesetzt. Dieses wird in der Tabelle 3.4

dargestellt.

Zum einen wird ein Bezugspunkt beschrieben. Hierunter wird verstanden, ob die Anforderung

an das unterlagerte System gestellt wird oder an das System, wie es in den folgenden Kapi-

teln beschrieben wird. Zum anderen wird eine Gewichtung vorgenommen. Dazu werden drei

Prioritätsklassen definiert:

Voraussetzung (kurz: V) Eine solche Anforderung ist unerlässlich, damit ein entsprechendes

System realisiert werden kann.

Optional (kurz: O) Eine solche Anforderung ist nicht unerlässlich, würde aber zu erheblichen

Einbußen in dem Funktionsumfang führen, wenn sie nicht vorhanden ist.

Zusatz (kurz: Z) Eine solche Anforderung ist grundsätzlich verzichtbar, jedoch ermöglicht sie

weitergehende Verwendung oder einfachere Handhabung.

Bezugspunkt Gewichtung
Geräte und Umgebung:
Rechenkapazitäten unterlagert V

Arbeitsspeicher unterlagert V

Kommunikation unterlagert V

Meta-Modell und Instanzumgebung:
Meta-Modell unterlagert V

Nachladbarkeit unterlagert O

System-übergreifende Relation hier V

Migration von Objekten hier Z

Aktive Komponenten unterlagert / hier O

Verwaltung der Ressourcen hier O

41

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

3 Analyse der Anforderungen

Bezugspunkt Gewichtung
Kommunikation:
Vollvermaschung unterlagert V

(Basis-)Datentypen unterlagert V

Komplexe Datentypen unterlagert O

Transparente Kommunikation hier V

Empfangsgarantie unterlagert O

Antwortverhalten hier Z

Überwachung hier Z

Adressierung der Systeme unterlagert V

3.5 Nachvollziehbarkeit und Verständlichkeit

Eine wichtige Anforderung, die durch viele Aspekte beeinträchtigt wird, ist die Nachvollziehbar-

keit.

Hierunter müssen zwei wesentliche Aspekte verstanden werden. Zum einen ist eine theoreti-

sche Nachvollziehbarkeit zu nennen. Das System darf dafür keine Reaktionen zufällig treffen.

Zusammen mit einer Protokollierung aller Änderungen und Ereignisse ist das Verhalten des

Systems nachvollziehbar oder deterministisch.

Es bietet sich an für Entwicklung, Engineering und Betrieb unterschiedliche Ebenen der Proto-

kollierung einzuführen.

Allerdings wird gerade in einem verteilten System eine solche theoretische Nachvollziehbarkeit

schnell durch die Nutzer nicht anerkannt, da sie nicht mehr den Eindruck haben, das Sys-

tem verstehen zu können. Es sollte also darauf geachtet werden, dass zusätzlich die Reaktio-

nen verständlich sind. Ein Nutzer, der eine Änderung beobachtet oder auch initiiert, sollte die

Reaktionen im System also erahnen und verstehen können, ohne dass dafür Protokolle und

ähnliches zu lesen sind.

Insgesamt kann man also sagen, dass die Verständlichkeit wichtig ist für die Akzeptanz des

Gesamtsystems. Die Nachvollziehbarkeit jedoch ist für die Entwicklung wichtig und ggf. auch

um Zulassungsaspekte zu erreichen.

42

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte
Systemstrukturen

Nutzen Sie das Wissen und Entwickeln Sie Systeme mit Stolz und
Leidenschaft.

Maik Pfingsten, http://www.zukunftsarchitekten-podcast.de

In diesem Kapitel werden Konzepte für (Meta-)Modelle, deren Verteilung und Verwaltung vor-

gestellt. Der Fokus dieses Kapitels liegt dabei auf den Konzepten der Systemstruktur und ins-

besondere deren Repräsentationen; nicht auf den Schnittstellen- und Komponenten-Beschrei-

bungen. Das folgende Kapitel 5 beschreibt Basis-Komponenten, die zur Verwaltung einer ver-

teilten, modellgetriebenen Instanzumgebung nötig sind, sodass sich eine System-Architektur

ergibt.

Dabei verdeutlicht ein Modell der AT-Geräte-Struktur als Beispiel, wie die Konzepte anzuwen-

den sind. Dieses einfach gehaltene Modell wird eingangs beschrieben. Anzumerken ist da-

bei, dass dieses Modell auch von der Instanzumgebung selber verwendet wird, da es eine

Kommunikations-Struktur der adressierbaren, automatisierungstechnischen Geräte repräsen-

tiert.

Somit verdeutlicht das Beispiel zum einen die vorgestellten Konzepte, zum anderen wird es

durch die in Kapitel 5 beschriebenen Basis-Komponenten genutzt und ist damit selber Be-

standteil der Instanzumgebung.

4.1 Beispiel-Modell: AT-Geräte-Struktur

Als automatisierungstechnische Geräte einer Anlage werden die Geräte verstanden, die ins-

gesamt die Steuerung der Anlage übernehmen, d.h. diese Geräte reichen von den Sensoren

und Aktoren, die direkt in den Prozess eingreifen, über die Automatisierungsstationen (SPS)

und entsprechende Engineering-Systeme bis zu den MES- und Asset-Management-Geräten.

Eine modellgetriebene Instanzumgebung benötigt dieses Modell der AT-Geräte-Struktur, um

Aussagen über Geräte abbildbar zu machen. Dieses wird erreicht, indem Relationen von an-

deren Modellen zu Geräten dieses Modells erstellt werden. Gleichzeitig werden intern die ent-

sprechenden Informationen des Modells benötigt; beispielsweise zur Modellierung von Kom-

munikationsverbindungen oder zur Darstellung der Komponenten-Verteilung.

43

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Geräte-Repräsentation

Kommunikations-Adresse

Informations-WeltReale-Welt

Abbildung 4.1: Vereinfachte Modellierung des AT-Geräte-Struktur Modells

Wie in der Abbildung 4.1 verdeutlicht, wird jedes Gerät, welches im Sinne des Konzeptes an-

sprechbar sein soll, als eine Instanz der Geräte-Repräsentation dargestellt. Als einziger Para-

meter wird die Kommunikations-Adresse modelliert. Sie reicht aus, um das Gerät selber ein-

deutig zu identifizieren.

Die hierdurch abgebildeten Geräte können durch weitere in der Instanzumgebung genutzte

Modelle in Bezug gesetzt werden.

4.1.1 Erweiterung: Routing

Sollte keine Vollvermaschung der Kommunikation (vgl. Anforderungen in Kapitel 3.3) vorliegen,

kann eine Ergänzung erfolgen.

In realen Anlagen existiert eine Vielzahl von unterschiedlichen Kommunikations-Medien. Eine

Menge von auf dem Markt erhältlichen Kopplern oder Gateways zwischen den Kommunikati-

ons-Medien verdeutlicht diese Heterogenität.

Um diese Gegebenheit zu adressieren und gleichzeitig die Mächtigkeit der modellgetriebe-

nen Instanzumgebung zu verdeutlichen, kann das AT-Gerätemodell durch eine route_nach-

Relation erweitert werden. Wenn hierdurch die Gateway Komponenten erfasst und entspre-

chend in Relation gesetzt werden, kann ein zu realisierender Routing-Algorithmus als Teil einer

Kommunikations-Komponente auch über Gateways hinweg eine Kommunikation herstellen.

4.2 Abbildung der Realität: Repräsentationen im Modell

Wie in Kapitel 2.1 beschrieben, bilden Modelle Teile der Realität ab. Hierdurch wird klar, dass

zu jeder Komponente, aber auch zu jeder Aufgabe / jedem Vorgang aus der Realität eine Mög-

lichkeit geschaffen werden kann, um diese in dem Modell zu repräsentieren. Diese Teilung in

passive und aktive Repräsentationen wird angewendet, weil sie grundsätzlicher Natur ist: Wäh-

rend die abgebildete Struktur „nur“ als (passive) Objekte in Modellen existieren und für andere

zugreifbar / änderbar sind, sind abzubildende Aufgaben als Anwendungen zu modellieren, die

somit die Verhaltensstruktur darstellen. Hierbei handelt es sich also um zeitliche Abläufe. Die

können lediglich abgebildet sein, also als weitere passive Objekte im Modell-Raum existieren.

44

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realität: Repräsentationen im Modell

Modelle

Instanzumgebung

abbilden

instanziieren

verteilen / verknüpfen

Anwendungen

abbilden

installieren

verteilen / verknüpfen

Geräte

Ausführungsumgebung

Verhaltensstruktur
(aktive Komponenten)

Struktur
(passive Komponenten)

Realität

Repräsentation

Abbildung 4.2: Realität von Komponenten und Ausführungen auf Geräten

Weiterführend ist es jedoch, wenn es sich um aktive Komponenten handelt, die entweder auf

Änderungen hin reagieren oder auch pro-aktiv handeln können. Abbildung 4.2 stellt beide Ar-

ten gegenüber.

Diese Teilung von Struktur und Verhalten entspricht dem gewohnten Prinzip der Programmie-

rung. Zum Vergleich: SPSen auf Basis von IEC 61131-3 verändern durch ihre programmierte

Steuerung (aktives Element) Prozessabbilder von Ein- und Ausgängen (passives Element), die

in jedem Zyklus gelesen und geschrieben werden. Programme in der IT (aktive Elemente) ar-

beiten häufig auf Datensätzen (passive Elemente). Auch im Software-Engineering erkennt man

diese Teilung beispielsweise am Modell-View-Controller Entwurfsmuster (siehe [Bal08]).

In Kapitel 2.4 wurde bereits dargestellt, dass für eine Verwendung der Modelle eine Instanzum-

gebung sinnvoll ist. Hier werden die Objekte, aber auch die zugehörigen Modell-Informationen

(Klassen) zugreifbar. Als Erweiterung soll eine Ausführungsumgebung existieren - optional als

Bestandteil der Instanzumgebung - die auch zeitliche Abläufe, wie die Anwendungen, zulässt.

Definition: In der Informations-Welt existieren passive Komponenten. Sie repräsentie-

ren Informationen der realen Welt, nehmen aber selber keine Änderungen an dieser oder

den Informationen in der Instanzumgebung vor. Im Normalfall werden passive Kompo-

nenten der Informations-Welt durch Modelle in ihrer Form und Abhängigkeit beschrieben.

Entsprechende Instanzen werden in der Instanzumgebung verwaltet und können dort

durch entsprechende Schnittstellen abgefragt und verändert werden.

Definition: Aktive Komponenten gehören zu der Ausführungs-Welt. Hier werden Aufga-

ben, die in der Anlage zu vollbringen sind, durch Anwendungen abgebildet. Diese Anwen-

dungen können in einer zu beschriebenen Ausführungsumgebung installiert werden.

Die Ausführungsumgebung bestimmt einen Ort der Ausführung indem eine Verteilung auf

den Geräten verwaltet wird.

45

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Komponente

passive
Komponente

aktive
Komponente

Zustands
maschine

Struktur

Struktur + Verhalten

Abbildung 4.3: Modell der passiven und aktiven Komponenten

Diese beiden Umgebungen nutzen schlussendlich Ressourcen auf den bereitstehenden Gerä-

ten sowie die Kommunikations-Medien zwischen den Geräten.

Als Anschluss an existierende Begriffe wird in Abbildung 4.3 verdeutlicht, dass aktive und pas-

sive Komponenten beides Spezialisierung einer Komponente sind.

angeforderter
Zustand

Zustand

Zustandsmaschine
Komponenten
extern intern

Abbildung 4.4: Grundlagen der Zustandsmaschine einer aktiven Komponente

Aktive Komponenten besitzen grundsätzlich eine Zustandsmaschine (Abbildung 4.4. Damit wird

das Verhalten1 selbst zu einem erkund- und änderbaren Strukturmodell. Ein solches Prinzip ist

für passive Komponenten nicht wichtig, jedoch kann ein Zustand (keine Zustandsmaschine!)

zur Repräsentation auch erforderlich sein.

Eine Besonderheit gilt für Programme, die außerhalb der Ausführungsumgebung laufen: Sie

können eine Repräsentation einer aktiven Komponente besitzen um am Gesamtsystem teil-

zunehmen. Dabei sind sie selbst für die Synchronität der Zustandsmaschine (und weiterer

Informationen) verantwortlich.

4.2.1 Zustandsmaschine für aktive Komponenten

Da aktive Komponenten im Sinne der vorangegangenen Definition einen Ablauf haben, beinhal-

ten sie auch einen sich verändernden Zustand. Dieser wird in der Repräsentation abgebildet,

sodass er im Laufzeitmodell erkundbar ist. Insbesondere ist ein solcher Zustand wichtig bei der

Instanziierung. Eine Komponente hat so beispielsweise die Möglichkeit, während des Instan-

ziierungsvorgangs schon erkundbar aber nicht ansprechbar zu sein. In dieser Phase können

beispielsweise Relationen aufgebaut werden oder Kommunikationspartner gefunden werden.

1Soweit es in der Zustandsmaschine abgebildet ist, denn der eigentliche ausgeführte Programmcode ist hierdurch nicht reprä-
sentiert.

46

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realität: Repräsentationen im Modell

lade

angehalten

starteaktiviere

aktiv

deaktiviere

entlade

Abbildung 4.5: Beispiel einer einfachen Zustandsmaschine für die Interaktion mit der Ausführungsum-
gebung

Danach werden z.B. minimale Zustandsmaschinen für Dienste definiert, sodass die Ausfüh-

rungsumgebung sich dieser Zustände, z.B. zur Migration von Diensten, bedienen kann.

Als Basis werden in einer Zustandsmaschine zwei Typen von Zuständen gesehen: Zustände

und angeforderte Zustände. Durch diese Übergangszustände werden die Übergänge zwischen

den Zuständen zeitlos. Ein Zugriff von außerhalb der Komponente kann die Zustandsmaschine

nur in einen angeforderten Zustand bringen, worauf die Komponente folglich reagieren sollte

und den zugehörigen „Zustand“ schlussendlich erreichen sollte. Die Komponente selber hinge-

gen kann nur Übergänge zu einem Zustand vollziehen. Abbildung 4.4 verdeutlicht dieses.

Zustandsmaschine für aktive Komponenten und die Interaktion mit der Ausführungsum-
gebung Die Granularität mit der der Zustand abgebildet wird, hängt von der Komponente und

dem Anwendungsfall ab. An dieser Stelle wird ein allgemeines Zustandsmodell beschrieben.

Je nach Ausprägung des Gesamtsystems sind dabei einige Zustände nicht sinnvoll realisierbar,

welches im Folgenden beschrieben wird. Hierdurch wird verdeutlicht, welche Voraussetzungen

zum einen an die Entwicklung der aktiven Komponente, wie auch an die Ausführungsumge-

bung gestellt werden.

Die Instanziierung einer aktiven Komponente kann als laden bezeichnet werden. Hiernach be-

findet sich die Komponente erst mal in einem angehaltenen Zustand, womit sie „lediglich“ die

Eigenschaften einer passiven Komponente hat. Sie kann von anderen Komponenten als aktive

Komponente erst genutzt werden, wenn sie durch den Befehl aktivieren in den aktiven Zustand

gebracht wird. Beim Laden können also einmalige Initialisierungsvorgänge vorgenommen wer-

den - beispielsweise Ressourcen-Allokation. Beim Aktivieren werden hingegen wiederkehren-

de Initialisierungsvorgänge wie Verbindungsaufbauten vorgenommen. Durch den deaktivieren

Befehl begibt sich die Komponente wieder in den gleichen Zustand wie nach dem laden und

kann von hier aus auch entladen werden, sodass sie nicht weiter existiert. Abbildung 4.5 ver-

anschaulicht die Zustände mit den entsprechenden Übergängen.

Dieses Modell ist auf die wesentlichen Aspekte, die zum Realisieren von Dynamik benötigt

werden, begrenzt. Es stellt somit eine einfache Möglichkeit dar, die typischen Lebenszyklen

mit den Anforderungen abzudecken. Es ist jedoch nicht als allumfassendes Zustandsmodell

47

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

gedacht. Wenn die Zustände selber als Klassen modelliert werden, können spezialisierte Zu-

standsmaschinen durch Vererbung geschaffen werden indem abgeleitete Klassen eine interne

(feinere) Zustandsmaschine besitzen. So kann die Ausführungsumgebung lediglich die gene-

rischen, hier beschriebenen Zustände kennen; intern können jedoch feiner granulierte Abläufe

modelliert werden.

Hintergrund:
Ein ähnliches Modell (speziell für Funktionsbausteine in verteilten Systemen) ist in der

IEC61499 Part1 [6] definiert.

In OPC-UA sind solche Zustandsmodelle allgemein abbildbar. Dabei wird durch OPC-

UA ein allgemeines Meta-Modell bereitgestellt, in dem Zustände und Übergänge definiert

werden. Ein solches konkretes Zustandsmodell kann an beliebige Objekte, vornehmlich

„OPC-UA Programs“ (Part 10 von [9]) angehangen werden, um den Verlauf abzubilden.

4.2.2 Die Komponenten-Repräsentation

In vorangegangenen Kapiteln wurde bereits die Abbildung der physikalischen, automatisie-

rungstechnischen Geräte in einem Modell erläutert. An dieser Stelle wird eine allgemeine Re-

präsentation für Komponenten beschrieben, da eine Repräsentation nicht nur für Komponenten

der realen Welt von Vorteil ist. Genauso werden auch Repräsentationen für aktive und auch

passive Komponenten benötigt.

Komponenten
Repräsentation

key value

A
n

n
o

ta
ti
o

n
s
lis

te

ID

Komponente

HerstellerID

TypeID

Serial#

Version

Haupt-Nummer

Unter-Nummer

Build-Nummer

:Adresse

Name:STRING

R
ep

rä
se

nt
ie
rt

du
rc

h

:Zustand

Aktualität: TIME

Reale- oder Informations-Welt Informations-Welt

Abbildung 4.6: Detailaufbau einer Repräsentation

48

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realität: Repräsentationen im Modell

Elemente einer Komponenten-Repräsentation In Abbildung 4.6 ist die Struktur einer allge-

meinen Komponenten-Repräsentation veranschaulicht. Es handelt sich also selber um eine

passive Komponente, die alle statischen oder dynamischen Daten, die einer realen Kompo-

nente zugehörig sind, hält und so einheitlich zugreifbar macht.

Dabei bietet eine Repräsentation immer eine ID. Eine ID ist vom Verständnis her eine UUID im

Sinne von [30], also eine systemweit (ggf. sogar weltweit) eindeutige Identifikations-Möglichkeit

für ein konkretes Gerät. Sie wird hier als Struktur aus drei Teilen - jeweils als String abbildbar -

aufgebaut. Eine Hersteller-ID sorgt dafür, dass Hersteller von Komponenten identifiziert werden

können und gleichzeitig auch, dass sie unabhängig voneinander ihre IDs verwalten können.

Ferner gibt es eine TypeID, die unterschiedliche Gerätetypen festlegt. Dabei spezifiziert der

Hersteller eine ggf. interne Struktur des Typs und auch die Semantik, die in dieser Struktur

liegt. Schließlich ergibt eine Serien-Nummer die Möglichkeit, Instanzen gleichen Typs eindeutig

zu identifizieren.

Hintergrund:
Das Prinzip einer solchen strukturierten Identifikations-Möglichkeit ist weit verbreitet - Bei-

spiele sind die USB-Spezifikation oder ISOBUS (ISO11783, [8]).

Versionen können ebenfalls strukturiert werden. Eine Hauptnummer gibt dabei die eigentliche

Version an, eine Unterversion in erster Linie die Strukturierung in einer Produktreihe. Dazu

wird hier verlangt, dass gleiche Unterversionen auch technisch kompatible, d.h. vor allem äqui-

valente Versionen bezeichnen. Um prinzipiell unterschiedliche, jedoch äquivalente Versionen

auseinander zu halten kann eine Build-Nummer als dritter Teil hinzugezogen werden.

Hintergrund:
Ähnlich wird es in Quellcode-Verwaltungssystemen oder auch für Software-Produkte all-

gemein gehandhabt.

Um auch einen sprechenden Namen für eine Komponente angeben zu können, ist ein Feld Na-

me vorgesehen. Als wichtig wird erachtet, dass dieses Datum nicht als Referenz dient, sondern

nur der visuellen Darstellung für menschliche Nutzer. Als Referenz dient insgesamt hingegen

die Adresse 2.

Hintergrund:
Entsprechend hat jede Node in OPC-UA einen Displaynamen definiert, welcher für Anzei-

gen (auch internationalisiert) bereitsteht. Für die Referenzierung wird eine NodeId genutzt,

welche eine Node eindeutig in einem Server identifiziert.

2Mitteils einer ID können Komponenten identifiziert, aber nicht adressiert (d.h. angesprochen) werden. Es müsste zusätzlich
der „Speicherort“ der ID gesucht werden. Eine Adresse liefert beides. Der Typ der Adresse hängt vom Instanzsystem ab.
Laut Anforderung müssen dort Instanzen zu identifizieren sein. Das Prinzip der EPRs im späteren Kapitel 4.3.1 stellt eine
Möglichkeit der Strukturierung dar.

49

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Der Zustand einer Repräsentation stellt den eigentlichen Zustand einer Komponente dar; ist

hier jedoch nur ein Datenfeld.

In den später abgeleiteten Klassen der Komponenten-Repräsentation wird auf spezifische

Überlagerungen dieses generischen Prinzips hingewiesen.

4.2.3 Unspezifizierte, flexible Annotationen für Repräsentationen

Einer der wichtigsten Teile einer Komponenten-Repräsentation ist seine Annotations-Liste (Ab-

bildung 4.7), um zusätzliche Daten - allgemein und dynamisch - von den Komponenten bei

deren Repräsentation ablegen zu können.

grafische Darstellung:

Objekt

Annotation

Wert: String

Annotationsliste

passive
Komponente

1

*

Erweiterungsmöglichkeit:
Spezifische Klassen von
Annotation

key value

A
n

n
o

ta
ti
o

n
s
lis

te

Abbildung 4.7: Liste von Annotationen zu einer Komponente - grafisch vereinfacht als Schlüssel-Wert-
Tabelle

Dieses kann auf konzeptueller Ebene mit den Stereotypen von UML (vgl. UML-Profile in [25])

verglichen werden. Anwendungen annotieren Komponenten also an ihrer Komponenten-Re-

präsentation und ordnen ihnen so Eigenschaften zu. Diese sind veränderlich und dynamisch

zur Laufzeit.

Diese Annotationen werden dabei allgemein als Schlüssel-Wert-Paar repräsentiert, welche ge-

sammelt als Liste von der Komponenten-Repräsentation im Modell (vgl. Kapitel 4.2.3) verwaltet

und abgelegt werden, sodass sie dort zugreifbar sind.

Hintergrund:
Die Idee für diese Liste ist abgeleitet aus den Headern nach der RFC 5322 „Internet Mes-

sage Format“ [18], wie sie unter anderem auch für Mails verwendet werden.

Hier werden einige verpflichtende, einige freiwillige Schlüssel mit ihren Bedeutungen für

den Mail-Versand definiert. Beispiel-Schlüssel sind From, To oder auch Reply-To, die ent-

sprechende eMail-Adressen darstellen. Auf der anderen Seite sind alle Mail-Systeme

berechtigt, neue Schlüssel-Wert-Paare in den Mail-Header einzufügen. Dieses passiert

beispielsweise durch Spam-Erkennungs-Systeme. Der Empfänger einer Nachricht muss

demzufolge wissen, mit welchem Spam-Erkennungs-System seine Mails untersucht wur-

den.

50

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realität: Repräsentationen im Modell

Durch eine Klasse Annotation, deren Instanzen den Namen des Schlüssels tragen und ei-

ne Variable Wert haben, wird eine minimale Basis-Eigenschaft definiert. Hiervon können sich

die Anwendungen, die Annotationen hinzufügen, eigene Annotations-Klassen ableiten, die zu-

sätzliche, Wert-Repräsentationen oder auch mehrere Werte unter einem Schlüssel ablegen.

Daraus folgt also, dass jede Anwendung seine eigenen Annotations-Formate sowie Semantik

für die Interpretation der ablegten Einträge in der Annotations-Liste mit sich bringt.

Beim Zugriff gilt ein kooperativer Ansatz, d.h. Komponenten sollten keine Werte überschrei-

ben, die sie nicht selber angelegt haben. Ebenso sollten nicht weiter gepflegte Werte gelöscht

werden. Man kann, wenn auch konzeptuell nicht notwendigerweise, den schreibenden Zugriff

beschränken.

So können beispielsweise Geräteeigenschaften, die in einer solchen Liste abgelegt werden,

nachträglich mit Informationen angereichert werden, die ein Gerät von Haus aus nicht über

sich eintragen kann. So kann ein Betriebsstundenzähler installiert werden, der kontinuierlich

als Annotation der Geräte-Repräsentation den Zeitraum des Betriebes unter einem vom Be-

triebsstundenzähler-Dienst definierten Schlüssel anhängt.

Auch können komplexe Erweiterungen wie Schnittstellenbeschreibungen von Diensten hier hin-

terlegt werden.

Vorteile der Annotationen Die Annotations-Liste stellt also eine zentrale Sammelstelle für

Annotationen zu einer Komponente dar, die von unterschiedlichen anderen Komponenten zu-

geschrieben werden. Traditionell würde man dieses als interne Datenhaltung der anderen Kom-

ponenten verstehen, sodass jede Komponente seinen eigenen Daten-Raum schafft und in sich

verwaltet.

Im Gegensatz zu einer internen Datenhaltung der Komponenten bietet dieser zentrale Ablage-

Punkt von Annotationen mehrere Vorteile:

Zum einen können andere Komponenten hier ihre zu der Komponente gehörenden Annotatio-

nen ablegen, ohne selber eine Liste der Komponenten verwalten zu müssen.

Zum anderen werden die Annotationen in einem semi-formalen Format abgelegt und sind all-

gemein zugänglich, wobei ohne das Wissen über die Semantik der Schlüssel, die Werte nicht

sinnvoll ausgewertet werden können. Auf diese Weise werden Annotationen von „fremden“

Komponenten einfach ignoriert. Etwas anders sieht es aus, wenn eine Anwendung den Inhalt

einem Menschen repräsentiert. Dieser kann direkt dem Schlüssel eine Semantik und damit

eine (vermutete) Bedeutung zuordnen.

Welche Daten als Annotation; welche als Datenfelder (abgeleitete Klassen) modellie-
ren? Prinzipiell könnten auch die Elemente wie ID, Version, Aktualität, EPR und Name einer

Komponenten-Repräsentation als Annotations-Element abgelegt werden.

51

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

aktive
Komponente

Komponenten
Repräsentation

Repräsentiert durch

z.B. Abläufe

ggf. Instanzumgebung

aktive Komp.
Repräsentation

passive
Komponente

Repräsentiert durch

R
e
a
le

W
e
lt

z.B. Modell-Beschreibungen

passive Komp.
Repräsentation

Geräte

Repräsentiert durch Geräte
Repräsentation

passive
Komponente

In
fo

rm
a
ti

o
n

s
W

e
lt

Instanzumgebung

Abbildung 4.8: Konzept der Trennung von Komponenten und ihren allgemeinen Haushaltsdaten

Da es sich hierbei aber um grundsätzliche Elemente handelt, die jede Komponente als Reprä-

sentation haben sollte, werden diese nicht in der Annotations-Liste hinterlegt. In dieser sind

also ausschließlich Daten erfasst, die aus Sicht der Komponenten-Repräsentation optionale

Informationen enthalten.

4.2.4 Unterschiedliche Komponenten-Repräsentationen

Das Prinzip der Repräsentationen lässt sich konsequent auf Komponenten im Allgemeinen an-

wenden, wie in Abbildung 4.8 dargestellt: Sowohl ein Gerät (etwas aus der realen Welt), wie

auch aktive und passive Komponenten innerhalb der Modell-Landschaft besitzen eine Reprä-

sentation. Teilweise fällt die Repräsentation mit der eigentlichen Komponente zusammen, da

hierdurch weniger Verwaltungsaufwand entsteht.

Es ist jedoch auch möglich die Komponente und ihre Repräsentation zu trennen. Hierdurch

wird es zum einen möglich, externe Komponente zu erkunden oder auch zu interagieren. Bei-

spielsweise hat eine externe Anwendung eine Repräsentation und kann damit gefunden und

genutzt werden. Zum anderen unterstützen separate Repräsentationen auch eine Verteilung

des Modell-Landschaft auf unterschiedliche Geräte.

So wird es möglich, Relationen zwischen Modellen und den Komponenten darzustellen. Dabei

spielt es keine Rolle, ob eine Komponenten-Repräsentation eine Repräsentation für eine aktive

Software-Komponente (z.B. Anwendung oder Dienst), ein Gerät oder eine passive Software-

Komponente, wie ein Modell, darstellt.

Damit eine Zuordnung der Komponenten-Repräsentation gegeben sein kann, wird die Relation

repräsentiert_durch definiert. Sie zeigt von der eigentlichen Komponente auf ihre Repräsenta-

52

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.2 Abbildung der Realität: Repräsentationen im Modell

tion. Somit ist eine eindeutige Zuordnung zwischen der Komponente und ihrer Repräsentation

gegeben. Selbstverständlich ist eine solche Relation nur realisierbar, wenn sowohl die Re-

präsentation als auch die eigentliche Komponente auf einer gemeinsamen Instanzumgebung

aufbauen.

Eine der wichtigen Eigenschaften dieser Repräsentation ist, dass sie alle Eigenschaften und

Informationen über eine Komponente modelliert, ohne die Komponente selber zu sein. Eine

Repräsentation kann also z.B. auch entfernt verwaltet werden.

Ein weiterer Anwendungsfall ist eine Repräsentations-Kopie, die alle Eigenschaften der Re-

präsentation spiegelt - z.B. aus Performancegründen. Um die Aktualität vermerken zu können,

verfügen die Repräsentations-Kopien über das Datenfeld Aktualität, in welchem der Zeitpunkt

der letzten Aktualisierung hinterlegt wird.

4.2.5 Beispiel: AT-Geräte-Struktur als Komponenten-Repräsentation

Das AT-Geräte-Struktur-Modell basiert auf einer Repräsentation von Geräten im Modell-Raum,

ist also selber ein Beispiel für diese Repräsentationen. Für die Verwendung des Modells zur

Geräte
Repräsentation

Self

Komponenten
Repräsentation

R
e

a
le

-W
e

lt
In

fo
rm

a
ti
o

n
s
-W

e
lt

Komponenten
Repräsentation

Abbildung 4.9: Das AT-Geräte-Struktur-Modell auf Basis der Trennung von Informationswelt und Rea-
lität

Laufzeit, wie sie genauer im späteren Kapitel beschrieben ist, wird jedem Gerät eine Instanz

der Geräte-Repräsentation Self (Abbildung 4.9) zugeordnet. Dieses Objekt repräsentiert damit

die Eigenschaften des Gerätes. Primär stellt es, wie zuvor beschrieben, die Kommunikations-

Adresse dar. Aber auch ein Status, der durch die Oberklasse Komponenten-Repräsentation

vorhanden ist, kann hier den allgemeinen Betriebszustand abbilden.

Werden aus anderen Modellen Aussagen über dieses Gerät getroffen, können diese durch

entsprechende Relationen oder Annotationen dem Gerät zugeordnet werden, wodurch sie für

Dritte erkundbar werden.

53

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Als Annotationen könnte beispielsweise der aktuelle Ressourcenverbrauch der Geräte be-

schrieben werden. Sollten Anwendungen eine Auswahlmöglichkeit für das Deployment haben,

können sie entsprechend wenig belastete Geräte nutzen.

4.3 Kommunikation im automatisierungstechnischen Kontext

Kommunikation ist das wichtigste Mittel in einem verteilten System. Es aktiv einzusetzen, ist

eine der wichtigsten Grundlagen für die Automatisierung von Anlagen, basierend auf verteil-

ten Modellen. Deswegen soll an dieser Stelle eine Einordnung der Kommunikationsschichten

vorgenommen werden. Gleichzeitig werden Formen der Kommunikation beschrieben, die auf

Anwendungsebene genutzt werden können. Die Unterschiede werden diskutiert und beschrie-

ben.

Ziel ist es, die unterschiedlichen Eigenschaften der Kommunikation darzustellen. Bei einer Rea-

lisierung müssen die Ähnlichkeiten des Kommunikationssystems (Feldbus / Ethernet) mit den

hier beschriebenen Anforderungen in Einklang gebracht werden.

Kommunikations-
Medien

z.B. TCP/IP-
Ethernet

Kommunikations-
Medien

Anwendungen

S
u

b
s
c
ri
p

ti
o

n
s
-

D
ie

n
s
te

nachrichten-orientiert

Aufruf/Antwortsingulär

S
y
s
te

m
b

a
s
is

-
D

ie
n

s
te

Kommunikations-Typen Sub/Not

Intent-

basierte

Kommunikation

Kommunikations-Schema

M
e

ld
u

n
g

s
-

D
ie

n
s
te

Nachrichten-Typen

Abbildung 4.10: Zusammenfassendes Kommunikations-Verständnis

In Kapitel 2.3 wurde aufgezeigt, dass es in vielen Bereichen eine mehr oder weniger einheitli-

che Vorstellung von der Kommunikationsstruktur insgesamt gibt. Wie ebenfalls dort beschrie-

ben, ist insbesondere die Mischung des reinen Transports von Kommunikations-Medien mit der

Anwendungsebene kritisch zu sehen, da hierdurch eine Erweiterbarkeit sowie eine unabhängi-

ge Entwicklung von unterschiedlichen Produkten verhindert wird.

Um die unterschiedlichen Aufgaben und Anforderungen der Kommunikation in einer Automa-

tisierung zu adressieren, sind unterschiedliche Bus- und Netzwerksysteme notwendig und üb-

lich.

Das im Folgenden beschriebene Konzept berücksichtigt bisherige Arbeiten und versucht gleich-

zeitig die semantischen Ebenen in einer Weise aufzuteilen, dass zukünftige Entwicklungen sich

klar in die drei Schichten einordnen lassen. Es ist als Überblick in Abbildung 4.10 dargestellt.

54

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

singuläre Nachrichten

Aufruf/Antwort-Nachrichten
SystemBasisDienst-Nachrichten

sub/not Nachrichten
Intent-basierte Kommunikation

lokale Aufrufe

alle Kommunikations-Typen

(unspezifisch)

E
in
ga

ng

A
us

ga
ng

SBDSBD SBD

IntentIntent

Abbildung 4.11: Visuelle Darstellung der Kommunikationstypen

Gleichzeitig wird für die Referenzierung und Adressierung eine einheitliche Adressierungsform

auf Basis der „EndPointReferences“ vorgestellt 3.

Abbildung 4.11 stellt die im Weiteren verwendete grafische Notation dar. Zusätzlich zu den vier

im Folgenden dargestellten Kommunikations-Typen wird als Sonderfall die lokale Kommunika-

tion dargestellt. Eine allgemeine Notation soll unspezifisch darstellen, dass eine Komponente

grundsätzlich kommunizieren kann.

4.3.1 Referenzierung über Systemgrenzen hinweg

Die transparente Kommunikation wurde in den Anforderungen in Kapitel 3 formuliert. Ebenso

wurde beschrieben, dass eine einheitliche, allgemeine Adressierung benötigt wird.

Es ist sinnvoll, ganz allgemein eine Adresse zu definieren, die nicht durch das Kommunikations-

Medium selber beschrieben wird und damit auch nicht von diesem System abhängig ist.

Durch Medien-spezifische Erweiterungen oder unterschiedliche Nutzung der Datenfelder einer

solchen Adresse wird allen Komponenten im Gesamtsystem eine Handhabung der Adressen

möglich und das ohne, dass sie sich um den Inhalt einer Adresse kümmern müssen.

Im Gesamtsystem gibt es drei unterschiedliche Arten von Adressen:

Kommunikations-Adresse Adresse (abhängig vom Kommunikations-Medium) um ein Gerät

zu identifizieren. (Beispiel: Ethernet IP Adresse)

Dienst-Adresse Zugriffspunkt auf einen Dienst, oder ein Programm innerhalb eines Gerätes.

(Beispiel: Ethernet Port)

3Viele der Aspekte im Folgenden sind ähnlich zu den in Kapitel 2.3 vorgestellten Systemen - es geht in diesem Kapi-
tel also auch um ein einheitliches Verständnis, sodass für die modellgetriebene Instanzumgebung die Kommunikations-
Anforderungen erörtert werden.

55

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Komponenten-Adresse Referenz auf ein Element innerhalb des Dienstes; innerhalb des In-

stanzsystems eine Komponente/Objekt. (Beispiel: Pfad in einer URL, also „/unterme-

nue/webseite.html“)

Die zuvor beschriebene Adresse soll genau eine Komponente auf einem Gerät identifizieren

können. Um eine begriffliche Eindeutigkeit zu erreichen, wird für eine solche Systemweit-

eindeutige Adresse der Begriff EndPointReference (EPR) in Anlehnung an die Spezifikation

in „WS-Addressing“ genommen: Eine EPR (Abbildung 4.12) beschreibt den Zugriffspunkt auf

End
Point
Reference

Dienst
Adresse

Sender EPR Empfänger EPR

Kommunikations
Adresse

Komponenten-
Adresse

Abbildung 4.12: Verständnis des grundsätzlichen Aufbaus einer Adresse als End Point Reference

ein Ziel; eine Referenz. Das Ziel kann dabei unterschiedlicher Art sein, wie aus den obigen

Begriffen hervorgeht.

Es kann wichtig sein, dass die Komponenten unterschiedliche Adressen auseinander halten

können, indem sie die Datenfelder der Adresse vergleichen. Unterscheidet sich ein Datenfeld,

sind es im Sinne der Adresse unterschiedliche Referenzen.

Sollte eine Komponente eine EPR zur Kommunikation nutzen, muss diese EPR zu dem Kom-

munikations-Medium passen. Andernfalls sind entsprechende Router-Dienste zu spezifizieren,

die eine Brücke herstellen.

Mapping auf EPRs Eine solche Adressierungsmöglichkeit über die Systemgrenzen ist im

Endeffekt neuartig. Jedoch bietet beispielsweise die EPR aus der W3C Empfehlung Web Ser-

vices Addressing [34] eine sinnvolle Ausgangsbasis für eine Formulierung des allgemeinen

Datensatzes „Adresse“.

56

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

WebServices sind - wie Eingangs beschrieben - ausschließlich auf XML definierte Kommuni-

kationen und Beschreibungen. So sind auch EPRs laut [34] als XML definiert:

<wsa:EndpointReference>

<wsa:Address>xs:anyURI</wsa:Address>

<wsa:ReferenceParameters>xs:any*</wsa:ReferenceParameters> ?

<wsa:Metadata>xs:any*</wsa:Metadata>?

</wsa:EndpointReference>

Dieses heißt jedoch nicht zwangsläufig, dass auch eine XML-basierte Kodierung verwendet

werden muss. Aus Performance-Gründen kann eine effizientere Repräsentation erfolgen, wie

bereits in der Anforderungs-Phase ausgeführt.

Um die oben beschrieben Verknüpfung zu erreichen, erfolgt eine Abbildung der Teile einer

EndPointReference auf die WS-Addressing Definition.

Kommunikations-Adresse <wsa:Address>

Dienst-Adresse <wsa:ReferenceParameters>

Komponenten-Adresse <wsa:Metadata>xs:any*</wsa:Metadata>

Die Kommunikations-Adresse muss dabei durch Ihren Typen xs:anyURI ein Protokoll definie-

ren, welches eindeutig einem Kommunikations-Medium im Sinne von Kapitel 4.3.2 zuzuordnen

ist.

Zutreffend ist auch die Erweiterbarkeit durch @any Elemente z.B. an Stelle des Adress-Ele-

ments. Hierdurch wird sichergestellt, dass die unterschiedlichen Belange der Kommunikati-

ons-Medien auch repräsentiert werden können. Als Beispiel ist hier IP zu nennen, welche

in erster Näherung durch eine Protokollangabe in dem <wsa:Address>-Feld in der Form

http://127.0.0.1 zwar zulässig ist. Aber sie ist in dem Beispiel nur deswegen eindeutig,

weil implizit von einer TCP/IP Kommunikation ausgegangen wird. Es kann also, falls das Pro-

tokoll http: per UDP verwendet werden soll, eine entsprechende Annotation an der Adresse

vorgenommen werden.

Wichtig ist, dass dieses nur eine Möglichkeit ist, eine allgemeine Adressierung darzustellen.

Es wird auch klar, dass in anderen Problemfeldern äquivalente Probleme auf ähnliche Weisen

gelöst wurden.

4.3.2 Kommunikations-Medien

Wie im Kapitel 2.3 beschrieben, existiert auf Ebene der Kommunikations-Medien ein Bus- oder

Netzwerk-System, welches sich ausschließlich um den Transport der Daten kümmern sollte.

57

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Hierfür ist auf einem Gerät neben den eigentlich zu transportierenden Daten eine Kommunika-

tions-Adresse für die Schnittstelle auf dem Gerät befindlicher Komponenten wichtig.

Eine solch minimale Schnittstelle des Kommunikations-Mediums nach oben kann durch ggf.

nötige Parameter zur Echtzeit-Behandlung oder zum Fehlerverhalten optional ergänzt werden.

Diese Ergänzungen können durch die aufbauenden Schichten folglich genutzt werden, wenn

sie entsprechende Anforderungen haben.

Technische Details - wie beispielsweise ob die Kommunikation selber Verbindungs-orientiert im

Sinne von TCP realisiert wird oder nicht, werden von dieser Ebene intern gehandhabt4.

Eine Fehlerschnittstelle stellt einen Rückkanal bereit. Dabei kann das Medium eine fehlgeschla-

gene Kommunikation den aufbauenden Komponenten mitteilen.

Nach NE139 [20] sollten die aufbauenden Systeme jedoch auch ohne diesen Rückkanal aus-

kommen, d.h. nur wenn es für die Anwendung besonders wichtig ist, ist eine Quittierung des

Empfangs zu realisieren.

4.3.3 Nachrichten-basierte Kommunikation

Bei dieser Ebene handelt es sich eher um eine imaginäre Ebene. Im Endeffekt wird sie von allen

Bus- und Netzwerksystemen, die in der Automatisierungstechnik eine Rolle spielen, umgesetzt.

Definition: Eine Nachricht ist ein Datensatz, welcher zu einem Zeitpunkt von einem Sen-

der erzeugt, ggf. durch ein Kommunikations-Medium, versendet wird, um von einem Emp-

fänger verarbeitet zu werden. Als Sender und Empfänger sind in der Modell-Welt Kompo-

nenten zu verstehen.

Weitergehende Vereinbarungen - beispielsweise eine Zuordnung von Anfrage-Nachricht und

Antwort-Nachricht eines Dienstes - erfolgt aufbauend auf Anwendungsebene. Dabei werden

grundsätzlich die Nachrichten unabhängig voneinander versandt. Dieses begründet ein asyn-

chrones Verhalten: Es werden sowohl auf Sender-, wie auch auf Empfänger-Seite, keine Res-

sourcen blockiert. Die Systeme laufen ungehindert weiter, bis die eintreffende Antwort verar-

beitet wird.

Hintergrund:
Wie in der NE139 beschrieben, wird jegliche Kommunikation als Nachricht angesehen.

Auch OPC-UA versendet Dienstaufrufe asynchron als Nachricht.

4In der NE139 wird eine Kommunikation immer basierend auf einer Verbindung gesehen. Allerdings handelt es sich dabei
nicht zwangsweise um eine technische Realisierung einer Verbindung im Sinne von Auf-/Abbau einer TCP-Verbindung,
sondern eher um eine „Kennen“-Verbindung. Die miteinander kommunizierenden Teilnehmer kennen also gegenseitig ihre
Adressierung.

58

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

Kopf

Rumpf

SenderEPR
EmpfängerEPR
Zeitpunkt
ID
Format

unspezifiziert

Nachricht

Abbildung 4.13: Datenfelder einer Nachricht

Prinzipieller Aufbau einer Nachricht Um eine Vorstellung davon zu bekommen, was eine

Nachricht ist, wird hier eine Beschreibung geliefert. Nicht alle Daten müssen dabei explizit

übermittelt werden - vielfach kann beispielsweise durch das Kommunikations-Medium der Ab-

sender einer Nachricht bereitgestellt werden, sodass der Transport diese Daten nicht explizit

zusätzlich notwendig ist.

Eine Nachricht besteht im Wesentlichen aus zwei Teilen, wie auch in Abbildung 4.13 dargestellt:

Einem Kopf und einem Rumpf.

Der Rumpf einer Nachricht enthält die eigentlichen Nutzdaten. Die Kommunikation überträgt

diesen Teil der Nachricht unverändert. Der Empfänger einer Nachricht spezifiziert das Format;

der Sender muss also dieses Format der Nachricht kennen und berücksichtigen.

Im Kopf der Nachricht befinden sich folgende Felder:

Sender: EPR Eine EndPointReference auf die Absender-Komponente und damit Ersteller ei-

ner Nachricht.

Empfänger: EPR Eine EndPointReference auf die Empfänger-Komponente einer Nachricht.

Zeitstempel: TIME Zeitstempel des Erstellens. Hierdurch kann der Empfänger Nachrichten

anhand des Eingangs oder des Erstellens abarbeiten.

ID: int Eine Nummerierung der Nachrichten durch den Sender. Auf diese Weise kann der

Empfänger auf eine potenzielle Antwort Bezug nehmen. Der Sender muss seine IDs der

aktuell verschickten Nachrichten zum einen eindeutig halten und zum anderen auch ver-

walten, sodass er einen Bezug zwischen gesendeter Nachricht und einer empfangenen

Antwortnachricht herstellen kann.

Format: int Das Format kodiert die Struktur des Rumpfes auf Anwendungsebene. Die Emp-

fänger-Komponente kann anhand des Formates also erkennen, in welcher Struktur der

Rumpf abgelegt ist. Eine Nutzung der Information auf Transportebene wird nicht vorge-

nommen.

Hintergrund:
Die Teilung von Daten, die zum Transport relevant sind (Kopf), vom für die kommunizie-

renden Partner relevanten Daten ist der RFC 5322 “Internet Message Format„ [18] nach-

empfunden. Hier hat sich diese strikte Separation bewährt.

59

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Struktureller Ablauf Eine Nachricht wird von der versendenden Komponente erzeugt. Die-

ses kann als Instanziierung eines Objektes „Nachricht“ im Objekt-orientierten Instanzsystem

erfolgen oder als „struct“ in einer 61131-3-Sprache. Folgend wird die Parametrisierung vorge-

nommen, bevor die Nachricht der Kommunikations-Komponente des sendenden Gerätes zum

Versand übergeben wird. Nach einer Serialisierung der Nachricht erledigt diese durch Nut-

zung der Kommunikation mit der Ressourcenverwaltung den Transport zum Zielgerät. Hier ist

die lokal vorhandene Kommunikations-Komponente während des Empfangs in der Lage, die

Existenz der Empfänger-Kompo-nente zu überprüfen und einen Empfang der Nachricht ggf.

abzulehnen. Der Kommunikationskanal wird also lediglich kurzfristig gebraucht und kann je

nach Transportmedium aufrecht erhalten oder abgebaut werden.

Auf diese Weise bekommt die sendende Komponente mit, dass sowohl das Empfänger-Gerät,

wie auch die Empfänger-Komponente existieren. Die geforderten Eigenschaften der transpa-

renten Kommunikation sowie der Empfangsgarantie sind damit gegeben. Wichtig ist dabei zu

bedenken, dass der Empfang einer Nachricht keine Garantie über die Verarbeitung oder Beant-

wortung nach sich zieht. Die Verantwortung und ggf. erforderliche Garantien hierfür sind durch

eine Qualitätsbeschreibung durch den Anwenderdienst abbildbar, jedoch in dem beschriebe-

nen Nachrichten-basierten Paradigma explizit nicht vorgesehen.

Durch die pro Gerät zentrale Rolle der Kommunikations-Komponente werden mehrere Vortei-

le erschlossen. Zum einen können die versendeten und empfangenen Nachrichten selber zur

Überwachung der Geräte genutzt werden, nach dem Gedanken „Wenn ein Gerät eine Nach-

richt gesendet oder empfangen hat, wird es aktuell erreichbar und aktiv sein“. Zum anderen

ist die Nachrichten-basierte Kommunikation gerade dazu da, eine asynchrone Kommunikati-

on zu ermöglichen. Also ist eine bewusste Toleranz von Verzögerungen auf Anwendungsseite

prinzipiell akzeptabel. Andernfalls würde auf eine synchrone Kommunikationsform zurückge-

griffen werden. Durch die Kommunikations-Komponente kann eine zentrale Komponente den

maximalen Kommunikationsbedarf des Gerätes gegenüber dem Kommunikations-Medium re-

glementieren, sodass die einzelnen Komponenten hiervon genauso entlastet werden, wie von

der Verwaltung der Kommunikation selber.

Status als lokale Variable Das Kommunikations-Medium bietet meistens die Möglichkeit Feh-

ler zu erkennen und zu beheben bzw. bietet einen Rückkanal, wenn das Empfangsgerät nicht

erreichbar ist. Diese Information kann in eine Status-Variable des Nachrichten-Kopfes auf loka-

ler Ebene abgebildet werden.

Hierdurch kann insgesamt eine sendende Komponente mitbekommen, wenn entweder das

Zielgerät nicht erreichbar ist oder die dort adressierte Komponente nicht existent ist.

Die Verarbeitung der empfangenen Nachricht sowie auch der Fehler-Status der zu senden-

den Nachricht ist dabei auf Anwendungsebene zu realisieren, da unterschiedliche Reaktionen

möglich und sinnvoll sind.

Aus Sicht der Instanzumgebung und des Kommunikationssystems sind insbesondere folgende

Fehlerquellen denkbar

60

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

• Zugriffsverweigerung: Die empfangene Komponente akzeptiert von dem Absender diese

/ alle Nachrichten nicht.

• Ressourcen-Problem: Der Empfänger kann die Anfrage derzeit nicht verarbeiten, da kei-

ne Ressourcen bereitstehen.

• Typ-Verletzung („Mismatch“): Der Rumpf entspricht nicht dem vom Empfänger spezifizier-

ten Format

Diese Gruppen von Problemen bieten einen Ansatz-Punkt für eine allgemein verständliche

Formulierung von Fehler-Antworten.

Aufbauend auf dieser Nachrichten-basierten „Denkweise“ lassen sich unterschiedliche Typen

für die Kommunikation beschreiben.

Dienste, die ihre Schnittstellen mittels dieser Typen anbieten, können aufbauend auf den Typen

beschrieben werden. Dabei ist festzustellen, dass für einige Typen bereits gemeinsame Kon-

zepte vorhanden und in Nutzung sind. Für andere Typen scheint die Verwendung eher marginal

zu sein.

Weiterhin ist zu beachten, dass auch diese Typen ggf. durch weitere Typen erweitert werden

können. Beispielhaft wird hier der Typ 4: Intent-basierte Kommunikation beschrieben, der eine

weitergehende Entkopplung der kommunizierenden Software-Komponenten beschreibt, in der

Automatisierungstechnik aber noch nicht existent ist.

Unterschiedliche Repräsentationen In dieser Arbeit wird bewusst auf die Abbildung der

Nachrichten in z.B. XML oder eine andere Sprache verzichtet. Eine solche Repräsentation zum

Transport kann zum einen beliebig gewählt werden. Zum anderen kann sie aber auch durch

das Kommunikations-Medium vorgegeben sein.

Darstellung von Nachrichten-Typ-Definitionen Als Darstellung für Nachrichten-Typen und

Formate wird folgende Notation vorgeschlagen:

TYP - Nachricht NAME PARAMETER

BESCHREIBUNG

Der TYP bezeichnet die (im Folgenden definierten) Typen von Kommunikations-Nachrichten.

Es werden also ggf. mehrere Nachrichten (Anfrage und Antwort) in einer Darstellung beschrie-

ben.

Der NAME ist eine Bezeichnung des Nachrichten-Typs. Er dient lediglich dem besseren Ver-

ständnis.

Die PARAMETER bezeichnen die Schnittstelle selbst, d.h. die Daten, die dort übermittelt wer-

den müssen. Die Darstellung ist vom Kommunikations-Typ abhängig.

Eine BESCHREIBUNG gibt eine Erklärung vom Inhalt der Nachricht.

61

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

4.3.4 Typ 1: singuläre Kommunikation

Die einfachste Form der Kommunikation sind Meldungen vom Sender zum Empfänger, ohne

eine Antwort. Diese Form ist auch in der NE139 beschrieben, wird bisher jedoch im AT-Umfeld

nicht genutzt. Wichtig ist, dass die Meldungen hier nicht mit Leitsystem-technischen Meldungen

im Sinne von Melden und Alarmieren verwechselt werden. An dieser Stelle sind Meldungen

eine einfache Einweg-Nachrichten-Übermittlung.

singulär - Nachricht NAME PARAMETER

Diese Mitteilungen werden ohne Antwort dem Empfänger zugestellt. Fehler auf Ebene des

Kommunikations-Mediums werden, soweit feststellbar, mitgeteilt.

Die PARAMETER bezeichnen die Daten, die im Körper der Nachricht übertragen werden.

4.3.5 Typ 2: Aufruf/Antwort Kommunikation

Diese Form der Kommunikation ist die typische Form für Dienst-orientierte Architekturen, sowie

auch nahezu alle aktuellen Kommunikationsformen im AT-Umfeld.

Auf eine Aufruf-Nachricht folgt eine festgelegte Antwort-Nachricht, d.h. es gibt immer Paare

von Aufruf-Antwort-Kommunikation. Die Antwort erfolgt zeitverzögert. Fehlerfälle werden durch

entsprechende Antworten kommuniziert. Erfolgt keine Antwort, ist dieses ein Fehlverhalten des

Empfängers.

Die vom Prinzip in NE 139 und konkret in NE 141 beschriebenen „SystemBasisDienste“ (SBD)

sind Beispiele für diesen Typ. Sie definieren unter anderem den Zugriff, die Erkundung und die

Manipulation von Objekt-orientierten Strukturen.

A/A - Nachricht NAME EINGABE → AUSGABE

Hier wird ein Tupel von Aufruf- und Antwort-Nachrichten beschrieben.

Die EINGABE bezeichnet dabei die PARAMETER der Aufruf-Nachricht; die AUSGABE ent-

sprechend die PARAMETER der Antwort-Nachricht.

4.3.6 Typ 3: Subskription/Benachrichtigungs-Kommunikation

Basierend auf der Nachrichten-basierten Kommunikation ist auch eine Subskription/Benach-

richtigungs-Kommunikation zu sehen. Dabei meldet sich ein Kommunikationspartner bei einem

Informationsanbieter an. Er abonniert also Neuigkeiten bei dem Informationsanbieter. Dieser

antwortet mit den Benachrichtigungs-Nachrichten. Je nach verwendeter Sprache können bei

der Subskription-Nachricht auch Qualifizierungen angegeben werden. Es ist beispielsweise

denkbar, dass ein delta-Faktor angegeben wird, der eine Minimal-Abweichung eines Messwer-

tes definiert, bei der eine Benachrichtigung erfolgen soll.

62

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

Ein typischer Anwendungsfall ist (gerade für OPC-UA) die Visualisierung: Hier werden per

„Subscription“ Prozesswerte dem Bediener einer Anlage aktuell angezeigt, selbst wenn die-

se sich nur selten ändern.

Genau genommen handelt es sich bei dieser Kommunikation um einen zusätzlichen Typen,

der als optional bezeichnet werden kann. Durch eine entsprechend hoch-frequen-tierte Auf-

ruf/Antwort Kommunikation kann eine Subskription/Benachrichtigungs-Kom-munikation ersetzt

werden. Allerdings überwiegen die Vorteile dieses Kommunikations-Typen, wenn bei seltenen

Ereignissen der Kommunikations-Partner schnell in Kenntnis gesetzt werden muss.

Hintergrund:
Bekannteste Vertreter dieser Kommunikationsform für Endanwender sind die RSS-Feeds

von Webseiten. Sie bieten in einem „standardisierten“ Format [29] Informationen über Än-

derungen auf einer Webseite.

Bei den RSS-Feeds wird auch gleichzeitig dargestellt, wie unterschiedlich dieser Kommu-

nikationstyp realisiert werden kann: Während es für den Endanwender aussieht, als ob

sein RSS-Programm von den Webseiten-Anbietern über die Änderungen informiert wird,

holt das RSS-Klienten-Programm technisch gesehen zyklisch die RSS-Feeds ab und über-

prüft so die Aktualität.

Technisch handelt es sich also um ein klassisches „Polling“ (zyklisches Abholen), wäh-

rend es sich dem Endanwender gegenüber wie ein Subskription/Benachrichtigungs-

Kommunikationstyp verhält.

Aufgrund der unterschiedlichen Realisierungsmöglichkeiten der internen Verwaltung, sowie

der Verbreitung der Benachrichtigungs-Nachrichten, wird hier auf eine konkrete Beschreibung

verzichtet. OPC-UA spezifiziert eine Reihen von konkreten Subskription/Benachrichtigungs-

Schnittstellen in den jeweiligen Teilen. Die NE139 nennt auf diesem Typ aufbauende Dienste

Subskriptionsdienste.

Ganz allgemein hat die OMG in ihre „Enterprise Collaboration Architecture“ [23] eine umfas-

sende Modellierung eines Subskription/Benachrichtigungs-Systems beschrieben.

Nachrichten bei Subskription/Benachrichtigungs-Kommunikation An dieser Stelle sollen

die prinzipiellen Informationsinhalte der Subskription- sowie Benachrichtigungs-Nachrichten

beschrieben werden.

singulär - Nachricht SUBSCRIPTION EPR, SUB-BESCHREIBUNG

Eine Aufforderung an den Empfänger, Benachrichtigungen zu versenden, wenn Bedingun-

gen zutreffen.

Die Subskription-Nachricht besteht aus einem Tupel: Zum einen muss eine EPR für den Emp-

fang von Benachrichtigungs-Nachrichten gegeben sein. Zum anderen muss eine Beschreibung

der Informationen existieren. Als Beispiel ist bereits ein Prozesswert und ein zugehöriger delta-

63

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Faktor erklärt worden. Diese Beschreibungssprache ist Anwendungs-spezifisch. Die anbieten-

de Komponente muss also eine entsprechende Verwaltung erledigen.

Es ergibt sich automatisch die Möglichkeit, diese Subskription zu beenden:

singulär - Nachricht DE-SUBSCRIPTION EPR, SUB-BESCHREIBUNG

Eine Aufforderung an den Empfänger, keine weiteren Benachrichtigungen zu versenden

Es bietet sich gerade bei den SUBSCRIPTION wie auch DE-SUBSCRIPTION Nachrichten an,

dass sie als Typ 2 realisiert werden, sodass der Aufbau und Abbau der Benachrichtigungen

quittiert wird. Hierdurch erhält der Empfänger der Benachrichtigungen auch einen Zeitpunkt,

ab wann er mit Benachrichtigungen rechnen kann.

Falls die per SUB-BESCHREIBUNG definierten Kriterien zutreffen, wird EPR durch eine Nach-

richt informiert.

singulär - Nachricht NOTIFICATION NOTIFICATION-BESCHREIBUNG

Information der EPR, dass ein Ereignis eingetreten ist.

Die NOTIFICATION-BESCHREIBUNG erfolgt wiederum auf Anwendungsebene und beschreibt

das Ereignis, welches aufgetreten ist. Der Anwendungs-Entwickler muss hier entscheiden, wel-

che Details des Ereignisses in der NOTIFICATION enthalten sind, also welche Informationen

eine Anwendung sinnvollerweise bekommt.

Vereinfachte Darstellung Auf das Wesentliche konzentriert, kann eine Subskription/Benach-

richtigungs-Kommunikation wie folgt dargestellt werden:

S/N - Nachricht NAME SUB-BESCHREIBUNG � NOT-BESCHREIBUNG

Eine Aufforderung an den Empfänger Benachrichtigungen zu versenden, wenn Bedingun-

gen zutreffen.

4.3.7 Typ 4: Indirekte Kommunikation per Intents

An dieser Stelle wird ein weiterer, neuer Kommunikations-Typ vorgeschlagen: Die Intent-ba-

sierte Kommunikation.

Um Komponenten weitgehender zu entkoppeln, sind Verwaltungskomponenten notwendig. Die-

se „vermitteln“ Kommunikation zwischen Komponenten, die sich direkt auf Kommunikations-

ebene nicht kennen und auch nicht miteinander kommunizieren.

Es handelt sich bei der Intent-basierten Kommunikation im Wesentlichen um eine spezielle

Form der Subskription/Benachrichtigungs-Kommunikation.

Dafür wird für die Benachrichtigung eine spezielle NOTIFICATION -Nachricht definiert, die

eine besonders einfache Form hat: Lediglich ein Schlüssel-Wert-Paar, wobei beide Teile aus

einer einfachen Zeichenkette bestehen.

64

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.3 Kommunikation im automatisierungstechnischen Kontext

SenderEmpfänger

Intent-
Verwalter

Sender

s:
Sch

lü
ss

el[]
->

n:in
te

nt

Intent

Singleton im
Gesamtsystem,
keine Historie!

Abbildung 4.14: Konzept der Intent-basierten Kommunikation als Erweiterung der
Subskription/Benachrichtigungs-Kommunikation

Intent - Nachricht INTENT-SCHLUESSEL WERT

Eine Information einer Anwendung über das Auftreten eines Ereignisses.

Diese Nachrichten werden Intents genannt und von Informationsanbietern an eine zentrale

Komponente gesendet. Komponenten lassen sich durch diese zentrale Stelle informieren, wenn

sie mit für sie interessanten Schlüsseln eintreffen.

Im Sinne des Subskription/Benachrichtigungs-Prinzips handelt es sich also um das Subskribie-

ren auf bestimmte Schlüssel an einer systemweit einheitlichen Intent-Kommunikations-Kompo-

nente.

Der Schlüssel definiert das Ereignis selber. Wenn eine Anwendung diesen Schlüssel kennt,

weiss sie auch um den WERT bzw. mit den enthaltenen Informationen umzugehen.

Durch die einfache Subskription/Benachrichtigungs-Kommunikation können Anwendungen In-

tents empfangen:

S/N - Nachricht INTENTSUBSKRIPTION EPR, INTENT-SCHLÜSSEL � INTENT

Eine Aufforderung an den Intent-Verwalter, Benachrichtigungen über eintreffende Intents

zu versenden

Der INTENT-SCHLÜSSEL ist dabei genau der SCHLÜSSEL, den die gesendeten Intent-Nach-

richten auch haben. INTENT beinhaltet als Benachrichtigung sowohl den Schlüssel, wie auch

den Wert. Da eine EPR ggf. für unterschiedliche SCHLÜSSEL angemeldet ist, wird SCHLÜS-

SEL hier analog zum Typen einer Nachricht verwendet: Er beschreibt den Inhalt des INTENT.

Ablauf Eine Anwendung kann eine Absicht (engl. Intent) äußern, indem sie eine Nachricht an

eine systemweit zentrale Komponenten, den Intent-Verwalter, versendet. Dieser leitet die Nach-

richt entsprechend an Empfänger weiter. Dafür melden sich Empfänger mit für sie interessanten

Schlüsseln an dem Intent-Verwalter vorab an, sodass aus ihrer Sicht eine Subskription/Benach-

richtigungs-Kommunikation entsteht. Abbildung 4.14 verdeutlicht den Vorgang, wobei auch klar

wird, dass die Empfänger von Intents als Subskription/Benachrichtigungs-Kommunikation rea-

lisiert werden, das Senden jedoch auf singulären Nachrichten basiert.

65

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Es ist dabei sinnvoll, dass die Intent-Nachrichten sofort zugestellt werden und es keine Historie

und dadurch keine nachträglichen Reaktionen gibt. Hierdurch wird klar, dass es sich um eine

aktuelle Absicht einer Anwendung für die zu dem Zeitpunkt „interessierten“ Empfänger handelt.

Hintergrund:
Der Begriff Intent stammt insbesondere aus dem Android-Betriebssystem. Die Subskripti-

on einer Anwendung wird hier durch ihre META-INF Datei „erledigt“, d.h. schon die Basis-

Beschreibung einer Android-App hat die Möglichkeit zu spezifizieren, bei welchen Intent-

Nachrichten eine App benachrichtigt werden möchte. Es erfolgt keine standardisierte Fest-

legung der Schlüssel und auch keinerlei Beschreibung der Nachrichteninhalte.

Das Prinzip scheint insbesondere für die Benachrichtigung bei Modell-Änderungen sinnvoll,

wenn - wie eingangs beschrieben - viele Komponenten auf Änderungen in der Modell-Instanz

reagieren sollten. Kapitel 4.5.3 beschreibt deswegen die Nutzung dieser Schnittstelle als ein

Anwendungsfall für Modelländerungen.

Wer definiert die Intent-Schlüssel? Es erscheint sinnvoll, hier keine Hierarchie oder festge-

legte Schlüssel-Liste zu pflegen. Das Konzept hat sich bei modernen Betriebssystemen genau

ohne eine vorab Festlegung bewiesen: So können Komponenten-Entwickler sich bilateral auf

einen Schlüssel einigen. Dieser kann durch den Intent-Verwalter eine Kommunikation zwischen

den Komponenten darstellen. Für den Intent-Verwalter ist jeder Schlüssel lediglich ein String,

der mit zuvor empfangenen Subskriptionen verglichen wird.

Durch dieses Prinzip wird eine „Einfachst-Kommunikation“ realisiert. Die sendenden sowie

empfangenden Komponenten werden komplett von der Adressaten-Verwaltung freigestellt. Die-

ses geht auf Kosten der Nachvollziehbarkeit, da eine sendende Instanz nicht sicher sein kann,

dass es überhaupt einen Empfänger gibt.

Das System bietet sich also für eine Art gezielte Broadcast-Nachrichten-System an.

4.3.8 Lokale Kommunikation

Auch ein Aufruf einer Methode, die durch eine API bereitgestellt wird, kann als Kommunikation

zwischen Komponenten betrachtet werden. Im Sinne des allgemeinen Verständnisses ist dann

beispielsweise das Objekt oder die Objekt-Referenz die Definition des Empfängers.

Zwei Aspekte sind grundsätzlich einfacher bei der lokalen Kommunikation, als bei den zuvor

beschriebenen.

1. Kein Erreichbarkeits-Problem - Kommunikation muss so konzeptioniert sein, dass ein

Ausfall des jeweiligen Gegenübers berücksichtigt wird. Bei einer lokalen Kommunikati-

on ist dies nicht der Fall.

66

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.4 Dienst-Modell: aktive, dynamische Komponenten

2. Enge Bindung: Durch eine lokale Schnittstelle sind die beiden Kommunikationspartner

technologisch ähnlich. Beispielsweise sind Kodierungsvorschriften durch eine gemeinsa-

me Plattform gleich, oder es kann sogar auf einen gemeinsamen Speicherbereich zuge-

griffen werden, sodass nur Zeiger auf Speicher übergeben werden und die Daten selber

nicht transportiert werden müssen.

Es erscheint deswegen sinnvoll, lokale Kommunikation getrennt zu betrachten:

Hier wird aber auch ersichtlich, dass eine lokale Kommunikation in aktuellen Systemen durch-

aus auch als entfernte Kommunikation realisiert werden kann: Wenn eine Kommunikation zwi-

schen autarken Prozessen auf einem Gerät stattfindet, können ähnliche Probleme auftreten,

wie bei einer entfernten Kommunikation der anderen Typen.

Das heißt auch, dass als lokale Kommunikation in diesem Sinne nur die Kommunikation der

Komponenten innerhalb einer Umgebung verstanden wird. Sobald beispielsweise unabhängige

Programme gestartet werden, handelt es sich um eine Interprozesskommunikation. Für eine

solche können die Typen 1-4 verwendet werden, da wiederum die (A)Synchronität beachtet

werden muss.

4.4 Dienst-Modell: aktive, dynamische Komponenten

Bereits in der Motivation wurde verdeutlicht, dass der Fokus dieser Arbeit nicht auf der Model-

lierung der aktiven Komponenten liegt. Jedoch ist die klassische Dienst-Orientierung mit ihrer

Schnittstellen-orientierten Kommunikation eine Herausforderung, die angegangen werden soll-

te. Schließlich müssen auch die für die Instanzumgebung vorgesehenen aktiven Komponenten

kommunizieren.

Eine Anwendung wird als eine Gruppe von Diensten verstanden. Ein Dienst hat im Wesentli-

chen aktive Komponenten. Damit sind Dienste also zum einen eine Strukturierungs-Möglich-

keit, zum anderen aber auch eine technologische Realisierung von verteilten Anwendungen.

Dienst

(Verteilungs-)
Management
Funktionen

Dienst
Funktionen

Lokale
Funktionen

m
ö

g
lic

h
e

S
y
s
te

m
g

re
n

z
e

Abbildung 4.15: Aufteilung eines Dienstes in Funktionen

67

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Zum einen kann ein Dienst lokal wirken, d.h. lokale Funktionen eines unterliegenden (Betriebs-

)Systems aufrufen oder Werte von lokal angeschlossenen Sensoren/Aktoren ermitteln. Diese

Schicht ist die unterste Schicht der lokalen Kommunikation.

Ein Dienst nutzt dabei die in Kapitel 2 beschriebenen Variablen. Dabei kann zwischen zwei

Variablenarten unterschieden werden. Zum einen existieren statische Variablen, die beispiels-

weise eine Parametrierung beinhalten. Sie sind vorgegeben und können bei Verlust nicht neu

berechnet werden. Zum anderen existieren dynamische Variablen, die durch andere Dienste

oder den Dienst selber berechnet / bereitgestellt werden. Beispielsweise werden Prozesswerte,

die sich permanent ändern, als solche angesehen.

Damit bilden statische Variablen zusammen mit den internen Variablen die Konfiguration eines

Dienstes, während die dynamischen Variablen das Verhalten beeinflussen. Dieses kann als

Eigenschaften der Dienste modelliert werden. Zur Sicherung (und damit auch zur Verlagerung

auf ein anderes Gerät) eines Dienstes ist es lediglich nötig die statischen Variablen sowie den

internen Zustand (Stichwort: Serialisierung) zu sichern.

Aufbauend sind die eigentlichen Dienst-Funktionen zu sehen. Hierunter werden die Vorgänge

verstanden, die den Dienst selber ausmachen. Dazu gehören zum einen nötige Berechnungen,

zum anderen auch die Anwendungs-orientierte Kommunikation - ggf. basierend auf der lokalen

Kommunikation.

Getrennt von den eigentlichen Funktionen der Anwendung sollten die Management-Funktionen

aufgefasst werden. Hierbei handelt es sich um Funktionen zur Verwaltung der Dienste. Bei-

spielsweise gehört dazu das Deployment, also das Starten und Stoppen eines Dienstes. Aber

auch ein Algorithmus zur Bestimmung der Verteilung (und damit der Orchestrierung der Diens-

te) würde in diese Kategorie fallen.

Aus diesem Grund kann die Management-Funktion eines Dienstes auch durchaus auf einem

anderen System ausgeführt werden, wenn eine entsprechende Bindung von Management-

Funktion zu den zu verwaltenden Dienst-Funktionen bzw. Komponenten realisiert wird.

Die unterschiedlichen Funktions-Arten sind in Abbildung 4.15 dargestellt.

Hintergrund:
Die Trennung von Management-Funktionen von den eigentlichen Funktionen ist angelehnt

an das Konzept von IBM im Bereich des Autonomic Computing [Hor01].

Abbildung 4.16 stellt die Kommunikations-Möglichkeiten eines Dienstes schematisch dar.

Abbildung der Dienste in die Repräsentations-Welt Dienste sind aktive Komponenten und

erhalten nach Kapitel 4.2.2 also eine eigenen Eintrag als Dienst-Repräsentation.

Hierdurch werden sie zum einen auffindbar im Gesamtsystem, zum andern können die aktuel-

len Beziehungen zu anderen Diensten durch die Management-Funktion auch im Modell durch

68

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.5 Die modellgetriebene Instanzumgebung

Dienst

Ausführungsumgebung

Abbildung 4.16: Schematische Darstellung der Dienst-Kommunikation

Instanzumgebung

Modell-
Instanz-Container

Ausführung

D
ie

n
s
te

Modell-Instanzen

Abbildung 4.17: Aufbau einer Instanzumgebung für Modelle und Dienste

entsprechende Zugriffs-Relationen repräsentiert werden. Hierdurch wird es z.B. auch möglich,

Umschaltungen im Modell abzulegen (z.B. als Vorbereitung auf Ausfälle, vgl. Kapitel 6.4) und

überwachen zu lassen (vgl. Kapitel 4.6.2.1).

4.5 Die modellgetriebene Instanzumgebung

Nachdem sowohl die Komponenten-Repräsentationen, wie auch das Konzept der aktiven Kom-

ponenten beschrieben sind, wird folgend die verteilte, modellgetriebene Instanzumgebung vor-

gestellt. Die Verteilung der Modelle auf unterschiedliche Geräte und die Verbindung von unab-

hängigen Modellen werden im späteren Verlauf ergänzt.

Es handelt sich bei einer Instanzumgebung um weiterentwickelte, existierende Konzepte, wie

sie in Kapitel 2.4 beschrieben sind. Ein Instanz-Container wird als Programm bereitgestellt,

welches in der Lage ist, alle vom Meta-Modell abgeleiteten Modelle darzustellen. Dafür wer-

den Klassen und Relationen zur Laufzeit aus Bibliotheken instanziiert. Diese Instanziierung

und Verknüpfung erfolgt dabei entweder intern durch Abläufe oder durch externe Befehle zur

Manipulation der Objektstruktur.

Einige wichtige Aspekte sollten bei der Entwicklung der modellgetriebenen Instanzumgebung

beachtet werden:

Selbst-Beschreibung Klassen in den Komponenten-Bibliotheken sollten erkundbar sein, also

selber durch Objekt-Repräsentationen dargestellt werden.

Ausführung Im Idealfall wird - wie in Abbildung 4.17 verdeutlicht - eine Instanzumgebung so-

wohl für die Modell-Instanzen, wie auch für die aktiven Komponenten (Dienste, Anwendungen)

69

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

bereitgestellt. Durch die zuvor beschriebenen Repräsentationen dieser Komponenten ist es

aber möglich aktive Komponenten neben der eigentlichen Instanzumgebung auszuführen.

Dynamische Ergänzung der Fähigkeiten Für eine Realisierung ist es wichtig, dass die ent-

sprechenden Komponenten-Bibliotheken nachgeladen werden können. Dieses ist insbeson-

dere dann wichtig, wenn eine dynamische Systemstruktur aktiv genutzt wird - z.B. auch zur

Laufzeit neue Funktionen in einem System etabliert werden sollen.

Kommunikation Sie sollte ebenso wie Objekte im Modell-Raum repräsentiert werden, d.h. of-

fene Kommunikations-Kanäle sollten im Modell-Raum dargestellt werden. Somit wird die Kom-

munikation erkundbar.

4.5.1 Vom Modell zum Instanz-Modell

Wie im Kapitel 2.2 beschrieben, werden heutzutage vielfach Modelle als Abbildung von be-

stimmten Eigenschaften der Anlagen entworfen und teilweise auch standardisiert. Wie bereits

geschildert, gibt es dabei Modelle, die sehr formal beschrieben sind, und andere, die weniger

formal beschrieben sind.

Damit ein Modell hier einsetzbar ist, muss es in eine Struktur aus Klassenbeschreibungen

mit Eigenschaften sowie Relationen zwischen den Objekten der Klassen überführbar sein

(Klassen-Modell). Instanzen einer solchen Modell-Beschreibung werden im Kontext der Instan-

zumgebung als Instanz-Modell bezeichnet.

Der Grad der Formalität ist dabei untergeordnet: Ist eine Struktur beschrieben bzw. das Modell

in eine solche überführbar, ist sie auch im Sinne der Instanzumgebung nutzbar. Selbstverständ-

lich steigt bei einer formaleren, genaueren Abbildung der Informationen (vgl. Kapitel 2.1) auch

der Nutzen.

Systematisches Vorgehen Es stellt sich die Frage, wie ein Modell für die Umgebung nutzbar

gemacht wird. Wie zuvor beschrieben, werden viele Modelle heutzutage als XML spezifiziert,

d.h. es gibt eine XML Grammatik, die die Sprache syntaktisch beschreibt und eine Spezifikati-

on, die das Verständnis der Sprache beisteuert.

Dazu gibt es eine Vorgehensbeschreibung, wie eine Abbildung der Modelle in XML vorgenom-

men werden kann. Welche Probleme dabei berücksichtigt werden müssen ist in der VDI Richtli-

nie 3690 [1] beschrieben: Das Ergebnis der Vorgehensbeschreibung ist im Erfolgsfall eine XML

Schema Beschreibung, die eine XML Struktur beschreibt.

Die Nutzung einer solchen XML Struktur im Instanzsystem ist einfach: Beispielsweise sind

DOM-Parser in der Lage, eine Objekt-Struktur aus einem XML Dokument bereitzustellen. Voll-

automatisch (z.B. durch einen gängigen XML-Parser) werden alle XML-Elemente als Objekte

abgebildet. Diese sind untereinander analog zum XML-Dokument verschachtelt. Es existiert

70

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.5 Die modellgetriebene Instanzumgebung

Klassen-
Modell

Instanz-
Modell

Realitäts
vorstellung

formalisiertes
Modell

Management-
Strategie

Realität

Modell

Abbildung 4.18: Entwicklungs-Phasen eines Modells für die Instanzumgebung

also eine Relation contains; weitere Relationen sind ebenfalls möglich. Dieses Verfahren zeigt,

dass zumindest alle Modelle nach der VDI-Richtlinie 3690 prinzipiell als Laufzeit-Modelle nutz-

bar sind.

In Anlehnung an die VDI Richtlinie 3690 ist in Abbildung 4.18 dargestellt, wie ein Modell für die

hier verwendete Instanzumgebung entstehen kann. Nachdem die Übergänge von der Realität

zum Modell und auch zum formalisierten Modell in der Richtlinie abgehandelt sind, erfolgt ein

semi-automatisierter Schritt zum Klassen-Modell. Hierbei werden insbesondere Strategien für

die Verteilung zum Modell hinzugefügt - dieses beinhaltet das Konzept des Modell-Masters,

welches im Folgenden beschrieben wird. Das Klassen-Modell wird in der Instanzumgebung

etabliert. Damit ist dieses Modell nachher zugreifbar und erkundbar, wie man es auch aus

ACPLT (normalerweise als „Library“ bezeichnet) oder OPC-UA (Bezeichnung: „Namespace“)

gewohnt ist. Werden die enthaltenen Klassen für die Nutzung in Bezug auf die Realität instan-

ziiert, kann von einem Instanz-Modell gesprochen werden.

4.5.1.1 Modell-Master

passive
Komponente

Modell

Modell Master
<<Singleton>>Klassen und Relationen

des Laufzeit-Modells

Modell Master
<<Singleton>>

Abbildung 4.19: Elemente eines Modells für die flexible Instanzumgebung

Eine wichtige Rolle für ein Instanz-Modell spielt der Modell-Master, dargestellt in Abbildung

4.19. Diese Komponente, die in einer Instanzumgebung einmalig pro Modell instanziiert wird

71

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

(als Entwicklungspattern „Singleton“ nach [Bal08]), stellt den Einstiegspunkt für die Erkundung

der Instanzen des Modells dar. Die Instanz kann also mit der vorgestellten Instanz des Modells

aus Kapitel 2.1.3 gleichgestellt werden.

Definition: Jedes Laufzeit-Modell besitzt neben den Klassen und Relationen einen

Modell-Master, der die zentrale Verwaltung der Modell-Beschreibung (Klassen) sowie

auch der verteilten Instanzen übernimmt. Er existiert genau einmal pro Modell in einem

(verteilten) System und stellt auch den Einstiegspunkt für die Modellerkundung von An-

wendungen dar.

4.5.2 Sprache der Modell-Änderungen

Die Manipulation von Modell-Instanzen zur Laufzeit selber ist durch wenige Grund-Befehle aus-

reichend beschreibbar, das heißt, es genügt eine Sprache von wenigen Kommandos, um die

Modelle zu erstellen und zu verändern.

An dieser Stelle werden die Modell-Änderungsfunktionen in aller Kürze beschrieben, da sie

entsprechend der NE 139 und 141 definiert sind. Sie entsprechen also dem Aufruf/Antwort

(Typ 2) der vorherigen Typisierung der Kommunikation.

Anlegen von Objekt Legt ein Objekt von gegebenen Typen an.

Entfernen von Objekt Entfernt ein Objekt und alle in Verbindung stehenden Relationen.

Anlegen von Relation Legt eine Relation von gegebenen Typen zwischen zwei Objekten an.

Entfernen von Relation Entfernt die Relation.

Setzen Wert Setzt einen Variablen-Wert.

Hole Wert Holt einen Variablen-Wert.

Kombination Atomare Ausführung einer Reihe der vorstehenden Befehle. Auch die Modell-

Erkundungsfunktionen können hier verwendet werden.

Aufbauende Operationen, die beispielsweise häufige Kombinationen aus Befehlen vereinfacht

ausführen, sind denkbar und könnten für eine Realisierung auch als Dienst nachgeladen wer-

den.

Hintergrund:
Datenbanken kennen eine solche Möglichkeit mit „stored procedures“. Dieses sind Pro-

gramme, die in der Datenbank selber ablaufen, wenn sie aufgerufen werden.

OPC-UA kennt dieses Konzept ebenso, indem Methoden spezifiziert werden können, die

Schnittstellen bereitstellen.

72

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.5 Die modellgetriebene Instanzumgebung

Wichtig ist dabei, dass es zunächst keinerlei Annahmen über existierende Objekte oder Rela-

tionen gibt.

So impliziert ACPLT durch die verwendeten Pfade eine Relation „/“ („ov_contains“), die als

Unter-Objekt interpretiert werden kann. Eine solche allgegenwärtige Relation kann ggf. bei der

Abbildung von existierenden Modellen zu Problemen führen, da nicht alle Modelle eine Relati-

on mit dieser Semantik verwenden oder diese auch in unterschiedlicher Weise verwenden. Aus

diesem Grund verzichtet die hier beschrieben Instanzumgebung auf die Vorgabe einer solchen

Basis-Relation.

Nicht zu jedem Zeitpunkt können ausschließlich valide Modelle, d.h. Modelle, deren Gültigkeit

überprüft werden kann, existieren. Änderungen zur Laufzeit durch einzelne Aktionen werden

immer wieder zu Inkonsistenzen führen5.

Hiermit müssen grundsätzlich die Anwendungen umgehen können. Sie sollten den Teil des

Modells soweit ignorieren, wie nötig. Implizite Annahme ist, dass nicht valide Teilmodelle gera-

de in Bearbeitung durch einen anderen Dienst sind.

Trotz der grundsätzlichen Möglichkeit eines inkonsistenten Zustandes können beliebige Befeh-

le in einer ununterbrochenen (d.h. atomaren) Kombination ausgeführt werden. Dies ist insbe-

sondere wichtig, um die zuvor definierten AKID-Eigenschaften einhalten zu können. Um diese

AKID-Eigenschaften einhalten zu können, sind entsprechende Konzepte aus der Datenbank-

Welt wichtig: „Semaphoren“, „Locking“ und „Rollback“-Mechanismen helfen, eine Folge von

Befehlen entweder ganz oder nicht auszuführen.

Eine Anwendung kann durch die Atomität der AKID-Eigenschaften den für sie wichtigen Be-

reich des Modells validieren, bevor Änderungen vorgenommen werden. Hierfür wird ein Tupel

aus Erkundungs-Funktion (zur Validierung) und Modell-Änderung als Kombinations-Basisope-

ration vorgenommen. Schlägt die Erkundungs-Funktion fehl, wird die Modell-Änderung nicht

ausgeführt.

4.5.3 Änderungs-Benachrichtigungen

Um Änderungen in einer modellgetriebenen Instanzumgebung nutzen zu können, müssen

Komponenten von den Änderungen erfahren und somit reagieren können.

Das einfachste Vorgehen wäre, wenn Anwendungen, die Objekte erkunden, diese mit dem

vorherigen (bekannten) Zustand vergleichen und entsprechende Änderungen vornehmen wür-

den. Dieses würde jedoch dazu führen, dass die Anwendungen den vorherigen Zustand aller

interessanten Modell-Teile speichern müssten. Zusätzlich müsste dieses Vorgehen zyklisch

ausgeführt werden, wodurch Performance-Engpässe entstehen könnten.

5Dieses ist vergleichbar mit der Programmierung - während einer Programmierung entstehen immer wieder ungültige Anwei-
sungen - erst zu diskreten Zeitpunkten werden Übersetzungen angestoßen.

73

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Aus diesem Grund wird eine Nachrichten-basierte Schnittstelle auf Basis der Subskription/Be-

nachrichtigungs-Typs (Typ 3) vorgeschlagen. Eine Anwendung kann sich somit für Änderungen

in den Modell-Instanzen am Instanzsystem subskribieren und bekommt eine Nachricht, wenn

sich etwas für die Anwendung entscheidendes geändert hat. Durch die Analyse der Befehle

und Parameter können die Empfänger-Dienste entscheiden, ob eine Reaktion erforderlich ist.

Damit stellt sich die Frage nach einer Sprache in der die „interessanten“ Teile der Objekte

spezifiziert werden können, sodass möglichst wenige Benachrichtigungs-Nachrichten versandt

werden müssen. An dieser Stelle sind vielfache Möglichkeiten denkbar - beispielsweise auch

wieder spezifische Erweiterungen der Instanzumgebung als zusätzliche, nachladbare Funktion.

Als „Einfachst-Realisierung“ können sämtliche Befehle, die zur Manipulation der Modell-Instan-

zen an die Instanzumgebung abgesandt werden, an alle angemeldeten Dienste weitergeleitet

werden. Wenn nur wenige Dienste Interesse an Änderungen haben, kann es auch durch so

eine „Einfachst-Realisierung“ zu einem wesentlichen Geschwindigkeitsvorteil kommen.

Bei dieser einfach gehaltenen Sprache steht eine Referenz auf ein existierendes Objekt im

Mittelpunkt und wird um eine Änderungsbedingung ergänzt, die Auslöser für eine Benachrich-

tigung ist.

Eine Subskription-Nachricht für Änderungen ist damit ein Tupel:

S/N - Nachricht Modell-Änderungen REFERENZ, VAR ‖ REL → ÄNDERUNG

Subskribiert den Sender beim Empfänger für durch die Eingabe-Parameter bestimmte Än-

derungen in der Modell-Struktur.

Mit Bezug auf das in REFERENZ definierte Objekt werden entweder Änderungen der Varia-

blen oder der Relationen mitgeteilt. Implizit ist immer eine Benachrichtigung enthalten, welches

über das Löschen des REFERNZ-Objektes informiert.

Da, wie vorausgesetzt, auch die Klassen im Modell-Raum abgebildet und mit den Instanzen

verbunden werden, kann auch das Erzeugen neuer Objekte überwacht werden: Eine Subskrip-

tion auf das Klassenobjekt als Referenz sowie der Eigenschaft REL bewirkt, dass über das

Anlegen eines Objektes benachrichtigt wird.

Eine Benachrichtigungs-Nachricht ist dabei ähnlich wie eine Subskription-Nachricht:

singulär - Nachricht Modell-Änderung Quelle, (V alue ∨ Ziel)

Information über die Modell-Änderung (vgl. Text).

Neben dem Objekt, von dem die Änderung ausgeht (Referenz Quelle) und der Art der Ver-

änderung wird auch ein Ziel der Änderung übermittelt. Bei Variablen ist dieses der neue Wert

(V alue), bei Verbindungen das neue Ziel-Objekt, und bei dem Erzeugen einer Instanz wird die

Referenz auf das neue Objekt (Referenz Ziel) überliefert.

74

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.5 Die modellgetriebene Instanzumgebung

An dieser Stelle wird auch klar, dass diese Sprache einfach gehalten ist. So sind sinnvolle Er-

weiterungen aus dem leittechnischen Umfeld denkbar: Für die Änderung eines Variablenwertes

könnte ein delta-Faktor angegeben werden, welcher geringe Abweichungen für Prozesswerte

von einer Benachrichtigung ausschließt.

Komplexere Beschreibungssprachen für Änderungen sind denkbar. Sie könnten nach dem

Prinzip von XPATH [32] als Muster, also Teile der Modellstruktur – Objekte, Variablenwerten

und (typisierten) Relationen – beschrieben werden. Sollte in der Instanzumgebung eine Ände-

rung auf diese Beschreibung zutreffen, wird eine Änderungs-Benachrichtigung erzeugt.

Insgesamt ist dabei zu beachten, dass das Ausführen dieser Muster-Suche nicht mehr Res-

sourcen verbraucht, als insgesamt eingespart werden.

Wichtig ist an dieser Stelle, dass die Schnittstelle selber entfernt zugreifbar ist, sodass die

Überwachungen auch von entfernten Diensten ausgeführt werden kann. Insgesamt wird durch

diese entfernten Zugriffe eine Änderungs-Reaktion des Gesamtsystems erreicht, die auch ins-

gesamt auf lokale Änderungen reagieren kann.

4.5.3.1 Alternative Realisierung: Intents

Eine andere Möglichkeit, gerade in Bezug auf die Verbreitung der Änderungs-Benachrichtigun-

gen, sind die Intents, wie sie in Kapitel 4.3.7 als zusätzlichen Kommunikationstyp vorgestellt

wurden.

Dabei wird ein Intent-Typ Modell-Änderung definiert. Für diesen können sich alle interessier-

ten Komponenten anmelden. Sie bekommen daraufhin alle Änderungen des Modells mit. Die

Intent-Nachrichten werden dabei durch eine Instanziierung der Basis-Klasse des Meta-Modells

initiiert: Wenn ein Objekt / eine Relation des interessanten Modells erzeugt wird, wird eine

Intent-Nachricht versandt.

Zu berücksichtigen für eine Abwägung ist dabei die Anzahl der Änderungs-Benachrichtigun-

gen, sowie die Verteilung der Modelle. Durch die zentralisierte Bearbeitung der Intent-Nach-

richten kann es, verglichen mit der oben beschriebenen Lösung, zu einem größeren Kommu-

nikationsbedarf führen.

Auf der anderen Seite steht die geringere Grundlast: Eine interessierte Komponente muss sich

lediglich für Modell-Änderungen anmelden. Die später erfolgenden Subskriptionen auf Objekte,

die überwacht werden müssen, entfallen.

Diese Realisierungs-Beschreibung verdeutlicht, wie unterschiedlich die Intent-basierte Kommu-

nikation von der klassischen Kommunikation ist. Sie entkoppelt die interessierten Komponenten

von den zu beobachtenden Ereignissen.

75

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

4.5.4 Ausführungsumgebung: Dienste als partielle, Aufgaben-orientierte
Teil-Anwendungen

Im Gegensatz zu den passiven Komponenten, die zwar dynamisch verändert werden können,

jedoch selber keinerlei Aktionen auslösen (vgl. Kapitel 4.2), bietet ein Dienst die Möglichkeit,

Abläufe auszuführen.

Anwendung

Anwendung

mögliche Systemgrenze

Anwendung, ... Anwendung, BuB...

Abbildung 4.20: Orchestrierte Dienste als Anwendung

Ein Dienst ist eine aktive Komponente auf einem Gerät. Er erfüllt eine (Teil-)Aufgabe. Unter

Anwendungen werden Kombinationen aus Diensten verstanden, die eine Gesamtaufgabe er-

füllen, wie sie vom Endanwender verlangt wird. Unter Orchestrierung wird das Verbinden von

Diensten, also das gegenseitige bekanntmachen, verstanden. Damit können solche Orche-

strierungen von Diensten als verteilte Anwendung verstanden werden, wie es in Abbildung

4.20 dargestellt ist.

Integration im Laufzeitmodell

Durch seine Dienst-Repräsentation ist ein Dienst selber auffindbar und damit auch nutzbar.

Auf diese Weise kann auf aufwändige Registrierungs-Komponenten, wie sie normalerweise in

SOA-Systemen ein elementarer Bestandteil sind, verzichtet werden. Eine Registrierung eines

Dienstes erfolgt durch das Anlegen seiner Dienst-Repräsentation im Laufzeitmodell.

Vielfach werden auch Beschreibungen der Fähigkeiten als eigene Schnittstelle eines Dienstes

spezifiziert und diese in (ggf. zentralen) Komponenten verwaltet. Diese können zwar existieren,

sind aber als Annotationen in der Dienst-Repräsentation (allgemeiner aktive Komponenten-

Repräsentationen) abzulegen, sodass sie dort direkt durch die Dienst-Repräsentation zugehö-

rig zum Dienst erkundbar und auch aktualisierbar sind.

76

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.6 Modell- und Gerätegrenzen

Andere Sichtweise: Dienste als komplexe Modell-Änderungs-Schnittstellen

Wenn ein Dienst als Modell-verarbeitende Teil-Anwendung verstanden wird, der - wie der

grundlegende Gedanke - alle seine Daten im Laufzeitmodell ablegt, ist auch eine andere Sicht-

weise auf die Funktion eines Dienstes zulässig:

Ein Dienst, der alle seine Daten im Laufzeitmodell ablegt und keinen weiteren Zustand oder

weitere Variablen hat, stellt eine spezialisierte Schnittstelle zum Laufzeitmodell dar. Er ist äqui-

valent zu Basis-Operationen, die direkt im Laufzeitmodell ausgeführt werden zzgl. seines eige-

nen Verhaltens.

Dieses gilt nicht für alle Dienste - beispielsweise würde ein Dienst zur Erfassung von Messwer-

ten seine Daten nicht aus dem Modell beziehen, sondern von einem am Gerät angeschlosse-

nen Sensor.

4.6 Modell- und Gerätegrenzen

Klassisch liegen Modelle unabhängig (d.h. ohne Relationen zwischeneinander) auf Instanzum-

gebungen, die jeweils auf einem Gerät existieren.

Eingangs wurde beschrieben, dass die beiden Begrenzungen aufgehoben werden sollen:

Modelle in Relation Modelle untereinander in Relation setzen zu können hat den Vorteil, dass

einzelne Modelle unabhängig voneinander entwickelt werden können. Aufbauend können

dann weitere Modelle Relationen zwischen den Modellen beschreiben.

Über Gerätegrenzen hinweg Geräte separieren bisher Informationen, die in unterschiedli-

chen Modellräumen vorliegen. Diese Trennung erscheint hinderlich, denn verteilt abge-

legte Daten z.B. unterschiedlicher Anwendungen, stehen im Sinne von Modellen durch-

aus in Beziehung.

Im Folgenden wird für beide Problemstellungen jeweils ein Lösungskonzept vorgestellt.

4.6.1 Modelle in Relation: Modell-Interkonnektion

Eine der wesentlichen Vorteile, die durch die Modelle zur Laufzeit entstehen, ist die Verfügbar-

keit von Informationen. Häufig liegen diese Informationen derzeit in unterschiedlichen Program-

men bzw. deren Dateien und eigenen Formaten unverknüpft und unzugänglich vor. Dieses be-

trifft insbesondere Engineering-Systeme, deren Daten traditionell zur Produktions-Phase nicht

verfügbar sein mussten.

Wenn eine modellgetriebene Instanzumgebung diese Informationen in strukturierter Weise

- in mehreren, unabhängigen Modellen - zugänglich bereithält, stehen die Modell-Instanzen

77

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Modell Interkonnektions
Modell

Instanz-
Modell zusätzliches

Wissenbenutztkennt (2..*)

beschreibt (1..*)

Relationen zwischen Instanzen
unterschiedlicher Modelle

Abbildung 4.21: Relationen zwischen unabhängigen Modellen - Konzept der Modell-Interkonnektion

nebeneinander und sind für alle Anwendungen erkundbar. Hierdurch können Engineering-

Informationen in der Produktions-Phase genutzt werden.

Einen weiteren Mehrwert wird geschaffen, wenn auch Beziehungen zwischen den strukturier-

ten Detail-Informationen der Modelle abgebildet werden. Es erscheint also sinnvoll die Modell-

Instanz-Teile untereinander zu verknüpfen.

Definition: Eine Verknüpfung zwischen Komponenten verschiedener Modelle wird

Modell-Interkonnektion genannt.

Um Teile von Modellen untereinander in Beziehung setzen zu können, muss zusätzliches Wis-

sen vorliegen, welches die Verbindung repräsentiert. Dieses kann insgesamt wieder als eige-

nes Modell verstanden werden.

Somit werden die folgenden Informationen für ein Modell von Modell-Interkonnektionen benö-

tigt:

• Verständnis beider Modellen, die in Verbindung gesetzt werden sollen.

• Verständnis von der Verbindung, die zwischen den Modell-Instanzen aufgebaut werden

soll (eigener Modell-Inhalt).

• Beschreibung der Interkonnektionen (Interkonnektions-Klassen).

• Meistens wird eine dritte Informationsquelle nötig sein, d.h. zusätzliches Wissen, welches

aussagt, welche Relation zwischen welchen Modell-Instanz-Teilen anzulegen ist (reprä-

sentiertes Wissen).

Dieses Modell ist von den Modellen, dessen Komponenten verbunden werden, abhängig. Ver-

einfacht wird die Idee der Modell-Interkonnektionen in Abbildung 4.21 verdeutlicht.

Damit besteht eine Modell-Interkonnektion zu einem Teil aus einem eigenen Modell, welches

auf Basis von (zwei oder mehr) Modellen beschreibt, welche Relationen existieren. Eine ent-

78

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.6 Modell- und Gerätegrenzen

sprechende Realisierung der Modell-Interkonnektion kann demzufolge eigene Relationen mit-

bringen, die zwischen Elementen der anderen Modelle in der Instanzumgebung angelegt wer-

den. Das Modell der Modell-Interkonnektionen zwischen den Modellen kann aber selbstver-

ständlich auch komplexere Beschreibungen als einfache Relationen zwischen Modell-Instanz-

Teilen enthalten.

Daraus lässt sich folgende Definition für ein Modell von Modell-Interkonnektionen ableiten:

Definition: Modell-Interkonnektionen werden in Modell-Interkonnektions-Modellen
(MIM) beschrieben. Ein MIM bezieht sich mindestens auf zwei Modelle (abhängige Mo-

delle). Ein MIM hängt von diesen zwei Modellen ab, nutzt sie zur Selbstbeschreibung und

bringt Wissen in das Gesamtsystem ein (repräsentiertes Wissen) aufgrund dessen Inter-

konnektionen instanziiert werden können.

Die Reaktion auf Modell-Änderungen (Anlegen/Löschen der Modell-Interkonnektionen) ist Auf-

gabe der Modell-Interkonnektions-Komponenten, die später beschrieben werden.

4.6.1.1 Beispiel: AT-Geräte-Struktur und Anlagenstruktur

Als praktisches Beispiel soll wiederum das AT-Geräte-Struktur-Modell dienen.

Während das AT-Geräte-Struktur-Modell lediglich Aussagen über die Existenz sowie Adressen

der AT-Geräte einer Anlage macht, kann ein Anlagenstrukturmodell in PandIX (vgl. 2.2) die

Anlage selber abbilden.

Geräte
Repräsentation

Kommunikations-Adresse

PandiX-
Rolle

Rollen-Gerät-Zuordnung

AT-Geräte-
PandiX-Modell-Interkonnektion

Engineering-System

verwaltet

KommAdr:Rolle
z.B. durch Elektro-Plan

Abbildung 4.22: Skizze der Modell-Interkonnektion AT-Geräte-Struktur mit PandIX

Sinnvoll erscheint eine Verbindung zwischen den Rollen der Geräte aus der Anlagenstruktur

und den Kommunikations-Adressen bzw. den Modell-Instanz-Objekten des AT-Gerätestruktur-

Modells aufzubauen. Das repräsentierte Wissen, welches Gerät zu welcher Rolle gehört, muss

79

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

die Modell-Interkonnektion aus dem Engineering-System beziehen. Abbildung 4.22 verdeutlicht

die Interkonnektion.

4.6.2 Über Gerätegrenzen hinweg: Verteilte (Modell-)Laufzeiten

Die Integration von Modellen auf einem Gerät ermöglicht den Zugriff auf die Informationen

durch unterschiedliche Anwendungen. In den heutigen Anlagen existieren eine große Anzahl

von Geräten, die ein Interesse haben können, auf diese Informationen zuzugreifen bzw. selber

Informationen in der Instanzumgebung abzulegen. Das Ziel dieses Kapitels ist es eine gemein-

same, verteilte Modell-Instanzumgebung zu konzipieren, in der sich die zuvor beschriebenen

Modelle abbilden und über Gerätegrenzen hinweg in Verbindung setzen lassen.

Hierdurch können zur Laufzeit Neuerungen dynamisch eingebracht werden, indem das Modell

zuerst instanziiert wird und nachträglich in der Anlage auf den verteilten Geräten in Relation

gesetzt wird. Es folgt, dass es sinnvoll ist, Verteilungsaspekte für Modell-Instanzsystem zu

konzipieren. Die Anlage selber wird also als ein verteiltes System mit Modell-Instanzsystem

verstanden.

Verteilte Anwendungen können so eine verteilte Modell-Laufzeit selbstverständlich nutzen - ins-

besondere um Erkundungen über die Repräsentationen der Dienste durchzuführen, wie in Ka-

pitel 6.1 beschrieben wird. Durch eine entsprechende verteilt Ausführungsumgebung können

die Anwendungen selber die Verteilung nutzen, wodurch der SOA-Kerngedanke aufgenommen

wird.

Eine alternative, naheliegende Lösung wäre, dass - ähnlich wie im traditionellen OPC-Ansatz -

alle Daten auf einem zentralen Server abgebildet werden und alle Geräte als Klienten Zugriff

bekommen. An dieser Stelle sollen jedoch Konzepte zur realen Verteilung der Modell-Instanzen

über Gerätegrenzen hinweg konzipiert werden. Hierdurch ist es beispielsweise möglich, die

klassische Datenhaltung beizubehalten. Jedes Gerät behält also die Informationen lokal auf

seinem Speichermedium, die es hauptsächlich bearbeitet. Diese Informationen werden ledig-

lich in Relation zu anderen gebracht und müssen dabei ggf. über Gerätegrenzen hinweg gezo-

gen werden.

4.6.2.1 Externe Verbindungen

Für eine Realisierung bedarf es also eines Konzeptes um die Elemente eines modellgetriebe-

nen Instanzsystems untereinander auf unterschiedlichen Geräten in Relation zu bringen: Es

sind Verbindungen von einzelnen Modell-Instanz-Objekten und -Relationen auf unterschiedli-

chen Geräten bereitzustellen.

Dafür wird das Konzept der Externen Verbindungen entworfen. Dabei ist wichtig zu verstehen,

dass diese Kommunikation aus Sicht der Modelle sowie auch der Modell-Erkundung (vgl. Ka-

80

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.6 Modell- und Gerätegrenzen

pitel 5.4) transparent sein muss, d.h. es existiert eine Kommunikationsmöglichkeit, die diese

externe Verbindungen als normale Verbindungen erscheinen lässt.

Hintergrund:
Mit der „ExpandedNodeId“ bietet OPC-UA ähnliche Möglichkeiten an: Hier wird das Ziel in

der Namespace-URI abgelegt und bezieht sich auf eine „NodeId“ eines anderen Servers.

Im Gegensatz zu dem hier vorgestellten Konzept ist dieses jedoch ein einseitiger Verweis.

Das Ziel hat keinerlei Möglichkeit festzustellen, dass auf dieses verwiesen wird. Hierdurch

fehlt die Möglichkeit, bei einer Modell-Erkundung vom Ziel auf die Quelle zu schließen.

Das Konzept sieht vor, dass Kopien eines Objektes auf unterschiedlichen Geräten existieren.

Diese beiden Objekte werden durch die Klasse Externe Verbindung (Ext.-Verbindung) als äqui-

valent dargestellt. Nebenbedingung ist dafür, dass beide Geräte über die entsprechenden Klas-

senbeschreibungen verfügen.

Externe Verbindung

Ziel: EPR

primär: BOOL

grafische Repräsentation
einer Ext.-Verbindung
zwischen 2 Objekten

remote_äquivalent

Abbildung 4.23: Ext.-Verbindung für die Repräsentation eines entfernten Zugriffspunktes

Das zentrale Objekt ist eine Instanz der Klasse Ext.-Verbindung (Abbildung 4.23). Dieses spei-

chert als EPR die Objekt-Referenz (Kapitel 4.3.1) auf einem entfernten System. Dabei ist die

EPR eine Referenz auf ein Objekt im entfernten Daten-Modell. Ein Paar von Ext.-Verbindungs-

Objekten kann so selber als Relation remote_äquivalent verstanden werden.

Das Meta-Modell beschreibt Objekte und Relationen zwischen Objekten. Damit diese per Ext.-

Verbindung über Systemgrenzen hinweg als äquivalent dargestellt werden, muss für beide die

Verteilung durch das Ext.-Verbindung Konzept beschrieben werden:

Ext.-Verbindung: Objekte Damit beide Objekte äquivalent behandelt werden können, ist es

nötig, dass immer auf beiden Seiten ein Ext.-Verbindungs-Objekt angelegt wird, das jeweils auf

das andere Objekt referenziert (vgl. Abbildung 4.24).

Wichtig ist, dass hierdurch nur die Äquivalenz dargestellt wird. Es wird keine Synchronisation

der Daten vorgenommen. Ein Ext.-Verbindungs-Objekt hat deswegen einen Boolean primär,

welches angibt, ob das lokale Objekt als primär anzusehen ist.

Im Falle, dass zwei Objekte als äquivalent markiert werden, handelt es sich bei der Ext.-

Verbindung also (vorläufig) um eine 1 : 1 Beziehung.

81

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Objekt

:Klasse

remote_äquivalent

Netzwerk

Ext. Verbindung

Objekt

remote_äquivalent

gegenseitig
andere EPR
des Objektes

Ext. Verbindung

Abbildung 4.24: Abbildung des Konzeptes Ext.-Verbindung auf ein Objekt über Geräte-Grenzen hinweg

Ext.-Verbindung: Relationen Dieses Prinzip ist übertragbar auf Relationen. Hier ist vorstell-

bar, dass eine Quelle auf einem Gerät liegt, während ein Ziel sich auf einem anderen Gerät

befindet.

ObjQuelle

Netzwerk

ObjZiel

re
m

ot
e_

äq
ui
va

le
nt

rem
ote_äquivalent

Ext. Verbindung
gegenseitig
andere EPR
des Objektes

Ext. Verbindung

Abbildung 4.25: Abbildung des Konzeptes auf eine Relation über Geräte-Grenzen hinweg

Abbildung 4.25 zeigt, dass die Verbindung, die auf ein entferntes Objekt zeigt, selber ein Objekt

ist und damit als Quelle für die remote_äquivalent-Relation dienen kann. Eine Relation, die

auf ein entferntes Objekt zeigt, hat lokal „offene Enden“: Entweder hat sie keine Quelle oder

kein Ziel. Die fehlende Information wird mittels der Ext.-Verbindungs-Objekte abgebildet: Per

remote_äquivalent-Relation werden die „offenen Enden“ miteinander verknüpft. Es wird also

das Relations-Objekt als entfernte Kopie per Ext.-Verbindung dargestellt, was insgesamt zu

der Modellierung führt, dass die Verbindung auf einem anderen Gerät „weitergeführt“ wird.

Damit eine 1 : N Relation abgebildet werden kann, muss eine Quelle mit mehreren Ext.-

Verbindung Objekten zu ihren N Zielen abgebildet werden. Hieraus ergibt sich, dass auch

remote_äquivalent eine 1 : N Relation sein muss.

82

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.6 Modell- und Gerätegrenzen

4.6.2.2 Änderungs-Benachrichtigungen

In Kapitel 4.5.3 wurde eine Schnittstelle beschrieben, die, basierend auf dem Subskription/Be-

nachrichtigungs-Typ, Änderungen in der Objekt-Struktur in der modellgetriebenen Instanzum-

gebung aktiv entsprechenden Komponenten mitteilt.

Diese Schnittstelle kann im verteilten Umfeld genutzt werden: Die Ext.-Verbindungs-Objekte

müssen sich bei dem als primär markierten Objekt für Änderungen subskribieren. Hierdurch

werden Änderungen auf dem entfernten Gerät bekannt.

Durch das Konzept der Annotationen (vgl. Kapitel 4.2.3) ist auch die Synchronisation von

Objekt-Kopien mit ihrem Original realisierbar: Es müssen lediglich die Schlüssel-Wert-Paare

übertragen werden.

4.6.2.3 Zugriff auf die verteilte Modell-Instanzen

In einem nicht-verteilten Szenario ist das Auffinden einer Modell-Instanz vergleichsweise ein-

fach. Je nach Implementierung können entweder vorgegebene Identifikationsmechanismen 6

als Einstiegspunkt vereinbart werden, oder es kann über die vorhandenen Klassen-Definitionen

der Instanzen ermittelt werden.

Im verteilten Fall ist das Vorgehen komplizierter. Es muss die Frage beantwortet werden, wie

eine Anwendung eine oder alle Modell-Instanz(en) von einem Modell finden kann.

Es gibt im Wesentlichen vier Lösungs-Ansätze:

Vorprojektierte Kommunikations-Adresse & Einstiegspunkt auf Geräten Erweiterung der

Lösung für das lokale Finden der Modell-Instanzen. Ein Nachteil ist, dass eine Adresse

auf allen Teilnehmern vorprojektiert werden muss.

Suche auf Kommunikationsebene Spezielle Nachrichten für die Suche von Komponenten

können etabliert werden, um Modell-Instanzen zu finden. Diese Lösung würde die An-

wendungen direkt von der unterliegenden Kommunikation abhängig machen und die in

Kapitel 2.3 geforderte Unabhängigkeit der Kommunikation von den Daten in Frage stellen.

Such-Dienst Ein Dienst mit speziellen Nachrichten für die Suche von Komponenten kann eta-

bliert werden um Modell-Instanzen zu finden. Eine solche Lösung bietet die volle Flexibi-

lität, jedoch muss der entsprechende Dienst zur Ausführung gebracht werden und belegt

somit selber Ressourcen. Diese Lösung wurde in [Dri05] ausführlich dargestellt.

Suche über gemeinsames Meta-Modell Das Meta-Modell beinhaltet Verwaltungs-Strukturen

um geladene Modelle und daraus instanziierte Objekte aufzufinden. Wenn diese Infor-

mationen system-übergreifend genutzt werden können, ergibt sich eine Form des Yellow-

6In ACPLT wäre dieses ein OV-Pfad; in OPC-UA eine NodeId

83

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

System-Master (SM)
Eine Instanz pro Anlage (Singleton)

Modell-Master (MM)
Eine Instanz pro Modell

Modell-Instanzen (MI)
Viele Instanzen pro Modell, ggf. verteilt

ist_modellmaster

ist_modellinstanz

1

n

1

n

Abbildung 4.26: Relationen um Modelle verteilt zu handhaben

Paging-Konzeptes: Das Meta-Modell kann genutzt werden um alle Modelle auf allen Ge-

räten aufzufinden.

An dieser Stelle wird sich auf die vierte mögliche Lösung konzentriert. Dabei wird jedoch in dem

verteilten Modell-Raum eine zentrale, vorprojektierte Yellow-Paging-Adres-se (EPR) definiert.

Hier werden die Einstiegspunkt für die jeweiligen Modelle; also die Modell-Master durch ihre

EPR erkundbar.

Ein wesentlicher Vorteil dieser Lösung ist, dass keine explizite Schnittstellenbeschreibung bzw.

Nachrichten-Spezifikation notwendig ist. Die im Folgenden beschriebene Lösung bildet sowohl

den initialen Einstiegspunkt für ein Modell, wie auch für die Verteilung der Modell-Instanzen

eine interne Erkundungsmöglichkeit. Auf diese Weise ist das System unabhängig von dem

verwendeten Kommunikations-Medium realisierbar.

Die Suche nach in Modellen abgelegten Informationen lässt sich für Anwendungen in drei

Schritte aufteilen:

1. Suche nach einem zentralen Einstiegspunkt für das jeweilige Modell (Modell-Master) des

gesuchten Modells an der Yellow-Paging-Adresse.

2. Suche mit Hilfe der Modell-Master nach der oder den Instanz(en) des Modells.

3. Suche nach den gewünschten Informationen innerhalb der gefundenen Modell-Instanz

ist dann äquivalent zu der Suche auf einem lokalen System.

Die ersten beiden Stufen werden genauer betrachtet, die dritte Stufe ist Modell-spezifisch und

bedarf hier also keiner weiteren Beschreibung.

Suche nach Modell-Master: Organisation der verteilten Modelllandschaft Es wird eine

vorprojektierte, gemeinsame Adresse als gemeinsamer Einstiegspunkt angenommen (Abbil-

dung 4.26).

84

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.6 Modell- und Gerätegrenzen

Modell-Master

monitoring

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

In
s
ta

n
z
u
m

g
e
b
u
n
g

MIK

<<Singleton>>

<<Singleton>>

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

System Master

<<Singleton>>

ist_modellInstanz

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

ist_modellInstanz

ist_m
odellInstanz

Abbildung 4.27: Vorschlag für die Realisierung des Zusammenspiels aus MIK und Modell mit Modell-
Master.

Unter dieser Yellow-Paging-Adresse ist eine Komponente System-Master (SM) ansprechbar.

Im Sinne des Yellow-Paging verwaltet dieser eine „Liste“ der Modell-Master. Im Sinne der

hier vorstellten modellgetriebene Instanzumgebung wird diese Liste durch Relationen vom Typ

ist_modellmaster vom System-Master zu den einzelnen Modell-Master der Modelle repräsen-

tiert.

Anfragende Anwendungen müssen also lediglich den Relationen ist_modellmaster zu den

Modell-Mastern folgen.

Für neu installierte Modelle oder genauer ihre Modell-Master gilt hingegen, dass sie eine solche

Relation ist_modellmaster anlegen müssen, womit sie sich in die Liste der Modelle eintragen.

Sie kann - und wird im Normalfall - eine Ext.-Verbindung sein, da der Modell-Master auf einem

anderen Gerät liegt als der System-Master.

Die zentrale Rolle dieser System-Master Komponente ist aus Verfügbarkeits- sowie Ressour-

cen-Sicht nicht weiter kritisch, da eine Erkundung der Modell-Instanzen nur selten erfolgt -

beispielsweise bei der Inbetriebnahme eines neuen Gerätes oder bei der Umstrukturierung

von Anwendungen.

Suche mit Hilfe der Modell-Master nach der oder den Instanz(en) des Modells Da an-

fragende Anwendungen von dem zu erkundenden Modell eine Modell-Vorstellung benötigen,

ist es auch hinnehmbar, dass spezifische Realisierungen des Modell-Masters existieren - die

Anwendungen müssen also spezielle Kenntnisse über den Modell-Master besitzen. Die Modell-

Master können so auf unterschiedliche Weise realisiert werden.

An dieser Stelle wird lediglich eine Realisierung-Möglichkeit beschrieben.

85

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Viele Modelle, wie auch das Beispiel-Modell der AT-Geräte-Struktur, werden durch ihre Anwen-

dung nur einen Wurzelknoten in einem System haben.

Für den Modell-Master heißt dieses, dass er gleichzeitig das Wurzel-Element beinhalten oder

sogar darstellen kann. Damit ist in diesem Fall eine Suche nach der richtigen Modell-Instanz

hinfällig. Eine suchende Anwendung kann also durch ihr Modell-Wissen, ausgehend vom durch

den Modell-Master gefundenen Wurzel-Knoten die Informationen suchen. In diesem Fall gibt

es also lediglich eine Modell-Instanz (MI), wie auch in Abbildung 4.27 dargestellt.

Es gibt jedoch auch Modelle, welche mehre Modell-Instanzen aufweisen. Vorstellbar sind hier

beispielsweise Konfigurations-Datensätze für Geräte. Diese können in einer Struktur als Modell

abgelegt werden. So wird für jedes Gerät unabhängig von anderen Geräten die Konfiguration

darstellbar sein.

Eine suchende Anwendung findet also durch den System-Master den Modell-Master, der eine

Liste von Relationen vom Typ ist_modellinstanz unterhält. Hierüber kann die suchende Anwen-

dung die gewünschte Instanz finden.

Die Modell-Instanzen können dabei entweder lokal auf dem Modell-Master organisiert werden,

oder es werden entsprechende Relationen zu anderen Geräten hergestellt, auf denen andere

Teile der Modell-Instanzen abgelegt sind. Diese Verbindungen werden durch das zuvor be-

schrieben Ext.-Verbindung Konzept realisiert.

4.6.2.4 Dienst-Orchestrierung auf Basis der verteilten Modelle

Von diesem Konzept können auch aktive Komponenten / Dienste profitieren.

Äquivalent zu der Suche nach im Modell abgelegten Informationen durch den System-Master,

den Modell-Master und die Modell-Instanzen, kann auch eine Suche nach Diensten erfolgen.

Diese Suche erfolgt dabei durch die Suche nach dem Modell-Master für das Dienste-Modell.

Dieser enthält dabei - im einfachsten Fall - eine Relation zu allen in der Anlage verfügbaren

Dienst-Repräsentationen. Hierdurch sind also die Dienste prinzipiell auffindbar.

Die Suche gestaltet sich jedoch aufwändig, da im Endeffekt alle Repräsentationen (selbst wenn

diese auf einem Gerät zentralisiert abgelegt sein sollten) durchsucht werden müssen. Einen

Ausgangspunkt zur Reduktion können auch die Klassenbeschreibungen der Dienste und die

instanz_von-Relation sein.

Vielversprechender ist es, wenn Modelle für die Aufgabenbeschreibung existieren würden. Die

Dienst-Repräsentationen könnten entsprechend mit den Aufgabenbeschreibungen, die sie er-

füllen können, in Relation gesetzt werden. Eine solche Aufgabenbeschreibung für Dienste ist

jedoch aufwändig und nur sinnvoll, wenn eine entsprechende Standardisierung betrieben wird

- entsprechende Versuche der Dienst-Beschreibung sind im Bereich der Dienst-orientierten

Architekturen bisher leider nicht von Erfolg gekrönt.

86

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.6 Modell- und Gerätegrenzen

4.6.2.5 Beispiel: Verteilte Modellierung der AT-Geräte-Struktur

ist_bekannt:Relation

Von
:Wurzelknoten

+1

Nach
:GeräteRepräsentation

Self Selfroute_nach

AT-Gerätestruktur
Wurzelknoten

ist_bekannt

is
t_

b
e

k
a

n
n

t
Kommunikation

Nach
:GeräteRepräsentation

Von
:GeräteRepräsentation

+1

route_nach:Relation

routeAdr: EPR
segement: int

ist_bekannt

Self

R
e

a
le

-W
e

lt
In

fo
rm

a
ti
o

n
s
-W

e
lt

Abbildung 4.28: Das AT-Geräte-Struktur-Modell auf Basis der Trennung von Informationswelt und Rea-
lität

Zu jedem Gerät gehört eine Instanz „Self“. Unter dieser Instanz vom Typ Geräte-Reprä-sen-

tation verwaltet ein Gerät seine eigene Addressierungsmöglichkeit in Form der EPR, sodass

sie im Modell-Raum erkundbar ist. Dieses Objekt ist zum einen für die Handhabung der An-

notationen auf einem Gerät vorhanden, also z.B. damit eine aktive Komponente bestimmen

kann, unter welcher Adresse sie erreichbar ist: Die EPR einer Komponente ergibt sich aus der

Kommunikations-Adresse der Self-Komponente und der lokalen Dienstadresse, wie in Kapitel

4.3.1 definiert.

Zum anderen kann es aber auch durch den Basis-Zugriff der Instanzumgebung von außen

erkundet werden. Dabei wird eine zentrale Instanz in einer Anlage für die Modell-Instanzen

vorgeschlagen. Die grundlegende AT-Geräte-Struktur wird also auf einem zentralen Gerät ab-

gelegt. Teil-Anlagen oder auch komplexe andere Teilnehmer können sich aber von diesem

Gerät durch die Mechanismen der verteilten Modelle auf anderen Geräten befinden und dort

erkundbar bleiben. Die Adresse des zentralen Einstiegspunktes um die AT-Geräte-Struktur zu

erkunden wird per System-Master zugreifbar gemacht werden.

Abbildung 4.28 stellt für die Struktur-Abbildung zwei Relationen dar: Die ist_bekannt Relation,

die die Liste der Geräte darstellt und die route_nach Relation, die die Verbindungen zu anderen

Geräten, also insgesamt die Kommunikationsstruktur, darstellt.

4.6.2.6 Transparenter Zugriff auf verteilte Modell-Instanzen

Aus dem bisherigen Beschriebenen leitet sich ab, dass eine Anwendung, die verteilte Modelle

erkunden will, den Ext.-Verbindung Relationen folgen muss, d.h. sie muss selber in der Lage

sein, lokale von externen Verbindungen zu unterscheiden. Bei Ext.-Verbindungen muss die Re-

87

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

ferenz des gegenüberliegenden Ext.-Verbindungs-Objektes entsprechend über die hinterlegte

Adresse bezogen werden und dort die weitere Erkundung vorgenommen werden.

Diese Problematik kann jedoch aufgelöst werden, indem die Kommunikation mit dem eigent-

lichen modellgetriebenen Instanzsystems nicht direkt, sondern durch eine besondere Schnitt-

stelle erfolgt. Beide Lösungen sind in Abbildung 4.29 dargestellt.

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

MIKAnwendung

MT-Dienst

2

2SystemBasisDienst SystemBasisDienst (SBD’) mit EPR als Referenz

1 1

MT-Dienst

2

1

1

Abbildung 4.29: Zugriff einer Anwendung auf die Modell-Laufzeit: Entweder direkt per SystemBasis-
Dienst oder mittels des MT-Dienstes

Dieser Modell-Transparenz-Dienst (MT-Dienst) bietet alle SystemBasisDienste an, nutzt als Re-

ferenz sowohl für Aufrufe, wie auch für Antworten, eine EndPointReference, die neben der

Kommunikations-Adresse auch mit der internen Referenz des Zielsystems versehen ist. Sie

wird als SystemBasisDienst’ (SBD’) bezeichnet. Die Schnittstelle leitet dabei SystemBasis-

Dienst-Aufrufe, die lokal erfolgen, entsprechend an das Zielsystem, welches in der EPR ver-

merkt ist, weiter.

Dadurch, dass die Antworten - egal ob sie lokal ausgeführt wurden oder auf einem anderen

System - immer EPRs enthalten, kann die aufrufende Anwendung diese EPRs als Referenz

nutzen. Das heißt, dass die EPR mit ihren verschiedenen Elementen nicht auf ihre Bestandteile

untersucht wird, sondern insgesamt als Referenz genutzt wird.

Die Komponente Modell-Explorer in Kapitel 5.4 realisiert später dieses Konzept für ein Gerät.

Hieraus folgt, dass Anwendungen, wenn sie auf Informationen in potenziell verteilte Modell-

Instanzen zugreifen wollen, immer gegen den MT-Dienst entwickelt werden, nicht jedoch gegen

die SystemBasisDienste selber.

Selbst Verbindungen über Systemgrenzen hinweg können von dieser Schnittstelle durch ent-

sprechendes Anlegen der Ext.-Verbindungs-Relationen instanziiert werden, ohne, dass die auf-

rufende Anwendung die Verteilung berücksichtigen muss. Die vorgeschlagene Modell-Interkon-

nektion basiert also sinnvollerweise auf dieser Schnittstelle.

Im Gegensatz dazu sind Anwendungen zu nennen, die die Verteilung aktiv steuern. Sie benö-

tigen den direkten Zugriff auf die realen SystemBasisDienste, um die Modell-Instanzen direkt

anlegen zu können.

88

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.7 Effizienz der Konzepte

Einhalten der AKID-Eigenschaften über Systemgrenzen hinweg In Kapitel 4.3.5 wurden

die SystemBasisDienste beschrieben.

Werden diese verteilt ausgeführt, so müssen die AKID-Eigenschaften auch hier berücksichtigt

werden. In der Literatur gibt es weitreichende Maßnahmen um Änderungen auf verteilten Sys-

temen unter Berücksichtigung der AKID-Eigenschaften auszuführen. Hier sind insbesondere

Konzepte aus dem Bereich der föderierten Datenbanksysteme zu sehen, wie in Kapitel 2.5

erwähnt.

4.7 Effizienz der Konzepte

An dieser Stelle kann keine konkrete Abschätzung für die Effizienz der Konzepte vorgenom-

men werden, da bisher weder die unterliegenden Geräte und Kommunikations-Medien fest-

gelegt sind, noch die konkreten Realisierungen der Modelle und ihrer Interaktion sowie deren

Verteilung fest stehen.

Im Wesentlichen sind zwei der präsentierten Konzepte für eine Effizienz-Einschätzung relevant:

Zum einen bieten die Modell-Interkonnektionen eine Möglichkeit, Verbindung zwischen bisher

getrennten Informationen durch ein eigenes Modell darzustellen. Die Verbindungen innerhalb

der Daten-Modelle der Anwendungen sind dabei von untergeordneter Bedeutung, da sie nur

einen geringen Speicherbedarf und (in der lokalen Variante) keinen Kommunikationsbedarf

benötigen. Kritischer müssen hier die Verwaltung der Modell-Interkonnektionen betrachtet wer-

den. Durch die geforderte Dynamik muss einem Hinzufügen eines Objektes in einem Modell

ggf. eine neue Modell-Interkonnektion erstellt oder gelöscht werden. Damit müssen Änderun-

gen im modellgetriebenen Instanzsystems aktiv durch entsprechende Komponenten (in Kapitel

5.5 vorgestellt) überwacht werden. Dieses kann in Bezug auf die Laufzeiteffizienz kritisch sein.

Zum anderen ist das Verteilen von Modell-Instanzen über Systemgrenzen hinweg je nach An-

wendungsfall zu analysieren, also die verteilte Modell-Instanzumgebung insbesondere das

Ext.-Verbindungs-Konzept. Die für die Manipulationen der Modell-Instanzen vorzunehmende

Kommunikation selber ist äquivalent zu den existierenden Umgebungen. Zusätzlich ist jedoch

der Kommunikations-Bedarf des Suchens und der Synchronisation durch die Ext.-Verbindungs-

Objekte zu betrachten.

4.7.1 Modell-Interkonnektionen und ihre Etablierung

Modell-Interkonnektionen sind Relationen und damit lediglich einfache Objekte. Sie benötigen

im Verhältnis zu den Modell-Instanzen also kaum Speicher. Da es sich um Abbildungen im

Modell handelt, benötigen sie selber, solange es keine Ext.-Verbindungen sind, keinerlei Re-

chenzeit.

89

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4 Modell-Architektur für dynamische, verteilte Systemstrukturen

Anders sieht es da bei den Komponenten aus, die die Modell-Interkonnektionen verwalten. Sie

benötigen zum einen Rechenleistung, um aus Änderungen ggf. neue Relationen zu etablieren.

Zum anderen werden sie Gebrauch von der Subskription/Benachrichtigungs-Schnittstelle der

modellgetriebenen Instanzumgebung machen. Dieses kann ein Problem werden, denn im Ide-

alfall sollten alle involvierten Modelle auf einem Gerät lokal instanziiert werden, sodass lediglich

lokale Kommunikation nötig ist.

Zusammenfassend gilt:

• Modell-Interkonnektionen selber benötigen einen geringen Speicher.

• Die Verwaltung der Modell-Interkonnektionen benötigen Speicher-, Rechen- und Kom-

munikations-Ressourcen für Änderungs-Benachrichtigungen durch die Subskription/Be-

nachrichtigungs-Schnittstelle der modellgetriebenen Instanzumgebung.

• Instanziierung der Verwaltungs-Komponenten ist möglichst auf den Geräten vorzuneh-

men, auf denen entsprechende Modell-Instanzen zu berücksichtigen sind.

4.7.2 Verteilungsaspekte

Wie eingangs bereits beschrieben, sind unterschiedliche Varianten für die Verteilung der Mo-

dell-Instanzumgebungen denkbar. Hieraus ergibt sich, dass über die nötige Kommunikation

zwischen den Geräten keine endgültige Aussage getroffen werden kann.

So kann eine zentrale Laufzeit, wie es klassischem OPC Umfeld ist, dazu führen, dass kei-

nerlei Kommunikation zur Verwaltung der verteilten Modelle auf Netzwerkebene vorgenommen

werden muss. Wenn ein solcher zentralistischer Ansatz jedoch auch für die Modelle des En-

gineerings genutzt werden soll, ist dieses schwer vorstellbar, da eine Vielzahl von Geräten

existiert, die eigene Modelle bzw. Daten beheimaten.

Es macht Sinn, dass Modelle und Modell-Instanzen möglichst lokal auf genau dem Gerät in-

stalliert werden, auf dem sie am meisten genutzt werden, d.h. auf genau den unterschiedlichen

Rechnern der Engineering-Systeme.

Es können also Kriterien beschrieben werden, die bei einer Verteilung zu berücksichtigen sind.

Ein lokaler Zugriff von einer Anwendung auf eine Modell-Instanz ist in jedem Fall vorzuziehen.

Insbesondere in der Engineering-Phase ist eine Hauptaufgabe der Anwendungen die Ände-

rung der Modell-Instanzen, sodass hier eine Verteilung der Modelle auf die jeweiligen Gerä-

te der Anwendungen sinnvoll ist. Hierdurch werden die Modell-Änderungen im Effizienzsinne

„günstiger“, während die Modell-Interkonnektionen häufiger durch Ext.-Verbindungen realisiert

werden müssen.

Grundsätzlich ist aber die Minimierung der Ext.-Verbindungen ein wesentlicher Aspekt - da

diese Verbindungen zum einen ggf. aktiv überwacht werden müssen (vgl. Kapitel 5.6), zum

90

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

4.8 Integrationsmöglichkeiten in die bestehende AT-Geräte-Landschaft

anderen auch entsprechende Ressourcen belegen. Eng verknüpfte Modelle können so besser

auf einem Gerät instanziiert werden.

Es ergibt sich, dass der Grad der Verteilung eine wesentliche Rolle spielt. Da zur Engineering-

Phase andere Arbeitsabläufe/Programme auf die Modelle zugreifen, als zur Produktions-Phase,

kann eine Reorganisation des Gesamtmodells zwischen Engi-neering- und Produktions-Phase

sinnvoll sein.

Zusammenfassend gilt also:

• Minimierung der externen Kommunikation für Geräte

• Minimierung der Ext.-Verbindungen

• Migration von verteiltem Engineering zu einer zentralen Struktur zur Laufzeit

4.8 Integrationsmöglichkeiten in die bestehende
AT-Geräte-Landschaft

In den vorstehenden Kapiteln wurde allgemein über ein Gerät in der Automatisierungstechnik

gesprochen. Hieraus ergibt sich die Frage, auf welchen Geräten die beschrieben Instanzum-

gebung sinnvoll zu realisieren ist.

Die Voraussetzungen in Bezug auf die Hardware (Speicher, Rechenleistung und Kommunikati-

on) müssen selbstverständlich erfüllt sein. Im Prinzip lässt sich also eine solche Instanzumge-

bung für die Systemstrukturen auf Sensor- oder Aktor-Ebene realisieren. Auch Szenarien wie

„Intelligente Produkte“ aus dem Kontext „Industrie 4.0“ sind denkbar. So existieren beispiels-

weise RFID-Leser (also Sensoren), die ihre Daten per OPC-UA als Server bereitstellen. Die in

Zukunft vorhandenen Ressourcen und Anwendungsfälle werden hier jedoch Grenzen auflösen,

die heute nicht absehbar sind.

Durch die Entkopplung von physikalischem Gerät und Repräsentation in der Informations-Welt

ist es nicht nötig, dass jedes Gerät „seine“ Instanzumgebung mit sich bringt. Nach entsprechen-

der Initialisierung beispielsweise in der Inbetriebnahme-Phase ist es möglich, dass sämtliche

Handhabungen der Modelle entsprechend „entfernt“ auf einem anderen Gerät erfolgt.

91

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

5 Komponenten einer verteilten,
modellgetriebenen Ausführungsumgebung

Das Ganze ist mehr als die Summe seiner Teile.
Aristoteles

Nachdem zuvor die Modelle und Konzepte für die verteilte, modellgetriebene Instanzumge-

bung vorgestellt wurden, liegt der Fokus dieses Kapitels auf den Basis-Komponenten, die die

Systemstruktur nutzbar und anwendbar machen - also der System-Architektur.

Diese Komponenten übernehmen dabei zum Großteil Verwaltungs- und Abstraktionsaufgaben,

d.h. es handelt sich um lokale - möglicherweise auf allen Geräten instanziierte Komponenten,

die den letztendlichen Anwendungen eine Schnittstelle bereitstellen. Wichtig ist hierbei die Mo-

dularität der Umgebung in drei Richtungen:

Modell Die im vorangegangenen Kapitel beschriebenen Konzepte zur Modell-Interkonnektion,

sowie der Verteilung von Modellen. Sie sind auch unabhängig von den hier vorgeschla-

genen Komponenten anwendbar.

Komponenten Die im Folgenden beschrieben Komponenten sind unabhängig voneinander

realisierbar, d.h. auch wenn das Gesamtkonzept nicht umgesetzt werden kann oder soll,

sind die Ideen anwendbar.

Realisierung Um am Gesamtsystem teilzunehmen, müssen nicht alle Komponenten auf al-

len Geräten instanziiert sein. Es kann also insbesondere bei Ressourcen-Problemen im-

mer zu Geräten mit geringerem Funktionsumfang kommen - bis hin zu reinen Klienten-

Geräten, die das Gesamtsystem lediglich erkunden und selber nicht teilnehmen. Ihre

Repräsentation würde also auf anderen Geräten verwaltet werden.

Insgesamt wird so eine verteilte Modell-Instanzumgebung beschrieben. Diese wird IMLAUF

genannt - Interkonnektion von Modellen zur Laufzeit. Auf die Modelle der Instanzumgebung

können zum einen externe Programme durch die beschriebenen SystemBasisDienste aus

Kapitel 4.3.5 zugreifen. Es können aber auch Dienste als Komponenten in einer IMLAUF-

Instanzumgebung als Ausführungsumgebung realisiert werden, die wiederum höherwertige

Aufgaben anbieten.

92

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

IMLAUF Kern

R
e
m

o
te

-M
o
d
e
ll-

In
s
p
e
k
to

r

Betriebssystem / Hardware Ebene

D
ie

n
s
t/

G
e
rä

te
-I

n
s
p
e
k
to

r

M
o
d
e
ll-

E
x
p
lo

re
r

IMLAUF Komponenten

A
T
-G

e
rä

te
-M

o
d
e
ll

Daten-
Modelle

D
ie

n
s
te

-M
o
d
e
ll

Instanz-
umgebung

MIKs

Ausführungs-
umgebung

N
a
c
h
ri
c
h
te

n
b
a
s
ie

rt
e

K
o
m

m
u
n
ik

a
ti
o
n

M
IK

-G
e
rä

te
s
e
rv

ic
e

Abbildung 5.1: Eine grobe Übersicht der Basiskomponenten und Architektur des Ausführungssystems

Übersicht über die IMLAUF Komponenten Abbildung 5.1 gibt einen Überblick der Kompo-

nenten. Vor der eigentlichen Komponentenbeschreibung wird hier eine Übersicht gegeben. Der

Fokus liegt dabei auf dem Zusammenspiel und den Rollen der einzelnen Komponenten:

Als Ausgangspunkt, wie in den Anforderungen in Kapitel 3 definiert, dient eine Softwarekompo-

nente, die Zugriff auf die Ressourcen des Gerätes ermöglicht. Die jeweiligen Anbieter der Ge-

räte sind an dieser Stelle gefordert, eine Ausführungsmöglichkeit bereitzustellen. Diese Ebene

wird durch ein Betriebssystem wie Microsoft Windows, Linux oder eine Firmware dargestellt.

Die grundlegendste, wichtigste Komponente ist der IMLAUF Kern. Diese Komponente stellt

die Schnittstelle zwischen dem Hersteller des Gerätes und einer einheitlichen Ausführungs-

umgebung dar, auf denen die hier beschriebenen Modelle und Anwendungen ausgeführt und

verwaltet werden.

Dabei werden die verwalteten, wesentlichen Ressourcen in die Kategorien Speicher, Rechen-

leistung und Kommunikationsleistung eingeteilt. Diese Ressourcen werden den aufbauenden

Diensten bereitgestellt, sodass diese die Ressourcen nutzen können. Die Klassifikation und

Verwaltung dieser Ressourcen wird als Option bei der detaillierteren Beschreibung im Kapitel

5.1 dargestellt1.

Obwohl alle im Folgenden beschriebenen Dienste, sowie auch alle Dienste einer Anwendung

im Endeffekt diese Komponente nutzen, gibt es zwei Haupt-Komponenten, die die Basisaufga-

ben abbilden:

Das Instanzsystem bietet die Umgebung, um die Modell-Instanzen zu verwalten. Im Wesent-

lichen besteht es aus dem in Kapitel 4.5 beschriebenen Container, der die Objekte und Re-

1Diese Verwaltung der lokalen Ressourcen hat dabei mit einem verteilten Ressourcenmanagement, welches in den Anforde-
rungen als optional gekennzeichnet wurde, nur insofern etwas gemein, dass es die Informationen über lokale Ressourcen
bereitstellen muss.

93

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

lationen der Modelle verwaltet und eine entsprechende Erkundung dieser - lokal - ermöglicht.

Hier wird durch das im Kapitel 4.6.1 beschriebene Konzept der Modell-Interkonnektion ein ge-

meinsamer Instanzraum für alle aktiven Dienste geschaffen: Die Ausführungsumgebung. Der

einheitliche Objekt-Raum, der die gemeinsame Verwaltung der passiven und aktiven Kompo-

nenten in der Ausführungsumgebung darstellt, wurde in Kapitel 4.5.4 beschrieben. Hierbei ist

zu beachten, dass die Daten im Modell-Raum abgelegt werden sollen. Gerade ausgehend von

bisherigen Anwendungen, ist dies ein großer Wandel: Bisher halten Programme ihre Daten

intern und verhindern den Zugriff.

Die Ausführungsumgebung bietet die Schnittstelle für Instanziierung, Anmeldung und Erkun-

dung der aktiven Komponenten bzw. den zuvor definierten Diensten. Im Gegensatz zur Instan-

zumgebung ist eine Erkundung der Dienste selber nicht vorgesehen, da das Prinzip der Dienste

eine Kapselung vorsieht; also einen Dienst als Blackbox ansieht, der sich über seine Schnitt-

stellen definiert und nicht über seine interne Realisierung. Über die vorgestellte Repräsentation

der Dienste ist eine Erkundung möglich. Eine weitergehende Erkundung kann auf eine seman-

tische Beschreibung ihrer Funktionalität basieren, die als Annotation an den Repräsentationen

hinterlegt wird.

Aufbauend werden drei Typen von Komponenten realisiert. Alle greifen dabei auf die Haupt-

Komponenten zurück.

Der erste Typ sind die Klassen-/Instanz-Modelle, die die im Instanzsystem abgelegten Reprä-

sentanzen beschreiben. Hier sind in der modellgetriebenen Instanzumgebung insbesondere

das Dienst- sowie Gerätemodell zu nennen. Das Gerätemodell stellt ein (einfaches) Modell für

die Verwaltung von bekannten Geräten dar, welches in Kapitel 4 entwickelt wurde.

Der zweite Typ von Komponenten stellen Dienste dar. In einer modellgetriebenen Instanzum-

gebung existieren einige wichtige Dienste:

• Direkt mit der Ausführungsumgebung ist das Lokale Service Management verbunden.

Es bietet lokale Funktionen, die von den Diensten zu Verwaltungszwecken genutzt wer-

den können. Nach außen hin bietet es Schnittstellen an, um Dienste zu laden und zu

entladen, sowie eine Übertragungsmöglichkeit für die benötigten Daten der Diensttypen.

Es nutzt dabei zur Verwaltung entsprechende Relationen vom AT-Geräte-Struktur-Modell

und Dienste-Modell in der Instanzumgebung.

• Die Nachrichten-basierte Kommunikation stellt eine zentrale Komponente des Versandes

und des Empfangs für asynchrone Nachrichten zwischen den Geräten dar. Diese wird

von allen Diensten genutzt.

• Die beiden Komponenten Dienst-/Geräte Inspektor und Remote-Modell-Inspektor ver-

walten andere Geräte und überwachen ihre Verfügbarkeit. Aufbauende Dienste können

hier ihr Interesse an entfernten Diensten oder Geräten anmelden und werden bei einem

gewollten oder ungewollten Strukturwandel von der Änderung informiert. Es handelt sich

also um Komponenten zur Vereinfachung der Verteilung.

94

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5.1 Ressourcen-Abstraktion: IMLAUF-Kern

R
e
c
h
e
n
z
e
it

IMLAUF Kern

S
p
e
ic

h
e
r

Hardware/OS-Ressourcen

S
p
e
ic

h
e
r

E
n
e
rg

ie

K
o
m

m
n
ik

a
ti
o
n

..
.w

e
it
e
re

Abbildung 5.2: Ressourcen werden von der Hardware / dem Betriebssystem genutzt. Die Verwaltung
und Bereitstellung wird durch den IMLAUF Kern abgebildet.

• Für die Erkundung der Modell-Instanzen bietet der Modell-Explorer eine Schnittstelle an.

Hierbei wird eine Abstraktion von lokaler und entfernter Modell-Erkundung geschaffen,

sodass Dienste, die den Modell-Explorer nutzen, keine eigene Verwaltung der Verteilung

der Modelle bzw. Modell-Relationen benötigen.

Der dritte Typ von Komponenten ist aufbauend auf den Haupt-Komponenten sowie den Model-

len in der Instanzumgebung zu verstehen: Die Modell-Interkonnektions-Komponen-ten (MIK) -

sie realisieren und überwachen die Modell-Interkonnektionen aus Kapitel 4.6.1.

Als Teil der modellgetriebenen Instanzumgebung wird hier ein Ext.-Verbindungs-MIK vorge-

stellt, welches Verbindungen über Gerätegrenzen hinweg anlegt und verwaltet. Es stellt die

Basis für die transparente Erkundung des Modell-Explorers bereit.

Im Weiteren werden die Komponenten im Detail beschrieben und spezifiziert.

5.1 Ressourcen-Abstraktion: IMLAUF-Kern

Der IMLAUF-Kern (Abbildung 5.2) stellt die eigentliche Instanzumgebung bereit, also die Kopp-

lung und Abstraktion der Hardware bzw. des unterliegenden Betriebssystems. Nach oben bietet

sie den aufbauenden Komponenten die Schnittstelle an. So werden die Hardware-Ressourcen

an dieser Stelle den aufbauenden Komponenten bereitgestellt. Da sie stark implementierungs-

abhängig ist, kann an dieser Stelle wenig über die Realisierung gesagt werden.

Ressourcen-Verwaltung Es kann sinnvoll sein, dass die Ressourcen selber explizit verwaltet

werden. Dieses beinhaltet das Allokieren und Freigeben der Ressourcen, sowie das Beobach-

ten von Engpässen. Alle diese Informationen können in einem Ressourcen-Modell abgebildet

werden, womit sie in der Instanzumgebung den Modellen zur Verfügung stehen.

95

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

Hintergrund:
Ansätze, diese Verwaltung der Ressourcen zu realisieren, ohne die Anwendungsentwick-

lung hiermit zu verkomplizieren, bietet die Domäne der virtuellen Maschinen, wie sie bei

allen Cloud-Computing Lösungen eingesetzt werden.

Es sind mindestens die folgenden Ressourcen-Kategorien auf einem Gerät zu berücksichtigen:

Rechenleistung Die bereitstehende, allgemeine Rechenleistung.

Speicher Der bereitstehende Speicher. Aufgeteilt in flüchtigen und permanenten Speicher.

Kommunikation Die Kommunikationsmöglichkeiten und deren Bandbreite.

Energie Der Energiekonsum, ggf. in Relation zur den anderen Ressourcen.

weitere Weitere Ressourcen, beispielsweise gerätespezifische Ressourcen (remanenter Spei-

cher etc.)

Die Beschreibung dieser Ressourcen muss quantifizierbar sein, das heißt es muss eine Metrik

vorliegen. Gleichzeitig müssen die Relationen zwischen den Ressourcen beschreibbar sein - so

hängt beispielsweise der Energiebedarf einer CPU von seiner angeforderten Rechenleistung

ab. Auf diese Weise können Dienste entwickelt werden, die (teil-)automatisch die Verteilung

von Diensten ermöglichen. Auch kann ein Ressourcen-Mangel im Modell erkannt und entspre-

chende Alarme oder Umorganisationen ausgelöst werden.

In der Automatisierungstechnik werden einfachere Modelle für die Ressourcenabbildung nur

sehr begrenzt und abstrakt eingesetzt. Als ein Beispiel kann die SPS Programmierung ge-

nommen werden. Hier wird bei vielen Engineering-Firmen die beim Engineering entstehende

Code-Größe oder der allozierte Speicher zur Laufzeit als Referenz genutzt, um zu erkennen

inwieweit eine SPS ausgelastet ist. Rechen-Ressourcen werden dabei ebenso abstrahiert, wie

Kommunikationsbedarf und Energie.

Die so vorgenommene Vereinfachung ist für die Beschaffung und den Vergleich von Geräten

sicherlich sinnvoll - für die Planung von Ressourcen zur Laufzeit jedoch ggf. nicht hinreichend.

Eine detaillierte Definition solcher Metriken scheint heute aber nicht möglich. Insbesondere

auf Seiten der Programme, die Ihren Bedarf beschreiben müssen, ist dieses (basierend auf

der theoretischen Informatik) nur in Abhängigkeit vom internen Zustand, sowie der Eingabe

möglich. Hier gilt es also einen geschickten Zwischenweg für eine Ressourcenbeschreibung

für die Automatisierungstechnik zu finden.

Hintergrund:
Siemens stellt zur Laufzeit Probleme mit Rechen-Ressourcen einer SPS im OB82 bereit,

wobei man im OB80 eine Reaktion definieren kann - beispielsweise einen Diagnosealarm.

Es können also Alarme und Reaktionen zur Laufzeit definiert werden, sobald ein Schwell-

wert erreicht wurde und die Erfüllung der Zykluszeit in Gefahr ist.

96

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5.2 Die modellgetriebene Instanzumgebung

Ein sinnvoller und bewusster Umgang mit den Ressourcen erfordert zum einen eine weitge-

hende Kenntnis der Realisierung und damit der bereitstehenden Ressourcen. Zum anderen ist

aber auch eine Ressourcen-Kalkulation der konsumierenden Komponenten notwendig. Beides

wurde im IT-Umfeld, gerade im Bereich des Grid-Computing – beispielsweise durch JSDL [14]

– vollzogen. Bei Bedarf kann sie also adaptiert werden, wie es bereits in [ME11] konzeptuell

beschrieben ist.

5.2 Die modellgetriebene Instanzumgebung

IM
L
A

U
F

K
e
rn

:Klasse

<<instanz_von>>

Objekt Relation

<<instanz_von>>

ho
le
R
el
at

io
ns

Ver
bi
nd

un
ge

n

se
tz
eV

ar
ia
bl
en

W
er

t

er
ze

ug
eO

bj
ek

t

lö
sc

he

er
ze

ug
eR

el
at

io
n

Ä
nd

er
un

ge
n

ho
le
Var

ia
bl
en

W
er

t

S
ys

te
m

B
as

is
D
ie

nst
e:

...

Abbildung 5.3: Schnittstellen der Instanzumgebung

Die in Kapitel 4.5 beschriebene Instanzumgebung der Modelle verwaltet die Modell-Instanzen,

also Objekte und Relationen der Modelle.

Sie nutzt dabei Ressourcen und bietet die SystemBasisDienste (vgl. Kapitel 4.3) an, um die

Modell-Instanzen zu manipulieren, wie in Abbildung 5.3 dargestellt.

Die interne Architektur der Komponente wird an dieser Stelle aus zwei Gründen nicht kon-

kret beschrieben: Zum einen existieren bereits Industrie-taugliche Lösungen (Kapitel 2.4.1), die

die Aufgabe übernehmen können und so als Realisierungen bzw. Realisierungsspezifikationen

angesehen werden können. Da der interne Aufbau nur durch die SBD einsehbar ist, können

zum anderen aber auch unterschiedliche Prinzipien im Detail ausgearbeitet werden. Zusätz-

lich ist es wichtig, dass die Realisierung möglichst Speicher- und Rechenleistungs-sparsam

geschieht, d.h. ggf. auch angepasst an die entsprechenden unterliegenden Gegebenheiten.

Wie in der Übersicht beschrieben, werden auch aktive Komponenten – also Abläufe – in IM-

LAUF zur Ausführung gebracht.

Hintergrund:
Die Instanzumgebung ist die Objektverwaltung der Modell-Instanzen und kann damit mit

dem Objektverwaltungssystem ACPLT/OV und der Server-Komponente von OPC-UA ver-

glichen werden. Über die Ausführungsmöglichkeiten dieser Lösungen ist zuvor bereits in

Kapitel 4.5.4 berichtet worden.

97

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

Kommunkation

lokale Anfragen

e
n

tf
e

rn
te

A
n

tw
o

rt
e

n

e
m

tf
e

rn
te

A
n

fr
a

g
e

n

lokale Antworten

S/N: Nachrichten
über Kommunikation

Abbildung 5.4: Schnittstellen der Kommunikations-Komponente

Wichtig für die Reaktion auf Änderungen und damit die Dynamik des Gesamtsystems ist die

Änderungs-Benachrichtigung, wie sie in Kapitel 4.5.3 spezifiziert ist. So muss es für Kom-

ponenten möglich sein, bei beliebigen Änderungen an dem Modell informiert zu werden und

hierauf reagieren zu können.

5.3 Nachrichten-basierte Kommunikation in IMLAUF: MsgSys

Im Kapitel 4.3 wurde ein einheitliches Verständnis der Kommunikation beschrieben.

Die Kommunikations-Komponente MsgSys realisiert die Nachrichten-basierte Kommunikation,

wie sie in Kapitel 4.3 dargestellt ist. Die unterschiedlichen Kommunikations-Typen (Abbildung

5.4) sowie die Nachrichten-Formate werden auf Basis dieser Komponente durch die Dienste

beschrieben und realisiert - die Kommunikations-Komponente ist also hiervon unabhängig.

Einzig die Intent-basierte Kommunikation benötigt neben dieser Kommunikations-Kompo-

nente eine weitere, zentrale Komponente zum Empfang und Weiterleiten der Intent-Nachrich-

ten. Der prinzipielle Aufbau wurde dabei in Kapitel 4.3.7 bereits dargestellt. Die Umsetzung

hiervon bedarf keiner gesonderten Beschreibung.

Diese IMLAUF-Komponente bietet zusätzlich zu der Nachrichten-basierten Kommunikation lo-

kale Schnittstellen an, die es den lokalen Anwendungen möglichst einfach machen, Nachrich-

ten abzuschicken bzw. zu empfangen. Nach außen hin bietet die Komponente die Nachrichten-

orientierte Schnittstelle zum Empfang aller Nachrichten für das lokale Gerät an.

Durch die zentrale Rolle auf einem Gerät können auch lokal zuzustellende Nachrichten durch

die gleichen Schnittstellen versandt werden. Da die Komponente die Lokalität der Kommu-

nikation durch Analyse des Nachrichten-Kopfes feststellt, kann hierbei auf eine Nutzung des

Kommunikations-Mediums verzichtet werden. Dieses Vorgehen bietet die Eigenschaft einer

transparenten Kommunikation. Der Sender muss also nicht erst berücksichtigen, ob eine Nach-

richt lokal oder entfernt zuzustellen ist.

MsgSys-Realisierung In Abbildung 5.5 wird verdeutlicht, dass aktive Komponenten durch

Nachrichten kommunizieren. Nachrichten sind dabei in erster Linie Objekte mit bestimmten

98

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5.3 Nachrichten-basierte Kommunikation in IMLAUF: MsgSys

Gerät

Erstellung

notify

MsgSys

Zugriff

serialisierte Nachricht

Erstellung

Empfang Versand

notify

serialisierte Nachricht

Zugriff

aktive
Komponente

Abbildung 5.5: Übertragung einer Nachricht von einer Sender-Komponente zum Empfänger

Gerät

MsgSys

Gerät

MsgSys

aktive
Komponente

aktive
Komponente

Abbildung 5.6: Aufbau einer Nachricht, Nachrichten-Verarbeitung in einem Gerät

Datenfeldern, wie sie in Kapitel 4.3.3 beschrieben sind. Der Umgang mit diesen Objekten -

letztendlich eine Übertragung der Objekte von einem Gerät auf ein anderes - kann durch eine

zentrale Komponente erfolgen. Hierdurch wird die Handhabung innerhalb der aktiven Kompo-

nenten eingespart. Die Objekte werden von der versendenden Komponente instanziiert und

parametriert. Folgend wird die MsgSys Komponente informiert, dass die Nachricht versandt

werden soll. Diese greift auf das Objekt zu und serialisiert es, falls es über Gerätegrenzen

hinweg übertragen wird. Auf Empfängerseite wird das Objekt wieder hergestellt und eine Be-

nachrichtigung geht an die empfangende Komponente.

Die Abbildung 5.6 verdeutlicht das Vorgehen aus Sicht eines Gerätes beim Senden und Emp-

fangen einer Nachricht durch das MsgSys. Hauptaufgabe ist eine Kommunikations-Möglichkeit

durch das entsprechende Kommunikations-Medium zu ermöglichen, wie es die Nachricht als

Kommunikations-Adresse der EPR spezifiziert. Dabei wird keine direkte Verbindung zur Emp-

fänger-Komponente aufgebaut, sondern eine serialisierte Version des Nachrichten-Objektes

wird an die MsgSys-Komponente des Zielsystems gesandt. Diese kann aus der serialisierten

Nachricht wieder ein Nachrichten-Objekt erstellen und die im Kopf spezifizierte Empfänger-

Komponente über den Erhalt der Nachricht informieren.

Hintergrund:
Für das in der Realität verbreitete Ethernet mit TCP/IP bedeutete eine solche Realisierung

zusätzlich, dass in ggf. vorhandenen Firewalls nur der eine, explizite Port geöffnet werden

muss, was eine wesentliche Vereinfachung für die Inbetriebnahme darstellt.

99

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

Entsprechend schnell kann auch eine lokale Nachrichten-basierte Kommunikation erfolgen:

Hier wird auf die Serialisierung verzichtet und nur die Referenz auf das Nachrichten-Objekt an

die Ziel-Komponente weitergereicht.

Modellierung der Kommunikation innerhalb der Instanzumgebung Im Sinne der Reprä-

sentation ist es insbesondere für zukünftige Anwendungsfälle mit flexiblen Kommunikations-

Strukturen sinnvoll, die Kommunikation selber auch in der Instanzumgebung abzulegen. D.h.

sowohl Kommunikations-Kanäle der Kommunikations-Medien werden dort als Objekt abruf-

und erkundbar, wie auch die Aufrufe (Nachrichten) selber.

Durch eine so weitreichende Abbildung der Kommunikation im Modell-Raum werden für an-

dere Anwendungen auch Reaktionen auf neue und fehlgeschlagene Verbindungen sichtbar

und dadurch handhabbar. Spezielle Komponenten können hierauf reagieren und Maßnahmen

einleiten.

Beobachtungs-Schnittstelle Die IMLAUF-Komponente bietet eine Schnittstelle auf Basis von

der Subskription-/Benachrichtigungs-Kommunikation (Typ 3) an. Beliebige Komponenten kön-

nen sich hier auf Ereignisse von ein-/ausgehenden Nachrichten subskribieren2.

Das heißt, dass der Status der Nachrichten publiziert wird. Hierzu zählen insbesondere auch

Fehler-Zustände. Hierdurch kann eine Komponente, wie beispielsweise das im späteren Verlauf

beschrieben DGI eine Überwachung von Geräte realisieren. Ebenso ist aber denkbar, dass

Reaktionen auf das Antwortverhalten (Zeitverzug) allgemein sichtbar gemacht werden.

Hintergrund:
Diese Abbildung der Kommunikation selber ist nicht verbreitet. ACPLT/KS bildet – in der

Version KS2nd – für TCP/IP Verbindungen eintreffende Verbindungen als Objekte ab, so-

dass auch eintreffende Dienst-Aufrufe die aktuelle Kommunikationsumgebung erkunden

können.

Bei OPC-UA hingegen wird die Kommunikation selber strikt von dem Objektraum getrennt.

Zwar gibt es in der aktuellsten Version der Spezifikation „SessionDiagnosticsSummary“,

jedoch ist diese dem Administrator vorbehalten und steht somit nicht für die Modellierung

bzw. Programme, die aufgrund von den Informationen agieren, zur Verfügung.

5.4 Transparente Erkundung von Daten – Modell-Explorer

Als grundlegende Eigenschaften wurden sowohl das eigentliche Meta-Modell der Informationen

auf einem Gerät, Modelle, die dieses Meta-Modell nutzen, wie auch Verbindungen der Modell-

Instanzen zwischen Geräten dargestellt.

2Durch diese Schnittstelle hat jeder Dienst Zugriff auf alle Nachrichten. Eine Vertraulichkeit ist also nicht gegeben. Da die
kollaborative Manipulation der Daten im Fokus steht, ist dieses im Normalfall zu vertreten. Beschränkungen und Zugriffs-
rechte, wie sie in OPC-UA vorhanden sind, lassen sich auch hier anwenden.

100

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5.4 Transparente Erkundung von Daten – Modell-Explorer

M
o
d
e
ll-

E
x
p
lo

re
r

M
e
ta

IS

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

M
o
d
e
ll-

E
x
p
lo

re
r

M
e
ta

IS

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

Netzwerk

SBD

SBD'SBD'SBD' SBD'

SBD

Abbildung 5.7: Nachrichten-basierte, transparente Kommunikation für die verteilte Modell-Erkundung

Um einen transparenten Zugriff – im Sinne der Kommunikation – zu den Informationen zu erhal-

ten, bietet der Modell-Explorer eine Schnittstelle an, die auf der Schnittstelle der SBD beruht.

Der Zugriff muss, da eine nicht-lokale Kommunikation benötigt wird, asynchron erfolgen, wes-

wegen die Nachrichten-basierte Lösung hier genutzt wird, wie sie in Kapitel 4.6.2.6 vorgestellt

wurde.

Hierdurch können Anfragen an das Modell unabhängig von der Lokalisierung des Objektes

gestellt werden. D.h. erhält ein Modell-Explorer eine Nachricht, analysiert dieser als erstes,

ob die lokale Instanzumgebung angesprochen wird. Sollte dieses der Fall sein, kann jeder

Nachrichten-Typ auf einen SBD der Instanzumgebung abgebildet werden. Sollte eine entfernte

Instanzumgebung angesprochen werden, wird der Inhalt der Nachricht an das Zielsystem wei-

tergeleitet, dort bearbeitet und eine Antwort-Nachricht an den ersten Model-Explorer geschickt,

sodass dieser die Antwort an den Anfragenden erzeugen kann.

Für dieses Weiterleiten müssen die ursprünglichen Nachrichten erst mal gespeichert werden.

Bei der Weiterleitungs-Nachricht werden Typ und Inhalt beibehalten, jedoch die Empfangs-

adresse auf den aktuelle Modell-Explorer gesetzt, sodass die Antwort an diesen zurückkommt.

Die IDs in den Köpfen der Nachrichten ermöglichen dabei die Zuordnung der Weiterleitungs-

Antwort-Nachrichten zu den ursprünglichen Anfragen.

Handhabung von Ext.-Verbindungen

Gleichzeitig löst der Modell-Explorer die Ext.-Verbindungen auf. Das heißt, sollte eine Anfrage

auf eine Ext.-Verbindung stoßen, wird diese verfolgt, der SBD’-Aufruf entsprechend abgeän-

dert. Beispielsweise wird eine Liste Relations-Verbindungen, die auf einem entfernten System

fortgeführt wird, als gemeinsames Ergebnis zurückgeliefert. Dabei werden unterschiedliche

EPRs für die Elemente des Ergebnisses verwandt.

Auch das Anlegen von Relationen, welches unterschiedliche Systeme betrifft, wird durch den

Modell-Explorer transparent geregelt. Hierfür muss der Modell-Explorer die entsprechenden

Objekte der Ext.-Verbindung im Instanzsystem anlegen und parametrieren. Außerdem muss

die Nachricht auch dem Modell-Explorer auf dem Zielsystem weitergeleitet werden, damit hier

der zweite Teil der Ext.-Verbindung angelegt wird.

101

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

zusätzliches
Wissen

bringt mit

Relation

v
e

rw
a

lte
t

brin
gt m

it

nutzt

abhängig von

bringt mit

AnwendungMIKAnwendung

ModellModell

Interkonnektions

Modell

Abbildung 5.8: Konzept der Modell-Interkonnektion zur Laufzeit

Dienste oder Anwendungen, die also auf ein verteiltes Datenmodell zugreifen wollen, aber

das Ext.-Verbindung-Konzept nicht selber beachten wollen, haben hier die Möglichkeit einen

transparenten Zugriff zu erhalten. Lediglich die gelieferte Kommunikations-Adresse muss mit

berücksichtigt - aber nicht weiter verarbeitet - werden.

Keine Änderungs-Benachrichtigungen zwischen Geräten

Änderungs-Benachrichtigungen, die nicht per Modell-Explorer angeboten werden, sind nur rea-

listisch zu spezifizieren, wenn entweder übermäßig viele Kommunikations-Ressourcen bereit-

stehen oder eine effektive Möglichkeit der Eindämmung von Änderungs-Benachrichtigungen

gefunden wurde. An dieser Stelle sollen die Änderungen im Modell deswegen nur lokal für

Komponenten bereitstehen. Änderungen auf Kommunikationsebene - also hinzukommende

oder weggefallene Kommunikationspartner selber - werden dafür durch andere Komponenten

verwaltet, die im Folgenden beschrieben werden.

Insgesamt erfüllt der Modell-Explorer also die Aufgabe, die Verteilung der Daten auf unter-

schiedliche Instanzumgebungen zu abstrahieren - die eingesetzte EPR ist ein eindeutiger Be-

zeichner für ein Objekt, muss aber von der Anwendung nicht im Detail betrachtet werden. Zu

seinen Aufgaben gehören also zum einen die Auflösung der EPR und das Ausführen der Befeh-

le auf lokalen oder entfernten Systemen. Zum anderen auch die Abstraktion über die Verteilung

selber, indem das Mittel der Ext.-Verbindung berücksichtigt wird.

5.5 Prinzip der Modell-Interkonnektions-Komponenten (MIK)

Im Kapitel 4.6.1 wurde das Konzept der Modell-Interkonnektionen vorgestellt. Es sorgt für Ver-

bindungen von bisher unverbundenen Informationen zwischen Modell-Instanzen.

Um solche Verbindungen zur Laufzeit aufzubauen und aktuell zu halten, wird hier das Prinzip

der Modell-Interkonnektions-Komponente (MIK) beschrieben.

102

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5.5 Prinzip der Modell-Interkonnektions-Komponenten (MIK)

Es handelt sich hierbei um eine bestimmte Gruppe von Diensten, die im eigentlichen Sinne

selber keine Schnittstellen anbieten. Diese Modell-Interkonnektions-Komponenten beobach-

ten die Instanzumgebung der Modelle. Sollten für sie relevante Veränderungen in den Modell-

Instanzen auftreten, reagieren sie entsprechend ihres eigenen Modells.

Anwendungen sollen diese zusätzlichen Informationen, die in den Modell-Interkonnektions-Re-

lationen vorhanden sind, nutzen. Damit hängen diese Anwendungen zum einen von den Model-

len ab, die sie klassisch verarbeiten, zum anderen aber auch von den MIKs, da sie sich auf das

Vorhandensein der Modell-Interkonnektions-Relationen verlassen. Abbildung 5.8 verdeutlicht

das Prinzip der MIK zur Laufzeit.

Verteilte Modelle und das MIK Um die Modell-Instanzen in der verteilten Instanzumgebung

zu finden, wurde bereits das Konzept der Modell-Master (Kapitel 4.5.1.1), sowie das damit

verbundene Yellow-Paging vorgestellt. Dieses wird von den MIK genutzt, um Instanzen von für

sie interessanten Modelle aufzufinden. Das Konzept der Ext.-Verbindungen wurde bereits bei

den Basismodellen beschrieben, ebenso das generische Prinzip der MIKs.

Um Änderungen von allen Geräten erhalten zu können, müssen die MIK sich aktiv bei allen

Geräten für Modell-Änderungen bei der dortigen Instanzumgebung anmelden, da nach dem

vorherigen Kapitel Modell-Änderungen nicht generell verbreitet werden.

Für einen einfachen Fall, dass eine MIK zwei Modelle beobachtet und bei Bedarf Relationen

anlegt, ist dieses handhabbar: Wenn die Modelle jeweils auf einem Gerät instanziiert sind und

das MIK auch auf einem der Geräte instanziiert wurde, müssen nur die Modell-Änderungen

des anderen Gerätes (mit Bezug auf das zweite Modell) übertragen werden.

Ein MIK sollte die Modell-Änderungen sowie Beobachtungen immer durch den Modell-Explorer

vornehmen. Auf diese Weise werden Ext.-Verbindungen automatisch angelegt, falls diese nötig

sind.

5.5.1 Problem: Schleifenbildung

Nicht nur durch die Modell-Interkonnektionen, sondern eigentlich immer, wenn unterschiedli-

che Komponenten Veränderungen an gemeinsamen Daten vornehmen, gilt es eine Schleifen-

bildung der Änderungen zu vermeiden.

Mit Schleifenbildung ist hier gemeint, dass eine Komponente A eine Aktion x ausführt. Diese

Veränderung der Daten bedingt, dass Komponente B eine Aktion x−1 ausführt. Daraus folgt,

dass Komponente A wiederum die Aktion x ausführt. Es entsteht also eine unendliche Schleife.

Solche Schleifen können durchaus auch über mehrere Modelle und Aktionen entstehen.

Theoretische Lösungsskizze: Vorab-Analyse Theoretisch könnten solche potenziell auftau-

chenden Schleifen vorab untersucht werden. Es wird also aufgrund der Änderungen an den

103

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

Modellen und ihren Relationen untersucht, ob durch die Veränderungen ein Zyklus entstehen

kann.

Hierfür sind allerdings die Modelle, Modell-Interkonnektions-Modelle und auch Modell-Transfor-

mationen (d.h. Änderungen der Modelle durch die Anwendungen) erforderlich. Da die Modelle

durch weitere MIK voneinander abhängen können, sind auch diese notwendig zu untersuchen.

Damit ergibt sich in der Praxis das Problem, dass im Endeffekt wieder ein „Welt-Modell“ benötigt

wird, also ein einheitliches Verständnis von allen Informationen, die in den Modellen abgelegt

sind.

Theoretische Lösungsskizze: Schleifenerkennung zur Laufzeit Eine weitere Lösung ist ei-

ne Schleifenerkennung zur Laufzeit. Dafür werden Änderungen am Modell protokolliert. Sollten

gleiche Änderungen wiederholt auftreten, werden diese erkannt. Hierfür können existierende

Lösungen aus dem Themengebiet der Termersetzungssysteme angewendet werden [Ohl02].

Praktisch gesehen. . . In der Praxis sollten solche Schleifen jedoch kaum eine Rolle spielen,

denn die Modelle sind in sich geschlossen. Die Modell-Interkonnektionen führen Verbindungen

zwischen Modellen ein, die eine zusätzliche Information einbringen, d.h. sie beeinflussen selber

nicht die unterliegenden Modelle. Auch ist es unwahrscheinlich, dass unterschiedliche Modell-

Interkonnektionen gegenseitig Schleifen beschreiben, denn sie sollten eigene Aufgaben und

damit einen jeweiligen Mehrwert erbringen.

Trotzdem besteht die Gefahr der Schleifenbildung - zumindest in der Theorie.

5.5.2 Beispiel: MIK AT-Geräte-Dienste

Diese Modell-Interkonnektions-Komponente verbindet die Dienstrepräsentationen mit den ent-

sprechenden AT-Geräte-Komponenten.

Durch die entstehenden Verbindungen können aufbauende Anwendungen erkunden, welche

Dienste auf einem Gerät laufen. Hierdurch können beispielsweise Dienste gefunden werden,

die möglichst nahe sind. Ebenso können Dienste gefunden werden, die auf Geräten mit vielen

freien Ressourcen laufen.

5.6 Überwachung der Umgebung - Remote-Model-Inspektor (RMI)

Mit den oben beschriebenen Komponenten können die Elemente der Modelle miteinander ver-

bunden werden. Dabei kann eine Erkundung über die Systemgrenzen hinweg transparent er-

folgen, wenn die Kommunikation über den Model-Explorer erfolgt. Lokale Änderungen sind

direkt erkennbar, indem die Subskription/Benachrichtigungs-Schnittstelle Änderungen der In-

stanzumgebung genutzt wird.

104

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5.6 Überwachung der Umgebung - Remote-Model-Inspektor (RMI)

Änderungen
(anlegen/löschen Ext.Verbindung)

M
e
ta

IS

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

setzeVariable
(Ext.Verbindung/Status)

h
o

le
V

a
ri
a

b
le

n
W

e
rt

(E
x
t.

V
e

rb
in

d
u

n
g

/S
ta

tu
s
)

Netzwerk

Kommunikation
(NachrichtenEingang)

M
e
ta

IS

:Klasse

<<instance_of>>

Objekt Relation

<<instance_of>>

R
e

m
o

te
-M

o
d

e
ll-

In
s
p

e
k
to

r

SBD

SBD

Abbildung 5.9: Überwachung der Ext.-Verbindungen durch den RMI

Als eine Aufgabe wurde in den Anforderungen zusätzlich die Dynamik beschrieben. Hierzu

gehören neben dem Hinzukommen von neuen Geräten auch der geplante oder ungeplante

Ausfall von Geräten. Dieser wird ebenso nutzbar gemacht, wie andere strukturelle Änderungen

im Modell.

Auf Ebene der Instanzumgebung sind Ext.-Verbindungen ein Indikator dafür, dass ein Interesse

von einer lokalen Komponente an dem Fortbestand des Zielsystems liegt. Die beschriebene

Komponente Remote-Model-Inspektor existiert als Basis-Komponente auf jedem Gerät.

Sie geht von allen Instanzen der Ext.-Verbindungen auf ihrem Gerät aus. Sie bildet aus der

Liste der Ext.-Verbindungs-Objekte eine Geräteliste der zu überwachenden Geräte, indem sie

lokale Repräsentationen für die Geräte anlegt. Alle diese Geräte werden überwacht.

Durch die Zusammenfassung in einer Komponente werden zwei Ziele erreicht:

• Die nötige Kommunikation wird minimiert: Zum einen wird anderweitige Kommunikation

berücksichtigt, zum anderen wird ein Gerät auch nur einmal überwacht.

• Die interessierten Komponenten müssen nicht selber eine Überwachung realisieren.

Dieses Konzept hat also nur etwas mit der Erkennung einer Änderung zu tun. Es bildet in keiner

Weise einen Schutz vor Datenverlust.

Die RMI Komponente wird durch das MsgSys von eintreffenden Nachrichten unterrichtet, wie

in Abbildung 5.9 dargestellt. Berücksichtigt man, dass Geräte nur insgesamt ausfallen (nicht

jedoch Software-Komponenten auf ihnen, wie in Kapitel 5.3 beschrieben) kann der RMI aus

eintreffenden Nachrichten schließen, dass die Ext.-Verbindung-Instanzen, die auf den Absen-

der zeigen, weiterhin gültig sind. Der RMI kann also in diesem Fall die Aktualitäts-Zeit aller

Ext.-Verbindungs-Instanzen auf die aktuelle Uhrzeit setzen.

Dieses stellt eine passive Überwachung dar. Sie erzeugt keinerlei Kommunikationslast. Dieses

hat jedoch den Nachteil, dass keine Aussagen über die Erreichbarkeit der Ext.-Verbindungs-

Zielsysteme gemacht werden können, wenn nicht „zufällig“ eine Kommunikation stattfindet.

105

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

Deshalb können Komponenten die Ext.-Verbindungs-Instanzen mit einer Annotation Überwa-

chungs-Intervall ausstatten. In diesem Fall überprüft der RMI die Existenz des Ziels im entspre-

chenden Zeitrahmen. Dafür wird durch einen Aufruf des SBD’ zum Holen einer Status-Variablen

der Ext.-Verbindungs-Instanz auf der entfernten Instanzumgebung durchgeführt. Hierbei han-

delt es sich also um eine qualifizierte, aktive Überwachung.

Die folgende Komponente Dienst/Geräte-Inspektor nutzt dieses Konzept um eine allgemeine

Überwachungsfunktion von Diensten und Geräten anzubieten.

5.7 Verwaltung der Dienste und Geräte - Dienst/Geräte-Inspektor
(DGI)

register
unregister

MetaIS/Änderungen
(Ext.Verbindung/Status)

Dienst/Geräte-Inspektor

neuer Status

MetaIS/ErzeugeObjekt
(Ext.Verbindung)

monitor
unmonitor

Abbildung 5.10: Schnittstelle des Dienst/Geräte-Inspektor

Der DGI stellt die zentrale Schnittstelle zwischen den Diensten, sowie der modellgetriebenen

Instanzumgebung dar. Er übernimmt dabei mehrere Aufgaben. Seine Schnittstellen sind in

Abbildung 5.10 zusammengefasst.

Zum einen übernimmt er die Rolle einer lokalen, zentralen Anmeldestelle für Dienste, d.h.

Dienste registrieren sich selber bei dieser lokalen DGI Komponente. Diese übernimmt eini-

ge Arbeitsschritte, um den Dienst ins Gesamtsystem einzubinden. Hierzu zählen insbesondere

das Anlegen der Dienst-Repräsentation im Dienst-Modell der Instanzumgebung.

Der zuvor dokumentierte RMI überwacht den Zustand aller Ext.-Verbindungs-Objekte in der

lokalen Instanzumgebung in Bezug auf deren zugehörigen Ext.-Verbindungs-Objekte auf den

entfernten Systemen. Damit auch eine Änderung der Dienste und Geräte erkannt werden kann,

sorgt der DGI für eine entsprechende Überwachung dieser Komponenten.

Deren Aufgabe ist es also, auf Anfrage von Diensten Änderung an der Dienstverteilung an die

anfragenden Dienste weiterzuleiten. Auf diese Weise können die Dienste auf Strukturänderun-

gen reagieren ohne selber eine Überwachung zu realisieren. Dienste müssen lediglich für sie

interessante „Partner“ bei dem DGI anmelden. Änderungen beziehen sich dabei - wie auch bei

der Ext.-Verbindungs-Überwachung des RMI - auf den Zustand, wie er in Kapitel 4.2.1 definiert

ist. Damit wird auch klar, dass alle aktiven Komponenten bzw. deren Repräsentationen, über-

wacht werden können.

Implizit nimmt der DGI dabei an, dass ein einmal instanziierter Dienst immer auf einem Gerät

läuft. Wenn also ein Interesse an einem Dienst besteht, zieht so ein Ausfall des zugehörigen

Gerätes auch eine entsprechende Benachrichtigung nach sich.

106

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5.8 Migration von traditioneller Datenhaltung zur Repräsentation der Information in einer verteilten,
modellgetriebenen Instanzumgebung

Zum Erfüllen der Rolle der lokalen, zentralen Anmeldestelle wird vom DGI die lokale Schnitt-

stelle register() angeboten. Nutzt ein startender Dienst diese, wird seine Repräsentation „Self“

angelegt. Gleichzeitig wird er mit dem Modell-Master des Dienst-Modells verbunden, sodass er

auffindbar (Kapitel 4.4) ist.

Sollte ein Dienst gelöscht (deregister()) werden, wird die Repräsentation entsprechend ge-

löscht. Durch die Änderungsmitteilung werden auch andere Komponenten über diese Ände-

rung informiert - damit also auch die Kommunikations-Komponente, sodass für diesen Dienst

keine Mitteilungen mehr entgegen genommen werden.

Ein Dienst, der eine Abhängigkeit zu einem anderen Dienst oder Gerät hat, kann diese durch

den DGI überwachen lassen. Dafür nutzt er die monitor()-Schnittstelle. Bei Aufruf wird der

DGI eine entsprechende Zuordnung von dem abhängigen Dienst zu dem zu überwachenden

Dienst im Daten-Modell per interesse_an-Relation ablegen. Falls es sich um eine RemoteLink-

Verbindung zu einem externen Dienst handelt, wird er dabei auch ein entsprechendes Über-

wachungs-Intervall definieren. Der RMI sorgt so wieder für eine entsprechende Überwachung

des Status. Durch die Schnittstelle unmonitor() wird die entsprechende Verbindung wieder auf-

gehoben.

Sollte sich der Status eines Ext.-Verbindungs-Objektes ändern, informiert der DGI entweder

über eine Aufruf- oder Nachrichten-orientiert Schnittstelle neuerStatus den abhängigen Dienst.

5.8 Migration von traditioneller Datenhaltung zur Repräsentation
der Information in einer verteilten, modellgetriebenen
Instanzumgebung

Alle vorgestellten Komponenten sowie Konzepte basieren auf der Annahme, dass Anwendun-

gen und deren Hersteller bereit sind, ihr properitätren Datenablagen aufzugeben, damit die

Anwendungs-Daten in der Instanzumgebung abgelegt werden können.

Um eine solche Änderung der Datenhaltung zu ermöglichen, ist ein Migrationspfad unverzicht-

bar. Insbesondere stellt sich bei Änderungen dieser Größenordnung immer die Frage, ab wann

sich die Änderungen für die Beteiligten auszahlen.

Durch die Verbindungen von den einzelnen Informationen ergibt sich die Möglichkeit, dass

selbst der Datenaustausch zwischen zwei Anwendungen, der bisher klassisch über Export-

Import-Funktionen realisiert wurde, profitieren kann. Wenn beide Anwendungen ihre bisheri-

gen Strukturen in die gemeinsame Modell-Instanzumgebung ablegen und entsprechende Re-

lationen zwischen den Einzel-Informationen schaffen, ist der Benefit sofort erkennbar: Eine

doppelte Datenhaltung und damit Inkonsistenzen werden vermieden.

107

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung

Die nötigen Änderungen an den internen Programmstrukturen sollten – je nach Realisierung

– nicht allzu komplex sein. Im Prinzip muss eine Abbildung des bisherigen Modells auf das

Meta-Modell passieren, welches von der Instanzumgebung bereitgestellt wird.

Wenn der Zugriff auf das Meta-Modell offen gestaltet wird, können weiter Anwendungen di-

rekt ihre Daten ablegen und Relationen zu existierenden Informationen setzen, um damit neue

Informationen auch selber auszunutzen. Ein Benefit ist also unmittelbar erkennbar.

Für die Umsetzung einer gemeinsamen, modellgetriebenen Instanzumgebung kann ein Kon-

sortium gegründet werden, wie es das für die Kommunikationssysteme in der Automatisie-

rungstechnik schon länger gibt. Es ermöglicht allen Interessierten sich einzubringen und erhöht

damit die Akzeptanz des Gesamtansatzes. Ansätze für solche Kooperationen von Experten

sind bereits vorhanden. Da in der Arbeit auch beschrieben, seien hier beispielhaft PLCopen,

AutomationML und die OPC Foundation genannt.

5.9 Prototypen der Komponenten

Die beschriebenen Komponenten wurden größtenteils prototypisch realisiert. Die Implemen-

tierung fokussierte dabei auf die Aufgabenstellungen, die durch öffentliche sowie industrielle

Forschungsprojekte am Lehrtuhl für Prozessleittechnik vorhanden waren.

Technologisch wurde dabei ACPLT (Kapitel 2.4.1.1) gewählt. Die Verfügbarkeit sowie Offenheit

waren ein ausschlaggebender Grund für diese Entscheidung. Zusätzlich konnten so grundle-

gende Kommunikations-Implementierungen frühzeitig auch in Projekten eingesetzt werden, die

mit den hier beschriebenen Komponenten ansonsten wenig zu tun hatten.

Die folgenden Komponenten wurden prototypisch realisiert.

KS2nd Die ursprüngliche Kommunikation ACPLT/KS bietet eine Schnittstelle um eine Instan-

zumgebung zu beherbergen. Die Kommunikation selber ist also nicht als Objekte in der

Instanzumgebung modelliert, da es eine unterliegende Schicht war. KS2nd bietet die

Möglichkeit, Objekte in der Instanzumgebung anzulegen, zu parametrieren und hierdurch

Kommunikation (sowohl eingehende, wie auch ausgehende) zu nutzen.

MsgSys (Kapitel 5.3) Die Nachrichten-basierte Kommunikation mit ihren Verwaltungskompo-

nenten auf Basis von KS2nd ermöglicht es Anwendungen das Konzept zu nutzen. Es

hat sich gerade in einem verteilten Umfeld zur Reaktion auf Geräte-Struktur-Änderungen

bewährt.

Modell-Explorer (Kapitel 5.4) Modell-Erkundungen können mittels des Modell-Explorers über

Instanzumgebungen hinweg ohne Berücksichtigung der Verteilung erfolgen. Dafür wur-

den auch das Konzept der entfernten Verbindungen (Kapitel 4.6.2.1) ansatzweise reali-

siert.

108

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

5.9 Prototypen der Komponenten

RMI (Kapitel 5.6) Der Remote-Model-Inspektor kann bisher die Überwachung von konkreten

Datensätzen (Konfigurationsdaten) auf lokalen und entfernten Geräten vornehmen.

DGI (Kapitel 5.7) Zur Geräteüberwachung wurde der Dienst/Geräte-Inspektor teilweise reali-

siert. Hierbei wird ein Ausfall eines Gerätes erkannt, sodass Reaktionen zur Neustruktu-

rierung erfolgen.

Die Prototypen wurden im Rahmen von Forschungsaufträgen an realen Demoanlagen in Be-

trieb genommen, womit die Einsatzfähigkeit sowohl der Konzepte, wie auch der Realisierung

überprüft wurde. Die Ergebnisse flossen in die Veröffentlichungen [ME12], [ME11], [MKE10]

und [MKE09] ein.

109

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausführungsumgebung

6 Anwendungen: Dynamik auf Basis der
verteilten, modellgetriebenen
Ausführungsumgebung

A distributed system is a collection of independent computers that
appears to its users as a single coherent system.

Andrew S. Tanenbaum

Um die Anwendbarkeit, sowie die Mächtigkeit der verteilten, modellgetriebenen Instanzumge-

bung zu demonstrieren, werden in diesem Kapitel unterschiedliche Anwendungen aufgezeigt.

Ziel ist es, nicht nur abstrakt die Vorteile im Raum stehen zu lassen, sondern ganz konkret

greifbar zu machen.

Als erstes wird beschrieben, wie eine Anwendung zur allgemeinen Suche nach Strukturen rea-

lisiert werden kann. Dieses ist eine der wichtigsten Funktionen um eine Dynamik im Gesamt-

system realisieren zu können. Hierdurch wird die Möglichkeit geschaffen, automatisch oder

semi-automatisch eine Verknüpfung von Informationen und Diensten zu erreichen und somit

auf Änderungen reagieren zu können.

Folgend wird eine Anwendung zur Verlagerung von Software-Komponenten beschrieben. Die-

ses verdeutlicht die Dynamik des Gesamtsystems, nicht nur in Bezug auf die Struktur der An-

lage (Reaktion auf Umbauten), sondern auch die Möglichkeiten, unterschiedliche Verteilungen

nachträglich zu ändern - beispielsweise das in Kapitel 4.7.2 beschrieben Umverteilen zwischen

Engineering- und Produktions-Phase.

Diese beiden Anwendungen sind aufbauend auf der Instanzumgebung zu sehen und nicht Be-

standteil dieser.

Darauf folgende Anwendungsfälle existieren als alltägliche Aufgabe in der Anlagenplanung, so-

wie Inbetriebsetzung. Hier soll möglichst beispielhaft ein breites Spektrum abgedeckt werden,

welches Lösungen für heutzutage alltägliche Probleme beschreibt.

6.1 Verteilung in der Automatisierungstechnik als Suche

Durch die Verteilung der Komponenten entsteht das Problem des Auffindens. Allgemein gese-

hen ist dies kein neues Problem. Es wird durch die Verteilung auf Geräte nur deutlicher. Auch

in klassischen Anlagenarchitekturen ist es immer wieder schwierig festzustellen, an welchem

110

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6.1 Verteilung in der Automatisierungstechnik als Suche

Port einer I/O Karte welches Gerät verbunden ist und - viel wichtiger - wie die Zuordnung im

Prozess (also zu der PLT-Stelle) zu sehen ist.

Da das modellgetriebene Instanzsystem aktiv mit der Verteilung umgeht, können solche Fragen

von Anwendungen durch Wissen von den entsprechenden Modellen beantwortet werden.

SystemSuch
Dienst

Modell-Explorer

Model-
Explorer

M
o

d
e

llE
x
p

lo
ra

ti
o

n

SBD'

S
B

D
'

S
B

D
'

S
B

D
'

S
B

D
'

S
B

D
'

S
u

c
h

a
n

fr
a

g
e

A
b

b
ild

u
n

g
:

S
u

c
h

e
->

M
o

d
e

llS
tr

u
k
tu

r

Anw.

ModellExplorerModell-Explorer

Modell-Explorer

Abbildung 6.1: Der Suchdienst übernimmt die Auswertung einer Suchanfrage auf Basis einer
Strukturbeschreibungs-Sprache, die auf dem Meta-Modell basiert.

Eine Anwendung sucht einen Dienst. Hierfür wendet sich der suchende Dienst mit einer Such-

anfrage an einen SystemSuchDienst. Im Sinne der Kommunikation handelt es sich dabei um ei-

ne asynchrone Kommunikation; formuliert in der Schnittstellensprache des SystemSuchDiens-

tes. Für die Formulierung der Suchanfrage benötigt die Anwendung das Wissen des Modells

über das sie sucht.

Durch die Möglichkeit eines gemeinsamen Meta-Modells lassen sich alle Anfragen in einer

Sprache, die auf dem Meta-Modell aufbaut, formulieren, d.h. die Ausführung einer Suche ist

nicht mehr von den konkreten Modellen abhängig und kann von einem SystemSuchDienst für

alle Modelle ausgeführt werden.

Hintergrund:
Die Trennung ist äquivalent zu Datenbank-Sprachen zu sehen: Datenbank-Sprachen wie

SQL sind unabhängig vom Datenbankschema formuliert. Ihre Aufrufe enthalten entspre-

chende Konstrukte, um die zu lesenden/schreibenden Daten zu formulieren.

In Abbildung 6.1 ist der Ablauf einer Such-Anfrage dargestellt. Durch den lokalen SystemSuch-

Dienst kann ein Dienst eine Suchanfrage bearbeiten lassen, ohne dass sich ein anfragender

Dienst überhaupt um die Auswertung der Anfrage oder die Verteilung des Modells selber küm-

mern muss. Dafür übernimmt der SystemSuchDienst die Auswertung der Anfrage und stellt

entsprechende Modell-Explorations-Anfragen an den lokalen Modell-Explorer, der ggf. diese

Anfragen verteilt bearbeitet. Während die Formulierung der Suchanfragen eine eigene Sprache

darstellt, ist die Kommunikation zu dem Modell-Explorer in den SystemBasisDiensten’ (SBD’)

formuliert.

111

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausführungsumgebung

Formulierung der Suchanfragen

Somit wird die Suchanfrage also in einer Form der Strukturbeschreibung mit folgenden Ele-

menten bestehen

Klassen und Relationen sind die Hauptbeschreibungsmerkmale der Suchanfrage, sie be-

schreiben die Grundstruktur des Zielsystems.

Variablen-Werte können als Bedingungen vorgegeben werden (z.B. "Variable PV <= 4.2").

Referenzen auf Instanzen werden insbesondere als absolute Ausgangspunkte verwendet.

Dabei ist es wichtig zu verstehen, dass diese Strukturbeschreibung zwar von den Modellbe-

schreibungen eingegrenzt wird, diese jedoch in keiner Weise eine valide (Teil-)Struktur des

oder der Modelle selber sind. Sie stellen vielmehr ein Muster dar, was durch den SystemSuch-

Dienst gefunden werden soll.

Hintergrund:
In der IT-Welt existieren vergleichbare Sprachen zur Suche in XML Daten. Durch XPATH

[32] werden die Elemente, Kindelemente und Werte/Namen beschrieben. Ein entspre-

chender Prozessor liefert eine Liste aller XML Elemente mit den formulierten Eigenschaf-

ten innerhalb eines XML Dokumentes.

Beispielanfragen

Die folgenden Beispiele sind natürlich-sprachlich formuliert und sollen Ideen für Suchanfragen

geben, aber auch die Mächtigkeit der Such-Anfrage-Sprache aufzeigen.

Welche Ventile sind offen? Suche über Anlagenstruktur-Modell, Aktualwerte per Relationen

in einem Steuerungs-Modell.

Wie hoch ist Temperatur in B1? Suche über Anlagenstruktur-Modell nach Temperatursen-

soren von B1, dann Dienst-Modell für den Sensor um dort per AT-Geräte-Struktur die

EPR abzufragen und durch den Dienst den Aktualwert zu ermitteln.

Welche Geräte haben Ihre MTBF erreicht? Suche über AT-Geräte-Struktur oder der Anla-

genstruktur, dann der Annotationen der Dienst-Repräsentationen für die Geräte.

6.2 Migration von Komponenten

Die Migration von Komponenten wurde in unterschiedlichen Zusammenhängen angesprochen.

An dieser Stelle wird sie als Anwendung für die modellgetriebene, verteilte Instanzumgebung

beschrieben.

112

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6.2 Migration von Komponenten

Definition: Eine Migration ist, eine Komponente durch eine andere zu ersetzen. Dabei ist

klar definiert, welche internen Informationen übernommen werden und welche durch die

Migration verloren gehen.

Es geht dabei um die Verschiebung von Komponenten. Dabei werden an dieser Stelle insbe-

sondere zwei Szenarien betrachtet:

Örtliche Migration Die Verlagerung einer Komponente von einem Gerät auf ein anderes. Bei-

spielsweise zur Optimierung der Modell-Verteilung.

Versions-Migration Versionsupgrade einer Komponente unter Beibehaltung ihrer Eigenschaf-

ten / Konfiguration. Beispielsweise als Software-Update.

In beiden Fällen soll eine Instanziierung einer Komponente erfolgen, die die Aufgaben und

damit die Konfiguration in Form von Variablen und Relationen einer Vorgänger-Komponente

übernimmt. Vorteil einer solchen Anwendung ist insbesondere, dass Unterbrechungen des ge-

samten Systems minimiert werden. Bei bisherigen Systemen ist eine Migration von existieren-

den Instanzen nicht realisiert.

Einige Voraussetzungen für eine Migration in der modellgetriebenen Instanzumgebung müssen

erfüllt sein:

• Die Klassenbeschreibungen der Instanzen müssen auf den beteiligten Geräten vorhan-

den sein.

• Eine Definition der zu übernehmenden Variablen und Annotationen ist bereitzustellen.

• Die Zustandsmaschine der Komponenten bietet einen Zustand zur Konfiguration an. Die-

ser Zustand entkoppelt die Instanz vom restlichen System insoweit, dass die Komponente

konfiguriert werden kann, ohne dass Zugriffe / Nutzungen erfolgen. In der vorgeschlage-

nen Zustandsmaschine aus Kapitel 4.2.1 kann das der Zustand laden sein.

Der Ablauf einer Migration ist nun:

1. Instanziierung der neuen Instanz. Sie verbleibt in dem Konfigurations-Zustand.

2. Versetzen der alten Instanz in den Konfigurationszustand.

3. Kopieren der Konfiguration (statische und interne Variablen; vgl. Kapitel 4.4) und Annota-

tionen.

4. Löschen der Relationen zur alten Instanz mit gleichzeitigem Anlegen der Relationen zur

neuen Instanz.

5. Aktivieren der neuen Instanz (vom Konfigurationszustand in den normalen Zustand).

6. Löschen der alten Instanz.

113

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausführungsumgebung

6.3 Anwendungsfall 1: Abbildung einer Remote I/O

Um eine bestmögliche Integration der Laufzeit-Modelle zu schaffen, ist es sinnvoll auch die

Anbindung an den Prozess und damit der Aktualwerte im Modell-Raum abzubilden.

Dafür wird hier ein Dienst beschrieben, der Aktualwerte in die modellgetriebene Instanzumge-

bung abbildet, welche beispielsweise von einem Sensor erfasst werden.

PLTStellenDienst

MgtFkt

Dienst
Funktionen

Lokale
Funktionen

Konfiguration I

Messwert
Abfrage

Modell-Master:
Anlagenstruktur

TI
T10

API

API

Konfiguration II

Dienst RIO

(Verteilungs-)
MgtFkt

MM: ATStruktur

Konfiguration

Abbildung 6.2: Messwerte für die Instanzumgebung

Ausgegangen wird von einem Gerät, welches die Funktionen einer Remote I/O übernimmt,

also einzelne (Mess-)Werte auf einem normalerweise digitalen Bus- oder Netz-werk-System

bereitstellt.

Ein solches Gerät ist bei diesem Beispiel das „unterste“ Gerät, welches in der Lage ist, die

modellgetriebene Instanzumgebung auszuführen. Entsprechend werden die einzelnen Signale,

die an der Remote I/O angeschlossen sind, als physikalisch verfügbare, lokale Ressourcen

angesehen.

Als erstes wird ein Dienst vorgesehen, der die Remote I/O selber abbildet. Er meldet sich - wie

im AT-Geräte-Struktur-Modell vorgesehen - am Modell-Master an und wird in die flache Struktur

des Modells integriert. Fortan ist die Remote I/O im Dienstsystem als Ressource bekannt und

kann verwendet werden.

Aufbauend wird pro Kanal an der Remote I/O ein Dienst vom Typ PLTStellenDienst verwen-

det. Dieser Dienst, der z.B. bei einer Hardware-Konfiguration instanziiert werden kann, stellt

die Brücke zwischen Messsignal und Instanzumgebung dar. Dieser Dienst sollte entsprechend

bekannt gemacht werden. Am naheliegensten ist es, dass er in der Anlagenstruktur, z.B. al-

so am PandIX-Modell mit einer entsprechenden Relation zu einem PLCPoint verbunden wird.

Dieses wäre die Aufgabe eines MIK, welches als Zusatzinformationen die Relation PLT-Stelle

114

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6.4 Anwendungsfall 2: Vorbereitung auf Ausfälle

im Prozess zu Gerät kennt - wie sie in Kapitel 4.6.1.1 beschrieben ist. Anwendungen können

so die EPR dieses Dienstes entdecken und auf die PLT-Stelle und damit den entsprechenden

Wert zugreifen.

Konfiguration

Neben diesen Schnittstellen ist es naheliegend, auch eine Konfigurations-Schnitt-stelle für die

Geräte anzubieten. Idealerweise werden existierende Modelle zur Gerätekonfiguration wie FDI

/ FDTv2 in die modellgetriebene Instanzsystem integriert und die Konfiguration der Sensoren

kann durch Verbindung mit den entsprechenden Informationen der Modellinstanzen vorgenom-

men werden (Konfiguration I in der Abbildung 6.2).

Wenn eine solche Schnittstelle angeboten wird, kann diese zur Konfiguration z.B. eines spe-

ziellen Dienstes genutzt werden. Es kann aber auch als Management-Funktion angesehen

werden. Dabei können die Konfigurationsdaten mit der Anlagenstruktur verknüpft abgelegt und

von hier bezogen werden (Konfiguration II in der Abbildung 6.2).

Ziel

Wenn die Aktualwerte der Sensorik und die Stellwerte der Aktoren im Modell verknüpft abgelegt

werden, können diese über weitere Modelle in Relation gesetzt werden. Dadurch ergeben sich

vielfältige Diagnose und Überwachungsmöglichkeiten, insbesondere können auch Abfragen

formuliert werden, die nicht vorprojektiert sind.

Als Beispiel kann hier die „OPC UA Information Model for IEC 61131-3“ [27] dienen, die die

Steuerungsbausteine einer 61131-3 Programmierung mit Aktualwerten der Ein-/Ausgänge in

dem OPC-UA Objektraum abbildet.

6.4 Anwendungsfall 2: Vorbereitung auf Ausfälle

In der zuvor beschriebenen Architektur wurde durch das Ext.-Verbindungs-Konzept eine Mög-

lichkeit geschaffen, die Komponenten über Änderungen der Struktur - ob geplant oder nicht - zu

informieren. Es macht Sinn, dass bei einer Veränderung nicht jede Komponente informiert wird,

sondern nur die Komponenten, die auch reagieren müssen. Diese subskribieren sich nach dem

Ext.-Verbindungs-Konzept mit dem entsprechenden Gegenüber und bekommen die Änderung

per Benachrichtigung mit, wie in Kapitel 4.6.2.1 beschrieben.

Um in angemessener Zeit und mit gewünschter Zuverlässigkeit Reaktionen ausführen zu kön-

nen, bedarf es ggf. einer Vorbereitung in Form eines Vorgehens-Konzeptes. Hier wird ein grund-

sätzliches Konzept für die Management-Funktionen des Dienstes beschrieben, um diesen mit

einem Redundanz-Ansatz auszustatten. Dargestellt ist das Szenario in Abbildung 6.3. Aus-

gangspunkt ist ein Dienst, der ein regelmäßiges Interesse an einem anderen Dienst hat –

potenziell auf einem anderen Gerät. Deren Dienst-Repräsentationen sind durch eine Relation

115

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausführungsumgebung

g
e

n
u

tz
te

r
D

ie
n

s
t

(Verteilungs-)
Management
Funktionen

Dienst
Funktionen

MgtFkt

Dienst

MetaIS

MetaIS

Systemgrenze

Rekonf

reäsent.

E
x
.t

V
e

rb
in

d
u

n
g

Red
Mgt

R
e

p
rä

s
e

n
ta

ti
o

n
e

n

MetaIS

a
lt
e

rn
a

ti
v
e

r
D

ie
n

s
t

S
y
s
te

m
g

re
n

z
e

Abbildung 6.3: Vorbereitung auf eine Umschaltung aus Sicht der Managementfunktionen

- also ggf. auch eine Ext.-Verbindung - miteinander verknüpft. Hierdurch ist eine Überwachung

durch die DGI-Komponente gegeben.

Eine zusätzliche, und von den restlichen Aufgaben der Management-Funktionen des Dienstes

unabhängige, Redundanz-Komponente sorgt dafür, dass der Status der Ext.-Verbindung über-

wacht wird. Wird hier bemerkt, dass der Zieldienst nicht weiter erreichbar ist, kann auf einen

alternativen Dienst umgeschaltet werden.

Die Auswahl des alternativen Dienstes ist dabei durch den Dienst selber gegeben und vorab

vorbereitet: Die Suche nach Kommunikationspartnern im Bereich der Orchestrierungsaufga-

be der Management-Komponente kann sogar im Voraus eine Suche nach einem alternativen

Kommunikations-Partner starten und dessen EPR vorhalten.

Es besteht auch die Möglichkeit eine vorzeitige Reservierung der Ressourcen im zweiten Ziel-

dienst vorzunehmen, sodass die Umschaltung schneller ist. Dafür muss die Zielanwendung

jedoch „Kenntnis“ von dem Redundanz-Konzept haben in dem Sinne, dass eine Reservierung

von Ressourcen, ohne diese zu nutzen, erfolgen kann.

6.5 Anwendungsfall 3: Adressierung durch PLT-Stelle

Aufbauend auf der Kommunikation kann ein weitergehender, höherwertiger Kommunikations-

dienst realisiert werden, der verdeutlicht, welches Potenzial in der Interkonnektion von Modellen

steckt (Abbildung 6.4).

In Kapitel 4.6.1.1 wurde bereits die prinzipielle Verknüpfung von dem im Kapitel 4.1 vorgestell-

ten AT-Geräte-Struktur-Modell mit einem Anlagen-Struktur-Modell, wie z.B. das CAEX-basierte

PandIX (vgl. Kapitel 2.2), dargestellt.

Wenn diese Interkonnektion als gegeben angesehen wird, kann ein Dienst PLTStellenKommu-

nikation definiert werden, der hierauf aufbaut. Er nimmt Nachrichten mit einer Adressierung an

116

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell

Ziel-Dienst

PLTStellenKommunikation

AT-Struktur-Modell
Anlagen-Struktur-Modell

K
o

m
m

u
n

ik
a

ti
o

n
s
-

a
d

re
s
s
e

M
a

p
p

in
g

PLTStelle

TU23/L10

Adr-Auflösung

MIK

Abbildung 6.4: Schematischer Ablauf der Auflösung von PLT-Stelle zu Kommunikations-Adresse

die PLT-Stelle (also z.B. TU10.T12) entgegen und löst diese durch die verbundenen Modelle in

Kommunikations-Adressen zu dem PLTStellenDienst auf.

Der Vorteil eines solchen Dienstes liegt auf der Hand: Dienste oder ganze Anwendungen kön-

nen, basierend auf der Anlagenstruktur, Ihre Kommunikation projektieren - die Zustellung der

Nachrichten wird von dem beschriebenen Dienst übernommen.

Hiermit ist es zum Beispiel möglich die Kommunikation auch schon zu planen und zu projektie-

ren, wenn die AT-Struktur noch nicht installiert bzw. geplant ist. Die PLT-Stellen-Namen stehen

in der Anlagenplanung schon fest und können so bereits verwandt werden.

6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell

In der Konzeption wurde ein Eingriff der verteilten Instanzumgebung in die Steuerung sel-

ber ausgeschlossen, da traditionell eine Steuerungsprogrammierung keine wirkliche Verteilung

adressiert. Wenn mehrere SPSen gemeinsam eine Anlage steuern, haben die einzelnen Ge-

räte einzelne Teilaufgaben und kommunizieren explizit.

Im Verständnis der verteilten Instanzumgebung stellt die Steuerung im Sinne der IEC 61131-

3, ausgeführt auf einer SPS weiterhin - in erster Linie - eine monolithische Komponente dar.

Im Folgenden werden Integrationsansätze gezeigt, wie eine Interaktion möglich ist, ohne die

bewährten Konzepte und Programmierparadigmen der SPS-Programmierung zu verlassen.

Grundsätzliches Ein Steuerungsprogramm wird beim Engineering erstellt und wird traditionell

auf eine SPS übertragen - meistens, nachdem ein Kompiliervorgang eine Programmiersprache

der IEC 61131-3 in ein Hardware-nahes Kompilat der SPS übersetzt hat (Abbildung 6.5). Diese

Programmierung wird dann auf der SPS fortwährend ausgeführt. Für eine Änderung der Steue-

rung muss diese meist angehalten werden. Ausgenommen sind sogenannte „Live-Updates“ /

„Online-Changes“, welche aber Hersteller-abhängig nur bestimmte Veränderungen des Steue-

rungsprogramms zulassen.

117

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausführungsumgebung

Zugriff auf das Modell der Steuerung Im Sinne der modellgetriebenen Instanzumgebung

kann eine Steuerung selber z.B. als Instanz des in Kapitel 2.2 beschriebenen PLCopen For-

mates abgebildet werden.

61131-Ausführungs-Dienst

Engineering

Programmierung

Soft-SPSSteuerungs-Modell

laden

Modellierung
Steuerung

SBD

SBD

Abbildung 6.5: Schematischer Ablauf der modellgestützten Steuerungsprogrammierung

Legt ein Engineering System diese Steuerung in der modellgetriebenen Instanzumgebung ab,

kann es durch eine Relation ausgeführt_auf eine Assoziation zu einem 61131-Ausführungs-

Dienst aufbauen. Dieser existiert für jede beteiligte SPS genau einmal, sodass eine eindeutige

Zuordnung gegeben ist. Der 61131-Ausführungs-Dienst wird durch das Engineering informiert,

sobald eine neue Version der Steuerung auf die Soft-SPS geladen werden soll.

Eine dynamische Erkennung einer Änderung mit sofortiger Inbetriebnahme der neuen Steue-

rung verbietet sich, da beim Programmieren zwischenzeitlich Inkonsistenzen auftauchen. Das

heißt auch, dass eine Beobachtung der Modellstruktur an dieser Stelle nicht sinnvoll ist - das

Engineering muss zu einem diskreten Zeitpunkt einen Befehl geben, die Änderungen zu über-

nehmen.

Kommunikation zwischen SPS & modellgetriebener Instanzumgebung Betrachtet man

das Vorausgegangene, bleibt also die SPS. Sie verarbeitet ein Programm in einer IEC 61131-3

Sprache und führt dieses ab einem diskreten Zeitpunkt ggf. nach einer Kompilierung aus.

Trotzdem kann es für zukünftige Anwendungen sinnvoll sein, Zugriff auf die Informationen, die

in der modellgetriebenen Instanzumgebung abgelegt sind, zu ermöglichen.

Einen Vorschlag für die Kommunikation zwischen einer solchen Umgebung mit einer SPS ist

in [ME12] beschrieben. Von diesem Punkt ausgehend, können Konstrukte innerhalb der SPS

geschaffen werden, um auf die Modell-Instanzen zuzugreifen zu können. Die vorliegende, mo-

dellgetriebene Instanzumgebung abstrahiert von der Verteilung, sodass die SPS Programmie-

rung im Endeffekt nur entsprechende Nachrichten an den Modell-Explorer stellt, um auf alle

Modelle und Informationen Zugriff zu haben.

6.6.1 Probleme der konsequenten Umsetzung

Naheliegend wäre in einer konsequenten Umsetzung auf das Kompilat der Programmierung in

Form einer 61131-3-Sprache zu verzichten und eine komplette Modell-Repräsentation der Pro-

118

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell

grammierung anzustreben. Die Bausteine und Konstrukte eines Steuerungsprogramms würden

so als einzelne Elemente eines „61131-Modells“ im Modell-Raum abgelegt und damit auch ein

Abfrage ermöglichen.

Hierdurch könnten Dienste aus dem Modell heraus die Kontrolle über den Prozess überneh-

men und direkten Zugriff auf Sensoren und Aktoren erhalten. Im Extremfall könnte man Funk-

tionsbausteine als einzelne Dienste, die miteinander kommunizieren, modellieren und so eine

Steuerung darstellen.

Gegeben wäre so die komplette und nahtlose Integration der Steuerung in die Modellland-

schaft, wobei der Zugriff auf sämtliche Informationen der modellgetriebenen Instanzumgebung

als Vorteil im Vordergrund stehen.

Es sind zwei wesentliche Probleme für eine komplette Integration zu beachten:

Zum einen wird eine Änderung durch das Engineering direkt und unmittelbar Auswirkungen

auf die Steuerung haben. Temporäre inkompatible Zustände, wie sie bei einer Programmie-

rung durchaus üblich sind, müssten erkannt und abgefangen werden. Um den Prozess in je-

dem Fall sinnvoll weiterführen zu können, muss also in jedem Fall die letzte, bekannte sinnvoll

Steuerungsprogrammierung vorgehalten werden und zu einem vom Engineering vorgegeben

Prozess umgeschaltet werden. Dieser Zeitpunkt ist auch im traditionellen Umfeld als das La-

den / Download bekannt. In diesem Punkt ist das Kompilieren also in der einen oder anderen

Form notwendig und eine unmittelbare Ausführung der Funktionsbausteine nicht möglich. Zum

anderen ist auch der Performance-Gewinn durch eine Kompilierung auf das Zielsystem nicht

zu vernachlässigen. Dabei werden neben den Ausführungsoptimierungen auch Ressourcen-

Abschätzungen vorgenommen.

Zusammengenommen kann also festgehalten werden, dass ein diskreter Zeitpunkt existieren

muss, um eine Umschaltung von einer Version der Steuerung zu einer neueren Version vorzu-

nehmen. Zu diesem Zeitpunkt kann ohne Probleme auch eine Kompilierung auf das Zielsystem

erfolgen. Die oben vorgestellte Abbildung der Modellierung der Steuerung zur Laufzeit mit an-

schließendem Übertragen auf die SPS in traditionellen Programmiersprachen erscheint damit

ideal.

119

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

7 Zusammenfassung

7 Zusammenfassung

The best way to predict the future is to invent it.
Alan Kay

Zusammenfassend formuliert, beschreibt die Arbeit Konzepte und Methoden, die vielfältigen

Modelle in der Automatisierungstechnik effizienter zu nutzen.

In der Automatisierungstechnik existieren eine Vielzahl von unabhängig voneinander entwickel-

ten Modellen, die größtenteils auf Basis sehr ähnlicher Meta-Modelle formuliert werden.

Ausgegangen wird von einer modellgetriebenen Instanzumgebung. Die bisher existierenden

Konzepte sehen dabei vor, dass Modelle in einer Instanzumgebung verwaltet werden. Diese

bietet Kommunikationsschnittstellen zur Abfrage, Erkundung und Manipulation der Modelle an

und ist eine abgeschlossene Umgebung.

Da die Modelle unabhängig entwickelt wurden, stehen sie selbst, wenn sie in einer gemein-

samen Instanzumgebung verwaltet werden, nicht in Relationen zueinander. Hierdurch werden

teilweise wesentliche Informationen nicht abgebildet bzw. Modelle mit ambiguenten Informatio-

nen werden genutzt.

Die Arbeit stellt das Konzept der Modell-Interkonnektionen vor. Hierbei werden Modelle formu-

liert, die aufbauend auf anderen Modellen Relationen, zwischen diesen beschreiben. Ambigui-

täten werden hierdurch vermieden und die Modelle können weiterhin unabhängig voneinander

entwickelt werden, was aufgrund des Expertenwissens der Modelle unbedingt notwendig ist.

Wenn Relationen zwischen Modellen aufgebaut werden sollen, ist es sinnvoll auch Relationen

zwischen Instanzumgebungen und damit Geräten zuzulassen. Konzepte und Mechanismen um

dieses transparent aus Sicht der Modelle zu realisieren sind bisher nicht existent, da Modelle in

ihrer jeweiligen Instanzumgebung betrachtet werden. Die Externen Verbindungen beschreiben

das Konzept der Verteilung über Gerätegrenzen hinweg. Vorgestellte Komponenten bieten ent-

sprechende Schnittstellen, sodass beim Abfragen die Verteilung nicht beachtet werden muss.

Die vorgeschlagenen Konzepte und Komponenten wurden größtenteils prototypisch im Rah-

men von Forschungsprojekten realisiert und an Demonstrationsanlagen in Betrieb genommen.

Hiermit wurde die Einsatzfähigkeit zumindest im Rahmen der begrenzten Möglichkeiten nach-

vollziehbar dargelegt.

Zusätzlich wurden Kommunikationstypen formuliert, welche z.B. für die nötige Synchronität

eingesetzt werden können. Hierzu zählt auch der Vorschlag von Intent-basierten Kommunika-

tion, welche für modellgetriebene Instanzumgebungen eingesetzt werden kann. Dabei verteilt

120

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

7.1 Ausblick

eine Basiskomponente Modell-Änderungen auf Basis von „Schlüsseln“, sodass eine indirekte

Kommunikation von Modell und Dienst/Anwendung stattfinden kann, ohne dass zurvor eine

Erkundung des Modells stattfinden muss.

7.1 Ausblick

Eine Software, welche die vorgeschlagenen Konzepte realisiert, sollte nicht überstürzt reali-

siert werden. Die verwendeten Technologien, um die Kommunikation abzubilden, stellen eine

gemeinsame Plattform dar, die später von allen Anwendern unterstützt werden muss. Entspre-

chende Vorarbeiten und Untersuchungen zur Geräteunterstützung sind hier wichtig.

Auf Seiten der Modelle sind Abbildungen auf das Meta-Modell der Instanzumgebung zu vollzie-

hen. Diese sollten durch die entsprechenden Experten der Modelle geschehen. Im Nachgang

werden dann durch eine Kombination der Experten die entsprechenden Interaktionsmodelle

beschrieben. Die Abbildung selber wird dabei z.B. für OPC-UA bereits erstellt – so existieren

Arbeitsgruppen, um AutomationML auf OPC-UA abzubilden, wie es auch in [Sch13] beschrie-

ben ist.

Für die Verteilung über Instanzumgebungen hinweg, ist einer der wesentlichen Arbeitspunkte

die Transaktionssicherheit (AKID-Eigenschaften) der Modell-Veränderungen gerade im verteil-

ten Umfeld sicherzustellen.

Ein weiterer, wichtiger Punkt ist die Adressierung von Ambiguitäten zwischen Modellen. Bilden

Modelle gleiche Informationen ab, ist die einfachste Lösung, entsprechende Interkonnektionen

zu definieren - beispielsweise äquivalent_zu. Weitergehende Arbeiten können hier jedoch auch

dafür sorgen, dass unterschiedliche Sichtweisen auf die gleichen Daten existieren, also die

Daten nicht doppelt in den Modellen abgelegt werden.

121

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Begriffsverzeichnis

Begriffsverzeichnis

Adresse Möglichkeit einen Kommunikationspartner sowohl zu identifizieren, wie auch anzu-

sprechen. 21, 49

Aktive Komponente Komponente mit Verhalten (Ablauf). 27, 45

Anwendung Erfüllt einen Zweck dem Anwender gegenüber. 28

Ausführungsumgebung Aufbauend auf Instanzumgebung auch eine zeitliche Komponente

(Scheduler) um aktive Komponenten auszuführen. 27

Dienst (Teil-)Anwendung, die entfernt über Schnittstellen angesprochen werden kann, siehe

Kapitel 2.4.2.1. 28

Dienst-/Geräte-Inspektor (DGI) Dienst, welcher im Auftrag von Anwendungen/Diensten die

Überwachung von entfernten Geräten oder Diensten auf Geräten übernimmt. 94, 106

Dienst-Schnittstelle Aufruf-Beschreibung eines Dienstes. 30

End-Point-Ressource (ERP) Eine strukturierte Adresse. 51, 55, 56, 81

Externe Verbindung Verbindung zwischen zwei Instanzumgebungen. 80, 81, 85, 87, 89, 101,

104, 115

Geräte-Repräsentation Modell-Repräsentation eines Gerätes. 79

Instanzumgebung Anwendung zum Modell-Raum mit Schnittstellen zur Manipulation der Mo-

delle / Instanzen. 25

Intent indirekte Kommunikation über eine Systemkomponente. 65, 75, 98

Kommunikations-Medium Ebene aus physikalischem Übertragungsmedium ggf inkl. Softwa-

re zur Nutzung. 18, 19

Komponente vorgefertigte, in sich strukturierte und unabhängig hantierbare Einheit[...] (nach

[12]). 14

122

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Begriffsverzeichnis

Lokale Service Management Dienst, welcher die lokale Verwaltung der Dienste auf einem

Gerät übernimmt. 94

Meta-Modell Konstrukte um Modelle zu beschreiben. 12

Migration Ablösung einer Komponente durch eine andere - entweder zeitlich (Versionsupdate)

oder örtlich (Verlagerung). 113

Modell (Teil-) Abbildung der Realität. 11

Modell-Erkundungsfunktion Dienst-Schnittstelle um die existierenden Modelle / Instanzen

zu erkunden. 23, 72

Modell-Explorer Dienst, welcher die SystemBasisDienste durch eine transparente Kommuni-

kation ermöglicht. 95

Modell-Instanz (MI) Modell in einem Modell-Raum oder Instanzumgebung. 86, 95

Modell-Interkonnektion Verbindung zwischen zwei unabhängigen Modellen. 78

Modell-Interkonnektions-Modell (MIM) Modell, das Modell-Interkonnektionen beschreibt. 79

Modell-Interkonnketions-Komponente (MIK) Komponente, die die Verwaltung der Modell-

Interkonnektionen eines Modells übernimmt. 95, 102

Modell-Master Verwalter eines Modells und seiner Verteilung. 72, 84, 114

Modell-Raum Speicherort für Modell. 24

Modell-Änderungsfunktion Dienst-Schnittstelle um die existierenden Modelle / Instanzen zu

manipulieren. 72

Nachricht Datensatz, der zwischen Anwendungen/Diensten übertragen wird. 21, 58

Objekt-Referenz Referenz auf ein Objekt. 81

Passive Komponenten Komponenten ohne eigene Handlung zur reinen Datenhaltung. 45

Remote-Modell-Inspektor (RMI) Dienst, welcher im Auftrag von Modellen oder Diensten die

Überwachung eines entfernten Modells übernimmt. 94, 104

Remote_äquivalent Relation, die zwei Objekte als äquivalent kennzeichnet. 82

SystemBasisDienst (SBD) Schnittstelle zur Modell-Erkundung oder -Manipulation nach NE

139/141. 24, 62, 88, 97, 101

123

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Begriffsverzeichnis

Transparente Kommunikation Empfänger unbeachtet der Verteilung ansprechen. 18, 40, 42,

55, 60, 98, 101

Verschaltung (von Diensten) auch: Orchestierung. Dienstaufrufe untereinander festlegen. 31

124

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Literaturverzeichnis

[Alb03] ALBRECHT, Harald: On Meta-Modeling for Communication in Operational Process

Control Engineering, RWTH Aachen University, Diss., 2003. – ISBN 3-18-397508-4

[Bal08] BALZERT, Helmut: Lehrbuch der Softwaretechnik: Softwaremanagement. Spek-

trum Akademischer Verlag, 2008. – ISBN: 978-3827411617

[BHMO13] BRANDL, Dennis ; HUNKAR, Paul ; MAHNKE, Wolfgang ; ONO, Toshio: OPC UA and

ISA 95. In: atp - Automatisierungstechnische Praxis 01/02 (2013)

[BMM12] BIFEL, Stefan ; MORDINYI, Richard ; MOSER, Thomas: Integriertes Engineering mit

Automation Service Bus. In: atp - Automatisierungstechnische Praxis 12 (2012)

[CHF14] CHRISTIANSEN, L. ; HOERNICKE, M. ; FAY, A: Modellgestütztes Engineering - Basis

für die Automatisierung der Automatisierung. In: atp 03 (2014), S. 18–26

[Con97] CONRAD, Stefan: Föderierte Datenbanksysteme. Konzepte der Datenintegration.

Springer-Verlag, 1997. – ISBN 3-540-63176-3

[Dri05] DRINJAKOVIC, Dino: Zugriff auf Informationen und Dienste in einem verteilten Au-

tomatisierungssystem mit selbstkonfigurierenden, semantischen Ordnungsstruktu-

ren. VDI-Verlag, 2005 (Fortschritt-Beriche VDI: Reihe 8, Mess-, Steuerungs- und

Regelungstechnik). – ISBN 9783185057083

[EM07] ENSTE, Udo. ; MÜLLER, Jochen: Datenkommunikation in der Prozessindustrie: Dar-

stellung und anwendungsorientierte Analyse. Oldenbourg Industrieverlag, 2007. –

ISBN 9783835631168

[ERD11] EPPLE, Ulrich ; REMMEL, Markus ; DRUMM, Oliver: Modellbasiertes Format für RI-

Informationen - Verbesserter Datenaustausch für das PLT-Engineering. In: atp -

Automatisierungstechnische Praxis 1/2 (2011)

[Gös14] GÖSSLING, Andreas: Device Information Modeling in Automation - A computer-

scientific approach. 2014. – http://slubdd.de/katalog?TN_libero_

mab216034823

[Hod13] HODEK, Stefan: Methode zur vollautomatischen Integration von Feldgeräten in in-

dustrielle Steuerungssysteme, Techn. Univ. Kaiserslautern, Diss., 2013. – ISBN

978-3-943995-35-0

125

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Literaturverzeichnis

[Hor01] HORN, Paul: Autonomic Computing: IBM’s Perspective on the State of Information

Technology. (2001). www.research.ibm.com. – (letzter Besuch: 1. Februar

2013)

[HR01] HÄRDNER, Theo ; RAHM, Erhard: Datenbanksysteme - Konzepte und Techniken

der Implementierung (2nd Edition). Springer, 2001. – ISBN: 978-3-540-42133-7

[Jar] JARVIS, Jeff: New rule: Cover what you do best. Link to

the rest. Website. http://buzzmachine.com/2007/02/22/

new-rule-cover-what-you-do-best-link-to-the-rest/. – (letzter

Besuch: 26. November 2015)

[KE12] KAMPERT, David ; EPPLE, Ulrich: Kernmodelle für die Systembeschreibung - Ein

Konzept zur Vereinfachung. In: atp - Automatisierungstechnische Praxis 7/8 (2012)

[LMRU11] LEHNHOFF, Sebastian ; MAHNKE, Wolfgang ; ROHJANS, Sebastian ; USLAR, Mathi-

as: IEC 61850 based OPC UA Communication - The Future of Smart Grid Auto-

mation. In: Proceedings of 17th Power Systems Computation Conference (2011)

[MBS+11] MERSCH, Henning ; BEHNEN, Daniel ; SCHMITZ, Dominik ; EPPLE, Ulrich ; BRE-

CHER, Christian ; JARKE, Matthias: Gemeinsamkeiten und Unterschiede der

Prozess- und Fertigungstechnik - Commonalities and Differences of Process and

Production Technology. In: at - Automatisierungstechnik 1 (2011), Januar, Nr. 1, 7-

17. http://www.oldenbourg-link.com/doi/abs/10.1524/auto.2011.

0891

[ME11] MERSCH, Henning ; EPPLE, Ulrich: Requirements on Distribution Management for

Service-Oriented Automation Systems. In: Proceedings of Emerging Technologies

and Factory Automation (ETFA) 2011 (2011). – ISBN: 978-1-4577-0016-3

[ME12] MERSCH, Henning ; EPPLE, Ulrich: Concepts of service-orientation for process

control engineering. In: Proceedings of IEEE Multi-Conference on Systems, Signals

& Devices: Systems, Analysis and Automatic Control 2012 (2012). – ISBN: 978-1-

4673-1589-0

[Mey03] MEYER, Dirk: Objektverwaltungskonzept für die operative Prozessleittechnik, RW-

TH Aachen University, Diss., 2003. – ISBN: 3-18-397508-4

[MKE09] MERSCH, Henning ; KLEEGREWE, Christian ; EPPLE, Ulrich: Neue Konzepte zur

Selbstkonfiguration leittechnischer Komponenten. In: VDI-Berichte 2067 - AUTO-

MATION 2009 1 (2009), S. 105ff.. – ISBN: 978-3-18-092067-2

[MKE10] MERSCH, H. ; KLEEGREWE, C. ; EPPLE, U.: Service-orientation on behalf of self-

configuration for the automation environment. In: Proceedings of The 36th Annual

Conference of the IEEE Industrial Electronics Society (Phoenix, AZ) 0 (2010), S.

1373–1378. – ISBN 978-1-4244-5226-2

126

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Literaturverzeichnis

[Nig14] NIGGEMANN, Oliver: Industrie 4.0 ohne modellbasierte Softwareentwicklung - Und

warum es ohne Modelle nicht gehen wird... In: atp - Automatisierungstechnische

Praxis 05 (2014), S. 22–29

[Ohl02] OHLEBUSCH, Enno: Advanced Topics in Term Rewriting. Springer, 2002. – ISBN:

978-0387952505

[Pel03] PELTZ, Chris: Web Services Orchestration and Choreography. In: IEEE Computer

(2003)

[Pol94] POLKE, Martin: Prozessleittechnik. Oldenbourg, 1994. – ISBN: 978-3486225495

[Sau13] SAUER, Olaf: Forschungsprojekt „Secure plug and work“. Website. http://www.

bmbf.de/de/14626.php. Version: 2013. – (letzter Besuch: 26. November 2015)

[Sch13] SCHLEIPEN, Miriam: Adaptivität und semantische Interoperabilität von Manufactu-

ring Execution Systemen (MES), KIT Scientific Publishing, Karlsruhe, Diss., 2013.

– ISBN: 978-3-86644-955-8

[SEE09] SCHLÜTTER, Markus ; EPPLE, Ulrich ; EDELMANN, Thomas: Dienstesysteme für die

Leittechnik - Ein Einblick. In: VDI-Berichte 2067 - Automation 2009: Fit for Efficiency

(2009)

[SME10] SCHLÜTTER, Markus ; MERSCH, Henning ; EPPLE, Ulrich: Ordnungsschemata für

Dienste in der Leittechnik. In: Proceedings of Entwurf komplexer Automatisierungs-

systeme - EKA 2010 0 (2010), S. 317–325. – ISBN: 978-3-940961-41-9

[SMS11] SCHLEIPEN, Miriam ; MÜNNEMANN, Ansgar ; SAUER, Olaf: Interoperabilität von

Manufacturing Execution Systems (MES) - Durchgängige Kommunikation in un-

terschiedlichen Dimensionen der Informationstechnik in produzierenden Unterneh-

men. In: at - Automatisierungstechnik 07 (2011), S. 413–424

[tom] Apache Tomcat. http://tomcat.apache.org/. – (letzter Besuch: 26. Novem-

ber 2015)

[Urb12] URBAS, Leon: Process Control Systems Engineering. Oldenbourg Industrieverlag,

2012. – ISBN 978-3-8356-3198-4

[ZGPU12] ZIEGLER, Jens ; GRAUBE, Markus ; PFEFFER, Johannes ; URBAS, Leon: Beyond

app-chaining: Mobile app orchestration for efficient model driven software genera-

tion. In: Proceedings of Emerging Technologies and Factory Automation (ETFA)

2012 0 (2012)

127

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Normen und Richtlinien

Normen und Richtlinien

[1] VDI/VDE 3690: XML in der Automation.

[2] ISO/IEC 7498: Information technology - Open Systems Interconnection - Basic Reference

Model: The basic model., 1994.

[3] IEC / DIN EN 61512: Batch control, 1997.

[4] IEC 61131-3: Programmable Controllers - Part 3: Programming languages, 2nd edition,

2003.

[5] VDI/VDE 3682: Formalisierte Prozessbeschreibungen, 2005.

[6] IEC 61499: Funktionsbaustrine für industrielle Leitsysteme, 2006.

[7] IEC PAS 62424: Representation of process control engineering - Requests in P&I dia-

grams and data exchange between P&ID tools and PCE-CAE, 2007.

[8] IEC/ISO 11783: Tractors and machinery for agriculture and forestry - Serial control and

communications data network. Norm, 2007.

[9] IEC 62541: OPC Unified Architecture Part 1-10, 2008.

[10] VDI/VDE 5610: Wissensmanagement im Ingenieurwesen, 2009.

[11] ISA-95 - Enterprise Control Systems, 2010.

[12] DIN SPEC 40912: Kernmodelle - Beschreibung und Beispiele, 2014.

[13] IEC 62714: Datenaustauschformat für Planungsdaten industrieller Automatisierungssys-

teme - Automation markup language. Norm, 2015.

[14] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough,

Darren Pulsipher, and Andreas Savva. Job Submission Description Language (JSDL)

Specification, 2005.

[15] ITU Telecommunication Standardization Sector (ITU-T). RFC 1050: RPC: Remote Proce-

dure Call Protocol specification, 1988. http://www.ietf.org/rfc/rfc1050 (letzter

Besuch: 26. November 2015).

[16] ITU Telecommunication Standardization Sector (ITU-T). RFC 2131: Dynamic Host Confi-

guration Protocol, 1997. http://www.ietf.org/rfc/rfc2131.txt (letzter Besuch:

26. November 2015).

128

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Normen und Richtlinien

[17] ITU Telecommunication Standardization Sector (ITU-T). RFC 2459: Internet X.509 Public

Key Infrastructure, 1999. http://www.ietf.org/rfc/rfc2459 (letzter Besuch: 26.

November 2015).

[18] ITU Telecommunication Standardization Sector (ITU-T). RFC 5322: Internet Message

Format, 2008. http://www.ietf.org/rfc/rfc5322 (letzter Besuch: 26. November

2015).

[19] Namur. NA 35 - Abwicklung von PLT-Projekten (Handling PCT Projects), 2003.

[20] Namur. NE 139 - Informationsschnittstellen in der Prozessautomatisierung; Betriebliche

Eigenschaften, 2012.

[21] OASIS Web Services Business Process Execution Language (WSBPEL) TC. Web

Services Business Process Execution Language Version 2.0 (WS-BPEL). Website.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (letzter

Besuch: 26. November 2015).

[22] Object Management Group. Systems Modeling Language (SysML). http://www.

sysml.org/docs/specs/OMGSysML-v1.3-12-06-02.pdf (letzter Besuch: 26. No-

vember 2015).

[23] Object Management Group. Enterprise Collaboration Architecture (ECA) Specification,

02 2004. http://www.omg.org/cgi-bin/doc?formal/04-02-01.pdf (letzter Be-

such: 26. November 2015).

[24] Object Management Group. MetaObject Facility (MOF), 2005. http://www.omg.org/

mof/ (letzter Besuch: 26. November 2015).

[25] Object Management Group. Unified Modeling Language (UML). Website, 2012. http:

//www.uml.org/ (letzter Besuch: 26. November 2015).

[26] Organization for the Advancement of Structured Information Standards. Reference Mo-

del for Service Oriented Architecture 1.0., OASIS Standard , 2006. http://docs.

oasis-open.org/soa-rm/v1.0/ (letzter Besuch: 26. November 2015).

[27] PLCopen. OPC UA Information Model for IEC 61131-3. http://www.plcopen.org/

pages/tc4_communication/ (letzter Besuch: 26. November 2015).

[28] PLCopen. XML Formats for IEC 61131-3, 2009. http://www.plcopen.org/pages/

tc6_xml/downloads/tc6_xml_v201_technical_doc.pdf (letzter Besuch: 26. No-

vember 2015).

[29] RSS Advisory Board. RSS 2.0 Specification. Website, 2009. http://www.rssboard.

org/rss-2-0 (letzter Besuch: 26. November 2015).

[30] The Open Group. Distributed Computing Environment. http://www.opengroup.org/

dce/ (letzter Besuch: 26. November 2015).

129

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Normen und Richtlinien

[31] W3C. Web Services Description Language (WSDL) 1.1. W3C Recommendation. http:

//www.w3.org/TR/wsdl.html (letzter Besuch: 26. November 2015).

[32] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation, 11 1999. http:

//www.w3.org/TR/xpath/ (letzter Besuch: 26. November 2015).

[33] W3C. Web Services Choreography Description Language Version 1.0. W3C Recom-

mendation, 2004. http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/ (letz-

ter Besuch: 26. November 2015).

[34] W3C. Web Services Addressing 1.0 - Core. W3C Recommondation, 2006. http://

www.w3.org/TR/ws-addr-core/ (letzter Besuch: 26. November 2015).

130

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Lebenslauf - Henning Mersch

Persönliche Daten

Geburtsdatum: 12. April 1978

Geburtsort: Bielefeld

Ausbildungsdaten

Schulausbildung: bis 06/1997

Max-Planck-Gymnasium, Bielefeld

Abschluss: Allgemeine Hochschulreife

Zivildienst: 07/1997 – 07/1998

Hochschulausbildung: 10/1998 – 10/2004

Studium naturwissenschaftliche Informatik

Universität Bielefeld

Abschluss: Diplom-Informatik

Tätigkeiten

wiss. Angestellter: 11/2004 – 09/2005

Praktische Informatik, Technische Fakultät

Universität Bielefeld

wiss. Angestellter: 09/2005 – 06/2007

Verteilte Systeme und Grid Computing,

Zentralinstitut für angewandte Mathematik

Forschungszentrum Jülich

wiss. Angestellter: 07/2007 – 08/2012

Lehrstuhl für Prozessleittechnik

RWTH Aachen University

Produktmanager: seit 10/2012

Beckhoff Automation GmbH & Co. KG, Verl

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

Die Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-524508-4

https://doi.org/10.51202/9783186245083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:43:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186245083

	Cover
	1 Einleitung
	1.1 Ziele und Vision
	1.2 Konzepte der verteilten, modellgetriebenen Instanzumgebung
	1.3 Übersicht des Vorgehens

	2 Stand der Wissenschaft und Technik - mit Begriffsklärung
	2.1 Vom Wissen zu Maschinen-verarbeitbaren Modellen in der AT
	2.1.1 (Modell-)Relationen
	2.1.2 Instanz-Struktur: Komponenten als Gruppierung
	2.1.3 Bestandteile einer Modell-Beschreibung

	2.2 Existierende Modelle der Automatisierungstechnik
	2.3 Kommunikation in der Automatisierungstechnik
	2.3.1 Kommunikations-Medien: Bussysteme und Alternativen
	2.3.2 Formen der Kommunikation
	2.3.3 Kommunikations-Systeme für den Zugriff auf Modelle

	2.4 Instanzumgebung der Modelle
	2.4.1 Existierende Instanzumgebungen für Modelle in die AT
	2.4.1.1 ACPLT-Technologien
	2.4.1.2 OPC-UA

	2.4.2 Aktive Komponenten im Modell: Dienste
	2.4.2.1 Dienste - ein Versuch der Erfassung des Begriffes

	2.4.3 Existierende Ausführungsumgebungen für Dienste
	2.4.4 Aspekte von Anwendungen, Diensten und Apps
	2.4.5 Existierende Ausführungsumgebungen für Modelle und Dienste

	2.5 Verteilte Systeme

	3 Analyse der Anforderungen
	3.1 Ergänzende Anforderungen an Geräte und Umgebung
	3.2 Ergänzende Anforderungen an Meta-Modell und Instanzumgebung
	3.3 Ergänzende Anforderungen an die Kommunikation
	3.3.1 Einheitliche, allgemeine Adressierung

	3.4 Bezug der Anforderungen
	3.5 Nachvollziehbarkeit und Verständlichkeit

	4 Modell-Architektur für dynamische, verteilte Systemstrukturen
	4.1 Beispiel-Modell: AT-Geräte-Struktur
	4.1.1 Erweiterung: Routing

	4.2 Abbildung der Realität: Repräsentationen im Modell
	4.2.1 Zustandsmaschine für aktive Komponenten
	4.2.2 Die Komponenten-Repräsentation
	4.2.3 Unspezifizierte, flexible Annotationen für Repräsentationen
	4.2.4 Unterschiedliche Komponenten-Repräsentationen
	4.2.5 Beispiel: AT-Geräte-Struktur als Komponenten-Repräsentation

	4.3 Kommunikation im automatisierungstechnischen Kontext
	4.3.1 Referenzierung über Systemgrenzen hinweg
	4.3.2 Kommunikations-Medien
	4.3.3 Nachrichten-basierte Kommunikation
	4.3.4 Typ 1: singuläre Kommunikation
	4.3.5 Typ 2: Aufruf/Antwort Kommunikation
	4.3.6 Typ 3: Subskription/Benachrichtigungs-Kommunikation
	4.3.7 Typ 4: Indirekte Kommunikation per Intents
	4.3.8 Lokale Kommunikation

	4.4 Dienst-Modell: aktive, dynamische Komponenten
	4.5 Die modellgetriebene Instanzumgebung
	4.5.1 Vom Modell zum Instanz-Modell
	4.5.1.1 Modell-Master

	4.5.2 Sprache der Modell-Änderungen
	4.5.3 Änderungs-Benachrichtigungen
	4.5.3.1 Alternative Realisierung: Intents

	4.5.4 Ausführungsumgebung: Dienste als partielle, Aufgaben-orientierte Teil- Anwendungen

	4.6 Modell- und Gerätegrenzen
	4.6.1 Modelle in Relation: Modell-Interkonnektion
	4.6.1.1 Beispiel: AT-Geräte-Struktur und Anlagenstruktur

	4.6.2 Über Gerätegrenzen hinweg: Verteilte (Modell-)Laufzeiten
	4.6.2.1 Externe Verbindungen
	4.6.2.2 Änderungs-Benachrichtigungen
	4.6.2.3 Zugriff auf die verteilte Modell-Instanzen
	4.6.2.4 Dienst-Orchestrierung auf Basis der verteilten Modelle
	4.6.2.5 Beispiel: Verteilte Modellierung der AT-Geräte-Struktur
	4.6.2.6 Transparenter Zugriff auf verteilte Modell-Instanzen

	4.7 Effizienz der Konzepte
	4.7.1 Modell-Interkonnektionen und ihre Etablierung
	4.7.2 Verteilungsaspekte

	4.8 Integrationsmöglichkeiten in die bestehende AT-Geräte-Landschaft

	5 Komponenten einer verteilten, modellgetriebenen Ausführungsumgebung
	5.1 Ressourcen-Abstraktion: IMLAUF-Kern
	5.2 Die modellgetriebene Instanzumgebung
	5.3 Nachrichten-basierte Kommunikation in IMLAUF: MsgSys
	5.4 Transparente Erkundung von Daten – Modell-Explorer
	5.5 Prinzip der Modell-Interkonnektions-Komponenten (MIK)
	5.5.1 Problem: Schleifenbildung
	5.5.2 Beispiel: MIK AT-Geräte-Dienste

	5.6 Überwachung der Umgebung - Remote-Model-Inspektor (RMI)
	5.7 Verwaltung der Dienste und Geräte - Dienst/Geräte-Inspektor (DGI)
	5.8 Migration von traditioneller Datenhaltung zur Repräsentation der Information in einer verteilten, modellgetriebenen Instanzumgebung
	5.9 Prototypen der Komponenten

	6 Anwendungen: Dynamik auf Basis der verteilten, modellgetriebenen Ausführungsumgebung
	6.1 Verteilung in der Automatisierungstechnik als Suche
	6.2 Migration von Komponenten
	6.3 Anwendungsfall 1: Abbildung einer Remote I/O
	6.4 Anwendungsfall 2: Vorbereitung auf Ausfälle
	6.5 Anwendungsfall 3: Adressierung durch PLT-Stelle
	6.6 Anwendungsfall 4: IEC61131-3-Programmierung im Modell
	6.6.1 Probleme der konsequenten Umsetzung

	7 Zusammenfassung
	7.1 Ausblick

	Begriffsverzeichnis
	Literaturverzeichnis
	Normen und Richtlinien

