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1. Introduction

Metropolitan phenomena are often characterised by spatial structuring and arrange-

ment.The term ‘urban’, understood as a “fabric in which […] sociocultural and political-

economic relations […] are enmeshed” (Brenner/Schmid 2014, 751) and where collective

action “comes from a plurality of sources” (Castells 1985, 3), implies a complex assem-

blage of social and physical processes that co-occur in nearby locations. This simul-

taneity of processes not found in the same way in rural areas makes urban phenomena

interesting objects of study. Simultaneity and nearness in space and time are hence re-

flected in different forms throughout the entire volume at hand. Urban epidemiological

incidents, as discussed in the chapter by Moebus, gain traction when spatial conditions

facilitate contagion. Urban narratives embedded in the confluence of different ideas

and conceptualisations, as discussed in the chapters by Sattler and Parr, have a spatial

structure, either explicit (through the use of place names) or implicit (through spatial

language). Methodological workflows in metropolitan research often reflect the spatial

nature of urban phenomena through the presentation of maps, the explicit consider-

ation of spatiality, and through the attribution of analytical results to different places.

The elaborated literal ‘throwntogetherness’ (Massey 2005, 140) of metropolitan areas,

combined with contextual geographical variation, almost inevitably leads to identifi-

able spatial structures, both observed in situ and reflected in data.

Understanding systematic spatial structuring is the core of statistical spatial analy-

sis. In the context of geographic information systems (GISs), the term ‘spatial analysis’

is often used as a catch-all term for any kind of methods that involve space. In statistical

analysis, however, the termhas a stricter and narrowermeaning and refers to the identi-

fication and characterisation of (possibly non-random) spatial structures (Fischer/Getis

2010). The core idea of this subfield in the nexus of geography, (analytical) cartography,

statistics, economics (through regional science and econometrics), and (more recently)

computer science (Brachman 2020; Singleton/Arribas-Bel 2021) is the application of a

statistical epistemology to the analysis of spatial arrangements. The latter implies that
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spatial analysis falls within the realm of the sciences, as it attempts in a nomothetic way

to derive law-like statements from observed recurring regularities. The focus of spatial

analysis is on the ‘in-between’, that is, on the interconnectedness of spatial units, which

can stand for places, cities, regions, or any other kind of spatial entity (Fischer 2005).

The perspective taken is a holistic one.The whole arrangement, manifested in map pat-

terns, is considered together and at once rather than looking at individual places in

isolation. The fundamental task at the heart of spatial analysis, thus, is to explore sys-

tematic geographical arrangements.

This chapter provides an accessible introduction to statistical spatial analysis aimed

at interdisciplinary metropolitan researchers. It combines an applied approach with

a rigorous, sufficiently technical consideration. This way, the reader is empowered in

terms of establishing a solid basis for further engagement with spatial-statistical anal-

ysis. The following Section 2 is devoted to application examples from metropolitan re-

search motivating the methodology introduced in the subsequent sections. Section 3

then discusses a number of concepts and presumptions on which spatial analysis is

based. These are important for understanding the principles and contexts of applica-

tion in which spatial analysis can and may be used. In a second step, in Section 4,

Moran’s I, a widely used measure of spatial autocorrelation, is explained in detail. This

method has been researched for decades and serves here as a prototypical example for

the nature and application of methods in spatial analysis. Section 5 introduces both

additional established and novel techniques from the spatial statistical toolkit that are

useful in different, selected application contexts. These include measures and tests for

spatial configurations in numerical, categorical, vector, and multivariate variables.

2. Urban Applications

The methods introduced in this chapter are widely being applied in the context of

metropolitan research. Three popular areas of application that have recently gained in-

terest are exemplified below.

2.1 Census Analyses

Censuses have long been a rich source of information formetropolitan research. Among

other things, they enable the study of population dynamics, socioeconomic character-

istics, and demographic features. Spatial statistical methods play a central role in many

census analyses. Using spatial regression models and autocorrelation methods, Manley

et al. (2006) identify different scales and associated processes in British census vari-

ables. Spatial statistics here enable the distinction of finely graded sub-regions. In the

same vein, census studies have been conducted with spatial statistics on topics such as

employment (Martín-Román et al. 2020; Fingleton et al. 2020), housing (Barreca et al.

2018; Lin et al. 2014), and socioeconomic disadvantage (Andrews et al. 2020; Cebrecos et

al. 2018), to name but a few. A young but active area of research is geodemography, the

explicitly spatial study of demographic characteristics. Largely accelerated by increased

data accessibility, studies have been conducted on the geography of surnames (van Dijk/
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Longley 2020a; 2020b; Kandt/Longley 2018), small area characterisations (Yazgi Walsh

et al. 2021; Singleton et al. 2020), and links between geodemographics and other do-

mains (Kim et al. 2021; Liu/Cheng 2020). Although much spatial statistical work has

been done in the field of census analysis,methodological concerns continue to be raised.

For example, using the American Community Survey, Jung et al. (2019a) criticise the

inappropriate use of spatial statistics, particularly in the context of rates, an issue dis-

cussed in Section 5.1. Yet, explicitly spatial techniques are increasingly being used but

are still not as widespread as they probably should be, given the spatial nature of census

data.

2.2 Urban Infrastructures

The analysis of urban infrastructures and their use is also a research area that makes

frequent use of spatial statistics. In particular, mobility and transport infrastructure

research make extensive use of spatial autocorrelation and regression, which are used

to assess the spatial configuration of deployed infrastructures including their possible

impacts on economic, social, and other characteristics (Wang et al. 2020; Potoglou et

al. 2019; X. Gao et al. 2019). In addition, the utilisation of transport infrastructure,

and human mobility in general, have been extensively researched using spatial analysis

methods (Y. Gao et al. 2019; Boss et al. 2018; Blazquez et al. 2018; Steiger et al. 2016).

Similarly, green infrastructures, that is, those concerning the strategic deployment of

urban greenery, have also been studied in terms of spatial statistics. Examples include

studies on the influence of urban green on residential property values (Mei et al. 2018;

Conway et al. 2010), accessibility of green spaces (Pearsall/Eller 2020; Dai 2011), and

associations of urban green with mental well-being (Houlden et al. 2019; 2018). Also

in focus, but less frequently studied with the methods presented in this chapter, are

electricity andwater supply infrastructures. For example,Ceci et al. (2019) exploit spatial

autocorrelation to better understand the spatial properties of a network of photovoltaic

plants. On a larger scale, Hong et al. (2020) use spatial regression models to investigate

regional spillover effects in energy consumption. In terms of water supply, Zamenian

et al. (2017) use hotspot statistics to reveal spatial clusters in certain characteristics of

water pipes, while Abokifa and Sela (2019) disclose spatial patterns in pipe failures with

Moran’s I. These and other examples demonstrate the usefulness of spatial analysis in

both infrastructure research as well as infrastructure management and monitoring.

2.3 Geosocial Media Analytics

A newer field of metropolitan research is the analysis of geosocial media. Despite con-

cerns about skewed demographics of social media users (Jiang et al. 2019), these types

of user-generated geographic information have been used in numerous fields, particu-

larly in the social sciences. One such field that also ties in with Section 2.1 is using so-

cial media analytics as a proxy for geodemography. Spatial statistics have been used to

construct daytime counterparts to the census, for example, in terms of peoples’ where-

abouts (Steiger et al. 2015), the ethnic composition of neighbourhoods (Longley/Adnan

2016; Longley et al. 2015), and for age and gender profiling (Lansley/Longley 2016). An-
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other area of geosocial media analytics is the study of urban emotions. Frank et al.

(2013) apply Geary’s c and Moran’s I to examine patterns of ‘happiness’ in tweets from

across the US. Similarly, Rybarczyk et al. (2018) use exploratory spatial analysis and re-

gression to establish links between tweet sentiments and travel modes. Examples of the

use of spatial analysis of social media data in the field of crime research can be found

in Ristea et al. (2020) and Kounadi et al. (2018).This selection shows the breadth of top-

ics for which social media data has been spatially analysed, and numerous others exist

(for overviews, see Steiger/Westerholt/Zipf 2016; Steiger et al. 2015). Methodological

concerns have been raised about using established methods in the context of geosocial

media analytics. Social media differs from scientific data in that it is generated with-

out adherence to scientific protocols (Westerholt 2019a; 2019b). Studies have shown that

using methods like Moran’s I with these datasets can lead to variance inflation (due to

mixtures of different phenomena, see Section 4.4) and scale-related problems (West-

erholt et al. 2016). Accordingly, methods tailored to the spatial analysis of this type of

data have been proposed (e.g., Westerholt 2021a; Westerholt et al. 2015).

3. Presumptions and Principles of Spatial Analysis

The application of spatial analysis methods is characterised and constrained by a num-

ber of principles and presumptions. These rest on two main circumstances: the georef-

erenced nature of spatial datasets and the fact that these are not independent sam-

ples. This section briefly presents some of the main resulting specificities with the

aim of making the reader interested in applications aware of them when using spatial

statistics. Easy-to-understand explanations, often in the form of footnotes, are given

throughout to support the reader’s rigorous understanding.

3.1 Spatial Processes

The primary goal of using spatial statistical measures is to understand the interac-

tion behaviour of geographical phenomena.Making geographical phenomena including

their spatial structure available to statistical analysis requires a formalisation,1 which

can be achieved via spatial processes (Cressie 1993, 8f.) of the form

Y = {Ys : Y ∈ Ω, s ∈ S ⊂ Rn} , (1)

where the Y denote random variables indexed over spatial units s (e.g. points, lines, or

polygons). Set Ω is the sample space containing all possible outcomes of Y (e.g. R≥0

in case of precipitation or {1, 2, 3, 4, 5, 6} when rolling a dice). This very general notion

of a spatially indexed set of random variables can be endowed with various properties

that lead to three specialisations of Y. If we assume S to be fixed and with cardinality

1 In terms of notation, for this chapter, upper-case symbols mean random variables and lower-case

symbols denote associated realisations of these in terms of concrete data, unless otherwise stated.

Furthermore, bold upper-case letters stand for vectors or matrices. Superscript> is the vector or

matrix transpose. Set-builder notation is used when introducing sets.
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|S| = ∞, we arrive at the notion of a geostatistical process that is used to analyse

spatially continuous phenomena like precipitation or soil properties. These are defined

at every location in a given study area, and thus at an infinite number of coordinates

(e.g. by considering ever more precise decimal places of numeric coordinates). If we

instead consider S as a finite but stochastic set of geometries, we can derive the notion
of a point process. Here, not only the attributes but also the geometries are considered

random, as is the case with locations of trees or crime sites. In other words, both the

‘where’ and the ‘what’ in these cases are subject to a certain degree of randomness. The

notion used in exploratory spatial data analysis and spatial econometrics is the lattice

(regular or irregular) based on a deterministic and finite set of locations with |S| < ∞.

Census variables are a common example of lattices, for which variables such as income

or household sizes are only defined for the census units and any attempt to interpolate

in between would be invalid. The remainder of this chapter will focus on the latter type

of lattice processes and thus on the analysis of spatial structure in attributes mapped

over fixed locations.

3.2 Stationarity Assumptions

Many statistical techniques rely on homogeneity assumptions. To ensure valid results

and conclusions, it is often necessary that certain properties of the distribution of obser-

vations are constant. This property, called stationarity, is particularly challenging when

geographical processes are involved. Geographical space is inherently heterogeneous,

rendering the latter a candidate for a ‘second law of geography’ (Goodchild 2004). In

less technical terms, this often observed lack of homogeneity in space means that there

is no such thing as an average place on the Earth’s surface (Goodchild 2009). Never-

theless, for technical reasons, many techniques of spatial analysis are bound to certain

somewhat relaxed but still rigid stationarity assumptions. The strongest statistical ho-

mogeneity concept is that of strict stationarity. This concept implies that all properties

of distributions remain constant regardless of where and when respective phenomena

are observed. White noise is a non-spatial example of strict stationarity with mean

µ = 0 and a fixed variance σ2, but this concept would be too restrictive and unrealistic

to apply in geographical contexts. A slightly less strict form of stationarity is second-

order or weak stationarity (Oliver 2010, 320f.). Here, the mean and the variance are

assumed to be constant, while no assumptions are made for higher-order moments.

Weak stationarity is the form of homogeneity required for many spatial analysis pro-

cedures. As a corollary, the properties of weak stationarity imply constant covariance.

This is advantageous because it means that the spatial behaviour of the random vari-

ables under consideration is assumed as equally characterised everywhere on the map.

We are therefore only dealing with one spatial process, not with a potentially complex

mixture. One disadvantage is that strict conditions are still imposed that are not always

fulfilled in practice.
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3.3 Spatial Weights

A common way to incorporate spatial associations explicitly in statistical routines is to

construct a spatial weights matrix. There are various forms of spatial weights for dif-

ferent purposes (Bavaud 2014; Harris et al. 2011), but all of them formalise the potential

for either proactive interaction or passive relatedness between spatial units (Dray 2011).

For example, if the process under study is based on physical contact or direct exchange

as in the case of contagious diseases, the weights may be based on spatial contiguity

(e.g., through immediate physical adjacency or flight connections facilitating move-

ment). When distance plays a role, as is the case with the propagation of noise in cities,

the weights pairwise connect locations based on some function of their joint physical

distance.These examples illustrate two important classes of spatial weights: topological

and distance-based (Getis 2009). A third way to construct weights is to derive them em-

pirically from a given dataset,which can be helpful when no prior knowledge is available

about the nature of the spatial mechanism under study. However, empirical weights

carry a risk of introducing circular logic by deriving weights from the same dataset to

which they are then applied, hence lowering the explanatory power of analyses. In still

other cases, a third attribute can serve as a useful spatial proxy for connectedness. An

example of this would be the study of the spread of invasive species using the global

trade network as a proxy for their exchange.

Regardless of the underlying semantics of spatial weights, they have a profound

technical impact on the results of spatial-statistical methods. Spatial weights matrices

are composed of positive coefficients whereby, by convention, the diagonal is filled with

zeros (Bavaud 1998). Self-interactions are thus deliberately ignored (though they would

technically be includable in many cases) in order to concentrate on spatial effects be-

tween units. In addition, the weights are used to adjust the geographical scale of an

analysis. Scale is an important characteristic because geographical phenomena typi-

cally operate at specific scale ranges (Dungan et al. 2002). Incorrect scale adjustment

through spatial weights is a common source of error. This can have far-reaching effects

on the validity of obtained results, including difficult interpretation and, in the worst

case, wrong conclusions on which further theory-building could then in turn be based.

Another reason why spatial weights are important for spatial analysis is a more techni-

cal and less obvious one.Many spatial statistics are given as so-called ratios of quadratic

forms2 Y >WY , with Y being a sample of n observed values for Y , andW denoting

a spatial weights matrix. The range and shape of the distributions of such statistics are

determined by the eigenvalue spectrum of the (in this case) spatial weights matrix (de

Jong et al. 1984), a property explained in more detail in Section 4. Spatial weights there-

fore determine, to some extent, how we should correctly interpret spatial-statistical

results.

2 Quadratic forms are polynomials in n variables with terms whose sum of powers is not greater

than two (Lam 2005, 1). f(X1, X2) = a1X2
1 + a2X2

2 +X1X2 is an example.
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3.4 Modifiable Areal Unit Problem

Metropolitan research often involves the analysis of secondary data. These have most

likely been collected for purposes other than studying the process we, as analysts, want

to study. Furthermore,many such datasets, including census data, information divided

into raster cells, or anonymised datasets to preserve geoprivacy, involve the use of ag-

gregation units. This frequently results in the so-called Modifiable Areal Unit Problem

(MAUP, Bluemke et al. 2017; Openshaw 1983), which is caused by an at least partial arbi-

trariness of the location, shape, and scale of aggregation units used. A consequence can

then be a wrongly specified scale leading to a possible discrepancy between the scale

of the process under investigation and that of the data collected. The phenomenon of

interest may then not be optimally represented in the data. One problem with arbitrar-

ily shaped aggregation units is that they may combine smaller-scale units that should

possibly not be combined from a geographical point of view and with regard to the sta-

tionarity assumptions discussed above. Another concern can be the creation of possibly

meaningless boundaries, which then lead to problematic spatial weights. Furthermore,

the position of the aggregation units is beyond our control when using secondary data,

which adds to the uncontrolled geographical mixing effects. A common example of the

occurrence of the MAUP is the use of polygonal census units. These are intended for

demographic purposes, but not necessarily for other types of geographical study. An-

other typical example of MAUP occurs in the use of grid cells. While convenient to use,

these often do not reflect well underlying spatial structures. Unfortunately, the MAUP

remains unsolved and challenging,mainly because it is a theoretical rather than an em-

pirical problem (Wolf et al. 2020). It is therefore essential for any spatial analyst to be

cautious when interpreting results obtained from secondary data.

4. Spatial Autocorrelation and Moran’s I

A very essential part of the statistical analysis of spatial structures deals with the estima-

tion of spatial autocorrelation (see fig. 1). In this section, this concept is first discussed

in general before the estimator Moran’s I is considered in detail. An overview of other

measures is given in Section 5.

4.1 Conceptual Remarks

The so-called First Law of Geography, which states that “everything is related to every-

thing else, but near things are more related than distant things” (Tobler 1970, 236) is

one of the major conceptual underpinnings of spatial analysis. Spatial autocorrelation

is a way to formalise and quantify this idea in statistical terms. It describes the ten-

dency of mapped attributes to be significantly spatially clustered (positive), dispersed

(negative), or random (no significant spatial autocorrelation). Fig. 1 illustrates all three

characteristics using a population grid from Dortmund, Germany. Fig. 1a shows a pos-

itively autocorrelated version of the population data resulting in more similar values

occurring together than by chance. Fig. 1c shows a negatively spatially autocorrelated
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Fig. 1: Illustration of positive and negative spatial autocorrelation as well as spatial random-

ness based on a 500-m population grid from Dortmund, Germany. Partial graphics a) and c) are

based on spatially filtered variables using the method presented in Westerholt (2021a). a) Posi-

tive spatial autocorrelation; b) spatial randomness; c) negative spatial autocorrelation. The maps

are based on data from the 2011 German Census.

counterpart with fewer similar values sticking together than would be expected at ran-

dom. Fig. 1b shows a randomised version of the original population data with clustered

areas being compensated by negatively autocorrelated parts of the map. Measures of

spatial autocorrelation are thus a way to characterise different types of spatial struc-

tures in datasets.

Spatial autocorrelation is encountered in a number of situations and is often

methodologically useful. Geostatistics, for example, is based on assuming positive

spatial autocorrelation (Getis 2008). Natural phenomena such as precipitation and

temperatures do not normally show sudden jumps in neighbouring areas unless bar-

riers like rivers or rock walls are present. Data about such phenomena exhibit smooth

spatial variation that is exploited in geostatistics for Kriging, a statistical interpola-

tion procedure that takes into account the spatial correlations estimated from data

(Calder/Cressie 2009). Exploratory spatial data analysis uses spatial autocorrelation to

explore the a priori unknown spatial nature of phenomena and generate hypotheses.

Inferences from measurements of spatial autocorrelation combined with different

spatial weights, each reflecting different possible spatial interaction mechanisms, are

then a way to investigate possible spatial functioning mechanisms and geographical

relationships. Spatial autocorrelation also gives rise to specific forms of spatial re-

gression modelling including the spatial autoregressive (long-range spatial effects;

global spillovers) and the spatial error model (small-scale, limited spatial effects; local

spillovers) (LeSage/Pace 2014; Anselin 2003). Further uses of the concept of spatial

autocorrelation include testing for model misspecification, testing spatial stationarity

assumptions, uncovering spatial relationships, examining the influences of geometric

units and aggregation, revealing the roles of time and space, and supporting the study

of spatial outliers (Getis 2007).
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4.2 Definition of Moran’s I

Particular attention has been given to estimators of spatial autocorrelation for inter-

val-scaled random variables. Due to its widespread availability in software packages

and statistical computing environments, Moran’s I is one of the most widely used such

methods. Other popular methods include the G-statistics (Ord/Getis 2001; 1995) for

hotspots and Geary’s c (Cliff/Ord 1981; Geary 1954), but Moran’s I was shown to be bet-

ter behaved than c with respect to statistical power3 and sensitivity to spatial weights

(Chun/Griffith 2013). Another reason for its popularity may be that Moran’s I resem-

bles the non-spatial Pearson correlation coefficient r. This similarity is appealing, but

it may also tempt researchers to misinterpret Moran’s I in spirit of Pearson’s r, which

is sometimes justified but much more often is not. Global and local Moran’s I are given

as

I =
n

n∑
i=1

n∑
j=1

wij

n∑
i=1

n∑
j=1

wij(yi − ȳ)(yj − ȳ)

n∑
i=1

(yi − ȳ)2
, (2a)

Ii =
yi − ȳ

1
n

n∑
j=1

(yj − ȳ)2

n∑
j=1

wij(yj − ȳ), (2b)

whereby the wij terms denote spatial weights connecting locations i and j, and yi are

n numeric variates with mean ȳ. Note that alternative notions of I exist for the analysis

of regression residuals that account for the additional exogenous variation contributed

by regressors (Tiefelsdorf 2000).

4.3 Interpretation

Interpreting Moran’s I is more complex than interpreting Pearson’s r. Pearson’s r has

a straightforward interpretation where values on [−1, 0) indicate a negative and values

on (0, 1] indicate a positive correlation, and where the mean 0 signifies decorrelation.

Significance of r depends on whether r is far away enough from 0, and on sample

distribution and size. The mean of Moran’s I also goes towards 0 as n increases but is

generally given by−1/(n−1) (Cliff/Ord 1981, 44), whose deviation from 0 is important

especially for smaller samples. For better understanding the feasible range ofMoran’s I,

it is useful to first look at Pearson’s r. Let E = (eij) be the n × n identity matrix.4

3 The ability of a statistical test to successfully identify significant effects when they are present.

4 Identitymatrices have ones on the diagonal and zeros elsewhere. They are the neutral element for

vectors and matrices, since multiplication with them leaves the latter unchanged. Thus, identity

matrices are the vector and matrix equivalent of the scalar 1.
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Instead of using the usual expression, we can write r as:

r =
n

n∑
i=1

n∑
j=1

eij

n∑
i=1

n∑
j=1

eij(xi − x̄)(yj − ȳ)√
n∑

i=1

(xi − x̄)2

√
n∑

i=1

(yi − ȳ)2

. (3)

The left-hand summation over elements eij evaluates to n and the double sum in the

numerator on the right-hand side adds a number of zero terms, since all off-diagonal

elements of E are zero (since Pearson’s r does not contain pair-wise weights). Mathe-

matically, nothing has changed by this more complicated notation. Writing r this way,

however, one can see the structural similarity to Moran’s I including the ranges of the

two statistics. Determined by the only non-zero eigenvalue ofE, which is λ = 1, Pear-

son’s r ranges on [−λ, λ] and thus on [−1, 1]. This range no longer holds if we replace

E by some spatial weights matrixW with a different eigenvalue spectrum.

It is possible to substituteW in Equations 2a and 2b by its eigenvalue representa-

tion5 HWH = UΛU> with H being the centring operator6 (Dray 2011; Dray et al.

2006). Here, Λ is a diagonal matrix of eigenvalues associated with eigenvectors in the

columns of U . It can be shown that for symmetric7 matrices W , the feasible domain

of Moran’s I is given as [a · λmin, a · λmax] with a = n/
∑n

i=1

∑n
j=1 wij and λmin, λmax

denoting the smallest and largest eigenvalues ofHWH (de Jong et al. 1984).This shows

that for quadratic forms such as Pearson’s r and Moran’s I there is a close relationship

between the eigenvalues of (implicit or explicit) weighting structures and the feasible

value ranges of the corresponding statistical measures.

Not only the bounds of I depend on the eigenvalues ofHWH, but also the shape

of the distribution and resulting map patterns. The locations of the eigenvalues on

the spectrum are important for the shape of I ’s distribution, and some eigenvalues

can mark inflection points (Tiefelsdorf/Boots 1995) especially for smaller lattices (for

large-sample asymptotics, see Section 4.4). In addition, the spatial weights are some-

times normalised, for example, to make them comparable across different study ar-

eas. Common normalisations include the W-coding (each row sums to 1), and the C-

coding scheme (each weight represents its global share; for an overview, see Bavaud

2014). However, these normalisation schemes affect the topology-induced variance and

change the influence of spatial units on a spatial analysis. The W-coding scheme gives

excessive weight to low-connected units (see fig. 2b) that are typically found along the

boundary of a study area, but can also occur elsewhere, for example, when spatial units

vary strongly in size. In contrast, the C-coding scheme favours highly connected units

(fig. 2a). Tiefelsdorf et al. (1999) have presented the S-coding scheme to balance the

5 An eigenvalue representation of the spatial weights matrix can intuitively be thought of as a de-

composition and reorganisation of the initial matrix into all possible spatial substructures repre-

sented by the weights. The eigenvalues then reflect the strengths of these substructures.

6 A centring operator is a matrix that subtracts the mean value either by column or by row.

7 The symmetric part 1/2
(
W +W>)

of W can safely be computed in the present case of

Moran's I since the antisymmetric part leads to quadratic forms evaluating to zero.
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Fig. 2: Effect of different kinds of normalisations of spatial weights represented by the eigen-

values of local spatial weights matrices. a) C-coding scheme. b) W-coding scheme. c) S-coding

scheme. The maps are based on data from the 2011 German Census.

effects of C and W-coding (fig. 2c). Shortridge (2007) has further found for grid config-

urations that both positive and negative autocorrelation are overestimated when using

rook8 instead of queen9 weights, an effect that is more pronounced in the case of nega-

tive spatial autocorrelation. In summary, interpreting Moran’s I and related measures

depends strongly on the spatial weights and the way neighbourhood relations are spec-

ified. Reporting results without elaborating on the spatial weighting scheme used is

therefore of limited informative value.

A useful graphical tool to understand Moran’s I results beyond distributional con-

cerns is the Moran scatterplot (Anselin 1996).The plot maps the standardised10 attribute

values yi on the x-axis against their also standardised
11 spatial lags

∑
j wijyj (i.e. the

spatially weighted sum of neighbours) on the y-axis. This shows the relationship of

Moran’s I to the regression of the lags on the variates. Fig. 3a shows an example of a

Moran scatterplot for the filtered population data used in fig. 1a. The data are strongly

positively autocorrelated, which is manifested in the diagram by the clustering of data

points in the first (high values surrounded by other high values) and third quadrants

(low values surrounded by other low values) and by a positively sloping trendline. In

contrast, the negatively spatially autocorrelated data from fig. 1c result in an arrange-

ment centred in the second and fourth quadrants (fig. 3c). Spatial randomness is char-

acterised by the absence of a discernible trend as visualised in fig. 3b. The plot can be

used to examine different features of the spatial autocorrelation structure present in

a dataset. For example, it is possible to identify deviant data points that exhibit un-

usual behaviour.These are often of particular geographical interest because they do not

fit into their spatial surroundings. In addition, the scatterplot can be used to identify

structural breaks, that is, possible non-stationarities with respect to the spatial process.

8 Rook weights connect grid cells along the four cardinal directions.

9 Queen weights connect grid cells along the four cardinal directions and the diagonals.

10 Standardisation means to centre the variables by subtracting their mean and then dividing by

their standard deviation.

11 Standardisation means to centre the variables by subtracting their mean and then dividing by

their standard deviation.
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Fig. 3: Moran scatterplots for the positively and negatively spatially autocorrelated population

variable from fig. 1 and for its spatially randomised version. Q1–Q4 denote quadrants 1 to 4 as

defined by the dashed lines. The red trend lines indicate the regressions of the lags on the stan-

dardised variables. Moran scatterplots for a) a positively spatially autocorrelated variable; b) a

spatially randomised variable; and c) a negatively spatially autocorrelated variable.

The Moran scatterplot is thus a very helpful tool especially for the initial exploration of

spatial structures.

The main takeaway from these technical considerations is that the range of possible

values for Moran’s I and its distribution depend strongly on the spatial weights. This is

analogously the case with Pearson’s r but is not of practical relevance there, since the

(implicit) weighting structure is always the same. Very similar results apply for other

spatial measures like Geary’s c, which also depend on given exogenous spatial linkages.

Moreover, the spatial weights determine to some extent howmuch influence individual

spatial units exert on the overall spatial analysis; a property that can sometimes affect

analyses in unexpected ways, for example, when normalisations are involved. Empiri-

cal researchers should be mindful of these aspects and take them into account when

interpreting corresponding results.

4.4 Asymptotic Distribution of Moran’s I

Drawing inferences about Moran’s I requires knowledge of the null distribution assum-

ing no spatial autocorrelation.This knowledge allows to assess how likely or unlikely an

observed I value would occur by chance given the connectivity defined by the spatial

weights. Resorting to aMonte Carlo-style approach with estimation of an empirical null

distribution is possible but may sometimes be impractical, for example, if the sample

size is large. Moran’s I can also be evaluated analytically by approximating its asymp-

totic distribution in two different ways. One possible approach uses a randomisation

argument implying a conditional viewpoint holding the observed values fixed. The null

hypothesis then assumes that the observed values could occur randomly anywhere on

the lattice with equal chance (Besag/Newell 1991). An alternative approach is based on

the assumption that the observed values were drawn from a joint normal distribution

and is thus not limited to certain already observed values. In this case, the distribution

of I in the null hypothesis corresponds to repeated and independent sampling from a
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normal distribution for each spatial unit. Both approaches allow testing for complete

spatial randomness using normal approximations. Which of these viewpoints to adopt

depends largely on the nature of the process under investigation.

Approximating the null distribution of I using normal distributions is possible for

both inference approaches outlined above.They are subject to only mild regularity con-

ditions (Cliff/Ord 1981, 46ff.). One condition is a sufficiently large dataset. Cliff and

Ord (1972) suggest using a Beta approximation for small samples. A second condition

is that the number of non-zero connections per spatial unit and established through

the weights is not a function of the size of the lattice. A third condition is that no

geographical subregion should dominate the lattice too much. Indeed, unfavourable

spatial configurations exist that may prohibit the use of the normal approximation, but

in many practical cases the latter will be possible. Normal approximation requires es-

timates of the mean and variance of I. The mean is given in Section 4.3 and does not

differ between the two types of null hypotheses concerned. The variance terms for the

two cases, however, are not identical and, due to the complex weighting structures in-

volved, are quite cumbersome. For the latter reason, I refrain from replicating these

terms here and refer the reader to Cliff and Ord (1981) and Griffith (2010). The analyst

may sometimes encounter underlying, exogenous spatial processes that interfere with

the analysis. Also, as described in Section 4.3, spatial configurationsmay impact the null

distribution. Both situations can result in skewness invalidating the normal approxi-

mation. Tiefelsdorf (2002) suggests using a saddlepoint approximation in these cases

that can accommodate such circumstances better than the normal approximation.

Data in metropolitan research often come in the form of counts, rates, or other

forms of non-normal observations. It is therefore of practical interest to consider in-

ferences about Moran’s I with non-normally distributed samples. Griffith (2010) has

shown that the normal approximations introduced above can be extended to a range of

random variables that mimic the normal distribution. This is the case, for example, for

counts drawn from a Poisson distribution, provided their mean is sufficiently large. A

similar argument applies to binomial variables under the restriction of a large number

of trials. For these types of variables, the equation for the mean of I holds if the ran-

dom variables are reasonably symmetric about their mean. In the cases of skewness or

non-symmetry, the mean estimator will be asymptotically valid if n is large enough.The

term for the variance of Moran’s I under the normality assumption is asymptotically

valid as long as independence and identical distribution hold, and when n is roughly

larger than 25. These encouraging results allow the extension of the normal approxi-

mation to a number of distributions. To some extent, this even applies to mixtures of

differently distributed random variables, although this would require even larger sam-

ple sizes. For the latter case, however, it has been shown that the spatial arrangement

of the random variables involved has an influence on both the mean and the variance of

I, especially when the underlying means and variances of the distributions that enter

mixtures differ greatly (Westerholt 2018; Westerholt et al. 2016). Therefore, caution is

still required when drawing conclusions about Moran’s I using non-normal data.
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5. Specialised Measures of Spatial Association

In metropolitan research, non-interval scaled variables are often considered. Spe-

cialised estimators have been developed, of which the following subsections provide

an overview.

5.1 Rate Variables

Rates like disease incidences and unemployment shares often violate the stationarity

assumptions of spatial-statistical tests. High rates are more likely to occur when the

underlying base population is small. Depending on the composition of the underlying

populations, the resulting heteroscedasticity leads to either Type-I (false positive) or

Type-II (false negative) error inflation (Walter 1992a; 1992b). Various approaches have

been proposed to deal with rate variables. Acknowledging that the variance of normal

variables depends on the sample size, Waldhör (1996) proposes to use inverse local pop-

ulation sizes as approximators of the local variances in the estimator for the variance

of I. Oden (1995) instead traces regional rates back to individual cases. This, however,

would incur a high downstream computational effort.The analysis is thus brought back

to spatial units by using global comparison values based on the same base population

everywhere. Assuncao and Reis (1999) propose an empirical Bayesian solution consid-

ering rates as conditional on local propensities. Rates are standardised with a constant

global mean estimated from raw counts (instead of averaging the rates) and a variance

estimate taking into account local numbers of cases. A similar but improved method

has been proposed recently by Jung et al. (2019b). Jackson et al. (2010) propose to in-

clude the spatial weights matrix in the variance estimator used in the denominator of

Moran’s I. In this way, explanatory power is borrowed from exploiting spatial redun-

dancy in nearby populations. In a similar vein, Bucher et al. (2020) incorporate addi-

tional uncertainty weights in I in a mobile sensor measurement context. Zhang and Lin

(2016) develop an adjustment factor to account for heteroscedasticity as well as spatial

structure in the variance. This factor can be used in the variance estimator for the ran-

domisation-based hypothesis testing framework. The range of approaches introduced

shows that heteroscedasticity has received considerable attention.

5.2 Categorical Variables

Categorical variables can mean either the analysis of binary outcomes like the presence

or absence of a species, or multi-categorical data such as the Index of Multiple Depri-

vation in the UK censuses. The traditional and still widely used methods for assessing

spatial structure in these types of variables are the join-count statistics, either in a bi-

nary way (Cliff/Ord 1981; Moran 1948; 1947) or for so-called k-colourmaps (Cliff/Ord 1981;

Krishna Iyer 1949).Thesemeasures count the numbers of ties of certain, spatially neigh-

boured attribute values. In addition to using a Monte Carlo permutation approach, two

different types of analytical evaluation based on normal approximations are available.

These are in principle analogous to the normal and randomisation assumptions for the

evaluation of I : free sampling with replacement and unfree sampling. Boots (2003) de-
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velops local tests for categorical value clustering. These tests are conditional on local

compositions of classes and thus address the problem that the spatial configuration of

categorical variables is not independent of their class composition. To address this com-

positional issue, Ruiz et al. (2010), Matilla-García et al. (2012), and Farber et al. (2015)

develop global tests based on the entropy of the different locally occurring attribute

value compositions. These ideas are taken further towards local testing by Naimi et al.

(2019). Also focusing on local tests, Anselin and Li (2019) and Anselin (2019b) have pro-

posed categorical counterparts to local Moran’s I, which are an amalgamation of the

latter with the join count statistics.

5.3 Vectors and Flows

Many phenomena including traffic flows, commuter patterns, and migration can be

represented in networks or origin–destination matrices. Analysing these is possible

from various perspectives (Chun 2008): spatial dependence in the origins, clustering of

destinations, or combinations of these. Additional modelling steps are thus required

for the spatial weights in addition to adapted models. Liu et al. (2015) have modified

Moran’s I towards considering origin and destination geometries as attribute values.

Tao and Thill (2020) have extended this geometric idea to include attribute values (e.g.

exchange intensity) and bivariate cases (in their example taxi trips and use of ride-hail-

ing services). Analogous approaches exist for the analysis of the tails of a distribution

(hotspot analysis). Berglund and Karlström (1999) have presented an approach to the

G-statistics that allows clusters of high and low fluxes to be identified, again taking

into account different perspectives through respectively modelled spatial weights. An-

other approach to hotspot analysis is developed by Tao and Thill (2019b). They extend

an incremental method called AMOEBA (Aldstadt/Getis 2006), which grows spatially

connected clusters from the bottom up, towards detecting coherent ‘ecotopes’ of flows.

Another perspective on flows is a geometric one in the sense of unmarked point pattern

analysis. Tao and Thill (2016) introduce a method based on the widely used K-function

that considers flows in a joint four-dimensional space, and thus without separating the

origin and destination geometries.This idea was later extended to the multivariate case

(Tao/Thill 2019a). Similarly, Shu et al. (2021) present an analogous technique based on

the L-function, a variance-stabilised version of K.

5.4 Multivariate Analysis

Sometimes it is of interest to analyse joint spatial patterns and linkages between differ-

ent processes. The use of standard correlation measures like Pearson’s r with spatially

autocorrelated variables is problematic due to Type-I error inflation (Dutilleul/Legendre

1993; Clifford et al. 1989; Bivand 1980). A number of alternative approaches have been

discussed.Wartenberg (1985) proposes to expand data vectors tomatrices with different

variables per spatial unit.These n×mmatrices can be used in a cross product with the

spatial weights matrix, and the eigenvectors of the resulting matrix can then be evalu-

ated in the sense of a principal component analysis. A local version of this method has

recently been proposed (Lin 2020). The relationship between spatial and non-spatial

https://doi.org/10.14361/9783839463109-003 - am 13.02.2026, 16:24:44. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839463109-003
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


52 René Westerholt

correlation is not unique, however, and different spatial configurations can be found

producing the same Pearson’s r values. Lee (2001) therefore combines Pearson’s r and

Moran’s I into a commonmeasure that captures point-to-point and spatial correlations.

The latter proved to be more suitable for small sample sizes than the Wartenberg (1985)

approach (Khamis et al. 2010). Anselin et al. (2002) focus solely on spatial arrangement

and present a multivariate version of local Moran’s I, including a generalised Moran

scatterplot, in which the spatial lag of one variable is regressed on observations of an-

other. In the same vein, Anselin (2019a) extends Geary’s c for multivariate datasets and

points out that for the multivariate case, measures like Geary’s c based on differences

in attribute space offer conceptual advantages over cross products of mean deviations

such as Moran’s I. Also modifying Geary’s c and Moran’s I, Eckardt and Mateu (2021)

propose partial versions of these statistics.

5.5 Spatial Heterogeneity

Spatial heterogeneity describes geographical instabilities of statistical parameters (Du-

tilleul/Legendre 1993).This property can be caused either by endogenous non-stationar-

ity or by exogenous contextual variation. Often regarded as a nuisance, spatial hetero-

geneity can be an interesting feature for scientific enquiry. One way to investigate het-

erogeneity is to use local statistics such as the local version ofMoran’s I (see equation 2b)

or other so-called Local Indicators of Spatial Association (Anselin 1995). Mapping such

measures and inspecting visualisations like the Moran scatterplot enables the explo-

ration of local pockets of heterogeneity. More recently, specialised measures of spatial

heterogeneity have been developed. Ord and Getis (2001) propose a measure of spatial

concentration and thus of spatially varying means, whereby the method controls for

possibly interfering global autocorrelation structures. Focusing on variance, Ord and

Getis (2012) propose a measure of spatial heteroscedasticity. This method called LOSH

(Local Spatial Heteroscedasticity) calculates variances about locally estimated means and

allows for the detection of irregular clusters and spatial boundaries. Xu et al. (2014) have

investigated the distributional properties of LOSH and recommend aMonte Carlo strat-

egy for inference instead of the parametric chi-square test originally proposed.Based on

LOSH, Westerholt et al. (2018) develop a test for strictly local spatial heteroscedasticity

to characterise spatial variance in subregions regardless of other locations. Background

is the detection of pronounced variances that may only stand out within small subre-

gions but not in a global comparison. On a more practical note, Aldstadt et al. (2012)

have suggested using LOSH and the G-statistics in tandem to investigate internal clus-

ter heterogeneity. An alternative approach to this with improved discriminability be-

tween cluster boundaries and interiors is to use a spatial filtering approach (Westerholt

2021a; 2021b).

6. Summary and Outlook

In this chapter, basic principles and methods of statistical spatial analysis were pre-

sented. The topic was motivated through outlining selected application areas. These
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give the reader an impression of the breadth of metropolitan research for which spatial

analysis has been applied. Presumptions and possible pitfalls were then outlined before-

Moran’s I was presented in detail. The latter included not only the definition and in-

terpretation of the measure, but also associated inference mechanisms. After the main

methodological part, further spatial statistical estimators were discussed.However, this

chapter is not exhaustive. Many of the principles presented do also apply to the various

spatial regression approaches. Examples include spatial error and spatial lag models

(Anselin 2001), geographically weighted regression (Wheeler/Páez 2010), and spatial fil-

tering (Getis/Griffith 2002; Griffith 2000). Another area that is largely left out in the

chapter is the topic of spatiotemporal analysis. Whilst broadly similar to what is dis-

cussed in this chapter, the latter differs conceptually, particularly in terms of modelling

spatial weights (e.g., Gao 2015). In terms of future trends, one current research direc-

tion is towards a deeper integration of spatial analysis with computer science, leading

to the notion of ‘spatial’ or ‘geographical’ data science (Bacao et al. 2020; Singleton/

Arribas-Bel 2021). A related direction deals with a stronger integration of spatial anal-

ysis and machine learning (Klemmer/Neill 2020; Klemmer et al. 2019). Another current

trend is the deeper integration of spatial analysis with human geography, manifesting

itself in human-centred, place-based approaches (Westerholt et al. 2020; Purves et al.

2019). These areas will complement the traditional directions of spatial statistics in in-

teresting ways and open up new pathways, both theoretically and in terms of practical

integration with new fields of application in metropolitan research.
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