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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Berücksichtigung von Unsicherheiten in der Zerspanung

Adaptive Prüfplanung
B. Denkena, M. Wichmann, L. Reuter

Z U S A M M E N F A S S U N G  Datengetriebene Prognose -
modelle sind der Kern einer adaptiven Prüfplanung, besitzen 
jedoch stets einen modellbasierten Prognosefehler. Zur zuver-
lässigen Interpretation des Vorhersageergebnisses ist daher 
die Modellierung der einhergehenden Unsicherheit von beson-
derer Bedeutung. In diesem Beitrag werden drei Ansätze zur 
Unsicherheitsmodellierung der Oberflächenrauheit 3-achsig 
gefräster Werkstücke aus Aluminium vorgestellt, wobei eine 
hohe Erfassungswahrscheinlichkeit von 92 % erzielt werden 
kann.

 Adaptive inspection planning – Considera-
tion of uncertainties in machining

A B S T R A C T  Data-driven prediction models are the core  
of adaptive test planning, but always have a model-based 
 prediction error. For a reliable interpretation of the prediction 
result, the modeling of the associated uncertainty is of particu-
lar importance. Therefore, this paper presents an approach for 
uncertainty modeling of the surface roughness Ra of 3-axis 
milled aluminum workpieces, whereby a Prediction Interval 
Coverage Probability of 92% can be achieved.

1 Einleitung

In der Luftfahrtindustrie herrschen hohe Anforderungen an 
die Herstellung zerspanter Bauteile. Insbesondere die vollständige 
Qualitätsprüfung von Großbauteilen (zum Beispiel Flugzeug-
spante) auf Einhaltung von Geometrie- oder Rauheitsvorgaben 
ist zeit- und kostenintensiv. Datenbasierte Vorgehensweisen 
 innerhalb der Prüfplanung besitzen daher ein besonderes 
 Potenzial zur Steigerung der Wettbewerbsfähigkeit [1]. Ein 
 Ansatz zur Identifikation und Reduzierung vermeidbarer Prüfauf-
wände in der Zerspanung stellt die adaptive Prüfplanung dar [2]. 
Hierbei erfolgt die wirtschaftliche Planung von konventionellen 
Qualitätsprüfungen durch die Interpretation datengetriebener 
Qualitätsprognosen auf Basis von Methoden des maschinellen 
Lernens. Sämtliche Regressionsmodelle besitzen jedoch einen 
Prognosefehler, der im Rahmen der Modellentwicklung anhand 
verschiedener Bewertungsmetriken (unter anderem mittlerer 
 absoluter Fehler (MAE) oder mittlerer absoluter prozentualer 
Fehler (MAPE)) quantifiziert und minimiert wird [3]. Innerhalb 
sicherheitsrelevanter Branchen erschweren derartige Prognose-
fehler eine Einführung datenbasierter Vorgehensweisen aufgrund 
hoher Anforderungen an die Qualifizierung und Zertifizierung 
von Prüfmethoden [4]. Somit besteht die Notwendigkeit zur 
 Berücksichtigung von Modellunsicherheiten, um das Risiko einer 
Fehlinterpretation datenbasierter Prognoseergebnisse zu reduzie-
ren. Erste Ansätze hierzu wurden in den letzten Jahren von Ko-
walczyk und Tomczyk, Lui et al. sowie Sun et al. entwickelt [5–7]. 

Kowalczyk und Tomczyk entwickelten eine Methode zur 
 Bestimmung von Unsicherheiten in der Modellierung von Ober-
flächenrauheiten beim Drehen von NiTi-Legierungen auf Basis 
eines Monte-Carlo-Ansatzes. Die Modellierung der Rauheit 

 erfolgte durch die Bildung von Polynomen in Abhängigkeit des 
Vorschubs vf, der Schnitttiefe ap sowie der Spindeldrehzahl n [5]. 
Zur Modellierung des Werkstückverzugs, beispielsweise durch 
die Zerspanung dünnwandiger Bauteile, werden häufig rechen- 
und zeitintensive Finite-Elemente-Analysen durchgeführt, die für 
industrielle Zwecke nur eingeschränkt nutzbar sind. Sun et al. 
 haben daher ein hybrides Ersatzmodell auf Basis der Gaußprozess 
Regression (GPR) entwickelt, das ebenfalls die Unsicherheit der 
Verzugsprognose berücksichtigt. Im Rahmen einer Fallstudie 
konnte ein mittlerer Prognosefehler von 3,14 µm beziehungswei-
se 11,69 % aufgezeigt werden [6]. Um den Einfluss der Schnitt-
parameter auf die Oberflächenrauheit zu quantifizieren und die 
Vorhersagegenauigkeit zu verbessern, entwickelten Lui et al. eine 
neuartige Vorgehensweise zur Modellierung der Oberflächen -
rauheit beim Fräsen. Auf Basis von Überwachungssignalen sowie 
Prozessstellgrößen erfolgt die Prognose der Rauheit und die 
 Bildung eines Konfidenzintervalls mittels Bayes’schen Quantil -
modells. Der verbleibende Vorhersagefehler lag gegenüber experi-
mentellen Versuchen bei etwa 15 % [7]. 

Die dargestellten Ergebnisse zeigen das Potenzial zur Model-
lierung von Unsicherheiten, insbesondere im Kontext der spanen-
den Fertigung. Es existiert eine Vielzahl an stochastischen Ein-
flüssen, welche die Unsicherheit über die zu erwartenden Werk-
stückqualität beeinflussen [8]. Bisher liegen jedoch keine Ansätze 
vor, die eine Einbindung der Unsicherheitsmodellierung inner-
halb der Prüfplanung untersucht haben. Dies ist allerdings zur 
 Industrialisierung der Vorgehensweise von besonderer Bedeu-
tung. Der vorliegende Beitrag evaluiert daher drei verschiedene 
Ansätze der Unsicherheitsmodellierung zur Rauheitsprognose 
von 3-achsig gefrästen Werkstücken aus Aluminium im Rahmen 
einer adaptiven Prüfplanung. 
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2 Adaptive Prüfplanung

Innerhalb der CAD-CAM-Kette findet die produktabhängige 
Prüfplanung typischerweise einmalig parallel oder im Anschluss 
an die CAM-Planung statt. Anschließend liegen sämtliche Schritte 
der Qualitätsprüfung vor, die für jedes zu prüfende Bauteil 
durchgeführt werden. Eine individuelle Adaption von Prüfauf-
wänden wird nicht vorgenommen, besitzt jedoch das Potenzial, 
Prüf- und Durchlaufzeiten deutlich zu reduzieren. Die adaptive 
Prüfplanung nutzt hierzu einen digitalen Werkstückzwilling, um 
vermeidbare Aufwände in der Qualitätssicherung durch eine 
werkstückindividuelle Anpassung von Prüfaufträgen zu reduzie-
ren [2]. Die Vorgehensweise hierzu ist in Bild 1 schematisch dar-
gestellt. 

Nach der spanenden Bearbeitung des Werkstücks werden zu-
nächst die relevanten Maschinen-, Sensor-, Simulations- und 
Qualitätsdaten als digitaler Fußabdruck des Werkstücks gespei-
chert. Die Aufnahme von Qualitätsdaten ist zur Entwicklung 
 virtueller Prüfmethoden notwendig. Als virtuelles Prüfmittel sind 
in diesem Kontext Regressionsmodelle zu verstehen, die eine 
Korrelation zwischen den Eingangsgrößen aus der Maschine, der 
Sensorik oder der Simulation mit dem vorliegenden Qualitätsni-
veau liefern. Derartige Modelle werden in der Simulationsumge-
bung genutzt, um neues Wissen über die vorliegende Werkstück-
qualität zu gewinnen, ohne eine konventionelle Qualitätsprüfung 
durchführen zu müssen. Dieses Wissen besitzt für die weitere 
Prüfplanung eine entscheidende Bedeutung, da der Prüfplan in 
Abhängigkeit des virtuellen Prognoseergebnisses adaptiert wird. 
So  erfolgt durch den Vergleich zwischen Soll- und Ist-Qualitäts -
niveau die Klassifizierung der Prüfmerkmale in die Gruppen „in 
Ordnung“ und „nicht in Ordnung“. Sofern die virtuelle Qualitäts-
prognose ein eindeutiges Ergebnis liefert, ist keine weitere Prü-
fung des Merkmals notwendig und der Prüfplan wird um dieses 
Merkmal reduziert. Sollte das prognostizierte Prüfergebnis jedoch 
nah an der Toleranzgrenze liegen, ist die Werkstückqualität kon-
ventionell zu messen. In diesem Fall werden die Prüfaufwände 
nicht reduziert. Somit führt eine Fehleinschätzung des vorliegen-
den Qualitätsniveaus im Kontext der adaptiven Prüfplanung 

 unmittelbar zu einem Nichterkennen („Durchschlupf“) von 
 qualitätskritischen Werkstücken und erschwert folglich die 
 Implementierung datenbasierter Methoden. Unter Berücksichti-
gung der oben beschriebenen Erkenntnisse ist eine Unsicherheits-
modellierung im Zusammenhang der adaptiven Prüfplanung 
 unerlässlich.

3 Ansätze zur Unsicherheitsmodellierung

Insbesondere in der Luftfahrtindustrie herrschen umfangrei-
che Prüfumfänge zur Sicherstellung einer qualitätsgerechten 
 Fertigung. So sind zeitliche Aufwände von 4,5 h zur Messung 
von Oberflächenrauheiten und Formabweichungen bei Großbau-
teilen nicht unüblich. Das Demonstratorbauteil stellt einen Aus-
schnitt aus einem realen Türspant dar. Das Analogiebauteil ent-
hält  dieselben Features und wurde zur Reduzierung von Ver-
suchsdauern und Materialeinsatz entworfen. Exemplarisch erfolg-
te die Modellierung der Unsicherheiten bei der Prognose der 
Ober flächenrauheit Ra in diesem Beitrag anhand von drei ver-
schiedenen Ansätzen. Zur Evaluierung wurden 60 Analogiebau-
teile (170 mm x 115 mm x 80 mm) aus Aluminium (EN AW 
5083) mit acht verschiedenen Parameterkonstellationen gefertigt. 
Die Versuche wurden am Bearbeitungszentrum „H5000“ von 
Heller mit einer Siemens „840 D sl“ Steuerung durchgeführt 
(Bild 2). 

Die notwendigen Maschinendaten (Achspositionen, Spindel-
drehzahl n sowie Vorschubgeschwindigkeit vf) wurden mit einer 
Frequenz von 160 Hz über eine TCP/IP-Schnittstelle ausgelesen. 
Des Weiteren haben Voruntersuchungen ergeben, dass das Pro-
zesswissen und damit die die Prognosegüte in der Modellierung 
durch die Nutzung von Simulationsdaten deutlich gesteigert 
 werden kann. Auf Basis der ausgelesenen Achspositionen erfolgte 
 daher anschließend eine dexelbasierte Materialabtragsimulation 
des Bearbeitungsprozesses zur Berechnung der lokalen Eingriffs-
bedingungen Zeitspanvolumen Qw, Schnitttiefe ap, Schnittbreite ae 
sowie Werkzeugeingriffswinkel φ in IFW CutS [9]. Hierzu wurde 
eine Dexelauflösung von 20 Dexel/mm und eine Zykluszeit von 
0,001 s genutzt. Prozesskräfte wurden während des Fräsprozes-

Bild 1. Methode zur adaptiven Prüfplanung. Grafik: IFW
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ses durch das Mehrkomponenten Dynamometer „M9257B“ von 
Kistler aufgenommen. Im Rahmen der Datenvorverarbeitung 
wurde aus den Prozesskräften die maximale Aktivkraft Fa,max 
 extrahiert. Sämtliche Daten wurden anschließend durch den Ver-
gleich der Zeitstempel zu einem Datenstrom synchronisiert und 
dienen als mögliche Eingangsgrößen zur datenbasierten Prognose 
der Oberflächenrauheit Ra. Daraufhin wurden 1500 Rauheitsda-
ten auf den Taschenböden mittels „MarSurf LD 130“ 
(λc = 0,8 mm, lr = 0,8 mm, ln = 4 mm) taktil aufgenommen. 
 Anschließend wurde der mittlere Mittenrauheitswert Ra einer 
Gesamtmessstrecke ln extrahiert und mit den oben beschriebenen 
Daten durch den Vergleich der Achspositionen und Messkoordi-
naten im Werkstückkoordinatensystem synchronisiert. Die Mess -
unsicherheit (MU) beträgt dabei 3 %. Um Ausreißer im Daten-
satz zu identifizieren und zu eliminieren, wurden die Daten 

 mittels K-Nearest-Neighbor Algorithmus (K = 10, n = 20) 
 geclustert. Die verbliebenden 280 Datenpunkte bildeten darauf-
hin die Grundlage für die Entwicklung von Prognosemodellen 
auf Basis des maschinellen Lernens. In Voruntersuchungen erwie-
sen sich die Support Vector Regression (SVR) und die GPR als 
geeignete Algorithmen für die weitere Modellierung der Progno-
seunsicherheit. Die Implementierung erfolgte in Python unter 
Verwendung der „Scikit-Learn“ (sklearn) Bibliothek.

Bild 3 zeigt zunächst den Einfluss der Hyperparameteropti-
mierung auf die Prognosegenauigkeit der Oberflächenrauheit Ra 
am Beispiel der GPR. Hierzu wurde eine verschachtelte Kreuzva-
lidierung (kaußen = 5, kinnen = 5) verwendet. Die Bewertung der 
Prognoseergebnisse findet somit unter Berücksichtigung von 
 Mittelwert und Standardabweichung von MAE und MAPE nach 
30 Wiederholungen statt. Voruntersuchungen haben ergeben, 

Bild 2. Anwendungsfall zur Untersuchung der Rauheitsprognose. Grafik: IFW

Bild 3. Einfluss der Hyperparameteroptimierung auf die Rauheitsprognose mittels GPR. Grafik: IFW 
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dass eine 30-fache Wiederholung diesen Effekt sehr gut reduziert. 
Es zeigt sich, dass durch Variation des Kernels eine signifikante 
 Verbesserung der Prognosegüte erzielt werden konnte. Während 
der Prognosefehler unter Standard-Einstellungen zwischen 
18,79 ± 14,80 % liegt, kann dieser durch die Anpassung der 
 Hyperparameter auf 10,16 ± 0,92 % reduziert werden. 

Zwar ist dies bereits im Mittel eine stabile Prognose der Ober-
flächenrauheit, jedoch zeigt Bild 3 auch, dass es weiterhin zu 
Fehleinschätzungen der Oberflächenrauheit kommt. Insbesonde-
re, wenn das Prognoseergebnis nahe der Qualitätstoleranzgrenze 
liegt, kann eine Fehleinschätzung zwangsläufig zu einem unge-
wollten Durchschlupf führen. Somit ist die Notwendigkeit zur 
weiteren Erforschung von Ansätzen zur Unsicherheitsmodellie-
rung gegeben. Um die Ansätze bewerten zu können, wurden zwei 
Metriken zur Bewertung der entwickelten Ansätze zur Unsicher-
heitsmodellierung gemäß Gleichung 1 und 2 definiert. PErfassung 
gibt dabei die Erfassungswahrscheinlichkeit über die Anzahl der 
im vorhergesagten Unsicherheitsintervall enthaltenen Testdaten-
punkte nin,test zur Gesamtzahl der Probenpunkte im Testdatensatz 
nall,test an. Die relative mittlere Intervallbreite IB gibt das arithme-
tische Mittel der Intervallbreite   über die gesamten Daten an 
und beschreibt die Präzision der Bildung des Unsicherheits -
bereichs. Eine geeignete Methode zur Unsicherheitsmodellierung 
liegt folglich bei einer möglichst hohen Erfassungswahrschein-
lichkeit und bei einer möglichst geringen Intervallbreite   vor. 

  (1)

  (2)

Der erste Ansatz umfasst die Berechnung eines konstanten Unsi-
cherheitsniveaus auf Basis des MAPE des Trainingsdatensatzes 
(MAPE-Ansatz). Dieser gibt den mittleren absoluten prozentua-
len Fehler an, welcher im Rahmen der Modellentwicklung 
 berechnet wurde. Die Berechnung des Unsicherheitsniveaus 
 UMAPE für den vorhergesagten Qualitätswert   erfolgt anhand 
von Gleichung 2: 

UMAPE =   . MAPE (2)

Ein wesentlicher Vorteil dieser Vorgehensweise besteht in der 
einfachen Implementierung der Methode. Allerdings erfolgt zu-
dem eine starke Reduzierung der vorliegenden Komplexität durch 
die Annahme, dass der Unsicherheitsanteil einem konstanten 
Wert unterliegt. Dies zeigt sich ebenfalls in der Bewertung der 
Methode (Bild 4). So konnte eine geringe Erfassungswahr-
scheinlichkeit PErfassung von 60 ± 5 % ermittelt werden. Die mitt-
lere Intervallbreite   beträgt 20 ± 0 %. 

Dem vorgestellten Ansatz zur Unsicherheitsmodellierung 
 gegenüber steht der Bootstrapping-Ansatz (BS-Ansatz), der aus 
einem statistischen Wiederholungsstichprobenverfahren besteht. 
Der Grundgedanke des Bootstrapping liegt darin, eine große An-
zahl künstlicher Datensätze zu erzeugen, indem neue Datenpunk-
te aus dem ursprünglichen Datensatz mehrfach mit zurücklegen 
gezogen werden [10]. Die Größe des neuen Datensatzes stimmt 
dabei in der Regel mit der ursprünglichen Größe überein. Das 
Vorgehen besitzt den Vorteil, dass durch das Resampling von 
Trainingsdaten eine umfassende Betrachtung der Modellunsicher-
heit ermöglicht wird. Des Weiteren wird eine inkonstante Model-
lierung vorgenommen, wodurch eine realitätsnähere Betrachtung 
der Prognoseunsicherheit erfolgt. Dem gegenüber stehen jedoch 
ein hoher Implementierungsaufwand sowie notwendige Kennt-
nisse im Bereich der Statistik. Die Unsicherheit UBootstrapping setzt 
sich gemäß [11] zusammen aus den Unsicherheitsanteilen der 
Modellvarianz UVarianz, Modellverzerrung UBias sowie des Stich-
probenrauschen URauschen. Der Faktor b stellt die relative Überan-
passungsrate dar. Die Variable q beschreibt den Faktor zur 
 Berechnung des 95 %-Quantils.

UBootstrapping = q . ((1 – b) . (UVarianz + UBias) + b . URauschen) (3)

Die Erfassungswahrscheinlichkeit konnte mit dem Ansatz gegen-
über der Verwendung eines konstanten Unsicherheitsniveaus auf 
PErfassung = 87 ± 5 % erhöht werden (Bild 5). Dies entspricht ge-
genüber dem MAPE-Ansatz eine Steigerung von knapp 45 %. Die 
Steigerung konnte durch eine deutlich höhere Intervallbreite   

Bild 4. Ergebnis der Unsicherheitsmodellierung anhand des MAPE-Ansatzes. Grafik: IFW
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erzielt werden. Diese beträgt bei Verwendung des BS-Ansatzes 
38 ± 8 %. 

Zuletzt wurde die GPR zur Modellierung der Prognoseunsi-
cherheit angewandt (GPR-Ansatz). Eine Besonderheit dieses 
 Verfahrens besteht in der Berechnung einer Vorhersageverteilung, 
anstelle eines einzelnen -werts. Folglich liegt zu jedem Prognose-
ergebnis ebenfalls die zugehörige Standardabweichung s vor, 
 welche den Indikator der Prognoseunsicherheit darstellt (siehe 
Gleichung 4). Die Variable q beschreibt den Faktor zur Berech-
nung des 95 %-Quantils.

UGauß = q  . s (4)

Ein Vorteil der Methode besteht somit wie schon beim BS-Ansatz 
in der Modellierung einer variierenden Prognoseunsicherheit 
 sowie in einer vergleichsweise einfachen Implementierung. 

 Jedoch ist dieses Vorgehen lediglich auf die GPR begrenzt und ist 
derzeit nicht auf andere Regressionsmethoden anwendbar. Für 
den vorliegenden Anwendungsfall kann dem Ansatz der GPR die 
höchste Erfassungswahrscheinlichkeit PErfassung (92 ± 4 %) zuge-
ordnet werden. Gegenüber dem MAPE-Ansatz ist eine Steigerung 
von PErfassung um knapp 53 % möglich (Bild 6). Die Intervallbrei-
te beträgt im Mittel 20 ± 17 %. Es im Mittel vergleichbar zum 
MAPE-Ansatz. Aufgrund der inkonstanten Modellierung liegt 
 jedoch eine deutlich höhere Streuung von   vor. 

4 Berücksichtigung von Unsicherheiten  
 in der adaptiven Prüfplanung

Das Ziel der adaptiven Prüfplanung besteht in der Minimie-
rung konventioneller Prüfaufwände durch die Interpretation 
 datengetriebener Qualitätsprognosen. Vor diesem Hintergrund 

Bild 5. Ergebnis der Unsicherheitsmodellierung anhand des BS-Ansatzes. Grafik: IFW 

Bild 6. Ergebnis der Unsicherheitsmodellierung anhand des GPR-Ansatzes. Grafik: IFW 
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besitzt die Unsicherheitsmodellierung eine herausragende Bedeu-
tung in der Interpretation virtueller Prüfergebnisse und der 
 Entscheidung darüber, welche Prüfaufwände mit ausreichender 
Sicherheit vermieden werden können (Bild 7). So konnte gezeigt 
werden, dass die Annahme eines konstanten Unsicherheitsanteils 
(hier: MAPE-Ansatz) für eine sichere Interpretation der virtuel-
len Prüfergebnisse nicht zielführend ist. Vergleichsweise ist bei 
einer manuellen 100 %-Prüfung von einem verbleibenden Durch-
schlupf von 100 % bis zu 20 % auszugehen [12]. Die Ergebnisse 
zeigen jedoch, dass sowohl der BS- als auch GPR-Ansatz zu einer 
sicheren Interpretation der Qualitätsergebnisse führen können. 
Die Verwendung des MAPE-Ansatzes hingegen liefert eine gerin-
ge Intervallbreite  . Aufgrund der geringen Erfassungswahr-
scheinlichkeit ist eine Verwendung dieses Ansatzes jedoch nicht 
zielführend. Durch die Verwendung des BS-Ansatzes konnte die 
Erfassungswahrscheinlichkeit gegenüber dem MAPE-Ansatz um 
45 % erhöht werden. Durch die Verwendung der GPR ist sogar 
eine Steigerung der Genauigkeit von 53 % zu erzielen. Aufgrund 
der geringeren Intervallbreite   ist im vorliegenden Anwendungs-
fall die Verwendung des GPR-Ansatzes zur Unsicherheitsmodel-
lierung zu empfehlen. Die Ergebnisse zeigen somit, dass eine 
 datenbasierte Qualitätsprognose auf Grundlage des maschinellen 
Lernens eine zuverlässige virtuelle Prüfung der Werkstückqualität 
ermöglicht. 

5 Zusammenfassung und Ausblick 

Die Unsicherheitsmodellierung besitzt innerhalb der adaptiven 
Prüfplanung eine besondere Bedeutung, wenn es um die Interpre-
tation der virtuellen Prüfergebnisse geht. So können konventio-
nelle Prüfaufwände lediglich reduziert werden, wenn die Quali-
tätsprognosen eine entsprechende Sicherheit besitzen. Ein stets 
verbleibender Modellfehler erschwert die Interpretation jedoch 
insbesondere bei Qualitätswerten nahe der Toleranzgrenze. Im 
vorliegenden Beitrag konnte gezeigt werden, dass die Unsicher-

heitsmodellierung anhand eines BS-Ansatzes (87 %) sowie durch 
Verwendung der GPR (92 %) sehr gute Erfassungswahrschein-
lichkeiten zur sicheren Interpretation der Qualitätsprognosen 
 liefern. Mithilfe des BS-Ansatzes ist es zudem möglich, die Un -
sicherheitsmodellierung ebenfalls über die GPR hinaus durchzu-
führen. Im weiteren Verlauf des Forschungsvorhabens erfolgt die 
Evaluierung der Ansätze unter variierenden Fertigungsszenarien 
(Materialwechsel, Extrapolation von Prozessstellgrößen, Werk-
zeugwechsel, Geometriewechsel). 
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