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Bei diesem Beitrag handelt es sich um einen wissenschaftlich
begutachteten und freigegebenen Fachaufsatz (,,reviewed paper”).
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Steigerung der Vorhersagegiite modellbasierter Prozesskraftschatzungen

Vorhersage von Rest-
unsicherheiten mithilfe von Ki

C. Brecher, M. Fey, M. Loba, J. Vos

ZUSAMMENFASSUNG Moderne Werkzeugmaschinen
haben zahlreiche Sensoren, die sich zur Prozessliberwachung
nutzen lassen. Die dahinterliegenden Modelle besitzen jedoch
Restunsicherheiten, beispielsweise infolge von Reibung, die

zu fehlerhaften Ergebnissen flihren konnen. Datengetriebene
Ansatze mithilfe neuronaler Netze bieten die Moglichkeit, diese
zu verringern. In diesem Beitrag wird untersucht, inwiefern
sich neuronale Netze zur Steigerung der Vorhersagegtite
modellbasierter Prozesskraftschatzungen auf Basis steuerungs-
interner Daten eignen. Untersucht wird die Eignung eines
Transformer-Encoder-Modells. Es zeigt sich, dass sich hiermit
Modellfehler um 66 % reduzieren lassen.
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1 Einleitung

Die zunehmende Verfiigbarkeit von Daten aus Werkzeug-
maschinen sowie steigende Rechenleistungen, ermoglichen es
Produktionsanlagen effizienter zu betreiben. Basierend auf steue-
rungsinternen Daten lassen sich bereits heute Qualitit [1, 2],
Produktivitit [3] und Verschleif von Werkzeugen [4] sowie
Maschinenkomponenten [5] erfassen. Vor allem im Hinblick auf
die Qualitit als auch den Verschleiy haben die entstehenden
Lasten infolge von Prozesskriften einen entscheidenden Einfluss.
Ein Vorteil der Verwendung steuerungsinterner Daten zur
Vorhersage von Prozesskriften ist, dass sie helfen den aktuellen
Zustand abzubilden. Die Vorhersage geschieht sowohl aufgrund
einer physikalischen Beschreibung des Gesamtsystems (modell-
basiert) als auch datengetrieben mithilfe von kiinstlicher Intelli-
genz (KI) in Form von Machine-Learning-Algorithmen (ML-Al-
gorithmen) und kiinstlichen neuronalen Netzen (KNN). Vorteile
einer modellbasierten Betrachtung liegen in einem Gesamt-
verstindnis des Systems und einer hohen Recheneffizienz. Diese
haben jedoch den Nachteil, dass sie eine gewisse Restunsicherheit
besitzen, da sie, teils stochastische, Phinomene nicht abbilden
konnen. In diesem Beitrag wird ein hybrider Ansatz vorgestellt,
der zunichst modellbasiert die Prozesskraft vorhersagt (vgl.
Kapitel 2) und mithilfe eines Black-Box-Anteils den Fehler zwi-
schen realer und prognostizierter Kraft kompensiert (vgl. Kapitel
3). Der Ansatz wird anhand mehrerer Bauteile validiert.
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Predicting residual uncertainties using Al:
Increasing the predictive quality of control
data-based models for process force
estimation

ABSTRACT Modern machine tools are equipped with
numerous sensors that can be used for process monitoring.
However, the underlying models exhibit residual uncertainties,
for example due to friction, which can lead to inaccurate
results. Data-driven approaches using neural networks offer
the potential to reduce these uncertainties. This paper investi-
gates the suitability of neural networks to improve the predicti-
on accuracy of model-based process force estimations using
internal machine data in milling The suitability of a transfor-
mer-encoder model is investigated. It is shown that this can
reduce model errors by 66 %.

2 Modellbasierte Prozesskraftvorhersage

Zur modellbasierten Prozesskraftvorhersage anhand von
Steuerungsdaten ist ein Gesamtverstindnis des Systems notwen-
dig. Es existieren Ansitze, die sowohl anhand der resultierenden
Achs- und Spindelstrome [6-9] sowie der Differenz der Weg-
messsysteme [10}, die entstehenden Krifte bestimmen. Die
Modelleansitze bestimmen zunichst die Reib- und Tragheits-
anteile sowie positionsabhingige Abweichungen (beispielsweise
infolge des Spindelsteigungsfehlers) und subtrahieren diesen vom
gemessenen Ist-Wert. Wiahrend die Vorhersage auf Basis der Achs-
strome sowie der Differenz der Wegmesssysteme die resultieren-
de Gesamtkraft in der jeweiligen Achsrichtung ermittelt
[6, 7, 10], lasst sich anhand des Spindelstroms nur der Schnitt-
kraftanteil bestimmen [8, 9]. Park et al. nutzen in [9] anschlie-
fend einen konstanten Faktor um die Radialkrifte zu bestimmen.
Ausgehend davon, dass Vorschubachsen nur Krifte in Vorschub-
richtung aufnehmen, ergibt sich vereinfacht fiir eine Achse der
resultierende Strom zu:
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Bild 1. Vergleich modellbasierter Verfahren zur Bestimmung von Prozesskraften. Grafik: RWTH Aachen

sowie eine existierende Abweichung zwischen den Wegmesssystemen:
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Hierbei gibt /| den Anteil der Prozesskraft wieder. x, den Wert des linearen
Messsystems und x; den des Drehgebers, der sich aus der Winkellage ¢x, der
Getriebetibersetzung (7/r;) und der Spindelsteigung des Kugelgewindetriebs
(KGT) ergibt. Mithilfe von Luftschnitten lassen sich die systematischen Anteile,
welche nicht von der Prozesskraft abhiingen, bestimmen. Stochastische Abwei-
chungen, die vor allem bei Bewegungen mit niedrigen Vorschubgeschwindig-
keiten auftreten, fithren jedoch zu Abweichungen zwischen Soll- und Ist-
Werten. Zusitzlich muss bei stillstehenden Achsen zunichst die Haftreibung
iiberwunden werden, so dass eine Verinderung in den Stromen oder der Diffe-
renz der Wegmesssystem zu erkennen ist. Einen Vorteil bietet die Betrachtung
der Hauptspindel, da diese wihrend der Bearbeitung mit einer definierten
Drehzahl rotiert. Nachteilig ist jedoch, dass sich nur das Schnittmoment
berechnen lisst. Eine Abschitzung des Betrags und der Richtung der Schnitt-
kraft ist mithilfe einer zusitzlichen Abtragsimulation moglich [8].
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Bild 1 zeigt einen Vergleich der Vorhersage der einzelnen Modelle fiir zwei Ab-
schnitte eines Prozesses. Die Abschitzung der Prozesskraft erfolgt mit der in
[1] vorgestellten dexel-basierten Abtragsimulation. Im oberen Teil des Bildes
sind die Krifte bei einer Linearbewegung dargestellt. Es ist erkennbar, dass das
Modell auf Grundlage der Achsstréme F! eine dhnliche Schwingungsamplitude
wie die Kraftmessplattform (KMP) aufweist. Anhand einer Tiefpassfilterung
(rechter Bildteil) wird sichtbar, dass das Modell auf Basis des Hauptspindel-
stroms F3” den Trend am besten abbildet. Gleiches gilt fiir die Kreisbewegun-
gen im unteren Bildteil. Hier sorgen im Bereich der Achsumkehrbewegungen
Reibungseffekte zu einer Uberbewertung der Kraft, die mit dem Modell berech-
net wird, das auf der Differenz der Wegmesssysteme F* beruht. Dieser Effekt
ist beim Achsstrommodell weniger ausgepragt. Eine Abbildung des Trends ist
hier im Vergleich zu F” erkennbar schlechter. Um diese Vorhersage zu verbes-
sern, wird nun ein Black-Box-Anteil beim Achsstrommodell hinzugefiigt.

3 Neuronale Netze
zur Restunsicherheitsabschatzung

Neuronale Netze wie rekurrente neuronale Netze (RNN) oder insbesondere

Long Short-Term Memory-Netzwerke (LSTM) haben sich als leistungsfihige
Ansitze fiir die Modellierung und Verarbeitung zeitabhingiger Daten etabliert
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[11, 12]. Denkena et. al. [13] zeigen das Potenzial
eines LSTM-basierten Ansatzes zur Modellierung
der Zerspankrifte auf, wobei als Eingangsgroflen
Antriebsgroflen  wie  Position,
Geschwindigkeit, Beschleunigung,  Achsstrome,
Spindeldrehzahl und Spindelstrom berticksichtigt
werden. Im Vergleich zu einem modellbasierten

verschiedene

Ansatz auf Basis des Achsstrommodells kénnen mit
dem LSTM insbesondere dynamische Prozessberei-
che, etwa Richtungswechsel oder Anderungen in
der Vorschubbewegung, priziser abgebildet werden
[13]. Dartiber hinaus zeigen Zhang et al. [14], dass
auch nicht-invasive Sensorsignale wie Spindel-
schwingungen in Verbindung mit LSTM eine prizi-
se Vorhersage der Zerspankrifte ermoglichen.
Durch die Zuordnung von Positionen zu aufeinan-
derfolgenden erzeugen
rekurrente Architekturen eine Sequenz von verbor-
genen Zustinden /%, , wobei jeder Zustand als

Rechenzeitschritten

Funktion des vorherigen Zustands sowie der aktu-
ellen Eingabe berechnet wird. Diese sequenzielle
Struktur verhindert eine Parallelisierung der Verar-
beitung innerhalb eines Trainingsbeispiels, was sich
insbesondere bei langen Sequenzen nachteilig auf
die Recheneffizienz auswirkt. Speicherbedingte
Einschriankungen begrenzen zusitzlich die Mog-
lichkeit zur gleichzeitigen Verarbeitung mehrerer
Sequenzen (Batching). Transformer-Modelle, wie
sie von Vaswani et al [15] eingefiihrt wurden,
adressieren diese Limitation indem rekurrente
Strukturen vollstindig durch einen Attention-
Mechanismus ersetzt werden. Dies ermoglicht eine
parallele Verarbeitung von Sequenzen und erlaubt
es bei langen Eingaben globale Abhingigkeiten effi-
zient zu modellieren. [16]

Das in dieser Arbeit eingesetzte Modell basiert
auf der Transformer-Architektur und verwendet
ausschlieflich den Encoder, um den Modellfehler
des Achsstrommodells im Rahmen einer multivaria-
ten Regressionsaufgabe zu bestimmen. Die Modell-
struktur orientiert sich an dem Transformer-Ansatz
von Zerveas et al. [17]. Die Eingangsgrofen des
Modells umfassen .die.Po.sitionen (PX, P, PZ), Ge-
schwindigkeiten (P, P, P.) und Beschleunigungen
(PX,P),,FZ) der Maschinenachsen, den Spindelstrom
(S,) sowie die physikalisch modellierten Kraftkom-
ponenten (F?,FjTI,F'). Diese multivariate Zeitreihe
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Bild 2. Transformer-Encoder zur Kompensation des Fehlers nach [17]. Grafik: RWTH Aachen

mit m Kanilen tiber T Zeitschritte wird mittels eines Sliding-
Window-Verfahrens in iiberlappende Sequenzen der Linge w un-
terteilt. Jede Sequenz ldsst sich als Matrix Il € R darstellen
und besteht aus einer Folge von Merkmalsvektoren & € R™. Die
Merkmalsvektoren & werden normalisiert, indem fiir jede Dimen-
sion der Mittelwert subtrahiert und durch die Standardabwei-
chung im Trainingsdatensatz dividiert wird. Anschlieffend erfolgt
eine lineare Projektion auf einen d-dimensionalen Modellraum.

()

Dabei sind Wp € R*" und b, € RY lernbare Parameter, und
u, e R4 fiir ¢ = 1,..,w die Eingabevektoren des Modells, die analog

u,=Wwe +b,

620

zu den Wortvektoren in NLP-Transformer interpretiert werden
konnen. Das der Transformer keine Informationen tiiber die
zeitliche Reihenfolge der Eingabe erhilt wird zur Abbildung der
zeitlichen Struktur ein Positional Encoding-Matrix W, € R zu
dem Eingabevektor addiert U = U+ W, .

Ausgaben des Transformer-Encoders werden abschlieffend durch
eine vollstindig verbundene lineare Schicht transformiert, und so

fiir jeden Zeitschritt eine Regressionsvorhersage erzeugt:

Die sequenziellen

S=W

out

’ ht + bout

()

Hierbei entspricht der latenten Reprisentation des Encoders,

0, € R8 der vorherzusagenden Zielgroe, W, € R# der
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Bild 3. Versuchsbauteile Grafik: RWTH Aachen

Gewichtsmatrix b, € R€und dem Bias der Ausgabeschicht. Die
sequenzielle Zielgrofle A € R" beschreibt den Fehler des physi-
kalischen Achsstrommodells iiber das betrachtete Zeitfenster.
Dieser ergibt sich aus der Differenz zwischen den gemessenen
Kriften der Kraftmessplattform (F5™" FftMP M) und  der
modellbasierten Kraftvorhersage (F(”F"’F“)

4 Versuchsaufbau

Zur Validierung werden mehrere Musterbauteile (vgl. Bild 3)
hergestellt. Die Bauteile A1 und A2 haben zum Ziel mdoglichst
viele unterschiedliche Lastfille abzudecken. Hierzu werden bei
der Fertigung des Bauteils die Eingriffstiefe und -breite in Abhén-
gigkeit zu der Zihnezahl, des Dralls und Durchmessers des jewei-
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ligen Werkzeugs variiert. Die Fertigung von Bauteil B hingegen
wird mit einer hohen Zahl an Kreisbewegungen realisiert. Dies
soll dazu beitragen Effekte, die aus der Achsumkehr entstehen,
mit zu berticksichtigen. Bauteil C dient zur Validierung und soll
zugleich in weiteren Untersuchungen dazu dienen die Qualitats-
vorhersage bei dilnnwandigen Strukturen zu verbessern. Gefertigt
werden die Bauteile aus C45 auf einem Bearbeitungszentrum
»DMU65 monoblock von DMG und den in Tabelle 1 aufge-
fithrten Werkzeugen. Die Erfassung der Prozesskrifte erfolgt mit
einer Kraftmessplattform ,9257A“ von Kistler. Aquivalent zZu [1]
werden die steuerungsinternen Daten mit 500 Hz aufgezeichnet
und zu einer Prozesskraft verrechnet. Die Berechnung der einzel-
nen Korrekturwerte geschieht durch vorherige Messungen mithil-
fe von Last-Verformungskurven und Luftschnitten.
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Bild 4. Ergebnisse des Transformer Encoder kompensierten Achsstrommodells. Grafik: RWTH Aachen

Tabelle 1. Versuchswerkzeuge.

Sandvik 490R-08T308E-ML 1130 Sandvik 490-050HA06-08M

2 Sandvik 490R-08T308E-ML 1130 Sandvik 490-040HA06-08H
3 Sandvik 1K324-1600-XB 1730 Haimer A63.140.16

4 Fraisa P45317610 Haimer A63.140.16.2

5 Sandvik 1K232-1000-XB 1730 Haimer A63.140.10

6 Fraisa P45322391 Haimer A63.144.08.3

50 mm

40 mm 6
16 mm 4
16 mm 4
10 mm 2
8 mm 4

* Zusatzlich wurde bei den Werkzeugen 2-4 neben den genannten Schrumpffuttern das Hydrodehnfutter Schunk ,TENDO EC” von HSK-A63 @20x80

Tabelle 2. RMSE der betrachteten Achsstrommodelle.

Vorhersage bas. Achsstromen Hybrides Modell
F? F1=F'+FE

Ea

“ 155,93 N 154,54 N
166,13 N 196,26 N
ﬂ 185,38 N 26719 N
“ 293,73 N 365,77 N

5 Validierung

Die Validierung erfolgt anhand der gemessenen Krifte der
Kraftmessplattform (KMP). Zur Bewertung der Modellgiite die-
nen die Fehler des Achsstrommodells F' sowie des hybriden Mo-
dells (FH), bei dem der verbleibende Modellfehler durch einen
Transformer-Encoder (TE) kompensiert wird. Zunichst werden
hierzu die Verldufe miteinander verglichen sowohl fiir den Trai-
nings- als auch Testdatensatz. Anschlieflend erfolgt die Auswer-
tung tiber den Root Mean Square Error (RMSE). Der Trainings-
datensatz umfasst die Bauteile A1, A2 und B, wihrend der Test-
datensatz aus Bauteil C sowie Luftschnitten der jeweiligen Pro-
zesse besteht.

622

55.19 N 93,41 N
62,5 N 71,02 N
4452 N 42,90 N
94,52 N 124,93 N

Der Vergleich der Verldufe zwischen dem Referenzdatensatz
der Kraftmessplattform, dem Achsstrommodell und dem durch
das TE kompensierten Modell wird erkennbar, dass beim Trai-
ningsdatensatz eine signifikante Verbesserung sowohl bei der
Linear- als auch der Kreisbewegung erzielt wird (vgl. oberer Teil
Bild 4). Bei den Testdaten zeigt sich bei den Linearbewegungen
ebenfalls eine Verbesserung des Achsstrommodells. Vor allem der
Drift in den Achsstromen wird hier gut kompensiert. Bei den tro-
choidialen Bewegungen wird der Verlauf ebenfalls gut korrigiert,
allerdings wird die Amplitude in der Kraftspitze unterschitzt.

Tabelle 2 bestitigt die Reduktion des Modellfehlers durch das
hybride Modell (F¥), bei dem der verbleibende Fehler des achs-
strombasierten Modells (F') durch den TE-Anteil F7# kompen-
siert wird. Im Trainingsdatensatz sinkt der RMSE der Gesamt-
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kraft £, von 293,73 N auf 94,52 N (—67,8 %), im Testdaten-
satz von 365,77 N auf 124,93 N (—65,8 %). Entsprechend wird
der Fehler des Achsstrommodels F!' um 66,7 % reduziert.

6 Zusammenfassung & Ausblick

Die Erklarbarkeit und Verlisslichkeit von Modellausgaben sind
im industriellen Kontext von zentraler Bedeutung. Eine Kenn-
grofe fiir die Prozessiiberwachung ist die Zerspankraft. Thre
prazise Modellierung stellt jedoch aufgrund komplexer Einfliisse,
wie des Reibverhaltens, eine Herausforderung dar. Durch die
Kombination physikalischer Modelle mit datengetriebenen Ansit-
zen zur Fehlerkompensation lassen sich diese komplexen Einfliis-
se ausgleichen. Da dabei ausschliefflich der verbleibende Modell-
fehler korrigiert wird, bleibt das physikalisch fundierte Modell-
verstiandnis erhalten. Vor diesem Hintergrund verkniipft der vor-
liegende Ansatz ein physikalisches Modell mit einem datengetrie-
benen Modell auf Basis eines Transformer-Encoders (TE). Die
Validierung zeigt, dass der TE den verbleibenden Fehler des
physikalischen Modells signifikant reduzieren kann und iber
unterschiedliche Bauteilgeometrien und Verfahrbewegungen hin-
weg generalisiert. Insgesamt wurde eine Fehlerreduktion von
iiber 66 % erreicht.

In weiteren Arbeiten soll der vorgestellte Ansatz mittels Trans-
fer-Learning auf andere Maschinen iibertragen werden, um die
Ubertragbarkeit und Generalisierbarkeit zu evaluieren. Neben
hybriden Ansitzen, die physikalisches und datengetriebenes
Wissen kombinieren, riicken zunehmend vollstindig datengetrie-
bene Verfahren wie das Self-Supervised Learning (SSL) in den
Fokus. Diese bieten das Potenzial, beispielsweise iiber Masked
Autoencoder, aussagekriftige Reprisentationen direkt aus unlabe-
led Prozessdaten zu extrahieren. [18, 19] Auf dieser Grundlage
konnen KI-Modelle entwickelt werden, die robuster gegeniiber
verinderten Maschinenkonfigurationen und Prozessbedingungen
sind. Perspektivisch ermdoglicht dies eine verbesserte Generalisier-
barkeit und Skalierbarkeit datenbasierter Modelle, wodurch sich
der Aufwand fiir maschinenspezifische Anpassungen deutlich
reduzieren lasst.
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