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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Steigerung der Vorhersagegüte modellbasierter Prozesskraftschätzungen

Vorhersage von Rest -
unsicherheiten mithilfe von KI

C. Brecher, M. Fey, M. Loba, J. Vos

Z U S A M M E N FA S S U N G  Moderne Werkzeugmaschinen 
haben zahlreiche Sensoren, die sich zur Prozessüberwachung 
nutzen lassen. Die dahinterliegenden Modelle besitzen jedoch 
Restunsicherheiten, beispielsweise infolge von Reibung, die  
zu fehlerhaften Ergebnissen führen können. Datengetriebene 
Ansätze mithilfe neuronaler Netze bieten die Möglichkeit, diese 
zu verringern. In diesem Beitrag wird untersucht, inwiefern 
sich neuronale Netze zur Steigerung der Vorhersagegüte 
 modellbasierter Prozesskraftschätzungen auf Basis steuerungs-
interner Daten eignen. Untersucht wird die Eignung eines 
Transformer-Encoder-Modells. Es zeigt sich, dass sich hiermit 
Modellfehler um 66 % reduzieren lassen. 

 Predicting residual uncertainties using AI: 
Increasing the predictive quality of control 
data-based models for process force 
 estimation

A B ST R A C T  Modern machine tools are equipped with 
 numerous sensors that can be used for process monitoring. 
However, the underlying models exhibit residual uncertainties, 
for example due to friction, which can lead to inaccurate 
 results. Data-driven approaches using neural networks offer 
the potential to reduce these uncertainties. This paper investi-
gates the suitability of neural networks to improve the predicti-
on accuracy of model-based process force estimations using 
internal machine data in milling The suitability of a transfor-
mer-encoder model is investigated. It is shown that this can 
 reduce model errors by 66 %.

1 Einleitung

Die zunehmende Verfügbarkeit von Daten aus Werkzeug -
maschinen sowie steigende Rechenleistungen, ermöglichen es 
Produktionsanlagen effizienter zu betreiben. Basierend auf steue-
rungsinternen Daten lassen sich bereits heute Qualität [1, 2], 
Produktivität [3] und Verschleiß von Werkzeugen [4] sowie 
 Maschinenkomponenten [5] erfassen. Vor allem im Hinblick auf 
die Qualität als auch den Verschleiß haben die entstehenden 
 Lasten infolge von Prozesskräften einen entscheidenden Einfluss. 
Ein Vorteil der Verwendung steuerungsinterner Daten zur 
 Vorhersage von Prozesskräften ist, dass sie helfen den aktuellen 
Zustand abzubilden. Die Vorhersage geschieht sowohl aufgrund 
einer physikalischen Beschreibung des Gesamtsystems (modell -
basiert) als auch datengetrieben mithilfe von künstlicher Intelli-
genz (KI) in Form von Machine-Learning-Algorithmen (ML-Al-
gorithmen) und künstlichen neuronalen Netzen (KNN). Vorteile 
einer modellbasierten Betrachtung liegen in einem Gesamt -
verständnis des Systems und einer hohen Recheneffizienz. Diese 
haben jedoch den Nachteil, dass sie eine gewisse Restunsicherheit 
besitzen, da sie, teils stochastische, Phänomene nicht abbilden 
können. In diesem Beitrag wird ein hybrider Ansatz vorgestellt, 
der zunächst modellbasiert die Prozesskraft vorhersagt (vgl. 
 Kapitel 2) und mithilfe eines Black-Box-Anteils den Fehler zwi-
schen realer und prognostizierter Kraft kompensiert (vgl. Kapitel 
3). Der Ansatz wird anhand mehrerer Bauteile validiert.

2 Modellbasierte Prozesskraftvorhersage

Zur modellbasierten Prozesskraftvorhersage anhand von 
Steuerungsdaten ist ein Gesamtverständnis des Systems notwen-
dig. Es existieren Ansätze, die sowohl anhand der resultierenden 
Achs- und Spindelströme [6–9] sowie der Differenz der Weg-
messsysteme [10], die entstehenden Kräfte bestimmen. Die 
 Modelleansätze bestimmen zunächst die Reib- und Trägheits -
anteile sowie positionsabhängige Abweichungen (beispielsweise 
 infolge des Spindelsteigungsfehlers) und subtrahieren diesen vom 
gemessenen Ist-Wert. Während die Vorhersage auf Basis der Achs-
ströme sowie der Differenz der Wegmesssysteme die resultieren-
de Gesamtkraft in der jeweiligen Achsrichtung ermittelt 
[6, 7, 10], lässt sich anhand des Spindelstroms nur der Schnitt-
kraftanteil bestimmen [8, 9]. Park et al. nutzen in [9] anschlie-
ßend einen konstanten Faktor um die Radialkräfte zu bestimmen. 
Ausgehend davon, dass Vorschubachsen nur Kräfte in Vorschub-
richtung aufnehmen, ergibt sich vereinfacht für eine Achse der 
resultierende Strom zu:
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sowie eine existierende Abweichung zwischen den Wegmesssystemen:

  
 
  (2)

Hierbei gibt Fx den Anteil der Prozesskraft wieder. x2 den Wert des linearen 
Messsystems und x1 den des Drehgebers, der sich aus der Winkellage φx, der 
Getriebeübersetzung (r2/r1) und der Spindelsteigung des Kugelgewindetriebs 
(KGT) ergibt. Mithilfe von Luftschnitten lassen sich die systematischen Anteile, 
welche nicht von der Prozesskraft abhängen, bestimmen. Stochastische Abwei-
chungen, die vor allem bei Bewegungen mit niedrigen Vorschubgeschwindig -
keiten auftreten, führen jedoch zu Abweichungen zwischen Soll- und Ist-
 Werten. Zusätzlich muss bei still stehenden Achsen zunächst die Haftreibung 
überwunden werden, so dass eine Veränderung in den Strömen oder der Diffe-
renz der Wegmesssystem zu erkennen ist. Einen Vorteil bietet die Betrachtung 
der Hauptspindel, da diese während der Bearbeitung mit  einer definierten 
Drehzahl rotiert. Nachteilig ist jedoch, dass sich nur das Schnittmoment 
 berechnen lässt. Eine Abschätzung des Betrags und der Richtung der Schnitt-
kraft ist mithilfe einer zusätzlichen Abtragsimulation möglich [8].

 
   (3) 

Bild 1 zeigt einen Vergleich der Vorhersage der einzelnen Modelle für zwei Ab-
schnitte eines Prozesses. Die Abschätzung der Prozesskraft erfolgt mit der in 
[1] vorgestellten dexel-basierten  Abtragsimulation. Im oberen Teil des Bildes 
sind die Kräfte bei einer Linearbewegung dargestellt. Es ist erkennbar, dass das 
 Modell auf Grundlage der Achsströme F1 eine ähnliche Schwingungsamplitude 
wie die Kraftmessplattform (KMP) aufweist.  Anhand einer Tiefpassfilterung 
(rechter Bildteil) wird sichtbar, dass das Modell auf Basis des Hauptspindel-
stroms FSP den Trend am besten abbildet. Gleiches gilt für die Kreisbewegun-
gen im unteren Bildteil. Hier sorgen im Bereich der Achsumkehrbewegungen 
Reibungseffekte zu einer Überbewertung der Kraft, die mit dem Modell berech-
net wird, das auf der Differenz der Wegmesssysteme FΔ beruht. Dieser Effekt 
ist beim Achsstrommodell weniger ausgeprägt. Eine Abbildung des Trends ist 
hier im Vergleich zu FSP erkennbar schlechter. Um diese Vorhersage zu verbes-
sern, wird nun ein Black-Box-Anteil beim Achsstrommodell hinzugefügt.

3 Neuronale Netze  
 zur Restunsicherheitsabschätzung

Neuronale Netze wie rekurrente neuronale Netze (RNN) oder insbesondere 
Long Short-Term Memory-Netzwerke (LSTM) haben sich als leistungsfähige 
Ansätze für die Modellierung und Verarbeitung zeitabhängiger Daten etabliert 

[11, 12]. Denkena et. al. [13] zeigen das Potenzial 
eines LSTM-basierten Ansatzes zur Modellierung 
der Zerspankräfte auf, wobei als  Eingangsgrößen 
verschiedene Antriebsgrößen wie Position, 
 Geschwindigkeit, Beschleunigung, Achsströme, 
Spindeldrehzahl und Spindelstrom berücksichtigt 
werden. Im Vergleich zu einem modellbasierten 
Ansatz auf Basis des Achsstrommodells können mit 
dem LSTM insbesondere dynamische Prozessberei-
che, etwa Richtungswechsel oder Änderungen in 
der Vorschubbewegung, präziser abgebildet werden 
[13]. Darüber hinaus zeigen Zhang et al. [14], dass 
auch nicht-invasive Sensorsignale wie Spindel-
schwingungen in Verbindung mit LSTM eine präzi-
se Vorhersage der Zerspankräfte ermöglichen. 
Durch die Zuordnung von Positionen zu aufeinan-
derfolgenden Rechenzeitschritten erzeugen 
 rekurrente Architekturen eine Sequenz von verbor-
genen Zuständen ht–1 , wobei jeder Zustand als 
Funktion des vorherigen  Zustands sowie der aktu-
ellen Eingabe berechnet wird. Diese  sequenzielle 
Struktur verhindert eine Parallelisierung der Verar-
beitung innerhalb eines Trainingsbeispiels, was sich 
insbesondere bei langen Sequenzen nachteilig auf 
die Recheneffizienz auswirkt. Speicherbedingte 
Einschränkungen begrenzen zusätzlich die Mög-
lichkeit zur gleichzeitigen Verarbeitung mehrerer 
Sequenzen (Batching). Transformer-Modelle, wie 
sie von Vaswani et al. [15] eingeführt wurden, 
adressieren diese Limitation indem rekurrente 
Strukturen vollständig durch einen Attention-
 Mechanismus  ersetzt werden. Dies ermöglicht eine 
parallele Verarbeitung von Sequenzen und erlaubt 
es bei langen Eingaben globale Abhängigkeiten effi-
zient zu modellieren. [16]

Das in dieser Arbeit eingesetzte Modell basiert 
auf der Transformer-Architektur und verwendet 
ausschließlich den Encoder, um den Modellfehler 
des Achsstrommodells im Rahmen einer multivaria-
ten Regressionsaufgabe zu bestimmen. Die Modell-
struktur orientiert sich an dem Transformer-Ansatz 
von Zerveas et al. [17]. Die Eingangsgrößen des 
Modells umfassen die Positionen (Px, Pv, Pz), Ge-
schwindigkeiten (Ṗx, Ṗv, Ṗz) und Beschleunigungen 
( ) der Maschinenachsen, den Spindelstrom 
(Sc) sowie die physikalisch modellierten Kraftkom-
ponenten ( ). Diese multivariate Zeitreihe 

Bild 1. Vergleich modellbasierter Verfahren zur Bestimmung von Prozesskräften. Grafik: RWTH Aachen 
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mit m Kanälen über T Zeitschritte wird mittels eines Sliding-
Window-Verfahrens in überlappende Sequenzen der Länge w un-
terteilt. Jede Sequenz lässt sich als Matrix Π Î ℝwxm darstellen 
und besteht aus einer Folge von Merkmalsvektoren ξt Î ℝm. Die 
Merkmalsvektoren ξt werden normalisiert, indem für jede Dimen-
sion der Mittelwert subtrahiert und durch die Standardabwei-
chung im Trainings datensatz dividiert wird. Anschließend erfolgt 
eine lineare Projektion auf einen d-dimensionalen Modellraum.

ui = Wuξt + bb (4)

Dabei sind Wp Î ℝdxm und bb Î ℝd lernbare Parameter, und 
ut Î ℝd für t = 1,...,w die Eingabevektoren des Modells, die analog 

zu den Wortvektoren in NLP-Transformer interpretiert werden 
können. Das der Transformer keine Informationen über die 
 zeitliche Reihenfolge der Eingabe erhält wird zur Abbildung der 
zeitlichen Struktur ein Positional Encoding-Matrix Wνos Î ℝd zu 
dem Eingabevektor addiert U´ = U + Wνos. Die sequenziellen 
 Ausgaben des Transformer-Encoders werden abschließend durch 
eine vollständig verbundene lineare Schicht transformiert, und so 
für  jeden Zeitschritt eine Regressionsvorhersage erzeugt:

δt = Wout 
. ht + bout   (5)

Hierbei entspricht der latenten Repräsentation des Encoders, 
δt Î ℝg der vorherzusagenden Zielgröße, Wout Î ℝgxd der 

Bild 2. Transformer-Encoder zur Kompensation des Fehlers nach [17]. Grafik: RWTH Aachen 
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 Gewichtsmatrix bout Î ℝg und dem Bias der Ausgabeschicht. Die 
sequenzielle Zielgröße Δ Î Rwxg beschreibt den Fehler des physi-
kalischen Achsstrommodells über das betrachtete Zeitfenster. 
Dieser ergibt sich aus der Differenz zwischen den gemessenen 
Kräften der Kraftmessplattform ( ) und der 
 modellbasierten Kraftvorhersage ( ). 

4 Versuchsaufbau

Zur Validierung werden mehrere Musterbauteile (vgl. Bild 3) 
hergestellt. Die Bauteile A1 und A2 haben zum Ziel möglichst 
viele unterschiedliche Lastfälle abzudecken. Hierzu werden bei 
der Fertigung des Bauteils die Eingriffstiefe und -breite in Abhän-
gigkeit zu der Zähnezahl, des Dralls und Durchmessers des jewei-

ligen Werkzeugs variiert. Die Fertigung von Bauteil B hingegen 
wird mit einer hohen Zahl an Kreisbewegungen realisiert. Dies 
soll dazu beitragen Effekte, die aus der Achsumkehr entstehen, 
mit zu berücksichtigen. Bauteil C dient zur Validierung und soll 
zugleich in weiteren Untersuchungen dazu dienen die Qualitäts-
vorhersage bei dünnwandigen Strukturen zu verbessern. Gefertigt 
werden die Bauteile aus C45 auf einem Bearbeitungszentrum 
„DMU65 monoblock“ von DMG und den in Tabelle 1 aufge-
führten Werkzeugen. Die Erfassung der Prozesskräfte erfolgt mit 
einer Kraftmessplattform „9257A“ von Kistler. Äquivalent zu [1] 
werden die steuerungsinternen Daten mit 500 Hz aufgezeichnet 
und zu einer Prozesskraft verrechnet. Die Berechnung der einzel-
nen Korrekturwerte geschieht durch vorherige Messungen mithil-
fe von Last-Verformungskurven und Luftschnitten. 

Bild 3. Versuchsbauteile Grafik: RWTH Aachen 
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5 Validierung

Die Validierung erfolgt anhand der gemessenen Kräfte der 
Kraftmessplattform (KMP). Zur Bewertung der Modellgüte die-
nen die Fehler des Achsstrommodells F1 sowie des hybriden Mo-
dells (FH), bei dem der verbleibende Modellfehler durch einen 
Transformer-Encoder (TE) kompensiert wird. Zunächst werden 
hierzu die Verläufe miteinander verglichen sowohl für den Trai-
nings- als auch Testdatensatz. Anschließend erfolgt die Auswer-
tung über den Root Mean Square Error (RMSE). Der Trainings-
datensatz umfasst die Bauteile A1, A2 und B, während der Test-
datensatz aus Bauteil C sowie Luftschnitten der jeweiligen Pro-
zesse besteht.

Der Vergleich der Verläufe zwischen dem Referenzdatensatz 
der Kraftmessplattform, dem Achsstrommodell und dem durch 
das TE kompensierten Modell wird erkennbar, dass beim Trai-
ningsdatensatz eine signifikante Verbesserung sowohl bei der 
 Linear- als auch der Kreisbewegung erzielt wird (vgl. oberer Teil 
Bild 4). Bei den Testdaten zeigt sich bei den Linearbewegungen 
ebenfalls eine Verbesserung des Achsstrommodells. Vor allem der 
Drift in den Achsströmen wird hier gut kompensiert. Bei den tro-
choidialen Bewegungen wird der Verlauf ebenfalls gut korrigiert, 
allerdings wird die Amplitude in der Kraftspitze unterschätzt.

Tabelle 2 bestätigt die Reduktion des Modellfehlers durch das 
hybride Modell (FH), bei dem der verbleibende Fehler des achs-
strombasierten Modells (F1) durch den TE-Anteil FTE kompen-
siert wird. Im Trainingsdatensatz sinkt der RMSE der Gesamt-

Bild 4. Ergebnisse des Transformer Encoder kompensierten Achsstrom modells. Grafik: RWTH Aachen 

Tabelle 2. RMSE der betrachteten Achsstrommodelle.

Vorhersage bas. Achsströmen
F1

RMSE

Fx

Fy

Fz

Faes

Trainingsdaten

155,93 N

166,13 N

185,38 N

293,73 N

Testdaten

154,54 N

196,26 N

267,19 N

365,77 N

Hybrides Modell
FH = F1 + FTE

Trainingsdaten

55.19 N

62,5 N

44.52 N

94,52 N

Testdaten

93,41 N

71,02 N

42,90 N

124,93 N

Tabelle 1. Versuchswerkzeuge.

Nr.

1

2

3

4

5

6

* Zusätzlich wurde bei den Werkzeugen 2-4 neben den genannten Schrumpffuttern das Hydrodehnfutter Schunk „TENDO EC“ von HSK-A63 Ø20x80

Wendeschneidplatten/Fräser

Sandvik 490R-08T308E-ML 1130

Sandvik 490R-08T308E-ML 1130

Sandvik 1K324-1600-XB 1730

Fraisa P45317610

Sandvik 1K232-1000-XB 1730

Fraisa P45322391

Halter*

Sandvik 490-050HA06-08M

Sandvik 490-040HA06-08H

Haimer A63.140.16

Haimer A63.140.16.2

Haimer A63.140.10

Haimer A63.144.08.3

Durchmesser

50 mm

40 mm

16 mm

16 mm

10 mm

8 mm

Zähnezahl

5

6

4

4

2

4
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kraft Faes von 293,73 N auf 94,52 N (−67,8 %), im Testdaten-
satz von 365,77 N auf 124,93 N (−65,8 %). Entsprechend wird 
der Fehler des Achsstrommodels F1 um 66,7 % reduziert.

6 Zusammenfassung & Ausblick

Die Erklärbarkeit und Verlässlichkeit von Modellausgaben sind 
im industriellen Kontext von zentraler Bedeutung. Eine Kenn -
größe für die Prozessüberwachung ist die Zerspankraft. Ihre 
 präzise Modellierung stellt jedoch aufgrund komplexer Einflüsse, 
wie des Reibverhaltens, eine Herausforderung dar. Durch die 
Kombination physikalischer Modelle mit datengetriebenen Ansät-
zen zur Fehlerkompensation lassen sich diese komplexen Einflüs-
se ausgleichen. Da dabei ausschließlich der verbleibende Modell-
fehler korrigiert wird, bleibt das physikalisch fundierte Modell-
verständnis erhalten. Vor diesem Hintergrund verknüpft der vor-
liegende Ansatz ein physikalisches Modell mit einem datengetrie-
benen Modell auf Basis eines Transformer-Encoders (TE). Die 
Validierung zeigt, dass der TE den verbleibenden Fehler des 
 physikalischen Modells signifikant reduzieren kann und über 
 unterschiedliche Bauteilgeometrien und Verfahrbewegungen hin-
weg generalisiert. Insgesamt wurde eine Fehlerreduktion von 
über 66 % erreicht.

In weiteren Arbeiten soll der vorgestellte Ansatz mittels Trans-
fer-Learning auf andere Maschinen übertragen werden, um die 
Übertragbarkeit und Generalisierbarkeit zu evaluieren. Neben 
 hybriden Ansätzen, die physikalisches und datengetriebenes 
 Wissen kombinieren, rücken zunehmend vollständig datengetrie-
bene Verfahren wie das Self-Supervised Learning (SSL) in den 
Fokus. Diese bieten das Potenzial, beispielsweise über Masked 
Autoencoder, aussagekräftige Repräsentationen direkt aus unlabe-
led Prozessdaten zu extrahieren. [18, 19] Auf dieser Grundlage 
können KI-Modelle entwickelt werden, die robuster gegenüber 
veränderten Maschinenkonfigurationen und Prozessbedingungen 
sind. Perspektivisch ermöglicht dies eine verbesserte Generalisier-
barkeit und Skalierbarkeit datenbasierter Modelle, wodurch sich 
der Aufwand für maschinenspezifische Anpassungen deutlich 
 reduzieren lässt.
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