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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Entwicklung und Beurteilung von Machine Learning Klassifikationen 

Maschinenübertragbare 
 Online-Rattererkennung

C. Brecher, R. Klimaschka, S. May, S. Neus 

Z U S A M M E N FA S S U N G  Diese Arbeit untersucht die 
 Umsetzbarkeit verschiedener Klassifikationsalgorithmen zur 
 echtzeitfähigen, maschinenunabhängigen Rattererkennung. 
Basierend auf 136 Messungen werden zwei neue Klassifikati-
onsmethoden entwickelt, die eine Genauigkeit von durch-
schnittlich 92 % erreichen. Sie basieren auf einer einfachen 
Messkette, die stabilitätsrelevante Informationen aus einem 
Beschleunigungssensor und einem Spindeldrehgeber bezieht 
und somit für die industrielle Praxis geeignet sind.

Machine-Transferable Online Chatter 
 Detection: Development and Evaluation  
of ML Classifications

A B ST R A C T  This study investigates the feasibility of various 
classification algorithms for real-time, machine-independent 
instability detection in milling processes. Based on 136 measu-
rements with 5.6 million data points, two new classification 
methods are developed, which achieve an average accuracy  
of 92 %. They are based on a simple sensor setup that obtains 
stability-relevant information from an acceleration sensor and 
a spindle encoder, making them suitable for industrial applica-
tions.

1 Einleitung

Die steigende Nachfrage nach Bauteilen für die E-Mobilität 
stellt hohe Anforderungen an die Effizienz und Qualität zerspa-
nender Fertigungsverfahren. Insbesondere bei der Bearbeitung 
 filigraner und funktionskritischer Komponenten, wie beispiels-
weise in Elektromotoren oder Batteriegehäusen, gewinnt die 
 Prozesssicherheit zunehmend an Bedeutung. In diesem Kontext 
rückt die Fräsbearbeitung als flexibles Fertigungsverfahren in den 
Fokus. Hohe Zeitspanvolumina, anspruchsvolle Oberflächenquali-
täten sowie die Reduktion von Maschinen- und Werkzeugschäden 
sind entscheidend, um die Anforderungen moderner Produkti-
onslinien in der E-Mobilität zuverlässig und skalierbar zu erfül-
len.

Dabei stellen neben der Spindelleistung vor allem dynamische 
Phänomene wie das regenerative Rattern wesentliche Einschrän-
kungen für die Produktivität in der Fräsbearbeitung dar. Neben 
Produktivitätseinbußen [1] kann es durch Rattern außerdem zu 
Qualitätsmängeln am Werkstück oder Maschinen- und Werk-
zeugschäden [2] kommen. Durch eine geeignete Wahl der 
 Prozessparameter ist es jedoch möglich, eine stabile, aber den-
noch produktive Bearbeitung zu gewährleisten. Zur effizienten 
Ermittlung dynamischer Stabilitätsgrenzen kommen sensorbasier-
te Rattererkennungsalgorithmen zum Einsatz. Bisherige Ratterer-
kennungsmethoden sind jedoch häufig abhängig von festgelegten 
Grenzwerten, wobei Machine Learning (ML) Algorithmen Abhil-
fe schaffen können. 

Trotz zahlreicher Forschungsarbeiten zur Online-Rattererken-
nung, die verschiedene Ansätze verfolgen, bleibt ihre Validierung 
meist auf einen spezifischen Prozess beschränkt. Auch in [3] wird 

betont, dass die Auswahl von Merkmalen und Grenzwerten stark 
von den verwendeten experimentellen Randbedingungen abhängt. 
Hier werden über 100 Veröffentlichungen zur Rattererkennung 
miteinander verglichen. 

Bild 1 fasst 16 exemplarische Publikationen zusammen, die 
diese These stützen. Diese Arbeit (letzte Spalte in Bild 1) unter-
scheidet sich vor allem durch die Nutzung mehrerer Maschinen 
und Werkzeuge, um die Übertragbarkeit der hier entwickelten 
Rattererkennung zu validieren. 

2 Versuchsaufbau

Die im Rahmen dieser Arbeit gewonnenen Ergebnisse stützen 
sich auf Messungen, die an vier verschiedenen Werkzeugmaschi-
nen durchgeführt wurden: einer horizontalen 4-Achs-Maschine 
mit erreichbaren Spindeldrehzahlen von bis zu 12 000 1/min und 
einer B-Achse als Schenkrundtisch (A), einer High-Speed-Cut-
ting Maschine mit bis zu 30 000 1/min und einer B-Achse als 
Teil eines parallelkinematischen Vorsatzfräskopfes (B), einer ver-
tikalen Doppelspindel-Maschine mit bis zu 15 000 1/min (C) 
 sowie einem vertikalen Bearbeitungszentrum mit bis zu 
15 000 1/min (D). Die Datenerhebung erfolgt nach dem gleichen 
Verfahren mittels eines Beschleunigungssensors, der werkzeugnah 
am Spindelgehäuse montiert ist. Dieser erfasst die Beschleunigung 
in allen drei Raumrichtungen. Eine Übersicht der Versuchsaus-
prägungen ist in der Tabelle dargestellt. 

Insgesamt basieren die Ergebnisse dieses Beitrags auf 136 
 Versuchen, aus denen 5,6 Millionen verwertbare Datenpunkte 
 gewonnen wurden. Jeder Datenpunkt repräsentiert eine ab -
getastete Beschleunigungsamplitude in drei Raumrichtungen. 
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 Daraus ergeben sich 9 387 relevante Batches. Ein Batch ist ein 
Datenpaket, für das eine binäre Stabilitätsbewertung vorgenom-
men wird, basierend auf den innerhalb von vier Spindel  - 
um drehungen erfassten Datenpunkten. Insgesamt beträgt das 
 Stabilitätsverhältnis 38,4 % instabile zu 61,6 % stabile Batches. 
Die Messungen umfassen sowohl hoch- als auch niederfrequente 
Ratterfrequenzen. 

3 Labelmethode

Die Grundlage für die Entwicklung und Beurteilung mehrerer 
ML- und weiterer Klassifikationsmethoden ist das Labeln der 
Messdaten. Dabei werden die Labelergebnisse mehrerer Einzel-
methoden gewichtet addiert. 

Die erste der drei Einzelmethoden basiert auf der Fast Fourier 
Transformation (FFT) und vergleicht die maschinenbekannten 
Eigenfrequenzen mit der vorliegenden Messung. Dies erfolgt so-
wohl für die gemessene Beschleunigung als auch für die daraus 
resultierenden Geschwindigkeits- und Verlagerungsergebnisse in 

der Hauptbearbeitungsebene (X- und Y-Richtung). Die zweite 
Einzelmethode beschreibt das manuelle Labeln, bei dem Be-
schleunigungsmessungen und Verlagerungsdarstellungen mithilfe 
von Expertenwissen ausgewertet werden. Die dritte Einzelmetho-
de umfasst zwei Grenzwertverfahren, darunter ein Verfahren, das 
auf der Poincaré-Abbildung beruht [20]. 

4 Merkmalsextraktion

Die extrahierten Merkmale, die stabilitätsrelevante Informatio-
nen enthalten und als Input für zwei von insgesamt vier unter-
suchten Klassifikationsverfahren dienen, beruhen auf der in die-
ser Arbeit vorgestellten Umdrehungsdurchschnittsdifferenz 
(UDD). 

Nach der Messung eines Batchs, das in Bild 2 (oben links) 
durch die beiden roten vertikalen Linien im zeitlichen Verlauf der 
Beschleunigung dargestellt wird, kann durch doppeltes Integrie-
ren und periodische Regression eine dreidimensionale Verlage-
rungsdarstellung, der nahe am Tool Center Point (TCP) befindli-

Bild 1. Vergleichsmatrix 
Grafik: WZL

Tabelle. Versuchsausprägung

Maschine

Werkzeuganzahl

Werkzeugtyp

Werkstückmaterial

Schnitttiefe

Schnittart 

Drehzahl 

Abtastrate

Anzahl Messungen

A

2

Schaftfräser und Messerkopf

Stahl

3 - 9,02 mm

Vollnut

1.200 – 1.500 U/min

5.120 Hz

38

B 

1

Schaftfräser

Aluminium

2 - 9 mm

Voll-, Teilnut in Gleich-,  
Gegenlauffräsen 

25.000 – 29.000 U/min

51.200 Hz

19

C

2

Schaftfräser und Messerkopf

Aluminium, Stahl

1,5 - 2,4 mm

Voll-, Teilnut in Gleich-,  
Gegenlauffräsen

2.800 – 3.325 U/min

5.120 Hz

72

D

1

Schaftfräser

Stahl

1,2 - 2,6 mm

Vollnut

3.700 – 5.300 U/min

5.120 Hz

7
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chen Messposition, berechnet werden. Dies wird anhand eines 
stabilen Batchs in Bild 2 visualisiert. 

Durch die Hinzunahme der Durchschnittsverlagerung, also der 
durchschnittlichen Verlagerung eines Stützpunkts über vier Spin-
delumdrehungen, ist es möglich, jede der vier Umdrehungstrajek-
torien davon zu subtrahieren. Dies geschieht für alle drei Raum-
dimensionen, wodurch zwölf UDD-Verläufe pro Batch entstehen 
(Bild 3). So kann für jeden zeitlich bestimmten Abtastschritt ei-
ne Differenz zwischen der tatsächlichen und der durchschnittli-
chen Umdrehung gebildet werden, die in der UDD-Darstellung in 
Bild 2 zu sehen ist. Auf diese Weise werden Frequenzen, die peri-

odisch zur Spindeldrehzahl stehen, wie beispielsweise die Messer-
eingriffsfrequenz, effektiv herausgefiltert. 

Im letzten Schritt wird jede UDD mithilfe einer FFT-Analyse 
in ihre Frequenzkomponenten zerlegt (blauer Verlauf Bild 4). 
Anschließend wird die energetisch dominierende Frequenz (edF) 
ermittelt. Diese ist in Bild 4 durch den roten Verlauf dargestellt 
und zeigt das maximale Energielevel der jeweiligen UDD und 
dessen FFT-Auswertung. Nach [21] wird die Energie eines Ein-
massenschwingers durch folgende Gleichung beschrieben: 

Eges = 0,5 . m . ω2 . A2  (1)

Bild 2. Signalverarbeitung von Beschleunigungsmessung zur Verlagerung. Grafik: WZL 

Bild 3. Aus der Verlagerung abgeleitete UDD für vier Umdrehungen und jeweils drei Raumdimensionen. Grafik: WZL
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Diese gilt für den Fall der maximalen Auslenkung der Masse, also 
Eges  = Epot und Ekin = 0. Die Masse ist dabei m, die Schwing -
frequenz ω und die dazugehörige Amplitude A. Daraus lässt sich 
das folgende Proportionalitätsverhältnis für die edF ableiten:

edF ! ω2 . A2 (2)

Da jeweils ω und A durch die FFT-Analyse bekannt sind, lässt 
sich die edF jeder UDD auf diese Weise ermitteln. 

Der Hintergrund für die UDD-Methode leitet sich aus dem 
(vermeintlich) chaotischen Verhalten instabiler Verlagerungstra-
jektorien [22] ab. Die Idee ist folgende: Ist ein Batch stabil, unter-
scheidet sich jede Umdrehungstrajektorie nur geringfügig von der 
Durchschnittstrajektorie. Ist ein Batch instabil, zeigen sich deutli-
che Unterschiede zur Durchschnittstrajektorie in der UDD. Bei 
instabilen Zerspanzuständen überlagern sich die Verlagerungs -
trajektorien mit der dominanten Ratterfrequenz. Dies geschieht 
sowohl im hoch- als auch im niederfrequenten Bereich. Durch die 
Subtraktion dieser Trajektorien von der Durchschnittstrajektorie 
lässt sich die angeregte dominante Schwingung in der Nähe einer 
Eigenfrequenz gezielt extrahieren.

Die Merkmale zur Stabilitätsbewertung entstehen durch den 
Vergleich der edF jeder UDD. Da weder Grenzwerte noch 
 systemimmanente Eigenfrequenzen einbezogen werden und 
 ausschließlich der edF-Vergleich ausschlaggebend ist, bleibt die 
UDD-Methode im Kern unabhängig von spezifischen Randbedin-
gungen. 

5 Klassifikationsmethoden

Es werden vier Klassifikationsansätze miteinander verglichen: 
die UDD-Klassifikation auf Basis des edF-Vektorvergleichs, meh-
rere ML-Modelle basierend auf UDD-extrahierten Merkmalen, 
zwei Bildklassifikationen mittels neuronaler Netzwerke (NN) 
anhand der zweidimensionalen Verlagerungsdarstellung [23] so-
wie eine Methode mit empirisch ermittelten Grenzwerten [20]. 
Diese werden im sogenannten Transferwissenstest gegenüberge-
stellt (Bild 5). Dabei erfolgt das Training mit Messdaten von drei 
Maschinen, während das trainierte Modell auf die Messungen 
 einer unbekannten, nicht für das Training genutzten Maschine 
angewendet wird. Der Transferwissenstest umfasst vier Gruppen 
und wird für alle Performanceanalysen der Klassifikationsmetho-
den siebenmal wiederholt, um die statistische Varianz nichtdeter-
ministischer Klassifikationsmethoden zu berücksichtigen.

Zudem gibt ein weiterer Test, der Gesamttest, Aufschluss über 
die statistische Varianz nichtdeterministischer Klassifikationsme-
thoden. Hierbei werden die gelabelten Messungen aller vier Ma-
schinen im Verhältnis 80/20 zufällig in Trainings- und Testdaten 
unterteilt. Für jede der KI-Klassifikationen wird eine Hyperpara-
meteroptimierung im Rahmen einer Sensitivitätsanalyse durchge-
führt. Die Ergebnisse der jeweils besten Hyperparameterkombina-
tionen für die einzelnen Klassifikationsmethoden werden nachfol-
gend dargestellt.

5.1 UDD-Klassifikation per edF-Vektorvergleich

In der UDD-Klassifikation per edF-Vektorvergleich wird die 
edF pro Umdrehung und pro Bearbeitungsachse in der Haupt -
bearbeitungsebene (X-Y-Ebene) direkt miteinander verglichen:

[edFx1, edFx2, edFx3, edFx4] = [edFy1, edFy2, edFy3, edFy4] (3)

Nur wenn beide Vektoren exakt gleich sind, handelt es sich um 
einen instabilen Batch.

Der Transferwissenstest der UDD-Klassifikation per edF-Vek-
torvergleich weist eine Varianz von 18,2 Prozentpunkten auf. 
Dies lässt sich auf die vier verschiedenen Transferwissenstest-
gruppen zurückführen (siehe Bild 6). Für den Validierungsdaten-
satz der Maschine A werden beispielsweise 77,5 % und für 
 Maschine C 95,7 % Klassifikationsgenauigkeit erreicht. Der 
 gewichtete Mittelwert liegt bei 92 % und hängt von der Anzahl 
der Datenpunkte pro Validierungsdatensatz ab. Je höher die 
 Anzahl der Datenpunkte pro Validierungsdatensatz, desto mehr 
Gewicht hat die dazugehörige Klassifikationsgenauigkeit. 

Alternativ kann der edF-Vektorvergleich über drei (X-Y-Z) 
statt zwei (X-Y) Achsen erfolgen, wodurch sich die Gesamtge-
nauigkeit von 92 % auf 91 % reduziert. Da die Steifigkeit in 
Z-Richtung in der Regel höher ist, treten in dieser Achse über 
mehrere Umdrehungen tendenziell geringere dominante Ratter-
schwingungen, welche der Z-Bewegung überlagert sind, auf.

Die UDD-Klassifikation per edF-Vektorvergleich erreicht aus 
mehreren Gründen keine perfekte Klassifikationsgenauigkeit. 
Durch die periodische Regression wird bei der TCP-Verlagerung 
mit überlagerter Ratterschwingungen nicht die tatsächliche, son-
dern eine approximierte Verlagerungstrajektorie berechnet. Verla-
gerungen mit überlagerten niederfrequenten Ratterschwingungen 
weisen häufig größere Verlagerungsamplituden auf als solche mit 
hochfrequente Ratterschwingungen. Deswegen entsteht durch die 

Bild 4. Aus der UDD abgeleitete edF für vier Umdrehungen und jeweils drei Raumdimensionen. Grafik: WZL
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verwendete periodische Regression immer ein Fehler, abhängig 
von der Größe der Amplitude der überlagerten Ratterschwin-
gung. Dies äußert sich darin, dass vor allem niederfrequente Rat-
terfrequenzen etwas schlechter mittels UDD-Methode klassifi-
ziert werden als hochfrequente (siehe Maschine A mit 77,5 % 
Klassifikationsgenauigkeit und überwiegend niederfrequenten 
Ratterschwingungen). Ein weiterer Grund für die reduzierte 
 Genauigkeit liegt in der begrenzten Präzision der Labeldaten. 
Fehlerhafte Label können sowohl False Positives als auch False 
Negatives verursachen, wenn Datenpunkte inkorrekt zugewiesen 
werden. Zudem wird in 1,9 % der Fälle die drehzahlbedingte 
Grenze der UDD erreicht (siehe 5.5 Grenzen UDD-basierter 
Klassifikationsmethoden). Darüber hinaus hat die Anzahl der 
Umdrehungen pro Batch eine Auswirkung auf die Genauigkeit. 
Mehr Umdrehungen verbessern die Durchschnittstrajektorie und 

erhöhen die Genauigkeit der UDD. Allerdings führen mehr Um-
drehungen pro Batch auch zu einer geringeren Klassifikations -
frequenz, weshalb hier eine anwendungsspezifische Abwägung 
 erforderlich ist. Abschließend ist es denkbar, dass verschiedene 
Instabilitätsursachen Einfluss auf die Klassifikationsgenauigkeit 
haben können. Beispielsweise können Lagekopplungen, eine 
 fallende Schnittkraft-Schnittgeschwindigkeits-Charakteristik so-
wie die Bildung von Aufbauschneiden [24] einen zum regenerati-
ven Rattern unterschiedlichen Einfluss auf die Klassifikationsge-
nauigkeit haben. 

Wegen des deterministischen Verhaltens dieser Methode ist 
kein Training erforderlich. Außerdem wird eine echtzeitfähige 
Anwendung gewährleistet, da eine binäre Klassifikationsaussage 
durchschnittlich 22-mal schneller generiert werden kann als die 
Messdauer eines Batchs. 

Bild 5. Transferwissenstest. Grafik: WZL
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5.2 ML-Klassifikation mittels UDD-Merkmale

Die Merkmale, die als Input für die angewendeten ML-Klassi-
fikationsmethoden dienen, basieren ebenfalls auf der UDD. Es 
wird die edF der jeweiligen UDD auf drei unterschiedliche 
 Weisen in der Hauptbearbeitungsebene paarweise verglichen. Der 
erste Vergleich liefert eine Aussage bezüglich der edF-Gleichheit 
pro Paarvergleich. Im zweiten Vergleich wird überprüft, ob ein 
größter gemeinsamer Nenner vorliegt. Im dritten Vergleich wird 
das edF-Verhältnis paarweise bestimmt. Daraus ergeben sich 
 insgesamt 21 Gleitkommazahlen zwischen 0 und 1, die als Input 
für die ML-Algorithmen dienen.

In Bild 7 werden sieben verschiedene ML-Klassifikationen 
miteinander verglichen: AdaBoost (AB), Support Vector Machine 
non-linear (SVMnl), CatBoost (CB), Logistic Regression (LR), 
Random Forest (RF), Support Vector Machine linear (SVMl) 
und k-Nearest Neighbor (kNN). Zur binären Klassifikation wur-
den bewusst verschiedene Modelle ausgewählt, um sowohl lineare 
als auch nicht-lineare Zusammenhänge abbilden zu können. Die 
Auswahl umfasst etablierte Verfahren wie SVM (linear und nicht-
linear), RF und AB, leistungsstarke Boosting-Modelle wie CB so-
wie einfachere Basismodelle wie kNN und LR zum Vergleich. Die 
Methode, die im Transferwissen am besten abschneidet, ist das 
AB-Verfahren, mit einer gewichteten Durchschnittsgenauigkeit 
von 91,5 % (siehe Bild 7 oben). Die Varianz ist auch hier auf die 
Transferwissenstestgruppen zurückzuführen (siehe Bild 5). Im 
Gegensatz zur UDD-Klassifikation per edF-Vektorvergleich gibt 
es jedoch eine Abhängigkeit von den Trainingsdaten, wodurch 
diese und jegliche andere Form von KI-Klassifikation unumgäng-

lich zu einer trainingsdatenabhängigen beziehungsweise grenz-
wertanhängigen Methode wird. Das liegt daran, dass ein ML-
 Algorithmus nur die Instabilitätszusammenhänge erlernen kann, 
die in den Trainingsdaten enthalten sind. Die Optimierung der 
Hyperebene hängt somit von den Merkmalen und den Trainings-
daten ab. Der wesentliche Vorteil gegenüber der UDD-Klassifika-
tion per edF-Vektorvergleich ist somit die Möglichkeit, mehrere 
Instabilitätsursachen durch unterschiedliche Merkmale zu 
 betrachten. Dies begründet die Existenzberechtigung trainings -
datenabhängiger Klassifikationsmethoden und ermöglicht es, die 
UDD-Klassifikation per edF-Vektorvergleich dort zu ergänzen, 
wo diese schlecht abschneidet. Auch der Rechenaufwand ist ge-
ring, was eine Echtzeitanwendung ermöglicht. Das Zeitverhältnis 
von Batchmessung zu Klassifikation beträgt im Durchschnitt 21.

Die statistische Varianz lässt sich durch die Ergebnisse des Ge-
samttests (Bild 7 unten) beschreiben. Hier variiert die Klassifika-
tionsgenauigkeiten um maximal 1,8 Prozentpunkte. Dies ist auf 
die zufällige Aufteilung der Trainings- und Testdaten sowie die 
daraus resultierende Stabilitätszusammensetzung zurückzuführen. 
Die geringe Varianz dieser nichtdeterministischen Methoden ver-
deutlicht, dass UDD-Merkmale gut geeignet sind, Ratterschwin-
gungen zu erkennen.

5.3 Bildklassifikation mittels NN und X-Y-Verlagerung

Der Input der Bildklassifikation mittels NN basiert auf der 
 errechneten Verlagerung in der Hauptbearbeitungsebene 
(X-Y-Ebene). Es handelt sich um ein zweidimensionales 

Bild 6. UDD-Klassifikation per edF-Vektorvergleich. Grafik: WZL
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64×64-Pixel-Bild der Verlagerung, welches von einem NN auf 
Stabilität bewertet wird.

In Bild 8 werden zwei Klassifikationsmethoden miteinander 
verglichen: VGG16 mit vier Faltungsschichten [25] und ein 
 gewöhnliches Convolutional Neural Network (CNN) mit drei 
Faltungsschichten, als Referenzarchitektur mit geringer Komple-
xität. Mit VGG16 wird ein gewichteter Klassifikationsdurch-
schnitt von 75,4 % erreicht. Die geringere Klassifikationsgenauig-
keit ist nicht nur auf die Transferwissenstestgruppen, sondern 
auch auf die insgesamt schlechtere Erlernung von Stabilitäts -
zuständen im Vergleich zur ML-Klassifikation auf UDD-Basis zu-
rückzuführen. Dies könnte sich durch zu aussageschwache Klassi-

fikationsinputs begründen. Durch weitere Verfeinerung und 
 Erweiterung der  Inputdaten könnte sich die Klassifikationsgenau-
igkeit durch NN in diesem Fall erhöhen.

Wie bei allen KI-Algorithmen hängt auch hier die Klassifikati-
on stark von den Trainingsdaten ab und ist somit trainingsdaten-
abhängig. Ein weiterer Aspekt ist der leicht erhöhte Rechenauf-
wand. Dennoch bietet das Verfahren mit einem durchschnittli-
chen Batchzeit-zu-Klassifikationszeit-Verhältnis von 11 eine echt-
zeitfähige Anwendung. Ein Vorteil gegenüber der UDD-Klassifi-
kation per edF-Vektorvergleich ist auch hier die Möglichkeit, 
mehrere Instabilitätsursachen zu berücksichtigen, da das NN statt 
vordefinierter Merkmale als Input, wie beispielsweise aus der 

Bild 7. ML-Klassifikation auf Basis von UDD-Merkmalen. Grafik: WZL

Bild 8. NN-Klassifikation auf Basis von 64x64 Pixel großen Verlagerungsbildern. Grafik: WZL 
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UDD-Merkmalsextraktion, relevante Instabilitätsmerkmale selbst-
ständig aus den Bilddaten extrahiert.

Die Ergebnisse des Gesamttests in Bild 8 (unten) zeigen, dass 
die Zusammensetzung der Stabilitätsursachen in den Trainings -
daten für das NN entscheidend ist. Das VGG16-Modell scheint 
zwar besser im Erlernen von Instabilitätszuständen im Vergleich 
zum CNN zu sein, jedoch weist es eine größere Varianz im 
 Vergleich zur ML-Klassifikation (Bild 7 unten) des Gesamttests 
auf. Dies deutet darauf hin, dass stabilitätsrelevante Informatio-
nen aus UDD-basierten Merkmalen leichter extrahiert werden 
können als aus einer reinen Bildklassifikation der Verlagerungs-
darstellung. Da die Merkmale zur Instabilitätserkennung vom NN 
selbstständig identifiziert werden, eignet sich diese Methode nicht 
für die Kombination mit der maschinenunabhängigen UDD-
 Klassifikation per edF-Vektorvergleich. Bei der ML-Klassifikation 
hingegen müssen Merkmale manuell definiert werden, sodass ge-
zielt solche Merkmale ausgewählt werden können, die die UDD-
Klassifikation per edF-Vektorvergleich ergänzen – ein Ansatz, der 
bei der NN-Bildklassifikation auf diese Weise nicht möglich ist.

5.4 Poincaré-Grenzwertklassifikation

Die hier verwendete Grenzwertmethode basiert auf der empi-
rischen Ermittlung von maschinenindividuellen Grenzwerten. Bei 
der Überschreitung der ermittelten Grenzwerte klassifiziert diese 
deterministische Methode den Zustand als instabil. Sie basiert auf 
dem Poincaré-Ansatz [20]. Es wird eine gewichtete Durch-
schnittsgenauigkeit von 76,5 % erreicht (Bild 9). Diese Methode 
ist system- und prozessabhängig, erfordert jedoch kein Training 
und benötigt nur einen geringen Rechenaufwand. 

Auch diese Methode kann ergänzend zur UDD-Klassifikation 
per edF-Vektorvergleich verwendet werden, da sie für Maschine 
A mit 88 % eine höhere Klassifikationsgenauigkeit im Vergleich 
zur UDD-Klassifikation für dieselbe Maschine (77,5 %) aufweist 
und somit ergänzend wirken kann. Ein Nachteil ist jedoch die 
initiale Festlegung der Grenzwerte, was die industrielle Anwen-
dung erschwert. Dies könnte durch eine Transformation zur auto-
matisierten Ermittlung der Grenzwerte verbessert werden. Wenn 
Daten über den Lebenszyklus einer Maschine aufgenommen wer-
den, ermöglicht dies das automatisierte Labeln und kontinuierli-
che Trainieren grenzwertbasierter Rattererkennungsmethoden, 
indem die Grenzwerte numerisch optimiert werden, beispielswei-
se durch ML-Verfahren wie kNN oder SVM. 

5.5 Gesamtvergleich

Die jeweils besten Methoden der ML- und NN-Klassifikation 
lassen sich neben der UDD-Klassifikation per edF-Vektorver-
gleich in Bild 10 anhand des Transferwissenstests zusammenfas-
sen. Hier schneiden die beiden UDD-basierten Methoden mit bis 
zu 92 % gewichteter Durchschnittsgenauigkeit besser ab als die 
NN-Bildklassifikation. Diese Ergebnisse basieren auf der Verwen-
dung der Messungen aller vier Maschinen. Auch im Vergleich mit 
der Grenzwertmethode lässt sich ein klares Fazit ziehen: UDD-
basierte Methoden schneiden im Transferwissen besser ab als die 
Poincaré-Methode und die Bildklassifikation. Da Grenzwerte für 
die Poincaré-Methode nur für zwei der vier Maschinen bekannt 
sind, werden in diesem Vergleich für die anderen drei Methoden 
ebenfalls nur die Messungen dieser beiden Maschinen verwendet.

6 Grenzen UDD-basierter 
  Klassifikationsmethoden

Sobald die Periodendauer einer angeregten Ratterfrequenz 
größer als die Dauer für eine Spindelumdrehung ist, kann diese 
mittels FFT nicht mehr extrahiert werden. So ergibt sich eine 
drehzahlbedingte Grenze. Es ist beispielsweise nicht möglich, Rat-
terfrequenzen kleiner als 50 Hz für eine Drehzahl von 
3 000 1/min oder Ratterfrequenzen kleiner als 200 Hz für eine 
Drehzahl von 12 000 1/min zu ermitteln. Diese linear verlaufen-
de Grenze wird hinsichtlich aller klassifizierten Batches in 1,9 % 
der Fälle überschritten. Neben dieser Untergrenze existiert auch 
eine Obergrenze der UDD, die durch das Shannon-Theorem [26] 
bestimmt wird und von der Abtastrate der verwendeten Sensoren 
abhängt. Ein Sensor mit Abtastrate von 5 120 Hz kann maximal 
Ratterfrequenzen bis 2 560 Hz erfassen. Diese Grenze wird in 
den Messdaten nicht überschritten.

7 Zusammenfassung

Diese Arbeit zeigt die Umsetzbarkeit unterschiedlicher Klassi-
fikationsalgorithmen zur onlinefähigen, system- und prozessüber-
tragbaren Instabilitätserkennung in Fräsprozessen. Dabei werden 
zwei neue Klassifikationsmethoden entwickelt, die durchschnittli-
che Klassifikationsgenauigkeiten von 91,7 % beziehungsweise 
92 % erreichen. Transferwissenstests belegen, dass Instabilitätszu-
sammenhänge tatsächlich erlernt werden, anstatt Klassifikations-

Bild 9. Poincaré-Grenzwertklassifikation. Grafik: WZL
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aussagen anhand maschinenspezifischer Eigenschaften und 
Grenzwerten zu treffen.

Die entwickelte UDD-Klassifikation per edF-Vektorvergleich 
beweist, dass eine maschinenunabhängige Klassifikation möglich 
ist und die Natur des Ratterns durch die UDD mit hoher Erfolgs-
quote extrahiert wird. Alle hier vorgestellten Klassifikationsme-
thoden basieren auf einer einfachen Messkette, die Beschleuni-
gungszustände und die Winkelposition der Spindel aus dem Fräs-
prozess verarbeitet. Dadurch wird eine praxisnahe Implementie-
rung in der Industrie sichergestellt.

Zu den wesentlichen Errungenschaften zählen:
1.  Die Erkenntnis, dass die Betrachtung mehrerer Maschinen-

Werkzeug-Kombinationen für eine system- und prozessüber-
tragbare Rattererkennung notwendig ist.

2.  Das Labeln von circa 5,6 Millionen Datenpunkten, die  
als Grundlage für eine umfassende Ratterdatenbank dient.

3.  Die Entwicklung einer maschinenunabhängigen Merkmals -
extraktion (UDD), die eine robuste Klassifikation ermöglicht.

4.  Die Entwicklung von zwei neuen UDD-basierten Klassifikati-
onsmethoden, die Genauigkeiten von bis zu 96,4 % erreichen. 

5.  Die potenziell ergänzende Wirkung der UDD-Klassifikation 
per Vektorvergleich gegenüber grenzwert- beziehungsweise 
trainingsdatenabhängigen Methoden wie der ML-Klassifikation 
auf UDD-Basis.

Darüber hinaus wird gezeigt, dass die UDD-basierten Methoden 
sowohl nieder- als auch hochfrequentes Rattern zuverlässig er-
kennen.

Die UDD kann zudem als Querschnittstechnologie für ver-
schiedene Anwendungen genutzt werden. Sie identifiziert domi-
nante Schwingungen in der Nähe systemindividueller Eigen -
frequenzen und eignet sich damit für Systeme mit rotierenden 
Maschinenelementen und dynamischer Krafteinwirkung. Neben 
Fräsprozessen könnten auch Verfahren wie Bohren und Drehen 
sowie Maschinen wie Turbinen potenzielle Anwendungsfelder 
darstellen. 

Gerade im Kontext der E-Mobilität, in dem hohe Anforderun-
gen an Präzision, Leichtbau und Bauteilkomplexität gestellt 
 werden, eröffnet die vorgestellte onlinefähige Rattererkennung 
neue Möglichkeiten zur Optimierung zerspanender Fertigungs-
prozesse – etwa durch eine a-priori-Auslegung optimierter Pro-
zessparameter oder eine regelungsbasierte Prozessanpassung. Die 
zuverlässige Erkennung instabiler Zustände in Echtzeit schafft 
damit die Grundlage für eine konstant hohe Bearbeitungsqualität 
und kann zur Reduktion von Ausschuss und Maschinenstillstän-
den beitragen. Darüber hinaus lassen sich Maschinen- und Werk-
zeugschäden verringern sowie Zeitspanvolumina erhöhen. Diese 
Eigenschaften stellen entscheidende Vorteile für die wirtschaftli-
che und skalierbare Produktion von Komponenten für elektrische 
Antriebssysteme dar.

Bild 10. Gesamtvergleich der besten Klassifikationsmethoden. Grafik: WZL
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