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XIV

Abstract

Composites are of enormous importance to the industry. The usage of such materials for in-
dustrial products has rapidly increased over the last years. Therefore, there is high interest
in gaining a better understanding of these materials and their physical behaviour. Aside
from performing experimental studies, this can also be achieved by using homogenisation
methods. With these methods, the composite can be characterised in a macroscopic ho-
mogeneous manner by taking into account the microscopic heterogeneous structure. This
approach provides the opportunity to calculate the so-called effective properties of the
composite.

The focus of the present thesis is to develop and advance numerical homogenisation me-
thods which are based on the finite element method (FEM). These methods developed are
applicable to calculate the effective properties of unidirectional fibre reinforced composites
with a periodic fibre distribution. In the developed numerical models repeated unit cells
(RUCs) are used, whose cross sections can even be parallelogram shaped. The significant
advantage of these models, especially those with the parallelogram shaped cross section, is
the capability to simulate a wide range of unidirectional fibre reinforced composites with
different fibre arrangements. This also includes the special cases of hexagonal and square
fibre arrangements, which are commonly used in the literature.

The numerical models are extended by employing an imperfect contact formulation bet-
ween the matrix and fibre phase to represent the presence of a very thin interphase, which is
for instance caused by chemical reactions in manufacturing processes. Besides pure elastic
considerations models capable of simulating piezoelectric composites are also developed.
In this thesis, all the developed models are, as far as possible, validated by comparing the
calculated effective material properties to results from methods given by the literature or
to results calculated from verification models. Furthermore, studies have been performed
in order to investigate the influence of different fibre distributions, fibre volume fractions
and imperfect contact conditions on the effective composite properties. All together, this
gives a better insight into the material behaviour of composites as well as the modelling
techniques.
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XV

Kurzfassung

In der Industrie sind Kompositwerkstoffe von grofser Wichtigkeit. Der Einsatz solcher hete-
rogenen Werkstoffe fiir industrielle Produkte ist in den letzten Jahren rasant angestiegen.
Daher besteht ein sehr grofes Interesse darin, diese Materialien und ihr physikalisches
Verhalten besser zu verstehen. Um dies zu erreichen, konnen neben der Durchfithrung
von experimentellen Untersuchungen Homogenisierungsverfahren genutzt werden. Diese
Verfahren dienen dazu, den Kompositwerkstoff unter Berticksichtigung der mikroskopisch
heterogenen Struktur in einer makroskopisch homogenen Weise zu charakterisieren. Unter
bestimmten Annahmen lassen sich sogenannte effektive Materialeigenschaften berechnen.
Der Schwerpunkt der vorliegenden Dissertation liegt in der Weiterentwicklung von numeri-
schen Homogenisierungsverfahren, welche auf der Finite-Elemente-Methode (FEM) basie-
ren. Diese werden zum Berechnen der effektiven Materialeigenschaften von unidirektional
faserverstérkten Verbundwerkstoffen mit einer periodischen Faseranordnung verwendet. In
den entwickelten numerischen Berechnungsmodellen werden Einheitszellen (RUCs) verwen-
det, deren Querschnitt sogar parallelogrammformig sein kann. Der Vorteil dieser Modelle
besteht darin, dass mit ihnen ein breites Spektrum an unidirektionalen Faserverbundwerk-
stoffen mit unterschiedlicher Faserverteilung simuliert werden kann. Das schlieft auch die
Spezialfille der quadratischen und hexagonalen Faseranordnung mit ein, welche haufig in
der Literatur zu finden sind.

Die Berechnungsmodelle werden auf einen imperfekten Phaseniibergang erweitert, welcher
sich als sehr diinne Verbindungsschicht zwischen der Matrix- und Faserphase interpretie-
ren lasst. Die Auspriagung einer solchen Zwischenschicht kann zum Beispiel auf chemische
Reaktionen im Herstellungsprozess zuriickgefiihrt werden. Neben rein elastischen Betrach-
tungen werden auch Modelle entwickelt, mit denen piezoelektrische Faserverbundwerkstoffe
simuliert werden kénnen.

Alle in dieser Arbeit entwickelten Berechnungsmodelle werden hinsichtlich ihrer Eignung
iiberpriift. Dazu werden die berechneten effektiven Materialeigenschaften nach Moglichkeit
mit Ergebnissen von Verfahren aus der Literatur oder mit Ergebnissen aus Verifizierungs-
modellen verglichen. Dariiber hinaus werden Studien durchgefiihrt, die den Einfluss der
Faserverteilung, des Faservolumenanteils und des imperfekten Phaseniibergangs auf die
effektiven Werkstoffeigenschaften untersuchen. Dies fithrt zu einem besseren Verstdndnis
des Materialverhaltens von Kompositwerkstoffen sowie der Modellierungstechniken.
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