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Kapitel 2

σ Spannungstensor (2. Stufe)
f Vektor der Intensität infolge Volumenkräften
Ω zusammenhängendes offenes Gebiet
ε Verzerrungstensor (2. Stufe)
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ε̃ Verzerrungsvektor (M-V-Notation)
S̃ Nachgiebigkeitsmatrix (M-V-Notation)
∇ Differentationsmatrix
û vorgeschriebener Verschiebungsvektor
Γu DIRICHLET-Rand
p̂ vorgeschriebener Randspannungsvektor
Γσ NEUMANN-Rand
n äußerer Normalenvektor
v dreidimensionale Testfunktion
δu Vektor der virtuellen Verrückungen
D Vektor der dielektrischen Verschiebung
E Vektor der elektrischen Feldstärke
e Tensor der piezoelektrischen Kostanten (3. Stufe)
κ Tensor der dielektrischen Konstanten (2. Stufe)
φ elektrisches Potential
∇φ Vektor partieller Operatoren bezüglich φ
ẽ Matrixschreibweise des Tensors der piezoelektrischen Kon-

stanten
φ̂ vorgeschriebenes elektrisches Potential
Γφ elektrischer DIRICHLET-Rand
q vorgeschriebene elektrische Randladung(-sdichte)
ΓD elektrischer NEUMANN-Rand
Ti, i = 1, 2, 3 Richtungskosinus
α′ eingeschlossener Winkel der x1-Achse mit der Strecke OP
β′ eingeschlossener Winkel der x2-Achse mit der Strecke OP
γ′ eingeschlossener Winkel der x3-Achse mit der Strecke OP
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T Transformationsmatrix
C′ Elastizitätstensor (4. Stufe) nach Tensortransformation
Ei, i = 1, 2, 3 Elastizitätsmoduli
Gi, i = 1, 2, 3 Schubmoduli
νij Querkontraktionszahlen
El longitudinaler Elastizitätsmodul
νl longitudinale Querkontraktionszahl
Gl longitudinaler Schubmodul
Et transversaler Elastizitätsmodul
νt transversale Querkontraktionszahl
kt transversaler Kompressionsmodul
E isotroper Elastizitätsmodul
ν isotrope Querkontraktionszahl
G isotroper Schubmodul

Kapitel 3

xi, i = 1, 2, 3 Koordinaten auf der Makroebene
yi, i = 1, 2, 3 Koordinaten auf der Mikroebene
Ωf Störphase eines RVE (Faser)
Ωm Phase des Grundmaterials eines RVE (Matrix)
Γ Rand des RVE
Γmf gemeinsamer Rand von Ωm und Ωf

σfij, i, j = 1, 2, 3 Spannungskomponenten in Ωf

σmij , i, j = 1, 2, 3 Spannungskomponenten in Ωm

C f
ijkl, i, j, k, l = 1, 2, 3 Elastizitätskoeffizienten in Ωf

Cm
ijkl, i, j, k, l = 1, 2, 3 Elastizitätskoeffizienten in Ωm

uf Verschiebungsvektor in Ωf

um Verschiebungsvektor in Ωm

nfj Komponente des äußeren Normalenvektors auf Ωf

nmj Komponente des äußeren Normalenvektors auf Ωm

〈σij〉, i, j = 1, 2, 3 makroskopische Spannungskomponenten (2. Stufe)
〈εkl〉, k, l = 1, 2, 3 makroskopische Verzerrungskomponenten (2. Stufe)
Ceff
ijkl, i, j, k, l = 1, 2, 3 effektive (homogenisierte) Elastizitätskoeffizienten

〈σ̃p〉, p = 1, · · · , 6 makroskopische Spannungskomponenten (M-V-Notation)
〈ε̃q〉, q = 1, · · · , 6 makroskopische Verzerrungskomponenten (M-V-Notation)
C̃eff
pq , p, q = 1, · · · , 6 effektive Elastizitätskoeffizienten (M-V-Notation)

S̃effpq , p, q = 1, · · · , 6 effektive Nachgiebigkeitskoeffizienten (M-V-Notation)
σ0
ij, i, j = 1, 2, 3 vorgegebene Spannungskomponenten auf Γ
ε0
ij, i, j = 1, 2, 3 vorgegebene Verzerrungskomponenten auf Γ

uper Vektor periodischer Verschiebungen bezüglich Ω
Ωm Matrixphase der CCA-Modellierung
Ωf Faserphase der CCA-Modellierung
ΩR restlicher freier Raum
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Formelzeichen IX

Ωcc homogenes Teilgebiet
rfn Radius der Faser im n-ten Zylinder
rZn Radius des n-ten Zylinders
Eeff
l effektiver longitudinaler Elastizitätsmodul

νeffl effektive longitudinale Querkontraktionszahl
Geff
l effektiver longitudinaler Schubmodul

Geff
t effektiver transversaler Schubmodul

νefft effektive transversale Querkontraktionszahl
Eeff
t effektiver transversaler Elastizitätsmodul

kefft effektiver transversaler Kompressionsmodul
vf Faservolumenanteil
vm Matrixvolumenanteil
Ef
l longitudinaler Elastizitätsmodul der Faser

Em
l longitudinaler Elastizitätsmodul der Matrix

νfl longitudinale Querkontraktionszahl der Faser
νml longitudinale Querkontraktionszahl der Matrix
Gf
l longitudinaler Schubmodul der Faser

Gm
l longitudinaler Schubmodul der Matrix

Gf
t transversaler Schubmodul der Faser

Gm
t transversaler Schubmodul der Matrix

kft transversaler Kompressionsmodul der Faser
kmt transversaler Kompressionsmodul der Matrix
P eff effektive Materialkonstante
Pm Materialkonstante der Matrix
P f Materialkonstante der Faser
Varm Platzhalter für Materialkonstanten der Matrix
Varf Platzhalter für Materialkonstanten der Faser
Ωi Zwischenphase
Ω0 homogene Phase
rm Radius der Matrix
rf Radius der Faser
ri Radius der Zwischenphase
ti Dicke der Zwischenphase
uki , i = r, θ Verschiebungskomponenten der Phase Ωk, k = f, i,m, 0
σkij, i, j = r, θ Spannungskomponenten der Phase Ωk, k = f, i,m, 0
Ak unbekannter Parameter der Phase Ωk

Bk unbekannter Parameter der Phase Ωk

Ck unbekannter Parameter der Phase Ωk

Dk unbekannter Parameter der Phase Ωk

νk Querkontraktionszahl der Phase Ωk

Gk Schubmodul der Phase Ωk

b Breite der RUC
h Höhe der RUC
t Tiefe der RUC
A+
i , i = 1, 2, 3 Randflächen in positiver yi-Richtung

A−
i , i = 1, 2, 3 Randflächen in negativer yi-Richtung
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yA+
i Koordinaten eines Punktes auf A+

i

yA−
i Koordinaten eines Punktes auf A−

i

C̃eff
ij , i, j = 1, 2, 3 effektive Elastizitätskoeffizienten (M-V-Notation)

α Winkel der RUC mit Parallelogramm-Querschnitt
b Länge der Kante in y1-Richtung
w Länge der angeschrägten Kante
h Höhe der RUC mit Parallelogramm-Querschnitt
n, s, t lokale kartesische Koordinaten auf Γmf
t Randspannungsvektor
Kε

i , i = n, s, t imperfekte Kontaktparameter in lokalen kartesischen Koordi-
naten

Kε
ij, i, j = 1, 2, 3 imperfekte Kontaktparameter in festen kartesischen Koordi-

naten
Kε

i , i = r, θ, z imperfekte Kontaktparameter in zylindrischen Koordinaten
‖ · ‖ Differenz der Größe „ · “ zwischen Matrix und Faser
Ei Elastizitätsmodul der Zwischenphase
ν i Querkontraktionszahl der Zwischenphase
δjk KRONECKER-Delta
Df

i, i = 1, 2, 3 dielektrische Verschiebungskomponenten in Ωf

Dm
i , i = 1, 2, 3 dielektrische Verschiebungskomponenten in Ωm

φf elektrisches Potential in Ωf

φm elektrisches Potential in Ωm

efkij , i, j, k = 1, 2, 3 Koeffizienten des piezoelektrischen Tensors in Ωf

emkij , i, j, k = 1, 2, 3 Koeffizienten des piezoelektrischen Tensors in Ωm

κfij, i, j = 1, 2, 3 Koeffizienten des dielektrischen Tensors in Ωf

κmij , i, j = 1, 2, 3 Koeffizienten des dielektrischen Tensors in Ωm

〈Di〉, i = 1, 2, 3 makroskopische dielektrische Verschiebungskomponenten
〈Ei〉, i = 1, 2, 3 makroskopische elektrische Feldstärkekomponenten
φper periodischer Anteil des elektrischen Potentials bezüglich Ω
E0
i , i = 1, 2, 3 vorgegebene elektrische Feldstärkekomponenten

KE imperfekter Kontaktparameter
κi dielektrische Konstante der Zwischenphase

Kapitel 4

N e Elementknotenanzahl
ue Elementvektor des Verschiebungsansatzes
Ne

u Elementmatrix bestehend aus Formfunktionen
ûe Elementvektor bestehend aus Verschiebungsfreiheitgraden
ξi, i = 1, 2, 3 Elementkoordinaten
ξki, k = 1, 2, 3 natürliche Koordinaten des Knotens i
Ke

uu mechanische Elementsteifigkeitsmatrix
Bu Matrix der differenzierten Formfunktionen (mechanisch)
Fe
uu mechanischer Elementlastvektor
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Formelzeichen XI

M Elementanzahl
Le Zuordnungsmatrix (elementweise)
Kuu mechanische Gesamtsteifigkeitsmatrix
Fuu mechanischer Gesamtlastvektor
û Gesamtvektor der Verschiebungsfreiheitsgrade
Ke,i

uu mechanische Elementsteifigkeitsmatrix des Elementes i
Fe,i
uu mechanischer Elementlastvektor des Elementes i

Le,i Zuordnungsmatrix (elementweise) des Elementes i
φe Elementansatz für das elektrische Potential
Ne

φ Elementmatrix bestehend aus Formfunktionen (elektrisch)
φ̂e Elementvektor bestehend aus Freiheitgraden (elektrisch)
Ke

φφ Elementsteifigkeitsmatrix (elektrisch)
Fe
φφ Elementlastvektor (elektrisch)

Ke
uφ Kopplungsmatrix (mechanisch/elektrisch)

Bφ Matrix der differenzierten Formfunktionen (elektrisch)
Kφφ Gesamtsteifigkeitsmatrix (elektrisch)
Fφφ Gesamtlastvektor (elektrisch)
Kuφ Gesamtkopplungsmatrix (mechanisch/elektrisch)
φ̂ Gesamtvektor bestehend aus Freiheitgraden (elektrisch)
SV Menge der Eckknoten
SE Menge der Kantenknoten
SF Menge der Flächenknoten
〈σ̃k〉�, k = 1, · · · , 6 makroskop. Spannungskomponenten (FEM, M-V-Notation)
〈ε̃k〉�, k = 1, · · · , 6 makroskop. Verzerrungskomponenten (FEM, M-V-Notation)
σ̃e,ik , k = 1, · · · , 6 Spannungskomponenten des Elementes i (M-V-Notation)
ε̃e,ik , k = 1, · · · , 6 Verzerrungskomponenten des Elementes i (M-V-Notation)
|Ωe,i| Volumen des Elementes i (M-V-Notation)
〈Dk〉�, k = 1, · · · , 3 makroskopische Komponenten des dielektrischen Verschie-

bungsvektors (FEM)
〈Ek〉�, k = 1, · · · , 3 makroskopische Komponenten des Vektors der elektrischen

Feldstärke (FEM)
De,i

k , k = 1, · · · , 3 Vektorkomponenten der dielektrischen Verschiebung des Ele-
mentes i

Ee,i
k , k = 1, · · · , 3 Vektorkomponenten der elektrischen Feldstärke des Elemen-

tes i
F Federkraft (eindimensional)
K�,ε Federsteifigkeit
ûj Verschiebungsfreiheitsgrad des Knotens j (eindimensional)
ûi Verschiebungsfreiheitsgrad des Knotens i (eindimensional)
Fi, i = r, θ, z Komponenten des Federkraftvektors in zylindrischen Koordi-

naten
K�,ε

i , i = r, θ, z Federsteifigkeiten in zylindrischen Koordinaten
‖ · ‖� Differenz von Freiheitsgraden einer Größe „ · “
An auf den Knoten n bezogener Flächeninhalt nach der FE-

Diskretisierung
rf Faserradius
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XII Formelzeichen

t Faserlänge
ccs Anzahl der Eckknoten des Polygons
α Winkel
Mm Elementanzahl der Matrix
M f Elementanzahl der Faser
ε̃e,m,ik , k = 1, · · · , 6 Verzerrungskomponenten des Elementes i der Phase der Ma-

trix (M-V-Notation)
ε̃e,f,ik , k = 1, · · · , 6 Verzerrungskomponenten des Elementes i der Phase der Faser

(M-V-Notation)
|Ωe,m,i| Volumen des Elementes i der Phase der Matrix
|Ωe,f,i| Volumen des Elementes i der Phase der Faser
‖uos‖�, s=1,2,3 Differenzen der Verschiebungsfreiheitsgrade der Knotenpaa-

rung, die den Knoten o enthält
ns, s = 1, 2, 3 Komponenten des äußeren Normalenvektors der Phase der Fa-

ser
M Summe von M f und Mm

Q elektrische Ladung
K�,E Kapazität
φ̂i elektrischer Freiheitsgrad des Knotens i
φ̂j elektrischer Freiheitsgrad des Knotens j
‖φo‖�� Differenz (elektrischen Freiheitsgrad) von Faser zu Matrix der

Knotenpaarung, die den Knoten o enthält

Kapitel 5

N Anzahl an RUCs in eine Achsenrichtung
Ceff,LVRB

1212 effektiver Koeffizient Ceff
1212 bei linearen Verschiebungsrandbe-

dingungen
Ceff,USRB

1212 effektiver Koeffizient Ceff
1212 bei homogenen Spannungsrandbe-

dingungen
Ceff,per. RB

1212 effektiver Koeffizient Ceff
1212 bei periodischen Randbedingungen

h Höhe der RUC (Rechteck-Querschnitt)
b Breite der RUC (Rechteck-Querschnitt)
α Winkel, der die unidirektionale Faseranordnung charakteri-

siert
rf Faserradius
vf Faservolumenanteil
Eeff,max

1 maximaler effektiver Elastizitätsmodul in y′1-Richtung für alle
Faseranordnungen zu einem festen Faservolumenanteil

Eeff,min
1 minimaler effektiver Elastizitätsmodul in y′1-Richtung für alle

Faseranordnungen zu einem festen Faservolumenanteil
ti Dicke der Zwischenphase
η Proportionalitätsfaktor zwischen Faserradius und Zwischen-

phasendicke
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Formelzeichen XIII

b Kantenlänge der RUC (Parallelogramm-Querschnitt) in y1-
Richtung

w Länge der schrägen Kante der RUC (Parallelogramm-
Querschnitt)

h Höhe der RUC (Parallelogramm-Querschnitt)
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XIV

Abstract

Composites are of enormous importance to the industry. The usage of such materials for in-
dustrial products has rapidly increased over the last years. Therefore, there is high interest
in gaining a better understanding of these materials and their physical behaviour. Aside
from performing experimental studies, this can also be achieved by using homogenisation
methods. With these methods, the composite can be characterised in a macroscopic ho-
mogeneous manner by taking into account the microscopic heterogeneous structure. This
approach provides the opportunity to calculate the so-called effective properties of the
composite.
The focus of the present thesis is to develop and advance numerical homogenisation me-
thods which are based on the finite element method (FEM). These methods developed are
applicable to calculate the effective properties of unidirectional fibre reinforced composites
with a periodic fibre distribution. In the developed numerical models repeated unit cells
(RUCs) are used, whose cross sections can even be parallelogram shaped. The significant
advantage of these models, especially those with the parallelogram shaped cross section, is
the capability to simulate a wide range of unidirectional fibre reinforced composites with
different fibre arrangements. This also includes the special cases of hexagonal and square
fibre arrangements, which are commonly used in the literature.
The numerical models are extended by employing an imperfect contact formulation bet-
ween the matrix and fibre phase to represent the presence of a very thin interphase, which is
for instance caused by chemical reactions in manufacturing processes. Besides pure elastic
considerations models capable of simulating piezoelectric composites are also developed.
In this thesis, all the developed models are, as far as possible, validated by comparing the
calculated effective material properties to results from methods given by the literature or
to results calculated from verification models. Furthermore, studies have been performed
in order to investigate the influence of different fibre distributions, fibre volume fractions
and imperfect contact conditions on the effective composite properties. All together, this
gives a better insight into the material behaviour of composites as well as the modelling
techniques.
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XV

Kurzfassung

In der Industrie sind Kompositwerkstoffe von großer Wichtigkeit. Der Einsatz solcher hete-
rogenen Werkstoffe für industrielle Produkte ist in den letzten Jahren rasant angestiegen.
Daher besteht ein sehr großes Interesse darin, diese Materialien und ihr physikalisches
Verhalten besser zu verstehen. Um dies zu erreichen, können neben der Durchführung
von experimentellen Untersuchungen Homogenisierungsverfahren genutzt werden. Diese
Verfahren dienen dazu, den Kompositwerkstoff unter Berücksichtigung der mikroskopisch
heterogenen Struktur in einer makroskopisch homogenen Weise zu charakterisieren. Unter
bestimmten Annahmen lassen sich sogenannte effektive Materialeigenschaften berechnen.
Der Schwerpunkt der vorliegenden Dissertation liegt in der Weiterentwicklung von numeri-
schen Homogenisierungsverfahren, welche auf der Finite-Elemente-Methode (FEM) basie-
ren. Diese werden zum Berechnen der effektiven Materialeigenschaften von unidirektional
faserverstärkten Verbundwerkstoffen mit einer periodischen Faseranordnung verwendet. In
den entwickelten numerischen Berechnungsmodellen werden Einheitszellen (RUCs) verwen-
det, deren Querschnitt sogar parallelogrammförmig sein kann. Der Vorteil dieser Modelle
besteht darin, dass mit ihnen ein breites Spektrum an unidirektionalen Faserverbundwerk-
stoffen mit unterschiedlicher Faserverteilung simuliert werden kann. Das schließt auch die
Spezialfälle der quadratischen und hexagonalen Faseranordnung mit ein, welche häufig in
der Literatur zu finden sind.
Die Berechnungsmodelle werden auf einen imperfekten Phasenübergang erweitert, welcher
sich als sehr dünne Verbindungsschicht zwischen der Matrix- und Faserphase interpretie-
ren lässt. Die Ausprägung einer solchen Zwischenschicht kann zum Beispiel auf chemische
Reaktionen im Herstellungsprozess zurückgeführt werden. Neben rein elastischen Betrach-
tungen werden auch Modelle entwickelt, mit denen piezoelektrische Faserverbundwerkstoffe
simuliert werden können.
Alle in dieser Arbeit entwickelten Berechnungsmodelle werden hinsichtlich ihrer Eignung
überprüft. Dazu werden die berechneten effektiven Materialeigenschaften nach Möglichkeit
mit Ergebnissen von Verfahren aus der Literatur oder mit Ergebnissen aus Verifizierungs-
modellen verglichen. Darüber hinaus werden Studien durchgeführt, die den Einfluss der
Faserverteilung, des Faservolumenanteils und des imperfekten Phasenübergangs auf die
effektiven Werkstoffeigenschaften untersuchen. Dies führt zu einem besseren Verständnis
des Materialverhaltens von Kompositwerkstoffen sowie der Modellierungstechniken.
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