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Over the course of the past 8o years the digital computer has radically changed the
world we inhabit and the ways in which we relate to it and to each other. Likewise,
computing has radically changed as well. At first, practical computing machines*
carried individual names, but in the early 1950s proper names were quickly re-
placed by series designators which are emblematic for the era of mainframe com-
puters and time-sharing systems. The 1970s and 1980s gave rise to micro, home
and personal computers as well as graphical user interfaces that became prevalent
in the 1990s. With the rise of the World Wide Web (WWW) during this decade
networked computing and networking changed the face of computing again. Re-
gardless of the burst of the dot-com bubble the Web flourished throughout the
early 2000s by being reframed as Web 2.0 and social web. During this period com-
puting devices became increasingly mobile and desktop computers were super-
seded by notebooks, smartphones and tablets, software gradually morphed into
services and apps that rely on cloud infrastructures for distributed processing
and storage.

In June 2017 Sundar Pichai, CEO of Google Inc., declared yet another para-
digm shift in the history of computing. Innovation should neither be driven by
approaching problems as first and foremost digital nor mobile, but instead by tak-
ing an Al first approach that is fueled by recent advances in the field of machine
learning: “We believe smartphones should be smarter; they should learn from you
and they should adapt to you. Technologies such as on-device machine learning
can learn your usage patterns and automatically anticipate your next action sav-
ing you time” (Pichai 2018). This statement reflects a central promise of machine
learning applications, namely the ability to adapt to unforeseen futures without
prior programming of a particular event: visual recognition of specific objects or
persons that the program did neither “see” nor was trained on before, self-driving
cars that can deal with new situations safely or chatbots that conduct conversa-

1 Forthe concept of practical computing machines see Turing (1992).
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tions with humans in an engaging manner. Conversely, the more such technol-
ogies are built into the fabric of everyday life the more concerns are raised about
their potential risks, e.g. biases and inequalities inherent in training data sets.
As a result, machine learning models often produce (social) structures instead
of adapting to them. Drawing on debates in critical algorithm studies this paper
asks how machine learning and artificial intelligence as fields of technological de-
velopment and innovation are in themselves structured. By providing an initial
mapping of the coding cultures of machine learning and artificial intelligence on
GitHub the paper argues for the importance to attend more closely to the hith-
erto largely neglected infrastructural layers of code libraries and programming
frameworks for the development of critical perspectives on the social and cultural
implications of machine learning technologies to come.

Democratization of Al

In recent years the interest in artificial intelligence (AI) in general and in machine
learning (ML) in particular skyrocketed once again. This ongoing development is
to some extend driven by leading technology companies such as Google and its
parent company Alphabet, Amazon Web Services (AWS), Facebook, IBM, Micro-
soft etc. It rests upon the massive accumulation of data by these companies on
the one hand and the establishment of large-scale cloud infrastructures as well
as infrastructural services on the other hand. However, these companies do not
simply contribute to the rapid technological developments in Al and ML, they also
take part in shaping the imaginaries of smart, intelligent and autonomous tech-
nologies as cornerstones of technological progress and enablers of social progress
as well as economic prosperity for the years to come.

Central to this is the recent push towards the democratization of artificial
intelligence. Google (IANS 2017), IBM (Moore 2018), Apple (Simonite 2017) and
Microsoft (n.d.) alike mobilize the notion of democratic Al to promote the shift
towards ML driven technological innovation. In this context democratization
can be understood “as the action/development of making something accessible
to everyone, to the ‘common masses” (Schmarzo 2017). For Microsoft this entails
allowing “every person and every organization” (n.d.) to partake in the anticipat-
ed benefits of AI whose effects will supposedly be as far-reaching as that of the
printing press:

With the advent of the printing press in the 1400s we have an explosion of infor-
mation—the first democratizing event around access that made it possible for
humans everywhere to start learning. Access to information has only spread from
there. [..] The question is, how can we use all we have in terms of computational
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power to solve this fundamental constraint? To make better sense of the world?
That’s the essence of what Al is. It’s not about having Al that beats humans in
games, it's about helping everyone achieve more — humans and machines wor-
king together to make the world a better place. (Ibid.)

In view of the long history of exaggerated expectations of artificial intelligence, a
certain skepticism regarding such a claim of a revolutionary caesura is warranted.
What is more important, nevertheless, is the question how Al is actually made
accessible, i.e. how democratization is enacted. Once again, the case of Microsoft
can serve as a paradigmatic example. The company pursues a four-fold strategy:
(1) utilize Al to develop new modes of interaction with ambient computing tech-
nologies; (2) build intelligence into every application; (3) allow developers to make
use of these “intelligent capabilities”; (4) make computing infrastructure available
as a service (ibid.).

The promise of democratization is directed towards both technology devel-
opers and their users. For developers this democratization entails the possibility
to make use of Al in their own products and to partake in shaping the future of
AI by having open or paid access to resources and services such as software li-
braries, pre-trained machine learning models, frameworks, platforms and infra-
structures. Users on the other hand are enlisted in the democratization of Al as
beneficiaries of technologies that are “infused” (ibid.) with artificial intelligence
and machine learning. In such technologies, intelligence is typically enacted as a
wide range of limited scope capabilities and features: software applications that
play chess or the game of go, cameras that recognize faces and take pictures when
people are smiling, speakers that are capable to recognize, interpret and execute
voice-based commands, cars that drive autonomously, chatbots that engage in en-
tertaining, helpful or informative conversations with human beings etc.

Practices of Machine Learning

The capacities of ML technologies are designed as well as staged to astonish its us-
ers. Among many researchers in the fields of science and technology studies and
media studies Kate Crawford and Ryan Calo have argued for the “need to assess
the impact of technologies on their social, cultural and political settings” (2016:
311). It is, thus, important to gain a critical understanding of machine learning
technologies in general and the current drive towards democratic Al in particular.
Such a critical understanding is all the more significant since modern day deep
neural networks as well as other ML approaches supposedly evade human com-
prehension in principle.
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Despite the secrecy imposed on algorithmic systems by corporations and the
intrinsic opacity of machine learning systems (cp. Burrell 2016), there is much to
know about ML technologies as Adrian Mackenzie eloquently argued:

Machine learning is hardly obscure or arcane knowledge today. These techniques
are heavily documented in textbooks [..], in how-to books [..], and numerous video
and website tutorials, lectures and demonstrations [..]. We can more or less read
about and indeed play about with implementations in software [..]. (2015: 431p.)

Drawing on such diverse resources Mackenzie himself became a critical student,
practitioner and investigator of multiple situated, hybrid machine learning prac-
tices. In Machine Learners Mackenzie presents a hands-on inquiry of “machine
learning as a form of knowledge production and a strategy of power” (ibid.: 9).
Following Foucault’s notion of archaeology Mackenzie unfolds an archaeology of
six operational formations that are central to ML:

vectorization, optimization, probabilization, pattern recognition, regularization,
and propagation. These generic operations intersect in a diagram of machine le-
arning spanning hardware and software architectures, organizations of data and
datasets, practices of designing and testing models, intersections between scien-
tificand engineering disciplines, and professional and popular pedagogies. (Ibid.:
18)

The approach to inquire machine learning not from afar, but by “learning to ma-
chine learn” (ibid.: 18) resonates well with Wendy Chuns claim “that software can
only be understood in media res” (Chun 2008: 323). In the middle of things that
constitute ML today Mackenzie engages not only with textbooks, tutorials, math-
ematical formulae, algorithms, and data sets, but also with numerous software
libraries. While code libraries and programming frameworks are often refer-
enced as crucial infrastructural elements of today’s software culture they are
hardly studied closely in critical research (cp. Berry 2011; Marino 2014). Machine
Learners, too, acknowledges the importance of code libraries frequently, but does
not research them in detail. In passing, however, Mackenzie offers some valu-
able insights into how code libraries and programming frameworks shape ma-
chine learning practices by crystallizing “a repertoire of standard operations,
patterns, and functions for reshaping data and constructing models that classify
and predict events and associations among things, people, processes, and so on”
(Mackenzie 2017: 23). Their architecture “classifies and orders” (ibid.: 77) machine
learning as a field of interrelated practices as much as a domain of knowledge pro-
duction. They constitute the “accumulating sediment of coding and related data
practices [..] in which machine learners take root” (ibid.: 23). For Mackenzie the
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implementation and widespread use of code libraries are, thus, articulations of
contemporary coding cultures.

Code libraries provide resources that developers can draw from and build
upon. By offering predefined functions and functionalities they relieve develop-
ers from building software from the ground up. At the same time code libraries
impose their functional logics and practical affordances on developers. In this re-
gard code libraries can be considered as media of “co-operative action” consisting
of accumulative resources that can be laminated into operational software (Good-
win 2018: 129). However, code libraries are sites of cooperation as well. They are
created, contributed to, maintained, updated and deprecated in the “recursive
publics” (Kelty 2008: 2.8) of code-sharing platforms such as GitHub.?

As the “Facebook of coding” (Wulf 2017) GitHub today hosts more than 96 mil-
lion repositories (GitHub 2019), most of them contain codes or coding related re-
sources. For today’s coding culture GitHub serves as a center of gravity for hosting
open and closed source software projects as well as for finding, contributing and
debating code resources including libraries and frameworks (Mackenzie 2018).
This applies in particular to current developments in ML. Yet, how exactly does ML
as a practice and field take shape on GitHub? How do algorithmic techniques for
ML, data sets, machine learned models and other resources circulate on GitHub?
Which actors are involved in shaping this space of cooperation, exchange and ne-
gotiation and which strategies of power are deployed? Or to put it differently: How
is the democratization of Al enacted on the infrastructural level of code and cod-
ing sharing practices?

Mapping the Democratization of Al in Code

For mapping the numerous heterogenous articulations and manifestations of
machine learning and artificial intelligence on GitHub researchers can make use
of the application programming interface (API) provided by the platform which
allows for the retrieval of repository metadata that match certain search criteria,
like specific keywords contained in the repositories description or topics assigned
to the repository by its creator.”> However, the GitHub search API poses certain
restrictions: it allows only for a limited number of keywords per query and returns
only a maximum of 1.000 results for each query. While this might be sufficient
to explore the most visible projects on GitHub for a specific keyword in regard to

2 Foradiscussion of the relevance of version control systems and GitHub for contemporary coding
cultures see Burkhardt (2019) and Mackenzie (2017, 2018).

3 Asimilar mapping of cultures of coding and sharing has been undertaken by Kollanyi (2016) in
respect to Bots.
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the number of forks or stars a repository received, this limitation disregards the
variety of keywords associated with ML and AI as well as the long tail of software
development and code sharing practices in the field of ML. In order to map the
enactments and materializations of machine learning more comprehensively a
search tactic must be deployed that charts the space of ML and Al related repos-
itories iteratively by identifying and working through an extensive list of search
terms and by restricting the search parameters (programming languages, num-
bers of forks, received stars and size) step by step:

— search terms

— search terms + programming language

— search terms + programming language + fork count

— search terms + programming language + fork count + star count

— search terms + programming language + fork count + star count + size

This search tactic provides a snapshot view of a dynamically changing environ-
ment. The results remain incomplete, but are more comprehensive than the de-
fault limit of 1.000 results per query.* What is left out and remains invisible in
principle are all the private repositories hosted on GitHub.

Assembling a dataset is all but the first step in mapping the enactments of
machine learning in contemporary coding culture. The dataset contains 211.802
unique repositories.” Among those 41.818 contain artificial intelligence® as a key-
word and 103.344 machine learning’. Remarkably only 3.064 repositories refer-
ence both conceptual fields although in public discourse the current summer of AI
is largely attributed to developments in the area of machine learning.

4 Certain gaps in the result sets can be pinned down precisely: The result limit is exceeded for
programming languages like Python that have neither been forked nor received a star and are
relatively small (in the case of Pythoniitis 0,1, 2, 3 .., 11 KB). However, in other cases gaps emerge
as inconsistencies between the supposed number of results returned by the GitHub APl and the
actual number of results retrieved.

5 Search terms: ai, dl, nn, ml, artificial-intelligence, artificialintelligence, artificial intelligence,
machine learning, machinelearning, machine-learning, machine intelligence, deep learning,
deep-learning, deeplearning, neural nets, neuralnets, neural-nets, neural net, neuralnet, neu-
ral-net, neural networks, neuralnetworks, neural-networks, neural network, neuralnetwork,
neural-network, neural, bigdl, caffe, caffe2, cntk, coreml, deeplearningsj, keras, lasagne, mlib,
mlpack, moa, mocha.jl, mxnet, neon, Paddle Paddle, pylearn, pylearnz, pytorch, scikit-learn, sho-
gun, singa, tensorflow, tflearn, theano.

6 Variations considered: artificial intelligence, artificial-intelligence, artificialintelligence, ai.

7 Variations considered: machine learning, machine-learning, machinelearning, ml.
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Language %
Python 4174
HTML 1.25
Java 8.46
Matlab 6.90
JavaScript 5.33
R 3.19
C# 3.09
Jupyter Note- 218
book

C 1.59
MATLAB 1.10
Total 90,83

Fig. 1: Distribution of top 10 programming languages used in the retrieve repositories.

Machine learning and artificial intelligence materializes in a range of program-
ming languages. Python (together with Python-based Juypter Notebooks) is by far
the most often used programming language for ML. Remarkably this is followed
by eleven percent HTML repositories. As will be discussed later this is because not
all repositories on GitHub contain code as a resource. Many contain informational
and educational resources such as tutorials, book manuscripts, research papers,
course materials or collections of links.

The popularity or relevance of repositories can be inferred from the number of
forks as well as stars they received. In the context of GitHub in particular and the
Git version control system in general forks are copies of a repository. Forking con-
stitutes a central practice in Git-based collaboration: “Most commonly, forks are
used to either propose changes to someone else’s project or to use someone else’s
project as a starting point for your own idea” (GitHub a). Stars on the other hand
are platform specific indicators of some kind of interest of users in a repository:
“You can star repositories and topics to keep track of projects you find interesting
and discover related content in your news feed” (GitHub b).
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Fig. 2: Distribution of forks by repository

The distribution of stars and forks across repositories adheres to the power law.
Only few repositories gain high visibility, while the largest number of reposito-
ries has no forks and received little to no stars. The long tail of machine learning
is a space of testing out, experimenting with and learning by doing. This space,
however, is also populated with course assignments, original research in progress,
personal collections of resources on machine learning, and new, emerging, failed
or abandoned code libraries. Among the more than 200.000 unique repositories
that were retrieved for this article less than 0.8 percent have more than 100 or
more forks and only 1.8 percent received 100 or more stars.

Total number >100 forks >100 stars
Artificial intelligence repositories 41.818 284 593
Machine learning repositories 103.344 799 1.677
Deep learning repositories 33.749 857 1.842
Neural network repositories 46.681 558 1.365
All repositories 21.802 1.751 3.951

High level observations on the use of programming languages or the distribution
of popularity offer some initial insights into how artificial intelligence and ma-
chine learning is articulated on GitHub. A more detailed analysis of the 200 most
often forked and starred repositories, however, reveals the heterogeneity and
diversity of resources developed, published, collaborated, maintained, debated,
updated and downloaded. Among those top 200 repositories are 42 that can be
categorized as code libraries or programming frameworks. However, more than
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fifty percent contain informational and educational resources. About 15 percent
of the repositories provide reference implementations for algorithms, machine
learned models for specific application domains or software applications based on
machine learning. And only few provide infrastructural resources, programming
languages, experiments or datasets for ML.

Type #
Informational/Educational 15
resource

Library/Framework 42
Algorithms/Models/Applications 31
Infrastructure/Optimization 8
Experiments 2
Languages 1
Datasets 1

The informational and educational resources address a range of distinct audienc-
es like machine learning beginners, learners of a framework, machine learning
professionals as well as researchers. As a result, some repositories provide re-
sources on the fundamentals of machine learning, materials for online courses,
tutorials for different code libraries or introductory book publications. Others are
framed as collections, comprehensive lists or curated lists on machine learning in gen-
eral, state of the art research or more specific topics like infrastructures. In part
these resources are created, assembled and provided by individual developers, re-
searchers or authors. Yet, many informational and educational repositories are
created and maintained by corporations to educate users about and recruite them
for their products. The repository amazon-sagemaker-examples® released by Amazon
Web Services Labs for example contains basic information and training materials
on using the companies SageMaker platform for the training, optimization and
deployment of machine learning models. Here the infrastructural complexities
of machine learning practices become visible. Understood as a mode of databased
programming machine learning relies on large scale processing capacities that
today are provided as cloud computing services—a market dominated by global
technology corporations like Amazon, Microsoft, Google, IBM etc. (Flexera 2019).
What is more, engaging with the rich diversity of educational and informational
resources reveals the central role of programming libraries for coding cultures.
Learning to machine learn is deeply intertwined with learning to make use of code

8 https://aws.amazon.com/de/sagemaker/
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libraries and frameworks. While there are repositories dedicated to do “Machine
Learning From Scratch™, educational resources promising information on how to
do machine learning with library x or framework y are more common.

The variety of repositories with informational resources is reflected in the het-
erogeneity of code repositories. Today, by far the most popular repository in ma-
chine learning and artificial intelligence is the TensorFlow framework." Initially
developed by Google Brain for internal use the framework has been released in
2015 as open source by Google and is since maintained by the company, but it has
attracted a large number of external contributors as well. TensorFlow is a frame-
work for deep learning that mainly supports the training and deployment of neu-
ral networks and is, thus, dedicated to a specific paradigm of machine learning
that has become dominant throughout the past decade. Other popular libraries
such as scikit-learn" focus on other areas of machine learning and in consequence
support a broader range of approaches.” While it is possible to implement basic
neural networks with scikit-learn they play a somewhat marginal role in this li-
brary. This is underlined by the missing support for deep and reinforcement learn-
ing as well as the use of GPU hardware (scikit-learn 2019, 5 and 7). TensorFlow and
scikit-learn, thus, are different articulations and materializations of machine
learning. Yet, they are similar in that they can both be considered as general-pur-
pose frameworks, i.e. they are not explicitly focused on specific application do-
mains.

A number of special-purpose machine learning libraries have gained a relative-
ly high popularity as well. Among them are the Unity ML-Agents Toolkit*, OpenCV*,
and the ChatterBot” and Rasa™ frameworks. The ML-Agents Toolkit allows the im-
plementation of so-called machine learning agents in the Unity game engine. As
a plugin for a development environment for games the toolkit is of course aimed
at this application area, but also allows for the development of algorithms for ro-
botics or the training of self-driving cars in virtual environments (cp. Unity n.d.).
Chatterbot and Rasa are frameworks for the implementation of Al-based chatbots.
Machine learning here articulates itself as the use of pretrained models for nat-
ural language understanding and dialogue management as well as the ongoing

9 https://aws.amazon.com/eriklindernoren/ML-From-Scratch

10 https://github.com/tensorflow/tensorflow

11 https://github.com/scikit-learn/scikit-learn

12 Fora comprehensive overview of machine learning paradigms and approaches see Domingos
(2015).

13 https://github.com/Unity-Technologies/ml-agents

14 https://github.com/opencv/opencv

15 https://github.com/gunthercox/ChatterBot

16 https://github.com/RasaHQ/rasa
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improvement of such models based on training data gathered in beta tests and
during real world deployment. By providing code resources for the development
of domain specific software, such frameworks are not for machine learning in
general, but have some element of machine learning build in. This raises the ques-
tion how special-purpose frameworks structure machine learning practices in
specific ways as well as how they prescribe the operational logics and performanc-
es of applications created with them. In the case of chatbots that is to ask how
conversationality and communicability is inscribed by such frameworks.

In addition to general-purpose and special-purpose libraries at least a third
type can be distinguished which could be called meta-libraries. A popular example
for this kind of library is Keras". It is built on top of the deep learning frameworks
TensorFlow, Theano™ and CNTK" and provides a unified interface to a multiplicity
of different code libraries. Keras, thus adds an abstraction layer which serves as
frontend to the backend of multiple deep learning libraries. Two of those libraries
are developed by global corporations—Google in the case of TensorFlow and Mi-
crosoft in the case of CNTK (Cognitive Toolkit). The third framework was mainly
developed in academic contexts and is maintained by the Montreal Institute for
Learning Algorithms. The end of its active development has been announced in
2017 citing among other reasons that “strong industrial players are backing dif-
ferent software stacks in a stimulating competition” (Bengio 2017). Indeed, large
global digital technology companies compete in the space of open source machine
learning libraries with respective frameworks. PyTorch* (Facebook), Neo-AI-DLR*
(Amazon), Aerosolve?” (AirBnB) as well as the already mentioned frameworks Ten-
sorFlow (Google) and CNTK (Microsoft) are just a few examples. The release of
machine learning libraries in open source by Google, Facebook, Amazon, Micro-
soft etc. can be understood as an effort towards the democratization of Al. At
the same time, the open source coding culture has become a space of corporate
intervention and competition. How this affects the future of machine learning
technologies as well as the ways in which machine learning will be built into the
fabric of our technological world are questions that remain unanswered. Critical
research, thus, needs to attend even more closely to the logics and politics of code
libraries and programming frameworks.

17 https://github.com/keras-team/keras
18 https://github.com/Theano/Theano
19 https://github.com/microsoft/CNTK
20 https://github.com/pytorch/pytorch
21 https://github.com/neo-ai/neo-ai-dlr

22 https://github.com/airbnb/aerosolve
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