
Fortschritt-Berichte VDI

Dipl.-Math. Oliver Müller,  
Hannover

Nr. 860

Informatik/
Kommunikation

Reihe 10

Graphical Model MAP  
Inference with  
Continuous Label Space  
in Computer Vision

Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

TNT_Logo_Cover und Innen_TNT_Logo_Cover und Innen.qxd  18.03.2015  09:12  Seite 1

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


Graphical Model MAP Inference with
Continuous Label Space in Computer Vision

Der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

Dipl. Math. Oliver Müller

geboren am 16. Juni 1986 in Berlin.

2018

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


Hauptreferent: Prof. Dr.-Ing. Bodo Rosenhahn
Korreferent: Prof. Dr. Bastian Leibe
Vorsitzender: Prof. Dr.-Ing. Markus Fidler

Tag der Promotion: 20. September 2017

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


TNT_Logo_Cover_und_Innen.qxd.pdf

Fortschritt-Berichte VDI

Graphical Model MAP 
Inference with  
Continuous Label Space 
in Computer Vision

Dipl.-Math. Oliver Müller,  
Hannover

Informatik/
Kommunikation

Nr. 860

Reihe 10

Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

Black
M?rz 18, 2015 | 08:13:46

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


© VDI Verlag GmbH · Düsseldorf 2018
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe 
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, 
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9627
ISBN 978-3-18-386010-4

Müller, Oliver
Graphical Model MAP Inference with Continuous Label Space in 
Computer Vision
Fortschr.-Ber. VDI Reihe 10 Nr. 860. Düsseldorf: VDI Verlag 2018.
156 Seiten, 54 Bilder, 3 Tabellen.
ISBN 978-3-18-386010-4, ISSN 0178-9627,
¤ 57,00/VDI-Mitgliederpreis ¤ 51,30.
Für die Dokumentation: Maschinelles Sehen – Probabilistisch graphische Modelle – MAPInfe- 
renz – Markov-chain Monte-Carlo – Slice-Sampling – Produkt-Slice-Sampling – Artikulierte Ob-
jektverfolgung – Visuelle Objektverfolgung – Poseschätzung

This thesis deals with monocular object tracking from video sequences. The goal is to improve 
tracking of previously unseen non-rigid objects under severe articulations without relying on prior 
information such as detailed 3D models and without expensive offline training with manual an-
notations. The proposed framework tracks highly articulated objects by decomposing the target 
object into small parts and apply online tracking. Drift, which is a fundamental problem of online 
trackers, is reduced by incorporating image segmentation cues and by using a novel global 
consistency prior. Joint tracking and segmentation is formulated as a high-order probabilistic 
graphical model over continuous state variables. A novel inference method is proposed, called 
S-PBP, combining slice sampling and particle belief propagation. It is shown that slice sampling 
leads to fast convergence and does not rely on hyper-parameter tuning as opposed to compet-
ing approaches based on Metropolis-Hastings or heuristic samplers.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; 
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


III

Acknowledgement

This thesis was written in the course of my activity as a scientific research assistant
at the Institut für Informationsverarbeitung (TNT), Leibniz Universität Hannover.

First of all, I would like to thank my doctoral advisor Prof. Dr.-Ing. Bodo
Rosenhahn for giving me the opportunity to work in his group, for many inspiring
discussions, and for his continuing support and guidance. Many thanks are due to
Prof. Dr. Bastian Leibe for being my second reviewer, and Prof. Dr.-Ing. Markus
Fidler for serving as chair of my thesis defense committee.

I would also thank Prof. Dr.-Ing. Jörn Ostermann and Prof. Dr.-Ing. Bodo
Rosenhahn for providing an outstanding working environment at the TNT.

Special thanks go to all of my colleagues at the TNT, who make this lab such a fun
place to work. I especially would like to thank Dr.-Ing. Kai Cordes for his guidance
during my study and diploma thesis, which motivated me to start working towards a
doctoral degree. I also thank Prof. Dr.-Ing. Michael Ying Yang for his support and
for sharing his deep knowledge on probabilistic graphical models with me. I further
thank my officemate Karsten Vogt for many inspiring, and constructive discussions.

Special thanks to Matthias Schuh, Dr.-Ing. Martin Pahl, Dr.-Ing. Marco Munder-
loh, and Thomas Wehberg for their outstanding technical and administrative sup-
port, as well as to the secretaries, Hilke Brodersen, Doris Jaspers-Göring, Melanie
Huch, and Pia Bank for their invaluable administrative work. This institute would
not have been such an outstanding place to work without their continuing efforts.

Last but not least, special thanks go to my family and my friends. Without the
unconditional support of my parents Rosel and Michael Müller, this work would not
have been possible.

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


V

Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 15
2.1 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Approximate MAP Inference in Probabilistic Graphical Models . . . 19

3 Fundamentals 25
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Bayes Network . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Markov Random Field . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Factor Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Inference in Probabilistic Graphical Models . . . . . . . . . . . . . . . 33
3.3.1 Max-Product Belief Propagation . . . . . . . . . . . . . . . . 35
3.3.2 Max-Product Loopy Belief Propagation . . . . . . . . . . . . . 37
3.3.3 Dual Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Markov Chain Monte-Carlo Methods . . . . . . . . . . . . . . . . . . 45
3.4.1 Metropolis-Hastings Sampler . . . . . . . . . . . . . . . . . . . 48
3.4.2 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Slice Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Max-Product Particle Belief Propagation . . . . . . . . . . . . . . . . 54

4 Stochastic Inference in Probabilistic Graphical Models 56
4.1 Slice-Sampling Particle Max-Product . . . . . . . . . . . . . . . . . . 59

4.1.1 Sampling from Product-Max Distributions . . . . . . . . . . . 59
4.1.2 Particle Max-Product . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.3 Computing the Slice Regions . . . . . . . . . . . . . . . . . . . 64
4.1.4 Random Walk Analysis . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Tree-Reweighted Particle Max-Product . . . . . . . . . . . . . . . . . 69
4.2.1 Diverse Particle Selection . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Heuristic Proposals versus Slice-Sampling . . . . . . . . . . . . 73

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


VI Contents

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Tracking 78
5.1 Part-Based Template Tracking . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Object Tracking Demonstrator . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Joint Tracking and Segmentation . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Joint Pose Estimation and Segmentation . . . . . . . . . . . . 91
5.3.2 Dual Decomposition . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.3 Visibility Estimation . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusions 107
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A Appendix 111
A.1 Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . 112

A.1.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.1.2 Motion Compensation . . . . . . . . . . . . . . . . . . . . . . 113
A.1.3 OCT Image Undistortion . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 128

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


VII

Abbreviations

2D two-dimensional
3D three-dimensional

ADMM alternating direction method of multipliers

BP belief propagation

DAG directed acyclic graph
DD dual decomposition
DPM deformable parts model
DPMP diverse particle max-product

FMP flexible mixtures-of-parts

HOG histogram of oriented gradients

KL Kullback-Leibler divergence

LP linear program

MAP maximum a posteriori
MATLAB® Matrix Laboratory, a proprietary programming language and

IDE developed by MathWorks
MCMC Markov chain Monte-Carlo
MH Metropolis-Hastings
MH-PBP Metropolis-Hastings particle belief propagation
MP-BP max-product belief propagation
MRF Markov random field
MuPAD® a computer algebra system bundled with MATLAB®

OCT optical coherence tomography
OTB online tracking benchmark

PBP particle belief propagation
PCP percentage of correct parts
PGM probabilistic graphical model

RGB red, green, and blue

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


VIII Abbreviations

RMSD root-mean-square deviation

S-PBP slice-sampling particle belief propagation
SVM support vector machine

TRBP tree-reweighted belief propagation

VDPM visibility-aware deformable parts model
VDPM-e visibility-aware deformable parts model without edge
VOT visual object tracking

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


IX

Symbols and Notation

Symbols for Probability Theory

N (x; μ, σ) normal distribution with mean μ and standard deviation
σ

Ω sample space

P probability distribution

p(x) probability density function

X random variable vectors

X, Y , Z random variables

X ,Y ,Z state space

x random variable values

x, y, z random variable value vectors

Symbols for Probabilistic Graphical Models

C set of cliques

c clique

d data

E edges

E(x) energy function

F factor vertices

G graphical model

g(λ) dual function

k, l state indices

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


X Symbols and Notation

L local polytope

Ls number of states for discrete state space X s

L({yτ}τ ,y,λ) (augmented) Lagrangian function

λ ∈ Λ Lagrange multipliers

M marginal polytope

mt→s(xs) belief propagation message from vertex t to s

mt→s(xt) pre-message from vertex t to s

m̂t→s(xs) approximate belief propagation message from vertex t to
s

μ̂s(xs) approximate max-marginal function over variable xs

μs(xs) max-marginal function over variable xs

N neighborhood system

n = 1, ..., N BP/DD/ADMM iteration

Pa(s) parents of vertex s

Ps particle set for vertex s

φs(xs), φs,t(xs, xt), φc(xc) unary potential, pairwise potential, and clique potential

ψs(xs), ψs,t(xs, xt), ψc(xc) unary energy, pairwise energy, and clique energy

r, s, t vertex indices

S visiting schedule

τ ∈ T subproblems

θ parameter vector

V random variable vertices

Z partition function

Symbols for MCMC

A slice

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


Symbols and Notation XI

i = 1, ..., p particle index

m = 1, ..., M Markov chain index

μ(x) MCMC target density function

ν0(x) MCMC initial density function

ν(x) marginal probability

x(i)〈m〉
s particle at the m-th MCMC iteration

x̄(i)〈m〉
s candidate particle

q(x | y) MCMC proposal density function

qσ(x | y) Gaussian proposal density with mean y and standard de-
viation σ

T (x, y) MCMC transition kernel

U auxiliary state space

U(A) uniform distribution over region A

u auxiliary variable

Z normalization constant

{u〈m〉}m Markov chain auxiliary variables

{x(i)
s }i particle

{x〈m〉}m Markov chain variables

Symbols for Part-based Object Tracking

Econ(p, y) global consistency energy

EDPM(p) deformable parts model energy

Eseg(y) segmentation energy

EVDPM(p, v) visibility-aware deformable parts model energy

I[ · ] indicator function

μ(p) patch mask function

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


XII Symbols and Notation

μ patch mask matrix

p vector of object poses

v visibility vi for each DPM patch i

x indicator vector over object poses

X pose pose state space

X seg segmentation state space

y ∈ {0,1}N foreground/background segmentation of an image with
N pixels

https://doi.org/10.51202/9783186860101-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:50. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186860101-I


XIII

Abstract

This thesis deals with the development and improvement of maximum a posteri-
ori (MAP) inference approaches in probabilistic graphical models (PGMs) and their
application on challenging computer vision problems.

Many challenging computer vision tasks are modeled as MAP inference problems
in PGMs. MAP inference is the problem of finding the most probable configuration
of random variables for a given target problem in the exponentially large space of
possible outcomes. PGMs are a family of powerful modeling languages which unify
two fundamental concepts: uncertainty and graphical models. Many real-world
phenomena can be modeled in form of probability distributions over continuous-
valued random variables. A PGM is a language to model these distributions which
typically involve a very large number of random variables. Conditional independence
assumptions of the random variables play a key role in retrieving tractable models.

In the first part of this thesis, a general purpose framework for MAP inference in
PGMs over continuous-valued random variables based on stochastic inference meth-
ods is developed. A novel approach, the slice-sampling particle belief propagation
(S-PBP) algorithm, is developed which achieves more accurate and faster MAP es-
timates than heuristic sampling or Metropolis-Hastings sampling approaches. The
proposed approach generates sample proposals from the max-marginal distributions
using the slice sampling algorithm. By exploiting the message-passing nature of the
applied MAP inference approach, the dependence on hyper-parameters is reduced
and a significant speedup is achieved.

The second part of this thesis is dedicated to the application of the developed
inference approaches to computer vision applications. Hereby, the main focus is
in online tracking of articulated objects. The visual tracking of previously unseen
objects in videos or video streams is a fundamental task in computer vision. A novel
framework is proposed for part-based object tracking. The problem of automatic
model initialization and the reduction of tracker drift by incorporating higher-order
constraints and image segmentation cues to the tracker is addressed. A global
consistency prior is proposed which enables inference of both part-based tracking
and image segmentation in a joint probabilistic model. Experiments show that the
joint formulation leads to improved image segmentation results as well as reduced
drift in online object tracking.

Keywords: computer vision, probabilistic graphical models, MAP inference, Mar-
kov-chain Monte-Carlo, slice sampling, product slice sampling, articulated online
tracking, visual object tracking, pose estimation
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XIV Symbols and Notation

Kurzfassung

Das Ziel dieser Arbeit ist die Erstellung und Verbesserung von Optimierungsver-
fahren zur Inferenz in probabilistischen graphischen Modellen (PGMs) und deren
Anwendung auf Probleme im Bereich Computer-Vision.

Viele Computer-Vision Probleme werden heutzutage als MAP-Inferenz Probleme
in PGMs behandelt. MAP-Inferenz beschreibt hierbei das Finden der wahrscheinlich-
sten Kombination von Werten im exponentiell wachsenden Raum möglicher Lösun-
gen eines Problems. Probabilistische graphische Modelle sind eine Familie von Mod-
ellierungssprachen zur Beschreibung von Verbundwahrscheinlichkei-ten über einer
Menge von Zufallsvariablen. Hierbei werden zwei grundlegende Prinzipien miteinan-
der vereint: Die Modellierung von Unsicherheiten und die Modellierung (bedingter)
Unabhängigkeit von Zufallsvariablen mittels Knoten und Kanten in einem Graph.

Der erste Teil dieser Arbeit behandelt das Problem der MAP-Inferenz bei reell-
wertigen Zufallsvariablen mit Hilfe stochastischer Inferenzverfahren. Slice-sampling
particle belief propagation (S-PBP) ist ein neu entwickelter Ansatz, welcher eine
genauere MAP-Schätzung in kürzerer Zeit erlaubt als andere stochastische Ver-
fahren. Eine Kernkomponente stochastischer Suchverfahren ist die Erzeugung von
Stichproben im Lösungsraum. Bisherige Verfahren sind entweder heuristisch mo-
tiviert oder verwenden Vorschlagsverteilungen deren Parameter Problem-abhängig
eingestellt werden müssen. Der in dieser Arbeit vorgestellte Ansatz erzeugt Stich-
proben direkt aus den Max-Marginal-Verteilungen des graphischen Modells mit Hilfe
des Slice-Sampling Verfahrens. Durch Ausnutzung des Message-Passing Mechanis-
mus der verwendeten Optimierungsverfahren wird die Parameter-Abhängigkeit ver-
ringert und eine Beschleunigung des Verfahrens erreicht.

Im zweiten Teil der Arbeit werden die zuvor entwickelten Inferenzverfahren auf
Probleme im Bereich Computer-Vision angewandt. Das Hauptaugenmerk liegt hier-
bei auf der Online-Verfolgung artikulierter Objekte in Videosequenzen. Die visuelle
Verfolgung zuvor unbekannter Objekte in Videos ist ein fundamentales Problem
des maschinellen Sehens. Es wird ein neuer Ansatz zur Teile-basierten Objektver-
folgung entwickelt. Das Problem der automatischen Modellinitialisierung und der
Reduktion des Driftens in Teile-basierten Modellen wird durch die Integration von
Bildsegmentierung und zusätzlicher Bedingungen höherer Ordnung behandelt. Es
wird ein globaler Konsistenzterm vorgeschlagen, der die Teile-basierte Poseschätzung
und die Bildsegmentierung in einem gemeinsamen probabilistischen Modell vereint.
Experimente zeigen das die gemeinsame Schätzung von Pose und Segmentierung
zum einen die Bildsegmentierung verbessert, als auch das Driften der geschätzten
Pose effektiv verringert.

Stichworte: maschinelles Sehen, Probabilistische graphische Modelle, MAP-In-
ferenz, Markov-chain Monte-Carlo, Slice-Sampling, Produkt-Slice-Sampling, Artiku-
lierte Objektverfolgung, Visuelle Objektverfolgung, Poseschätzung
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