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VDPM-e visibility-aware deformable parts model without edge
VvOT visual object tracking
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o
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P probability distribution
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T random variable values

X,y, % random variable value vectors

Symbols for Probabilistic Graphical Models

C set of cliques
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d data

& edges

E(z) energy function
F factor vertices
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L local polytope
L number of states for discrete state space X
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AeA Lagrange multipliers
M marginal polytope
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Symbols for Part-based Object Tracking
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7 patch mask matrix

vector of object poses

v visibility v; for each DPM patch i
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Apose pose state space

Ases segmentation state space
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Abstract

This thesis deals with the development and improvement of maximum a posteri-
ori (MAP) inference approaches in probabilistic graphical models (PGMs) and their
application on challenging computer vision problems.

Many challenging computer vision tasks are modeled as MAP inference problems
in PGMs. MAP inference is the problem of finding the most probable configuration
of random variables for a given target problem in the exponentially large space of
possible outcomes. PGMs are a family of powerful modeling languages which unify
two fundamental concepts: uncertainty and graphical models. Many real-world
phenomena can be modeled in form of probability distributions over continuous-
valued random variables. A PGM is a language to model these distributions which
typically involve a very large number of random variables. Conditional independence
assumptions of the random variables play a key role in retrieving tractable models.

In the first part of this thesis, a general purpose framework for MAP inference in
PGMs over continuous-valued random variables based on stochastic inference meth-
ods is developed. A novel approach, the slice-sampling particle belief propagation
(S-PBP) algorithm, is developed which achieves more accurate and faster MAP es-
timates than heuristic sampling or Metropolis-Hastings sampling approaches. The
proposed approach generates sample proposals from the max-marginal distributions
using the slice sampling algorithm. By exploiting the message-passing nature of the
applied MAP inference approach, the dependence on hyper-parameters is reduced
and a significant speedup is achieved.

The second part of this thesis is dedicated to the application of the developed
inference approaches to computer vision applications. Hereby, the main focus is
in online tracking of articulated objects. The visual tracking of previously unseen
objects in videos or video streams is a fundamental task in computer vision. A novel
framework is proposed for part-based object tracking. The problem of automatic
model initialization and the reduction of tracker drift by incorporating higher-order
constraints and image segmentation cues to the tracker is addressed. A global
consistency prior is proposed which enables inference of both part-based tracking
and image segmentation in a joint probabilistic model. Experiments show that the
joint formulation leads to improved image segmentation results as well as reduced
drift in online object tracking.

Keywords: computer vision, probabilistic graphical models, MAP inference, Mar-
kov-chain Monte-Carlo, slice sampling, product slice sampling, articulated online
tracking, visual object tracking, pose estimation
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Kurzfassung

Das Ziel dieser Arbeit ist die Erstellung und Verbesserung von Optimierungsver-
fahren zur Inferenz in probabilistischen graphischen Modellen (PGMs) und deren
Anwendung auf Probleme im Bereich Computer-Vision.

Viele Computer-Vision Probleme werden heutzutage als MAP-Inferenz Probleme
in PGMs behandelt. MAP-Inferenz beschreibt hierbei das Finden der wahrscheinlich-
sten Kombination von Werten im exponentiell wachsenden Raum méglicher Losun-
gen eines Problems. Probabilistische graphische Modelle sind eine Familie von Mod-
ellierungssprachen zur Beschreibung von Verbundwahrscheinlichkei-ten iiber einer
Menge von Zufallsvariablen. Hierbei werden zwei grundlegende Prinzipien miteinan-
der vereint: Die Modellierung von Unsicherheiten und die Modellierung (bedingter)
Unabhéngigkeit von Zufallsvariablen mittels Knoten und Kanten in einem Graph.

Der erste Teil dieser Arbeit behandelt das Problem der MAP-Inferenz bei reell-
wertigen Zufallsvariablen mit Hilfe stochastischer Inferenzverfahren. Slice-sampling
particle belief propagation (S-PBP) ist ein neu entwickelter Ansatz, welcher eine
genauere MAP-Schétzung in kiirzerer Zeit erlaubt als andere stochastische Ver-
fahren. Eine Kernkomponente stochastischer Suchverfahren ist die Erzeugung von
Stichproben im Losungsraum. Bisherige Verfahren sind entweder heuristisch mo-
tiviert oder verwenden Vorschlagsverteilungen deren Parameter Problem-abhéngig
eingestellt werden miissen. Der in dieser Arbeit vorgestellte Ansatz erzeugt Stich-
proben direkt aus den Max-Marginal-Verteilungen des graphischen Modells mit Hilfe
des Slice-Sampling Verfahrens. Durch Ausnutzung des Message-Passing Mechanis-
mus der verwendeten Optimierungsverfahren wird die Parameter-Abhéangigkeit ver-
ringert und eine Beschleunigung des Verfahrens erreicht.

Im zweiten Teil der Arbeit werden die zuvor entwickelten Inferenzverfahren auf
Probleme im Bereich Computer-Vision angewandt. Das Hauptaugenmerk liegt hier-
bei auf der Online-Verfolgung artikulierter Objekte in Videosequenzen. Die visuelle
Verfolgung zuvor unbekannter Objekte in Videos ist ein fundamentales Problem
des maschinellen Sehens. Es wird ein neuer Ansatz zur Teile-basierten Objektver-
folgung entwickelt. Das Problem der automatischen Modellinitialisierung und der
Reduktion des Driftens in Teile-basierten Modellen wird durch die Integration von
Bildsegmentierung und zusétzlicher Bedingungen hoherer Ordnung behandelt. Es
wird ein globaler Konsistenzterm vorgeschlagen, der die Teile-basierte Poseschitzung
und die Bildsegmentierung in einem gemeinsamen probabilistischen Modell vereint.
Experimente zeigen das die gemeinsame Schatzung von Pose und Segmentierung
zum einen die Bildsegmentierung verbessert, als auch das Driften der geschatzten
Pose effektiv verringert.

Stichworte: maschinelles Sehen, Probabilistische graphische Modelle, MAP-In-
ferenz, Markov-chain Monte-Carlo, Slice-Sampling, Produkt-Slice-Sampling, Artiku-
lierte Objektverfolgung, Visuelle Objektverfolgung, Poseschétzung
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