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Abstract

The capability to recognize biological motion, i.e. gestures, human actions
or face movements is crucial for social interactions, for predators, prey
or artificial systems interacting in a dynamic environment. The famous
point-light-walker experiments [58] reveal that humans have a highly skilled
mechanism dedicated to the analysis of motion information, however the
exact details of this mechanism remain largely unclear. A popular theory is,
that visual recognition is performed in a hierarchical feed-forward process,
consisting of multiple learned simple cell/complex cell layers [53]. In the
case of biological motion recognition these layers are spread throughout
the ventral and dorsal stream of the visual cortex, the ventral stream being
dedicated to static visual information, such as spatial gradient structures
and the dorsal stream is related to dynamic visual information, such as the
motion for each pixel in the input, also known as the optical flow.

In this thesis an artificial feed-forward neural network for biological
motion recognition is proposed. Like its natural counterpart, it consists
of multiple layers organized in two streams, one for processing static and
one for processing dynamic form information. The key component of the
proposed system is a novel unsupervised learning algorithm, called VNMF,
that is based on sparsity, non-negativity, inhibition and direction selectivity.

In the first layer of the dorsal stream, the VNMF is modified to solve
the optical flow estimation problem. In the subsequent layer the VNMF
algorithm extracts prototypical patterns, such as optical flow patterns
shaped e.g. as moving heads or limb parts. For the ventral stream the
VNMF algorithm learns distinct gradient structures, resembling edges and
corners. All these patterns represent the simple cells of the feed-forward
hierarchy, while the complex cells are modeled by a non-linear maximum
pooling operation.

The classification performance of the feed forward neural network is
analyzed on three real world datasets for human action recognition and one
face expression recognition dataset, outperforming other biological inspired
models while being competitive with current computer vision approaches.
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XI

Kurzfassung

Gesten, Mimiken und andere natiirliche Bewegungen sind ein wesentlicher
Bestandteil zwischenmenschlicher Kommunikation. Dariiber hinaus ist die
visuelle Wahrnehmung von Bewegungen notwendig um sich in einer sich
stetig verdndernden Umgebung zurechtzufinden. Die berithmten Point-
Light- Walker Experimente von Johansson [58] zeigen, dass Menschen Bewe-
gungen auch ohne klar definierte Formen wahrnehmen kénnen. Allerdings
ist es nach wie vor unklar wie die Bewegungsinformationen im menschlichen
Gehirn verarbeitet werden. Eine populdre Theorie [53] besagt, dass visuelle
Informationen in aufeinander folgenden, gelernten Neuronen-schichten ver-
arbeitet werden. Im Fall der visuellen Bewegungsanalyse sind die Schichten
im ventralen und dorsalen Pfad des visuellen Kortex verteilt. Der ventrale
Pfad verarbeitet statische, z.B. Kanten, Informationen, wahrend der dor-
sale Pfad eher dynamische Informationen, z.B. Punktbewegungen, auch
optischer Fluss genannt, verarbeitet.

In der vorliegenden Dissertation wird ein kiinstliches neuronales Net-
zwerk zur Erkennung von natiirlichen Bewegungen vorgestellt, welches,
dem biologischen Vorbild gleich, aus zwei parallelen Pfaden besteht. Die
Schliisselkomponente des vorgestellten Systems ist ein neuer Lernalgorith-
mus, welcher die neuronalen Verbindungen der verschiedenen Schichten
ausschlieflich anhand von Beobachtungen lernt. Die Kodierung der Bewe-
gungsinformation erfolgt richtungsspezifisch anhand von spérlichen, nicht-
negativen Aktivitdten, welche mit anderen Aktivitdten in ihrer lokalen
Nachbarschaft konkurrieren. In der ersten Schicht des dorsalen Pfades wird
das optische Flussfeld mit Hilfe des neuen Lernalgorithmus geschétzt. In
der darauf folgenden Schicht werden prototypische Muster gelernt, deren
Formen bewegliche Korperteile beschreiben. Im ventralen Pfad wird der
VNMF Algorithmus verwendet um Kantenstrukturen zu lernen.

Die Klassifikationseigenschaften des neuronalen Netzes werden anhand
von drei Datensétzen fiir Kérper- und Gesichts-bewegungen evaluiert. Die
Klassifikationsergebnisse des vorgestellten Systems sind genauer als die
anderer biologisch inspirierter Modelle und vergleichbar mit aktuellen
Modellen der Bildverarbeitung.
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