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Lateinische Notation  

A  mm²  Fläche 

a1, a2, a3 - ak   -    Faktoren für die Lebensdauer von Wälzlagern 

a4  -  Life Modification Factor for Flexible Support Structure 

bm  -  Faktor zur Bestimmung der dynamischen Tragzahl 

Ca  N  dynamische Tragzahl 

Ca,h  N  reduzierte dynamische Tragzahl bzgl. des Härteeinflusses 

Cmax  Ns/mm  Dämpfungskoeffizient am Kontakt 

C0  N  statische Tragzahl 

DA  mm  Lageraußendurchmesser 

DAa  mm  Durchmesser des Lageraußenringes am Außendurchmesser 

DAi  mm  Durchmesser des Lageraußenringes am Innendurchmesser 

DI  mm  Lagerinnendurchmesser 

DIa  mm  Durchmesser des Lagerinnenringes am Außendurchmesser 

DIi  mm  Durchmesser des Lagerinnenringes am Innendurchmesser 

Dpw   mm  Teilkreisdurchmesser 

Dw  mm  Wälzkörperdurchmesser 

Dw,neu  mm  korrigierter Wälzkörperdurchmesser 

e  -  Exponent der Kontaktsteifigkeit 

E  N/mm²  E-Modul 

F  N  allgemein Belastung 

Fa   N  Axialkraft 

fcm  -  geometrischer Hilfswert zur Berechnung der dynamischen    

Tragzahl 

fH  -  Minderungsfaktor bezüglich der Härte für Lebensdauer 

Fk  N  Wälzkörperkraft bzw. Kontaktkraft am Wälzkontakt 
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Fk,a  N  Wälzkörperkraft aufgrund axialer Belastung 

Fk,i  N  Kontaktkraft am Wälzkontakt eines einzelnen Wälzkörpers i 

Fk,max   N  maximale Wälzkörperkraft 

Fkr  N  radiale Komponente der Kräfte am Wälzkontakt 

Fkres,i  N  resultierende Belastung eines einzelnen Wälzkörpers i 

Fk,tat  N  tatsächliche Wälzkörperkraft 

Fkx,i  N  Belastungskomponente eines einzelnen Wälzkörpers i in  

x-Richtung 

Fky,i  N  Belastungskomponente eines einzelnen Wälzkörpers i in  

y-Richtung 

Fkz,i  N  Belastungskomponente eines einzelnen Wälzkörpers i in  

z-Richtung 

Fr   N  Radialkraft 

Fres  N  resultierende Lagerkraft 

fs  -  Abminderungsfaktor für die Härte des Werkstoffes in der  

    statischen Tragfähigkeit 

Fx   N  Radialkraft in x-Richtung 

Fy   N  Radialkraft in y-Richtung 

Ga   mm  Axialspiel 

Gr   mm  Radialspiel 

H  mm  Höhe des Wälzlagers 

HV  -  Härte in Vickers 

KA  N/mm1,5 mittlerer Steifigkeitsfaktor am Wälzkontakt 

KAa  N/mm1,5 Steifigkeitsfaktor am Wälzkontakt Außenring zu Wälzkörper 

KAi  N/mm1,5 Steifigkeitsfaktor am Wälzkontakt Innenring zu Wälzkörper 

kij  1/mm  Kehrwert der Krümmung am Wälzkontakt i=1,2; j=1,2 

L10  Umdr.  nominelle Lebensdauer in Umdrehungen  

L10h  Std.  Lebensdauer in Stunden 

Mk   Nm  Kippmoment 

MKS  -  Mehrkörpersimulation 

MR  Nm   Lagerreibmoment  

MRa  Nm  Lagerreibmomentanteil aufgrund der axialen Belastung 

MRk  Nm  Lagerreibmomentanteil aufgrund der Kippmomentenbelastung 

MRl  Nm  lastabhängiges Reibmoment 

MR0  Nm  Lagerreibmoment ohne Belastung 

MRr  Nm  Lagerreibmomentanteil aufgrund der radialen Belastung 

Mx   Nm  Kippmoment um x-Achse 

My  Nm  Kippmoment um y-Achse 
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Mz  Nm  Drehmoment des Wälzlagers zum Schwenken 

N  Osz./min Oszilationsgeschwindigkeit der Lagerschwenkbewegung 

n  -  Anzahl der Laufbahnen 

nm  U/min  mittlere Wälzlagerdrehzahl 

nm,i  U/min  mittlere Wälzlagerdrehzahl eines einzelnen Belastungszyklus 

O  °  Oszilationsamplitude der Lagerschwenkbewegung  

Ocrit  °  kritische Oszilationsamplitude der Lagerschwenkbewegung 

p  N/mm²  Flächenpressung 

p  -  Exponent zur Bestimmung der dynamischen äquivalenten Be- 

    lastung 

Pea  N  dynamische äquivalente Belastung 

Pea,i  N  dynamische äquivalente Belastung eines einzelnen Belastungs- 

    zyklus 

pmax  N/mm²  maximale vorhandene Hertz`sche Pressung 

pmax,zul   N/mm²  maximale zulässige Hertz`sche Pressung 

pmax,zul,norm  N/mm²  maximale zulässige Hertz`sche Pressung nach Norm 

P0  N  statisch äquivalente Belastung 

r   mm  Radius allgemein 

rA   mm  Rillenradius der Laufbahn am Lageraußenring 

RA   mm  Krümmungsradius der Laufbahn im Axialschnitt am Wälzlager- 

    außenring 

rI   mm  Rillenradius der Laufbahn am Lagerinnenring 

RI   mm  Krümmungsradius der Laufbahn im Axialschnitt am Wälzlager- 

innenring 

rij  mm  Radien am Wälzkontakt i=1,2; j=1,2 

Rj,i  mm  Abstand der Mittelpunkte der Laufbahnkrümmungen eines 

    Wälzkörpers 

R0  mm  Abstand der Mittelpunkte der Krümmungsradien im unbelas- 

    teten Zustand 

Rw  mm  Wälzkörperradius 

S  Ns/mm  Funktion zur Beschreibung der Abhängigkeit des Dämpfungs- 

    verhaltens am Kontakt 

S  kN/mm Steifigkeit allgemein 

Sa   kN/mm Axiale Steifigkeit 

Sk   kNm/mrad Kippsteifigkeit  

s0  -  Kennzahl zur statischen Beanspruchung 

s0,Fk   -  Kennzahl zur statischen Beanspruchung anhand der maximal  

auftretenden Wälzkörperbelastung 
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s0,Hertz  -  Kennzahl zur statischen Beanspruchung anhand der maximal  

auftretenden Hertz`schen Pressung 

Sr  kN/mm Radiale Steifigkeit 

ti  -  Zeitanteil eines einzelnen Belastungszyklus 

TR  Nm  Reibmoment allgemein 

TS  mm  Schalendicke der Zwischenelemente 

uj  -  Überrollungen des Lagerringes bei einer Wälzlagerumdrehung 

ux  mm  Verschiebung der Lagerringe zueinander in x-Richtung 

uy  mm  Verschiebung der Lagerringe zueinander in y-Richtung 

uz  mm  Verschiebung der Lagerringe zueinander in z-Richtung 

X   -   Radialfaktor für die dynamische äquivalente Belastung 

x  mm  Abstand zweier Kontaktkörper unter Belastung 

ሶ	ݔ   mm/s  Aufprall- bzw. Eindringgeschwindigkeit zweier Kontaktkörper  

XAj,i, YAj,i, ZAj,i mm Koordinaten der Mittelpunkte der Laufbahnkrümmungen des 
Außenringes am Wälzkontakt in x-, y- und z-Richtung 

XAO,i, XAU,i -  x-Koordinate der Masterpunkte der einzelnen Wälzkörper   

XIj,i, YIj,i, ZIj,i mm  Koordinaten der Mittelpunkte der Laufbahnkrümmungen des  

    Innenringes am Wälzkontakt in x-, y- und z-Richtung 

X0  -  Radialfaktor für die statisch äquivalente Belastung 

x0  mm  Abstand zweier Kontaktkörper ohne Belastung 

YAO,i, XAU,i -  y-Koordinate der Masterpunkte der einzelnen Wälzkörper i 

Y  -  Axialfaktor für die dynamische äquivalente Belastung 

Y0  -  Axialfaktor für die statisch äquivalente Belastung 

z  -  Wälzkörperanzahl 

ZAO, ZAU -  z-Koordinate der Masterpunkte 
 

Griechische Notation 

α  °  Betriebsdruckwinkel   

α0   °  Nenndruckwinkel   

αi  °  Betriebsdruckwinkel eines bestimmten Wälzkörpers 

γ  -  Beiwert zur Bestimmung des geometrischen Hilfswertes zur  

    Berechnung der dynamischen Tragzahl 

cos  -  Hilfsbeiwert zur Bestimmung der Hertz`schen Beiwerte 

δ  mm  Betrag der Annäherung der Kontaktpartner 

δA  mm  Betrag der Annäherung des Wälzkörpers zur Laufbahn am  

   Außenring 

δHertz  mm  Betrag der Annäherung der Kontaktpartner nach Hertz  
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δI   mm  Betrag der Annäherung des Wälzkörpers zur Laufbahn am  

    Innenring  

Δα  °  Änderung des Druckwinkels 

ΔF  N  Änderung der Belastung 

ΔΘ   °  Änderung des Kippwinkels 

ΔM  Nm  Änderung der Momentenbelastung 

ΔR  mm  Abstandsänderung der Krümmungsradienabstände der Lauf- 

    bahnen unter Belastung 

ΔrA  mm  Lagerringaufweitung am Außenring 

ΔrI  mm  Lagerringstauchung am Innenring 

Δu  mm  Änderung der Verschiebung 

η  -  Beiwert nach Hertz 

Θ   °  Kippwinkel der Lagerringe 

Θx   °   Kippwinkel der Lagerringe um x-Achse 

Θy   °  Kippwinkel der Lagerringe um y-Achse 

κ  -  Schmiegung   

κA  -  Schmiegung am Außenring 

κI  -  Schmiegung am Innenring 

µ   -  Reibkoeffizient 

v   -  Querkontraktionszahl 

ξ   -  Beiwert nach Hertz 

π  -  Kreiszahl pi 

Σk  -  Summe der Krümmungen am Wälzkontakt 

ψ  -  Beiwert nach Hertz 
 

Vektoren und Matrizen 
 

 Dämpfungsmatrix  ࡰ

 ୰ୣୢ  reduzierte Dämpfungsmatrixࡰ

 Massenmatrix  ࡹ

 ୰ୣୢ  reduzierte Massenmatrixࡹ

 Lastvektor  ݌

 ୰ୣୢ  Lastvektor eines reduzierten Systems݌

 Verschiebungsvektor eines reduzierten Systems  ݍ

ሶݍ   Geschwindigkeitsvektor eines reduzierten Systems 

ሷݍ   Beschleunigungsvektor eines reduzierten Systems 

 Steifigkeitsmatrix  ࡿ

	௥௘ௗࡿ 	 reduzierte Steifigkeitsmatrix 
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	ࢀ 	 Transformationsmatrix	
	ݑ 	 Verschiebungsvektor	
ሶݑ 	 	 Geschwindigkeitsvektor	
ሷݑ 	 	 Beschleunigungsvektor	
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Kurzfassung 

 

Die Berechnung von Vierpunkt-Großwälzlagern erfolgt heutzutage mit Berechnungsverfahren 

nach DIN Normen, die in der Regel für kleinere Standardwälzlager entwickelt wurden. Zur 

Berücksichtigung der Unterschiede, die zwischen einem Vierpunkt-Großwälzlager und einem 

Standardwälzlager vorliegen, werden üblicherweise pauschale Abminderungsfaktoren verwen-

det. Diese haben aber oftmals eine Überdimensionierung des Wälzlagers zur Folge.  
 

Zu Beginn der Arbeit werden die Berechnungsansätze zur Bestimmung der statischen Trag-

fähigkeit, der Steifigkeit, der Lebensdauer und des Reibmomentes für den speziellen Anwen-

dungsfall „Vierpunkt-Großwälzlager“ näher betrachtet. Dabei zeigt sich, dass Berechnungs-

ansätze, die die einzelnen Wälzkörperkräfte berücksichtigen, besser für Vierpunkt-Großwälz-

lager geeignet sind als die heutzutage üblichen Standardberechnungsverfahren. Die Ermittlung 

der exakten Wälzkörperkräfte ist jedoch in diesen Ansätzen die größte Schwierigkeit, da die 

Verformungen der Lagerringe, die unter einer Belastung entstehen, beachtet werden müssen. 

Zur Berechnung der Wälzkörperkräfte gibt es bereits iterative Rechenansätze, die jedoch nur 

mit sehr großem Aufwand die Verformung der Lagerringe berücksichtigen. 
 

Aus diesem Grund wird in dieser Arbeit speziell für Vierpunkt-Großwälzlager ein Berech-

nungsansatz erarbeitet, der die Wälzkörperkräfte im Inneren des Vierpunkt-Großwälzlagers 

berechnet und dabei das Verformungsverhalten der Lagerringe im Zusammenhang mit der Ver-

formung der Anschlusskonstruktion berücksichtigt. Als grundlegender Ansatz hierfür wird die 

Mehrkörpersimulation verwendet. Mit ihr kann die Abbildung des Kontaktverhaltens zwischen 

den einzelnen Wälzkörpern und den Laufbahnen der Lagerringe einfach gestaltet werden.  
 

Ziel dieser Arbeit ist es, die Grundlage für einen neuen Berechnungsansatz zu schaffen, der als 

einfaches Handwerkzeug bereits sehr früh im Konstruktionsprozess zur Berechnung der ein-

zelnen Wälzkörperkräfte verwendet werden kann. An einem Beispiel aus der Praxis wird der 

neu entwickelte Berechnungsansatz aufgezeigt.  

 
 

Schlagwörter: Vierpunkt-Großwälzlager, Kugeldrehverbindung, Simulation von Wälzkörper- 

     kräften, Mehrkörpersimulation 
 

 

 

 

https://doi.org/10.51202/9783186447012-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 17:14:19. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186447012-I


 

XIV 
 
 

 

Abstract 

 

Nowadays, the calculation of four-point slewing bearings is normally carried out with 

calculation methods in accord with DIN standards, which have been developed for smaller 

standard bearings in the first place. For the consideration of the differences between a four-

point slewing bearing and a standard bearing normal reduction factors are used. In many cases, 

however, the consequences are over dimensions of the bearing.  
 

At the beginning of the work process the basic approach of the calculation of the load capacity, 

the stiffness, the life cycle time and the friction for special application ‘four-point slewing 

bearing’ are examined more closely. This reveals that calculation methods, based on a 

calculation of the individual ball forces, are more suitable for the calculation of the four-point 

slewing bearings than the standard calculation methods which are commonly used these days. 

However, the determination of the exact ball forces is the greatest difficulty in these approaches. 

The bearing rings of a four-point slewing bearing often have larger deformations; this factor 

needs to be included in the calculation. Iterative calculation methods for the calculation of these 

ball loads do already exist, nevertheless it is a large effort to consider the deformation of the 

bearing rings in this method. 
 

For this reason, a calculation approach especially for four-point slewing bearings is developed 

in this work which calculates the ball force inside the four-point slewing bearing and considers 

the deformation behavior of the bearing rings in connection with the deformation of the 

connector construction. The multi-body-simulation is used as a basis for this calculation 

method, because the reproduction of the contact behavior between the individual rolling 

elements and the raceways of the bearing rings can be simulated very simply that way. 
 

The aim of this work is creating the basis for a new calculation method, which can even be used 

at an elementary stages as a simple hand tool of the design process for calculating the various 

ball forces of slewing bearings. They can be used in separate calculations, e.g. for calculating 

the static load carrying capacity. This newly developed method is shown in a practical example. 

 
 

Tags: four-point slewing bearing, ball bearing slewing ring, simulating ball forces, 

           multi-body-simulation
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