
128

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

Bei diesem Beitrag handelt es sich um einen wissenschaftlich
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Blockbasiertes Programmieren und Steuern von kamerageführten Robotern via OPC-UA-Skills

Flexible BPMN-Steuerung
für Robotersysteme

S. Kreuter, J. Abicht, P. Hold, M. Heinrich, T. Wiese, S. Schlund

ZUSAMMENFASSUNG Bei der Programmierung und
Steuerung von Robotersystemen fehlen Standardisierungen,
wodurch Experten bei Änderungen in den Randbedingungen
mit Zeit- und Personalaufwand nachprogrammieren. Um den
Programmieraufwand zu senken, wird ein Software-Frame-
work zur BPMN-basierten Programmierung und Orchestrie-
rung von skillbasierten Robotersteuerungen vorgestellt. Ein
Bildverarbeitungs-Modul unterstützt bei der Parametrierung
der Skills.

Flexible BPMN-based control
for robotic systems

ABSTRACT The programming and control of robot sys-
tems lacks standardization, resulting in time-consuming and
costly reprogramming by experts when boundary conditions
change. To reduce the programming effort, a software frame-
work for BPMN-based programming and orchestration of skill-
based robot control systems is presented. An image proces-
sing module supports the parameterization of the skills.

1 Einleitung
1.1 Ausgangssituation und Problemstellungen

Zwischen 2010 und 2025 wird sich der globale Konsum ver-
doppeln [1] und das Kaufverhalten vom Konsum der Massenpro-
duktion hin zu individuell gefertigten Produkten wandeln [2].
Dieses geänderte Kaufverhalten spiegelt sich in der Industrie in
der Fertigung kleiner, variantenreicher Lose wider und macht
 damit flexible, anpassbare Produktionssysteme unerlässlich [3].
Automatisierte Produktionssysteme kämpfen aber mit mangeln-
der Flexibilität [4], während demografischer Wandel und Fach-
kräftemangel die Stabilität und Wirtschaftlichkeit manueller
 Produktion beeinträchtigen [5]. Mit einem erwarteten massiven
Rückgang der Arbeitskräfte durch Pensionierungen in den nächs-
ten zehn Jahren [6] verschärft sich dieses Problem sogar noch.

Um diesem Problem entgegenzuwirken, werden vermehrt mo-
bile oder statische Robotersysteme in die Produktion integriert,
die repetitive oder präzise Aufgaben übernehmen, zum Beispiel
Maschinenbeschickungen oder Montageaufgaben [7, 8]. Der
Mensch bleibt dabei mit seiner Flexibilität und Fachwissen für
komplexere Aufgaben essenzieller Bestandteil bei der Inbetrieb-
nahme und Überwachung der Robotersysteme [9]. Aufgrund der
Individualisierung der Produkte müssen sich Robotersysteme
stärker an veränderte Umgebungsbedingungen (zum Beispiel
Bauteile, Maschinen, Speicherart) anpassen und wandelbar sein,
was einen höheren Inbetriebnahmeaufwand und Nebenzeiten
nach sich zieht. Modulare Steuerungskonzepte, wie skillbasierte
Steuerungen (skill-based control, SBC), verringern die Program-
mierzeit bei der Anpassung an neue Prozesse und Produkte durch
einheitliche Steuerungsarchitekturen und Kommunikationsinter-

faces [10]. Trotzdem sind derartige Ansätze aktuell nur wenig
vereinheitlichte Insellösungen für dedizierte Steuerungen. Trotz
vereinfachter Anpassbarkeit und Erweiterbarkeit der Programme,
verbleibt jedoch die Notwendigkeit, die abstrakten Programm-
bausteine zeitintensiv zu reparametrieren (zum Beispiel durch
Skillparameter in Skills). Der stärkere Einsatz von Sensorik, wie
2D-Kameras, die Umgebungsänderungen automatisiert detektie-
ren und daraufhin Programme anpassen, sind für die Reduktion
des Inbetriebnahmeaufwands zukünftig ebenso essenziell. Der
 geringe und aufgabenspezifische Einsatz von Sensorlösungen
 unterstützt aktuell nur begrenzt bei der Programmierung von
 Robotern und wird meist für Einzelaufgaben, wie Positions -
regelungen verwendet.

Um Nebenzeiten gering und die Produktivität dennoch hoch-
zuhalten, ist es notwendig, Steuerungen von Robotersystemen
 sowie deren Schnittstellen und Programmierung zu vereinheitli-
chen und durch Nutzung von Sensorsystemen zu beschleunigen.
Zeitgleich sind Benutzerschnittstellen nötig, die es den vorhande-
nen Fachkräften ermöglichen, den relevanten Programmcode der
Steuerungen ohne zusätzliches Expertenwissen effizient anzupas-
sen.

Zusammengefasst sind bei der Programmierung und Steue-
rung von Robotersystemen folgende drei Defizite identifizierbar:
1. Die geringe Standardisierung im Bereich von Steuerungen von
Robotersystemen führt zu einer hohen Herstellerabhängigkeit,
sowie geringer Austauschbarkeit und Erweiterbarkeit der Pro-
gramme.

2. Die Programmierung ist weiterhin Personen mit Expertenwis-
sen vorbehalten, da Maschinenbedienenden aufgrund fehlender
nutzerzentrierter Interfaces (angepasst an deren Qualifikati-

ST I C HWÖRT E R

BPMN, Skillbasierte Steuerung, OPC-UA

doi.org/10.37544/1436–4980–2024–04–20

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

129WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

onstiefe) für die Programmänderungen das entsprechende
Knowhow fehlt. Es sind dedizierte Schulungen für jede Steue-
rung in der Produktion notwendig, um das nötige Knowhow
aufzubauen und auf verschiedene Applikationen zu übertragen

3. Trotz vereinzelter Ansätze für modulare Steuerungskonzepte
und der Anwendung intelligenter Hardwarekomponenten feh-
len einheitliche Steuerungslösungen, die Fachkräfte durch eine
ganzheitliche, automatisierte Detektion und Verarbeitung aller
relevanten Umgebungsänderungen bei der Programmierung
der Robotersteuerungen unterstützen.

1.2 Stand der Technik bei der Programmierung
 und Steuerung von Robotersystemen

Robotersysteme dienen der Automatisierung industrieller Pro-
duktionsprozesse durch eine prozessspezifische Anordnung von
Fertigungsmodulen mit einem zentralen Roboter als Manipulator
[11]. Neben zahlreichen ortsfesten Lösungen, wie bspw. für Fräs-
bearbeitungen [12, 13], wurden in den letzten Jahren auch mobi-
le Roboterzellen [8, 14, 15], teilweise als kollaborative Lösungen
[13, 16], entwickelt. Aktuelle Bestrebungen bestehen darin, Ro-
botersysteme für ihre Aufgabe weiter zu flexibilisieren (Plug-and-
Produce-Paradigma) [14], unter anderem im Bereich der flexi-
blen Steuerung und intuitiven Programmierung von Robotersys-
temen [11], und damit die industrielle Verbreitung zu fördern.

Ein Ansatz für eine verbesserte Steuerung und Programmie-
rung sind SBC, die durch Abstraktion der Hardwarefunktionen in
Softwaremodulen über funktionsspezifische Skills eine schnellere
Rekonfigurierbarkeit und aufgabenorientierte Programmierweise
ermöglichen [10, 17]. Basierend auf einer objekt-orientierten
Steuerungsarchitektur werden Template-Klassen (Skill-Basisklas-
sen) bereitgestellt, die für das Erstellen neuer Skills als Guideline
verwendet werden. Die Kommunikation zwischen den Modulen
und deren Skills sind durch die Templates vorbestimmt, sodass
sich der Programmierer in einer SBC auf die reine Funktionalität
und Parametrierbarkeit der Hardwarefunktion fokussiert. In
 Sequenzen (oder auch Jobs) werden danach Skills zu aufgaben-
spezifischen Programmabläufen kombiniert und von einer Leit-
steuerung orchestriert. Bei komplexen Arbeitsprozessen steigt
trotz hoher Modularität jedoch der Programmieraufwand, da die
Anzahl der Skills schnell ansteigt. Außerdem besteht weiterhin
 eine Abhängigkeit von Expertinnen und Experten, die sich in die
Einsetzbarkeit und Parametrierung der Skills einarbeiten. Verbes-
sert werden könnte dies durch eine einheitlichere, nutzerzentrier-
te Programmierung der Abläufe und der Erhöhung der Autono-
miefähigkeit.

Die Programmierung von Robotersystemen erfolgt sehr steue-
rungsnah und benötigt daher umfangreiche Vorkenntnisse. Eine
Vereinfachung durch die Verwendung von grafischen Blöcken
und funktionsorientierter Programmierung wird daher von diver-
sen Projekten in Forschung und Industrie vorangetrieben, um die
notwendigen Qualifikationshürden zu reduzieren. Hierfür wird
unter anderem der Einsatz von Funktionsbausteinen [18, 19],
wie beispielsweise die Implementierung von Google Blockly
[20, 21], oder grafische Programmierung erforscht [22, 23]. Um
die Unabhängigkeit von speziellen Hardwarelösungen zu gewähr-
leisten, werden diese Ansätze um Plugins zur Kommunikation
 erweitert, welche die programmierten Bausteine in die hardware-
spezifischen Grundbefehle übersetzen [24, 25]. Plugins existieren
für Industrieroboter und benötigte Peripherien. Eine Vereinheitli-
chung (zum Beispiel über OPC-UA) der Kommunikation stärkt
hier die Herstellerunabhängigkeit der Programmierparadigmen
und industrielle Verbreitung.

Die automatisierte Detektion und Verarbeitung von Umge-
bungsänderungen im Programmcode wird maßgeblich durch For-
schungsbemühungen im Bereich der Bildverarbeitung getrieben.
Visual Perception bedeutet in diesem Zuge die Aufnahme, Orga-
nisierung und Interpretation von Bildinformationen im Kontext
einer bestimmten Prozessaufgabe [26]. Grundproblem an Robo-
tersystemen ist unter anderem die Detektion eines zu handhaben-
den Bauteils und die Bestimmung der Position im Raum. In der
Robotik kommen hierfür außerdem RGB-, Monochrom- oder
Stereovision-Kameras für 2D- und 3D-Rohdaten zum Einsatz.
Die benötigten Informationen werden danach algorithmisch
 ermittelt und als Parameter an die Steuerung weitergegeben
[27, 28].

Vergleichend zu den Kerntechnologien im Stand der Technik,
gibt die Tabelle einen Überblick über aktuelle Ansätze im Be-
reich der Programmierung und Steuerung von Robotersystemen.

2 Vorgehen

Das entwickelte Software-Framework verfügt über drei aufei-
nander aufbauende Softwarekomponenten, die die drei Defizite
heutiger Steuerungen von Robotersystemen synergetisch lösen.
Als Basis wird dabei das zu steuernden Robotersystems als SBC
umgesetzt. Hierauf aufbauend besteht das Software-Framework
aus:
• Abstrahierten Robotersystemfunktionen als Skills einer SBC
und Entwicklung von OPC-UA-Konnektoren,

Tabelle. Vergleich aktueller modularer Steuerungsframeworks und Programmiersysteme [10, 18–23].

Technologie

Programmiermethode

Anwendungsgebiet

Bildverarbeitung

Roboterkompatibilität

Einlerndauer

Aufwand für Modifikation

Grafische Programmierung

Teach-in, grafisch, Funktionsbausteine

Fügen, Fertigung

Teilweise

Erweiterbar

1–5 Tage

< 5 Minuten

Funktionsbausteine

Playback, Funktionsbausteine

Handling, Prüfen, Fertigung

Teilweise

Herstellerbeschränkung

1–5 Tage

< 5 Minuten bis 1 Tag

SBC

Programmieren
von Skills zu Jobs

Fertigung

Teilweise

Erweiterbar

~ 2 Tage

> 15 Minuten

Vorgestelltes Framework

Deklarativ,
Funktionsbausteine

Fertigung, Handling

Ja

Erweiterbar

< 1 Tag

< 5 Minuten

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

130

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

• Business Process Model and Notation (BPMN) 2.0
 Programmier- und Orchestrierungssystem zur
 Skillansteuerung (BPMN Controller),

• Bildverarbeitungs-Modul zur Parametrierung
der aufgerufenen Skills.

Der schematische Aufbau des Frameworks ist in Bild 1 darge-
stellt. Über den BPMN2.0-Standard wird ein Prozessablauf in
 einem Graphischen User Interface (GUI) als BPMN 2.0-Modell
programmiert und als XML-File textbasiert gespeichert. Das
XML enthält die Informationen der auszuführenden Skills in abs-
trakter Form. Ein BPMN-Controller lädt die Informationen und
leitet einen Ablaufplan zur Orchestrierung ab. Über OPC-UA-
Konnektoren werden durch den BPMN-Controller die jeweiligen
Skills getriggert und überwacht. Das Bildverarbeitungs-Modul
unterstützt den Programmierer als kamerageführtes Robotersys-
tem, indem vorgeschaltete Bildverarbeitungs-Skills zur automati-
sierten Ermittlung von Skillparametern des Robotersystem
 dienen.

Das Framework adressiert damit die Herausforderungen heu-
tiger Robotersysteme. Über ein zentrales, einheitliches und intui-
tiveres Programmier- und Steuerungssystem sind heterogene
 Roboter orchestrierbar. Mit der BPMN-Programmierung wird
zudem eine an die Qualifikationstiefe von Maschinenbedienenden
angepasste, deklarative und damit nutzerzentriete Programmier-
umgebung bereitgestellt.

3 Methodik

3.1 Abstrahieren der Robotersystemfunktionen in Skills
 und Entwicklung von OPC-UA-Skillkonnektoren

Zur flexibleren Nutzung abstrahiert das Framework die Hard-
warefunktionen des Robotersystems in einer SBC zuerst als Skills

in einer objektorientierten Programmierweise. Die SBC läuft da-
bei in einem Leitrechner, womit die Hardwaremodule, wie Robo-
ter, Greifer oder Kameras, über einen Feldbus kommunizieren.
Die Skills dienen als Datenschnittstellen zu übergeordneten Or-
chestrierungssystemen, um die Hardwarefunktionen eines Robo-
tersystems einheitlich bereitzustellen und anzusprechen, siehe
[10]. Die Skills werden über eine Zustandsmaschine nach dem
Module Type Package (MTP) [29] verwaltet. Wie in Bild 2 zu
sehen, wurde zur Implementierung der Skills eine Skill-Basisklas-
se (BaseSkill) entwickelt, womit die notwendigen Datenstruktu-
ren definiert werden.
• ST_SkillCommand: Liste an Schaltbefehlen basierend auf dem
MTP [29], um Skills in einen spezifischen Zustand zu verset-
zen, z.B. in einen Ausführungszustand (execute),

• ST_SkillData: Liste an ST_Parameter, die eine endliche Anzahl
an Skillparametern mit Namen, Wert, Einheit und Beschrei-
bung definieren, um Skills zu parametrieren,

• ST_SkillDataDefault: Default-Parameter von ST_SkillData, die
bei der Initialisierung des Skills ST_SkillData beschreiben,

• ST_SkillState: Aktueller Zustand des Skills nach dem MTP
[29].

Das Software-Framework definiert Skill-Basisklassen für variable
Steuerungsarten und -hersteller. Umgesetzt sind die Skill-Basis-
klassen als Funktionsbausteine in TwinCAT 3.1 (Beckhoff), Pro-
grammbausteine in TIA V16 (Siemens) und Automation Studio
(B&R) sowie als Klassen für Python-basierte Skills. Die Skill-
 Basisklassen werden jeweils als Bibliotheken in die Steuerungs-
umgebungen eingebunden, neue Skills über eine Vererbung
 erzeugt und die vordefinierten Datenstrukturen bei der Imple-
mentierung skillspezifisch überschrieben. Das Ausführen eines
Skills erfolgt durch Aktivieren des ST_SkillState über den passen-
den ST_SkillCommand. Über ST_SkillData wird der Skill aufga-
benspezifisch vor Ausführung parametriert. Die Vorgehensweise

Bild 1. Darstellung des entwickelten Software-Frameworks. Grafik: Fraunhofer IWU, Fraunhofer Austria

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

131WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

ermöglicht damit ein konsistentes Steuern und Überwachen aller
Hardwarefunktionen des Robotersystems.

Um die Skills anzusprechen, werden Datenstrukturen der ein-
heitlichen Skill-Basisklasse als Nodes über einen OPC-UA-Server
gehostet, wie Bild 2 mittig zeigt. Alle Hardware-Module (oder
auch Assets) stehen in einer konsistenten Nodestruktur bereit.
Ein Verbindungsmanagement AssetSkillHandle baut nach Angabe
der Verbindungsparameter (Route, Zertifikat, Nutzer und Pass-
wort) eine OPC-UA-Route zum OPC-UA-Client des Roboter -
systems auf. Der AssetSkillHandle durchsucht über die Route den
OPC-UA-Server nach der Datenstruktur der Skill-Basisklasse
(getSkills()). Für jeden Nodebereich, der einer Skill-Basisklasse
zugeordnet wird, wird ein OPC-UA-Skillkonnektor als Merker
instanziiert. Bei der parallelen Kommunikation mit mehreren As-
sets werden mehrere AssetSkillHandle mit unterschiedlichen Ver-
bindungsparametern verwendet. Der AssetSkillHandle ermöglicht
damit das zentrale Schreiben und Lesen der Datenstrukturen aller
gefundenen Skills der Skill-Basisklasse für ein Asset. Ein Skill -
CodeGenerator erzeugt zuletzt mithilfe des AssetSkillHandle
 jeweils eine Python-Methode pro Skill, welche bei Ausführung
den Skill über den Konnektor startet. Die Methoden-Inputs sind
hierbei die Skillparameter des Skills. Die Methoden dienen so als
kompakte Schnittstelle für einen beliebigen, angebundenen
 Python-Controller zur Orchestrierung.

Die Abstraktion der Robotersystemfunktionen über Skill-
 Basisklassen und das Bereitstellen über einen OPC-UA-Server
 ermöglichen es, die vom BPMN-Controller orchestrierten Pro-
gramme für mehrere Steuerungssysteme zu nutzen und somit
 eine Austauschbarkeit zu gewährleisten. Hierfür wird die Struk-
tur der Skill-Basisklasse für alle Hardwarefunktionen der Robo-
tersysteme in deren Steuerungen umgesetzt. Stehen auf einem
Robotersystem die gleichen Skills bereit, so sind die Programme
ohne Anpassung des Quellcode übertragbar und herstellerunab-
hängig.

3.2 Entwicklung eines BPMN 2.0 Programmier-
 und Orchestrierungssystems

Um eine Abstrahierung auf verschiedene Benutzerlevel zu er-
möglichen, wird zunächst eine schnellere und verständlichere
Programmieroberfläche benötigt, welche ergänzend eine Standar-
disierung sicherstellt. Aus diesem Grund werden die Abläufe ei-
nes Robotersystems im BPMN 2.0 Standard (BPMN 2.0) model-
liert und in einem entsprechenden Controller orchestriert. Vor-
teile von BPMN 2.0 sind dabei neben der intuitiven und einfa-
chen Darstellungsart, einheitliche Standards, erhöhte Flexibilität
sowie die Möglichkeit der Abstrahierung eines Prozesses für ver-
schiedene Benutzerlevel. Die unterschiedlichen Abstraktionslevel
werden durch die Möglichkeit der Modellierung von beliebig tief
verschachtelten Sub-Prozessen in BPMN 2.0 realisiert, die Skills
zu kleineren Teilabläufen zusammenfassen, speichern und an-
schließend in übergeordneten Gesamtabläufen verwenden. Diese
Möglichkeit der Verschachtelung von Prozessen durch die Ver-
wendung von BPMN Sub-Modellen erhöht einerseits die Flexibi-
lität und Geschwindigkeit in der Programmierung sowie ermög-
licht andererseits die Programmierung des Robotersystems durch
Personen mit geringen Fachkenntnissen in Bezug auf Skills und
hardwareseitige Implementierung.

Die Struktur des Programmier- und Orchestrierungssystems
ist in Bild 3 ersichtlich. Zunächst werden die einzelnen Skills
mittels Drag and Drop zu einem BPMN 2.0 Prozess zusammen-
gefügt. Nach Abschluss des erzeugten BPMN 2.0 Diagramms
wird dieses in einer XML-Datei abgespeichert. Wird ein Prozess
gestartet, wird ein Graph aus der XML-Datei erzeugt, wobei jede
Node des Graphs einen Skill darstellt. Diese Skills werden im
Durchlauf mit den hardwarespezifischen Skills abgeglichen, wobei
fehlende Skills ergänzt werden. Ergänzend werden entsprechende
Parameter hardwarespezifisch abgeglichen und im Falle von
 fehlenden Parametern entsprechende Default Werte verwendet.
Ist der Abgleich erfolgreich abgeschlossen und sind die erforderli-
chen Skills und Parameter vollständig geladen, iteriert der
 Controller durch den Graphen und aktiviert für jeden Skill die

Bild 2. Implementierung von Skill-Basisklassen und Aufbau von OPC-UA-Skillkonnektoren. Grafik: Fraunhofer IWU

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

132

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

entsprechende Methode zum Starten. Basierend auf dem Feed-
back über den Skillzustand wird nach erfolgreicher Ausführung
eines Skills zur nächsten Node des Graphen übergegangen und
der nächste Skill ausgeführt.

3.3 Parametrieren der Skills
 über ein Bildverarbeitungs-Modul

Wechselnde Umgebungsbedingungen im Ablauf führen zu ei-
ner notwendigen Umparametrierung der Skills an die neue Situa-
tion. Eine sich ändernde Speicherposition für ein zu greifendes
Bauteil bedingt ein Nachteachen der Entnahmepose und damit
ein manuelles Anpassen des Skillparameters im Skill. Die SBC er-
möglicht durch klare Trennung von Aufgabe und Parametrierung,
die Skillparameter vorher sensorisch zu ermitteln und dynamisch
an die folgenden Skills zu übergeben. Das Software-Framework
benutzt hierfür ein Bildverarbeitungs-Modul, welches Bildverar-
beitungs-Skills zur automatisierten Berechnung der Parameter
bereitstellt, siehe Bild 1 orange. Das Modul ist als Python-Runti-
me auf dem Steuerungs-PC des Robotersystem integriert. Eine
Intel Realsense D453i (Stereo-Vision-Kamera mit RGB- und Tie-
fendaten) dient als Sensorinput. Alle Bildverarbeitungs-Skills im-
plementieren die Skill-Basisklasse in Python, sodass die Skills
analog zum Robotersystem über eine zweite OPC-UA-Route in
einem zweiten AssetSkillHandle angesprochen werden. Hierzu
startet das Bildverarbeitungs-Modul einen weiteren OPC-UA-
Server.

Bild 4 zeigt die im Bildverarbeitungs-Modul vorhandenen
Skills zur Objektlokalisierung sowie zur Objektinterpretation.
 Algorithmisch wird zur Lokalisierung von prozessveränderlichen
Objekten (wie Bauteilen) ein Shape Matching eingesetzt, bei
Equipment (wie Maschinen, Werkzeuge, Spannmittel) kommt
ein Marker-basiertes Verfahren über ArUco-Marker zum Einsatz.
Ein Feature-Detektor ermöglicht das semantische Interpretieren
von Farb- und Textinformationen, um diese als Triggersignal für

den Programmablauf zu nutzen. Workflow und Konfiguration
der Algorithmik ist jeweils in Bild 4 gegenübergestellt.

Zur Programmierung einer flexiblen Roboterbewegung
 ermöglicht das Software-Framework nun die Erstellung eines
 generischen BPMN-Sub-Modells GripPart. In GripPart wird eine
Bewegung zum Lokalisierungspunkt des Bauteil, die Bauteilloka-
lisierung und das Bauteilgreifen über eine Kombination der Skills
moveAbs(), locateObject(), moveAbs() und grip() kombiniert.
Der Parametrierungsaufwand reduziert sich auf die Bestimmung
der Greifweite im Skill grip(). Die anzufahrende Position wird
hingegen automatisch ermittelt.

Mit der Nutzung des Bildverarbeitungs-Moduls in der SBC
des Software-Frameworks ist es möglich, Robotersysteme mit ge-
ringem oder minimalem Programmieraufwand bei sich ändern-
den Objekten und Objektpositionen wieder in Betrieb zu neh-
men. Die benötigten Informationen werden über Bildverarbei-
tungs-Skills an die folgenden Skills als Skillparameter übergeben.
Die Abstraktion erfolgt in einem dedizierten BPMN-Sub-Modell.

4 Verifikation

Das Software-Framework wurde an einer mobilen Roboterzel-
le („Robo Operator“) zur Werkzeugmaschinenbeschickung am
Fraunhofer IWU verifiziert [10, 31]. Die Leitsteuerung ist als
SBC in „TwinCAT3.1“ von Beckhoff programmiert, um alle
Hardwarefunktionen als Skills bereitzustellen. Der Leitsteuerung
ist ein 6-Achs-Industrierroboter „Yaskawa GP12“ untergeordnet.
Als repräsentativer Programmablauf dient die Maschinenbeschi-
ckung einer „HaasVF“ Werkzeugmaschine. Der Programmablauf
besteht aus dem Bauteilhandling zwischen Bauteilspeicher und
Spannmittel, der Maschinenzustandsinterpretation und der
 Maschineninteraktion (Öffnen, Schließen von Türen, Starten).

Bild 5 stellt hierfür exemplarisch die Ausführung des
BPMN2.0-Submodells Bewege_Roboter.XML dar. Nacheinander
ist die Orchestrierung einer Roboterfunktion, hier Roboter -

Bild 3. Schematische Darstellung des Ablaufs im BPMN Controller. Grafik: Fraunhofer Austria

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

133WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

bewegung (Absolutbewegung), vom BPMN-Modell zur ausge-
führten Hardwarefunktion dargestellt.

Der vorgestellte Ablauf verhält sich für den weiteren Verlauf
des Programms analog. Mit dem Software-Framework wird eine
Methodik bereitgestellt, die damit folgende Vorteile im Vergleich
zu den vorgestellten Defiziten und Ansätzen im Stand der Tech-
nik (vgl. Kapitel 1) aufweist:
1. Das Programmieren und Steuern von Robotern über Skill-
 Basisklassen und die angebundenen OPC-UA-Server macht
den Programmcode einheitlich, herstellerunabhängig und somit
austauschbar. Eine Erweiterung der Roboterfunktionen ist

durch Hinzufügen neuer Skills aufwandsarm möglich. Die
Skills werden im Controller dynamisch aktualisiert.

2. Die GUI zur Ablaufprogrammierung über BPMN-Modelle
stellt eine intuitive Benutzerschnittstelle dar. Durch Abstrakti-
on in Sub-BPMN-Modellen sind auf die Qualifikationstiefen
von Benutzern und Benutzerinnen zugeschnittene Program-
mierweisen mit dem gleichen Framework möglich. Nach Vor-
bereitung der Robotersysteme (Umsetzung der SBC), werden
herstellerspezifische Programmierschulungen auf ein Minimum
reduziert. Die benötigten Kenntnisse zur Programmierung
 eines Ablaufs reduzieren sich auf Kenntnisse über einzelne

Bild 5. Ausführung einer Roboterfunktion über das Software-Framework. Grafik: Fraunhofer IWU, Fraunhofer Austria

Bild 4. Parametrieren des Ablaufs über Skills eines Bildverarbeitungs-Moduls. Grafik: Fraunhofer IWU [30]

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

134

T I T E L T H E M A – F A C H A U F S A T Z

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

Prozessschritte und dazugehörigen Skills und deren Para -
metrierung über das Bildverarbeitungs-Modul.

3. Die Integration eines Bildverarbeitungs-Moduls verringert die
Zeit für die Wiederinbetriebnahme, da Steuerungsparameter
für einheitliche Sub-Modelle automatisiert ermittelt werden.

5 Zusammenfassung und Ausblick

Zur flexibleren Programmierung von Robotersystemen wurde
ein Software-Framework mit drei aufeinander aufbauenden
Komponenten entwickelt, welches die Problematik der hohen
Herstellerabhängigkeit aufgrund fehlender Standardisierung, die
umständliche Programmierweise sowie das Fehlen von Methoden
zur flexiblen Steuerung bei Umgebungsänderungen adressiert. Zu
diesem Zweck wurden Robotersystemfunktionen als Skills in ei-
ner SBC abstrahiert sowie Skillkonnektoren zur Orchestrierung
mittels OPC-UA entwickelt. Darauf aufbauend wurde eine
BPMN-basierte Programmierumgebung mit BPMN-Controller
zur Ansteuerung, sowie ein Bildverarbeitungsmodul zur Parame-
trierung der Skills entwickelt. Das Software-Framework wurde
abschließend an einer mobilen Roboterzelle anhand einer Werk-
zeugmaschinenbeschickung verifiziert.

Nach der erfolgreichen Verifizierung steht für das erarbeitete
Software-Framework zunächst eine Validierung der Zielkriterien
aus. Für die Bewertung werden die vier Kriterien Programmier-
zeit, Wiederanlaufzeit sowie die Anlernzeit und Usability (über
PSSUQ-Fragebogen) des Frameworks gemessen. Hiernach wer-
den die Übertragbarkeit auf weitere Robotersystemen (Autonox-
Roboter mit TwinCAT3.1-Leitsteuerung, UR5) und prozessspe-
zifische Hardwarekonfigurationen (Beschickung, Palettierung)
untersucht. Weiterführende Forschungspunkte konzentrieren sich
u.a. auf ein einheitliches Ablaufmonitoring des automatisierten
Prozesses im BPMN2.0-Modell (Anzeige von Skill-States und
Zustandsvariablen), System-Feedback zur Vermeidung unzulässi-
ger Prozessabläufe sowie die Entwicklung einer parallelen Pro-
zessdatenbank für die statische und dynamische Parametrierung
von Skills, um zum Beispiel ermittelte Parameter des Bildverar-
beitungs-Moduls einheitlich an folgende Skills zu übergeben
(beispielsweise über MongoDB). Weiterhin werden Methoden
des Fehlerhandling zur automatischen Ablaufanpassung bei feh-
lerhafter Skillausführung eingebunden. Um den sicheren Remote-
zugriff auf die Robotersysteme über OPC-UA-Konnektoren zu
ermöglichen, ist die Erweiterung des Frameworks um ein Zertifi-
katsmanagement geplant.

Mit erfolgreicher Validierung des Frameworks bieten sich aus-
sichtsreiche Entwicklungsmöglichkeiten und Potentiale durch ei-
ne Generalisierung des vorgestellten Ansatzes. Durch Sub-
BPMN-Modelle sowie Nutzung der Bildverarbeitung sind Stan-
dardaufgaben wie ein Bauteilgriff abstrahierbar und für einen Ab-
lauf mit minimalem Anpassungsaufwand wiederverwendbar. Da-
rüber hinaus ermöglicht die Bereitstellung von einheitlichen
Skills eine Selbstbeschreibung von Hardwarekomponenten, was
die Realisierung von Plug-and-Produce-Systemen unterstützt.
Weiteres Potential liegt in der verbesserten Simulationsfähigkeit
des Frameworks. Die Konnektoren in Python vereinfachen es,
Testumgebungen zur Simulation von BPMN-Modellen und
Skills, zum Beispiel für Plausibilitätsprüfungen, virtuelle Inbe-
triebnahmen oder Sicherheits- und Risikobewertungen, im Sinne
einer durchgängigen Softwareintegration (Continuous integrati-
on and deployment) anzubinden.

L i t e r a t u r

[1] McKinsey & Company: Manufacturing the future: The next era
of global growth and innovation. Internet: https://www.mckinsey.com/
capabilities/operations/our-insights/the-future-of-manufacturing.
 Zugriff am 27.09.2022

[2] Wang, Y.; Ma, H.-S.; Yang, J.-H. et al.: Industry 4.0: a way from
mass customization to mass personalization production. Advances in
Manufacturing 5 (2017) 4, S. 311–320

[3] Vogel-Heuser, B.; Bauernhansl, T.; Hompel, M. ten: Handbuch Industrie
4.0 Bd.4. Berlin, Heidelberg: Springer Berlin Heidelberg 2017

[4] Lüdtke, A.: Wege aus der Ironie in Richtung ernsthafter Automatisie-
rung. In: Botthof, A.; Hartmann, E. A. (Hrsg.): Zukunft der Arbeit in
Industrie 4.0. Berlin, Heidelberg: Springer Berlin Heidelberg 2015,
S. 125–146

[5] Fuchs, J.: Demografie und Fachkräftemangel. Die künftigen arbeits-
marktpolitischen Herausforderungen. Bundesgesundheitsblatt,
Gesundheitsforschung, Gesundheitsschutz 56 (2013) 3, S. 399–405

[6] McKinsey & Company: Die Besten, bitte: Wie der öffentliche Sektor
als Arbeitsgeber punkten kann. 2019

[7] Abicht, J.: Projekt “Merhabe” vorgestellt: Die applizierbare Roboter-
zelle. Stand: 01.06.2021. Internet: https://www.kognitive-produktion.de/
projekt-merhabe-vorgestellt-bedienerfaehigkeiten-durch-mobile-flexi-
ble-roboterzellen-bereitstellen/. Zugriff am 27.09.2022

[8] Industrie-Partner GmbH: Robo Operator®. Internet: https://www.
ip-equipmentrental.de/de/mietequipment/robo-operator.php.
Zugriff am 27.09.2022

[9] Directorate-General for Research and Innovation: Industry 5.0 –
Towards a sustainable, human-centric and resilient European industry.
European Commission 2021

[10] Wiese, T.; Abicht, J.; Friedrich, C. et al.: Flexible skill-based control for
robot cells in manufacturing. Frontiers in Robotics and AI 9 (2022)

[11] Sanneman, L.; Fourie, C.; Shah, J. A.: The State of Industrial Robotics:
Emerging Technologies, Challenges, and Key Research Directions,
2020

[12] Verl, A.; Valente, A.; Melkote, S. et al.: Robots in machining. CIRP
 Annals 68 (2019) 2, S. 799–822

[13] Villani, V.; Pini, F.; Leali, F. et al.: Survey on human–robot collaboration
in industrial settings: Safety, intuitive interfaces and applications.
 Mechatronics 55 (2018), S. 248–266

[14] Wojtynek, M.; Steil, J. J.; Wrede, S.: Plug, Plan and Produce as Enabler
for Easy Workcell Setup and Collaborative Robot Programming in
Smart Factories. KI – Künstliche Intelligenz 33 (2019) 2, S. 151–161

[15] Lienenluke, L.; Grundel, L.; Storms, S. et al.: Temporal and Flexible
 Automation of Machine Tools. 2018 IEEE 22nd International Confe-
rence on Intelligent Engineering Systems (INES), Las Palmas de Gran
Canaria, 2018 – 2018, S. 335–340

[16] Bogue, R.: Europe continues to lead the way in the collaborative robot
business. Industrial Robot: An International Journal 43 (2016) 1,
S. 6–11

[17] Zimmermann, P.; Axmann, E.; Brandenbourger, B. et al.: Skill-based
Engineering and Control on Field-Device-Level with OPC UA. 2019
24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Zaragoza, Spain, 2019 – 2019, S. 1101–1108

[18] Universal Robots: UNIVERSAL ROBOT UR3e – A Flexible Collaborative
Robot Arm. Zugriff am 27.09.2022

[19] Omron: Omron TMFlow. Stand: 26.09.2022. Internet: https://automati
on.omron.com/en/ca/products/family/Omron%20TM%20Software.
 Zugriff am 26.09.2022

[20] Weintrop, D.; Shepherd, D. C.; Francis, P. et al.: Blockly goes to work:
Block-based programming for industrial robots. 2017 IEEE Blocks and
Beyond Workshop (B&B), Raleigh, NC, 2017 – 2017, S. 29–36

[21] Winterer, M.; Salomon, C.; Koberle, J. et al.: An Expert Review on the
Applicability of Blockly for Industrial Robot Programming. 2020 25th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Vienna, Austria, 2020 – 2020, S. 1231–1234

F Ö RD E RH I NWE I S

Die in diesem Beitrag vorgestellten Ergebnisse wurden im
Rahmen des von der Fraunhofer Gesellschaft (FhG) geförder-
ten Forschungsprojekts „ProViPer – Semi-Automatische Pro-
grammierung von Roboterzellen durch visuelle Umgebungs-
wahrnehmung“ erzielt.

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

 T I T E L T H E M A – F A C H A U F S A T Z

135WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

[22] Thomas, U.; Hirzinger, G.; Rumpe, B. et al.: A new skill based robot
programming language using UML/P Statecharts. 2013 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Karlsruhe,
 Germany, 2013 – 2013, S. 461–466

[23] drag&bot: drag&bot – Graphical robot operating system. Internet:
https://www.dragandbot.com/. Zugriff am 26.09.2022

[24] Haspl, T.; M. Rathmair; M. Papa et al. (Hrsg.): Software toolchain for
modeling and transforming robotic workflows into formally verifiable
model representations. in press. Austrian Robotics Workshop. 2022
2022

[25] Komenda, T.; Garcia, J. B.; Schelle, M. et al. (Hrsg.): Sustainable utiliza-
tion of industrial robotic systems by facilitat- ing programming
through a human and process Sustainable utilization of industrial
 robotic systems by facilitating programming through a human and
process centred declarative approach. International Conference on
Competitive Manufacturing. 2022 2022

[26] Yang, J.; Wang, C.; Jiang, B. et al.: Visual Perception Enabled
Industry Intelligence: State of the Art, Challenges and Prospects.
IEEE Transactions on Industrial Informatics 17 (2021) 3, S. 2204–2219

[27] Du, G.; Wang, K.; Lian, S. et al.: Vision-based robotic grasping from
object localization, object pose estimation to grasp estimation for
 parallel grippers: a review. Artificial Intelligence Review 54 (2021) 3,
S. 1677–1734

[28] Inceoglu, A.; Koc, C.; Kanat, B. O. et al.: Continuous Visual World
 Modeling for Autonomous Robot Manipulation. IEEE Transactions
on Systems, Man, and Cybernetics: Systems 49 (2019) 1, S. 192–205

[29] Deutsches Institut fur Normung e.V.: 2658. VDI/VDE/NAMUR 2658
BLATT4. Beuth 08.2020

[30] Abicht, J.; Hellmich, A.; Wiese, T. et al.: New automation solution
for brownfield production – Cognitive robots for the emulation
of operator capabilities. CIRP Journal of Manufacturing Science
and Technology 50 (2024), S. 104–112

[31] Abicht, J.; Wiese, T.; Hellmich, A. et al.: Interface-Free Connection
of Mobile Robot Cells to Machine Tools Using a Camera System.
In: Weißgraeber, P.; Heieck, F.; Ackermann, C. (Hrsg.): Advances in
 Automotive Production Technology – Theory and Application. Berlin,
Heidelberg: Springer Berlin Heidelberg 2021, S. 468–477

D i p l . - I n g . S e b a s t i a n K r e u t e r
Foto: Autor
Tel. +43 1 5046906
sebastian.kreuter@fraunhofer.at

D i p l . - W i r t s c h . - I n g . D r . t e c h n .
P h i l i p p H o l d

Fraunhofer Austria Research GmbH
Theresianumgasse 7, 1040 Wien
www.fraunhofer.at

U n i v . P r o f D r . - I n g . S e b a s t i a n
S c h l u n d
Tel. +43 1 58801 330 01
sebastian.schlund@tuwien.ac.at

Technische Universität Wien
Institut für Managementwissenschaften
Theresianumgasse 27, 1040 Wien
www.tuwien.ac.at

D i p l . - I n g . J o h a n n e s A b i c h t
Foto: Autor
Tel. +49 351 / 4772-2613
johannes.abicht@iwu.fraunhofer.de

D i p l . - I n g . M a l t e H e i n r i c h

D i p l . - I n g . T o r b e n W i e s e

Fraunhofer-Institut für Werkzeugmaschinen
und Umformtechnik IWU
Bürogebäude Dresden-Gittersee
Pforzheimer Str. 7a, 01189 Dresden
www.iwu.fraunhofer.de

L I Z E N Z

Dieser Fachaufsatz steht unter der Lizenz Creative Commons
Namensnennung 4.0 International (CC BY 4.0)

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access -

https://orcid.org/0009-0009-6359-7637
https://ror.org/038bzrc91
https://orcid.org/0000-0002-8142-0255
https://orcid.org/0000-0002-8142-0255
https://ror.org/04d836q62
https://orcid.org/0009-0003-7193-0555
https://orcid.org/0009-0003-5747-0089
https://ror.org/026taa863
https://ror.org/026taa863
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0009-6359-7637
https://ror.org/038bzrc91
https://orcid.org/0000-0002-8142-0255
https://orcid.org/0000-0002-8142-0255
https://ror.org/04d836q62
https://orcid.org/0009-0003-7193-0555
https://orcid.org/0009-0003-5747-0089
https://ror.org/026taa863
https://ror.org/026taa863
https://creativecommons.org/licenses/by/4.0/

