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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Blockbasiertes Programmieren und Steuern von kamerageführten Robotern via OPC-UA-Skills

Flexible BPMN-Steuerung  
für Robotersysteme

S. Kreuter, J. Abicht, P. Hold, M. Heinrich, T. Wiese, S. Schlund

ZUSAMMENFASSUNG  Bei der Programmierung und 
Steuerung von Robotersystemen fehlen Standardisierungen, 
wodurch Experten bei Änderungen in den Randbedingungen 
mit Zeit- und Personalaufwand nachprogrammieren. Um den 
Programmieraufwand zu senken, wird ein Software-Frame-
work zur BPMN-basierten Programmierung und Orchestrie-
rung von skillbasierten Robotersteuerungen vorgestellt. Ein 
Bildverarbeitungs-Modul unterstützt bei der Parametrierung 
der Skills.

Flexible BPMN-based control  
for robotic systems

ABSTRACT  The programming and control of robot sys-
tems lacks standardization, resulting in time-consuming and 
costly reprogramming by experts when boundary conditions 
change. To reduce the programming effort, a software frame-
work for BPMN-based programming and orchestration of skill-
based robot control systems is presented. An image proces-
sing module supports the parameterization of the skills.

1 Einleitung
1.1 Ausgangssituation und Problemstellungen 

Zwischen 2010 und 2025 wird sich der globale Konsum ver-
doppeln [1] und das Kaufverhalten vom Konsum der Massenpro-
duktion hin zu individuell gefertigten Produkten wandeln [2]. 
Dieses geänderte Kaufverhalten spiegelt sich in der Industrie in 
der Fertigung kleiner, variantenreicher Lose wider und macht 
 damit flexible, anpassbare Produktionssysteme unerlässlich [3]. 
Automatisierte Produktionssysteme kämpfen aber mit mangeln-
der Flexibilität [4], während demografischer Wandel und Fach-
kräftemangel die Stabilität und Wirtschaftlichkeit manueller 
 Produktion beeinträchtigen [5]. Mit einem erwarteten massiven 
Rückgang der Arbeitskräfte durch Pensionierungen in den nächs-
ten zehn Jahren [6] verschärft sich dieses Problem sogar noch.

Um diesem Problem entgegenzuwirken, werden vermehrt mo-
bile oder statische Robotersysteme in die Produktion integriert, 
die repetitive oder präzise Aufgaben übernehmen, zum Beispiel 
Maschinenbeschickungen oder Montageaufgaben [7, 8]. Der 
Mensch bleibt dabei mit seiner Flexibilität und Fachwissen für 
komplexere Aufgaben essenzieller Bestandteil bei der Inbetrieb-
nahme und Überwachung der Robotersysteme [9]. Aufgrund der 
Individualisierung der Produkte müssen sich Robotersysteme 
stärker an veränderte Umgebungsbedingungen (zum Beispiel 
Bauteile, Maschinen, Speicherart) anpassen und wandelbar sein, 
was einen höheren Inbetriebnahmeaufwand und Nebenzeiten 
nach sich zieht. Modulare Steuerungskonzepte, wie skillbasierte 
Steuerungen (skill-based control, SBC), verringern die Program-
mierzeit bei der Anpassung an neue Prozesse und Produkte durch 
einheitliche Steuerungsarchitekturen und Kommunikationsinter-

faces [10]. Trotzdem sind derartige Ansätze aktuell nur wenig 
vereinheitlichte Insellösungen für dedizierte Steuerungen. Trotz 
vereinfachter Anpassbarkeit und Erweiterbarkeit der Programme, 
verbleibt jedoch die Notwendigkeit, die abstrakten Programm-
bausteine zeitintensiv zu reparametrieren (zum Beispiel durch 
Skillparameter in Skills). Der stärkere Einsatz von Sensorik, wie 
2D-Kameras, die Umgebungsänderungen automatisiert detektie-
ren und daraufhin Programme anpassen, sind für die Reduktion 
des Inbetriebnahmeaufwands zukünftig ebenso essenziell. Der 
 geringe und aufgabenspezifische Einsatz von Sensorlösungen 
 unterstützt aktuell nur begrenzt bei der Programmierung von 
 Robotern und wird meist für Einzelaufgaben, wie Positions -
regelungen verwendet. 

Um Nebenzeiten gering und die Produktivität dennoch hoch-
zuhalten, ist es notwendig, Steuerungen von Robotersystemen 
 sowie deren Schnittstellen und Programmierung zu vereinheitli-
chen und durch Nutzung von Sensorsystemen zu beschleunigen. 
Zeitgleich sind Benutzerschnittstellen nötig, die es den vorhande-
nen Fachkräften ermöglichen, den relevanten Programmcode der 
Steuerungen ohne zusätzliches Expertenwissen effizient anzupas-
sen. 

Zusammengefasst sind bei der Programmierung und Steue-
rung von Robotersystemen folgende drei Defizite identifizierbar:
1. Die geringe Standardisierung im Bereich von Steuerungen von 
Robotersystemen führt zu einer hohen Herstellerabhängigkeit, 
sowie geringer Austauschbarkeit und Erweiterbarkeit der Pro-
gramme. 

2. Die Programmierung ist weiterhin Personen mit Expertenwis-
sen vorbehalten, da Maschinenbedienenden aufgrund fehlender 
nutzerzentrierter Interfaces (angepasst an deren Qualifikati-
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onstiefe) für die Programmänderungen das entsprechende 
Knowhow fehlt. Es sind dedizierte Schulungen für jede Steue-
rung in der Produktion notwendig, um das nötige Knowhow 
aufzubauen und auf verschiedene Applikationen zu übertragen

3. Trotz vereinzelter Ansätze für modulare Steuerungskonzepte 
und der Anwendung intelligenter Hardwarekomponenten feh-
len einheitliche Steuerungslösungen, die Fachkräfte durch eine 
ganzheitliche, automatisierte Detektion und Verarbeitung aller 
relevanten Umgebungsänderungen bei der Programmierung 
der Robotersteuerungen unterstützen.

1.2 Stand der Technik bei der Programmierung  
 und Steuerung von Robotersystemen

Robotersysteme dienen der Automatisierung industrieller Pro-
duktionsprozesse durch eine prozessspezifische Anordnung von 
Fertigungsmodulen mit einem zentralen Roboter als Manipulator 
[11]. Neben zahlreichen ortsfesten Lösungen, wie bspw. für Fräs-
bearbeitungen [12, 13], wurden in den letzten Jahren auch mobi-
le Roboterzellen [8, 14, 15], teilweise als kollaborative Lösungen 
[13, 16], entwickelt. Aktuelle Bestrebungen bestehen darin, Ro-
botersysteme für ihre Aufgabe weiter zu flexibilisieren (Plug-and-
Produce-Paradigma) [14], unter anderem im Bereich der flexi-
blen Steuerung und intuitiven Programmierung von Robotersys-
temen [11], und damit die industrielle Verbreitung zu fördern.

Ein Ansatz für eine verbesserte Steuerung und Programmie-
rung sind SBC, die durch Abstraktion der Hardwarefunktionen in 
Softwaremodulen über funktionsspezifische Skills eine schnellere 
Rekonfigurierbarkeit und aufgabenorientierte Programmierweise 
ermöglichen [10, 17]. Basierend auf einer objekt-orientierten 
Steuerungsarchitektur werden Template-Klassen (Skill-Basisklas-
sen) bereitgestellt, die für das Erstellen neuer Skills als Guideline 
verwendet werden. Die Kommunikation zwischen den Modulen 
und deren Skills sind durch die Templates vorbestimmt, sodass 
sich der Programmierer in einer SBC auf die reine Funktionalität 
und Parametrierbarkeit der Hardwarefunktion fokussiert. In 
 Sequenzen (oder auch Jobs) werden danach Skills zu aufgaben-
spezifischen Programmabläufen kombiniert und von einer Leit-
steuerung orchestriert. Bei komplexen Arbeitsprozessen steigt 
trotz hoher Modularität jedoch der Programmieraufwand, da die 
Anzahl der Skills schnell ansteigt. Außerdem besteht weiterhin 
 eine Abhängigkeit von Expertinnen und Experten, die sich in die 
Einsetzbarkeit und Parametrierung der Skills einarbeiten. Verbes-
sert werden könnte dies durch eine einheitlichere, nutzerzentrier-
te Programmierung der Abläufe und der Erhöhung der Autono-
miefähigkeit.

Die Programmierung von Robotersystemen erfolgt sehr steue-
rungsnah und benötigt daher umfangreiche Vorkenntnisse. Eine 
Vereinfachung durch die Verwendung von grafischen Blöcken 
und funktionsorientierter Programmierung wird daher von diver-
sen Projekten in Forschung und Industrie vorangetrieben, um die 
notwendigen Qualifikationshürden zu reduzieren. Hierfür wird 
unter anderem der Einsatz von Funktionsbausteinen [18, 19], 
wie beispielsweise die Implementierung von Google Blockly 
[20, 21], oder grafische Programmierung erforscht [22, 23]. Um 
die Unabhängigkeit von speziellen Hardwarelösungen zu gewähr-
leisten, werden diese Ansätze um Plugins zur Kommunikation 
 erweitert, welche die programmierten Bausteine in die hardware-
spezifischen Grundbefehle übersetzen [24, 25]. Plugins existieren 
für Industrieroboter und benötigte Peripherien. Eine Vereinheitli-
chung (zum Beispiel über OPC-UA) der Kommunikation stärkt 
hier die Herstellerunabhängigkeit der Programmierparadigmen 
und industrielle Verbreitung.

Die automatisierte Detektion und Verarbeitung von Umge-
bungsänderungen im Programmcode wird maßgeblich durch For-
schungsbemühungen im Bereich der Bildverarbeitung getrieben. 
Visual Perception bedeutet in diesem Zuge die Aufnahme, Orga-
nisierung und Interpretation von Bildinformationen im Kontext 
einer bestimmten Prozessaufgabe [26]. Grundproblem an Robo-
tersystemen ist unter anderem die Detektion eines zu handhaben-
den Bauteils und die Bestimmung der Position im Raum. In der 
Robotik kommen hierfür außerdem RGB-, Monochrom- oder 
Stereovision-Kameras für 2D- und 3D-Rohdaten zum Einsatz. 
Die benötigten Informationen werden danach algorithmisch 
 ermittelt und als Parameter an die Steuerung weitergegeben 
[27, 28]. 

Vergleichend zu den Kerntechnologien im Stand der Technik, 
gibt die Tabelle einen Überblick über aktuelle Ansätze im Be-
reich der Programmierung und Steuerung von Robotersystemen.

2 Vorgehen

Das entwickelte Software-Framework verfügt über drei aufei-
nander aufbauende Softwarekomponenten, die die drei Defizite 
heutiger Steuerungen von Robotersystemen synergetisch lösen. 
Als Basis wird dabei das zu steuernden Robotersystems als SBC 
umgesetzt. Hierauf aufbauend besteht das Software-Framework 
aus:
• Abstrahierten Robotersystemfunktionen als Skills einer SBC 
und Entwicklung von OPC-UA-Konnektoren,

Tabelle. Vergleich aktueller modularer Steuerungsframeworks und Programmiersysteme [10, 18–23].

Technologie

Programmiermethode

Anwendungsgebiet

Bildverarbeitung

Roboterkompatibilität

Einlerndauer

Aufwand für Modifikation

Grafische Programmierung 

Teach-in, grafisch, Funktionsbausteine

Fügen, Fertigung

Teilweise

Erweiterbar

1–5 Tage

< 5 Minuten

Funktionsbausteine

Playback, Funktionsbausteine

Handling, Prüfen, Fertigung

Teilweise

Herstellerbeschränkung

1–5 Tage

< 5 Minuten bis 1 Tag

SBC 

Programmieren  
von Skills zu Jobs

Fertigung

Teilweise

Erweiterbar

~ 2 Tage

> 15 Minuten

Vorgestelltes Framework

Deklarativ,  
Funktionsbausteine

Fertigung, Handling

Ja

Erweiterbar

< 1 Tag

< 5 Minuten
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•  Business Process Model and Notation (BPMN) 2.0 
 Programmier- und Orchestrierungssystem zur 
 Skillansteuerung (BPMN Controller),

• Bildverarbeitungs-Modul zur Parametrierung  
der aufgerufenen Skills.

Der schematische Aufbau des Frameworks ist in Bild 1 darge-
stellt. Über den BPMN2.0-Standard wird ein Prozessablauf in 
 einem Graphischen User Interface (GUI) als BPMN 2.0-Modell 
programmiert und als XML-File textbasiert gespeichert. Das 
XML enthält die Informationen der auszuführenden Skills in abs-
trakter Form. Ein BPMN-Controller lädt die Informationen und 
leitet einen Ablaufplan zur Orchestrierung ab. Über OPC-UA-
Konnektoren werden durch den BPMN-Controller die jeweiligen 
Skills getriggert und überwacht. Das Bildverarbeitungs-Modul 
unterstützt den Programmierer als kamerageführtes Robotersys-
tem, indem vorgeschaltete Bildverarbeitungs-Skills zur automati-
sierten Ermittlung von Skillparametern des Robotersystem 
 dienen.

Das Framework adressiert damit die Herausforderungen heu-
tiger Robotersysteme. Über ein zentrales, einheitliches und intui-
tiveres Programmier- und Steuerungssystem sind heterogene 
 Roboter orchestrierbar. Mit der BPMN-Programmierung wird 
zudem eine an die Qualifikationstiefe von Maschinenbedienenden 
angepasste, deklarative und damit nutzerzentriete Programmier-
umgebung bereitgestellt. 

3 Methodik

3.1 Abstrahieren der Robotersystemfunktionen  in Skills 
 und Entwicklung von OPC-UA-Skillkonnektoren

Zur flexibleren Nutzung abstrahiert das Framework die Hard-
warefunktionen des Robotersystems in einer SBC zuerst als Skills 

in einer objektorientierten Programmierweise. Die SBC läuft da-
bei in einem Leitrechner, womit die Hardwaremodule, wie Robo-
ter, Greifer oder Kameras, über einen Feldbus kommunizieren. 
Die Skills dienen als Datenschnittstellen zu übergeordneten Or-
chestrierungssystemen, um die Hardwarefunktionen eines Robo-
tersystems einheitlich bereitzustellen und anzusprechen, siehe 
[10]. Die Skills werden über eine Zustandsmaschine nach dem 
Module Type Package (MTP) [29] verwaltet. Wie in Bild 2 zu 
sehen, wurde zur Implementierung der Skills eine Skill-Basisklas-
se (BaseSkill) entwickelt, womit die notwendigen Datenstruktu-
ren definiert werden.
•  ST_SkillCommand: Liste an Schaltbefehlen basierend auf dem 
MTP [29], um Skills in einen spezifischen Zustand zu verset-
zen, z.B. in einen Ausführungszustand (execute),

•  ST_SkillData: Liste an ST_Parameter, die eine endliche Anzahl 
an Skillparametern mit Namen, Wert, Einheit und Beschrei-
bung definieren, um Skills zu parametrieren,

• ST_SkillDataDefault: Default-Parameter von ST_SkillData, die 
bei der Initialisierung des Skills ST_SkillData beschreiben,

• ST_SkillState: Aktueller Zustand des Skills nach dem MTP 
[29].

Das Software-Framework definiert Skill-Basisklassen für variable 
Steuerungsarten und -hersteller. Umgesetzt sind die Skill-Basis-
klassen als Funktionsbausteine in TwinCAT 3.1 (Beckhoff), Pro-
grammbausteine in TIA V16 (Siemens) und Automation Studio 
(B&R) sowie als Klassen für Python-basierte Skills. Die Skill-
 Basisklassen werden jeweils als Bibliotheken in die Steuerungs-
umgebungen eingebunden, neue Skills über eine Vererbung 
 erzeugt und die vordefinierten Datenstrukturen bei der Imple-
mentierung skillspezifisch überschrieben. Das Ausführen eines 
Skills erfolgt durch Aktivieren des ST_SkillState über den passen-
den ST_SkillCommand. Über ST_SkillData wird der Skill aufga-
benspezifisch vor Ausführung parametriert. Die Vorgehensweise 

Bild 1. Darstellung des entwickelten Software-Frameworks. Grafik: Fraunhofer IWU, Fraunhofer Austria
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ermöglicht damit ein konsistentes Steuern und Überwachen aller 
Hardwarefunktionen des Robotersystems. 

Um die Skills anzusprechen, werden Datenstrukturen der ein-
heitlichen Skill-Basisklasse als Nodes über einen OPC-UA-Server 
gehostet, wie Bild 2 mittig zeigt. Alle Hardware-Module (oder 
auch Assets) stehen in einer konsistenten Nodestruktur bereit. 
Ein Verbindungsmanagement AssetSkillHandle baut nach Angabe 
der Verbindungsparameter (Route, Zertifikat, Nutzer und Pass-
wort) eine OPC-UA-Route zum OPC-UA-Client des Roboter -
systems auf. Der AssetSkillHandle durchsucht über die Route den 
OPC-UA-Server nach der Datenstruktur der Skill-Basisklasse 
(getSkills()). Für jeden Nodebereich, der einer Skill-Basisklasse 
zugeordnet wird, wird ein OPC-UA-Skillkonnektor als Merker 
instanziiert. Bei der parallelen Kommunikation mit mehreren As-
sets werden mehrere AssetSkillHandle mit unterschiedlichen Ver-
bindungsparametern verwendet. Der AssetSkillHandle ermöglicht 
damit das zentrale Schreiben und Lesen der Datenstrukturen aller 
gefundenen Skills der Skill-Basisklasse für ein Asset. Ein Skill -
CodeGenerator erzeugt zuletzt mithilfe des AssetSkillHandle 
 jeweils eine Python-Methode pro Skill, welche bei Ausführung 
den Skill über den Konnektor startet. Die Methoden-Inputs sind 
hierbei die Skillparameter des Skills. Die Methoden dienen so als 
kompakte Schnittstelle für einen beliebigen, angebundenen 
 Python-Controller zur Orchestrierung.

Die Abstraktion der Robotersystemfunktionen über Skill-
 Basisklassen und das Bereitstellen über einen OPC-UA-Server 
 ermöglichen es, die vom BPMN-Controller orchestrierten Pro-
gramme für mehrere Steuerungssysteme zu nutzen und somit 
 eine Austauschbarkeit zu gewährleisten. Hierfür wird die Struk-
tur der Skill-Basisklasse für alle Hardwarefunktionen der Robo-
tersysteme in deren Steuerungen umgesetzt. Stehen auf einem 
Robotersystem die gleichen Skills bereit, so sind die Programme 
ohne Anpassung des Quellcode übertragbar und herstellerunab-
hängig.

3.2 Entwicklung eines BPMN 2.0 Programmier-  
 und Orchestrierungssystems

Um eine Abstrahierung auf verschiedene Benutzerlevel zu er-
möglichen, wird zunächst eine schnellere und verständlichere 
Programmieroberfläche benötigt, welche ergänzend eine Standar-
disierung sicherstellt. Aus diesem Grund werden die Abläufe ei-
nes Robotersystems im BPMN 2.0 Standard (BPMN 2.0) model-
liert und in einem entsprechenden Controller orchestriert. Vor-
teile von BPMN 2.0 sind dabei neben der intuitiven und einfa-
chen Darstellungsart, einheitliche Standards, erhöhte Flexibilität 
sowie die Möglichkeit der Abstrahierung eines Prozesses für ver-
schiedene Benutzerlevel. Die unterschiedlichen Abstraktionslevel 
werden durch die Möglichkeit der Modellierung von beliebig tief 
verschachtelten Sub-Prozessen in BPMN 2.0 realisiert, die Skills 
zu kleineren Teilabläufen zusammenfassen, speichern und an-
schließend in übergeordneten Gesamtabläufen verwenden. Diese 
Möglichkeit der Verschachtelung von Prozessen durch die Ver-
wendung von BPMN Sub-Modellen erhöht einerseits die Flexibi-
lität und Geschwindigkeit in der Programmierung sowie ermög-
licht andererseits die Programmierung des Robotersystems durch 
Personen mit geringen Fachkenntnissen in Bezug auf Skills und 
hardwareseitige Implementierung.

Die Struktur des Programmier- und Orchestrierungssystems 
ist in Bild 3 ersichtlich. Zunächst werden die einzelnen Skills 
mittels Drag and Drop zu einem BPMN 2.0 Prozess zusammen-
gefügt. Nach Abschluss des erzeugten BPMN 2.0 Diagramms 
wird dieses in einer XML-Datei abgespeichert. Wird ein Prozess 
gestartet, wird ein Graph aus der XML-Datei erzeugt, wobei jede 
Node des Graphs einen Skill darstellt. Diese Skills werden im 
Durchlauf mit den hardwarespezifischen Skills abgeglichen, wobei 
fehlende Skills ergänzt werden. Ergänzend werden entsprechende 
Parameter hardwarespezifisch abgeglichen und im Falle von 
 fehlenden Parametern entsprechende Default Werte verwendet. 
Ist der Abgleich erfolgreich abgeschlossen und sind die erforderli-
chen Skills und Parameter vollständig geladen, iteriert der 
 Controller durch den Graphen und aktiviert für jeden Skill die 

Bild 2. Implementierung von Skill-Basisklassen und Aufbau von OPC-UA-Skillkonnektoren. Grafik: Fraunhofer IWU

https://doi.org/10.37544/1436-4980-2024-04-20 - am 25.01.2026, 02:21:36. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.37544/1436-4980-2024-04-20
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


132

T I T E L T H E M A  –  F A C H A U F S A T Z  

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 4

entsprechende Methode zum Starten. Basierend auf dem Feed-
back über den Skillzustand wird nach erfolgreicher Ausführung 
eines Skills zur nächsten Node des Graphen übergegangen und 
der nächste Skill ausgeführt.

3.3 Parametrieren der Skills  
 über ein Bildverarbeitungs-Modul

Wechselnde Umgebungsbedingungen im Ablauf führen zu ei-
ner notwendigen Umparametrierung der Skills an die neue Situa-
tion. Eine sich ändernde Speicherposition für ein zu greifendes 
Bauteil bedingt ein Nachteachen der Entnahmepose und damit 
ein manuelles Anpassen des Skillparameters im Skill. Die SBC er-
möglicht durch klare Trennung von Aufgabe und Parametrierung, 
die Skillparameter vorher sensorisch zu ermitteln und dynamisch 
an die folgenden Skills zu übergeben. Das Software-Framework 
benutzt hierfür ein Bildverarbeitungs-Modul, welches Bildverar-
beitungs-Skills zur automatisierten Berechnung der Parameter 
bereitstellt, siehe Bild 1 orange. Das Modul ist als Python-Runti-
me auf dem Steuerungs-PC des Robotersystem integriert. Eine 
Intel Realsense D453i (Stereo-Vision-Kamera mit RGB- und Tie-
fendaten) dient als Sensorinput. Alle Bildverarbeitungs-Skills im-
plementieren die Skill-Basisklasse in Python, sodass die Skills 
analog zum Robotersystem über eine zweite OPC-UA-Route in 
einem zweiten AssetSkillHandle angesprochen werden. Hierzu 
startet das Bildverarbeitungs-Modul einen weiteren OPC-UA-
Server.

Bild 4 zeigt die im Bildverarbeitungs-Modul vorhandenen 
Skills zur Objektlokalisierung sowie zur Objektinterpretation. 
 Algorithmisch wird zur Lokalisierung von prozessveränderlichen 
Objekten (wie Bauteilen) ein Shape Matching eingesetzt, bei 
Equipment (wie Maschinen, Werkzeuge, Spannmittel) kommt 
ein Marker-basiertes Verfahren über ArUco-Marker zum Einsatz. 
Ein Feature-Detektor ermöglicht das semantische Interpretieren 
von Farb- und Textinformationen, um diese als Triggersignal für 

den Programmablauf zu nutzen. Workflow und Konfiguration 
der Algorithmik ist jeweils in Bild 4 gegenübergestellt. 

Zur Programmierung einer flexiblen Roboterbewegung 
 ermöglicht das Software-Framework nun die Erstellung eines 
 generischen BPMN-Sub-Modells GripPart. In GripPart wird eine 
Bewegung zum Lokalisierungspunkt des Bauteil, die Bauteilloka-
lisierung und das Bauteilgreifen über eine Kombination der Skills 
moveAbs(), locateObject(), moveAbs() und grip() kombiniert. 
Der Parametrierungsaufwand reduziert sich auf die Bestimmung 
der Greifweite im Skill grip(). Die anzufahrende Position wird 
hingegen automatisch ermittelt.

Mit der Nutzung des Bildverarbeitungs-Moduls in der SBC 
des Software-Frameworks ist es möglich, Robotersysteme mit ge-
ringem oder minimalem Programmieraufwand bei sich ändern-
den Objekten und Objektpositionen wieder in Betrieb zu neh-
men. Die benötigten Informationen werden über Bildverarbei-
tungs-Skills an die folgenden Skills als Skillparameter übergeben. 
Die Abstraktion erfolgt in einem dedizierten BPMN-Sub-Modell.

4 Verifikation

Das Software-Framework wurde an einer mobilen Roboterzel-
le („Robo Operator“) zur Werkzeugmaschinenbeschickung am 
Fraunhofer IWU verifiziert [10, 31]. Die Leitsteuerung ist als 
SBC in „TwinCAT3.1“ von Beckhoff programmiert, um alle 
Hardwarefunktionen als Skills bereitzustellen. Der Leitsteuerung 
ist ein 6-Achs-Industrierroboter „Yaskawa GP12“ untergeordnet. 
Als repräsentativer Programmablauf dient die Maschinenbeschi-
ckung einer „HaasVF“ Werkzeugmaschine. Der Programmablauf 
besteht aus dem Bauteilhandling zwischen Bauteilspeicher und 
Spannmittel, der Maschinenzustandsinterpretation und der 
 Maschineninteraktion (Öffnen, Schließen von Türen, Starten).

Bild 5 stellt hierfür exemplarisch die Ausführung des 
BPMN2.0-Submodells Bewege_Roboter.XML dar. Nacheinander 
ist die Orchestrierung einer Roboterfunktion, hier Roboter -

Bild 3. Schematische Darstellung des Ablaufs im BPMN Controller. Grafik: Fraunhofer Austria
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bewegung (Absolutbewegung), vom BPMN-Modell zur ausge-
führten Hardwarefunktion dargestellt.

Der vorgestellte Ablauf verhält sich für den weiteren Verlauf 
des Programms analog. Mit dem Software-Framework wird eine 
Methodik bereitgestellt, die damit folgende Vorteile im Vergleich 
zu den vorgestellten Defiziten und Ansätzen im Stand der Tech-
nik (vgl. Kapitel 1) aufweist:
1. Das Programmieren und Steuern von Robotern über Skill-
 Basisklassen und die angebundenen OPC-UA-Server macht 
den Programmcode einheitlich, herstellerunabhängig und somit 
austauschbar. Eine Erweiterung der Roboterfunktionen ist 

durch Hinzufügen neuer Skills aufwandsarm möglich. Die 
Skills werden im Controller dynamisch aktualisiert.

2.  Die GUI zur Ablaufprogrammierung über BPMN-Modelle 
stellt eine intuitive Benutzerschnittstelle dar. Durch Abstrakti-
on in Sub-BPMN-Modellen sind auf die Qualifikationstiefen 
von Benutzern und Benutzerinnen zugeschnittene Program-
mierweisen mit dem gleichen Framework möglich. Nach Vor-
bereitung der Robotersysteme (Umsetzung der SBC), werden 
herstellerspezifische Programmierschulungen auf ein Minimum 
reduziert. Die benötigten Kenntnisse zur Programmierung 
 eines Ablaufs reduzieren sich auf Kenntnisse über einzelne 

Bild 5. Ausführung einer Roboterfunktion über das Software-Framework. Grafik: Fraunhofer IWU, Fraunhofer Austria

Bild 4. Parametrieren des Ablaufs über Skills eines Bildverarbeitungs-Moduls. Grafik: Fraunhofer IWU [30]
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Prozessschritte und dazugehörigen Skills und deren Para -
metrierung über das Bildverarbeitungs-Modul.

3. Die Integration eines Bildverarbeitungs-Moduls verringert die 
Zeit für die Wiederinbetriebnahme, da Steuerungsparameter 
für einheitliche Sub-Modelle automatisiert ermittelt werden.

5 Zusammenfassung und Ausblick

Zur flexibleren Programmierung von Robotersystemen wurde 
ein Software-Framework mit drei aufeinander aufbauenden 
Komponenten entwickelt, welches die Problematik der hohen 
Herstellerabhängigkeit aufgrund fehlender Standardisierung, die 
umständliche Programmierweise sowie das Fehlen von Methoden 
zur flexiblen Steuerung bei Umgebungsänderungen adressiert. Zu 
diesem Zweck wurden Robotersystemfunktionen als Skills in ei-
ner SBC abstrahiert sowie Skillkonnektoren zur Orchestrierung 
mittels OPC-UA entwickelt. Darauf aufbauend wurde eine 
BPMN-basierte Programmierumgebung mit BPMN-Controller 
zur Ansteuerung, sowie ein Bildverarbeitungsmodul zur Parame-
trierung der Skills entwickelt. Das Software-Framework wurde 
abschließend an einer mobilen Roboterzelle anhand einer Werk-
zeugmaschinenbeschickung verifiziert.

Nach der erfolgreichen Verifizierung steht für das erarbeitete 
Software-Framework zunächst eine Validierung der Zielkriterien 
aus. Für die Bewertung werden die vier Kriterien Programmier-
zeit, Wiederanlaufzeit sowie die Anlernzeit und Usability (über 
PSSUQ-Fragebogen) des Frameworks gemessen. Hiernach wer-
den die Übertragbarkeit auf weitere Robotersystemen (Autonox-
Roboter mit TwinCAT3.1-Leitsteuerung, UR5) und prozessspe-
zifische Hardwarekonfigurationen (Beschickung, Palettierung) 
untersucht. Weiterführende Forschungspunkte konzentrieren sich 
u.a. auf ein einheitliches Ablaufmonitoring des automatisierten 
Prozesses im BPMN2.0-Modell (Anzeige von Skill-States und 
Zustandsvariablen), System-Feedback zur Vermeidung unzulässi-
ger Prozessabläufe sowie die Entwicklung einer parallelen Pro-
zessdatenbank für die statische und dynamische Parametrierung 
von Skills, um zum Beispiel ermittelte Parameter des Bildverar-
beitungs-Moduls einheitlich an folgende Skills zu übergeben 
(beispielsweise über MongoDB). Weiterhin werden Methoden 
des Fehlerhandling zur automatischen Ablaufanpassung bei feh-
lerhafter Skillausführung eingebunden. Um den sicheren Remote-
zugriff auf die Robotersysteme über OPC-UA-Konnektoren zu 
ermöglichen, ist die Erweiterung des Frameworks um ein Zertifi-
katsmanagement geplant.

Mit erfolgreicher Validierung des Frameworks bieten sich aus-
sichtsreiche Entwicklungsmöglichkeiten und Potentiale durch ei-
ne Generalisierung des vorgestellten Ansatzes. Durch Sub-
BPMN-Modelle sowie Nutzung der Bildverarbeitung sind Stan-
dardaufgaben wie ein Bauteilgriff abstrahierbar und für einen Ab-
lauf mit minimalem Anpassungsaufwand wiederverwendbar. Da-
rüber hinaus ermöglicht die Bereitstellung von einheitlichen 
Skills eine Selbstbeschreibung von Hardwarekomponenten, was 
die Realisierung von Plug-and-Produce-Systemen unterstützt. 
Weiteres Potential liegt in der verbesserten Simulationsfähigkeit 
des Frameworks. Die Konnektoren in Python vereinfachen es, 
Testumgebungen zur Simulation von BPMN-Modellen und 
Skills, zum Beispiel für Plausibilitätsprüfungen, virtuelle Inbe-
triebnahmen oder Sicherheits- und Risikobewertungen, im Sinne 
einer durchgängigen Softwareintegration (Continuous integrati-
on and deployment) anzubinden.
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