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linear and angular body velocities

linear body velocity
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kinematic state

kinematic state without global coordinates
segment center of mass positions and velocities
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inertia matrix

reduced inertia matrix
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reduced force

m; mass of segment i

I; tensor of inertia of segment ¢
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Ir ground reaction force

m, ground reaction moment

() position vector of point (-)

l segment lengths

T window size (number of frames)

o polynomial coefficients of variable (-)
Ve contact point velocity vector

6 feature vector

le class label of gait phase

¢ contact state of foot @

d damping in forward layer

70, f() functions implemented by neural networks

loss function
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ABSTRACT

This dissertation deals with machine learning techniques for inverse dynamics of human
motion. Inverse dynamics refers to the derivation of acting forces and moments from the
motion of a kinematic model. More precisely, the objective is to estimate joint torques,
ground reaction forces and ground reaction moments at both feet based on the three-
dimensional input motion of a skeletal model. Of particular interest are the joint torques,
also specified as net joint moments, since they correspond to the total effect of all forces
on the joints. In the context of biomechanical investigations, they represent a common
measure of the load on joints.

Traditional approaches formulate the problem as an optimization that incorporates the
equation of motion (EOM) of a physical model of the human body. The EOM is either
used in a forward or an inverse sense which implies either integration or differentiation of
kinematics. Both processes are prone to error propagation and complicate the convergence
of the optimization algorithms built on the formulation. Furthermore, the EOM belonging
to a multi-body system, such as the modeled human body, gives rise to a highly non-linear
and non-convex objective function which is notoriously hard to optimize. Last but not least,
conventional methods generally rely on measured external reaction forces and moments,
which severely limits the motions that can be analyzed due to the laboratory environment
required.

Given these limitations, data-driven machine learning techniques open up tremendous
opportunities by enabling fast and noise-resistant data analysis. This thesis investigates
the applicability of such methods to inverse dynamics of human motion and addresses the
design of suitable regression models. The proposed methods are able to predict underlying
joint torques and exterior forces with high precision (on gait sequences: relative root mean
squared errors of 7.0 %, 16.1 % and 11.9 % for reaction forces, reaction moments and joint
moments which correspond to Pearson’s correlation coefficients of 0.91, 0.83 and 0.82),
while reducing computation times by two orders of magnitude compared to traditional
optimization.

A general feature of human motion data is the discontinuity at contact phase transitions,
e.g. at the moment the foot touches the ground. By changing the number of contact points
of the human model to its environment, the set of dynamic equations is fundamentally
altered to the extent that external influences are allowed or forbidden at the corresponding
points. Motivated by this property, a multi-stage regression approach is presented. The

method initially identifies the current gait phase and limits the inference of joint torques
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as well as contact forces to the resulting sub-space. This way, the regression of unrealistic
non-zero forces during swing phases is significantly reduced compared to a model that
estimates the forces without knowledge of the contact state.

Current problems of machine learning methods for solving inverse dynamics are a lack
of suitable datasets and that the compliance with the EOM is not guaranteed for the
predictions. Both issues are addressed by a self-supervised learning method presented in
this thesis. The approach allows cycle consistent training of an artificial neural network
with pure motion data, i.e. without any ground truth forces and moments. Instead of
minimizing a direct loss on the target forces, the model solves an initial value problem
based on predicted forces and minimizes the distance between the resulting simulation and
the input motion. This is realized by implementing a differentiable forward dynamics loss
layer that allows backward flow of gradients and can be integrated into the training of the
neural network. In addition, the model includes a corresponding inverse dynamics layer
that evaluates the estimated contact forces decoupled from predicted joint torques. Thus,
the model not only allows training on readily available motion data, but also constrains the
predicted variables using both dynamic directions for optimal satisfaction of the EOM. The
neural network maintains stable performance even with small labeled datasets consisting
of dynamics data of only two or three subjects by learning generalization capability on
larger unlabeled motion sets. Furthermore, the method enables self-supervised transfer
learning to different motion types, movement speeds and skeleton characteristics.

The presented learning-based inverse dynamics approaches are evaluated using a self-
recorded dataset of walking and running sequences performed by 22 subjects as well as a
public dynamics dataset [39] and gait sequences from the well-known CMU database [18].

The self-recorded dataset is available to the research community.

XI
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KURZFASSUNG

Diese Dissertation beschéftigt sich mit maschinellen Lernverfahren fiir die inverse Dynamik
der menschlichen Bewegung. Unter inverser Dynamik versteht man die Ableitung von
wirkenden Kraften und Momenten aus der Bewegung eines kinematischen Modells. Genauer
gesagt geht es um die Abschétzung von Gelenkmomenten, Bodenreaktionskréaften und
Bodenreaktionsmomenten an beiden Fien basierend auf der dreidimensionalen Eingangs-
bewegung eines Skelettmodells. Von besonderem Interesse sind die Gelenkmomente, die
auch als Netto-Gelenkmomente bezeichnet werden, da sie der Gesamtwirkung aller Kréfte
an den Gelenken entsprechen. Im Rahmen biomechanischer Untersuchungen stellen sie ein
géngiges Maf fiir die Bean-spruchung von Gelenken dar.

Traditionelle Ansétze formulieren das Problem als eine Optimierung, die die Bewegungs-
gleichung (Equation of Motion, EOM) eines physikalischen Modells des menschlichen
Korpers einbezieht. Die EOM wird entweder in einem vorwéarts gerichteten oder einem
inversen Sinn verwendet, was entweder eine Integration oder eine Differenzierung der
Kinematik impliziert. Beide Verfahren sind anféllig fiir Fehlerfortpflanzung und erschw-
eren die Konvergenz des Optimierungsalgorithmus. Dariiber hinaus fithrt die zu einem
Mehrkérpersystem, wie dem modellierten menschlichen Koérper, gehérende EOM, zu einer
hochgradig nichtlinearen und nichtkonvexen Zielfunktion, die schwer zu optimieren ist.
Zudem stiitzen sich konventionelle Methoden in der Regel auf gemessene externe Reaktion-
skréfte und -momente, was die zu analysierenden Bewegungen aufgrund der erforderlichen
Laborumgebung stark einschrankt.

Angesichts dieser Einschréankungen eroffnen datengesteuerte maschinelle Lernverfahren
enorme Moglichkeiten, da sie generell eine schnelle und rauschresistente Datenanalyse
erlauben. Diese Arbeit untersucht die Anwendbarkeit solcher Methoden auf die inverse
Dynamik der menschlichen Bewegung und beschéftigt sich mit dem Entwurf geeigneter
Regressionsmodelle. Die vorgeschlagenen Methoden sind in der Lage, die zugrundeliegen-
den Gelenkmomente und dufieren Kréfte mit hoher Genauigkeit (bei Gangsequenzen:
relative mittlere quadratische Fehler von 7,0 %, 16,1 % und 11,9 % fiir Reaktionskrafte,
Reaktionsmomente und Gelenkmomente, was Pearson’s Korrelationskoeffizienten von 0,91,
0,83 und 0,82 entspricht) vorherzusagen und gleichzeitig die Berechnungszeiten um zwei
GroBenordnungen im Vergleich zur traditionellen Optimierung zu reduzieren.

Ein allgemeines Merkmal menschlicher Bewegungsdaten ist die Diskontinuitat an Kontak-
tphaseniibergingen, z.B. im Moment der Bodenberithrung des Fufles. Durch Verédnderung

der Anzahl der Kontaktpunkte des menschlichen Modells zu seiner Umgebung wird der

XII
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Satz der dynamischen Gleichungen grundlegend verdndert, und zwar in dem Sinn, dass
duBere Einfliisse an den entsprechenden Punkten erlaubt oder verboten werden. Motiviert
durch diese Eigenschaft, wird ein mehrstufiger Regressionsansatz vorgestellt. Das Verfahren
identifiziert zunachst die aktuelle Gangphase und beschriankt die Inferenz von Gelenkmo-
menten und Kontaktkriften auf den resultierenden Unterraum. Auf diese Weise wird
die Regression unrealistischer endlicher Krifte wihrend der Schwungphasen im Vergleich
zu einem Modell, das die Kréifte ohne Kenntnis des Kontaktzustandes schatzt, deutlich
reduziert.

Aktuelle Probleme von maschinellen Lernmethoden zur Losung der inversen Dynamik
sind ein Mangel an geeigneten Datensétzen und dass die Einhaltung der EOM durch die
vorhergesagten Grofien nicht garantiert ist. Beide Probleme werden durch ein in dieser
Arbeit vorgestelltes selbst-tiiberwachtes Lernverfahren adressiert. Der Ansatz erlaubt ein
zykluskonsistentes Training eines kiinstlichen neuronalen Netzes mit reinen Bewegungs-
daten, d.h. ohne jegliche Ground-Truth-Krifte und -Momente. Anstatt einen direkten
Verlust auf die Zielkrifte zu minimieren, 16st das Modell ein Anfangswertproblem basierend
auf den vorhergesagten Kriften und minimiert den Abstand zwischen der resultierenden
Simulation und der Eingangsbewegung. Dies wird durch die Implementierung einer dif-
ferenzierbaren vorwértsdynamischen Verlustschicht realisiert, die einen Riickwértsfluss von
Gradienten erlaubt und in das Training des neuronalen Netzes integriert werden kann.
Zusatzlich enthalt das Modell eine entsprechende Schicht fiir die inverse Dynamik, die die
geschitzten Kontaktkrafte entkoppelt von den vorhergesagten Gelenkmomenten auswertet.
Somit ermoglicht das Modell nicht nur das Training auf leicht verfiigharen Bewegungsdaten,
sondern beschréankt auch die vorhergesagten Variablen unter Verwendung beider dynamis-
cher Richtungen zur optimalen Erfillung der EOM. Das neuronale Netzwerk behdlt seine
stabile Leistung auch bei kleinen gelabelten Datensitzen, die aus Dynamikdaten von nur
2 bis 3 Probanden bestehen, indem es die Féahigkeit zu generalisieren auf grofleren nicht
gelabelten Bewegungsdatensétzen lernt. Dariiber hinaus erméglicht die Methode selbst-
iiberwachtes Transferlernen unbekannter Bewegungstypen, Bewegungsgeschwindigkeiten
und abweichender Skelettmerkmale.

Die vorgestellten lernbasierten inversen Dynamikanséitze werden anhand eines selbst
aufgezeichneten Datensatzes von Geh- und Laufsequenzen, die von 22 Probanden ausgefiihrt
wurden, sowie eines Offentlichen Dynamikdatensatzes [39] und Gangsequenzen aus der
bekannten CMU-Datenbank [18] evaluiert. Der selbst aufgezeichnete Datensatz steht der

Forschungsgemeinschaft zur Verfiigung.
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