
Predictive Thinking in Virtual Worlds
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Launching a video game for the first time entails stepping into an unfamiliar vir-

tual world. Whether it is a medieval fantasy setting like the Northern Realms of 

THE WITCHER 3: WILD HUNT, a sprawling modern metropolis such as Los Santos 

in GRAND THEFT AUTO V, or FALLOUT 4’s (Bethesda Softworks 2015) post-

apocalyptic rendering of New England, video games exhibit a diverse assortment 

of scenarios through which players have to learn to navigate by operating their 

virtual personas. 

Not only do players need to learn their way around these settings, they also 

need to assimilate the mechanics that enable movement and interaction: The ac-

tions that the player character can perform and the responsiveness of the controls 

usually vary from game to game. Besides, the physical laws that govern each vir-

tual environment might differ from the ones we are used to from the real world 

or other gameworlds. 

The adjustment to these properties of the gameworld takes place through a 

trial-and-error process that Torben Grodal has dubbed the “aesthetic of repeti-

tion” (2003, 148): 

 

“When we arrive to a new city or a new building we slowly learn how to move around, 

and if we want to learn to drive or bike, we exercise those skills until we have acquired the 

necessary procedural skills. The video game experience is very much similar to such an 

everyday experience of learning and controlling by repetitive rehearsal” (ibid.). 

 

                                                             

1 An earlier version of this section was previously published in the anthology BILDVER-

STEHEN. SPIELARTEN UND AUSPRÄGUNGEN DER VERARBEITUNG MULTIMODALER 

BILDMEDIEN edited by Lars C. Grabbe, Patrick Rupert-Kruse, and Norbert M. 

Schmitz (Alvarez Igarzábal 2017a). 
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102 | TIME AND SPACE IN VIDEO GAMES 

Thus, players engage in a heuristic process through which they assimilate the de-

sign and mechanics of the virtual world until the control of the avatar becomes 

second nature. Furthermore, someone who is unfamiliar with the particular input 

device at hand (controller, joystick, mouse and keyboard) would need to learn 

how to operate it as well. Inexperienced players will typically take their eyes off 

the screen and look at the controller to locate the button they want to press, or 

they will lean to one side when they want the character to move in that direction 

but it is not responding as they expect. Even seasoned players used to a particu-

lar input device—mouse and keyboard, for example—might have trouble when 

switching to a new one—like the Xbox One controller. 

The aesthetic of repetition presents itself therefore on two layers: (1) At the 

level of the physical interface and (2) at the level of the game mechanics. Natu-

rally, the more confident a player is with the first layer, the faster they will be at 

assimilating the workings of the second.  

To some extent, everyone is familiar with the aesthetic of repetition. Steve 

Baumgart was the winner of what the Rolling Stone magazine claims was the 

first video game tournament, held in 1972 at the Stanford Artificial Intelligence 

Lab. The game at the center of the competition was SPACEWAR! In an interview, 

Baumgart said: "Pretty soon, you don't think about the buttons (…) It's like 

speed typing – you just look at ships on the screen and make them move where 

you need them to go" (Baker 2016). But what takes players from needing to pay 

close attention to the actions they are performing to a state in which they can act 

without having to “think about the buttons”? A compelling answer to these ques-

tions comes from a theory that philosopher Andy Clark (2013) has dubbed ac-

tion-oriented predictive processing, which asserts that the brain is a machine that 

applies Bayesian statistics to anticipate the state of its surroundings. The theory 

is principally based on research conducted by neuroscientist Karl Friston (2003, 

2005, 2010, 2011, 2012; Friston and Kiebel 2009). 

According to this paradigm, the brain creates models of the environment that 

it matches to incoming sensory information. Should there be an incongruity, the 

model in the brain is updated accordingly (Clark 2013, p. 182). If the model 

matches the upstream sensory signal, no update is necessary, so it remains un-

changed. Thus, the more experience with a particular activity someone has, the 

more updated their model of said activity will be, allowing them at some point to 

operate on autopilot. 

Evidence from numerous studies shows that this unifying framework can ac-

count for both perception and action. This theory goes beyond the layer of our 

direct experience into subconscious processes that lie beneath it. After all, a pro-

cess that is second nature should be expected to be at least partly subconscious in 
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order to be performed without actively paying attention to it. In the words of 

Clark (2013, p. 197):  

 

“The world, it might be said, does not look as if it is encoded as an intertwined set of 

probability density distributions! It looks unitary and, on a clear day, unambiguous. But 

this phenomenology again poses no real challenge. What is on offer, after all, is a story 

about the brain’s way of encoding information about the world. It is not directly a story 

about how things seem to agents deploying that means of encoding information.” 

 

 

THE BAYESIAN BRAIN 

 

The Bayesian method is one of the two major theories of statistics—the other be-

ing classical or frequentist statistics (Romeijn 2016). The basic components of 

Bayesian statistics are: (1) the priors or prior beliefs—hypotheses based on pre-

vious experience; (2) the likelihood—gathered data in the present moment; and 

(3) the posterior probability—the most likely scenario determined by the infor-

mation in the two first sets. That is, the priors and the likelihood are fed to a 

Bayesian estimator, which calculates how likely a particular event is to happen 

(figure 2.1).
2
 

The brain is, within this framework, a Bayesian estimator that possesses 

models of the world obtained through previous experience or hardwired through 

evolution (the priors), collects information through the senses (the likelihood), 

and infers the most likely state of the environment from those two sets of data 

(the posterior probability). This process results in our experience of the world 

(compare Clark 2013, Friston 2011, Körding and Wolpert 2006). As Andy Clark 

remarks: 

 

“[T]he task of the brain, when viewed from a certain distance, can seem impossible: it 

must discover information about the likely causes of impinging signals without any form 

of direct access to their source. Thus, consider a black box taking inputs from a complex 

external world. The box has input and output channels along which signals flow. But all 

that it “knows”, in any direct sense, are the ways its own states (e.g., spike trains) flow and 

alter. In that (restricted) sense, all the system has direct access to is its own states […] The 

brain is one such black box” (Clark 2013, p. 183). 

                                                             

2 Central to this theory is Bayes’ theorem, the rule with which the posterior probability 

can be estimated. Understanding the theorem is not necessary to grasp the logic be-

hind Bayesian inference, so I have chosen to omit it for the sake of clarity. 
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Figure 2.1: The likelihood and prior beliefs are fed to  

a Bayesian estimator, which calculates the posterior 

probability. 

 

 
 

From the perspective of the brain, even the body is a part of the external world 

(Friston 2011, p. 92) and, to complicate things further, the information obtained 

by the senses (the likelihood) is contaminated by noise (Körding and Wolpert 

2006, p. 319). This means that the brain needs to estimate the state of the world 

and generate reactions to it in a constant state of uncertainty. Through 

movement, the brain probes the world and updates its priors in the light of the 

incoming stream of sensory information, generating a feedback loop that inte-

grates perception and motor action into one model. 

 

 

BAYESIAN INFERENCE IN VISUAL PERCEPTION 

 

Cases of Bayesian inference in visual perception can help clarify the theory be-

fore moving to examples of motor control. Hohwy, Roepstorff, and Friston 

(2008) have argued that this Bayesian model is cohesive with diverse studies in 

binocular rivalry (see Alais and Blake 2005; Leopold and Logothetis 1999; 

Tong, et al. 2006). This phenomenon occurs when a person is presented with a 

bi-stable stimulus: 

 

“If one stimulus is shown to one eye and another stimulus to the other, then subjective 

experience alternates between them. For example, when an image of a house is presented 

to one eye and an image of a face to the other, then subjective experience alternates be-

tween the house and the face” (Hohwy et al. 2008, p. 687). 

 

Prior Beliefs 

(Memories) 

Likelihood 

(Sensory data) 

Posterior Probability 

(Prediction) 
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In this case, the subject not only sees either a house or a face, but the perception 

will shift from one to the other, with combinations of both in between. At first, 

the subject might only perceive the face. Then, seconds later, the perception will 

change to part face, part house, until finally only the house will remain visible. 

This phenomenon will then repeat back and forth indefinitely in intervals of 

around three seconds—that is, the duration of the experienced moment discussed 

in chapter one, section 1.1. Figure 2.2 shows a representation of the effect that 

said bi-stable stimuli have in perception. 

 

Figure 2.2: Simplified Bayesian scheme for the 

alternation of stimuli in binocular rivalry. 

 

Source: Hohwy et al. 2008, p. 693. 

 
The reason behind the phenomenon of binocular rivalry is that two different ob-

jects (the face and the house) appear to share the same spatiotemporal location 

and, thus, “[n]o single hypothesis accounts for all the data, so the system alter-

nates between the two semi-stable states” (Clark 2013, p. 185). The incapability 

of two objects to be at the same time in the same place is a “systemic prior” 

(ibid.) or hyperprior: “…binocular vision, in primates, rests upon both eyes fo-
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veating the same part of visual space. We have therefore learned that the expla-

nation for binocular visual input is unitary” (Hohwy et al.  2008, p. 691). This 

“failure” of perception caused by an artificial state of affairs in the experimental 

environment gives us a glimpse behind the curtain that is consistent with the pic-

ture of the brain painted by the Bayesian framework. In normal circumstances, 

objects in the visual field do not share the same place at the same time. So, in the 

end, the brain settles for the strongest hypothesis, which will be the subject’s ex-

perience of the world: “What ultimately determines the resulting conscious per-

ception is the best hypothesis: the one that makes the best predictions and that, 

taking priors into consideration, is consequently assigned the highest posterior 

probability” (ibid., p. 690). 

 

Figure 2.3: The Necker cube. 

 

 

Hohwy et al. also assert that this explanation applies to bistable stimuli like the 

Necker cube (ibid., p. 699). In section 1.1, I discussed this type of ambiguous 

imagery with the example of the Rubin Vase. The Necker cube (figure 2.3) is a 

two-dimensional figure made up of straight lines arranged in such a way that the 

brain interprets them as a cube. This cube, however, can be seen from two dif-

ferent perspectives: either from the top, with the front face of the figure leaning 

to the left, or from the bottom, with the front face to the right. Since actual three-

dimensional objects cannot be seen simultaneously from two perspectives, the 

brain tests both hypotheses by alternating between them (circa every three sec-

onds). Once again, there is no solution to this conundrum, so the brain can only 

carry on shifting perspectives. 

While visual stimuli in video games tend to be congruent—and nothing like 

the extreme example of the face and the house—, some make use of ambiguous 

imagery evocative of Escher’s famed works “Belvedere” or “Waterfall,” or im-

possible figures like the Penrose triangle (Penrose and Penrose 1958) in order to 
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obfuscate the player’s interpretation of the gameworld and, thus, complicate nav-

igation (see Hensel 2015). ECHOCHROME (Sony Computer Entertainment Japan 

Studio 2008) and PERSPECTIVE (DigiPen 2012) are two examples of this. 

 

Figure 2.4: PERSPECTIVE. 

 
Source: https://www.youtube.com/watch?v=XSS6QBMtfqI (1:06, 1:17). 

 

Top: the blue platforms are too far apart for the player character to jump 

over the deadly orange platform. Bottom: Moving the camera, and thus 

changing perspective, brings the blue platforms closer together in the 

two-dimensional plane, enabling the character to jump across. 
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Both games combine the logic of a two-dimensional image with a three-

dimensional environment, and the player needs to find the most suitable point of 

view with the camera for the avatar to be able to move from surface to surface. 

These aesthetic and mechanic elements toy with our systemic priors and make it 

demanding to determine the avatar’s position in relation to platforms and other 

objects in the world. 

In PERSPECTIVE, the player needs to alternate between two discrete play 

modes: camera movement and platforming. For example, if two platforms are 

too far away to jump across the gap between them from a side view (as seen in 

figure 2.4), the camera can be moved to change the angle of the platforms and 

place them closer together in the two-dimensional plane. This action enables the 

player-character to make the jump. 

 

Figure 2.5: ECHOCHROME (left) and the Penrose triangle (right). 

 

Source: Left: https://www.youtube.com/watch?v=Pm-4gfJshA8  

(accessed June 6, 2019). Right: https://commons.wikimedia.org/wiki/ 

File:Penrose-dreieck.svg (accessed February 9, 2018). 

 

Left: A sequence from ECHOCHROME’s tutorial showing the 

mechanics used to connect platforms through changes in 

perspective. Right: The Penrose triangle for comparison. 
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ECHOCHROME (figure 2.5) implements an aesthetic more reminiscent of Pen-

rose’s impossible imagery and, in a very similar way to PERSPECTIVE, the player 

needs to move the camera around to find a suitable arrangement of the platforms 

that will allow the character to traverse the gamespace. The character, however, 

is not player controlled, but walks automatically. The challenge for the player is 

to swiftly move the camera and adjust the perspective according to the needs of 

the moment so that the character can reach the end of the stage. 

The video game examples above show the interrelation between sensory in-

formation (visual in this case) and motor action: Placing the camera at a particu-

lar angle in PERSPECTIVE might lead a player to believe that the character will be 

able to jump from one particular platform to another. While performing the ac-

tion, however, they might realize that the gap between both surfaces is too wide 

as they see the player character fall through it. This event will bring about an up-

date of the player’s prior beliefs, who will subsequently adjust the camera angle. 

With each challenge, the player will become better at estimating the appropriate 

distance between two platforms and whether the character is capable of making 

the jump or not. 

 

 

BAYESIAN INFERENCE IN MOVEMENT 

 
Imagine an everyday scenario in which you go to the kitchen to get a glass of 

water. The pitcher is opaque, so you cannot see exactly how much water is in it 

(the information is incomplete). Since you filled it earlier, you assume it is still 

full and apply the necessary force to lift a pitcher containing approximately two 

liters of water. However, your roommate has drunk most of the water without 

you noticing and did not refill the container. The pitcher will thus offer less re-

sistance than expected, rising surprisingly fast. However, in an instant, you can 

readjust the applied force to avoid hurling the pitcher into the air. 

The curious aspect of this scenario is that you do not need to consciously 

think about the contents of the pitcher to assume that it is full. The estimation 

can be, and often is, performed tacitly. If there had been no discordance between 

your belief and the feedback, you probably would not have noticed the assump-

tion you were making about the weight of the pitcher. But, when the expecta-

tions about the environment do not match its actual state, your belief is updated 

as soon as new information is received and you become aware of your presuppo-

sitions.  

To put it in slightly more Bayesian terms: You approach the pitcher with a 

hypothesis about its state that guides your motor actions. When your hand grasps 
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the container and your arm applies force to lift it, a feedback signal moves up the 

sensory stream. Since this information does not match your model of the world, 

the feedback is understood as an error signal. This mismatch between hypothesis 

and incoming sensory information is called surprisal—different from surprise, 

which relates to the conscious experience of an unexpected event (Clark 2013, p. 

3)—and it causes the model of the environment to be corrected. That is, bottom-

up information obtained by the senses is compared to the top-down model of the 

world and, given that there is a disparity between prediction and sensory infor-

mation, the model is updated. 

These predictions—such as the one your brain made about the weight of the 

pitcher—are essential to interact with the world. In the words of Daniel Dennett: 

“[t]he brain’s task is to guide the body it controls through a world of shifting 

conditions and sudden surprises, so it must gather information from that world 

and use it swiftly to ‘produce future’—to extract anticipations in order to stay 

one step ahead of disaster” (Dennett 1991, p. 144). 

The following example (figure 2.6) by Körding and Wolpert (2006, p. 319) 

illustrates this notion quite eloquently:  

 

“[W]hen playing tennis we may want to estimate where the ball will bounce. Because vi-

sion does not provide perfect information about the ball’s velocity there is uncertainty as 

to the bounce location. However, if we know about the noise in our sensory system then 

the sensory input can be used to compute the likelihood […] We can combine this with in-

formation that is available over repeated experience of tennis: the position where the ball 

hits the ground is not uniformly distributed over the court. For example the bounce loca-

tions are likely to be concentrated within the confines of the court and the distribution 

might be highly peaked near the boundary lines where it is most difficult to return the 

ball.” 

 

Figure 2.6 shows three probability distributions: the red gradient indicates the 

likelihood, the green the prior distribution, and the black ellipses mark where the 

ball is more likely to bounce, or the posterior probability, as computed by a 

Bayesian estimator (in this case, the player’s brain). I have previously discussed 

Ernst Pöppel’s distinction between simple and decision reactions (section 1.1). 

In simple reactions, there is one automatic response to one stimulus—I hear a 

bang, so I start running. These responses can be trained through practice to be 

faster. Decision reactions are slower but can vary in complexity. In the tennis 

example described above, the player is met with a decision reaction—determine 

the speed and direction of the ball, run to a position in the court where the ball 

can be intercepted, and swing the racket in time to hit the ball in the preferred di-
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rection and with the desired strength. The more prior information the player pos-

sesses about the game, the faster and more accurate this decision reaction will 

be. 

 

Figure 2.6: Illustration of tennis example by Körding and Wolpert. 

 

Source: Körding and Wolpert 2006, p. 320. 

 
It is easy to see how this example could translate to a video game like PONG, 

which is a simplified, virtual version of table tennis. The motor actions that the 

players would have to execute are different in each case: The tennis player 

would run towards the alleged landing location of the ball and swing their arm 

holding the racket accordingly, while the PONG player would move the virtual 

paddle by means of whatever interface they are using at the moment—such as 

pressing a key on the keyboard or rotating a knob, as in the case of the original 

PONG machine. However, both players would estimate the trajectory of the ball 

with the same sets of data: the current visual information of the ball and their 

previous experience with the game. But any video game that involves the devel-

opment of skills rests on the principle of learning through repetition, which relies 

on the mechanism of action-oriented predictive processing. 

 

 

COPING WITH UNCERTAINTY 

 

Thomas Malaby defines games as “a semibounded and socially legitimate do-

main of contrived contingency that generates interpretable outcomes” (Malaby 

2007, p. 96). Applied to the specific realm of video games, the domain of con-

trived contingency is typically a gamespace with entities that behave in different 
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ways and influence each other. The role of the player is to set different variables 

into motion in pursuit of a particular outcome, usually dictated by the game’s ob-

jectives. The result of the player’s actions is indeterminate, and the challenge of 

video game design is to strike a satisfactory balance between control and uncer-

tainty within this contingency. 

Roger Caillois noted that “[a]n outcome known in advance, with no possibil-

ity of error or surprise, clearly leading to an inescapable result, is incompatible 

with the nature of play” (Caillois 2001, p. 7). As stated in the previous pages, 

uncertainty is an inescapable fact of life that is not exclusive to play or games. 

We deal with incomplete and inaccurate information on a daily basis. But, while 

other systems are designed to reduce uncertainty, games emphasize it. Play theo-

rist Brian Sutton-Smith argues that 

  

“[a]ll creatures, animal and human, live with some degree of existential angst, and most of 

them spend some portion of their time attempting to secure themselves from this angst by 

controlling their circumstances […] We constantly seek to manage the variable contingen-

cies of our lives for success over failure, for life over death. Play itself may be a model of 

just this everyday existentialism” (Sutton-Smith 1997, p. 228).  

 

Malaby’s concept of “contrived contingency” proves fitting in this context. It 

recognizes games as artifacts in which a scenario with fluctuating variables is 

orchestrated by a designer for a player to interact with according to certain rules 

while pursuing particular goals. They emulate the uncertainty of everyday life in 

a more constrained system and give players the promise of control over this arti-

ficial environment. 

At first, it is to be expected that the interaction with the gameworld is in-

formed by bottom-up sensory information to a greater degree, since many of the 

brain’s predictions will fail to anticipate the state of the novel virtual scenario. 

Through interaction with the virtual world, players can update their priors—that 

is, improve their models of said world—and become better at predicting its states 

and future events. With time, actions will rely increasingly on top-down models 

of the environment and less on the incoming sensory stream of data. Given that 

bottom-up sensory information requires more time to be processed, the better 

players become at predicting the states of the world, the swifter and more precise 

their reactions will be. Such is the central mechanism behind the aesthetic of 

repetition described by Grodal. 

In this context, playing video games can be understood as a process of uncer-

tainty reduction through the accumulation of prior knowledge. The accrual of 

priors leads to increasingly accurate mental models of the virtual environment 
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and, thus, to greater control over it. Therefore, in order to master a game’s me-

chanics, players will perform the same actions repeatedly. Mastering the jump in 

SUPER MARIO BROS., for instance, entails pressing the jump button again and 

again in order to assess different variables—for instance, how far or high Mario 

can jump, or to what extent he can change direction mid-air. Additionally, the 

player can test how these values are affected by the momentum acquired through 

running. Most of these repetitions are performed in safe conditions: If a player 

fails to leap over one of the game’s warp pipes because they did not jump high 

enough, the avatar will often just hit the pipe’s side and drop to the ground, los-

ing nothing but a couple of seconds in the process. Players may also simply jump 

around aimlessly without being motivated by the environment, either as an inten-

tional form of practice or just because they can. The majority of interactions in 

video games are of this nature. They tend to be less salient than actions that 

could damage or kill the player character, but they are greater in number and are 

part of the prior updating process.  

Often, however, players need to jump over bottomless pits, spikes, or other 

hazards that might threaten the life of the player character or diminish valuable 

resources (e.g., health). In this context, there is one further characteristic of video 

games that must be taken into account: the capacity of games to reset time. 
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