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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Enabler für wandlungsfähige Robotersysteme im öffentlichen Raum und in der Industrie

Onlinebahnplanung mittels 
Reinforcement Learning

J. Möhrle, A. Gaugenrieder, C. Härdtlein, R. Daub

Z U S A M M E N FA S S U N G  In Produktionen mit hoher 
 Variantenvielfalt und kurzen Produktlebenszyklen steigert 
 Onlinebahnplanung die Wandlungsfähigkeit autonomer Robo-
ter.  Mittels Reinforcement Learning (RL) sind Roboter in der 
Lage, sich dynamisch an variierende Bedingungen anzupassen 
und komplexe Tätigkeiten zu automatisieren. Dieser Beitrag 
 erläutert die Grundlagen von Onlinebahnplanung mittels RL, 
stellt ein Konzept anhand der Abfallsammlung im öffentlichen 
Raum vor und diskutiert dessen Transfer in die Industrie.

Online path planning using Reinforcement 
Learning - Enabler for versatile robot 
 systems in public spaces and industry 

A B ST R A C T  Flexible path planning for autonomous robots 
is required in productions with a high degree of variability  
and short product life cycles. Reinforcement Learning (RL) 
 offers a solution, as it enables robots to adapt dynamically  
to varying conditions and automate complex activities. The 
 article  explains the basics of online path planning using RL, 
presents a concept based on waste collection in public spaces, 
and  discusses its transfer to industry.

1 Motivation

Aktuell ist der industrielle Sektor mit zwei Herausforderungen 
konfrontiert. Zum einen erfordern die sozioökonomischen Ent-
wicklungen des Fachkräftemangels und des demografischen Wan-
dels eine weitgehende Automatisierung von Prozessabläufen. Zum 
anderen steigen die Anforderungen an produzierende Unter -
nehmen in Form von kürzer werdenden Produktlebenszyklen 
und steigender Produktvarianz. Als Resultat benötigt es autonome 
Systeme, die zur variantenreichen Montage befähigt sind. [1] 

Die aufwandsarme Anpassung von Betriebsmitteln an sich ver-
ändernde Produkte, Prozesse oder Mengen wird in der Literatur 
als Wandlungsfähigkeit bezeichnet. Ein Wandlungsbefähiger ist 
 etwa die Universalität von Betriebsmitteln [2]. Industrieroboter 
werden als gesteuerte, frei programmierbare Universaloperatoren 
in mindestens drei Achsen eingesetzt, um heterogene Hand -
habungsaufgaben zu automatisieren [3]. Jedoch ist in der indus-
triellen Praxis der Betrieb von Industrierobotern an manuelle 
 Tätigkeiten gekoppelt. Der Arbeitsablauf des Robotersystems wird 
meist als Teil des Rüstprozesses durch Handführung (Playback) 
oder Teach-in mittels Programmierhandgerät festgelegt [4]. 

Die manuelle Anpassung des Robotersystems an sich verän-
dernde Umgebungsbedingungen ist ein Kostentreiber, da die 
 Anpassungsaufwände zu Verfügbarkeitsverlusten der Produkti-
onsanlage führen und Fachkräfte binden. Dabei ist der Roboter 
jeweils auf die starr programmierten Rahmenbedingungen limi-
tiert.  Daraus ergibt sich der Bedarf nach einem wandlungsfähigen 
 Robotersystem, das im Betrieb (online) selbstständig die 
 Roboterbahn unter Beachtung von sich stetig verändernden 

 Umgebungsbedingungen generiert. Mit dieser Aufgabenstellung 
 beschäftigt sich die Bahnplanung in der Robotik. Reinforcement 
Learning (deutsch: Bestärkendes Lernen), ein auf künstlicher 
 Intelligenz basierender Regelungsansatz, bietet hierfür Potenzial. 

Im Folgenden wird zunächst der Stand der Technik im Bereich 
der Bahnplanung dargelegt. Daraus wird das Potenzial von Rein-
forcement Learning in der Bahnplanung abgeleitet und ein 
grundlegendes Verständnis dieses Paradigmas geschaffen. Im 
 Anschluss wird ein Forschungsansatz für einen Reinforcement 
Learning-Agenten vorgestellt und zuletzt der Transfer in die 
 Industrie diskutiert.

2 Stand der Technik

Bahnplanung bezeichnet in der Robotik die Problembeschrei-
bung zur Findung eines Zielzustands sEnde, ausgehend von einem 
Startzustand sStart in einem hindernisfreien Raum SFrei unter Ein-
haltung von Beschränkungen, wie Gelenklimits oder Momenten-
grenzen [5]. Die Generierung einer solchen Bahn ist als nicht 
 lösbar in deterministischer Polynomialzeit (englisch: Nondeter-
ministic Polynomial Time, kurz: NP-Schwer) zu klassifizieren, da 
kein bekannter Algorithmus einen optimalen Pfad in effizienter 
Zeit extrahieren kann [6]. 

Es wird differenziert zwischen der Offlinebahnplanung, die in 
einem vorgelagerten Schritt unter Kenntnis der gesamten Um -
gebung abläuft, und der Onlinebahnplanung, die während des 
 Betriebs abläuft. Im Folgenden soll explizit das Potenzial diverser 
Bahnplanungsalgorithmen für die Onlinebahnplanung adressiert 
werden, da das Robotersystem nur mittels Onlinebahnplanung 
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ohne Verfügbarkeitsverluste auf sich verändernde Umgebungen 
reagieren kann [7, 8].

2.1 Bahnplanungsalgorithmen

Stichprobenbasierte Algorithmen erreichen ein zeiteffizientes 
Verhalten, indem die Umgebung stichprobenartig abgetastet wird 
[6].

Probabilistic Roadmaps (PRM) [9] erstellt zu Beginn stich-
probenartig N Abtastpunkte im Arbeitsraum S des Roboter -
systems. Die k-nächsten Abtastpunkte werden durch Kanten 
 verbunden, sofern sie sich im hindernisfreien Raum SFrei befinden 
[5, 6]. Dieses Prinzip ist für einen zweidimensionalen Anwen-
dungsfall in Bild 1 a) dargestellt. Durch eine nachfolgende 
 Graphensuche, beispielsweise A-Star [10], kann ein optimaler, 
kollisionsfreier Pfad aus der Roadmap extrahiert werden [11]. 
Dieser ist in Bild 1 a) als unterbrochene Linie visualisiert. 

Rapidly Exploring Random Trees (RRT) [12] generiert 
schrittweise eine Baumstruktur, beginnend beim Startzustand 

sStart zum Endzustand sEnde. Dabei wird jeweils der nächstgelegene 
Punkt der Baumstruktur zum Abtastpunkt durch eine Kante ver-
knüpft. In einer nachfolgenden Kollisionsprüfung werden Kanten, 
die ein Hindernis berühren, entfernt [6]. Gegenüber PRM 
 werden bei RRT die Abtastpunkte nicht einmalig, sondern iterativ 
generiert. Dies erlaubt eine effizientere Abtastung des Arbeits-
raums durch die Nutzung von bereits gewonnenem Wissen, bei-
spielsweise mittels Heuristiken, wie in Bild 1 b) skizziert. [13]

Demgegenüber verfolgt der Algorithmus des künstlichen 
 Potenzialfeldes (englisch: Artificial Potential Field, APF) [14] 
 einen echtzeitfähigen Ansatz, der auf einer sensorischen Erfas-
sung der Abstände umliegender Kollisionsgeometrien relativ zum 
Roboter basiert. Auftretende Hindernisse induzieren auf den 
 Roboter eine „Abstoßungskraft“ und das Ziel eine „Anziehungs-
kraft“, wie in Bild 1 c) durch Kraftvektoren veranschaulicht 
[6, 14]. Durch  diese imaginären Kraftanteile wird der Arbeits-
raum des Roboters mit einem künstlichen Potenzialfeld gefüllt. 
Das Potenzial kann dabei als Summierung aller auf den Roboter 
wirkenden Kräfte bei der Bewegung des Roboters durch das 

Bild 1. Visualisierung der Funktionsweise bestehender Bahnplanungsalgorithmen. Grafik: Fraunhofer IGCV
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 Potenzialfeld interpretiert werden. Die Optimierung dieses Poten-
zials ergibt die gewünschte Bahn. Eine diskrete Abtastung der un-
bekannten Umgebung ist aufgrund der kontinuierlichen sensori-
schen Rückkopplung nicht nötig. Allerdings tendiert die APF-Me-
thode zu einer Konvergenz in lokalen Minima, verursacht durch 
lokale Kräftegleichgewichte der imaginären Kraftvektoren. [15]

Das bestärkende Lernen (Reinforcement Learning, RL) ist ein 
Ansatz der künstlichen Intelligenz. Durch Interaktion mit der 
Umgebung entwickelt der RL-Agent eine Bewegungsstrategie, um 
kollisionsfrei vom Startzustand sStart zum Zielzustand sEnde zu 
 gelangen [16]. Analog zum APF-Ansatz kann auf Basis von 
 Sensorwerten echtzeitfähig auf variierende Umgebungsbedingun-
gen reagiert werden [17]. So belegen Untersuchungen von Raajan 
et al. [18], dass RL gegenüber traditionellen stichprobenbasierten 
Verfahren die Rechenzeit um den Faktor 120 reduziert. Die 
 Bewegungsstrategie wird nicht ausschließlich aus Sensorwerten 
abgeleitet, sondern durch einen Lernprozess basierend auf den 
historischen Interaktionen mit der Umgebung angepasst. Dies ist 
in Bild 1 d) durch gespeicherte Erfahrungen visualisiert. Dadurch 
ist die künstliche Intelligenz, ähnlich dem menschlichen Verhal-
ten, dazu befähigt, aus vergangenen Misserfolgen oder Erfolgen 
durch Versuch und Irrtum zu lernen. RL-Bahnplanung hebt sich 
somit vom APF-Ansatz ab: Aus den gesammelten Erfahrungs -
werten können komplexe Szenarien erfolgreich bewältigt werden.

Ein Überblick über Bahnplanungsmethoden des Stands der 
Technik verdeutlicht das Alleinstellungsmerkmal von RL. Stich-
probenbasierte Algorithmen wie PRM oder RRT benötigen bei 
sich ändernder Umgebung eine Neuerstellung oder Aktualisie-
rung der diskretisierten Repräsentation des Arbeitsraums. Die 
Anzahl an Abtastpunkten limitiert die Feinheit der Bahn, bedingt 
jedoch höhere Rechenaufwände [19]. Stichprobenbasierte Algo-
rithmen sind daher für reaktive Kollisionsvermeidung ungeeignet 
[15]. Der APF-Ansatz ist durch die sensorbasierte Rückkopplung 
echtzeitfähig, kann jedoch lokale Minima im Potenzialfeld nicht 
beherrschen. RL lernt aus der historischen Interaktion mit dem 
Umfeld und kann daraus intelligente Strategien ableiten, um be-
liebige Kollisionsszenarien zu überwinden.

2.2 Reinforcement Learning in der Bahnplanung

Das RL-Paradigma beschreibt einen Agenten mit der Aktion at 
als Output sowie den beiden Inputs: Zustand st und Belohnung rt 
(englisch: reward), jeweils zum Zeitpunkt t [16]. Durch die 
 Anordnung von a, s und r in einem Regelkreis wird ein reaktives 
System geschaffen, zu sehen in Bild 2 a). 

Die Aktion at des Agenten manipuliert die Umgebung und 
 induziert eine Zustandsänderung st→st+1. Die Relation des neuen 
Zustands st+1 zu einem Zielzustand sEnde wird durch die Beloh-

Bild 2. Anwendung von Reinforcement Learning in der Bahnplanung. Grafik: Fraunhofer IGCV
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nung rt quantifiziert. Gemäß einer Regelungsstrategie π (englisch: 
policy) des Agenten resultiert im nachfolgenden Zeitschritt die 
Aktion at+1 basierend auf der aktuellen Zustandsbeschreibung st+1. 
Der RL-Agent optimiert kontinuierlich die „intelligente“ Rege-
lungsstrategie π, um die kumulative Belohnung rt→ti einer festge-
legten Zeitspanne ti zu maximieren. [16] Dieser Optimierungs-
prozess bildet den Trainingsprozess der künstlichen Intelligenz. 
Basis dieser Überlegungen ist der Markov-Entscheidungsprozess, 
welcher besagt, dass eine Zustandsänderung st→st+1 eines Systems 
vollständig durch den aktuellen Zustand st und der Aktion at 
 beschrieben wird. Diese Voraussetzung ist in realen Applikatio-
nen nicht zwangsläufig gegeben, da oft nicht alle Informationen 
für eine vollständige Beschreibung des Zustands physikalisch 
 erfasst werden können. [20]

Die Anwendung des RL-Paradigmas in der Bahnplanung ist in 
Bild 2 b) beispielhaft für einen zweidimensionalen Anwendungs-
fall skizziert. Ziel ist die Findung eines kollisionsfreien Pfades 
von sStart zu sEnde innerhalb SFrei. In jedem Zeitschritt entscheidet 
der Agent über die Bewegung des Massenschwerpunktes durch 
eine diskrete Aktion a = {-1;0;1} sowohl in x- als auch in y-Rich-
tung – der Agent kann sich senkrecht, horizontal oder diagonal 
bewegen. Der aktuelle Zustand wird durch Messgrößen wie etwa 
Position des Massenschwerpunktes, des Ziels und der Hindernisse 
beschrieben. Die Belohnungsfunktion quantifiziert die Erfüllung 
des Zielzustands in jedem Zeitschritt durch einen positiven Anteil 
bei Zielerreichung und einen negativen Anteil bei Kollisionen mit 
Hindernissen.

In jedem Zeitschritt wird das Tupel {st, at, rt, st+1} gespeichert. 
Diese Informationssammlung der Vergangenheit erlaubt eine 
 Optimierung der Bahnplanungsstrategie π über den Trainings -
prozess hinweg. In der Robotik wird die Strategie π meist ohne 
Kenntnis eines Modells der Umgebung, sondern durch ein neuro-
nales Netz generiert, sogenannte modellfreie Ansätze. [16, 21] 

Beim Training des RL-Agenten besteht ein struktureller 
 Konflikt, das Exploration-Exploitation-Dilemma: Der Agent kann 
seine bestehende Strategie π nur auf Basis vergangener Inter -
aktionen mit der Umgebung optimieren: das Ausnutzen (englisch: 
exploitation) von Wissen. Um diese historischen Interaktionen zu 
erhalten, müssen zunächst eine Vielzahl von Erfolgen und Miss -
erfolgen in der Umgebung gesammelt werden: das Erkunden 
(englisch: exploration) der Umgebung. Beispielsweise wird der 
RL-Agent nur durch vermehrte Kollisionen in Bild 2 b) deren 
 negative Wirkung abbilden können. [16]

Eine Balance von Erkundung der Umgebung und Ausnutzung 
der vorhandenen Wissensbasis ist für einen effizienten Trainings-
prozess erforderlich. Abhängig von der Aufgabenstellung und der 
Komplexität der Umgebung werden folglich mehrere hundert -
tausend Zeitschritte zum Training benötigt [16]. Aus Gründen 
der Zeiteffizienz wird ein RL-Agent in Simulationen trainiert 
[21]. Abschließend muss der in Simulationen trainierte RL-Agent 
in die reale Applikation transferiert werden [22]. Aufgrund von 
 Abweichungen zwischen Simulation und Realität (Sim2Real gap) 
ist ein nahtloser Transfer nicht möglich [23].

Die Auslegung des RL-Agenten ist nicht trivial und benötigt 
Expertenwissen:
• Der Arbeitsraum ist in Anbetracht der vorhandenen Aktorik zu 

definieren, wobei zwischen kontinuierlich und diskret unter-
schieden wird. 

• Der Zustand des Systems sollte durch reale Messgrößen voll-
ständig sowie eindeutig beschrieben werden. So ist in Bild 2 b) 

die Position der Hindernisse PHindernisse nur bei konstanten 
 Kollisionsgeometrien aussagekräftig, da nur die Position des 
Flächenschwerpunkts erfasst wird. 

• Die Belohnungsfunktion sollte bestenfalls durch eine konti -
nuierliche Funktion den Grad der Zielerfüllung eindeutig 
 beschreiben [24]. Unpräzise Formulierungen führen zu einer 
ungewollten Verhaltensweise des Agenten, beispielsweise wird 
die Belohnungsfunktion in Bild 2 b) durch ständiges Annähern 
und Entfernen relativ zum Ziel maximiert, anstatt einer mög-
lichst effizienten Zielerreichung in kurzer Zeit.

• Hyperparameter sind spezifisch nach Algorithmus und Anwen-
dungsfall zu selektieren, welche unter anderem die Konvergenz 
des Trainings (Lernrate), die Wichtung zukünftiger Belohnun-
gen (Discount-Faktor) oder die Aggressivität der Umgebungs-
exploration (Explorationsrate) beeinflussen. [16]

Aufgrund dieser Komplexität zur Generierung eines RL-Agenten 
ist Onlinebahnplanung mittels RL nur für hochflexible Umgebun-
gen geeignet. Bei einfachen, starren Bahnplanungsproblemen ist 
derzeit auf klassische Bahnplanungsalgorithmen, wie PRM oder 
RRT, zurückzugreifen. [17, 25]

Diverse Institutionen erforschen Onlinebahnplanung mittels 
RL. In der mobilen Robotik wird die Interaktion mit unbekann-
ten Umgebungen, wie etwa in der Logistik oder für die Off-Road-
Navigation, betrachtet [26]. Mobile Roboter werden dabei ähn-
lich zu Bild 2 b) als Massenschwerpunkt geregelt. Demgegenüber 
müssen bei Gelenkarmrobotern, wie sie in klassischen Roboter-
zellen zu finden sind, die kinematischen Beziehungen zwischen 
den Gliedern berücksichtigt werden [5]. Dies resultiert in einer 
Regelungsaufgabe im dreidimensionalen Raum mit gekoppelten 
Aktoren. Durch die erweiterte Dimension des Aktionsraums 
wächst die Komplexität des Bahnplanungsproblems gegenüber der 
mobilen Robotik exponentiell an [6]. 

Die Forschung adressiert hier Ansätze zum einfachen Greifen 
von Objekten ohne Betrachtung von Hindernissen [27], zur 
 Interaktion mit statischen Hindernissen [28] oder der sicheren 
Interaktion mit Menschen (Mensch-Roboter-Kooperation) [21]. 
Die Komplexität des RL-Agenten wird zum Beispiel durch manu-
elle Expertendemonstrationen in der Simulation [29] oder einer 
regelbasierten Selektion zwischen einer RL-Onlinebahnplanung 
und einer stichprobenbasierten Offlinebahnplanung [30] redu-
ziert. Der Stand der Technik beschränkt sich auf simulative 
 Erprobungen oder Validierungen in Labormaßstäben [31]. 
 Anwendungsorientierte Ansätze, die alle umliegenden System -
eigenschaften eines realen Anwendungsfalls, wie Sensorik oder 
individuelle Roboterkinematiken, betrachten, sind nicht vorhan-
den. Zudem wird das Potenzial, die Komplexität des RL-Agenten 
durch Systemwissen zu reduzieren, bisher nicht ausgeschöpft. 

3 Reinforcement Learning-Agent  
 zur autonomen Abfallsammlung

Onlinebahnplanung mittels RL ist ein aktueller Forschungs -
gegenstand des Fraunhofer Institut für Gießerei-, Composite-, 
und Verarbeitungstechnik IGCV im Rahmen des Forschungsvor-
habens AutASa „Automatisiertes Abfallsammelfahrzeug“. 

Das Vorhaben befasst sich in der Gesamtheit mit der Entwick-
lung eines Prototyps zum autonomen Handling von Mülltonnen 
in beliebiger Anordnung. Aufgrund der dynamischen Umge-
bungseigenschaften mit ständig variierenden Hindernissen, wie 
Laternen, Bäumen oder Kraftfahrzeugen, sowie sich ändernden 
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Positionen der Mülltonnen, ist ein RL-Agent prädestiniert zur 
 Befähigung der Autonomie. 

3.1 Anforderungen an einen Reinforcement  
 Learning-Agenten zur autonomen Abfallsammlung

Das Handling der Mülltonnen erfolgt durch eine an Abfall-
sammelfahrzeuge angepasste Leichtbauroboterkinematik, entwi-
ckelt durch die Teon GmbH. Mittels Stereokamerasysteme der 
Roboception GmbH wird die Umgebung des Roboters erfasst. 
 Basierend auf dieser digitalen Repräsentation des Umfelds in 
Form einer Punktwolke entwickelt das Fraunhofer IGCV eine 
RL-Onlinebahnplanung zum Abgreifen von Mülltonnen, Zufüh-
ren in die Entleerungsmechanik des Abfallsammelfahrzeugs sowie 
nachfolgendem Abstellen der entleerten Mülltonnen. Die MRK-
Systeme GmbH koordiniert das gesamte Vorhaben und detailliert 
das Sicherheitskonzept des Robotersystems.

Anforderungen an die Bahnplanung sind ein kollisionsfreies 
Manövrieren durch den öffentlichen Raum unter Beachtung stän-
dig variierender Kollisionsszenarien und Zielposen. Die Bahn -
planung muss mit den Systemeigenschaften hinsichtlich Kinema-
tik und Vision-System kompatibel sein. Bestehende RL-Agenten 
sind für die spezifischen Anforderungen der kommunalen Abfall-
sammlung und der resultierenden Greifstrategie nicht geeignet 
(vergleiche Kapitel 2.2). Im Folgenden wird der Workflow zum 
Training des RL- Agenten sowie die Greifstrategie erläutert.

3.2 Workflow zum Training des Reinforcement  
 Learning-Agenten  zur autonomen Abfallsammlung

Aus Gründen der Zeiteffizienz erfolgt das Training des RL-
Agenten in einer physikbasierten Simulationsumgebung. Anders 
als rein visuelle Simulationsumgebungen verfügt diese über eine 
Physikengine zur Modellierung physikalischer Eigenschaften, wie 
Massenträgheiten oder Kollisionen [23]. Dennoch bestehen 
 Abweichungen zwischen Simulation und Realität, welche auch als 
„Sim2Real gap“ bezeichnet werden. Als Ursachen sind etwa 
 geometrische Abweichungen durch Fertigungsungenauigkeiten 
oder temperaturbedingte Längenänderungen zu nennen. Auch 
weisen simulierte Sensordaten gegenüber realen Sensordaten eine 
systematische Abweichung aufgrund von Messrauschen auf. [23]

Diese Diskrepanzen von Simulation und Realität erfordern 
 einen Ansatz zur Reduktion des Sim2Real gap, welcher in Bild 3 
dargestellt ist. 

Die abgebildete SCARA-Kinematik (Selective Compliance 
 Assembly Robot Arm) dient zur exemplarischen Veranschauli-
chung des Sim2Real gap.
1.  CAD des Roboters: In den CAD(Computer Aided Design)-

 Daten werden durch den Konstrukteur die kinematischen 
 sowie dynamischen Eigenschaften des Roboters festgelegt. Im 
Forschungsprojekt AutASa wurde eine neuartige Fünf-Achs-
 Kinematik entwickelt (vergleiche Kapitel 3.3 Greifstrategie).

2. URDF des Roboters: Aus den CAD-Konstruktionsdaten wird 
eine URDF (Unified Robot Description Format) Datei abge -

Bild 3. Ansatz zur Übertragung des Reinforcement Learning-Agenten in die Realität. Grafik: Fraunhofer IGCV
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leitet. Dies ist ein auf XML (Extensible Markup Language) 
 basierendes Dateiformat zur Beschreibung der Kinematik und 
Dynamik von Robotersystemen in Form einer Baumstruktur. 
Dabei wird die Verbindung der kinematischen Glieder (Karus-
sell → Schwinge → Arm → Handgelenk) durch Gelenktypen 
in Eltern-Kind-Beziehungen beschrieben und geometrische 
 sowie dynamische Eigenschaften zugewiesen.

3. Generierung der Szene: Der Roboter wird mittels URDF 
 modelliert und in eine aufgabenspezifische, simulierte Szene 
inkludiert. Im beschriebenen Anwendungsfall des Forschungs-
projekts AutASa besteht diese aus randomisierten Positionen 
von Mülltonnen sowie Kollisionsgeometrien. 

4. Parametervariation: Zur Kompensation der Abweichungen 
 zwischen Simulation und Realität wird eine systematische 
 Variation von Modellierungsparametern vorgenommen  
(Domain Randomization) [32], um die Robustheit des RL-
Agenten zu steigern. Diese Manipulation der Modellierungs -
parameter ist in Bild 3 rot dargestellt und beeinflusst sowohl 
die kinematischen und dynamischen Parameter der URDF-
 Datei als auch die Sensorwerte.

5. Reinforcement Learning-Agent: In der Simulationsumgebung 
lernt der Agent eine Bewegungsstrategie, um das Zielobjekt 
durch den Roboter kollisionsfrei zu erreichen. Die Konvergenz 
des Trainingsprozesses hängt von der gewählten Konfiguration 
(Aktionsraum, Zustandsraum, Belohnungsfunktion) ab.

6. Reale Umgebung: Nach Vollendung des Trainingsprozesses in 
der Simulation, wird der RL-Agent auf die reale Umgebung 
 appliziert:
6.1 Die simulierten Sensorsignale werden durch reale 

 Mess größen substituiert.
6.2 Ein reales Robotersystem wird anstatt der URDF-Datei 

 geregelt.

3.3 Greifstrategie

Im Folgenden wird die Greifstrategie anhand des Fallbeispiels 
der autonomen Abfallsammlung im öffentlichen Raum des 
 Forschungsprojekts AutASa vorgestellt. Die Greifstrategie muss 
die kollisionsfreie Interaktion mit der Umgebung, unter Ein -
haltung der kinematischen Struktur sowie der sensorischen Erfas-
sung des Umfelds, erfüllen. 

Das Stereokamerasystem erfasst die reale Welt im Bildraum als 
Pixel. Bei weit entfernten Objekten stehen somit weniger Pixel 
zur Verfügung, um Details der realen Welt zu repräsentieren. Das 
Pixel/mm-Verhältnis limitiert die Genauigkeit des Bildverarbei-
tungssystems. Denn basierend auf der Repräsentation im Bild-
raum wird die Position des Zielobjekts im Koordinatensystem des 
Roboters berechnet (Hand-Auge-Kalibrierung). Diese Position ist 
eine Eingangsmessgröße für den RL-Agenten. Um trotz des Pixel/
mm-Verhältnisses das gesamte Arbeitsumfeld mit einem Arbeits-
radius von circa 2,5 m ganzheitlich zu erfassen und gleichzeitig 
die Zielposition mit ausreichender Genauigkeit zu extrahieren, 
wird eine zweistufige Greifstrategie verfolgt (wie in Bild 4 dar-
gestellt):
• Bahnplanung Nr. 1: Erreichung der Approach-Position unter 

Verwendung der festen Stereokamera am Abfallsammelfahr-
zeug durch RL

• Bahnplanung Nr. 2: Feinpositionierung durch Point-To-Point 
(PTP) und Linearbewegung (LIN) unter Verwendung der 
 lokalen Stereokamera am Greifer

Diese beiden Bahnplanungsaufgaben sollen im Forschungsprojekt 
AutASa durch eine Fünf-Achs-Kinematik realisiert werden. Fünf 
Achsen gewährleisten eine Bewegungsflexibilität im dreidimen-
sionalen Raum, wobei zwei translatorische Achsen die nötige 
Steifigkeit zum Handling befüllter Mülltonnen mit einem 
 Gewicht bis zu 160 kg bieten. Die kinematische Struktur sowie 
 deren Zuordnung zur Bahnplanung zeigt Bild 4:

Bild 4. Greifstrategie zur autonomen Abfallsammlung durch Reinforcement Learning mittels neu-konzeptionierter Fünf-Achs-Kinematik.  
Grafik: Fraunhofer IGCV
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1. Die blau gekennzeichneten Teile der Kinematik, ein translatori-
scher Großhub und zwei rotatorische Freiheitsgrade, werden 
mittels des RL-Agenten zur Erreichung der Approach-Position 
geregelt. Hierdurch können im dreidimensionalen Raum Aus-
weichmanöver abgebildet werden. Die Umgebungsinformatio-
nen werden durch die feste Stereokamera am Abfallsammel-
fahrzeug erfasst. Die Approach-Position wird dem RL-Agenten 
als Eingangsgröße übermittelt und ist abhängig vom Greifob-
jekt dadurch definiert, dass sich das Zielobjekt im Nahsichtfeld 
der lokalen Stereokamera im Greifer des Roboters befindet.

2. Durch die letzten zwei kinematischen Glieder (Translations -
gelenk, Rotationsgelenk), in Bild 4 rot markiert, wird nach -
folgend eine Feinpositionierung mittels PTP- und LIN-Befehl 
auf Basis der Hand-Auge-Kalibrierung mit der lokalen Stereo -
kamera durchgeführt.

Dieser hybride Regelungsansatz reduziert die RL-Bahnplanung 
auf drei Freiheitsgrade. Die verringerte Anzahl an geregelten Ach-
sen hat eine Reduktion des Aktionsraums sowie Zustandsraums 
zur Folge, was die Datenintensivität des Trainingsprozesses 
schmälert. Ebenfalls vereinfacht die Feinpositionierung mittels 
konventioneller Roboterbefehle den Transfer des RL-Agenten von 
Simulation auf den realen Roboter, da marginale Abweichungen 
zwischen simulierter Welt und realer Welt zur Erreichung der 
Approach-Position unkritisch sind. 

Der präzise Greifprozess wird durch einen kamerabasierten 
PTP/LIN-Befehl, vergleichbar mit einem Griff aus der Kiste (eng-
lisch: Bin Picking), umgesetzt. Der hochflexible, aber trainings -
intensive Bahnplanungsansatz via RL wird somit auf dessen 
Wirksamkeit zur Interaktion in heterogenen Umgebungen 
 beschränkt. Das Forschungsvorhaben verfolgt das anwendungs -
orientierte Credo „so einfach wie möglich, so kompliziert wie 
 nötig“. In diesem Kontext ist die Greifstrategie als ein inhärenter 
Baustein des Sim2Real-Transfers gemäß Bild 3 zu betrachten.

4 Transfer in die Produktionstechnik

Wie eingangs motiviert, resultiert die steigende Variantenviel-
falt im industriellen Sektor in einer volatilen Produktionsum -
gebung. Besonders bei kleiner werdenden Losgrößen disqualifi-
zieren sich klassische Bahnplanungsalgorithmen (RRT, PRM) 
aufgrund von Verfügbarkeitsverlusten. Für diese hochflexiblen 
Anforderungen ist Onlinebahnplanung mittels RL für industrielle 
Anwendungen zukünftig zu betrachten [25]. Der in diesem 
 Beitrag vorgestellte hybride Ansatz zur Onlinebahnplanung 
 mittels RL ist generalisierbar und kann somit in industrielle 
 Applikationen transferiert werden.

Als Anwendungsfälle in der Industrie für RL-Bahnplanung 
sind zu nennen:
1. Nutzung eines Robotersystems an heterogenen Anlagen, 

 wodurch flexibel auf Störkonturen reagiert werden muss.
2. Stark variierende Kollisionsgeometrien durch Rüstelemente  

an homogenen Anlagen.
3. Stark variierende Dimension und Form der Greifobjekte, die 

eine Anpassung der Bahn zur Kollisionsvermeidung erfordern.
4. Kooperierende Arbeitsformen zwischen Menschen und 

 Roboter.
Entsprechende Anwendungsfälle werden am Fraunhofer IGCV 
mit dem Demonstrator für wandlungsfähige Produktion abgebil-
det. Dieser befähigt durch elektromechanische Schnellkupplungen 
dazu, beliebige Produktionsmodule per Plug-&-Produce an einem 

linearen Transportsystem zu adaptieren. Dadurch können volatile 
Produktionsbedingungen, wie Kapazitätsengpässe oder hohe 
 Produktvielfalt, mit minimalen Rüstzeiten bewältigt werden. 
 Robotersysteme werden dabei bedarfsgesteuert heterogenen Pro-
duktionsbedingungen mit variierenden Störkonturen zugefügt 
(Anwendungsfall 1). Je nach Greifobjekt auf dem linearen Trans-
portsystem muss die Bahnplanung online angepasst werden (An-
wendungsfall 3). Der Aufbau mit kollaborierenden Robotern 
 erlaubt langfristig  eine Erweiterung hin zur Mensch-Roboter-
 Kooperation (Anwendungsfall 4). Der vorgestellte Bahnplanungs-
ansatz soll zukünftig am Demonstrator implementiert und ver -
feinert werden. 

Um einen Transfer des vorgestellten hybriden Regelungsansatz 
aus Bild 4, bestehend aus RL und konventionellen Roboterbefeh-
len (PTP/LIN), auf andere Kinematiken zu ermöglichen, müssen 
die einzelnen Gelenke aufgabenspezifisch den beiden Anteilen 
(RL, konventionelle Roboterbefehle) zugeordnet werden. Auf-
grund der hohen kinematischen Ähnlichkeit zur Fünf-Achs-Kine-
matik aus Bild 4 erfolgt die Implementierung am Demonstrator 
zunächst anhand einer SCARA-Kinematik, dargestellt in Bild 3. 
Gegenüber der Eigenkonstruktion zur autonomen Abfallsamm-
lung in Bild 4 entfällt das erste translatorische Gelenk. Die 
 Onlinebahnplanung mittels RL kann analog zum Anwendungsfall 
der autonomen Abfallsammlung durch einen dreidimensionalen 
Aktionsraum, zusammengesetzt aus einem Translationsgelenk 
und zwei Rotationsgelenken, erfolgen.

Bei Knickarm-Kinematiken ist aufgabenspezifisch die 
 Approach-Position und basierend auf deren Zugänglichkeit die 
Zuordnung zu den beiden Anteilen festzulegen. Prädestiniert sind 
die vorderen Glieder der kinematischen Kette zur Grobpositio-
nierung (Karussell → Schwinge) durch RL und die hinteren 
Glieder der kinematischen Kette (Arm → Handgelenk) zur Fein-
positionierung durch konventionelle Roboterbefehle.

5 Zusammenfassung und Ausblick

Reinforcement Learning (RL) beschreibt ein Paradigma, bei 
dem ein Agent aus Versuch und Irrtum schrittweise Strategien 
zur Interaktion mit einer Umgebung ableitet. Dieses Prinzip kann 
für die Onlinebahnplanung in dynamischen Produktionsumge-
bungen verwendet werden. Gegenüber klassischen Bahnplanungs-
methoden zeichnet sich RL durch Flexibilität und Reaktionsge-
schwindigkeit aus. 

Allerdings ist vorgelagert zur Anwendung des RL-Agenten ein 
aufwendiger Trainingsprozess mit mehreren tausend Simulations-
durchläufen nötig. Der Trainingsprozess bedarf Expertenwissen 
für die Auswahl des RL-Algorithmus inklusive der Hyperpara -
meter sowie der Definition des Zustandsraums, Aktionsraums 
und der Belohnungsfunktion. Die Generalisierbarkeit des Agenten 
ist limitiert auf die in der Simulation präsentierten Szenarien. 
Ebenfalls erschweren Abweichungen zwischen Realität und Simu-
lation (Sim2Real gap) einen nahtlosen Übergang in industrielle 
Applikationen. 

Aufgrund dieser Aufwände ist Onlinebahnplanung mittels RL 
derzeit nur in hochflexiblen Produktionsszenarien mit dynami-
schen Einflussfaktoren, wie dem Menschen, in der Praxis zu emp-
fehlen. Reale Anwendungen für RL-Onlinebahnplanung über 
 Labormaßstäbe hinaus sind noch nicht bekannt.

Dieser Beitrag zeigt einen anwendungsorientierten Ansatz zur 
Onlinebahnplanung mittels RL. Er wird vorgestellt anhand eines 
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Anwendungsfalls der kommunalen Abfallsammlung. Neben einem 
Workflow zur Reduktion des Sim2Real gap, wurde ebenfalls eine 
neuartige Greifstrategie vorgestellt. Die Bahnplanungsaufgabe 
wird dabei durch Expertenwissen in Anteile für RL und konven-
tionelle Roboterbefehle zerlegt. Die Anteile werden kinematischen 
Gliedern des Roboters zugeordnet, wodurch sich die Komplexität 
des RL-Agenten wesentlich reduziert. Die Ergebnisse adressieren 
primär Robotik im öffentlichen Raum, bieten jedoch Potenzial 
zum Transfer in den industriellen Sektor.
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