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Enabler fiir wandlungsfahige Robotersysteme im o6ffentlichen Raum und in der Industrie

Onlinebahnplanung mittels
Reinforcement Learning
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ZUSAMMENFASSUNG In Produktionen mit hoher
Variantenvielfalt und kurzen Produktlebenszyklen steigert
Onlinebahnplanung die Wandlungsféahigkeit autonomer Robo-
ter. Mittels Reinforcement Learning (RL) sind Roboter in der
Lage, sich dynamisch an variierende Bedingungen anzupassen
und komplexe Tatigkeiten zu automatisieren. Dieser Beitrag
erlautert die Grundlagen von Onlinebahnplanung mittels RL,
stellt ein Konzept anhand der Abfallsammlung im &ffentlichen
Raum vor und diskutiert dessen Transfer in die Industrie.
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1 Motivation

Aktuell ist der industrielle Sektor mit zwei Herausforderungen
konfrontiert. Zum einen erfordern die soziookonomischen Ent-
wicklungen des Fachkriftemangels und des demografischen Wan-
dels eine weitgehende Automatisierung von Prozessabldufen. Zum
anderen steigen die Anforderungen an produzierende Unter-
nehmen in Form von kiirzer werdenden Produktlebenszyklen
und steigender Produktvarianz. Als Resultat benétigt es autonome
Systeme, die zur variantenreichen Montage befahigt sind. [1]

Die aufwandsarme Anpassung von Betriebsmitteln an sich ver-
indernde Produkte, Prozesse oder Mengen wird in der Literatur
als Wandlungsfahigkeit bezeichnet. Ein Wandlungsbefihiger ist
etwa die Universalitit von Betriebsmitteln [2]. Industrieroboter
werden als gesteuerte, frei programmierbare Universaloperatoren
in mindestens drei Achsen eingesetzt, um heterogene Hand-
habungsaufgaben zu automatisieren [3]. Jedoch ist in der indus-
triellen Praxis der Betrieb von Industrierobotern an manuelle
Titigkeiten gekoppelt. Der Arbeitsablauf des Robotersystems wird
meist als Teil des Ristprozesses durch Handfithrung (Playback)
oder Teach-in mittels Programmierhandgerit festgelegt [4].

Die manuelle Anpassung des Robotersystems an sich verin-
dernde Umgebungsbedingungen ist ein Kostentreiber, da die
Anpassungsaufwinde zu Verfiigbarkeitsverlusten der Produkti-
onsanlage fithren und Fachkrifte binden. Dabei ist der Roboter
jeweils auf die starr programmierten Rahmenbedingungen limi-
tiert. Daraus ergibt sich der Bedarf nach einem wandlungsfihigen
Robotersystem, das im Betrieb (online) selbststindig die
Roboterbahn unter Beachtung von sich stetig verindernden
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Online path planning using Reinforcement
Learning - Enabler for versatile robot
systems in public spaces and industry

ABSTRACT Flexible path planning for autonomous robots
is required in productions with a high degree of variability
and short product life cycles. Reinforcement Learning (RL)
offers a solution, as it enables robots to adapt dynamically

to varying conditions and automate complex activities. The
article explains the basics of online path planning using RL,
presents a concept based on waste collection in public spaces,
and discusses its transfer to industry.

Umgebungsbedingungen generiert. Mit dieser Aufgabenstellung
beschiftigt sich die Bahnplanung in der Robotik. Reinforcement
Learning (deutsch: Bestirkendes Lernen), ein auf kiinstlicher
Intelligenz basierender Regelungsansatz, bietet hierfiir Potenzial.

Im Folgenden wird zunichst der Stand der Technik im Bereich
der Bahnplanung dargelegt. Daraus wird das Potenzial von Rein-
forcement Learning in der Bahnplanung abgeleitet und ein
grundlegendes Verstindnis dieses Paradigmas geschaffen. Im
Anschluss wird ein Forschungsansatz fiir einen Reinforcement
Learning-Agenten vorgestellt und zuletzt der Transfer in die
Industrie diskutiert.

2 Stand derTechnik

Bahnplanung bezeichnet in der Robotik die Problembeschrei-
bung zur Findung eines Zielzustands sg ., ausgehend von einem

Startzustand s, in einem hindernisfreien Raum S, ; unter Ein-

Frei
haltung von Beschrinkungen, wie Gelenklimits oder Momenten-
grenzen [5]. Die Generierung einer solchen Bahn ist als nicht
I6sbar in deterministischer Polynomialzeit (englisch: Nondeter-
ministic Polynomial Time, kurz: NP—Schwer) zu klassifizieren, da
kein bekannter Algorithmus einen optimalen Pfad in effizienter
Zeit extrahieren kann [6].

Es wird differenziert zwischen der Offlinebahnplanung, die in
einem vorgelagerten Schritt unter Kenntnis der gesamten Um-
gebung ablduft, und der Onlinebahnplanung, die wihrend des
Betriebs ablduft. Im Folgenden soll explizit das Potenzial diverser
Bahnplanungsalgorithmen fiir die Onlinebahnplanung adressiert
werden, da das Robotersystem nur mittels Onlinebahnplanung
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ohne Verfiigbarkeitsverluste auf sich verindernde Umgebungen
reagieren kann |7, 8].

2.1 Bahnplanungsalgorithmen

Stichprobenbasierte Algorithmen erreichen ein zeiteffizientes
Verhalten, indem die Umgebung stichprobenartig abgetastet wird
6].
[ ]Probabilistic Roadmaps (PRM) [9] erstellt zu Beginn stich-
probenartig N Abtastpunkte im Arbeitsraum S des Roboter-
systems. Die k-nidchsten Abtastpunkte werden durch Kanten
e Definden
[5, 6]. Dieses Prinzip ist fiir einen zweidimensionalen Anwen-
dungsfall in Bild 1a) dargestellt. Durch eine nachfolgende
Graphensuche, beispielsweise A-Star [10], kann ein optimaler,

verbunden, sofern sie sich im hindernisfreien Raum S

kollisionsfreier Pfad aus der Roadmap extrahiert werden [11].

Dieser ist in Bild 1a) als unterbrochene Linie visualisiert.
Rapidly Exploring Random Trees (RRT) [12] generiert

schrittweise eine Baumstruktur, beginnend beim Startzustand
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c) Artificial Potential Field (APF)

Square Zum Endzustand sp . Dabei wird jeweils der nichstgelegene
Punkt der Baumstruktur zum Abtastpunkt durch eine Kante ver-
kniipft. In einer nachfolgenden Kollisionspriifung werden Kanten,
die ein Hindernis beriihren, entfernt [6] Gegeniiber PRM
werden bei RRT die Abtastpunkte nicht einmalig, sondern iterativ
generiert. Dies erlaubt eine effizientere Abtastung des Arbeits-
raums durch die Nutzung von bereits gewonnenem Wissen, bei-
spielsweise mittels Heuristiken, wie in Bild 1b) skizziert. [13]
Demgegeniiber verfolgt der Algorithmus des kiinstlichen
Potenzialfeldes (englisch: Artificial Potential Field, APF) [14]
einen echtzeitfihigen Ansatz, der auf einer sensorischen Erfas-
sung der Abstinde umliegender Kollisionsgeometrien relativ zum
Roboter basiert. Auftretende Hindernisse induzieren auf den
Roboter eine ,Abstoflungskraft® und das Ziel eine ,,Anziehungs-
kraft wie in Bild IC) durch Kraftvektoren veranschaulicht
[6, 14]. Durch diese imaginiren Kraftanteile wird der Arbeits-
raum des Roboters mit einem kiinstlichen Potenzialfeld gefiillt.
Das Potenzial kann dabei als Summierung aller auf den Roboter
wirkenden Krifte bei der Bewegung des Roboters durch das
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Bild 1. Visualisierung der Funktionsweise bestehender Bahnplanungsalgorithmen. Grafik: Fraunhofer IGCV
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Potenzialfeld interpretiert werden. Die Optimierung dieses Poten-
zials ergibt die gewiinschte Bahn. Eine diskrete Abtastung der un-
bekannten Umgebung ist aufgrund der kontinuierlichen sensori-
schen Riickkopplung nicht nétig. Allerdings tendiert die APF-Me-
thode zu einer Konvergenz in lokalen Minima, verursacht durch
lokale Kriftegleichgewichte der imagindren Kraftvektoren. [15]
Das bestirkende Lernen (Reinforcement Learning, RL) ist ein
Ansatz der kiinstlichen Intelligenz. Durch Interaktion mit der
Umgebung entwickelt der RL-Agent eine Bewegungsstrategie, um
kollisionsfrei vom Startzustand sg,, zum Zielzustand s, , zu
gelangen [16]. Analog zum APF-Ansatz kann auf Basis von
Sensorwerten echtzeitfahig auf variierende Umgebungsbedingun-
gen reagiert werden [17]. So belegen Untersuchungen von Raajan
et al. [18}, dass RL gegeniiber traditionellen stichprobenbasierten
Verfahren die Rechenzeit um den Faktor 120 reduziert. Die
Bewegungsstrategie wird nicht ausschliefllich aus Sensorwerten
abgeleitet, sondern durch einen Lernprozess basierend auf den
historischen Interaktionen mit der Umgebung angepasst. Dies ist
in Bild 1d) durch gespeicherte Erfahrungen visualisiert. Dadurch
ist die kiinstliche Intelligenz, dhnlich dem menschlichen Verhal-
ten, dazu befihigt, aus vergangenen Misserfolgen oder Erfolgen
durch Versuch und Irrtum zu lernen. RL-Bahnplanung hebt sich
somit vom APF-Ansatz ab: Aus den gesammelten Erfahrungs-
werten konnen komplexe Szenarien erfolgreich bewiltigt werden.

= a) Interaktion zwischen Agent und Umgebung =

AUTOMATISIERUNG

Ein Uberblick iiber Bahnplanungsmethoden des Stands der
Technik verdeutlicht das Alleinstellungsmerkmal von RL. Stich-
probenbasierte Algorithmen wie PRM oder RRT benétigen bei
sich dandernder Umgebung eine Neuerstellung oder Aktualisie-
rung der diskretisierten Représentation des Arbeitsraums. Die
Anzahl an Abtastpunkten limitiert die Feinheit der Bahn, bedingt
jedoch hohere Rechenaufwinde [19]. Stichprobenbasierte Algo-
rithmen sind daher fiir reaktive Kollisionsvermeidung ungeeignet
[15]. Der APF-Ansatz ist durch die sensorbasierte Riickkopplung
echtzeitfihig, kann jedoch lokale Minima im Potenzialfeld nicht
beherrschen. RL lernt aus der historischen Interaktion mit dem
Umfeld und kann daraus intelligente Strategien ableiten, um be-
liebige Kollisionsszenarien zu iitberwinden.

2.2 Reinforcement Learning in der Bahnplanung

Das RL-Paradigma beschreibt einen Agenten mit der Aktion a,
als Output sowie den beiden Inputs: Zustand s, und Belohnung r,
(englisch: reward), jeweils zum Zeitpunktt [16]. Durch die
Anordnung von a, s und r in einem Regelkreis wird ein reaktives
System geschaffen, zu sehen in Bild 2a).

Die Aktion a, des Agenten manipuliert die Umgebung und

induziert eine Zustandsinderung s—s,,,. Die Relation des neuen

1
Zustands s, zu einem Zielzustand s, wird durch die Beloh-
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Bild 2. Anwendung von Reinforcement Learning in der Bahnplanung. Grafik: Fraunhofer IGCV
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nung r, quantifiziert. Gemif einer Regelungsstrategie 7 (englisch:
policy) des Agenten resultiert im nachfolgenden Zeitschritt die
Aktion a,,, .
Der RL-Agent optimiert kontinuierlich die ,intelligente” Rege-
lungsstrategie m, um die kumulative Belohnung r,_; einer festge-

legten Zeitspanne t; zu maximieren. [16] Dieser Optimierungs-

basierend auf der aktuellen Zustandsbeschreibung s

prozess bildet den Trainingsprozess der kiinstlichen Intelligenz.

Basis dieser Uberlegungen ist der Markov-Entscheidungsprozess,

welcher besagt, dass eine Zustandsianderung s,—s,,, eines Systems

vollstindig durch den aktuellen Zustand s, und der Aktion a,

beschrieben wird. Diese Voraussetzung ist in realen Applikatio-

nen nicht zwangslaufig gegeben, da oft nicht alle Informationen
fiir eine vollstindige Beschreibung des Zustands physikalisch

erfasst werden konnen. [20]

Die Anwendung des RL-Paradigmas in der Bahnplanung ist in
Bild 2b) beispielhaft fir einen zweidimensionalen Anwendungs-
fall skizziert. Ziel ist die Findung eines kollisionsfreien Pfades
von Sg,, . zu s . innerhalb S .. In jedem Zeitschritt entscheidet
der Agent iiber die Bewegung des Massenschwerpunktes durch
eine diskrete Aktion a = {-1;0;1} sowohl in x- als auch in y-Rich-
tung — der Agent kann sich senkrecht, horizontal oder diagonal
bewegen. Der aktuelle Zustand wird durch Messgrofen wie etwa
Position des Massenschwerpunktes, des Ziels und der Hindernisse
beschrieben. Die Belohnungsfunktion quantifiziert die Erfiillung
des Zielzustands in jedem Zeitschritt durch einen positiven Anteil
bei Zielerreichung und einen negativen Anteil bei Kollisionen mit
Hindernissen.

In jedem Zeitschritt wird das Tupel {s, a, r,, s} gespeichert.
Diese Informationssammlung der Vergangenheit erlaubt eine
Optimierung der Bahnplanungsstrategie m iiber den Trainings-
prozess hinweg. In der Robotik wird die Strategie m meist ohne
Kenntnis eines Modells der Umgebung, sondern durch ein neuro-
nales Netz generiert, sogenannte modellfreie Ansitze. [16, 2 1]

Beim Training des RL-Agenten besteht ein struktureller
Konflikt, das Exploration-Exploitation-Dilemma: Der Agent kann
seine bestehende Strategie m nur auf Basis vergangener Inter-
aktionen mit der Umgebung optimieren: das Ausnutzen (englisch:
exploitation) von Wissen. Um diese historischen Interaktionen zu
erhalten, miissen zunichst eine Vielzahl von Erfolgen und Miss-
erfolgen in der Umgebung gesammelt werden: das Erkunden
(englisch: exploration) der Umgebung. Beispielsweise wird der
RL-Agent nur durch vermehrte Kollisionen in Bild 2b) deren
negative Wirkung abbilden konnen. [16]

Eine Balance von Erkundung der Umgebung und Ausnutzung
der vorhandenen Wissensbasis ist fiir einen effizienten Trainings-
prozess erforderlich. Abhingig von der Aufgabenstellung und der
Komplexitit der Umgebung werden folglich mehrere hundert-
tausend Zeitschritte zum Training bendtigt [16]. Aus Griinden
der Zeiteffizienz wird ein RL-Agent in Simulationen trainiert
[21]. AbschlieRend muss der in Simulationen trainierte RL-Agent
in die reale Applikation transferiert werden [22]. Aufgrund von
Abweichungen zwischen Simulation und Realitdt (Sim2Real gap)
ist ein nahtloser Transfer nicht méglich [23].

Die Auslegung des RL-Agenten ist nicht trivial und benotigt
Expertenwissen:

« Der Arbeitsraum ist in Anbetracht der vorhandenen Aktorik zu
definieren, wobei zwischen kontinuierlich und diskret unter-
schieden wird.

« Der Zustand des Systems sollte durch reale Messgroflen voll-
stindig sowie eindeutig beschrieben werden. So ist in Bild 2b)

188

die Position der Hindernisse P nur bei konstanten

Hindernisse
Kollisionsgeometrien aussagekriftig, da nur die Position des
Flachenschwerpunkts erfasst wird.

+ Die Belohnungsfunktion sollte bestenfalls durch eine konti-
nuierliche Funktion den Grad der Zielerfiillung eindeutig
beschreiben [24}. Unprizise Formulierungen fithren zu einer
ungewollten Verhaltensweise des Agenten, beispielsweise wird
die Belohnungsfunktion in Bild 2b) durch stindiges Annihern
und Entfernen relativ zum Ziel maximiert, anstatt einer mog-
lichst effizienten Zielerreichung in kurzer Zeit.

+ Hyperparameter sind spezifisch nach Algorithmus und Anwen-
dungsfall zu selektieren, welche unter anderem die Konvergenz
des Trainings (Lernrate), die Wichtung zukiinftiger Belohnun-
gen (Discount-Faktor) oder die Aggressivitit der Umgebungs-
exploration (Explorationsrate) beeinflussen. [16]

Aufgrund dieser Komplexitit zur Generierung eines RL-Agenten

ist Onlinebahnplanung mittels RL nur fiir hochflexible Umgebun-

gen geeignet. Bei einfachen, starren Bahnplanungsproblemen ist
derzeit auf klassische Bahnplanungsalgorithmen, wie PRM oder

RRT, zuriickzugreifen. [17, 25]

Diverse Institutionen erforschen Onlinebahnplanung mittels
RL. In der mobilen Robotik wird die Interaktion mit unbekann-
ten Umgebungen, wie etwa in der Logistik oder fiir die Off-Road-
Navigation, betrachtet [26]. Mobile Roboter werden dabei #hn-
lich zu Bild 2b) als Massenschwerpunkt geregelt. Demgegeniiber
miissen bei Gelenkarmrobotern, wie sie in klassischen Roboter-
zellen zu finden sind, die kinematischen Beziehungen zwischen
den Gliedern beriicksichtigt werden [5]. Dies resultiert in einer
Regelungsaufgabe im dreidimensionalen Raum mit gekoppelten
Aktoren. Durch die erweiterte Dimension des Aktionsraums
wichst die Komplexitit des Bahnplanungsproblems gegeniiber der
mobilen Robotik exponentiell an [6].

Die Forschung adressiert hier Ansitze zum einfachen Greifen
von Objekten ohne Betrachtung von Hindernissen [27], zur
Interaktion mit statischen Hindernissen [28] oder der sicheren
Interaktion mit Menschen (Mensch-Roboter-Kooperation) [21].
Die Komplexitit des RL-Agenten wird zum Beispiel durch manu-
elle Expertendemonstrationen in der Simulation [29] oder einer
regelbasierten Selektion zwischen einer RL-Onlinebahnplanung
und einer stichprobenbasierten Offlinebahnplanung [30] redu-
ziert. Der Stand der Technik beschrinkt sich auf simulative
Erprobungen oder Validierungen in Labormafstiben [31].
Anwendungsorientierte Ansitze, die alle umliegenden System-
eigenschaften eines realen Anwendungsfalls, wie Sensorik oder
individuelle Roboterkinematiken, betrachten, sind nicht vorhan-
den. Zudem wird das Potenzial, die Komplexitit des RL-Agenten
durch Systemwissen zu reduzieren, bisher nicht ausgeschopft.

3 Reinforcement Learning-Agent
zur autonomen Abfallsammlung

Onlinebahnplanung mittels RL ist ein aktueller Forschungs-
gegenstand des Fraunhofer Institut fiir Gie8erei-, Composite-,
und Verarbeitungstechnik IGCV im Rahmen des Forschungsvor-
habens AutASa ,Automatisiertes Abfallsammelfahrzeug®

Das Vorhaben befasst sich in der Gesamtheit mit der Entwick-
lung eines Prototyps zum autonomen Handling von Miilltonnen
in beliebiger Anordnung. Aufgrund der dynamischen Umge-
bungseigenschaften mit stdndig variierenden Hindernissen, wie
Laternen, Biaumen oder Kraftfahrzeugen, sowie sich dndernden
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Positionen der Miilltonnen, ist ein RL-Agent prédestiniert zur
Befihigung der Autonomie.

3.1 Anforderungen an einen Reinforcement
Learning-Agenten zur autonomen Abfallsammlung

Das Handling der Miilltonnen erfolgt durch eine an Abfall-
sammelfahrzeuge angepasste Leichtbauroboterkinematik, entwi-
ckelt durch die Teon GmbH. Mittels Stereokamerasysteme der
Roboception GmbH wird die Umgebung des Roboters erfasst.
Basierend auf dieser digitalen Reprisentation des Umfelds in
Form einer Punktwolke entwickelt das Fraunhofer IGCV eine
RL-Onlinebahnplanung zum Abgreifen von Miilltonnen, Zufiih-
ren in die Entleerungsmechanik des Abfallsammelfahrzeugs sowie
nachfolgendem Abstellen der entleerten Miilltonnen. Die MRK-
Systeme GmbH koordiniert das gesamte Vorhaben und detailliert
das Sicherheitskonzept des Robotersystems.

Anforderungen an die Bahnplanung sind ein kollisionsfreies
Manovrieren durch den 6ffentlichen Raum unter Beachtung stin-
dig variierender Kollisionsszenarien und Zielposen. Die Bahn-
planung muss mit den Systemeigenschaften hinsichtlich Kinema-
tik und Vision-System kompatibel sein. Bestehende RL-Agenten
sind fiir die spezifischen Anforderungen der kommunalen Abfall-
sammlung und der resultierenden Greifstrategie nicht geeignet
(vergleiche Kapitel 2.2). Im Folgenden wird der Workflow zum
Training des RL-Agenten sowie die Greifstrategie erldutert.

Sim2Real gap

AUTOMATISIERUNG

3.2 Workflow zum Training des Reinforcement
Learning-Agenten zur autonomen Abfallsammlung

Aus Griinden der Zeiteffizienz erfolgt das Training des RL-
Agenten in einer physikbasierten Simulationsumgebung. Anders
als rein visuelle Simulationsumgebungen verfiigt diese iiber eine
Physikengine zur Modellierung physikalischer Eigenschaften, wie
Massentragheiten oder Kollisionen [23]. Dennoch bestehen
Abweichungen zwischen Simulation und Realitdt, welche auch als
»,Sim2Real gap“ bezeichnet werden. Als Ursachen sind etwa
geometrische Abweichungen durch Fertigungsungenauigkeiten
oder temperaturbedingte Lingeninderungen zu nennen. Auch
weisen simulierte Sensordaten gegeniiber realen Sensordaten eine
systematische Abweichung aufgrund von Messrauschen auf. [23}

Diese Diskrepanzen von Simulation und Realitit erfordern
einen Ansatz zur Reduktion des Sim2Real gap, welcher in Bild 3
dargestellt ist.

Die abgebildete SCARA-Kinematik (Selective Compliance
Assembly Robot Arm) dient zur exemplarischen Veranschauli-
chung des Sim2Real gap.

1. CAD des Roboters: In den CAD (Computer Aided Design)-
Daten werden durch den Konstrukteur die kinematischen
sowie dynamischen Eigenschaften des Roboters festgelegt. Im
Forschungsprojekt AutASa wurde eine neuartige Fiinf-Achs-
Kinematik entwickelt (vergleiche Kapitel 3.3 Greifstrategie).

2. URDF des Roboters: Aus den CAD-Konstruktionsdaten wird
eine URDF (Unified Robot Description Format) Datei abge-
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Bild 3. Ansatz zur Ubertragung des Reinforcement Learning-Agenten in die Realitat. Grafik: Fraunhofer IGCV
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leitet. Dies ist ein auf XML (Extensible Markup Language)
basierendes Dateiformat zur Beschreibung der Kinematik und
Dynamik von Robotersystemen in Form einer Baumstruktur.
Dabei wird die Verbindung der kinematischen Glieder (Karus-
sell — Schwinge — Arm — Handgelenk) durch Gelenktypen
in Eltern-Kind-Beziehungen beschrieben und geometrische
sowie dynamische Eigenschaften zugewiesen.

3. Generierung der Szene: Der Roboter wird mittels URDF
modelliert und in eine aufgabenspezifische, simulierte Szene
inkludiert. Im beschriebenen Anwendungsfall des Forschungs-
projekts AutASa besteht diese aus randomisierten Positionen
von Miilltonnen sowie Kollisionsgeometrien.

4. Parametervariation: Zur Kompensation der Abweichungen
zwischen Simulation und Realitdt wird eine systematische
Variation von Modellierungsparametern vorgenommen
(Domain Randomization) [32], um die Robustheit des RL-
Agenten zu steigern. Diese Manipulation der Modellierungs-
parameter ist in Bild 3 rot dargestellt und beeinflusst sowohl
die kinematischen und dynamischen Parameter der URDF-
Datei als auch die Sensorwerte.

5. Reinforcement Learning-Agent: In der Simulationsumgebung
lernt der Agent eine Bewegungsstrategie, um das Zielobjekt
durch den Roboter kollisionsfrei zu erreichen. Die Konvergenz
des Trainingsprozesses hingt von der gewihlten Konfiguration
(Aktionsraum, Zustandsraum, Belohnungsfunktion) ab.

6. Reale Umgebung: Nach Vollendung des Trainingsprozesses in
der Simulation, wird der RL-Agent auf die reale Umgebung
appliziert:

6.1 Die simulierten Sensorsignale werden durch reale
Messgroflen substituiert.

6.2 Ein reales Robotersystem wird anstatt der URDF-Datei
geregelt.

3.3 Greifstrategie

Im Folgenden wird die Greifstrategie anhand des Fallbeispiels
der autonomen Abfallsammlung im oOffentlichen Raum des
Forschungsprojekts AutASa vorgestellt. Die Greifstrategie muss
die kollisionsfreie Interaktion mit der Umgebung, unter Ein-
haltung der kinematischen Struktur sowie der sensorischen Erfas-
sung des Umfelds, erfiillen.

Das Stereokamerasystem erfasst die reale Welt im Bildraum als
Pixel. Bei weit entfernten Objekten stehen somit weniger Pixel
zur Verfiigung, um Details der realen Welt zu reprisentieren. Das
Pixel/mm-Verhiltnis limitiert die Genauigkeit des Bildverarbei-
tungssystems. Denn basierend auf der Reprisentation im Bild-
raum wird die Position des Zielobjekts im Koordinatensystem des
Roboters berechnet (Hand-Auge-Kalibrierung). Diese Position ist
eine Eingangsmessgrofe fiir den RL-Agenten. Um trotz des Pixel/
mm-Verhiltnisses das gesamte Arbeitsumfeld mit einem Arbeits-
radius von circa 2,5 m ganzheitlich zu erfassen und gleichzeitig
die Zielposition mit ausreichender Genauigkeit zu extrahieren,
wird eine zweistufige Greifstrategie verfolgt (wie in Bild 4 dar-
gestellt):

» Bahnplanung Nr. 1: Erreichung der Approach-Position unter
Verwendung der festen Stereokamera am Abfallsammelfahr-
zeug durch RL

+ Bahnplanung Nr. 2: Feinpositionierung durch Point-To-Point
(PTP) und Linearbewegung (LIN) unter Verwendung der
lokalen Stereokamera am Greifer

Diese beiden Bahnplanungsaufgaben sollen im Forschungsprojekt

AutASa durch eine Fiinf-Achs-Kinematik realisiert werden. Fiinf

Achsen gewihrleisten eine Bewegungsflexibilitit im dreidimen-

sionalen Raum, wobei zwei translatorische Achsen die notige

Steifigkeit zum Handling befiillter Miilltonnen mit einem

Gewicht bis zu 160 kg bieten. Die kinematische Struktur sowie

deren Zuordnung zur Bahnplanung zeigt Bild 4:

Dekomposition der

Bahnplanungsaufgabe in:
1. Reinforcement Learning
2. Point To Point (PTP) und
Linearbewegung (LIN)

Legende:
Rotationsgelenk M1 Greifer
|'| Translationsgelenk Zielzustand

<ll>—y

----» Bahn des Tool
Center Points

Stereokamera

Bild 4. Greifstrategie zur autonomen Abfallsammlung durch Reinforcement Learning mittels neu-konzeptionierter Flinf-Achs-Kinematik.

Grafik: Fraunhofer IGCV
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1. Die blau gekennzeichneten Teile der Kinematik, ein translatori-
scher Grolhub und zwei rotatorische Freiheitsgrade, werden
mittels des RL-Agenten zur Erreichung der Approach-Position
geregelt. Hierdurch kénnen im dreidimensionalen Raum Aus-
weichmangver abgebildet werden. Die Umgebungsinformatio-
nen werden durch die feste Stereokamera am Abfallsammel-
fahrzeug erfasst. Die Approach-Position wird dem RL-Agenten
als Eingangsgrofle tibermittelt und ist abhingig vom Greifob-
jekt dadurch definiert, dass sich das Zielobjekt im Nahsichtfeld
der lokalen Stereokamera im Greifer des Roboters befindet.

2. Durch die letzten zwei kinematischen Glieder (Translations-
gelenk, Rotationsgelenk), in Bild 4 rot markiert, wird nach-
folgend eine Feinpositionierung mittels PTP- und LIN-Befehl
auf Basis der Hand-Auge-Kalibrierung mit der lokalen Stereo-
kamera durchgefiihrt.

Dieser hybride Regelungsansatz reduziert die RL-Bahnplanung

auf drei Freiheitsgrade. Die verringerte Anzahl an geregelten Ach-

sen hat eine Reduktion des Aktionsraums sowie Zustandsraums
zur Folge, was die Datenintensivitit des Trainingsprozesses
schmalert. Ebenfalls vereinfacht die Feinpositionierung mittels
konventioneller Roboterbefehle den Transfer des RL-Agenten von

Simulation auf den realen Roboter, da marginale Abweichungen

zwischen simulierter Welt und realer Welt zur Erreichung der

Approach-Position unkritisch sind.

Der prizise Greifprozess wird durch einen kamerabasierten
PTP/LIN-Befehl, vergleichbar mit einem Griff aus der Kiste (eng-
lisch: Bin Picking), umgesetzt. Der hochflexible, aber trainings-
intensive Bahnplanungsansatz via RL wird somit auf dessen
in heterogenen Umgebungen
beschrinkt. Das Forschungsvorhaben verfolgt das anwendungs-
orientierte Credo ,so einfach wie mdoglich, so kompliziert wie
notig”. In diesem Kontext ist die Greifstrategie als ein inhdrenter

Wirksamkeit zur Interaktion

Baustein des Sim2Real-Transfers gemif Bild 3 zu betrachten.
4 Transfer in die Produktionstechnik

Wie eingangs motiviert, resultiert die steigende Variantenviel-
falt im industriellen Sektor in einer volatilen Produktionsum-
gebung. Besonders bei kleiner werdenden Losgrofien disqualifi-
zieren sich klassische Bahnplanungsalgorithmen (RRT, PRM)
aufgrund von Verfiigbarkeitsverlusten. Fiir diese hochflexiblen
Anforderungen ist Onlinebahnplanung mittels RL fiir industrielle
Anwendungen zukiinftig zu betrachten [25]. Der in diesem
Beitrag vorgestellte hybride Ansatz zur Onlinebahnplanung
mittels RL ist generalisierbar und kann somit in industrielle
Applikationen transferiert werden.

Als Anwendungsfille in der Industrie fiir RL-Bahnplanung
sind zu nennen:

1. Nutzung eines Robotersystems an heterogenen Anlagen,
wodurch flexibel auf Storkonturen reagiert werden muss.
2. Stark variierende Kollisionsgeometrien durch Riistelemente

an homogenen Anlagen.

3. Stark variierende Dimension und Form der Greifobjekte, die
eine Anpassung der Bahn zur Kollisionsvermeidung erfordern.
4. Kooperierende Arbeitsformen zwischen Menschen und
Roboter.
Entsprechende Anwendungsfille werden am Fraunhofer IGCV
mit dem Demonstrator fiir wandlungsfihige Produktion abgebil-
det. Dieser befahigt durch elektromechanische Schnellkupplungen
dazu, beliebige Produktionsmodule per Plug-&-Produce an einem
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linearen Transportsystem zu adaptieren. Dadurch kénnen volatile
Produktionsbedingungen, wie Kapazititsengpisse oder hohe
Produktvielfalt, mit minimalen Riistzeiten bewdltigt werden.
Robotersysteme werden dabei bedarfsgesteuert heterogenen Pro-
duktionsbedingungen mit variierenden Storkonturen zugefiigt
(Anwendungsfall 1). Je nach Greifobjekt auf dem linearen Trans-
portsystem muss die Bahnplanung online angepasst werden (An-
wendungsfall 3). Der Aufbau mit kollaborierenden Robotern
erlaubt langfristig eine Erweiterung hin zur Mensch-Roboter-
Kooperation (Anwendungsfall 4). Der vorgestellte Bahnplanungs-
ansatz soll zukiinftig am Demonstrator implementiert und ver-
feinert werden.

Um einen Transfer des vorgestellten hybriden Regelungsansatz
aus Bild 4, bestehend aus RL und konventionellen Roboterbefeh-
len (PTP/LIN), auf andere Kinematiken zu erméglichen, miissen
die einzelnen Gelenke aufgabenspezifisch den beiden Anteilen
(RL, konventionelle Roboterbefehle) zugeordnet werden. Auf-
grund der hohen kinematischen Ahnlichkeit zur Fiinf-Achs-Kine-
matik aus Bild 4 erfolgt die Implementierung am Demonstrator
zunichst anhand einer SCARA-Kinematik, dargestellt in Bild 3.
Gegeniiber der Eigenkonstruktion zur autonomen Abfallsamm-
lung in Bild 4 entfillt das erste translatorische Gelenk. Die
Onlinebahnplanung mittels RL kann analog zum Anwendungsfall
der autonomen Abfallsammlung durch einen dreidimensionalen
Aktionsraum, zusammengesetzt aus einem Translationsgelenk
und zwei Rotationsgelenken, erfolgen.

Bei Knickarm-Kinematiken ist aufgabenspezifisch die
Approach-Position und basierend auf deren Zuginglichkeit die
Zuordnung zu den beiden Anteilen festzulegen. Pridestiniert sind
die vorderen Glieder der kinematischen Kette zur Grobpositio-
nierung (Karussell — Schwinge) durch RL und die hinteren
Glieder der kinematischen Kette (Arm — Handgelenk) zur Fein-
positionierung durch konventionelle Roboterbefehle.

5 Zusammenfassung und Ausblick

Reinforcement Learning (RL) beschreibt ein Paradigma, bei
dem ein Agent aus Versuch und Irrtum schrittweise Strategien
zur Interaktion mit einer Umgebung ableitet. Dieses Prinzip kann
fiir die Onlinebahnplanung in dynamischen Produktionsumge-
bungen verwendet werden. Gegeniiber klassischen Bahnplanungs-
methoden zeichnet sich RL durch Flexibilitit und Reaktionsge-
schwindigkeit aus.

Allerdings ist vorgelagert zur Anwendung des RL-Agenten ein
aufwendiger Trainingsprozess mit mehreren tausend Simulations-
durchldufen nétig. Der Trainingsprozess bedarf Expertenwissen
fir die Auswahl des RL-Algorithmus inklusive der Hyperpara-
meter sowie der Definition des Zustandsraums, Aktionsraums
und der Belohnungsfunktion. Die Generalisierbarkeit des Agenten
ist limitiert auf die in der Simulation prisentierten Szenarien.
Ebenfalls erschweren Abweichungen zwischen Realitdt und Simu-
lation (Sim2Real gap) einen nahtlosen Ubergang in industrielle
Applikationen.

Aufgrund dieser Aufwiinde ist Onlinebahnplanung mittels RL
derzeit nur in hochflexiblen Produktionsszenarien mit dynami-
schen Einflussfaktoren, wie dem Menschen, in der Praxis zu emp-
fehlen. Reale Anwendungen fiir RL-Onlinebahnplanung iiber
Labormafstibe hinaus sind noch nicht bekannt.

Dieser Beitrag zeigt einen anwendungsorientierten Ansatz zur
Onlinebahnplanung mittels RL. Er wird vorgestellt anhand eines
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Anwendungsfalls der kommunalen Abfallsammlung. Neben einem
Workflow zur Reduktion des Sim2Real gap, wurde ebenfalls eine
neuartige Greifstrategie vorgestellt. Die Bahnplanungsaufgabe
wird dabei durch Expertenwissen in Anteile fiir RL und konven-
tionelle Roboterbefehle zerlegt. Die Anteile werden kinematischen
Gliedern des Roboters zugeordnet, wodurch sich die Komplexitit
des RL-Agenten wesentlich reduziert. Die Ergebnisse adressieren
primédr Robotik im offentlichen Raum, bieten jedoch Potenzial
zum Transfer in den industriellen Sektor.
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