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This thesis explores approaches to capture human motions with a small number of sensors. In 
the first part of this thesis an approach is presented that reconstructs the body pose from only six 
inertial sensors. Instead of relying on pre-recorded motion databases, a global optimization 
problem is solved to maximize the consistency of measurements and model over an entire recor-
ding sequence. The second part of this thesis deals with a hybrid approach to fuse visual infor-
mation from a single hand-held camera with inertial sensor data. First, a discrete optimization 
problem is solved to automatically associate people detections in the video with inertial sensor 
data. Then, a global optimization problem is formulated to combine visual and inertial informa-
tion. The proposed approach enables capturing of multiple interacting people and works even 
if many more people are visible in the camera image. In addition, systematic inertial sensor er-
rors can be compensated, leading to a substantial increase in accuracy.
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Abstract

This dissertation explores approaches to capture human motions with a small number
of sensors. Conventional methods either use a large number of static cameras, which
severely limits the recording space, or a high number of body-worn inertial sensors,
which is intrusive and only accurate for short time periods.
The first part of this thesis presents an approach that reconstructs the body pose
from only 6 inertial sensors. Conventionally, up to 17 sensors are needed to cover all
degrees of freedom of the body. Since fewer sensors inevitably lead to ambiguities,
previous approaches estimate the missing information from pre-recorded motion
databases. In contrast, in this work a model-based approach is proposed. More
specifically, a global optimization problem is solved to maximize the consistency of
measurements and model over an entire recording sequence. A key observation is
that the kinematic constraints imposed by a statistical human body model constrain
the search space significantly. This allows to utilize the acceleration data of inertial
sensors to compensate for the missing sensor information. The performance of the
method is demonstrated in challenging outdoor scenarios and accuracy is evaluated
on two benchmark datasets.
The second part of this thesis deals with a hybrid approach to fuse visual information
from a single hand-held camera with inertial sensor data. This approach combines
the advantages of both sensor modalities. It enables capturing multiple interacting
people and works even if many more people are visible in the camera image. In
addition, systematic errors of the inertial sensors can be compensated, leading to
a substantial increase in accuracy. In order to fuse the sensor modalities, visual
information from the camera has to be associated to inertial sensor data. This is
done automatically by formulating a discrete graph labeling problem. Subsequently,
all sensor information of an entire tracking sequence is transformed into a global
model-based optimization problem, which reconstructs body poses, camera pose
and sensor errors. In several experiments accuracy is evaluated quantitatively and
qualitatively. The combination of a single hand-held camera and body-worn inertial
sensors enables motion capture in new complex settings. Using the approach a
variety of motions are recorded, e.g. during shopping in a crowded pedestrian zone
or during a bus ride. These recordings are composed into a novel dataset, which
was made publicly available for research purposes.
Keywords: Human Pose Estimation, Inertial Sensors, Video, Non-static Camera,
Model-based Optimization, Sparse Sensors
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Kurzfassung

Diese Dissertation untersucht Ansätze zur Erfassung menschlicher Bewegungen mit
wenigen Sensoren. Herkömmliche Verfahren verwenden entweder eine große Anzahl
an statischen Kameras, was den Aufnahmebereich stark einschränkt, oder eine hohe
Anzahl am Körper getragenen Inertialsensoren, was als unangenehm empfunden
wird und nur für kurze Zeiträume präzise funktioniert.
Im ersten Teil dieser Arbeit wird ein Ansatz vorgestellt, der die Körperhaltung
aus den Messdaten von nur 6 Inertialsensoren rekonstruiert. Üblicherweise werden
bis zu 17 Sensoren benötigt um alle Freiheitsgrade des Körpers abzudecken. Da
weniger Sensoren zwangsläufig zu Uneindeutigkeiten führen, werden in bisherigen
Ansätzen die fehlenden Informationen aus zuvor aufgenommenen Bewegungsdaten-
banken geschätzt. Im Gegensatz dazu wird ein modellbasierter, generativer Ansatz
entwickelt. Sämtliche Messwerte eine Aufnahmesequenz werden in ein globales
Optimierungsproblem überführt und die Konsistenz von Messdaten und Modell
maximiert. Die modellierten kinematischen Einschränkungen des menschlichen
Skelettes führen zu einer wesentlichen Eingrenzung des Suchraums und ermöglichen
so die Beschleunigungsdaten der Inertialsensoren zur Kompensation der fehlenden
Sensorinformationen heranzuziehen. Die Präzision des Ansatzes wird experimentell
untersucht und durch Bewegungsrekonstruktionen aus anspruchsvollen Außenauf-
nahmen demonstriert.
Im zweiten Teil der Arbeit wird der vorhergehende Ansatz erweitert, um visuelle
Informationen von einer in der Hand gehaltenen Smartphone-Kamera mit den Daten
der Inertialsensoren zu fusionieren. Dieser Ansatz ermöglicht eine mobile Bewe-
gungserfassung von mehreren interagierenden Personen und funktioniert selbst wenn
im Kamerabild viele weitere Personen sichtbar sind. Zusätzlich können systematis-
che Fehler der Inertialsensoren geschätzt werden, was zu einer erheblich präziseren
Bewegungsschätzung führt. Um die verschiedenen Sensorinformation miteinander zu
fusionieren, muss zunächst eine Zuordnung von Bildinformationen und Inertialsen-
sordaten stattfinden. Diese Zuordnung wird zeitlich konsistent durch eine diskrete
Optimierung mittels Graph-Labeling gelöst. Anschließend werden sämtliche Sensorin-
formationen einer gesamten Sequenz in ein globales Optimierungsproblem überführt
und neben der Körperhaltung nun auch die relative Entfernung zur Kamera, die Kam-
erapose und Sensorfehler geschätzt. Die Präzision des Ansatzes wird in zahlreichen
Experimenten evaluiert. Zusätzlich werden die im Rahmen der Arbeit aufgenomme-
nen Bewegungssequenzen in Form eines neuartigen Datensatzes vorgestellt und für
Forschungszwecke bereitgestellt. Die Kombination von Smartphone-Kamera und
Inertialsensoren ermöglicht erstmalig eine mobile Bewegungserfassung von mehreren
Personen, die auch für Alltagssituationen wie beispielsweise beim Einkaufen in einer
belebten Fußgängerzone geeignet ist.
Schlagwörter: Erfassung menschlicher Bewegungen, Inertialsensoren, Video, be-
wegliche Kamera, modell-basierte Optimierung, wenige Sensoren

XI

https://doi.org/10.51202/9783186866103-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:32:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186866103-I


XII

https://doi.org/10.51202/9783186866103-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:32:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186866103-I

