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Parameter im Bruchkriterium nach Richard
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Integrationsweg

Steifigkeitsmatrix

Parameter im Rissfortschrittgesetz nach Erdogan und Ratwani
Parameter im Rissfortschrittgesetz nach Paris
Elastizitatsmodul, Zugelastizitatsmodul

zustandsabhangiger Elastizitdtsmodul, Elastizitdtsmodul im
Bruchkriterium nach Hussain, Pu und Underwood

Elastizitatsmodul der Faser bzw. Matrix
Elastizitatsmodul der Faser in Léngsrichtung
Flastizitatsmodul des Verbunds in Faserlangsrichtung
Elastizitdtsmodul des Verbunds in Querrichtung
Elastizitatsmoduln in Koordinatenrichtungen
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Kraft in der Faser bzw. Matrix
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Energiefreisetzungsrate
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VIII Notation
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terium nach Judt

Jr (o) winkelabhéngiger Wert des J-Integrals im Bruchkriterium nach
Judt

JPPbJIb kritischer Wert des J-Integrals in transversaler bzw. senkrechter
Richtung

Ji, Ja Wert des J-Integrals in x- bzw. y-Richtung
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zyklische Risszdahigkeit fiir Mode 1
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untere bzw. obere Grenze der Risslingen

Parameter zur Modifikation des Grauwerts eines Bildpunkts

Funktionen im Bruchkriterium nach Sih

o elastische Konstanten
Aa Rissinkrement
bnn Wert eines Bildpunkts des Binérbilds
Gij elastische Steifigkeiten
df Faserdurchmesser
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Funktion zur Modifikation des Grauwerts eines Bildpunkts
Ansatzfunktionen
Bereichsfunktion
winkelabhéngige Funktion fiir das Rissspitzenspannungsfeld

winkelabhéngige Funktionen fiir das Risspitzenspannungsfeld
fiur Mode I, II bzw. 111

Wert eines Bildpunkts des Grauwertbilds
modifizierter Wert eines Bildpunkts des Grauwertbilds
Schwellenwert eines Bildpunkts, Grauwertschwelle
Lénge, Ausgangslange

Faserlédnge

Langenanderung

Masse

Wicklungsanzahl

Zeile bzw. Spalte der Bildmatrix
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Parameter im Rissfortschrittgesetz nach Paris
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komplexe Konstanten
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Zeit

Elementlange

Elementlange
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Verschiebungsvektor

Rissuferverschiebung

Priifgeschwindigkeit

spezifische Probenbreite

kartesische Koordinaten
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b) Griechische Symbole
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potenzielle Energie
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O pmax

Fasermasseanteil

Faserwinkel, Winkel zwischen Initialriss und Faser
Parameter zur Kriimmungsanpassung der Regressionsfunktion
Werkstoffparameter im Bruchkriterium nach Richard
Abknickwinkel, Winkel zwischen Initialriss und Risspfadende

Abknickwinkel, Winkel zwischen Initialriss und Risspfad-
beginn

Regressionsfunktion des Rissabknickwinkels
Winkel im Bruchkriterium nach Judt

Gleitungen in kartesischen Koordinaten

mittlerer quadratischer Fehler

Abweichung

Bruchdehnung der Faser bzw. Matrix
Bruchdehnung der Faser in Langsrichtung
Bruchdehnung des Verbunds in Faserlangsrichtung
Dehnungstensor

Dehnungen in kartesischen Koordinaten
Exponentialkoeffizient

Regressionskoeffizient

Schubmodul

Querkontraktionszahl

Querkontraktionszahlen in Koordinatenrichtungen
Kriimmungsradius der Kerbe

Dichte der Faser bzw. Matrix

Normalspannung, statische Spannung, duflere Bauteilbe-
lastung

Spannungsfunktion

Spannungstensor

Materialkennwert

Spannung in der Faser bzw. Matrix
maximale bzw. minimale Spannung
Spannungen in kartesischen Koordinaten
duBlere Belastung

Spannungen in Polarkoordinaten

maximale Tangentialspannung

216.73.216.36, am 18.01.2026, 21:53:19. © Urheberrechtlich geschutzter Inhaf 2
m

mit, fr oder in Ki-Syster


https://doi.org/10.51202/9783186354181-I

XII

Notation
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©Yo,MTS
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M
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Hauptnormalspannung des a'l—Kriteriums

Spannung in Faserldngsrichtung

Schwingbreite der Spannung bei zyklischer Belastung
Schubspannungen in kartesischen Koordinaten
auflere Belastung

Schubspannung in Polarkoordinaten
Polarkoordinate, Winkel

Faservolumenanteil

Winkel im Bruchkriterium nach Judt

Abknickwinkel

Abknickwinkel im Bruchkriterium nach Richard
Abknickwinkel im Bruchkriterium nach Erdogan und Sih
Schwellenwert zur Bereichsabgrenzung

Parameter der Bereichsfunktion

Gradierungswinkel im Bruchkriterium nach Schramm und
Richard

Abknickwinkel im Bruchkriterium nach Schramm und Richard
Abknickwinkel im Bruchkriterium nach Judt

Verhéltnis der richtungsabhéngigen Risszéhigkeiten im Bruch-
kriterium nach Judt

Verdrehwinkel

c) Sonstige Abkiirzungen und Symbole

BR
CAD

CLT
CT
EP
ESZ
EVZ
FE
FEM
HM
HT

Butadien-Kautschuk (engl. butadiene rubber)

rechnerunterstiitzte Konstruktion (engl. computer-aided
design)

Klassische Laminattheorie (engl. classical laminate theory)
Kompaktzugprobe (engl. compact tension specimen)
Epoxidharz

ebener Spannungszustand

ebener Verzerrungszustand

Finite-Elemente

Finite-Elemente-Methode

hoher Elastizitdtsmodul (engl. high modulus)

hohe Festigkeit (engl. high tenacity)
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XIII

LM
M1, M2

MTS
MVCCI

NR
PA
PET
PD
PF
PP
PPS
REM
SS
SiC
D
TSSR

Lichtmikroskop

Material 1 bzw. 2 im Bruchkriterium nach Schramm und
Richard

maximale Tangentialspannung

modifizierte Rissschliefungsintegralmethode (engl. modified
virtual crack closure integral)

Naturkautschuk (engl. natural rubber)
Polyamid

Polyethylenterephthalat
Vorzugsrichtung (engl. predominant direction)
Phenolharz

Polypropylen

Polyphenylensulfid
Rasterelektronenmikroskop
Strahldurchmesser (engl. spot size)
Siliziumcarbid

Querrichtung (engl. transverse direction)

Kriterium der Tangentialspannung fiir gradierte Materialien
nach Schramm und Richard

Vinylesterharz
Faser
Matrix

Léngsrichtung

Weitere oder abweichende Formelzeichen und Symbole sind im Text beschrieben.
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XIV

Kurzfassung

Faserverstirkte Kunststoffe weisen aufgrund ihrer Zusammensetzung ein besonderes Ei-
genschaftsprofil auf, wobei insbesondere die dichtebezogenen Kennwerte ein Kriterium
bei der Werkstoffwahl sind. Eine Vielzahl von Verstarkungsfasern hat dabei anisotrope
Eigenschaften. Diese Dissertation behandelt die bruchmechanische Charakterisierung von
Flachsfaser-Epoxidharz-Verbunden infolge statischer Belastung. Die Flachsgarne sind im
Verbund unidirektional orientiert. Nach den Grundlagen zur linear-elastischen Bruchme-
chanik und zu Verbundwerkstoffen folgen die Beschreibung der experimentellen Untersu-
chungen und die Auswertung der Ergebnisse. Dabei werden insbesondere die Risspfade der
Kompaktzugproben analysiert. Durch Variation des Winkels zwischen Faserorientierung
und Belastungsrichtung (von 0° bis 90° mit einer Schrittweite von 22,5°) in Kombination
mit Faservolumenanteilen zwischen etwa 2 und 13 % ergeben sich unterschiedliche Riss-
pfade. Die Rissausbreitungsrichtung wird neben der Belastungsrichtung gravierend von
der Orientierung und Anzahl der Verstarkungsfasern beeinflusst. Des Weiteren erfolgen
numerische Simulationen fiir homogene und inhomogene Materialmodelle. Fin auf den
experimentellen Daten basierendes mathematisches Modell erméglicht die Vorhersage der
Rissabknickwinkel in Abhéngigkeit von dem Faserwinkel und dem Faservolumenanteil.

Abstract

Due to their composition, fibre-reinforced composites exhibit special characteristics.
Density-related properties, in particular, are an important consideration when selecting a
suitable material. Furthermore, a multitude of reinforcements are highly anisotropic. This
doctoral thesis deals with the fracture mechanics of flax fibre-reinforced epoxy composites
under static loading. The fibres used are flax yarns in unidirectional alignment. A review
of the fundamentals of linear elastic fracture mechanics and composites is followed by the
description of the experiments and the analysis of the findings. Special emphasis is placed
on the crack paths occurring in the compact tension specimens. By varying the angle
between fibre orientation and loading direction (from 0° up to 90° with an increment of
22.5°) in conjunction with fibre volume fractions of between 2% and 13% approximately, the
resulting crack paths are shown to be dependent on those two parameters. Not only are the
crack paths governed by the loading direction, but they are also affected by the orientation
and the amount of fibres. Numerical simulations are performed using homogeneous and
heterogeneous models. Finally, a mathematical model based on the experimental data is
presented. It can be used to predict crack kinking angles as a function of fibre angle and
fibre volume fraction.
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