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VII

Notation

a) Lateinische Formelzeichen

A1, A2 Parameter im Bruchkriterium nach Richard
Af , Am, Av Querschnittsfläche der Faser, Matrix bzw. des Verbunds
B1, B2, B3, B4 Parameter im Bruchkriterium nach Richard
C Integrationsweg
C Steifigkeitsmatrix
CE Parameter im Rissfortschrittgesetz nach Erdogan und Ratwani
CP Parameter im Rissfortschrittgesetz nach Paris
E Elastizitätsmodul, Zugelastizitätsmodul
E

′ zustandsabhängiger Elastizitätsmodul, Elastizitätsmodul im
Bruchkriterium nach Hussain, Pu und Underwood

Ef , Em Elastizitätsmodul der Faser bzw. Matrix
Ef‖ Elastizitätsmodul der Faser in Längsrichtung
E‖ Elastizitätsmodul des Verbunds in Faserlängsrichtung
E⊥ Elastizitätsmodul des Verbunds in Querrichtung
Ex, Ey, Ez Elastizitätsmoduln in Koordinatenrichtungen
E∗

x, E
∗
y, E

∗
z Elastizitätsmoduln im gedrehten Koordinatensystem

F Kraft
Ff , Fm Kraft in der Faser bzw. Matrix
Fk Kraftkomponente am Knotenpunkt
Fmax Maximalzugkraft
Fy Kraft in y-Richtung
F‖ Kraft in Faserlängsrichtung
G Energiefreisetzungsrate
Gxy, Gxz, Gyz Schubmodul in Koordinatenrichtungen
GI, GII, GIII Energiefreisetzungsrate für Mode I, II bzw. III
GIc kritische Energiefreisetzungsrate, Materialgrenzwert
G(ϕ) winkelabhängige Energiefreisetzungsrate
∆G zyklische Energiefreisetzungsrate
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VIII Notation

∆GI,∆GII zyklische Energiefreisetzungsrate für Mode I bzw. II
J Wert des J-Integrals
JIc kritischer Wert des J-Integrals
Jc(ϕ) winkelabhängiger, kritischer Wert des J-Integrals im Bruchkri-

terium nach Judt
JR(ϕ) winkelabhängiger Wert des J-Integrals im Bruchkriterium nach

Judt
JPD

c , JTD
c kritischer Wert des J-Integrals in transversaler bzw. senkrechter

Richtung
J1, J2 Wert des J-Integrals in x- bzw. y-Richtung
K Spannungsintensitätsfaktor
KI, KII, KIII Spannungsintensitätsfaktor für Mode I, II bzw. III
KI,max, KI,min maximaler bzw. minimaler Spannungsintensitätsfaktor
KV Vergleichsspannungsintensitätsfaktor
KI, KII Spannungsintensitätsfaktor für Mode I bzw. II im Bruchkrite-

rium nach Nuismer
KIc, KIIc Risszähigkeit für Mode I bzw. II
KI, II, c Risszähigkeit für Mixed-Mode Beanspruchung (Mode I und

II)
KIc(ϕ) winkelabhängige Risszähigkeit für Mode I
KIc,M1, KIc,M2 Risszähigkeit des Materials 1 bzw. 2 im Bruchkriterium nach

Schramm und Richard
KC

I (ϕ) winkelabhängiger, normierter Spannungsintensitätsfaktor im
Bruchkriterium nach Schramm und Richard

KC,TSSR
I Minimalwert der normierten Spannungsintensitätsfaktoren im

Bruchkriterium nach Schramm und Richard
KPD

Ic , KTD
Ic Spannungsintensitätsfaktor in senkrechter bzw. transversaler

Richtung im Bruchkriterium nach Judt
∆KI,∆KII,∆KIII Zyklischer Spannungsintensitätsfaktor für Mode I, II bzw. III
∆KIc zyklische Risszähigkeit für Mode I
∆KI,th Schwellenwert des Ermüdungsrisswachstums für Mode I
∆KV zyklischer Vergleichsspannungsintensitätsfaktor
N Lastwechselzahl
P Knotenpunkt
R Spannungsverhältnis, R-Verhältnis
Rf , Rm Festigkeit der Faser bzw. Matrix
Rf‖ Zugfestigkeit der Faser in Längsrichtung
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Notation IX

S Rissoberflächenenergie
S Energiedichtefaktor
S Nachgiebigkeitsmatrix
Smin minimaler Energiedichtefaktor
Smin,c kritischer Energiedichtefaktor, Materialgrenzwert
T Transformationsmatrix
U elastische Energie, Formänderungsenergie
U elastische Energiedichte
V Verhältnis von Mode I und II
Vf , Vm, Vv Faser-, Matrix- bzw. Verbundvolumen
W Arbeit der äußeren Kräfte
W Rissschließungsenergie, Rissschließungsarbeit
Y Geometriefaktor
YI, YII, YIII Geometriefaktoren für Mode I, II bzw. III

a Risslänge
a Länge eines abgeknickten Risses
a, b Längen der großen bzw. kleinen Halbachse einer Kerbe
a1, a2 untere bzw. obere Grenze der Risslängen
a1, a2 Parameter zur Modifikation des Grauwerts eines Bildpunkts
a11, a12, a22 Funktionen im Bruchkriterium nach Sih
aij elastische Konstanten
∆a Rissinkrement
bmn Wert eines Bildpunkts des Binärbilds
cij elastische Steifigkeiten
df Faserdurchmesser
da Rissfortschritt
da inkrementelle Risslänge
da/dN Rissgeschwindigkeit
dc/dN Rissgeschwindigkeit
ds Wegkoordinate
dx Länge eines Teilstücks
dN Lastwechseldifferenz
dW Arbeitsanteil
e Elementgröße
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X Notation

f(gmn) Funktion zur Modifikation des Grauwerts eines Bildpunkts
fi(α, ϕ), fj(α, ϕ) Ansatzfunktionen
fb,k(ϕ) Bereichsfunktion
fij(ϕ) winkelabhängige Funktion für das Rissspitzenspannungsfeld
f I

ij(ϕ), f II
ij (ϕ), f III

ij (ϕ) winkelabhängige Funktionen für das Risspitzenspannungsfeld
für Mode I, II bzw. III

gmn Wert eines Bildpunkts des Grauwertbilds
g∗

mn modifizierter Wert eines Bildpunkts des Grauwertbilds
gth Schwellenwert eines Bildpunkts, Grauwertschwelle
l Länge, Ausgangslänge
lf Faserlänge
∆l Längenänderung
m Masse
m Wicklungsanzahl
m,n Zeile bzw. Spalte der Bildmatrix
mE Parameter im Rissfortschrittgesetz nach Erdogan und Ratwani
mP Parameter im Rissfortschrittgesetz nach Paris
r Polarkoordinate, Abstand zur Risspitze
s Standardabweichung
s1, s2, s3, s4 komplexe Konstanten
t Dicke, Probendicke
t Zeit
tk Elementlänge
∆tk Elementlänge
u, v, w Verschiebung in y-, x- bzw. z-Richtung
~u Verschiebungsvektor
∆u Rissuferverschiebung
v Prüfgeschwindigkeit
w spezifische Probenbreite
x, y, z kartesische Koordinaten
x∗, y∗ kartesische Koordinaten des Materialkoordinatensystems

b) Griechische Symbole

Π potenzielle Energie
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Notation XI

Ψ Fasermasseanteil
α Faserwinkel, Winkel zwischen Initialriss und Faser
α1, α2 Parameter zur Krümmungsanpassung der Regressionsfunktion
α1, α2 Werkstoffparameter im Bruchkriterium nach Richard
β Abknickwinkel, Winkel zwischen Initialriss und Risspfadende
β1 Abknickwinkel, Winkel zwischen Initialriss und Risspfad-

beginn
β(α, ϕ) Regressionsfunktion des Rissabknickwinkels
γ Winkel im Bruchkriterium nach Judt
γxy, γxz, γyz Gleitungen in kartesischen Koordinaten
δrms mittlerer quadratischer Fehler
ε Abweichung
εf , εm Bruchdehnung der Faser bzw. Matrix
εf‖ Bruchdehnung der Faser in Längsrichtung
ε‖ Bruchdehnung des Verbunds in Faserlängsrichtung
εij Dehnungstensor
εx, εy, εz Dehnungen in kartesischen Koordinaten
λ0 Exponentialkoeffizient
λi, λj Regressionskoeffizient
µ Schubmodul
ν Querkontraktionszahl
νxy, νxz, νyz Querkontraktionszahlen in Koordinatenrichtungen
ρ Krümmungsradius der Kerbe
ρf , ρm Dichte der Faser bzw. Matrix
σ Normalspannung, statische Spannung, äußere Bauteilbe-

lastung
σij Spannungsfunktion
σij Spannungstensor
σc Materialkennwert
σf , σm Spannung in der Faser bzw. Matrix
σmax, σmin maximale bzw. minimale Spannung
σx, σy, σz Spannungen in kartesischen Koordinaten
σ∞

y äußere Belastung
σr, σϕ Spannungen in Polarkoordinaten
σϕmax maximale Tangentialspannung
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XII Notation

σ
′
1 Hauptnormalspannung des σ′

1-Kriteriums
σ‖ Spannung in Faserlängsrichtung
∆σ Schwingbreite der Spannung bei zyklischer Belastung
τxy, τyz, τxz Schubspannungen in kartesischen Koordinaten
τ∞

yx , τ
∞
yz äußere Belastung

τrϕ, τϕz Schubspannung in Polarkoordinaten
ϕ Polarkoordinate, Winkel
ϕ Faservolumenanteil
ϕ∗ Winkel im Bruchkriterium nach Judt
ϕ0 Abknickwinkel
ϕ0 Abknickwinkel im Bruchkriterium nach Richard
ϕ0,MTS Abknickwinkel im Bruchkriterium nach Erdogan und Sih
ϕth Schwellenwert zur Bereichsabgrenzung
ϕk Parameter der Bereichsfunktion
ϕM Gradierungswinkel im Bruchkriterium nach Schramm und

Richard
ϕTSSR Abknickwinkel im Bruchkriterium nach Schramm und Richard
ϕc Abknickwinkel im Bruchkriterium nach Judt
χ Verhältnis der richtungsabhängigen Risszähigkeiten im Bruch-

kriterium nach Judt
ψ0 Verdrehwinkel

c) Sonstige Abkürzungen und Symbole

BR Butadien-Kautschuk (engl. butadiene rubber)
CAD rechnerunterstützte Konstruktion (engl. computer-aided

design)
CLT Klassische Laminattheorie (engl. classical laminate theory)
CT Kompaktzugprobe (engl. compact tension specimen)
EP Epoxidharz
ESZ ebener Spannungszustand
EVZ ebener Verzerrungszustand
FE Finite-Elemente
FEM Finite-Elemente-Methode
HM hoher Elastizitätsmodul (engl. high modulus)
HT hohe Festigkeit (engl. high tenacity)
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Notation XIII

LM Lichtmikroskop
M1,M2 Material 1 bzw. 2 im Bruchkriterium nach Schramm und

Richard
MTS maximale Tangentialspannung
MVCCI modifizierte Rissschließungsintegralmethode (engl. modified

virtual crack closure integral)
NR Naturkautschuk (engl. natural rubber)
PA Polyamid
PET Polyethylenterephthalat
PD Vorzugsrichtung (engl. predominant direction)
PF Phenolharz
PP Polypropylen
PPS Polyphenylensulfid
REM Rasterelektronenmikroskop
SS Strahldurchmesser (engl. spot size)
SiC Siliziumcarbid
TD Querrichtung (engl. transverse direction)
TSSR Kriterium der Tangentialspannung für gradierte Materialien

nach Schramm und Richard
VE Vinylesterharz
f Faser
m Matrix
‖ Längsrichtung

Weitere oder abweichende Formelzeichen und Symbole sind im Text beschrieben.
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XIV

Kurzfassung

Faserverstärkte Kunststoffe weisen aufgrund ihrer Zusammensetzung ein besonderes Ei-
genschaftsprofil auf, wobei insbesondere die dichtebezogenen Kennwerte ein Kriterium
bei der Werkstoffwahl sind. Eine Vielzahl von Verstärkungsfasern hat dabei anisotrope
Eigenschaften. Diese Dissertation behandelt die bruchmechanische Charakterisierung von
Flachsfaser-Epoxidharz-Verbunden infolge statischer Belastung. Die Flachsgarne sind im
Verbund unidirektional orientiert. Nach den Grundlagen zur linear-elastischen Bruchme-
chanik und zu Verbundwerkstoffen folgen die Beschreibung der experimentellen Untersu-
chungen und die Auswertung der Ergebnisse. Dabei werden insbesondere die Risspfade der
Kompaktzugproben analysiert. Durch Variation des Winkels zwischen Faserorientierung
und Belastungsrichtung (von 0◦ bis 90◦ mit einer Schrittweite von 22,5◦) in Kombination
mit Faservolumenanteilen zwischen etwa 2 und 13 % ergeben sich unterschiedliche Riss-
pfade. Die Rissausbreitungsrichtung wird neben der Belastungsrichtung gravierend von
der Orientierung und Anzahl der Verstärkungsfasern beeinflusst. Des Weiteren erfolgen
numerische Simulationen für homogene und inhomogene Materialmodelle. Ein auf den
experimentellen Daten basierendes mathematisches Modell ermöglicht die Vorhersage der
Rissabknickwinkel in Abhängigkeit von dem Faserwinkel und dem Faservolumenanteil.

Abstract

Due to their composition, fibre-reinforced composites exhibit special characteristics.
Density-related properties, in particular, are an important consideration when selecting a
suitable material. Furthermore, a multitude of reinforcements are highly anisotropic. This
doctoral thesis deals with the fracture mechanics of flax fibre-reinforced epoxy composites
under static loading. The fibres used are flax yarns in unidirectional alignment. A review
of the fundamentals of linear elastic fracture mechanics and composites is followed by the
description of the experiments and the analysis of the findings. Special emphasis is placed
on the crack paths occurring in the compact tension specimens. By varying the angle
between fibre orientation and loading direction (from 0◦ up to 90◦ with an increment of
22.5◦) in conjunction with fibre volume fractions of between 2% and 13% approximately, the
resulting crack paths are shown to be dependent on those two parameters. Not only are the
crack paths governed by the loading direction, but they are also affected by the orientation
and the amount of fibres. Numerical simulations are performed using homogeneous and
heterogeneous models. Finally, a mathematical model based on the experimental data is
presented. It can be used to predict crack kinking angles as a function of fibre angle and
fibre volume fraction.
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