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l triangle index
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Abstract

A wide variety of computer vision applications rely on superpixel or supervoxel
algorithms as a preprocessing step. This underlines the overall importance that
these approaches have gained in recent years. However, most methods show a lack
of temporal consistency or fail in producing temporally stable segmentations.

In this regard, this thesis presents a highly competitive approach for tempo-
rally consistent superpixels for video content. The approach is based on energy-
minimizing clustering utilizing a novel hybrid clustering strategy for a multidimen-
sional feature space. By working in a joint global color space, but keeping the
positions of the superpixels localized to the frame level, the framework allows for
arbitrary large displacements of the superpixels along the image plane over time.
By applying a contour-based optimization the spatial coherency of the pixels of
each superpixel is ensured while obeying the optimization target at all times. A
sliding window technique enables the approach to process videos of arbitrary length
in a streaming fashion. To propagate the superpixel segmentation while shifting
the sliding window over the video volume, this thesis proposed two novel prop-
agation methods. While the first approach is trimmed for efficiency and utilizes
sparse optical flow vectors in combination with a Delaunay triangulation, the sec-
ond approach individually propagates the shape of each superpixel. The individual
propagation enables the detection of occluded and disoccluded image regions. In
order to provide equally sized superpixels, this thesis further proposes a novel ap-
proach to handle structural changes in the video volume by utilizing the collected
dis-/occlusion information.

For a thorough evaluation, the proposed approach is compared to state-of-the-
art spatio-temporal oversegmentation algorithms using established benchmark met-
rics. The benchmark results show that the proposed framework produces the lowest
spatio-temporal segmentation error of all approaches. Thereby, creating longer tem-
poral superpixel trajectories than approaches with a comparable segmentation error.
This shows that the proposed method extracts the temporal connections of the im-
age regions inherent in the video volume to a higher extent than previous methods.
Simultaneously, its run time scales better than approaches of comparable quality, as
it only depends linearly on the number of pixels as well as the number of superpixels.

The effectiveness of the proposed method is further evaluated by showing its ap-
plication to the task of interactive video segmentation using graph cut techniques.
When compared to a voxel level processing of the video material the proposed over-
segmentation method decreases the initial segmentation error by over 47 %. Addi-
tionally, its application reduces the average run time of the performed graph cut
from 31 minutes to under 7 ms per sequence.

Keywords: superpixels, temporal consistency, supervoxels, oversegmentation,
occlusion, interactive video segmentation

R P am 24.01.2026, 01:38:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186861108

XI

Kurzfassung

Eine grofile Anzahl Computer Vision Applikationen basiert auf der Verwendung von
Superpixeln oder Supervoxeln als Vorverarbeitungsschritt. Dies unterstreicht die
Wichtigkeit, welche diese Ansétze in den letzten Jahren erlangt haben. Viele dieser
Methoden erzeugen allerdings zeitlich inkonsistente oder instabile Segmentierungen.

Ziel dieser Arbeit ist die Beschreibung eines Systems zur Erzeugung zeitkonsis-
tenter Superpixelsegmentierungen fiir Videos. Der Ansatz basiert auf einem ener-
gieminimierenden Verfahren zur Cluster Analyse und nutzt einen neuen, hybriden
Ansatz fiir den multidimensionalen Merkmalsraum. Dabei kommt ein globaler, zu-
sammengefasster Farbraum zur Anwendung, wiahrend die rdumlichen Positionen der
Superpixel auf den Einzelbildern betrachtet werden. Somit lassen sich beliebig grofie
Bewegungen von Bildregionen entlang der Bildebene durch die Superpixel abbilden.
Indem eine konturbasierte Optimierung Anwendung findet, wird der raumliche Zu-
sammenhalt der Pixel jedes Superpixels garantiert, wihrend das Optimierungskrite-
rium zu jedem Zeitpunkt Berticksichtigung findet. Durch den Einsatz einer Fenste-
rungstechnik lassen sich dabei beliebig lange Videosequenzen sukzessiv verarbeiten.
Um die Segmentierung wiahrend der sukzessiven Verarbeitung zu propagieren, wer-
den in dieser Arbeit zwei neue Ansitze hierfir vorgestellt. Wahrend beim Ersten
grofles Augenmerk auf die Effektivitat gelegt wird und eine Delaunay Triangulati-
on in Kombination mit einzelnen, verfolgten Merkmalspunkten Anwendung findet,
propagiert der Zweite jeden Superpixel einzeln. Hierbei lassen sich Riickschliisse auf
verdeckte und aufgedeckte Bildregionen ziehen. Diese Informationen werden im wei-
teren Verlauf dazu genutzt, um auf strukturelle Anderungen im Videovolumen zu
reagieren und hierdurch moglichst gleichgrofle Superpixel zu generieren.

In einer umrangreichen Evaluierung mit etablierten Testverfahren wird das vorg-
stellte System mit aktuellen Verfahren zur Videoiibersegmentierung verglichen. Die
Ergebnisse zeigen, dass das vorgeschlagene Verfahren den geringsten Segmentie-
rungsfehler aufweist. Gleichzeitig werden zeitlich langere Superpixeltrajektorien er-
zeugt als von Verfahren vergleichbarer Segmentierungsqualitét. Dies zeigt, dass das
vorgestellte Verfahren die im Video enthaltenen zeitlichen Verbindungen der Bild-
regionen besser extrahiert als frithere Anséitze. Gleichzeit skaliert die Laufzeit des
Verfahrens besser, da sie nur linear mit der Anzahl der Pixel und Superpixel ansteigt.

Dartiber hinaus wid die Leistungsféhigkeit des Verfahren am Beispiel der inter-
aktiven Videosegmentierung mittels des Graph-Cut Algorithmus demonstriert. Ver-
glichen mit einer pixelweisen Verarbeitung des Videomaterials veringert sich der
initiale Segmentierungsfehler bei Anwendung des vorgestellten Verfahrens um tiber
47 %. Zusatzlich verkiirzt sich die durchschnittliche Ausfiihrungszeit des Graph-Cut
Algorithmus von 31 Minuten auf unter 7 ms pro Sequenz.

Stichworte: Superpixel, Zeitkonsistenz, Supervoxel, Ubersegmentierung, Verde-
ckung, interaktive Videosegmentierung
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Chapter

Introduction

1.1 Motivation

With the advent of smartphone cameras and similar capturing devices the presence
of digital image processing has become ubiquitous in the past years. As these devices
provide an easy way of capturing and sharing everyday situations, the amount of
video and image data that needs to be processed is growing from day to day. Addi-
tionally, the image resolution of the capturing devices is increasing over time which
further boosts the scale of available data. To keep up with the growing amount of
data, it is therefore essential to further improve the efficiency of the processing and
to extract the relevant information at an early processing stage.

To this end, this thesis deals with the problem of video oversegmentation as a
preprocessing step in a video processing pipeline. A common processing pipeline
consists of a capturing stage, where video data is recorded, and a processing stage
that extracts some information of interest from the captured footage. In a digital
system the video footage is captured and stored in the familiar pixel grid structure.

The regular structure is inherited from the underlying capturing sensor (com-
monly a CCD or CMOS array) and is used throughout the pipeline as the basic image
representation. While this representation provides an efficient way of organizing
and addressing pixel data, it does not provide additional structural information to
further processing stages such as visible shapes or textures. Simultaneously, the
recorded image data is in general not in alignment with the grid structure of the
capturing device. This is due to the fact that natural contours of objects are of-
ten irregularly shaped and in general do not obey the orthogonality of the pixel grid.

Therefore, Ren and Malik proposed in [60] to complement the efficient organiza-
tion of pixel information with a more content adaptive, data driven structure. The
structure is created through the grouping of spatially coherent pixels by using low-
level features such as color or texture. Thereby, an image segmentation is created
which in general contains more segments than visible object parts. Simultaneously,
it contains far less segments than the original number of pixels. The underlying as-
sumption is that pixels which are spatially coherent and share their low-level features
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are part of the same object and thus can be grouped and handled together. These
so called superpixels can then be utilized as primitives for further content analysis
and processing. The pixel grouping leads to a major reduction of image primitives
which results in an increased computational efficiency for subsequent processing
steps. Further, it allows for more complex algorithms computationally infeasible
on pixel level [60] as well as the creation of a spatial support for region-based fea-
tures [37].

The applications of superpixels are widely spread and include e.g. video segmen-
tation [48, 31], tracking [91], multi-view object segmentation [22], scene flow [87],
3D layout estimation of indoor scenes [94], interactive scene modeling [83], image
parsing [77], and semantic segmentation [39, 67]. In particular applications process-
ing video data benefit from the usage of superpixels. This is due to the reduction of
raw pixel data that needs to be processed in later stages. But superpixel algorithms
such as [1, 25, 47, 50, 57, 58, 74, 85, 90] are mainly designed for the application on
single images. Therefore, the results show volatile and flickering superpixel contours
when applied to video sequences. Even if there are only slight changes between con-
secutive frames. Moreover, by design no temporal connections between superpixels
in successive video frames are determined. Consequently, the same image regions
in consecutive frames are not consistently labeled, but get assigned a different su-
perpixel label in each frame. An example for a consistent superpixel labeling is
depicted in Figure 1.1. Here, the superpixels of different frames occupying the same
corresponding image region, i.e. they are part of the same spatio-temporal segment,
are labeled with the same color.

In addition to the further reduction of the overall number of image primitives,
a temporally consistent labeling can be very beneficial for many applications. An
example could be a manual video segmentation task, as shown in Figure 1.1, where
a human operator divides regions into foreground and background. For the sake of
simplicity, it is assumed that the separation is done by pointing at the superpixels.
In the case of a temporally inconsistent segmentation, the operator would have to
select the superpixels of the soccer players in Figure 1.1 in every single frame to
assign them to the foreground. In the temporally consistent case, the selection in
a single frame would be sufficient in most places as the superpixels in other frames
would be automatically selected via the temporal connections. Thus, less manual
interaction by the operator would be needed to yield an equivalent final segmentation
result.
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Figure 1.1: Top row: original sequence with frame numbers. Middle row: a subset
of superpixels is manually selected in frame 15 and shown as color-coded label map.
The superpixels are generated by a variant of the approach proposed in this thesis
and same colors indicates temporal consistency. Bottom row: a video segmentation
is created by cutting out the soccer players based on the selected superpixels. Images
taken from [63].

1.2 Related Works

The available approaches for spatio-temporal oversegmentation can be classified as
either generating superpixels with temporal consistency (e.g. [14, 82, 46]) or super-
voxels (e.g. [34, 85, 1]). The former approaches produce a valid superpixel segmen-
tation for each frame with spatially coherent segments and a consistent labeling over
multiple frames. The latter conceive the video as a 3D voxel volume and produce a
grouping of the voxels, where each group is connected through the spatio-temporal
connections between the voxels. The voxel-grid is either build up using the 6- or 26-
connected neighborhood in the video volume or through connections derived through
optical flow vectors between frames [34].

The relation between supervoxels and superpixels with temporal consistency can
be described in the following way: Superpixels with temporal consistency can be
stacked up to build supervoxels. Similarly, a superpixel representation with tem-
poral consistency can be obtained by slicing a supervoxel representation at frame
instances. The latter conversion is only valid as long as the cross section of a super-
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voxel at a frame instance does not split up into spatially non-contiguous segments.
The reason is that spatially non-coherent segments on the image plane are valid
for a supervoxel segmentation if the spatio-temporal regions are spatially connected
through another frame. Simultaneously, such a split results in an invalid superpixel
segmentation of this frame.

In the following, a brief overview of available approaches for supervoxels and
superpixels with temporal consistency will be given. An early example of this kind
of algorithms, which is not explicitly labeled as a superpixel or supervoxel approach
but shares a similar idea, is proposed by Zitnick et al. in [95].

1.2.1 Supervoxel Methods

In [85], Veksler et al. propose a first supervoxel termed approach. For their cre-
ation the video volume is covered with overlapping cuboids, whereas each cuboid
corresponds to one supervoxel in the final segmentation. The volume of each cuboid
determines the maximum volume of the supervoxel to be generated. Thus, longer
cuboids encourage higher temporal consistency. The assignment of an exclusive
supervoxel label to each voxel is achieved by formulating an energy function incor-
porating image gradients and minimizing this energy function using graph cut.

Grundmann et al. [34] propose an approach for hierarchical video segmentation
that is based on the graph-based image segmentation method introduced by Felzen-
szwalb and Huttenlocher in [26]. To leverage the benefits of color histograms, the
optimization procedure of [26] is applied twice on the voxel graph of the video vol-
ume. In a first run, neighboring voxels are merged into small voxel groups from
which color histograms are computed. Based on the chi-square distances of their
color histograms the voxel groups are further merged into larger spatio-temporal
regions. By keeping track of the mergers a hierarchical video segmentation is cre-
ated. In [93], Xu et al. add streaming capabilities to [34] by applying a Markovian
assumption on chunks of the segmented video stream.

In [1], Achanta et al. describe a supervoxel extension of their clustering-based
superpixel approach by extending the clustered data points with a temporal dimen-
sion. Thereby, each voxel is viewed as a data point in a six-dimensional feature
space consisting of three color, two spatial, and one temporal dimension. The su-
pervoxels form clusters of data points in the feature space which are revealed by a
standard cluster analysis technique. To improve the efficiency of the cluster analysis,
a technique is proposed to limit the extent of the search space during the analysis.

1.2.2 Superpixel Methods

A first approach towards superpixels with temporal consistency is introduced by
Levinshtein et al. [46]. The approach is based on the TurboPixel algorithm, pro-
posed in [47], which uses level-set techniques to grow equally distributed seed points
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into non-overlapping superpixels. To derive a temporally consistent segmentation,
Levinshtein et al. propose to propagate the central point of each superpixel to ini-
tialize the seeds for the superpixels in the next frame. The propagation is performed
by using optical flow information [46]. Given the propagated seeds, the superpix-
els are then grown on frame level only. While achieving a more temporally stable
superpixel segmentation and determining their temporal connections, the approach
defines no mechanism to handle structural changes in the video such as occlusion or
disocclusion.

In [14], Chang et al. propose a generative probabilistic framework for temporal
superpixels. Here, each pixel of the segmentation is modeled as a random variable
which can take values from the set of superpixel labels. The inference is done in a
frame-by-frame fashion by optimizing a joint log-likelihood function defined over all
random variables given the observed pixel data. For the optimization, label changes
are proposed which are only accepted if they preserve the spatial coherence of the
superpixels and improve the value of the objective function. The superpixel move-
ment from frame to frame is modeled by a Gaussian process initialized using optical
flow. To address the problem of structural changes the authors propose split, merge,
and switch moves, where superpixels can be split up into two, merged together, or
take the label of a superpixel that was merged in the past, respectively. The moves
are proposed randomly and are accepted if the new resulting segmentation increases
the joint log-likelihood function.

Van den Bergh et al. extend their superpixel approach, proposed in [81], to be
applied on video streams in [82]. The approach uses color histograms to represent
superpixels and sets-up an objective function which is maximized if the number of
populated bins per histogram is minimized. The proposed hill-climbing algorithm
optimizes the segmentation by proposing the reallocation of single pixels or pixel
blocks from one superpixel to a neighboring superpixel and accepting these changes
if they maximize the objective function. Influenced by a parameter some frames
are selected for termination and splitting of superpixels. To keep the amount of
superpixels constant over time, for every terminated superpixel a new superpixel
is created by splitting off a part from another superpixel. The decision on which
superpixels to be selected for both cases is done according to which termination and
splitting has the least influence on the objective function.

1.3 Challenges

On frame level the demands on a temporally consistent superpixel segmentation are
basically the same as for a superpixel segmentation that is performed on a single
image. Meaning that the superpixel contours should follow object boundaries and
be sensitive to fine-grained details. On the other hand, especially in the absence of
boundaries, their shape should be as compact as possible. Additionally, the video
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frames should be divided into equally sized regions as subsequent processing steps
can benefit from a homogeneous size and shape, as it has been pointed out previ-
ously e.g. in [47, 60, 85].

Furthermore, a temporally consistent superpixel segmentation should not violate
object boundaries across different frames. This means a superpixel should not flip
from being part of an object in one frame to being part of another object in another
frame. Instead, each superpixel should follow its underlying image region when
the region moves over time. An example of a temporally consistent superpixel is
shown in Figure 1.1, where e.g. the soccer ball is occupied by the same superpixel
over multiple frames. To completely extract the temporal connections of the im-
age regions which are inherent in the video stream the temporal trajectory of the
superpixel should ideally be as long as the time for which the image region is visible.

Scenes, as the one depicted in Figure 1.1, often involve moving objects or camera
motion. These in general introduce structural scene changes in the some form of
occlusion or disocclusion of image regions. Since many superpixel algorithms for
videos sequentially work on the single frames of the video and propagate the previ-
ous segmentation (in some form) onto the next frame, they have to explicitly handle
these structural changes. For a segmentation to represent the structural changes in
a correct way, its segments should disappear as soon as the corresponding image re-
gions get occluded. Similarly, new superpixels should be created, where a new image
region gets disoccluded. If these structural changes are not handled (as e.g. in [46])
a temporally consistent segmentation will inevitably lead to superpixels of inhomo-
geneous size. An example for such a case is visualized in Figure 1.2. In contrast to
the superpixel approaches, supervoxel methods conceive the video as a 3D volume
and therefore no propagation is needed in their case. But as these approaches often
come without the notion of compactness on the frame level, they inherently are
more likely to produce superpixels of inhomogeneous size when sliced on the frame
instance. Supervoxel approaches which include a notion of compactness, such as [1]
and [85], limit the temporal duration of the supervoxels in an implicit or explicit
way, respectively [65]. Thereby, these approaches circumvent the need to handle the
structural changes but also fail to create long-term superpixel trajectories. In order
to create long-term trajectories, while keeping the superpixel size homogeneous over
time, approaches, such as [14] and [82], delete and create superpixels based on the
objective function that is defined to minimize the segmentation error. But these
functions lack any explicit awareness about the occlusion or disocclusion boundaries
present in the video material. Thereby, the locations at which superpixels are ter-
minated or created often do not coincide with the actual dis-/occlusion boundaries
but turn out to be at rather random spots in the scene. It is therefore important to
explicitly identify the locations where dis-/occlusion happens, in order to adapt the
segmentation at the right spot.
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Figure 1.2: Top row: frame 1 and 60 of the soccer sequence. Middle row: label
maps with temporal consistency but without a method to cope with structural
changes in the video volume. The superpixels in the later part of the sequence
are squeezed together on the left half of the frame while on the right half the size
of the superpixels has to grow to fully occupy the newly uncovered image regions.
Bottom row: label maps created with the proposed approach. The superpixels are
temporally consistent and have equal size and shape over the whole sequence. (The
silhouette of the player are manually marked for visualization purposes.)

Finally, as the segmentation into superpixels is a preprocessing step, to structure
and organize the image data for subsequent processing stages, its execution should
be as efficient and fast as possible. Thereby, ensuring that the overall processing
time, needed to preprocess the data and to run the subsequent parts of the pipeline,
does not surpass the time needed to run the original pipeline on pixel level.

1.4 Contributions

The goal of this work is to provide an efficient framework to create temporally
consistent superpixel segmentations for arbitrary long video sequences. The main
contributions of this work are as follows:
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o A novel hybrid clustering scheme is introduced which transforms a well known
superpixel approach for single images into a video approach for temporally
consistent superpixels. The new approach enables streaming capabilities by
utilizing a sliding window which is shifted over the video volume. The hybrid
optimization scheme jointly comprises the pixel color information of multiple
frames, while keeping the spatial position of the pixels localized to the frame
level. By choosing this approach the segmentation error can be minimized
while allowing for arbitrary movements of the superpixels along the image
plane over time.

o In order to initialize new frames entering the sliding window, this work pro-
poses two new approaches to propagate the superpixel labelings of previous
frames. The first approach is trimmed for efficiency and exploits the robust-
ness of a set of sparse feature points which are tracked between the frames.
By spanning a triangle mesh over the feature points and warping the super-
pixel segmentation according to the transformed mesh, the consistency of the
spatial superpixel constellation is ensured over time. A second approach uti-
lizes dense optical flow to propagate each superpixel individually onto the
next frame. Simultaneously, the approach detects and collects dis-/occlusion
information about the propagated superpixels.

o Further, it is proposed to utilize the dis-/occlusion information to explicitly
handle the structural changes in the video volume. This is achieved by iden-
tifying the dis-/occlusion boundaries and adapt the superpixel segmentation
at these locations. It is further proposed to integrate the information on par-
tially occluded superpixels into the optimization process, in order to improve
the compliance of the superpixel flow with the underlying image flow.

e The proposed method is evaluated thoroughly by optimizing its parameters
for multiple objectives simultaneously on independent training material. Sub-
sequently, the method is compared to the state-of-the-art oversegmentation
approaches for videos. The evaluation is performed utilizing well established
benchmark metrics and a huge variety of input video data.

o Finally, the effectiveness of the novel approach for temporally consistent su-
perpixels is shown, by applying it to the scenario of interactive video seg-
mentation. Thereby, the reduced segmentation error as well as the improved
run time performance are evaluated and compared to other state-of-the-art
methods.
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1.5 Structure of this Thesis

This thesis is structured as follows. The fundamental topics utilized throughout
this thesis are briefly summarized in Chapter 2. Subsequently, the hybrid cluster-
ing approach for temporally consistent superpixels is described in Chapter 3. This
includes the feature space selection, the hybrid optimization scheme, as well as the
sliding window technique. The contributions of this chapter were previously pub-
lished in [63] and [65]. Chapter 4 describes the mesh-based propagation technique
and a superpixel size-based handling of the structural changes in the video volume
previously published in [65] and [66]. Further, the chapter introduces the occlusion-
aware propagation of individual superpixels and the integration of the collected
dis-/occlusion information into the optimization procedure. Chapter 5 contains the
selection of the parameters and the detailed evaluation of the proposed methods
as well as a thorough comparison to other state-of-the-art oversegmentation ap-
proaches for video content. In addition, this chapter includes the demonstration of
the new approach on the task of an interactive video segmentation, as it was in parts
previously published in [64]. Finally, the thesis is concluded in Chapter 6.
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Chapter

Fundamentals

This chapter revisits the fundamental concepts utilized in this thesis which can be
separated into two main categories. The first part of the chapter will be focused
on different techniques for image segmentation. This includes graph-based image
segmentation utilizing Markov random fields (MRFs) or conditional random fields
(CRFEs) as well as clustering-based techniques. In the second part of this chapter,
several approaches for the computation of optical flow between two consecutive
frames will be described.

2.1 Image Segmentation

In this thesis, image segmentation is seen as the task of assigning a label to all pixels
of an image from a given set of labels. By assigning different labels to pixels these
pixels are divided into disjoint groups. To create a meaningful segmentation, those
pixels which share a common feature like their color value get assigned the same
label. In general, the segmentation can be done either interactive, semi-automatic or
fully automatic. A fully automatic algorithm has no prior knowledge that is specific
to the current input data but only generic knowledge such as it can be extracted
from a training data set. In the semi-automatic case, prior knowledge can be given
by a user such as a region of interest or a set of images containing the same object,
like in the co-segmentation task [70]. For an interactive algorithm the user gives an
initial input as well as further feedback at locations where the segmentation of the
algorithm is incorrect. This feedback-loop can be repeated until the user is satisfied
with the segmentation result. With the exception of Section 5.2 this thesis will be
focused on the fully automatic case.

In addition to the grade of independence from user input, the task of image
segmentation can be further categorized by the granularity of the final segmentation.
The pixels of an image can either be separated into foreground and background
(binary segmentation) or into multiple segments (multi-label segmentation). In
the latter case, multiple objects or instances of an object class exist and each gets
assigned its own label. Another scenario is that different parts of a complex object
get assigned separate labels, e.g. the different parts of the human body like arms,
legs, torso and head. How many segments are created depends on the final task, the
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Figure 2.1: Top row: example for a binary segmentation with one foreground and
one background label. Bottom row: a multi-label segmentation with several different
foreground labels.

image content, as well as the selected scale. Figure 2.1 shows example results for the
case of binary and multi-label segmentation. A further reason to create a fine-grained
multi-label segmentation has emerged with the raise of image resolution in modern
capturing devices. Due to the higher image resolution, many computer vision tasks
are infeasible to be executed on pixel level, as they take minutes to process a single
frame [71]. Therefore, it has become popular to group the pixels of an image on
the basis of low-level features like texture or color to gain an image representation
with far less image primitives than the pixel-based representation. Simultaneously,
far more primitives are created than objects or object parts are visible in the image.
The preprocessing task of pixel grouping is called oversegmentation or superpixel
segmentation (a term introduced in [61]). The task can be seen as an extreme case
of a multi-label segmentation. As subsequent algorithms only have to deal with the
reduced set of image primitives, their execution time is in general reduced as well.
To gain an overall time advantage over the original algorithm on pixel level, the
combined execution times of the oversegmentation and the subsequent algorithm
applied on superpixel level have to be lower than before. An important criteria
for the selection of an oversegmentation algorithm is therefore a minimal execution
time. Besides their property to facilitate the computational burden of downstream
image processing algorithms, they provide the possibility to create content adaptive,
region-based features like histograms or texture features. The usage of these features
can boost the quality of the downstream algorithms. It is therefore equally important
for an oversegmentation algorithm that the segments of the oversegmentation do not
cross the object contours visible in the image.
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Figure 2.2: Comparison between a generic oversegmentation (left) and a superpixel
segmentation (right) of an image. The segments of the superpixel segmentation are
more compact and equally sized.

Although the term superpixel is often used as a synonym for oversegmentation,
several authors have proposed criteria to distinguish between the two forms. The
common properties of superpixel algorithms, as argued by [47] and [14], are the
compact shape and homogeneous size of the superpixels. A comparison between a
generic oversegmentation and a superpixel segmentation can be seen in Figure 2.2.
In this work, the terminology of [47] and [14] will be adopted and the term overseg-
mentation will refer to the grouping of pixels or voxels based on low level features
in general. The term superpixels will be used if the regions are created using some
kind of compactness constraint.

While there exist many different approaches for image segmentation, this section
will focus on two main categories which are important for the remainder of this work.
First, a short introduction into graph-based image segmentation utilizing MRFs [9]
or CRFs [42] will be given in Section 2.1.1. Second, the segmentation of images
using clustering techniques like k-means [52], the simple linear iterative clustering
(SLIC) approach [1], as well as the mean shift algorithm [18] will be discussed in the
Sections 2.1.2 to 2.1.4.

2.1.1 MRF/CRF-based Image Segmentation

Since their introduction into the computer vision community by Geman and Ge-
man in [32], Markov random fields have been used in many applications including
image denoising [33], stereo-vision [40] and interactive image segmentation [8, 69].
A random field is a set of sites n = {1,...,N}, where in the case of image segmen-
tation each site represents a pixel. The neighborhood relations between the pixels
are modeled by edges between the sites here denoted by the set of cliques ¢. Each
site has a corresponding random variable b; which holds the label of the segment the
pixel belongs to. Thus, the set of variables b = {by, ..., by} represents the labeling
of the whole image. Additionally, the model contains a set of observed pixel values
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Figure 2.3: Visualization of the graphical models utilized for the two random field
variants discussed in this section. (a) MRF: the value of each pixel depends on the
underlying state but is independent from its neighbors. (b) CRF: the states globally
depend on the image data.

o = {01, ...,o0n}. The random variable of each site can take a value from the set of
possible labels k, i.e. k = {F'G, BG} in the case of a binary segmentation.

If a generative model structure is assumed, where the observations directly depend
on the underlying state configuration, the joint probability P(-) of the random field
over the set of random variable b and the observed image data o can be written as

P(b,0) = P(o[b)P(b) = ZL%(O\b)%(b) : (2.1)

Here, ®(-) are non-negative potential functions, where ®,, reflects the likelihood of
the pixels being generated from a specific labeling of b and ®, denotes the prior
probability for a specific labeling. The partition function Z; is used to normalize
the expression to form a proper probability function whose sum is equal to one.

By former assuming that the observations o are statistically independent from
each other and thus the overall model has a structure as depicted in Figure 2.3(a),
Equation (2.1) can be rewritten as

1

- 0u(0lb),(6) = o T 2u(ofb) TT (b (2:2)

1ien (4,i)ee

Here, the Markovian assumption is applied and thus the state of each random vari-
able b; depends only on the states of the variables included in its cliques. Further it
is assumed that only pairwise potentials have a nonzero value.

To solve for the most probable labeling of the states given the observed image data,
maximum a posteriori (MAP) inference which maximizes the posterior distribution

R P am 24.01.2026, 01:38:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186861108

14 Chapter 2 Fundamentals

P(blo) can be utilized. Using Bayes’ rule the posterior probability for the labeling
given the pixel data can be written as

P(blo) w  P(o|b)P(b). (2.3)

The last simplification is motivated by the fact that the prior for the image data is
constant for all possible labelings. Therefore, the optimal labeling of the sites in the
MAP sense b is obtained by solving

b= argmax P(b|o) (2.4)
b= dI‘gde 7 11 @u(oslb:) TI @ulbib;) (2.5)
Lien (ri)ee
A 1
b = argmax 7 exXp — {Z —log @y (0;]b;) + > —log ®,(b;, b)) ¢ - (2.6)
b 1 icn (jri)€e

By defining the unary energy term D;(b) = — log ®,,(0;]b), the pairwise energy term
AgVij(b,d) = —log ®,(b,d), and considering only the exponent of Equation (2.6) the
maximization problem can be converted into an energy minimization problem with
the energy function

mrf ZD Jr)\g Z V)] b b) (27)

ien (Gri)ee

Thereby, the function V; ;(b;, b;) is often referred to as the label compatibility func-
tion as it can be selected to prevent certain labels from occurring next to each other.
The parameter Ag is introduced to control the label smoothness, as with higher g
the costs for alternating labels become higher.

One of the basic assumptions made above is the statistically independence of the
image data. But in general, this assumption does not hold, as the color of neigh-
boring pixels is often similar and the change in color is smooth, suggesting a strong
correlation. To relax the independence condition, it was proposed in [42] to use
a CRF formulation, where the random variables of all sites globally depend on the
observed image data. A possible structure is depicted in Figure 2.3(b). Assuming
again that only pairwise clique potentials have nonzero contribution, the posterior
distribution can be written as

**H‘I’u 0) I @,(bi,0;,0) (28)

2 ien (ji)ee

P(blo) = Zizexp {Z—log P, (b;0) + > —log ‘I’p(bi,bj,o)} . (2.9)

i€n (ji)ec
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Figure 2.4: (a) Graphical model proposed in [33] for the binary segmentation task.
Fach site is connected with a directed edge to the source and sink nodes, denoted
with S and T, respectively. In (b), the line width of the arrows reflects the weights of
the edges and the dotted line marks the minimal cut through the graph completely
separating it into two partitions.

By defining a similar energy term as before which now depend on the observations,
the MAP inference can again be rewritten as an energy minimization problem with
the following energy

Ecrf(b) = ZDz(br O) + )\g Z ‘/.,](b“ bj, O) . (210)

i€n (ji)ec

For the binary segmentation case and constant pairwise terms the global optimal
solution for (2.7) can be found using the min-cut/max-flow theorem proven by Ford
and Fulkerson in [27] and first applied to the field of computer vision by Greig
et al. [33]. The algorithm, proposed in [33], introduces two additional terminal
nodes. The nodes are referred to as S- and T- nodes which represent the foreground
and background label, respectively. Each node of the random field gets connected
by a directed edge with both terminal nodes, as depicted in Figure 2.4(a). The
weight of the edges is proportional to the unary energy term of the node reflecting
the likelihood of the node belonging to the label, i.e. the segment represented by the
terminal node. The pairwise edges are weighted according to the pairwise energy
term. To derive the globally optimal labeling of the sites and thus the optimal
segmentation in the sense of energy minimization, the cut has to be found which
separates the S- and T-nodes and has the minimum total sum of weights. An
example for a minimum cut is depicted in Figure 2.4(b), where bold lines indicate
a high weight. For the case of a multi-label segmentation with an energy function
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like (2.10) an approximate solution for the minimal cut can be found using the
algorithm proposed in [8] which guarantees an optimal solution within a known
factor of the global minimum.

Besides the graph-based segmentation algorithms, a second popular set of algo-
rithms exists that perceives the segmentation problem as a clustering task. A subset
of these algorithms will be described in the following sections.

2.1.2 Segmentation by Clustering

Clustering is the process of separating data points into groups whose features are
similar in terms of some given measure. To segment a given image into visually
distinct segments, the pixels 7 can be seen as data points, contained in a feature
space, represented by its feature vector Z;. As the pixels of an image segment should
share a common feature, it is assumed that they form clusters in the feature space.
Thus, each cluster should correspond to an image segment. Therefore, performing an
image segmentation can be achieved by exploring the existing clusters in the feature
space and assigning each pixel the label of the cluster it belongs to. Following the
notation from the previous subsection, the label of a pixel ¢ will be denoted by
b, € k.

An example for the arrangement of pixels in a feature space is depicted in Fig-
ure 2.5. The top row of the figure shows the original image and the corresponding
multi-label segmentation map. For the second row 3000 pixels are randomly se-
lected and plotted into the 3D feature space spanned by the dimensions of the RGB
color space. Each data point is colored using the RGB values of the corresponding
pixel. One can clearly distinguish the red, yellow, and green clusters of the petals,
stamina, and background, respectively. In 2.5(d) a clustering of the data points is
shown which corresponds to the segmentation shown in 2.5(b). The color of each
data point corresponds to the assigned cluster and thus image segment.

One of the most popular clustering techniques is k-means clustering. Its basic con-
cept was first described by Lloyd in 1957 and published later in [52]. In contrast
to the graph-based segmentation techniques of Section 2.1.1, k-means includes no
explicit model for pixel neighborhoods and therefore each pixel is seen as in inde-
pendent data point in the feature space. In the original k-means algorithm the size
B of the label set k = {1,...,B} has to be predefined by the user. To derive the
optimal labeling b for the data points, the k-means algorithms can be formulated as
an energy minimization framework. Therefore, an energy function is defined which
maps a given labeling b = {b;| 1V n} of all pixels to an energy value.

Ekrns(b) = ZE};smms(vaz) (211)

i€n

Here, EX™5(i.b) is the assignment energy cost which is needed to assign the data

asm

point ¢ to the cluster b. In general, the energy cost is set to be proportional to
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Blue

Figure 2.5: Real world example segmented using k-means clustering. In (a) and (b)
the original image and the segmentation result with k = {1,2,3} are shown. In (c)
and (d) 3000 randomly sampled pixels are plotted in the 3D RGB color space using
the RGB color value and the corresponding cluster color of the pixels, respectively.

the Euclidean distance between the feature vector of the data point and the cluster
center jI,. The center is represented by the mean feature vector of the set of pixels
assigned to the cluster n,. Here, the number of elements in a given set is denoted
with | - |.

EXms(i.b) o (T — )" (Ti — ) (2.12)
1

dy = — 7 2.13

Hb |nb|i€nb ( )

Finding the globally optimal assignment of pixels to the clusters is an NP-hard
problem. But using an iterative scheme a locally optimal solution can be efficiently
determined. The scheme is visualized in Figure 2.6 for a two-dimensional (2D)
feature space with |k|=8. The initial cluster centers are a randomly selected subset
of feature vectors. Each subfigure shows the current cluster center position as black
circles and the updated cluster assignments of each iteration step.

In each new iteration z+41 two steps are performed. First, given the mean feature
vectors of the clustering of the previous iteration [ij each data point is assigned to
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(b) ()

Figure 2.6: Example for an iterative cluster search in a 2D space using k-means
(|k| = 8). Only the first three iterations and the final clustering after convergence
are shown. The cluster centers are denoted by black and yellow circles. Their
position in the previous iteration is indicated by the black lines.

the cluster whose assignment energy cost is the lowest, i.e. whose Euclidean distance
is the smallest
~z+1

b, =argmin \/(Z; — )" (& — fiF) Vie{l,...N}. (2.14)
bek

In the following, this step will be denoted as the assignment-step. In the second step,
the mean feature vectors of all clusters are updated using Equation (2.13) given the
current assignment. These two steps are repeated until convergence occurs, i.e. the
energy cost is not reducing any further or a maximum amount of iterations has been
performed.

When the k-means algorithm is applied on the color space to generate an image
segmentation, the created segments are in general not spatially coherent as it can
e.g. be seen in Figure 2.5(b). This is due to the exclusive usage of the color space
which does not provide any information about the pixels position and their spatial
proximities. Another drawback of the approach is the huge search space for the min-
imal assignment energy, because for each pixel all cluster centers have to be checked
for the minimal energy. To circumvent these disadvantages the, SLIC algorithm was
proposed in [1]. The algorithm creates a superpixel segmentation with compact,
spatially coherent segments and limits the search space for efficient processing. It
will be described in more details in the next subsection.

2.1.3 SLIC Superpixels

The simple linear iterative clustering (SLIC) approach proposed by Achanta et al. [1]
provides an efficient way to create spatially compact and coherent superpixels. Its
basic principles were in parts already described in [96] and the authors of [73, 74]
proposed a set of modifications which will be described in the following as well.
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Like k-means, the approach conceives the pixels of an image as data points in a
feature space and assumes that superpixels form clusters in this space. Instead of
performing a cluster analysis in the RGB color space, the authors of [1] chose to
represent every pixel ¢ with a feature vector ¥; = [li,ai,bi,xi,yir. Thereby, [;,a; and
b; are the illumination and color difference components of the pixel 7 in the CIELAB
color space and z;,y; its coordinates on the image plane. The CIELAB color space
was chosen because of his perceptually uniform design [1] Although it was reported
by [74] that the usage of the RGB color space can lead to slightly better results than
using the perceptually uniform CIELAB color space.

To perform the clustering, SLIC optimizes the same objective function as k-means,
stated in Equation (2.11). But in contrast to k-means the assignment energy for
each pixel, here denoted by E®i | is defined in [1] as follows

asm?

B3l (1.0) = v/ (Bea(i.5))* + (@Epenli, )" (2.15)

Where the energy functions E, (i, b) and Eps(i, b) are proportional to the Euclidean
distances in the color space and in image coordinates, respectively:

Eeor(i,b) o V(38 — )" (35 — i) (2.16)

A L /s T s =
By b) o6 /(5 — ) (25 — ) (217)

The superscripts C and S denote the subvectors of the (mean) feature vectors in-
cluding only the color- and spatial-dependent components, respectively. To ensure
that the result is independent from the image and superpixel resolution, the spatial
distance is normalized by the average superpixel edge length S = /N /|k|. The user-
defined parameter & addresses the different scaling of the color and spatial domain.
It is selected from an interval of & € [0,00). Selecting a higher & results in more
compact superpixels, while a lower & increases the sensitivity to fine-grained image
structures. As the selection of the value for & in Equation (2.15) is not intuitive, an
alternative assignment energy term is defined in [74]

B (i,b) = (1—a) Ecoi (3, ) + aBpos (i, b). (2.18)

In contrast to the open interval of &, the new parameter a has a closed interval of
a € [0,1]. A visual comparison of different values of the spatial weight a can be
found in Figure 2.7.

In order to minimize the objective function (2.11) with the new assignment energy
term (2.18), the iterative optimization scheme of k-means described in Section 2.1.2
can be utilized. This involves again the assignment of each pixel to the cluster
center with the lowest assignment energy and a subsequent update of the cluster
centers represented by the mean feature vectors. But while for general k-means
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Figure 2.7: Comparison of label maps and boundary images with different values for
« and approximately 300 superpixels. From left to right « takes the values 0.5, 0.9
and 0.99.

clustering the assignment energy for all pixel and cluster center combinations has
to be evaluated, the effort can be drastically reduced in the case of a superpixel
segmentation [1]. As the approximate spatial extent of a superpixel is known a priori,
only a subset of possible cluster centers have to be checked for each pixel to find the
minimal assignment energy. This is because for many pixels it is highly unlikely that
they are assigned to a center which is far away on the image plane. For example, a
pixel from the top-left corner of an image is highly unlikely to be part of a superpixel
in the lower-right corner. Hence, the authors of [1] propose to limit the search space
by a window spanned around the cluster centers in the spatial image domain and
only evaluate the assignment energies for the pixels which are inside this window.
This leads to a significant reduction of the computational complexity as only a
fraction of the original distance calculations have to be performed. Simultaneously,
the impact on the final superpixel segmentation is negligible. In [1] the edge length
of the search window was selected to be two times the average superpixel edge
length S. The reduced search space in comparison to the search of general k-means
is illustrated in Figure 2.8.

Although the spatial compactness of the segments is improved, due to the usage
of the five dimensional feature space, the spatial coherence of the superpixels is not
guaranteed yet. This is because again no neighborhood relations between the pixels
are considered during the assignment-step of SLIC. To ensure the coherence of the
final superpixel segmentation, Achanta et al. [1] propose a postprocessing step that is
executed after the last iteration is performed. In the postprocessing, all single pixels
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(a) (b)

Figure 2.8: Principle of the search space limitation of the SLIC superpixel approach.
The search space for each cluster center (red dot) in standard k-means (a) reaches
over all pixels in the image plane (indicates by the arrows). In case of the SLIC
superpixel algorithm (b), only a limited neighborhood around each superpixel center
has to be searched (denoted by the square with edge length 25). This is because
pixels which have a large distance to a superpixel center on the image plane are
unlikely to be part of this superpixel.

and pixel groups, which are not connected with the main-mass of the corresponding
superpixel, are identified. In a subsequent step, these pixels are reassigned to the
first directly neighboring superpixel discovered in a greedy search.

While this approach successfully ensures the spatial coherence of the superpixels,
it does not fully obey the optimization target, as it does not minimize the objective
function (2.11) during the postprocessing. For this purpose, Schick et al. [74] pro-
pose to exchange the assignment-step of SLIC with a more localized contour-based
approach. In this approach, only pixels at the boundary between superpixels are
considered to be flipped between the superpixels during the assignment-step of the
iterative optimization. To ensure the spatial coherence of the superpixels, it has
to be checked whether a flip breaks the spatial coherence of one of the involved
superpixels. If only those flips are executed which conserve the spatial coherence a
valid superpixel segmentation is created while obeying the objective target in every
step of the algorithm. To efficiently check if a pixel breaks the spatial coherence,
techniques emerged from the field of digital topology can be utilized. These were
first formulated by Rosenfeld in [68] and will be described below.

The following description will first focus on the spatial coherence of a single super-
pixel. Later, the method will be extended to multiple superpixels. Initially, it will
therefore be assumed that the currently not regarded superpixels are merged to a
single background segment. Thereby, creating a binary segmentation where the cur-
rently regarded superpixel becomes the foreground and the surrounding superpixels
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Figure 2.9: Left square: visualization of a pixel neighborhood with a simply con-
nected foreground region colored in green. Right squares: close-ups of the three
marked pixels with the currently regarded pixel colored in orange. The two left
close-ups show valid simple points with respect to the green foreground region, as
only a single 4-connected foreground region (marked by the lines with the dotted
ends) is adjacent to the central pixel in the 4-connected sense. The example on the

right is not a simple point, as here two separate 4-connected foreground components
are adjacent to the regarded pixel.

make up the background. As the regarded superpixel is a 4-connected component
without holes, it is called simply connected [68]. It should be noted that while the
foreground is a 4-connected component the background can be 8-connected. A pixel
whose label can be flipped (from background to foreground or vice versa), without
breaking the topology of the foreground component, is called a simple point [68]. In
order to keep the regarded superpixel spatially coherent while flipping the bound-
ary pixels, it is therefore sufficient to ensure that only simple points are added or
removed from its connected component. In the following, it is described how the
simple points can be identified efficiently.

Flipping an interior pixel of the foreground to the background label would intro-
duce a hole into the foreground component. As a result its topology would change.
Therefore, no interior pixel can be a simple point and thus only boundary pixels
have to be regarded. To efficiently decide if a boundary pixels is a simple point, it is
sufficient to check the 3 x 3 neighborhood of the pixel for the following rule [68]: A
boundary pizel is a simple point if in its 3 X 3 neighborhood (excluding itself) there
ezists only a single connected foreground component that is adjacent to the regarded
pizel. Where adjacency and connectivity to the foreground component are under-
stood in the 4-connected sense. An example with simple and non-simple points is
visualized in Figure 2.9.

The validity of this simple check has been shown for the binary case in [68]. But
it cannot be easily generalized to the multi-label case, as it was also noted in [14].
Instead it has to be checked sequentially if the currently regarded pixel is a simple
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Figure 2.10: Two example cases for the determination of the simple point property
of boundary pixels between superpixels. First row: the considered pixel (orange)
and its 3 x 3 neighborhood (dotted box). Second row: the 4-connected components
(indicated by the lines with the dotted ends) for the source and the target super-
pixel. The pixels of the currently not regarded superpixels are assigned a common
background label (gray). In (a) the pixel is a simple point for both superpixels (cyan
and green) and thus can be flipped between them. In (b) the pixel is a simple point
for the blue superpixel but not for the green one and thus cannot be flipped.

point for all involved superpixels. As adding a pixel to a target superpixel always
involves removing it from a source superpixel, the pixel has to be a simple point for
the source as well as for the target superpixel. Otherwise, the spatial coherence of
one of the involved superpixels could be broken up by the label flip. Only if the check
is successful for both superpixels the pixel can be exchanged between them without
breaking the spatial coherence. While checking for the simple point property the
labels of all other superpixels are sequentially merged into a single background label,
as it is shown in Figure 2.10.

By only exchanging boundary pixels with the simple point property between two
superpixels, the approach proposed in [74] guarantees a spatially coherent superpixel
segmentation. Simultaneously, the iterative optimization scheme obeys the objective
function of Equation (2.11) at all times. As an initial condition the spatial coherence
has to be guaranteed before performing the first iteration of the optimization scheme.
To ensure this and to create a spatially homogeneous distribution of superpixels on
the image plane, a suitable initialization is needed. In general, this can be achieved
by choosing a grid-like structure with edge-length S or an equivalent honeycomb-
structure. The number of superpixels to be created during the initialization has to
be predefined by the user. In the following, an alternative oversegmentation method
is described that derives the number of clusters automatically.
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2.1.4 Mean Shift Superpixel Segmentation

The mean shift algorithm was originally proposed by Fukunaga and Hostetler in [29]
and was later rediscovered by Cheng [17]. It describes a method to estimate the lo-
cal gradient of a density function (mean shift vector) which can be used to seek the
modes of the function. It is therefore used as a non-parametric technique for feature
space analysis.

To estimate the gradient, a window G(¥) is defined in the feature space which is
centered around the vector . The mean vector of the feature vectors @ = {#y,...,Zn5 }
which fall into the range of the window is defined as

() = Yaeam K(@ — 9T

H Yo K@ —7)
Where K (-) is a weighting kernel function of the window. The mean shift vector
is then defined as the difference between the mean feature vector of the features
inside the window and the window’s center, i.e. fi(y) —§. By iteratively shifting the
window by the mean shift vector and then reevaluating the vector, the mode of the
density function of the samples is reached. A visualization of the principle of the
mean shift algorithm can be found in Figure 2.11.

For a unimodal density distribution the algorithm is guaranteed to converge at
the peak of the density distribution, where the gradient is zero [19]. The selected
kernel function can either have a uniform weight or can be chosen to have decreasing
weights (e.g. Gaussian) to reduce the influence of feature vectors closer to the window
border. The window range as well as the form have an influence on the convergence
properties of the algorithm. According to [19], the algorithm converges in a finite
number of steps if a window with uniform weights is used. For a window with a
weight that depends on the distance to the window center the algorithm is infinitely
convergent. Hence, the algorithms should be terminated if the magnitude of the
mean shift vector falls under a minimal threshold or a maximal number of iterations
has been performed.

For the case of a multimodal distribution, the algorithm can be used to explore
the amount of modes and their location by starting the algorithm at several different
locations. As the center of each window follows the local gradient, all windows will
end up in one of the multiple peaks. This property can be used to cluster the
data by starting the algorithms at all data points and assigning each data point to
the mode at which the window converges. In contrast to the previously discussed
algorithms, the number of clusters cannot be predefined directly by the user. It can
only be influenced by the selection of the window range and the shape of the kernel
function. For the application of image segmentation this is first described by [1§],
where the CIELUV pixel values are used as feature vectors. All pixels for which
the algorithms ends up in the same peak are assigned to the same image segment.

(2.19)

R P am 24.01.2026, 01:38:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186861108

2.2 Optical Flow 25

By keeping track of the data points traveled by each window the efficiency of the
algorithm can be improved significantly, as the algorithm does not have to be started
from the traveled pixel locations.

While in [18] solely the three dimensions of the the CIELUV color space were
selected as feature space, the method was later refined in [19] by adding the two
spatial dimensions of the image domain to the feature vectors. This leads to an
oversegmentation with more compact segments, similar to the SLIC approach. To
take into account the different scaling of the color and spatial domain, the single
kernel function is exchanged against a composed kernel function Kg, rs(Z) which
is defined as
B i S
- Re¢Rs Re Rs)'
Here, B denotes a normalization constant. The two parameters R¢ and Rs can be
used to change the range in the different domains which results in different levels
of segmentation granularity. Selecting a smaller range of the search window leads
to higher resolution of the segmentation, i.e. more oversegmentation of the image.
Similar to the SLIC approach, the mean shift algorithm does not guarantee that
the produced segments are spatially coherent. Therefore, a postprocessing step is
required, equal to the one described in Section 2.1.3. This step often additionally
removes small segments which are below a user defined size. A visual comparison
between the oversegmentations created by k-means, SLIC, and mean shift can be
found in Figure 2.12. It can be seen that the size of the segments created by k-
means as well as the mean shift algorithm are very inhomogeneous. Additionally,
the segments produces by k-means are spatially incoherent. In contrast to that,
the SLIC algorithm produces image segments of homogeneous size and shape which
is preferred for many applications as it can be beneficial for subsequent processing
steps [47, 60, 85]. The SLIC algorithm is therefore chosen as a foundation for this
work and will be extended to the case of video oversegmentation in Chapter 3.

KchRs (7) (220)

2.2 Optical Flow

An important tool used in many computer vision approaches is the optical flow. It
can be described as the displacement vector of a point occurring in two different
frames which depict the same scene at two different instances of time. The move-
ments of the points can either be initiated by the movement of an object in the scene
or by a movement of the camera. In general, it can be distinguished between two
forms of optical flow which are both visualized in Figure 2.13.

First, there is the dense optical flow. Here, for each pixel of an image a displace-
ment vector is available except for pixels where no corresponding pixel exists in the
other frame. These situations can occur if a pixel gets occluded between the two
frames or a pixel only appears in the second frame because it gets disoccluded. A

R P am 24.01.2026, 01:38:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186861108

26 Chapter 2 Fundamentals

Figure 2.11: Principle of the mean shift algorithms for a 2D feature space with a
unimodal distribution. The initial window is centered around the data point marked
in red. By iteratively following the mean shift vector, the algorithm finds its way to
the peak of the feature vector density function.

popular method to calculate dense optical flow is the approach proposed by Horn
and Schunck in [38] which will be further explained in Section 2.2.1.

The second form is sparse optical flow. Here, only for a subset of pixels a displace-
ment vectors is available. Often the pixels, where optical flow is available, coincide
with visible corners in the image, as they can be tracked more reliably over succes-
sive frames. A method that is used frequently in the literature is the combination
of selecting corners using [75] and tracking them to the next frame using [78]. This
combination is often referred to as Kanade-Lucas-Tomasi feature tracker (KLT) and
it will be further described in Section 2.2.2. It was experimentally shown in [5] that
the KLT method tends to be more robust against image noise and quantization errors
than the approach of Horn and Schunck. Therefore, an approach to interpolate a
dense optical flow field from the sparse flow vectors of KLT will be described in 2.2.3.
An alternative approach, proposed in [12], which combines the perks of KLT with
the approach of Horn and Schunck will be summarized in 2.2.4.

2.2.1 Horn-Schunck-Method

The method proposed by Horn and Schunck in [38] is based on the brightness con-
stancy assumption which can be expressed as follows

I(zyt) = I(z +de,y + dy, ¢ + dt). (2.21)

Here, I(z,y,t) is the image function at position [x,y]" at time ¢. The change in time
is denoted by dt while the displacement in z and y direction is denoted by dz and dy,
respectively. Using a Taylor series approximation Equation (2.21) can be rewritten
as follows

0

—I(zyt)dt+e, (2.22)

0 0

ox Ay
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Figure 2.12: Segmentation examples for three different clustering-based algorithms
(from left to right): k-means [52], SLIC [1], and mean shift [19]. Top row: segmen-
tation boundaries. Bottom row: label maps. Instead of boundaries for the k-means
algorithm, only the original image is shown, as the spatially not coherent segmenta-
tion would result in too many boundaries to display them meaningful. The number
of segments for k-means and SLIC was selected to match the number of segments
produced by the mean shift algorithm. It should be noted that the segments gener-
ated by the SLIC algorithm are much more compact than the results of the mean
shift algorithm.

where e is the portion of higher order terms which will be neglected in the following.
For clarity, the partial derivatives of the image function in x,y and ¢ direction will
be denoted as I, I, and I;, respectively. By further omitting the parameters of the
derivatives, the following equation is obtained

Lu+ I+ 1, =0. (2.23)

Here, the displacement vector is denoted by [u,v]T, the time change between two
frames is redefined to 1, and the position as well as the time indices were dropped
for the purpose of clarity.

As this equation with two unknowns cannot be solved without further constraints,
an additional constraint was introduced in [38] which enforces the optical flow field
to be smooth over the image domain 2. The constrained optimization problem can
be solved by minimizing the following error functional

Bne(u0) = /ﬂ([zu+lyv+1t)2+xf(|w\2+ IVo[2)d. (2.24)

This least square approach minimizes the sum of squared errors made in the bright-
ness constancy assumption and the change in the flow field represented by the partial
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Figure 2.13: Left column: two consecutive frames of a video sequence. Right column:
visualization of the different forms of optical flow. The upper image shows a dense
optical flow field and the lower image shows a sparse flow field. The direction and
amount of the displacement are encoded in the color and saturation, respectively.
The utilized color coding is shown in the small square in the bottom left corner.

derivatives. The weighting factor Az regularizes the trade-off between smoothness
of the flow field and compliance with the brightness constancy assumption. To
minimize the error functional, the corresponding Euler-Lagrange equations can be
utilized which are given by

(Iow + Lo + L)L, + Ar(Au) = 0 (2.25)
(Lu + Ly + 1)1, + Ar(Av) = 0. (2.26)

Where Av and Awu are the Laplacian of the flow field components. In the discrete
case these can be approximated by Au = u — u, where u is the average of the u
component of the displacement vector in a small neighborhood. By inserting the
approximation and rearranging the terms the following equations are obtained

P=La+Io+1,
with (2.27)

Q=\r+2+12

u=u—1I,

Qi owm

v=v—1,

As the displacement vector components still depend on the average of the small
neighborhood, an iterative scheme starting from an initial guess can used to gradu-
ally approach a locally optimal solution. This can be seen as a form of the Jacobi
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Figure 2.14: Visualization of the aperture problem. Left: a single line for a feature
point is derived from Equation (2.23). Due to the aperture problem, it can only
be said that the flow vector of this feature point lies somewhere on the drawn
line. Right: Given a second pixel with assumed identical displacement vector, but
different image gradients, a second line can be drawn. The intersection of the two
lines is the optical flow vector shared by the two points.

method. In each iteration z a new optical flow vector &, = [uz,vz]T is calculated
using the average vector from the result of the last iteration [@,_1,0,1]". The pro-
cessing is stopped when convergence is reached, i.e. ||, —d,_1|| falls below a certain
threshold for all pixels of the image.

2.2.2 Lucas-Kanade-Method

A second, very popular technique is to select feature points in an image using the
method described in [75] and to compute the displacement vectors of the selected
points between two frames using the method proposed by Lucas and Kanade in [53].
Together both methods are often referred to as KLT.

The basic principle of the method is depicted in Figure 2.14. For each feature
point a line can be plotted into the 2D space spanned by the two variables of the
displacement vector by successively setting the u and v variables in Equation (2.23)
to zero. Due to the so-called aperture problem, it can only be said that the dis-
placement vector [u,v]T of the feature point lies somewhere on the line plotted in
Figure 2.14(a). To solve this ambiguity, it is assumed in [53] that the displacement
vectors of the pixels in a small neighborhood around the feature points are constant.
Thus, an additional line from a neighboring pixel can be added to the uv-space which
results in a cut of the two lines at the position of the shared [u,v]T vector, as it can
be seen in Figure 2.14(b).

But as image data is in general contaminated with some sort of noise, adding a
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third and forth line of different neighboring pixels will not result in a cut at the
same position. Hence, multiple neighbors are considered at once and the optimal
solution in the least square sense is calculated. Following [12], the error function for
the least-squares solution can be formulated as

By (uw) = K, * (Lo + Ly + 1)%). (2.28)

Where * is the convolution operator and K, is a Gaussian kernel with a standard
deviation of p. By setting the partial derivatives with respect to u and v of Equa-
tion (2.28) to zero the following linear equation system is obtained

K,«xI?  K,x(I,1,) w| | =K, (1) (2.29)
K,v (L) K,+I2 || v || =K« (1) | :

The optical flow vector for an image patch can be determined by calculating the
pseudo-inverse of the system matrix and multiplying it from the left side.

Due to the first order Taylor-approximation, the validity of Equation (2.22) only
holds for small displacement vectors. To cope with image sequences with arbitrary
motion a coarse-to-fine strategy can be used (cf. e.g. [2, 7]). Here, the origin and the
target image are smoothed and subsampled multiple times before the displacement
vectors are calculated for each scale starting from the coarsest level. Before the
vectors for the next finer scale are calculated the origin image is warped according
to the displacement vectors of the coarser scale. This strategy can be used to improve
the results of [53] as well as [38].

2.2.3 Sparse-to-Dense Optical Flow Conversion

As the optical flow vectors created by the KLT method are often more reliable than
the flow fields created by the Horn and Schunck approach (as e.g. shown in [5]),
it can be desirable to convert the sparse optical flow vectors of KLT into a dense
flow map. A standard method, as it is e.g. used by [62], is the creation of a triangle
mesh between the tracked feature points and a linear interpolation of the flow vectors
inside the triangles using Barycentric coordinates. The mesh is often created through
a Delaunay triangulation [20] as it maximizes the minimal angle of all triangles and
thus avoids sliver triangles. The triangulation can either be derived from the Voronoi
diagram of the feature points, as it is shown in Figure 2.15, or by an approach such
as the flip algorithm [43]. The former method connects all tracked points with an
edge whose Voronoi cells share a common boundary. The latter first creates an
arbitrary non-overlapping triangulation. Subsequently, for all triangles it is checked
whether the circle that connects all three vertices contains any other vertex that
is part of a neighboring triangle. If the condition is true for any triangle an edge
flip is performed. In the flip the common edge is deleted and the two previously
unconnected vertices are connected by a new edge, as it can be seen in Figure 2.16.
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(a) (b) (c)

Figure 2.15: Duality between the Voronoi diagram and the Delaunay triangulation.
In (a), the colored Voronoi cells of the clustering of Figure 2.6(d) are shown. In (b),
the Voronoi diagram and the matching Delaunay triangulation are depicted as an
overlay. In (c¢), only the triangulation is shown.

2.2.4 Lucas/Kanade meets Horn/Schunck

While the technique described in the previous section is a fast and efficient way
to convert sparse flow vectors into a dense flow map, it e.g. does not obey motion
boundaries. These can occur if different image parts move into different directions.
At these occasions only a smooth transition between the directions is provided. To
better handle these occasions, it is proposed by Bruhn et al. [12] to combine the
approach of Horn and Schunck and KLT into a hybrid method. The new method
combines the robustness of the local KLT method with the creation of dense flow
maps using the global approach of Horn and Schunck. Simultaneously, it prevents
the overly smoothed transitions at motion boundaries as they can be observed in
interpolation techniques as well as the original Horn and Schunck method. To
achieve this the Equations (2.28) and (2.24) are reformulated into

En(@) =& J,(VsI)& (2.30)
Eus(@) = [ (@ h(Val)D) + Ar(IVE])d2 (2:31)
Q
using the flow vector in homogeneous coordinates @ = [u,v,1]T and the following
notations:
V& |? = |Vul? + |[Vu|?
Vsl = [I,,1,, I,]"
Jp(Vsl) =K, (V3IV5IT).

Here, K, again denotes the Gaussian kernel with standard deviation p. In this form it
can be seen that the first part of Equation (2.31) is equivalent to the Lucas-Kanade
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Figure 2.16: Example of an edge flip between two triangles. In (a), the Delaunay
condition is not fulfilled, as the circles connecting all three vertices of the triangles
(dotted circles) do contain another vertex that is not part of the triangle. In (b),
the edge flip has been performed by deleting the common edge of two triangles and
connecting the two previously not connected vertices.

error function (2.30) with p = 0. Hence, it was proposed by [12] to plug in the
original error function (with p # 0) into (2.31) to obtain the combined local-global
method with the following error function

Euo(@) = [ &7 J,(VaD@ + A#(19E)d02. (2.32)

Equivalent to Section 2.2.1, this error function can be minimized by solving the
corresponding Euler-Lagrange equations which are given by

K, Pu+ K, x (LL)v + K, * (I.I;) = \r(Au) =0 (2.33)
Ky * Iov + Ky % (Idy)u + K, * (I,1;) — Ar(Av) = 0. (2.34)

The solution can either be derived by using the Jacobi method, in a similar way as
in 2.2.1, or using another gradient decent technique, like successive over-relaxation
(SOR) as described in [12]. To improve the robustness of their approach, the authors
propose several extension of their basic algorithm. First, they convert the quadratic
optimization problem of (2.32) into a non-quadratic one using the the following error
function

Eogng(d) = /n V(@ J,(V3D)@) + ArWa(|VE|?)de. (2.35)

Where ¥,(-) with ¢ € 1,2 are non-quadratic penalty functions like the one proposed
by Charbonnier et al. in [15]:

IZ
U(z?) =292 /1 + ey (2.36)
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The parameter « influences the scale and the growth of the penalty. The usage
of a non-quadratic optimization tends to produce more robust results as outliers
are penalized less, thus reducing their influence on the resulting optimum. Second,
they incorporated the spatiotemporal Gaussian kernel K, , proposed by [6]. Here,
p and x are the spatial and temporal standard deviation, respectively. For the
corresponding Euler-Lagrange equations and their solution by using SOR the reader
is referred to [12].
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Chapter

Superpixels with Temporal

Consistency

This chapter describes a new system for creating temporally consistent superpixels
from video sequences. To give an overview of the proposed system, Section 3.1 out-
lines the basic principle and structure of the approach. A more detailed description
of the subsystems can then be found in the following subsections as well as the next
chapter.

3.1 System Overview

The general structure of the proposed framework is depicted in Figure 3.1. First,
the incoming video frames are converted into the representation utilized by the
framework and dense optical flow vectors are extracted between the current and
the previous frame. The selected representation as well as the feature space setup
are described in Section 3.2. Subsequently, a cluster analysis is performed on the
feature vectors by using a contour evolving energy minimization framework that is
described in Section 3.3.

As the length of video sequences can vary significantly — from seconds to hours
or even days — the video can in general not be processed as a whole due to memory
limitations of the computing system. Therefore, the extent of the cluster analysis
is constrained by using a time limiting window whose structure is described in
Section 3.4. The window acts similar to a buffer following the first-in, first-out
(FIFO) principle. But in contrast to a general FIFO buffer, several frames have to
be added to fill the window, before the first frame can be read out. This leads to a
small temporal delay of F' frames which is inherent in the proposed framework. But
on the other hand, the window enables the processing of arbitrary long sequences
and gives the framework streaming capabilities.

When a new frame is added to the system, its segmentation needs to be initialized.
As image regions can move significantly from frame to frame, a simple copy of the
previous segmentation, as proposed in [82], can be error-prone in many situations.
Therefore, the segmentation needs to be warped (propagated) to roughly fit the con-
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Propagated of Frame
Segmentation t—1

Superpixel Segmentation

of Frame t — F Output

Figure 3.1: System overview: The video frames are converted to the CIELAB color
space and optical flow is extracted. The flow vectors are utilized to propagate the
previous segmentation onto the new incoming frames. Optionally, the propagation
is simultaneously utilized to detect information about the occlusion and disocclusion
of image regions that is used in the further cluster analysis to terminate and create
new superpixels.

tent of the new frame. In this thesis, two separate approaches for the segmentation
propagation are proposed which are described in the first part of Chapter 4. To
ensure homogeneously sized superpixels, the superpixel segmentation needs to be
adapted to structural changes in the video volume induced by occlusion and disoc-
clusion of image regions. Therefore, this thesis proposes two novel approaches to
explicitly handle these structural changes. Both methods decide on which super-
pixels are to be terminated and where new superpixels have to be created to cope
with the structural changes. The first approach is purely superpixel size-based and
can be combined with any propagation method. The second utilized dis-/occlusion
information exclusively collected by only one of the propagation methods. The dis-
Jocclusion detection as well as the methods to handle of the structural changes are
described in the second part of Chapter 4.

3.2 Feature Space Setup

As it has been shown in 2.1.3, the segmentation of an image into superpixels can
be seen as a clustering problem, where feature vectors are divided into clusters
and the cluster affiliation is equivalent with the membership to a superpixel. The
single image superpixel approaches proposed in [1] and [74] treat each pixel as a
five-dimensional (5D) feature vector that combines the position of the pixel in the
color space with its spatial position. When moving to the video domain, the tem-
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Figure 3.2: In (a), the video volume of the tennis sequence [85], showing a table
tennis ball being played up and down, is depicted. In (b), a longitudinal section of
the video volume at approximately the position of the table tennis ball is shown. (c)
shows the ideal segmentation of the video volume. The red segment represents the
ball and the blue and green segments the bat. Each segment follows its underlying
image region over time throughout the volume. The segments representing the static
background and the table ideally hold their constellation and shape over time.

poral position of the pixel is added to its feature vector to distinguish the pix-
els of different frames. Thus, here each pixel ¢ is described by its feature vector
T, = [li,ai,bi,zi,yi,ti]-r where 7¢ = [li,ai,bi]T are the color values of the pixel in
CIELAB space, &8 [z;,;]" is its position in image coordinates and ¢; is the frame
index. The choice of the color space is made by following the argumentation of [19]
and [1] to use a perceptually uniform color space such as the CIELAB or CIELUV
space. As neither of the color spaces has a clear advantage in practice over the
other, as stated in [19], the CIELAB space is chosen for all experiments because it
was also utilized in the original superpixel approach of [1].

The requirements for temporally consistent superpixels that where already stated
in Section 1.1 are tripartite. First, a temporally consistent superpixel should group
pixels of similar color. Second, the groups should be spatially compact on a frame
level. And third, the temporally consistent superpixel should follow their underlying
image region through the video volume as it is illustrated in Figure 3.2.

The first and second requirement are equivalent with the requirements for a single
image superpixel approach. As the pixels of a superpixel will have a similar color
value and spatial position, their feature vectors will form clusters in the feature
space consisting of color and image coordinate dimensions. Hence, for a single
image approach each superpixel can be represented by its mean feature vector in
the color dimension as well as in the spatial dimension as done by [1] and [74].

In addition to their single image superpixel approach, the authors of [1] also de-
scribe an extension in their paper which groups the voxels of a video volume into
supervoxels. The approach extends the assumptions about the spatial position and
distribution of the color values of an image region into the temporal domain. There-
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fore, each supervoxel is represented by the mean vector of the six-dimensional (6D)
feature vector. This essentially means the introduction of a single spatial center and
a single temporal center for each supervoxel which has two major drawbacks with
respect to the requirements of temporally consistent superpixel that will be further
discussed in the following.

First, the approach prefers temporally compact supervoxels as it explicitly penal-
izes supervoxels with a long duration. This is due to the selected energy term in
the optimization procedure. It follows the scheme described in Section 2.1.3 but
adds a temporal energy term that is proportional to the temporal distance between
a voxel and the temporal center of a supervoxel. Similar to the spatial energy, the
temporal term is weighted to take into account the different scaling of the feature
dimensions. Nevertheless, it enforces the optimization to prefer temporally close
voxels over temporally distant voxels. Thereby, the creation of temporally com-
pact supervoxels is implicitly encouraged. In particular, for applications like object
tracking in surveillance videos this property is undesirable as each spatio-temporal
segment should occupy the underlying region, as long as the region is visible.

A second drawback of the supervoxel approach, proposed in [1], is the usage of
a single spatial center for the representation of each supervoxel. As can be seen in
Figure 3.3, the underlying assumption that the pixels of a spatio-temporal segment
are close to a common spatial center breaks if moving objects are considered as
e.g. the table tennis ball in the depicted scene. The three figures in the top row
show three example frames from the video sequence. In the schematic frames of the
second and third row the position of the ball is indicated by the dotted circle. In
the second row the spatial mean position of the ball in the y dimension is indicated
by a dotted line. For the supervoxel approach of [1], this line would also represent
the y position of the spatial cluster center of the supervoxel corresponding to the
spatio-temporal region of the ball. As the voxels of the ball have a large distance to
the spatial center, the spatial weighting term & in Equation (2.15) has to be reduced.
This lessens the influence of the spatial distance and efficiently increases the spatial
range from which voxels can be assigned to the supervoxel. This is indicated by the
area of the circle shaded in gray in Figure 3.3. Simultaneously, the reduction of the
spatial weight also leads to spatially less compact supervoxels, as the spatial range
is increased symmetrically in all spatial directions. Thus, it becomes more likely for
spatially far away voxels to be assigned to a segment if their color is similar. An
alternative would be to use several supervoxels to represent the trajectory of the
ball. Both options contradict the requirements for temporally consistent superpix-
els and produce undesirable results, i.e. non-compact superpixels or short temporal
superpixel trajectories. To overcome these drawbacks, it is proposed in this work to
avoid the introduction of a cluster center on the temporal axis but only introduce
centers in the color and the spatial domain.
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Figure 3.3: Top row: example frames from the table tennis sequence. Middle row:
a segment (gray shaded) with one spatial center for all frames is created to cover
the outline of the table tennis ball (dotted circle). Assuming a concentric extent of
the segments around the spatial center, the segment has to grow in size to cover the
ball. Bottom row: when for each frame a separate spatial center is used the segment
can match the outlines of the many positions of the ball without changing its size.

The pixel color values of a uniformly colored region will form a dense cluster in
the color space. In the following, it is assumed that the appearance of an object is
—in a first approximation — almost constant over the course of a video. Hence, the
pixel color values of the same region (visible in multiple frames) will be part of the
same cluster in the color space. It should be noted that the color values of different
frames are assumed to be located in the same instance of the CIELAB color space.
Therefore, each temporally consistent superpixel can be represented by a single color
centroid, globally valid for all frames. In contrast to that, the spatial distribution of
the pixels of a temporally consistent superpixels may vary significantly from frame to
frame. In particular, if the object is exposed to large displacements along the image
plane as it is shown in Figure 3.3. Hence, to be able to capture arbitrarily moving
objects, the spatial centroids are selected to be different on each frame and each of
them is only locally valid on one frame. Thereby, assuming a different instance of
the xy-space for each frame. This principle is depicted in the third row of Figure 3.3.
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As a consequence, in a frame ¢ each temporally consistent superpixel b is modeled
by a vector pu; = [fif, fi5,)” which includes the color mean value /I of all frames
and a spatial position mean value ﬁit for each of the frames. The latter preserves
the spatial locality on frame level and the former ensures temporal consistency. The
global color cluster center and the local spatial centers of a temporally consistent
superpixel b can be determined as follows

T

PP (3.1)

ZfTﬂ [ro| 15 i,

> (3:2)

bt' i€y

1
i =

Here, m;, is the set of pixels assigned to the temporally consistent superpixel b
in frame ¢. In general, the assignment of the pixels to the temporally consistent
superpixels is unknown a priori and has to be determined following an optimization
criteria which will be described in the following section.

3.3 Hybrid Optimization

The label set of a video volume contains the cluster assignments of all pixels of
the volume and is denoted by b = {b;|Vien,t € {1,..,.T}}. Here, n, is the
set of all pixel positions in frame ¢ and the labels b; come from the set of labels
of all temporally consistent superpixels k. From a given labeling of all pixels b,
the set of color cluster centers u¢ = {ﬂ",ﬂ Vbe k} and the corresponding spatial
cluster centers pS = {jif,| Vb € k, t € {1,...,T}} can be easily derived using the
Equations (3.1) and (3.2). The total assignment energy for the labeling b can then
be calculated as follows

Eis(b Z Z ELS (i,t,b;) . (3.3)

t=11i€ns

To evaluate the assignment of a pixel 7 in frame ¢ to a cluster b, the color and image
coordinate dependent energies have to be added. Thereby, the same weighting
scheme as defined by [74] is used, as it weights the color and spatial energy terms
with the more intuitive factor o € [0,1]:

ELcs (’L t b) ( )E\Lcs(z b) + O{Evtcs

asm col pos

(i,t.b). (3.4)

Equal to the single image approaches described in Section 2.1.3, the energy terms
are selected to be proportional to the Euclidean distance of the feature vector of the
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pixel to the corresponding component of the mean feature vector of the superpixel

EL(i,b) o< /(35 — )7 (35 — ) (3.5)
. | s
Epalistb) oc /(& — i) T (#F — i) - (3.6)

Again, the Euclidean distance in the spatial domain is normalized by the edge length
of the average sized superpixel to make the results independent from the image and
superpixel resolution. It should be emphasized that the spatial energy Er‘,ffs(i7t7b) is
depending on the frame ¢ in which the pixel ¢ is located. Because the color energy
for each temporally consistent superpixel is evaluated using its global color center
and the spatial energy uses the local spatial centers, the optimization is referred to

as a hybrid optimization scheme.

To create an optimal oversegmentation of a video volume, the labeling and the
corresponding cluster centers have to be found which minimize Equation (3.3). In
the general case, the problem of jointly finding the optimal cluster centers and the
optimal labeling b is NP-hard. But as for the single image approaches, described in
Section 2.1.3, the optimization can be made computationally feasible by iteratively
alternating between optimizing the labeling (assignment-step) and optimizing the
cluster centers. Although this optimization scheme only reveals a locally optimal
solution and heavily depends on the initial state of the labeling, the created tempo-
rally consistent superpixel segmentations are more than satisfying as will be shown
in Chapter 5. To ensure the spatial coherence of the superpixels on frame level dur-
ing the optimization, the same contour evolving optimization strategy as described
in Section 2.1.3 is used when selecting the optimal label for each pixel. Thus, only
label flips between neighboring superpixels are allowed that pass the test if a pixel
is a simple point for the involved neighboring superpixels.

The starting point of the optimization is an initial labeling of the video volume
b>=0 from which the joint cluster center set =0 = {u®*=0 5=} can be derived.
Again, the index z is utilized to denote the current iteration. In each new iteration
2+ 1 the optimal labeling b**! is determined given the cluster centers of iteration
z. The optimal labeling is derived by assigning each pixels to the neighboring
superpixel — respecting the simple point test for all involved labels — for which the
minimal assignment energy is created

b*™ = argmin Eye(b|p?). (3.7)
b
Subsequently, the cluster centers p**! are updated using the previously optimized

labeling. By alternating these two steps, the energy is decreased with every iteration
until a local optimum or another convergence goal is reached.
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While the described optimization scheme could be applied on the entire video
sequence at once, it is often not desirable and in most cases not reasonable to apply
the framework on the whole video volume at once. First, the memory consumption
will rise as more frames of the video are considered which in case of a full-length
feature film would easily exceed the memory of a current desktop computer. Second,
parts of the video could not be accessible at the start of the processing, e.g. in the
case of live surveillance videos or video streaming services like Netflix. Third, as
the optimization framework is prone to local optima, the initial constellation of the
temporally consistent superpixels needs to be already roughly adapted to the video
content to allow the superpixels to follow their underlying regions over time. This
is not efficiently achievable in advance when significant object or camera movement
as well as scene cuts are involved. And finally, it was assumed in Section 3.2 that
the color of an image region is constant over time. Thereby, the color center of a
temporally consistent superpixel would have to be globally valid over all frames of
the video. In practical applications, this assumption might not hold in all situations
especially when videos with natural lighting condition are regarded. Thereby, the
selected model for the temporally consistent superpixels would not hold which could
lead to failures in the segmentation. To circumvent the above mentioned cases, a
windowing technique will be introduced in the next section.

3.4 Sliding Window

In order to restrict the number of video frames that have to be considered simulta-
neously during the optimization, a window is introduced which comprises W con-
secutive frames of the video volume. To optimize the complete video sequence, the
window is shifted along the video volume frame by frame. Following each shift, a
number of Z iterations of a slightly modified version of the hybrid optimization al-
gorithm described in Section 3.3 is performed. As the window slides along the time
axis during the optimization, it is called a sliding window. Limiting the number of
simultaneously regarded frames drastically reduces the memory footprint and allows
for a certain degree of scene changes, e.g. through gradual changes in illumination
or color due to natural lighting conditions. Additionally, it gives the framework
streaming capabilities as well as the possibility to dynamically adapt the constella-
tion of the temporally consistent superpixels to structural changes inherent in the
video volume. The first part of this section will discuss the adaption of the hybrid
optimization to the sliding window technique. In the second part, the initialization
of the sliding window will be described.

The modifications of the hybrid optimization affect the treatment of the frames
inside the sliding window during the assignment-step. The sliding window contains
P so called past frames, F' so called future frames as well as a single current frame.
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Figure 3.4: Sliding window approach. Bottom row: the video frames inside the
sliding window (non-transparent) are divided into three groups (past, current and
future frames). Top row: corresponding label maps. Only the current and future
label maps are mutable and thus are altered during the optimization. Image taken
from [63].

The total number of frames W is thereby given by F'+P+1. An example with
W =5 and P=F =2 is depicted in Figure 3.4. In this example, the frame ¢ is the
current frame and it is in the center of the sliding window. The sliding window is
divided into mutable frames, i.e. the current and the future frames, and immutable
frames, i.e. the past frames. During the assignment-step, only the contour pixels
of the mutable frames are reassigned to the best matching neighboring superpixel
to minimize the term (3.4). It should be noted that the sum of the total energy
terms in Equation (3.3) now only comprises the frames inside the sliding window.
When the cluster centers are updates, only the pixel values of the frames inside the
sliding window are regarded. As the labeling of the past frames does not change
anymore, the update of their spatial centers can be skipped. A summary of the
hybrid optimization involving the sliding window can be found in Algorithm 1.

The position of the current frame is the last mutable position. When the sliding
window is shifted and a frame leaves the position of the current frame to move into
the range of the past frames, its segmentation becomes immutable and thus will not
be altered anymore. Therefore, it can be said that the resulting final superpixel
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input : W frames in sliding window around ¢; initial labeling by

output: updated labeling bfv Z

determine parameters of color and spatial centers for given by * :
for z € [1,Z] do
foreach mutable frame t' in sliding window do
foreach superpizel boundary pizel i do
if pizel i is a simple point then
reassign pixel to superpixel which minimizes (3.4)
given the cluster centers of z — 1;
end
end

nd
orall frames t' in sliding window do
if t' is mutable frame then

‘ update local spatial models in #';
end
accumulate global color information;
end
update global color centers from accumulated information;

end
Algorithm 1: Hybrid optimization of the segmentation inside a sliding window
positioned around the current frame with index . b; > denote the labeling of all
pixels currently inside the sliding window at iteration z.

= 0

segmentation for this frame is generated at this point. But through the globally
valid color centers the past frames still influence the segmentation in the current
and future frames, as these are still mutable and thus their segmentation can change
during the further optimization. The future frames help to adapt to changes in the
scene, whereas the past frames are conservative and try to preserve the color value
of the superpixels over time. If more past than future frames are used, the update
of the color centers is more conservative. If more future than past frames are used,
the update is more adaptive.

During the optimization, the boundaries of the temporally consistent superpix-
els in the mutable frames are aligned to the visible contours in the video frames.
Nevertheless, the optimization is not able to comprehensively adapt the superpixel
constellation in the case of large object movements or structural changes induced
e.g. by the emergence of new objects. The former requires that the superpixel posi-
tions may have to differ significantly in consecutive frames. In some occasions, this
can be too much to be handled successfully by the contour evolution. The latter
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Storage

Figure 3.5: The sliding window is initialized from the front to the back positions.
After the positions of the future and current frames (cf. Figure 3.4) are occupied,
the segmentation of the first past frame (here marked in blue) can be stored as its
segmentation does not change anymore.

implies that some temporally consistent superpixels will not be present in all frames
as their underlying image region is not visible all the time. It is therefore crucial
that the initial state of the labeling in these frames is chosen in such a way that
the propagated constellation already resembles — up to some extent — the movement
and structural changes inherent in the video volume. Thus, superpixels have to be
moved to their new location according to the underlying image movement, and su-
perpixels have to be terminated or created in the case of occlusion or disocclusion,
respectively. Depending on the video content a concurrent initialization of all frames
of the sliding window is not practicable in many situations. Therefore, a successive
filling of the sliding window is proposed in this work.

To be able to better distinguish between the process of initializing the sliding win-
dow and initializing/adapting the segmentation of a new frame that enters into the
sliding window the former will be referred to as initialization and the latter will be
referred to as segmentation propagation. While the complete initialization process
of the sliding window is depicted in Figure 3.5 and will be described in the following,
the detailed description of the segmentation propagation can be found in Chapter 4.

The initial position of the current frame of the sliding window is at the time index
t = —(F + 1). Hence, the sliding window is empty at the start. When the sliding
window is shifted and the first frame enters the window, its segmentation cannot
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be propagated from former frames. Therefore, it is initially filled by a regular
grid or a honey-comb-like arrangement of superpixels as proposed in [74]. This
frame is positioned at the frontmost location of the sliding window. As a future
frame its segmentation is mutable and thus the energy-minimization with respect to
Equation (3.3) is performed. Then, the sliding window is shifted. Thereby, a new
frame enters the window at the frontmost position. The old frame moves to the
next position and its segmentation gets propagated onto the new frame. Afterwards
several optimization iterations are performed to fit the superpixel boundaries to
the frame content. This procedure is repeated until all positions in the sliding
window are occupied. Then, the generation of temporally consistent superpixel can
further proceed by repeatedly shifting the sliding window by one frame until the
video sequence is completely processed. After all positions of the sliding window are
occupied, a frame will leave the window at each shift and therefore will no longer be
regarded during the optimization. But as the segmentation of the first past frame
is already immutable the final superpixel labeling of a frame can be stored when
arriving at this position.
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Chapter

Superpixel Propagation and

Handling of Structural Changes

The contribution of this chapter is twofold. The first part introduces two approaches
for propagating the superpixel segmentation of a video frame onto its consecutive
frame. In the second part of this chapter, methods are introduced to handle struc-
tural changes inherent in the video volume which are introduced by object- or self-
occlusion and disocclusion.

4.1 Segmentation Propagation

After performing Z iterations of the hybrid optimization, the sliding window is
shifted by one frame along the temporal axis of the video volume. Thereby, a frame
leaves the sliding window and another frame enters into its range. Because the label
assignments of the pixels in the new frame are at first glance completely unknown,
the frame needs to be initialized. In the frame-by-frame processing approach of [82],
the initialization is achieved by copying over the segmentation of the previous frame.
But as image regions can move significantly from one frame to the next, this kind of
initialization can lead to heavy segmentation errors. For example, when a superpixel
holds its position, while the corresponding image region moves more than the edge
length of the superpixel. In this case, the superpixel could change from being part
of the foreground object to being part of the background. This is especially the case
in video sequences with large object motion or camera displacement.

To encourage more temporal consistency, the authors of [46] proposed to utilize
optical flow to propagate the superpixels onto the next frame. For the case of a
sliding window, the authors of [63] achieved a similar result by propagating the in-
termediate segmentation of the most future frame t+F—1 (cf. Figure 3.4) onto t+F'.
The propagation is performed in both approaches by shifting the spatial centers of
the superpixels by a weighted average optical flow computed over the area of each
superpixel. The superpixels on the new frame are then created by starting from
these initial spatial centers. In [46], the propagated centers provide the seed points
to grow the superpixels on the frame using level-set techniques. And in [63], they
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serve as the initial cluster centers in the iterative clustering-based approach. Both
approaches share the common property that all pixels of the frame are reassigned
during the optimization. Therefore, it is sufficient in [63] and [46] to only propa-
gate the spatial centers. As the contour-based optimization procedure introduced
in Section 3.3 requires a fully populated superpixel label map, solely propagating
the spatial centers is not applicable in this work. Hence, this chapter will discuss
different approaches to propagate an entire superpixel segmentation onto a new
frame while roughly fitting it to the new image content. This substantially increases
the complexity of the segmentation algorithm. But it was shown previously by the
author of this thesis that the combination of propagating an entire label map and
subsequently performing a contour-based optimization significantly improves the
stability of the spatial constellation of the superpixels over time [65]. An example
for the increased stability taken from [65] can be seen in Figure 4.1.

To warp a fully populated superpixel segmentation onto a new frame, there ex-
ist several possible approaches. In Figure 4.2, a visualization of a subset of these
possibilities is shown that will be further discussed in the remainder of this section.
The two variants depicted in Figure 4.2(a) and (b) show a per pixel propagation.
Thereby, a dense per pixel optical flow is utilized to propagate each pixel indepen-
dently. This can be done in a forward- or backward-directed manner. Figure 4.2(c)
shows superpixel-wise propagation where each superpixel is shifted by a single op-
tical flow vector. All three approaches are based on dense optical flow and will be
described in Section 4.1.1. As the computation of a dense optical flow field is highly
demanding, a computationally more efficient option is proposed in Section 4.1.2
which is depicted in Figure 4.2(d). Here, sparse optical flow vectors are utilized
which are gained using the KLT approach described in Section 2.2.2. By spanning
a triangle mesh between the feature points for which optical flow vectors are avail-
able, the labels inside each triangle can be warped by using the respective triangle
deformation. In the subsequent Section 4.2, two approaches will be presented that
can adapt the superpixel segmentation to the structural changes in the video volume
induced by occlusion.

4.1.1 Propagation using Dense Optical Flow

The arguably most intuitive way to propagate an entire superpixel label map using
dense optical flow is the forward-directed method depicted in Figure 4.2(a). Here,
the optical flow vector of each pixel is used to shift the label of the pixel towards
the position the vector is pointing to. While this procedure is simple and quickly
implemented, its major drawback is its sensitivity to noisy and incorrect optical flow
vectors. These lead to ambiguities where several vectors point onto the same pixel
position. Thereby, the labels of several pixels are mapped onto the same spot while
many other pixels are left uninitialized during the propagation. If the number of
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Figure 4.1: Example taken from [65] for a challenging segmentation task with low
contrast and large object motion. Top row: the original sequence with a marked area
magnified in the rows below for which a full segmentation was performed. Middle
row: spatial center propagation approach of [63]. Bottom row: combination of
propagating the entire superpixel map and performing contour-based optimization.
Only a subset of superpixels is shown (manually selected and colored). Same color
means temporal connectedness. In the middle row, the superpixels are torn away
by the motion introduced by the camera panning and motion of the bus, while they
keep their position and constellation in the bottom row.

uninitialized pixels is high, this can lead to a disturbance of the spatial superpixel
constellation similar to the one shown in the middle row of Figure 4.1. To encounter
the problem of uninitialized pixels due to duplicate assignments, the optical flow
direction can be reverted as depicted in Figure 4.2(b). Here, the optical flow field
is computed from frame t+F to frame ¢+ F —1. This results in a flow vector from
each pixel of the uninitialized frame to a position in the previous frame where the
new label can be looked up. If two vectors point onto the same spot, all pixels are
assigned the same label thereby no pixel is left uninitialized. While this approach
ensures the exhaustive initialization of all pixels, it is still sensitive to noisy flow
vectors.

To gain robustness against noisy vectors, the method proposed by Levinshtein
et al. [46] tries to utilize the inherent properties of the superpixels. By the defi-
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t t+1 t t+1 t t+1 t t+1

(a) (b) (c)

Figure 4.2: Four possible methods to transfer a superpixel segmentation onto a
new frame. (a) and (b) depict pixel-wise propagation methods. In (c), an entire
superpixel shape is transferred using a single optical flow vector. The triangle mesh-
based method depicted in (d) is in general more efficient as it is based on tracked
feature points instead of dense optical flow. Images partially taken from [65].

nition given in [47], superpixels should be limited in their spatial extent and their
boundaries should coincide with the object boundaries present in the image. Due to
their limited spatial extent, the optical flow inside each superpixel is assumed to be
almost constant. Hence, errors introduced to the flow field by general image noise
can be canceled out by taking the average of the flow vectors inside each superpixel.
While this helps against noisy flow vectors and single outliers, this kind of filtering
does not yield any protection against systematic errors in the calculation of the flow
field. One type of systematic error is the oversmoothing of motion discontinuities.
These emerge for instance at occasions in which the motion direction of an object is
different from the direction of the background. At these locations, the smoothness
prior inherent in the algorithms described in Section 2.2.1 and 2.2.4 becomes invalid.
Thus, the smoothness terms in the Equations (2.24) and (2.35) lead to a contamina-
tion of the flow vectors of one side of the motion boundary with the flow direction
from the other side. These erroneous vectors can induce a significant drift to the
average flow vectors which as a result produces an incorrect propagation. To reduce
the malicious effects of these vectors, [46] utilizes the property of the superpixels.
Because the superpixel boundaries coincide with the object boundaries, they are also
most likely to coincide with the motion boundaries. By applying a weighting func-
tion to the flow vectors, which decreases when approaching the superpixel rim, the
influence of the potentially inaccurate vectors can be minimized. Thereby, improv-
ing the accuracy of the averaged optical flow vectors utilized during the propagation.

The approaches for superpixel for video content described in [46] as well as [63]
utilize the averaged vectors to propagate the spatial centroids of the superpixels.
While in [46], the propagated centroids are used as seed points to grow the super-
pixels in the new frame using level-set techniques, the centroid serve as initial spatial
cluster centers in the clustering based approach of [63]. As the contour based opti-
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t t+1

Figure 4.3: Propagating superpixels in a forward-directed manner can lead to situa-
tions where two adjacent superpixels are propagated towards each other (left image).
Thereby, an overlap can occur as depicted in the right image and indicated in dark
blue. Similarly, a gap (light blue) can occur where two superpixels are shifted in
opposite directions. Image taken from [65].

mization requires an entirely populated superpixel label map, the solely propagation
of the spatial centroids is not sufficient for the proposed framework. It is therefore
proposed in this thesis to propagate the entire shape of each superpixel in a forward-
directed manner by shifting each superpixel in the direction of the weighted average
flow vectors. Thereby, the noise robustness of the weighted mean optical flow is
leveraged and it is combined with the constellation and shape preserving properties
of the propagation of a fully populated superpixel label map. To weight the optical
flow vectors, a symmetric, two-dimensional Gaussian function is utilized (similar
to [63]). The peak of the monotonically decreasing weighting function is chosen to
coincide with the spatial center of the superpixel. Hence, the weighted average can
be calculated as

1 - "
> Gk (3 — i) (4.1)

i -
= =5 _ =S
Zienbyt Ko;_-(xi - ub,t) i€ny

where 0% denotes the variance of the Gaussian kernel function K,z The variance

is selected to be \/|n;|/(4 - |k|) which corresponds to the radius of the average-sized
superpixel in the frame. To avoid a shift onto invalid grid coordinates, each vector
element is rounded to a valid integer value.

In the case that the averaged flow vectors of two neighboring superpixels point
towards each other as depicted in Figure 4.3, the forward-directed propagation of
the superpixel shapes can lead to overlapping superpixel parts. These overlaps can
yield essential information about the structural changes inherent in the video volume
because they are an indicator for the presence of object occlusion or self-occlusion.
Similarly in other places, superpixels are shifted away from each other. Thereby,
gaps in the propagated superpixel segmentation are produced which can be seen
as indicators for disocclusion in the depicted scene. The information about these
locations, gained in the forward-directed propagation, can be utilized to adapt the
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segmentation to the structural changes induced through occlusion and disocclusion.
Approaches to adapt the segmentation will be further described in Section 4.2. As
the computational burden of dense optical flow methods is high when compared to
sparse methods, the next section will describe an approach to efficiently propagate
a fully populated superpixel segmentation through sparse optical flow.

4.1.2 Efficiency Improvement through Sparse Optical Flow

The following approach for a fast label propagation is inspired by the work presented
in [55] and is visualized in Figure 4.4 for two sample video frames. Instead of calcu-
lating a dense optical flow as described in the previous section, only a set of sparse
feature points is tracked between the current frame ¢ and the next frame ¢+1 whose
superpixel label map needs to be initialized. The feature points to track are detected
on frame ¢+1 using a Harris corner detector [36]. The method of [75] is utilized to
select “good” features to track. Finally, the tracking of the features is performed
by the KLT feature tracker described in Section 2.2.2 (see Figure 4.4 second row).
Outliers are removed by the cluster filter proposed in [55]. By applying a Delaunay
triangulation as described in Section 2.2.3, a mesh is generated connecting the fea-
ture points of frame ¢+ 1 (Figure 4.4 third row, right). Subsequently, the mesh is
warped (backward) onto the superpixel label map of frame ¢ (Figure 4.4 third row,
left) using the movement of the tracked feature points. Under the assumption of a
piece-wise planar surface contained in each of the triangles, an affine transforma-
tion can be utilized to warp the content of each triangle (forward) from frame ¢ onto
frame t+1 as illustrated in Figure 4.5. Therefore, the transformation matrix T; .y in
homogeneous coordinates for each triangle [ between frame ¢t+1 and ¢ is determined
using the three tracked feature points of the triangle.

a1 a3 aps
Titn = |me aa aie (4.2)

0 0 1 tH

The matrix elements a;; to a; 4 determine the rotation, shearing, and scaling, whereas
the elements a;5 and a; denote the translation. Using this transformation matrix
of the triangle, the homogeneous coordinates of each pixel (w,y,l)tll in frame t+1
can be transformed into coordinates (#,§,1); of frame .

xr

=T |y (4.3)

t 1 tH

— S &

The transformed coordinates are clipped at the image borders and rounded to the
nearest valid pixel position. Subsequently, they are used to look up the label in the
superpixel label map of frame ¢. By assigning each pixel the looked up label, a fully
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Frame ¢ Frame 41

i Tracked features Original

Triangulation

Superpixels

Figure 4.4: From top to bottom row: Original frames from [79] (cropped). Sparse
feature points detected in frame t+1 are tracked backwards onto frame ¢. A mesh is
obtained from a triangulation of the feature points in ¢+1. Through the movement
of the tracked features, the mesh is deformed onto frame ¢. The superpixel label
map of frame ¢ is then warped by an affine transformation according to the inverse
deformation of the triangles. The deformed label map is utilized as initialization for
the optimization of frame ¢ + 1. Figure taken from [66].
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populated initial segmentation is generated for frame ¢+1 (Figure 4.4 bottom row).
To ensure that each pixel of the frame t+1 is covered by the mesh, four feature
points are inserted at the corners of the frame and four at the middle of the frame
borders.

Occasionally, some pixels are split-off from the main mass of a superpixel due to
the warping of the transformation. Because the spatial coherency of the superpixels
has to be ensured, these fractions are identified and an invalid label is assigned to
them. Arising thereby, a label of a directly neighbored superpixel will be assigned to
them during the next optimization step. Since this step is also required in a dense
optical flow-based propagation approach as described in Section 4.1.1, it does not
introduce any additional computational overhead.

As can be seen in the bottom right image of Figure 4.4, the sparse flow-based
method performs a reliable label propagation on the inside as well as on the outside
of the depicted objects. Solely for triangles that contain feature points attached
to the background as well as to the object, an incorrect transformation is created.
This is also the case for triangles which are attached to multiple objects moving in
different directions. The effect can especially be seen in the area in front and on
top of the car in Figure 4.4. In these locations, the movement of the car leads to a
squeeze and shearing of the superpixels. In addition to this undesirable effect, the
approach also lacks the capabilities to detect occlusions and disocclusions as provided
by the approach proposed in the last part of the previous section. Nevertheless, the
propagation by the sparse optical flow will be included in the experimental section
as a baseline because it provides a universal and efficient way to propagate the
superpixel segmentation.

In the next section, two approaches for the handling of structural changes in the
video volume will be described. While the first is compatible with all propagation
methods described in this section, the second can only be applied with the forward-
directed propagation described in the second part of Section 4.1.1. This is because
it relies on the dis-/occlusion detection only provided by the forward-directed prop-
agation.

4.2 Handling of Structural Changes

Through the color conserving effect of the past frames of the sliding window (de-
scribed in Section 3.4), the superpixels stick to equally colored regions over time.
If these regions are part of a moving object and a propagation of the superpixels is
performed, the superpixels follow their underlying region through the scene. Hereby,
the object’s movement through the scene causes occlusions and disocclusions. These
lead to structural changes in the video volume as can for instance be seen in the
volume of the table tennis sequence depicted in Figure 3.2(b). Here, the table tennis
ball dynamically moves while the background is static. Thus, foreground superpix-
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Frame ¢ Frame t+1

Figure 4.5: Warping of a superpixel label map covered by a triangle mesh. The
parameters of the transformation matrix T4, are determined from the movement
of the three vertices of the triangle. Image taken from [66].

els occupying the image region of the ball will in subsequent frames occupy regions
that were previously occupied by background superpixels.

If no adaption of the segmentation is performed, the undesirable squeezing and ex-
panding effects occur. An example of these effect is depicted in Figure 1.2. By adapt-
ing the segmentation to the structural changes, the homogeneous size constraint can
be satisfied and the consistency of the superpixel flow with the underlying image
movement can be improved. Thereby resulting for instance in a correct static back-
ground segmentation in scenes like the table tennis sequence of Figure 3.2. To adapt
the segmentation to the structural changes, two operations need to be performed.
First, superpixels whose corresponding image region gets occluded or moves out of
the field of view of the camera need to be terminated. And second, new superpixels
have to be created where new image regions appear either by camera movement of
disocclusion.

The process to terminate a superpixel is similar to the treatment of split-off frac-
tions of superpixels described above. By assigning an invalid label to all remaining
pixels of a superpixel, they are automatically assigned to the best matching neigh-
boring superpixel during subsequent optimization steps. Frames which become past
frames of the sliding window will not be further optimized. Due to this, it has to be
made sure that a valid label is assigned before a frame enters the area of the past
frames. Therefore, superpixels are only deleted in the newest future frame.

Creating a superpixel can either be done by utilizing a gap in-between superpixels
or by splitting up an existing superpixel into two. Additionally, it is possible to
utilize a gap between a superpixel and the frame border. The steps to split a
superpixel are depicted in Figure 4.6. For similar reasons as mentioned above and to
ensure an optimization of the boundary between the new superpixels, the splitting

R P am 24.01.2026, 01:38:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186861108

4.2 Handling of Structural Changes 55

(a) (b) (c) (d)

Figure 4.6: Steps performed to split a superpixel into two parts. In (a) the spatial
center is computed. In (b) the eigenvectors of the spatial distribution of the pixels
assigned to the superpixel are shown. (c) and (d) show the line through the spatial
center along the eigenvector corresponding to the smaller eigenvalue which is used
as demarcation line to partition the superpixel.

is performed only in the newest future frame. The process basically follows the
principle proposed in [90]. First, the spatial center of the superpixel is calculated.
Second, the eigenvectors and eigenvalues of the spatial distribution of the pixels
assigned to the superpixel are determined. Third, a demarcation line is defined
which passes through the spatial center of the superpixel and follows the eigenvector
corresponding to the smallest eigenvalue computed in the previous step. The pixels
on one side of the line keep their label and the pixels on the other side are assigned
a new, unused superpixel label. The side which keeps the label is determined by
comparing the mean color vectors of the split regions with the former mean color of
the superpixel. The region with the lower Euclidean distance is selected to keep the
label.

In general, the number of superpixels per frame is user-defined and hence the
actual number of created superpixels should follow the specification given by the
user. A discrepancy between the specified and the actual number of superpixels
can occur if at a given point in time either more superpixels were created than
terminated or vice versa. To enforce a fixed number of superpixels per frame, the
number of creations/splits and terminations can be balanced. In order to decide at
which location the superpixel segmentation should be altered, i.e. which superpixel
to terminate or where to create a new one, the next subsections will introduce two
methods for handling structural changes. The first will be purely based on the pixel
count of each superpixel. This approach enables an efficient handling of the struc-
tural changes and can be applied in combination with any superpixel propagation
method. The second proposed variant will be based on the dis-/occlusion informa-
tion, whose collection was described in the second part of Section 4.1.1. Due to its
nature, this method can only be applied if the dis-/occlusion information is provided
by the propagation method.

R P am 24.01.2026, 01:38:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186861108

56 Chapter 4 Superpixel Propagation and Handling of Structural Changes

Figure 4.7: A visualization of the temporal gradient of the superpixel size. (a) and (c)
show the label maps for the first and third frame of the sequence. The silhouettes
of the soccer player were manually marked for illustration purposes. In (b), the
gradient of the superpixel size between the two frames is visualizes as a heat map
(blue means shrinkage and red means growth). Especially in front of the moving
legs of the players the superpixels shrink, while they expand between the legs.

4.2.1 Size-based Handling

The squeezing and expanding effects depicted in Figure 1.2 and 4.4 are the results
of moving objects occurring in the scene. It can be seen that the superpixels shrink
in front of the object where the background gets occluded by its movement. Simul-
taneously, their size increases behind the object to fill the newly disclosed space.
Figure 4.7 visualizes this effect by color coding the variation of the superpixel size
in time. It shows an example using the soccer player sequence whose original frames
are depicted in the Figures 1.1 and 1.2. The left and right images show the label
maps of the first and the third frame, respectively. In the middle image a heat map
is drawn where each superpixel is filled with a color proportional to the gradient
of the superpixel size. A blue color denotes a negative gradient (shrinkage) and a
red color denoted a positive gradient (growth). It can be seen that the gradient has
a strong negative amplitude (blue) in front of the moving legs of the two players
and a strong positive amplitude (red) behind them. Simultaneously, the gradients
in most of the remaining image regions are virtually zero (green). This observation
strongly suggests that the structural changes can be handled up to some extent by
observing the superpixel size over time. The simplest solution that was applied for
example in [65] is to define a minimum and a maximum threshold for the superpixel
size. After each shift of the sliding window, the size of each superpixel is measure in
the current frame. Subsequently, superpixels whose size falls under the predefined
minimum size are terminated and superpixels that grow bigger than the maximum
size are split. The valid size corridor which is spanned through the two thresholds is
illustrated in Figure 4.8. Here, the minimum and maximum thresholds are denoted
by [N |min and |1 max, respectively.
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Figure 4.8: A visualization of the valid superpixel size corridor in the current frame
of the sliding window which is spanned between a minimum and a maximum value.

While the size-based approach handles the structural changes in most situations
successfully, it has two major drawbacks. First, it can introduce superpixel motion
where no underlying image flow is present. The reasons for this unintended super-
pixel flow are distinct image regions which are smaller than |n|mim. If a superpixel
which corresponds to such a region gets deleted because it is smaller than |7y,
its pixels will be taken over by a neighboring superpixel. If the region is distinct
enough from its surrounding, it can happen that the neighboring superpixel reduces
to the pixel of the distinct region and therefore gets deleted as well. Even in static
scenes, this leads to a superpixel movement toward the distinct region which causes
the superpixel flow to differ significantly from the underlying image flow. A second
issue are the rather random locations of the termination and splitting operations.
As can be seen from Figure 4.7, the shrinking and expanding superpixels are often
found in front or behind a moving object but in many cases do not exactly coincide
with the actual occlusion or disocclusion boundaries present in the video material
(i.e. the black silhouettes in Figure 4.7). This comes from the fact that none of the
used conditions are specific to the area of the occlusion and disocclusion boundaries.

A solution to the first issue can be the method proposed by the author of this
thesis in [63]. Here, the superpixel size gradient is utilized to predict the size of
a superpixel in the future. If a superpixel is small, but its size does not further
decrease, it will not be deleted. While this eliminates the unintended superpixel
motion pattern, the locations of the adaptations are partially still at rather random
spots. This by itself can have a negative influence on the correctness of the superpixel
flow as well. Therefore, a new approach will be proposed in the following section
which explicitly utilizes occlusion and disocclusion information gained during the
superpixel label map propagation.
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4.2.2 Handling by Occlusion and Disocclusion Detection

This section proposes a novel approach to handle structural changes which explicitly
utilizes the occlusion information gained during the forward-directed propagation de-
scribed in the second part of Section 4.1.1. The information consists of overlapping
parts of superpixels on the one hand and gaps in-between superpixels on the other
hand. By classifying the overlapping pixels into the categories of occluded and oc-
cluding candidates, knowledge is gained of where the course of the actual occlusion
boundaries lies. This knowledge is then utilized to decide on the termination of su-
perpixels. Similarly, gaps between the propagated superpixels are used as indicators
for disocclusion where new superpixels should be created.

Before performing the forward-directed propagation, as described in Section 4.1.1,
no statement can be made on any depth ordering of the superpixels. Therefore, they
are at first propagated successively in an arbitrary order onto the new frame. The
process is illustrated in Figure 4.9 on the example of the parachute sequence from
the data set published by [80]. It can be seen that after the propagation through the
shift by the mean optical flow vector the superpixels do overlap. The overlapping
areas can be seen as a binary mask in the lower right image of Figure 4.9. For the
segmentation to be consistent with the underlying image content, the pixels in the
overlapping region need to be assigned to the superpixel which corresponds to the
occluding scene content. But without further information about the objects of the
scene and their movement, it is unclear which superpixel is located on top of which
superpixel. Therefore, a mechanism is needed to determine the order of the super-
pixels and to assign the pixels of the overlapping region to the superpixel whose
appearance model fits best to the image content.

Based on the local appearance information, this assignment problem could be
solved by the contour-based optimization described in Section 2.1.3. But the com-
pactness and homogeneous size constraints of the optimization would be likely to
have a big influence on the final labeling in many cases and could override the
appearance-based assignment. To lower the influence of these, constraints the weight
a in the energy term (2.18) could be decreased. But this approach could result in
superpixels with extremely rugged boundaries since no influence can be wielded
on the homogeneity of the labeling. Hence, this work proposes to employ a graph
cut-based optimization on the overlapping areas as described in Section 2.1.1 in or-
der to be able to enforce a homogeneous labeling in these areas. In this way, the
label homogeneity is influenced by the pairwise energy of the labeling assessment
energy term (2.10). The proposed approach was inspired by [85] where superpixels
are created by laying out overlapping, rectangular patches on the image plane. By
spanning a graph over the pixels, the optimal superpixel affiliation of each pixel can
be found by applying a multi-label graph cut optimization [8]. While the approach
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Figure 4.9: Visualization of the overlap detection. Top row (left to right): Original
frame t. Magnification of the marked area. A manually selected subset of superpixels
is displayed as an overlay. Middle row: Subsequent frame ¢+1. The subset of
superpixels taken from frame ¢ blended over the image content of frame #+1. Bottom
row: Each superpixel of the subset has been shifted by the weighted mean optical
flow vector computed over its respective area (left). For clarity and to emphasize
the overlapping parts of the superpixels (represented through the color blending),
the image data is removed (middle). Thereby, the ordering in still unknown. The
area of the overlapping parts of the superpixels (marked in white in the right image)
are further processed to decide on the ordering of the superpixels.
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of [85] when applied to whole images is computationally highly demanding and can
take more than 10seconds per frame, it can be performed quickly on small image
portions like the overlapping regions. This work therefore proposes to instead of
laying out overlapping patches as in [85] to apply the multi-label optimization on
the parts of the superpixels which overlap after the propagation. Thereby, the as-
signment problem of the overlapping regions is solved without loosing the ability to
enforce a homogeneous labeling during the optimization.

To prepare the graph cut-based optimization, the involved superpixel labels for
any overlapping region are recorded during the propagation. The set of possible
labels will be denoted with k.. As the assignment problem is solved for every
propagated segmentation independently, the frame index will be skipped in this
passage where an ambiguity can be excluded. The graph is spanned only over the
pixels of the overlapping regions n.,,. Each node of the graph represents a pixel to
which one of the labels contained in k,,, can be assigned. The edges between nodes
indicate neighboring pixels in a 4-connected neighborhood. The quality of every
possible labeling of the set of nodes boyy = {0i|b; € Koyr, @ € Moy} can be assessed by
an energy function that is defined as follows

Eovr(bovr) = Z l)(l7 bz) + )\g Z V;’j(bi,bj) . (44)
1E€Novr (3,5) ECovr

Here, ¢,y is the set of cliques in the overlapping area where only the 4-connected
neighbors are regarded. As the decision about the topmost superpixel should depend
on the similarity of the underlying image data to the possible superpixels, the unary

term is defined as follows
; — Ectgf(z! b)7 if b € kovr,i =
D(ib) = { o0, else (4.9)

with Ko, denoting the set of superpixel labels which overlap at the pixel . This
selection of the unary term guarantees that only those labelings produce a finite
total energy which have a label assigned at each location that was actually involved
in the overlap at this position. As the unary term only includes the color depending
energy of Equation (2.18), the superpixel compactness constraint does not interfere
in this case. To still favor equally labeled neighbors and thus a homogeneous and a
spatially coherent labeling, the pairwise term is selected to be

Vij(bisbj) = T(biby) - exp (=825 — 25 P2). (4.6)
Where T'(+,-) is the indicator function which is defined to be zero if both input argu-
ments are equal and one otherwise. The weighing factor § serves as a normalization

constant and includes the variance of all color differences in the overlapping regions
and is chosen to be as defined in [69]

6= (26 (@ -)7) " (47)
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where E[-] denotes the expectation value. Choosing the pairwise term in such a way
prefers equally labeled pixels which encourages a spatially coherent labeling. If dif-
ferent labels are assigned to the pixels and their color values are similar, higher costs
are produced than if their colors are different. Thereby, encouraging a homogeneous
labeling of the segments. The optimal labeling of the graph, which is finally used
to decide on which superpixel overlaps all others, is gained by performing two alpha
expansion iterations of the optimization framework proposed in [41].

Although the pairwise term of Equation (4.4) favors a homogeneous labeling, it is
not guaranteed that the resulting labeling is spatially coherent. For those rare cases
where pixels are split-off from the main mass of a superpixel, the same treatment
as described above is applied. In general, the amount of overlapping superpixels
increases with the degree of motion that is present in the scene. Therefore, the
size of the graph increases in conjunction with the dynamic of the scene. But as
often not all pixels are part of the same 4-connected component, the graph consists
of multiple disjoint subgraphs. For these, the assignment problem can be solved
independently which in general keeps the extent of the graphs at a reasonable level.

After solving the assignment problem in the overlapping regions, the final labeling
is compared with the initially overlapping superpixels. For each pixel that got
occluded, a record is created. This results in a set of occluded pixels per superpixel
b and time index t denoted by nZ‘ﬁ. If the underlying image region of a superpixel
is getting more and more occluded by an object, the sum of occluded portions will
increase over time. Therefore, it is important to keep track of the number of pixels
that have already been occluded. For the case of this framework, the extent of the
sliding window limits the time of recording. To decide whether a superpixel b should
be terminated, the accumulated sum of the occluded pixels is checked against the
previous size of the superpixel with the following condition.

t+F

> il = gl (4.8)

T=t—P

Thereby, |1, p| denotes the number of pixels assigned to superpixel b in the oldest
frame of the sliding window. The condition (4.8) is checked each time a super-
pixel label map is propagated onto a new frame. If it is fulfilled the superpixel is
terminated by the procedure described above.

An additional reason to keep track of the occluded pixels and their position is
illustrated in the left column of Figure 4.10. Here, the superpixels are schemati-
cally depicted by circles and each row depicts a time step. In each time step, a
propagation and a number of Z iterations of the hybrid optimization as described
in Section 3.3 are performed. It can be seen that the red superpixel is shifted in
each time step to the right by the mean flow vector inside the superpixel (indicated
by the arrow). The two superpixels to its right are not shifted as their mean flow
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is zero. Therefore, they should not move at all when the hybrid optimization is
performed. But as a small fraction of the yellow superpixel gets occluded by the red
one, the recalculated spatial center (indicated by the crosses) will be far more right
than the initially propagated one. During the hybrid optimization, the compact-
ness constraint enforced by Ef, in Equation (3.4) will therefore lead to a gradual
right shift of the yellow superpixel. Thereby, it will regain in size as the spatial
distance term in Equation (3.4) favors equally sized superpixels (indicated by the
dotted outline). This in return will lead to a shift of the right superpixel unless it is
stopped by an object boundary which would result in both right superpixels being
squeezed together. This observation is similar to observations made in [14] about
the superpixel flow at image boundaries.

To encounter the problem of the pushed superpixels and to improve the consis-
tency of the superpixel flow, this work proposes to utilize the knowledge gained
during the propagation once more to compensate for the hidden fractions of the
superpixels. In order to integrate the hidden fraction into the hybrid optimization,
they have to be considered when the new spatial centers of the superpixels are re-
calculated. But in general, the sets of hidden pixels of two different frames might
not be aligned to each other. This is because not all half-occluded superpixels are
static as suggested by Figure 4.10 but will also move during the process of occlu-
sion. Therefore, the position of their occluded fractions need to be updated over
time. This enables the utilization of the hidden pixels of different frames to update
the spatial center of subsequent frames. As the hidden fractions of a superpixel are
still a logical part of its visible fraction, the hidden part should move in the same
way as the visible part. This can be achieved by applying the same weighted average
flow vectors to the hidden as to the visible fractions. Hence, the spatial center of a
superpixel b in frame ' of the sliding window that is centered around frame ¢ can
be recalculated as follows

. 1 . =~ I
Bomma| S#e S ae ¥ [ avs )] o
t 1€ny, 4 jEnZ’A‘/’, Ti1=t—P kEanTl T2=T1

Here, |ng| is a substitute for |n | + | Zi/l:tf pnit. | By incorporating the hidden
fractions, the shift of the spatial centers and the resulting expansion is suppressed
which is illustrated in the right column of Figure 4.10. It shows that the newly
calculated spatial center now coincides with the initially propagated center as also
the occluded part is regarded (shaded area). Therefore, the two superpixels on the
right are not shifted in the following iterations of the optimization. From the third
to the fourth row, the yellow superpixel gets occluded completely and is therefore
deleted as Equation (4.8) is fulfilled. Thereby, it was assumed that the size of the
superpixel in the first row is equal to the size in the oldest frame of the sliding
window.
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Figure 4.10: Visualization of the unintentionally shifted superpixels. The left super-
pixel (red) is propagated (indicated by the arrow) towards two stationary superpixels
(yellow, green). Without knowledge of the yellow superpixel getting occluded by the
red superpixel (left column) its newly calculated spatial center will have an offset
compared to the propagated center. The offset of the spatial center will lead to
a shifting of the yellow superpixel as the spatial term of Equation (3.4) pursues
superpixel size equalization (indicated by the dotted circle). This effect is further
propagated which results in a shift of the neighboring (green) superpixel. By uti-
lizing the occlusion information to compute the "true' spatial center (right column)
the drift can be avoided resulting in a more accurate superpixel movement.
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Chapter

Experimental Results

This chapter contains a thorough evaluation of the proposed framework for tempo-
rally consistent superpixels. Therefore, Section 5.1 will describe the experimental
setup and subsequently compare the framework to other state-of-the-art methods
for supervoxels and video-based superpixels. Finally in Section 5.2, the effective-
ness of the proposed framework is demonstrated on the example of interactive video
segmentation.

5.1 Evaluation of Temporally Consistent
Superpixels

The evaluation of the segmentation quality is a complex problem with many aspects
and an additional dependency on the indented application of the segmentation. In
particular, when dealing with video segmentation the evaluation has two sides. On
the one hand, the per frame quality is of interest. This includes how well the seg-
mentation boundaries comply with the visual outlines of objects in the scene. On
the other hand, the spatio-temporal quality of a segmentation is of great impor-
tance. Thereby, it is of interest how exhaustively the temporal connections between
the image regions inherent in the video volume have been extracted and if the tem-
poral connections between superpixels are correct. Additionally, the superpixel flow
should be consistent with the underlying image movement. To assess these segmen-
tation properties, Section 5.1.1 introduces the established benchmark metrics from
the literature. In Section 5.1.2, the utilized data sets as well as the experimental
setup are described. This also includes the optimal framework-parameter selection.
Which is achieved via grid search on an independent training set of video sequences.
Subsequently, the segmentation quality is evaluated and compared to the state of the
art on a test set for which the results are shown in Sections 5.1.3 and 5.1.4. Finally,
the computational complexity of the proposed approach is evaluated in Section 5.1.6.
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5.1.1 Benchmark Metrics

The standard metric used to evaluate a binary image or video segmentation is the
Misclassification Rate e. It measures the ratio of incorrectly labeled pixels,
i.e. foreground pixels which were labeled as background pixels and vice versa, to
the total amount of pixels. Given a segmentation into two pixel sets my and 14,
(foreground and background) as well as a ground truth segmentation denoted by gy,
and g, the misclassification rate can be calculated as follows

c— 175 0 Gigl + 1205 N gl
1955 U gb]

. (5.1)

In the case of an interactive segmentation, where a user manually marks some pixels
as foreground or background, the manually marked pixels are entirely excluded from
the calculation of the metric.

A more complex case is the evaluation of a multi-label segmentation with B seg-
ments nq,...,np and M ground truth segments gi,...,gy; where each segment contains
e.g. an object of the scene. To be able to easily assess the correct classification of a
pixel in such a scenario, two conditions have to be fulfilled. First, the granularity of
the generated segmentation has to be equal to the granularity of the ground truth
segmentation. A group of people, for example, has to be segmented as a whole or
as individual entities in both partitionings so that B= M. Second, the correspon-
dences between the individual parts of the segmentation have to be known, i.e. the
knowledge which segment n, corresponds to which ground truth segment g,. As
a superpixel segmentation is an explicit oversegmentation of an image many ob-
jects will most likely be segmented into several parts. The location of these interior
segmentation boundaries is often unpredictable and depends on different factors in-
cluding the initialization and compactness constraints. Hence, it is unclear which
of the boundaries are the relevant ones. Additionally, no exclusive correspondences
between the segments and a ground truth segmentation can be given a priori. The
same holds true for the case of video oversegmentation and temporally consistent
superpixels. Consequently, a set of specialized evaluation metrics is necessary to
assess the segmentation quality. These metrics will be described in the remainder
of this section. While some of the metrics where initially proposed for the image
segmentation case and were extended later to the video domain, others have been
explicitly tailored for the video case. Further details about the metrics can be found
in [57, 58, 74, 92, 93].

Since it is initially unclear which superpixel can be assigned to which ground truth
segment, Levinshtein et al. [47] propose to measure the number of pixels bleeding
out of the ground truth segments. Thereby, penalizing superpixels which cross a
boundary of the ground truth segmentation. The metric was extended to the video
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domain by [92] as 3D Undersegmentation Error and can be calculated for a
ground truth segmentation with gi,...,gas as follows

1A (Seumngnz 7)) = lgul

:MZ

m=1 ‘gm‘

UE

(5.2)

A second metric for the evaluation of a video-based oversegmentation that is pro-
posed in [92] is the 3D Segmentation Accuracy. Prior to [92], a similar metric
was already utilized to assess the segmentation quality on single images, e.g. in [51].
It measures the fraction of the ground truth segmentation that can be correctly
reproduced by the superpixel segmentation. Thereby, it is again assumed that in a
high quality segmentation each superpixel should only overlap with a single ground
truth segment. A superpixel is assigned to a ground truth segment if the majority
of the pixels of the superpixel resides inside the ground truth segment. Given M
ground truth segments and the set of superpixel labels k,,, which are assigned to
the ground truth segment g,,, the accuracy can be calculated as

1 M Zb€km (|nb n gml)

SA=—
M m=1 |gm‘

. (5.3)

The above metrics presume the availability of a ground truth labeling of the in-
put data. As the creation of such a ground truth segmentation is a labor intensive
task, several authors proposed metrics to assess the quality of a superpixel segmen-
tation without this information. A widely used metric is the Explained Variation
proposed in [57]. It indicates how well the original image information can be rep-

resented with a given superpixel segmentation as a representation of lowest detail.
Its extension to the video domain, proposed in [92], can be calculated as follows

(s — )T — i)
i@ — )T (@ — i)
Here, ji€ denotes the global mean color vector and ¥ is the color vector at the voxel

position i. The vector i€ is the mean color vector inside the segment that the voxel
7 is assigned to.

EV =

(5.4)

A further metric, proposed in [92], to evaluate the spatio-temporal segmentation
quality in the absence of ground truth information, is the average temporal length.
It calculates the mean duration of the spatio-temporal segments to measure the
ability to track image regions over time. As the maximal achievable mean duration
depends on the number of frames of the segmented video sequence, the metric is hard
to compare when calculated on videos of different length. It was therefore proposed
in [14] to divide the average temporal length of the spatio-temporal segments by the
total number of video frames to gain the final metric named Temporal Extent.
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While this metric is a valid indicator for the temporal consistency of a segmenta-
tion, it has to be evaluated in conjunction with other metrics which quantify the
segmentation error. This is necessary because a long temporal duration of spatio-
temporal segments could also be created by a static segmentation. But a static
segmentation would also result in a high segmentation error for scenes with object
or camera motion which is not indicated in the temporal extent. Consequently, long
temporal segments are only of high value with a low spatio-temporal segmentation
error indicated by the 3D segmentation accuracy or the 3D undersegmentation error.

Another video domain metric to evaluate the quality of a spatio-temporal overseg-
mentation is the so called Label Consistency. It is proposed in [14] and measures
the consistency of the superpixel flow with the underlying image movements. To
measure the label consistency, it is assumed that the true movement of each pixel is
known and thus the labeling of a frame can be propagated using this ground truth
knowledge. Afterwards, the number of pixels which agree between the propagated
labeling and the labeling generated by the algorithm for this frame is determined.
The label consistency is then given as the ratio between the number of agreeing pixels
and the total number of pixels per frame averaged over all frames. The importance of
this metric highly depends on the use case of the spatio-temporal oversegmentation.
If the final objective is solely to segment the objects of the scene the label consis-
tency property may be of minor priority. This is because a correct segmentation
of an object can be created even if the movement of the spatio-temporal segments
inside and outside the objects differ from the image flow. Only if object boundaries
are crossed this leads to an error in the final segmentation. For other applications
such as object tracking the label consistency can be of high value as the motion of
the segments might be used as a feature in the tracking pipeline.

The purpose of the above described metrics is to evaluate the spatio-temporal
quality of a video oversegmentation. Since each spatio-temporal oversegmentation
can be sliced at frame instances, to form a superpixel segmentation of the frame,
this work will additionally utilize the following metrics to evaluate the per frame
segmentation quality. To measure the compliance of the superpixel boundaries with
the boundaries of the ground truth segmentation, the Boundary Recall will be
used. It measures the fraction of the boundaries, annotated in the ground truth
segmentation, which is covered by superpixel boundaries. A ground truth boundary
pixel is thereby counted as covered if a superpixel boundary is located within a
certain distance to this pixel. In the experiments conducted for this thesis, the
distance is set to one pixel.

Additional to a high boundary recall, many authors argue that it is favorable
for superpixels to have homogeneous size and compact shape. Therefore, the com-
pactness of the created segments will be evaluated by using the Superpixel Com-
pactness metric C, proposed in [74]. It utilizes the Iso-perimetric Quotient to
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quantify the circularity of a superpixel. The quotient is also used in [58] to assess the
compactness of superpixels. For a superpixel b the iso-perimetric quotient is defined
as the quotient of the superpixel area |n,| and the area of a circle with a radius 7,
which is equivalent to the radius of the superpixel. Thus, it can be calculated as

_ | Amny

Q=

2 = 2
) L;

where Ly, is the perimeter of the superpixel b. The superpixel compactness C' for the
segmentation of an image is then computed as follows

C=> Q. (5.6)

The different superpixel sizes are taken into account by weighting each quotient with
the ratio of the superpixel size |r| to the total number of pixels in the image |n|.
In order to assess the homogeneity of the superpixel sizes, the Variance of Area,
proposed in [58], will be utilized. It is calculated for a frame ¢ as

VoA(t) = %E (7] — 52)7] (5.7)

where E[] is the expectation value, ny; is the set of pixel of the superpixel b in
frame t, and S? is the average superpixel area.

In the original work of [92] the spatio-temporal benchmark metrics, such as the
3D undersegmentation error and the 3D segmentation accuracy, are plotted over the
average number of supervoxels per video sequence. Opposed to this, it is proposed
in [14] to plot the metrics over the average number of superpixels per frame. This
representation is justified by arguing that videos of different length and content
require in general a different number of spatio-temporal segments. While this argu-
ment is valid, such a representation also results in the loss of the spatio-temporal
aspect of the metrics. This is because such a representation misses all indication
of the temporal consistency of a segmentation. Thereby, an independent superpixel
segmentation of the individual frames (without any connection between the super-
pixels of different frames) can achieve the same or a better segmentation quality (in
terms of these metrics) as a temporal consistent segmentation. The lack in spatio-
temporal segmentation quality, in this case, is only indicated by additional metrics
like the temporal extent and the label consistency. Therefore, a reliable evaluation
in this case can only be done by looking to all metrics simultaneously.

In order to avoid the loss of the spatio-temporal aspect of the metrics and to
facilitate the evaluation, the results of the video-based metrics will be plotted over
the number of supervoxels in this thesis. In contrast to that, the boundary recall,
the superpixel compactness, as well as the variance of area are primarily 2D metrics
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and will therefore be plotted over the average number of superpixels per frame. To
take into account the different lengths and characteristics of video sequences, the
metrics will be plotted separately for individual data sets whose videos share those
properties to a certain degree. The benchmark metrics were partially computed
using the code provided by [3] and [92].

5.1.2 Data Sets and Experimental Setup

To find the optimal parameter settings of the proposed framework for temporally
consistent superpixels and to evaluate its segmentation quality, a diverse set of im-
age and video data is required. This subsection introduces the utilized data sets and
describes their features and limitations.

Four of the benchmark metrics described above require the availability of some
kind of ground truth information. Hence, the video material needs to be annotated
by human subjects or has to be produced synthetically. The material utilized in
this thesis to evaluate the segmentation quality of the proposed framework in a
qualitative and quantitative manner consists of three separate data sets containing
different video material. The data sets vary in the characteristics of the scenes that
are depicted as well as in the availability of ground truth data.

The first data set is provided by Chen and Corso [16] and consists of a collection
of eight video clips with up to 85 frames per clip. While the number of sequences is
low compared to other data sets, the provided ground truth information is of high
value. For each frame of the eight sequences a multi-label ground truth segmentation
is provided which is consistent over all frames. The temporally dense availability
of the ground truth data enables an accurate evaluation of the spatio-temporal seg-
mentation quality. In particular for approaches which provide short-range temporal
segments.

The second data set is much larger and based on video sequences provided by
Sundberg et al. [76]. It contains 100 video clips which are split into a training and
a testing set containing 40 and 60 video clips, respectively. Each clip provides up
to 121 frames and is provided in a high-definition (HD) resolution, i.e. 1920 x 1080
or 1280 x 720. Additionally, the video material is provided in a lower resolution
version with only half the extent in both dimensions. For the experiments described
in the remainder of this subsection the testing portion of the data set is utilized.
To reduce the high computational burden of the experiments, the lower resolution
version of the clips is used. In contrast to the first data set, not for every frame
a ground truth segmentation is available. Instead, a set of four multi-label ground
truth segmentations is provided by [30] for every 20th frame. The ground truth data
for each frame was created by four different human subjects which were free to select
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Figure 5.1: Comparison of the coarseness of different ground truth segmentations on
the example of the birds of paradise sequence from [76]. The original frame in the
left image was segmented by four different human subjects. Two of the four ground
truth segmentations, provided by [30], are shown on the right hand side. While the
right frame is segmented into details like leaves and sticks, the other partition only
separates the two birds from the background.

the coarseness of the created segmentation. Therefore, the provided ground truth
varies in coarseness from subject to subject. Figure 5.1 shows a frame of the birds of
paradise sequence with the segmentation of two subjects. It can be seen that one of
the subjects segmented the example frame into three segments. Simultaneously, the
other subject chose to provide a finer segmentation with individual leaves and sticks
separated from the background. When evaluating a video segmentation the latter
type of ground truth segmentation will inevitably lead to a higher segmentation error
if the number of ground truth segments is higher than the number of automatically
generated ones. Since in this section only oversegmentation methods are considered
in the evaluation, it can be assumed that the number of automatically generated
segments is in general larger than the number of ground truth segments. Hence, the
higher error, due to the higher granularity of the ground truth segmentation, has
only a marginal impact on the resulting metrics. For the sake of convenience, the
first set of data will be denoted as Chen’s data set and the second one as Sundberg’s
data set.

To measure the label consistency metric, described in Section 5.1.1, ground truth
optical flow information is required. Since for both former data sets no such informa-
tion is provided, the MPI Sintel flow data set is utilized as an additional data source.
It is provided by [13] and consists of 23 synthetic scenes taken from the Sintel movie.
The rendered sequences are up to 53 frames long and contain a lot of object motion,
very dynamic camera movements, as well as motion and defocus blur. In Figure 5.2
a pair of example frames and the corresponding ground truth optical flow are shown.

In order to evaluate the proposed framework, it is implemented in C++. It was al-
ready discussed, in Chapter 4, that the computation of the dense optical flow makes
up a large portion of the computational burden of the framework. Therefore, be-
sides a version with forward-directed, dense optical flow propagation, as described
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I'*.

Figure 5.2: Two example of the ground truth optical flow information provided by
the MPT Sintel data set [13] (cropped). The color coding of the optical flow is the
same as in Figure 2.13.

in Section 4.1.1, a second variant is implemented using the mesh-based propaga-
tion, described in Section 4.1.2. The former is combined with the occlusion-based
handling of the structural changes, as described in Section 4.2.2, and the latter is
combined with the min-max-size-based handling, described in Section 4.2.1. In the
following, the first variant of the framework will be denoted by TCS (occlusion) and
the second light-weight version by TCS (mesh). Both variants are implemented us-
ing the OpenCV library [11]. The dense optical flow, utilized in the TCS (occlusion)
variant, is created using the library provided by [49]. To compute the minimal cut in
the case of an overlap during the propagation of the superpixels, the implementation
of [41] is utilized.

Besides the user selected number of superpixel per frame |k|, both variants of the
proposed framework contain a common set of parameters controlling certain aspects
of the resulting segmentation. On the one hand, this is the configuration of the
sliding window (F and P) . And on the other hand, the spatial weight o which
in Equation (3.4) regulates the spatial compactness of the temporally consistent
superpixels. Further, both variants have exclusive parameters which are namely
the min-max-size thresholds (|7 |min and |7 |max) for TCS (mesh) and the weighting
term Ag for TCS (occlusion). The weighting term Ag of Equation (4.4) has only
a modest influence on the consistency of the labeling in the overlapping areas. It
is empirically set to a common value of 50 [69]. The size thresholds are set to
[P |min = 0.5 - S? and |n|max = 1.5 - S2. Thereby, S? is the average superpixel size
which is derived from the number of superpixels per frame. By selecting these values
the number of actually generated superpixels per frame tends to settle around the
user selected value. The selection of the remaining parameter values by performing a
set of preliminary experiments will be described in the following passage. To avoid
any overfitting to the video data, the preliminary experiments are performed on
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separate training data which is not used in the final evaluation.

The spatial weighting term « is an inherited parameter from the single image
superpixel approach of Schick et al. [74], revisited in Section 2.1.3. It controls the
compactness of the created superpixels, as it has been qualitatively visualized in
Figure 2.7. For a segmentation to be of high quality, the generated segmentation
boundaries should be coherent to the object boundaries visible in the image. On the
other hand, it has been argued by [60, 47, 74] that it is beneficial to have compact and
equally sized superpixels. It e.g. allows for a better capturing of spatially coherent
information. In addition, it simplifies the execution of subsequent processing steps,
as e.g. equally sized superpixels tend to have a lower average number of neighbors
which eases the evaluation of neighborhood relations. Additionally, further calcula-
tions such as feature extraction can be performed on almost equally sized segments.
But as it has been stated by Schick et al. in [74], segmentations with a high com-
pactness tend to have a lower boundary recall and vice versa. When the proposed
framework is applied to single images instead of video material, it behaves equiv-
alently with the original algorithm proposed in [74]. This is because the sliding
window only contains a single frame on which the optimization is done indepen-
dently, during the frame passes through the future and current frames. Therefore,
the images of the Berkeley image segmentation data set [54] will be initially used
to discuss the optimal spatial weight. The data set contains a diverse set of images
and provides five ground truth segmentations per image created by different human
subjects. For the following experiments the 100 images of the validation subset were
utilized.

In Figure 5.3, the 2D boundary recall and the superpixel compactness for the
subset are plotted over the number of superpixels per image. For the graphs the
spatial weight @ was set to different equidistant values from the range between 0.86
and 0.98. The graphs show that increasing the value of the spatial weighting leads
to more compact superpixels. But simultaneously, it also decreases the recall of
the boundaries, as with higher circularity it gets more difficult to trace the fine
grained boundaries of the objects. For the sake of clarity, only the boundary recall
and superpixel compactness are plotted, as additional metrics like the variance of
area metric in this case basically provide the same information. For this case, the
variance of area grows with decreased values of a. The high negative correlation
between the boundary recall and superpixel compactness metrics, as it is shown
in Figure 5.3, is also described in [74]. As a consequence, the authors argue that
the selection of the optimal parameter for single images is highly depending on the
intended segmentation application.

To further investigate the influence of the spatial weight on the spatio-temporal
segmentation quality, additional experiments on video data are required. Thereby,
the sliding window gets filled and additional parameters have to be considered.
These are the number of past frames P, the number of future frames F', as well as
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Figure 5.3: Boundary recall and superpixel compactness for different values of the
spatial weight o computed on the validation subset of the Berkeley image segmenta-
tion data set [54] plotted over the number of superpixels per image. Segmentations
with a high boundary recall simultaneously have a low superpixel compactness.

the number of iterations after each shift Z, as described in Section 3.4. The hy-
brid optimization assigns the boundary pixels of the superpixels to the best fitting
superpixel. During this process only the segmentations of the future and current
frames are altered. Therefore, the selection of F' influences the ability of the al-
gorithm to adapt the segmentation to the image content. This is because at all
mutable positions (i.e. future and current) the frames are optimized for Z iterations
after each shift of the sliding window. Thus, selecting F' too small may result in a
higher segmentation error, while selecting a too high value unnecessarily increases
the computational burden. In [1], the total number of iterations for the SLIC su-
perpixels algorithm is given with 10. As the contour evolving optimization, utilized
in the proposed framework, only allows label flips at the superpixel boundaries it
converges slower than the original SLIC algorithm. To compensate for the slower
convergence, the number of iterations will be set to Z =10 and the number of fu-
ture frames to F' = 2. This results in a total of 30 iterations performed on each
frame before it is shifted into the immutable area of the past frames. Although the
number of iterations is increased in comparison to SLIC, the total processing time
of the optimization is only marginally higher. This is because the contour-based
optimization only has to consider the boundary pixels which reduces the number of
computationally intensive operations that have to be performed in each iteration.

Fixing the number of future frames leaves two remaining parameters to be se-
lected, namely « and P. Their value for the main experiments will be selected by
optimizing for the three main benchmark metrics for spatio-temporal segmentation
quality, namely the 3D segmentation accuracy (SA), 3D undersegmentation error
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(UE) and temporal extent (TEX). To avoid any overfitting on the test data, the
optimization is performed on a separate data set, provided by [80]. The Segtrack
data set consists of six video clips with up to 73 frames and a binary ground truth
segmentation for each frame. The parameter optimization is achieved by performing
a grid search in the intervals o = [0.86,0.98] and P = [2, 20] of the parameter space.
For each combination of parameters a segmentation of the whole Segtrack data set in
seven levels of coarseness is performed. The levels were selected to be equidistantly
distributed in the range of 50 to 950 superpixels per frame. The final benchmark
value for each of the three metrics is yielded by averaging over all sequences and
levels of coarseness. Thereby, gaining a single value C,, for each parameter combi-
nation (o, P) and benchmark metric m € {SA, TEX, UE}. The sets of values for
the different metrics are separately normalized to lie in the interval between zero
and one. Further, the scale of the 3D undersegmentation error is inverted and thus
higher denoted a better result for all ¢,,. The results for the selected range of pa-
rameter combinations are depicted as color coded maps in Figure 5.4.

The plot of the 3D segmentation accuracy in Figure 5.4(a) shows that there is a
negligible influence of the number of past frames on the segmentation accuracy. If,
on the other hand, the spatial weight is selected to be too high the segmentation
accuracy is decreased severely. This is different for the temporal extent and the 3D
undersegmentation error, as it can be seen in (b) and (c¢) of the Figure 5.4. Here,
both metrics show an improvement with increasing compactness of the superpixels.
In contrast to this behavior, the influence of the number of past frames has an in-
verse nature. While the temporal extent decreases with a raising number of past
frames, the segmentation error simultaneously improves. Remember, that the scale
of the undersegmentation error is reversed in this passage and thus red means better.
This behavior is in line with the purpose of the past frames, as it was described in
Section 3.4. Since the superpixel segmentations of the past frames are unaltered,
they preserve the color of the superpixels and thus prevent them from overlapping
object boundaries. Up to some extent the effect can be observed in Figure 5.4 (c),
until it levels off in the right half of the plot.

In order to choose the optimal set of parameters, all three metrics have to be
regarded simultaneously. It is therefore proposed in this thesis to combine the
individual terms Em(a, P) in a multiplicative way to form the combined metric Crotal
as follows

Etotal(av P) = ESA(OQ P) . ETEX(O@ P) . EUE(OQ P) (58)

It should be noted that the scaling of the terms as well as their combination could
have been chosen differently, e.g. a weighted sum where the weights reflect ap-
plication specific preferences. But in the absence of any specific requirement the
multiplicative approach was chosen, to avoid the need for an explicit weighting of
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Figure 5.4: Color coded plots for the 3D segmentation accuracy (s (e, P), temporal
extent (rex(a, P), and 3D undersegmentation error (yg(a, P). For each rectangle
the metrics were averaged over all sequences of the Segtrack [80] data set and seven
levels of coarseness. The color maps are adjusted to the minimum and maximum
values of the normalized metrics. Here, the scale of the 3D undersegmentation error
is inverted, so red means better in all plots.

the terms. Thereby, providing a rather general optimal choice of the parameters.
The result of the combination is plotted in Figure 5.5. It can be seen that for the
chosen scaling and combination the optimal band of parameters lies around a=0.94
to o =0.96 with a tendency to higher numbers of past frames. For the following
evaluation, the parameters are selected to be @ = 0.96 and P = 16, as they form
the maximum value in the chosen representation.

In the remainder of Section 5.1, the two variants of the proposed framework will
be further evaluated and compared to three state-of-the-art spatio-temporal over-
segmentation approaches from the literature. Namely, the streaming hierarchical
video segmentation (sGBH) method of [93], temporal superpixels (TSP) [14], and on-
line video seeds (OVS) [82]. The methods are chosen for the comparison, because all
four approaches only process a subset of frames at once. Thereby, all methods are in
principle capable of a streaming processing mode, where no simultaneous access to
the whole video clip is required. For the evaluation, the implementations provided
on the authors’ websites were used. Whenever possible, the parameters were set as
mentioned in the authors’ publications or documentation. Just like the proposed
framework, the implementations of TSP and OVS only allow to set the desired num-
ber of superpixels per frame to select the granularity of the segmentation. Hence,
the resulting number of supervoxels per video sequence can only be influences indi-
rectly. To allow for a fair comparison, the numbers of superpixels per frame were
selected in such a way that the number of generated supervoxels is approximately
identical for all approaches.
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Figure 5.5: Plot of the multiplicative combination Etotal(a, P) of the three metrics
shown in Figure 5.4. The maximum of the combined metric lies in the band from
a=0.94 to «=0.96 with a tendency to higher numbers of past frames P.

5.1.3 Per Frame Segmentation Quality

This subsection will be focused on the segmentation quality achieved on a per frame
level. Therefore, the quality is first assessed in a qualitative and subsequently in
a quantitative manner by using the benchmark metrics described in Section 5.1.1.
Thereby, only those metrics are considered which do not regard the temporal con-
sistency of the segmentation.

In Figure 5.6 color-coded label maps for the proposed framework and the three
state-of-the-art approaches are shown. For each approach a level of detail was chosen
showing approximately 1500 superpixels for the left column and about 400 super-
pixels for the two right columns. The figure only shows label maps for the TCS
(occlusion) variant because on the frame level no difference is noticeable between
the two variations of TCS.

The most noticeable difference in segmentation characteristics can be seen when
comparing the segmentation of TSP and TCS with the segmentation of sGBH and OVS.
While the superpixels of the former two algorithms are compact and approximately
equally shaped. the two latter ones produce a wide variety of sizes and irregular
shapes. The difference between the proposed approach and TSP is less obvious and
can be noticed only in smaller details, such as the folds in the shirt of the salesman
or the book shelf, where the shapes of TSP are less compact. It should also be noted
that OVS as well as TSP produce elongated segments along the boundaries of many
objects. This effect is in particular visible in the ice skating sequence of Figure 5.6.
These elongated segments are as thin as a row of one pixel and will therefore cover
a ground truth segmentation boundary on both sides of the segment. This can have
huge impact on the boundary recall which is confirmed in the quantitative metrics.
To better visualize the difference between the results of the TSP approach and the
TCS variant, a magnification of two of the color-coded label maps can be found in
Figure 5.7.
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ovs SGBH TCS (occlusion) Original

TSP

Figure 5.6: Qualitative comparison of color-coded label maps. All frames have
approximately 1500 (left column) or 400 (middle and right columns) superpixels
(frames are partially cropped for display purposes). Only TCS (occlusion) is shown,
because the difference to TCS (mesh) is not noticeable. The label maps show that
the proposed TCS method and TSP produce more compact superpixels than sGBH
and OVS.
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Original TSP TCS (occlusion)

Figure 5.7: Detail view of the color-coded label maps of the salesman and the ice
skating sequence. The label maps on the right show the magnified area of the
red rectangle for the TSP and the TCS (occlusion) approach. In the top row the
magnification shows that the TSP approach creates irregularly shaped segments in
the area of the shirt, where the segments of the TCS variant are more compact.
In the bottom row it can be seen that the TSP approach creates many elongated
segments along object boundaries which have a misleading impact on the boundary
recall metric. Despite the higher boundary recall, the thin segments do not result in
a more meaningful segmentation, because it is unclear if the line of pixels belongs
to the background or the foreground.

In Figure 5.8, the boundary recall and the superpixel compactness are plotted over
the number of superpixels per frame. As it can be expected the boundary recall in-
creases for all approaches with increasing number of superpixels. The plots show
the same inverse correlation between the superpixel compactness and the boundary
recall as it was already observed in Section 5.1.2. The approaches with less compact
superpixel have a higher boundary recall than the approaches with more compact
ones. Like it was mentioned earlier, TCS (occlusion) and TCS (mesh) produce seg-
mentations with virtually no difference on the 2D benchmark metrics. The bound-
ary recall for the approaches producing the elongated superpixels along the object
boundaries (OVS and TSP) is especially high on Chen’s data set. For Sundberg’s data
set the performance of TSP drops below the performance of TCS (occlusion) and TCS
(mesh). The performance of the proposed approach is worst for Chen’s data set.
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Figure 5.8: Boundary recall and superpixel compactness for different numbers of
superpixels evaluated for Chen’s [16] (left) and Sundberg’s [76] (right) data set. It
should be noted that the superpixel compactness as well as the boundary recall of
the two TCS methods could be adjusted by changing the spatial weight «, as it was
shown in Section 5.1.2.

As it has been shown in the previous subsection, the spatial weighting parameter «
could be used to make the algorithm more sensitive to fine-grained details. Thereby,
achieving a better boundary recall at the price of a lower compactness.

The visual impression of Figure 5.6, that the superpixels produced by sGBH and
OVS vary more in size than the ones produced by TCS and TSP, is confirmed by the
quantitative metrics. In Figure 5.9, the variance of area is plotted over the number
of superpixel per frame. It can be seen that the superpixels produced by sGBH and
OVS have a variance in size of over 2. For Sundberg’s data set the variance of sGBH
is particularly high and starts at about 6 and linearly increases up to 18. The lowest
variance of area is produced by the proposed framework with a variance of about
0.1 on a wide range of superpixel numbers. Only for Sundberg’s data set the TSP
approach gains a similar variance of area.

Overall, both TCS variants perform equally well in terms of per frame segmen-
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Figure 5.9: Variance of area for different numbers of superpixels evaluated for
Chen’s and Sundberg’s data set. The variance of area curve of sGBH on Sund-
berg’s data set starts at about 6 and linearly ramps up to 18. It therefore exceeds
the scale of the graph.

tation quality. In comparison to the other approaches the compactness of the seg-
ments is higher in most cases which results in a slightly worse boundary recall. As
discussed in the previous section this could be regulated by adjusting the spatial
weighting term . Reducing the value increases the boundary recall but also leads
to an increased variance of area and lowered superpixel compactness. Ultimately,
the decision on the value of the spatial weight is application specific, as in some
applications compactness has higher priority than boundary recall and vice versa.

5.1.4 Spatio-Temporal Segmentation Quality

After assessing the per frame segmentation quality in the previous subsection, this
subsection will focus on the spatio-temporal segmentation quality. Therefore, it is
first evaluated how well the generated segmentations comply with the ground truth
segmentation in all three dimensions of the video. Subsequently, it is assessed how
well the segmentations represent the data of the video volume.

For the first part of the evaluation, the 3D segmentation accuracy as well as
the 3D undersegmentation error are utilized. Both penalize the crossing of spatio-
temporal segmentation boundaries. The metrics are plotted in Figure 5.10 for both
data sets which have a ground truth segmentation available. As mentioned in Sec-
tion 5.1.1 the metrics are plotted over the number of supervoxels. Thereby avoiding
that a frame-wise executed superpixel segmentation produces equivalent benchmark
results without connecting the superpixels across different frames. For both data
sets the 3D segmentation accuracy increases with raising numbers of supervoxels.
The only exception is the OVS approach which produces an almost flat accuracy

R P am 24.01.2026, 01:38:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186861108

5.1 Evaluation of Temporally Consistent Superpixels 81

Chen’s data set [16] Sundberg’s data set [76]

—
—

I
%
e
%

o
=Y
I
=Y

'S
<
~

T
|

3D Segmentation Accuracy

3D Segmentation Accuracy

0.2 0.2 B
TCS (mesh
TCS (occlusion
0 Il [ 0 Il Il Il Il
200 400 600 800 1000 800 1200 1600 2000 2400 2800
Number of Supervoxels Number of Supervoxels
25

[¥)
=]

—
o

3D Undersegmentation Error

3D Undersegmentation Error

10
5
0 1 1 1 0 1 1 1 1
200 400 600 800 1000 800 1200 1600 2000 2400 2800
Number of Supervoxels Number of Supervoxels

Figure 5.10: 3D segmentation accuracy and 3D undersegmentation error for
Chen’s [16] (left) and Sundberg’s [76] (right) data set. While for the segmentation
accuracy higher means better, for the undersegmentation error lower means better.
In nearly all supervoxel ranges the proposed TCS (occlusion) method outperforms
the other approaches.

graph. Thereby, the achieved accuracy is the worst for Sundberg’s data set. The 3D
undersegmentation error decreases for all approaches with finer segmentation gran-
ularity. The unusual behavior of OVS for Sundberg’s data set may have its roots in
the implementation provided by the authors. The automatically selected number of
histogram bins used for the segmentation is hard coded for several fixed numbers of
superpixels. Where the available superpixel numbers are more suitable for Chen’s
data set. These preset values may not work well on Sundberg’s data set, as it has a
higher resolution and a larger variety of complexity. This might also be the case for
the variance of area metric in Figure 5.9 of the previous section. Both cases reveal
a high dependency of OVS’s segmentation quality on the selected parameters.

In terms of 3D segmentation accuracy, the TCS (occlusion) variant performs best
on both data sets for nearly all ranges of supervoxels. The same holds true for the
3D undersegmentation error on both data sets. TCS (mesh) scores at least second
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Figure 5.11: The the explained variation as well as the temporal extent of the spatio-
temporal segments for Chen’s [16] (left) and Sundberg’s [76] (right) data set. Al-
though OVS creates the segments with the longest temporal extent, it also produces
a high segmentation error as it can be seen in Figure 5.10.

best in terms of 3D undersegmentation error. For Chen’s data set its 3D segmen-
tation accuracy is lower than the one produced by TSP and TCS (occlusion). The
worst performance in terms of 3D undersegmentation error for nearly all segmenta-
tion granularities is shown by the sGBH approach.

Next, it is examined how well a segmentation captures the temporal connections
of the image regions inherent in the video volume and how well it can represent
the underlying image content. Therefore, the explained variation and the temporal
extent of the spatio-temporal segments are plotted in Figure 5.11.

In the plots of the explained variation it can be seen that in general all approaches
produce a better explained variation score with an increasing number of supervoxels.
Only the score of the OVS approach decreases with a finer segmentation granularity.
This tendency can be observed in both data sets. Further, it can be seen that the
TSP approach produces the highest explained variation for the small data set of
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Chen. For the bigger data set of Sundbergh, the TCS (occlusion) variant performs
best while TCS (mesh) produces the second best explained variation for most su-
pervoxel ranges. Here, the TSP variant is only at par with the TCS (mesh) variant
for higher numbers of supervoxels.

Besides a low segmentation error, a spatio-temporal segmentation of high quality
should capture the temporal connections as completely as possible. Hence, it should
produce long enduring segments while having a high 3D segmentation accuracy and
a low 3D undersegmentation error. The plots of the temporal extent in the second
row of Figure 5.11 show that with increasing number of supervoxels the duration of
the spatio-temporal segments in general decreases. For both data sets OVS generates
the longest spatio-temporal segments. But as it can be seen in Figure 5.10, it also
produces a low 3D segmentation accuracy and a high 3D undersegmentation error.
This suggests that many of the supervoxels erroneously cross the spatio-temporal
boundaries of the objects. The same holds true for the sGBH approach on Chen’s
data set. Here, the supervoxels have a longer duration for the coarser segmentation
granularities but also a high error and low accuracy. TCS (occlusion), on the other
hand, generates temporally long superpixel trajectories while simultaneously pro-
ducing the lowest error and the highest accuracy of all other approaches for nearly
all granularities. The segments of the TCS (mesh) approach have a shorter duration
than the ones produces by the TCS (occlusion) variant while their segmentation error
is nearly equal.

To summarize, the highest spatio-temporal segmentation quality in terms of 3D
segmentation accuracy and 3D undersegmentation error is achieved by the TCS (oc-
clusion) approach. Second best in these metrics for most supervoxel ranges is the
mesh-based propagation variant of TCS. The low segmentation error of the two TCS
variants is combined with the second and third highest temporal extent of the spatio-
temporal segments. This combination can be beneficial in many applications like
object tracking and ROI video coding as it better links image regions over time. The
latter has e.g. been shown in [56]. Another application which benefits from tempo-
rally long segments is the task of interactive video segmentation which will be shown
in Section 5.2. The only state-of-the-art approach which constantly creates tempo-
rally longer segments is OVS. But the segmentation error and accuracy achieved by
this approach are worse for all data sets. This indicates that the segments often
erroneously cross spatio-temporal object boundaries. These segmentation errors are
especially harmful in the case of applying the method as a preprocessing step. This
is because later-stage algorithms, which use the segments of the oversegmentation
as their basic building blocks, can not easily recover from these errors afterwards.

A property not yet examined is the compliance of the superpixel flow with the
image flow. The following section will therefore qualitatively compare the label
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consistency of the two proposed TCS variants. Subsequently, the label consistency
will be quantitatively evaluated and compared to the state-of-the-art competitors.

5.1.5 Superpixel Label Consistency

The occlusion-aware handling of the structural changes included in the TCS (oc-
clusion) approach described in Section 4.2.2 should increase the consistency of the
superpixel flow with the underlying image flow. To visualize the difference in flow
consistency to the size-based handling of the TCS (mesh) variant, a qualitative com-
parison is shown in the Figures 5.12 and 5.13. The figures show frames of a sequence
provided by [79] with a car moving from the right to the left. The top and bottom
row show results from TCS (mesh) and TCS (occlusion), respectively. For visualiza-
tion purposes a subset of the superpixels was manually marked and colored on one
frame. The superpixels in the following frames are automatically selected through
their temporal connections.

In the top row of Figure 5.12, it can be seen that the TCS (mesh) approach suffers
from the pushed superpizels effect described in Section 4.2.2. The purely superpixel
size-based approach to handle structural changes (see Section 4.2.1) is unaware of
the occlusion boundary in front of the car. As the superpixels are not small enough
to be terminated, they are pushed across the frame, while the car is moving. With
the occlusion-aware handling of the TCS (occlusion) approach, the superpixels are
terminated, and the pushing effect induced by the movement of the car is effectively
eliminated. Consequently, the superpixel flow better complies with the underlying
image flow.

A second instance, where the disocclusion awareness of the TCS (occlusion) ap-
proach leads to an increased label consistency, is shown in Figure 5.13. Here, frames
from the end of the same sequence are depicted. Again, the results created by TCS
(mesh) are shown in the top row and some superpixels are manually selected for
the visualization. It can be observed that the superpixels from above the car move
down after the car has passed by. This is due to the newly revealed space in the rear
of the car. As not enough new superpixels are automatically created in this space,
it is occupied by the next neighboring superpixels. These are successively moving
down into the newly revealed space during the iterative optimization. In the shown
case, the superpixel movement also leads to a segmentation error as one superpixels
changes its affiliation from the background to the foreground object. In contrast to
that, the TCS (occlusion) approach creates new superpixels in the disclosed image
region (not selected for visualization). Thereby, successfully preventing the upper
superpixels from moving down. The disoccluded regions as well as the occlusion
boundary are detected during the propagation of the superpixel label map. The dis-
/Jocclusion detection, implemented in the TCS (occlusion) variant, is only possible
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Figure 5.12: Qualitative comparison of the label consistency of the two TCS variants
on a sequence from [79]. A subset of superpixels was manually selected and colored
for visualization purposes. It can be seen that the TCS (occlusion) variant correctly
deletes the superpixels that are in front of the car whereas they are pushed aside in
TCS (mesh).

due to the forward propagation of the individual superpixel shapes. Consequently,
an equivalent handling of the structural changes can not easily be integrated into
TCS (mesh).

To quantitatively assess the consistency of the superpixel flow and the image flow
the approaches are applied to the synthetic MPI Sintel [13] data set. Figure 5.14
shows the resulting label consistency benchmark metric. In all previous experiments,
the TCS (occlusion) variant was combined with the high quality optical flow of the
Lucas/Kanade meets Horn/Schunck approach [12]. In Figure 5.14, an additional TCS
(occlusion) variant is included which utilizes the optical flow produced by the original
Horn and Schunck [38] approach. The former is denoted by TCS (occlusion)+LK/HS
and the latter by TCS (occlusion)+HS, respectively.

In the trend of the graphs in Figure 5.14 it can be seen that the label consistency
in general decreases with finer segmentation granularity. An exception from this
is the sGBH approach for which the consistency increases with higher numbers of
supervoxels. It asymptotically approaches the performance of TCS (mesh). The
steepest decrease and the worst labels consistency in finer supervoxel granularities
is shown by OVS. The best performance is reached by TSP which is closely followed
by the TCS (occlusion)+LK/HS variant. TCS (mesh) and TCS (occlusion)+HS start

R P am 24.01.2026, 01:38:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186861108

86 Chapter 5 Experimental Results

Figure 5.13: Label consistency comparison in case of disocclusion. It can be observed
that the superpixels created by TCS (mesh) slip down to fill the newly visible image
region behind the car. Simultaneously, the TCS (occlusion) variant reliably creates
new superpixels which leads to a better compliance of the superpixel flow with the
image flow.

with a label consistency close to TCS (occlusion)+LK/HS but fall off more quickly
with finer segmentation granularities.

It should be noted that the two top performers (TSP and TCS (occlusion)+LK/HS)
both utilize the high quality optical flow of [12] to propagate the superpixels onto
new frames. This fact as well as the difference in performance between the two
TCS (occlusion) variants show that the quality of the optical flow utilized for the
propagation is of great importance for a high label consistency. A similar result in
terms of 3D undersegmentation error is shown by the author of this thesis in [66].
There, the sensitivity to the optical flow quality of different spatio-temporal overseg-
mentation approaches is assessed. The results demonstrate that the TSP approach
shows a significant decrease of spatio-temporal segmentation quality when low qual-
ity optical flow is utilized. In contrast to that, the impact on the compared TCS
variant is barely noticeable in the experiments of [66].

In this subsection, it was shown that the forward-directed superpixel propagation
in combination with the occlusion-aware handling of the structural changes is su-
perior in terms of label consistency to the mesh-based propagation combined with
a size-based handling. Further it was shown that the label consistency of the TCS
(occlusion) variant is highly competitive to the best state-of-the-art method. Av-
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Figure 5.14: Results for the label consistency benchmark on the synthetic MPI Sintel
data set provided by [13]. The results shows that the TCS (occlusion) approach
improves the consistency of the superpixel flow with the underlying image flow
when compared to the TCS (mesh) approach. This improvement is significantly
higher when high quality optical flow as produced by [12] is used.

eraged over all segmentation granularities, the label consistency produced by TCS
(occlusion) is only 1.2% worse, in relative terms, when compared to the leading
approach in terms of label consistency. The high label consistency of the top per-
former comes with the price of a higher computational complexity of the optical flow
approach. Using the faster optical flow implementation of Horn and Schunck [38]
approximately equalizes the label consistency of the two TCS variants. In the follow-
ing section, the run time and computational complexity of the proposed framework
will be further evaluated.

5.1.6 Complexity Considerations

This subsection will discuss the computational complexity of the proposed frame-
work for temporally consistent superpixels. First, the complexity of the hybrid
optimization scheme will be examined. Subsequently, the run time of the proposed
approach will be experimentally evaluated and compared to the run time of the
state-of-the-art approaches. Finally, the run time of the different propagation meth-
ods will be discussed.

To approximate the complexity of the hybrid-optimization, a reference to the
closely related SLIC superpixel approach can be made. In [1], it is approximated
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Figure 5.15: Average processing time per frame for the two variant of the proposed
framework and two state-of-the-art approaches. Left: Different numbers of super-
pixels per frame where selected, while the frame resolution is kept constant. Right:
An approximately constant number of superpixels per frame was selected (/ 1000),
while the frame resolution was altered.

to have a complexity of O(|n|) where |n| is the number of pixels in the segmented
image. Similarly, the complexity of the contour-based optimization of [74] can be ap-
proximated to depend only on the pixel count as ideally each pixel has to be visited
only once per iteration. Consequently, the complexity of the hybrid-optimization
can be approximated to be O(T|n|) where T is the total number of frames in the
video sequence. This shows that in comparison to the sGBH approach [93] whose
complexity is stated with O(T'|n|log(|n|)) the proposed approach has a lower com-
putational complexity. As for the other state-of-the-art approaches no estimation of
the complexity is provided by the authors, an experimental comparison is performed
in the following. Because the hierarchy levels of the sGBH approach cannot be cre-
ated separately, but only in a full segmentation hierarchy, the approach is excluded
from further experiments.

The remaining competitors from the literature, i.e. TSP and OVS, process the
video in a frame-by-frame manner. Hence, they also depend linearly on the number
of frames 7T'. In order to reveal the dependencies of the algorithms on the image as
well as superpixel resolution, two experiments are performed. In a first experiment,
the resolution of the video frames is kept constant, while the number of superpixels
per frames is altered. In a second experiment, the number of superpixels is fixed,
while the frame resolution is changed. In both experiments, the timing results for
TSP as well as TCS (occlusion) are given without the time needed for the dense opti-
cal flow calculations utilized to propagate the superpixels. These would distort the
dependencies on the different variables and will therefore be examined separately
in the end of this section. The additional computational burden of the mesh-based
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propagation scheme is negligible and will therefore be included in the following run
times. All measurements were performed on equivalent hardware providing two Intel
Xeon E5-2690v2 CPUs clocked at 3.00GHz and 128GB of random access memory.
For each measurement a full segmentation of the training portion of Sundberg’s
data set is performed. This portion of the data set provides 40 sequences of approx-
imately 120 frames each with a resolution of up to 1920 x 1080.

For the first experiment, the video frames are scaled down to half of the original
horizontal and vertical resolution. Subsequently, each sequence is segmented into
different numbers of superpixels per frame. The superpixel resolution produced by
the TCS (occlusion) variant are selected to be 500, 1000, 2000, 3000 and 4000. Simi-
lar, sampling points are produces by the TCS (mesh) variant. Although the selected
upper bound of the superpixel granularity is much higher than required for most
applications, the dependencies on the variable are shown more clearly by going into
this extreme scenario. The implementations provided by the authors of TSP and
OVS do not allow to set the number of superpixels in an exact way. Hence, the pa-
rameters where selected to provide results at approximately equidistant points in an
equivalent range. The averaged times needed to segment a single frame are plotted
in the left graph of Figure 5.15. While the absolute run times will depend on the
particular implementation, it can be seen that OVS as well as both TCS variants have
a linear dependency on the number of superpixels per frame. The TSP approach,
on the other hand, shows an exponential growth of run time with an increased
number of superpixels. Between the two TCS variants only a minor difference can
be observed where the mesh-based variant is slightly faster. As both implementa-
tion share most of their modules, the difference is due to the computationally less
demanding strategy to handle structural changes in the video utilized by TCS (mesh).

For the second experiment, the number of superpixels created by each approach is
fixed to around 1000 per frame. The frame resolution is altered by downscaling the
original resolution in three steps by cutting the horizontal and vertical resolution
in half. The run times on the different resolutions are plotted in the right graph of
Figure 5.15. Again it can be seen that the two TCS variants as well as OVS show a
linear dependency on the number of pixels per frame and the mesh-based approach
of TCS is slightly faster then the occlusion-aware variant. The run time of the TSP
approach increases as well with an increased image resolution. But additionally, the
run time also grows severely for lower image resolutions. Suggesting that superpixels
with a low pixel count are problematic for the TSP approach.

Concluding, it can be said that OVS and TCS scale better than TSP with respect to
the image resolution as well as to the superpixel resolution. Although OVS showed
the best absolute run time, it should be noted that the final run time will even-
tually depend on the individual optimization of the implementation. Additionally,
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Table 5.1: Average runtime needed to propagate a superpixel label map onto a new
frame.

‘ ‘ Average runtime/frame ‘

L/K meets H/S [12] 4757 ms
Horn and Schunck [3§] 238 ms
Mesh-based propagation 54 ms

the created segmentations of OVS are of much lower quality as it has been shown
in the previous sections. A part of the better segmentation quality and especially
the better label consistency of TSP and TCS (occlusion) are a result of their more
computational demanding superpixel propagation strategies. To estimate the addi-
tional computational burden that can be expected from the dense optical flow [12]
utilized by TSP and TCS (occlusion), its average run time is evaluated. Therefore,
the average run time needed to process an HD frame of Sundberg’s data set [76] is
enlisted in Table 5.1. Additionally, the average the run times of the original Horn
and Schuck [38] approach and the mesh-based propagation are included in the ta-
ble. The utilized central processing unit (CPU) implementations of the two dense
optical flow methods are provided by [49] and [23]. The table shows that the prop-
agation using the original Horn and Schunck method is nearly 20 times faster than
the approach of Bruhn et al. [12]. But it has been shown in the previous section
that utilizing the dense optical flow of lower quality also decreases the label consis-
tency to the level of the TCS (mesh) approach. As this approach is over four times
faster than the Horn and Schunck method it provides a valuable alternative. But it
should be noted that the run time of the optical flow methods can be significantly
reduced if a graphics processing unit (GPU) is available. By using the parallelization
capabilities of a GPU implementation, such as [35], the run time can be reduced
to achieve nearly real-time processing of the frames. The same holds true for the
implementation of the hybrid optimization scheme of TCS which currently does not
exploit the independent nature of the contour-based optimization. As the mean
color values of the superpixels are only recalculated after all contour pixels have
been checked for reassignment, the decision on the labeling of each boundary pixel
only depends on the current labeling of its eight neighboring pixels. Therefore, the
pixels of every second row and column can be processed simultaneously which gives
the opportunity for parallelization as it was e.g. done in the single image approach
of [28].
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5.2 Demonstration: Interactive Video
Segmentation

Segmenting a video into foreground and background is a basic step in many computer
vision and computer graphics applications, such as object tracking, video editing, or
video content analysis [91, 89, 83]. Looking from the user perspective, segmentation
algorithms for this task can be divided into two major categories. First, there are
fully automatic techniques in which the algorithm by itself determines the portion of
an image or video that is the region of interest and should be segmented. Second, the
object or region can be specified in a supervised manner, e.g. by a human operator
who roughly marks the region of interest. This can be done either by a bound-
ing box [69] or by marking parts of the foreground and background with so-called
strokes [10], as depicted in the Figures 5.16 and 5.17. A special form of supervised
segmentation is the interactive segmentation, where the user iteratively helps the
automatic system to create an accurate segmentation of the region of interest. This
is done by repeatedly correcting the segmentation, produced by the system, using
additional strokes. As the user has to wait for the response of the system before he
or she can do any additional strokes, it is crucial for these frameworks to provide a
minimal response time. Two examples of an interactive segmentation task can be
found in the Figures 5.18 and 5.19, where a single person should be segmented from
the background. In the shown examples, strokes are exclusively provided for the
first frame.

In the domain of single images well known approaches were proposed by Boykov et
al. [10] and Rother et al. [69]. The segmentation problem is formulated as an energy
minimization framework as described in Section 2.1.1 which is solved by finding the
MAP solution using graph cut. For low-resolution images (e.g. 1 mega pixels) these
algorithms are able to segment a single image on pixel level in a run time less than
one second [69]. In the experiments of [10], the approach was also applied on a
video sequence of 21 frames at a resolution of 255 x 189. A then state-of-the-art
desktop computer needed several minutes to compute the initial segmentation from
the first strokes. The usage of such a slow computer application can be tedious
for the operator. In particular, when considering the utilized low resolution of the
video material and the HD content which is ubiquitous even in customer products
nowadays. As shown by Delong et al. [21] the run time of the min-cut/max-flow
algorithm rises rapidly if the data of the problem does not fit into the physical
memory. The amount of memory that is needed to segment a 120 frames sequence
of HD content (i.e. 1920 x 1080) with the approach of [10] can easily rise up to 30 GB
which is near the upper bound of memory today’s desktop computers have built-in.
With the emerging market for products which create 4K content the amount of data
that needs to be processed will rise accordingly.

In [44] as well as [72], the authors present a variable grouping based on the energy
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Figure 5.16: Example user strokes for the training set of Sundberg’s [76] data set.
The objective foreground objects are outlined by the yellow boundaries for visual-
ization purposes. The foreground strokes are colored in red whereas the background
strokes are colored in blue. (Frames were cropped for visualization purposes)

function to reduce the original problem size. It is shown that the grouping helps
to increase the segmentation quality while decreasing the run time. But this vari-
able grouping can only be applied up to some extent. To overcome this problem,
it has become popular to utilize a superpixel segmentation of the input material.
A popular representative for this approach is the interactive video cutout of Wang
et al. [88]. To boost the performance of the system, they use a two-staged hier-
archical mean shift clustering as a preprocessing step. The graph is then build on
the oversegmented video volume. This reduces the size of the graph that needs
to be processed through the graph cut framework. The system allows the user to
paint strokes on single frames as well as along the time axis of the video volume.
Additionally, it contains a postprocessing step for creating a spatio-temporally co-
herent alpha matte to visually optimize the blending of segmented objects onto a
new background. In their framework named LIVEcut, Price et al. [59] individually
oversegment the video frames using the watershed method [86] and incorporate ap-
pearance, motion, and shape features just like the framework proposed by Bai et
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Figure 5.17: Additional example user strokes for the training set of Sundberg’s [76]
data set created by non-expert human subjects. Only for the first frame of each
sequence user strokes were generated. (Frames were cropped for visualization pur-
poses)

al. [4] did. While the former uses the graph cut framework like [88] to find a global
optimal cut through the graph, the latter uses local overlapping classifiers which are
propagated to new frames using optical flow information. More recently, Dondera
et al. [24] adopt the framework of [45] to produce temporally more coherent super-
pixels. Afterwards, a spatio-temporal graph is built-up using optical forward and
backward flow information. Their main contribution is to use the information of an
occlusion boundary detector to modify the superpixel graph at occlusion boundaries.
Subsequently, they partition the spatio-temporal superpixel graph into foreground
and background using graph cut similar to [88] and [59].

In the graph cut-based approaches of [59] and [24], the spatio-temporal graph is
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Figure 5.18: Example of an interactive video segmentation. First row: original
frames of the snow shoes sequence with the overlayed user strokes. The foreground
strokes are painted in red whereas the background strokes are colored in blue. The
foreground object requested to be segmented by the user is outlined with a yellow
boundary for visualization purposes. Second row: segmentation result when graph
cut is applied on a voxel level graph. Further rows: results of graph cut applied on
a graph built from different types of oversegmention of the input video. (Frames
were cropped for visualization purposes)

built from a per frame superpixel segmentation. Thus each node of the graph rep-
resents a superpixel whose extent is limited to one frame. While this significantly
reduces the graph size when compared to a voxel level graph a further reduction can
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Figure 5.19: Further example of an interactive segmentation. First row: original
frames of the swing sequence with the overlayed user strokes and main object marked
for visualization purposes. Second row: segmentation result when graph cut is
applied on a voxel level graph. Further rows: results of graph cut applied on a
graph built from different types of oversegmention of the input video. Note that the
upper part of the segmented person in the middle frame is only segmented correctly
by the combination with the proposed TCS framework. Only the hand is missing.
(Frames were cropped for visualization purposes)

be achieved by utilizing the temporal-connectedness of the temporally consistent
superpixels as they are proposed in this thesis. Here, each node represents a tem-
porally consistent superpixel which further reduces the number of nodes and edges
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in the graph. In this section, it is shown that besides reducing the time needed
to find an optimal cut of the graph, the usage of the long-range temporal super-
pixel trajectories can additionally increase the overall segmentation quality in the
application of interactive video segmentation. The rest of this section is structured
as follows. In Section 5.2.1 a short overview of a superpixel-based framework for
interactive video segmentation is given. Subsequently, Section 5.2.2 will evaluate
the usage of the proposed temporally consistent superpixels in comparison to the
voxel level approach and other oversegmentation methods.

5.2.1 Interactive Video Segmentation using Superpixels

This section revisits a framework for interactive video segmentation on voxel level as
well as the usage of an oversegmentation of the input material. The discussed frame-
work consists of two main components. First, the oversegmentation step which either
generates per frame superpixels or supervoxels. The second component builds the
spatio-temporal graph which is cut by utilizing the graph cut framework. Thereby,
the graph can be either built up on the oversegmentation or on the voxel level to
enable a comparison between the two approaches.

The problem of binary segmentation is modeled using the discrete energy func-
tion (2.10) introduced in Section 2.1.1. In the voxel level case, the energy function
is represented as the sum of unary potentials D;(b;), for individual voxels with index
i, and pairwise potentials V; ;(b;, b;) for neighboring voxels

Eis(b) =Y Di(bi) + Ag Y, Vijlbs, bj). (5.9)

i€n (4,1)€c

Here, b is the labeling of the voxels, n is the set of voxels in the video volume,
and ¢g corresponds to the set of neighboring voxels. As neighborhood system a
six connected neighborhood is utilized, where each voxel is connected to the four
neighboring voxels in its own frame and one adjacent voxel in the frames immediately
preceding and following it. The weighting term Ag is set equally to the value chosen
in Section 5.1.2.

The unary potential D;(b;) is defined as the negative log-likelihood using a Gaus-
sian Mixture Model [69] with five kernels

D;(b;) = — log p(#|b; = b). (5.10)
Where 7% is the color vector of the voxel i and b € {FG, BG}. The likelihoods are

directly learned from the user labeled foreground and background pixels, i.e. from the
user strokes. The pairwise potential V; ;(b;, b;) is equally defined as in Section 4.2.2:

Vij(bi,bj) = D(binby) - exp(=BI7f — 75[°). (5.11)
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The energy function EY which is build upon an oversegmentation of the video
volume is defined by a surjective map m : n — k that maps each voxel to its
corresponding supervoxel. Thus, the energy function to build-up the graph from

the oversegmentation reads

Ei(d) =Y Di(dmeiy) +Ag Y Vij(dm@), dmgi))- (5.12)

i€n (j,i)€ce

Where d is the labeling of the supervoxels. The mapping of the voxel level edges
and nodes to the supervoxel level dramatically reduces the problem size and thus
the processing time of the graph cut algorithm.

5.2.2 Segmentation Quality and Runtime Evaluation

In this section, the applicability of the proposed method for temporally consistent
superpixels in a framework for interactive video segmentation is evaluated. There-
fore, the oversegmentation resulting from the TCS approach is combined with the
graph cut framework as described in the previous section. This combination will
be denoted as TCS+GC. To assess its performance, it is compared to the voxel
level implementation of the framework as proposed in [10] and a version with a
graph built-up from frame-wise generated superpixels using mean shift (see Sec-
tion 2.1.4). Additionally, it is compared with a combination of graph cut and the
TSP approach [14]. The combination of graph cut with mean shift and TSP will
be denoted with MS+GC and TSP+GC, respectively. The latter was included in
the comparison to investigate the benefits of the long-range superpixel trajectories.
This is because, TSP achieves a comparable spatio-temporal segmentation quality,
while creating shorter superpixel trajectories than TCS. For this demonstration the
TCS (occlusion) variant was chosen over TCS (mesh), because it produces longer
superpixel trajectories and a slightly better spatio-temporal segmentation quality,
as it has been shown in Section 5.1.4. Further, a fair comparison to the TSP ap-
proach is enabled, as both approaches rely the high quality optical flow of Bruhn et
al. [12]. Finally, it should be noted that the time it takes to preprocess the video
into an oversegmentation is of minor importance in the case of an interactive video
segmentation. This is because the critical phase begins when the user has painted
his or her strokes. As the user needs to see the intermediate segmentation result,
before he can put further strokes to refine the segmentation, he has to wait for the
graph cut to finish. Thereby, the execution of the graph cut stalls the work flow
of the user entirely. Hence, the run time of the graph cut should be minimized in
this scenario, while the segmentation quality should not suffer. The preprocessing,
i.e. oversegmentation, on the other hand, can be done in advance in an overnight
fashion as it was phrased by Wang et al. [89]. Consequently, the processing time of
the oversegmentation is less critical in this domain.
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The usual way to evaluate an interactive video segmentation framework, as e.g.
done in [24], is to let users segment video sequences and measure the time and
number of interactions they need to reach a satisfying segmentation result. As the
purpose of this section is not to propose an all new interactive video segmentation
framework, no complete user study was performed for this evaluation. Instead,
a different method is applied in which all approaches are fed with the same user
strokes. The resulting segmentations of the video volume are than compared to a
ground truth segmentation. Thereby, the initial segmentation quality is evaluated
which is achieved after a user has drawn his initial strokes. This implicitly assumes
that by improving the quality of the initial segmentation an equivalent or better
final segmentation can be achieved with fewer user effort. Such an improvement in
initial segmentation quality should eventually result in a shorter overall time the
user has to be in the loop.

For the evaluation, all approaches are applied to the sequences from the training
portion of Sundberg’s [76] data set. In contrast to Section 5.1, the HD versions of
the sequences were chosen for the experiments described in this section. For each
sequence the multi-label ground-truth segmentations provided by [30] are converted
into a binary version by manually selecting the labels representing the main object.
Each algorithm is set up to create approximately 3000 superpixels per frame which
approximately corresponds to approximately 300 pixels per superpixel.

The strokes used to initialize the segmentation framework were created by two
non-expert users. Therefore, a custom graphical user interface was designed to en-
able the users to interactively segment a single frame on pixel level. Only the first
frame of each sequence was segmented in the procedure. At no time the users had
access to any results of the video segmentation. The users were briefly educated in
the operation of the interface and afterwards asked to put strokes on the foreground
and background of the shown images. The object of interest was shown to them in
a separate space of the interface. After the users provided some initial strokes, the
graph cut framework was applied on a 2D pixel level graph to generate an initial bi-
nary segmentation of the image. The resulting segmentation was evaluated against
the ground truth segmentation. If the misclassification rate for the image was below
a previously defined threshold, the strokes were stored for the subsequent experi-
ments. Otherwise, the segmentation result was shown to the user and additional
strokes were requested. The process was iterated until the target misclassification
rate on the frame was achieved. This method of stroke creation was chosen as it
appears to be a realistic scenario for an interactive video segmentation application.
There, the user could be first ask to segment the region of interest on one frame
before he is enabled to put additional strokes on other frames or along the time
axis as in [88]. Examples of the user strokes created for this thesis are depicted in
Figure 5.16 as well as Figure 5.17. The target misclassification rate for the creation
of the strokes was arbitrarily selected to be 5 %.

The two sets of final strokes were subsequently utilized to generate a segmentation
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of the whole video volume using the different combinations of oversegmentations
and graph cut. Qualitative results produces by the combinations are depicted in
Figure 5.18 and 5.19. In Figure 5.18, it can be seen that the graph cut algorithm,
applied on the voxel level graph as well as on the mean shift-based graph, fails to
segment the single person in the snow shoes sequence. While it seems to be an
easy segmentation task, with white background and two distinguishable foreground
objects, the second person is segmented as foreground as well. Although the user
explicitly marked it as background. The two other approaches perform better on
this task. Thereby, the segmentation quality of TCS+GC is slightly better than
for TSP+GC. Here, the boundary of the right person is not exactly met in some
areas. In the swing sequence depicted in Figure 5.19, the advantage of the long-
range superpixel trajectories, as created by the proposed framework, can be seen.
Through the long-range segments, the head of the swinging person is segmented
correctly, while the shorter and incorrect segments of the TSP approach lead to an
increased segmentation error when compared to the voxel level approach. Additional
qualitative examples can be found in Figure 5.20 and 5.21.

A quantitative comparison of the approaches can be found in Table 5.2. Here,
the misclassification rates for all 40 sequences are listed. For each sequence, the
misclassification rate was calculated for the frames with available ground truth in-
formation. Thereby, the results were averaged over the four available ground truth
segmentations per sequence as well as the two sets of user strokes. The last row
of the table contains the mean misclassification rate over all sequences. For the
tarantula sequence, the voxel level graph cut did not successfully finish after 48 h
of processing. Therefore, is was excluded from the calculation of the mean mis-
classification rate as well as the average processing time that can be found at the
end of this section. The misclassification rates for this sequence, produced by the
oversegmentation-based approaches, are listed in the table only as an addition.

The results of the table show that the misclassification rate produced by the
TCS+GC combination is lower than the rate of the other combinations in a majority
of cases. Only in a very small number of cases, the rate is increase by TCS+GC
when compared to the voxel level approach. In the majority of cases, the increase in
error rate is below one percent in absolute terms. The highest increase is for the gray
squirrel sequence, where the error is increases by 1.85 % in absolute terms. It should
be noted that for this sequence all oversegmenation-based approaches increase the
error rate. The combination of mean shift and graph cut even leads to an increase
by 11.25% in absolute terms. In other cases, the application of graph cut with
an oversegmentation improves the misclassification rate by over 20 % in absolute
terms, such as for the trampoline and the zoo sequence. Overall, the TCS+GC
approach produces the lowest misclassification rate of all evaluated combinations.

IThe voxel level code did not successfully finish for this sequence after 48 h of processing. The
sequence is therefore excluded from all mean calculation for all approaches.
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Table 5.2: Misclassification rate for the 40 training sequences of [76]. Each approach
was initialized with the same user strokes generated for the first frame. The proposed
TCS approach performs best for the majority of the sequences.

Algorithm
Voxel level ‘
graph cut | MS+GC | TSP+GC | TCS+GC
alec baldwin 0.48 0.54 1.86 0.84
anteater 4.79 3.71 3.71 3.62
avalanche 10.11 3.11 2.51 2.11
big wheel 2.47 1.71 1.73 1.73
bowling 0.34 0.47 0.61 0.39
campanile 8.80 8.25 4.49 2.40
car jump 2.62 1.92 2.46 1.88
chrome 20.95 14.60 11.68 11.23
deoksugung 1.50 1.95 0.53 0.47
dominoes 4.39 2.69 2.99 2.71
drone 1.83 1.71 1.90 1.52
excavator 5.54 4.92 3.54 3.14
floorhockey 4.03 2.10 1.35 2.07
galapagos 27.00 15.43 10.33 9.18
gray squirrel 5.66 16.91 8.85 7.51
guitar 2.77 3.20 2.54 1.84
hippo fight 16.18 7.21 3.49 2.34
horse riding 2.57 2.05 2.24 1.70
g juggling 2.77 1.68 1.70 1.59
5 kia commercial 10.29 3.44 3.37 5.52
Qg; knot 2.45 3.98 4.28 3.07
2] lion2 14.71 14.20 13.99 13.51
lion 2.12 1.68 1.66 1.64
lukla airport 0.84 0.45 0.56 0.51
pouring tea 4.20 3.59 2.92 1.51
rock climbing 1.11 1.28 1.55 0.94
roller coaster 16.77 19.78 17.87 17.45
rolling pin 8.59 3.70 3.89 3.07
sailing 1.92 3.29 1.12 0.98
sea snake 28.20 28.65 28.68 27.52
sea turtle 3.45 2.15 3.91 3.05
sitting dog 5.09 12.79 5.79 6.02
snow shoes 5.14 3.40 0.51 2.29
soccer 2.33 0.29 0.14 0.15
space shuttle 18.05 15.31 9.75 10.25
swing 0.55 0.78 0.89 0.42
tarantula -1 10.15 9.95 10.01
tennis 3.26 2.07 1.22 1.59
trampoline 25.78 6.03 1.37 1.62
200 32.43 15.98 3.27 3.57
[ ] mean 8.00 6.08 4.49 4.18
P ‘am 24.01.2026, 01:39:02.
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Table 5.3: Average processing time per sequence needed to execute the graph cut.
During this time, the user has to wait before he can put more strokes on the frames
of the video sequence.

‘ Algorithm ‘ Average time/sequence ‘
Voxel level graph cut 1875.15 s
MS+GC 0.648 s
TSP+GC 0.0058's
TCS+GC 0.0066's

In comparison to the voxel level graph cut the error rate is improved by over 47 %
in relative terms.

In addition to the improvement in segmentation quality, a further benefit of the
temporally consistent superpixels is the improved execution time of the graph cut.
This can be seen in Table 5.3, where the processing times required to find the min-
imal cut in the graph are listed. The times are averaged over all sequences (except
for the tarantula sequence). The given durations approximately correspond to the
time a user would have to wait before another set of strokes could be drawn. The
benchmark was performed on a dual Intel Xeon E5-2690 @ 3.00GHz with 128 GB
of random access memory to be able to hold the huge amount of data necessary
for the voxel level graph cut approach. The table shows that the average time, a
user would have to wait for the voxel level graph cut to finish, is over 31 minutes.
This renders the approach virtually inapplicable for HD sequences. It further shows
that the TCS+GC combination accelerates the processing time of the graph cut by
a factor of nearly 100 when compared to the mean shift combination. This is due
to the further reduction of the original problem size as the temporal connections of
the superpixels over multiple frames are exploited. The same holds true for the TSP
approach. Of course the processing time of the oversegmentation will need to be
considered as well when it is integrated into an application. But as stated by Wang
et al. [88] the preprocessing can be done overnight. Thereby, the critical phase is
when the user has drawn his or her strokes and waits for the intermediate segmen-
tation results. Nevertheless, the average run time of the preprocessing will be given
for completeness in the following.

The average processing time of the proposed TCS method is 22.4 minutes per
sequence. The mean shift segmentation (using the implementation of [84]) and the
TSP approach need 22.8 minutes and over 7hours per sequence, respectively. It
should be noted that for the mean shift as well as for the TCS approach, the mea-
surements where performed using single-threaded applications. But both methods
have the potential to be accelerated using a multi-threaded or a specialized GPU
implementation. The same holds true for the optical flow calculation, as it was al-
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ready mentioned in Section 5.1.6. Therefore, the processing time of the optical flow
was excluded from the measurement. The time measurements show that only the
overall processing times of MS+GC and TCS+GC sum up to a lower value than
the processing time of the voxel level graph cut. The TSP+GC combination on the
other hand significantly increases the overall processing time. As a conclusion it
can be said that its better run time performance and its higher segmentation qual-
ity make the TCS+GC combination the preferable choice for an interactive video
segmentation.
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Frame 1 Frame 60 Frame 120
e ' S v

Voxel level Strokes
TSP+GC MS+GC graph cut +original

TCS+GC

Figure 5.20: Segmentation example showing the results on the ezcavator sequence
for all approaches. Note that in the approach utilizing the voxel level graph the
chains, the shovel, and the upper part of the main body of the excavator are not
segmented correctly. (Frames were cropped for visualization purposes)
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Frar‘ne 1 : Fra‘me __60 Fralme |120

Voxel level Strokes
TSP+GC MS+GC graph cut +original

TCS+GC

Figure 5.21: Further segmentation example showing the zoo sequence. Here, the
voxel level approach fails on assigning the second gorilla to the background. The
mean shift-based approach correctly segments it as background but looses the upper
part of the gorilla’s head.(Frames were cropped for visualization purposes)
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Chapter

Conclusions

The huge amount of pixel data that needs to be handled when processing video ma-
terial has made it a common preprocessing step, in todays video processing pipelines,
to create an oversegmentation of the input material. These intermediate representa-
tions group single pixels into larger image primitives often referred to as superpixels
or supervoxels. Thereby, the number of image primitives that need to be handled
during the execution of the main algorithm is reduced massively. This saves pro-
cessing time and minimizes the memory footprint. It further enables the extraction
of region-based features, such as color or optical flow histograms. As the boundaries
of the created regions comply with the visible contours in the image, the provided
spatial support for the features is automatically adapted to object boundaries.

Among the fastest and best performing approaches for single images is a class of
clustering-based superpixel algorithms. The algorithms model each superpixel by
the mean feature vectors of its assigned pixels in a five dimensional feature space.
The feature vectors consist of the concatenation of the color dimensions with the
two spatial dimensions of the pixels. For the optimization of the segmentation, a
cost function is defined which minimizes the variance of the differences between the
mean and the pixel feature vectors. The optimization is performed by alternatively
assigning the pixels to the best fitting superpixel model and a subsequent update of
the model. Due to the simple model and the efficiency of the optimization strategy,
the computational burden of these methods is low. In previous works from the lit-
erature, it was tried to extent these image-based approaches to the video domain by
extending the feature space with a temporal dimension. To integrate the temporal
dimension into the optimization, the cost function is extended by a term penalizing
a large variance of the spatio-temporal segments in the temporal direction. Due to
the nature of this term, short-range spatio-temporal segments are preferred, similar
to the compactness enforced by superpixel algorithms in the spatial domain.

This thesis extends the image-based approach to the video domain while extract-
ing as much of the temporal connections of the image regions inherent in the video
volume as possible. Simultaneously, the spatio-temporal segmentation error is min-
imized. The first contribution of this thesis is the introduction of a novel model to
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represent the temporally consistent superpixels which allows for long-range spatio-
temporal segments. The proposed hybrid model features a global color center for
each superpixel, that is shared among all frames, and one local spatial center per
frame. The former has the effect that the superpixels stick to an image region with
the same color over time. The latter allows the superpixels to retain their compact
shape on frame level while keeping their ability to adapt to fast object movements.
A contour evolving optimization ensures the spatial coherency of the superpixels
during the whole optimization process.

To be able to process the video material in a streaming fashion, a sliding window
is employed which comprises only a limited number of frames at all times. As the
sliding window is shifted successively over the video volume, new frames which en-
ter the window have to be initialized. During the initialization of the frames, the
propagation of the superpixel segmentations onto the new frames is important for a
correct and consistent segmentation of the video volume. The second contribution
of this thesis is the introduction of two new approaches for the propagation of super-
pixel segmentations onto new frames. The first approach constructs a triangle mesh
across the frame using a sparse set of tracked features points. Through the tracking
of the feature points the triangle mesh is deformed. By morphing the underlying
superpixel segmentation according to the deformation of the mesh, the superpixels
are warped to roughly fit the new frame content. The second approach propagates
the individual shapes of the superpixels by using high-quality, dense optical flow.
By propagating the whole superpixel shapes in a forward-directed manner, the pos-
sibility arises to directly detect overlap and openings in the propagated superpixel
segmentation. These occurrences are seen as indicators for structural changes in the
scene induced by occlusion and disocclusion. During the propagation, the indicators
are collected and utilized in a later processing stage to adapt the spatio-temporal
segmentation to the structural changes.

In order to cope with the structural changes, this thesis further proposes two dif-
ferent methods to adapt the superpixel segmentation by terminating and creating
new superpixels. If the structural changes are not handled properly, segmentation
errors are introduced and the consistency of the superpixel flow with the underlying
image flow decreases. Through the detection of overlap and openings in the prop-
agated superpixel segmentation, the proposed framework is able to decide which
superpixel gets occluded over time and where new image content is disclosed. To
determine the exact occlusion boundary of the overlapping regions, it is proposed
to apply the graph cut segmentation framework on these areas. By deleting the
superpixels, which are completely occluded according to the observed overlap, the
method improves the compliance of the superpixel flow with the underlying image
flow and ensures homogeneously sized superpixels. Due to the loss of the ability to
detect the overlap and gaps in the case of the triangle mesh-based superpixel prop-
agation, a second approach for the handling of structural changes is proposed in
this thesis. The method is purely based on the superpixel size and can therefore be
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combined with any propagation method. While this approach proves to be efficient
and provides a competitive spatio-temporal segmentation quality, it decreases the
consistency of the superpixel flow with the underlying image flow.

In a thorough evaluation, the two variants of the framework, denoted with TCS
(occlusion) and TCS (mesh), are compared to three state-of-the-art streaming-
capable approaches for spatio-temporal oversegmentation. The evaluation is per-
formed on the common data sets and by applying established benchmark metrics.
These include metrics for the per frame segmentation quality as well as the spatio-
temporal segmentation quality. Further, the consistency of the superpixel flow with
the underlying image flow is regarded. The parameters of the proposed method
are jointly optimized for multiple objectives on independent training material. The
experiments show that the two variants of the proposed framework achieve a compet-
itive per frame segmentation quality, while TCS (occlusion) outperforms the state
of the art in terms of spatio-temporal segmentation quality. The evaluation shows
further that both proposed TCS variants produce temporally longer segments than
competitive approaches while achiving lower or competitive spatio-temporal segmen-
tation error. State-of-the-art approaches with temporally longer segments severely
increase the segmentation error which indicates that they overlap spatio-temporal
object boundaries. The TCS (occlusion) variant achieves a label consistency which is
highly competitive with the best state-of-the-art method from the literature. While
producing a label consistency which is on average only 1.2% worse then the result
of the leading approach in terms of label consistency, its run time scales better as
it only depends linearly on the number of pixels as well as superpixels. It is shown
that the high label consistency depends on the high-quality of the utilized optical
flow. Without that the label consistency decreases to the level of the TCS (mesh)
variant which is still higher than two other approaches from the literature. As the
spatio-temporal segmentation error of the TCS (mesh) variant is untouched by the
lower label consistency it provides a useful alternative for many applications that
do not rely on label consistency.

Finally, the advantage of the increased temporal length of the superpixel trajec-
tories is shown in a demonstration by applying the proposed framework to the task
of interactive video segmentation. For the evaluation a data set is created which
features user strokes for the first frame of 40 video sequences. During the evalu-
ation, the strokes are utilized to initialize the interactive segmentation framework
with different oversegmentations as a basis. The experiments show that through the
usage of the long-range temporally consistent superpixels, proposed in this work,
the segmentation quality and the processing time are tremendously improved. It is
shown that by using TCS as a basis, the segmentation error is decreased by over
47% in relative terms when compared to a voxel level graph. Compared to the
second best performing oversegmentation approach from the literature, the segmen-
tation error is still decreased by about 7% in relative terms. Simultaneously, the
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approach computes the oversegmentation in only 22.4 minutes per sequence, while
the comparison approach needs over 7hours per sequence and scales worse than
TCS. Additionally, the average time that is needed to compute the minimal cut in
the graph cut framework is reduced from over 31 minutes to under 7 ms through the
usage of TCS. When compared to a per frame applied mean shift oversegmentation,
the computation of the graph cut is over 98 times faster with TCS. This is due to
the substantial reduction of the graph size.

Concluding it can be said that the proposed framework for temporally consis-
tent superpixels achieves better or competitive segmentation performance than all
state-of-the-art approaches. It better reveals the temporal connections of the image
regions inherent in the video volume while reducing the segmentation error to a new
minimum. Simultaneously, the computational time is on the lower end compared to
the state-of-the-art algorithms and scales only linearly with the number of pixels and
superpixels. Previous algorithms with a comparable segmentation quality are much
slower and scale worse than the proposed one. Future extensions of the framework
could improve the label consistency of the TCS (mesh) variant by detecting occlu-
sion and disocclusion as in the TCS (occlusion) variant of the framework. Further
a hierarchical optimization strategy as utilized in other state-of-the-art algorithms
could be used to further optimize the computational performance of the framework.
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