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TOPAS Topology Optimization by Predicting Aggregated Sensitivities
TOPS Topology Optimization by Predicting Sensitivities
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Abstract

The automatic creation of optimal concepts for mechanical structures in
the computer-aided design process has become an important area of re-
search. Continuum topology optimization methods determine the distri-
bution of material within a pre-defined design space and, thus, not only
the shape, but also the fundamental geometric layout of a structure. For
this task, the majority of the existing, numerical optimization methods
requires mathematical gradient information. However, when addressing
optimization problems that involve highly non-linear or black-box simu-
lations, it can be difficult to obtain satisfactory results or gradient infor-
mation at all. In order to provide design concepts also for these types of
problems, this thesis presents a generic topology optimization approach.
The novel method realizes a self-contained learning component that uti-
lizes physical simulation data to generate a search direction. Based on
a continuous problem formulation, every design variable is improved it-
eratively by a learned update-signal. The individual update-signals are
computed from local state features and substitute sensitivities of the de-
sign variables. Evolutionary optimization or supervised learning adapt the
model parameters for determination of the update-signals to the chosen
optimization goal. In empirical studies, the novel method reproduces ref-
erence structures with minimum compliance. When applied to a practical
problem from the challenging domain of vehicle crashworthiness optimiza-
tion, specifically the minimization of intrusion, it provides superior design
concepts when compared to a frequently applied heuristic method. The
results confirm that the proposed method is capable to yield innovative
solutions to so far unsolved topology optimization problems.
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Zusammenfassung

Die automatische Erstellung von optimalen Entwurfskonzepten fiir mech-
anische Strukturen im rechnergestiitzten Entwicklungsprozess ist ein
wichtiger Forschungszweig. Methoden der Topologieoptimierung bestim-
men die Materialverteilung in einem vordefinierten Entwurfsraum und da-
her nicht nur die Form, sondern auch die grundséatzliche geometrische Aus-
gestaltung einer Struktur. Die Mehrheit der verfiigharen numerischen Op-
timierungsmethoden benotigen hierfiir mathematische Gradienteninforma-
tion. Betrachtet man jedoch Optimierungsprobleme, die stark nichtlineare
oder Blackbox-Simulationen beinhalten, kann es schwierig sein, zufrieden-
stellende Ergebnisse oder iiberhaupt Gradienteninformation zu erhalten.
Um auch fiir solche Probleme Entwurfskonzepte zu finden, wird in dieser
Dissertation ein generischer Topologieoptimierungsansatz prasentiert. Die
neue Methode realisiert eine eigenstandige Lernkomponente, welche in
der Lage ist, aus physikalischen Simulationsdaten eine Suchrichtung zu
erstellen. Basierend auf einer kontinuierlichen Formulierung des Prob-
lems wird jede Entwurfsvariable durch ein gelerntes Updatesignal iterativ
verbessert. Die individuellen Updatesignale berechnen sich aus lokalen Zu-
standsmerkmalen und ersetzen die Sensitivitiaten der Entwurfsvariablen.
Evolutionare Optimierung oder iiberwachte Lernverfahren passen die Mod-
ellparameter zur Bestimmung der Updatesignale an das gewéhlte Opti-
mierungsziel an. In empirischen Studien reproduziert die neue Meth-
ode Referenzstrukturen mit minimaler Nachgiebigkeit. Bei der Anwen-
dung auf ein Problem aus dem anspruchsvollen Gebiet der Optimierung
des Fahrzeug-Unfallverhaltens, speziell der Minimierung der Eindringtiefe,
liefert sie tiberlegene Entwurfsvorschldge im Vergleich mit einer héufig
verwendeten heuristischen Methode. Die Ergebnisse bestétigen, dass die
vorgeschlagene Methode in der Lage ist, innovative LoSungen fiir bisher
ungeloste Topologieoptimierungsprobleme zu erzeugen.
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