
Combinatorial Explorations
A Brief History of Procedurally-Generated Space
in Videogames

Mark J.P. Wolf

The worlds of videogames have grown from single screens of graphics to vast
worlds, some of which are too large to ever be fully explored by a single person
despite many hours or even years of gameplay. As a quote from Michael Toy – one
of the authors of Rogue (A.I. Design 1983) – indicates, new experiences are what
make games replayable, and keep players interested in a game; and exploration
and navigation are among the most basic kinds of experiences afforded by vid-
eogames:

The sad discovery for authors of text-style adventures is that it is not that fun to
play your own game. You already know all the solutions to the puzzles. The great-
est part of Rogue, and the part I still wish for as I look at the gaming scene today, is
that it made a new world every time. The game was just as hard to win the second
time as the first (qtd. in Anonymous 2009).

The procedural generation of videogame spaces not only keeps a game fresh for
players, but even for the game’s creators, who merely determine the parameters of
algorithms which will automate the production of game space. In one sense, the
virtual spaces in which videogames’ events take place are all procedurally-gen-
erated, since they do not exist without the aid of the electronics which produce
them; by ‘procedurally-generated,’ then, we mean the production of significant
game content which varies from game to game, and which changes gameplay. At
the same time, however, exchanging handcrafted, human-designed locations for
algorithmically-generated ones does have certain drawbacks and limitations of its
own.

The first procedurally-generated content in videogames could be considered
games with randomized content; in Spacewar! (Russel 1962), for example, the
hyperdrive feature would make the player’s ship disappear and then reappear
elsewhere at a random location. This demonstrates one of the difficulties in defin-
ing procedurally-generated space; for example, if the locations of stars in a star-

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mark J.P. Wolf296

field are randomly generated, and the positions of the stars are what define dif-
ferences in a game’s spaces, then one could argue that different spaces are being
generated procedurally.

The first game with unambiguously procedurally-generated space, then, would
be Rogue, one of the most popular mainframe games of the early 1980s. Inspired
by William Crowther’s text-based Colossal Cave Adventure (Crowther/Woods 1977)
and the table-top role-playing game Dungeons & Dragons (Gygax/Arneson 1974),
Rogue was a series of dungeon rooms that the player wandered through, defeat-
ing monsters, collecting treasure, and looking for food. In order to provide vari-
ety, the rooms and the pathways connecting them were procedurally-generated;
according to another of the game’s authors, Glenn Wichmann (qtd. in Anonymous
2009),

[w]e originally wanted something very freeform, where a room could be anywhere,
and there could be any number of rooms. We couldn’t figure out how to do it. We
ended up settling on a nine-room tic-tac-toe grid. Then there was the ‘mars bug’ –
sometimes rooms just would not connect. It took us a long time to figure that one
out, and we ended up with a number of frustrated players who were having great
games and suddenly could not go to the next level because there was no way to
get to the staircase.

The randomness present, then, was still within rather tight parameters, and the
randomized placement of monsters, treasures, and food also contributed greatly
to the replayability of the game. Another game dependent on randomized ele-
ments and layout was Stellar Track (Atari 1980) for the Atari 2600. This Star Trek-in-
spired resource management game had the player jumping from quadrant to
quadrant, using phasors and photon torpedoes to destroy alien vessels. Each of
the 36 quadrants was made up of 64 sectors, creating a playing field grid of 48-by-
48 positions. Each position could contain the player’s ship, or an enemy ship, or a
star, which acted as a barrier to travel. Because the placement of stars was ran-
domized in every game, along with the positions of enemy ships and refueling
star-bases, each game was a new challenge, again due to randomized content.

Randomized content was the key not only to making each gaming experience
unique and different, but also to make much larger worlds than what could be fit
into relatively small amounts of computer memory. The landmark space trading
game Elite (Braben/Bell 1984) featured a universe of eight galaxies each with 256
planets, in a program of only 22 kilobytes (Noyes 2006). Each planet’s position,
composition, commodity prices, and name was procedurally-generated, from
numeric seeds fed through an algorithm. But while the starships and other objects
were visible from space, one did not get a sense of exploring a more earthlike loca-

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinatorial Explorations 297

tion, one with vast tracts of explorable land. This would come with the advent of
fractal landscapes.

Fractal Landscapes

In 1975, Benoit Mandelbrot discovered fractal geometry, a branch of geometry that
involved shapes that were self-similar at different scales, and that appeared to be
able to generate forms like those of natural phenomena (such as fern branches and
mountain ranges, which involve copies of the same patterns at different scales).
Three-dimensional game graphics were improving and moving from wireframe
graphics to filled-polygon graphics, which could be used to present landscapes
with a first-person perspective. Emerging from Industrial Light and Magic’s work
with fractal graphics for the ‘Genesis Effect’-sequence in Star Trek II: The Wrath of
Khan (Meyer 1982), Rescue on Fractalus! (Lucasfilm Games 1984) used procedural-
ly-generated fractal landscapes (fig. 1); terrain with geometric mountains of varying
heights and randomized terrain helped to create more detailed landscapes than the
low-resolution graphics were otherwise able to suggest, as well as their movement in
three-dimensional space as the player’s vantage point f lew across the surface, look-
ing to land and rescue stranded pilots while avoiding aliens and alien fire. Fractal
technology would again be used in Koronis Rif t (Lucasfilm Games 1985) which fea-
tured rovers driving over fractal landscapes which were essentially mazes, and The
Eidolon (Lucasfilm Games 1985a), which inverted its fractal mountains to create a
mazelike cave interior. The Sentinel (Crammond 1986) also used simple fractal-based
landscapes and boasted 10,000 levels, stored in less than 70 kilobytes, and Starf light
(Binary Systems 1986) used fractal landscapes for its 800 different planets.

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mark J.P. Wolf298

Fig. 1: Screenshots from various versions of Rescue on Fractalus!

While initially offering the thrill of three-dimensional landscapes that varied
from place to place, the landscapes of these early games were basically just fields
of polygons set at different angles to produce a surface with simple mountains,
variations which could quickly grow tiresome in their similarity – quantity over
quality, as some critics have pointed out (Priestmann 2013; Cham 2014). By con-
trast, the procedurally-generated two-dimensional underground tunnels seen in
a cutaway side view in Exile (Irvin/Smith 1988) seem more varied and interest-
ing, and they also include customized hand-designed sections, something which
would have been very difficult to include in fractal-based landscapes. There is
likewise more direct interaction with the game’s spaces in Exile than in the other
games, demonstrating that despite their graphical detail and aesthetic value,
their functionality as interactive elements was severely limited, at least within the
limitations imposed by the relatively small amounts of memory and slow process-
ing speeds available at the time.

Also, fractal terrains with their varying slopes can limit accessibility and ran-
domly make certain areas impassable, and it is difficult to ensure that enough of a
map will be accessible without limiting mountain heights and valley depths which
would homogenize a landscape. Over the years since the early games discussed
here, a number of different methods for generating fractal terrains have been
developed, and a survey of these techniques can be found in A Survey of Procedural
Terrain Generation Techniques Using Evolutionary Algorithms (Raffe et al. 2012). The
authors compare different techniques, along with their advantages and disad-

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinatorial Explorations 299

vantages, and appropriateness to the needs of different games genres and their
needs concerning terrain (for example, f light simulators do not need to ensure
accessibility, but may instead require terrain that looks realistic from an aerial
perspective).

The uniqueness of fractal landscapes is merely mathematical in nature; hand-
crafted locations, by contrast, often have specific attributes that together create a
distinct personality that turn a space into a place. Player activities in spaces left to
procedural generation also tend to be more repetitive in nature; theme and varia-
tions, rather than new themes. Prices, commodities, and names may change, but
trading, shooting, and being shot at remains pretty much the same. Of course,
such games can still be fun; and they tend to be more replayable, with individual
games also taking much longer than in hand-designed worlds, due to their greater
expansiveness. For some types of games, then, the tradeoff is a worthwhile one.
Captive (Mindscape 1990), for example, had procedurally-generated planets and
bases (65,535 of them), and the game received 91% ratings – by Amiga Format (in
December 1990) and Zzzap!64 in (January 1991) – and was listed as the 31st-best
game of all time by Amiga Power. Also, games like Elite’s sequel, Frontier: Elite II
(Braben 1993), were so detailed, with three-dimensional graphics and spaces,
along with the possibility of freeform play, that they were competitive with games
using handcrafted locations.

Another reason for procedural generation was due to the memory restrictions
of earlier games, when available memory was still measured in kilobytes. With
the arrival of optical disc storage around the late 1980s and early 1990s, graph-
ics improved, and handcrafted worlds became much larger – Myst (Cyan 1993) is
the best example of a successful handcrafted world of the time. While procedural
terrain generation would continue to be used, increased storage capacity would
allow more f lexibility, and more detail could be stored and used, allowing more
combination of handcrafted content and procedural generation.

Greater Storage Capacity and Faster Processing Times

With optical discs and hard drives with greater storage capacity, more RAM, and
faster processing times, procedural generation would be able to provide more
detail in real time, and in an increasing number of areas. MicroProse’s Civilization
series of games, which began in 1990, used procedural generation for the produc-
tion of maps, allowing players to choose between general types of terrain, like con-
tinents, archipelagoes, pangaeas, and so forth. The smaller scale details change,
while the overall form remains consistent with the type of terrain chosen, and it is
these variations in small details that keep the games fresh. But procedural gener-

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mark J.P. Wolf300

ation is not appropriate for every area of a game, since quite often such material
lacks the deliberate design that one finds in material handcrafted by an author.

When procedurally-generated content is combined with handcrafted material,
the results can be large worlds which have more a deliberate feel in their design.
In the mid-1990s Advanced Dungeons & Dragons: Slayer (Lion Entertainment 1994)
and Virtual Hydlide (Technology and Entertainment Software 1995) were released,
each of which had worlds that combined handcrafted material with procedural
generation. Slayer used repeated wall, door, and window elements in a proce-
durally-generated dungeon which the player explored from a first-person per-
spective, and which included other features like moving platforms activated by
wall buttons and a map that could be consulted, and that filled in gradually as
the dungeon was explored (and of course, monsters, torches, and objects were
randomly encountered along the way). Players could customize the dungeon as
well, choosing the number of levels (10 to 20), Monster Numbers (Few, Handful,
Lots, Too Many), Treasure Availability (Poor, Comfortable, Rich, Filthy Rich), Poi-
son Strength (Annoying, Sickening, Deadly, Lethal), Food Availability (Starving,
Healthy, Well Fed, Stuffed), Monster Theme (Variety, Mundane, Magical, Undead,
Bug), Trap Frequency (None, Few, Lots, Too Many), and Potion Availability (Some,
Some More, Lots, Tons).

While choosing the settlings for Virtual Hydlide, the player is asked to select
from “Create world randomly” and “Create world from code,” a potentially confus-
ing choice, since code is just as involved with procedural generation as anything
else. This choice refers to the fact that the designers of Virtual Hydlide created over
20 maps for the dungeon levels and over 20 maps for the overworld, and these
maps could be randomly selected and combined to form dungeons, combin-
ing handcrafted locations with procedural generation. If a new world was cre-
ated, the player would be given a ten-letter seed representing that world, which
could be reentered later if the player wanted to return to that world. This kind of
reusable seed also reminds us that ‘procedurally-generated’ does not necessarily
mean ‘randomly-generated,’ despite the fact that many such procedures involve
randomization. Thus, in addition to the application of randomness to spatial con-
struction, procedural generation can also be seen as a kind of data decompression.
A game that I wrote for the TI99/4a computer in the early 1980s, for example, had
a cave maze that took 100 screens to display. I managed to compress the data by
dividing each screen into twelve tiles (with pathways leaving various sides of the
tiles), and each type of tile was represented by a letter so that each of the hundred
screens could be represented by twelve letters of text. This would be an example of
something procedurally-generated which does not involve randomness, and com-
bines handcrafted locations with procedural generation.

Some games combined various landmasses and buildings to produce proce-
durally-generated towns. The Elder Scrolls II: Daggerfall (Bethesda Softworks 1996)

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinatorial Explorations 301

had a landmass of 62,394 square miles, with 15,000 towns and a population of
750,000. Criticisms and complaints of the monotony of the world (Blancato 2007)
led to a much smaller (only 0.01%), but more handcrafted world for its sequel, The
Elder Scrolls III: Morrowind (Bethesda Softworks 2002). Increased memory capac-
ity can help to solve the problem of repetition in two ways; games can include more
handcrafted interchangeable elements to be used in procedural constructions, or
a greater number of algorithms can be used to add parameters to randomization
as well as generate higher levels of detail. For example, Pixel City generates dozens
of random buildings in various styles to keep the cities that are generated from
looking repetitive (Young 2009). Other city generators, like Subversion City Gen-
erator (Introvision 2011) also plan city layouts based on waterways, bridges, and
major and minor avenues, before filling them with buildings, creating more real-
istic urban landscapes.

The spaces of individual buildings and dungeons can also be done through
the recombination of handcrafted building units. Games from the Diablo-series,
for example, are noted for this technique. Three different f loor plans of “Cathe-
dral”-Level two from Diablo III (Blizzard Entertainment 2012) show how hand-
crafted building sections are recombined to create different arrangements which
randomize gameplay (fig. 2a-c). While the repetitions in such designs are more
evident from a top view, they may be less so from a first-person point of view,
especially if the building interiors have randomized elements and décor.

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mark J.P. Wolf302

Fig. 2a-c: Three dif ferent procedurally-generated f loor plans from Diablo III

Interestingly, another consequence of greater storage capacity is how the con-
straints that programmers had to work under out of necessity, due to the lack of
available memory, have now become something of an artistic challenge. Program-
mers taking up this challenge attempt to make as detailed worlds as possible fit
within small amounts of memory, relying heavily on procedural generation and

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinatorial Explorations 303

the faster processing speeds, which are able to decompress data, do fractal cal-
culations, and run algorithms much faster than did the computers of the 1980s
and 1990s. Noctis (Ghignola 2000), for example, features a three-dimensional, tex-
ture-mapped explorable universe of billions of stars and planets, all generated by
a program smaller than one megabyte. Regarding the programming behind the
fourth version of Noctis from 2003, Ghignola stated in an interview:

Its ‘engine’ is a mixture of sparse libraries. Planets and stars, for example are tex-
tured as pre-projected spherical maps. I don’t know how many remember Quick-
time [sic] VR, but I guess Wikipedia might have an article on that for those who
never heard of it. QTVR worked by projecting a scene (a composite photograph)
over a virtual, spherical screen, splashed on the physical flat screen. Well, Noctis
planets work the other way around: they get a rectangular raster image and wrap
it around a sphere. This is convenient in terms of speed because, if you can toler-
ate losing realistic, perspective aberrations when the sphere is significantly of f the
center of the viewport, the spherical map can be entirely precalculated, resulting
in a rendering that was very fast even on my 486 of those times. The reverse (pro-
jection of the inside of a sphere) was used for skies on the surfaces of planets. Then
there was a polygon engine taking care of drawing the heightmap constituting
the surface itself. The polygon engine was pretty simple, but again pretty fast: it
didn’t even perform depth buf fering (I doubt I could find enough memory for the
buf fer anyway), it just relied on the painter’s algorithm and minimal hidden sur-
face removal of one-sided surfaces. It was optimized enough that it could af ford
texture mapping of arbitrary-angled polygons, at about 1 division every 16 pixels.
Where more detail was a good idea, such as to simulate grass on terrains, an addi-
tional texture layer was overlaid to the ‘ground’ texture, in a sort of very simple kind
of bump mapping. The 256-color palette was split into four gradients having 64
brightness levels each, which finally enabled blur ef fects; in particular, the ‘vimana
drive’ ef fect seen while traveling through interstellar medium was obtained by
using an of f-center blur filter over a persistent canvas. In practice, the ef fect was
repeated each frame without clearing the previous frame, leaving trails whenever
an element moved through the screen. I don’t sincerely remember much about the
shading of polygon surfaces, but I guess it was plain-color shading, driven by the
angle of incidence of light sources. What more? One nice addition was the use of
concentric, semitransparent lines to create halos around the light of stars, in such
a way that – in my idea of that time – would mimic more the ef fect of light passing
through an organic eye, rather than a camera’s lens flare (Szymanski 2012).

Ghignola has revised the program in subsequent releases (and continues to work
on the program; Noctis V is currently in the works as of mid-2019), and although

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mark J.P. Wolf304

the Noctis games are not commercially distributed, they have attained a following
and are considered art games.

Another example, from Germany, is .kkrieger (.theprodukkt 2004), a first-per-
son shooting game with detailed graphics and elaborate interiors (fig. 3a-d).
Among its various procedural techniques is box modeling, in which 3-D primitives
(like cubes, spheres, or cylinders) are subdivided with each section being replaced
by more detail, a repetitive process which bears some similarity to the iterations
involved in the production of fractal imagery – according to their website, some
of the game’s models and textures take hundreds of steps to create when the game
is run. Through box modeling, texture mapping, and interactive lighting, the
game uses only 97280 bytes of disk space and is able to produce a world which
would normally take hundreds of megabytes to store. The small size of the game,
however, does not mean that it could have produced at an earlier time when less
memory was available. The many steps and processes used by procedural gen-
eration algorithms require more processing time, and faster processors for the
game to operate; .kkrieger ’s system requirements include a 1.5GHz Pentium 3/Ath-
lon or faster, 512MB of RAM, and a GeForce4Ti (or higher) or ATI Radeon8500 (or
higher) graphics card supporting pixel shaders 1.3, preferably with 128MB or more
of VRAM. Thus, the small amount of memory used must be made up for through
processing speed.

Fig. 3a-d: .kkrieger

Greater storage is also necessary for games which generate and output large
amounts of world data during their world creation. Slaves to Armok: God of Blood,

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinatorial Explorations 305

Chapter II: Dwarf Fortress (Tarn Adams 2006) – usually referred to simply as Dwarf
Fortress – is a work still in progress, which generates all the terrain of its worlds,
along with maps for elevation, temperature, rainfall, drainage, vegetation, and
salinity. Mountains are eroded by rivers, and plant and animal populations are
added, as well as races of sentient beings. Weather modeling even tracks wind
and humidity and creates fronts, clouds, storms, and blizzards. Once the mate-
rial world is generated, a historical timeline is generated, with thousands of char-
acters being born, living lives, and dying, and events being recorded, so that in

“Legends” mode, one can find a year-by-year list of the major events for every char-
acter’s life, where they lived or wandered, who they fought, outcomes of conf licts,
descendants, and so forth. Players can choose how much history is generated
before the world is ready for their characters to inhabit. Like Rogue, graphics are
two-dimensional and text-only (the Code Page 437 character set originally used
for IBM PC computers) and appear in 16 available colors.

Generating three-dimensional terrain, the racing game Fuel (Asobo Studio
2009) provides players with 5560 square miles of fully-explorable terrain, for which
the company received a Guinness Book of World Records-certificate for the largest
playable environment in a console game (Fahey 2009). On one hand, the game is
a good example of some of the graphics that procedural generation can achieve,
underscoring the fact that it involves much more than simply randomness, but
instead a set of parameters within which plausible objects and landscapes are gen-
erated; and these rules can be quite complex and elaborate ones, which, when they
are balanced and adjusted just right, can create scenes which would be difficult
to tell from handcrafted ones – movies have used similar techniques; Pandora,
the planet in Avatar (Cameron 2009) was largely procedurally-generated. On the
other hand, good graphics are not enough to make up for too much repetition of
elements. As Marsh Davies noted in EDGE Online:

Importantly, however, realism is not the aim – and cannot be for a world which
hopes to serve as the basis for a game. Making a world realistic is not the same as
making it interesting, a rule to which a game like Fuel stands in testament. Its rec-
reation of the American wilderness was both beautiful and credible moment-to-
moment, but empty and repetitive in aggregation, the terrain never quite feeling
suited to the purpose of racing (Davies 2011).

While the procedural generation found in space trading games acted as a kind
of backdrop for actions which were themselves typically quite repetitive (buying,
selling, trading), three-dimensional worlds usually must be far more interactive
for the player. Racing games like Fuel allow players to travel all over the landscape
exploring, but beyond that, interaction is usually rather minimal. But more fully
interactive procedurally-generated worlds were appearing as well.

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mark J.P. Wolf306

‘Infiniminer,’ ‘Minecraft’ and beyond

The procedurally-generated world to receive the most publicity today is probably
Markus Persson’s Minecraf t (Mojang 2009). Inspired by Dwarf Fortress, as well
as Peter Molyneaux’s Dungeon Keeper (Bullfrog Productions 1997), and especially
Infiniminer (Barth 2009), from which Minecraf t borrows heavily for its ideas, visual
design, gameplay mechanics, and procedural-generation techniques. Infiniminer
(fig. 4) appeared in late spring of 2009, but work on it was discontinued after
source code was leaked, and other games besides Minecraf t, including Fortress-
Craf t (ProjectorGames 2011), Craf tWorld (2.0 Studios 2011), and Ace of Spades (Jagex
2012) also used and modified code from the game. Other games inspired by Mine-
craf t, such as 3079 (Phr00t‘s Software 2011) and Cube World (Picroma 2013), have a
similar look and feel as well.

Fig. 4: Zachary Barth’s Infiniminer

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinatorial Explorations 307

Games like these deal with the problem of repetition by moving it to a smaller
scale; instead of the same trees or buildings, their worlds are composed of vari-
ations of blocks combined in endless ways. This granularity also allows users to
build and destroy more easily, since construction and destruction is simplified
down to the appearance or disappearance of blocks. While the graphics of these
games are simpler and more stylized (something which the retro movement in
gaming has made more acceptable to contemporary audiences who are used to
photorealistic graphics), the possibilities inherent in the interactivity available far
outweighs the aesthetic tradeoffs for many gamers. As such, space trading and
exploration games have continued to evolve, with procedurally-generated planets
and other locations in games like FTL: Faster Than Light (Subset Games 2012) and
Starbound (Chucklefish 2016). Perhaps the most ambitious procedurally-generated
locations are the millions of planets in No Man’s Sky (Hello Games 2016). As Sean
Murray (qtd. in Parkin 2014), one of the creators, put it:

We are attempting to do things that haven’t been done before… No game has
made it possible to fly down to a planet, and for it to be planet-sized, and feature
life, ecology, lakes, caves, waterfalls, and canyons, then seamlessly fly up through
the stratosphere and take to space again. It’s a tremendous challenge.

When older games revealed planets’ surfaces, it was little more than a series of
fractal mountains and bodies of water; even Noctis only featured rudimentary
plants and rock structures. The planets of No Man’s Sky, however, have lighting
conditions based on the type of nearby star and positioning in orbit, and plants
and animals involved in ecosystems, all of which are animating as you f ly through
the scenery, a level of detail previously only seen in handcrafted environments in
games. Because the universe generated for the game is unexplored, even mak-
ing a demo for the game posed problems not usually encountered in other games.
According to Murray (2014):

To give you an example of some problems, we planned out what our demo was, and
then we had to find somewhere in the universe to set it. So I flew around for quite
some time, a couple of days, looking for a planet that particularly suited it. So I had
to pick that planet, but also find another planet that was nearby that I was going
to fly to, and kind of engineer this situation where there was going to be things to
fight in between. And then you actually end up having to deal with really weird
things like the time of day on the planet it starts from, and what animals are going
to be out at the time of day, and what time of day it is on the planet you land on.
We wanted that to be daytime, and that’s really hard to plan, and it just doesn‘t
happen that easily. It was quite a fun little problem to have. Whereas, for any other
game, you would be constructing something for months especially for E3. When

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mark J.P. Wolf308

Ubisof t shows of f what Assassin’s Creed is like, it has specifically made that entire
demo for that show. We don’t have that control, which is really good, but also really
crazy.

Other works-in-progress promise detailed universes of near-infinite size, such
as Shamus Young’s Project Frontier, Miguel Cepero’s Procedural World, and Josh
Parnell’s Limit Theory, each with their own aesthetics and approach to procedural
generation. What all these games suggest is that when it comes to the creation of
vast videogame spaces, and the content within that space that defines it, we are
seeing a shift in which ‘handcrafted’ will not refer to specific content or partic-
ular instances of objects and locations so much as to ranges of possibilities and
sets of parameters within which many variations of the required content can be
generated. What parameters cover, how they are set, what settings are possible,
and how different sets of parameters are linked to each other, determining ranges
and limiting outcomes, will be the main ways of combining human hand-crafting
with algorithmic construction and randomness. Open-world sandbox games have
already made other games seem more limited in their interactivity, but so far the
narratives they generate during gameplay are much weaker due to the wide range
of possibilities to be accounted for. But as artificially-intelligent agents improve,
and potential of story structure and world structure are explored and realized, we
will likely see the quality of emergent narratives rising as well.

For games to move in the direction of procedurally-generated content is quite
natural when one considers how much of the complexity of the physical universe
is due to procedural processes. As fractal mathematics and the study of cellular
automata has demonstrated (Wolfram 2002), simple rules and concepts can gen-
erate complex structures, like a seed growing into a tree or strands of DNA guid-
ing the development of the human body. Videogame worlds grown by algorithms
are increasing in their complexity, and just as players explore these worlds, their
designers are exploring the nature of worlds and their representations. While they
will never reach the elegance and ingenuity of the procedural processes found in
the natural world, their striving to imitate them can make us all the more appre-
ciative of the universe around us and its combined simplicity and complexity.

References

2.0 Studios (2011): Craf tWorld, Windows Phone: Xbox Live.
A.I. Design (1983): Rogue, PC: Epyx.
Anonymous (2009): The Making of Rogue, in: EDGE, July, 3rd, edge-online.com/

features/making-rogue/2.
Asobo Studio (2009): Fuel, PS3/Xbox 360: Codemaster.

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinatorial Explorations 309

Atari (1980): Stellar Track, Atari 2600: Sears.
Barth, Zachary (2009): Infiniminer, PC: Zachtronics Industries.
Bethesda Softworks (1996): The Elder Scrolls II: Daggerfall, PC: Bethesda Softworks.

–––– (2002): The Elder Scrolls III: Morrowind, PC: Ubisoft.
Binary Systems (1986): Starf light, PC: Electronic Arts.
Blancato, Joe (2007): Bethesda: The Right Direction, in: The Escapist, February 6th,

escapistmagazine.com/articles/view/video-games/issues/issue_83/471-Bethe​
sda-The-Right-Direction.

Blizzard Entertainment (2012): Diablo III, PC: Blizzard Entertainment.
Braben, David (1993): Frontier: Elite II, Amiga/Atari ST: GameTek.
Braben, David/Bell, Ian (1984): Elite, PC: Acornsoft.
Bullfrog Productions (1997): Dungeon Keeper, PC: Electronic Arts.
Cameron, James (2009): Avatar, Film: USA.
Cham, Brian (2014): The Next Space: Procedural Generation as Indicator of Tech-

nological Possibility, videogamesftvms2014.wordpress.com/tag/procedural-​g​
eneration.

Chucklefish (2016): Starbound, PC: Chucklefish.
Crammond, Geoff (1986): The Sentinel, PC: Firebird.
Crowther, William/Woods, Don (1976): Colossal Cave Adventure, PDP-10: Crowther/

Woods.
Cyan (1993): Myst, Macintosh PC: Brøderbund.
Davies, Marsh (2011): Building Worlds with a Single Click, in: EDGE Online, July 6th,

edge-online.com/features/building-worlds-single-click/3.
Fahey, Mike (2009): Fuel is the Biggest Console Game Ever, in: Kotaku, May 22nd,

kotaku.com/5265942/fuel-is-the-biggest-console-game-ever.
Ghignola, Alessandro (2000): Noctis, PC: Ghignola.
Gygax, Gary/Arneson, Dave (1974): Dungeons & Dragons, Pen&Paper: Tactical Stu-

dio Rules.
Hello Games (2016): No Man’s Sky, PS4: Hello Games.
Introvision (2011): Subversion City Generator, PC: Introvision.
Irvin, Peter/Smith, Jeremy (1988): Exile, BBC/Electron: Superior Software.
Jagex (2012): Ace of Spades, PC: Jagex.
Lion Entertainment (1994): Advanced Dungeons & Dragons: Slayer, 3DO: Strategic

Designs.
–––– (1995): Virtual Hydlide, Sega Saturn: Sega.
Lucasfilm Games (1984): Rescue on Fractalus!, Atari 5200: Atari.

–––– (1985): Koronis Rif t, Atari800/C64: Epyx.
–––– (1985a): The Eidolon, Atari800/C64: Epyx.
Meyer, Nicholas (1982): Star Trek II: The Wrath of Khan, Film: USA.
Mindscape (1990): Captive, Amiga/Atari ST: Mindscape.
Mojang (2009): Minecraf t, PC: Mojang.

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mark J.P. Wolf310

Murray, Sean (2014): No Man‘s Sky: The Story, Gameplay, and Multiplayer Explained,
youtube.com/watch?v=tYoGN2zgXQU&t=65.

Noyes, Emma (2006): David Braben: From Elite to Today, in: Gamespot, Novem-
ber, 22nd, gamespot.com/articles/qanda-david-braben-from-elite-to-today/11​
00-6162140.

Parkin, Simon (2014): No Man’s Sky. A Vast Game Crafted by Algorithms, in: MIT
Technology Review, July 22nd, technologyreview.com/news/529136/no-mans-
sky-a-vast-game-crafted-by-algorithms.

Phr00t’s Software (2011): 3079, PC: Phr00t‘s Software.
Picroma (2013): Cube World, PC: Picorama.
Priestmann, Chris (2013): Why It’s Best to Be Cautious around Procedurally Gen-

erated Indie Games, Indiesstatik, December 8th, indiestatik.com/2013/12/08/
procedural-generation.

ProjectorGames (2011): FortressCraf t, Xbox 360: Xbox Live.
Raffe, William L./Zambetta, Fabio/Li, Xiaodong (2012): A Survey of Procedural

Terrain Generation Techniques Using Evolutionary Algorithms, in: WCCI
2012 IEEE World Congress on Computational Intelligence, June 10th-15th, goanna.
cs.rmit.edu.au/~xiaodong/publications/ptg-raffe-cec2012.pdf.

Russel, Steve (1962): Spacewar!, PDP-1: MIT.
Subset Games (2012): FTL: Faster Than Light, PC: Subset Games.
Szymanski, David (2012): Interview with Alessandro Ghignola (aka ‘Alex’), in: Vid-

eogame Potpourri, May 9th, homeoftheunderdogs.net/game.php?id=2950.
Tarn Adams (2006): Slaves to Armok: God of Blood, Chapter II: Dwarf Fortress, PC: Bay

12 Games.
.theprodukkt (2004): .kkrieger, PC: .theprodukkt.
Wolfram, Stephen (2002): A New Kind of Science, Champaign, IL: Wolfram Media

2002
Young, Shamus (2009): Procedural City, shamusyoung.com/twentysidedtale/?​p=​

2940.

https://doi.org/10.14361/9783839447307-016 - am 14.02.2026, 14:23:51. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.14361/9783839447307-016
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

