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N Anzahl der Agenten in einem Multi-Agenten System
p Anzahl der Ausgangsgrößen

Funktionen, Operatoren

bild .�/ Bild einer linearen Abbildung
d.�/ Differential
diag .�/ (Block-)diagonalmatrix
dim .�/ Dimension
Im.�/ Imaginärteil einer komplexen Zahl/Matrix
kern .�/ Kern einer linearen Abbildung
L.�/.�/ Lie-Ableitung
max.�/ Maximumsfunktion
min.�/ Minimumsfunktion
rang .�/ Rang einer Matrix
Re.�/ Realteil einer komplexen Zahl/Matrix
sign.�/ Signumfunktion
span .�/ Raum, der von Vektoren aufgespannt wird
spur .�/ Spur-Operator
vec.�/ Vektorisierungsoperator, vgl. (B.4)
�.�/ WD k.�/k ��.�/�1

��, Konditionszahl einer Matrix
�F.�/ Konditionszahl einer Matrix bezüglich der Frobeniusnorm
� .�/ Spektrum, Menge der Eigenwerte einer MatrixePN Blockdiagonalmatrix WD diag .P1; : : : ;PN /
P.�/ Zeitableitung
.�/�1 Inverse Matrix
.�/C Pseudoinverse einer Matrix
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Symbole und Abkürzungen XI

.�/T Transponiert

.�/�T WD
�
.�/�1

�T
, inverse und transponierte Matrix

.�/� Transponiert, konjugiert komplex

.�/H Hermitesch

.�/˝ .�/ Kronecker Produkt
r.�/ Gradient
r2.�/ Hesse-Matrix
�.�/ bzw. �.�/ Kleinster bzw. größter Singulärwert einer Matrix
k�k Norm eines Vektors und einer Matrix, bei Matrizen

wird die Spektralnorm angenommen, d.h. es ist kAk D �.A/

k�kF WD p
spur ..�/T.�//, Frobeniusnorm

Räume, Mengen

C Komplexe Zahlen
Dn Selbst-konjugierte Menge mit jDnj D n, vgl. (3.17)
R Reelle Zahlen
M Mannigfaltigkeit
N Natürliche Zahlen
q ; q

n
Indexmengen, q WD f1; : : : ; qg bzw. q

n
WD f1; : : : ; ng

V Untermannigfaltigkeit
S Synchronisierbarer Unterraum
Sn n-dimensionale Einheitskugel
; Leere Menge

Abkürzungen

EKR Entkopplungsregelung
Ge Gerade
Hy Hyperbel
Kr Kreis
LMI engl. linear matrix inequality
LQR engl. linear quadratic regulator
MAS Multi-Agenten System
MGEA engl. minimum gain eigenstructure assignment
REEA engl. robust exact eigenstructure assignment
SNF Steuerungsnormalform
TCP engl. tool center point
VKR Verkopplungsregelung
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XII

Kurzfassung

Synchronisierung ist der Wortherkunft nach der Prozess, Vorgänge in zeitliche Übereinkunft zu
bringen. In vielen technischen Anwendungen ist dies ein zentraler Aspekt, um den störungsfreien
Betrieb zu gewährleisten. Beispielhaft sei hier die Frequenzregelung des elektrischen Energie-
netzes genannt, die insbesondere dann von Bedeutung ist, wenn nach Stromausfällen einzelne
Netzsegmente wieder miteinander verschaltet und dabei synchronisiert werden müssen.

Neben dieser technischen Anwendung eines Synchronisierungsvorgangs wurde in der regelungs-
technischen Literatur in den vergangenen Jahren verstärkt die Synchronisierung von agenten-
basierten dynamischen Systemen beziehungsweise Multi-Agenten Systemen untersucht. Hierbei
handelt es sich zunächst um autonome und nicht physikalisch gekoppelte dynamische Systeme,
die die Fähigkeit besitzen, über ein Netzwerk miteinander zu kommunizieren. Die aus dem Netz-
werk empfangene Information wird von den lokalen Reglern der Teilsysteme verarbeitet, mit dem
Ziel, asymptotisch Übereinkunft in den Zuständen oder – je nach Aufgabenstellung – lediglich
in Teilzuständen der Agenten zu erreichen. Erwähnenswert ist dabei die Tatsache, dass es ausrei-
chend ist, lediglich relative Information zur Synchronisierung zu kommunizieren. Die messtech-
nische Erfassung des absoluten Zustandes oder Ausgangs des einzelnen Agenten muss somit nicht
notwendigerweise vorausgesetzt werden.

In der vorliegenden Arbeit erfolgt daher die Weiterentwicklung bestehender und die Entwicklung
neuer Ansätze, um strukturbeschränkte Regelungen für agentenbasierte dynamische Systeme zu
entwerfen, wobei alle betrachteten Methoden die eingangs erwähnte Synchronisierung des gere-
gelten Multi-Agenten Systems zum Ziel haben. Ausgangspunkt der Methoden in dieser Arbeit
stellt zunächst die Systemanalyse der betrachteten Systemklassen dar, woraus sich notwendige
Bedingungen für die Synchronisierung der entsprechenden Systemklassen ableiten und interpre-
tieren lassen.

Als Entwurfsmethodik in dieser Arbeit werden fast durchgängig parametrische beziehungswei-
se teilparametrische Ansätze genutzt. Darüber hinaus wird konsequent von einer konstanten be-
ziehungsweise dynamischen Ausgangsregelung der Agenten ausgegangen, was eine der Struk-
turbeschränkungen der Regelung darstellt. In diesem Zusammenhang entstehen – losgelöst vom
Kernthema der Arbeit – Weiterentwicklungen von Methoden zur robusten Eigenstrukturvorgabe
sowie Methoden zum Entwurf von Ent- und Verkopplungsregelungen.

Hinsichtlich der Synchronisierung agentenbasierter Systeme erfolgt in dieser Arbeit eine Unter-
scheidung der Ansätze bezüglich der Messgrößen der Agenten. Zunächst wird der Fall diskutiert,
dass jeder Agent neben der Relativinformation zusätzlich Absolutinformation messtechnisch er-
fassen kann. Dies ermöglicht durch unterlagerte Regelkreise die Agenten zu homogenisieren, was
basierend auf den parametrischen Ansätzen mittels Ent- und Verkopplungsregelung erfolgt. Die
Homogenisierung gestattet dann Standardverfahren zur Synchronisierung identischer Agenten an-
zuwenden. Darüber hinaus gelingt es, diese Idee ebenfalls auf eine spezielle Systemklasse nicht-
linearer Agenten zu übertragen, was auf ein adaptives Regelgesetz zur Synchronisierung führt.
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Kurzfassung XIII

Wie eingangs erwähnt, muss die Verfügbarkeit von Absolutinformation zur Synchronisierung
nicht voraussetzt werden. Auch für diesen Fall wird in der vorliegenden Arbeit ein Regelgesetz zur
Synchronisierung agentenbasierter dynamischer Systeme angegeben. Der Entwurf der synchroni-
sierenden Regelung lässt sich dabei in ein dezentrales Stabilisierungsproblem und damit in ein
strukturbeschränktes Regelungsproblem übersetzen, welches sich durch numerische Optimierung
lösen lässt.

Alle Methoden werden an Entwurfsbeispielen am Ende der Arbeit dargestellt und bewertet. Die
Leistungsfähigkeit der Methoden zur Synchronisierung werden an Simulationsbeispielen verdeut-
licht. Die weiterentwickelte Methode zum parametrischen Entwurf von Ausgangsreglern wird dar-
über hinaus in der Simulation und an einem Laboraufbau einer xy-Positioniereinheit am Beispiel
einer Entkopplungsregelung anschaulich dargestellt.
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1

1 Einführung

1.1 Einleitung

„We understand synchronization as an adjustment of rythms of oscillating objects due
to their weak interaction. “

Dieses Verständnis von Synchronisierung entwickeln Pikovsky, Rosenblum und Kurths in [82]
und formulieren damit eine Auffassung von Synchronisierung, die sich mit der griechischen Wort-
herkunft deckt: Synchronisierung ist ein Vorgang, der das zeitliche (griechisch chrónos „Zeit“)
Zusammenführen (griechisch syn „zusammen“) von Prozessen zum Ziel hat.

Der erste wissenschaftlich dokumentierte Synchronisierungsvorgang geht auf den niederländi-
schen Wissenschaftler Christian Huygens (1629 – 1695) zurück, der im Jahre 1665 in einem Brief
an seinen Vater die Beobachtung schilderte, dass zwei von ihm gefertigte und an der Wand aufge-
hängte Pendeluhren mit fortlaufender Zeit ihre Pendelwinkel gegenphasig synchronisierten. Dabei
sind zweierlei Dinge bemerkenswert: Zum einen gelangen die Experimente selbst bei unterschied-
lichen Pendellängen und somit bei einer unterschiedlichen Dynamik der Pendeluhren. Zum ande-
ren ist die Kopplung der beiden Pendeluhren über die gemeinsame Aufhängung ausreichend, um
die Pendeluhren zu synchronisieren, was im Einklang mit der eingangs erwähnten Anpassung der
Rhythmen oszillierender Objekte durch schwache Interaktion steht.

Beispiele aus vielen Bereichen zeigen, dass Synchronisierung nicht nur auf technische bzw. me-
chanische Prozesse beschränkt ist. So zeigt eine Studie [73], dass der zu Beginn tumultartige Ap-
plaus bei Oper- und Theateraufführungen nach kurzer Zeit in rhythmisches Klatschen übergeht.
Dabei ist auffallend, dass sich der Rhythmus des Klatschens von isoliert betrachteten Zuschauern
gegenüber dem Rhythmus des Klatschens in der Gruppe ungefähr um den Faktor zwei unterschei-
det. Das heißt der Applaus in der Gruppe hat eine doppelt so große Periodendauer im Vergleich
zum individuellen Klatschen. Darüber hinaus beträgt die Intensität des rhythmischen Klatschens
nur etwa die Hälfte des zu Beginn des Experiments festzustellenden tumultartigen Applauses.
Offensichtlich hierbei ist, dass Synchronisierung ein spontaner Vorgang ist, der ohne zentrale In-
stanz auskommt, die beispielsweise einen gemeinsamen Rhythmus vorgibt. Dies zeigt sich auch
daran, dass sich das individuelle Verhalten der Zuschauer vom Verhalten der Gruppe unterschei-
det. Diese Beobachtung ist auf die Interaktionen der Zuschauer untereinander zurückzuführen und
verdeutlicht, dass das synchrone Verhalten nicht notwendigerweise identisch mit dem autonomen
Verhalten eines Individuums sein muss.

Auch in der Natur finden sich Beispiele für die Selbstorganisation großer Populationen, die sich
mit Hilfe von Synchronisierungsvorgängen erklären lassen. So findet die Fortbewegung von großen
Fischpopulationen oder Vögeln in Schwärmen statt, da sich hierdurch eine größere Sicherheit der
Gruppe im Vergleich zum einzelnen Individuum gegenüber Angreifern ergibt. In [91] wird eine

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


2 1 Einführung

Animation eines Schwarms entwickelt, die sich auf drei einfache Regeln für ein einzelnes Indi-
viduum zurückführen lässt: Vermeide Kollisionen mit deinen Nachbarn, passe deine Geschwin-
digkeit an die der Nachbarn an sowie versuche möglichst nah bei deinen Nachbarn zu bleiben.
Durch die Implementierung dieser Regeln für jedes Individuum lässt sich ein verteilt geregeltes
System entwerfen, welches ohne zentral koordinierende Instanz auskommt und im Kern auf der
Synchronisierung der Positionen und Geschwindigkeiten der einzelnen Individuen basiert. Neben
diesem Beispiel zeigen noch weitere Naturphänomene, dass Synchronisierung häufig ein durch
Interaktion induzierter Prozess ist. So lässt sich bei einer Leuchtkäfer-Population in Süd-Thailand
das folgende Phänomen beobachten [107]: Bei Beginn der Dämmerung ist zunächst nur das chao-
tische Aufblitzen der Leuchtorgane der Käfer zu erkennen. Nach kurzer Zeit geht das Aufblit-
zen in einen koordinierten Rhythmus über, und die Leuchtkäfer emittieren in nahezu perfektem
Rhythmus Licht. Gegenstand der Forschung war hierbei, diesen Synchronisierungsvorgang durch
mathematische Modelle nachzubilden [108], was mithilfe von gekoppelten Oszillatoren gelang.

Diese Beispiele legen dar, dass die Natur in der Lage ist, in effizienter Weise komplexe Systeme
ohne zentral koordinierende Instanz zu organisieren. Hierbei lässt sich offensichtlich die individu-
elle Verarbeitung des Informationsflusses unter den einzelnen Individuen als verteiltes komplexes
Regelungssystem interpretieren, welches dem Gesamtsystem einen – gegenüber der Summe der
Eigenschaften der einzelnen Individuen – zusätzlichen Nutzen stiftet.

Dies begründet, weshalb in den letzten Jahren in der regelungstechnischen Forschung verstärkt
der Entwurf komplexer Systeme erforscht wurde, wobei insbesondere Systeme in den Mittelpunkt
rückten, die über einen gewissen Grad an Vernetzung verfügen. Sind Prozess und Regeleinrich-
tung nicht notwendigerweise am selben Ort installiert und über Funkstrecken samt deren Vor- und
Nachteilen miteinander verschaltet, ist dies unter dem Stichwort Networked Control Systems zu-
sammengefasst. Auch Kommunikations- und Sensornetzwerke wurden in den vergangenen Jahren
verstärkt aus einer regelungstechnischen Perspektive untersucht [4, 105], was verdeutlicht, dass
die Interdisziplinarität essentiell für den Entwurf komplexer Systeme ist, da Lösungsansätze häu-
fig aus der Schnittmenge von Graphen-, Kommunikations- und Regelungstheorie entstehen. Um
dieser Entwicklung gerecht zu werden, wurde im Jahr 2014 mit der IEEE Transactions on Control
of Network Systems [78] ein neues Forum geschaffen, um neue Resultate zu publizieren.

In die oben genannte Schnittmenge lassen sich auch Multi-Agenten Systeme (MAS) einordnen,
die Untersuchungsgegenstand dieser Arbeit sind. Hierbei handelt es sich zunächst um autonome
und nicht physikalisch gekoppelte dynamische Systeme, die die Fähigkeit besitzen, über ein Netz-
werk miteinander zu kommunizieren. Dabei wird der Regelung jedes Agenten die Aufgabe zuteil,
die aus dem Netzwerk empfangene Information in geeigneter Weise zu verarbeiten, mit dem Ziel,
asymptotisch Übereinkunft – und somit Synchronisierung – in den für die jeweilige Aufgabenstel-
lung angepassten Ausgangsgrößen zu erzielen. Mithilfe der Graphentheorie lässt sich in einfacher
Weise der Informationsfluss zwischen den einzelnen Agenten modellieren. Erwähnenswert ist da-
bei die Tatsache, dass lediglich relative Information zur Synchronisierung kommuniziert wird und
somit die messtechnische Erfassung des absoluten Zustandes oder Ausgangs des einzelnen Agen-
ten nicht notwendigerweise vorausgesetzt werden muss. Gleichwohl bedeutet dies eine Struktur-
beschränkung für die Regelung, weshalb der Entwurf nicht mehr mit Standardverfahren durchge-
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1.2 Literaturübersicht 3

führt werden kann. Ziel dieser Arbeit ist es deshalb, strukturbeschränkte Regelungsverfahren zu
entwickeln, die die Synchronisierung agentenbasierter dynamischer Systeme ermöglichen.

1.2 Literaturübersicht

Die aktuelle Entwicklung hinsichtlich des Entwurfes von Multi-Agenten Systemen geht in histo-
rischer Perspektive auf Probleme des verteilten Rechnens in der Informatik zurück [118]. Dabei
findet sich in [90] eine notwendige und hinreichende Bedingung für das sogenannte Konsens-
Protokoll, welches zur Synchronisierung identischer Integratoren nutzbar ist. Die Bedingung ver-
knüpft dabei das verteilte Regelgesetz mit dem zugrunde liegenden Graphen des Netzwerks und
lautet: Konsens wird genau dann erreicht, wenn der Graph einen Spannbaum besitzt. Ein Spann-
baum im Netzwerk liegt vor, wenn wenigstens ein Knoten im Netzwerk existiert, der über Pfade
alle anderen Knoten im Netzwerk erreichen kann.

Einen Überblick über Konsens-Protokolle im Hinblick auf die Modellierung des Informationsflus-
ses, der Konvergenzgeschwindigkeit der Protokolle und der Robustheit gegenüber Ausfällen von
Knoten geben Olfati-Saber, Fax und Murray [75]. Die Untersuchung des Konsens-Protokolls bei
zeitvarianter Kommunikationstopologie geht auf die Arbeiten von Moreau [70, 71] zurück, wo-
bei insbesondere das Umschalten zwischen verschiedenen Graphen beleuchtet wird. Ren, Beard
und Atkins geben in [89] eine einführende Übersicht hinsichtlich der Anwendung von Konsens-
Protokollen zur kooperativen Regelung in Fahrzeugkolonnen (engl. muli-vehicle systems), die bei-
spielsweise zur Vereinbarung eines Treffpunktes (Rendezvous-Problem) oder auch zur Einhaltung
einer Formation der verschiedenen Fahrzeuge nutzbar ist.

Grundsätzlich lässt sich festhalten, dass Netzwerke von autonomen Robotern eines der Hauptan-
wendungsgebiete für Multi-Agenten Systeme darstellen. In [12] wird eine übersichtliche Einfüh-
rung in die Koordination von autonomen Robotern mit dem Fokus auf die Rendezvous-Probleme,
der Formationsregelung aber auch von Erkundungsmissionen gegeben. Weitere Darstellungen die-
ser Art finden sich ebenfalls in [85, 88]. Eine Erweiterung des Konsens-Protokolls, welches ledig-
lich für einfache Integratordynamiken verwendet werden kann, findet sich in [87]. Darin zeigen
Ren und Atkins, wie sich unter Annahmen an das Netzwerk das Konsens-Protokoll auf Doppelin-
tegratordynamiken erweitern lässt. Unter Ausnutzung einer geschickten Transformation und der
exakten Linearisierung gelingt es, das aus der Literatur bekannte Modell eines einfachen kinema-
tischen Fahrzeugmodells (engl. unicycle model) als zweifachen Doppelintegrator zu betrachten,
so dass sich eine Formationsregelung basierend auf dem vorgestellten Protokoll erzielen lässt.

Aufgrund der in den letzten Jahren zahlreichen Veröffentlichungen im Bereich der Multi-Agenten
Systeme, sollen die nachfolgenden Resultate zunächst gemäß den betrachteten Systemklassen der
individuellen Agentendynamik, der Dynamik des Multi-Agenten Systems sowie der Eigenschaf-
ten des Netzwerks eingeordnet werden. Bild 1.1 zeigt hierzu die gewählte Unterscheidung, wobei
bei der individuellen Dynamik der Agenten zunächst zwischen einer linearen bzw. einer nichtli-
nearen Dynamik unterschieden werden kann. Wird das gesamte Multi-Agenten System betrachtet,
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4 1 Einführung

Lineare Dynamik Homogenes System Statisch

Nichtlineare Dynamik Heterogenes System Dynamisch

Agentendynamik Gruppendynamik Netzwerktopologie

Bild 1.1: Einordnung von Multi-Agenten Systemen nach der betrachteten Klasse der indivi-
duellen Dynamik der Agenten, des Gesamtsystems sowie des Netzwerks

so lässt sich zwischen homogenen Systemen, also Systemen bei denen die Dynamik der Agen-
ten identisch ist, und heterogenen Systemen, bei denen die Agentendynamik nicht identisch ist,
unterscheiden. Darüber hinaus ist auch eine Trennung hinsichtlich der betrachteten Struktur des
Netzwerkes zu ziehen. Die Unterscheidung erfolgt zwischen statischen sowie dynamischen Gra-
phen, wobei im ersten Fall von einer kontinuierlichen Kommunikation der Agenten untereinander
auszugehen ist. Mit dem letzten Fall lassen sich beispielsweise wechselnde Kommunikationstopo-
logien oder aber auch das Ausfallen bzw. Hinzunehmen von einzelnen Kommunikationskanälen
abbilden. In dieser Arbeit wird zumeist von statischen Graphen ausgegangen.

1.2.1 Lineare homogene Multi-Agenten Systeme

Ausgehend vom Konsens-Protokoll wurde untersucht, unter welchen Bedingungen sich lineare
homogene Multi-Agenten Systeme synchronisieren lassen. Eine notwendige und hinreichende
Bedingung geht auf Fax [25] sowie Fax und Murray [26] zurück. Unter der Annahme, dass alle
Agenten dasselbe Regelgesetz implementieren, ist gezeigt, dass Synchronisierung genau dann
erreicht wird, wenn der lokale Regler simultan N Systeme stabilisiert. Dabei ergeben sich die
Systeme mit Hilfe der Dynamik des einzelnen Agenten sowie mit den Eigenwerten des zugrunde
liegenden Graphen, wobei N die Anzahl der Agenten bezeichnet.

Diese Bedingungen wurden von Tuna genutzt, um ein konstruktives Verfahren zur Bestimmung
eines synchronisierenden Zustandsreglers sowie dual dazu einer synchronisierenden Ausgangs-
aufschaltung anzugeben. Dies gelingt für zeit-kontinuierliche lineare Systeme in [119] durch Lö-
sung einer Riccati-Gleichung, während in [120] ein dazu duales Ergebnis zur Bestimmung einer
Ausgangsaufschaltung für zeit-diskrete lineare Agenten zu finden ist.

Die vorgenannten Resultate zur Synchronisierung setzen voraus, dass entweder der Zustand kom-
muniziert wird oder dass der Agent voll aktuiert und damit jede Zustandsgröße unabhängig steuer-
bar ist, was unter praktischen Gesichtspunkten sehr restriktiv ist. Vor diesem Hintergrund untersu-
chen Ma und Zhang in [62], unter welchen Bedingungen Synchronisierung gelingt, falls lediglich
Ausgangsinformation kommuniziert und somit eine Ausgangsrückführung zur Synchronisierung
genutzt wird. Die Stabilisierbarkeit und Detektierbarkeit der Dynamik des Agenten sowie die
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Anforderung, dass der zugrunde liegende Graph einen Spannbaum enthält, ergeben sich als not-
wendige Bedingungen für die Synchronisierung. Allerdings basiert die hinreichende Bedingung
zur Bestimmung einer synchronisierenden Ausgangsrückführung auf einer sehr restriktiven Rang-
bedingung, wobei Ma und Zhang bereits darauf hinweisen, dass die Bestimmung des Reglers in
der Regel numerisch bestimmt werden muss. Ein äquivalentes Resultat von Lunze findet sich in
der deutschsprachigen Literatur in [60], wobei lediglich Agenten betrachtet werden, die sich als
Eingrößensysteme darstellen lassen.

Die notwendigen Bedingungen aus [26] werden ebenfalls in [132] von Zhang, Lewis und Das zum
Entwurf eines identischen Zustandsreglers samt Beobachters für jeden Agenten genutzt. Dabei
wird der Beobachter nicht durch Messung des absoluten Ausgangs des Agenten gestützt sondern
durch die Ausgangsdifferenzen der Agenten untereinander, so dass nur Ausgangsinformation über
das Netzwerk kommuniziert werden muss. Allerdings wird vorausgesetzt, dass ein Agent – der so-
genannte Anführer – im Netzwerk die synchrone Bewegung vorgibt und diese an jeden Agenten
im Netzwerk kommuniziert, was eine Einschränkung in den möglichen Kommunikationstopologi-
en darstellt. In der englischsprachigen Literatur wird diese spezielle Struktur eines Multi-Agenten
Systems als leader-follower network bezeichnet.

Ein verwandtes Resultat findet sich in [34], wobei hier davon ausgegangen wird, dass die Dyna-
mik des Anführers sich von der Dynamik der anderen Agenten im Netzwerk unterscheiden kann,
weshalb auf Ergebnisse aus dem Bereich der Ausgangsfolgeregelung (engl. output regulation) zu-
rückgegriffen wird. Weitere Resultate zur Synchronisierung identischer linearer Systeme finden
sich in [96, 97], wobei auch darin nicht nur Zustandsinformation sondern auch Information über
einen dynamischen Reglerzustand kommuniziert werden muss.

Um den Kommunikationsaufwand zu reduzieren, was unter praktischen Gesichtspunkten immer
anzustreben ist, sollte lediglich Ausgangsinformation über das Netzwerk kommuniziert werden.
Hierzu ist in [102] von Seo, Shim und Back ein Verfahren angegeben. Ausgehend von den notwen-
digen Bedingungen aus [26] wird ein konstruktives Verfahren zur Bestimmung einer beobachter-
basierten Zustandsrückführung angegeben. Die Berechnung des Reglers erfolgt über die Lösung
einer Riccati Gleichung und hat den Nebeneffekt, dass große Verstärkungen in der Rückführung
minimiert werden.

Ein ähnlicher Ansatz wird in [53, 56] verfolgt mit dem Unterschied, dass keine beobachterba-
sierte Zustandsrückführung sondern eine dynamische Ausgangsrückführung entworfen wird. Die
Berechnung des Reglers wird als Optimierungsproblem mit linearen Matrixungleichungen (LMI,
engl. linear matrix inequality) als Nebenbedingung formuliert, wobei hierzu die Ergebnisse aus
[98] genutzt werden. Deshalb entspricht hier die Reglerordnung der Ordnung des Agenten.

In der vorliegenden Arbeit wird auf die vorgenannten, vereinfachenden Annahmen weitestgehend
verzichtet. Es wird eine Methode aus der Literatur [45] modifiziert, die den Entwurf identischer
Agenten durch ein optimierungsbasiertes Verfahren und damit konstruktiv ermöglicht. Einschrän-
kungen bezüglich der betrachteten Systemklasse der Agenten werden nicht gemacht. Darüber
hinaus erfolgt lediglich die Kommunikation des Ausgangs des Agenten, was den minimalen An-
forderungen an die Kommunikation entspricht. Auch hinsichtlich der Kommunikationstopologie
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muss lediglich die Existenz eines Spannbaums vorausgesetzt werden, so dass mit der Methodik
komplexe Synchronisierungsprobleme entworfen werden können.

1.2.2 Lineare heterogene Multi-Agenten Systeme

Ausgehend von den Ergebnissen zur Synchronisierung homogener linearer Multi-Agenten Sys-
teme, ist in den vergangenen Jahren verstärkt die Synchronisierung heterogener Multi-Agenten
Systeme in den Fokus gerückt. Dies ist von einem praktischen Standpunkt aus gesehen sinnvoll,
da beispielsweise aufgrund fertigungstechnischer Ungenauigkeiten, die Agenten niemals perfekt
identisch sein können.

Vor diesem Hintergrund wurde zunächst von Wieland und Allgöwer in [124] eine notwendige Be-
dingung für Synchronisierung in Netzwerken von heterogenen linearen Agenten angegeben. Of-
fensichtlich ist ein gemeinsames identisches internes Modell, welches die Agenten aufgrund ihrer
Systemdynamik oder aber auch aufgrund eines dynamischen Reglers aufweisen müssen, notwen-
dig für Synchronisierung. Entsprechend kann diese notwendige Bedingung als Erweiterung des
bekannten internen Modellprinzips nach Francis und Wonham [29] im Hinblick auf agentenba-
sierte Systeme gesehen werden, weshalb Wieland und Allgöwer die notwendigen Bedingungen
als Internal Model Principle for Synchronization bezeichnen. Eine hinreichende Bedingung wur-
de von Wieland, Sepulchre und Allgöwer in [126] angegeben, wobei die Bestimmung der Rege-
lung voraussetzt, dass absolute Ausgangsinformation verfügbar ist, um den Zustand des einzelnen
Agenten mittels eines Beobachters zu rekonstruieren.

Zu ähnlichen Ergebnissen gelangt Lunze in [58, 59]. Als notwendige Bedingung zur Synchroni-
sierung heterogener Agenten ergibt sich, dass alle Agenten bei Wahl konsistenter Anfangswerte
identische Ausgangsgrößenverläufe erzeugen. Lunze bezeichnet dies als System-Schnittmenge
der Agenten (engl. system intersection), die notwendigerweise nicht die leere Menge darstellen
darf, um triviale Synchronisierung zu vermeiden. Auch Lunze gelangt zu dem Ergebnis, dass gege-
benenfalls die Agenten durch eine geeignete dynamische Regelung erweitert werden müssen, falls
die Dynamik der Agenten keinen gemeinsamen Schnitt aufweist, was dann wieder dem Internal
Model Principle for Synchronization nach Wieland und Allgöwer entspricht. Eine hinreichende
Bedingung für Synchronisierung basiert auf der Annahme kreisfreier Kommunikationstopologien
[59] beziehungsweise auf der Überprüfung einer um die synchrone Bewegung reduzierten Dar-
stellung des Gesamtsystems [58].

Wie aus den Ergebnissen von Wieland, Sepulchre und Allgöwer [126] sowie Lunze [58] ersicht-
lich ist, basieren hinreichende Bedingungen häufig auf Einschränkungen der erlaubten Topologie
des Netzwerks oder auf einem erhöhten Kommunikationsaufwand. Im letztgenannten Zusammen-
hang finden sich zahlreiche Resultate, die sich auf die Voraussetzung stützen, dass der Agent
messtechnisch seinen eigenen Zustand beziehungsweise Ausgang erfassen kann. Yang u. a. be-
zeichnen den Agenten daher in [131] als introspektiv (engl. introspective agent), da der Agent –
basierend auf der lateinischen Wortherkunft – in sich „hineinsehen“ kann (vgl. [72], Introspek-
tion aus dem lat. „Hineinsehen“). In diesem Zusammenhang entwickeln Su und Huang in [115]

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


1.2 Literaturübersicht 7

eine dynamische Ausgangsrückführung, in die ein für alle Agenten identisches Exosystem zur
Generierung der synchronen Trajektorie eingebettet wird. Eine synchronisierende Regelung für
rechts-invertierbare zeit-diskrete Agenten geben Wang, Saberi und Yang [123] an, während Per-
sis, Liu und Cao ein Verfahren zur Synchronisierung heterogener unsicherer Agenten beschreiben
[79]. Ein ähnlicher Ansatz ist von Kim, Shim und Seo in [42] zu finden.

Wird die stabile Entkoppelbarkeit jedes Agenten vorausgesetzt, so lässt sich aufgrund der Kennt-
nis absoluter Ausgangsinformation stets eine beobachterbasierte Zustandsrückführung für jeden
Agenten entwerfen, die das Führungsverhalten stabil entkoppelt. Die Synchronisierung von Multi-
Agenten Systemen mit mehreren Ein- und Ausgängen ist somit auf die getrennte Betrachtung der
einzelnen Kanäle zurückgeführt. Hierzu nutzen De Campos, Brinón-Arranz und Niculescu in [21]
die spezielle Struktur der Agenten mit Vektorrelativgrad eins aus, um zunächst die Agenten in
einfacher Weise zu entkoppeln und im Anschluss das Konsens-Protokoll zur Synchronisierung
anzuwenden. Eine Erweiterung dieser Idee findet sich ebenfalls in [41]. Hingegen nutzen Kho-
daverdian und Adamy in [39] das bekannte Verfahren zur Entkopplung nach Falb und Wolovich
[24], um die vorgenannten Ergebnisse auf Agenten zu erweitern, die sich mit einer statischen
Zustandsrückführung stabil entkoppeln lassen.

Die Annahme der Verfügbarkeit absoluter Information vereinfacht in vielerlei Hinsicht den Ent-
wurf synchronisierender verteilter Regler für heterogene Multi-Agenten Systeme – notwendig zur
Synchronisierung ist diese Annahme jedoch nicht. Insbesondere vor dem Hintergrund der in der
Einleitung dargestellten und aus der Natur motivierten Beispiele wird deutlich, dass durch die
Verwendung von lediglich Relativinformation Synchronisierung des Gesamtsystems möglich ist,
weshalb dies den derzeitigen Gegenstand der Forschung in diesem Bereich darstellt.

Eine Erweiterung des Konsens-Protokolls für Doppelintegratoren, die rauschbehaftet sind, kann
als erste Entwicklung in diese Richtung verstanden werden und ist in [16] dargestellt. Ein Ver-
fahren, welches ebenfalls ein Exosystem in die Regelungsstruktur eines jeden Agenten einbet-
tet, ist von Listmann u. a. in [55] dargestellt. Um dem Exosystem asymptotisch zu folgen, wird
allerdings der absolute Zustand des Agenten benötigt, der mit Hilfe eines dezentralen Beobach-
ters zu bestimmen ist. Allerdings konnte keine konstruktive Bedingung angegeben werden, wann
sich mittels des angegebenen LMI-Verfahrens die dezentrale Beobachterrückführung bestimmen
lässt. Darüber hinaus muss neben dem Ausgang des Agenten ebenfalls der Beobachterzustand so-
wie der Zustand des Exosystems kommuniziert werden, was einen erheblichen Aufwand bei der
Kommunikation bedeutet. Einen Zugang mittels eines dezentralen Beobachters beschreiben Grip
u. a. ebenfalls in [31, 32]. Allerdings erfordert auch hier die Implementierung des Beobachters die
Kommunikation von internen Beobachterzuständen.

Wahrburg und Adamy untersuchen in [122] eine spezielle Systemklasse heterogener Multi-Agen-
ten Systeme, nämlich solche Agenten, die nominell identisch, allerdings aufgrund von Unsi-
cherheiten unterschiedlich und somit heterogen sind. Diese Systemklasse wird auch als quasi-
homogene Multi-Agenten Systeme bezeichnet. Die synchronisierende Regelung basiert darauf,
dass für jeden Agent ein Beobachter für sich und seine Nachbarn entworfen wird, um daraus
den absoluten Zustand zu schätzen. Im Anschluss muss durch Überprüfung einer Rangbedin-
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gung sichergestellt werden, dass die Unsicherheiten exakt kompensiert werden können. Dieser
Ansatz erfordert einen erhöhten Kommunikationsaufwand, da Ausgangs-, Beobachter- sowie Ein-
gangsgrößeninformation kommuniziert werden muss. Allerdings ist gezeigt, dass in heterogenen
Multi-Agenten Systemen, das Gesamtsystem bezüglich der relativen Ausgänge im Allgemeinen –
gegensätzlich zum homogenen Fall – beobachtbar ist.

Dies ist im Einklang mit den Ergebnissen von Seyboth u. a. [103]. Darin untersuchen die Auto-
ren, welche Aussagen sich über Synchronisierung mittels konstanter Ausgangsrückführung tref-
fen lassen, wenn die Agenten die notwendigen und hinreichenden Bedingungen zur Synchroni-
sierung aus [126] nicht erfüllen. Am Beispiel von nicht-identischen harmonischen Oszillatoren
sowie nicht-identischen Doppelintegratoren ist verdeutlicht, dass das Gesamtsystem der Oszil-
latoren asymptotisch stabil ist, während die Doppelintegratoren asymptotisch einen konstanten
Synchronisierungsfehler aufweisen.

Im Hinblick auf die vorgenannten Resultate werden in der vorliegenden Arbeit zunächst Me-
thoden zur Synchronisierung basierend auf Absolut- und Relativinformation entwickelt. Hierbei
hat die unterlagerte Regelung jedes Agenten eine Homogenisierung der Dynamik, die bezüglich
des Netzwerks asymptotisch wirksam ist, zur Folge. Die konstruktiven Methoden basieren auf
der unterlagerten Ent- beziehungsweise Verkopplungsregelung der Agenten, was keine allzu ein-
schränkenden Annahmen an die betrachtete Systemklasse darstellt. Darüber hinaus erfolgt auch
bei diesen Methoden lediglich die Kommunikation des Ausgangs des Agenten, was den minimalen
Anforderungen an die Kommunikation entspricht. Auch hinsichtlich der Kommunikationstopolo-
gie muss lediglich die Existenz eines Spannbaums vorausgesetzt werden.

Durch den Verzicht auf Absolutinformation entfällt die Möglichkeit, eine unterlagerte Regelung
für die Agenten zu entwerfen. Für diesen Fall wird in der Arbeit eine konstruktive Methode entwi-
ckelt, um das Synchronisierungsproblem in ein dezentrales Stabilisierungsproblem zu übersetzen,
was den Entwurf der Regelung am Gesamtsystem nach sich zieht. Die Methode erfordert ebenfalls
lediglich Ausgangsinformation zu kommunizieren und die Existenz eines Spannbaums. Dies hat
zur Folge, dass die Methoden in der vorliegenden Arbeit auf nahezu alle Synchronisierungspro-
bleme linearer Multi-Agenten Systeme bei zeitinvarianter Kommunikationstopologie anwendbar
sind.

1.2.3 Nichtlineare Multi-Agenten Systeme

Lässt sich die Agentendynamik nicht mehr mittels linearer Differentialgleichungen darstellen,
müssen die Agenten durch nichtlineare Modelle beschrieben werden. Auch hierbei ist eine zen-
trale Fragestellung, welche notwendigen und hinreichenden Bedingungen Synchronisierung der
Agenten garantieren. In Erweiterung der notwendigen Bedingungen für lineare heterogene Agen-
ten in [124], formulieren Wieland und Allgöwer in [125] ein äquivalentes Resultat für nichtlineare
heterogene Agenten. Es zeigt sich, dass auch im nichtlinearen Fall das Internal Model Principle
for Synchronization Gültigkeit besitzt und somit notwendig für Synchronisierung ist. Damit muss
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ein invarianter Unterraum des Gesamtsystems existieren, in welchem die Agenten in der Lage
sind, identische Ausgangsverläufe samt den dazugehörigen zeitlichen Ableitungen zu erzeugen.

Im Hinblick auf die Bestimmung hinreichender Bedingungen zur Synchronisierung nichtlinearer
Agenten, finden sich in der Literatur meist Ansätze, die auf der Konstruktion geeigneter Lyapunov
Funktionen basieren. Hierbei ist häufig vorausgesetzt, dass die Dynamik der Agenten passiv ist, so
dass eine Lyapunov Funktion für das Gesamtsystem aus der Aggregation der Speicherfunktionen
der einzelnen Agenten resultiert. Von Arcak findet sich hierzu eine Lösung, die Anwendung in der
Formationsregelung beziehungsweise der Koordination von Agenten findet [6]. Ein Beitrag zur
Stabilitätsanalyse von Netzwerken, die über kaktusartige Strukturen verfügen, ist ebenfalls von
Arcak in [5] zu finden. Weitere, die Passivität der Agenten ausnutzende Resultate, finden sich in
[19], wobei hierin ebenfalls Synchronisierung gelingt, falls Schaltvorgänge und Zeitverzögerun-
gen in der Kommunikation auftreten.

Sind die Agenten nicht passiv, so lässt sich unter gewissen Voraussetzungen eine Zustandsrück-
führung finden, so dass die Agenten rückgekoppelt äquivalent zu einem passiven System sind. Für
nichtlineare Systeme mit Vektorrelativgrad eins und Lyapunov stabiler Nulldynamik ist dies er-
füllt. Chopra und Spong nutzen diese Eigenschaft aus, um in [18] eine hinreichende Bedingung für
Synchronisierung nichtlinearer Agenten basierend auf der Konstruktion einer aggregierten Lyapu-
nov Funktion und unter der Annahme eines stark verbundenen sowie balancierten Graphen anzu-
geben. Eine Erweiterung dieses Ergebnisses, in welchem der Graph nur noch stark verbunden sein
muss, ist von Chopra in [17] angegeben.

Eine Erweiterung der vorgenannten Ergebnisse findet sich in [52]. Darin wird ein modifiziertes
Backstepping-Verfahren zur Herleitung eines synchronisierenden Reglers für identische nichtli-
neare Agenten in einer verketteten Systemstruktur angegeben. Der Entwurf adaptiver Regler zur
Synchronisierung nichtlinearer Multi-Agenten Systeme, welcher auch in dieser Arbeit genutzt
wird, ist unter anderem in [20] und [66] dargestellt. Auch die in der Einleitung erwähnte Entdeck-
ung von Huygens wurde in der aktuelleren Literatur aufgegriffen. In der Aufsatzsammlung [80]
ist zum einen die Modellbildung [83] als auch die experimentelle Überprüfung des Experimentes
dargestellt [77].

In dieser Arbeit erfolgt eine Erweiterung der Ergebnisse von Chopra in [17]. Ausgehend von
der Annahme, dass die Agenten durch ein Zustandssystem mit Vektorrelativgrad eins und mit
Lyapunov stabiler Nulldynamik darstellbar sind, ermöglicht die neue Methode darüber hinaus
parametrische Unsicherheiten in den Vektorfeldern der Agenten zu berücksichtigen. Dies gelingt
durch die Verwendung eines adaptiven Ansatzes zur Kompensation der unsicheren Vektorfelder
in Kombination mit den Ergebnissen aus [17].

1.3 Struktur der Arbeit

Neben einer Einführung in die wesentlichen Begriffe der agentenbasierten dynamischen Systeme
– was eine Übersicht über die wichtigsten Graphentheoretischen Definitionen und Konzepte mit

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


10 1 Einführung

einschließt – führt Kapitel 2 die in dieser Arbeit betrachteten Systemklassen der Agenten ein.
Darüber hinaus wird auf die grundlegende Problemstellung der Arbeit eingegangen: die Synchro-
nisierung der Agenten. Abschließend erfolgt ein Überblick über die Beiträge der Arbeit.

Kapitel 3 stellt den methodischen Rahmen zum Entwurf der synchronisierenden Regelungen vor,
die im Laufe der Arbeit hergeleitet werden. Es wird ein parametrischer Ansatz zur Eigenstruktur-
vorgabe mittels Ausgangsrückführung genutzt. Neben den Eigenwerten, die durch die Regelung
vorgegeben werden sollen, existieren weitere Freiheitsgrade, die einem Optimierungsverfahren
zugänglich gemacht werden. Damit lassen sich Gütemaße zur Verbesserung der Robustheit oder
auch der Reglernorm optimieren. Zusätzlich ist es mit dem Verfahren möglich, eine Entkopplungs-
beziehungsweise Verkopplungregelung zu entwerfen. Die Freiheitsgrade bei der Entkopplungsre-
gelung sind durch den Übergang zu einem teil-parametrischen Entwurf ebenfalls durch das Opti-
mierungsverfahren nutzbar, was auf eine robuste Entkopplungsregelung führt.

In Kapitel 4 wird angenommen, dass die Agenten Kenntnis über lokale Ausgangs- oder Zustands-
information besitzen. Hiermit wird es möglich, die Methodik aus Kapitel 3 zur Synchronisierung
anzuwenden. Es wird zunächst auf die Synchronisierung homogener Agenten eingegangen. Diese
Ergebnisse ermöglichen, auch Regelungen zur Synchronisierung heterogener Agenten zu entwer-
fen. Abschließend kann für eine Systemklasse nichtlinearer Agenten ein adaptives Regelgesetz
zur Konsensfindung hergeleitet werden.

Die Annahme, dass Absolutinformation der Agenten verfügbar ist, wird in Kapitel 5 nicht mehr
getroffen. Durch Formulierung als dezentrales Regelungsproblem, gelingt es, das Synchronisie-
rungsproblem für heterogene Agenten mittels numerischer Min-Max Optimierung zu lösen.

Während in den Kapiteln 3, 4 und 5 kurze akademische Beispiele die Ergebnisse verdeutlichen sol-
len, erfolgt in Kapitel 6 die Anwendung der Ergebnisse an praktisch motivierten Beispielsystemen.
Neben der Entkopplungsregelung einer xy-Positioniereinheit, die neben Simulationsergebnissen
auch durch reale Messungen an einem Laboraufbau ergänzt werden, wird die Anwendung der syn-
chronisierenden Regelung anhand eines Multi-Agenten Systems bestehend aus Modellhelikoptern
sowie durch die dezentrale Synchronisierung einer autonomen Fahrzeugkolonne verdeutlicht.

Ein Fazit der Arbeit und ein Ausblick wird in Kapitel 7 gezogen. Ergänzende Betrachtungen und
Beweise zum Hauptteil der Arbeit finden sich im Anhang.
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2 Agentenbasierte dynamische Systeme

Dieses Kapitel führt die in dieser Arbeit betrachtete Systemklasse ein. Eine aus der Literatur ent-
nommene Definition präzisiert hierbei den Agentenbegriff. Da die Kommunikation der Agenten
ein zentraler Bestandteil für die Synchronisierung ist, erfolgt die Modellierung der Kommunikati-
onstopologie durch die Graphentheorie. Die zugrunde liegende Dynamik der Agenten wird eben-
falls eingeführt, wobei eine Unterscheidung zwischen homogen und heterogenen Agenten erfolgt.
Eine Untersuchung der Steuer- und Beobachtbarkeit der daraus resultierenden Gesamtsysteme –
der Multi-Agenten Systeme – wird vorgenommen, um die Unterschiede zwischen homogenen
und heterogenen Multi-Agenten Systemen heraus zu arbeiten. Darüber hinaus erfolgt die Defi-
nition der zentralen Problemstellung der Arbeit – der Synchronisierung. Ein Überblick über die
Beiträge der Arbeit findet sich am Ende des Kapitels.

2.1 Präzisierung des Agentenbegriffs

Die Nutzung des Agentenbegriffs erfolgt in vielen Bereichen. So wird beispielsweise in der In-
formatik häufig der Begriff des Agenten in Zusammenhang mit Softwaresystemen verwendet, die
über einen gewissen Grad an Intelligenz verfügen. Allerdings herrscht auch dort Uneinigkeit über
eine präzise Definition eines Agenten, wie Wooldridge kommentiert [129]:

„Surprisingly, there is no such agreement: there is no universally accepted definition
of the term agent, and indeed there is a good deal of ongoing debate and controversy
on this very subject.“

Nichtsdestotrotz findet sich von Wooldridge und Jennings die folgende Definition [130]:

„An agent is a computer system that is situated in some environment, and that is capa-
ble of autonomous action in this environment in order to meet its design objectives.“

Zur Einführung des Agentenbegriffs, wie er in dieser Arbeit verstanden wird, soll zunächst auf ein
Missverständnis hingewiesen werden, welches in Zusammenhang mit der direkten Übersetzung
des englischen Begriffes agent in das deutsche Wort Agent entsteht. Korrekt wäre die Übersetzung
in das Wort Agens, was dem Duden nach die Bedeutung „wirkendes, handelndes, tätiges Wesen
oder Prinzip“ hat. Entsprechend definiert Lüth in [61] auch den Begriff des technischen Agenten,
der innerhalb eines Multi-Agenten die folgenden grundsätzlichen Eigenschaften beziehungsweise
Fähigkeiten besitzt (in Anlehnung an [61, Seite 13]):

• Autonomes Verhalten: Die Autonomie des technischen Agenten ist dadurch gekennzeichnet,
dass der Agent oder zumindest ein Teil des Agenten quasi kontinuierlich aktiv ist, um auf
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das Ziel der Gruppe hinzuwirken. Hierzu nutzt der Agent eine Regelung, die Informationen
aus der Nachbarschaft des Agenten selbständig erfasst und verarbeitet.

• Beherrschung von Interaktionen: Ein technischer Agent nutzt in einem Multi-Agenten Sys-
tem mögliche Wechselwirkungen zwischen Agenten zum Erreichen eines Ziels. Je nach
Agent können dies physikalische oder informationstechnische Interaktionen sein.

• Stabilisieren und Optimieren von Prozessen: Ein technischer Agent agiert als Bestandteil
eines Multi-Agenten Systems so, dass er versucht, einen oder mehrere technische Prozesse
zu optimieren, d.h. optimale Prozesszustände zu erreichen oder zu stabilisieren.

Der Begriff des Agenten steht damit nach Lüth [61] stellvertretend für Autonome Interagierende
Einheit in komplexen Systemen. Interagieren mehrere Agenten und verfolgen dabei ein gemeinsa-
mes Ziel, so handelt es sich um ein Multi-Agenten System (MAS). Die Regelungsaufgabe jedes
Agenten ist dabei, stets das Erreichen des gemeinsamen Ziels zu gewährleisten und möglicher-
weise weitere Regelziele – beispielsweise hinsichtlich der Konvergenzgeschwindigkeit auf das
gemeinsame Ziel oder auch die Unterdrückung unerwünschter äußerer Einflüsse – zu erfüllen.

Ausgehend von den vorgenannten Überlegungen zum Agentenbegriff präzisieren die folgenden
Definitionen den Agentenbegriff und ein Multi-Agenten System, wie sie in dieser Arbeit verstan-
den werden.

Definition 2.1. Ein Agent ist ein dynamisches System, welches über Sensoren und Aktoren ver-
fügt. Der Agent besitzt die Fähigkeit mit anderen Agenten zu kommunizieren und verfügt über
informationsverarbeitende Möglichkeiten – eine Regelung – zur Erreichung eines gemeinsamen
Ziels.

Definition 2.2. Ein Multi-Agenten System besteht aus untereinander kommunizierenden Agenten
gemäß Definition 2.1.

2.2 Graphentheoretische Grundlagen

Die Definitionen 2.1 und 2.2 implizieren einen Informationsfluss unter den Agenten, der von den
Regelungen der Agenten geeignet verarbeitet werden muss, um das Regelziel des Multi-Agenten
Systems zu erreichen. Dies erfordert eine Modellierung des Informationsflusses, die zum Entwurf
der Regelungen genutzt werden kann. Die Graphentheorie bietet hierzu einen intuitiven Zugang,
wobei jeder Agent als Knoten eines Graphen und der Informationsfluss zwischen benachbarten
Agenten als Kante abgebildet ist. Im Folgenden werden deshalb einige Definitionen und Eigen-
schaften von Graphen vorgestellt, die im Rahmen dieser Arbeit Verwendung finden. Diese sind
vornehmlich der Literatur entnommen (s. z.B. [30, 67]).

Ein Graph G ist ein geordnetes Paar G D .VG; EG/, wobei VG die endliche Menge der Knoten des
Graphen G und EG die Menge der Kanten des Graphen G bezeichnet. Die Menge der Knoten des
Graphen folgt aus VG D fv1;:::;vN g, während die Menge der Kanten durch EG 2 V � V gegeben
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Bild 2.1: Beispiele für einen ungerichteten Graphen (a), gerichteten Graphen (b) und einen
Spannbaum (c)

ist. Eine Kante ist deshalb ein geordnetes Paar von zwei Knoten und durch .vi;vj / wird zum Aus-
druck gebracht, dass eine Kante vom Knoten vi zum Knoten vj existiert. Die Kante .vi;vj / wird
als einlaufend bezüglich vj und austretend bezüglich vi bezeichnet. Graphisch lässt sich dieser
Sachverhalt als Pfeil veranschaulichen, wobei der Knoten vi den Startpunkt des Pfeils und der
Knoten vj die Pfeilspitze kennzeichnet. Im Hinblick auf die Modellierung des Informationsflus-
ses in Multi-Agenten Systemen wird damit ausgedrückt, dass der Informationsfluss vom Agenten
i zum Agenten j erfolgt.

Wenn für alle .vi;vj / 2 EG ebenfalls .vj ;vi/ 2 EG erfüllt ist, dann ist der Graph ungerichtet. Im
anderen Fall ist der Graph gerichtet, und man bezeichnet ihn auch als Digraphen.

Ein Pfad der Länge r in einem gerichteten Graphen ist eine Abfolge v0;:::;vr von r C 1 verschie-
denen Knoten, so dass für jedes i 2 f0; : : : ;r � 1g, .vi;viC1/ eine Kante des Graphen ist.

Ein gerichteter Graph ist stark verbunden, wenn zwischen vi und vj ein Pfad für alle i;j 2
f1; : : : ;N g und i ¤ j existiert. Ein gerichteter Graph ist verbunden, wenn mindestens ein Knoten
vi existiert, so dass ein Pfad von vi zu allen anderen Knoten existiert. Der Knoten vi wird als
Wurzelknoten bezeichnet, und der Graph enthält einen Spannbaum.

Für einen gerichteten Graphen G mit N Knoten ist die gewichtete Adjazenzmatrix AG 2 RN �N

durch

AG D ŒaGij � D
(
wij ; wenn .vj ;vi/ 2 EG;
0 sonst;

(2.1)

definiert, wobei wij > 0 gilt. Für einen ungewichteten Graphen gilt typischerweise wij D 1. Die
gewichtete Laplacematrix LG 2 RN �N ergibt sich mit (2.1) aus

LG D ŒlGij � D
(PN

jD1 aGij ; wenn i D j ;

�aGij ; sonst:
(2.2)

Mit Hilfe der Gradmatrix eines Graphen G, die durch

Din D diag .AG1N / (2.3)
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14 2 Agentenbasierte dynamische Systeme

definiert ist, wobei 1N den N -dimensionalen Einsvektor bezeichnet, lässt sich die Laplacematrix
auch durch LG D Din � AG berechnen.

Mit Hilfe der folgenden Ergebnisse lassen sich die Eigenschaften eines Graphen G anhand der
Eigenschaften der in (2.1) und (2.2) definierten Matrizen ableiten.

Aus der Definition der Laplace Matrix (2.2) folgt, dass sich die Summe jeder Zeile zu Null ergibt.
Damit ist 1N ein Rechtseigenvektor von LG zum Eigenwert � D 0 und es gilt LG1N D 0. Eine
Aussage, die die algebraische Vielfachheit des Eigenwertes � D 0 mit der Verbundenheit des
Graphen verbindet, geht auf die Ergebnisse von Tuna zurück.

Lemma 2.3. [119] Die Laplacematrix LG eines gerichteten Graphen G hat genau einen Eigen-
wert in � D 0 mit dem assoziierten Eigenvektor 1N , wenn der Graph verbunden ist.

Außerdem gilt

Lemma 2.4. [75] Ein gerichteter Graph ist genau dann verbunden, wenn er einen Spannbaum
enthält.

Eine Aussage über den Linkseigenvektor eines stark verbundenen Graphen gelingt mit

Lemma 2.5. Wenn der Graph G stark verbunden ist und die Gewichte der Adjazenzmatrix wij in
(2.1) positiv sind, dann existiert ein positiver Vektor 	 , der 	 TLG D 0 erfüllt.

Beweis. Aufgrund von (2.2) gilt LG1N D 0. Da der Graph stark verbunden ist, hat der Eigenwert
� D 0 aufgrund von Lemma 2.3 die algebraische Vielfachheit eins. Mit LG D Din � AG und
LG1N D 0 folgt daher

Din1N D AG1N

beziehungsweise

1N D D�1
in AG1N :

Somit hat die Matrix D�1
in AG den Eigenwert � D 1. Da die Adjazenzmatrix AG aufgrund der Defi-

nition in (2.1) nicht-negativ ist und die Multiplikation von links mit D�1
in nur die Zeilen von AG in

positiver Weise skaliert, folgt aus Satz B.5, dass die Matrix D�1
in AG irreduzibel ist, da der zugrunde

liegende Graph als stark verbunden angenommen wurde. Mit Satz B.6 folgt, dass der Spektralra-
dius einer nicht-negativen und irreduziblen Matrix positiv ist und einem einfachen Eigenwert der
Matrix entspricht. Darüber hinaus ist der zum Spektralradius gehörende Linkseigenvektor posi-
tiv. Durch Anwendung des Gerschgorin Theorems (s. z.B. [35]) folgt, dass die Eigenwerte von
D�1

in AG in einem Kreis mit dem Radius r D 1 und dem Mittelpunkt Null in der komplexen Ebene
liegen. Damit entspricht der Eigenwert � D 1 dem Spektralradius � , und es existiert ein positiver
Linkseigenvektor 
T, so dass


T �
�I � D�1

in AG
� D 0

, 
TD�1
in .Din � AG/ D 0

, 
TD�1
in LG D 0
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2.3 Agenten und Multi-Agenten Systeme 15

gilt. Somit gilt 	 TDin D 
T, und die Vektoren 	 und 
 unterscheiden sich nur durch einen positiven
Skalierungsfaktor, woraus die Aussage folgt.

2.3 Agenten und Multi-Agenten Systeme

Mit Ausnahme von Abschnitt 4.3 wird in dieser Arbeit davon ausgegangen, dass sich die Dy-
namik der Agenten durch lineare zeitinvariante Zustandssysteme beschreiben lässt. Dabei wird
unterschieden, ob die Dynamik der Agenten in einem Multi-Agenten System identisch ist, was ei-
nem homogenen Multi-Agenten System entspricht, oder ob die Dynamik der Agenten nicht iden-
tisch ist, was auf ein heterogenes Multi-Agenten System führt. Je nach betrachteter Systemklasse
ergeben sich unterschiedliche Eigenschaften der Multi-Agenten Systeme, die in den späteren Ent-
wurfsverfahren zu berücksichtigen sind. Für den Entwurf einer Regelung – ausgehend von einem
linearen zeitinvarianten Zustandssystem – ist es entscheidend, ob das System steuer- und beob-
achtbar ist, da nur die steuer- und beobachtbaren Eigenwerte des Systems durch eine Regelung
mittels Ausgangsrückführung gezielt verändert werden können. Durch eine Analyse der beiden
Eigenschaften für homogene und heterogene Multi-Agenten Systeme ergeben sich daraus bereits
erste Erkenntnisse, die für die Synchronisierung wesentlich sind, was in den nachfolgenden Ab-
schnitten diskutiert wird.

2.3.1 Homogene Agenten und Multi-Agenten Systeme

In homogenen Multi-Agenten Systemen mit N Agenten lässt sich die Dynamik jedes Agenten für
i D 1; : : : ;N durch das Zustandssystem

Pxi D Axi C Bui; (2.4a)

yi D Cxi (2.4b)

beschreiben, wobei für den Zustandsvektor xi 2 Rn, den Anfangswert xi.t0/ D xi;t0
, den Ein-

gang ui 2 Rm und für den Ausgang yi 2 Rp gilt. Die Matrizen A, B und C seien von passender
Dimension. Durch die Kommunikation der Agenten untereinander, steht jedem Agenten die rela-
tive Messung seines eigenen Ausgangs (2.4b) zu den Ausgängen seiner unmittelbaren Nachbarn
zur Verfügung. Er verfügt über Relativinformation. Mit Hilfe der Adjazenzmatrix (2.1) und der
Laplacematrix (2.2) lässt sich dies durch

vi D
NX

jD1

aGij .yi � yj / (2.5a)

D
NX

jD1

lGijyj (2.5b)

angeben. Das Gesamtsystem bestehend aus N Agenten entsteht, indem die Rechenregeln des
Kronecker Produktes ausgenutzt werden (vgl. Abschnitt B.3). Mit dem Zustand des homogenen
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16 2 Agentenbasierte dynamische Systeme

Multi-Agenten Systems x D �
xT

1 � � � xT
N

�T
folgt daher

Px D .IN ˝ A/x C .IN ˝ B/u; (2.6a)

y D .IN ˝ C /x; (2.6b)

wobei für den Eingang u D �
uT

1 � � � uT
N

�T
und für den Ausgang y D �

yT
1 � � � yT

N

�T
gilt. Damit

gilt dim .x/ D N � n, dim .u/ D N � m und dim .y/ D N � p. Für die relativen Ausgänge des
Gesamtsystems folgt ausgehend von (2.5) daher mit v D �

vT
1 � � � vT

N

�T
schließlich

v D .LG ˝ Ip/.IN ˝ C /x

D .LG ˝ C /x: (2.7)

Eine Aussage über die Steuerbarkeit von (2.6) gelingt durch

Lemma 2.6. Das homogene Multi-Agenten System (2.6), bzw. das Paar ..IN ˝ A/; .IN ˝ B//

ist genau dann steuerbar, wenn jeder Agent (2.4) steuerbar ist.

Beweis. Der einzelne Agent (2.4) ist nach Hautus genau dann steuerbar, wenn

rang
��

A � �I B
�� D n

für alle � 2 C gilt. Daher ist (2.6) genau dann steuerbar, wenn

rang
��
.IN ˝ A/ � �IN n .IN ˝ B/

�� D N � n

gilt. Da .IN ˝ A/� �IN n D IN ˝ .A � �In/ und sich der Rang einer Matrix nicht ändert, wenn
von rechts oder links mit einer quadratisch regulären Matrix multipliziert wird, lässt sich eine
Permutationsmatrix P 2 R.N nCN m/�.N nCN m/ finden, so dass

�
IN ˝ .A � �In/ .IN ˝ B/

�
P D IN ˝ �

.A � �In/ B
�

ist. Daraus folgt mit (B.3), dass

rang
��
.IN ˝ A/ � �IN n .IN ˝ B/

�� D rang
�
IN ˝ �

.A � �In/ B
�� D N � n

für alle � 2 C erfüllt ist.

Die gleiche Argumentation lässt sich ebenfalls für die Untersuchung der Beobachtbarkeit von
(2.6) heranziehen, indem die Dualität von Steuer- und Beobachtbarkeit ausgenutzt wird. Damit
folgt ohne Beweis

Lemma 2.7. Das homogene Multi-Agenten System (2.6), bzw. das Paar ..IN ˝ A/; .IN ˝ C //

ist genau dann beobachtbar, wenn jeder Agent (2.4) beobachtbar ist.
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2.3 Agenten und Multi-Agenten Systeme 17

Beim Entwurf der Regelung für das Gesamtsystem (2.6a) ist es darüber hinaus entscheidend, wel-
che Information von den lokalen Reglern der Agenten verarbeitet werden kann. Ausgehend von
(2.4b) und (2.5b) ist die Strukturbeschränkung der Regelung zunächst dadurch gekennzeichnet,
dass der Regelung lediglich Ausgangsinformation zur Verfügung steht. Zusätzlich ist zu unter-
scheiden, ob Absolut- und Relativinformation oder ob lediglich Relativinformation verfügbar ist.
Insbesondere im letztgenannten Fall ergeben sich bereits Einschränkungen hinsichtlich der er-
zielbaren geregelten Dynamik, was auf die Unbeobachtbarkeit des Gesamtsystems bezüglich des
Paares ..IN ˝ A/; .LG ˝ C // zurückzuführen ist.

Lemma 2.8. Betrachtet wird die Dynamik des homogenen Multi-Agenten Systems (2.6a) zusam-
men mit den relativen Ausgängen (2.7). Ist der Kommunikationsgraph, der der Laplacematrix LG
zugrunde liegt, verbunden und ist der einzelne Agent (2.4) vollständig beobachtbar, dann existiert
ein unbeobachtbarer Unterraum des Gesamtsystems der Dimension n.

Beweis. Da der Kommunikationsgraph verbunden ist, ist der Eigenwert � D 0 nach Lemma 2.3
einfach. Damit existiert eine reguläre Matrix V D �

1N V2

�
mit V2 2 CN �N �1, die die Laplace

Matrix LG in ihre Jordan’sche Normalform J D diag .0;J2/ überführt, wobei J2 2 CN �1�N �1 al-
le Eigenwerte von LG mit positivem Realteil entsprechend ihrer algebraischen und geometrischen
Vielfachheit enthält. Mit Hilfe des Hautus Kriteriums folgt zunächst

rang
	


IN ˝ .A � �In/

.LG ˝ C /

��

Drang
	


V �1 ˝ In 0

0 V �1 ˝ Ip

� 

IN ˝ .A � �In/

.LG ˝ C /

�
.V ˝ In/

�

Drang
	


IN ˝ .A � �In/

.diag .0;J2/˝ C /

��
< N � n; 8� 2 � .A/

aufgrund der Blockdiagonalstruktur der resultierenden Matrix. Dies zeigt, dass das Gesamtsystem
nicht vollständig beobachtbar ist. Mit Hilfe der Koordinatentransformation Nx D .V �1 ˝ In/x

folgt daher mit

PNx D .IN ˝ A/ Nx C .V �1 ˝ B/u;

v D .LGV ˝ C / Nx D ��
0 LGV2

� ˝ C
� Nx

eine Kalman Zerlegung des Gesamtsystems, wobei hierzu vorausgesetzt werden muss, dass das
Paar .IN �1 ˝ A/;.LGV2 ˝ C / vollständig beobachtbar ist. Dies ist allerdings stets erfüllt, da

rang
	


IN �1 ˝ .A � �In/

.LGV2 ˝ C /

��

Drang
	


I.N �1/n 0

0 diag
�
1;J �1

2

�
V �1 ˝ Ip

� 

IN �1 ˝ .A � �In/

.LGV2 ˝ C /

��

Drang

0
@

2
4IN �1 ˝ .A � �In/	


0

IN �1

�
˝ C

� 3
5

1
A D .N � 1/n; 8� 2 � .A/
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18 2 Agentenbasierte dynamische Systeme

aufgrund von Lemma 2.7 gilt. Somit existiert ein unbeobachtbarer Unterraum des Gesamtsys-
tems der Dimension n, da genau einmal die Dynamik von A gemäß der Kalman Zerlegung nicht
beobachtbar ist.

Die Aussagen von Lemma 2.8 lassen sich auch anschaulich interpretieren. Aufgrund der relati-
ven Messgrößen (2.7) erfasst jeder Agent nur die Abweichung des eigenen Ausgangs von den
Ausgängen der Agenten, die mit ihm kommunizieren. Eine Bestimmung des absoluten Ausgangs
aus dieser Information ist nicht möglich. Besitzt die Matrix A darüber hinaus Eigenwerte mit
nicht-negativem Realteil, so folgt daraus, dass sich das Gesamtsystem mittels einer Ausgangs-
rückführung nicht stabilisieren lässt. Wie allerdings im Verlauf der Arbeit noch gezeigt wird, ist
dies für die Synchronisierung des Gesamtsystems auch nicht notwendig, da, wie eingangs dar-
gestellt wurde, nach der Synchronisierung eine Bewegung des Gesamtsystems verbleibt. Dies
entspricht genau der identischen Bewegung aller Agenten und mit Lemma 2.8 ist damit auch ein
systemtheoretisches Konzept verknüpft, was unter einer synchronen Trajektorie verstanden wird:
Synchrone Trajektorien sind diejenigen Trajektorien des Gesamtsystems, die bezüglich den rela-
tiven Ausgängen unbeobachtbar sind.

2.3.2 Heterogene Agenten und Multi-Agenten Systeme

In heterogenen Multi-Agenten Systemen mit N Agenten lässt sich die Dynamik jedes Agenten
für i D 1; : : : ;N durch das Zustandssystem

Pxi D Aixi C Biui; (2.8a)

yi D Cixi (2.8b)

beschreiben, wobei für den Zustandsvektor xi 2 Rni , den Anfangswert xi.t0/ D xi;t0
, den Ein-

gang ui 2 Rmi und für den Ausgang yi 2 Rp gilt. Die Matrizen Ai , Bi und Ci seien von
passender Dimension. Im Unterschied zu homogenen Multi-Agenten Systemen muss offensicht-
lich nicht vorausgesetzt werden, dass die Agenten identische Zustands- und Eingangsdimensionen
besitzen. Lediglich die Ausgangsdimension muss als identisch vorausgesetzt werden, da nur die
Synchronisierung von Ausgängen mit identischen physikalischen Eigenschaften eine praktische
Bedeutung hat.

Durch die Kommunikation der Agenten untereinander, steht jedem Agenten auch in heterogenen
Systemen die relative Messung seines eigenen Ausgangs (2.8b) zu den Ausgängen seiner unmit-
telbaren Nachbarn zur Verfügung. Mit Hilfe der Laplacematrix (2.2) lässt sich dies wieder durch

vi D
NX

jD1

lGijyj D
NX

jD1

lGijCjxj (2.9)

angeben. Das Gesamtsystem bestehend aus N Agenten entsteht auch hier, indem die Zustands-
vektoren aller Agenten gemäß x D �

xT
1 � � � xT

N

�T
zusammengefasst werden. Zu beachten ist
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2.3 Agenten und Multi-Agenten Systeme 19

hierbei, dass die Zustands- und Eingangsdimensionen der einzelnen Agenten unterschiedlich sein
können. Daher gilt für die Zustandsdimension

n D
NX

iD1

ni (2.10)

und für die Eingangsdimension

m D
NX

iD1

mi : (2.11)

Das gesamte heterogene Multi-Agenten System lässt sich durch

Px D eAN x C eBN u; (2.12a)

y D eCN x (2.12b)

darstellen, wobei hierbei die abkürzende Schreibweise für Blockdiagonalmatrizen gemäß

eAN D

2
64

A1

: : :

AN

3
75 ; eBN D

2
64

B1

: : :

BN

3
75 ; eCN D

2
64

C1

: : :

CN

3
75

verwendet wird. Damit gilt x 2 Rn, u 2 Rm und y 2 RN �p. Für die relativen Ausgänge des
Gesamtsystems folgt ausgehend von (2.9) daher mit v D �

vT
1 � � � vT

N

�T
schließlich

v D .LG ˝ Ip/eCN x: (2.13)

Eine Aussage über die Steuerbarkeit von (2.12) gelingt auch im heterogenen Fall durch

Lemma 2.9. Das heterogene Multi-Agenten System (2.12) bzw. das Paar
� eAN ; eBN

�
ist genau

dann steuerbar, wenn jeder Agent (2.8) steuerbar ist.

Beweis. Nach Kalman ist der Agent (2.8), also das Paar .Ai;Bi/, genau dann steuerbar, wenn die
Steuerbarkeitsmatrix

Ci;j WD
h
Bi AiBi � � � A

j
i Bi

i
vollen Zeilenrang für j D ni � 1 hat (vgl. Abschnitt C). Das Gesamtsystem (2.12) ist demnach
genau dann steuerbar, wenn für die Steuerbarkeitsmatrix des heterogenen Multi-Agenten Systems

QC WD �eBN
eAN

eBN � � � eAn�1
N

eBN

�
rang

� QC
�

D n mit n aus (2.10) gilt. Es lässt sich nun aufgrund der Blockdiagonalstruktur der

Matrizen eAN und eBN eine Permutationsmatrix P 2 Rn�m�n�m mit m aus (2.11) finden, so dass
QCP D diag .C1;n; : : : ; CN;n/ gilt. Da ni < n und somit rang

�Ci;ni

� D rang .Ci;n/ D ni , folgt
aufgrund der Blockdiagonalstruktur von diag .C1;n; : : : ; CN;n/ mit (2.10)

rang
� QC

�
D rang .diag .C1;n; : : : ; CN;n// D

NX
iD1

rang .Ci;n/ D
NX

iD1

ni D n;

was die Aussage beweist.
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20 2 Agentenbasierte dynamische Systeme

Auch bei heterogenen Multi-Agenten Systemen lässt sich die gleiche Argumentation für die Un-
tersuchung der Beobachtbarkeit von (2.12) heranziehen, indem die Dualität von Steuer- und Be-
obachtbarkeit ausgenutzt wird. Damit folgt ebenfalls wie im homogenen Fall ohne Beweis

Lemma 2.10. Das heterogene Multi-Agenten System (2.12) bzw. das Paar
� eAN ; eCN

�
ist genau

dann beobachtbar, wenn jeder Agent (2.8) beobachtbar ist.

Im Hinblick auf homogene Multi-Agenten Systeme ist mit den Lemmata 2.9 und 2.10 ein hetero-
genes Äquivalent gegeben. Es stellt sich die Frage, ob nun auch heterogene Multi-Agenten Syste-
me bezüglich den relativen Ausgängen (2.13) stets unbeobachtbar sind, wie es im homogenen Fall
durch Lemma 2.8 gezeigt wurde. Aus der Anschauung heraus und im Hinblick auf Lemma 2.8,
ist zu erwarten, dass, falls bei heterogenen Agenten Teildynamiken existieren, die identisch und
an den Ausgängen in gleicher Weise sichtbar sind, auch dann diese Teildynamiken bezüglich den
relativen Ausgängen unbeobachtbar sind. Dieser Sachverhalt wird nachfolgend zusammengefasst.

Lemma 2.11. Betrachtet wird die Dynamik des heterogenen Multi-Agenten Systems (2.12a) be-
züglich der relativen Ausgänge (2.13). Darüber hinaus sei der Kommunikationsgraph, der der
Laplacematrix LG zugrunde liegt, verbunden. Dann ist das heterogene Multi-Agenten System be-
züglich den relativen Ausgängen (2.13) und somit das Paar

� eAN ; .LG ˝ Ip/eCN

�
genau dann

unbeobachtbar, wenn die beiden folgenden Bedingungen erfüllt sind:

1. Es existiert mindestens ein Eigenwert �� von eAN , der auch Eigenwert von Ai für alle i 2
f1; : : : ;N g ist.

2. Es gilt Civi D Cjvj für alle i;j mit Aivi D ��vi für alle i .

Beweis. .)/Wenn �� Eigenwert von Ai für alle i 2 f1; : : : ;N g ist, dann ist vi der dazugehörige
Rechtseigenvektor, und es gilt Aivi D ��vi für alle i . Aufgrund der Blockdiagonalstruktur ist
dann auch v D �

vT
1 � � � vT

N

�T
Rechtseigenvektor von eAN , da eAN v D ��v gilt. Mit Hilfe des

Hautus Kriteriums und den Rechenregeln des Kronecker Produkts folgt dann

rang
	
 eAN � ��In

.LG ˝ Ip/eCN

��
< n;

da aufgrund der Voraussetzung Civi D Cjvj für alle i;j mit Civi DW r der ZusammenhangeCN v D 1N ˝ r gilt. Da der Kommunikationsgraph verbunden ist, gilt LG1N D 0, und daher folgt
mit

.LG ˝ Ip/eCN v D .LG ˝ Ip/.1N ˝ r/ D .LG1N ˝ r/ D 0

die Aussage.

.(/Das Ergebnis folgt nach Anwendung derselben Argumente in umgekehrter Reihenfolge.
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Mit Lemma 2.11 ist ein notwendiges und hinreichendes Kriterium gegeben, um zu überprüfen,
ob es bei einem gegebenen heterogenen Multi-Agenten System bereits Eigenbewegungen gibt,
die an den relativen Ausgängen unbeobachtbar sind. Dies entspricht genau den Eigenwerten, die
allen Agenten gemeinsam sind und die an den Ausgängen in identischer Weise sichtbar sind. Im
Hinblick auf die Aussage von Lemma 2.8 im homogenen Fall lässt sich daraus schließen, dass
jeder Agent eine Teildynamik aufweist, die bei allen Agenten identisch ist. Da die verbleiben-
den Eigenbewegungen steuer- und beobachtbar sind, lassen sich diese dann durch eine Regelung
stabilisieren, und es verbleibt die unbeobachtbare Dynamik im geschlossenen Regelkreis. Im Ge-
gensatz zum homogenen Fall ist die Dimension des unbeobachtbaren Unterraums a priori nicht
bekannt und muss daher ausgehend von den einzelnen Systembeschreibungen ermittelt werden.
Darüber hinaus lässt sich, falls das heterogene Multi-Agenten System bezüglich den relativen
Ausgängen detektierbar ist, das Gesamtsystem stabilisieren, was bei homogenen Agenten mit in-
stabiler Dynamik grundsätzlich nicht möglich ist.

2.3.3 Synchronisierung

Nach der Einführung der in dieser Arbeit betrachteten Systemklassen und der Untersuchung der
mit diesen Systemklassen assoziierten systemtheoretischen Eigenschaften, ist nun zu klären, wel-
che Aufgabe der in dieser Arbeit zu entwickelnden strukturbeschränkten Regelungsverfahren zu-
teil wird. Ausgehend von der in Abschnitt 1.2 dargestellten Literatur zu Multi-Agenten Systemen,
ist hierbei stets eine der zentralen Aufgaben die Synchronisierung von Ausgangs- oder Zustands-
größen der Agenten. Formal ergibt sich

Definition 2.12 ([17]). Betrachtet werden homogene Multi-Agenten Systeme gemäß (2.6) und he-
terogene Multi-Agenten Systeme gemäß (2.12) mit N Agenten. Die Agenten erzielen Ausgangs-
synchronisierung, wenn

lim
t!1

��yi.t/ � yj .t/
�� D 0; 8i; j D 1; : : : ;N (2.14)

erfüllt ist.

Angemerkt sei, dass durch die Wahl von yi.t/ D xi.t/ die Zustandssynchronisierung als Spezial-
fall in der Definition von Ausgangssynchronisierung enthalten ist. Aufgrund der Forderung, dass
die Ausgangsdifferenzen bzw. Zustandsdifferenzen aller Agenten asymptotisch verschwinden sol-
len, wird offensichtlich, dass hierbei eine Verbindung zu den Ergebnissen zur Beobachtbarkeit der
Multi-Agenten Systeme bezüglich den relativen Ausgängen in den Abschnitten 2.3.1 und 2.3.2
besteht. Die Synchronisierung von homogenen und heterogenen Multi-Agenten Systemen ist da-
her mit der Identifikation eines unbeobachtbaren Unterraums des Gesamtsystems gleichzusetzen,
dem durch eine Regelung gezielt die Eigenschaft der Attraktivität verliehen werden muss.

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


22 2 Agentenbasierte dynamische Systeme

2.4 Problemstellung und Beiträge der Arbeit

Ausgehend von der Einführung des Agentenbegriffs, den graphentheoretischen Grundlagen und
der Einführung und Untersuchung der grundlegenden Eigenschaften homogener und heterogener
Multi-Agenten Systeme in den voran gegangenen Abschnitten, soll nun kurz die Problemstellung
dieser Arbeit zusammengefasst werden:

• Ausgangspunkt der Betrachtungen ist eine Systembeschreibung eines homogenen oder he-
terogenen Multi-Agenten Systems gemäß (2.6) oder (2.12).

• Die Agenten kommunizieren untereinander. Somit steht jedem Agenten eine relative Mes-
sung seines Ausgangs zu den Ausgängen seiner Nachbarn zur Verfügung, was mittels der
Struktur des Netzwerks modelliert wird.

• Es ist für jeden Agenten eine Regelung zu entwerfen, die Zugriff auf die relativen Mes-
sungen hat, mit dem Ziel, asymptotisch alle Ausgänge der Agenten im Sinne von (2.14) zu
synchronisieren.

Zur Lösung der vorgenannten Problemstellung werden in dieser Arbeit strukturbeschränkte Re-
gelungsverfahren entwickelt. Dabei ist unter Strukturbeschränkung zu verstehen, dass zunächst
auf die Annahme verzichtet wird, den kompletten Zustandsvektor des Agenten messtechnisch zu
erfassen. In diesem Zusammenhang werden zunächst in Kapitel 3 verschiedene Methoden vor-
gestellt, um für ein Zustandssystem eine Ausgangsrückführung zu entwerfen. Es wird dabei zwi-
schen Methoden unterschieden, die eine exakte Eigenwertvorgabe oder eine Polbereichsvorgabe
des geschlossenen Regelkreises ermöglichen. Die Anwendung der Verfahren zum Entwurf von
Ver- und Entkopplungsreglern wird ebenso diskutiert wie die robuste Eigenwertvorgabe.

Die Anwendung der Entwurfsverfahren zur Synchronisierung von Multi-Agenten Systemen er-
folgt in den Kapiteln 4 und 5, wobei hier die Strukturbeschränkung der Regelung durch die Hin-
zunahme der Kommunikation der Agenten untereinander berücksichtigt werden muss. In Kapitel
4 erfolgt der Entwurf der Regelung daher zunächst unter der Annahme, dass der Agent Kenntnis
über seinen absoluten Ausgang besitzt. Dies eröffnet weitreichende Möglichkeiten, um die dyna-
mischen Eigenschaften des Agenten, wie er sich im gesamten Multi-Agenten System darstellt, zu
verändern. Abschließend gelingt es, ein adaptives Entwurfsverfahren zur Synchronisierung nicht-
linearer Agenten mit Vektorrelativgrad eins anzugeben, wobei in diesem Fall die Kenntnis des
vollständigen Zustands des Agenten vorausgesetzt werden muss.

In Kapitel 5 ist die Kenntnis von Absolutinformation keine Voraussetzung mehr. Es wird daher
ein dezentrales Entwurfsverfahren zur Synchronisierung von Multi-Agenten Systemen entwickelt,
welches die Synchronisierung aller Agenten auf eine vorab festgelegte Trajektorie ermöglicht.
Die Verifikation der Ergebnisse aus den Kapiteln 3, 4 und 5 erfolgt abschließend in Kapitel 6,
wobei zur Verdeutlichung der Ergebnisse aus Kapitel 3 zusätzlich Messergebnisse von einem
Laboraufbau einer xy-Positioniereinheit präsentiert werden.
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3 Entwurf strukturbeschränkter

Rückführungen

Zum Entwurf von Multi-Agenten Systemen ist ein methodisches Werkzeug notwendig, welches
die Parametrierung der lokalen Regler aller Agenten ermöglicht. Deshalb werden in diesem Kapi-
tel Entwurfsverfahren vorgestellt, die die Berechnung von Ausgangsreglern für lineare, zeitinvari-
ante Systeme gestatten, da dies den Ausgangspunkt für die Synchronisierung von Multi-Agenten
Systemen in den Kapiteln 4 und 5 darstellt.

Zunächst wird ein parametrisches Entwurfsverfahren eingeführt, was unter der Voraussetzung ei-
ner aus der Literatur bekannten Bedingung an die Anzahl der Zustands-, Eingangs- und Ausgangs-
größen die vollständige Vorgabe der Eigenwerte des geschlossenen Regelkreises ermöglicht. Da
bei Mehrgrößensystemen stets noch weitere Freiheitsgrade neben den Regelungseigenwerten exis-
tieren, wird daran anknüpfend gezeigt, wie diese unter Formulierung eines Optimierungsproblems
genutzt werden können, um gezielt Eigenschaften des geschlossenen Regelkreises hinsichtlich ei-
ner robusten Eigenstrukturvorgabe zu verbessern. Dies führt auf die robuste Eigenwertvorgabe.
Darüber hinaus gelingt die Anwendung des Verfahrens ebenfalls, wenn gezielt das Führungs-
verhalten des geschlossenen Regelkreises beeinflusst werden soll, was am Beispiel der Ver- und
Entkopplungsregelung gezeigt wird.

Sollen die Eigenwerte des geschlossenen Regelkreises nicht an festen Stellen der komplexen Ebe-
ne zum Liegen kommen sondern vielmehr in einem vorab vorzugebenden Bereich, dann führt
dies zur Vorgabe von Eigenwertbereichen. Hierzu wird zunächst ein grundsätzliches Vorgehen
diskutiert und im Anschluss mit dem parametrischen Ansatz kombiniert. Daraus resultiert ein teil-
parametrisches Verfahren. Eine nutzbringende Anwendung dieser Methodik wird am Beispiel der
robusten Entkopplungsregelung vorgestellt.

3.1 Parametrisches Entwurfsverfahren für statische

Ausgangsrückführungen

Neben den Frequenzbereichsmethoden, wie beispielsweise der H1- oder H2-Regelungssynthese,
hat sich im Zeitbereich die Vorgabe der Eigenwerte des geschlossenen Regelkreises beziehungs-
weise in der regelungstechnischen Literatur meist als Polvorgabe bezeichnete Methodik als eines
der meist verwendeten Werkzeuge zum Entwurf linearer Systeme durch Zustandsrückführung eta-
bliert. So ist aus der Literatur bekannt, dass bei Eingrößensystemen die Zustandsrückführmatrix
eindeutig durch die Wahl der Regelungseigenwerte festgelegt wird. Mit Hilfe der Ackermann For-
mel (vgl. z.B. [27, 76]) ist beispielsweise eine Methode gegeben, um die Rückführmatrix zu be-
rechnen. Durch geschickte Wahl der Regelungseigenwerte lässt sich dann das transiente Verhalten
des durch Zustandsrückführung geregelten Systems gezielt beeinflussen.

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


24 3 Entwurf strukturbeschränkter Rückführungen

Im Mehrgrößenfall ist der Zusammenhang zwischen den Eigenwerten des geregelten Systems und
der Rückführmatrix nicht mehr eindeutig [69], so dass zu fest gewählten Regelungseigenwerten
stets unendlich viele Rückführmatrizen existieren. Um dies aufzulösen, ist mit der von Roppene-
cker [94] eingeführten Vollständigen Modalen Synthese eine Methodik gegeben, um die zusätzli-
chen Freiheitsgrade zugänglich zu machen. Durch Einführung der invarianten Parametervektoren
lassen sich damit sämtliche Freiheitsgrade einer Zustandsrückführung u D Rx anschaulich inter-
pretieren. Die Rückführmatrix ergibt sich bei dem Ansatz nach Roppenecker aus

R D PV �1
R ;

wobei in den Matrizen P und VR spaltenweise die invarianten Parametervektoren pi und die
Rechtseigenvektoren des geschlossenen Regelkreises vRi zusammengefasst sind. Diese sind über
den Zusammenhang

vRi D �.A � �RiI/
�1Bpi

verknüpft. Dieser Zusammenhang verdeutlicht, dass zusätzliche Freiheitsgrade existieren, um die
Richtung des Rechtseigenvektors vRi in dem durch die Spaltenvektoren der Matrix .A��RiI/

�1B

aufgespannten Unterraums zu verändern, was sich durch den invarianten Parametervektor pi aus-
drückt. Zusammen mit den Regelungseigenwerten �Ri legen nun die Richtungen der Parameter-
vektoren – es lässt sich leicht zeigen, dass die Länge der pi keinen zusätzlichen Freiheitsgrad
darstellt – die Rückführmatrix R vollständig fest.

Vor diesem Hintergrund und im Hinblick auf den Entwurf von Ausgangsrückführungen ergibt
sich daraus eine zentrale Fragestellung, ob sich ebenfalls Parametrierungen einer Ausgangsrück-
führmatrix angeben lassen, die neben der Vorgabe der Regelungseigenwerte zusätzlich, sofern
vorhanden, die weiteren Freiheitsgrade in parametrischer Form zugänglich machen. Ein nahelie-
gender Zugang zur Lösung dieser Aufgabe besteht darin, eine vorhandene Parametrierung einer
Zustandsrückführung zu nutzen und nur solche Werte der freien Parameter zuzulassen, so dass
sich aus der Zustandsrückführung eine Ausgangsrückführung ergibt [23, 92, 93]. Häufig ist hierzu
allerdings ein Optimierungsproblem zu lösen, so dass diese Lösungen iterative Verfahren darstel-
len. Das Entwurfsverfahren zur Bestimmung einer Ausgangsrückführung, welches in den folgen-
den Abschnitten eingeführt und erweitert wird, ist im Gegensatz dazu nicht auf die Lösung eines
Optimierungsproblems angewiesen. Es lässt sich damit direkt ein analytischer Ausdruck für die
Rückführmatrix angeben. Das Vorgehen basiert in seinem Grundgedanken auf der Vollständigen
Modalen Synthese und ist somit den parametrischen Ansätzen zuzurechnen. Hierbei werden die
Ergebnisse aus [46] genutzt.

Ausgangspunkt der folgenden Betrachtungen ist das lineare Zustandssystem

Px D Ax C Bu; x.t0/ D x0; (3.1a)

y D Cx; (3.1b)

wobei für den Zustandsvektor x 2 Rn, für den Eingangsvektor u 2 Rm sowie für den Ausgangs-
vektor y 2 Rp gilt. Zunächst wird vereinfachend Steuerbarkeit von .A;B/ und Beobachtbarkeit
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von .A;C / vorausgesetzt. Ziel ist die Bestimmung einer Ausgangsrückführung

u D Ky; (3.2)

die die Vorgabe sämtlicher Eigenwerte des geschlossenen Regelkreises an beliebigen Stellen der
komplexen Ebene ermöglicht, so dass � .A C BKC / D ƒK D f�K1; � � � ; �Kng gilt.

Zur Verdeutlichung der Grundidee der Methodik zum Entwurf parametrischer Ausgangsrückfüh-
rungen ist es hilfreich, im Folgenden zwei duale Teilprobleme zu diskutieren. Zunächst wird der
Entwurf einer Teilzustandsrückführung vorgestellt, was auf die Vorgabe einer Teilmenge von Ei-
genwerten und Rechtseigenvektoren des geschlossenen Regelkreises führt. Darüber hinaus ergibt
sich dual dazu der Entwurf einer Teilausgangsaufschaltung, womit die Vorgabe einer Teilmenge
der Eigenwerte und Linkseigenvektoren des geschlossenen Regelkreises verknüpft ist.

3.1.1 Vorgabe von Eigenwerten und Rechtseigenvektoren

Ausgehend von (3.2) wird mit (3.1b) offensichtlich, dass sich jede Ausgangsrückführung als spe-
zielle Zustandsrückführung interpretieren lässt, da immer KC D R gilt. Auch im Fall einer Aus-
gangsrückführung muss daher die Eigenwert-/Rechtseigenvektor-Gleichung

.A C BKC /vKi D �KivKi

erfüllt sein, um in Anlehnung an die Vollständige Modale Synthese einen parametrischen Zu-
gang zur Bestimmung von K zu erhalten. Darin bezeichnet �Ki einen über die Rückführung (3.2)
erzeugten Eigenwert sowie vKi den dazugehörigen Rechtseigenvektor des geschlossenen Regel-
kreises. Äquivalent zur Eigenwert-/Eigenvektorgleichung ist daher

�
.A � �KiI/ B

� 

vKi

KCvKi

�
D 0:

Wird darin KCvKi DW pvi als der Steuermodus zum Eigenwert �Ki definiert, folgt daraus

�
.A � �KiI/ B

� 

vKi

pvi

�
D 0: (3.3)

Weiterhin kann SBi WD �
.A � �KiI/ B

�
abgekürzt werden. Im Allgemeinen ist SBi 2 Cn�nCm,

da Regelungseigenwerte komplex sein können. Aufgrund der vorausgesetzten Steuerbarkeit des
Paares .A;B/ besitzt die Matrix SBi einen m-dimensionalen Nullraum, und es existieren Matrizen
Nvi und Mvi , so dass

kern .SBi/ D bild
	


Nvi

Mvi

��

gilt. Mit (3.3) lassen sich nun Parametervektoren qvi einführen, so dass für den Rechtseigenvektor
vKi D Nviqvi sowie für den Steuermodus pvi D Mviqvi gilt. Daher ist

�
.A � �KiI/ B

� 

Nvi

Mvi

�
� qvi D 0 (3.4)
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26 3 Entwurf strukturbeschränkter Rückführungen

äquivalent zu (3.3), woraus offensichtlich wird, dass bei einem steuerbaren Mehrgrößensystem
mit m > 1 neben den Regelungseigenwerten noch weitere Freiheitsgrade existieren, die es er-
lauben, die Richtung der Rechtseigenvektoren in dem von den Spaltenvektoren der Matrix Nvi

aufgespannten Unterraum vorzugeben. Darüber hinaus lässt sich (3.3) durch Ausmultiplizieren
und Umstellen nach vKi auch als vKi D �.A � �KiI/

�1Bpvi schreiben, wobei darin die inverse
Matrix nur dann existiert, wenn �Ki … � .A/ gewählt wird. Daraus ergibt sich die Äquivalenz der
Lösungen der Eigenwert-/Eigenvektorgleichungen (3.3) beziehungsweise (3.4) zu der eingangs
des Abschnitts diskutierten Vollständigen Modalen Synthese nach Roppenecker.

Im Gegensatz zum Entwurf einer Zustandsrückführung lassen sich aufgrund der Strukturbeschrän-
kung R D KC nicht mehr alle Eigenwerte des geschlossenen Regelkreises über den Zusammen-
hang R D PV �1

R vorgeben, wie nachfolgend diskutiert wird. Hierzu werden mit einem noch nicht
festgelegten Index r die Matrizen

Vr WD �
vK1 : : : vKr

�
(3.5a)

Qr WD �
pv1 : : : pvr

�
(3.5b)

definiert, die sich spaltenweise aus (3.3) bzw. (3.4) ergeben. Aufgrund der Definition des Steuer-
modus gemäß pvi D KCvKi folgt mit (3.5) das lineare Gleichungssystem

KC Vr D Qr (3.6)

in der Variable K. Diese Gleichung ist gemäß der Theorie zu linearen Gleichungssystemen sicher
dann lösbar, wenn QT

r 2 bild
�
.C Vr/

T
�

erfüllt ist. Wird darüber hinaus vorausgesetzt, dass r � p

gewählt wird, und die Matrix C Vr vollen Spaltenrang hat, dann ist für r < p die Matrix C Vr

linksinvertierbar beziehungsweise für r D p quadratisch regulär. Insbesondere im ersten Fall für
r < p ist die sich daraus ergebende Lösung für K nicht mehr eindeutig bestimmt, was im weiteren
Verlauf zur Parametrierung der Ausgangsrückführmatrix ausgenutzt wird. Weiterhin lassen sich
durch Lösung von (3.6) genau r Eigenwert-/Rechtseigenvektorpaare .�Ki;vKi/ im geschlossenen
Regelkreis erzeugen, wie folgendes Lemma ausgehend von den vorstehenden Diskussionen ohne
Beweis zusammenfasst.

Lemma 3.1. Betrachtet wird das steuer- und beobachtbare Zustandssystem (3.1). Die Ausgangs-
rückführung (3.2) erzeugt für i 2 f1; : : : ;rg und r � p die Eigenwert-/Rechtseigenvektorpaare
.�Ki;vKi/, wenn rang .C Vr/ D r gilt und für r D p die Rückführmatrix K gemäß

K D Qr.C Vr/
�1

bzw. für r < p gemäß

K D Qr.C Vr/
C C K1U1

mit beliebigem K1 berechnet wird. Dabei ist U1 eine Basis des Linkskerns der Matrix C Vr, und
somit gilt bild

�
U T

1

� D kern
�
.C Vr/

T
�
.
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Mit Lemma 3.1 folgt, dass mit dem parametrischen Ansatz ausgehend von (3.3) beziehungsweise
(3.4) maximal p Eigenwert-/Rechtseigenvektorpaare im geschlossenen Regelkreis zu erzeugen
sind. Dabei stehen durch jedes .�Ki;vKi/ genau m Freiheitsgrade zur Verfügung. Diese setzen
sich aus dem Freiheitsgrad durch die Wahl des Regelungseigenwertes �Ki sowie der Richtung des
Parametervektors qvi zusammen, was m � 1 Freiheitsgrade darstellt. Die Länge des Vektors qvi ist
somit unwesentlich, was sich ebenfalls an Gleichung (3.6) zusammen mit den Zusammenhängen
vKi D Nviqvi und pvi D Mviqvi verdeutlichen lässt . Wird jedes qvi mit einem Skalierungsfaktor
ci ¤ 0 multipliziert, so entspricht dies der Rechtsmultiplikation von (3.6) mit der quadratisch
regulären Matrix diag .c1; : : : ; cr /, was die Lösungsmenge der Gleichung nicht ändert.

Somit ist für r D p die Rückführmatrix K durch die p Eigenwert-/Parametervektorpaare .�Ki;qvi/

vollständig parametrisch festgelegt. Ist allerdings r < p, so stehen noch die verbleibenden .p �
r/ � m Freiheitsgrade zur Verfügung, was der Rückführmatrix K1 entspricht. Diese werden in Ab-
schnitt 3.1.3 genutzt, um auch die verbleibenden n�r Eigenwerte des geschlossenen Regelkreises
vorzugeben. Zunächst ist hierzu allerdings ein dualer Ansatz zu der Methodik in diesem Abschnitt
zu diskutieren, was auf die Vorgabe von Eigenwerten und Linkseigenvektoren führt.

3.1.2 Vorgabe von Eigenwerten und Linkseigenvektoren

Da der Entwurf einer Zustandsrückführung und der Entwurf einer Ausgangsaufschaltung zuein-
ander duale Entwurfsprobleme sind, lässt sich ausgehend von dem vorangegangenen Abschnitt
sowie von (3.2) und (3.1b) ebenfalls argumentieren, dass sich jede Ausgangsrückführung als spe-
zielle Ausgangsaufschaltung interpretieren lässt, da immer BK D L ist. Wird nun das Eigen-
wert/Linkseigenvektor Problem

wT
Ki.A C BKC / D �Kiw

T
Ki

betrachtet, folgt in dualer Weise zu (3.3) durch Transponieren zunächst

�
.AT � �KiI/ C T

� 

wKi

KTBTwKi

�
D 0: (3.7)

Darin wird KTBTwKi DW pwi als der Messmodus zum Eigenwert �Ki definiert, woraus

�
.AT � �KiI/ C T

� 

wKi

pwi

�
D 0 (3.8)

folgt. Weiterhin kann SCi WD �
.AT � �KiI/ C T

�
abgekürzt werden. Im Allgemeinen ist SCi 2

Cn�nCp, da Regelungseigenwerte komplex sein können. Aufgrund der vorausgesetzten Beobacht-
barkeit des Paares .C;A/ besitzt die Matrix SCi einen p-dimensionalen Nullraum, und es existie-
ren Matrizen Nwi und Mwi , so dass

kern .SCi/ D bild
	


Nwi

Mwi

��
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gilt. Mit (3.8) lassen sich nun Parametervektoren qwi einführen, so dass für den Linkseigenvektor
wKi D Nwiqwi sowie für den Messmodus pwi D Mwiqwi gilt. Daher ist

�
.AT � �KiI/ C T

� 

Nwi

Mwi

�
qwi D 0 (3.9)

äquivalent zu (3.8), woraus offensichtlich wird, dass bei einem beobachtbaren Mehrgrößensys-
tem mit p > 1 neben den Regelungseigenwerten noch weitere Freiheitsgrade existieren, die es
erlauben, die Richtung der Linkseigenvektoren in dem von den Spaltenvektoren der Matrix Nwi

aufgespannten Unterraum vorzugeben.

Auch in diesem Fall lassen sich im Gegensatz zum Entwurf einer Ausgangsaufschaltung aufgrund
der Strukturbeschränkung L D BK nicht mehr alle Eigenwerte des geschlossenen Regelkreises
vorgeben. Mit einem noch nicht festgelegten Index s werden die Matrizen

W T
s WD �

wK1 : : : wKs

�
(3.10a)

QT
s WD �

pw1 : : : pws

�
(3.10b)

definiert, die sich spaltenweise aus (3.8) bzw. (3.9) ergeben. Aufgrund der Definition des Mess-
modus gemäß pwi D KTBTwKi folgt mit (3.10) daraus das lineare Gleichungssystem

WsBK D Qs (3.11)

in der Variable K. Auch diese Gleichung ist gemäß der Theorie zu linearen Gleichungssystemen
sicher dann lösbar, wenn Qs 2 bild .WsB/ erfüllt ist. Wird darüber hinaus vorausgesetzt, dass
s � m gewählt wird, und die Matrix WsB vollen Zeilenrang hat, dann ist für s < m die Matrix
WsB rechtsinvertierbar beziehungsweise für s D m quadratisch regulär. Insbesondere im ersten
Fall für s < m ist die sich daraus ergebende Lösung für K nicht mehr eindeutig bestimmt, was im
weiteren Verlauf zur Parametrierung der Ausgangsrückführmatrix ausgenutzt werden kann. Wei-
terhin lassen sich durch Lösung von (3.11) genau s Eigenwert-/Linkseigenvektorpaare .�Ki;wKi/

im geschlossenen Regelkreis erzeugen, wie folgendes Lemma aufgrund der Dualität zu Lemma
3.1 ohne Beweis zusammenfasst.

Lemma 3.2. Betrachtet wird das steuer- und beobachtbare Zustandssystem (3.1). Die Ausgangs-
rückführung (3.2) erzeugt für i 2 f1; : : : ;sg und s � m die Eigenwert-/Linkseigenvektorpaare
.�Ki;wKi/, wenn rang .WsB/ D s gilt und für s D m die Rückführmatrix K gemäß

K D .WsB/
�1Qs

bzw. für s < m gemäß

K D .WsB/
CQs C U2K2

mit beliebigem K2 berechnet wird. Dabei ist U2 eine Basis des Rechtskerns der Matrix WsB, und
somit gilt bild .U2/ D kern .WsB/.
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Auch in diesem Fall ist mit Lemma 3.2 gezeigt, dass sich mit dem parametrischen Ansatz ausge-
hend von (3.8) beziehungsweise (3.9) maximal m Eigenwert-/Linkseigenvektorpaare im geschlos-
senen Regelkreis erzeugen lassen. Dabei stehen durch jedes .�Ki;wKi/ genau p Freiheitsgrade zur
Verfügung. Diese setzen sich aus dem Freiheitsgrad durch die Wahl des Regelungseigenwertes �Ki

sowie der Richtung des Parametervektors qwi zusammen, was p � 1 Freiheitsgrade darstellt. Die
Länge des Vektors qwi ist, wie die Länge des Vektors qvi im vorhergehenden Abschnitt, unwesent-
lich. Somit ist für s D m die Rückführmatrix K durch die m Eigenwert-/Parametervektorpaare
.�Ki;qwi/ vollständig parametrisch festgelegt. Ist allerdings s < m, so stehen noch die verbleiben-
den .m � s/ � p Freiheitsgrade zur Verfügung, was der Rückführmatrix K2 entspricht.

3.1.3 Berechnung der Rückführmatrix

In den Abschnitten 3.1.1 und 3.1.2 wurde aufgezeigt, dass sich ausgehend von der Systembe-
schreibung (3.1) die Ausgangsrückführung (3.2) auf zwei verschiedene, duale Herangehensweisen
bestimmen lässt. Dabei lassen sich bei der Vorgabe von Rechtseigenvektoren maximal p Rechts-
eigenmoden beziehungsweise bei der Vorgabe von Linkseigenvektoren maximal m Linkseigen-
moden vorgeben. Ist dabei p D n oder m D n, dann ergibt sich dadurch der Spezialfall einer
Zustandsrückführung beziehungsweise einer Ausgangsaufschaltung. Weiterhin wurde auch deut-
lich, dass in den Fällen r < p und s < m stets noch weitere Freiheitsgrade durch die Rückführ-
matrizen K1 und K2 zur Verfügung stehen, um K noch weiter zu verändern. Dies motiviert das
nachfolgend dargestellte Vorgehen, welches darin besteht, die beiden in den Lemmata 3.1 und 3.2
festgehaltenen Ergebnisse zu kombinieren, um so einen geschlossenen analytischen Ausdruck für
K anzugeben, womit alle Eigenwerte des geschlossenen Regelkreises vorgegeben werden können.

Wird daher in Lemma 3.1 die spezielle Wahl r D p � 1 getroffen und der volle Spaltenrang von
C Vr angenommen, folgt daraus die Rückführmatrix

K D Qr.C Vr/
C C K1U1 D K0 C K1U1 (3.12)

mit K1 2 Rm�1 und U1 2 R1�p, da U1C Vr D 0 mit C Vr 2 Cp�p�1 erfüllt sein muss. Wird nun
(3.12) in (3.2) und dann in (3.1a) eingesetzt, so folgt daraus für die Dynamik des geschlossenen
Regelkreises

Px D .A C BK0C C BK1U1C /x:

Wird in dieser Gleichung

A1 WD A C BQr.C Vr/
CC; (3.13a)

C1 WD U1C (3.13b)

abgekürzt, so folgt daraus das über (3.12) geregelte Zustandssystem

Px D .A1 C BK1C1/x; (3.14a)

y1 D C1x; (3.14b)
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wobei durch K1 weitere Freiheitsgrade existieren, um die Dynamik von (3.14a) zu verändern. Um
zu verdeutlichen, dass durch die Reglerparametrierung in (3.12), die p�1 Eigenwert-/Rechtseigen-
vektorpaare erzeugt werden, und dass diese durch jede Wahl von K1 auch nicht mehr verän-
dert werden, wird auf eine neue Koordinatendarstellung übergangen. Hierzu wird zunächst die
Diagonalmatrix ƒr D diag .�K1; : : : ; �Kr / eingeführt. Mit (3.3), (3.5) und (3.14a) folgt daraus
.A1 C BK1C1/Vr D A1Vr D Vrƒr , was die Vorgabe der Eigenwerte f�K1; : : : ; �Krg zeigt. Zum
Übergang auf eine neue Koordinatendarstellung wird eine Matrix T? mit orthogonalen Spalten-
vektoren bestimmt, die bild .T?/ D kern

�
V T

r

�
sowie T T

?T? D In�r erfüllt. Daraus folgt die neue

Koordinatendarstellung aus Qx D �
Vr T?

��1
x sowie mit

�
Vr T?

��1 D �
Wr T?

�T
, und es ergibt

sich " PQx1

PQx2

#
D



W T

r A1Vr W T
r .A1 C BK1C1/T?

T T
?A1Vr T T

?.A1 C BK1C1/T?

� 
 Qx1

Qx2

�

D
	

ƒr W T

r A1T?
0 T T

?A1T?

�
C



W T

r B

T T
?B

�
K1

�
0 C1T?

�� 
 Qx1

Qx2

�
;

y1 D �
0 C1T?

� Qx;
was eine Kalman Zerlegung von (3.14) darstellt. Aufgrund der Blockdreiecksstruktur der resul-
tierenden Systemmatrix, lässt sich schließen, dass der Teilzustand Qx1 bezüglich des Ausgangs y1

nicht beobachtbar ist, weshalb die Eigenwerte f�K1; : : : ; �Krg über die Ausgangsrückführung K1

auch nicht mehr verändert werden. Die verbleibenden Eigenwerte der Matrix sind allerdings noch
über K1 verschiebbar, weshalb Lemma 3.2 zur Vorgabe der Eigenwerte genutzt werden kann. Al-
lerdings muss in diesem Fall anstatt von (3.1) von (3.14) ausgegangen werden, weshalb (3.8) bzw.
(3.9) zu

�
.AT

1 � �KiI/ C T
1

� 

wKi

pwi

�
D �

.AT
1 � �KiI/ C T

1

� 

Nwi

Mwi

�
qwi D 0 (3.15)

für i 2 fr C 1; : : : ; ng modifiziert werden müssen. Allerdings ist in diesem Fall C1 2 R1�n und
daher dim

�
kern

��
.AT

1 � �KiI/ C T
1

��� D 1, weshalb durch die spezielle Wahl r D p � 1 keine
Freiheitsgrade durch die Parametervektoren qwi für i 2 fr C 1; : : : ; ng zur Verfügung stehen.
Nur über die Wahl der Regelungseigenwerte lässt sich damit die Dynamik des geschlossenen
Regelkreises noch gezielt beeinflussen. Darüber hinaus resultiert der Index s aus n � r D s.
Im Hinblick auf Lemma 3.2 muss daher m � s gefordert werden, um über den modifizierten
Zusammenhang K1 für s D m aus

K1 D .WsB/
CQs

beziehungsweise für s < m aus

K1 D .WsB/
CQs C U2K2

zu berechnen. Ist allerdings m � s D n � r , so muss ebenfalls mit r D p � 1 die Ungleichung
m � n � p C 1 beziehungsweise

m C p � n C 1 (3.16)
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erfüllt sein. Diese Ungleichung ist in der Literatur auch als Bedingung nach Kimura (engl. Ki-
mura’s condition) bekannt und geht auf die Ergebnisse in [43] zurück. Darin zeigt Kimura, dass
(3.16) hinreichend für die generische Polzuweisbarkeit mittels reeller Rückführmatrix K ist, wenn
das Zustandssystem steuer- und beobachtbar sowie die Menge der Regelungseigenwerte selbst-
konjugiert ist und die Regelungseigenwerte paarweise verschieden gewählt werden. Dabei ergibt
sich die Definition einer selbst-konjugierten Menge bestehend aus paarweise verschiedenen Ei-
genwerten zu

Dn D ˚
�k 2 C j k 2 f1; : : : ; ng j � 2 Dn ) �� 2 Dn



: (3.17)

Die Eigenwerte einer selbst-konjugierten Menge Dn sind somit symmetrisch zur reellen Achse.
Damit folgt der nachstehende Satz.

Satz 3.3 (Polzuweisbarkeit nach Kimura [43]). Wenn das Zustandssystem (3.1) steuer- und beob-
achtbar sowie die Bedingung (3.16) erfüllt ist, dann ist es polzuweisbar. Für jede selbst-konjugierte
Menge Qƒ D fQ�1; : : : ; Q�ng 2 Dn existieren �i in der Umgebung von Q�i , so dass ein reelles K mit
ƒ D f�1; : : : ; �ng 2 Dn und � .A C BKC / D ƒ existiert.

Im Hinblick auf das Resultat in Satz 3.3 lässt sich ausgehend von den Diskussionen in diesem Ab-
schnitt über die Kombination der beiden Ansätze in den Lemmata 3.1 und 3.2 festhalten, dass da-
mit direkt eine Möglichkeit der Parametrierung der Ausgangsrückführung (3.2) gegeben ist, wenn
die Bedingung nach Kimura (3.16) erfüllt ist. Bemerkenswert hierbei ist, dass sich die Ausgangs-
rückführung ausgehend von der Lösung zweier linearer Gleichungssystemen (3.6) und (3.11) er-
gibt. Zudem ist zu erwähnen, dass mit Satz 3.3 auch folgt, dass für Zustandssysteme gemäß (3.1)
Mengen von Regelungseigenwerten aus Dn existieren können, die mit (3.2) und reellem K nicht
erzeugt werden können. Auch beim Auftreten von Übertragungsnullstellen funktioniert das Vor-
gehen beispielsweise nicht, wie das dritte Beispiel in [43] zeigt. Damit lässt sich ebenfalls die
sogenannte generische Eigenschaft der Polzuweisbarkeit interpretieren, die insoweit zu verstehen
ist, dass es für fast alle Qƒ möglich ist, ein reelles K zu finden, so dass � .A C BKC / D Qƒ gilt.
Mit Satz 3.3 ist daher garantiert, dass stets in der Umgebung von Q�i Eigenwerte �i existieren,
so dass ein reelles K mit ƒ D f�1; : : : ; �ng 2 Dn und � .A C BKC / D ƒ existiert. Abschlie-
ßend wird das Verfahren zur Vorgabe der Eigenwerte des geschlossenen Regelkreises mittels einer
Ausgangsrückführung in dem folgenden Satz zusammengefasst.

Satz 3.4 (Proposition 2 [46]). Betrachtet wird das Zustandssystem (3.1) mit m � 2 und p � 2

sowie mit m C p � n C 1, d.h. die Bedingung nach Kimura (3.16) ist erfüllt. Wird die Menge
der Regelungseigenwerte ƒK 2 Dn in zwei selbst-konjugierte Mengen ƒK1 D f�K1; : : : ;�Kp�1g
und ƒK2 D f�Kp; : : : ;�Kng aufgeteilt und sind in (3.4) für i 2 f1; : : : ;p � 1g die Parametervek-
toren qvi ¤ 0, in (3.15) für j 2 fp; : : : ;ng die Parametervektoren qwj ¤ 0 sowie zu komplexen
Regelungseigenwerten selbst-konjugiert, dann existiert für s D n � p C 1 ein reelles K gemäß

K D
(

Qr.C Vr/
C C .WsB/

CQsU1; m D s;

Qr.C Vr/
C C .WsB/

CQsU1 C U2K2U1; m > s;K2 2 Rm�s�1 beliebig,
(3.18)

so dass � .A C BKC / D ƒK D fƒK1; ƒK2g, wenn mit (3.5) und (3.10)
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(A1) rang .C Vr/ D r D p � 1, Vr 2 Rn�p�1

(A2) rang .WsB/ D s, Ws 2 Rs�n

erfüllt ist.

Dass in den Annahmen (A1) und (A2) in Satz 3.4 die Matrizen Vr und Ws als reellwertig angenom-
men werden, stellt keine Beschränkung der Allgemeinheit dar, da auch bei komplexen Regelungs-
eigenwerten eine reelle Parametrierung vorgenommen werden kann. Hierzu wird allerdings auf
Abschnitt 3.1.5 verwiesen, worin ebenfalls diskutiert wird, wie mehrfache Regelungseigenwerte
in den Entwurfsprozess einbezogen werden können. Darüber hinaus scheint die Bedingung von
Kimura (3.16) unter praktischen Gesichtspunkten sehr restriktiv zu sein, insbesondere im Hin-
blick auf Systeme hoher Ordnung mit vergleichsweise wenigen Ein- und Ausgängen. Dass man
sich von dieser Einschränkung stets befreien kann, indem eine dynamische Ausgangsrückführung
verwendet wird, zeigt der folgende Abschnitt.

3.1.4 Dynamische Ausgangsrückführung

Sollte die Bedingung nach Kimura (3.16) nicht erfüllt sein, so können durch den Entwurf einer
dynamischen Ausgangsrückführung

Pxd D Adxd C Bdy (3.19a)

u D Cdxd C Ddy (3.19b)

mit xd 2 Rnd stets zusätzliche Freiheitsgrade generiert werden, um sämtliche Eigenwerte des ge-
schlossenen Regelkreises vorzugeben. Allerdings lässt sich der Entwurf einer dynamischen Aus-
gangsrückführung auf den Entwurf einer statischen Ausgangsrückführung für ein erweitertes Sys-
tem zurückführen, wie der folgende Satz zeigt.

Satz 3.5. Der Entwurf der dynamischen Ausgangsrückführung (3.19) für das Zustandsraumsystem
(3.1) kann durch den Entwurf des statischen Regelgesetzes


u

Pxd

�
D



Dd Cd

Bd Ad

� 

y

xd

�

für das erweiterte Zustandsraumsystem
 Px
Pxd

�
D



A 0

0 0

� 

x

xd

�
C



B 0

0 I

� 

u

Pxd

�



y

xd

�
D



C 0

0 I

� 

x

xd

� (3.20)

erfolgen.
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Beweis. Das Zustandsraumsystem (3.1) und der dynamische Regler (3.19) lassen sich in die Form
 Px
Pxd

�
D



A C BDdC BCd

BdC Ad

� 

x

xd

�

D
	


A 0

0 0

�
C



B 0

0 I

� 

Dd Cd

Bd Ad

� 

C 0

0 I

�� 

x

xd

�

bringen, wie sich leicht nachrechnen lässt. Damit ist der Entwurf der dynamischen Ausgangsrück-
führung (3.19) für das Zustandsraumsystem (3.1) auf den Entwurf der statischen Ausgangsrück-
führung

Ke WD


Dd Cd

Bd Ad

�

für das erweiterte Zustandsraumsystem (3.20) mit
�
xT xT

d

�T DW xe 2 RnCnd sowie der erweiter-
ten Zustands-, Eingangs- und Ausgangsmatrix gemäß

Ae WD


A 0

0 0

�
; Be WD



B 0

0 I

�
; Ce WD



C 0

0 I

�
(3.21)

zurückgeführt.

Ausgehend von den Dimensionen der erweiterten Systemmatrizen (3.21) ergibt sich für die Be-
dingung nach Kimura (3.16) der Zusammenhang m C nd C p C nd � n C nd C 1 beziehungsweise
aus

nd � n � m � p C 1 (3.22)

eine untere Schranke für die benötigte Reglerordnung, die im Sinne von Satz 3.3 die Vorgabe der
Eigenwerte des mittels der dynamischen Ausgangsrückführung (3.19) geregelten System garan-
tiert.

3.1.5 Vorgabe komplexer und mehrfacher Eigenwerte

In Satz 3.4 wurden in den Annahmen (A1) und (A2) die Matrizen Vr und Ws als reellwertig an-
genommen. Dies stellt keine Beschränkung der Allgemeinheit dar und wird in diesem Abschnitt
diskutiert. Die Begründung hierfür ist, dass aufgrund ƒK 2 Dn für einen Regelungseigenwert
�K 2 ƒK ebenfalls N�K 2 ƒK erfüllt ist. Somit lässt sich auch bei komplexen Regelungseigenwer-
ten eine reelle Parametrierung vornehmen, wie nachfolgend gezeigt wird. Ähnliche Überlegungen
zu einer reellen Parametrierung aber auch zur Vorgabe mehrfacher Regelungseigenwerte finden
sich ebenfalls in [64, 94]. Zur Vereinfachung der Notation wird daher, falls nötig, auf den Zäh-
lindex i verzichtet, und es sei angemerkt, dass die gleichen Überlegungen auf die Vorgabe von
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34 3 Entwurf strukturbeschränkter Rückführungen

Linkseigenvektoren übertragbar und damit auf die Entwurfsverfahren in den Abschnitten 3.1.1,
3.1.2 und 3.1.3 anwendbar sind. Mit ƒK 2 Dn kann daher stets die Darstellung

�Ki D � C j! �KiC1 D N�Ki D � � j!

vKi D v� C jv! vKiC1 D NvKi D v� � jv!

pvi D p� C jp! pviC1 D Npvi D p� � jp!

Nvi D N� C jN! NviC1 D NNvi D N� � jN!

Mvi D M� C jM! MviC1 D NMvi D M� � jM!

qvi D q� C jq! qviC1 D Nqvi D q� � jq!

gewählt werden. Das Eigenwertproblem des geschlossenen Regelkreises für ein solches komple-
xes Eigenwert-Paar ergibt sich daher aus

�
vKi NvKi

� 

�Ki 0

0 N�Ki

�
� .A C BKC /

�
vKi NvKi

� D 0

beziehungsweise mit Hilfe der Steuermoden in (3.3) aus

�
vKi NvKi

� 

�Ki 0

0 N�Ki

�
� A

�
vKi NvKi

� � B
�
pvi Npvi

� D 0: (3.23)

Auf die Verwendung komplexer Größen zur Bestimmung der Rückführung (3.2) und aus Gründen
der Konsistenz mit der Formulierung von Satz 3.4 lässt sich die komplexe Darstellung von (3.23)
durch rechtsseitige Multiplikation mit der quadratisch regulären Matrix

Tre D 1

2



1 �j
1 j

�

in eine reelle Darstellung überführen. Daraus ergibt sich

�
v� v!

� 

� !

�! �

�
� A

�
v� v!

� � B
�
p� p!

� D 0 (3.24)

und damit eine zu (3.23) äquivalente, reelle Darstellung sowie mit

0 D


A � �I �!I B 0

!I A � �I 0 B

� 2
6664
v�

v!

p�

p!

3
7775

D


A � �I �!I B 0

!I A � �I 0 B

� 2
6664

N� �N!

N! N�

M� �M!

M! M�

3
7775



p�

p!

�

eine zu (3.3) bzw. (3.4) äquivalente, handhabbare Entwurfsgleichung.
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3.1 Parametrisches Entwurfsverfahren für statische Ausgangsrückführungen 35

Im Vergleich zur Vorgabe komplexer Regelungseigenwerte, die insbesondere bei der gezielten
Beeinflussung schwingungsfähiger Systeme durch eine Regelung eine praktische Bedeutung ha-
ben, ist die Vorgabe mehrfacher Regelungseigenwerte unter praktischen Gesichtspunkten weniger
häufig erforderlich. Als nennenswertes Beispiel ist hierbei vor allem der Entwurf auf endliche
Einstellzeit bei Abtastsystemen anzuführen, da die Regelung in diesem Fall alle Regelungseigen-
werte in den Ursprung der komplexen Ebene verschieben muss. Im Rahmen der vorliegenden
Arbeit werden Abtastsysteme nicht behandelt, so dass eine knappe Beschreibung des Vorgehens
zur Vorgabe mehrfacher Eigenwerte ausreichend ist.

Mit Hilfe der Jordan Normalform lassen sich daher auch für die Vorgabe mehrfacher Regelungs-
eigenwerte in Anlehnung an (3.3) bzw. (3.4) handhabbare Entwurfsgleichungen herleiten. Hierzu
wird die Definition eines Hauptvektors genutzt. Allgemein gilt für einen Hauptvektor j -ter Stufe
vi;j zum Eigenwert �i

Avi;j D �vi;j C vi;j�1; (3.25)

wobei für einen Hauptvektor nullter Stufe vi;0 D 0 gilt. Damit sind Eigenvektoren Hauptvek-
toren erster Stufe. Um nun einen Regelungseigenwert �Ki 2 ƒK k-fach vorzugeben, also einen
Jordanblock

Ji;k D

2
666664

�Ki 1 0

�Ki 1
: : :

: : :

�Ki 1

0 �Ki

3
777775 2 Ck�k

im geschlossenen Regelkreis mit .A C BKC /
�
vKi;1 : : : vKi;k

� D �
vKi;1 : : : vKi;k

�
Ji;k zu

erzeugen, ergibt sich ausgehend von der Definitionsgleichung (3.25)

.A C BKC � �KI/vKi;1 D 0

.A C BKC � �KI/vKi;2 � vKi;1 D 0

:::

.A C BKC � �KI/vKi;k � vKi;k�1 D 0

bzw. in Matrixschreibweise und zusammen mit den Steuermoden pvi;j D KCvKi;j

2
6664

A � �KI 0 B 0

�I A � �KI B
: : :

: : :
: : :

0 �I A � �KI 0 B

3
7775

2
66666666666664

vKi;1

vKi;2

:::

vKi;k

pvi;1

pvi;2

:::

pvi;k

3
77777777777775

D 0:
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3.2 Beeinflussung des Stör- und Führungsverhaltens

Mit der Parametrierung der Ausgangsrückführung (3.2), die im Abschnitt 3.1 diskutiert wurde,
lassen sich unter der Voraussetzung der Bedingung nach Kimura (3.16) in generischer Hinsicht
stets alle Eigenwerte des geschlossenen Regelkreises beliebig vorgeben. Hierbei ist allerdings für
m � 2 sowie p � 2 meist auch m � p > m C p, und somit existieren neben den Regelungsei-
genwerten noch weitere Freiheitsgrade in Form der Parametervektoren qvi für i 2 f1; : : : ;p � 1g,
die für eine weitere Beeinflussung der Dynamik des geschlossenen Regelkreises genutzt werden
können.

Häufig erfolgt die Wahl der noch verbleibenden Freiheitsgrade so, dass die Regelung auch bei
Störungen in den Daten der Matrizen A, B und C stets die Stabilität der geregelten Strecke si-
cherstellt. In der Literatur wird dies als robuste Eigenstrukturvorgabe (engl. robust exact eigen-
structure assignment, REEA) bezeichnet. Darüber hinaus ist es oft wünschenswert, die Strecke
nicht mit allzu großen Stellbeträgen zu beaufschlagen, weshalb sich hierbei die Norm der sta-
tischen Rückführmatrix als ein Kriterium in der Literatur etabliert hat. Dieses Problem wird als
Eigenstrukturvorgabe mit minimaler Verstärkung (engl. minimum gain eigenstructure assignment,
MGEA) bezeichnet. Die vorgenannten Probleme zielen dabei meist auf die Verbesserung des Stör-
verhaltens der geregelten Strecke ab, was im Abschnitt 3.2.1 diskutiert wird.

Soll hingegen gezielt das Führungsverhalten des geschlossenen Regelkreises beeinflusst werden,
so wird unter praktischen Aspekten oftmals gezielt die Entkopplung der Regelgrößen oder aber
auch die Einhaltung algebraischer Beziehungen zwischen einzelnen Regelgrößen gefordert. Dies
führt auf den Entwurf einer Ent- bzw. Verkopplungsregelung und ist Bestandteil der Untersuchun-
gen in den Abschnitten 3.2.2 und 3.2.3.

3.2.1 Robuste Eigenwertvorgabe

Bei der Modellierung realer physikalischer Systeme, die sich in der Nähe eines Arbeitspunktes als
lineare Zustandssysteme wie in (3.1) darstellen lassen, sind die Daten in den Systemmatrizen A, B

und C in den meisten Fällen nie exakt bekannt. Daher ist im Sinne der Stabilität der Regelung zu
überprüfen, ob der geschlossene Regelkreis mit der Systemmatrix des geschlossenen Regelkreises
A C BKC C� durch die Auslegung von K weithin stabil ist, wenn die Systemmatrix durch die
Matrix � gestört wird. Unter praktischen Gesichtspunkten wird die Matrix � nie exakt bekannt
sein, weshalb zumindest Aussagen über eine obere Schranke für die Norm von� in Abhängigkeit
von K hilfreich sind, um die Stabilität der gestörten, geregelten Strecke zu bewerten.

Argumentationsgrundlage der folgenden Betrachtungen ist deshalb das Bauer-Fike Theorem in
Satz B.7, welches besagt, dass für jedes O� 2 � .A C BKC C�/ ein �K 2 ƒK existiert, so dass
die Ungleichungˇ̌̌O� � �K

ˇ̌̌
� kVKk ��V �1

K

�� k�k D �.VK/ k�k
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erfüllt ist. Darin ist .A C BKC /VK D VKƒK und

�.VK/ D kVKk ��V �1
K

�� (3.26)

bezeichnet die Konditionszahl der Rechtseigenvektormatrix des geregelten Systems VK. Daraus
wird ersichtlich, dass die betragsmäßige Abweichung der Eigenwerte O� � �K und damit die Ver-
schiebung der Eigenwerte des gestörten gegenüber dem ungestörten System umso geringer aus-
fällt, je kleiner die Konditionszahl �.VK/ ist. Dies bildet den Ausgangspunkt der folgenden Be-
trachtungen, die in Auszügen bereits in [109] publiziert wurden und als Erweiterung der Ergeb-
nisse in [37] auf den Fall einer Ausgangsrückführung zu sehen sind.

In [37] untersuchen Kautsky, Nichols und Van Dooren das Problem der robusten Eigenwertvor-
gabe mittels Zustandsrückführung. Es sei ergänzend erwähnt, dass die Ergebnisse algorithmisch
als Funktion place im Programmpaket MATLAB umgesetzt sind. Grundidee der Autoren ist
die Nutzung der verbleibenden Freiheitsgrade einer Zustandsrückführung, die neben den Rege-
lungseigenwerten bei Mehrgrößensystemen existieren, um die Rechtseigenvektormatrix des ge-
schlossenen Regelkreises optimal zu konditionieren. Aufgrund des Bauer-Fike Theorems sind die
vorgegebenen Eigenwerte des geregelten Systems dann weniger sensitiv gegenüber Störungen in
der Systemmatrix des geschlossenen Regelkreises. Darüber hinaus ergeben sich mit diesem An-
satz weitere günstige Eigenschaften für die Dynamik des geregelten Systems, wie in den beiden
nachfolgenden Sätzen dargestellt wird. Die Beweise finden sich ebenfalls in [37], werden aber der
Vollständigkeit halber trotzdem geführt, da die Aussagen auf die Methodik im Abschnitt 3.1 ange-
passt wurden. Damit folgt zunächst eine Aussage über die Impulsantwort der geregelten Strecke.

Satz 3.6 ([37]). Die Rückführmatrix K und die Impulsantwort x.t/ des geschlossenen Regelkrei-
ses Px D .A C BKC /x, wobei x.t0/ D x0 gilt, erfüllen die Ungleichung

kx.t/k � �.VK/ � max
i

nˇ̌̌
e�Ki t

ˇ̌̌o
� kx0k :

Beweis. Die Ungleichung folgt aus der Impulsantwort x.t/ D exp ..A C BKC /t/x0. Mit kx.t/k
und .A C BKC / D VKƒKV �1

K folgt

kx.t/k � kVKk kexp .ƒKt/k ��V �1
K

�� kx0k
� �.VK/ kexp .ƒKt/k kx0k
� �.VK/max

i

nˇ̌̌
e�Ki t

ˇ̌̌o
kx0k ;

woraus die Aussage folgt.

Mit Satz 3.6 wird deutlich, dass durch eine Minimierung der Konditionszahl �.VK/ eine obe-
re Schranke für die Impulsantwort des geregelten Systems minimiert wird. In Abbildung 3.1 ist
in der linken Darstellung darüber hinaus veranschaulicht, welche Verbesserung sich durch eine
Minimierung der Konditionszahl im Hinblick auf die Impulsantwort ergibt. Anschaulich wird
der „Schlauch“, der die Norm aller Impulsantworten nach oben begrenzt, gestaucht. Somit ist zu
erwarten, dass durch die Minimierung der Konditionszahl Verbesserungen im Hinblick auf ein
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38 3 Entwurf strukturbeschränkter Rückführungen

mögliches Überschwingen des Regelkreises zu erzielen sind, was häufig eine Anforderung an den
geschlossenen Regelkreis darstellt. Darüber hinaus ergibt sich durch eine geringere Konditions-
zahl auch eine Verbesserung des Stabilitätsrandes des geregelten Systems, was ebenfalls in der
rechten Darstellung angedeutet ist. Aufgrund der Störungen � verschieben sich die Eigenwer-
te des geschlossenen Regelkreises – möglicherweise in Richtung der rechten s-Halbebene. Der
Regelkreis wird somit instabil. Durch die Konditionszahl lässt sich eine obere Schranke für die
Norm von � angeben, so dass der gestörte Regelkreis weiterhin stabil ist, wie der nachfolgende
Satz zeigt.

Satz 3.7 ([37]). Wenn die Ausgangsrückführmatrix K die Menge der stabilen Eigenwerte ƒK

zuweist, dann ist die gestörte Systemmatrix des geschlossenen Regelkreises A C BKC C � für
alle � stabil, die

k�k < min
sDj!

�fsI � .A C BKC /g DW ı.K/ (3.27)

erfüllen, wobei eine untere Schranke für ı.K/ durch

ı.K/ � min
i

Ref��Kig � �.VK/
�1 (3.28)

gegeben ist.

Beweis. Die Matrix sI � .ACBKC C�/ ist regulär, wenn mit der Abkürzung AK D ACBKC

und sI � .AK C�/ D .sI � AK /.I C .sI � AK /
�1.��// die Ungleichung��.sI � AK /

�1.��/�� < 1

erfüllt ist (vgl. [35, Corollary 5.6.16]). Aufgrund der Submultiplikativität der Matrixnorm k�k ist
daher auch

��.sI � AK /
�1.��/�� � ��.sI � AK /

�1
�� k�k < 1 zu fordern, und dadurch ist mit��.sI � AK /

�1
�� D .�fsI � AK g/�1 ebenfalls

k�k < ���.sI � AK /
�1

����1 D �fsI � AK g:
Somit ist notwendig dafür, dass die Matrix sI � .AK C�/ singulär auf der imaginären Achse mit
s D j! wird, dass k�k � ı.K/ ist. Da die Eigenwerte einer Matrix allerdings stetige Funktionen
der Einträge der Matrix sind, ist die Matrix AK C� stabil, wenn (3.27) erfüllt ist.

Zur Bestimmung der unteren Schranke für ı.K/ folgt mit AK VK D VKƒK

ı.K/ D min
sDj!

�fsI � .A C BKC /g
D min

sDj!
�fVK.sI �ƒK/V

�1
K g

� �.VK/ � �.V �1
K / � min

sDj!
�f.sI �ƒK/g

� kVKk�1
��V �1

K

���1 � min
i

Ref��Kig;

woraus (3.28) folgt.
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0 1 2 3 4 5
�4

�2

0

2

4

t=s

˙ �.VK/ � max
i

n
e�Ki t

o
�3 �2 �1 0

�2

0

2

Re

Im

�.AK /

�.AK C�/

Bild 3.1: Eigenschaften des geregelten Systems bei robuster Eigenstrukturvorgabe - Minimie-
rung einer oberen Schranke der Impulsantwort (links) und Maximierung des Stabilitätsrandes
(rechts)

Mit den Sätzen 3.6 und 3.7 lässt sich begründen, dass die Konditionszahl der Rechtseigenvek-
tormatrix des geregelten Systems �.VK/ ein geeignetes Maß darstellt, um die Robustheit des ge-
schlossenen Regelkreises im Sinne der Eigenwertvorgabe zu bewerten. Darüber hinaus stellt die
Konditionszahl (3.26) ebenfalls eine obere Schranke für die Konditionszahlen der Eigenwerte dar
[127], die gemäß

ci D kwKik kvKik��wT
KivKi

�� � 1; i8 2 f1; : : : ;ng (3.29)

definiert sind. Daraus ergibt sich [37]

max
i

ci � �.VK/

und das robust mit einer Ausgangsrückführung geregelte System ist somit optimal im Sinne des
Gütekriteriums (3.26) bzw. (3.29) konditioniert, wenn �.VK/ D 1 bzw. maxi ci D 1 ist. Dies
hat zur Folge, dass die Rechtseigenvektoren des geschlossenen Regelkreises so skaliert werden
können, dass sie zueinander orthonormal sind, was ebenfalls darin resultiert, dass die Rechtsei-
genvektormatrix eine orthogonale Matrix darstellt. Damit ist V �1

K D V T
K D WK, und es ergibt

sich

�.VK/ D kVKk ��V �1
K

�� D kVKk ��V T
K

�� D 1:

Zur Berechnung von �.VK/ ist aufgrund der Definition der Spektralnorm gemäß k�k D �.�/ stets
eine Singulärwertzerlegung von VK und V �1

K vorzunehmen. Soll dieser numerische Aufwand ver-
mieden werden, bietet es sich an, eine obere Schranke der Spektralnorm zu minimieren. Hierzu
kann beispielsweise die Frobeniusnorm einer Matrix k�kF genutzt werden. Diese ist zwar keine
induzierte Matrix Norm, wie im Bauer-Fike Theorem vorausgesetzt. Allerdings ist aufgrund der
Definition gemäß (vgl. [35])

kVKkF D
q

spur
�
V T

K VK
� D

q
�2

1 .VK/C � � � C �2
n .VK/;
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wobei �i.VK/ die Singulärwerte von VK bezeichnet, mit

�F.VK/ D kVKkF

��V �1
K

��
F D

q
spur

�
V T

K VK
�q

spur
�
V �T

K V �1
K

�
(3.30)

stets

�.VK/ D �.VK/�.VK/
�1

�
q
�2

1 .VK/C � � � C �2
n .VK/

q
1=�2

1 .VK/C � � � C 1=�2
n .VK/

D �F.VK/;

so dass durch Minimierung von (3.30) ebenfalls eine obere Schranke von (3.26) minimiert wird.

Mit Hilfe der Frobeniusnorm lässt sich noch ein weiteres Maß definieren, welches in der quadrier-
ten Summe der in (3.29) definierten Sensitivität der Eigenwerte besteht. Hierzu wird angenom-
men, dass die Rechtseigenvektoren so skaliert sind, dass kvKik D 1 ist. Daraus ergibt sich die
Linkseigenvektormatrix mit WKVK D In zu

W T
K D �

wK1 : : : wKn

�T

bzw. aufgrund der Normierung der Rechtseigenvektoren ergibt sich (3.29) zu ci D kwKik � 1.
Darüber hinaus ist aufgrund der Annahmen kVKkF D p

n und damit

��V �1
K

��
F D kWKkF D

q
c2

1 C : : : c2
n :

Wird daher in (3.30) mit 1=n multipliziert und die Länge der Rechtseigenvektoren auf die Länge
eins normiert, dann folgt aus

�F.VK/=n D 1

n
kVKkF

��V �1
K

��
F D 1p

n

��V �1
K

��
F D 1p

n

q
c2

1 C : : : c2
n (3.31)

ein weiteres Maß, welches zur Bewertung der Konditionierung des geschlossenen Regelkreises
heran gezogen werden kann.

Neben der robusten Eigenwertvorgabe spielt unter praktischen Gesichtspunkten oftmals eine Ver-
meidung von großen Stellbeträgen eine Rolle, um die Strecke und vor allem die eingesetzten
Aktoren nicht zu stark zu belasten. Ausgehend von (3.2) ist aufgrund von kuk � kKk kyk die
Norm der Rückführmatrix offensichtlich die entscheidende Einflussgröße. Im Sinne der Vermei-
dung großer Stellbeträge ist daher die Norm der Rückführmatrix zu minimieren, was mit Hilfe der
Frobeniusnorm auf die Gütefunktion

kKkF D
p

spur .KTK/ (3.32)

führt.

Mit den Gleichungen (3.30), (3.31) und (3.32) sind Gütemaße gegeben, die es im Sinne der Op-
timierung gezielt zu minimieren gilt, um die Dynamik des geschlossenen Regelkreises zu ver-
bessern. Dabei zielen (3.30) und (3.31) auf die robuste Eigenwertvorgabe ab, während (3.32) zur
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Bild 3.2: Veranschaulichung der stereographischen Projektion

Minimierung der benötigten Stellbeträge genutzt werden kann. Zusammenfassend lassen sich da-
her die Gütefunktionen

J�F D kVKkF

��V �1
K

��
F (3.33a)

Jkck D 1p
n

��V �1
K

��
F D 1p

n

q
c2

1 C : : : c2
n (3.33b)

JkKk D kKk2
F D spur

�
KTK

�
(3.33c)

formulieren, die mit Hilfe eines geeigneten Optimierungsverfahrens zu minimieren sind.

Im Hinblick auf die Verwendung eines Verfahrens zur Lösung unbeschränkter Optimierungspro-
bleme ist dabei allerdings noch hinderlich, dass die Länge der Parametervektoren qvi zur Berech-
nung von K in (3.18) keinen Einfluss hat und damit auch keinen weiteren Freiheitsgrad darstellt.
Daher ist eine Normierung der Parametervektoren einzuführen, beispielsweise durch qT

viqvi D 1

für alle i 2 f1; : : : ;p � 1g. Dies hat allerdings zur Folge, dass nunmehr ein Optimierungsproblem
mit nichtlinearer Nebenbedingung gelöst werden muss. Zweckmäßiger ist es daher, eine neue
Parametrierung einzuführen, die implizit die Normierung der Parametervektoren vornimmt. Dies
leistet die Stereographische Projektion [51].

Wird daher die Normierung der Parametervektoren qT
viqvi D 1 gefordert, lässt sich jeder Parame-

tervektor als ein Punkt auf der m-dimensionalen Einheitskugel Sm auffassen. Für den Einheitskreis
ist die stereographische Projektion in Abbildung 3.2 beispielhaft dargestellt. Die Idee besteht dar-
in, für jeden Punkt auf dem Einheitskreis (in der Abbildung bspw. P1) eine Gerade durch den
Südpol S D .0;-1/ zu legen und dann den Schnittpunkt mit der qv;2-Achse zu bestimmen (in der
Abbildung P

0

1). Es existiert daher die stereographische Projektion f W Sm n fSg ! Rm�1, die
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durch

f .qvi/ D Nqvi D 1

1 C eT
mqvi

�
Im�1 0

�
qvi

gegeben ist. Damit lässt sich aus der Kenntnis des auf die Länge eins normierten Parametervek-
tors qvi eine um eine Dimension reduzierte Parametrierung Nqvi 2 Rm�1 finden. Der reduzierte
Parametervektor Nqvi ist nunmehr unbeschränkt und legt zusammen mit der Umkehrabbildung

f �1. Nqvi/ D qvi D 1

1 C NqT
vi Nqvi



2 Nqvi

1 � NqT
vi Nqvi

�

den Parametervektor qvi wieder eindeutig fest. Die Parametervektoren qvi lassen sich dann, wie
in Satz 3.4 formuliert, zur Parametrierung der Rechtseigenvektoren Vr bzw. der Steuermoden Qr

nutzen. Die m Freiheitsgrade der Eigenwert-/Rechtseigenvektorpaare .�Ki;vKi/ sind daher für i 2
f1; : : : ;p � 1g eindeutig durch den Regelungseigenwert �Ki und den reduzierten Parametervektor
Nqvi 2 Rm�1 festgelegt.

Ausgehend von der Parametrierung der Ausgangsrückführung (3.2) in Satz 3.4 und der Diskussi-
on hinsichtlich der robusten Eigenwertvorgabe bzw. der Eigenwertvorgabe mit minimaler Verstär-
kung in diesem Abschnitt, kann daher das unbeschränkte Optimierungsproblem

min
�

Jk ; k 2 f�F; kck ; kKkg (3.34)

mit den Optimierungsvariablen

� D
8<
:

h
NqT

v1 : : : NqT
vp�1

iT
; s D m;h

NqT
v1 : : : NqT

vp�1 vec.K2/
T
iT
; s > m

zusammen mit dem Vektorisierungsoperator vec.�/ formuliert werden, um die vorgenannten Re-
gelziele mit einer Ausgangsrückführung zu erreichen.

Zur Lösung des Optimierungsproblems (3.34) lassen sich etablierte numerische Verfahren für
unbeschränkte Optimierungsprobleme anwenden. Alle Verfahren benötigen dabei Informationen
über die Zielfunktion Jk.�/ durch den Gradienten der Zielfunktion rJk.�/ und teilweise auch der
Hesse-Matrix r2Jk.�/, um festzustellen, ob ein Punkt N� ein lokales Minimum der Zielfunktion
darstellt. Unter der Voraussetzung, dass die Zielfunktion Jk.�/ differenzierbar ist, ergibt sich als
notwendige Optimalitätsbedingung erster Ordnung für ein lokales Minimum am Punkt N� , dass der
Gradient der Zielfunktion rJk.�/ in diesem Punkt verschwindet, d.h. es ist rJk. N�/ D 0 [121].

Steht neben der Information über den Gradienten der Zielfunktion rJk.�/ zusätzlich Information
über die Hesse-Matrix r2Jk.�/ der Zielfunktion zur Verfügung, ergibt sich als notwendige Opti-
malitätsbedingung zweiter Ordnung für ein lokales Minimum am Punkt N� , dass der Gradient der
Zielfunktion rJk.�/ in diesem Punkt verschwindet und die Hesse-Matrix positiv semidefinit ist,
d.h. es ist dTr2Jk. N�/d � 0 für alle d 2 Rn [121]. Ist die Hesse-Matrix darüber hinaus posi-
tiv definit in einem Punkt N�, dann ist eine hinreichende Bedingung für ein lokales Minimum der
Zielfunktion erfüllt.

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


3.2 Beeinflussung des Stör- und Führungsverhaltens 43

Algorithmen zur Lösung unrestringierter Optimierungsprobleme beruhen dabei auf dem nachfol-
genden Prinzip: Ausgehend von einem Startwert �0 wird eine Folge von Punkten �i bestimmt,
die typischerweise die Eigenschaft aufweist, dass der Funktionswert im darauf folgenden Schritt
geringer als der Funktionswert im aktuellen Schritt ist, d.h. es ist Jk.�iC1/ < Jk.�i/. Kann keine
wesentliche Verbesserung mehr erzielt werden oder liegt ein stationärer Punkt vor, d.h. die eben
diskutierten Optimalitätsbedingungen sind erfüllt, dann bricht die Iteration ab. Für den Übergang
von einem Punkt �i zum nächsten Punkt �kC1 haben sich in der Praxis im wesentlichen zwei
Strategien etabliert: Liniensuchverfahren und Trust-Region-Verfahren [74].

Bei Liniensuchverfahren erfolgt in jedem Iterationsschritt die Bestimmung einer Abstiegsrichtung
si gemäß der Bedingung rJk.�/

Tsi < 0 zusammen mit einer geeigneten Schrittweite �i > 0, so
dass Jk .�i C �isi/ < Jk .�i/ erfüllt ist. Aufgrund ihrer guten Konvergenzeigenschaften haben
sich in diesem Bereich Quasi-Newton-Verfahren etabliert, die die Hesse-Matrix durch geeigne-
te Approximationen ersetzen und damit lediglich Informationen über den Gradienten benötigen.
Trust-Region-Verfahren bestimmen ausgehend von einer Taylorentwicklung der Zielfunktion eine
quadratische Ansatzfunktion mi , die in der Nähe des Punktes �i und innerhalb des sogenann-
ten Vertrauensbereichs eine hinreichend genaue Approximation der Zielfunktion Jk.�i/ darstellt.
Durch Minimieren der quadratischen Ansatzfunktion mi erfolgt die Schrittberechnung si . Der
Schritt wird akzeptiert, wenn die Abnahme der Zielfunktion Jk .�i C si/ < Jk .�i/ hinreichend
groß ist. Im anderen Fall muss der Vertrauensbereich angepasst und eine erneute Schrittberech-
nung durch Minimierung von mi durchgeführt werden. Beide Strategien sind beispielsweise in der
Funktion fminunc der Optimization Toolbox in MATLAB umgesetzt, wobei alle nachfolgenden
Optimierungsergebnisse zur robusten Eingestrukturvorgabe mittels der Quasi-Newton Implemen-
tierung der Funktion fminunc bestimmt wurden.

Ausgehend von der vorstehenden Diskussion zu notwendigen und hinreichenden Optimalitäts-
bedingungen unbeschränkter Optimierungsprobleme muss daher vorausgesetzt werden, dass die
Parametrierung der Rückführmatrix K in Satz 3.4 differenzierbar ist und damit der Gradient der
Gütefunktion rJk.�/ existiert sowie die Algorithmen zur Lösung unbeschränkter Optimierungs-
probleme anwendbar sind. Hierzu wird zunächst ein Resultat hergeleitet, welches für die Aussagen
hinsichtlich der Differenzierbarkeit der Rückführmatrix von Wichtigkeit ist. Dieses besteht in der
Bedingung, wann die Basis des Kerns einer parameterabhängigen Matrix A.p/ differenzierbar ist.

Lemma 3.8. Sei A0 2 Rn�1�n sowie rang .A/ D n�1 und sei u0 2 Rn ein normierter Vektor, der
bild .u0/ D kern .A0/ erfüllt. Eine vektorwertige Funktion u.A/ ist für alle A in einer Umgebung
N.A0/ � Rn�1�n von A0 definiert, so dass u.A0/ D u0 und

Au D 0; uTu D 1; A 2 N.A0/

gilt. Darüber hinaus ist die Funktion u unendlich oft differenzierbar in N.A0/, und das Differen-
tial in A0 ist durch

du D .�AT
0A0/

C
AT

0.dA/u0

gegeben.
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Beweis. Mit [9, Proposition 6.1.6] ist kern .A0/ D kern
�
AT

0A0

�
, und daher ist mit AT

0A0u0 D
�0u0 ein symmetrisches Eigenwertproblem zum Eigenwert �0 D 0 gegeben, weshalb Satz B.10
angewendet werden kann. Es existiert deshalb eine vektorwertige Funktion u, die unendlich oft
differenzierbar in N.A0/ ist, und das Differential ist aufgrund d.ATA/ D .dA/TA C ATdA und
Au D 0 durch

du D .�0In � AT
0A0/

C
.d.ATA//u0

D .�AT
0A0/

C
AT.dA/u0

gegeben, woraus die Aussage folgt.

Mit Lemma 3.8 lässt sich somit schließen, dass die Basis des Nullraums einer parameterabhängi-
gen Matrix stets differenzierbar ist, wenn die Dimension des Nullraums eins beträgt. Hinsichtlich
der Parametrierung der Rückführmatrix K in (3.18) bleibt daher festzuhalten, dass durch die Wahl
r D p � 1 für die Matrix U1 2 R1�p ist und aufgrund von Lemma 3.8 somit differenzierbar ist.
Infolgedessen ist die Matrix K in (3.18) für s D m stets differenzierbar, wenn vorausgesetzt wird,
dass die Matrizen C Vr und WsB auf offenen Umgebungen konstanten Rang haben, weil dann die
Moore-Penrose-Pseudoinverse differenzierbar ist (vgl. Satz B.13). Ist allerdings m > s, dann ist
U2 2 Rm�m�s und hinsichtlich Lemma 3.8 ist U2 differenzierbar, wenn m � s D 1 ist. Demge-
genüber ist für m � s > 1 und folglich m C p > n C 2 mit der Parametrierung aus Satz 3.4 die
Matrix K nicht differenzierbar. Dieser Umstand lässt sich umgehen, indem ein teilparametrischer
Ansatz formuliert wird. Hierzu wird auf den Abschnitt 3.3 verwiesen.

Da die ersten beiden Gütefunktionen in (3.33) Funktionen der Rechtseigenvektormatrix des ge-
schlossenen Regelkreises sind, wird daher ebenfalls das Differential dVK benötigt, um die Gradi-
enten der Gütefunktionen zu berechnen. Laut Satz B.12 ist die Annahme einfacher Eigenwerte des
geschlossenen Regelkreises eine Bedingung dafür, dass die Rechtseigenvektoren differenzierbar
sind. Dies wird nachfolgend somit stets vorausgesetzt. Mit d.A C BKC / D B.dK/C lässt sich
aber zusammen mit (B.11) dVK aus dK berechnen. Die Überlegungen zur Differenzierbarkeit der
Matrizen K und VK fasst der folgende Satz zusammen. Da die Berechnung der Differentiale dK

und dVK sich als aufwendig gestaltet, wird für den Beweis des Satzes und für dK sowie dVK auf
den Anhang verwiesen.

Satz 3.9. Betrachtet wird die Parametrierung der Ausgangsrückführmatrix K in Satz 3.4, wobei
darin für s D m oder s D m � 1 angenommen wird. Darüber hinaus wird angenommen, dass
die Menge der Regelungseigenwerte ƒK nur aus paarweise verschiedenen Eigenwerten besteht.
Sind darüber hinaus die Annahmen rang .C Vr/ D r D p � 1 und rang .WsB/ D s auf offenen
Umgebungen erfüllt, dann ist die Rückführmatrix differenzierbar und die Differentiale dK bzw.
vec.dK/ sowie vec.dVK/ sind durch (A.1) bzw. (A.2) sowie (A.3) gegeben.

Beweis. Siehe Abschnitt A.1.

Mit Satz 3.9 lässt sich begründen, dass mit der Parametrierung der Rückführung in Satz 3.4 und der
Voraussetzung s D m oder s D m � 1 die Differenzierbarkeit der Rückführung gewährleistet ist.
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Die Gütekriterien (3.33) können daher mit einem gradientenbasierten Verfahren gezielt minimiert
werden. Die Gradienten ergeben sich dabei mit den Differentialen von (3.33)

dJ�F D
��V �1

K

��
F

kVKkF
� spur

�
V T

K dVK
� � kVKkF��V �1

K

��
F

� spur
�
V �1

K V �T
K V �1

K dVK
�
; (3.35a)

dJkck D �1p
nJkck

spur
�
V �1

K V �T
K V �1

K dVK
�
; (3.35b)

dJkKk D 2 � spur
�
KTdK

�
(3.35c)

sowie mit rK aus (A.2) und rVK aus (A.3) schließlich zu

rJ�F D
��V �1

K

��
F

kVKkF
� vec.VK/

TrVK � kVKkF��V �1
K

��
F

� vec
�
V �T

K V �1
K V �T

K

�TrVK; (3.36a)

rJkck D �1p
nJkck

vec
�
V �T

K V �1
K V �T

K

�TrVK; (3.36b)

rJkKk D 2 � vec.K/TrK: (3.36c)

Die Verwendung eines gradientenbasierten Verfahrens zur Minimierung einer nichtlinearen Funk-
tion ermöglicht damit eine gezielte Nutzung der verbleibenden Freiheitsgrade der Ausgangs-
rückführung, um eine robuste Eigenwertvorgabe beziehungsweise eine minimale Verstärkung der
Rückführmatrix zu erzielen. Zur Bewertung der Leistungsfähigkeit des Verfahrens liegt es daher
nahe, einen Vergleich mit bereits etablierten Algorithmen zur Berechnung von Reglern zur Ei-
genwertvorgabe zu ziehen. Dies erfolgt in Abschnitt 3.4, wobei die neue Methodik der MATLAB
Funktion place gegenüber gestellt wird.

3.2.2 Entwurf einer Entkopplungsregelung

Im Gegensatz zum Entwurf der Regelung auf das Störverhalten im vorhergehenden Abschnitt,
zielen die Entwurfsverfahren in diesem und im nächsten Abschnitt auf die gezielte Beeinflussung
des Führungsverhaltens ab. Von der Entkopplungsregelung wird in diesem Sinne gefordert, dass
im geregelten System jede Regelgröße yi nur durch die zugehörige Führungsgröße wi beeinflusst
wird. In [57] gibt Lohmann hierzu notwendige und hinreichende Bedingungen an, wann ein linea-
res und quadratisches Zustandssystem mit einer Zustandsrückführung und regulärer Vorfilterung
vollständig stabil entkoppelbar ist. Ein System wird dabei als quadratisch bezeichnet, wenn es
dieselbe Anzahl an Ein- und Ausgangsgrößen besitzt. Damit ist p D m. Hierzu sind zunächst die
skalaren Größen ıi einzuführen, die als die kleinsten positiven ganzen Zahlen definiert sind, so
dass für eT

i CAıi �1B ¤ 0 für alle i 2 f1; : : : ;p} gilt, wobei ei den p-dimensionalen Koordinaten-
einheitsvektor bezeichnet. Die Summe der ı ergibt sich durch

ı D
pX

iD1

ıi

und die Entkoppelbarkeitsbedingung lautet (vgl. [57, S. 15]):
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Die Streckenordnung n vermindert um ı muss gleich der Zahl der invarianten Null-
stellen des Systems sein.

Ist diese Bedingung erfüllt, dann wird ı als die Differenzordnung des Systems bezeichnet. Die
entkoppelnde Zustandsregelung u D Rx C Fw berechnet sich mit der Vollständigen Modalen
Synthese aus den Gleichungen R D PV �1

R und vRi D �.A � �RiI/
�1Bpi , wobei die Rechtsei-

genvektoren und Parametervektoren die Gleichungen

.A � �RijI/ B

C 0

� 

vRij

pij

�
D



0

ei

�
; i 2 f1; : : : ;pg; j 2 f1; : : : ; ıig (3.37)

und, falls n � ı > 0,

.A � �RkI/ B

C 0

� 

vRk

pk

�
D 0; k 2 fı C 1; : : : ;ng (3.38)

erfüllen müssen. Im Falle n � ı > 0 lassen sich somit nicht mehr alle Eigenwerte beliebig vorge-
ben. Vielmehr sind die �Rk gleich den invarianten Nullstellen des Systems (vgl. Abschnitt C) zu
wählen, die nachfolgend in der Menge

ƒ0 D f�RıC1; : : : ; �Rng
zusammengefasst werden. Dies schränkt daher auch die Klasse der entkoppelbaren Systeme ein,
wenn neben der Entkopplung zusätzlich die Stabilität der entkoppelt geregelten Strecke gefor-
dert wird. Im Hinblick auf die Entkoppelbarkeitsbedingung und die Restriktionen an die Eigen-
und Parametervektoren (3.38) sind folglich nur Systeme mit stabiler Nulldynamik, also solche
Systeme, deren invariante Nullstellen sämtlich in der linken s-Halbebene liegen, mit konstanter
Zustandsrückführung stabil entkoppelbar.

Um die konstruktiven Entwurfsbedingungen (3.37) und (3.38) auf die in Abschnitt 3.1.3 vorge-
stellte Methodik zu übertragen, ist zunächst noch eine äquivalente Formulierung der Bedingung
(3.37) anzugeben. Darin ist im Hinblick auf die Methodik aus Abschnitt 3.1.3 und im speziellen
auf (3.3) hinderlich, dass sich die Rechtseigenvektoren und Steuermoden aus der Lösung eines
inhomogenen Gleichungssystems ergeben. Diese müssten beispielsweise über die Inverse der Ma-
trix auf der linken Seite der Gleichung (3.37) berechnet werden. Auf diesen Zugang kann jedoch
verzichtet werden, indem die zu (3.37) äquivalente Entwurfsbedingung


.A � �RijI/ B

.Ip � eie
T
i /C 0

� 

vRij

pij

�
D 0; i 2 f1; : : : ;pg; j 2 f1; : : : ; ıig (3.39)

verwendet wird, wie der folgende Satz zeigt.

Satz 3.10. Betrachtet wird das steuer- und beobachtbare sowie als entkoppelbar vorausgesetzte
Zustandssystem (3.1). Die Entwurfsbedingungen (3.37) und (3.39) erzeugen identische Richtun-
gen der Rechtseigenvektoren vRij und Steuervektoren pij und sind somit äquivalent, wenn voraus-
gesetzt wird, dass die Regelungseigenwerte �Rij verschieden von den Eigenwerten von A und von
den invarianten Nullstellen gewählt werden.
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Beweis. Der Beweis erfolgt in zwei Schritten. Zunächst wird gezeigt, dass Rechtseigenvektoren
und Steuervektoren, die sich aus der Lösung von (3.37) ergeben, ebenfalls (3.39) erfüllen. Im
Anschluss wird die Umkehrung der Aussage gezeigt.

Mit Hilfe der Formel zur Berechnung der Inversen einer partitionierten Matrix (vgl. [35, S. 18])
ist aufgrund der Voraussetzung �Rij … � .A/



A�Rij

B

C 0

��1

D
"

A�1
�Rij

�
In C BS�1CA�1

�Rij

�
�A�1

�Rij
BS�1

�S�1CA�1
�Rij

S�1

#
;

wobei A�Rij
D A � �RijIn und S D �C.A � �RijI/B abgekürzt wurde. Mit (3.39) ist



A�Rij

B

.Ip � eie
T
i /C 0

� "
A�1

�Rij

�
In C BS�1CA�1

�Rij

�
�A�1

�Rij
BS�1

�S�1CA�1
�Rij

S�1

# 

0

ei

�

D



A�Rij
B

.Ip � eie
T
i /C 0

� "
�A�1

�Rij
BS�1ei

S�1ei

#
D


�BS�1ei C BS�1ei

.Ip � eie
T
i /ei

�
D



0

0

�
;

was zeigt, dass die Lösung von (3.37) ebenfalls (3.39) erfüllt.

Wird nun angenommen, dass vRij und pij (3.39) erfüllen, dann erfüllen vRij und pij ebenfalls die
ersten n Zeilen von (3.37). Da die Regelungseigenwerte �Rij als verschieden von den invarianten
Nullstellen des Systems vorausgesetzt wurden, ist CvRij ¤ 0. Es ist aber aufgrund von (3.39)
.Ip � eie

T
i /CvRij D 0 und damit bild

�
CvRij

� 2 kern
�
Ip � eie

T
i

�
. Aufgrund der Definition ist

kern
�
Ip � eie

T
i

� D bild .ei/ und damit CvRij D cei mit beliebigen c, woraus die Aussage folgt,
da vRij und pij somit ebenfalls (3.37) erfüllen.

Im Hinblick auf die Übertragung des Verfahrens zur Entkopplung auf den Entwurf der Ausgangs-
rückführung aus Abschnitt 3.1.3 bleibt somit festzuhalten, dass (3.37) bzw. (3.39) und (3.38) n Re-
striktionen an die Rechtseigenvektoren des geschlossenen Regelkreises formulieren. Damit muss
es durch den Entwurf der Ausgangsrückführung möglich sein, ebenfalls n Eigenwert-/ Rechtsei-
genvektorpaare .�Ki;vKi/ im geschlossenen Regelkreis zu erzeugen. Dies ist allerdings unter der
Voraussetzung p < n nur möglich, wenn eine dynamische Rückführung gemäß Abschnitt 3.1.4
verwendet wird. Daher wird im Folgenden der Entwurf der statischen Ausgangsrückführung

ue D Keye C Few (3.40)

für das erweiterte System (3.20) betrachtet und darin die Rückführmatrix Ke und das Vorfilter Fe

für das System (3.20) so bestimmt, dass sich für die Führungsübertragungsmatrix des geschlosse-
nen Regelkreises entsprechend der Forderung nach Entkopplung die Diagonalgestalt

Gw.s/ D Cw.sInCnd � Aei � BeiKeCei/
�1BeiFe (3.41)

D

2
64

gw1.s/
: : :

gwp.s/

3
75
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ergibt. Darin wird nach [57] für jedes Diagonalelement

gwi.s/ D
Qıi

jD1.��Kij /

.s � �Ki1/ � � � � � .s � �Kiıi
/
; i 2 f1; : : : ;pg

gefordert, und die Matrix Cw ergibt sich entsprechend der Definition der erweiterten Ausgangs-
matrix in (3.21) aus

Cw D �
C 0

�
(3.42)

mit Cw 2 Rp�nCnd . Darüber hinaus ist die Ordnung des dynamischen Reglers nd so zu wählen,
dass sich wenigstens n Eigenwert-/Rechtseigenvektorpaare .�Ki;vKi/ vorgeben lassen, um so die
Restriktionen an die Rechtseigenvektoren aus (3.39) und (3.38) zu erfüllen. Zusammen mit Satz
3.4 und der sich daraus ergebenden Möglichkeit zur Vorgabe von p�1 Rechtseigenvektoren ergibt
sich zusammen mit der Dimension des erweiterten Ausgangs p C nd, dass

p C nd � 1 � n , nd � n � p C 1 (3.43)

gewählt werden muss. Damit ist aber auch stets die Bedingung nach Kimura (3.16) für das erwei-
terte System erfüllt, da p C nd C m C nd � n C nd C 1 bzw. nd � n C 1 � p � m durch (3.43)
impliziert wird.

Zur Bestimmung der Eigenwert-/Rechtseigenvektorpaare .�Ki;vKi/ werden daher die Bedingun-
gen (3.39) und (3.38) modifiziert, woraus sich


.Ae � �KijI/ Be

.Ip � eie
T
i /Cw 0

� 

vKij

pvij

�
D



.Ae � �KijI/ Be

.Ip � eie
T
i /Cw 0

� 

Nvij

Mvij

�
� qvij D 0; (3.44a)

i 2 f1; : : : ;pg; j 2 f1; : : : ; ıig;

.Ae � �KkI/ Be

Cw 0

� 

vKk

pvk

�
D



.Ae � �KkI/ Be

Cw 0

� 

Nvk

Mvk

�
� qvk D 0; (3.44b)

k 2 fı C 1; : : : ;ng
ergibt. Für k 2 fn C 1; : : : ;n C ndg ergeben sich entsprechend zum Vorgehen aus Abschnitt 3.1.3
die Eigenwert-/Linkseigenvektorpaare .�Kk ;wKk/ ausgehend von (3.15) aus

�
.AT

e1 � �KkI/ C T
e1

� 

wKk

pwk

�
D 0; (3.45)

wobei darin die Abkürzungen

Ae1 WD Ae C BeQr.CeVr/
CCe; (3.46a)

Ce1 WD U1Ce (3.46b)

in entsprechender Weise für das erweiterte System eingeführt werden. Dies legt die Rückführ-
matrix Ke des erweiterten Systems (3.20) und damit die Systemmatrix des entkoppelt geregelten
Systems

Pxe D .Ae1 C BeKe1Ce1/xe C BeFew; (3.47a)

y1 D Ce1xei (3.47b)
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fest. In (3.47a) ist zur Bestimmung des Vorfilters Fe im Gegensatz zum Entkopplungsentwurf
mittels Zustandsrückführung anzumerken, dass die Eigenwert-/Linkseigenvektorpaare .�Kk ;wKk/

mit k 2 fn C 1; : : : ;n C ndg, die durch Ke erzeugt werden, nicht konsistent mit der Forderung
nach Entkopplung der Führungsgrößen sind, was nachfolgend diskutiert wird. Hierzu wird in An-
lehnung an das Vorgehen in Abschnitt 3.1.3 auf eine neue Koordinatendarstellung übergegangen
und eine Matrix T? mit orthogonalen Spaltenvektoren bestimmt, die bild .T?/ D kern

�
V T

r

�
sowie

T T
?T? D Ind erfüllt. Daraus folgt die neue Koordinatendarstellung aus

Qx D �
Vr T?

��1
x

sowie mit�
Vr T?

��1 D �
W T

r T?
�T
;

und es folgt" PQx1

PQx2

#
D

	

ƒn WrAe1T?
0 T T

?Ae1T?

�
C



WrBe

T T
?Be

�
Ke1

�
0 Ce1T?

�� 
 Qx1

Qx2

�
C



Wr

T T
?

�
BeFew

y1 D �
0 Ce1T?

� Qx;

was eine Kalman-Zerlegung von (3.47) darstellt. Auch darin ist wie in Abschnitt 3.1.3 aufgrund
der Blockdreiecksstruktur der resultierenden Systemmatrix der Teilzustand Qx1 bezüglich des Aus-
gangs y1 nicht beobachtbar, weshalb die Eigenwerte f�K1; : : : ; �Kng über die Ausgangsrückfüh-
rung Ke1 auch nicht mehr verändert werden.

Im entkoppelt geregelten Übertragungsverhalten können die Eigenwert-/Linkseigenvektorpaare
.�Kk ;wKk/ für k 2 fn C 1; : : : ;n C ndg über die Führungsgrößen w allerdings noch gesteuert
werden, was somit nicht konsistent mit der Forderung nach Entkopplung ist. Um dies zu ver-
meiden, muss daher in (3.47a) der Ausdruck T T

?BeFe D 0 werden beziehungsweise bild .Fe/ �
kern

�
T T

?Be
�

erfüllt sein. Dies ist allerdings stets möglich, da T T
?Be 2 Rnd�.mCnd/ ist, und damit

hat die Matrix T T
?Be unter der Annahme rang

�
T T

?Be
� D nd immer einen genau m-dimensionalen

Rechtskern. Der Höchstrang der Matrix T T
?Be ist im Hinblick auf die Annahmen in Satz 3.4

äquivalent zu der Forderung rang .WsBe/ D s D nd, da aufgrund der obigen Koordinatentransfor-
mation Ws D PT T

? mit einer regulären Matrix P erfüllt sein muss. Damit ist der Höchstrang der
Matrix T T

?Be durch das parametrische Entwurfsverfahren stets sichergestellt.

Zur Sicherstellung der stationären Genauigkeit aller Einzelübertragungsfunktionen in (3.41) ist
abschließend das Vorfilter ausgehend von der stationären Betrachtung von (3.47) gemäß

Fe D QFe

�
CwVr.ƒn/

�1WrBe QFe

��1

(3.48)

zu modifizieren, wobei QFe eine Basis des Rechtskerns von T T
?Be ist und damit T T

?Be QFe D 0

erfüllt. Damit ist die dynamische Ausgangsrückführung und das Vorfilter zur Entkopplung des
geschlossenen Regelkreises bestimmt. Die Ergebnisse dieses Abschnitts fasst der nachfolgende
Satz ausgehend von den vorstehenden Diskussionen ohne Beweis zusammen.
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Satz 3.11. Betrachtet wird das als entkoppelbar vorausgesetzte, quadratische Zustandssystem
(3.1) mit m D p und p � 2, das mit einer dynamischen Ausgangsrückführung (3.19) der
Ordnung nd D n � p C 1 geregelt wird, woraus das erweiterte System (3.20) entsteht. Die
Menge der Regelungseigenwerte ƒK 2 DnCnd wird in zwei selbst-konjugierte Mengen ƒK1 und
ƒK2 D f�KnC1; : : : ;�KnCndg aufgeteilt, wobei für ƒK1 die Unterscheidung

ƒK1 D
(

fƒı1
; : : : ; ƒıp

g; ı D n;

fƒı1
; : : : ; ƒıp

; ƒ0g; ı < n

mit ƒıi
D f�i1; : : : ; �iıi

g 2 Dıi
für i 2 f1; : : : ;pg vorgenommen werden muss, und worin ƒ0

die Menge der invarianten Nullstellen von (3.1) bezeichnet. Sind in (3.44a) für i 2 f1; : : : ;pg
und j 2 f1; : : : ; ıig die Parametervektoren qvij ¤ 0, in (3.44b) für k 2 fı C 1; : : : ;ng die
Parametervektoren qvk ¤ 0 sowie zu komplexen Regelungseigenwerten selbst-konjugiert, dann
existiert für s D nd ein reelles Ke gemäß

Ke D Qr.CeVr/
C C .WsBe/

CQsU1 C U2K2U1; K2 2 Rm�1 beliebig, (3.49)

und Vorfilter Fe, welche die Führungsübertragungsfunktion des geschlossenen Regelkreises (3.41)
entkoppeln und die Regelungseigenwerte ƒK zuweisen, so dass � .Ae C BeKeCe/ D ƒK D
fƒK1; ƒK2g, wenn mit (3.5) und (3.10)

(A1) rang .CeVr/ D r D n, Vr 2 RnCnd�n

(A2) rang .WsBe/ D s D nd, Ws 2 Rnd�nCnd

erfüllt ist, und das Vorfilter gemäß (3.48) gewählt wird.

3.2.3 Entwurf einer Verkopplungsregelung

Im Vergleich zum Entwurf auf Entkopplung im vorangegangen Abschnitt, wobei der geschlos-
sene Regelkreis bezüglich des Führungsverhaltens in p Eingrößensysteme zerfällt, kommt beim
Entwurf auf Verkopplung der Regelung die Aufgabe zuteil, gezielt zwischen einzelnen Zustands-
beziehungsweise Ausgangsgrößen des betrachteten dynamischen Systems (3.1) algebraische Be-
ziehungen herzustellen und diese bezüglich des Führungsverhaltens des geschlossenen Regelkrei-
ses stets einzuhalten.

Unter praktischen Gesichtspunkten werden Verkopplungsregelungen vor allem bei sicherheitskri-
tischen Anwendungen eingesetzt, wenn eine sensor- oder aktorseitige Redundanz gefordert ist.
Hierbei muss in den meisten Fällen Synchronität zwischen den einzelnen Teilsystemen hergestellt
werden. Ein Beispiel ist in diesem Zusammenhang der Entwurf einer Steer-by-Wire Lenkung.
Hierbei besteht das Ziel der Regelung darin, möglichst das Lenkgefühl einer klassischen Servo-
lenkung nachzubilden, was über die geeignete Verkopplung des Lenkwinkels mit der Auslenkung
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der Spurstange sowie über die Verkopplung der an der Lenk- und Spurstange wirkenden Kräfte
und Momente möglich ist [81]. Darüber hinaus werden aus Sicherheitsgründen die Antriebe in
der Regel redundant ausgelegt, was sich ebenfalls als Verkopplungsproblem interpretieren lässt.

Neben den praktischen Anwendungen einer Verkopplungsregelung leistet die Verkopplungsrege-
lung ebenfalls einen theoretischen Beitrag bei der Behandlung differential-algebraischer Systeme,
die intuitiv bei der modularen Modellbildung dynamischer Systeme entstehen. In der Literatur
wird hierzu oftmals der Begriff Deskriptorsystem verwendet. Die Interpretation eines Deskrip-
torsystems als spezielles Verkopplungsproblem leistet hierdurch einen wertvollen Beitrag bei der
Analyse und beim Regelungs- und Beobachterentwurf linearer als auch nichtlinearer Deskriptor-
systeme [50, 64].

In diesem Abschnitt soll nun der Entwurf einer Verkopplungsregelung basierend auf der in Ab-
schnitt 3.1.3 eingeführten Methodik erfolgen. Die Ergebnisse dieses Abschnitts wurden bereits
ansatzweise in [111] vorgestellt. Darüber hinaus werden die Ergebnisse aus [44] genutzt, worin
Konigorski die Existenzbedingungen und die Berechnungsvorschriften einer Verkopplungsrege-
lung basierend auf der Vollständigen Modalen Synthese herleitet. Hierzu wird zunächst durch eine
reguläre Ausgangsgrößentransformation (3.1b) in die Form


yw

yv

�
D



Tv1

Tv2

�
y D



Tv1

Tv2

�
Cx (3.50)

überführt. Darin bezeichnet yw die Ausgänge, die über die Führungsgrößen w im verkoppelten,
geschlossenen Regelkreis vorgebbar sein sollen und yv die Ausgänge, die durch die Verkopplungs-
regelung asymptotisch zu null werden sollen. Gilt beispielsweise für den Verkopplungsausgang,
dass yv.t/ D .C1 � C2/x.t/ D 0 bezüglich der Ausgangsgrößen y1 D C1x und y2 D C2x

für t > t0 ist, dann ist dies äquivalent dazu, dass die Ausgänge y1 und y2 synchron und damit
verkoppelt sind. Die Bedingung yv.t/ D 0 für t > t0 ist damit gleichbedeutend mit der Verkopp-
lung des geregelten Systems. Ausgehend von der Regelungsstruktur einer Zustandsrückführung
mit Vorfilter gemäß u D Rx C Fw lässt sich die Idee des Verkopplungsentwurfs anschaulich
im Bildbereich der Laplace Transformation darstellen. Für den geschlossenen Regelkreis im La-
place Bereich gilt zusammen mit der Partitionierung des Vorfilters gemäß F D �

F1 F2

�
für die

transformierten Ausgangsgrößen

yw.s/

yv.s/

�
D



Tv1C.sI � A � BR/�1BF1 Tv1C.sI � A � BR/�1BF2

Tv2C.sI � A � BR/�1BF1 Tv2C.sI � A � BR/�1BF2

� 

w1.s/

w2.s/

�
: (3.51)

Im Zeitbereich entspricht der Forderung nach Verkopplung der Zusammenhang

lim
t!1 yv.t/ D 0;

was sich im Laplace Bereich nach Konigorski [44] durch eine obere Blockdreiecksstruktur in
(3.51) erreichen lässt, wenn

Tv2C.sI � A � BR/�1BF1 D 0;
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und w2.s/ D 0 erfüllt ist. Im Hinblick auf den Reglerentwurf mittels Vollständiger Modaler Syn-
these sind diese Forderungen genau dann erfüllt, wenn

Tv2CvRi D 0; i 2 f1; : : : ;ıvg; (3.52a)

wT
RiBF1 D 0; i 2 fıv C 1; : : : ;ng (3.52b)

für den Index ıv gilt. Der Index ıv ist eine Systemeigenschaft und lässt sich vorab allein durch
Kenntnis der Matrizen A, B und Tv2C bestimmen. Im Sprachgebrauch der geometrischen Me-
thode [8, 128] bilden die Rechtseigenvektoren Vıv D �

vR1 : : : vRıv

�
, die (3.52a) erfüllen, eine

Basis des maximalen steuerbaren Unterraums von .A;B/ im Kern von Tv2C , der sich mittels des
Invariant Subspace Algorithm (vgl. Abschnitt C) bestimmen lässt und damit auch die Dimension
ıv berechnet. In analoger Weise zum Entkopplungsentwurf im voran gegangenen Abschnitt stellt
(3.52a) Restriktionen an die Rechtseigenvektoren Vıv dar, die sich aus der Lösung von



.A � �RiI/ B

Tv2C 0

� 

vRi

pi

�
D 0; i 2 f1; : : : ;ıvg (3.53)

ergeben. Die verbleibenden Eigenwert-/Rechtseigenvektorpaare .�Ri;vRi/ mit i > ıv sind nun-
mehr beliebig wählbar und treten lediglich bei Störanregung, beispielsweise durch impulsartige
Anfangsstörungen x.t0/ für die Tv2Cx.t0/ ¤ 0 gilt oder Störanregung durchw2.t/mitw2.t/ ¤ 0,
in Erscheinung.

Im Hinblick auf die Übertragung des Verfahrens zur Verkopplung auf den Entwurf der Ausgangs-
rückführung aus Abschnitt 3.1.3 bleibt somit festzuhalten, dass (3.52a) ıv Restriktionen an die
Rechtseigenvektoren des geschlossenen Regelkreises darstellen. Damit muss es durch den Ent-
wurf der Ausgangsrückführung möglich sein, ebenfalls ıv Eigenwert-/Rechtseigenvektorpaare
.�Ki;vKi/ im geschlossenen Regelkreis zu erzeugen. Davon ausgehend ist daher zu unterschei-
den, ob im Hinblick auf das Verfahren zum Entwurf von Ausgangsrückführungen in Abschnitt
3.1.3 ıv � p � 1 bzw. ıv > p � 1 gilt. Im letztgenannten Fall gelingt der Entwurf der Ver-
kopplungsregelung basierend auf Abschnitt 3.1.3 nur, wenn eine dynamische Rückführung ge-
mäß Abschnitt 3.1.4 verwendet wird. Mit der Bedingung nach Kimura für das erweiterte System
n C 1 � m C p C nd und zusammen mit der eben diskutierten Forderung, dass wenigstens ıv

Rechtseigenvektoren vorgeben werden können, folgt daher aus

nd � max.0; n � m � p C 1; ıv � p C 1/

eine notwendige untere Schranke für die zur Verkopplung mittels Ausgangsrückführung benötig-
ten Reglerordnung nd.

Um Weitläufigkeiten zu vermeiden, wird im Folgenden in Anlehnung an das Vorgehen zum Ent-
wurf der Entkopplungsregelung im vorangegangen Abschnitt der Entwurf der statischen Aus-
gangsrückführung (3.40) für das erweiterte System (3.20) betrachtet und darin die Rückführmatrix
Ke und das Vorfilter Fe für das System (3.20) so bestimmt, dass sich zusammen mit der Partitio-
nierung des Vorfilters Fe D �

Fe1 Fe2

�
für die Führungsübertragungsmatrix des geschlossenen
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Regelkreises entsprechend der Forderung nach Verkopplung die obere Blockdreiecksmatrix

yw.s/

yv.s/

�
D



Cw.sInCnd � AKe/

�1BeFe1 Cw.sInCnd � AKe/
�1BeFe2

Cv.sInCnd � AKe/
�1BeFe1 Cv.sInCnd � AKe/

�1BeFe2

� 

w1.s/

w2.s/

�

!D


Cw.sInCnd � AKe/

�1BeFe1 Cw.sInCnd � AKe/
�1BeFe2

0 Cv.sInCnd � AKe/
�1BeFe2

� 

w1.s/

0

�
(3.54)

zusammen mit der Abkürzung AKe D Ae C BeKeCe ergibt. Die Matrizen Cw und Cv ergeben sich
entsprechend der Definition der erweiterten Ausgangsmatrix in (3.21) aus

Cw D �
Tv1C 0

�
(3.55)

Cv D �
Tv2C 0

�
(3.56)

mit Cw 2 R.p�l/�nCnd bzw. Cv 2 Rl�nCnd . Zur Bestimmung der Eigenwert-/Rechtseigenvektorpaare
.�Ki;vKi/ wird die Bedingung (3.53) modifiziert, woraus sich


.Ae � �KiI/ Be

Cv 0

� 

vKi

pvi

�
D



.Ae � �KijI/ Be

Cv 0

� 

Nvi

Mvi

�
� qvi D 0; (3.57a)

i 2 f1; : : : ;ıvg;�
.Ae � �KiI/ Be

� 

vKi

pvi

�
D �

.Ae � �KiI/ Be
� 


Nvi

Mvi

�
� qvi D 0; (3.57b)

i 2 fıv C 1; : : : ;p C nd � 1g

ergibt. Für i 2 fp C nd; : : : ;n C ndg ergeben sich entsprechend zum Vorgehen aus Abschnitt 3.1.3
die Eigenwert-/Linkseigenvektorpaare .�Ki;wKi/ ausgehend von (3.15) aus

�
.AT

e1 � �KiI/ C T
e1

� 

wKi

pwi

�
D 0; (3.58)

wobei darin die in Abschnitt 3.2.2 eingeführten Abkürzungen (3.46) genutzt werden. Dies legt die
Rückführmatrix Ke des erweiterten Systems (3.20) und damit die Systemmatrix des verkoppelt
geregelten Systems

Pxe D .Ae C BeKeCe/xe C BeFew (3.59a)

yv D Cvxei; (3.59b)

fest. Zur Bestimmung des Vorfilters Fe bietet es sich ausgehend von (3.52b) an, ebenfalls wie in
den Abschnitten 3.1.3 und 3.2.2 auf eine neue Koordinatendarstellung überzugehen. Da die Eigen-
bewegungen, die nicht konsistent mit der Verkopplung sind, unsteuerbar gemacht werden müssen,
wird eine Matrix T? mit orthogonalen Spaltenvektoren bestimmt, die bild .T?/ D kern

�
V T

ıv

�
sowie T T

?T? D InCnd�ıv erfüllt, wobei Vıv D �
vK1 : : : vKıv

�
gilt. Die neue Koordinatendarstel-

lung folgt damit aus

Qx D �
Vıv T?

��1
x
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sowie mit�
Vıv T?

��1 D
h
W T

ıv
T?

iT
;

und es ergibt sich" PQx1

PQx2

#
D



ƒıv WıvAKeT?
0 T T

?AKeT?

� 
 Qx1

Qx2

�
C



WıvBeFe1 WıvBeFe2

T T
?BeFe1 T T

?BeFe2

� 

w1

w2

�
(3.60)

yv D �
0 CvT?

� Qx; (3.61)

was eine Kalman Zerlegung von (3.59) darstellt. Mit dieser Systemdarstellung wird deutlich, dass
die Eigenwert-/Rechtseigenvektorpaare .�Ki;vKi/ für i 2 f1; : : : ;ıvg bezüglich des Verkopplungs-
ausgangs yv unbeobachtbar sind, was genau der Forderung nach Verkopplung entspricht. Für in-
konsistente Anfangswerte, die die Verkopplung verletzen, verschwindet der Verkopplungsfehler
genau dann asymptotisch, wenn die Eigenwerte der Matrix T T

?AKeT? in der linken, komplexen
Halbebene liegen, was durch den parametrischen Ansatz stets gewährleistet werden kann.

Im verkoppelt geregelten Übertragungsverhalten kann der Verkopplungsausgang yv über die Füh-
rungsgrößen w allerdings noch gesteuert werden, was somit nicht konsistent mit der Forderung
nach asymptotischer Verkopplung ist. Um dies zu verhindern, muss daher in (3.60) neben w2 D 0

der Ausdruck T T
?BeFe1 D 0 werden beziehungsweise bild .Fe1/ � kern

�
T T

?Be
�

erfüllt sein. Dies
ist allerdings stets möglich, da aus


Wıv

T T
?

�
BeFe1 D



P

0

�

mit beliebiger Matrix P durch Linksmultiplikation mit
�
Vıv T?

�
, woraus BeFe1 D VıvP folgt,

das Vorfilter Fe1 aus der Lösung von

�
Be Vıv

� 

Fe1

�P

�
D 0 (3.62)

entnommen werden kann. Aufgrund der Definition eines steuerbaren Unterraums (vgl. Abschnitt
C) ist dies ebenfalls stets möglich, da die Bildräume von Be und Vıv immer eine nichtleere Schnitt-
menge aufweisen (s. hierzu auch die Diskussion in [44]). Damit ist die dynamische Ausgangs-
rückführung und das Vorfilter zur Verkopplung des geschlossenen Regelkreises bestimmt. Die
Ergebnisse dieses Abschnitts fasst der nachfolgende Satz ohne Beweis zusammen.

Satz 3.12. Betrachtet wird das Zustandssystem (3.1) mit m � 2 und p � 2 zusammen mit einer
geeignet gewählten Ausgangsgrößentransformation (3.50), das mit einer dynamischen Ausgangs-
rückführung (3.19) der Ordnung nd D max.0; n � m � p C 1; ıv � p C 1/ geregelt wird, woraus
das erweiterte System (3.20) entsteht. Die Menge der Regelungseigenwerte ƒK 2 DnCnd wird in
zwei selbst-konjugierte Mengen ƒK1 und ƒK2 D f�KpCnd; : : : ;�KnCndg aufgeteilt, wobei für ƒK1

die Unterscheidung

ƒK1 D
(
ƒıv; ıv D p C nd � 1;

ƒıv [ f�KıvC1; : : : ; �KpCnd�1g; ıv < p C nd � 1;
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mit ƒKıv D f�1; : : : ; �Kıvg 2 Dıv und f�KıvC1; : : : ; �KpCnd�1g 2 DpCnd�ıv�1 vorgenommen wer-
den muss. Sind in (3.57) für i 2 f1; : : : ;p C nd � 1g die Parametervektoren qvi ¤ 0 sowie
zu komplexen Regelungseigenwerten selbst-konjugiert, dann existiert für r D p C nd � 1 und
s D n � p C 1 ein reelles Ke gemäß

Ke D
(

Qr.CeVr/
C C .WsBe/

CQsU1; m D s;

Qr.CeVr/
C C .WsBe/

CQsU1 C U2K2U1; m > s; K2 2 R.m�s/�1 beliebig,
(3.63)

und Vorfilter Fe, welche die Führungsübertragungsfunktion des geschlossenen Regelkreises in die
obere Blockdreiecksstruktur (3.54) überführen und die RegelungseigenwerteƒK zuweisen, so dass
� .Ae C BeKeCe/ D ƒK D fƒK1; ƒK2g gilt, wenn mit (3.5) und (3.10)

(A1) rang .CeVr/ D r , Vr 2 RnCnd�r ,

(A2) rang .WsBe/ D s, Ws 2 Rs�nCnd

erfüllt ist, und das Vorfilter Fe1 in Fe D �
Fe1 Fe2

�
aus der Lösung von (3.62) gewählt wird.

3.3 Teilparametrisches Entwurfsverfahren

Die in Abschnitt 3.1 eingeführte Methodik zum Entwurf von Ausgangsrückführungen als auch
die in Abschnitt 3.2 diskutierten Erweiterungen gehen davon aus, dass die Menge der Regelungs-
eigenwerte ƒK fest gewählt wird. Bei vielen praktischen regelungstechnischen Aufgabenstellun-
gen ist daher Erfahrung vonnöten, um die Regelungseigenwerte im Einklang mit den konkreten
Anforderungen an den geschlossenen Regelkreis zu bringen. Insbesondere bei Systemen mit ver-
gleichsweise hoher Gesamtsystemordnung, die aus der Summe von Strecken- und Reglerordnung
resultiert, wird es schwierig, die Menge der Regelungseigenwerte derart zu wählen, dass das Er-
gebnis weiterhin interpretierbar und im Sinne der Anforderungen ausfällt. In diesen Fällen ist
es daher einleuchtend, nicht mehr das komplette Spektrum des geschlossenen Regelkreises fest
vorzugeben, sondern dazu überzugehen, einen Teil beziehungsweise das komplette Spektrum in
vorab vorgegebene Bereiche der komplexen Ebene, wie in Bild 3.3 dargestellt, zu verschieben.

Im Hinblick auf die robuste Eigenwertvorgabe mittels Ausgangsrückführung, die in Abschnitt
3.2.1 diskutiert wurde, können durch Übergang auf diesen Ansatz neben den Parametervektoren
nun auch die Regelungseigenwerte als Optimierungsvariablen genutzt werden, woraus sich mehr
Freiheitsgrade für den Entwurf ergeben. Darüber hinaus ist mit Satz 3.9 ein hinreichendes Krite-
rium für die Differenzierbarkeit der Rückführmatrix K gegeben, welches davon ausgeht, dass die
zur Berechnung der Rückführung benötigten Nullräume lediglich die Dimension eins besitzen,
was in vielen Fällen restriktiv sein kann. Durch den Übergang auf einen teilparametrischen An-
satz kann diese Problematik umgangen werden, was in den nachfolgenden Abschnitten dargestellt

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


56 3 Entwurf strukturbeschränkter Rückführungen

a

b

ı

!

FHy .�/ D 0

	

FHyFF .�/ D 0

Bild 3.3: Begrenzung des Eigenwertbereichs durch eine Hyperbel

wird. Daraus ergibt sich aber auch, dass ein Verfahren benötigt wird, um mittels einer Ausgangs-
rückführung u D Ky sämtliche Eigenwerte der Matrix A C BKC in vorab festgelegte Bereiche
der komplexen Ebene zu verschieben. Dies führt auf die Vorgabe von Eigenwertbereichen, die im
nachfolgenden Abschnitt vorgestellt wird. Die Kombination dieser Methodik mit der parametri-
schen Ausgangsrückführung wird im Anschluss in Abschnitt 3.3.3 diskutiert, wobei die Methodik
anhand der robusten Entkopplungsregelung motiviert und dargestellt wird.

3.3.1 Vorgabe von Eigenwertbereichen

Ausgangspunkt der Betrachtungen in diesem Abschnitt ist die steuer- und beobachtbare Strecke
(3.1). Ziel ist die Bestimmung der Rückführmatrix K, so dass alle Eigenwerte des geschlossenen
Regelkreises und damit die Eigenwerte der Matrix A C BKC in vorab festgelegte Bereiche der
komplexen Ebene zum Liegen kommen. Das Vorgehen orientiert sich hierbei an Standverfahren
aus der Literatur, wie beispielsweise dem Robustheitsentwurf mittels Straffunktionen in [28, S.
392 ff.]. Anhand der Darstellung in Bild 3.3 wird das Vorgehen verdeutlicht.

Die Parametrierung der Eigenwertbereiche erfolgt durch Definition geeigneter impliziter Funk-
tionen F .�/ D 0 mit � 2 C, deren Lösung den Rand der Gebiete begrenzen. Am Beispiel der
Hyperbel, die in Bild 3.3 einen solchen Eigenwertbereich begrenzt, soll das weitere Vorgehen ver-
anschaulicht werden. Die Funktion FHy .�/ ist hierbei so gewählt, dass links der begrenzenden
Kurve FHy .�/ < 0 bzw. rechts der begrenzenden Kurve FHy .�/ > 0 wird. Damit definiert

ZHy D f� 2 CjFHy .�/ � 0g mit FHy .�/ D Re.�/C a

b

q
Im.�/2 C b2 (3.64)

den grau schraffierten Bereich der komplexen Ebene, in dem die Eigenwerte �Kk 2 � .A C BKC /

des geschlossenen Regelkreises zum Liegen kommen sollen. Darüber hinaus ist durch die Wahl
der Parameter a > 0 und b > 0 eine weitere Möglichkeit gegeben, um die Dynamik des ge-
schlossenen Regelkreises zu beeinflussen. Durch die Vergrößerung von a wird die Hyperbel in der
komplexen Ebene weiter nach links geschoben, wodurch die Mindestdynamik bzw. Abklingrate
des Regelkreises eingestellt wird, wenn alle Regelungseigenwerte in ZHy zum Liegen kommen.
Über den Zusammenhang b D a tan.	 / ist ebenfalls eine Beeinflussung der Mindestdämpfung

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


3.3 Teilparametrisches Entwurfsverfahren 57

der Eigenwerte möglich, was somit weitreichende Möglichkeiten zur Einstellung der Dynamik
des geschlossenen Regelkreises bietet.

Das Vorgehen ist nicht nur auf eine begrenzende Kurve beschränkt. Vielmehr ist eine Kombination
verschiedener Bereiche möglich, wobei vorausgesetzt werden muss, dass die Schnittmenge aller
Bereiche nicht die leere Menge ist. Eine Übersicht über die typischen Bereiche, die in der Literatur
angegeben sind, ist in Tabelle 3.1 aufgeführt.

Tabelle 3.1: Übersicht über verschiedene Bereiche samt deren Parametrierung

Kurventyp Parameter Parametrierung Skizze

Hyperbel a, b FHy .�/ D Re.�/C a
b

p
Im.�/2 C b2

Im.�/

Re.�/
a

b D a tan.	 /

	

Gerade a FGe .�/ D Re.�/C a

Im.�/

Re.�/
a

Kreis r FKr .�/ D
p

Re.�/2 C Im.�/2 � r

Im.�/

Re.�/

r

Zur Berechnung einer Rückführmatrix K, welche die Eigenwerte von A C BKC in die in Tabelle
3.1 aufgeführten Bereiche verschiebt, wird ein Min-Max-Optimierungsproblem formuliert, wel-
ches mit der Methodik aus Abschnitt 3.3.2 gelöst werden kann. Da der Zusammenhang bezüglich
der Eigenwerte des geregelten Systems f�K1; : : : ;�Kng D � .A C BKC / gilt und die �Ki implizite
Funktionen der Rückführmatrix K sind, kann für jeden Eigenwert �Ki eine äußere quadratische
Straffunktion definiert werden, woraus

pi.�/ D
(

Fk .�Ki.�//
2 ; wenn Fk .�Ki.�// > 0;

0; Fk .�Ki.�// � 0;
mit i 2 f1; : : : ;ng; k 2 fHy;Ge;Krg

(3.65)

und den Optimierungsvariablen � D vec.K/ folgt. Zur Verschiebung aller Eigenwerte in den
festzulegenden Bereich müssen folglich alle Straffunktionen pi.�/ D 0 8i werden, was auf das
Min-Max Optimierungsproblem

min
�

max
i2f1;:::;ng

pi.�/ (3.66)
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führt. Ein kritischer Aspekt bei dieser Problemklasse ist ausgehend von den Ergebnissen zur Dif-
ferenzierbarkeit des Eigenwertproblems in Satz B.12 offensichtlich das Verhalten der Regelungs-
eigenwerte. Im Folgenden wird nun vorausgesetzt, dass die Eigenwerte der Matrix A C BKC

einfach sind, was die Differenzierbarkeit der Eigenwerte garantiert. Dies hat zur Folge, dass die
Funktionen Fk .�Ki.�// 8i ebenfalls differenzierbar sind, weshalb der Gradient der Straffunktion
rpi.�/ angegeben werden kann. Dies wird im nachfolgenden Satz zusammengefasst.

Satz 3.13. Betrachtet wird die steuer- und beobachtbare Strecke (3.1), welche mit der Ausgangs-
rückführung u D Ky geregelt wird, woraus die Matrix des geschlossenen Regelkreises ACBKC

entsteht. Unter der Voraussetzung, dass die Eigenwerte der Matrix A C BKC einfach sind, ist die
Straffunktion pi.�/ differenzierbar, und die Differentiale sind für k 2 fHy;Ge;Krg durch

dpi.�/ D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

2
p

pi.�/
h
1 aIm.�Ki /

b
p

Im.�Ki /2Cb2

i "
dıKi

d!Ki

#
; k D Hy

2
p

pi.�/ dıKi; k D Ge

2
p

pi.�/
h

Re.�Ki /p
Re.�Ki /2CIm.�Ki /2

Im.�Ki /p
Re.�Ki /2CIm.�Ki /2

i "
dıKi

d!Ki

#
; k D Kr

mit dıKi D Re.d�Ki/, d!Ki D Im.d�Ki/ und

d�Ki D wT
Ki.dA/vKi

wT
KivKi

D .wT
KivKi/

�1
�
vT

KiC
T ˝ wT

KiB
T�

d�

gegeben.

Beweis. Unter der Voraussetzung, dass die Eigenwerte der Matrix A C BKC einfach sind, exis-
tiert nach Satz B.12 eine komplexwertige, unendlich oft differenzierbare Funktion �Ki , die .A C
BKC /vKi D �KivKi erfüllt, womit das Differential (B.10) folgt. Durch Anwendung der Rechen-
regeln aus Abschnitt B.4 auf die Parametrierungen der Kurven in Tabelle 3.1 zusammen mit der
Straffunktion (3.65) folgt die gesuchte Aussage, wie sich einfach nachrechnen lässt.

3.3.2 Lösung unbeschränkter Min-Max Optimierungsprobleme

Im Hinblick auf das in (3.66) formulierte Min-Max Optimierungsproblem zur Eigenwertbereichs-
vorgabe lässt sich aufgrund des Maximumsoperators nicht auf die in Abschnitt 3.2.1 erwähnten
Algorithmen zur Lösung unbeschränkter Optimierungsprobleme zurückgreifen. Dies ist darin be-
gründet, dass die Zielfunktion nicht überall stetig differenzierbar ist. Infolgedessen soll nachfol-
gend dargestellt werden, wie sich für das unbeschränkte Min-Max Optimierungsproblem

min
�

max
k2q

fk.�/ (3.67)

mit � 2 R und q D f1; : : : ; qg konstruktiv feststellen lässt, ob ein lokales Minimum von (3.67)
vorliegt. Vorausgesetzt wird hierzu, dass die Funktionen fk.�/ stetig differenzierbar sind. Ohne
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weitere Annahmen an die Funktionen fk.�/ ist (3.67) zunächst ein nicht-konvexes Optimierungs-
problem, welches schwer zu lösen ist. Das nachfolgend dargestellte algorithmische Vorgehen ist
daher lediglich ein lokales Optimierungsverfahren, so dass keine Aussagen über das globale Mi-
nimum möglich sind. Dennoch belegen die im Rahmen der Arbeit hinsichtlich des Optimierungs-
problems (3.67) erzielten Ergebnisse die praktische Anwendbarkeit des Verfahrens.

Eine notwendige Bedingung für einen stationären Punkt N� des Optimierungsproblems (3.67) ist,
dass die Richtungsableitung der Funktion ˆ.�/ WD maxk2q fk.�/ nicht-negativ ist [84, Theo-
rem 2.1.1]. D.h. es ist dˆ.�;h/ � 0 für alle h 2 Rn, wobei dˆ.�;h/ die Richtungsableitung
der Funktion ˆ.�/ in Richtung von h bezeichnet. Eine notwendige und hinreichende Bedingung,
dass dˆ.�;h/ � 0 für alle h 2 Rn erfüllt ist, folgt aus der Existenz eines Vektors O� aus dem
Einheitssimplex †q WD f� 2 Rq j �j � 0; j 2 q;

Pq

jD1 �j D 1g mit der Eigenschaft, dass

qX
jD1

O�jrfj .�/ D 0

und
qX

jD1

O�j

�
ˆ.�/ � fj .�/

� D 0

erfüllt ist. Ein konstruktiver Weg zur Feststellung, ob ein Punkt � ein lokales Minimum von (3.67)
ist und damit die oben genannte Bedingung erfüllt, folgt mittels einer sogenannten Optimalitäts-
funktion ‚.�/. Im Hinblick auf den Pshenichnyi-Pironneau-Polak Algorithmus [84, PPP algo-
rithm 2.4.1] ist durch das quadratische Optimierungsproblem

‚k D � min
�2†q

8̂<
:̂

qX
jD1

�j

�
ˆ.�k/ � fj .�k/

� C 1

2


������
qX

jD1

�jrfj .�k/

������
2
9>=
>; (3.68)

mit 
 > 0 eine solche Optimalitätsfunktion gegeben. Darin bezeichnet rfj .�k/ den Gradienten
der Zielfunktion fj .�k/ bezüglich �. Durch das iterative Lösen von (3.68) mit k D 0;1;2; : : : lässt
sich der Wert der Optimalitätsfunktion ‚k D ‚.�k/ bestimmen. Darüber hinaus folgt aus

hk.�/ D �1




qX
jD1

��jrfj .�k/; (3.69)

wobei �� die Lösung von (3.68) ist, eine Abstiegsrichtung für das Optimierungsproblem (3.67).
Aufgrund der Eigenschaften der Optimalitätsfunktion ‚k ist diese eine stetige, nicht-positive
Funktion, die nur ‚k D 0 erfüllt, falls der Punkt �k die notwendige Optimalitätsbedingung
dˆ.�;h/ � 0 erfüllt.

Ist daher ‚k D 0, dann kann die Iteration zur Minimierung von (3.67) abgebrochen werden. Gilt
‚k < 0, dann lässt sich mittels der Suchrichtung (3.69) und mit den Parametern ˛ 2 .0;1� und
ˇ 2 .0;1/ die über

�k D �k.�k/ D arg max
l2N

n
ˇl j ˆ

�
�k C ˇlhk

�
�ˆ.�k/ � ˇl˛‚k � 0

o
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zu bestimmende Schrittweite berechnen. Damit erfolgt der Übergang auf den neuen Punkt �kC1 D
�k C�khk , und die Auswertung der Optimalitätsfunktion gemäß (3.68) beginnt durch das Ersetzen
von k C 1 durch k erneut.

Das Vorgehen zur Lösung unbeschränkter Min-Max Optimierungsprobleme erfordert daher ledig-
lich einen Algorithmus zur Lösung quadratischer Optimierungsprobleme. Hierfür stehen zahlrei-
che Implementierungen zur Verfügung, wobei die im Rahmen der Arbeit erzielten Ergebnisse auf
Grundlage des Algorithmus quadprog für quadratische Probleme der Optimization Toolbox aus
MATLAB entstanden sind.

3.3.3 Robuste Entkopplungsregelung

Mit der im voran gegangenen Abschnitt vorgestellten Methodik ist es möglich, die Eigenwerte ei-
nes über Ausgangsrückführung geregelten Zustandssystems in vorab festzulegende Bereiche der
komplexen Ebene zu verschieben, was durch Formulierung als Min-Max Optimierungsproblem
erfolgt. Die Kombination der Eigenwertbereichsvorgabe mit dem Verfahren zur Entkopplung mit-
tels dynamischer Ausgangsrückführung aus Abschnitt 3.2.2 soll in diesem Abschnitt behandelt
werden, was auf die robuste Entkopplungsregelung führt.

Zur Motivation dieses Abschnitts soll kurz an die Ergebnisse in Satz 3.14 erinnert werden. Beim
Entwurf auf Entkopplung muss ausgehend von der parametrischen Formulierung der Ausgangs-
rückführung aus Abschnitt 3.1.3 eine dynamische Rückführung verwendet und das Spektrum der
Regelungseigenwerte in zwei Teilmengen aufgeteilt werden. Dabei korrespondiert die erste Teil-
menge ƒK1, die aus n Regelungseigenwerten besteht, mit denjenigen Eigenbewegungen, die das
entkoppelt geregelte Übertragungsverhalten in (3.41) festlegen. Die verbleibenden nd Regelungs-
eigenwerte treten nur bei Anfangsstörungen in Erscheinung, da diese Eigenbewegungen durch das
Vorfilter unsteuerbar gemacht werden. Darüber hinaus existieren weitere Freiheitsgrade durch die
Parametervektoren qvij für i 2 f1; : : : ;pg und j 2 f1; : : : ; ıig sowie für die Parametervektoren
qvk mit k 2 fıC1; : : : ;ng, da die Matrizen in (3.44) zur Bestimmung der Nullräume mehr Spalten
als Zeilen besitzen.

Dies zeigt, dass im Vergleich zum Entkopplungsentwurf mittels Zustandsrückführung noch wei-
tere Freiheitsgrade durch die Parametervektoren zur Verfügung stehen, aber auch die Regelungs-
eigenwerte der unsteuerbaren Eigenmoden noch genutzt werden können, um das dynamische Ver-
halten des entkoppelt geregelten Systems weiter zu verbessern, was die Anwendung der in Ab-
schnitt 3.2.1 diskutierten Methodik auf die Entkopplungsregelung nahe legt und damit auf die
Minimierung der in (3.33) angegebenen Gütefunktionen führt.

Zur Minimierung der Gütefunktionen (3.33) ist allerdings vorauszusetzen, dass die entkoppelnde
Rückführmatrix Ke differenzierbar ist. Dies motiviert den nachfolgenden Übergang auf eine teil-
parametrische Formulierung der Entkopplungsregelung, da dadurch die Differenzierbarkeit von
Ke durch Kombination der Methoden aus den Abschnitten 3.1.3 und 3.3.1 sicher gestellt wer-
den kann. Zusätzlich lassen sich die Eigenwerte des geschlossenen Regelkreises, die durch das
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Vorfilter unsteuerbar gemacht werden, als zusätzliche freie Entwurfsparameter in das Optimie-
rungsproblem integrieren, welches für die robuste Entkopplungsregelung formuliert wird. Hierzu
wird die Eigenwertbereichsvorgabe aus dem voran gegangenen Abschnitt genutzt. Die Ergebnisse
zur Differenzierbarkeit der Matrix Ke im Hinblick auf die Entkopplungsregelung fasst der folgen-
de Satz zusammen. Da darin die Berechnung des Differentials dKe aufwendig ist, findet sich der
Beweis im Anhang.

Satz 3.14. Betrachtet wird das als entkoppelbar vorausgesetzte, quadratische Zustandssystem
(3.1) mit m D p und p � 2, das mit einer dynamischen Ausgangsrückführung (3.19) der Ordnung
nd D n�p C1 geregelt wird, woraus das erweiterte System (3.20) entsteht. Für die Teilmenge der
Regelungseigenwerte ƒK1 2 Dn, die das entkoppelt geregelte Übertragungsverhalten bestimmt,
muss die Unterscheidung

ƒK1 D
(

fƒı1
; : : : ; ƒıp

g; ı D n

fƒı1
; : : : ; ƒıp

; ƒ0g; ı < n

mit ƒıi
D f�i1; : : : ; �iıi

g 2 Dıi
für i 2 f1; : : : ;pg vorgenommen werden, wobei darin ƒ0 die

Menge der invarianten Nullstellen von (3.1) bezeichnet. Sind in (3.44a) für i 2 f1; : : : ;pg und
j 2 f1; : : : ; ıig die Parametervektoren qvij ¤ 0, in (3.44b) für k 2 fı C 1; : : : ;ng die Para-
metervektoren qvk ¤ 0 sowie die Parametervektoren zu komplexen Regelungseigenwerten selbst-
konjugiert, dann existiert ein reelles und differenzierbares Ke gemäß

Ke D Qr.CeVr/
C C Ke1U1 (3.70)

und Vorfilter Fe, welche die Führungsübertragungsfunktion des geschlossenen Regelkreises (3.41)
entkoppeln und die Regelungseigenwerte ƒK1 zuweisen, so dass ƒK1 � � .Ae C BeKeCe/, wenn
mit (3.5) die Bedingung rang .CeVr/ D r D n mit Vr 2 RnCnd�n erfüllt ist, und das Vorfilter gemäß
(3.48) gewählt wird. Darüber hinaus gilt für das Differential

dKe D �rK�1
rK�2

� 

d�1

d�2

�
; (3.71)

wobei �1 D �
qT

v1 : : : qT
vn

�T
und �2 D vec.Ke1/ gilt sowie rK�1

und rK�2
durch (A.6) gegeben

sind.

Beweis. Siehe Abschnitt A.2.

Mit Satz 3.14 ist nun eine Möglichkeit gegeben, einen integrierten Entwurf eines Entkopplungs-
reglers für ein entkoppelbares quadratisches Zustandssystem (3.1) zu bestimmen. Im Gegensatz
zum Entkopplungsentwurf mittels Zustandsrückführung, der unter praktischen Gesichtspunkten
in den meisten Fällen um einen geeigneten Beobachterentwurf ergänzt werden muss, wird eine
praktisch implementierbare Ausgangsregelung bestimmt, die ebenfalls nicht auf die Gültigkeit
des Separationstheorems angewiesen ist. Darüber hinaus ist das entkoppelte Führungsverhalten
parametrisch vorgebbar, was die verbleibenden Freiheitsgrade in übersichtlicher Weise darstellt.
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Aufgrund der Differenzierbarkeit der Matrix Ke kann ebenfalls über die verbleibenden Freiheits-
grade optimiert werden, was nachfolgend diskutiert wird. Dabei ist die Matrix Ke1 so zu wählen,
dass die bezüglich des entkoppelten Führungsverhaltens unsteuerbaren Eigenwerte in einen belie-
big wählbaren Bereich der komplexen Ebene zum Liegen kommen. Dies ist allerdings mit Satz
3.11 stets möglich, so dass sich hiermit für eine Optimierung in einfacher Weise Startwerte für Ke1

generieren lassen. Als Nachteil dieses Ansatzes ist die gegenüber einer Zustandsrückführung samt
reduziertem Beobachter stets um die Ordnung eins größere Reglerordnung zu nennen. Allerdings
ist dabei wieder die Gültigkeit des Separationstheorems vorauszusetzen.

Zur Bestimmung einer robusten Entkopplungsregelung wird nachfolgend die Minimierung der
Gütefunktion J�F in (3.33a) verfolgt, wobei sich als Nebenbedingung ergibt, dass die Eigenwerte
�Ki , die .Ae C BeKeCe/vKi D �KivKi und �Ki … ƒK1 mit i 2 fn C 1; : : : ; n C ndg erfüllen, in den
durch ZHy in (3.64) definierten Bereich der komplexen Ebene zum Liegen kommen. Dies führt
auf das nichtlineare Optimierungsproblem mit Nebenbedingung

min
�

J�F.�/ (3.72a)

u.B.v. pi.�/ � 0; i 2 fn C 1; : : : ; n C ndg; (3.72b)

wobei die Straffunktionen pi.�/ durch (3.65) mit k D Hy gegeben sind. Das Optimierungspro-
blem (3.72) kann jedoch in einfacher Wiese in ein unbeschränktes Min-Max Optimierungspro-
blem überführt werden, wenn vorausgesetzt wird, dass ein zulässiger Punkt � bestimmt wurde,
und somit die Nebenbedingung (3.72b) erfüllt ist. Wie bereits diskutiert, ist dies stets möglich,
da zur Bestimmung eines zulässigen Punktes die Rückführmatrix Ke1 aus Satz 3.11 mit geeignet
gewählten Regelungseigenwerten bestimmt werden kann. Die Definition der Funktionen

fi.�/ D
(

J�F.�/=c�F; i D 1;

pj .�/=c�; i 2 f2; : : : ; nd C 1g; j D i C n � 1

mit c�F > 0, c� > 0 zusammen mit der Indexmenge q
ndC1

D f1; : : : ;nd C 1g ermöglicht das
Optimierungsproblem (3.72) in das Min-Max Optimierungsproblem

min
�

max
i2q

ndC1

fi.�/ (3.73)

zu überführen. Durch diese Formulierung des Optimierungsproblems ergibt sich eine Ähnlichkeit
mit der Gütevektoroptimierung nach Kreisslemeier und Steinhauser [47] mit dem Unterschied,
dass zur Minimierung der Maximumsfunktion die Methodik aus Abschnitt 3.3.2 genutzt wird und
somit auf eine Annäherung dieser durch eine Exponentialfunktion, wie in [47] vorgeschlagen,
verzichtet werden kann. Die Konstanten bzw. nach [47] als Vorgabewerte bezeichneten c�F und c�

müssen entsprechend zu Beginn der Minimierung von (3.73) geeignet gewählt werden. Bezeichnet
�0 den zulässigen Startwert der Optimierungsaufgabe (3.73), dann ist eine mögliche Wahl von c�F

und c� durch

c�F > J�F.�0/

c� � 1
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gegeben. Dies hat zur Folge, dass das Maximum der fi.�k/ für jede Iteration der Optimierung
k > 0 stets kleiner als eins ist. Darüber hinaus ist maxi fi.�k/ eine streng monoton fallende
Folge bezüglich k, wenn ein Abstiegsverfahren wie in Abschnitt 3.3.2 zur Minimierung von (3.73)
genutzt wird. Entsprechend lässt sich der Vorgabewert c� als Toleranzparameter interpretieren,
inwieweit die nicht steuerbaren Regelungseigenwerte den durch ZHy in (3.64) definierten Bereich
verlassen dürfen, was die Wahl c� � 1 begründet. Zur Verdeutlichung der Anwendbarkeit der in
diesem Abschnitt vorgestellten robusten Entkopplungsregelung wird auf das Entwurfsbeispiel in
Abschnitt 6.1 verwiesen, worin die Entwurfsmethodik anhand numerischer Simulationen sowie
anhand von Messungen an einem Laboraufbau einer xy-Positioniereinheit verdeutlicht wird.

3.4 Entwurfsbeispiel

Zur Bewertung der Leistungsfähigkeit der in diesem Kapitel vorgestellten parametrischen Ent-
wurfsmethodik soll dieser Abschnitt dienen. Hierzu wird die robuste Eigenstrukturvorgabe aus
Abschnitt 3.2.1 betrachtet und anhand von Beispielen aus der Literatur ein Vergleich zur Entwurfs-
methodik place aus dem Programmpaket MATLAB, welches eine der bekanntesten Methoden
zum Entwurf einer Zustandsrückführung darstellt, gezogen. Ähnliche Betrachtungen finden sich
beispielsweise auch in [100, 101]. Dies hat zur Folge, dass mit Hilfe der Methodik aus Abschnitt
3.1.3 bzw. 3.2.1 eine Zustandsrückführung mittels Eigenwertvorgabe entworfen werden soll, die
die Eigenvektormatrix des geschlossenen Regelkreises VK optimal konditioniert.

Zur Bewertung der Ergebnisse werden die Beispielsysteme nach Byers und Nash aus [13] genutzt.
Die elf Beispielsysteme bilden verschiedene praktische aber auch akademische Beispiele ab. Dar-
unter finden sich unter anderem chemische Reaktoren, Flugzeug- und Raketenantriebe aber auch
zufällig gewählte Systeme sowie schlecht konditionierte Beispiele mitsamt der Menge der Rege-
lungseigenwerte, die die Zustandsrückführung zuweisen muss.

Zur Erzielung der nachfolgenden Ergebnisse wird zunächst für jedes Beispielsystem eine Zu-
standsrückführung mittels place entworfen und die dabei erzielte Konditionszahl der Rechtsei-
genvektormatrix kVRkF des geregelten Systems sowie die Norm der Rückführmatrix kRkF be-
rechnet. Anschließend wird ein gradientenbasiertes Verfahren für unbeschränkte Optimierungs-
probleme zur Minimierung der Gütefunktion J�F in (3.33a) genutzt, um damit gezielt die verblei-
benden Freiheitsgrade der Zustandsrückführung zu nutzen. Die Laufzeit der Optimierung wird
dabei durch maximal 2000 erlaubte Aufrufe der Gütefunktion begrenzt. Darüber hinaus werden
für jedes Beispielsystem zehn zufällig gewählte Startwerte genutzt und für den besten Punkt bzw.
das kleinste J�F die erzielte Konditionszahl der Rechtseigenvektormatrix kVKkF des geregelten
Systems sowie die Norm der Rückführmatrix kKkF berechnet. Die Ergebnisse der Berechnungen
sind in Tabelle 3.2 aufgeführt.

Anhand der Konditionszahlen kVRkF bzw. kVKkF lässt sich festhalten, dass die in dieser Arbeit
in Abschnitt 3.2.1 vorgestellte Methodik stets in der Lage ist, das Ergebnis der Methode place
zu verbessern (vgl. Beispielsysteme f1; 2; 3; 4; 5; 6; 7; 8; 9; 11g). Lediglich bei Beispielsystem 10
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Tabelle 3.2: Robuste Eigenstrukturvorgabe der Beispielsysteme von Byers und Nash [13]

Beispielsystem
place [37] Methodik aus Abschnitt 3.2.1

kVRkF kRkF kVKkF kKkF

1 6,57 1,48 6,44 1,43
2 52,87 413,82 50,02 319,51
3 53,43 59,41 45,70 71,65
4 13,43 9,84 13,42 9,45
5 20901,40 2776820,21 16524,62 2725262,42
6 6,00 21,50 5,92 22,01
7 12,38 22,42 11,33 24,61
8 36,99 64,52 6,18 69,74
9 23,96 847,01 23,89 896,87
10 4,00 1,49 4,00 1,52
11 14618,32 6692,15 14066,90 6620,33

erzielen beide Algorithmen ein gleiches Ergebnis. Im Hinblick auf die Norm der Rückführma-
trizen kRkF bzw. kKkF lässt sich feststellen, dass die Methode place für die Beispielsysteme
f3;6;7;8;9;10g bessere Ergebnisse erzielt. In den anderen Fällen erzielt die Methodik aus dieser
Arbeit eine geringere Norm der Rückführmatrix.

Zur Verdeutlichung, dass auch in den vorgenannten Fällen eine Verbesserung in der Reglernorm
gegenüber place erzielt werden kann, wird auf ein kombiniertes Gütemaß gemäß J D ˛JkKk C
.1�˛/J�F übergegangen. Dabei entspricht die Wahl ˛ D 0 dem bereits diskutierten Optimierungs-
problem. Entsprechend ist der Gewichtungsparameter ˛ derart zu wählen, dass auch die Norm der
Rückführmatrix einen niedrigeren Wert als der mit place berechnete Wert annimmt. Hierzu wur-
de eine Bisektion mit 10 Iterationen über ˛ durchgeführt, was auf die Ergebnisse in Tabelle 3.3
führt und die Leistungsfähigkeit der in diesem Kapitel entwickelten Methodik verdeutlicht.

Tabelle 3.3: Robuste Eigenstrukturvorgabe der Beispielsysteme von Byers und Nash [13] mit
dem kombinierten Gütekriterium J D ˛JkKk C .1 � ˛/J�F

Beispielsystem
place [37] Methodik aus Abschnitt 3.2.1
kVRkF kRkF kVKkF kKkF ˛

3 53,43 59,41 48,25 55,28 0,1260
6 6,00 21,50 5,93 19,83 0,0146
7 12,38 22,42 12,96 14,15 0,1240
8 36,99 64,52 16,24 57,79 0,6260
9 23,96 847,01 24,72 812,41 0,2500
10 4,00 1,49 4,10 1,48 0,9990
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3.5 Kurzzusammenfassung

Kapitel 3 stellt den methodischen Rahmen vor, der den Ausgangspunkt für die Parametrierung der
lokalen Regler aller Agenten in den nachfolgenden Kapiteln bildet. Das parametrische Entwurfs-
verfahren ermöglicht unter der Voraussetzung der Bedingung nach Kimura (3.16) die Vorgabe
aller Eigenwerte des über eine Ausgangsrückführung geregelten Systems (3.1). Die Erweiterung
des Verfahrens ermöglicht durch die gezielte Nutzung der Parametervektoren den Entwurf einer
Entkopplungs- als auch Verkopplungsregelung sowie die robuste Eigenwertvorgabe, um so die
Dynamik des geschlossenen Regelkreises weiter zu beeinflussen. Der Übergang auf ein teilpa-
rametrisches Verfahren erlaubt darüber hinaus eine Teilmenge der Regelungseigenwerte als freie
Parameter zu nutzen, was durch die Eigenwertbereichsvorgabe gelingt. Daraus resultiert die ro-
buste Entkopplungsregelung aus Abschnitt 3.3.3. Die Anwendung der vorgestellten Methoden auf
das Synchronisierungsproblem für Multi-Agenten Systeme erfolgt in den nachfolgenden Kapiteln.
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4 Synchronisierung basierend auf Absolut-

und Relativinformation

Die Methoden aus Kapitel 3 bilden zusammen mit den Systembeschreibungen eines homogenen
Multi-Agenten Systems (2.6) bzw. heterogenen Multi-Agenten Systems (2.12) den Ausgangs-
punkt für die Betrachtungen in den nachfolgenden Abschnitten. In Abgrenzung zu Kapitel 5 be-
steht hierbei, wie in Bild 4.1 angedeutet, die Möglichkeit, Absolutinformation für den Regelungs-
entwurf zu verwenden. Dies bietet weitreichende Möglichkeiten zur Beeinflussung jedes Agenten,
da hierzu auf die Entwurfsverfahren aus Kapitel 3 zurückgegriffen werden kann.

Hinsichtlich der Systembeschreibungen sowie der Steuer- und Beobachtbarkeit homogener und
heterogener Multi-Agenten Systeme, die in Abschnitt 2.3 untersucht wurden, ist zunächst in Ab-
schnitt 4.1 das Synchronisierungsproblem für homogene Agenten Gegenstand der Untersuchun-
gen. Ausgehend von einer Methodik aus der Literatur [119], die den Entwurf einer synchroni-
sierenden Zustandsrückführung für homogene Multi-Agenten Systeme auf einen LQR-Entwurf
zurückführt, lassen sich Bedingungen für die Synchronisierung identischer Agenten in einfacher
Weise herleiten. Unter der Voraussetzung, dass alle Agenten das gleiche Regelgesetz implemen-
tieren, sind die Bedingungen für Synchronisierung in ein simultanes Stabilisierungsproblem über-
führbar. Dies bildet anschließend den Ausgangspunkt für die Synchronisierung identischer Agen-
ten mittels Eigenwertbereichsvorgabe.

Abschnitt 4.2 diskutiert anknüpfend an den zuvor dargestellten und erzielten Ergebnissen das
Synchronisierungsproblem für heterogene Agenten. Aufgrund der Verfügbarkeit von Absolutin-
formation lassen sich ausgehend von der Entkopplungsregelung aus Abschnitt 3.2.2 und der Ver-
kopplungsregelung aus Abschnitt 3.2.3 für jeden Agenten unterlagerte Regelkreise entwerfen, so
dass jeder Agent asymptotisch ein identisches dynamisches Verhalten aufweist. Diese Vorgehens-
weise ermöglicht, die Synchronisierung heterogener Agenten mittels Absolutinformation auf die
Synchronisierung der durch die unterlagerten Regelungen herbeigeführten homogenen Teilsyste-
me zurückzuführen.

Die Erweiterung dieses Vorgehens auf eine spezielle Systemklasse nichtlinearer Agenten erfolgt
abschließend in Abschnitt 4.3. Für nichtlineare Agenten mit Vektorrelativgrad eins und stabiler
Nulldynamik, die zusätzlich parametrische Unsicherheiten aufweisen, lässt sich ein aus der Lite-
ratur entnommener passivitätsbasierter Entwurf zur Synchronisierung identischer Agenten nutzen

Agent
i

Regler zur
Synchronisierung

yi

vi

ui

Bild 4.1: Strukturbild zur Synchronisierung mittels Relativ- und Absolutinformation
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und durch eine adaptive Regelung zur Kompensation der Unsicherheiten ergänzen, was die Syn-
chronisierung dieser Systemklasse ermöglicht.

4.1 Synchronisierung homogener Agenten

4.1.1 Vorüberlegungen und Synchronisierungsbedingungen

Betrachtet werden homogene Multi-Agenten Systeme nach (2.6) und damit N lineare steuer- und
beobachtbare identische Agenten

Pxi D Axi C Bui; (4.1a)

yi D Cxi (4.1b)

mit i 2 f1; : : : ;N g, xi 2 Rn, ui 2 Rm, yi 2 Rp und dem Anfangswert xi.t0/ D xi;t0
. Durch die

Kommunikation der Agenten untereinander erfasst jeder Agent (4.1) die relativen Messgrößen

vi D
NX

jD1

aGij .yi � yj / D
NX

jD1

lGijyj ; (4.2)

worin die Koeffizienten aGij bzw. lGij der Adjazenzmatrix AG (2.1) und der Laplacematrix LG
(2.2) durch das Kommunikationsnetzwerk festgelegt werden. In Abschnitt 4.1 wird nun die An-
nahme getroffen, dass alle Agenten das identische Regelgesetz zur Synchronisierung implemen-
tieren.

Anmerkung 4.1. Die Annahme identischer Regelgesetze ist zur Synchronisierung homogener
Agenten nicht notwendig, wie sich durch das einfache Beispiel zweier skalarer Agenten Pxi D ui ,
die über einen stark verbundenen Graphen verkoppelt sind und die Regelgesetze u1 D r1.x1 �x2/

sowie u2 D r2.x2 � x1/ implementieren, widerlegen lässt. Die Überführung des geregelten Sys-
tems in die nachfolgenden modalen Koordinaten ergibt nämlich, dass" PQx1

PQx2

#
D



1 1

1 �1

� 

r1 �r2

�r1 r2

� 

1
2

1
2

1
2

�1
2

� 
 Qx1

Qx2

�
D



0 0

0 r1 C r2

� 
 Qx1

Qx2

�

gilt. Damit ist asymptotische Synchronisierung immer möglich, wenn r1 C r2 < 0 ist, und die
Forderung identischer Regelgesetze r1 D r2 < 0 nicht notwendig.

Nichtsdestotrotz ergibt sich unter der Annahme identischer Regelgesetze eine einfache konstrukti-
ve Bedingung, die auf die Synchronisierung identischer Agenten führt, wie nachfolgend diskutiert
wird.

Wird zunächst angenommen, dass jeder Agent seinen vollständigen Zustand an das Netzwerk
kommuniziert, d.h. in (4.1b) ist C D In, dann besteht die Regelungsaufgabe darin, in

ui D R

NX
jD1

aGij .xi � xj / (4.3)
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68 4 Synchronisierung basierend auf Absolut- und Relativinformation

die Zustandsrückführmatrix R derart zu bestimmen, dass Zustandssynchronisierung im Sinne von
Definition 2.12 erreicht wird. Mit der Rückführung (4.3) resultiert daher das geregelte homogene
Multi-Agenten System aus

Px D ..IN ˝ A/C .LG ˝ BR//x; (4.4)

wobei x 2 RnN gilt. Mit Lemma 2.8 ist gezeigt, dass das homogene Multi-Agenten System (2.6a)
bezüglich der relativen Ausgänge (2.7) bzw. in diesem Fall der Gesamtheit aller Ausgänge in (4.2)
stets unbeobachtbar ist. Wird daher der Unterraum

S D ˚
x 2 RnN j x 2 bild .1N ˝ In/



(4.5)

betrachtet, so folgt aus ..IN ˝ A/C .LG ˝ BR// .1N ˝In/ D .1N ˝In/A zunächst die Invarianz
von S . Mit v D .LG ˝ In/.1N ˝ In/ D .LG1N ˝ In/ D 0 folgt darüber hinaus die Ausgangs-
nullung, weshalb mit .1N ˝In/ eine Basis des n-dimensionalen unbeobachtbaren Unterraums des
geregelten homogenen Multi-Agenten Systems (4.4) gefunden ist.

Der Einsvektor 1N ist, wie in Abschnitt 2.2 diskutiert, der Rechtseigenvektor zum Eigenwert
� D 0 der Laplacematrix LG . Ist darüber hinaus der Graph, der der Laplacematrix zugrunde
liegt, verbunden, dann hat der Eigenwert � D 0 die algebraische Vielfachheit eins. Bezeichnet
daher VLG die Hauptvektormatrix von LG mit der Einschränkung, dass VLGe1 D 1N gilt, dann
ist mit LGVLG D VLGJLG durch JLG die Jordan’sche Normalform der Laplacematrix gegeben.
Zusätzlich ist

JLG D


0 0

0 J�LG

�

mit J�LG 2 CN �1�N �1 sowie diag
�
J�LG

� D f�LG2; : : : ; �LGN g, und die Eigenwerte �LGk für
k � 2 haben stets positiven Realteil.

Zur Bestimmung der Bedingungen, die zur Synchronisierung homogener Agenten durch die Rück-
führung (4.3) führen, wird auf eine neue Koordinatendarstellung von (4.4) übergegangen. Mittels
der neuen Koordinatendarstellung Nx D T �1x und der Transformationsmatrix T D .VLG ˝ In/

bzw. der inversen Transformationsmatrix T �1 D .V �1
LG ˝ In/ folgt mit (4.4)

PNx D .V �1
LG ˝ In/ ..IN ˝ A/C .LG ˝ BR// .VLG ˝ In/ Nx;

D �
.IN ˝ A/C .JLG ˝ BR/

� Nx (4.6)

bzw. ebenfalls zusammen mit den relativen Ausgängen
 PNx1

PNx2

�
D

	

A 0

0 .IN �1 ˝ A/

�
C



0 0

0 .J�LG ˝ BR/

�� 
 Nx1

Nx2

�
;

v D �
0 .LGVLG 2

˝ In/
� 
 Nx1

Nx2

�

mit VLG 2
aus VLG D �

1N VLG 2

�
. Anhand der vorher stehenden Darstellung des geregelten Sys-

tems wird nochmals deutlich, dass die Dynamik in S bezüglich des Ausgangs v unbeobacht-
bar ist. Gleichermaßen ist ausgehend von Definition 2.12 für asymptotische Synchronisierung
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4.1 Synchronisierung homogener Agenten 69

limt!1 v.t/ D 0 zu fordern, was mit Lemma 2.8 äquivalent zu limt!1 Nx2.t/ D 0 ist, da das Paar�
.LGVLG 2

˝ In/; .IN �1 ˝ A/
�

für ein verbundenes Kommunikationsnetzwerk stets beobachtbar
ist. Folglich müssen die Eigenwerte der Matrix .IN �1 ˝ A/ C .J�LG ˝ BR/ sämtlich in der
linken komplexen Halbebene durch den Entwurf von R zum Liegen kommen. Aufgrund der obe-
ren Dreiecksstruktur von J�LG ergibt sich somit als notwendige und hinreichende Bedingung für
die Synchronisierung homogener Agenten (4.1) mittels der Rückführung (4.3), dass alle Matrizen
A C �LGkBR mit k 2 f2; : : : ;N g Hurwitz-Matrizen sind. Dieses Ergebnis geht auf die Disserta-
tion von Fax [25] zurück und ergibt sich als Spezialfall von [25, Theorem 5.1]. Zusammenfassend
lässt sich daher aufgrund der Betrachtungen in diesem Abschnitt der nachfolgende Satz festhalten.

Satz 4.2. Betrachtet werden N lineare steuer- und beobachtbare identische Agenten (4.1), wobei
in der Ausgangsgleichung C D In ist, zusammen mit der Rückführung (4.3). Ist das Kommunika-
tionsnetzwerk, das dem geregelten homogenen Multi-Agenten System zugrunde liegt, verbunden,
dann wird Synchronisierung genau dann erreicht, wenn sämtliche Matrizen A C �LGkBR mit
k 2 f2; : : : ;N g Hurwitz-Matrizen sind.

Mit Satz 4.2 ist die Synchronisierung homogener Multi-Agenten Systeme, die über die Rück-
führung (4.3) gekoppelt sind, auf ein simultanes Stabilisierungsproblem zurückgeführt. An die-
sem Ergebnis anknüpfend, finden sich in der Literatur zahlreiche Methoden zur Bestimmung der
Rückführmatrix R bzw. einer identischen Rückführung aller Agenten, die die Synchronisierung
homogener Agenten ermöglichen [53, 56, 60, 62, 96, 97, 102, 132]. Im folgenden Abschnitt wird
das Verfahren aus [119] vorgestellt, da es in einfacher Weise durch die Lösung einer algebraischen
Riccati Gleichung die Berechnung der Rückführmatrix R ermöglicht.

4.1.2 Synchronisierung durch LQR-Entwurf

Zur Bestimmung der Matrix R wird ein bekanntes Resultat aus der optimalen Regelung genutzt
(vgl. [2, 133]). Ist das Paar .A;B/ mit A 2 Rn�n und B 2 Rn�m stabilisierbar, dann hat die
algebraische Riccati Gleichung

ATP C PA C In � PBBTP D 0 (4.7)

eine positiv definite, reelle Lösung P D P T. Durch die Nulladdition von PBBTP �PBBTP lässt
sich (4.7) auch als

.A � BBTP /TP C P .A � BBTP /C In C PBBTP D 0

schreiben, woraus folgt, dass die Matrix A � BBTP eine Hurwitz-Matrix ist. Im Hinblick auf das
simultane Stabilisierungsproblem in Satz 4.2 ist nun die Stabilität von AC�LGBR mit R D �BTP

zu untersuchen. Hierzu gibt Tuna das folgende Lemma an.

Lemma 4.3 ([119]). Betrachtet werden die Matrizen A 2 Rn�n und B 2 Rn�m, die (4.7) mit
positiv definiter, reeller Lösung P D P T erfüllen. Dann ist für alle � 2 R, � � 1 und ! 2 R die
Matrix A � .� C j!/BBTP eine Hurwitz-Matrix.
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70 4 Synchronisierung basierend auf Absolut- und Relativinformation

Mit Lemma 4.3 lässt sich daher schließen, dass auch bei Skalierung der Eingangsmatrix B mit
einer komplexen Zahl mit Realteil � � 1 der geschlossene Regelkreis bestehend aus der Dyna-
mik (4.1a) mit der Rückführung ui D �BTPx weiterhin stabil ist. Im Hinblick auf die simultane
Stabilisierung zur Synchronisierung homogener Agenten werden die Eigenwerte der Laplacema-
trix gemäß ihrer Realteile aufsteigend angeordnet, d.h. �LG1 < Re.�LG2/ � � � � � Re.�LGN / mit
�LG1 D 0. Ist Re.�LG2/ < 1, dann lässt sich mit Lemma 4.3 nicht auf Stabilität von A � .� C
j!/BBTP schließen. Wird allerdings die Rückführung gemäß ui D � max.1; ı�1/BTPx mit ı �
Re.�LG2/ gewählt, dann impliziert Lemma 4.3 die Stabilität von A � .� C j!/max.1; ı�1/BBTP ,
da Re.�LG2/=ı � 1 ist. Dies stellt das Hauptresultat von Tuna in [119] hinsichtlich der Synchro-
nisierung homogener Agenten dar und wird in folgendem Satz zusammengefasst.

Satz 4.4 ([119]). Betrachtet werden N homogene Agenten wie in (4.1a). Sei P D P T die Lösung
von (4.7) und ı > 0. Ist der Graph, der der Laplacematrix LG 2 RN �N zugrunde liegt, verbunden
und ist ı � Re.�LG2/, dann synchronisieren sich die Zeitlösungen xi.t/ mit i D 1; : : : ;N und

ui D � max.1; ı�1/BTPvi D Rvi;

wobei vi durch (4.2) gegeben ist, auf

xs.t/ WD
�
wT

LG ˝ eAt
� 2

64
x1.t0/
:::

xN .t0/

3
75

mit dem Linkseigenvektor wLG 2 RN , der wT
LGLG D 0 und wT

LG1N D 1 erfüllt.

Das Resultat lässt sich in einfacher Weise auf die duale Betrachtung erweitern, wenn statt einer
Zustandsrückführung eine Ausgangsaufschaltung entworfen wird. Dies ist insbesondere im Hin-
blick auf die Verfahren aus Abschnitt 4.2 eine einfache Möglichkeit, um einen synchronisierenden
Regler für voll aktuierte Systeme zu bestimmen.

Satz 4.5 ([119]). Betrachtet werden N homogene Agenten wie in (4.1), wobei B D In gilt. Sei
P D P T die Lösung von AP C PAT C In � PC TCP D 0 und ı > 0. Ist der Graph, der der La-
placematrix LG 2 RN �N zugrunde liegt, verbunden, und ist ı � Re.�LG2/, dann synchronisieren
sich die Zeitlösungen xi.t/ mit i D 1; : : : ;N und

ui D � max.1; ı�1/PC Tvi D Lvi;

wobei vi durch (4.2) gegeben ist, auf

xs.t/ WD
�
wT

LG ˝ eAt
� 2

64
x1.t0/
:::

xN .t0/

3
75

mit dem Linkseigenvektor wLG 2 RN , der wT
LGLG D 0 und wT

LG1N D 1 erfüllt.
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4.1 Synchronisierung homogener Agenten 71

Die vorstehenden Resultate von Tuna nutzen offensichtlich die günstigen Eigenschaften des Ric-
catireglers aus. Diese Eigenschaften lassen sich hinsichtlich Robustheit gegenüber (komplexwerti-
ger) Skalierung der Eingangsmatrix B interpretieren, was zur Synchronisierung homogener Agen-
ten führt. Nachteilig ist dabei, dass der Entwurf nicht in geradliniger Weise auf den Ausgangsrück-
führungsfall mit m < n und p < n in (4.1) erweitert werden kann. Dies geschieht im folgenden
Abschnitt, da die Methodik aus Abschnitt 3.3.1 hierzu in der Lage ist.

4.1.3 Synchronisierung durch Vorgabe von Eigenwertbereichen

Im Hinblick auf die Bedingungen zur Synchronisierung homogener Multi-Agenten Systeme in
Satz 4.2 ist durch die Forderung der Stabilität der Matrizen A C �LGkBR mit k 2 f2; : : : ;N g
ebenfalls eine Modellfamilie gegeben, die durch die fest eingestellte Rückführmatrix R stabilisiert
werden muss. Diese Entwurfsaufgabe wurde von Konigorski in [45] durch numerische Minimie-
rung geeignet gewählter Straffunktionen, die Eigenwerte der geregelten Systeme als Argumente
haben, gelöst. Diese Methodik lässt sich in geradliniger Weise auf die Synchronisierung homoge-
ner Agenten übertragen und soll nachfolgend diskutiert werden.

Hierzu werden die Ergebnisse aus [45] mit der Methodik zur Vorgabe von Eigenwertbereichen
aus Abschnitt 3.3.1 verknüpft. Ausgangspunkt ist daher der homogene Agent (4.1) zusammen mit
der dynamischen Rückführung

Pxd D Adxd C Bdvi (4.8a)

ui D Cdxd C Ddvi (4.8b)

mit xd 2 Rnd . Dies stellt den allgemeinen Fall der Synchronisierung homogener Agenten mit-
tels dynamischer Ausgangsrückführung dar. Jedoch ergeben sich die Spezialfälle einer konstanten
Rückführung durch nd D 0 bzw. die vollständige Kopplung am Eingang durch die Wahl B D In

sowie die vollständige Kopplung am Ausgang durch C D In.

Durch Zusammenfassen von (4.1) und (4.8) folgt der erweiterte Zustandsvektor xei D �
xT

i xT
di

�T 2
RnCnd , und es entsteht der erweiterte Agent

Pxei D Aexei C Bevi; (4.9a)

yi D Cexei; (4.9b)

mit

Ae D


A BCd

0 Ad

�
; (4.10a)

Be D


BDd

Bd

�
; (4.10b)

Ce D �
C 0

�
: (4.10c)
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72 4 Synchronisierung basierend auf Absolut- und Relativinformation

Der geregelte erweiterte Agent folgt mit (4.9) und (4.2) aus

Pxei D Aexei C Be

NX
jD1

aGij .yi � yj / D Aexei C BeCe

NX
jD1

aGij .xei � xej /;

was mit dem Zustandsvektor xe D �
xT

e1 : : : xT
eN

�T 2 RN.nCnd/ auf das geregelte Gesamtsystem

Pxe D ..IN ˝ Ae/C .LG ˝ BeCe//xe (4.11)

führt. Aufgrund der resultierenden Systemstruktur, die identisch zu (4.4) ist, lässt sich schlie-
ßen, dass Satz 4.2 in gleicher Weise für den an dieser Stelle diskutierten Fall gilt. Dies hat zur
Folge, dass die Synchronisierung homogener Multi-Agenten Systeme, die über die allgemei-
ne dynamische Ausgangsrückführung (4.8) gekoppelt sind, auf die simultane Stabilisierung von
Ae C �LGkBeCe mit k 2 f2; : : : ;N g zurückgeführt werden kann. Hinsichtlich der Ergebnisse aus
[45] ergibt sich hieraus die an die Problemstellung angepasste Modellfamilie
 Pxi

Pxdi

�
D



A 0

0 0

� 

xi

xdi

�
C



B 0

0 Ind

� 

ui

Pxdi

�
; (4.12a)



yi

Pxdi

�
D



�kC 0

0 Ind

� 

xi

Pxdi

�
; (4.12b)

k 2 f1; : : : ;N g;

die über das Regelgesetz

ui

Pxdi

�
D



Dd Cd

Bd Ad

� 

yi

xdi

�

für alle N Werte der Parameter � D f1; �LG2; : : : ; �LGN g stabilisiert werden muss. Mit Satz 3.5
und (3.21) sind daher die Eigenwerte der Matrix AeCBeKeCe.�/ in Anlehnung an die Vorgabe von
Eigenwertbereichen aus Abschnitt 3.3.1 in geeignet zu wählende Bereiche der linken komplexen
Halbebene zu verschieben. Hierzu wird wie in [45] für jedes Modell in (4.12) ein eigener Bereich
definiert. Zur einfacheren Darstellung wird auch in diesem Fall eine Hyperbel, wie in Bild 3.3
dargestellt bzw. durch die Parametrierung von ZHy in (3.64) gegeben, gewählt, da sich dadurch
in einfacher Weise Mindestanforderungen an Dämpfung und Schnelligkeit formulieren lassen.
Der nachfolgend beschriebene Ansatz lässt sich algorithmisch ohne größere Anpassungen durch
weitere Begrenzungen aus Tabelle 3.1 erweitern.

Da für das Spektrum � .Ae C BeKeCe.�k// D f�Kk;1; : : : ;�Kk;nCndg gilt und die Eigenwerte �Kkj

implizite Funktionen der Rückführmatrix Ke sind, kann für jeden Eigenwert �Kkj und für jedes
Modell in (4.12) in Anlehnung an Abschnitt 3.3.1 und [45] eine äußere quadratische Straffunktion
definiert werden, woraus

pkj .�/ D
(

FHy
�
�Kkj .�/

�2
; wenn FHy

�
�Kkj .�/

�
> 0;

0; FHy
�
�Kkj .�/

� � 0
(4.13)
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mit

FHy
�
�Kkj

� D Re.�Kkj /C ak

bk

q
Im.�Kkj /2 C b2

k
(4.14)

sowie den Indexmengen qk D f1; : : : ;N g, qj D f1; : : : ; n C ndg und den Optimierungsvariablen
� D vec.Ke/ folgt. Zur Verschiebung aller Eigenwerte in die gewünschten Bereiche der komple-
xen Ebene müssen folglich alle Straffunktionen pkj .�/ D 0 8k;j werden, was auf das Min-Max
Optimierungsproblem

min
�

max
k2qk ;j2qj

pkj .�/ (4.15)

führt, welches mit der Methodik aus Abschnitt 3.3.2 durch numerische Optimierung lösbar ist.
Mit der individuellen Festlegung von (4.14) ergibt sich zusätzlich eine flexible Anpassung der Ei-
genwertbereiche für jedes k in (4.15). Neben der Festlegung eines gemeinsamen Bereichs für die
vollständige Modellfamilie in (4.12) besteht zudem die Möglichkeit, die Eigenwerte des geschlos-
senen Regelkreises der nominellen Strecke mit �1 D 1 gemäß den Anforderungen an Schnelligkeit
und Dämpfung in den entsprechenden Bereich zu verschieben. Die Eigenwerte der Systeme in
(4.12) mit �k und k > 1 müssen für die Synchronisierung lediglich in der linken komplexen Halb-
ebene zum Liegen kommen, so dass hierbei der Bereich auch durch eine Gerade, wie in Tabelle
3.1 aufgeführt, begrenzt werden kann.

Die Bestimmung geeigneter Startwerte �0 für die Optimierungsaufgabe (4.15) wird vereinfacht,
wenn angenommen wird, dass für die Modellfamilie (4.12) die Bedingung nach Kimura (3.16)
erfüllt ist. Dies lässt sich stets durch Berücksichtigung der Gleichung (3.22) und damit durch eine
dynamische Ausgangsrückführung geeigneter Ordnung erzielen. Dann lässt sich mit dem Ver-
fahren aus Abschnitt 3.1.3 zunächst eine Ausgangsrückführung entwerfen, die durch die Wahl
stabiler Eigenwerte des geschlossenen Regelkreises stets die Stabilität der nominellen Strecke in
(4.12) gewährleistet. Im Anschluss liegt es nahe, mit dem Verfahren aus Abschnitt 3.2.1 in Er-
gänzung die Robustheit gegenüber Störungen � in Ae C BeKeCe C� zu optimieren, was durch
die Minimierung der Konditionszahl der Rechtseigenvektormatrix des geschlossenen Regelkreises
bzw. des Gütekriteriums J�F in (3.33a) erfolgen kann. Dies führt auf die folgenden Entwurfsschrit-
te zur Bestimmung einer synchronisierenden Ausgangsrückführung für homogene Multi-Agenten
Systeme.

Übersicht der Entwurfsschritte

1. Analyse des Kommunikationsnetzwerks durch Bestimmung der Eigenwerte mit positivem
Realteil �LGi der Laplacematrix LG mit i 2 f2; : : : ;N g.

2. Festlegung der Modellfamilie (4.12) durch � D f1; �LG2; : : : ; �LGN g.

3. Festlegung der Eigenwertbereiche durch Wahl der Parameter ak und bk in (4.14) bzw. durch
Auswahl geeigneter Bereiche aus Tabelle 3.1.

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


74 4 Synchronisierung basierend auf Absolut- und Relativinformation

4. Wenn die Bedingung nach Kimura erfüllt ist – Bestimmung der Startwerte �0 für die Opti-
mierungsaufgabe (4.15) durch den parametrischen Entwurf einer Ausgangsrückführung für
die nominelle Strecke (4.12) mit k D 1 mittels der Verfahren aus den Abschnitten 3.1.3
und 3.2.1 mit dem Ziel, die Robustheit gegenüber Störungen � in Ae C BeKeCe C � zu
verbessern.

5. Lösung des Min-Max Optimierungsproblems (4.15) mittels der Methodik aus Abschnitt
3.3.2.

6. Falls keine zulässige Lösung �� für (4.15) bestimmt wurde, zurück zu Schritt 4 zusammen
mit der Wahl neuer Startwerte �0.

4.2 Synchronisierung heterogener Agenten

4.2.1 Vorüberlegungen zur Synchronisierung heterogener Agenten

Betrachtet werden heterogene Multi-Agenten Systeme nach (2.12) und damit N lineare steuer-
und beobachtbare Agenten

Pxi D Aixi C Biui; (4.16a)

yi D Cixi (4.16b)

mit i 2 f1; : : : ;N g, xi 2 Rni , ui 2 Rmi und yi 2 Rp sowie mit dem Anfangswert xi.t0/ D
xit0

. Die Matrizen Ai , Bi und Ci seien von passender Dimension. Durch die Kommunikation der
Agenten untereinander erfasst jeder Agent (4.16) die relativen Messgrößen

vi D
NX

jD1

aGij .yi � yj / D
NX

jD1

lGijyj ; (4.17)

worin die Koeffizienten aGij bzw. lGij der Adjazenzmatrix AG (2.1) und der Laplacematrix LG
(2.2) durch das Kommunikationsnetzwerk festgelegt werden.

Im Gegensatz zu den in Abschnitt 4.1 diskutierten homogenen Multi-Agenten Systemen, die sich
stets auf Lösungen des offenen Regelkreises synchronisieren, ist die synchrone Zeitlösung von N

Agenten nach (4.16a) zunächst nicht offensichtlich bzw. je nach Beschaffenheit aller Agenten in
(4.16a) lediglich die triviale Trajektorie yS.t/ D 0, was der Stabilisierung aller Agenten entspricht.
Im Hinblick auf die Ergebnisse in Lemma 2.11 lässt sich daher schließen, dass ohne geeignete
Maßnahmen triviale Synchronisierung stets eintritt, wenn ein heterogenes Multi-Agenten System
bezüglich der relativen Ausgänge beobachtbar ist. Dies ist dadurch begründet, dass in diesem Fall
ein dezentrales Regelgesetz mit den N Ein-/Ausgangsgruppen .ui; vi/ bestimmt werden kann,
welches in der Lage ist, das Gesamtsystem zu stabilisieren, was den strukturellen Unterschied
zwischen homogenen und heterogenen Multi-Agenten Systemen zum Ausdruck bringt.
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Zur Vermeidung der Synchronisierung auf die triviale Trajektorie yS.t/ D 0 soll eine notwendige
Bedingung aus der Literatur angegeben und diskutiert werden. Ausgangspunkt ist daher der Agent
(4.16) zusammen mit der dynamischen Rückführung

Pxdi D As
dixdi C Bs

di Qvi (4.18a)

ui D C s
dixdi C Ds

di Qvi (4.18b)

mit xdi 2 Rndi , wobei das Zeichen .�/s andeuten soll, dass in der Regel die Matrizen des Reglers
nicht voll besetzt sind, sondern eine beliebige Strukturbeschränkung aufweisen können. Darüber
hinaus wird an dieser Stelle nicht vorausgesetzt, dass die Reglerordnung ndi der Agenten identisch
ist. Durch Zusammenfassen von (4.16) und (4.18) lässt sich auch hier der erweiterte Zustandsvek-
tor xei D �

xT
i xT

di

�T 2 RnCndi definieren, woraus der geregelte Agent

Pxei D Aeixei C Beivi; (4.19a)

yi D Ceixei; (4.19b)

mit den Systemmatrizen

Aei D


Ai BiC

s
di

0 As
di

�
; Bei D



BiD

s
di

Bs
di

�
; Cei D �

Ci 0
�

entsteht. Eine notwendige Bedingung, die jeder Agent nach (4.19) zur Synchronisierung erfüllen
muss, ist nach Wieland und Allgöwer die Aussage des folgenden Satzes.

Satz 4.6 ([124]). Betrachtet werden N heterogene Agenten wie in (4.16) zusammen mit einem
Kommunikationsnetzwerk, was durch den verbundenen Graphen G beschrieben wird. Angenom-
men, es wurde eine Lösung für (4.18) bestimmt, so dass sich alle Ausgänge im Sinne von Definition
2.12 synchronisieren. Es wird darüber hinaus angenommen, dass das Paar .Cei;Aei/ detektierbar
ist. Es existieren dann Matrizen…i , i D 1; : : : ;N mit vollem Spaltenrang und Matrizen S und Q,
so dass

Aei…i D …iS (4.20a)

Cei…i D Q (4.20b)

für alle i D 1; : : : ;N gilt.

Der Beweis des Satzes findet sich in [124] und gibt eine notwendige Bedingung an die struk-
turellen Voraussetzungen einer synchronisierenden Regelung für heterogene Agenten (4.16) an.
Ausgehend von der Lösung der Sylvester Gleichung mit Nebenbedingung (4.20) ergibt sich ei-
ne Interpretation der notwendigen Voraussetzungen zur Synchronisierung im Hinblick auf das
bekannte Interne Modellprinzip nach Francis und Wonham in [29]. Angenommen es existieren
Lösungen …i von (4.20) für alle i D 1; : : : ;N , und die Anfangswerte xei.t0/ des erweiterten
Agenten (4.19) werden gemäß xei.t0/ 2 bild .…i/ gewählt, dann lassen sich diese stets derart
wählen, dass die Zeitlösung des Ausgangs (4.19b) aller Agenten identisch und damit synchron ist,
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was aus

yi.t/ D CeieAei txei.t0/

D Cei

�
…i T?

�
ediag.S;�/t

�
…i T?

��1
xei.t0/

D QeSt Qxci.t0/

folgt, wobei T? so gewählt ist, dass

�
…i T?

��1
Aei

�
…i T?

� D


S 0

0 	
�

gilt. Damit enthält der offene Regelkreis jedes erweiterten Agenten ein identisches internes Mo-
dell, welches durch Wahl geeigneter Anfangswerte dazu führt, dass alle Ausgänge der erweiterten
Agenten identische Zeitlösungen erzeugen und somit synchron verlaufen.

Aufgrund der Notwendigkeit von Satz 4.6 ist hiermit allerdings noch keine Aussage zu treffen, wie
sich stets asymptotische Synchronisierung im Sinne von Definition 2.12 realisieren lässt. Hierzu
ist eine geeignete Strukturbeschränkung der Matrizen As

di , Bs
di , C s

di und Ds
di in (4.18) vorzusehen

und die Parameter der Regelung geeignet zu bestimmen, was in den folgenden beiden Abschnitten
auf Grundlage einer unterlagerten Ent- bzw. Verkopplungsregelung mit Rückgriff auf die Ergeb-
nisse aus Abschnitt 4.1 erfolgen soll.

4.2.2 Synchronisierung durch Entkopplung

Mit dem Entwurfsverfahren aus Abschnitt 3.2.2 lässt sich unter der Voraussetzung, dass der hete-
rogene Agent mit dem Zustandssystem (4.16) quadratisch und stabil entkoppelbar ist, ausgehend
von der Messung des absoluten Ausgangs (4.16b) eine Entkopplungsregelung entwerfen, so dass
sich der entkoppelt geregelte Agent bezüglich der Führungsgrößen wi wie p Eingrößensysteme

Agent
i

EKRSync.
yi

vi

yi

ui

2
64

yi1.s/
:::

yip.s/

3
75 D

2
64

gw1.s/
: : :

gwp.s/

3
75

2
64
wi1.s/
:::

wip.s/

3
75

"
Pzi

PxSi

#
D

" QS QES

0 QAS

# "
zi

xSi

#
C

" QKS
QBS

#
vi

wi D
h Q� QCS

i "
zi

xSi

#
C QDSvi

Bild 4.2: Synchronisierung mittels Relativ- und Absolutinformation basierend auf einer un-
terlagerten Entkopplungsregelung
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verhält. Die Übertragungsmatrix bezüglich Ausgangs- und Führungsgrößen ist entsprechend ge-
mäß Gw.s/ D diag

�
gw1.s/; : : : ;gwp.s/

�
diagonalförmig, und in jedem Übertragungskanal lässt

sich die Dynamik durch die Übertagungsfunktion

gwi.s/ D
Qıi

jD1.��Kij /

.s � �Ki1/ � � � � � .s � �Kiıi
/
; i 2 f1; : : : ;pg

beschreiben. Die Regelungseigenwerte, die die verbleibenden Freiheitsgrade in jedem Übertra-
gungskanal darstellen, bilden den Zugang zur Synchronisierung heterogener Agenten mittels Ent-
kopplungsregelung, was ebenfalls in Bild 4.2 im Strukturbild dargestellt ist. Die Idee besteht darin,
in jedem der p Übertragungskanäle aller N Agenten ein identisches, stabiles Verhalten zu erzeu-
gen. Damit ist das Führungsverhalten aller Agenten bezüglich der Ein-/Ausgangskanäle .yij ;wij /

für alle i 2 f1; : : : ;N g und j 2 f1; : : : ;pg identisch. Bezüglich dieser Ein-/Ausgangskanäle lässt
sich daher für alle Agenten, die durch die unterlagerte Regelung entkoppelt und homogenisiert be-
züglich des Führungsverhaltens sind, eine gemeinsame synchronisierende Regelung – basierend
auf den Methoden aus Abschnitt 4.1 – entwerfen. Dabei zerfällt der Entwurf der synchronisie-
renden Regelung in die Aufgabe, p homogene Agenten zu synchronisieren, die sich als Eingrö-
ßensysteme darstellen lassen. Um den beschriebenen Ansatz basierend auf einer Entkopplungs-
regelung hinsichtlich der Synchronisierung heterogener Agenten zu verwenden, sind im Hinblick
auf das eben diskutierte Vorgehen die folgenden Annahmen zu treffen, was der Vereinfachung der
nachfolgenden Argumentation dient.

Annahme 4.7. Synchronisierung durch Entkopplung

(A1) Das Zustandssystem aller heterogenen Agenten (4.16) ist quadratisch und stabil entkoppel-
bar.

(A2) Die Differenzordnungen aller Agenten bezüglich der Ausgangsgrößen (4.16b) sind iden-
tisch. Damit gilt ıi

j D ık
j für alle i;k 2 f1; : : : ;N g und j 2 f1; : : : ;pg.

(A3) Die Regelungseigenwerte, die in den p Übertragungskanälen aller N Agenten zugewiesen
werden können, sind stabil gewählt und identisch. Damit gilt ƒi

Kj D ƒk
Kj für alle i;k 2

f1; : : : ;N g und j 2 f1; : : : ;pg.

In Annahme 4.7 bezeichnet ıi
j die Differenzordnung des j -ten Ausgangs des i -ten Agenten wäh-

rend durch ƒi
Kj die Menge der Regelungseigenwerte im j -ten Ausgangskanal des i -ten Agenten

gekennzeichnet ist. Damit besitzt ƒi
Kj die Mächtigkeit ıi

j .

Die Annahme (A1) wird häufig im Rahmen der Entkopplung linearer Systeme getroffen, da da-
durch sicher gestellt ist, dass eine statische Zustandsrückführung mit regulärer Vorfilterung exis-
tiert, die jeden Agenten stabil entkoppelt. Darüber hinaus lässt sich damit Satz 3.11 anwenden und
somit eine Entkopplungsregelung basierend auf einer dynamischen Ausgangsrückführung entwer-
fen, was den Ausgangspunkt in diesem Abschnitt darstellt. Mit Annahme (A2) ist sicher gestellt,
dass in jedem Übertragungskanal eine identische Dynamik erzeugt werden kann. Dies scheint re-
striktiv im Hinblick auf die anwendbare Systemklasse in (4.16) zu sein, lässt sich aber stets durch
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geeignete Maßnahmen erzielen. Zum einen lässt sich unter praktischen Gesichtspunkten ein he-
terogenes Multi-Agenten System in vielen Anwendungsfällen als eine Abweichung von einem
nominellen System interpretieren, d.h. die Agenten sind strukturell identisch – unterscheiden sich
allerdings im Rahmen ihrer physikalischen Parameter, was auf identische Differenzordnungen
führt. Zum anderen ist es möglich, durch Vorschaltung geeigneter Verzögerungsglieder die Diffe-
renzordnung bezüglich eines Ausgangs zu erhöhen, so dass sich diese für alle Agenten angleichen
lässt und (A2) erfüllt ist. Damit ist es möglich ebenfalls (A3) zu erfüllen, indem in jedem Über-
tragungskanal aller Agenten eine identische, stabile und stationär genaue Dynamik vorgegeben
wird.

Ausgehend von Annahme 4.7 und der Darstellung in Bild 4.2 beruht die folgende Idee zur Syn-
chronisierung darauf, jedem Agenten pro Übertragungskanal ein identisches dynamisches Modell
vorzuschalten, welches eine gewünschte Trajektorie im geschlossenen, synchronen Regelkreis er-
zeugt. Im Hinblick auf Satz 4.6 und der damit zusammenhängenden Theorie zur Ausgangsrege-
lung (engl. output regulation theory, vgl. [95]) lässt sich dies durch Aufschaltung eines geeigneten
Eingangssignals u.t/ und die Wahl geeigneter Anfangswerte erreichen, wie mit folgendem Lem-
ma allgemein gezeigt werden soll.

Lemma 4.8. Betrachtet wird das steuer- und beobachtbare Zustandssystem Px D Ax C Bu mit
der Ausgangsgleichung y D Cx, wobei x 2 Rn, x.t0/ D x0, u 2 Rm, y 2 Rp und m � p ist. Es
ist möglich eine Vorsteuerung der Form

Pw D Sw; w.t0/ D w0; (4.21a)

u D �w; (4.21b)

mitw 2 RnS zu entwerfen, wobei �.S/ 2 CC
0 und die Matrizen… und � die sogenannten regulator

equations

…S D A…C B� (4.22a)

C… D Q (4.22b)

lösen, wenn das Zustandssystem rechts-invertierbar ist, die Nullstellen des Zustandssystems nicht
mit den Eigenwerten von S zusammenfallen sowie das Paar .Q;S/ beobachtbar ist. Darüber
hinaus existieren Anfangswerte w.t0/ und x.t0/, so dass y.t/ D Qw.t/ für t � t0 gilt.

Beweis. Ohne Beschränkung der Allgemeinheit kann angenommen werden, dass die Matrix S

in Jordan’scher Normalform vorliegt, da sich jede Matrix durch reguläre Transformation in diese
Form überführen lässt. Darüber hinaus ist es aufgrund der Linearität von (4.22) ausreichend, die
folgende Argumentation für einen QnS-dimensionalen Jordan Kasten mit QnS � nS zu betrachten,
da sich die fehlenden Gleichungen in gleicher Weise berechnen lassen. Bezeichnet daher �S den
Eigenwert zu einem QnS-dimensionalen Jordan Kasten der Matrix S , dann folgt mit (4.22), … D�
…QnS …2

�
und dim .bild .…QnS// D QnS für alle k 2 f1; : : : ; QnSg aus .A…QnS �…QnSS C B�/ek D 0


A � �SIn B

C 0

� 

…QnS

�

�
ek D



0

Q

�
ek ; k D 1;
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bzw. 

A � �SIn B

C 0

� 

…QnS

�

�
ek D



…QnSek�1

Qek

�
; k > 1;

wobei hierbei ausgenutzt wurde, dass die Spaltenvektoren von…QnS Eigen- und Hauptvektoren der
Matrix S zum Eigenwert �S darstellen.

Da das Zustandssystem als rechts-invertierbar angenommen wurde und dessen Nullstellen nicht
mit den Eigenwerten von S zusammenfallen, hat die Matrix auf der linken Seite der Gleichung
für das Argument �S stets vollen Zeilenrang. Damit kann die Gleichung für jedes k und für jede
rechte Seite, die ungleich null ist, nach .eT

k

h
…T

QnS
�T

i
/T aufgelöst werden, da für alle k aufgrund

der vollständigen Beobachtbarkeit des Paares .Q;S/Qe1 ¤ 0 ist, woraus die Vorsteuerung (4.21)
folgt.

Um zu zeigen, dass Anfangswerte w.t0/ und x.t0/ existieren, so dass y.t/ D Qw.t/ für t � t0

gilt, wird das Zustandssystems Px D Ax C Bu mit der Ausgangsgleichung y D Cx um (4.21)
erweitert, woraus das erweiterte System
 Px

Pw
�

D


A B�

0 S

� 

x

w

�
;



x.t0/

w.t0/

�
D



x0

w0

�

folgt. Wird bezüglich des erweiterten Systems der Unterraum bild
��
…T InS

�T
�

betrachtet, so
folgt zusammen mit (4.22a) aus


A B�

0 S

� 

…

InS

�
D



…

InS

�
S;

dass der Unterraum invariant unter der Dynamik des erweiterten Gesamtsystems ist. Darüber hin-
aus lässt sich zusammen mit (4.22b) aus

�
C �Q

� 

…

InS

�
D 0

schließen, dass der Unterraum auch unbeobachtbar am Ausgang e D Cx � Qw ist, was y.t/ D
Qw.t/ für t � t0 impliziert, wenn

�
xT

0 wT
0

�T 2 span
��
…T InS

�T
�

ist.

Mit Lemma 4.8 ist gezeigt, dass durch Verwendung einer Vorsteuerung nach (4.21) Ausgangstra-
jektorien y.t/ erzeugt werden können, die sich als Lösung der Differentialgleichung (4.21a) mit
der Ausgangsgleichung y.t/ D Qw.t/ ergeben, wenn die Anfangswerte des Zustandssystems und
des Trajektoriengenerators gemäß

�
xT

0 wT
0

�T 2 span
��
…T InS

�T
�

gewählt werden. Um dieses
Ergebnis für die Synchronisierung heterogener Agenten nutzbar zu machen, muss das Vorgehen
noch weiter angepasst werden. Es wird daher angenommen, dass jeder Agent (4.16) Annahme 4.7
erfüllt und durch eine entkoppelnde dynamische Ausgangsrückführung

Pxeki D Aeki
xeki C Beki

yi C Fek,ci
wi; (4.23a)

ui D Ceki
xeki C Deki

yi C Fek,pi
wi; (4.23b)
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die nach Satz 3.11 entworfen wurde, geregelt wird. Dies führt dazu, dass bezüglich des Führungs-
verhaltens von wi nach yi eine Minimalrealisierung angegeben werden kann. Das heißt, die in
Satz 3.11 mitƒK2 bezeichneten Eigenwerte des geschlossenen Regelkreises sind für alle Agenten
bezüglich wi unsteuerbar. Werden diese sämtlich stabil gewählt, treten diese Eigenbewegungen
asymptotisch nicht mehr in Erscheinung, und es ist ausreichend, bezüglich des Führungsverhal-
tens die Minimalrealisierung

PQxi D QA Qxi C QBwi; (4.24a)

yi D QC Qxi (4.24b)

mit dem Zustandsvektor Qxi D
h

QxT
i1

: : : QxT
ip

iT
und

QA D diag
�
ASNF1

; : : : ;ASNFp

�
; (4.25a)

QB D diag
�
bSNF1

; : : : ; bSNFp

�
; (4.25b)

QC D diag
�
cT

SNF1
; : : : ; cT

SNFp

�
(4.25c)

zu betrachten. Für die Indizes ist i;k 2 f1; : : : ;N g sowie j 2 f1; : : : ;pg und aufgrund An-
nahme 4.7 (A2) gilt der Zusammenhang dim

� Qxij

� D dim
� Qxkj

�
. Vereinfachend werden darüber

hinaus die p entkoppelten Teilsysteme in Steuerungsnormalform (vgl. z.B. [28]) angesetzt, da
sich die charakteristischen Polynome jedes Teilsystems sehr einfach aus den Eigenwerten des
geschlossenen Regelkreises über den Zusammenhang

Qıi

jD1.s � �Kij / D sıi C aıi �1i
sıi �1 C

� � �Ca1i
s Ca0i

berechnen lassen. Zusätzlich ist aufgrund der geforderten stationären Genauigkeit
a0i

D Qıi

jD1.��Kij / und damit cT
SNFi

2 R1�ıi durch cT
SNFi

D �
a0i

0 : : : 0
�

gegeben.

Wird dann für alle i 2 f1; : : : ;N g und j 2 f1; : : : ;pg bezüglich jeder der p Führungsgrößen eine
Vorsteuerung der Form

Pzij D Sjzij ; zij .t0/ D zij0
; (4.26a)

wij D �jzij (4.26b)

mit zij 2 R
nSj vorgeschaltet, wobei �j aus der Lösung von

…jSj D ASNFj
…j C bSNFj

�j ; (4.27a)

cT
SNFj

…j D qT (4.27b)

bestimmt werden muss, dann lassen sich gemäß Lemma 4.8 Anfangswerte für alle Agenten und
(4.27) finden, so dass sich alle Ausgänge synchron verhalten. Zur Sicherstellung, dass mit dem
Entkopplungsansatz stets auch asymptotische Synchronisierung erreicht wird, muss eine zusätz-
liche Regelung eingeführt werden. Die Kombination von (4.27) mit einem dynamischen Regler
in Anlehnung an das Vorgehen in Abschnitt 4.1.3 führt auf die allgemeine Darstellung eines syn-
chronisierenden Reglers in jedem Übertragungskanal der Form
 Pzij

PxSij

�
D



Sj ESj

0 ASj

� 

zij

xSij

�
C



kSj

BSj

�
vi; (4.28a)

wi D �
�j CSj

� 

zij

xSij

�
C DSj

vi; 8i 2 f1; : : : ;N g;8j 2 f1; : : : ;pg; (4.28b)
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woraus durch die abkürzende Schreibweise einer Blockdiagonalmatrix, beispielhaft durch QS D
diag

�
S1; : : : ; Sp

�
dargestellt, der synchronisierende Regler für alle entkoppelt geregelten Agen-

ten durch
 Pzi

PxSi

�
D

" QS QES

0 QAS

# 

zi

xSi

�
C

" QKS
QBS

#
vi; (4.29a)

wi D
h Q� QCS

i 

zi

xSi

�
C QDSvi; 8i 2 f1; : : : ;N g (4.29b)

folgt. Zur Bestimmung notwendiger und hinreichender Bedingungen, die Synchronisierung hete-
rogener Agenten mittels Entkopplung garantieren, wird auf die Ergebnisse aus Satz 4.2 und die
darauf basierende Diskussion in Abschnitt 4.1.3 zurückgegriffen und auf die vorliegende Problem-
stellung angepasst. Dass auch bei der Synchronisierung heterogener Agenten durch Entkopplung
ein simultanes Stabilisierungsproblem entsteht, zeigt der nachfolgende Satz.

Satz 4.9. Betrachtet werden N heterogene Agenten wie in (4.16), die Annahme 4.7 erfüllen, zu-
sammen mit einem Kommunikationsnetzwerk, was durch den verbundenen Graphen G beschrieben
wird. Es seien darüber hinaus die Rangannahmen in Satz 3.11 für alle Agenten erfüllt, so dass für
alle Agenten eine Entkopplungsregelung (4.23) existiert. Werden die bezüglich der Führungsgröße
wi unsteuerbaren Eigenwerte ƒK2 stabil gewählt und ist die synchronisierende Regelung (4.29)
für alle Agenten identisch, dann wird Synchronisierung für alle Agenten im Sinne von Definition
2.12 genau dann erreicht, wenn die Matrizen

2
4ASNFj

bSNFj
�j bSNFj

CSj

0 Sj ESj

0 0 ASj

3
5 C �LGk

2
4bSNFj

DSj

kSj

BSj

3
5 h

cT
SNFj

0 0
i
; (4.30)

8j 2 f1; : : : ;pg; k 2 f2; : : : ;N g

stabil sind, wobei �LGk mit k 2 f2; : : : ;N g die Eigenwerte mit positivem Realteil der Laplacema-
trix des Graphen G bezeichnet.

Beweis. Aufgrund der Voraussetzung, dass die Rangannahmen in Satz 3.11 für alle Agenten er-
füllt sind, existiert für alle Agenten eine Entkopplungsregelung (4.23). Da die bezüglich der Füh-
rungsgröße wi unsteuerbaren EigenwerteƒK2 stabil zu wählen sind und diese somit asymptotisch
nicht mehr in Erscheinung treten, kann für alle entkoppelt geregelten Agenten eine Minimalrea-
lisierung (4.24) bestimmt werden, die ohne Beschränkung der Allgemeinheit aus p entkoppelten
Teilsystemen in Steuerungsnormalform besteht, woraus die Darstellung (4.25) folgt. Da aufgrund
von Annahme 4.7 die Differenzordnungen und Regelungseigenwerte aller Agenten identisch sind,
kann bezüglich des Führungsverhaltens der erweiterte Agent

Pxei D Aexei C Bevi;

yi D Cexei;
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mit dem Zustandsvektor xei D � NxT
i zT

i xT
Si

�T
und den Systemmatrizen

Ae D

2
64

QA QB Q� QB QCS

0 QS QES

0 0 QAS

3
75 ; Be D

2
64

QB QDS
QKS
QBS

3
75 ; Ce D

h QC 0 0
i

definiert werden, woraus das Gesamtsystem

Pxe D ..IN ˝ Ae/C .IN ˝ Be/.LG ˝ Ce//xe

mit dem Zustandsvektor xe D �
xT

e1 : : : xT
eN

�T
entsteht. Dabei ist

dim .xei/ D
pX

jD1

�
ıij C nSj

C dim
�
xSij

�� D dim .xek/ WD ne 8i;k 2 f1; : : : ;N g

und damit dim .xe/ D N ne. Aufgrund der Struktur des geregelten Gesamtsystems, die sich be-
züglich des Führungsverhaltens als ein homogenes Multi-Agenten System darstellt, lässt sich wie
in Abschnitt 4.1.1 mittels der neuen Koordinatendarstellung Nxe D T �1xe und der Transformati-
onsmatrix T D .VLG ˝ Ine/ bzw. der inversen Transformationsmatrix T �1 D .V �1

LG ˝ Ine/, wobei
VLG die Hauptvektormatrix von LG darstellt, auf die neue Koordinatendarstellung

PNxe D .V �1
LG ˝ Ine/ ..IN ˝ Ae/C .IN ˝ Be/.LG ˝ Ce// .VLG ˝ Ine/ Nxe;

D �
.IN ˝ Ae/C .JLG ˝ BeCe/

� Nxe

übergehen, woraus wieder ein simultanes Stabilisierungsproblem folgt, da die Matrix JLG im All-
gemeinen eine obere Dreiecksmatrix ist. Damit folgt ebenfalls die Aussage des Satzes, da die
Stabilisierung von Ae C �LGkBeCe für k 2 f2; : : : ;N g aufgrund der Blockdiagonalstruktur aller
Submatrizen in Ae, Be und Ce auf die simultane Stabilisierung der p Eingrößensysteme in (4.30)
führt.

Durch Satz 4.9 wird deutlich, dass mit einer unterlagerten Entkopplungsregelung, wobei die Agen-
ten (4.16) hierbei Annahme 4.7 erfüllen müssen, sich bezüglich des Führungsverhaltens eine iden-
tische Dynamik ergibt. Durch Vorschaltung des synchronisierenden Reglers (4.29) erhält jeder
Agent ein identisches internes Modell, d.h. die notwendigen Bedingungen aus Satz 4.6 sind für
alle p entkoppelten Übertragungspfade erfüllt. Mit den notwendigen und hinreichenden Bedin-
gungen aus Satz 4.9 kann somit konstruktiv die Regelung (4.29) entworfen werden, wobei sich
dabei als Vorteil ergibt, dass die Synchronisierung für jeden Übertragungspfad ebenfalls entkop-
pelt entworfen werden kann. Darüber hinaus lässt sich über die Wahl der Matrizen Sj bzw. qT

j

gezielt die synchrone Trajektorie in jedem Ausgang der Agenten einstellen.

Allerdings ergibt sich der Entwurf der synchronisierenden Regelung auch an dieser Stelle wieder
als ein strukturbeschränktes Regelungsproblem, so dass im Allgemeinen ein Entwurfsverfahren
wie in Abschnitt 4.1.3 für jede Ausgangsgröße anzuwenden ist. Dies ist allerdings leicht mög-
lich, da sich die Differentiale von (4.30) sehr einfach bestimmen lassen, was die Anwendung der
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Methodik zur Vorgabe von Eigenwertbereichen auf das vorliegende Problem ermöglicht. Darüber
hinaus ergeben sich, obwohl das Vorgehen in diesem Abschnitt auf der Homogenisierung der
Agenten basiert, für die Agenten im Allgemeinen nicht-identische Regelgesetze, was durch Kom-
bination von (4.23) und (4.29) auf die Matrizen eines strukturbeschränkten dynamischen Reglers

As
di D

2
64Aeki

Fek,ci
Q� Fek,ci

QCS

0 QS QES

0 0 QAS

3
75 ; Bs

di D

2
64Beki

0

0 QKS

0 QBS

3
75 ;

C s
di D

h
Ceki

Fek,pi
Q� Fek,pi

QCS

i
; Ds

di D
h
Deki

Fek,pi
QDS

i

führt. Das Signal Qvi.t/ ergibt sich aufgrund (4.18) aus Qvi.t/ D �
yi.t/

T vi.t/
T
�T

. Damit zeigt sich
ebenfalls die Strukturbeschränkung dieses Ansatzes, die durch die Methodik aus diesem Abschnitt
gezielt durch eine unterlagerte Entkopplungsregelung und einer Regelung zur Synchronisierung
homogener Agenten aufgelöst werden kann.

Anmerkung 4.10. Durch Annahme 4.7 wird gefordert, dass die unterlagerte Entkopplungsrege-
lung allen Agenten eine identische, stabile und stationär genaue Dynamik zuweist. Eine Alterna-
tive besteht darin, direkt in jedem Übertragungspfad die Dynamik der Matrizen Sj vorzugeben,
wie zum Beispiel in [40] dargestellt. Für die nominelle, entkoppelt geregelte Strecke ist dabei das
interne Modellprinzip erfüllt. Allerdings führen Abweichungen in den Daten von (4.16), die unter
praktischen Gesichtspunkten stets auftreten, dazu, dass das interne Modellprinzip nicht mehr er-
füllt ist. Dies ist in diesem Ansatz nicht der Fall, da das interne Modell Bestandteil des Reglers
ist.

Zusammenfassend ist festzuhalten, dass mit den Ergebnissen aus diesem Abschnitt die Entkopp-
lung dynamischer Systeme auf die Synchronisierung heterogener agentenbasierter dynamischer
Systeme übertragen wurde. Neben der Möglichkeit den synchronisierenden Regler für alle p

Ausgangsgrößen getrennt zu entwerfen, was vorteilhaft für die Komplexität des resultierenden
Entwurfes ist, resultiert damit auch die Möglichkeit, die Dynamik des Synchronisierungsfeh-
lers in den entsprechenden Ausgangskanälen weitestgehend unabhängig voneinander einstellen
zu können. Durch das Verzichten auf diese Forderung lassen sich weitere Entwurfsverfahren zur
Synchronisierung heterogener Agenten anwenden, was im folgenden Abschnitt am Beispiel der
Verkopplungsregelung diskutiert wird.

4.2.3 Synchronisierung durch Verkopplung

Im vorangegangenen Abschnitt hat sich durch den Synchronisierungsansatz basierend auf einer
unterlagerten Entkopplungsregelung die Möglichkeit ergeben, die synchrone Trajektorie in jedem
Ausgang getrennt vorzugeben. Darüber hinaus hat sich durch Satz 4.9 gezeigt, dass damit der Ent-
wurf der synchronisierenden Regelung individuell für jede Ausgangsgröße durchführbar ist. Im
Hinblick auf die geringere Anforderung, dass lediglich asymptotische Synchronisierung erzielt
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werden muss, ist dieser Ansatz vergleichsweise restriktiv und hinsichtlich der benötigten Regler-
ordnung meist zu komplex. Dies motiviert daher den Verzicht auf die unterlagerte Entkopplungs-
regelung und die Verwendung einer unterlagerten Verkopplungsregelung in diesem Abschnitt.

In Bild 4.3 ist die Idee der Synchronisierung durch Verkopplung veranschaulicht. Auch bei diesem
Ansatz wird jedem Agenten eine identische Vorsteuerung wie in (4.21) vorgeschaltet, die im syn-
chronen Zustand eine vorab festgelegte Trajektorie generiert und die um eine synchronisierende
Regelung ergänzt wird. Dies hat zur Folge, dass jeder Agent im offenen Regelkreis ein identisches
Modell aufweist, so dass die notwendigen Bedingungen zur Synchronisierung nach Satz 4.6 er-
füllt sind. Der Verkopplungsregelung kommt die Aufgabe zuteil, asymptotisch die Differenz zwi-
schen dem Ausgang des Agenten yi in (4.16) und dem Ausgang ySi

D Qzi des Zustandssystems
Pzi D Szi C Qvi mit zi 2 RnS und zi.t0/ D zi0

, welches gleichzeitig als dynamische Erweiterung
des Agenten (4.16) dient, zu null zu regeln. Daraus folgt die Forderung nach Verkopplung zu

lim
t!1 yi.t/ � ySi

.t/ DW yvi
.t/ D 0: (4.31)

Darüber hinaus soll bezüglich des Führungsverhaltens des verkoppelt geregelten Systems nur noch
eine Dynamik in Erscheinung treten, die die Form

Pzi D Szi C RSwi; zi.t0/ D zi0
; (4.32a)

ySi
D Qzi; (4.32b)

hat. Dies impliziert, dass durch die Verkopplungsregelung ebenfalls eine Homogenisierung aller
Agenten durchgeführt wird, so dass sich jeder Agent bezüglich des Netzwerks identisch verhält.
Dabei ist zu diesem Zeitpunkt die Dimension der Eingangsmatrix RS noch nicht festgelegt. Unter
der Voraussetzung, dass das Zustandssystem (4.32) über den Eingang wi vollständig steuerbar
ist, lässt sich eine synchronisierende Regelung in einfacher Weise durch die in Abschnitt 4.1.3
eingeführte Methodik berechnen.

Um Weitläufigkeiten im Hinblick auf den Entwurf der Verkopplungsregelung basierend auf der
Methodik aus Abschnitt 3.2.3 zu vermeiden, wird im Folgenden angenommen, dass jeder Agent
(4.16) die Bedingung nach Kimura (3.16) erfüllt. D.h. es lässt sich mittels der parametrischen
Methodik aus Abschnitt 3.1.3 für jeden Agenten eine statische Rückführung ui D Kiyi finden,

Agent
i

VKRSync.
yi

vi

yi

ui

"
yi.s/

yvi
.s/

#
D

"
Gwz.s/ Gwi12

.s/

0 Gwi22
.s/

# "
wi.s/

0

#
PxSi

D ASxSi
C BSvi

wi D CSxSi
C DSvi

Bild 4.3: Synchronisierung mittels Relativ- und Absolutinformation basierend auf einer un-
terlagerten Verkopplungsregelung
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so dass � .Ai C BiKiCi/ D ƒKi mit nahezu beliebig vorgebbaren Regelungseigenwerten ƒKi

gilt. Auch an dieser Stelle stellt dies keine Beschränkung der Allgemeinheit dar, da mit einem
zusätzlichen dynamischen Ausgangsregler stets die Bedingung nach Kimura erfüllt werden kann.
Aus Gründen der Lesbarkeit der Ergebnisse in diesem Abschnitt wird auf die explizite Darstellung
dieses Ansatzes jedoch verzichtet.

Durch Zusammenfassen von (4.16) mit der dynamischen Erweiterung durch das Zustandssystem
Pzi D Szi C Qvi und im Hinblick auf Lemma 4.8 lässt sich der erweiterte Zustandsvektor xei D�
xT

i zT
i

�T 2 Rni CnS definieren, woraus der erweiterte Agent

Pxei D Aeixei C Beiuei; (4.33a)

yi D Ceixei; (4.33b)

mit den Systemmatrizen

Aei D


Ai Bi�i

0 S

�
; Bei D



Bi 0

0 InS

�
; Cei D



Ci 0

0 InS

�
entsteht. Darin resultiert die Matrix �i aus der Lösung der Sylvester Gleichung

…iS D Ai…i C Bi�i; (4.34a)

Ci…i D Q: (4.34b)

Die dynamische Erweiterung des Agenten hat auch an dieser Stelle zur Folge, dass im offenen
Regelkreis der invariante Unterraum bild

��
…T

i InS

�T
�

existiert, der unbeobachtbar am Verkopp-

lungsausgang yvi
D �

Ci �Q
�

xei ist, und es somit nach Lemma 4.8 möglich ist, Anfangswerte
zu bestimmen, so dass yi.t/ D yj .t/ für alle i;j 2 f1; : : : ;N g gilt. Damit sind die notwendi-
gen Voraussetzungen zur Synchronisierung heterogener Agenten aus Satz 4.6 erfüllt. Mittels der
Methodik zum Entwurf einer Verkopplungsregelung aus Abschnitt 3.2.3 ist daher die Ausgangs-
regelung mit Vorfilter

uei D


K1yi

K1zi

K2yi
K2zi

� 

yi

zi

�
C



Fui

Fzi

�
wi D Keiyei C Feiwi (4.35)

derart auszulegen, dass neben der Einhaltung der Verkopplungsbedingung (4.31) und der Beibe-
haltung des invarianten Unterraums bild

��
…T

i InS

�T
�

sich zudem für alle Agenten bezüglich des
Eingangs wi und des Ausgangs yi ein dynamisches Verhalten nach (4.32) ergibt, was die Homo-
genisierung der Agenten durch die Verkopplungsregelung zur Folge hat.

Zur Verdeutlichung der hierzu notwendigen Anpassungen der Methodik aus Abschnitt 3.2.3 ist zu-
nächst festzuhalten, dass die Rechtseigenvektoren des geschlossenen Regelkreises den Unterraum
bild

��
…T

i InS

�T
�

erzeugen müssen. Damit ergibt sich, dass ıv D nS, und es resultiert ausgehend
von den Entwurfsgleichungen (3.57) zur Bestimmung der Rechtseigenvektoren des geschlossenen
Regelkreises die Bestimmungsgleichung

2
4.Ai � �KkI/ Bi�i Bi 0

0 .S � �KkI/ 0 InS

Ci �Q 0 0

3
5

2
6664
vK1k

vK2k

pv1k

pv2k

3
7775 D 0; k 2 f1; : : : ;ıvg; (4.36)
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wobei f�K1; : : : ; �Kıvg D � .S/. Auf die Bestimmung der Rechtseigenvektoren durch Lösung von
(4.36) kann jedoch verzichtet werden, indem auf die Lösung …i und �i der Gleichung (4.34)
zurückgegriffen wird. Unter der vereinfachenden Annahme, dass die Eigenwerte der Matrix S

einfach sind, lassen sich aus dem Zusammenhang SVS D VSdiag .�K1; : : : ; �Kıv/ D VSƒS, wobei
in VS spaltenweise die Rechtseigenvektoren vSk der Matrix S enthalten sind, unter Hinzunahme
von (4.34) die Zusammenhänge

…iVSƒS D Ai…iVS C Bi�iVS;

Ci…iVS D QVS

berechnen. Spaltenweise ergibt sich damit

.Ai � �KkI/…ivSk C Bi�ivSk D 0;

Ci…ivSk � QvSk D 0:

Um sämtliche Freiheitsgrade der parametrischen Entwurfsmethodik sichtbar zu machen, lässt sich
die obige Darstellung durch Nullergänzung gemäß

.Ai � �KkI/…ivSk C Bi�ivSk C .Bi�iQ? � Bi�iQ?/ Qqvk D 0;

.S � �KkI/vSk C ..S � �KkI/Q? � .S � �KkI/Q?/ Qqvk D 0;

Ci…ivSk � QvSk � QQ? Qqvk D 0:

zusammen mit kern .Q/ D bild .Q?/ modifizieren, was ebenfalls in die Darstellung

2
4.Ai � �KkI/ Bi�i Bi 0

0 .S � �KkI/ 0 InS

Ci �Q 0 0

3
5

2
6664
…ivSk 0

vSk Q?
0 ��iQ?
0 �.S � �KkI/Q?

3
7775



1

Qqvk

�
D 0;

k 2 f1; : : : ;ıvg; �Kk 2 � .S/
überführbar ist. Somit sind die ersten ıv Spalten der Matrizen Vr und Qr bereits durch die Lö-
sung der Matrizengleichung (4.34) zusammen mit der Matrix Q? parametrierbar und auf den
Zugang über (4.36) kann verzichtet werden. Um den Unterraum bild

��
…T

i InS

�T
�

zu erzeu-
gen, ergibt sich aus den vorstehenden Umformungen zudem, dass die Parametervektoren qvk für
k 2 f1; : : : ;ıvg nicht beliebig wählbar, sondern gemäß qT

vk
D �

1 QqT
vk

�
zu wählen sind. In dieser

Darstellung ist der Parametervektor Qqvk beliebig wählbar und charakterisiert die verbleibenden
Freiheitsgrade der parametrischen Entwurfsmethodik, sofern dim kern .Q/ ¤ 0 gilt.

Für die verbleibenden Rechtseigenvektoren ist anschließend die Bestimmungsgleichung



.Ai � �KkI/ Bi�i Bi 0

0 .S � �KkI/ 0 InS

� 2
6664
vK1k

vK2k

pv1k

pv2k

3
7775 D 0; k 2 fıv C 1; : : : ;ıv C p � 1g;

(4.37)
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beziehungsweise in analoger Weise die Bestimmungsgleichung für die verbleibenden Linkseigen-
vektoren (3.58) auszuwerten, wobei die Regelungseigenwerte stabil und derart zu wählen sind,
dass die Rangannahmen in Satz 3.12 zur Bestimmung der Verkopplungsregelung erfüllt sind. Die
Koordinatentransformation

Qxi D �
VıviV

�1
S T?i

��1
xei D

h
W T

ıvi
V T

S T?i

iT
xei

mit bild .T?i/ D kern
�
V T

ıvi

�
sowie T T

?iT?i D Ini CnS�ıv überführt damit in Anlehnung an die
Diskussion in Abschnitt 3.2.3 jeden geregelten Agenten in die Darstellung" PQxi1PQxi2

#
D



S VSWıviAKei

T?i

0 T T
?iAKei

T?i

� 
 Qxi1

Qxi2

�
C



VSWıviBeiFei

T T
?iBeiFei

�
Qwi; (4.38a)



yi

yvi

�
D



Q CiT?i

0 CviT?i

� 
 Qxi1

Qxi2

�
; (4.38b)

wobei AKei
D Aei C BeiKeiCei und Cvi D �

Ci �Q
�

abgekürzt ist. Diese Darstellung des ver-
koppelt geregelten Systems verdeutlicht, dass die durch den parametrischen Ansatz stets zu ga-
rantierende Stabilität der Matrix T T

?iAKei
T?i unter der Voraussetzung Qwi D 0 dafür sorgt, dass

der Verkopplungsausgang gemäß (4.31) verschwindet.

Für den Vorfilterentwurf ist daher im Sinne der Verkopplungsregelung aus Abschnitt 3.2.3 neben
der Unsteuerbarkeit der Eigenwerte �Kk für k > ıv darüber hinaus zu fordern, dass sich bezüglich
des Ausgangs yi und des Eingangs wi eine Dynamik ergibt, die die Form (4.32) hat. Um dieses
Resultat zu erzielen, muss daher nicht nur der Ausdruck T T

?iBeiFei D 0 werden, sondern auch für
alle Agenten aus der Bestimmungsgleichung des Vorfilters


VSWıvi

T T
?i

�
BeiFei D



Pi

0

�
, �

Bei VıviV
�1

S

� 

Fei

�Pi

�
D 0 (4.39)

eine Matrix TFi
existieren, so dass PiTFi

D RS und damit Qwi D TFi
wi gilt. D.h. die Bildräume

der Matrizen Pi haben eine gemeinsame, nicht-leere Schnittmenge, was die Homogenisierung der
Agenten zur Folge hat, und dies führt zur Lösung des Synchronisierungsproblems heterogener
Agenten basierend auf einer unterlagerten Verkopplungsregelung auf die nachfolgende Annahme.

Annahme 4.11. Es gilt bild .RS/ WD \N
iD1bild .Pi/ ¤ ; und das Paar .S;RS/ ist steuerbar.

Unter dieser Annahme ist es möglich, eine identische synchronisierende Regelung gemäß

PxSi
D ASxSi

C BSvi (4.40a)

wi D CSxSi
C DSvi; 8i 2 f1; : : : ;N g; (4.40b)

für alle Agenten, die sich aufgrund von Annahme 4.11 in die Minimalrealisierung (4.32) überfüh-
ren lassen, zu verwenden. Das Resultat der vorstehenden Diskussionen ist in dem nachfolgenden
Satz zusammengefasst.
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Satz 4.12. Betrachtet werden N heterogene Agenten wie in (4.16), die Annahme 4.11 erfüllen, zu-
sammen mit einem Kommunikationsnetzwerk, was durch den verbundenen Graphen G beschrie-
ben wird. Es seien darüber hinaus die Rangannahmen in Satz 3.12 für alle Agenten erfüllt, so
dass für alle Agenten eine Verkopplungsregelung (4.35) mit der Verkopplungsbedingung (4.31)
existiert. Werden die bezüglich der Führungsgröße wi unsteuerbaren Eigenwerte �Kk für k > ıv

stabil gewählt und ist die synchronisierende Regelung (4.29) für alle Agenten identisch, dann wird
Synchronisierung für alle Agenten im Sinne von Definition 2.12 genau dann erreicht, wenn die
Matrizen


S RSCS

0 AS

�
C �LGk



RSDS

BS

� �
Q 0

�
; (4.41)

8k 2 f2; : : : ;N g
stabil sind, wobei �LGk mit k 2 f2; : : : ;N g die Eigenwerte mit positivem Realteil der Laplacema-
trix des Graphen G bezeichnet.

Beweis. Aufgrund der Voraussetzung, dass die Rangannahmen in Satz 3.12 für alle Agenten er-
füllt sind, existiert für alle Agenten eine Verkopplungsregelung (4.35) mit der Verkopplungsbe-
dingung (4.31). Da die bezüglich der Führungsgröße wi unsteuerbaren Eigenwerte �Kk für k > ıv

stabil zu wählen sind und diese somit asymptotisch nicht mehr in Erscheinung treten, kann für
alle verkoppelt geregelten Agenten gemäß (4.38) eine Minimalrealisierung bestimmt werden. Da
aufgrund von Annahme 4.11 das steuerbare Paar .S;RS/ in (4.32) existiert, folgt zusammen mit
(4.40) der steuer- und beobachtbare, geregelte Agent

Pxci D Acxci C Bcvi;

yi D Ccxci;

mit dem Zustandsvektor xci D �
zT

i xT
Si

�T
und den Systemmatrizen

Ac D


S RSCS

0 AS

�
; Bc D



RSDS

BS

�
; Cc D �

Q 0
�
;

woraus das homogene Multi-Agenten System

Pxc D ..IN ˝ Ac/C .IN ˝ Bc/.LG ˝ Cc//xc

mit dem Zustandsvektor xc D �
xT

c1 : : : xT
cN

�T
entsteht. Die verbleibende Argumentation des

Beweises ist daher äquivalent zu der in Satz 4.9, woraus die Aussage des Satzes folgt.

4.2.4 Abschließende Bemerkungen zur synchronen Zeitlösung

Dieser Abschnitt dient der abschließenden Betrachtung der in den vorstehenden Abschnitten er-
zielten Ergebnisse zur Synchronisierung heterogener agentenbasierter dynamischer Systeme. Aus-
gehend von den notwendigen Bedingungen zur Synchronisierung, die in Satz 4.6 zusammenge-
fasst sind, zeigt sich die folgende Eigenschaft der betrachteten Systemklasse. Unter der Annahme,
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dass eine synchronisierende Regelung – beispielsweise auf Grundlage einer unterlagerten Ent- be-
ziehungsweise Verkopplungsregelung bestimmt – vorliegt, synchronisieren sich alle Agenten auf
einen identischen Ausgangsverlauf yS.t/, der sich damit als Zeitlösung des Exosystems

Pz D Sz; z.t0/ D z
0
; (4.42a)

yS D Qz; (4.42b)

mit geeignet gewähltem Anfangswert z
0

darstellen lässt. Zur Erfüllung des internen Modellprin-
zips zur Synchronisierung nach Satz 4.6 besteht die zugrunde liegende Idee der vorgestellten Ent-
wurfsverfahren darin, ein Modell des Exosystems (4.42) in die Regelungsstruktur zu integrieren.
Dabei ist allerdings anzunehmen, dass jede Agentendynamik nicht bereits Teildynamiken von
(4.42) aufweist, da dies eine unnötige Redundanz nach sich zieht. Es ist daher konstruktiv fest-
zustellen, ob dieser Fall eintritt. Hierzu lässt sich auf die Lösung der Sylvester Gleichung mit
Nebenbedingung

…iS D Ai…i C Bi�i (4.43a)

Ci…i D Q (4.43b)

zurückgreifen, die zur Berechnung der synchronisierenden Regelungen basierend auf den Ab-
schnitten 4.2.2 und 4.2.3 zu bestimmen ist. Dies führt auf das nachfolgende Lemma.

Lemma 4.13. Wenn das Paar .�i;S/ aus der Lösung von (4.43) nicht vollständig beobachtbar
ist, dann existiert mindestens ein Eigenwert �� mit SvS D ��vS, so dass ebenfalls Aiv D ��v mit
Civ D QvS erfüllt ist.

Beweis. Da das Paar .�i;S/ nicht vollständig beobachtbar ist, existiert mindestens ein �� 2 � .S/
mit SvS D ��vS, und es gilt


S � ��InS

�i

�
vS D 0:

Da …i und �i aus der Lösung von (4.43) zu bestimmen sind, ist nach Lemma 4.8 der Unterraum
bild

��
…T IT

nS

��T
invariant unter der Dynamik von


 Pxi

Pz
�

D


Ai Bi�i

0 S

� 

xi

z

�

und unbeobachtbar am Ausgang e D Cxi � Qz. Damit gilt

rang

0
@

2
4Ai � �Ini

Bi�i

0 S � �InS

Ci �Q

3
5

1
A < ni C nS; 8� 2 � .S/

und somit auch für � D ��. Da .Ci;Ai/ und .Q;S/ beobachtbare Paare sind, impliziert dies, dass
ein v mit Aiv D ��v existiert, so dass Civ D QvS erfüllt ist.
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Mit Lemma 4.13 beziehungsweise ausgehend von der Überprüfung der Beobachtbarkeit des Paa-
res .�i;S/ lässt sich daher konstruktiv überprüfen, ob der Agent bereits Teildynamiken enthält,
die hinsichtlich der synchronen Trajektorie (4.42) gefordert sind. Tritt dieser Fall ein, lässt sich
somit eine Minimalrealisierung bezüglich des „Ausganges“ �i bestimmen, woraus eine um die
unbeobachtbaren Eigenwerte reduzierte Zustandsraumdarstellung mit der Dynamikmatrix QS und
der Ausgangsmatrix QQ sowie einem reduzierten Q�i resultiert, die für die Entwürfe gemäß Satz 4.9
bzw. 4.12 zu berücksichtigen sind. Dies umfasst ebenfalls den Fall �i D 0, was bedeutet, dass der
Agent bereits die synchrone Trajektorie vollständig enthält und somit nicht mehr gemäß Lemma
4.8 dynamisch erweitert werden muss.

4.3 Synchronisierung nichtlinearer Agenten mit Vektorrelativgrad

eins

Ausgehend von der Darstellung in Bild 4.1 wird in diesem Abschnitt eine spezielle Klasse von
Multi-Agenten Systemen betrachtet. In Abgrenzung zu den vorstehenden Abschnitten wird die
Dynamik nicht mehr als linear angenommen, sondern nichtlineare Agenten mit Vektorrelativgrad
eins betrachtet. Die Betrachtung dieser speziellen Systemklasse ist darin begründet, dass nicht-
lineare Systeme mit Vektorrelativgrad eins und Lyapunov stabiler Nulldynamik rückgekoppelt
äquivalent zu einem passiven System sind [15]. Darüber hinaus zeigt sich, dass Synchronisierung
passiver Systeme mit vergleichsweise einfachen Regelgesetzen durchführbar ist [6, 19, 54].

Das grundsätzliche Vorgehen ist hingegen identisch zu Abschnitt 4.2 – durch eine unterlagerte
Rückführung wird jeder Agent bezüglich des Netzwerks homogenisiert und eine überlagerte syn-
chronisierende Regelung führt die Ausgangstrajektorien der Agenten auf einen identischen Ver-
lauf. Darüber hinaus wird angenommen, dass die Agenten parametrische Unsicherheiten aufwei-
sen, die in diesem Falle durch eine adaptive Regelung kompensiert werden, was der unterlagerten
Regelung entspricht. Der synchronisierende Regler nutzt ein Verfahren, das auf der Passivität ba-
siert und welches auch die Erweiterung des Verfahrens auf spezielle Kommunikationsstrukturen,
die Zeitverzögerungen ausgesetzt sind, ermöglicht. Die in diesem Abschnitt erzielten Ergebnisse
sind ebenfalls in [112] in englischer Sprache zu finden.

4.3.1 Vorüberlegungen zur betrachteten Systemklasse

Betrachtet werden zunächst nichtlineare, eingangs-affine Zustandssysteme gemäß

Px D f .x/C g.x/u; (4.44a)

y D h.x/; (4.44b)

wobei mit x 2 Rn, u 2 Rm und y 2 Rm der Zustand, der Eingang und der Ausgang des Zustands-
systems bezeichnet wird. Zudem werden die Vektorfelder f .x/ und gi.x/ mit i 2 f1; : : : ;mg so-
wie die Ausgangsabbildung h.x/ als hinreichend glatt angenommen. Zur Vereinfachung der nach-
folgenden Diskussionen werden ohne Beschränkung der Allgemeinheit die Annahmen f .0/ D 0
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und h.0/ D 0 getroffen. Im Hinblick auf die Passivitätseigenschaft eines Zustandssystems (4.44)
wird die folgende Definition benötigt.

Definition 4.14 ([38]). Das Zustandssystem (4.44) ist passiv, wenn eine stetig differenzierbare
positiv semi-definite Funktion V .x/ existiert, so dass

PV D @V

@x
.f .x/C g.x/u/ � uTy; 8.x;u/ 2 Rn � Rm

gilt. Darüber hinaus ist das Zustandssystem (4.44) strikt passiv, wenn PV � uTy � S.x/ für eine
positiv-definite Funktion S.x/ ist, bzw. verlustlos, wenn PV D uTy gilt.

Hinsichtlich der Möglichkeit, durch eine Zustandsrückführung wesentliche Eigenschaften von
(4.44) zu verändern, stellt sich die Frage, unter welchen Bedingungen ein System (4.44) durch
eine statische Zustandsrückführung äquivalent zu einem passiven System mit positiv definierter
Speicherfunktion ist. Hierbei spielt sowohl der relative Grad (vgl. z.B. [36]) eines Systems als
auch eine Normalform, die für die weiteren Betrachtungen benötigt wird, eine Rolle. D.h. es wird
eine neue Koordinatendarstellung für (4.44) gesucht, so dass sowohl die Passivitätseigenschaften
als auch die interne Dynamik eines eingangs-affinen Zustandssystems sichtbar werden. Sind daher
nach [14] die Bedingungen

(A1) Die Matrix Lgh.x/ WD �
Lg1

h.x/ : : : Lgm
h.x/

�
ist regulär für alle x 2 Rn, wobei

Lgi
h.x/ die Lie-Ableitung der Ausgangsfunktion (4.44b) in Richtung des Vektorfeldes

gi.x/ bezeichnet.

(A2) Die Vektorfelder Qg1.x/, ..., Qgm.x/ sind vollständig (engl. complete), wobei

� Qg1.x/ : : : Qgm.x/
� D g.x/ŒLgh.x/��1

ist.

(A3) Die Vektorfelder Qg1.x/, ..., Qgm.x/ kommutieren.

erfüllt, dann existiert ein global definierter Diffeomorphismus, welcher (4.44) in die Normalform

Pz D q.z;y/ (4.45a)

Py D b.z;y/C a.z;y/u (4.45b)

überführt. Darin ist aufgrund des relativen Grades, was (A1) zum Ausdruck bringt, a.z;y/ re-
gulär und mit z1.x/; : : : ; zn�p.x/ und den p Ausgängen y D h.x/ sind die neuen Koordina-
ten festgelegt. Annahme (A2) lässt sich gemäß den Betrachtungen in [1, Abschnitt 3.9] dahin-
gehend interpretieren, dass der durch das Vektorfeld Qgi.x/ induzierte Fluss ˆt.x/ D x.t/ mit
@
@t
ˆt.x/ jtD0D Qgi.x/ für alle t 2 R definiert und damit die Zeitlösung x.t/ existiert und eindeu-

tig ist. Aufgrund der Annahme, dass die Vektorfelder Qgi.x/ vollständig sind, folgt aus (A3), dass
die Flüsse der Vektorfelder Qgi.x/ für alle i 2 f1; : : : ;mg vertauschbar sind [1, Satz 36].
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92 4 Synchronisierung basierend auf Absolut- und Relativinformation

Darüber hinaus lässt sich aufgrund der Annahme, dass die Vektorfelder f .x/ und gi.x/ mit i 2
f1; : : : ;mg glatt sind, durch eine Taylor Entwicklung (4.45a) auch als

Pz D q.z;0/C p.z;y/y (4.46)

schreiben, wobei p.z;y/ damit ebenfalls eine glatte Funktion ist. Wird für (4.45) die nichtlineare
Zustandsrückführung u D a�1.z;y/.v�b.z;y// eingesetzt, dann ergibt sich die Nulldynamik des
Systems aus Pz D q.z;0/ und y.t0/ D 0. Zur Synchronisierung nichtlinearer Agenten, die sich in
die Normalform (4.45) überführen lassen, wird noch eine weitere Einschränkung der betrachteten
Systemklasse benötigt. Dies umfasst nichtlineare Systeme, die schwach minimalphasig sind, was
die folgende Definition präzisiert.

Definition 4.15 ([15]). Angenommen, Lgh.0/ ist regulär. Das Zustandssystem (4.45) wird als
global schwach minimalphasig bezeichnet, wenn eine C r -Funktion W .z/ mit r � 2 existiert, die
für alle z mit W .0/ D 0 definiert, positiv definit und proper ist, so dass

@W

@z
q.z;0/ � 0

für alle z gilt.

Mit der vorstehenden Definition ist die Minimalphasigkeit eines Systems an die Stabilitätseigen-
schaften der Nulldynamik geknüpft. Ist daher eine Lyapunovfunktion W .z/ für die Nulldynamik
bestimmt, lässt sich auf Minimalphasigkeit des Zustandssystem (4.45) schließen.

4.3.2 Passivitätsbasierte Synchronisierung

Zur Herleitung einer adaptiven, synchronisierenden Regelung für nichtlineare Agenten mit Vek-
torrelativgrad eins wird zunächst ein Verfahren aus der Literatur vorgestellt, welches die Synchro-
nisierung identischer nichtlinearer passiver Agenten ermöglicht. Hierzu wird auf die Ergebnisse
aus [17, 18] zurückgegriffen, worin Chopra und Spong bzw. Chopra eine auf der Passivität ba-
sierende kooperative Regelung vorstellen. Die vorstehenden Resultate werden auf eine modifi-
zierte Systemklasse nichtlinearer Agenten erweitert, was sich in parametrischen Unsicherheiten
der nichtlinearen Dynamik der Agenten ausdrückt. Die unterlagerte Regelung der Agenten ist in
diesem Sinne so auszulegen, dass die Unsicherheiten kompensiert werden, was auf den adaptiven
Anteil der Regelung führt.

Für die weiteren Betrachtungen wird daher ein Multi-Agenten System, bestehend aus N nichtli-
nearen Agenten mit unsicherer Dynamik, die sich gemäß

Pzi D qi.zi;0/C pi.zi;yi/yi C p�i
.zi;yi/�i1

; (4.47a)

Pyi D bi.zi;yi/C b�i
.zi;yi/�i2

C ai.zi;yi/ui; (4.47b)

mit i 2 f1; : : : ;N g darstellen lassen, betrachtet, wobei zi 2 Rni �q, yi 2 Rq, ui 2 Rq sowie
�i1

2 Rpi1 und �i2
2 Rpi2 . Die Parameter �i1

und �i2
sind in dieser Darstellung unbekannte, kon-

stante Vektoren, womit die parametrischen Unsicherheiten jedes Agenten zum Ausdruck kommen.
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Es wird weiterhin angenommen, dass alle Vektorfelder hinreichend glatt sind, und dass die Bedin-
gungen b�i

.0;0/ D 0 und p�i
.0;0/ D 0 erfüllt sind. Dies hat zur Folge, dass die Unsicherheiten

keine Änderung der Ruhelage von (4.47) zur Folge haben.

Gilt hingegen �i1
D 0 und �i2

D 0 8i 2 f1; � � � ;N g, was der nominalen Dynamik der Agenten
in (4.47) entspricht, resultiert daraus die in [17, 18] angenommene Systemstruktur der Agenten.
Diese bildet somit den Ausgangspunkt für die Ergebnisse des Abschnitts, weshalb kurz die benö-
tigten Definitionen und Ergebnisse aus [17, 18] dargestellt werden. Die in Kapitel 2 eingeführte
Definition hinsichtlich Ausgangssynchronisierung ist ebenfalls im nichtlinearen Fall gültig.

Definition 4.16 (Ausgangssynchronisierung, vgl. [17]). Betrachtet werden Multi-Agenten Systeme
mit N Agenten gemäß (4.47). Die Agenten erzielen Ausgangssynchronisierung, wenn

lim
t!1

��yi.t/ � yj .t/
�� D 0 8i; j D 1; : : : ;N (4.48)

erfüllt ist.

Die Ergebnisse dieses Abschnitts lassen sich in einfacher Weise auf spezielle Kommunikations-
netzwerke erweitern, bei denen die Kommunikation der Ausgänge mit Verzögerung erfasst wird,
was für praktische Problemstellungen von Wichtigkeit ist. Hierzu ist die vorstehende Definition
an die Problemstellung anzupassen, woraus die folgende modifizierte Definition folgt.

Definition 4.17 ([17, 18]). Betrachtet werden Multi-Agenten Systeme mit N Agenten gemäß
(4.47). Die Agenten erzielen verzögerte Ausgangssynchronisierung, wenn

lim
t!1

���yi

�
t � T k

ij

�
� yj .t/

��� D 0 8i; j 8k: (4.49)

erfüllt ist.

Auch hinsichtlich der vorstehenden Definition werden die Annahmen aus [17] bezüglich der Ver-
zögerungen übernommen, d.h. die Verzögerungen werden als konstant und beschränkt angenom-
men. Da in Abhängigkeit der Kommunikationsstruktur mehrere Pfade zwischen zwei Knoten
existieren können, wird mit T k

ij die Verzögerung entlang des k-ten Pfades vom i -ten Agenten
zum j -en Agenten bezeichnet. Vorausgesetzt wird lediglich, dass die Verzögerung entlang einer
einzelnen Kante im Kommunikationsgraphen eindeutig ist. D.h. Zeitverzögerungen Tij zwischen
benachbarten Agenten, was einem Pfad der Länge eins entpricht, sind eindeutig. In englischer
Sprache wird dies als one-hop transmission delay bezeichnet.

Im Hinblick auf die Definitionen bezüglich der Ausgangssynchronisierung nichtlinearer Agen-
ten lässt sich die Problemstellung, die in diesem Abschnitt gelöst wird, wie folgt zusammenfas-
sen: Ausgehend von der Systemdarstellung nichtlinearer, unsicherer Agenten in (4.47) wird ein
Multi-Agenten System aus N Agenten betrachtet. Für jeden Agenten ist ein synchronisierendes
Regelgesetz zu bestimmen, welches dazu führt, dass sich alle Ausgänge der Agenten im Sinne von
(4.48) im Fall ohne Verzögerung bzw. im Sinne von (4.49) im Fall mit Verzögerungen synchroni-
sieren. Hierzu wird das nachstehende Resultat benötigt, was die Synchronisierung von N Agenten
in (4.47) zur Folge hat, wenn lediglich die nominale Dynamik der Agenten berücksichtigt wird.
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Satz 4.18 ([17]). Betrachtet werden Multi-Agenten Systeme mit N Agenten gemäß (4.47), wobei
�i1

D 0 und �i2
D 0 für alle i 2 f1; � � � ;N g angenommen wird. Nutzt jeder Agent die Zustands-

rückführung ui D a�1
i .zi;yi/.vi � bi.zi;yi// zusammen mit der kooperativen Regelung

vi D
NX

jD1

aGij

�
yj .t � Tji/ � yi

� � �
Lpi .zi ;yi /Wi

�T (4.50)

und sind alle Agenten global schwach minimalphasig sowie der Kommunikationsgraph stark ver-
bunden, dann synchronisieren sich alle Ausgänge der Agenten im Sinne von (4.49).

4.3.3 Struktur des adaptiven Reglers

Zur Motivation der nachfolgend genutzten Regelungsstruktur sollen zunächst einige Vorüberle-
gungen hinsichtlich der adaptiven Stabilisierung von Systemen der Form (4.47) angestellt werden.
Ein in der Literatur etabliertes Vorgehen zum Entwurf beruht dabei häufig auf der certainty equi-
valence Eigenschaft [49, 106]. Dies bedeutet, dass zunächst die Kenntnis der Parameter �i1

und �i2

angenommen wird, und auf Grundlage dieser Annahme eine stabilisierende Regelung zu bestim-
men ist. Im Anschluss werden die Parameter �i1

sowie �i2
durch Schätzwerte O�i1

sowie O�i2
ersetzt

und die Dynamik der Schätzwerte so gewählt, dass durch eine Lyapunov Funktion die Stabilität
des Gesamtsystems folgt. Hierbei ist die Ableitung der Lyapunov Funktion typischerweise derart
zu wählen, dass diese notwendigerweise negativ semi-definit und unabhängig von den unbekann-
ten Parametern ist. Mit diesem Vorgehen ist die Stabilität der Ruhelage gesichert und zusätzlich
existiert eine obere Schranke c für den Schätzfehler, so dass

���� � O�
��� < c gilt.

Dieses Vorgehen zur adaptiven Stabilisierung wird nun vor dem Hintergrund der Synchronisierung
unsicherer nichtlinearer Agenten diskutiert. Hierzu wird angenommen, dass die Agenten sich le-
diglich durch (4.47b) beschreiben lassen, d.h. keine interne Dynamik besitzen. Mit der Zustands-
rückführung ui D a�1

i .zi;yi/.vi � bi.zi;yi/ � b�i
.zi;yi/ O�i2

/ ergibt sich für die Differentialglei-
chung des Ausgangs (4.47b) für jeden Agenten der Zusammenhang Pyi D b�i

.zi;yi/.�i2
� O�i2

/Cvi .
Angenommen für den neuen Eingang der Agenten gilt vi D 0, was der Synchronisierung der Aus-
gänge entspricht. Darüber hinaus ist aufgrund der adaptiven Regelung der Schätzfehler �i2

� O�i2

beschränkt. Im Hinblick auf die notwendigen Bedingungen zur Synchronisierung nichtlinearer
Agenten in [125] und auf den angenommenen synchronen Verlauf der Ausgänge muss daher eben-
falls Pyi D Pyj D 0 für alle i;j 2 f1; � � � ;N g erfüllt sein. Wird im Allgemeinen von �i2

� O�i2
¤ 0

für den Schätzfehler ausgegangen, ist die notwendige Bedingung zur Synchronisierung nur zu
erfüllen, wenn b�i

.zi;yi/ D 0 gilt, was yi D 0 für alle i 2 f1; � � � ;N g und damit triviale Synchro-
nisierung bzw. Stabilisierung impliziert. Zur Vermeidung des eben beschriebenen Sachverhalts ist
es daher notwendig, einen exakten Schätzwert für den unbekannten Vektor �i2

durch geeignete
Maßnahmen zu erhalten.

Die adaptive Regelung in diesem Abschnitt nutzt daher das Immersions- und Invarianzprinzip
nach Astolfi, Karagiannis und Ortega [7] (engl. Immersion & Invariance, kurz I&I approach), da
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mit diesem Ansatz weitreichende Möglichkeiten zur Verfügung stehen, um einen exakten Schätz-
wert für �i2

zu bestimmen. Zur kurzen Einführung der dahinter stehenden Idee, wird die Mannig-
faltigkeit

Mi D
n�

zi;yi; O�i1
; O�i2

�
2 Rni Cpi1

Cpi2 j O�ij
� �ij

C ˇij
.zi;yi/ D 0; j 2 f1;2g

o
definiert, worin die Funktionen ˇi1

.zi;yi/ und ˇi2
.zi;yi/ zusätzliche Freiheitsgrade darstellen, um

die vorgenannte Problemstellung der Bestimmung eines exakten Schätzwerts zu lösen. Darüber
hinaus folgt für alle Agenten zusammen mit der Zustandsrückführung

ui D a�1
i .zi;yi/ .�bi.zi;yi/C wi/ (4.51)

auf der Mannigfaltigkeit Mi die Darstellung

Pzi D qi.zi;0/C pi.zi;yi/yi C p�i
.zi;yi/. O�i1

C ˇi1
/; (4.52a)

Pyi D b�i
.zi;yi/. O�i2

C ˇi2
/C wi; (4.52b)

8i D 1; : : : ;N:

Aus dieser Darstellung wird deutlich, dass auf der Mannigfaltigkeit Mi die Dynamik der Agen-
ten vollständig bekannt ist und daher keine parametrischen Unsicherheiten mehr aufweist. Daraus
lässt sich schließen, dass durch den adaptiven Reglerentwurf die Mannigfaltigkeit Mi die In-
varianzeigenschaft als auch die Eigenschaft der Attraktivität aufweisen muss, um einen exakten
Schätzwert für �i2

zu bestimmen. Gelingt dies, dann führt das Regelgesetz

wi D �b�i
.zi;yi/. O�i2

C ˇi2
/ �

	
@Wi

@zi

pi.zi;yi/

�T

�  i

@Wi

@zi

p�i
.zi;yi/. O�i1

C ˇi1
/C vi;

(4.53)

worin  i so gewählt ist, dass  T
i yi D 1 für jyij > 0 erfüllt ist, zur Stabilisierung der Ruhelage

.zi;yi/ D .0;0/ der Agenten, wie das nachfolgende Lemma zeigt.

Lemma 4.19. Betrachtet wird das dynamische System (4.52) auf der Mannigfaltigkeit Mi zusam-
men mit dem Regelgesetz (4.53), wobei darin vi D 0 angenommen wird. Ist das Zustandssystem
global schwach minimalphasig, dann ist die Ruhelage .zi;yi/ D .0;0/ stabil im Sinne von Lyapu-
nov.

Beweis. Da das System (4.52) als global schwach minimalphasig angenommen wurde, existiert
aufgrund von Definition 4.15 eine positiv definite, radial unbeschränkte C 2-Funktion Wi.zi/, so
dass @Wi

@zi
qi.zi;0/ � 0 gilt. Wird die Lyapunov Funktion Vi.zi;yi/ D Wi.zi/C 1

2
yT

i yi angesetzt, so
folgt aus der zeitlichen Ableitung der Zusammenhang

PVi D @Wi

@zi

�
qi.zi;0/C pi.zi;yi/yi C p�i

.zi;yi/. O�i1
C ˇi1

/
�

C yT
i

�
b�i
.zi;yi/. O�i2

C ˇi2
/C wi

�
:

Wird darin wi gemäß (4.53) gewählt und in die vorstehende Gleichung eingesetzt, folgt daraus
PVi D @Wi

@zi
qi.zi;0/ � 0; woraus die Aussage des Lemmas folgt.
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An dieser Stelle ist zu betonen, dass die Aussage von Lemma 4.19 nur Gültigkeit auf der Mannig-
faltigkeit Mi besitzt. Dies verdeutlicht, dass Mi die Eigenschaften der Invarianz und Attraktivität
aufweisen muss, um das Regelgesetz (4.53) anwenden zu können. Um diese Eigenschaften zu er-
zeugen, lassen sich zunächst Fehlerkoordinaten bezüglich Mi gemäß


i1
D O�i1

� �i1
C ˇi1

; (4.54a)


i2
D O�i2

� �i2
C ˇi2

(4.54b)

definieren. Durch zeitliche Ableitung von (4.54) entstehen die Differentialgleichungen für die
Fehlerkoordinaten aus

P
i1
D PO�i1

C @ˇi1

@zi

Pzi C @ˇi1

@yi

Pyi;

P
i2
D PO�i2

C @ˇi2

@zi

Pzi C @ˇi2

@yi

Pyi;

worin die Ableitungen der Vektoren O�i1
und O�i2

erscheinen. Zur Festlegung der Dynamik von PO�i1

und PO�i2
ergibt sich im Hinblick auf die Dynamik jedes Agenten (4.47) die intuitive Wahl gemäß

PO�i1
D �@ˇi1

@zi

h
qi.zi;0/C pi.zi;yi/yi C p�i

.zi;yi/. O�i1
C ˇi1

/
i

� @ˇi1

@yi

h
b�i
.zi;yi/. O�i2

C ˇi2
/C wi

i
; (4.55a)

PO�i2
D �@ˇi2

@zi

h
qi.zi;0/C pi.zi;yi/yi C p�i

.zi;yi/. O�i1
C ˇi1

/
i

� @ˇi2

@yi

h
b�i
.zi;yi/. O�i2

C ˇi2
/C wi

i
; (4.55b)

woraus für die Dynamik der Fehlerkoordinaten

P
i1
D �@ˇi1

@zi

p�i
.zi;yi/
i1

� @ˇi1

@yi

b�i
.zi;yi/
i2

; (4.56a)

P
i2
D �@ˇi2

@zi

p�i
.zi;yi/
i1

� @ˇi2

@yi

b�i
.zi;yi/
i2

(4.56b)

folgt. Anhand dieser Darstellung ist verdeutlicht, dass die Stabilität der Fehlerkoordinaten (4.54)
entscheidend von der Wahl der Funktionen ˇi1

und ˇi2
abhängt, was die Freiheitsgrade des Ver-

fahrens darstellt. Mit Ausnahme von Spezialfällen entsteht hiermit die Schwierigkeit, dass die
geeignete Wahl der Funktionen ˇi1

und ˇi2
auf die Lösung einer partiellen Differentialgleichung

führt, was im Rahmen dieser Arbeit nicht weiter untersucht wird. Nichtsdestotrotz ergibt sich im
Hinblick auf den Begriff der I&I Stabilisierbarkeit (vgl. Theorem 3.1 und Theorem 3.2 in [7])
das nachfolgende, nützliche Lemma für den Fall, dass geeignete Funktionen ˇi1

und ˇi2
bestimmt

wurden.

Lemma 4.20. Betrachtet wird das dynamische System (4.47) zusammen mit den Regelgesetzen
(4.51) und (4.53) sowie der Dynamik der Fehlerkoordinaten gemäß (4.55). Zudem wird vi D 0

gewählt. Die Stabilisierung der Ruhelage .zi;yi/ D .0;0/ ist möglich, wenn die folgende Annahme
erfüllt ist:
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(B1) Es existieren Funktionen ˇi1
W Rni ! Rpi1 und ˇi2

W Rni ! Rpi2 , so dass alle Trajektorien
des Systems (4.56) und

Pzi D qi.zi;0/C pi.zi;yi/yi C p�i
.zi;yi/�i1

;

Pyi D b�i
.zi;yi/C wi.zi;yi;�i1

C 
i1
;�i2

C 
i2
/ (4.57)

beschränkt sind und die Bedingung

lim
t!1 Œwi.zi;yi;�i1

C 
i1
;�i2

C 
i2
/ � wi.zi;yi;�i1

;�i2
/� D 0 (4.58)

erfüllen.

Beweis. Nulladdition des Regelgesetzeswi.zi;yi;�i1
;�i2
/ in Gleichung (4.57) zusammen mit (4.58)

ermöglicht Lemma 4.19 anzuwenden. Mit Annahme (B1) lässt sich daher schließen, dass alle Tra-
jektorien des geschlossenen Regelkreises (4.47), (4.51), (4.53) und (4.55) beschränkt sind.

Lemma 4.20 lässt sich dahingehend interpretieren, dass sich der geschlossene Regelkreis sta-
bilisieren lässt, falls es gelingt, asymptotisch das Regelgesetz wi.zi;yi;�i1

;�i2
/ zu verwenden,

was (4.58) und damit einer exakten Schätzung der unsicheren Parameter entspricht. Damit er-
gibt sich eine Art Separationsprinzip im Hinblick auf den adaptiven Reglerentwurf, da sich der
Entwurf der Funktionen ˇi1

und ˇi2
getrennt von der eigentlichen stabilisierenden Rückführung

wi.zi;yi;�i1
;�i2
/ durchführen lässt. Es ist lediglich zu fordern, dass die unbekannten Parameter

asymptotisch bekannt sind. Mit den vorstehenden Betrachtungen gelingt es im Folgenden, die
synchronisierende Regelung zu bestimmen, wobei zunächst der Fall der Kommunikation ohne
Verzögerungen diskutiert wird.

4.3.4 Ausgangssynchronisierung

Ausgangssynchronisierung ohne Verzögerungen

Der auf dem Immersions- und Invarianzprinizip basierende Ansatz ermöglicht, eine adaptive Re-
gelung zur Kompensation parametrischer Unsicherheiten zu entwerfen, sofern geeignete Funktio-
nen ˇi1

und ˇi2
ermittelbar sind. Dieser Ansatz wird im Folgenden mit der synchronisierenden

Regelung in Satz 4.18 kombiniert. Wie der folgende Satz zeigt, gelingt durch diese Kombination
die Ausgangssynchronisierung der Agenten für den Fall, dass das Kommunikationsnetzwerk nicht
mit Verzögerungen behaftet ist.

Satz 4.21. Betrachtet werden N Agenten gemäß (4.47) zusammen mit den Regelgesetzen (4.51)
und (4.53) sowie der Dynamik der Fehlerkoordinaten gemäß (4.55). Darüber hinaus sind die
Agenten bezüglich vi gemäß des Regelgesetzes (4.50) gekoppelt. Es wird zudem angenommen,
dass die Funktionen ˇi1

und ˇi2
so gewählt sind, dass die Annahme (B1) in Lemma 4.20 erfüllt

ist. Sind die Agenten global schwach minimalphasig, der Kommunikationsgraph verzögerungsfrei,
d.h. es ist Tij D 0 für alle i;j 2 f1; : : : ;N g, sowie stark verbunden, dann ist das gesamte Multi-
Agenten System stabil im Sinne von Lyapunov und alle Ausgänge synchronisieren sich im Sinne
von (2.14).
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Beweis. Da der Kommunikationsgraph stark verbunden ist, existiert aufgrund Lemma 2.5 ein Vek-
tor 	 mit ausschließlich positiven Einträgen, so dass 	 TLG D 0 gilt. Wird für jeden Agenten der
erweiterte Zustandsvektor

xei D
h
zT

i yT
i

O�T
i1

O�T
i1

iT

definiert, dann folgt der Zustandsvektor des gesamten Multi-Agenten Systems aus

xe D �
xT

e1 : : : xT
eN

�T
:

Da die Trajektorien der Fehlerkoordinaten (4.56) als beschränkt angenommen wurden, existiert
eine Lyapunov Funktion W	i

.
i1
;
i2
;zi;yi/ mit der Eigenschaft, dass PW	i

� 0 gilt. Als Lyapunov
Funktion für das Gesamtsystem wird die gewichtete, positiv definite Funktion

V .xe/ D
NX

iD1

	i

	
Wi C W	i

C 1

2
yT

i yi

�
:

untersucht. Durch Berechnung der Zeitableitung entlang der Lösungstrajektorien des geschlosse-
nen Regelkreises folgt daher

PV D
NX

iD1

	i

	
@Wi

@zi

qi.zi;0/C PW	i
C yT

i vi

�

D
NX

iD1

	i

0
@@Wi

@zi

qi.zi;0/C PW	i
C

NX
jD1

aGijyT
i .yj � yi/

1
A :

An dieser Stelle lässt sich die Argumentation des Beweises in [17, Theorem 2:1] nutzen. Es ist

yT
i .yj � yi/ D 1

2

��.yj � yi/
T.yj � yi/ � .yT

i yi � yT
j yj /

�
;

was den Zusammenhang

PV D
NX

iD1

	i

0
@@Wi

@zi

qi.zi;0/C PW	i
.
i1

;
i2
/C

NX
jD1

lGijyT
i .yj � yi/

1
A

� �1

2

NX
iD1

	i

NX
jD1

aGij .yj � yi/
T.yj � yi/ � 1

2

NX
iD1

	i

NX
jD1

aGij .y
T
i yi � yT

j yj /

� �1

2

NX
iD1

	i

NX
jD1

aGij .yj � yi/
T.yj � yi/ � 1

2
	 TLG.Y TY /

� �1

2

NX
iD1

	i

NX
jD1

aGij .yj � yi/
T.yj � yi/ � 0

zur Folge hat. Darin ist der Vektor Y TY durch

Y TY D �
yT

1 y1 � � � yT
N yN

�T
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gegeben, und es ist 	 TLG.Y TY / D 0 aufgrund von Lemma 2.5. Damit ist die Zeitlösung von
(4.47) und (4.55) zusammen mit den Regelgesetzen (4.51), (4.53) und (4.50) stabil im Sinne von
Lyapunov, und alle Signale sind beschränkt. Werden nun die Lösungstrajektorien aus der Menge

V D
n�

zi;yi; O�i1
; O�i2

�
2 Rni Cpi1

Cpi2 j PV D 0
o

betrachtet, sind diese durch

@Wi

@zi

qi.zi;0/ D 0; PW	i
D 0; .yj � yi/

T.yj � yi/ D 0

charakterisiert. Mittels des Invarianzprinzips von Lasalle [38] lässt sich daraus schließen, dass
alle beschränkten Lösungen des geschlossenen Regelkreises in die größte positiv invariante Teil-
menge der Menge V streben. Aufgrund der Eigenschaft, dass der zugrunde liegende Graph stark
verbunden ist, wird die Ausgangssynchronisierung der Agenten impliziert.

Ausgangssynchronisierung bei Verzögerungen

Die Erweiterung von Satz 4.21 auf den Fall, dass die Kommunikation der Agenten unter Verzö-
gerungen erfolgt, lässt sich durch eine Modifikation der Lyapunov Funktion ebenfalls erreichen,
wie der nachfolgende Satz zeigt.

Satz 4.22. Betrachtet werden N Agenten gemäß (4.47) zusammen mit den Regelgesetzen (4.51)
und (4.53) sowie der Dynamik der Fehlerkoordinaten gemäß (4.55). Darüber hinaus sind die
Agenten bezüglich vi gemäß des Regelgesetzes (4.50) gekoppelt. Es wird zudem angenommen,
dass die Funktionen ˇi1

und ˇi2
so gewählt sind, dass die Annahme (B1) in Lemma 4.20 erfüllt ist.

Sind die Agenten global schwach minimalphasig und der Kommunikationsgraph stark verbunden,
dann ist das gesamte Multi-Agenten System stabil im Sinne von Lyapunov und alle Ausgänge
synchronisieren sich im Sinne von (4.49).

Beweis. Der Beweis wird an dieser Stelle nur knapp skizziert, da sich die Argumentation in An-
lehnung an den Beweis von Satz 4.21 mit dem Unterschied in der Wahl der Lyapunov Funkti-
on ergibt. Aufgrund von Lemma 4.21 lässt sich ebenfalls der positive Vektor 	 zur Gewichtung
der einzelnen Lyapunov Funktionen der Agenten nutzen, was auf die gewichtete, positiv definite
Funktion

V .xe/ D
NX

iD1

	i

	
Wi C W	i

C 1

2
yT

i yi

�
C

NX
iD1

	i

2

NX
jD1

aGij

Z t

t�Tj i

yT
j .s/yj .s/ds

führt, die ein Kandidat für eine Lyapunov Funktion des gesamten Multi-Agenten Systems ist.
Die Berechnung der zeitlichen Ableitung entlang der Lösungstrajektorien des geregelten Systems
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führt dann auf

PV D
NX

iD1

	i

	
@Wi

@zi

qi.zi;0/C PW	i
.
i1

;
i2
/

�

C
NX

iD1

NX
jD1

	iaGijyT
i .yj .t � Tji/ � yi/

C
NX

iD1

	i

2

NX
jD1

aGij

�
yT

j yj � yT
j .t � Tji/yj .t � Tji/

�
:

Auch an dieser Stelle ist es möglich, die Argumentation aus den Beweisen in [17, Theorem 3.1,
Theorem 3.2] zu übernehmen. Mit dem Zusammenhang

2yT
i .yj .t � Tji/ � yi/C �

yT
j yj � yT

j .t � Tji/yj .t � Tji/
�

D � .yj .t � Tji/ � yi/
T.yj .t � Tji/ � yi/ � .yT

i yi � yT
j yj /

folgt daher

PV � �
NX

iD1

	i

2

NX
jD1

�
aGij .yj .t � Tji/ � yi/

T.yj .t � Tji/ � yi/C aGij .y
T
i yi � yT

j yj /
�

� �
NX

iD1

	i

2

NX
jD1

aGij

��yj .t � Tji/ � yi

��2 � 0:

Ausgehend von [17, Theorem 3.1] lässt sich daher schließen, dass das geregelte Multi-Agenten
System (4.47), (4.51), (4.53) und (4.55) stabil im Sinne von Lyapunov ist, und sich die Ausgänge
aller Agenten yi im Sinne von (4.49) synchronisieren.

4.4 Entwurfsbeispiel

Zur Validierung und Veranschaulichung der theoretischen Ergebnisse aus Abschnitt 4.3 wird in
diesem Abschnitt ein akademisches Beispiel betrachtet und die entsprechenden Funktionen be-
stimmt. Hierzu wird das Beispiel aus [17] modifiziert und um parametrische Unsicherheiten er-
gänzt, was auf die Darstellung der Agenten gemäß

Pzi D �zi C .1 C �i1
/z2

i yi;

Pyi D .1 C �i2
/yi C ui

1

2 3

Bild 4.4: Kommunikationsgraph für das akademische Simulationsbeispiel
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Bild 4.5: Simulationsergebnisse zur verzögerten Ausgangssynchronisierung von drei Agenten
basierend auf der adaptiven, synchronisierenden Regelung

führt. Zu beachten ist dabei, dass die Agenten bereits in der Normalform (4.45) vorliegen, wenn
�i1

D �i2
D 0 erfüllt ist. Darüber hinaus lässt sich mittels der Lyapunov Funktion Wi D 1

2
z2

i

durch Bestimmung der zeitlichen Ableitungen in einfacher Weise zeigen, dass die interne Dyna-
mik global asymptotisch stabil und damit der Agent global minimalphasig ist.

Für Simulationszwecke werden im Folgenden N D 3 Agenten zugrunde gelegt und das in Bild
4.4 dargestellte, stark verbundene Kommunikationsnetzwerk genutzt. Die Elemente der Laplace-
matrix sind dabei zufällig gewählt und ergeben sich für die numerische Simulation aus

LG D
2
4 1 0 �1

�3 8 �5

0 �3 3

3
5 :

Der positive Vektor 	 ergibt sich dann aus einer Eigenvektorberechnung und folgt ausgehend von
der vorstehenden Laplacematrix zu

	 T D �
0;7252 0;2417 0;6447

�
:

Die für die numerische Simulation angenommenen Zeitverzögerungen resultieren ebenfalls aus
einer zufälligen Wahl und sind für die Simulation gemäß T31 D 0;6 s, T12 D 0;7 s, T32 D 0;4 s
und T23 D 0;3 s gewählt. Die Funktionen ˇi1

und ˇi2
folgen aus ˇi1

D ��i1.yi C ˇz/C �i2ˇy

und ˇi2
D �i2ˇy , worin

ˇz D
(

z�1
i ; jzij > 0;

0; sonst;

ˇy D
(

sign.yi/ log.jyij/; jyij > 0;

0; sonst

gilt. Die Parameter �i1
und �i2

stellen dabei zusätzliche Einstellparameter dar und ermöglichen
Einfluss auf die Konvergenz des Schätzfehlers zu nehmen. In diesem Beispiel ist die Wahl �i1 D
0;01 und �i2 D 1 für alle Agenten erfolgt. Darüber hinaus lässt sich mit der Lyapunov Funktion
W	i

D 1
2
.
i1

� 
i2
/2 C 1

2

2

i2
die Stabilität des Fehlersystems (4.56) für alle Agenten nachweisen.
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102 4 Synchronisierung basierend auf Absolut- und Relativinformation

In Bild 4.5 sind die numerischen Simulationsergebnisse dargestellt. Von der linken zur rech-
ten Abbildung ist der Verlauf der Ausgangsgrößen, der Verlauf der kommunizierten Variablen
yCi D P3

jD1 lGij

�
yj .t � Tji/ � yi

�
sowie der Verlauf der Stellgrößen ui aller Agenten darge-

stellt. Mit Blick auf den Zeitverlauf der Ausgänge als auch auf die kommunizierten Variablen
lässt sich festhalten, dass sich alle Ausgänge synchronisieren. Als synchrone Trajektorie ergibt
sich dabei ein konstanter Wert, was somit gleichbedeutend mit dem Konsens der Agenten ist und
die theoretischen Ergebnisse in anschaulicher Weise darstellt.

4.5 Kurzzusammenfassung

Mit Kapitel 4 sind ausgehend von der Annahme, dass jeder Agent über Absolutinformation zum
Entwurf einer unterlagerten Regelung verfügt, Möglichkeiten aufgezeigt, die den Entwurf hete-
rogener Multi-Agenten Systeme erlauben. Hierbei ist die zugrunde liegende Idee, eine identische
synchronisierende Regelung für die Agenten zu nutzen, die sich aufgrund der unterlagerten Rege-
lung gegenüber dem Netzwerk als homogene Agenten darstellen. Ausgangspunkt der synchroni-
sierenden Regelungen bilden dabei ein aus der Literatur entnommener LQR-Entwurf beziehungs-
weise eine Erweiterung der Methodik der Eigenwertbereichsvorgabe, da sich die Synchronisie-
rung homogener Agenten in ein simultanes Stabilisierungsproblem überführen lässt.

Auf Grundlage der parametrischen Entwurfsmethodik aus Kapitel 3 ist es gelungen, die unterla-
gerten Regelungen für lineare heterogene Multi-Agenten Systeme sowohl mittels einer Entkopp-
lungs- als auch einer Verkopplungsregelung anzugeben. Darüber hinaus ermöglicht die Übertra-
gung der Idee dieses Ansatzes basierend auf Absolutinformation zusätzlich eine spezielle System-
klasse nichtlinearer Agenten zu entwerfen. Darin ergibt sich die Heterogenität des Multi-Agenten
Systems aus den als konstant angenommenen Unsicherheiten der Agentendynamik, wobei für die
nominale Dynamik der Agenten Vektorrelativgrad eins sowie eine stabile Nulldynamik angenom-
men wurde. Mittels einer adaptiven Regelung gelingt es, die Unsicherheiten zu kompensieren und
ein auf der Passivität basierender Regler führt zum Konsens der Agenten. Damit sind in Kapi-
tel 4 nutzbringende Entwurfsmethodiken entwickelt worden, die sowohl auf homogene als auch
heterogene agentenbasierte dynamische Systeme anwendbar sind.
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5 Synchronisierung ausschließlich basierend

auf Relativinformation

Die Methodik zur Vorgabe von Eigenwertbereichen aus Abschnitt 3.3.1 bildet zusammen mit der
Systembeschreibung eines heterogenen Multi-Agenten Systems (2.12) den Ausgangspunkt für die
Betrachtungen in den nachfolgenden Abschnitten. In Abgrenzung zum vorangegangenen Kapitel
4 besteht hierbei, wie in Bild 5.1 angedeutet, fortan nicht mehr die Möglichkeit, Absolutinforma-
tion für den Regelungsentwurf jedes Agenten zu verwenden. Die Ergebnisse aus diesem Kapitel
können entsprechend als Erweiterung der Betrachtungen in Abschnitt 4.1 auf heterogene Agen-
ten gesehen werden, da dort zur Synchronisierung homogener Multi-Agenten Systeme ebenfalls
nicht Absolutinformation zur Bestimmung einer synchronisierenden Zustands- beziehungsweise
Ausgangsrückführung genutzt wurde. Allerdings wird sich zeigen, dass im heterogenen Fall ein
Entwurf der Regelgesetze der Agenten im Allgemeinen nicht mehr auf ein simultanes Stabilisie-
rungsproblem zurückgeführt werden kann. Vielmehr ergibt sich dabei ein dezentrales Stabilisie-
rungsproblem, welches allerdings mit der Methodik aus Abschnitt 3.3.1 lösbar ist.

Zunächst ist daher Gegenstand der Betrachtungen, welche strukturellen Maßnahmen für die Re-
gelungen der einzelnen Agenten vorgenommen werden müssen, um Synchronisierung zu garan-
tieren. Hierbei ergeben sich Überschneidungen zu den Betrachtungen in Abschnitt 4.2.1, da die
notwendigen Bedingungen zur Synchronisierung selbstverständlich erfüllt sein müssen. Daraus
lassen sich durch eine Betrachtung des Gesamtsystems notwendige und hinreichende Bedingun-
gen zur Synchronisierung basierend auf der angegebenen Regelungsstruktur ableiten, die auf das
eingangs erwähnte dezentrale Stabilisierungsproblem führen. Basierend auf der Methodik zur Vor-
gabe von Eigenwertbereichen wird anschließend diskutiert, wie sich konstruktiv die freien Para-
meter der verteilten Regler zur asymptotischen Synchronisierung bestimmen lassen und welche
Erweiterungsmöglichkeiten daraus resultieren. Die folgenden Ergebnisse sind ebenfalls den Pu-
blikationen [110, 113] zu entnehmen.

Betrachtet werden infolgedessen heterogene Multi-Agenten Systeme nach (2.12) und damit N

lineare steuer- und beobachtbare Agenten

Pxi D Aixi C Biui; (5.1a)

yi D Cixi (5.1b)

Agent
i

Regler zur
Synchronisierung

yi

vi

ui

Bild 5.1: Strukturbild zur Synchronisierung lediglich mit Relativinformation
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104 5 Synchronisierung ausschließlich basierend auf Relativinformation

mit i 2 f1; : : : ;N g, xi 2 Rni , ui 2 Rmi , yi 2 Rp und mi � p sowie mit dem Anfangs-
wert xi.t0/ D xit0

. Die Matrizen Ai , Bi und Ci seien von passender Dimension, wobei darauf
hingewiesen wird, dass lediglich die Ausgangsdimension der Agenten als identisch vorausge-
setzt wird. Diese Voraussetzung resultiert aus praktischen Gesichtspunkten, da Synchronisierung
physikalisch gleichartiger Größen in den meisten Anwendungen von Bedeutung ist. Durch die
Kommunikation der Agenten untereinander erfasst jeder Agent (5.1) die relativen Messgrößen

vi.t/ D
NX

jD1

lGijyj .t/: (5.2)

Zusammenfassend ergibt sich die zu lösende Problemstellung in diesem Kapitel wie folgt: Be-
trachtet wird ein heterogenes Multi-Agenten System bestehend aus N Agenten gemäß (5.1).
Als minimale Anforderung an das Kommunikationsnetzwerk wird angenommen, dass der Graph
der Laplacematrix LG einen Spannbaum enthält. Ausgehend von den relativen Messgrößen jedes
Agenten (5.2) soll ein dynamisches Regelgesetz für jeden Agenten bestimmt werden, so dass sich
alle Ausgänge der Agenten yi im Sinne der Definition (2.14) synchronisieren. Darüber hinaus ist
ein konstruktives Verfahren anzugeben, welches die geeignete Bestimmung der freien Reglerpa-
rameter ermöglicht.

5.1 Vorüberlegungen zur Regelungsstruktur

Zur Bestimmung notwendiger und hinreichender Bedingungen hinsichtlich der eingangs einge-
führten Problemstellung dieses Kapitels sollen zunächst einige Vorüberlegungen zur verwendeten
Regelungsstruktur der Agenten angestellt werden. Hierzu wird in Ergänzung zu den in Satz 4.6
eingeführten notwendigen Bedingungen der Begriff der System-Schnittmenge (engl. system inter-
section, vgl. [58]) eingeführt. Betrachtet werden dabei autonome Zustandssysteme gemäß

†i W
(

Px D Aixi; xi.t0/ D xi0;

yi D Cixi;

wobei xi 2 Rni , yi 2 Rp ist, und dem virtuellen Referenzsystem

†S W
(

PxS D ASxS; xS.t0/ D xS0;

yS D CSxS

(5.3)

mit xS 2 RnS sowie yS 2 Rp. Darüber hinaus gilt nS � ni , und es wird angenommen, dass
die Eigenwerte der Matrix AS zur Vermeidung trivialer Synchronisierung sämtlich nicht-negative
Realteile aufweisen. D.h. es ist �.AS/ 2 CC

0 . Dies führt zur Definition der System-Schnittmenge:

Definition 5.1 ([58]). Die Zustandssysteme †1 und †2 haben die System-Schnittmenge †S (sym-
bolisch †1 \ †2 D †S), wenn für jeden Anfangswert xS0 2 RnS ebenfalls Anfangswerte x10 2
Rn1 und x20 2 Rn2 existieren, so dass die Zeitverläufe aller drei Ausgänge identisch sind, d.h.
y1.t/ D y2.t/ D yS.t/ für t � t0 gilt.
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5.1 Vorüberlegungen zur Regelungsstruktur 105

Mit dem Begriff der System-Schnittmenge lässt sich nach Lunze (vgl. [58, Theorem 2]) die syn-
chrone Zeitlösung yS.t/ aller N Agenten charakterisieren. Diese ergibt gibt sich als gemeinsame
Schnittmenge über alle Agenten. Zur Vermeidung der Synchronisierung auf die triviale Trajektorie
yS.t/ 
 0 ist daher †S D \N

iD1†i ¤ ; zu fordern. Der Fall, dass die Agenten keine gemeinsame
Schnittmenge haben, d.h. es gilt†i \†j D ;, 8i;j 2 f1; : : : ;N g, ist ebenfalls im Hinblick auf die
Untersuchungen zur Beobachtbarkeit heterogener Agenten in Lemma 2.11 interpretierbar. Sind
die Agenten bezüglich der relativen Ausgänge beobachtbar, so ist die Stabilisierung des Systems
möglich, was der synchronen Trajektorie yS.t/ D 0 entspricht, bzw. die gemeinsame Schnittmen-
ge der Agenten ist dann die leere Menge. Ist das Gesamtsystem allerdings bezüglich der relativen
Ausgänge unbeobachtbar, dann existiert eine nicht-leere gemeinsame Schnittmenge der Agenten,
die sich aus den unbeobachtbaren Eigenbewegungen des Systems ergibt und damit die nicht-
triviale, synchrone Trajektorie festlegt. Die Überprüfung der Beobachtbarkeit des Gesamtsystems
stellt damit eine konstruktive Möglichkeit zur Überprüfung der System-Schnittmenge dar.

Wird darüber hinaus gefordert, dass sich die Agenten asymptotisch auf eine vorab festgelegte
Trajektorie synchronisieren, muss diese Trajektorie eine Zeitlösung des virtuellen Referenzsys-
tems (5.3) sein und entsprechend in der System-Schnittmenge der Agenten enthalten sein. Ist
diese Bedingung nicht erfüllt, so ist jeder Agent geeignet dynamisch zu erweitern, was die Ein-
führung unbeobachtbarer Eigenbewegungen in das erweiterte Gesamtsystem notwendig macht.
Hierzu kann auf die Ergebnisse aus Lemma 4.8 zurückgegriffen werden, was nachfolgend dis-
kutiert wird. Es wird zur Vereinfachung der Diskussion zunächst davon ausgegangen, dass die
System-Schnittmenge der Agenten (5.1) die leere Menge ist, dann ist es nach Lemma 4.8 unter
den Annahmen, dass der Agent (5.1) rechts-invertierbar ist, die Nullstellen von (5.1) nicht mit den
Eigenwerten von S zusammenfallen sowie das Paar .Q;S/ beobachtbar ist, möglich, für jeden
Agenten (5.1) eine Vorsteuerung der Form

Pwi D Swi; wi.t0/ D wi0; (5.4a)

ui D �iwi; (5.4b)

zu entwerfen und Anfangswerte wi0 und xi0 zu bestimmen, so dass yi.t/ D Qwi.t/ für t � t0 ist.
Wird dabei vorausgesetzt, dass �.S/ 2 CC

0 und die Matrizen …i und �i Lösungen der regulator
equations

…iS D Ai…i C Bi�i (5.5a)

Ci…i D Q (5.5b)

sind, dann hat der Agent (5.1) aber auch einen Schnitt mit dem virtuellen Referenzsystem †S,
wenn AS D S und CS D Q gewählt wird. Dies folgt aus der Kombination von (5.1) mit (5.4)
zusammen mit dem Unterraum bild

��
…T

i InS

�T
�

, der bezüglich des autonomen Zustandssystems
 Pxi

Pwi

�
D



Ai Bi�i

0 S

� 

xi

wi

�
;



xi.t0/

wi.t0/

�
D



xi0

wi0

�

invariant ist, was mit (5.5a) aus

Ai Bi�i

0 S

� 

…i

InS

�
D



…i

InS

�
S
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106 5 Synchronisierung ausschließlich basierend auf Relativinformation

folgt. Darüber hinaus ist der Unterraum am Ausgang e D yi � Qwi unbeobachtbar, da

0 D �
Ci �Q

� 

…i

InS

�

ist, was yi.t/ D Qwi.t/ impliziert, wenn
�
xT

i0 wT
i0

�T
aus span

��
…T

i InS

�T
�

gewählt wird. Aus-
gehend von den vorangegangenen Diskussionen ergibt sich daraus die nachfolgende Regelungs-
struktur zur Synchronisierung heterogener Agenten
 Pwi

Pzi

�
D



S Edi

0 Adi

� 

wi

zi

�
C



KS

Bdi

�
vi; (5.6a)

ui D �
�i Cdi

� 

wi

zi

�
C Ddivi; (5.6b)

worin der Reglerzustand wi als Vorsteuerung (5.4) im synchronen Zustand agiert, da in diesem
Fall vi D 0, und Ausgangssynchronisierung im Sinne von (2.14) äquivalent zu limt!1 vi.t/ D 0

8i 2 f1; : : : ;N g ist. Darüber hinaus ist KS eine beliebige Ausgangsaufschaltung, die das Syn-
chronisierungsproblem homogener Agenten mit der Dynamik Pwi D Swi C uwi

und den kom-
munizierten Ausgängen (5.2) löst. Zur Berechnung bietet sich beispielsweise das LQR-basierte
Verfahren aus Abschnitt 4.1.2 an. Zusätzlich wurde der synchronisierende Regler um einen dyna-
mischen Ausgangsregler mit dem Zustand zi ergänzt. Dies hat den Hintergrund, dass im Hinblick
auf das zu lösende dezentrale Stabilisierungsproblem im Allgemeinen weitere Freiheitsgrade be-
nötigt werden, um asymptotische Synchronisierung zu erreichen. Die Strukturbeschränkung der
Regelung drückt sich darin aus, dass die Dynamikmatrix des Reglers eine obere Blockdreiecks-
matrix ist sowie die Matrizen S , KS und �i fest eingestellt sind. Die Matrizen Adi , Bdi , Cdi , Ddi

und Edi stellen die freien Reglerparameter dar. In den folgenden Abschnitten wird auf Grundlage
der Regelungsstruktur (5.6) eine notwendige und hinreichende Bedingung für die asymptotische
Synchronisierung und ein konstruktives Verfahren zur Bestimmung geeigneter Reglerparameter
hergeleitet.

5.2 Synchronisierungsbedingungen

Zur Bestimmung einer Bedingung, die auf asymptotische Synchronisierung führt, ist eine Gesamt-
systembetrachtung anzustellen. Um die hierfür benötigte Notation lesbarer zu gestalten, wird der
erweiterte Agent gemäß

Pxei D Aeixei C Beiui; xei.t0/ D xei0; (5.7a)

yi D Ceixei (5.7b)
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definiert, wobei für den Zustandsvektor xei D �
xT

i wT
i zT

i

�T
gilt, und die darin enthaltenen

Systemmatrizen ausgehend von (5.1) und (5.6) durch

Aei D
2
4Ai Bi�i BiCdi

0 S Edi

0 0 Adi

3
5 ; (5.8a)

Bei D
2
4BiDdi

KS

Bdi

3
5 ; (5.8b)

Cei D �
Ci 0 0

�
(5.8c)

gegeben sind. Durch Zusammenfassen von N Agenten nach (5.8) entsteht der Zustandsvektor des
Gesamtsystems x D �

xT
e1; : : : ;x

T
eN

�T
. Die Schreibweise e.�/ bezeichnet nachfolgend eine Block-

diagonalmatrix, d.h. es ist exemplarisch eAe D diag .Ae1; : : : ; AeN /. Dann ergibt sich das gesamte
heterogene Multi-Agenten System zu

Px D � eAe C eBe.LG ˝ Ip/eCe
�

x; x.t0/ D x0; (5.9a)

v D .LG ˝ Ip/eCex; (5.9b)

wobei x 2 Rn und für die Systemordnung n D PN
iD1.ni C nS C nzi

/ mit nzi
D dim.zi/ gilt.

Um zu zeigen, dass ausgehend von der Wahl der Regelungsstruktur der Agenten in (5.6) stets eine
nicht-leere System-Schnittmenge existiert, wird das folgende Lemma formuliert.

Lemma 5.2. Betrachtet werden N Agenten gemäß (5.1) zusammen mit der Regelung (5.6), wo-
raus das heterogene Multi-Agenten System (5.9) entsteht. Es wird darüber hinaus vorausgesetzt,
dass jeder Agent (5.1) die Annahmen in Lemma 4.8 erfüllt, so dass die Gleichungen (5.5) 8i 2
f1 : : : ;N g lösbar sind. Ist zusätzlich der Graph, der dem Kommunikationsnetzwerk zugrunde liegt,
verbunden, dann haben alle Agenten eine nicht-leere System-Schnittmenge, und es existiert ein
virtuelles Referenzsystem mit AS D S und CS D Q sowie Anfangswerte xS.t0/ und xei.t0/

8i 2 f1 : : : ;N g, so dass die Zeitlösungen aller Ausgänge (5.1b) identisch sind, d.h.

y1.t/ D : : : D yN .t/ D yS.t/

für t � t0 gilt.

Beweis. Der Beweis erfolgt in zwei Schritten. Zunächst wird gezeigt, dass eine Koordinatentrans-
formation für jeden erweiterten Agenten existiert, die die Existenz einer nicht-leeren System-
Schnittmenge impliziert. Anschließend wird ein Unterraum des Gesamtsystems angegeben, der
invariant unter der Dynamik und unbeobachtbar am Ausgang von (5.9) ist, was die Existenz von
Anfangswerten xei.t0/ impliziert, so dass y1.t/ D : : : D yN .t/ für t � t0 ist.

Aufgrund der Voraussetzung, dass jeder Agent (5.1) die Annahmen in Lemma 4.8 erfüllt, sind die
Gleichungen (5.5) lösbar 8i 2 f1 : : : ;N g bezüglich …i und �i . Mit der Aussage in [58, Theo-
rem 1] folgt, dass alle Agenten eine nicht-leere System-Schnittmenge besitzen, wenn reguläre

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


108 5 Synchronisierung ausschließlich basierend auf Relativinformation

Matrizen Ti existieren, so dass

T �1
i AeiTi D



AS 0

0 Api

�
;

CeiTi D �
CS Cpi

�
8i 2 f1 : : : ;N g gilt, und worin die Matrizen Api und Cpi von passender Dimension sind. Um
die Matrizen Ti zu bestimmen, wird zunächst die Sylvestergleichung S†i C Edi D †iAdi be-
trachtet, worin die Matrix †i zu bestimmen ist. Ausgehend von [35, Theorem 2.4.4.1] existiert
eine eindeutige Lösung †i für beliebige Edi genau dann, wenn die Matrizen S und Adi keine
gemeinsamen Eigenwerte haben. Im Hinblick auf die Regelungsstruktur der Agenten (5.6) und
der Eigenschaft, dass im synchronen Zustand der Eingang der Agenten über die Zeitlösung von
(5.4) generiert wird, kann daher von � .S/ \ � .Adi/ D ; ausgegangen werden. Ist daher †i die
eindeutige Lösung der Gleichung S†i C Edi D †iAdi und wird Ti beziehungsweise T �1

i für
jeden Agenten gemäß

Ti D
2
4…i Ini

…i†i

InS 0 †i

0 0 Inzi

3
5 ;

T �1
i D

2
4 0 InS �†i

Ini
�…i 0

0 0 Inzi

3
5

definiert, folgt daraus unter der Berücksichtigung von (5.5) und (5.7) mit (5.8) der Zusammenhang

T �1
i AeiTi D

2
4S 0 0

0 Ai BiCdi C…iEdi

0 0 Adi

3
5 ;

CeiTi D �
Q Ci Q†i

�
;

woraus durch die Wahl von AS D S und CS D Q der erste Teil der Argumentation folgt.

Für den zweiten Teil der Argumentation wird der Unterraum

S D fx 2 Rn j x 2 bild .…/g (5.10)

betrachtet, worin die Matrix … durch

… D �
…T

1 InS 0 � � � …T
N InS 0

�T
(5.11)

definiert ist. Ausgehend von den relativen Messgrößen aller Agenten (5.2) ergibt sich der relative
Ausgang des Gesamtsystems (5.9b). Gilt x 2 S, so folgt für den Ausgang in S, dass

v D .LG ˝ Ip/eCe…

D .LG ˝ Ip/.1N ˝ �
Q 0 0

�
/

D .LG1N ˝ �
Q 0 0

�
/ D 0
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5.2 Synchronisierungsbedingungen 109

ist. D.h. der Unterraum S ist ausgangsnullend bzw. bezüglich v unbeobachtbar. Wird darüber
hinaus die Dynamik des Gesamtsystems (5.9a) unter Berücksichtigung von (5.8) betrachtet, so
folgt der Zusammenhang� eAe C eBe.LG ˝ Ip/eCe

�
… D eAe… D …S;

was beweist, dass der Unterraum invariant unter der Dynamik von (5.9a) und unbeobachtbar am
Ausgang (5.9b) ist. Aufgrund der Annahme, dass der Graph des Kommunikationsnetzwerks ver-
bunden ist, impliziert dies, dass die Zeitverläufe der Ausgänge yi.t/ identisch für t � t0 sind,
wenn x.t0/ 2 span .…/ gewählt wird.

Anmerkung 5.3. In [58, Theorem 1] ist formuliert, dass die Existenz regulärer Matrizen Ti , so
dass

T �1
i AiTi D



AS 0

0 Api

�
; CiTi D �

CS Cpi

�
8i 2 f1 : : : ;N g gilt, eine notwendige und hinreichende Bedingung für eine nicht-leere System-
Schnittmenge ist. Wie das Beispiel der beiden Zustandssysteme

Px1 D


0 0

0 �

�
x1; Px2 D



0 1

0 0

�
x2;

y1 D �
1 1

�
x1; y2 D �

1 0
�

x1

mit beliebigem � zeigt, ist die Bedingung lediglich hinreichend. Aus der Zeitlösung

y1.t/ D x1;1.t0/C e�tx1;2.t0/;

y2.t/ D x2;1.t0/C t x2;2.t0/

mit den Anfangswerten xi.t0/ D �
xi;1.t0/ xi;2.t0/

�T
folgt, dass beide Ausgänge synchron sind,

wenn x1;1.t0/ D x2;1.t0/ ¤ 0 und x2;1.t0/ D x2;2.t0/ D 0 erfüllt ist. Damit besitzen beide
Zustandssysteme eine nicht-leere System-Schnittmenge mit dem virtuellen Referenzsystem PxS D
0 � xS , yS D xS mit xS.t0/ D x1;1.t0/ D x2;1.t0/ ¤ 0 im Sinne von Definition 5.1.

Durch die Wahl der Regelungsstruktur (5.6) ist mit Lemma 5.2 gezeigt, dass die notwendigen
Bedingungen in Satz 4.6 zur Synchronisierung heterogener Multi-Agenten Systeme erfüllt sind,
bzw. durch die Einführung des Begriffes der System-Schnittmenge alle Agenten einen gemeinsa-
men Schnitt aufweisen, der die synchrone Trajektorie der Agenten darstellt. Dieser Schnitt lässt
sich gleichermaßen als invarianter Unterraum des Gesamtsystems interpretieren, der zudem unbe-
obachtbar an den relativen Ausgängen ist, was den Zusammenhang zur Beobachtbarkeitsanalyse
heterogener Agenten in Satz 2.11 herstellt.

Allerdings lässt sich ausgehend von dieser Diskussion noch nicht auf asymptotische Synchro-
nisierung schließen, da der Unterraum S zwar die Invarianz- und Ausgangsnullungseigenschaft
besitzt, nicht aber notwendigerweise attraktiv beziehungsweise im Sprachgebrauch der geometri-
schen Methode extern stabil ist [8]. Daher hängt asymptotische Synchronisierung entscheidend
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von der Wahl der freien Reglerparameter Adi , Bdi , Cdi , Ddi und Edi in (5.6) ab. Zur Bestimmung
einer notwendigen und hinreichenden Bedingung hinsichtlich asymptotischer Synchronisierung
wird daher die Definition eines extern stabilen Unterraums benötigt. Betrachtet wird dabei eine
lineare Abbildung A W Rn ! Rn und ein A-invarianter Unterraum V , V � Rn zusammen mit
einer Koordinatentransformation T , so dass

QA D T �1AT D
" QA11

QA12

0 QA22

#
(5.12)

gilt. Dabei ist QA11 eine h�h-Matrix mit h D dim.V/ [8, Theorem 3.2-1]. Der invariante Unterraum
wird als intern (extern) stabil bezeichnet, wenn die Matrix QA11 (die Matrix QA22) Hurwitz ist [8,
Definition 3.2-4].

Mit der Struktur der Matrix in (5.12) ist die Zeitlösung eines dynamischen Systems bezüglich ei-
nes invarianten Unterraums V sehr einfach zu charakterisieren. Durch Überführung in die Block-
dreiecksstruktur zerfällt die Dynamik des Unterraums in das Zeitverhalten im Unterraum, was in
den entsprechenden Koordinaten der Matrix A11 entspricht. Die Eigenwerte der Matrix A22 be-
stimmen die Attraktivität von V . Ist A22 stabil, dann ist V attraktiv, d.h. asymptotisch streben alle
Zeitlösungen in den Unterraum V hinein. Dieser Sachverhalt ist daher Gegenstand des nachfol-
genden Satzes, der die Attraktivität eines Unterraums mit der asymptotischen Synchronisierung
in Verbindung bringt.

Satz 5.4. Betrachtet werden N Agenten gemäß (5.1) zusammen mit der Regelung (5.6), wo-
raus das heterogene Multi-Agenten System (5.9) entsteht. Es wird darüber hinaus vorausgesetzt,
dass jeder Agent (5.1) die Annahmen in Lemma 4.8 erfüllt, so dass die Gleichungen (5.5) 8i 2
f1 : : : ;N g lösbar sind. Ist der Graph, der dem Kommunikationsnetzwerk zugrunde liegt, verbun-
den, dann synchronisieren sich die Ausgänge der Agenten asymptotisch im Sinne von (2.14) genau
dann, wenn der Unterraum S in (5.10) extern stabil ist bzw. attraktiv ist.

Beweis. Zur Bestimmung einer geeigneten Koordinatentransformation, die die Systemmatrix von
(5.9a) in die Struktur (5.12) überführt, wird eine Matrix T2 mit orthogonalen Spalten bestimmt, so
dass…TT2 D 0 und T T

2 T2 D In�nS gilt. Da die Matrix… aufgrund ihrer Definition in (5.11) vollen
Spaltenrang hat, ist die Matrix T D �

… T2

�
eine reguläre Matrix. Links- und Rechtsmultipli-

kation der Systemmatrix in (5.9a) mit T �1 bzw. T führt auf den transformierten Zustandsvektor
Nx D T �1x und auf das transformierte System

PNx D T �1
� eAe C eBe.LG ˝ Ip/eCe

�
T Nx;

D


S 	
0 T T

2

� eAe C eBe.LG ˝ Ip/eCe
�

T2

�
Nx; (5.13)

wobei das Symbol 	 darauf hindeutet, dass die damit ausgeblendete Matrix keinerlei Einfluss auf
die nachfolgende Argumentation mehr hat. Aufgrund der resultierenden Struktur, die identisch zu
(5.12) ist, sowie aufgrund der Annahme, dass der zugrunde liegende Graph des Kommunikations-
netzwerks verbunden ist, konvergiert der Ausgang

v D �
0 .LG ˝ Ip/eCeT2

� Nx
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a

b

ı

!

FHy .�k/ D 0

	

FHyFF .�k/ D 0

Bild 5.2: Hyperbel basierend auf der Parametrierung FHy .�k/ zur Begrenzung des Bereiches
der Eigenwerte von AT2

genau dann zu null, wenn die Matrix

AT2
WD T T

2

� eAe C eBe.LG ˝ Ip/eCe
�

T2 (5.14)

Hurwitz, bzw. der invariante Unterraum S definiert durch (5.10) und (5.11) extern stabil ist.

Anmerkung 5.5. Die in Abschnitt 4.2.4 diskutierten Sachverhalte gelten für die Ergebnisse in
diesem Kapitel analog. Enthält daher ein Agent bereits Teildynamiken, die hinsichtlich der syn-
chronen Zeitlösung beziehungsweise hinsichtlich des virtuellen Referenzsystems in (5.3) gefordert
sind, ist eine Minimalrealisierung bezüglich des „Ausganges“ �i zu bestimmen. Dies führt auf
Matrizen reduzierter Ordnung QS , Q�i , QKS und QEdi , die in (5.6) zu berücksichtigen sind. Neben
einer Reduzierung der benötigten Reglerordnung ist mit den Betrachtungen aus Abschnitt 4.2.4
darüber hinaus eine einfache Möglichkeit gegeben, um die System-Schnittmenge der Agenten mit
dem virtuellen Referenzsystem zu bestimmen, wenn dieses gezielt vorgegeben werden soll.

Zusammenfassend lässt sich durch die Aussagen von Lemma 5.2 und Satz 5.4 festhalten, dass
die Wahl der strukturbeschränkten Regelung der Agenten (5.6) dazu führt, dass der invariante und
unbeobachtbare Unterraum (5.10) existiert und die synchrone Zeitlösung der erweiterten Agenten
(5.7) festlegt. Darüber hinaus ist die notwendige und hinreichende Bedingung, die asymptotische
Synchronisierung der Agenten bzw. das Konvergieren der Zeitlösung in den Unterraum S garan-
tiert, durch die Stabilität der Matrix (5.14) gegeben. Mit der in Abschnitt 3.3.1 eingeführten Me-
thodik zur Vorgabe von Eigenwertbereichen steht ein Entwurfsverfahren zur Verfügung, welches
die konstruktive Bestimmung der freien Reglerparameter in (5.6) ermöglicht und zudem Einfluss-
möglichkeiten auf die Lage der Eigenwerte der Matrix (5.14) bereit stellt. Das Vorgehen wird im
nachfolgenden Abschnitt diskutiert.
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5.3 Konstruktive Bestimmung der Reglerparameter

Im Hinblick auf die Resultate im vorangegangenen Abschnitt hängt die asymptotische Synchro-
nisierung heterogener Agenten (5.1), die die Regelung (5.6) verwenden, entscheidend von der
Stabilität der Matrix in (5.14) und damit von der Lage der Eigenwert von AT2

ab. Die Lage der
Eigenwerte lässt sich über die Wahl der freien Reglerparameter in (5.6) beeinflussen, was in die-
sem Abschnitt genutzt wird, um diese in die bereits in Abschnitt 3.3.1 eingeführten Bereiche der
komplexen Ebene zu verschieben. Die anschauliche Darstellung des Vorgehens erfolgt an der in
Bild 5.2 dargestellten Hyperbel, die den Bereich der Regelungseigenwerte nach rechts begrenzt.
Zur Lösung des Entwurfsproblems wird ebenfalls ein Min-Max Optimierungsproblem formuliert,
was mit der Methodik aus Abschnitt 3.3.2 zu lösen ist. Hierzu wird in Anlehnung an die Definition
des Eigenwertbereichs (3.64) die Parametrierung der Hyperbel

FHy .�k/ D Re.�k/C a

b

q
Im.�k/2 C b2 (5.15)

betrachtet, wobei als Argument die Eigenwerte �k der Matrix AT2
dienen und für den Zählin-

dex k 2 f1; ; : : : ; n � nSg gilt. Wie bereits in Abschnitt 3.3.1 diskutiert, lässt sich der Bereich
an die Anforderungen des Synchronisierungsvorgangs anpassen, indem die Parameter a > 0 und
b > 0 geeignet vorgegeben werden. Hinsichtlich der Darstellung in Bild 5.2 ist die Mindestdy-
namik über den Parameter a zu beeinflussen, während über den Zusammenhang b D a tan.	 /
die Mindestdämpfung der Regelungseigenwerte eingestellt wird. Darüber hinaus ist die Parame-
trierung in (5.15) derart gewählt, dass positive Funktionswerte von Fk.�k/ auf einen außerhalb
des Bereiches liegenden Eigenwert hindeuten. Negative Werte von Fk.�k/ kennzeichnen entspre-
chend einen innerhalb des vorgegebenen Bereiches liegenden Eigenwert �k . Durch Einführung
der quadratischen Straffunktion

p.�/ D
(
�2; wenn � > 0;

0; wenn � � 0;
(5.16)

folgen daher die mittels des Optimierungsverfahrens zu minimierenden Gütefunktionen

fk.�k/ D p.FHy .�k//;

so dass alle Eigenwerte der Matrix AT2
in den durch (5.15) definierten Bereich zum Liegen kom-

men. Da die Eigenwerte einer Matrix implizite Funktionen der Einträge der Matrix sind, ergibt
sich, dass �k entsprechend eine Funktion der freien Reglerparamter in (5.6) ist. Die freien Para-
meter aller N Regler werden im Vektor der Optimierungsvariablen � D �

�T
1 � � � �T

N

�T
zusam-

mengefasst, wobei sich für jeden Regler in (5.6) der Zusammenhang

�i D �
vec.Adi/

T vec.Cdi/
T vec.Edi/

T vec.Bdi/
T vec.Ddi/

T�T

ergibt. Zusammen mit der Indexmenge q, die durch q WD f1; : : : ;n � nsg gegeben ist, sowie
ausgehend von den Betrachtungen in diesem Abschnitt, dass fk eine implizite Funktion der Opti-
mierungsvariablen � ist, wird das unbeschränkte Min-Max Optimierungsproblem

min
�

max
k2q

fk.�/ (5.17)
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formuliert, um die Eigenwerte der Matrix (5.14) in den durch (5.15) parametrierten Bereich der
offenen linken komplexen Zahlenebene zu verschieben, was Ausgangssynchronisierung im Sinne
von (2.14) zur Folge hat.

Auch an dieser Stelle haben die Betrachtungen in Abschnitt 3.3.1 beziehungsweise die Aussage
von Satz 3.13 Gültigkeit bezüglich des im Allgemeinen nicht konvexen Optimierungsproblems
(5.17). Daher führt die Verwendung gradientenbasierter, lokaler Optimierungsverfahren, wie die
in Abschnitt 3.3.2 dargestellte Methodik, stets auf lokale Minima, so dass keine Aussage über
das globale Minimum von (5.17) zu treffen ist. Zur Lösung des Optimierungsproblems sind daher
typischerweise mehrere Startwerte für die Optimierungsaufgabe vorzusehen. Darüber hinaus ist
im Hinblick auf Satz 3.13 das Verhalten der Eigenwerte �k der Matrix AT2

entscheidend für
das Optimierungsverfahren. Es wird daher angenommen, dass für alle � die Regelungseigenwerte
einfach sind, was die Differenzierbarkeit der Eigenwertfunktion und damit ebenfalls von fk.�k/

zur Folge hat.

Berechnung der Gradienten

Abschließend wird das Vorgehen zur Bestimmung des Gradienten rfk skizziert. Auch an dieser
Stelle vereinfacht sich die Darstellung, wenn statt der Berechnung aller partieller Ableitungen das
Differential dfk.�/ betrachtet wird, da sich über den Zusammenhang dfk.�/ D rfk.�/d� eine
eineindeutige Beziehung zwischen Differential und Gradient ergibt [63, Theorem 5.6]. Zusammen
mit Satz 3.13 bzw. (5.15) und (5.16) lässt sich

dfk D 2
p

p.Fk.�k// dFk ;

dFk D
h
1 a!k

b
p

!2
k

Cb2

i 

dık

d!k

�

und

dfk D 2
p

p.Fk.�k//



1 a!k

	
b

q
!2

k
C b2

��1
� 


dık

d!k

�
; (5.18)

berechnen, wobei dık D Re.d�k/ und d!k D Im.d�k/ abgekürzt wurde. Mit Satz B.12 folgt
zudem

d�k D wT
k
.dAT2

/vk

wT
k
vk

D .wT
kvk/

�1
�
vT

k ˝ wT
k

�
vec.dAT2

/; (5.19)

wobei vk und wT
k

die Rechts- und Linkseigenvektoren zum Eigenwert �k der Matrix AT2
kenn-

zeichnen. Aufgrund der Struktur der Matrix AT2
in (5.14) ist die Berechnung der Jacobi Matrix

DAT2
, so dass vec.dAT2

/ D .DAT2
/d� gilt, einfach möglich, wenn zunächst über (5.8) die Zu-

sammenhänge

dAei D
2
40 0 BidCdi

0 0 dEdi

0 0 dAdi

3
5 ; dBei D

2
4BidDdi

0

dBdi

3
5
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betrachtet werden, woraus mit Hilfe des Vektorisierungsoperators

vec.dAei/ D

2
64

2
64 0

0

Inzi

3
75 ˝

2
64 0

0

Inzi

3
75 ;

2
64 0

0

Inzi

3
75 ˝

2
4Bi

0

0

3
5 ;

2
64 0

0

Inzi

3
75 ˝

2
4 0

InS

0

3
5

3
75

2
4vec.dAdi/

vec.dCdi/

vec.dEdi/

3
5 ;

(5.20a)

WD .DAei/ �i1
;

vec.dBei/ D

2
64Ip ˝

2
64 0

0

Inzi

3
75 ; Ip ˝

2
4Bi

0

0

3
5

3
75



vec.dBdi/

vec.dDdi/

�
; (5.20b)

WD .DBei/ �i2

folgt. Aufgrund der Blockdiagonalstruktur der Matrizen eAe und eBe in (5.14) und mit Hilfe der
Auswahlmatrizen LAei

, RAei
, LBei

und RBei
, die

LT
Aei

eAeRAei
D Aei

LT
Bei

eBeRBei
D Bei

erfüllen, setzt sich die Jacobi Matrix DAT2
unter Berücksichtigung von (5.20) spaltenweise aus

Matrizen der Form

DA
.i/

T2
WD ��

RAei
˝ LAei

�
.DAei/

�
RBei

˝ eC T
e .L

T
G ˝ Ip/LBei

�
.DBei/

�
gemäß

DAT2
WD �

T T
2 ˝ T T

2

� h
DA

.1/

T2
: : : DA

.N /

T2

i
(5.21)

zusammen. Das Einsetzen von (5.21) in (5.19) mit anschließendem Einsetzen in (5.18) ergibt dann
den gesuchten Ausdruck für den Gradienten rfk.�/.

5.4 Hinzunahme weiterer Gütekriterien

Durch Formulierung des Synchronisierungsproblems heterogener Agenten als strukturbeschränk-
ten dezentralen Reglerentwurf am Gesamtsystem, welcher im vorangegangen Abschnitt disku-
tiert wurde, ist die wesentliche Aufgabe des Optimierungsproblems (5.17) die Stabilisierung der
Matrix AT2

bzw. die Verschiebung der ihr zugeordneten Eigenwerte �k in den durch (5.15) pa-
rametrierten Bereich der offenen linken komplexen Zahlenebene. Aufgrund der Definition der
Straffunktion (5.16) in der Optimierungsaufgabe bricht das Verfahren in jedem Fall ab, wenn alle
Eigenwerte in dem vorgegebenen Bereich zum Liegen kommen. In diesem Fall besteht die Mög-
lichkeit, weitere Anforderungen an den Synchronisierungsprozess zu formulieren, indem ausge-
hend von (5.13) für das System

PNx2 D T T
2

� eAe C eBe.LG ˝ Ip/eCe
�

T2 Nx2; Nx2.t0/ D Nx20
; (5.22a)

v D .LG ˝ Ip/eCeT2 Nx2 (5.22b)
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gezielt weitere Kenngrößen minimiert werden. Auch für diese Entwurfsaufgabe ist eine Möglich-
keit, das in Abschnitt 3.3.3 skizzierte Vorgehen zur Überführung des nichtlinearen Optimierungs-
problems mit Nebenbedingung

min
�

J �.�/ (5.23a)

u.B.v. fk.�/ � 0; k 2 f1; : : : ; n � nSg; (5.23b)

durch Definition der Funktionen

Qfi.�/ D
(

J �.�/=c�; i D 1;

fk.�/=c�; i 2 f2; : : : ;n � nS C 1g; k D i � 1

und unter der Voraussetzung, dass bereits ein zulässiger Wert � für das Optimierungsproblem
(5.17) vorliegt, in das Min-Max-Optimierungsproblem

min
�

max
i2Qq

Qfi.�/ (5.24)

mit der modifizierten Indexmenge Qq D f1; : : : ;n�nS C1g zu überführen, wobei für die Vorgabe-
werte c� > J �, 0 < c� � 1 angenommen wird und zur Lösung von (5.24) ein Abstiegsverfahren
genutzt wird. Dies ermöglicht ein zweistufiger Prozess, wobei zunächst durch Lösung von (5.17)
ein zulässiger Wert für (5.23) zu bestimmen ist. Im zweiten Schritt entstehen durch die Verände-
rung der Eigenwerte von AT2

im vorgegebenen Bereich der komplexen Ebene zusätzliche Frei-
heitsgrade, die gezielt für weitere Verbesserungen des dynamischen Verhaltens von (5.22) nutzbar
sind.

Bei der Auswahl geeigneter Kriterien hinsichtlich J �.�/ sind die Möglichkeiten zahlreich, wes-
halb im Folgenden nur eine übersichtliche Auswahl diskutiert wird, die sich in einfacher Weise
mit der im vorangegangenen vorgestellten Methodik kombinieren lässt. Auch auf die explizite
Berechnung der entsprechenden Gradienten wird verzichtet. Diese lassen sich allesamt durch An-
wendung der Rechenregeln in Abschnitt B.4 mit vertretbarem Aufwand berechnen.

Im Hinblick auf den Synchronisierungsvorgang ist der Zeitverlauf des Ausgangs v.t/ in (5.22b)
ein wesentlicher Indikator für die Wahl der freien Reglerparameter in (5.6). Daher liegt es nahe,
ein quadratisches Gütekriterium für J � anzusetzen, woraus

J � D 1

2

Z 1

0

vT.t/ QQvv.t/ dt

mit positiv definiter Matrix QQv folgt. Durch Berechnung der Zeitlösung von v.t/ und Einsetzen
in das Gütekriterium lässt sich dieses mit dem Anfangswert von (5.22a) auch als J � D 1

2
NxT

20
P Nx20

schreiben (vgl. z.B. [28]), wobei P aus der Lösung der Lyapunov Gleichung

PAT2
C AT

T2
P D �T T

2
eC T

e .L
T
G ˝ Ip/ QQv.LG ˝ Ip/eCeT2 DW �Qv

zu bestimmen ist. Da das System (5.22) über den Ausgang v vollständig beobachtbar ist, handelt
es sich bei Qv um eine positiv semidefinite Matrix. Darüber hinaus ist die Matrix AT2

für alle
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zulässigen Werte aus (5.23) Hurwitz und damit ist in diesem Falle die Lösung der Lyapunov Glei-
chung P symmetrisch positiv definit [38]. Die Minimierung des quadratischen Gütemaßes kann
daher in einfacher Weise für beliebige Anfangswerte Nx20

durch Lösung der Lyapunov Gleichung
erfolgen, woraus sich ebenfalls ein Ausdruck für den Gradienten rJ � ermitteln lässt.

Eine weitere Möglichkeit zur gezielten Minimierung eines Gütekriteriums entsteht, indem für das
stabile Zustandssystem (5.22) geeignete Performance Ein- und Ausgänge zp und wp definiert
werden, woraus für die Dynamik PNx2 D AT2

Nx2 C Bpzp und den Ausgang wp D Cp Nx2 mit den zu
wählenden Matrizen Bp und Cp folgt. Wird nunmehr angenommen, dass das Eingangssignal ein
weißer Rauschprozess ist, dann lässt sich der Einfluss des Rauschens auf den Ausgang wp gezielt
reduzieren, indem für die Übertragungsmatrix G.s/ D Cp.sI � AT2

/�1Bp das Gütekriterium

J � D kG.s/k2
2 D 1

2�

Z 1

�1
spur

�
GT.�j!/G.j!/

�
d!

minimiert wird, was in der Literatur als H2-Performance des Systems bezeichnet wird [116]. Auch
an dieser Stelle kann auf die direkte Lösung des Integrals verzichtet werden und eine äquivalen-
te Formulierung basierend auf der Lösung einer Riccati Gleichung gefunden werden. Mit [133,
Lemma 4.6] ist nämlich kG.s/k2

2 D spur
�
CpPBC T

p

� D spur
�
BT

pPC Bp

�
, wobei PB und PC aus

der Lösung der Riccati Gleichungen

AT2
PB C PBAT

T2
D �BpBT

p; PC AT2
C AT

T2
PC D �C T

p Cp;

zu bestimmen sind. Der Gradient rJ � errechnet sich dabei in einfacher Weise über die vorstehen-
den Riccati Gleichungen.

Es soll abschließend erwähnt werden, dass neben der H2-Synthese mit der H1-Synthese eine
weitere Frequenzbereichsmethodik gegeben ist, um gezielt das Übertragungsverhalten zwischen
den Performance Ein- und Ausgängen zu verbessern. Hierzu lässt sich der Performance-Ausgang
ebenfalls um einen Durchgriff erweitern, woraus wp D Cp Nx2 C Dpzp und damit die Übertra-
gungsmatrix G.s/ D Cp.sI � AT2

/�1Bp C Dp folgt. Als Gütekriterium ergibt sich dann

J � D kG.s/k1 ;

welches durch Optimierung über die freien Parameter in (5.6) minimiert werden muss. Aufgrund
der Strukturbeschränkung der Regelung ist allerdings der Zugang über das sogenannte Bounded
Real Lemma (vgl. [10]) und Semidefinite Programmierung (SDP) nicht möglich, da sich daraus
keine LMI-Nebenbedingung ergibt. Zur strukturierten H1-Synthese ist deshalb auf alternative
Methoden der Nichtglatten Optimierung [3] zurückzugreifen, was allerdings im Rahmen dieser
Arbeit nicht betrachtet wird. Es sei lediglich erwähnt, dass sich über diesen Zugang Anknüp-
fungspunkte zu dieser Arbeit ergeben, insbesondere im Hinblick auf zeitvariante Kommunikati-
onstopologien (bspw. durch [104, 117]).

5.5 Entwurfsbeispiel

Zur anschaulichen Darstellung der Vorgehensweise zur Bestimmung der synchronisierenden Re-
gelung (5.6) für die heterogenen Agenten (5.1) und zur Bewertung der Ergebnisse dieses Kapi-
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Bild 5.3: Ringstruktur des betrachteten Kommunikationsnetzwerks (links) und Lage der Ei-
genwerte �k im offenen und geschlossenen Regelkreis (rechts)

tels wird nachfolgend ein akademisches Beispielsystem betrachtet. Die heterogene Dynamik der
Agenten wird aus der Übertragungsfunktion

Gi.s/ D ki

.s � pzi1/.s � pzi2/.s � pzi3/

.s � pi1/.s � pi2/.s � pi3/.s � pi4/

generiert, wobei für die spätere Entwurfsaufgabe N D 10 Agenten betrachtet werden. Dabei ist
vorauszusetzen, dass der Zählergrad der Übertragungsfunktion strikt kleiner als der Nennergrad
ist, um konsistent mit der betrachteten Systemstruktur in (5.1) zu sein. Durch die geeignete Wahl
der Parameter ki , pzij und pij lassen sich daher weitreichende Systemdynamiken einstellen, da
durch Pol-Nullstellenkürzungen die Agenten unterschiedliche Zustandsdimensionen aufweisen
können. Darüber hinaus kann das Systemverhalten oder auch die Nulldynamik sowohl stabil als
auch instabil ausgelegt werden. Die Matrizen S und Q, die die synchrone Trajektorie der Agenten
festlegen, sind gemäß

S D
2
40 1 0

0 0 1

0 �1 0

3
5 ; Q D �

1 0 0
�

gewählt, was auf die asymptotische Synchronisierung auf ein sinusförmiges Signal mit der Fre-
quenz 1 Hz mit einem überlagerten konstanten Anteil führt. Es lässt sich einfach nachrechnen,
dass das Paar .Q;S/ beobachtbar ist. Die Kommunikationsstruktur der Agenten ist in der linken
Darstellung in Bild 5.3 abgebildet. Hierbei wurde bewusst eine Ringstruktur gewählt, da damit
nicht allein die Stabilisierung der einzelnen Agenten bereits hinreichend für die Stabilisierung des
Synchronisierungsprozesses ist.

Die Ergebnisse des Optimierungsproblems (5.17) sind der rechten Darstellung in Bild 5.3 zu ent-
nehmen. Neben den Eigenwerten des offenen Regelkreises ist aus der Darstellung zu erkennen,
dass das Optimierungsverfahren in der Lage ist, alle Eigenwerte der Matrix AT2

in den durch
(5.15) parametrierten Bereich der komplexen Ebene zu verschieben. Hierbei ergibt sich für die
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Bild 5.4: Simulationsergebnisse zur Ausgangssynchronisierung heterogener Agenten basie-
rend auf der Regelung (5.6); Verlauf der Ausgangsgrößen (oben) und Verlauf der Messgrößen
(5.2) (unten)

Eigenwerte des Synchronisierungsprozesses eine Mindestdynamik von a D 0;35 und eine Min-
destdämpfung von 	 D 85ı. Dieses Ergebnis führt zu den Simulationsergebnissen, die in Bild
5.4 dargestellt sind. In der oberen Darstellung ist der Verlauf aller Ausgangsgrößen yi.t/ und in
der unteren Darstellung der Verlauf aller Messgrößen bzw. der kommunzierten Variablen vi.t/

dargestellt. Anhand der Verläufe ist zu erkennen, dass nach ca. 20 Sekunden alle Ausgangsgrößen
synchron gemäß der Zeitlösung des dynamischen Systems Pw D Sw mit dem Ausgang Qw.t/

verlaufen, was die Anwendbarkeit der in diesem Kapitel entwickelten Methodik verdeutlicht.

5.6 Kurzzusammenfassung

Kapitel 5 ist von den minimalen Anforderungen an die Synchronisierung heterogener linearer
Multi-Agenten Systeme ausgegangen. Diese bestehen darin, dass hinsichtlich der Kommunikati-
onsstruktur lediglich die Existenz eines Spannbaums vorausgesetzt wurde. Darüber hinaus ist der
Kommunikationsaufwand der Agenten minimal, da nur Ausgangsinformation an das Netzwerk
kommuniziert wird. Ausgehend von der Analyse der benötigten Regelungsstruktur der Agenten
zeigt sich, dass die Wahl stets auf einen invarianten Unterraum S des Gesamtsystems gemäß
(5.10) führt, der bezüglich der relativen Ausgänge unbeobachtbar ist. Damit ist die notwendige
Bedingung für die Ausgangssynchronisierung heterogener Agenten stets erfüllt.
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Die Attraktivität des Unterraums S, die eine notwendige und hinreichende Bedingung für die in
diesem Kapitel betrachtete Problemstellung ist, lässt sich durch die Betrachtung der dieser Eigen-
schaft zugeordneten Systemmatrix AT2

analysieren und beeinflussen. Durch die Wahl der freien
Reglerparameter ist die Beeinflussung der Eigenwerte von AT2

möglich, was die Entwurfsaufga-
be in ein dezentrales Stabilisierungsproblem übersetzt. Zur Lösung dieser Aufgabe ist das Vorge-
hen zur Vorgabe von Eigenwertbereichen aus Abschnitt 3.3.1 auf die Problemstellung modifiziert
worden, was neben der eigentlichen Stabilisierungsaufgabe zusätzliche Einflussmöglichkeiten auf
die Lage der Regelungseigenwerte bietet. Die Beeinflussung der Mindestdynamik als auch der
Mindestdämpfung wird durch die Parametrierung der Hyperbel, die den Bereich der Eigenwerte
begrenzt, ermöglicht und ist somit beim Entwurf einstellbar.

Aufgrund der Wahl der quadratischen Straffunktion (5.16) in der Optimierungsaufgabe bricht das
Verfahren auf jeden Fall ab, wenn alle Eigenwerte in dem vorgegebenen Bereich zum Liegen
kommen. In diesem Fall besteht die Möglichkeit, weitere Anforderungen an den Synchronisie-
rungsprozess zu formulieren, indem für das System (5.22) gezielt weitere Gütekriterien minimiert
werden. Die Verwendung eines quadratischen Gütekriteriums sowie die H2-Synthese liefern an
dieser Stelle mögliche Ansatzpunkte für weiterführende Untersuchungen. Zusammenfassend lässt
sich festhalten, dass es in Kapitel 5 gelungen ist, die aus der Literatur bekannten Resultate zur Syn-
chronisierung heterogener Multi-Agenten Systeme mit einem konstruktiven Verfahren zu verbin-
den, was ein wichtiges, neues Resultat im Hinblick auf den Entwurf und die Analyse heterogener
Multi-Agenten Systeme darstellt.
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6 Entwurfsbeispiele

6.1 Entkopplungsregelung einer xy-Positioniereinheit

Zur Demonstration der parametrischen Entwurfsmethodik, die in Kapitel 3 vorgestellt wurde,
dient der Laboraufbau einer xy-Positioniereinheit, deren Prinzipskizze und Aufbau in Bild 6.1
dargestellt ist. Dieser Laboraufbau veranschaulicht die am Fachgebiet Regelungstechnik und Me-
chatronik der TU Darmstadt in der Lehrveranstaltung „Mehrgrößenreglerentwurf im Zustands-
raum“ vermittelten Lehrinhalte. Dies umfasst sowohl die Systemanalyse als auch den Entwurf von
Mehrgrößenregelungen, beispielsweise durch Ent- oder Verkopplung. Der Laboraufbau wurde im
Rahmen einer studentischen Arbeit [33] am Fachgebiet konstruiert und aufgebaut. In diesem Ab-
schnitt besteht das Ziel der Regelung darin, die Position des Endeffektors durch den Entwurf einer
robusten Entkopplungsregelung aus Abschnitt 3.3.3 innerhalb des Arbeitsraumes frei vorzugeben
und darüber hinaus die mechanische Kopplung des Systems durch die Regelung weitestgehend zu
kompensieren.

Beschreibung des Aufbaus

Die Hauptaufgabe des Aufbaus besteht in der Positionierung des Endeffektors in der xy-Ebene.
Hierzu sind auf zwei parallelen Linearführungen, die im Abstand a zueinander angeordnet sind,
jeweils ein Schlitten angebracht. Die Schlitten sind über einen Zahnriemen mit einem stromge-
regelten Gleichstrommotor mit integriertem Getriebe verbunden, so dass bezüglich der Regelung
von einer Kraft, beziehungsweise Momentenvorgabe ausgegangen werden kann. Die Positionen
der Schlitten werden über die Koordinaten q1 und q2 beschrieben und lassen sich über analoge
magnetostriktive Sensoren direkt im Echtzeitsystem der Firma dSpace (DS1104) erfassen.

Auf den parallelen Linearführungen ist die Portalschiene angebracht, worauf sich ein Schlitten
(Koordinate q3) durch einen weiteren stromgeregelten Gleichstrommotor translatorisch bewegen
lässt. Die Erfassung der Position des Schlittens erfolgt durch einen Seilzug und ein Potentiometer

q1

q2
q3

x

y

˛
a

Bild 6.1: Prinzipskizze (links) und Laboraufbau (rechts) der xy-Positioniereinheit nach [33]
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und ist damit ebenfalls direkt im Echtzeitsystem messbar. Die Lagerung der Portalschiene durch
ein Kugellager auf der q1-Achse sowie durch eine Linearführung auf der q2-Achse ermöglicht
darüber hinaus den Winkel ˛ gezielt zu verändern. Dies stellt neben der stets bei mechatronischen
Systemen auftretenden Reibung eine der wesentlichen Nichtlinearitäten des Aufbaus dar, was bei
der Modellierung des Systems zu berücksichtigen ist. Über die Zusammenhänge

xTCP D q1 � sin.˛/q3;

yTCP D cos.˛/q3;

˛ D arctan
�q1 � q2

a

�
lassen sich aus den Messgrößen die Position des Endeffektors (engl. tool center point, TCP) sowie
der Winkel ˛ bestimmen, was den Regelgrößen des Systems entspricht.

Modellierung des Systems

Zur Modellierung des Systems bietet es sich aufgrund der Struktur der xy-Positioniereinheit an,
diese basierend auf einer Deskriptordarstellung des Systems vorzunehmen. Als Vorteil ergibt sich
dabei, dass das System in modulare Teilsysteme zerlegt werden kann, die für sich betrachtet
einfacher zu modellieren sind. Im Gegensatz zur Modellierung in Minimalkoordinaten und der
anschließenden Anwendung der Energiemethode nach Lagrange bleiben bei diesem Ansatz die
aufzustellenden Gleichungen übersichtlich. Die Herausforderung bei der Modellierung als De-
skriptorsystem, ein äquivalentes Zustandsraumsystem zu bestimmen, gestaltet sich durch die in
[50, 64] diskutierten Methoden vergleichsweise einfach, indem auf Programme zur Berechnung
symbolischer Ausdrücke zurückgegriffen wird.

Dieser Ansatz ist in der studentischen Arbeit [99] ausführlich diskutiert, so dass eine kurze Be-
schreibung des Vorgehens sowie die Darstellung der Ergebnisse für die nachfolgenden Zwecke
ausreichend ist. Das zugrunde liegende Vorgehen besteht darin, die einzelnen Teilsysteme freizu-
schneiden und geeignete Zwangsbedingungen zwischen den Teilsystemen zu formulieren, woraus
das nichtlineare Deskriptorsystem in der semi-expliziten Form

P�1 D f .�1;�2;u/; (6.1a)

0 D g.�1;�2;u/; (6.1b)

y D h.�1;�2;u/ (6.1c)

folgt. Darin bezeichnet �1 die differentielle Variable und �2 die algebraische Variable, die zu-
sammen den Deskriptor � D �

�T
1 �T

2

�T
bilden. Bei der betrachteten xy-Positioniereinheit ent-

spricht die algebraische Variable den freigelegten Schnittkräften. Mittels der Methode aus [50]
wird die Forderung 0 D g.�1;�2;u/ gemäß z D g.�1;�2;u/ mit lim

t!1 z.t/ D 0 abgeschwächt und

eine Rückführung für �2 derart bestimmt, dass die mit dem Verkopplungsausgang z assoziierte
Untermannigfaltigkeit ausgangsnullend, geregelt invariant und attraktiv ist. Damit hat die fiktive

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087
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Zustandsraumdarstellung

P�1 D f .�1;�2;u/; (6.2a)

z D g.�1;�2;u/; (6.2b)

y D h.�1;�2;u/ (6.2c)

auf der durch die Rückführung erzeugten Untermannigfaltigkeit dieselbe Lösung wie das Deskrip-
torsystem (6.1). Die Darstellung (6.2) ermöglicht damit bekannte Methoden für Zustandssysteme
in entsprechender Weise anzuwenden.

Hinsichtlich der xy-Positioniereinheit und dem Ziel, eine Entkopplungsregelung für ein lineares
Zustandssystem zu entwerfen, muss (6.2) um einen geeigneten Arbeitspunkt linearisiert werden.
Da der Verkopplungsausgang z durch die Wahl der Rückführung für �2 stets asymptotisch ver-
schwindet, lässt sich bezüglich z eine Minimalrealisierung des linearisierten Systems bestimmen,
die den realen physikalischen Zuständen der xy-Positioniereinheit in der Nähe des Arbeitspunktes
entspricht. Die Wahl des Arbeitspunktes

xAP D �
q1AP Pq1AP q2AP Pq2AP q3AP Pq3AP

�T D �
0;15 0;00 0;07 0;00 0;10 0;00

�T

führt auf das lineare Zustandssystem

Px D Ax C Bu; (6.3a)

y D Cx (6.3b)

mit den Systemmatrizen

A D

2
66666664

0 1 0 0 0 0

0 �1;37 0 �0;05 0 0

0 0 0 1 0 0

0 �0;05 0 �1;21 0 0

0 0 0 0 0 1

0 �0;19 0 �0;01 0 �2;99

3
77777775
;

B D

2
66666664

0 0 0

5;09 0;18 0

0 0 0

0;18 4;05 0

0 0 0

0;72 0;03 7;86

3
77777775
;

C D
2
4 0;80 0 0;20 0 0;17 0

�0;04 0 0;04 0 0;98 0

2;06 0 �2;06 0 0 0

3
5 ;

welches für den weiteren Reglerentwurf zugrunde gelegt wird. Da das lineare Zustandssystem
eine Minimalrealisierung des linearisierten fiktiven Zustandssystem darstellt, ist dieses definiti-
onsgemäß steuer- und beobachtbar.
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Entwurf der Entkopplungsregelung

Zum Entwurf der Entkopplungsregelung ist zunächst die stabile Entkoppelbarkeit des Systems
zu überprüfen. Wie sich leicht nachrechnen lässt, ergibt sich ı D 6, und das System hat keine
invarianten Nullstellen. Damit entspricht die Differenzordnung ı der Systemordnung n D 6, und
somit ist die xy-Positioniereinheit mittels Zustandsrückführung stabil entkoppelbar. Der Übergang
zum Entwurf mittels Ausgangsrückführung erfolgt zunächst basierend auf Satz 3.11. Zur Sicher-
stellung der stationären Genauigkeit des geschlossenen Regelkreises werden die Regelgrößen des
Systems entsprechend des internen Modellprinzips um drei Integratoren erweitert, was die Ord-
nung des Systems um drei erhöht. Da sich durch dieses Vorgehen die Anzahl der Ausgangsgrößen
um die entsprechende Anzahl der Integratoren erweitert, wird zur Entkopplung des Systems ge-
mäß Satz 3.11 weiterhin eine Reglerordnung von nd D 4 benötigt. Zudem ist zu beachten, dass
für das Integral über die Regelabweichung gemäß der Forderung nach stationärer Genauigkeit der
Zusammenhang PxI D w � y einzuhalten ist. Dies führt daher auf das erweiterte System

2
4 Px

PxI

Pxd

3
5 D

2
4 A 0 0

�C 0 0

0 0 0

3
5

2
4 x

xI

xd

3
5 C

2
4B 0

0 0

0 Ind

3
5 ue C

2
4 0

Ip

0

3
5w D Aexe C Beue C FIw; (6.4a)

ye D
2
4C 0 0

0 Ip 0

0 0 Ind

3
5

2
4 x

xI

xd

3
5 D Cexe (6.4b)

mit dem erweiterten Zustandsvektor xe D �
xT xT

I xT
d

�T 2 Rne mit ne D 13, welches zum
Entwurf der dynamischen Regelung zugrunde gelegt wird. Gemäß Satz 3.5 ist dies äquivalent
zum Entwurf der statischen Ausgangsrückführung

ue D


Dd DdI Cd

Bd BdI Ad

�
ye C



Fu

Fd

�
w D Keye C Few (6.5)

für das erweiterte System (6.4). Die Bedingung nach Kimura (3.16) ist dabei immer noch erfüllt,
da n C nd C 4 � m C nd C p C nd C 3 gilt. Somit lassen sich alle Eigenwerte des geschlossenen
Regelkreises vorgeben.

Aufgrund der Forderung nach stationärer Genauigkeit und der damit einhergehenden Erweiterung
um die Integratoren ergibt sich eine Modifikation des Entwurfs der Rückführung (6.5). Ausgehend
vom erweiterten System (6.4) zusammen mit dem Ausgang yI D �xI lässt sich durch zeitliche
Ableitung mit w D 0 der Zusammenhang PyI D � PxI D y herleiten. Damit ergibt sich bezüg-
lich des Ausgangs yI eine Differenzordnung Qı D 9, und der Entwurf der Entkopplungsregelung
kann formal bezüglich des Ausgangs yI erfolgen, da durch Entkopplung bezüglich yI ebenfalls
Entkopplung bezüglich y gegeben ist.

Zur Bestimmung des Vorfilters ist gegenüber der Wahl gemäß (3.48) aufgrund der Erweiterung
um den Zustand xI eine Modifikation vorzunehmen. Durch Einsetzen von (6.5) in (6.4) ergibt sich
der geschlossene Regelkreis zu Pxe D .Ae C BeKeCe/xe C .BeFe C FI/w, worin sich aufgrund der
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Forderung PxI D w � y die Struktur des Vorfilters zu

BeFe C FI D
2
4B 0 0

0 0 Ip

0 Ind 0

3
5

2
4Fu

Fd

Ip

3
5 D BQeFe

ergibt. Gemäß den Betrachtungen in Abschnitt 3.2.2 und der Modifikation des Entwurfes der
Entkopplungsregelung sind die Eigenwerte des geschlossenen Regelkreises �Ki für i > Qı D 9

unsteuerbar zu machen, wobei hierzu die erweiterte Eingangsmatrix BQe zugrunde zu legen ist.
Nachfolgend bezeichnet daher QFe eine beliebige Vorfiltermatrix, die diese Forderung erfüllt. Für
das erweiterte Zustandssystem der xy-Positioniereinheit errechnet sich der Zusammenhang

dim bild
� QFe

�
D 2p:

Das Vorfilter QFe ist daher mittels einer Matrix TFe derart zu modifizieren, dass weiterhin der
Zusammenhang�

0p�m 0p�nd Ip

� QFeTFe D Ip

erfüllt ist. Darüber hinaus ergibt sich aus der stationären Betrachtung des geschlossenen Regelkrei-
ses, dass für stationäre Genauigkeit bezüglich der Regelgrößen y der Zusammenhang �Cey

.Ae C
BeKeCe/

�1BQe QFeTFe D Ip mit Cey
D �

C 0p�pCnd

�
erfüllt sein muss, woraus die Bestimmungs-

gleichung für TFe aus dem linearen Gleichungssystem"
�Cey

.Ae C BeKeCe/
�1BQe�

0p�m 0p�nd Ip

�
#

QFeTFe D


Ip

Ip

�

folgt. Für das vorliegende Beispiel der xy-Positioniereinheit ist das lineare Gleichungssystem ein-
deutig lösbar und somit das Vorfilter Fe festgelegt.

Parametrierung der Entkopplungsregelung

Aufgrund der Struktur des erweiterten Systems (6.4) lassen sich durch Betrachtung der Ausgangs-
dimension 2p Cnd �1 D 9 Rechtseigenvektoren des geregelten Systems über den parametrischen
Ansatz aus Abschnitt 3.2.2 vorgeben. Da Qı D 9 ist, legen die ersten Qı Eigenwerte und Rechts-
eigenvektoren das entkoppelte Führungsverhalten bezüglich y und w fest. Somit lässt sich die
Eigenwertmenge ƒK1 gemäß ƒK1 D ƒKx

[ƒKy
[ƒK˛

partitionieren, und die Menge ƒK1 cha-
rakterisiert diejenigen Eigenwerte, die als Pole im entkoppelt geregelten Übertragungsverhalten
sichtbar sind.

Zunächst werden alle Regelungseigenwerte fest vorgegeben, was gemäß der Unterteilung vonƒK1

zusammen mit ƒK2 auf

ƒKx
D f�12;16 ˙ 10;83j;�3;13g

ƒKy
D f�12;08 ˙ 10;90j;�3;12g

ƒK˛
D f�14;52 ˙ 12;04j;�3;40g

ƒK2 D f�1;86 ˙ �20;11j;�0;51 ˙ �1;38jg
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6.1 Entkopplungsregelung einer xy-Positioniereinheit 125

führt. Dies hat eine Konditionszahl der Rechtseigenvektormatrix von �.VK/ D 214;96 zur Folge.
Mit dem Übergang auf den teilparametrischen Ansatz aus Abschnitt 3.3.3 lässt sich die Menge der
Regelungseigenwerte ƒK2 als zusätzliche Freiheitsgrade im Optimierungsverfahren nutzen. Die
Wahl von 25 weiteren zufälligen Startwerten führt abschließend auf die modifizierte Menge der
Eigenwerte

ƒKQ2 D f�1;77 ˙ �19;38j;�0;50;�6;07g;
was auf die Konditionszahl der Eigenvektoren des geschlossenen Regelkreises von �. QVK/ D
145;32 und damit auf eine weitere Verbesserung führt. Dies hat die Matrizen der Regelung

Ad D

2
6664
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7775 ;
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4110;54 �19;37 13;79
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7;00 �113;80 3;57

�126;43 �383;54 �15;92

3
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in (6.5) zur Folge. Dies legt das entkoppelt geregelte Übertragungsverhalten gemäß Gw.s/ D
diag

�
gwx

.s/; gwy
.s/; gw˛

.s/
�

mit den skalaren Übertragungsfunktionen

gwx
.s/ D 1172;5.s C 0;71/

.s C 3;13/.s2 C 24;33s C 265;2/

gwy
.s/ D 1167;2.s C 0;71/

.s C 3;12/.s2 C 24;16s C 264;8/

gw˛
.s/ D 1665;7.s C 0;73/

.s C 3;40/.s2 C 29;04s C 355;9/

fest. Im Unterschied zur Entkopplung mittels Zustandsrückführung ergeben sich in den Übertra-
gungsfunktionen Zählernullstellen. Dies ist darin begründet, dass der Entwurf der entkoppelnden
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Bild 6.2: Zeitverlauf der Simulations- und Messergebnisse der xy-Positioniereinheit

Rückführung bezüglich des Ausgangs yI erfolgt, während der Entwurf des Vorfilters stationär
genau bezüglich y ausgelegt ist.

Simulation und Messergebnisse des entkoppelt geregelten Systems

Die Leistungsfähigkeit des parametrischen Entwurfes zur Entkopplung soll abschließend in nu-
merischen Simulationen sowie anhand von Messungen am Laboraufbau bewertet werden. Die
Simulations- und Messergebnisse mit der zuvor entworfenen Regelung sind in Bild 6.2 dargestellt.
Dabei wurde ein identischer Führungsgrößenverlauf für die Simulation als auch für die Messung
zugrunde gelegt.
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y
/m
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Bild 6.3: Simulation und Messergebnisse dargestellt im Arbeitsraum der xy-Positioniereinheit

Ausgehend vom Arbeitspunkt sollen mittels der Entkopplungsregelung die Eckpunkte eines Qua-
drates mit der Seitenlänge 15 cm angefahren werden. Dabei wird zunächst die rechte obere Ecke
und anschließend die Ecken des Quadrates entgegen des Uhrzeigersinnes angefahren, was eben-
falls in Bild 6.3 dargestellt ist. Der Winkel ˛, d.h. die Schrägstellung des Portals, soll während des
kompletten Verfahrvorgangs konstant bei ˛ D 10ı gehalten werden.

Es ist sowohl anhand der Zeitverläufe der Regelgrößen in Bild 6.2 als auch anhand der Darstellung
im Arbeitsraum der xy-Positioniereinheit in Bild 6.3 zu erkennen, dass die lineare Entkopplungs-
regelung in der Lage ist, den gewünschten konstanten Führungsgrößen stationär genau zu folgen.
Aufgrund des nichtlinearen Simulationsmodells und der nichtlinearen Effekte der Reibung am La-
boraufbau ist nicht zu erwarten, dass die lineare Regelung in der Lage ist, die xy-Positioniereinheit
exakt zu entkoppeln. Dennoch verdeutlichen die Ergebnisse aufgrund der vergleichsweise gerin-
gen Abweichungen im Hinblick auf den kostengünstigen Demonstrator, dass mit der parametri-
schen Entwicklungsmethodik ein leistungsfähiges Werkzeug zur Verfügung steht, um zahlreiche
praktische Regelungsaufgaben zu lösen.

Darüber hinaus ist damit auch verdeutlicht, dass die Konditionszahl der Eigenvektormatrix des
geschlossenen Regelkreises ein geeignetes Maß darstellt, um die bei Mehrgrößensystemen zur
Verfügung stehenden weiteren Freiheitsgrade gezielt durch ein Optimierungsverfahren aufzulö-
sen. Durch den in dieser Arbeit entwickelten integrierten Ansatz entfällt zudem der Einsatz eines
Beobachters, und der Entwurf kann in einem Schritt direkt erfolgen.
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6.2 Entkopplungs- und Verkopplungsbasierte Synchronisierung

von Helikoptern

Zur Veranschaulichung der in den Abschnitten 4.2.2 und 4.2.3 entwickelten Methodik zur Syn-
chronisierung heterogener agentenbasierter Systeme basierend auf dem unterlagerten Entwurf ei-
ner Entkopplungs- beziehungsweise Verkopplungsregelung soll das lineare Zustandssystem eines
gefesselten Modellhelikopters dienen. Dieses Modell wird ebenfalls von der Firma Quanser als
Labor Demonstrator unter dem Produktnamen 3 DOF Helicopter vertrieben und soll vornehmlich
in Laborpraktika zur Vermittlung von regelungstechnischen Kenntnissen im Bereich der Modell-
bildung des Systems und des modellbasierten Entwurfes von Zustandsregelungen dienen.

Beschreibung des Systems

Der Aufbau, dessen Prinzipskizze in Bild 6.4 dargestellt ist, besteht dabei aus einem Sockel, wor-
auf ein Ausleger mit zwei mechanischen Freiheitsgraden angebracht ist. Die Rotation um die z0-
Achse (Gierwinkel �˛) bildet die Vorwärtsbewegung des Helikopters nach, während die Rotation
um die z1-Achse (Neigungswinkel �
 ) aufgrund der Verbindung mit dem Ausleger eine Steigbe-
wegung nachbildet. An den Enden des Auslegers ist ein Gegengewicht auf der einen Seite und auf
der anderen Seite das Modell des Helikopters angebracht. Der Helikopter ist hierbei in Tandem-
Konfiguration mit identischem Front- und Heckrotor (Schub Ff und Fh) ausgeführt, weshalb die
Rotation um die z3-Achse (Nickwinkel �ˇ) durch die Schubdifferenz der beiden Rotoren erfolgt.
Darüber hinaus lässt sich über den Gleichanteil des Schubs der Rotoren die Höhe des Helikopters
über Grund einstellen. Ist zudem der Winkel �ˇ ¤ 0, entsteht aufgrund des Schubs der Rotoren
eine Kraftkomponente in horizontaler Richtung, was die Vorwärtsbewegung beziehungsweise das
Gieren des Helikopters zur Folge hat.

Ff

Fh

z0

x0

x1

z1

lr

lr

la
lc

z3

x3

y3

�ˇ

�


�˛

Bild 6.4: Prinzipskizze des betrachteten Modellhelikopters nach [48]
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In der Simulation soll nachfolgend untersucht werden, wie sich basierend auf den in dieser Arbeit
entwickelten Methoden asymptotische Synchronisierung für N D 4 der betrachteten Helikopter
erzielen lässt. Da jeder Helikopter über zwei Eingangsgrößen verfügt, sind zusätzlich für den
Gierwinkel �˛ und den Neigungswinkel �
 Referenzmodelle zu bestimmen, die die synchrone
Zeitlösung des synchronisierten Multi-Agenten Systems festlegen. Die Masse des Auslegers ma

und des Gegengewichts mc sowie die als identisch angenommenen Massen der Rotoren mr stel-
len zusammen mit den geometrischen Abmessungen des Aufbaus (la, lc und lr) die physikalischen
Parameter des Helikopters dar. Da die Parameter unter praktischen Gesichtspunkten stets Schwan-
kungen unterworfen sind, handelt es sich bei diesem Beispiel um strukturell identische Agenten,
die allerdings Unterschiede in den Parametern aufweisen, weshalb ein heterogenes Multi-Agenten
System vorliegt.

Modellierung des Systems

Die Bestimmung des für den Reglerentwurf benötigten linearen Modells erfolgt durch Linearisie-
rung des nichtlinearen Modells in einem Arbeitspunkt. Die Modellbildung des nichtlinearen Mo-
dells soll an dieser Stelle nur kurz skizziert werden, da die resultierenden Gleichungen aufgrund
der darin auftretenden trigonometrischen Zusammenhänge recht unübersichtlich werden. Als Her-
ausforderung bei der Modellbildung stellt sich die Bestimmung der Ortsvektoren der einzelnen
Massen im ortsfesten Koordinatensystem dar. Eine einfache Möglichkeit dies aufzulösen besteht
darin, den Aufbau mittels der Konvention nach Denavit und Hartenberg [22] (DH-Konvention)
durch homogene Koordinaten zu beschreiben, wobei nachfolgend der Darstellung in [114] ge-
folgt wird. Die homogene Transformation überführt dabei die klassische Transformationsbezie-
hung ap D arb C aRb

bp in die Matrixdarstellung

a Op D



ap

1

�
D



aRb

arb

0 1

� 

bp

1

�
D aTb

b Op;

wobei mit ap und bp jeweils Punkte in den Koordinatensystemen a und b bezeichnet sind. Mit arb

ist die Translation des Koordinatenursprungs von a in den Ursprung von Koordinatensystem b so-
wie mit aRb die Rotationsmatrix der Verdrehung der beiden Koordinatensysteme gekennzeichnet.
Mittels der DH-Konvention lässt sich der Übergang von einem auf ein anderes Koordinatensystem
durch vier Parameter beschreiben und durch die homogene Transformationsmatrix

i�1Ti D

2
6664

cos �i � sin �i cos˛i sin �i sin˛i ai cos �i

sin �i cos �i cos˛i � cos �i sin˛i ai sin �i

0 sin˛i cos˛i di

0 0 0 1

3
7775

ausdrücken. Dabei erfolgt zunächst eine Drehung und Translation um die zi�1-Achse (Parameter
�i und di) und im Anschluss eine Translation und Rotation um die neue xi-Achse (Parameter ai

und ˛i). Die Festlegung der Koordinatensysteme für den Aufbau des Modell Helikopters ist in
Bild 6.4 eingetragen. Damit ergeben sich die in Tabelle 6.1 aufgeführten DH-Parameter.

Mittels der hiermit festgelegten Koordinatenbeziehungen lassen sich in einfacher Weise die Orts-
vektoren zu den einzelnen Massen berechnen. Über die zeitliche Ableitung der Ortsvektoren re-
sultieren die Geschwindigkeiten der Punktmassen, woraus sich die entsprechenden kinetischen
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Tabelle 6.1: DH-Parameter zur Beschreibung der Koordinaten des Helikopters

i�1Ti �i di ai ˛i

0 ! 1 �˛ 0 0 �
2

1 ! 2 �
 C �
2

0 0 �
2

2 ! 3 �
2

la 0 ��
3 ! F �ˇ 0 lr

�
2

3 ! H �ˇ 0 �lr
�
2

Energien berechnen lassen. Zusammen mit der potentiellen Energie erfolgt die Berechnung der
Bewegungsgleichung des Helikopters aus der Anwendung der Lagrangeschen Gleichungen [65].
Dies hat ein nichtlineares Differentialgleichungssystem zweiter Ordnung M.q/ Rq C C.q; Pq/ D
Gf.q/Ff C Gh.q/Fh zur Folge, worin q die generalisierten Koordinaten und Pq die generalisierten
Geschwindigkeiten bezeichnet, und es gilt

q WD �
�˛ �
 �ˇ

�T
;

Pq WD
h P�˛

P�

P�ˇ

iT
:

Die Wahl des Arbeitspunktes

qAP WD �
0 10�

180
0
�T

mit

PqAP WD �
0 0 0

�T

sowie die Linearisierung der nichtlinearen Bewegungsgleichungen führt mit dem Zustandsvektor

xi WD
h
��˛ � P�˛ ��ˇ � P�ˇ ��
 � P�


iT

auf das gesuchte lineare Modell des Helikopters gemäß

Pxi D

2
66666664

0 1 0 0 0 0

0 0 ��1
i 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 ��2
i 0

3
77777775

xi C

2
66666664

0 0

0 0

0 0

�3
i ��3

i

0 0

�4
i �4

i

3
77777775

ui; (6.6a)

yi D
2
41 0 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

3
5 xi; (6.6b)

worin die Parameter �1
i , �2

i , �3
i und �4

i von den physikalischen Parametern des Demonstrators
abhängen. Eine Zusammenstellung der Parameter, die für die nachfolgende Simulation der N D 4

Agenten zugrunde gelegt ist, fasst Tabelle 6.2 zusammen.
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Tabelle 6.2: Parameter des Zustandssystems der vier Agenten in Abhängigkeit der gewählten
Massen und Abmessungen

i ma mc mr la lc lr �1
i �2

i �3
i �4

i

1 2;05 4;50 0;33 0;52 0;78 0;25 1;86 0;56 6;00 0;75

2 2;10 3;75 0;03 0;54 0;66 0;25 1;72 0;46 5;80 0;71

3 2;25 4;05 0;33 0;57 0;70 0;25 2;33 0;72 6;10 0;65

4 1;85 4;00 0;36 0;53 0;72 0;25 2;63 0;71 5;60 0;77

Entwurf der synchronisierenden Regler

Zunächst werden die Referenzmodelle für die beiden Ausgangsgrößen �˛ und �
 festgelegt. Mit
Blick auf die Diskussionen in Abschnitt 4.2.4 muss sich die synchrone Zeitlösung der Agenten als
Lösung des homogenen Zustandssystems (4.42) darstellen lassen. Referenzsignale, die einen nicht
stetig differenzierbaren Zeitverlauf aufweisen, können damit nicht exakt vorgegeben werden. Das
nachfolgende Simulationsbeispiel zeigt daher anhand eines Sägezahn- und Dreieckssignals, wie
sich durch eine Annäherung mittels Fourrierreihen der Zeitverlauf dieser Signale approximieren
lässt. Zu erwähnen ist in diesem Zusammenhang, dass sich Sägezahn- und Dreieckssignale exakt
über abschnittsweise geeignet gewählte Rampensignale und damit als Zeitlösung eines Doppelin-
tegrators darstellen lassen. Um diese Ergebnisse zu erzielen, sind allerdings die Zustände des
Doppelintegrators in periodischer Weise neu zu setzen, woraus eine hybride Dynamik folgt. Die-
ser Ansatz ist damit nicht mit den Methoden der vorliegenden Arbeit zu entwerfen. Ein möglicher
Anknüpfungspunkt an die Ergebnisse dieser Arbeit ist damit allerdings gegeben, insbesondere hin-
sichtlich einer Reduktion der benötigten Ordnung der Regelgesetze zur Synchronisierung. Diese
sind dann in der Regel jedoch mit nichtlinearen Methoden auszulegen.

Für die nachfolgend erzielten Simulationsergebnisse wird daher die Fourierreihendarstellung ei-
nes Sägezahn- ySZ.t/ und eines Dreieckssignals y4.t/ betrachtet. Diese periodischen Signale las-
sen sich durch die Fourierreihen

ySZ.t/ D �2 OySZ

�

1X
kD1

.�1/k�1 sin.k!SZt/

k
;

y4.t/ D 8 Oy4
�2

1X
kD1

.�1/k�1 sin..2k � 1/!4t/

.2k � 1/2

darstellen [11], wobei Oy.�/ die entsprechenden Amplituden und !.�/ die Frequenz der Signale kenn-
zeichnen. Zur Überführung in ein lineares Zustandssystem wird die Fourierreihe nach einer end-
lichen Anzahl von Sinusschwingungen abgebrochen. Zudem folgt aus der zweifachen zeitlichen
Ableitung der Signale, dass sich die einzelnen Sinusschwingungen jeweils durch autonome Zu-
standssysteme zweiter Ordnung darstellen lassen, woraus für die entsprechende Frequenz

PxSZj
D



0 1

�j 2!2
SZ 0

�
xSZj

DW SSZj
xSZj

;

ySZj
D

h
�2 OySZ.�1/j �1

j�
0
i

xSZj
DW QSZj

xSZj
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sowie

Px4j
D



0 1

�.2j � 1/2!2
4 0

�
x4j

DW S4j
x4j

;

y4j
D

h
8 Oy4.�1/j �1

.2j�1/2�2 0
i

x4j
DW Q4j

x4j

folgt. Für den nachfolgenden Entwurf wird berücksichtigt, dass der Gierwinkel asymptotisch
mit dem Sägezahnsignal und der Neigungswinkel asymptotisch mit dem Dreieckssignal über-
einstimmt. Dabei wird für die Amplituden OySZ D 2� und Oy4 D 0;1 sowie für die Frequenzen
!SZ D 2�=25 und !4 D 2�=15 gewählt. Die Fourierreihen werden bis zur dritten Sinusschwin-
gung berücksichtigt. Damit ist

SSZ WD diag .SSZ1
; SSZ2

; SSZ3
/ ;

S4 WD diag .S41
; S42

; S43
/

und

QSZ WD �
QSZ1

QSZ2
QSZ3

�
;

Q4 WD �
Q41

Q42
Q43

�
;

woraus das Referenzsystem

Pzi D


SSZ 0

0 S4

�
zi D Szi

ySi
D



QSZ 0

0 Q4

�
zi D Qzi

folgt. Dabei ist zi 2 RnS mit nS D 12 und ySi
2 R2.

Hinsichtlich des Entwurfes der unterlagerten Regelkreise für die N D 4 Agenten, soll zu Beginn
das Vorgehen basierend auf einer Entkopplungsregelung beschrieben werden. Zunächst ist An-
nahme 4.7 zu überprüfen. Da bezüglich des Gier- und Neigungswinkels die synchrone Trajektorie
ySi
.t/ mit ySi

2 R2 vorgegeben werden soll und zwei Eingangsgrößen zur Verfügung stehen, ist
das System unter Berücksichtigung der ersten beiden Ausgangsgrößen in (6.6) quadratisch. Wie
sich anhand von (6.6) nachrechnen lässt, ist das System bezüglich dieser Ausgänge entkoppel-
bar. Zudem ist ı D 6, und das System weist keine invarianten Nullstellen auf. Damit entspricht
die Differenzordnung der Systemordnung und das System ist mittels statischer Zustandsrückfüh-
rung stabil entkoppelbar. Da die Agenten strukturell identisch sind, ergeben sich ebenfalls gleiche
Differenzordnungen. Somit lässt sich in jedem Kanal eine identische, stabile Dynamik vorgeben.
Diese wird, da ı1 D 4 und ı2 D 2 gilt, gemäß

ƒK1 D f�4;73;�4;45;�1;06;�1;48g [ f�2;71;�2;43g

gewählt. Die verbleibenden, unsteuerbaren Eigenwerte des entkoppelt geregelten Agenten sind so
gewählt, dass ein möglichst geringer Wert der Konditionszahl der Rechtseigenvektormatrix des
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�3 �2;5 �2 �1;5 �1 �0;5 0 0;5
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�2
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4

Re.�k/
Im
.�

k
/

Entkopplung Verkopplung � .SSZ/ � .S4/

1

2

3

4

Bild 6.5: Stark verbundene Kommunikationstopologie (links) und Ausschnitt der komplexen
Ebene (rechts) mit den Eigenwerten der geregelten Multi-Agenten Systeme

geschlossenen Regelkreises entsteht. Darüber hinaus wird durch Rückgriff auf die teilparame-
trische Methodik aus Abschnitt 3.3.3 die Entkopplungsregelung jedes Agenten hinsichtlich der
robusten Eigenstrukturvorgabe optimiert. Die begrenzende Hyperbel ist dabei mit a D 0;5 und
b D a tan.�=4/ parametriert (vgl. Bild 3.3), was der Mindestdynamik und einer Mindestdämp-
fung der Eigenwerte von 	 D 45ı entspricht.

Aufgrund der unterlagerten Entkopplungsregelung lässt sich die synchronisierende Regelung für
jede Ausgangsgröße getrennt berechnen. Da das System stabil entkoppelbar ist, lässt sich für jede
Ausgangsgröße die Sylvester Gleichung (4.27) lösen, woraus die Vorsteuerung (4.26) und damit
der erweiterte Agent (4.30) folgt. Zur Berechnung der Matrizen der Rückführung wird die Metho-
dik aus Abschnitt 4.1.3 genutzt. Im Hinblick auf die Bedingung nach Kimura und die für jede Aus-
gangsgröße zu entwerfende Regelung (4.28) ergibt sich für die Synchronisierung des Gierwinkels
gemäß (3.22) eine untere Schranke für die Reglerordnung von nd�˛

� 4 beziehungsweise für den
Neigungswinkel eine untere Schranke von nd��

� 2. In beiden Fällen lässt sich mit der Methodik
eine synchronisierende Regelung bestimmen, wobei für die Ausgangsgröße �˛ eine Mindestdy-
namik von a D 0;1 und für die Ausgangsgröße �
 eine Mindestdynamik von a D 0;5 erzielbar
ist. Damit ist es gelungen, basierend auf der Methodik aus Abschnitt 4.2.2 eine synchronisierende
Regelung zu entwerfen.

Im Hinblick auf den Entwurf der synchronisierenden Regelung basierend auf einer unterlagerten
Verkopplungsregelung ist die Gültigkeit von Annahme 4.11 zu überprüfen. Hierzu ist für jeden
Agenten zunächst die Verkopplungsregelung zu berechnen. Gemäß Abschnitt 4.2.3 ergibt sich für
das betrachtete Beispiel die Forderung nach Verkopplung zu

lim
t!1



�˛.t/

�
 .t/

�
� ySi

.t/ DW yvi
.t/ D 0:

Ausgehend von der Lösung der Sylvester Gleichung (4.34) entstehen die erweiterten Agenten
gemäß (4.33). Auch an dieser Stelle ist die Existenz der Lösung der Sylvester Gleichung gesichert,
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Bild 6.6: Asymptotische Synchronisierung von vier Modellhelikoptern basierend auf unterla-
gerter Entkopplungsregelung (linke Spalte) sowie Verkopplungsregelung (rechte Spalte)

https://doi.org/10.51202/9783186250087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:37:37. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186250087


6.2 Entkopplungs- und Verkopplungsbasierte Synchronisierung von Helikoptern 135

da das zugrunde liegende Modell entkoppelbar ist und keine invarianten Nullstellen aufweist. Die
verbleibenden, unsteuerbaren Eigenwerte des mittels (4.35) verkoppelt geregelten Agenten sind
auch in diesem Fall so gewählt, dass sich ein möglichst geringer Wert der Konditionszahl der
Rechtseigenvektormatrix des geschlossenen Regelkreises ergibt. Darüber hinaus wird ebenfalls in
Anlehnung an die teilparametrische Methodik aus Abschnitt 3.3.3 die Verkopplungsregelung jedes
Agenten hinsichtlich einer robusten Eigenstrukturvorgabe optimiert. Die begrenzende Hyperbel
ist dabei mit a D 1 und b D a tan.5�=12/ parametriert (vgl. Bild 3.3), was der Mindestdynamik
und einer Mindestdämpfung der Eigenwerte von 	 D 75ı entspricht.

Ausgehend von der Koordinatendarstellung (4.38) des verkoppelt geregelten Agenten lässt sich
anschließend Annahme 4.11 überprüfen. Wie sich numerisch bestimmen lässt, gilt bild .RS/ WD
\N

iD1bild .Pi/ ¤ ;, und das Paar .S;RS/ ist steuerbar. Darüber hinaus ist dim .bild .RS// D
8. Somit ist es möglich, eine identische synchronisierende Regelung (4.40) für alle verkoppelt
geregelten Agenten zu entwerfen. Im Hinblick auf die Bedingung nach Kimura ergibt sich hierbei
eine untere Schranke für die Reglerordnung aus nd � 3. Mittels der Methodik aus Abschnitt 4.1.3
lässt sich eine synchronisierende Regelung bestimmen, wobei eine Mindestdynamik von a D 0;1

erzielbar ist. Damit ist es ebenfalls gelungen, basierend auf der Methodik aus Abschnitt 4.2.3 eine
synchronisierende Regelung zu entwerfen.

Diskussion der Ergebnisse

Die mit den zuvor entworfenen Regelungen erzielten Ergebnisse sind in den Bildern 6.5 und
6.6 dargestellt. Bild 6.5 zeigt in der linken Darstellung die für den Entwurf zugrunde gelegte
Kommunikationstopologie eines stark verbundenen Graphen. Zum anderen ist ein Ausschnitt der
komplexen Ebene dargestellt, worin die Eigenwerte der geregelten Multi-Agenten Systeme in der
Umgebung der imaginären Achse sowie die Eigenwerte des Referenzmodells auf der imaginären
Achse eingezeichnet sind. Es ist zu erkennen, dass sowohl die Eigenwerte des mittels Verkopplung
entworfenen Ansatzes als auch die Eigenwerte des mittels Entkopplung entworfenen Ansatzes in
der Nähe der imaginären Achse zum Liegen kommen, was auf die erzielbare Mindestdynamik von
a D 0;1 in beiden Fällen zurückzuführen ist.

Bild 6.6 zeigt die numerischen Simulationsergebnisse. In der linken Spalte sind die Ergebnis-
se basierend auf Entkopplung und in der rechten Spalte basierend auf Verkopplung dargestellt.
In den Zeitverläufen sind von oben nach unten die Zeitsignale des Gierwinkels �˛.t/ und des
Neigungswinkels �
 .t/ sowie die über das Netzwerk kommunizierten Signale und damit der Syn-
chronisierungsfehler v�˛

.t/ und v��
.t/ dargestellt. Anhand der absoluten Ausgangsverläufe �˛.t/

und �
 .t/ ist zu erkennen, dass diese dem zuvor festgelegten Referenzsystem und damit einem ap-
proximierten Sägezahn- und Dreieckssignal mit den Amplituden OySZ D 2� und Oy4 D 0;1 sowie
den Frequenzen !SZ D 2�=25 und !4 D 2�=15 asymptotisch folgen.

Im Hinblick auf die Zeitverläufe der Synchronisierungsfehler zeigt sich eine annähernd identi-
sche Konvergenzgeschwindigkeit der geregelten Multi-Agenten Systeme, was im Einklang mit
der in Bild 6.5 in der rechten Darstellung abgebildeten Lage der Eigenwerte ist. Da sowohl die
Eigenwerte des über Verkopplung geregelten Systems als auch die Eigenwerte des über Entkopp-
lung geregelten Systems in der Nähe der imaginären Achse zum Liegen kommen, stellt sich ein
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synchroner Zustand nach ungefähr 12 Sekunden ein. Stellt sich bei dem Ansatz basierend auf
Verkopplung in beiden Ausgangsgrößen der synchrone Zeitverlauf in etwa gleich schnell ein,
ist bei dem Ansatz basierend auf Entkopplung zu erkennen, dass der Neigungswinkel gegenüber
dem Gierwinkel schneller konvergiert. Dies ist durch die höhere erzielbare Mindestdynamik im
Ausgangskanal des Neigungswinkels zurückzuführen und stellt damit einen Vorteil des Ansat-
zes basierend auf Entkopplung dar, da die Synchronisierungsvorgänge weitestgehend unabhängig
voneinander einstellbar sind. Dies geht allerdings zu Lasten einer höheren benötigten Reglerord-
nung. Der synchronisierende Regler basierend auf Verkopplung hat eine Ordnung von nd;vk D 17,
während der synchronisierende Regler basierend auf Entkopplung eine Ordnung von nd;ek D 22

aufweist. Die Reglerordnung setzt sich dabei aus dem Referenzsystem, dem dynamischen Reg-
ler zur Entkopplung beziehungsweise Verkopplung sowie dem Regler zur Synchronisierung der
unterlagert geregelten Agenten zusammen.

Abschließend lässt sich festhalten, dass mit den Methoden aus Abschnitt 4.2.2 und 4.2.3 leistungs-
fähige Entwurfswerkzeuge entstanden sind, um Synchronisierungsprobleme heterogener agenten-
basierter dynamischer Systeme zu lösen, was das Beispiel in diesem Abschnitt belegt.

6.3 Dezentrale Synchronisierung einer autonomen

Fahrzeugkolonne

In diesem Abschnitt erfolgt die Anwendung der in Kapitel 5 entwickelten Methodik zur Syn-
chronisierung agentenbasierter Systeme basierend ausschließlich auf Relativinformation an ei-
nem vergleichsweise praxisnahen Beispiel. Hierzu wird das automatisierte Fahren in Kolonnen
auf Landstraßen oder Autobahnen mit einem Kraftfahrzeug betrachtet. Das Regelziel der verteilt
geregelten Kraftfahrzeuge besteht darin, asymptotisch einem vorausfahrenden Fahrzeug in einem
definierten Abstand mit der gleichen Geschwindigkeit zu folgen. Die für diese Regelungsaufga-
be benötigte Sensorik erfasst daher den Relativabstand und die Relativgeschwindigkeit zu dem
voraus- und hinterherfahrenden Fahrzeug und nutzt die Geschwindigkeitsregelung des Fahrzeugs
zur Anpassung der Fahrzeuggeschwindigkeit, was den Aktor für das betrachtete Beispiel darstellt.

In Bild 6.8 ist eine Skizze des Entwurfsbeispiels dargestellt, wobei im nachfolgenden Entwurf und
den Simulationen von N D 20 Kraftfahrzeugen ausgegangen wird. Der ebenfalls in der Skizze
abgebildete Graph deutet die Kommunikationstopologie des zugrunde liegenden Netzwerks an.
Somit gibt das erste Fahrzeug die Geschwindigkeit für die nachfolgenden Fahrzeuge vor. Damit

2 13

Bild 6.7: Prinzip der autonomen Fahrzeugkolonne basierend auf Relativsensorik
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resultieren die Messgrößen der Fahrzeuge gemäß (5.2) zu

vi.t/ D


vi1

vi2

�
D

8̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

"
0

0

#
; i D 1;"

x1
i � x1

i�1 C x1
i � x1

iC1;

x2
i � x2

i�1 C x2
i � x2

iC1

#
; i 2 f2; : : : ;N � 1g;"

x1
i � x1

i�1

x2
i � x2

i�1

#
; i D N;

wobei x1
i die Position und x2

i die Geschwindigkeit des Fahrzeugs mit dem Index i bezeichnet.

Darüber hinaus ist mit Bild 6.8 angedeutet, dass es sich unter praktischen Gesichtspunkten beim
betrachteten Beispiel um ein heterogenes Multi-Agenten System handelt. Dies ist mitunter auf un-
terschiedliche Motorisierungen der am Markt verfügbaren Kraftfahrzeuge aber auch auf verschie-
dene Luftwiderstandsbeiwerte beziehungsweise unterschiedliche Anströmflächen der Fahrzeuge
zurückzuführen. Nach Mitschke und Wallentowitz [68] ergibt sich beim Fahren in der Ebene, bei
Windstille und durch Linearisierung ein linearer Zusammenhang zwischen Gaspedalstellung und
Geschwindigkeit des Fahrzeugs gemäß der Differentialgleichung

Px2
i TFzi

C x2
i D KFzi

˛Ai
:

Danach verhält sich das Fahrzeug bei einer Änderung des Gaspedals wie ein PT1-Glied mit der
Zeitkonstanten TFzi

und dem Verstärkungsfaktor KFzi
. Diese Parameter hängen im Wesentlichen

von der Fahrzeugmasse, dem Motorkennfeld, dem gewählten Gang, den aerodynamischen Para-
metern, den Reifen und der Fahrzeuggeschwindigkeit ab [68]. Zusammen mit einem dynamischen
Regler

Pxdi D Adixdi C Bdi.x
2
i � vsoll/;

˛Ai
D Cdixdi C Ddix

2
i C

	
1

KFzi

� Ddi

�
vsoll;

der der stationär genauen Geschwindigkeitsregelung bezüglich vsoll dient und damit an dieser Stel-
le den Tempomat nachbildet, folgt zusammen mit dem Zustandsvektor xi D �

x1
i x2

i xdi

�T 2
Rni die Dynamik des heterogenen Agenten beziehungsweise des autonomen Kraftfahrzeugs zu

Pxi D

2
64

0 1 0

0
KFzi

TFzi

�
Ddi � 1

KFzi

�
KFzi

TFzi

Cdi

0 Bdi Adi

3
75 xi C

2
64

0

�KFzi

TFzi

�
Ddi � 1

KFzi

�
�Bdi

3
75 vsoll (6.7a)

D Aixi C Bivsoll;

yi D


1 0 0

0 1 0

�
xi D Cixi; (6.7b)

wobei die in der Simulation zugrunde gelegten Parameterwerte der N D 20 Zustandssysteme in
Tabelle 6.3 aufgeführt sind.
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Tabelle 6.3: Zeitkonstanten und Verstärkungsfaktoren für die Kraftfahrzeuge gemäß (6.7)

i 1 2 3 4 5 6 7 8 9 10

KFzi
63;9 65;3 87;8 43;1 46;7 48;6 87;5 65;3 49;7 56;1

TFzi
0;29 0;35 0;88 0;08 0;14 0;16 0;90 0;29 0;15 0;21

i 11 12 13 14 15 16 17 18 19 20

KFzi
43;1 44;7 55;6 54;4 90;3 45;6 50;8 51;4 69;4 69;4

TFzi
0;15 0;18 0;18 0;20 1;02 0;12 0;14 0;15 0;64 0;57

Hinsichtlich des eingangs formulierten Regelungsziels ist im Folgenden die synchrone Trajek-
torie festzulegen. Ausgehend von der Forderung, dass sich die Kolonne mit einer identischen
Geschwindigkeit und mit einem definierten Abstand zwischen den Fahrzeugen fortbewegen soll,
ergibt sich die synchrone Trajektorie gemäß

yS.t/ D v0t C yS.t0/;

was sich ebenfalls über die homogene Differentialgleichung

PxS D


0 1

0 0

�
xS D SxS (6.8a)

yS D �
1 0

�
xS D QxS (6.8b)

mit dem Anfangswert xS.t0/ D �
yS.t0/ v0

�T
und xS 2 RnS mit nS D 2 darstellen lässt. Dies legt

damit das virtuelle Referenzsystem (5.3) beziehungsweise die Dynamikmatrix der zu berücksich-
tigenden Vorsteuerung (5.4a) beim weiteren Entwurf der Regelung fest.

Für die Lösung der Sylvester Gleichung (5.5) lässt sich an dieser Stelle ein geschlossener Aus-
druck für jeden Agenten angeben. Es folgt mit (5.5), (6.7) und (6.8), dass
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gilt. Damit ist für alle i 2 f1; : : : ;N g

…i D
2
41 0

0 1

0 0

3
5 ; �i D �

0 1
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Allerdings ist auch
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was zeigt, dass das Paar .�i;S/ nicht vollständig beobachtbar ist. Somit müssen bei diesem Bei-
spiel die Ergebnisse aus Abschnitt 4.2.4 beachtet werden. Es lässt sich daher eine Minimalrea-
lisierung bezüglich des Ausganges �i bestimmen. Da (6.8) bereits in Jordanscher Normalform
vorliegt, ergibt sich eine Basis des beobachtbaren Unterraums aus den entsprechenden Eigen- und
Hauptvektoren und in diesem Beispiel zu bild

��
0 1

�T
�

. Damit resultiert die reduzierte Darstel-

lung der Matrizen S ! QS , Q ! QQ und �i ! Q�i , die für den Entwurf der Regelung (5.6) zu
berücksichtigen sind, aus

QS D �
0 1

� 

0 1

0 0

� 

0

1

�
D 0; QQ D �

1 0
� 


0

1

�
D 0; Q�i D �

0 1
� 


0

1

�
D 1:

Damit ist, wie in Satz 4.6 gefordert, die Basis des Unterraumes

Si D
�

xei 2 Rnei j xei 2 bild
	

…ei

0

���
; …ei

D

2
6664

1 0

0 1

0 0

0 1

3
7775 ; nei

D ni C nS C nzi

zusammen mit den erweiterten Agenten (5.7), die aus (6.7) und (5.6) entstehen, eine Lösung der
Sylvester Gleichung (4.20), was aus



…ei

0

�
S D

2
64Ai Bi

Q�i BiCdi

0 QS Edi

0 0 Adi

3
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…ei

0

�
, …ei

S D
"

Ai Bi
Q�i

0 QS

#
…ei

D
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6664

0 1

0 0
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0 0

3
7775

und

�
Ci 0

�
…ei

D �
1 0 0

�
2
6664

1 0

0 1

0 0

0 1

3
7775 D Q

folgt. Damit sind die notwendigen Bedingungen zur Synchronisierung heterogener Agenten aus
Satz 4.6 erfüllt, und damit haben alle Agenten ebenfalls eine nicht-leere System-Schnittmenge.
Dies hat zur Folge, dass die Bestimmung der freien Reglerparameter in (5.6) basierend auf der
Methodik aus Abschnitt 5.2 erfolgen kann.

Diskussion der Ergebnisse

Zunächst erfolgt die Definition des Gesamtsystems gemäß (5.9), woraus

Px D � eAe C eBe.LG ˝ Ip/eCe
�

x; x.t0/ D x0;

v D .LG ˝ Ip/eCex

mit x 2 Rn folgt. Für die Systemordnung n ergibt sich zusammen mit der Ordnung des dynami-
schen Reglers nzi

D 2, dass n D PN
iD1.ni C nS C nzi

/ D 120 gilt. Die Matrix AT2
, die mittels

der Methodik aus Abschnitt 5.2 stabilisiert werden muss, errechnet sich dabei aus (5.14).
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Bild 6.8: Asymptotische Synchronisierung einer autonomen Fahrzeugkolonne basierend auf
einem dezentralen Regelungsentwurf
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Zur Bestimmung geeigneter Startwerte �0 für das Optimierungsproblem (5.17) hat es sich in zahl-
reichen numerischen Beispielen bewährt, zunächst die Reglerparameter jedes erweiterten Agenten
(5.7) derart zu bestimmen, dass die Systemmatrix Aei C BeiCei ausgehend von (5.8) eine Hurwitz
Matrix ist. Als zweckmäßig erweist es sich zudem, die stabilisierende Regelung hinsichtlich der
robusten Eigenwertvorgabe weiter zu optimieren. Durch dieses Vorgehen gelingt es, in wenigen
Iterationen zur Lösung von (5.17) einen Parametersatz zu bestimmen, der die Matrix AT2

stabili-
siert. Bei dieser Lösung ergibt sich darüber hinaus eine Mindestdynamik von a D 0:01, die über
den Bereich der Eigenwerte in Bild 5.2 einstellbar ist.

Bild 6.8 zeigt die numerischen Simulationsergebnisse. Von oben nach unten ist der Zeitverlauf der
Fahrzeugpositionen und der Fahrzeuggeschwindigkeiten sowie die Synchronisierungsfehler hin-
sichtlich der Relativposition und -geschwindigkeit dargestellt. Dabei wurde zudem berücksichtigt,
dass asymptotisch alle Fahrzeuge den Mindestabstand 50 Metern einhalten, da als Referenzge-
schwindigkeit v0 D 100 km/h zugrunde gelegt wurde. Anhand der Simulationsergebnisse ist zu
erkennen, dass sich alle Fahrzeuge gemäß des eingangs formulierten Regelziels auf die Trajek-
torie yS.t/ nach ungefähr 150 Sekunden synchronisieren. Damit ist es gelungen, eine synchro-
nisierende Regelung zu entwerfen, die im Gegensatz zu den in den Abschnitten 4.2.2, 4.2.3 und
4.3 entwickelten Methoden, nicht auf die Verwendung von absoluter Messinformation angewie-
sen ist. Dies wird zwar durch den erhöhten Aufwand, der sich aus dem Entwurf der dezentralen
Regelung ergibt, erkauft. Das Beispiel in diesem Abschnitt belegt allerdings, dass der Entwurf
komplexer Beispiele hinsichtlich der Ordnung des Gesamtsystems durch die entwickelte Methode
möglich ist. Abschließend lässt sich festhalten, dass die Methode aus Kapitel 5 ein leistungsfähi-
ges Entwurfswerkzeug darstellt, um heterogene agentenbasierte Systeme ohne Verwendung von
Absolutinformation zu entwerfen.
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7 Zusammenfassung der Arbeit

Diese Arbeit beschreibt die Weiterentwicklung bestehender und die Entwicklung neuer Ansätze,
um Regelungen für agentenbasierte dynamische Systeme zu entwerfen. Alle betrachteten Metho-
den haben die Synchronisierung des geregelten Multi-Agenten Systems zum Ziel, wobei in dieser
Arbeit stets der allgemeine Fall der Ausgangssynchronisierung beleuchtet wird. Der Spezialfall
der Zustandssynchronisierung ist in den Ansätzen immer enthalten, führt aber in den meisten Fäl-
len auf agentenbasierte dynamische Systeme, die sich aus identischen Teilsystemen zusammen
setzen. Dies begründet damit den Schwerpunkt der Arbeit, der vornehmlich in der Betrachtung
von Synchronisierungsproblemen heterogener Multi-Agenten Systeme besteht.

Ausgangspunkt der Methoden in dieser Arbeit stellt zunächst die Systemanalyse der betrachte-
ten Systemklassen dar, woraus sich notwendige Bedingungen zur Synchronisierung aus der Li-
teratur im Hinblick auf die verwendeten Methoden der Arbeit ableiten und interpretieren lassen.
Während die Synchronisierung homogener Multi-Agenten Systeme in ein simultanes Stabilisie-
rungsproblem überführbar ist [25], gestaltet sich die Synchronisierung heterogener Multi-Agenten
Systeme vergleichsweise schwieriger, da die synchrone Zeitlösung der Agenten zunächst nicht
offensichtlich ist. Ausgehend vom Internen Modell Prinzip zur Synchronisierung [125], gibt die
vorliegende Arbeit eine Interpretation dieser notwendigen Bedingungen im Hinblick auf einen in-
varianten Unterraum des geregelten Systems, der durch die Regelung explizit die Eigenschaft der
Ausgangsnullung und der Attraktivität für asymptotische Synchronisierung aufweisen muss.

Als hilfreich erweisen sich in diesem Zusammenhang die Verwendung parametrischer bezie-
hungsweise teilparametrischer Ansätze zum Regelungsentwurf, die die Berechnung der lokalen
Regler aller Agenten ermöglichen. Hierzu wird konsequent von einer konstanten beziehungswei-
se dynamischen Ausgangsregelung der Agenten ausgegangen, was die praktische Implementie-
rung der entwickelten Methoden begünstigt und darüber hinaus keine wesentliche Einschränkung
der betrachteten Systemklasse der Agenten darstellt. Losgelöst von der eigentlichen Kernthematik
der Arbeit – der Synchronisierung agentenbasierter dynamischer Systeme – entstehen Weiterent-
wicklungen von Methoden zur robusten Eigenstrukturvorgabe sowie Methoden zum Entwurf von
Ent- und Verkopplungsregelungen, die allesamt als dynamische Ausgangsrückführung in der Pra-
xis implementierbar sind. Das Beispiel der Entkopplungsregelung einer xy-Positioniereinheit im
Rahmen der Entwurfsbeispiele der Arbeit belegt die Anwendbarkeit der Methode sowohl in der
Simulation als auch im Laborversuch.

Hinsichtlich der Synchronisierung agentenbasierter Systeme erfolgt in dieser Arbeit eine Unter-
scheidung der Ansätze bezüglich der Messgrößen der Agenten. Zunächst wird davon ausgegan-
gen, dass die Agenten sowohl die zur Synchronisierung benötigte Relativinformation als auch Ab-
solutinformation messtechnisch erfassen können. Diese Annahme ermöglicht durch unterlagerte
Regelkreise die Agenten hinsichtlich des Kommunikationsnetzwerks, welches die Relativinfor-
mation zur Verfügung stellt, zu homogenisieren. Die Homogenisierung erfolgt in dieser Arbeit
durch Ent- und Verkopplungsansätze, was einen Rückgriff auf die parametrische Entwurfsme-
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thodik darstellt. Der Entwurf der überlagerten Regelung zur Synchronisierung stellt sich als ein
Synchronisierungsproblem für identische Agenten und damit als ein simultanes Stabilisierungs-
problem dar. Der Entwurf dieser Reglung kann mit Verfahren aus der Literatur erfolgen – die
vorliegende Arbeit diskutiert allerdings auch einen einfachen Ansatz zur Synchronisierung identi-
scher Agenten basierend auf der Vorgabe von Eigenwertbereichen, was ebenfalls einen Rückgriff
auf die gewählten strukturbeschränkten Regelungsmethoden darstellt.

Darüber hinaus ermöglicht die Kenntnis von Zustandsinformation für die spezielle Systemklasse
nichtlinearer Agenten, die rückgekoppelt äquivalent zu einem passiven System sind, ein adaptives
Regelgesetz mit einem auf der Passivität basierenden Ansatz zur Synchronisierung zu kombinie-
ren. Dadurch gelingt die Weiterentwicklung einer Methode aus der Literatur [17] zur Synchroni-
sierung nichtlinearer Agenten auf eine erweiterte Systemklasse. Diese Systemklasse ergibt sich
aus Agenten, die den Vektorrelativgrad eins als auch parametrische Unsicherheiten aufweisen.
Dabei kompensiert die adaptive Regelung die unsicheren Vektorfelder, was der Homogenisierung
der Agenten entspricht und durch den passivitätsbasierten Ansatz aus der Literatur wird die Syn-
chronisierung des nichtlinearen Multi-Agenten Systems ermöglicht.

Der Verzicht auf Absolutinformation beim Regelungsentwurf ist gleichbedeutend mit dem Weg-
fallen der unterlagerten Regelkreise. Nichtsdestotrotz lässt sich auch für diesen Fall ein Regelge-
setz zur Synchronisierung agentenbasierter dynamischer Systeme bestimmen. In der vorliegenden
Arbeit wird der Entwurf der synchronisierenden Regelung in ein dezentrales Stabilisierungspro-
blem übersetzt, wobei durch die Wahl der Regelungsstruktur der Agenten stets die notwendigen
Bedingungen zur Synchronisierung erfüllt sind. Durch numerische Min-Max Optimierung lassen
sich die Parameter für die lokalen Regler der Agenten bestimmen, was dem Verschieben der Ei-
genwerte des Synchronisierungsfehlers in einen Bereich der linken offenen komplexen Ebene ent-
spricht. Das vorgestellte Verfahren ist lediglich in der Lage, lokale Minima des Entwurfsproblems
zu bestimmen, so dass Aussagen über das globale Minimum nicht möglich sind. Die Entwurfs-
beispiele in dieser Arbeit belegen allerdings, dass es durch die vorgestellte Methodik möglich ist,
hinsichtlich der Gesamtsystemordnung komplexe Entwurfsaufgaben zu lösen.

Insgesamt ermöglichen die in dieser Arbeit neu- und weiterentwickelten Entwurfsmethoden das
Synchronisierungsproblem für lineare agentenbasierte dynamische Systeme zu lösen, wobei die
Anforderungen an die Systemklasse der Agenten nicht restriktiv sind. Die zugrunde liegenden pa-
rametrischen beziehungsweise teilparametrischen Ansätze zeigen auch in dieser Arbeit ihre weit-
reichenden Leistungsfähigkeiten, wozu die Ergebnisse einen neuen Beitrag leisten.
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A Beweise

A.1 Beweis von Satz 3.9

Beweis. Mit Gleichung (3.18) und den Regeln zum Rechnen mit Differentialen in (B.6) folgt

dK D dQr.C Vr/
C C Qrd.C Vr/

C

C d.WsB/
CQsU1 C .WsB/

CdQsU1 C .WsB/
CQsdU1

C dU2K2U1 C U2dK2U1 C U2K2dU1:

(A.1)

Mit Satz B.13 und Lemma 3.8 kann darin d.C Vr/
C, d.WsB/

C, dU1 und dU2 durch

d.C Vr/
C D �.C Vr/

C.dC Vr/.C Vr/
C C .C Vr/

C.C Vr/
CT.dC Vr/

T.Ip � .C Vr/.C Vr/
C/

d.WsB/
C D �.WsB/

C.dWsB/.WsB/
C C .Im � .WsB/

C.WsB//.dWsB/
T.WsB/

CT.WsB/
C

dU T
1 D �.C Vr/

CT.dC Vr/
TU T

1

dU2 D �.WsB/
C.dWs/BU2

berechnet werden. Mit Gleichung (3.5) und der Festlegung der Rechtseigenvektoren und der Steu-
ermoden gemäß vKi D Nviqvi bzw. pvi D Mviqvi lässt sich aus obiger Gleichung

vec.dC Vr/ D

2
64

CNv1

: : :

CNvp�1

3
75 d�1 DW r.CeVr/d�1

vec.dQr/ D

2
64

Mv1

: : :

Mvp�1

3
75 d�1 DW rQrd�1

mit �1 D �
qT

v1 : : : qvp�1

�T
berechnen.

Zur Berechnung von dWsB und dQs kann die Entwurfsgleichung (3.15) zu einem symmetrischen
Eigenwertproblem zum Eigenwert null gemäß

�
.AT

1 � �KiI/ C T
1

� 

wKi

pwi

�
D



.A1 � �KiI/.A

T
1 � �KiI/ .A1 � �KiI/C

T
1

C1.A
T
1 � �KiI/ C1C T

1

� 

wKi

pwi

�
D 0

modifiziert werden, da mit der Abkürzung SCi D �
.AT

1 � �KiI/ C T
1

�
folgt, dass dim .kern .SCi// D

1 ist. Mit Lemma 3.8 ist daher

dwKi

dpwi

�
D .�ST

CiSCi/
C

ST
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wKi
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�
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und mit (3.13)

dSCi D dSC D
h
C T
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r BT C TdU T
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i
und daraus mit dem Vektorisierungsoperator sowie mit der Kommutierungsmatrix
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��
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Aus der Kenntnis von vec.dC Vr/ und vec.dQr/ folgt daher die Kenntnis von dU T
1 und damit auch

vec.dSC/, woraus sich dann vec
�
dW T

s

�
und vec

�
dQT

s

�
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C �
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(A.2)
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und daraus das geforderte Resultat für vec.dK/ mit den Optimierungsvariablen �2 D vec.K2/

sowie den Jacobi Matrizen rK�1
und rK�2

der Rückführmatrix K, die aus obiger Gleichung
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CTBT ˝ .WsB/
C�KnsrW T

s

C �
U T

1 QT
s .WsB/

CT.WsB/
C ˝ �

Im � .WsB/
C.WsB/

�
BT� rW T

s

� �
U T

1 KT
2U T

2 BT ˝ .WsB/
C�KnsrW T

s

C �
U T

1 ˝ .WsB/
C� rQs

rK�2
D �

U T
1 ˝ U2

�
gegeben sind.

Zur Berechnung von dVK wird VK gemäß VK D �
Vr vKp : : : vKn

�
partitioniert. Mit Gleichung

(3.5) und der Festlegung der Rechtseigenvektoren gemäß vKi D Nviqvi lässt sich aus obiger Glei-
chung zunächst

vec.dVr/ D

2
64

Nv1

: : :

Nvp�1

3
75 d�1

bestimmen. Mit Gleichung (B.11) folgt für i 2 fp; : : : ; ng darüber hinaus

dvKi D .�KiIn � .A C BKC //C
	

In � vKiwKi
�

wKi
�vKi

�
B.dK/CvKi :

Damit ist zusammen mit d.A C BKC / D B.dK/C abschließend

vec.dVK/ D

2
66666666664

Nv1

: : :

Nvp�1�
vT

KpC T ˝ �
�KpIn � .A C BKC /

�C �
In � vKpwKp

�

wKp
�vKp

��
rK�1

:::�
vT

KnC T ˝ .�KnIn � .A C BKC //C
�
In � vKnwKn

�

wKn
�vKn

��
rK�1

3
77777777775

d�1

D rVKd�1:

(A.3)
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A.2 Beweis von Satz 3.14

Beweis. Mit Gleichung (3.70) und den Regeln zum Rechnen mit Differentialen in (B.6) folgt

dKe D dQr.CeVr/
C C Qrd.CeVr/

C C Ke1dU1 C dKe1U1: (A.4)

Mit Satz B.13 und Lemma 3.8 kann darin d.CeVr/
C und dU1 durch

d.CeVr/
C D �.CeVr/

C.dCeVr/.CeVr/
C C .CeVr/

C.CeVr/
CT.dCeVr/

T.Ipe � .CeVr/.CeVr/
C/

dU T
1 D �.CeVr/

CT.dCeVr/
TU T

1

berechnet werden. Mit Gleichung (3.5) und der Festlegung der Rechtseigenvektoren und der Steu-
ermoden gemäß vKi D Nviqvi bzw. pvi D Mviqvi aus (3.44) lässt sich aus obiger Gleichung

vec.dCeVr/ D

2
64

CeNv1

: : :

CeNvn

3
75 d�1 D r.CeVr/ d�1

vec.dQr/ D

2
64

Mv1

: : :

Mvn

3
75 d�1 D rQr d�1

mit �1 D �
qT

v1 : : : qvn

�T
berechnen. Aus der Kenntnis von vec.dCeVr/ und vec.dQr/ folgt daher

die Kenntnis von dU T
1 . Somit folgt

vec
�
d.CeVr/

C� D �
.CeVr/

CT ˝ �.CeVr/
C�

vec.dCeVr/

C �
.Ipe � .CeVr/.CeVr/

C/T ˝ .CeVr/
C.CeVr/

CT�Kper vec.dCeVr/

vec.dU1/ D ��.CeVr/
CT ˝ U1

�
vec.dCeVr/

sowie

vec.dKe/ D �
.CeVr/

CT ˝ Ime

�
vec.dQr/C �

Ipe ˝ Qr
�

vec
�
d.CeVr/

C�
C �

Ipe ˝ Ke1

�
vec.dU1/

C �
U T

1 ˝ Ime

�
vec.dKe1/

D �rK�1
rK�2

� 

d�1

d�2

� (A.5)

und daraus das geforderte Resultat für vec.dKe/ mit den Optimierungsvariablen �1 und �2 D
vec.Ke1/ sowie den Jacobi Matrizen rK�1

und rK�2
der Rückführmatrix Ke, die aus obigen

Gleichungen durch

rK�1
D �

.CeVr/
CT ˝ Ime

� rQr C ��.CeVr/
CT ˝ Qr.CeVr/

C C Ke1U1

� r.CeVr/ (A.6)

C �
.Ipe � .CeVr/.CeVr/

C/T ˝ Qr.CeVr/
C.CeVr/

CT�Kperr.CeVr/ (A.7)

rK�2
D �

U T
1 ˝ Ime

�
(A.8)

gegeben sind.
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B Mathematischer Anhang

B.1 Lineare Gleichungssysteme

Satz B.1 ( [9, Proposition 6.1.7] ). Betrachtet wird die Matrix A 2 Rn�m sowie der Vektor b 2 Rn.
Dann sind die folgenden Aussagen äquivalent:

i) Es existiert ein Vektor x 2 Rm, der Ax D b erfüllt.

ii) rang .A/ D rang
��

A b
��

iii) b 2 bild .A/

iv) AACb D b

Angenommen, die Bedingungen i)-iv) sind erfüllt, dann sind die folgenden Aussagen gültig:

v) Wenn x 2 Rm die Gleichung Ax D b erfüllt, dann gilt

x D ACb C .I � ACA/x: (B.1)

vi) Für alle y 2 Rm, erfüllt x 2 Rm gegeben durch

x D ACb C .I � ACA/y (B.2)

die Gleichung Ax D b.

vii) Sei x 2 Rm durch (B.2) gegeben, wobei y 2 Rm. Dann wird durch y D 0 die Funktion xTx

minimiert.

viii) Angenommen, es gilt rang .A/ D m. Dann existiert ein eindeutiger Vektor x 2 Rm, der
Ax D b erfüllt und durch x D ACb gegeben ist. Ist darüber hinaus AL eine Links-Inverse
von A, dann gilt ALb D ACb.

ix) Angenommen, es gilt rang .A/ D n und es sei AR eine Rechts-Inverse von A. Dann erfüllt
x D ARb die Gleichung Ax D b.

B.2 Matrix Analysis

Definition B.2 ([35, vgl. S. 399]). Der gerichtete Graph einer Matrix A 2 Rn�n, bezeichnet mit
�.A/, ist ein gerichteter Graph mit n Knoten v1, v2, ... , vn mit der Eigenschaft, dass eine gerich-
tete Kante in �.A/ genau dann existiert, wenn aij ¤ 0 gilt.
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Definition B.3 ([35, vgl. S. 402]). Eine Matrix A 2 Rn�n ist reduzibel, wenn eine Permutations-
matrix P 2 Rn�n existiert, so dass

P TAP D



B C

0n�r;r D

�

mit 1 � r � n � 1 gilt.

Definition B.4 ([35, vgl. S. 402]). Eine Matrix A 2 Rn�n ist irreduzibel, wenn sie nicht reduzibel
ist.

Satz B.5 ( [35, Theorem 6.2.24] ). Sei A 2 Rn�n. Es sind die folgenden Aussagen äquivalent:

(a) A ist irreduzibel.

(b) �.A/ ist stark verbunden.

Satz B.6 ([35, Theorem 8.4.4 (Perron-Frobenius)]). Sei A 2 Rn�n eine irreduzible und nicht-
negative Matrix. Angenommen es gilt n � 2, dann gilt:

(a) Für den Spektralradius �.A/ gilt �.A/ > 0.

(b) �.A/ ist ein Eigenwert von A mit algebraischer Vielfachheit eins.

(c) Es existiert ein eindeutiger reeller Vektor x D Œxi �, so dass Ax D �.A/x und x1C� � �Cxn D 1

gilt; x ist positiv.

(d) Es existiert ein eindeutiger reeller Vektor y D Œyi �, so dass yTA D yT�.A/ und x1y1 C � � � C
xnyn D 1 gilt; y ist positiv.

Satz B.7 ([35, Theorem 6.3.2 (Bauer and Fike)]). Sei A 2 Cn�n diagonalisierbar. Weiterhin sei
angenommen, dass A D SƒS�1, worin S regulär und die Matrix ƒ eine Diagonalmatrix ist. Sei
E 2 Cn�n und k�k eine Matrix Norm auf Cn�n, die von einer absoluten Norm auf Cn induziert
wird. Wenn O� eine Eigenwert von A C E ist, dann existiert ein � von A, so dassˇ̌̌O� � �

ˇ̌̌
� kSk ��S�1

�� kEk D �.S/ kEk ;
worin �.�/ die Konditionszahl bezüglich der Matrix Norm k�k bezeichnet.

B.3 Kronecker Produkt

Definition B.8 ([9, S. 400]). Sei A 2 Rn�m und B 2 Rl�k . Dann ist das Kronecker Produkt
A ˝ B 2 Rnl�mk der Matrizen A und B durch die partitionierte Matrix

A ˝ B D

2
64

a11B � � � a1mB
:::

: : :
:::

an1B � � � anmB

3
75

gegeben.
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Für das Kronecker Produkt gelten die folgenden Rechenregeln (vgl. [9, S. 400 ff.]):

A ˝ .˛B/ D .˛A/˝ B D ˛.A ˝ B/;

.A ˝ B/T D AT ˝ BT;

.A C B/˝ C D A ˝ C C B ˝ C;

C ˝ .A C B/ D C ˝ A C C ˝ B;

.A ˝ B/˝ C D A ˝ .B ˝ C /;

.A ˝ B/.C ˝ D/ D .AC ˝ BD/;

.A ˝ B/�1 D .A�1 ˝ B�1/:

Außerdem gilt (vgl. [9, Fact 7.4.23])

rang .A ˝ B/ D rang .A/ � rang .B/ D rang .B ˝ A/ (B.3)

sowie mit dem Vektorisierungsoperator (vgl. [63, Theorem 4.2])

vec.B/ WD vec
��

b1 : : : bn

�� D �
bT

1 : : : bT
n

�T
(B.4)

ist

vec.ABC / D .C T ˝ A/vec.B/: (B.5)

B.4 Rechnen mit Differentialen

Zur Berechnung von Differentialen sind die folgenden Regeln hilfreich, wobei ˛ eine reelle Kon-
stante, A eine reelle konstante Matrix und U und V Matrizenfunktionen sind:

d˛ D 0; (B.6a)

dA D 0; (B.6b)

d.˛U / D ˛dU; (B.6c)

d.U ˙ V / D dU ˙ dV; (B.6d)

d.U V / D .dU /V C U.dV /; (B.6e)

dU T D .dU /T; (B.6f)

d vec.U / D vec.dU /; (B.6g)

d spur .U / D spur .dU / : (B.6h)

Satz B.9 ([63, Theorem 5.6 (first identification theorem)]). Sei f W S ! Rm eine vektorwertige
Funktion, die auf einer offenen Menge S � Rn definiert ist und die an einem inneren Punkt c von
S differenzierbar ist. Sei u 2 Rn. Die Elemente der m � n Matrix in

df .c;u/ D .Df .c//u;

also die Elemente Djfi.c/ sind die partiellen Ableitungen der Funktion f ausgewertet an der
Stelle c. Ist darüber hinaus A.c/ eine Matrix, die

df .c;u/ D A.c/u

für alle reellen u erfüllt, dann ist A.c/ D Df .c/.
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Differenzierbarkeit des symmetrischen Eigenwertproblems

Satz B.10 ([63, Theorem 8.7]). Sei A0 eine reelle symmetrische n � n Matrix und sei v0 ein
normierter Eigenvektor zu einem einfachen Eigenwert �0 von A0. Eine reellwertige Funktion �
und eine vektorwertige Funktion v sind für alle A in einer Umgebung N.A0/ � Rn�n von A0

definiert, so dass

�.A0/ D �0; v.A0/ D v0

und

Av D �v; vTv D 1; A 2 N.A0/

gilt. Darüber hinaus sind die Funktionen � und v unendlich oft differenzierbar in N.A0/ und die
Differentiale in A0 sind durch

d� D vT
0.dA/v0 (B.7)

und

dv D .�0In � A0/
C.dA/v0 (B.8)

gegeben.

Die Kommutierungsmatrix Kmn

Sei A eine m�n Matrix. Die Vektoren vec.A/ und vec
�
AT

�
enthalten offensichtlich dieselben mn

Komponenten, lediglich in verschiedener Anordnung. Daher existiert eine eindeutige mn � mn

Permutationsmatrix, welche vec.A/ in vec
�
AT

�
überführt. Diese Matrix heißt Kommutierungs-

matrix und wird mit Kmn oder Km;n bezeichnet. Daher ist

Kmnvec.A/ D vec
�
AT�

:

Da Kmn eine Permutationsmatrix ist, ist diese ebenfalls eine orthogonale Matrix. D.h. KT
mn D K�1

mn

und darüber hinaus ist KnmKmnvec.A/ D vec.A/, so dass KnmKmn D Imn. Daher ist

KT
mn D K�1

mn D Knm

und Kn1 D K1n D In.

Eine der wichtigsten Eigenschaften der Kommutierungsmatrix ist die Möglichkeit, die Matrizen
eines Kronecker Produktes zu vertauschen („zu kommutieren“).

Satz B.11 ([63, Theorem 3.9]). Sei A eine m � n Matrix, B eine p � q Matrix und b ein p � 1

Vektor, dann ist

Kpm.A ˝ B/ D .B ˝ A/Kqn; (B.9a)

Kpm.A ˝ B/Knq D .B ˝ A/; (B.9b)

Kpm.A ˝ b/ D .b ˝ A/; (B.9c)

Kmp.b ˝ A/ D .A ˝ b/: (B.9d)
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Differenzierbarkeit des (i.A. komplexen) Eigenwertproblems

Satz B.12 ([63, Theorem 8.8]). Sei �0 ein einfacher Eigenwert einer (möglicherweise komplexen)
Matrix A0 2 Cn�n und sei v0 der dazu korrespondierende normierte Eigenvektor, so dass A0v0 D
�0v0 gilt. Eine komplexwertige Funktion � und eine vektorwertige (komplexe) Funktion v sind für
alle A in einer Umgebung N.A0/ � Cn�n von A0 definiert, so dass

�.A0/ D �0; v.A0/ D v0

und

Av D �v; v�
0v D 1; A 2 N.A0/

gilt. Darüber hinaus sind die Funktionen � und v unendlich oft differenzierbar in N.A0/ und die
Differentiale in A0 sind durch

d� D w�
0.dA/v0

w�
0v0

(B.10)

und

dv D .�0In � A0/
C

	
In � v0w

�
0

w�
0v0

�
.dA/v0 (B.11)

gegeben, wobei w0 ein Eigenvektor zum Eigenwert N�0 von A0 ist, so dass A0
�w0 D N�0w0 gilt.

Differential der Moore-Penrose-Pseudoinverse

Satz B.13 ([63, Theorem 8.5]). Sei S eine offene Teilmenge von Rn�q und sei A W S ! Rm�p

eine Matrizenfunktion, die k � 1 mal differenzierbar auf S ist. Wenn rang .A.x// konstant auf S

ist, dann ist AC W S ! Rp�m k-mal stetig differenzierbar auf S und das Differential folgt aus

dAC D �AC.dA/AC C ACACT.dAT/.I � AAC/C .Ip � ACA/.dAT/ACTAC:
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C Eigenschaften linearer Zustandssysteme

Betrachtet wird das lineare Zustandssystem

Px D Ax C Bu; (C.1a)

y D Cx; (C.1b)

wobei für den Zustandsvektor x 2 Rn, den Anfangswert x.t0/ D xt0
, den Eingang u 2 Rm und

für den Ausgang y 2 Rp gilt. Die Matrizen A, B und C seien von passender Dimension.

Steuerbarkeit und Beobachtbarkeit

Eine Aussage über die Steuerbarkeit des Zustandssystem (C.1) gelingt mit

Satz C.1 (Steuerbarkeit, vgl. [133]). Betrachtet wird das Zustandssystem (C.1). Die folgenden
Aussagen sind äquivalent:

i) .A;B/ ist steuerbar.

ii) Die Gram’sche Steuerbarkeitsmatrix (engl. Controllability Gramian)

Wc.t/ WD
Z t

0

eA�BB�eA��d�

ist positiv definit für alle t > 0.

iii) Die Steuerbarkeitsmatrix nach Kalman

C D �
B AB � � � An�1

�
(C.2)

hat vollen Zeilenrang.

iv) Die Matrix
�
A � �I B

�
hat vollen Zeilenrang für alle � 2 C.

Hinsichtlich der Beobachtbarkeit des Zustandssystems (C.1) sind die Aussagen von Satz C.1
aufgrund der Dualität in gleicher Weise gültig, indem die Variablensubstitution A ! AT und
B ! C T vorgenommen wird.

Invariante Nullstellen

Zur Analyse der invarianten Nullstellen eines Zustandssystems wird die Rosenbrock’sche System-
matrix

PR.�/ WD


A � �I B

C 0

�
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und die Übertragungsmatrix

G.�/ D C .A � �I/�1 B

benötigt, wobei � 2 C gilt.

Definition C.2 ([86]). � D �0 heißt invariante Nullstelle des Zustandsystems (C.1), wenn

rang .PR.�0// < max
�2C

rang .PR.�//

für ein �0 2 C gilt.

Definition C.3 ([86]). Gilt rang
��

A � �0I B
��
< n, so wird �0 als Eingangsentkopplungsnull-

stelle des Zustandssystems (C.1) bezeichnet.
Gilt rang

��
AT � �0I C T

��
< n, so wird �0 als Ausgangsentkopplungsnullstelle des Zustands-

systems (C.1) bezeichnet.

Aufgrund des Hautus-Kriteriums (vgl. Punkt iv) in Satz C.1) entsprechen die nicht steuerbaren
Eigenwerte des Zustandssystems (C.1) den Eingangsentkopplungsnullstellen beziehungsweise die
nicht beobachtbaren Eigenwerte des Zustandssystems (C.1) den Ausgangsentkopplungsnullstel-
len.

Satz C.4 ([116]). Für das Zustandssystem (C.1) wird angenommen, dass m > p gilt. Die folgen-
den Aussagen sind äquivalent:

i) Das Zustandssystem (C.1) ist rechts-invertierbar.

ii) Es gilt rang .PR.�// D n C p für fast alle � 2 C.

Für quadratische Zustandssysteme ergibt sich der nachfolgende Korollar.

Korollar C.5 ([116]). Für das Zustandssystem (C.1) wird angenommen, dass m D p gilt. Die
folgenden Aussagen sind äquivalent:

i) Das Zustandssystem (C.1) ist invertierbar.

ii) Es gilt rang .PR.�// D n C m für fast alle � 2 C.

Geometrische Methode

Im folgenden werden einige Aspekte der geometrischen Methode, die hauptsächlich auf die Au-
toren der Bücher [8, 128] zurückgehen, dargestellt. Als wesentliches Konzept der geometrischen
Methode stellt sich die Eigenschaft der Invarianz beziehungsweise der geregelten Invarianz eines
Unterraums dar. Hinsichtlich der Systemdynamik (C.1a) ist ein Unterraum des Zustandsraum ge-
regelt invariant, wenn für alle Anfangswerte, die aus dem Unterraum gewählt werden, eine zuläs-
sige Eingangsfunktion u.t/ existiert, so dass der Zeitverlauf des Zustandsvektors im betrachteten
Unterraum verbleibt.
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Satz C.6 ([116]). Betrachtet wird die Systemdynamik (C.1a). Sei V ein Unterraum, d.h. es ist
V � Rn. Die folgenden Aussagen sind äquivalent:

i) V ist geregelt invariant.

ii) AV � V C bild .B/.

iii) Es existiert eine lineare Abbildung R W Rn ! Rm mit der Eigenschaft .A C BR/V � V .

Hinsichtlich eines Unterraums K, der nicht geregelt invariant ist, wird häufig der größte, geregelt
invariante Unterraum, der in K enthalten ist, benötigt. Dieser wird mit V�.K/ bezeichnet und es
gilt.

Satz C.7 ([116]). Sei K ein Unterraum, d.h. es ist K � Rn. Der Unterraum V�.K/ ist der größte
geregelt invariante Unterraum, der in K enthalten ist und es gilt:

i) V�.K/ ist geregelt invariant.

ii) V�.K/ � K.

iii) Wenn V � K geregelt invariant ist, dann ist V � V�.K/.

Daran anknüpfend ergibt sich die Fragestellung, wie sich V�.K/ ausgehend von (C.1a) und K
berechnen lässt. Dies führt auf den invariant subspace algorithmus, der den Unterraum V�.K/
durch die Rekursion

V0 D V; VkC1 D K \ A�1.Vk C bild .B// (C.3)

bestimmt. Darin ist die Operation A�1.Vk C bild .B// allgemein gemäß X D A�1Y WD fx W
y D Ax; y 2 Yg definiert. Damit folgt:

Satz C.8 ([116]). Betrachtet wird die Systemdynamik (C.1a). Sei K ein Unterraum, d.h. es ist
K � Rn. Es wird Vt mit t D 0;1;2; : : : durch (C.3) bestimmt. Damit gilt:

i) V0 � V1 � V2 � : : : .

ii) Es existiert ein k � dim K mit der Eigenschaft, dass Vk D VkC1 gilt.

iii) Wenn Vk D VkC1 gilt, dann ist Vk D Vt für alle t � k.

iv) Wenn Vk D VkC1 gilt, dann ist V�.K/ D Vk .

Der vorstehende Satz zeigt, dass der größte geregelt invariante Unterraum V�.K/ in einer end-
lichen Anzahl von Schritten mittels der Rekursion (C.3) bestimmt werden kann. Hierfür sind
maximal n Schritte notwendig. Gilt K D kern .C /, dann lässt sich mit (C.3) der größte ge-
regelt invariante Unterraum im Kern der Ausgangsmatrix C bestimmen. Hinsichtlich des Ent-
wurfes einer Verkopplungsregelung ist damit (vgl. (3.52)) Vıv D V�.kern .Tv2C // und ıv WD
dim V�.kern .Tv2C //.
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