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X1

Kurzfassung

Synchronisierung ist der Wortherkunft nach der Prozess, Vorgiinge in zeitliche Ubereinkunft zu
bringen. In vielen technischen Anwendungen ist dies ein zentraler Aspekt, um den storungsfreien
Betrieb zu gewibhrleisten. Beispielhaft sei hier die Frequenzregelung des elektrischen Energie-
netzes genannt, die insbesondere dann von Bedeutung ist, wenn nach Stromausfillen einzelne
Netzsegmente wieder miteinander verschaltet und dabei synchronisiert werden miissen.

Neben dieser technischen Anwendung eines Synchronisierungsvorgangs wurde in der regelungs-
technischen Literatur in den vergangenen Jahren verstdrkt die Synchronisierung von agenten-
basierten dynamischen Systemen beziehungsweise Multi-Agenten Systemen untersucht. Hierbei
handelt es sich zunichst um autonome und nicht physikalisch gekoppelte dynamische Systeme,
die die Fahigkeit besitzen, iiber ein Netzwerk miteinander zu kommunizieren. Die aus dem Netz-
werk empfangene Information wird von den lokalen Reglern der Teilsysteme verarbeitet, mit dem
Ziel, asymptotisch Ubereinkunft in den Zustinden oder — je nach Aufgabenstellung — lediglich
in Teilzustinden der Agenten zu erreichen. Erwdhnenswert ist dabei die Tatsache, dass es ausrei-
chend ist, lediglich relative Information zur Synchronisierung zu kommunizieren. Die messtech-
nische Erfassung des absoluten Zustandes oder Ausgangs des einzelnen Agenten muss somit nicht
notwendigerweise vorausgesetzt werden.

In der vorliegenden Arbeit erfolgt daher die Weiterentwicklung bestehender und die Entwicklung
neuer Ansitze, um strukturbeschrinkte Regelungen fiir agentenbasierte dynamische Systeme zu
entwerfen, wobei alle betrachteten Methoden die eingangs erwihnte Synchronisierung des gere-
gelten Multi-Agenten Systems zum Ziel haben. Ausgangspunkt der Methoden in dieser Arbeit
stellt zunéchst die Systemanalyse der betrachteten Systemklassen dar, woraus sich notwendige
Bedingungen fiir die Synchronisierung der entsprechenden Systemklassen ableiten und interpre-
tieren lassen.

Als Entwurfsmethodik in dieser Arbeit werden fast durchgingig parametrische beziehungswei-
se teilparametrische Ansdtze genutzt. Dariiber hinaus wird konsequent von einer konstanten be-
ziehungsweise dynamischen Ausgangsregelung der Agenten ausgegangen, was eine der Struk-
turbeschriankungen der Regelung darstellt. In diesem Zusammenhang entstehen — losgelost vom
Kernthema der Arbeit — Weiterentwicklungen von Methoden zur robusten Eigenstrukturvorgabe
sowie Methoden zum Entwurf von Ent- und Verkopplungsregelungen.

Hinsichtlich der Synchronisierung agentenbasierter Systeme erfolgt in dieser Arbeit eine Unter-
scheidung der Ansitze beziiglich der Messgroflen der Agenten. Zunichst wird der Fall diskutiert,
dass jeder Agent neben der Relativinformation zusétzlich Absolutinformation messtechnisch er-
fassen kann. Dies ermoglicht durch unterlagerte Regelkreise die Agenten zu homogenisieren, was
basierend auf den parametrischen Ansétzen mittels Ent- und Verkopplungsregelung erfolgt. Die
Homogenisierung gestattet dann Standardverfahren zur Synchronisierung identischer Agenten an-
zuwenden. Dariiber hinaus gelingt es, diese Idee ebenfalls auf eine spezielle Systemklasse nicht-
linearer Agenten zu iibertragen, was auf ein adaptives Regelgesetz zur Synchronisierung fiihrt.
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Kurzfassung Xl

Wie eingangs erwihnt, muss die Verfiigbarkeit von Absolutinformation zur Synchronisierung
nicht voraussetzt werden. Auch fiir diesen Fall wird in der vorliegenden Arbeit ein Regelgesetz zur
Synchronisierung agentenbasierter dynamischer Systeme angegeben. Der Entwurf der synchroni-
sierenden Regelung lésst sich dabei in ein dezentrales Stabilisierungsproblem und damit in ein
strukturbeschréinktes Regelungsproblem iibersetzen, welches sich durch numerische Optimierung
16sen ldsst.

Alle Methoden werden an Entwurfsbeispielen am Ende der Arbeit dargestellt und bewertet. Die
Leistungsfihigkeit der Methoden zur Synchronisierung werden an Simulationsbeispielen verdeut-
licht. Die weiterentwickelte Methode zum parametrischen Entwurf von Ausgangsreglern wird dar-
iiber hinaus in der Simulation und an einem Laboraufbau einer xy-Positioniereinheit am Beispiel
einer Entkopplungsregelung anschaulich dargestellt.
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1 Einfiihrung

1.1 Einleitung

,,We understand synchronization as an adjustment of rythms of oscillating objects due
to their weak interaction. “

Dieses Verstidndnis von Synchronisierung entwickeln Pikovsky, Rosenblum und Kurths in [82]
und formulieren damit eine Auffassung von Synchronisierung, die sich mit der griechischen Wort-
herkunft deckt: Synchronisierung ist ein Vorgang, der das zeitliche (griechisch chronos ,,Zeit*)
Zusammenfiihren (griechisch syn ,,zusammen‘) von Prozessen zum Ziel hat.

Der erste wissenschaftlich dokumentierte Synchronisierungsvorgang geht auf den niederldndi-
schen Wissenschaftler Christian Huygens (1629 — 1695) zuriick, der im Jahre 1665 in einem Brief
an seinen Vater die Beobachtung schilderte, dass zwei von ihm gefertigte und an der Wand aufge-
hingte Pendeluhren mit fortlaufender Zeit ihre Pendelwinkel gegenphasig synchronisierten. Dabei
sind zweierlei Dinge bemerkenswert: Zum einen gelangen die Experimente selbst bei unterschied-
lichen Pendelldngen und somit bei einer unterschiedlichen Dynamik der Pendeluhren. Zum ande-
ren ist die Kopplung der beiden Pendeluhren tiber die gemeinsame Aufhidngung ausreichend, um
die Pendeluhren zu synchronisieren, was im Einklang mit der eingangs erwédhnten Anpassung der
Rhythmen oszillierender Objekte durch schwache Interaktion steht.

Beispiele aus vielen Bereichen zeigen, dass Synchronisierung nicht nur auf technische bzw. me-
chanische Prozesse beschrinkt ist. So zeigt eine Studie [73], dass der zu Beginn tumultartige Ap-
plaus bei Oper- und Theaterauffithrungen nach kurzer Zeit in rhythmisches Klatschen iibergeht.
Dabei ist auffallend, dass sich der Rhythmus des Klatschens von isoliert betrachteten Zuschauern
gegeniiber dem Rhythmus des Klatschens in der Gruppe ungefihr um den Faktor zwei unterschei-
det. Das heifit der Applaus in der Gruppe hat eine doppelt so grole Periodendauer im Vergleich
zum individuellen Klatschen. Dariiber hinaus betréigt die Intensitét des rhythmischen Klatschens
nur etwa die Hilfte des zu Beginn des Experiments festzustellenden tumultartigen Applauses.
Offensichtlich hierbei ist, dass Synchronisierung ein spontaner Vorgang ist, der ohne zentrale In-
stanz auskommt, die beispielsweise einen gemeinsamen Rhythmus vorgibt. Dies zeigt sich auch
daran, dass sich das individuelle Verhalten der Zuschauer vom Verhalten der Gruppe unterschei-
det. Diese Beobachtung ist auf die Interaktionen der Zuschauer untereinander zuritickzufiithren und
verdeutlicht, dass das synchrone Verhalten nicht notwendigerweise identisch mit dem autonomen
Verhalten eines Individuums sein muss.

Auch in der Natur finden sich Beispiele fiir die Selbstorganisation groler Populationen, die sich
mit Hilfe von Synchronisierungsvorgéngen erklédren lassen. So findet die Fortbewegung von grof3en
Fischpopulationen oder Vogeln in Schwirmen statt, da sich hierdurch eine groere Sicherheit der
Gruppe im Vergleich zum einzelnen Individuum gegeniiber Angreifern ergibt. In [91] wird eine
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Animation eines Schwarms entwickelt, die sich auf drei einfache Regeln fiir ein einzelnes Indi-
viduum zuriickfiihren ldsst: Vermeide Kollisionen mit deinen Nachbarn, passe deine Geschwin-
digkeit an die der Nachbarn an sowie versuche moglichst nah bei deinen Nachbarn zu bleiben.
Durch die Implementierung dieser Regeln fiir jedes Individuum ldsst sich ein verteilt geregeltes
System entwerfen, welches ohne zentral koordinierende Instanz auskommt und im Kern auf der
Synchronisierung der Positionen und Geschwindigkeiten der einzelnen Individuen basiert. Neben
diesem Beispiel zeigen noch weitere Naturphdnomene, dass Synchronisierung héufig ein durch
Interaktion induzierter Prozess ist. So lésst sich bei einer Leuchtkifer-Population in Siid-Thailand
das folgende Phinomen beobachten [107]: Bei Beginn der Dammerung ist zunéchst nur das chao-
tische Aufblitzen der Leuchtorgane der Kifer zu erkennen. Nach kurzer Zeit geht das Aufblit-
zen in einen koordinierten Rhythmus iiber, und die Leuchtkifer emittieren in nahezu perfektem
Rhythmus Licht. Gegenstand der Forschung war hierbei, diesen Synchronisierungsvorgang durch
mathematische Modelle nachzubilden [108], was mithilfe von gekoppelten Oszillatoren gelang.

Diese Beispiele legen dar, dass die Natur in der Lage ist, in effizienter Weise komplexe Systeme
ohne zentral koordinierende Instanz zu organisieren. Hierbei ldsst sich offensichtlich die individu-
elle Verarbeitung des Informationsflusses unter den einzelnen Individuen als verteiltes komplexes
Regelungssystem interpretieren, welches dem Gesamtsystem einen — gegeniiber der Summe der
Eigenschaften der einzelnen Individuen — zusitzlichen Nutzen stiftet.

Dies begriindet, weshalb in den letzten Jahren in der regelungstechnischen Forschung verstérkt
der Entwurf komplexer Systeme erforscht wurde, wobei insbesondere Systeme in den Mittelpunkt
riickten, die tiber einen gewissen Grad an Vernetzung verfiigen. Sind Prozess und Regeleinrich-
tung nicht notwendigerweise am selben Ort installiert und iiber Funkstrecken samt deren Vor- und
Nachteilen miteinander verschaltet, ist dies unter dem Stichwort Networked Control Systems zu-
sammengefasst. Auch Kommunikations- und Sensornetzwerke wurden in den vergangenen Jahren
verstirkt aus einer regelungstechnischen Perspektive untersucht [4, 105], was verdeutlicht, dass
die Interdisziplinaritit essentiell fiir den Entwurf komplexer Systeme ist, da Losungsansétze hiu-
fig aus der Schnittmenge von Graphen-, Kommunikations- und Regelungstheorie entstehen. Um
dieser Entwicklung gerecht zu werden, wurde im Jahr 2014 mit der I[EEE Transactions on Control
of Network Systems [78] ein neues Forum geschaffen, um neue Resultate zu publizieren.

In die oben genannte Schnittmenge lassen sich auch Multi-Agenten Systeme (MAS) einordnen,
die Untersuchungsgegenstand dieser Arbeit sind. Hierbei handelt es sich zunidchst um autonome
und nicht physikalisch gekoppelte dynamische Systeme, die die Fihigkeit besitzen, {iber ein Netz-
werk miteinander zu kommunizieren. Dabei wird der Regelung jedes Agenten die Aufgabe zuteil,
die aus dem Netzwerk empfangene Information in geeigneter Weise zu verarbeiten, mit dem Ziel,
asymptotisch Ubereinkunft — und somit Synchronisierung — in den fiir die jeweilige Aufgabenstel-
lung angepassten Ausgangsgrofen zu erzielen. Mithilfe der Graphentheorie lédsst sich in einfacher
Weise der Informationsfluss zwischen den einzelnen Agenten modellieren. Erwdhnenswert ist da-
bei die Tatsache, dass lediglich relative Information zur Synchronisierung kommuniziert wird und
somit die messtechnische Erfassung des absoluten Zustandes oder Ausgangs des einzelnen Agen-
ten nicht notwendigerweise vorausgesetzt werden muss. Gleichwohl bedeutet dies eine Struktur-
beschrinkung fiir die Regelung, weshalb der Entwurf nicht mehr mit Standardverfahren durchge-
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fuhrt werden kann. Ziel dieser Arbeit ist es deshalb, strukturbeschrinkte Regelungsverfahren zu
entwickeln, die die Synchronisierung agentenbasierter dynamischer Systeme ermoglichen.

1.2 Literaturiibersicht

Die aktuelle Entwicklung hinsichtlich des Entwurfes von Multi-Agenten Systemen geht in histo-
rischer Perspektive auf Probleme des verteilten Rechnens in der Informatik zuriick [118]. Dabei
findet sich in [90] eine notwendige und hinreichende Bedingung fiir das sogenannte Konsens-
Protokoll, welches zur Synchronisierung identischer Integratoren nutzbar ist. Die Bedingung ver-
kniipft dabei das verteilte Regelgesetz mit dem zugrunde liegenden Graphen des Netzwerks und
lautet: Konsens wird genau dann erreicht, wenn der Graph einen Spannbaum besitzt. Ein Spann-
baum im Netzwerk liegt vor, wenn wenigstens ein Knoten im Netzwerk existiert, der iiber Pfade
alle anderen Knoten im Netzwerk erreichen kann.

Einen Uberblick iiber Konsens-Protokolle im Hinblick auf die Modellierung des Informationsfius-
ses, der Konvergenzgeschwindigkeit der Protokolle und der Robustheit gegeniiber Ausfillen von
Knoten geben Olfati-Saber, Fax und Murray [75]. Die Untersuchung des Konsens-Protokolls bei
zeitvarianter Kommunikationstopologie geht auf die Arbeiten von Moreau [70, 71] zuriick, wo-
bei insbesondere das Umschalten zwischen verschiedenen Graphen beleuchtet wird. Ren, Beard
und Atkins geben in [89] eine einfiihrende Ubersicht hinsichtlich der Anwendung von Konsens-
Protokollen zur kooperativen Regelung in Fahrzeugkolonnen (engl. muli-vehicle systems), die bei-
spielsweise zur Vereinbarung eines Treffpunktes (Rendezvous-Problem) oder auch zur Einhaltung
einer Formation der verschiedenen Fahrzeuge nutzbar ist.

Grundsitzlich ldsst sich festhalten, dass Netzwerke von autonomen Robotern eines der Hauptan-
wendungsgebiete fiir Multi-Agenten Systeme darstellen. In [12] wird eine iibersichtliche Einfiih-
rung in die Koordination von autonomen Robotern mit dem Fokus auf die Rendezvous-Probleme,
der Formationsregelung aber auch von Erkundungsmissionen gegeben. Weitere Darstellungen die-
ser Art finden sich ebenfalls in [85, 88]. Eine Erweiterung des Konsens-Protokolls, welches ledig-
lich fiir einfache Integratordynamiken verwendet werden kann, findet sich in [87]. Darin zeigen
Ren und Atkins, wie sich unter Annahmen an das Netzwerk das Konsens-Protokoll auf Doppelin-
tegratordynamiken erweitern ldasst. Unter Ausnutzung einer geschickten Transformation und der
exakten Linearisierung gelingt es, das aus der Literatur bekannte Modell eines einfachen kinema-
tischen Fahrzeugmodells (engl. unicycle model) als zweifachen Doppelintegrator zu betrachten,
so dass sich eine Formationsregelung basierend auf dem vorgestellten Protokoll erzielen ldsst.

Aufgrund der in den letzten Jahren zahlreichen Verdffentlichungen im Bereich der Multi-Agenten
Systeme, sollen die nachfolgenden Resultate zunichst gemifl den betrachteten Systemklassen der
individuellen Agentendynamik, der Dynamik des Multi-Agenten Systems sowie der Eigenschaf-
ten des Netzwerks eingeordnet werden. Bild 1.1 zeigt hierzu die gewéhlte Unterscheidung, wobei
bei der individuellen Dynamik der Agenten zunichst zwischen einer linearen bzw. einer nichtli-
nearen Dynamik unterschieden werden kann. Wird das gesamte Multi-Agenten System betrachtet,
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Agentendynamik Gruppendynamik Netzwerktopologie

| Lineare Dynamik | | Homogenes System | Statisch

| Nichtlineare Dynamik | | Heterogenes System | Dynamisch

Bild 1.1: Einordnung von Multi-Agenten Systemen nach der betrachteten Klasse der indivi-
duellen Dynamik der Agenten, des Gesamtsystems sowie des Netzwerks

so ldsst sich zwischen homogenen Systemen, also Systemen bei denen die Dynamik der Agen-
ten identisch ist, und heterogenen Systemen, bei denen die Agentendynamik nicht identisch ist,
unterscheiden. Dariiber hinaus ist auch eine Trennung hinsichtlich der betrachteten Struktur des
Netzwerkes zu ziehen. Die Unterscheidung erfolgt zwischen statischen sowie dynamischen Gra-
phen, wobei im ersten Fall von einer kontinuierlichen Kommunikation der Agenten untereinander
auszugehen ist. Mit dem letzten Fall lassen sich beispielsweise wechselnde Kommunikationstopo-
logien oder aber auch das Ausfallen bzw. Hinzunehmen von einzelnen Kommunikationskanilen
abbilden. In dieser Arbeit wird zumeist von statischen Graphen ausgegangen.

1.2.1 Lineare homogene Multi-Agenten Systeme

Ausgehend vom Konsens-Protokoll wurde untersucht, unter welchen Bedingungen sich lineare
homogene Multi-Agenten Systeme synchronisieren lassen. Eine notwendige und hinreichende
Bedingung geht auf Fax [25] sowie Fax und Murray [26] zuriick. Unter der Annahme, dass alle
Agenten dasselbe Regelgesetz implementieren, ist gezeigt, dass Synchronisierung genau dann
erreicht wird, wenn der lokale Regler simultan N Systeme stabilisiert. Dabei ergeben sich die
Systeme mit Hilfe der Dynamik des einzelnen Agenten sowie mit den Eigenwerten des zugrunde
liegenden Graphen, wobei N die Anzahl der Agenten bezeichnet.

Diese Bedingungen wurden von Tuna genutzt, um ein konstruktives Verfahren zur Bestimmung
eines synchronisierenden Zustandsreglers sowie dual dazu einer synchronisierenden Ausgangs-
aufschaltung anzugeben. Dies gelingt fiir zeit-kontinuierliche lineare Systeme in [119] durch L6-
sung einer Riccati-Gleichung, wihrend in [120] ein dazu duales Ergebnis zur Bestimmung einer
Ausgangsaufschaltung fiir zeit-diskrete lineare Agenten zu finden ist.

Die vorgenannten Resultate zur Synchronisierung setzen voraus, dass entweder der Zustand kom-
muniziert wird oder dass der Agent voll aktuiert und damit jede Zustandsgrofe unabhingig steuer-
bar ist, was unter praktischen Gesichtspunkten sehr restriktiv ist. Vor diesem Hintergrund untersu-
chen Ma und Zhang in [62], unter welchen Bedingungen Synchronisierung gelingt, falls lediglich
Ausgangsinformation kommuniziert und somit eine Ausgangsriickfithrung zur Synchronisierung
genutzt wird. Die Stabilisierbarkeit und Detektierbarkeit der Dynamik des Agenten sowie die
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Anforderung, dass der zugrunde liegende Graph einen Spannbaum enthilt, ergeben sich als not-
wendige Bedingungen fiir die Synchronisierung. Allerdings basiert die hinreichende Bedingung
zur Bestimmung einer synchronisierenden Ausgangsriickfithrung auf einer sehr restriktiven Rang-
bedingung, wobei Ma und Zhang bereits darauf hinweisen, dass die Bestimmung des Reglers in
der Regel numerisch bestimmt werden muss. Ein dquivalentes Resultat von Lunze findet sich in
der deutschsprachigen Literatur in [60], wobei lediglich Agenten betrachtet werden, die sich als
EingroBensysteme darstellen lassen.

Die notwendigen Bedingungen aus [26] werden ebenfalls in [132] von Zhang, Lewis und Das zum
Entwurf eines identischen Zustandsreglers samt Beobachters fiir jeden Agenten genutzt. Dabei
wird der Beobachter nicht durch Messung des absoluten Ausgangs des Agenten gestiitzt sondern
durch die Ausgangsdifferenzen der Agenten untereinander, so dass nur Ausgangsinformation iiber
das Netzwerk kommuniziert werden muss. Allerdings wird vorausgesetzt, dass ein Agent — der so-
genannte Anfiithrer — im Netzwerk die synchrone Bewegung vorgibt und diese an jeden Agenten
im Netzwerk kommuniziert, was eine Einschrinkung in den moglichen Kommunikationstopologi-
en darstellt. In der englischsprachigen Literatur wird diese spezielle Struktur eines Multi-Agenten
Systems als leader-follower network bezeichnet.

Ein verwandtes Resultat findet sich in [34], wobei hier davon ausgegangen wird, dass die Dyna-
mik des Anfiihrers sich von der Dynamik der anderen Agenten im Netzwerk unterscheiden kann,
weshalb auf Ergebnisse aus dem Bereich der Ausgangsfolgeregelung (engl. output regulation) zu-
rickgegriffen wird. Weitere Resultate zur Synchronisierung identischer linearer Systeme finden
sich in [96, 97], wobei auch darin nicht nur Zustandsinformation sondern auch Information iiber
einen dynamischen Reglerzustand kommuniziert werden muss.

Um den Kommunikationsaufwand zu reduzieren, was unter praktischen Gesichtspunkten immer
anzustreben ist, sollte lediglich Ausgangsinformation iiber das Netzwerk kommuniziert werden.
Hierzu ist in [102] von Seo, Shim und Back ein Verfahren angegeben. Ausgehend von den notwen-
digen Bedingungen aus [26] wird ein konstruktives Verfahren zur Bestimmung einer beobachter-
basierten Zustandsriickfiihrung angegeben. Die Berechnung des Reglers erfolgt iiber die Losung
einer Riccati Gleichung und hat den Nebeneffekt, dass groBe Verstirkungen in der Riickfithrung
minimiert werden.

Ein dhnlicher Ansatz wird in [53, 56] verfolgt mit dem Unterschied, dass keine beobachterba-
sierte Zustandsriickfiihrung sondern eine dynamische Ausgangsriickfithrung entworfen wird. Die
Berechnung des Reglers wird als Optimierungsproblem mit linearen Matrixungleichungen (LMI,
engl. linear matrix inequality) als Nebenbedingung formuliert, wobei hierzu die Ergebnisse aus
[98] genutzt werden. Deshalb entspricht hier die Reglerordnung der Ordnung des Agenten.

In der vorliegenden Arbeit wird auf die vorgenannten, vereinfachenden Annahmen weitestgehend
verzichtet. Es wird eine Methode aus der Literatur [45] modifiziert, die den Entwurf identischer
Agenten durch ein optimierungsbasiertes Verfahren und damit konstruktiv ermoglicht. Einschrin-
kungen beziiglich der betrachteten Systemklasse der Agenten werden nicht gemacht. Dariiber
hinaus erfolgt lediglich die Kommunikation des Ausgangs des Agenten, was den minimalen An-
forderungen an die Kommunikation entspricht. Auch hinsichtlich der Kommunikationstopologie
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muss lediglich die Existenz eines Spannbaums vorausgesetzt werden, so dass mit der Methodik
komplexe Synchronisierungsprobleme entworfen werden konnen.

1.2.2 Lineare heterogene Multi-Agenten Systeme

Ausgehend von den Ergebnissen zur Synchronisierung homogener linearer Multi-Agenten Sys-
teme, ist in den vergangenen Jahren verstirkt die Synchronisierung heterogener Multi-Agenten
Systeme in den Fokus geriickt. Dies ist von einem praktischen Standpunkt aus gesehen sinnvoll,
da beispielsweise aufgrund fertigungstechnischer Ungenauigkeiten, die Agenten niemals perfekt
identisch sein konnen.

Vor diesem Hintergrund wurde zunichst von Wieland und Allgéwer in [124] eine notwendige Be-
dingung fiir Synchronisierung in Netzwerken von heterogenen linearen Agenten angegeben. Of-
fensichtlich ist ein gemeinsames identisches internes Modell, welches die Agenten aufgrund ihrer
Systemdynamik oder aber auch aufgrund eines dynamischen Reglers aufweisen miissen, notwen-
dig fiir Synchronisierung. Entsprechend kann diese notwendige Bedingung als Erweiterung des
bekannten internen Modellprinzips nach Francis und Wonham [29] im Hinblick auf agentenba-
sierte Systeme gesehen werden, weshalb Wieland und Allgéwer die notwendigen Bedingungen
als Internal Model Principle for Synchronization bezeichnen. Eine hinreichende Bedingung wur-
de von Wieland, Sepulchre und Allgower in [126] angegeben, wobei die Bestimmung der Rege-
lung voraussetzt, dass absolute Ausgangsinformation verfiigbar ist, um den Zustand des einzelnen
Agenten mittels eines Beobachters zu rekonstruieren.

Zu dhnlichen Ergebnissen gelangt Lunze in [58, 59]. Als notwendige Bedingung zur Synchroni-
sierung heterogener Agenten ergibt sich, dass alle Agenten bei Wahl konsistenter Anfangswerte
identische Ausgangsgrofienverldufe erzeugen. Lunze bezeichnet dies als System-Schnittmenge
der Agenten (engl. system intersection), die notwendigerweise nicht die leere Menge darstellen
darf, um triviale Synchronisierung zu vermeiden. Auch Lunze gelangt zu dem Ergebnis, dass gege-
benenfalls die Agenten durch eine geeignete dynamische Regelung erweitert werden miissen, falls
die Dynamik der Agenten keinen gemeinsamen Schnitt aufweist, was dann wieder dem Internal
Model Principle for Synchronization nach Wieland und Allgower entspricht. Eine hinreichende
Bedingung fiir Synchronisierung basiert auf der Annahme kreisfreier Kommunikationstopologien
[59] beziehungsweise auf der Uberpriifung einer um die synchrone Bewegung reduzierten Dar-
stellung des Gesamtsystems [58].

Wie aus den Ergebnissen von Wieland, Sepulchre und Allgéwer [126] sowie Lunze [58] ersicht-
lich ist, basieren hinreichende Bedingungen hiufig auf Einschrinkungen der erlaubten Topologie
des Netzwerks oder auf einem erhohten Kommunikationsaufwand. Im letztgenannten Zusammen-
hang finden sich zahlreiche Resultate, die sich auf die Voraussetzung stiitzen, dass der Agent
messtechnisch seinen eigenen Zustand beziehungsweise Ausgang erfassen kann. Yang u. a. be-
zeichnen den Agenten daher in [131] als introspektiv (engl. introspective agent), da der Agent —
basierend auf der lateinischen Wortherkunft — in sich ,hineinsehen* kann (vgl. [72], Introspek-
tion aus dem lat. ,,Hineinsehen®). In diesem Zusammenhang entwickeln Su und Huang in [115]
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eine dynamische Ausgangsriickfiihrung, in die ein fiir alle Agenten identisches Exosystem zur
Generierung der synchronen Trajektorie eingebettet wird. Eine synchronisierende Regelung fiir
rechts-invertierbare zeit-diskrete Agenten geben Wang, Saberi und Yang [123] an, wihrend Per-
sis, Liu und Cao ein Verfahren zur Synchronisierung heterogener unsicherer Agenten beschreiben
[79]. Ein dhnlicher Ansatz ist von Kim, Shim und Seo in [42] zu finden.

Wird die stabile Entkoppelbarkeit jedes Agenten vorausgesetzt, so ldsst sich aufgrund der Kennt-
nis absoluter Ausgangsinformation stets eine beobachterbasierte Zustandsriickfiihrung fiir jeden
Agenten entwerfen, die das Fithrungsverhalten stabil entkoppelt. Die Synchronisierung von Multi-
Agenten Systemen mit mehreren Ein- und Ausgéngen ist somit auf die getrennte Betrachtung der
einzelnen Kanile zuriickgefiihrt. Hierzu nutzen De Campos, Brindn-Arranz und Niculescu in [21]
die spezielle Struktur der Agenten mit Vektorrelativgrad eins aus, um zunéchst die Agenten in
einfacher Weise zu entkoppeln und im Anschluss das Konsens-Protokoll zur Synchronisierung
anzuwenden. Eine Erweiterung dieser Idee findet sich ebenfalls in [41]. Hingegen nutzen Kho-
daverdian und Adamy in [39] das bekannte Verfahren zur Entkopplung nach Falb und Wolovich
[24], um die vorgenannten Ergebnisse auf Agenten zu erweitern, die sich mit einer statischen
Zustandsriickfithrung stabil entkoppeln lassen.

Die Annahme der Verfiigbarkeit absoluter Information vereinfacht in vielerlei Hinsicht den Ent-
wurf synchronisierender verteilter Regler fiir heterogene Multi-Agenten Systeme — notwendig zur
Synchronisierung ist diese Annahme jedoch nicht. Insbesondere vor dem Hintergrund der in der
Einleitung dargestellten und aus der Natur motivierten Beispiele wird deutlich, dass durch die
Verwendung von lediglich Relativinformation Synchronisierung des Gesamtsystems moglich ist,
weshalb dies den derzeitigen Gegenstand der Forschung in diesem Bereich darstellt.

Eine Erweiterung des Konsens-Protokolls fiir Doppelintegratoren, die rauschbehaftet sind, kann
als erste Entwicklung in diese Richtung verstanden werden und ist in [16] dargestellt. Ein Ver-
fahren, welches ebenfalls ein Exosystem in die Regelungsstruktur eines jeden Agenten einbet-
tet, ist von Listmann u. a. in [55] dargestellt. Um dem Exosystem asymptotisch zu folgen, wird
allerdings der absolute Zustand des Agenten benétigt, der mit Hilfe eines dezentralen Beobach-
ters zu bestimmen ist. Allerdings konnte keine konstruktive Bedingung angegeben werden, wann
sich mittels des angegebenen LMI-Verfahrens die dezentrale Beobachterriickfithrung bestimmen
lasst. Dariiber hinaus muss neben dem Ausgang des Agenten ebenfalls der Beobachterzustand so-
wie der Zustand des Exosystems kommuniziert werden, was einen erheblichen Aufwand bei der
Kommunikation bedeutet. Einen Zugang mittels eines dezentralen Beobachters beschreiben Grip
u. a. ebenfalls in [31, 32]. Allerdings erfordert auch hier die Implementierung des Beobachters die
Kommunikation von internen Beobachterzustinden.

Wahrburg und Adamy untersuchen in [122] eine spezielle Systemklasse heterogener Multi-Agen-
ten Systeme, ndmlich solche Agenten, die nominell identisch, allerdings aufgrund von Unsi-
cherheiten unterschiedlich und somit heterogen sind. Diese Systemklasse wird auch als quasi-
homogene Multi-Agenten Systeme bezeichnet. Die synchronisierende Regelung basiert darauf,
dass fiir jeden Agent ein Beobachter fiir sich und seine Nachbarn entworfen wird, um daraus
den absoluten Zustand zu schitzen. Im Anschluss muss durch Uberpriifung einer Rangbedin-
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gung sichergestellt werden, dass die Unsicherheiten exakt kompensiert werden konnen. Dieser
Ansatz erfordert einen erhohten Kommunikationsaufwand, da Ausgangs-, Beobachter- sowie Ein-
gangsgrofeninformation kommuniziert werden muss. Allerdings ist gezeigt, dass in heterogenen
Multi-Agenten Systemen, das Gesamtsystem beziiglich der relativen Ausginge im Allgemeinen —
gegensitzlich zum homogenen Fall — beobachtbar ist.

Dies ist im Einklang mit den Ergebnissen von Seyboth u.a. [103]. Darin untersuchen die Auto-
ren, welche Aussagen sich iiber Synchronisierung mittels konstanter Ausgangsriickfithrung tref-
fen lassen, wenn die Agenten die notwendigen und hinreichenden Bedingungen zur Synchroni-
sierung aus [126] nicht erfiillen. Am Beispiel von nicht-identischen harmonischen Oszillatoren
sowie nicht-identischen Doppelintegratoren ist verdeutlicht, dass das Gesamtsystem der Oszil-
latoren asymptotisch stabil ist, wihrend die Doppelintegratoren asymptotisch einen konstanten
Synchronisierungsfehler aufweisen.

Im Hinblick auf die vorgenannten Resultate werden in der vorliegenden Arbeit zunéichst Me-
thoden zur Synchronisierung basierend auf Absolut- und Relativinformation entwickelt. Hierbei
hat die unterlagerte Regelung jedes Agenten eine Homogenisierung der Dynamik, die beziiglich
des Netzwerks asymptotisch wirksam ist, zur Folge. Die konstruktiven Methoden basieren auf
der unterlagerten Ent- beziehungsweise Verkopplungsregelung der Agenten, was keine allzu ein-
schrinkenden Annahmen an die betrachtete Systemklasse darstellt. Dariiber hinaus erfolgt auch
bei diesen Methoden lediglich die Kommunikation des Ausgangs des Agenten, was den minimalen
Anforderungen an die Kommunikation entspricht. Auch hinsichtlich der Kommunikationstopolo-
gie muss lediglich die Existenz eines Spannbaums vorausgesetzt werden.

Durch den Verzicht auf Absolutinformation entfillt die Moglichkeit, eine unterlagerte Regelung
fiir die Agenten zu entwerfen. Fiir diesen Fall wird in der Arbeit eine konstruktive Methode entwi-
ckelt, um das Synchronisierungsproblem in ein dezentrales Stabilisierungsproblem zu tibersetzen,
was den Entwurf der Regelung am Gesamtsystem nach sich zieht. Die Methode erfordert ebenfalls
lediglich Ausgangsinformation zu kommunizieren und die Existenz eines Spannbaums. Dies hat
zur Folge, dass die Methoden in der vorliegenden Arbeit auf nahezu alle Synchronisierungspro-
bleme linearer Multi-Agenten Systeme bei zeitinvarianter Kommunikationstopologie anwendbar
sind.

1.2.3 Nichtlineare Multi-Agenten Systeme

Lisst sich die Agentendynamik nicht mehr mittels linearer Differentialgleichungen darstellen,
miissen die Agenten durch nichtlineare Modelle beschrieben werden. Auch hierbei ist eine zen-
trale Fragestellung, welche notwendigen und hinreichenden Bedingungen Synchronisierung der
Agenten garantieren. In Erweiterung der notwendigen Bedingungen fiir lineare heterogene Agen-
ten in [124], formulieren Wieland und Allgéwer in [125] ein d4quivalentes Resultat fiir nichtlineare
heterogene Agenten. Es zeigt sich, dass auch im nichtlinearen Fall das Internal Model Principle
for Synchronization Giiltigkeit besitzt und somit notwendig fiir Synchronisierung ist. Damit muss
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ein invarianter Unterraum des Gesamtsystems existieren, in welchem die Agenten in der Lage
sind, identische Ausgangsverldufe samt den dazugehorigen zeitlichen Ableitungen zu erzeugen.

Im Hinblick auf die Bestimmung hinreichender Bedingungen zur Synchronisierung nichtlinearer
Agenten, finden sich in der Literatur meist Ansitze, die auf der Konstruktion geeigneter Lyapunov
Funktionen basieren. Hierbei ist hdufig vorausgesetzt, dass die Dynamik der Agenten passiv ist, so
dass eine Lyapunov Funktion fiir das Gesamtsystem aus der Aggregation der Speicherfunktionen
der einzelnen Agenten resultiert. Von Arcak findet sich hierzu eine Losung, die Anwendung in der
Formationsregelung beziehungsweise der Koordination von Agenten findet [6]. Ein Beitrag zur
Stabilitdtsanalyse von Netzwerken, die iiber kaktusartige Strukturen verfiigen, ist ebenfalls von
Arcak in [5] zu finden. Weitere, die Passivitit der Agenten ausnutzende Resultate, finden sich in
[19], wobei hierin ebenfalls Synchronisierung gelingt, falls Schaltvorgidnge und Zeitverzogerun-
gen in der Kommunikation auftreten.

Sind die Agenten nicht passiv, so ldsst sich unter gewissen Voraussetzungen eine Zustandsriick-
fithrung finden, so dass die Agenten riickgekoppelt dquivalent zu einem passiven System sind. Fiir
nichtlineare Systeme mit Vektorrelativgrad eins und Lyapunov stabiler Nulldynamik ist dies er-
fullt. Chopra und Spong nutzen diese Eigenschaft aus, um in [18] eine hinreichende Bedingung fiir
Synchronisierung nichtlinearer Agenten basierend auf der Konstruktion einer aggregierten Lyapu-
nov Funktion und unter der Annahme eines stark verbundenen sowie balancierten Graphen anzu-
geben. Eine Erweiterung dieses Ergebnisses, in welchem der Graph nur noch stark verbunden sein
muss, ist von Chopra in [17] angegeben.

Eine Erweiterung der vorgenannten Ergebnisse findet sich in [52]. Darin wird ein modifiziertes
Backstepping-Verfahren zur Herleitung eines synchronisierenden Reglers fiir identische nichtli-
neare Agenten in einer verketteten Systemstruktur angegeben. Der Entwurf adaptiver Regler zur
Synchronisierung nichtlinearer Multi-Agenten Systeme, welcher auch in dieser Arbeit genutzt
wird, ist unter anderem in [20] und [66] dargestellt. Auch die in der Einleitung erwihnte Entdeck-
ung von Huygens wurde in der aktuelleren Literatur aufgegriffen. In der Aufsatzsammlung [80]
ist zum einen die Modellbildung [83] als auch die experimentelle Uberpriifung des Experimentes
dargestellt [77].

In dieser Arbeit erfolgt eine Erweiterung der Ergebnisse von Chopra in [17]. Ausgehend von
der Annahme, dass die Agenten durch ein Zustandssystem mit Vektorrelativgrad eins und mit
Lyapunov stabiler Nulldynamik darstellbar sind, ermoglicht die neue Methode dariiber hinaus
parametrische Unsicherheiten in den Vektorfeldern der Agenten zu beriicksichtigen. Dies gelingt
durch die Verwendung eines adaptiven Ansatzes zur Kompensation der unsicheren Vektorfelder
in Kombination mit den Ergebnissen aus [17].

1.3 Struktur der Arbeit

Neben einer Einfithrung in die wesentlichen Begriffe der agentenbasierten dynamischen Systeme
— was eine Ubersicht iiber die wichtigsten Graphentheoretischen Definitionen und Konzepte mit

1P 216.73.216.36, am 20.01.2026, 12:37:37. Inhalt,
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186250087

10 1 Einfihrung

einschlieit — fiihrt Kapitel 2 die in dieser Arbeit betrachteten Systemklassen der Agenten ein.
Dariiber hinaus wird auf die grundlegende Problemstellung der Arbeit eingegangen: die Synchro-
nisierung der Agenten. AbschlieBend erfolgt ein Uberblick iiber die Beitriige der Arbeit.

Kapitel 3 stellt den methodischen Rahmen zum Entwurf der synchronisierenden Regelungen vor,
die im Laufe der Arbeit hergeleitet werden. Es wird ein parametrischer Ansatz zur Eigenstruktur-
vorgabe mittels Ausgangsriickfiihrung genutzt. Neben den Eigenwerten, die durch die Regelung
vorgegeben werden sollen, existieren weitere Freiheitsgrade, die einem Optimierungsverfahren
zugénglich gemacht werden. Damit lassen sich Giitemafle zur Verbesserung der Robustheit oder
auch der Reglernorm optimieren. Zusétzlich ist es mit dem Verfahren méglich, eine Entkopplungs-
beziehungsweise Verkopplungregelung zu entwerfen. Die Freiheitsgrade bei der Entkopplungsre-
gelung sind durch den Ubergang zu einem teil-parametrischen Entwurf ebenfalls durch das Opti-
mierungsverfahren nutzbar, was auf eine robuste Entkopplungsregelung fiihrt.

In Kapitel 4 wird angenommen, dass die Agenten Kenntnis iiber lokale Ausgangs- oder Zustands-
information besitzen. Hiermit wird es moglich, die Methodik aus Kapitel 3 zur Synchronisierung
anzuwenden. Es wird zuniéchst auf die Synchronisierung homogener Agenten eingegangen. Diese
Ergebnisse ermoglichen, auch Regelungen zur Synchronisierung heterogener Agenten zu entwer-
fen. AbschlieBend kann fiir eine Systemklasse nichtlinearer Agenten ein adaptives Regelgesetz
zur Konsensfindung hergeleitet werden.

Die Annahme, dass Absolutinformation der Agenten verfiigbar ist, wird in Kapitel 5 nicht mehr
getroffen. Durch Formulierung als dezentrales Regelungsproblem, gelingt es, das Synchronisie-
rungsproblem fiir heterogene Agenten mittels numerischer Min-Max Optimierung zu 16sen.

Waihrend in den Kapiteln 3, 4 und 5 kurze akademische Beispiele die Ergebnisse verdeutlichen sol-
len, erfolgt in Kapitel 6 die Anwendung der Ergebnisse an praktisch motivierten Beispielsystemen.
Neben der Entkopplungsregelung einer xy-Positioniereinheit, die neben Simulationsergebnissen
auch durch reale Messungen an einem Laboraufbau ergénzt werden, wird die Anwendung der syn-
chronisierenden Regelung anhand eines Multi-Agenten Systems bestehend aus Modellhelikoptern
sowie durch die dezentrale Synchronisierung einer autonomen Fahrzeugkolonne verdeutlicht.

Ein Fazit der Arbeit und ein Ausblick wird in Kapitel 7 gezogen. Ergénzende Betrachtungen und
Beweise zum Hauptteil der Arbeit finden sich im Anhang.
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2 Agentenbasierte dynamische Systeme

Dieses Kapitel fiihrt die in dieser Arbeit betrachtete Systemklasse ein. Eine aus der Literatur ent-
nommene Definition prizisiert hierbei den Agentenbegriff. Da die Kommunikation der Agenten
ein zentraler Bestandteil fiir die Synchronisierung ist, erfolgt die Modellierung der Kommunikati-
onstopologie durch die Graphentheorie. Die zugrunde liegende Dynamik der Agenten wird eben-
falls eingefiihrt, wobei eine Unterscheidung zwischen homogen und heterogenen Agenten erfolgt.
Eine Untersuchung der Steuer- und Beobachtbarkeit der daraus resultierenden Gesamtsysteme —
der Multi-Agenten Systeme — wird vorgenommen, um die Unterschiede zwischen homogenen
und heterogenen Multi-Agenten Systemen heraus zu arbeiten. Dartiber hinaus erfolgt die Defi-
nition der zentralen Problemstellung der Arbeit — der Synchronisierung. Ein Uberblick iiber die
Beitriige der Arbeit findet sich am Ende des Kapitels.

2.1 Prazisierung des Agentenbegriffs

Die Nutzung des Agentenbegriffs erfolgt in vielen Bereichen. So wird beispielsweise in der In-
formatik hiufig der Begriff des Agenten in Zusammenhang mit Softwaresystemen verwendet, die
iiber einen gewissen Grad an Intelligenz verfiigen. Allerdings herrscht auch dort Uneinigkeit tiber
eine prazise Definition eines Agenten, wie Wooldridge kommentiert [129]:

Surprisingly, there is no such agreement: there is no universally accepted definition
of the term agent, and indeed there is a good deal of ongoing debate and controversy
on this very subject.*

Nichtsdestotrotz findet sich von Wooldridge und Jennings die folgende Definition [130]:

,JAn agent is a computer system that is situated in some environment, and that is capa-
ble of autonomous action in this environment in order to meet its design objectives.*

Zur Einfiihrung des Agentenbegriffs, wie er in dieser Arbeit verstanden wird, soll zunéchst auf ein
Missverstindnis hingewiesen werden, welches in Zusammenhang mit der direkten Ubersetzung
des englischen Begriffes agent in das deutsche Wort Agent entsteht. Korrekt wire die Ubersetzung
in das Wort Agens, was dem Duden nach die Bedeutung ,,wirkendes, handelndes, titiges Wesen
oder Prinzip* hat. Entsprechend definiert Liith in [61] auch den Begriff des technischen Agenten,
der innerhalb eines Multi-Agenten die folgenden grundsitzlichen Eigenschaften beziehungsweise
Fihigkeiten besitzt (in Anlehnung an [61, Seite 13]):

* Autonomes Verhalten: Die Autonomie des technischen Agenten ist dadurch gekennzeichnet,
dass der Agent oder zumindest ein Teil des Agenten quasi kontinuierlich aktiv ist, um auf
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das Ziel der Gruppe hinzuwirken. Hierzu nutzt der Agent eine Regelung, die Informationen
aus der Nachbarschaft des Agenten selbstindig erfasst und verarbeitet.

* Beherrschung von Interaktionen: Ein technischer Agent nutzt in einem Multi-Agenten Sys-
tem mogliche Wechselwirkungen zwischen Agenten zum Erreichen eines Ziels. Je nach
Agent konnen dies physikalische oder informationstechnische Interaktionen sein.

Stabilisieren und Optimieren von Prozessen: Ein technischer Agent agiert als Bestandteil
eines Multi-Agenten Systems so, dass er versucht, einen oder mehrere technische Prozesse
zu optimieren, d.h. optimale Prozesszustinde zu erreichen oder zu stabilisieren.

Der Begriff des Agenten steht damit nach Liith [61] stellvertretend fiir Autonome Interagierende
Einheit in komplexen Systemen. Interagieren mehrere Agenten und verfolgen dabei ein gemeinsa-
mes Ziel, so handelt es sich um ein Multi-Agenten System (MAS). Die Regelungsaufgabe jedes
Agenten ist dabei, stets das Erreichen des gemeinsamen Ziels zu gewihrleisten und moglicher-
weise weitere Regelziele — beispielsweise hinsichtlich der Konvergenzgeschwindigkeit auf das
gemeinsame Ziel oder auch die Unterdriickung unerwiinschter duflerer Einfliisse — zu erfiillen.

Ausgehend von den vorgenannten Uberlegungen zum Agentenbegriff prizisieren die folgenden
Definitionen den Agentenbegriff und ein Multi-Agenten System, wie sie in dieser Arbeit verstan-
den werden.

Definition 2.1. Ein Agent ist ein dynamisches System, welches iiber Sensoren und Aktoren ver-
fiigt. Der Agent besitzt die Fihigkeit mit anderen Agenten zu kommunizieren und verfiigt iiber
informationsverarbeitende Moglichkeiten — eine Regelung — zur Erreichung eines gemeinsamen
Ziels.

Definition 2.2. Ein Multi-Agenten System besteht aus untereinander kommunizierenden Agenten
gemdf3 Definition 2.1.

2.2 Graphentheoretische Grundlagen

Die Definitionen 2.1 und 2.2 implizieren einen Informationsfluss unter den Agenten, der von den
Regelungen der Agenten geeignet verarbeitet werden muss, um das Regelziel des Multi-Agenten
Systems zu erreichen. Dies erfordert eine Modellierung des Informationsflusses, die zum Entwurf
der Regelungen genutzt werden kann. Die Graphentheorie bietet hierzu einen intuitiven Zugang,
wobei jeder Agent als Knoten eines Graphen und der Informationsfluss zwischen benachbarten
Agenten als Kante abgebildet ist. Im Folgenden werden deshalb einige Definitionen und Eigen-
schaften von Graphen vorgestellt, die im Rahmen dieser Arbeit Verwendung finden. Diese sind
vornehmlich der Literatur entnommen (s. z.B. [30, 67]).

Ein Graph G ist ein geordnetes Paar G = (Vg, £g), wobei Vg die endliche Menge der Knoten des
Graphen G und &; die Menge der Kanten des Graphen G bezeichnet. Die Menge der Knoten des
Graphen folgt aus Vg = {vy,...,uny}, wihrend die Menge der Kanten durch £ € V x V gegeben
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(a) Ungerichteter Graph (b) Digraph (c) Spannbaum

Bild 2.1: Beispiele fiir einen ungerichteten Graphen (a), gerichteten Graphen (b) und einen
Spannbaum (c)

ist. Eine Kante ist deshalb ein geordnetes Paar von zwei Knoten und durch (v;,v;) wird zum Aus-
druck gebracht, dass eine Kante vom Knoten v; zum Knoten v; existiert. Die Kante (v;,v;) wird
als einlaufend beziiglich v; und austretend beziiglich v; bezeichnet. Graphisch lésst sich dieser
Sachverhalt als Pfeil veranschaulichen, wobei der Knoten v; den Startpunkt des Pfeils und der
Knoten v; die Pfeilspitze kennzeichnet. Im Hinblick auf die Modellierung des Informationsflus-
ses in Multi-Agenten Systemen wird damit ausgedriickt, dass der Informationsfluss vom Agenten
i zum Agenten j erfolgt.

Wenn fiir alle (v;,v;) € & ebenfalls (v;,v;) € & erfiillt ist, dann ist der Graph ungerichtet. Im
anderen Fall ist der Graph gerichtet, und man bezeichnet ihn auch als Digraphen.

Ein Pfad der Linge r in einem gerichteten Graphen ist eine Abfolge vy,...,v, von r + 1 verschie-
denen Knoten, so dass fiir jedes i € {0, ...,r — 1}, (v;,v;+1) eine Kante des Graphen ist.

Ein gerichteter Graph ist stark verbunden, wenn zwischen v; und v; ein Pfad fiir alle i,j €
{l,..., N}undi # j existiert. Ein gerichteter Graph ist verbunden, wenn mindestens ein Knoten
v; existiert, so dass ein Pfad von v; zu allen anderen Knoten existiert. Der Knoten v; wird als
Wurzelknoten bezeichnet, und der Graph enthilt einen Spannbaum.

Fiir einen gerichteten Graphen G mit N Knoten ist die gewichtete Adjazenzmatrix Ag € RN*V
durch
w;;, wenn (vj,v;) € &g,
Ag = [agij] = { Y o 2.1)
0 sonst,

definiert, wobei w;; > 0 gilt. Fiir einen ungewichteten Graphen gilt typischerweise w;; = 1. Die
gewichtete Laplacematrix Lg € RV N ergibt sich mit (2.1) aus

Zjv:l agij, wemni = j,
Lg = [lg;] = 2.2)
—dgij, sonst.
Mit Hilfe der Gradmatrix eines Graphen G, die durch
Dy, = diag (4g1y) 2.3)
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definiert ist, wobei 15 den N -dimensionalen Einsvektor bezeichnet, ldsst sich die Laplacematrix
auch durch Lg = Dj, — Ag berechnen.

Mit Hilfe der folgenden Ergebnisse lassen sich die Eigenschaften eines Graphen G anhand der
Eigenschaften der in (2.1) und (2.2) definierten Matrizen ableiten.

Aus der Definition der Laplace Matrix (2.2) folgt, dass sich die Summe jeder Zeile zu Null ergibt.
Damit ist 1 ein Rechtseigenvektor von Lg zum Eigenwert A = 0 und es gilt Lgly = 0. Eine
Aussage, die die algebraische Vielfachheit des Eigenwertes A = 0 mit der Verbundenheit des
Graphen verbindet, geht auf die Ergebnisse von Tuna zuriick.

Lemma 2.3. [119] Die Laplacematrix Lg eines gerichteten Graphen G hat genau einen Eigen-
wert in & = 0 mit dem assoziierten Eigenvektor 1y, wenn der Graph verbunden ist.

AufBlerdem gilt

Lemma 2.4. [75] Ein gerichteter Graph ist genau dann verbunden, wenn er einen Spannbaum
enthiilt.

Eine Aussage iiber den Linkseigenvektor eines stark verbundenen Graphen gelingt mit

Lemma 2.5. Wenn der Graph G stark verbunden ist und die Gewichte der Adjazenzmatrix w;; in
(2.1) positiv sind, dann existiert ein positiver Vektor y, der yTLg = 0 erfiillt.

Beweis. Aufgrund von (2.2) gilt Lglx = 0. Da der Graph stark verbunden ist, hat der Eigenwert
A = 0 aufgrund von Lemma 2.3 die algebraische Vielfachheit eins. Mit Lg = Dj, — Ag und
Lgly = 0 folgt daher

Dily = Agly
beziehungsweise
Iy =D Agly.

Somit hat die Matrix D;;! Ag den Eigenwert A = 1. Da die Adjazenzmatrix Ag aufgrund der Defi-
nition in (2.1) nicht-negativ ist und die Multiplikation von links mit D;,! nur die Zeilen von Ag in
positiver Weise skaliert, folgt aus Satz B.5, dass die Matrix D! A¢ irreduzibel ist, da der zugrunde
liegende Graph als stark verbunden angenommen wurde. Mit Satz B.6 folgt, dass der Spektralra-
dius einer nicht-negativen und irreduziblen Matrix positiv ist und einem einfachen Eigenwert der
Matrix entspricht. Dariiber hinaus ist der zum Spektralradius gehdrende Linkseigenvektor posi-
tiv. Durch Anwendung des Gerschgorin Theorems (s. z.B. [35]) folgt, dass die Eigenwerte von
D! Ag in einem Kreis mit dem Radius » = 1 und dem Mittelpunkt Null in der komplexen Ebene
liegen. Damit entspricht der Eigenwert A = 1 dem Spektralradius o, und es existiert ein positiver
Linkseigenvektor nT, so dass

n" (oI =Dy 'Ag) =0
& "D (D —4g) =0
< nTD;ng =0
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gilt. Somit gilt yT Dy, = 1T, und die Vektoren y und 7 unterscheiden sich nur durch einen positiven
Skalierungsfaktor, woraus die Aussage folgt. ]

2.3 Agenten und Multi-Agenten Systeme

Mit Ausnahme von Abschnitt 4.3 wird in dieser Arbeit davon ausgegangen, dass sich die Dy-
namik der Agenten durch lineare zeitinvariante Zustandssysteme beschreiben lédsst. Dabei wird
unterschieden, ob die Dynamik der Agenten in einem Multi-Agenten System identisch ist, was ei-
nem homogenen Multi-Agenten System entspricht, oder ob die Dynamik der Agenten nicht iden-
tisch ist, was auf ein heterogenes Multi-Agenten System fiihrt. Je nach betrachteter Systemklasse
ergeben sich unterschiedliche Eigenschaften der Multi-Agenten Systeme, die in den spéteren Ent-
wurfsverfahren zu beriicksichtigen sind. Fiir den Entwurf einer Regelung — ausgehend von einem
linearen zeitinvarianten Zustandssystem — ist es entscheidend, ob das System steuer- und beob-
achtbar ist, da nur die steuer- und beobachtbaren Eigenwerte des Systems durch eine Regelung
mittels Ausgangsriickfithrung gezielt verdndert werden konnen. Durch eine Analyse der beiden
Eigenschaften fiir homogene und heterogene Multi-Agenten Systeme ergeben sich daraus bereits
erste Erkenntnisse, die fiir die Synchronisierung wesentlich sind, was in den nachfolgenden Ab-
schnitten diskutiert wird.

2.3.1 Homogene Agenten und Multi-Agenten Systeme

In homogenen Multi-Agenten Systemen mit N Agenten lésst sich die Dynamik jedes Agenten fiir
i =1,...,N durch das Zustandssystem

X; = Ax; + Bu;, (2.4a)
Vi = Cx,' (24]1))

beschreiben, wobei fiir den Zustandsvektor x; € R”, den Anfangswert x;(fp) = X;,, den Ein-
gang u; € R™ und fiir den Ausgang y; € R? gilt. Die Matrizen A, B und C seien von passender
Dimension. Durch die Kommunikation der Agenten untereinander, steht jedem Agenten die rela-
tive Messung seines eigenen Ausgangs (2.4b) zu den Ausgingen seiner unmittelbaren Nachbarn
zur Verfiigung. Er verfiigt iber Relativinformation. Mit Hilfe der Adjazenzmatrix (2.1) und der
Laplacematrix (2.2) ldsst sich dies durch

N
Z agij(yi — (2.5a)
N

Z 61/ (2.5b)

angeben. Das Gesamtsystem bestehend aus N Agenten entsteht, indem die Rechenregeln des
Kronecker Produktes ausgenutzt werden (vgl. Abschnitt B.3). Mit dem Zustand des homogenen
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Multi-Agenten Systems x = [x] --- me folgt daher
X =(Uy®Ax+ (N Bu, (2.6a)
y=Un®C)x, (2.6b)
wobei fiir den Eingang u = [u] --- u}V]T und fiir den Ausgang y = [y] --- ijv]T gilt. Damit
gilt dim (x) = N -n,dim(#) = N -m und dim (y) = N - p. Fir die relativen Ausgénge des
T
Gesamtsystems folgt ausgehend von (2.5) daher mit v = [vlT v]TV] schlielich

V= (Lg®lp)(IN ®C)X
= (Lg ® O)x. i)

Eine Aussage iiber die Steuerbarkeit von (2.6) gelingt durch

Lemma 2.6. Das homogene Multi-Agenten System (2.6), bzw. das Paar ((Iy ® A), (Inx ® B))
ist genau dann steuerbar, wenn jeder Agent (2.4) steuerbar ist.

Beweis. Der einzelne Agent (2.4) ist nach Hautus genau dann steuerbar, wenn
rang ([A—AI B])=n

fiir alle A € C gilt. Daher ist (2.6) genau dann steuerbar, wenn
rang (((In ® A) —Alny (IN® B)]) =N -n

gilt. Da(Iy ® A) — ANy = In ® (A — A1,) und sich der Rang einer Matrix nicht dndert, wenn
von rechts oder links mit einer quadratisch reguldren Matrix multipliziert wird, lasst sich eine
Permutationsmatrix P € RAW#+Nmx(NntNm) finden, so dass

[In®(A-1L) (In®B)|P=Iy®[(4-1l,) B]
ist. Daraus folgt mit (B.3), dass
rang ([(IN QA)— ANy, (IN® B)]) = rang (IN ® [(A —Aly) B]) =N-n

fiir alle A € C erfiillt ist. |

Die gleiche Argumentation ldsst sich ebenfalls fiir die Untersuchung der Beobachtbarkeit von
(2.6) heranziehen, indem die Dualitdt von Steuer- und Beobachtbarkeit ausgenutzt wird. Damit
folgt ohne Beweis

Lemma 2.7. Das homogene Multi-Agenten System (2.6), bzw. das Paar ((Iy ® A),(In ® C))
ist genau dann beobachtbar, wenn jeder Agent (2.4) beobachtbar ist.
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Beim Entwurf der Regelung fiir das Gesamtsystem (2.6a) ist es dariiber hinaus entscheidend, wel-
che Information von den lokalen Reglern der Agenten verarbeitet werden kann. Ausgehend von
(2.4b) und (2.5b) ist die Strukturbeschriankung der Regelung zunéchst dadurch gekennzeichnet,
dass der Regelung lediglich Ausgangsinformation zur Verfiigung steht. Zusitzlich ist zu unter-
scheiden, ob Absolut- und Relativinformation oder ob lediglich Relativinformation verfiigbar ist.
Insbesondere im letztgenannten Fall ergeben sich bereits Einschrinkungen hinsichtlich der er-
zielbaren geregelten Dynamik, was auf die Unbeobachtbarkeit des Gesamtsystems beziiglich des
Paares ((Iy ® A), (Lg ® C)) zuriickzufiihren ist.

Lemma 2.8. Betrachtet wird die Dynamik des homogenen Multi-Agenten Systems (2.6a) zusam-
men mit den relativen Ausgdngen (2.7). Ist der Kommunikationsgraph, der der Laplacematrix Lg
zugrunde liegt, verbunden und ist der einzelne Agent (2.4) vollstindig beobachtbar, dann existiert
ein unbeobachtbarer Unterraum des Gesamtsystems der Dimension n.

Beweis. Da der Kommunikationsgraph verbunden ist, ist der Eigenwert A = 0 nach Lemma 2.3
einfach. Damit existiert eine reguldre Matrix V = [1 N Vz] mit V5 € CV*N~1_die die Laplace
Matrix Lg in ihre Jordan’sche Normalform J = diag (0, J,) {iberfiihrt, wobei J, € CN~N=1 g]-
le Eigenwerte von Lg mit positivem Realteil entsprechend ihrer algebraischen und geometrischen
Vielfachheit enthélt. Mit Hilfe des Hautus Kriteriums folgt zunéchst

rang (_IN ®(A- Aln)])

(Lg®C)
B (Ve I, 0 IN® (A —A\I,)
rne ( 0 vl 1,,] [ (Lg® C) ] va)

[ In ® (421

8\ | diag (0, /2) ® €)

~

]) <N-n, Vieo(A)

aufgrund der Blockdiagonalstruktur der resultierenden Matrix. Dies zeigt, dass das Gesamtsystem
nicht vollstéindig beobachtbar ist. Mit Hilfe der Koordinatentransformation X = (V! ® I,)x
folgt daher mit

¥=(Un®Ax+ (V' ®B)u,

v=(LgV®CO)x = ([0 LgV»]®C)x

eine Kalman Zerlegung des Gesamtsystems, wobei hierzu vorausgesetzt werden muss, dass das
Paar (Iny—; ® A),(LgV> ® C) vollstiandig beobachtbar ist. Dies ist allerdings stets erfiillt, da

. IN—l ® (A_)\In)
rang([ (LgV,® C) D

—ran 1(N71),, 0 1N—1 & (A - )\In)
S\l o diag(Ly) Ve IL|| (Leth®C)

IN-1 ® (A—A1y)
=rang ([ 0 :| 2 C) =(N—-1n, VYieo(A)

In_y
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aufgrund von Lemma 2.7 gilt. Somit existiert ein unbeobachtbarer Unterraum des Gesamtsys-
tems der Dimension 7, da genau einmal die Dynamik von A geméf der Kalman Zerlegung nicht
beobachtbar ist. O

Die Aussagen von Lemma 2.8 lassen sich auch anschaulich interpretieren. Aufgrund der relati-
ven Messgrofien (2.7) erfasst jeder Agent nur die Abweichung des eigenen Ausgangs von den
Ausgingen der Agenten, die mit ihm kommunizieren. Eine Bestimmung des absoluten Ausgangs
aus dieser Information ist nicht moglich. Besitzt die Matrix A dariiber hinaus Eigenwerte mit
nicht-negativem Realteil, so folgt daraus, dass sich das Gesamtsystem mittels einer Ausgangs-
rickfithrung nicht stabilisieren ldsst. Wie allerdings im Verlauf der Arbeit noch gezeigt wird, ist
dies fiir die Synchronisierung des Gesamtsystems auch nicht notwendig, da, wie eingangs dar-
gestellt wurde, nach der Synchronisierung eine Bewegung des Gesamtsystems verbleibt. Dies
entspricht genau der identischen Bewegung aller Agenten und mit Lemma 2.8 ist damit auch ein
systemtheoretisches Konzept verkniipft, was unter einer synchronen Trajektorie verstanden wird:
Synchrone Trajektorien sind diejenigen Trajektorien des Gesamtsystems, die beziiglich den rela-
tiven Ausgingen unbeobachtbar sind.

2.3.2 Heterogene Agenten und Multi-Agenten Systeme

In heterogenen Multi-Agenten Systemen mit N Agenten ldsst sich die Dynamik jedes Agenten
furi = 1,...,N durch das Zustandssystem

Xi = A,'Xi + B,-ui, (283)
yi = Gx; (2.8b)

beschreiben, wobei fiir den Zustandsvektor x; € R", den Anfangswert x;(fp) = X;,, den Ein-
gang u; € R™ und fiir den Ausgang ); € R? gilt. Die Matrizen A4;, B; und C; seien von
passender Dimension. Im Unterschied zu homogenen Multi-Agenten Systemen muss offensicht-
lich nicht vorausgesetzt werden, dass die Agenten identische Zustands- und Eingangsdimensionen
besitzen. Lediglich die Ausgangsdimension muss als identisch vorausgesetzt werden, da nur die
Synchronisierung von Ausgingen mit identischen physikalischen Eigenschaften eine praktische
Bedeutung hat.

Durch die Kommunikation der Agenten untereinander, steht jedem Agenten auch in heterogenen
Systemen die relative Messung seines eigenen Ausgangs (2.8b) zu den Ausgéngen seiner unmit-
telbaren Nachbarn zur Verfiigung. Mit Hilfe der Laplacematrix (2.2) ldsst sich dies wieder durch

N N
Vv = Zlg,‘jyj = ZlgijCij (29)
j=1 j=1

angeben. Das Gesamtsystem bestehend aus N Agenten entsteht auch hier, indem die Zustands-

T T

T .
vektoren aller Agenten gemill x = [xl xN] zusammengefasst werden. Zu beachten ist
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hierbei, dass die Zustands- und Eingangsdimensionen der einzelnen Agenten unterschiedlich sein
konnen. Daher gilt fiir die Zustandsdimension

N
n=Yynm (2.10)
i=1
und fiir die Eingangsdimension
N
m=Y"m. .11)
i=1
Das gesamte heterogene Multi-Agenten System lésst sich durch
% = Ayx + Byu, (2.12a)
3 = Cyx (2.12b)

darstellen, wobei hierbei die abkiirzende Schreibweise fiir Blockdiagonalmatrizen gemaf

A 1 Bl Cl
ZN = , §N = s av = .
AN By Cn
verwendet wird. Damit gilt x € R”, u € R” und y € RM'?. Fiir die relativen Ausginge des
T
Gesamtsystems folgt ausgehend von (2.9) daher mit v = [vlT v]TV] schlieBlich
v=(Lg®I,)Cyx. (2.13)

Eine Aussage iiber die Steuerbarkeit von (2.12) gelingt auch im heterogenen Fall durch

Lemma 2.9. Das heterogene Multi-Agenten System (2.12) bzw. das Paar (Z N> EN) ist genau
dann steuerbar, wenn jeder Agent (2.8) steuerbar ist.

Beweis. Nach Kalman ist der Agent (2.8), also das Paar (A4;, B;), genau dann steuerbar, wenn die
Steuerbarkeitsmatrix
Cij o= [B,» A;Bi - A{'B,-]
vollen Zeilenrang fiir j = n; — 1 hat (vgl. Abschnitt C). Das Gesamtsystem (2.12) ist demnach
genau dann steuerbar, wenn fiir die Steuerbarkeitsmatrix des heterogenen Multi-Agenten Systems
CN' = [EN ZNgN @V_IEN]
rang (é) = n mit n aus (2.10) gilt. Es ldsst sich nun aufgrund der Blockdiagonalstruktur der

Matrizen A ~ und §N eine Permutationsmatrix P € R"""™ mit m aus (2.11) finden, so dass
CP = diag(Ci,...,Cny) gilt. Da n; < n und somit rang (C,-,,,l.) = rang (C;,) = n;, folgt
aufgrund der Blockdiagonalstruktur von diag (Cy . . . ., Cn,,) mit (2.10)

N N
rang (é) = rang (diag (C1,n,....Cnp)) = Zrang Cin) = Zn,— =n,

i=1 i=1

was die Aussage beweist. d
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Auch bei heterogenen Multi-Agenten Systemen ldsst sich die gleiche Argumentation fiir die Un-
tersuchung der Beobachtbarkeit von (2.12) heranziehen, indem die Dualitit von Steuer- und Be-
obachtbarkeit ausgenutzt wird. Damit folgt ebenfalls wie im homogenen Fall ohne Beweis

Lemma 2.10. Das heterogene Multi-Agenten System (2.12) bzw. das Paar (Z N> G N) ist genau
dann beobachtbar, wenn jeder Agent (2.8) beobachtbar ist.

Im Hinblick auf homogene Multi-Agenten Systeme ist mit den Lemmata 2.9 und 2.10 ein hetero-
genes Aquivalent gegeben. Es stellt sich die Frage, ob nun auch heterogene Multi-Agenten Syste-
me beziiglich den relativen Ausgidngen (2.13) stets unbeobachtbar sind, wie es im homogenen Fall
durch Lemma 2.8 gezeigt wurde. Aus der Anschauung heraus und im Hinblick auf Lemma 2.8,
ist zu erwarten, dass, falls bei heterogenen Agenten Teildynamiken existieren, die identisch und
an den Ausgiédngen in gleicher Weise sichtbar sind, auch dann diese Teildynamiken beziiglich den
relativen Ausgéngen unbeobachtbar sind. Dieser Sachverhalt wird nachfolgend zusammengefasst.

Lemma 2.11. Betrachtet wird die Dynamik des heterogenen Multi-Agenten Systems (2.12a) be-
ziiglich der relativen Ausginge (2.13). Dariiber hinaus sei der Kommunikationsgraph, der der
Laplacematrix Lg zugrunde liegt, verbunden. Dann ist das heterogene Multi-Agenten System be-
ziiglich den relativen Ausgingen (2.13) und somit das Paar (ZN, Lg® Ip)av) genau dann
unbeobachtbar, wenn die beiden folgenden Bedingungen erfiillt sind:

1. Es existiert mindestens ein Eigenwert A, von ZN, der auch Eigenwert von A; fiir alle i €
{l,...,N}ist.
2. Es gilt Cyv; = Cjvj fiir alle i,j mit A;v; = Ayv; fiir alle i.
Beweis. (=) Wenn A, Eigenwert von 4; firallei € {1,..., N} ist, dann ist v; der dazugehdorige
Rechtseigenvektor, und es gilt A;u; = A, v; fir alle i. Aufgrund der Blockdiagonalstruktur ist

dann auch v = [vlT v]TV]T Rechtseigenvektor von A N, da A NV = A, gilt. Mit Hilfe des
Hautus Kriteriums und den Rechenregeln des Kronecker Produkts folgt dann

rang (|: A =il ]) <n
(Lg ® 1,)CN '
da aufgrund der Voraussetzung C;v; = Cjv; fiir alle i,j mit C;v; =: r der Zusammenhang

G '~V = 1y ®r gilt. Da der Kommunikationsgraph verbunden ist, gilt Lgly = 0, und daher folgt
mit

(Lg®1,)Cnv=(Lg®I,)(Iy®71) = (Lgly ®r) =0
die Aussage.

(<) Das Ergebnis folgt nach Anwendung derselben Argumente in umgekehrter Reihenfolge. [J
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Mit Lemma 2.11 ist ein notwendiges und hinreichendes Kriterium gegeben, um zu tiberpriifen,
ob es bei einem gegebenen heterogenen Multi-Agenten System bereits Eigenbewegungen gibt,
die an den relativen Ausgéngen unbeobachtbar sind. Dies entspricht genau den Eigenwerten, die
allen Agenten gemeinsam sind und die an den Ausgingen in identischer Weise sichtbar sind. Im
Hinblick auf die Aussage von Lemma 2.8 im homogenen Fall ldsst sich daraus schliefen, dass
jeder Agent eine Teildynamik aufweist, die bei allen Agenten identisch ist. Da die verbleiben-
den Eigenbewegungen steuer- und beobachtbar sind, lassen sich diese dann durch eine Regelung
stabilisieren, und es verbleibt die unbeobachtbare Dynamik im geschlossenen Regelkreis. Im Ge-
gensatz zum homogenen Fall ist die Dimension des unbeobachtbaren Unterraums a priori nicht
bekannt und muss daher ausgehend von den einzelnen Systembeschreibungen ermittelt werden.
Dariiber hinaus ldsst sich, falls das heterogene Multi-Agenten System beziiglich den relativen
Ausgéngen detektierbar ist, das Gesamtsystem stabilisieren, was bei homogenen Agenten mit in-
stabiler Dynamik grundsitzlich nicht moglich ist.

2.3.3 Synchronisierung

Nach der Einfithrung der in dieser Arbeit betrachteten Systemklassen und der Untersuchung der
mit diesen Systemklassen assoziierten systemtheoretischen Eigenschaften, ist nun zu kldren, wel-
che Aufgabe der in dieser Arbeit zu entwickelnden strukturbeschrinkten Regelungsverfahren zu-
teil wird. Ausgehend von der in Abschnitt 1.2 dargestellten Literatur zu Multi-Agenten Systemen,
ist hierbei stets eine der zentralen Aufgaben die Synchronisierung von Ausgangs- oder Zustands-
groflen der Agenten. Formal ergibt sich

Definition 2.12 ([17]). Betrachtet werden homogene Multi-Agenten Systeme gemdifs (2.6) und he-
terogene Multi-Agenten Systeme gemdf3 (2.12) mit N Agenten. Die Agenten erzielen Ausgangs-
synchronisierung, wenn

Jim |yi@®)— ;)| =0, Vi,j=1....N (2.14)

erfiillt ist.

Angemerkt sei, dass durch die Wahl von y;(¢) = x;(¢) die Zustandssynchronisierung als Spezial-
fall in der Definition von Ausgangssynchronisierung enthalten ist. Aufgrund der Forderung, dass
die Ausgangsdifferenzen bzw. Zustandsdifferenzen aller Agenten asymptotisch verschwinden sol-
len, wird offensichtlich, dass hierbei eine Verbindung zu den Ergebnissen zur Beobachtbarkeit der
Multi-Agenten Systeme beziiglich den relativen Ausgéngen in den Abschnitten 2.3.1 und 2.3.2
besteht. Die Synchronisierung von homogenen und heterogenen Multi-Agenten Systemen ist da-
her mit der Identifikation eines unbeobachtbaren Unterraums des Gesamtsystems gleichzusetzen,
dem durch eine Regelung gezielt die Eigenschaft der Attraktivitdt verliehen werden muss.
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2.4 Problemstellung und Beitrage der Arbeit

Ausgehend von der Einfithrung des Agentenbegriffs, den graphentheoretischen Grundlagen und
der Einfithrung und Untersuchung der grundlegenden Eigenschaften homogener und heterogener
Multi-Agenten Systeme in den voran gegangenen Abschnitten, soll nun kurz die Problemstellung
dieser Arbeit zusammengefasst werden:

» Ausgangspunkt der Betrachtungen ist eine Systembeschreibung eines homogenen oder he-
terogenen Multi-Agenten Systems gemif (2.6) oder (2.12).

* Die Agenten kommunizieren untereinander. Somit steht jedem Agenten eine relative Mes-
sung seines Ausgangs zu den Ausgingen seiner Nachbarn zur Verfligung, was mittels der
Struktur des Netzwerks modelliert wird.

» Es ist fiir jeden Agenten eine Regelung zu entwerfen, die Zugriff auf die relativen Mes-
sungen hat, mit dem Ziel, asymptotisch alle Ausginge der Agenten im Sinne von (2.14) zu
synchronisieren.

Zur Losung der vorgenannten Problemstellung werden in dieser Arbeit strukturbeschrinkte Re-
gelungsverfahren entwickelt. Dabei ist unter Strukturbeschriankung zu verstehen, dass zunéchst
auf die Annahme verzichtet wird, den kompletten Zustandsvektor des Agenten messtechnisch zu
erfassen. In diesem Zusammenhang werden zunichst in Kapitel 3 verschiedene Methoden vor-
gestellt, um fiir ein Zustandssystem eine Ausgangsriickfithrung zu entwerfen. Es wird dabei zwi-
schen Methoden unterschieden, die eine exakte Eigenwertvorgabe oder eine Polbereichsvorgabe
des geschlossenen Regelkreises ermoglichen. Die Anwendung der Verfahren zum Entwurf von
Ver- und Entkopplungsreglern wird ebenso diskutiert wie die robuste Eigenwertvorgabe.

Die Anwendung der Entwurfsverfahren zur Synchronisierung von Multi-Agenten Systemen er-
folgt in den Kapiteln 4 und 5, wobei hier die Strukturbeschréinkung der Regelung durch die Hin-
zunahme der Kommunikation der Agenten untereinander beriicksichtigt werden muss. In Kapitel
4 erfolgt der Entwurf der Regelung daher zunichst unter der Annahme, dass der Agent Kenntnis
tiber seinen absoluten Ausgang besitzt. Dies erdffnet weitreichende Moglichkeiten, um die dyna-
mischen Eigenschaften des Agenten, wie er sich im gesamten Multi-Agenten System darstellt, zu
verdndern. Abschlieend gelingt es, ein adaptives Entwurfsverfahren zur Synchronisierung nicht-
linearer Agenten mit Vektorrelativgrad eins anzugeben, wobei in diesem Fall die Kenntnis des
vollstindigen Zustands des Agenten vorausgesetzt werden muss.

In Kapitel 5 ist die Kenntnis von Absolutinformation keine Voraussetzung mehr. Es wird daher
ein dezentrales Entwurfsverfahren zur Synchronisierung von Multi-Agenten Systemen entwickelt,
welches die Synchronisierung aller Agenten auf eine vorab festgelegte Trajektorie ermoglicht.
Die Verifikation der Ergebnisse aus den Kapiteln 3, 4 und 5 erfolgt abschlieend in Kapitel 6,
wobei zur Verdeutlichung der Ergebnisse aus Kapitel 3 zusitzlich Messergebnisse von einem
Laboraufbau einer xy-Positioniereinheit prisentiert werden.
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3 Entwurf strukturbeschrankter
Rickfihrungen

Zum Entwurf von Multi-Agenten Systemen ist ein methodisches Werkzeug notwendig, welches
die Parametrierung der lokalen Regler aller Agenten ermoglicht. Deshalb werden in diesem Kapi-
tel Entwurfsverfahren vorgestellt, die die Berechnung von Ausgangsreglern fiir lineare, zeitinvari-
ante Systeme gestatten, da dies den Ausgangspunkt fiir die Synchronisierung von Multi-Agenten
Systemen in den Kapiteln 4 und 5 darstellt.

Zunichst wird ein parametrisches Entwurfsverfahren eingefiihrt, was unter der Voraussetzung ei-
ner aus der Literatur bekannten Bedingung an die Anzahl der Zustands-, Eingangs- und Ausgangs-
grofen die vollstindige Vorgabe der Eigenwerte des geschlossenen Regelkreises ermoglicht. Da
bei Mehrgroflensystemen stets noch weitere Freiheitsgrade neben den Regelungseigenwerten exis-
tieren, wird daran ankniipfend gezeigt, wie diese unter Formulierung eines Optimierungsproblems
genutzt werden konnen, um gezielt Eigenschaften des geschlossenen Regelkreises hinsichtlich ei-
ner robusten Eigenstrukturvorgabe zu verbessern. Dies fiihrt auf die robuste Eigenwertvorgabe.
Dariiber hinaus gelingt die Anwendung des Verfahrens ebenfalls, wenn gezielt das Fiihrungs-
verhalten des geschlossenen Regelkreises beeinflusst werden soll, was am Beispiel der Ver- und
Entkopplungsregelung gezeigt wird.

Sollen die Eigenwerte des geschlossenen Regelkreises nicht an festen Stellen der komplexen Ebe-
ne zum Liegen kommen sondern vielmehr in einem vorab vorzugebenden Bereich, dann fiihrt
dies zur Vorgabe von Eigenwertbereichen. Hierzu wird zunichst ein grundsitzliches Vorgehen
diskutiert und im Anschluss mit dem parametrischen Ansatz kombiniert. Daraus resultiert ein teil-
parametrisches Verfahren. Eine nutzbringende Anwendung dieser Methodik wird am Beispiel der
robusten Entkopplungsregelung vorgestellt.

3.1 Parametrisches Entwurfsverfahren fiir statische
Ausgangsriickfiihrungen

Neben den Frequenzbereichsmethoden, wie beispielsweise der Hyo- oder H,-Regelungssynthese,
hat sich im Zeitbereich die Vorgabe der Eigenwerte des geschlossenen Regelkreises beziehungs-
weise in der regelungstechnischen Literatur meist als Polvorgabe bezeichnete Methodik als eines
der meist verwendeten Werkzeuge zum Entwurf linearer Systeme durch Zustandsriickfiihrung eta-
bliert. So ist aus der Literatur bekannt, dass bei Eingrofensystemen die Zustandsriickfithrmatrix
eindeutig durch die Wahl der Regelungseigenwerte festgelegt wird. Mit Hilfe der Ackermann For-
mel (vgl. z.B. [27, 76]) ist beispielsweise eine Methode gegeben, um die Riickfithrmatrix zu be-
rechnen. Durch geschickte Wahl der Regelungseigenwerte lisst sich dann das transiente Verhalten
des durch Zustandsriickfithrung geregelten Systems gezielt beeinflussen.
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Im MehrgroBenfall ist der Zusammenhang zwischen den Eigenwerten des geregelten Systems und
der Riickfithrmatrix nicht mehr eindeutig [69], so dass zu fest gewihlten Regelungseigenwerten
stets unendlich viele Riickfiihrmatrizen existieren. Um dies aufzuldsen, ist mit der von Roppene-
cker [94] eingefiihrten Vollstandigen Modalen Synthese eine Methodik gegeben, um die zusétzli-
chen Freiheitsgrade zugénglich zu machen. Durch Einfiihrung der invarianten Parametervektoren
lassen sich damit sdmtliche Freiheitsgrade einer Zustandsriickfithrung # = Rx anschaulich inter-
pretieren. Die Riickfithrmatrix ergibt sich bei dem Ansatz nach Roppenecker aus

R = PV!,

wobei in den Matrizen P und Vi spaltenweise die invarianten Parametervektoren p; und die
Rechtseigenvektoren des geschlossenen Regelkreises vg; zusammengefasst sind. Diese sind iiber
den Zusammenhang

vri = —(A — Ari D) ™' Bp;

verkniipft. Dieser Zusammenhang verdeutlicht, dass zusitzliche Freiheitsgrade existieren, um die
Richtung des Rechtseigenvektors vg; in dem durch die Spaltenvektoren der Matrix (4 —Ag; 1)~ B
aufgespannten Unterraums zu verindern, was sich durch den invarianten Parametervektor p; aus-
driickt. Zusammen mit den Regelungseigenwerten Ag; legen nun die Richtungen der Parameter-
vektoren — es ldsst sich leicht zeigen, dass die Lange der p; keinen zusitzlichen Freiheitsgrad
darstellt — die Riickfithrmatrix R vollstindig fest.

Vor diesem Hintergrund und im Hinblick auf den Entwurf von Ausgangsriickfithrungen ergibt
sich daraus eine zentrale Fragestellung, ob sich ebenfalls Parametrierungen einer Ausgangsriick-
fihrmatrix angeben lassen, die neben der Vorgabe der Regelungseigenwerte zusitzlich, sofern
vorhanden, die weiteren Freiheitsgrade in parametrischer Form zugiinglich machen. Ein nahelie-
gender Zugang zur Losung dieser Aufgabe besteht darin, eine vorhandene Parametrierung einer
Zustandsriickfithrung zu nutzen und nur solche Werte der freien Parameter zuzulassen, so dass
sich aus der Zustandsriickfithrung eine Ausgangsriickfiihrung ergibt [23, 92, 93]. Héufig ist hierzu
allerdings ein Optimierungsproblem zu 16sen, so dass diese Losungen iterative Verfahren darstel-
len. Das Entwurfsverfahren zur Bestimmung einer Ausgangsriickfithrung, welches in den folgen-
den Abschnitten eingefiihrt und erweitert wird, ist im Gegensatz dazu nicht auf die Losung eines
Optimierungsproblems angewiesen. Es lédsst sich damit direkt ein analytischer Ausdruck fiir die
Riickfithrmatrix angeben. Das Vorgehen basiert in seinem Grundgedanken auf der Vollstindigen
Modalen Synthese und ist somit den parametrischen Ansdtzen zuzurechnen. Hierbei werden die
Ergebnisse aus [46] genutzt.

Ausgangspunkt der folgenden Betrachtungen ist das lineare Zustandssystem

X = Ax + Bu, x(t) = Xo, (3.1a)
y = Cx, (3.1b)

wobei fiir den Zustandsvektor x € R”, fiir den Eingangsvektor u € R™ sowie fiir den Ausgangs-
vektor y € R” gilt. Zunichst wird vereinfachend Steuerbarkeit von (A4, B) und Beobachtbarkeit
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von (A4,C) vorausgesetzt. Ziel ist die Bestimmung einer Ausgangsriickfiihrung
u= Ky, (3.2)

die die Vorgabe simtlicher Eigenwerte des geschlossenen Regelkreises an beliebigen Stellen der
komplexen Ebene erméglicht, so dass 0 (A + BKC) = Ax = {Ak1, -, Axn} gilt.

Zur Verdeutlichung der Grundidee der Methodik zum Entwurf parametrischer Ausgangsriickfiih-
rungen ist es hilfreich, im Folgenden zwei duale Teilprobleme zu diskutieren. Zunéchst wird der
Entwurf einer Teilzustandsriickfithrung vorgestellt, was auf die Vorgabe einer Teilmenge von Ei-
genwerten und Rechtseigenvektoren des geschlossenen Regelkreises fithrt. Dariiber hinaus ergibt
sich dual dazu der Entwurf einer Teilausgangsaufschaltung, womit die Vorgabe einer Teilmenge
der Eigenwerte und Linkseigenvektoren des geschlossenen Regelkreises verkniipft ist.

3.1.1 Vorgabe von Eigenwerten und Rechtseigenvektoren

Ausgehend von (3.2) wird mit (3.1b) offensichtlich, dass sich jede Ausgangsriickfithrung als spe-
zielle Zustandsriickfithrung interpretieren ldsst, da immer KC = R gilt. Auch im Fall einer Aus-
gangsriickfiihrung muss daher die Eigenwert-/Rechtseigenvektor-Gleichung

(A + BKC)vg; = AgiVki

erfiillt sein, um in Anlehnung an die Vollstindige Modale Synthese einen parametrischen Zu-
gang zur Bestimmung von K zu erhalten. Darin bezeichnet Ag; einen iiber die Riickfithrung (3.2)
erzeugten Eigenwert sowie vk; den dazugehorigen Rechtseigenvektor des geschlossenen Regel-
kreises. Aquivalent zur Eigenwert-/Eigenvektorgleichung ist daher

[(4 =) B]{ VK ]:o

KC UKi
Wird darin KCvyg; =: py; als der Steuermodus zum Eigenwert Ay; definiert, folgt daraus
[(A=iul) B] {““"] =0. 3.3)
vi

Weiterhin kann Sg; := [(A —Axil) B] abgekiirzt werden. Im Allgemeinen ist Sg; € C"+™,
da Regelungseigenwerte komplex sein konnen. Aufgrund der vorausgesetzten Steuerbarkeit des
Paares (A4, B) besitzt die Matrix Sp; einen m-dimensionalen Nullraum, und es existieren Matrizen
Ny; und M,;, so dass

. Nvi
kern (Sp;) = bild ([M\l])

gilt. Mit (3.3) lassen sich nun Parametervektoren ¢,; einfiihren, so dass fiir den Rechtseigenvektor

vki = Nyiqyi sowie fiir den Steuermodus py; = M,;qy; gilt. Daher ist
Ny
[(4—hwil) B] {M\,’,} ‘i =0 (34)
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dquivalent zu (3.3), woraus offensichtlich wird, dass bei einem steuerbaren Mehrgrofensystem
mit m > 1 neben den Regelungseigenwerten noch weitere Freiheitsgrade existieren, die es er-
lauben, die Richtung der Rechtseigenvektoren in dem von den Spaltenvektoren der Matrix Ny;
aufgespannten Unterraum vorzugeben. Dariiber hinaus ldsst sich (3.3) durch Ausmultiplizieren
und Umstellen nach vg; auch als vg; = —(A4 — Ag; 1) "' Bp,; schreiben, wobei darin die inverse
Matrix nur dann existiert, wenn Ag; € o (A) gewihlt wird. Daraus ergibt sich die Aquivalenz der
Losungen der Eigenwert-/Eigenvektorgleichungen (3.3) beziehungsweise (3.4) zu der eingangs
des Abschnitts diskutierten Vollstdndigen Modalen Synthese nach Roppenecker.

Im Gegensatz zum Entwurf einer Zustandsriickfiihrung lassen sich aufgrund der Strukturbeschrin-
kung R = KC nicht mehr alle Eigenwerte des geschlossenen Regelkreises iiber den Zusammen-
hang R = PV ! vorgeben, wie nachfolgend diskutiert wird. Hierzu werden mit einem noch nicht
festgelegten Index r die Matrizen

V.= [UKI vK,] (3.5a)
Or=[pa ... pw] (3.5b)

definiert, die sich spaltenweise aus (3.3) bzw. (3.4) ergeben. Aufgrund der Definition des Steuer-
modus gemil p,; = KCvg; folgt mit (3.5) das lineare Gleichungssystem

KCV: = 0, (3.6)

in der Variable K. Diese Gleichung ist gemif der Theorie zu linearen Gleichungssystemen sicher
dann 1osbar, wenn QT € bild ((C V,)T) erfiillt ist. Wird dariiber hinaus vorausgesetzt, dass r < p
gewihlt wird, und die Matrix CV; vollen Spaltenrang hat, dann ist fiir r < p die Matrix CV;
linksinvertierbar beziehungsweise fiir r = p quadratisch regulir. Insbesondere im ersten Fall fiir
r < pistdie sich daraus ergebende Losung fiir K nicht mehr eindeutig bestimmt, was im weiteren
Verlauf zur Parametrierung der Ausgangsriickfithrmatrix ausgenutzt wird. Weiterhin lassen sich
durch Losung von (3.6) genau r Eigenwert-/Rechtseigenvektorpaare (Ak;,vk;) im geschlossenen
Regelkreis erzeugen, wie folgendes Lemma ausgehend von den vorstehenden Diskussionen ohne
Beweis zusammenfasst.

Lemma 3.1. Betrachtet wird das steuer- und beobachtbare Zustandssystem (3.1). Die Ausgangs-
riickfiihrung (3.2) erzeugt fiiri € {1,...,r} und r < p die Eigenwert-/Rechtseigenvektorpaare
(Aki,vki), wenn rang (CV;) = r gilt und fiir r = p die Riickfiihrmatrix K gemdifs

K= Q/(CV)~!
bzw. fiirr < p gemdfs
K=0.(CW'"+ KU

mit beliebigem K, berechnet wird. Dabei ist U; eine Basis des Linkskerns der Matrix CV;, und
somit gilt bild (U) = kern ((CV,)").
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Mit Lemma 3.1 folgt, dass mit dem parametrischen Ansatz ausgehend von (3.3) beziehungsweise
(3.4) maximal p Eigenwert-/Rechtseigenvektorpaare im geschlossenen Regelkreis zu erzeugen
sind. Dabei stehen durch jedes (Ak;,vk;) genau m Freiheitsgrade zur Verfiigung. Diese setzen
sich aus dem Freiheitsgrad durch die Wahl des Regelungseigenwertes Ag; sowie der Richtung des
Parametervektors ¢,; zusammen, was m — 1 Freiheitsgrade darstellt. Die Lange des Vektors g,; ist
somit unwesentlich, was sich ebenfalls an Gleichung (3.6) zusammen mit den Zusammenhéngen
vki = Nyigyi und py; = M,;q,; verdeutlichen ldsst . Wird jedes ¢,; mit einem Skalierungsfaktor
¢; # 0 multipliziert, so entspricht dies der Rechtsmultiplikation von (3.6) mit der quadratisch
reguldren Matrix diag (cy, ..., ¢,), was die Losungsmenge der Gleichung nicht @ndert.

Somit ist fiir ¥ = p die Ruckfilhrmatrix K durch die p Eigenwert-/Parametervektorpaare (Ag;,qvi)
vollstindig parametrisch festgelegt. Ist allerdings r < p, so stehen noch die verbleibenden (p —
r) - m Freiheitsgrade zur Vertiigung, was der Riickfithrmatrix K entspricht. Diese werden in Ab-
schnitt 3.1.3 genutzt, um auch die verbleibenden n —r Eigenwerte des geschlossenen Regelkreises
vorzugeben. Zunichst ist hierzu allerdings ein dualer Ansatz zu der Methodik in diesem Abschnitt
zu diskutieren, was auf die Vorgabe von Eigenwerten und Linkseigenvektoren fiihrt.

3.1.2 \Vorgabe von Eigenwerten und Linkseigenvektoren

Da der Entwurf einer Zustandsriickfiihrung und der Entwurf einer Ausgangsaufschaltung zuein-
ander duale Entwurfsprobleme sind, ldsst sich ausgehend von dem vorangegangenen Abschnitt
sowie von (3.2) und (3.1b) ebenfalls argumentieren, dass sich jede Ausgangsriickfiihrung als spe-
zielle Ausgangsaufschaltung interpretieren ldsst, da immer BK = L ist. Wird nun das Eigen-
wert/Linkseigenvektor Problem

wIT(i(A + BKC) = kKiwIEi

betrachtet, folgt in dualer Weise zu (3.3) durch Transponieren zunichst

Wki
[(AT =i D) CT] [KTB];wKi] =0. €)

Darin wird KT BTwy; =: py; als der Messmodus zum Eigenwert A; definiert, woraus

[(AT = A D) CT] [wK’} =0 3.8)
Dwi

folgt. Weiterhin kann S¢; := [(AT —Mil) C T] abgekiirzt werden. Im Allgemeinen ist S¢; €

C"™"+P da Regelungseigenwerte komplex sein kénnen. Aufgrund der vorausgesetzten Beobacht-

barkeit des Paares (C,A4) besitzt die Matrix Sc; einen p-dimensionalen Nullraum, und es existie-

ren Matrizen Ny; und M,;, so dass

kern (S¢;) = bild ([ AA;“;D
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gilt. Mit (3.8) lassen sich nun Parametervektoren ¢, einfiihren, so dass fiir den Linkseigenvektor
wg; = Nyiqwi sowie fiir den Messmodus py; = My,;iqy; gilt. Daher ist

[(AT = A D) CT] [AA;W"] Gui =0 (3.9)
wi

dquivalent zu (3.8), woraus offensichtlich wird, dass bei einem beobachtbaren Mehrgrofiensys-

tem mit p > 1 neben den Regelungseigenwerten noch weitere Freiheitsgrade existieren, die es

erlauben, die Richtung der Linkseigenvektoren in dem von den Spaltenvektoren der Matrix Ny,

aufgespannten Unterraum vorzugeben.

Auch in diesem Fall lassen sich im Gegensatz zum Entwurf einer Ausgangsaufschaltung aufgrund
der Strukturbeschrinkung L. = BK nicht mehr alle Eigenwerte des geschlossenen Regelkreises
vorgeben. Mit einem noch nicht festgelegten Index s werden die Matrizen

Whi=lwkr ... w] (3.10a)

0l :=[pu1 ... Dus] (3.10b)

definiert, die sich spaltenweise aus (3.8) bzw. (3.9) ergeben. Aufgrund der Definition des Mess-
modus gemiB p,; = KT BTwg; folgt mit (3.10) daraus das lineare Gleichungssystem

W,BK = Q, @3.11)

in der Variable K. Auch diese Gleichung ist gemif} der Theorie zu linearen Gleichungssystemen
sicher dann 16sbar, wenn Qg € bild (W, B) erfiillt ist. Wird dariiber hinaus vorausgesetzt, dass
s < m gewihlt wird, und die Matrix W, B vollen Zeilenrang hat, dann ist fiir s < m die Matrix
W, B rechtsinvertierbar beziehungsweise fiir s = m quadratisch regulir. Insbesondere im ersten
Fall fiir s < m ist die sich daraus ergebende Losung fiir K nicht mehr eindeutig bestimmt, was im
weiteren Verlauf zur Parametrierung der Ausgangsriickfithrmatrix ausgenutzt werden kann. Wei-
terhin lassen sich durch Losung von (3.11) genau s Eigenwert-/Linkseigenvektorpaare (Ak;,Wk;)
im geschlossenen Regelkreis erzeugen, wie folgendes Lemma aufgrund der Dualitidt zu Lemma
3.1 ohne Beweis zusammenfasst.

Lemma 3.2. Betrachtet wird das steuer- und beobachtbare Zustandssystem (3.1). Die Ausgangs-
riickfithrung (3.2) erzeugt fiiri € {1,...,s} und s < m die Eigenwert-/Linkseigenvektorpaare
(Aki,wk;), wenn rang (W, B) = s gilt und fiir s = m die Riickfiihrmatrix K gemdf}

K = (W.B)"'Q;
bzw. fiir s < m gemaf
K = (W.B)" Q. + U:K,

mit beliebigem K, berechnet wird. Dabei ist U, eine Basis des Rechtskerns der Matrix W B, und
somit gilt bild (Up) = kern (W B).
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Auch in diesem Fall ist mit Lemma 3.2 gezeigt, dass sich mit dem parametrischen Ansatz ausge-
hend von (3.8) beziehungsweise (3.9) maximal m Eigenwert-/Linkseigenvektorpaare im geschlos-
senen Regelkreis erzeugen lassen. Dabei stehen durch jedes (Ak;,wx;) genau p Freiheitsgrade zur
Verfiigung. Diese setzen sich aus dem Freiheitsgrad durch die Wahl des Regelungseigenwertes Ak;
sowie der Richtung des Parametervektors ¢,,; zusammen, was p — | Freiheitsgrade darstellt. Die
Linge des Vektors gy ist, wie die Linge des Vektors ¢,; im vorhergehenden Abschnitt, unwesent-
lich. Somit ist fir s = m die Ruckfithrmatrix K durch die m Eigenwert-/Parametervektorpaare
(Aki gwi) vollstindig parametrisch festgelegt. Ist allerdings s < m, so stehen noch die verbleiben-
den (m — s) - p Freiheitsgrade zur Verfiigung, was der Riickfithrmatrix K, entspricht.

3.1.3 Berechnung der Riickfithrmatrix

In den Abschnitten 3.1.1 und 3.1.2 wurde aufgezeigt, dass sich ausgehend von der Systembe-
schreibung (3.1) die Ausgangsriickfithrung (3.2) auf zwei verschiedene, duale Herangehensweisen
bestimmen lédsst. Dabei lassen sich bei der Vorgabe von Rechtseigenvektoren maximal p Rechts-
eigenmoden beziehungsweise bei der Vorgabe von Linkseigenvektoren maximal m Linkseigen-
moden vorgeben. Ist dabei p = n oder m = n, dann ergibt sich dadurch der Spezialfall einer
Zustandsriickfithrung beziehungsweise einer Ausgangsaufschaltung. Weiterhin wurde auch deut-
lich, dass in den Féllen r < p und s < m stets noch weitere Freiheitsgrade durch die Riickfiihr-
matrizen K; und K, zur Verfiigung stehen, um K noch weiter zu verindern. Dies motiviert das
nachfolgend dargestellte Vorgehen, welches darin besteht, die beiden in den Lemmata 3.1 und 3.2
festgehaltenen Ergebnisse zu kombinieren, um so einen geschlossenen analytischen Ausdruck fiir
K anzugeben, womit alle Eigenwerte des geschlossenen Regelkreises vorgegeben werden konnen.

Wird daher in Lemma 3.1 die spezielle Wahl r = p — 1 getroffen und der volle Spaltenrang von
C'V; angenommen, folgt daraus die Riickfithrmatrix

K = 0.(CV)* + K\U, = Ko + KU, (3.12)

mit K; € R und U; € R¥*?, da U;CV, = 0 mit CV, € CP*P~! erfiillt sein muss. Wird nun
(3.12) in (3.2) und dann in (3.1a) eingesetzt, so folgt daraus fiir die Dynamik des geschlossenen
Regelkreises

X =(A+ BKoC + BK,U,C) x.
Wird in dieser Gleichung

Ay == A+ BO.(CV,)"C, (3.13a)
C, :=U,C (3.13b)

abgekiirzt, so folgt daraus das iiber (3.12) geregelte Zustandssystem

X = (A] + BK1C1)x, (314&)
yi = Cix, (3.14b)
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wobei durch K weitere Freiheitsgrade existieren, um die Dynamik von (3.14a) zu verdndern. Um
zu verdeutlichen, dass durch die Reglerparametrierung in (3.12), die p—1 Eigenwert-/Rechtseigen-
vektorpaare erzeugt werden, und dass diese durch jede Wahl von K; auch nicht mehr verin-
dert werden, wird auf eine neue Koordinatendarstellung iibergangen. Hierzu wird zunichst die
Diagonalmatrix A, = diag (Ak;,...,Ak,) eingefithrt. Mit (3.3), (3.5) und (3.14a) folgt daraus
(A1 + BKC)V; = A1 V; = V.A,, was die Vorgabe der Eigenwerte {Agi, ..., Ag,} zeigt. Zum
Ubergang auf eine neue Koordinatendarstellung wird eine Matrix 7', mit orthogonalen Spalten-

vektoren bestimmt, die bild (7'.) = kern (VF) sowie TI T, = I,—, erfiillt. Daraus folgt die neue

Koordinatendarstellung aus X = [Vr TL]_1 X sowie mit [Vr TJ_]_I = [Wr TJ_]T, und es ergibt

sich

%1 _[WTA v, WE(A, + BK,C)TL | [
N TIA1V} TE(A1+BK1C1)TL X

%
_([A, WTAT]  [W'B %
_([0 T{A Ty - T[B Ko et %l
i =[0 CiTL]%,

was eine Kalman Zerlegung von (3.14) darstellt. Aufgrund der Blockdreiecksstruktur der resul-
tierenden Systemmatrix, ldsst sich schlieBen, dass der Teilzustand X; beziiglich des Ausgangs y,
nicht beobachtbar ist, weshalb die Eigenwerte {Aki, ..., Ag,} iiber die Ausgangsriickfithrung K
auch nicht mehr veréndert werden. Die verbleibenden Eigenwerte der Matrix sind allerdings noch
iiber K verschiebbar, weshalb Lemma 3.2 zur Vorgabe der Eigenwerte genutzt werden kann. Al-
lerdings muss in diesem Fall anstatt von (3.1) von (3.14) ausgegangen werden, weshalb (3.8) bzw.
(3.9) zu

Wk

wi

[(AT = ki D) CI][ }=[<AI—AK,»I) cfl [NW"]qwi:o (3.15)

My

fir i € {r + 1,...,n} modifiziert werden miissen. Allerdings ist in diesem Fall C; € R"" und
daher dim (kern ([(A¥ —Akil) CIT])) = 1, weshalb durch die spezielle Wahl r = p — 1 keine
Freiheitsgrade durch die Parametervektoren ¢, fir i € {r + 1,...,n} zur Verfiigung stehen.
Nur iiber die Wahl der Regelungseigenwerte ldsst sich damit die Dynamik des geschlossenen
Regelkreises noch gezielt beeinflussen. Dariiber hinaus resultiert der Index s aus n —r = s.
Im Hinblick auf Lemma 3.2 muss daher m > s gefordert werden, um iiber den modifizierten
Zusammenhang K fiir s = m aus

K1 = (W.B)*Q,
beziehungsweise fiir s < m aus
Ki = (WB) Qs + U:K,

zu berechnen. Ist allerdings m > s = n — r, so muss ebenfalls mit r = p — 1 die Ungleichung
m > n — p + 1 beziehungsweise

m+p=n+1 (3.16)
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erfiillt sein. Diese Ungleichung ist in der Literatur auch als Bedingung nach Kimura (engl. Ki-
mura’s condition) bekannt und geht auf die Ergebnisse in [43] zuriick. Darin zeigt Kimura, dass
(3.16) hinreichend fiir die generische Polzuweisbarkeit mittels reeller Riickfithrmatrix K ist, wenn
das Zustandssystem steuer- und beobachtbar sowie die Menge der Regelungseigenwerte selbst-
konjugiert ist und die Regelungseigenwerte paarweise verschieden gewihlt werden. Dabei ergibt
sich die Definition einer selbst-konjugierten Menge bestehend aus paarweise verschiedenen Ei-
genwerten zu

Dy={M€C|kefl,....n} | L €D, = 1" € D,}. 3.17)

Die Eigenwerte einer selbst-konjugierten Menge D, sind somit symmetrisch zur reellen Achse.
Damit folgt der nachstehende Satz.

Satz 3.3 (Polzuweisbarkeit nach Kimura [43]). Wenn das Zustandssystem (3.1) steuer- und beob-

achtbar sowie die Bedmgung (3.16) erfiillt ist, dann ist espolzuwetsbar Fiir jede selbst-konjugierte

Menge A= {)\1, ek n} € Dy existieren ); in der Umgebung von Ai, s0 dass ein reelles K mit
={A1,...,An} € Dyund o (A + BKC) = A existiert.

Im Hinblick auf das Resultat in Satz 3.3 lésst sich ausgehend von den Diskussionen in diesem Ab-
schnitt iiber die Kombination der beiden Ansitze in den Lemmata 3.1 und 3.2 festhalten, dass da-
mit direkt eine Moglichkeit der Parametrierung der Ausgangsriickfithrung (3.2) gegeben ist, wenn
die Bedingung nach Kimura (3.16) erfiillt ist. Bemerkenswert hierbei ist, dass sich die Ausgangs-
rickfithrung ausgehend von der Losung zweier linearer Gleichungssystemen (3.6) und (3.11) er-
gibt. Zudem ist zu erwihnen, dass mit Satz 3.3 auch folgt, dass fiir Zustandssysteme gemaf (3.1)
Mengen von Regelungseigenwerten aus D,, existieren konnen, die mit (3.2) und reellem K nicht
erzeugt werden konnen. Auch beim Auftreten von Ubertragungsnullstellen funktioniert das Vor-
gehen beispielsweise nicht, wie das dritte Beispiel in [43] zeigt. Damit ldsst sich ebenfalls die
sogenannte generische Eigenschaft der Polzuweisbarkeit interpretieren, die insoweit zu verstehen
ist, dass es fiir fast alle A mdoglich ist, ein reelles K zu finden, so dass o (4 + BKC) = A gilt.
Mit Satz 3.3 ist daher garantiert, dass stets in der Umgebung von A Eigenwerte A; existieren,
so dass ein reelles K mit A = {A,...,A,} € D, und 0 (4 + BKC) = A existiert. Abschlie-
Bend wird das Verfahren zur Vorgabe der Eigenwerte des geschlossenen Regelkreises mittels einer
Ausgangsriickfithrung in dem folgenden Satz zusammengefasst.

Satz 3.4 (Proposition 2 [46]). Betrachtet wird das Zustandssystem (3.1) mit m > 2 und p > 2
sowie mit m + p > n + 1, d.h. die Bedingung nach Kimura (3.16) ist erfiillt. Wird die Menge
der Regelungseigenwerte Ax € D, in zwei selbst-konjugierte Mengen Axy = {Axi, ..., Akp—1}
und Ax> = {Axp, ... . Akn} aufgeteilt und sind in (3.4) fiiri € {1,...,p — 1} die Parametervek-
toren qy; # 0, in (3.15) fiir j € {p,...,n} die Parametervektoren q,,; # 0 sowie zu komplexen
Regelungseigenwerten selbst-konjugiert, dann existiert fiir s = n — p + 1 ein reelles K gemaf}

+ + =y
_ {Qr(cvr) + (W.B)* Q,Uy, m=s, (.18)

0.(CV)" + (W.B)t Q.U + Uy KUy, m > 5, K € R™*! beliebig,

sodass 0 (A + BKC) = Ax = {Ax1, Aka}, wenn mit (3.5) und (3.10)
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(Al) rang(CV,) =r=p-1Ve R*p-1

(A2) rang (W,B) = s, W, € R
erfiillt ist.

Dass in den Annahmen (A1) und (A2) in Satz 3.4 die Matrizen V; und W, als reellwertig angenom-
men werden, stellt keine Beschrinkung der Allgemeinheit dar, da auch bei komplexen Regelungs-
eigenwerten eine reelle Parametrierung vorgenommen werden kann. Hierzu wird allerdings auf
Abschnitt 3.1.5 verwiesen, worin ebenfalls diskutiert wird, wie mehrfache Regelungseigenwerte
in den Entwurfsprozess einbezogen werden konnen. Dariiber hinaus scheint die Bedingung von
Kimura (3.16) unter praktischen Gesichtspunkten sehr restriktiv zu sein, insbesondere im Hin-
blick auf Systeme hoher Ordnung mit vergleichsweise wenigen Ein- und Ausgingen. Dass man
sich von dieser Einschrinkung stets befreien kann, indem eine dynamische Ausgangsriickfithrung
verwendet wird, zeigt der folgende Abschnitt.

3.1.4 Dynamische Ausgangsriickfithrung

Sollte die Bedingung nach Kimura (3.16) nicht erfiillt sein, so konnen durch den Entwurf einer
dynamischen Ausgangsriickfiihrung

).Cd = Adxd + de (3193)
u = Cdxd + Ddy (3191‘))

mit x4 € R™ stets zusitzliche Freiheitsgrade generiert werden, um sidmtliche Eigenwerte des ge-
schlossenen Regelkreises vorzugeben. Allerdings lésst sich der Entwurf einer dynamischen Aus-
gangsriickfiihrung auf den Entwurf einer statischen Ausgangsriickfiihrung fiir ein erweitertes Sys-
tem zuriickfithren, wie der folgende Satz zeigt.

Satz 3.5. Der Entwurf der dynamischen Ausgangsriickfiihrung (3.19) fiir das Zustandsraumsystem
(3.1) kann durch den Entwurf des statischen Regelgesetzes

HEFHIHE

fiir das erweiterte Zustandsraumsystem
x| _[4 Offx n B 0f|u
x| L0 0] [xq 0 I]|Xq
y| _[C 0]fx
Xd - 0 7 Xd

erfolgen.

(3.20)
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Beweis. Das Zustandsraumsystem (3.1) und der dynamische Regler (3.19) lassen sich in die Form
X _ A + BDdC B Cd X
)’Cd N BdC Ad Xd
_ A0 + B 0 Dd Cd C 0 X
B 0 0 0 7 Bd Ad 0 I Xd
bringen, wie sich leicht nachrechnen ldsst. Damit ist der Entwurf der dynamischen Ausgangsriick-

fithrung (3.19) fiir das Zustandsraumsystem (3.1) auf den Entwurf der statischen Ausgangsriick-
fiihrung

| Da Cq
Rei= [Bd Ad]

. . T . .
fuir das erweiterte Zustandsraumsystem (3.20) mit [xT xg] =: x, € R"" sowie der erweiter-
ten Zustands-, Eingangs- und Ausgangsmatrix gemaf

[4 0 _[B o _[c o
T P ) e o

zuriickgefiihrt. ]

Ausgehend von den Dimensionen der erweiterten Systemmatrizen (3.21) ergibt sich fiir die Be-
dingung nach Kimura (3.16) der Zusammenhang m + nq + p +ng > n + nq + 1 beziehungsweise
aus

ng>n—-m-p+1 (3.22)

eine untere Schranke fiir die benétigte Reglerordnung, die im Sinne von Satz 3.3 die Vorgabe der
Eigenwerte des mittels der dynamischen Ausgangsriickfithrung (3.19) geregelten System garan-
tiert.

3.1.5 Vorgabe komplexer und mehrfacher Eigenwerte

In Satz 3.4 wurden in den Annahmen (A1) und (A2) die Matrizen V; und W als reellwertig an-
genommen. Dies stellt keine Beschrankung der Allgemeinheit dar und wird in diesem Abschnitt
diskutiert. Die Begriindung hierfiir ist, dass aufgrund Ax € D, fiir einen Regelungseigenwert
Ak € A ebenfalls Ax € Ag erfiillt ist. Somit lisst sich auch bei komplexen Regelungseigenwer-
ten eine reelle Parametrierung vornehmen, wie nachfolgend gezeigt wird. Ahnliche Uberlegungen
zu einer reellen Parametrierung aber auch zur Vorgabe mehrfacher Regelungseigenwerte finden
sich ebenfalls in [64, 94]. Zur Vereinfachung der Notation wird daher, falls notig, auf den Zih-
lindex i verzichtet, und es sei angemerkt, dass die gleichen Uberlegungen auf die Vorgabe von
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Linkseigenvektoren tibertragbar und damit auf die Entwurfsverfahren in den Abschnitten 3.1.1,
3.1.2 und 3.1.3 anwendbar sind. Mit Ax € D, kann daher stets die Darstellung

Axi =0 +jo AKit1 =)_»Ki =0—jo

Vki = Vo + Vo Uki+1 = Uki = Vo — jVo
Pvi = Po +]jPw Dvit1 = Dvi = Po — Do
N, = N, +jN, Nyiv1 = _vi = N; — Ny
My = My + M, Myiy1 = My = My — M,
@i = 4o + 4w Gui+1 = Gvi = 4o — jqo

gewihlt werden. Das Eigenwertproblem des geschlossenen Regelkreises fiir ein solches komple-
xes Eigenwert-Paar ergibt sich daher aus

_ 1A O -
[UKi UK,'] |: g XK] — (A + BKC) [UK,' UK,'] =0

beziehungsweise mit Hilfe der Steuermoden in (3.3) aus

_ Aki O _ _

[vki Uxi] I | [vki Uxi] = B[pi pui] =0. (3.23)
0 A

Auf die Verwendung komplexer GroBen zur Bestimmung der Riickfiithrung (3.2) und aus Griinden

der Konsistenz mit der Formulierung von Satz 3.4 ldsst sich die komplexe Darstellung von (3.23)

durch rechtsseitige Multiplikation mit der quadratisch reguldren Matrix

1 .
T == : J
211 j

in eine reelle Darstellung iiberfithren. Daraus ergibt sich

[vo vo] [_Uw Z)]—A[va Vo] = B[po po] =0 (3.24)

und damit eine zu (3.23) dquivalente, reelle Darstellung sowie mit

Vo
0= A—ol —-wl B 0 Vg
| wI A—-o¢I 0 B

_|A—=0ol —-wlI B 0 N, Ny Do
| oI A-o¢I 0 B

eine zu (3.3) bzw. (3.4) dquivalente, handhabbare Entwurfsgleichung.
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Im Vergleich zur Vorgabe komplexer Regelungseigenwerte, die insbesondere bei der gezielten
Beeinflussung schwingungsfihiger Systeme durch eine Regelung eine praktische Bedeutung ha-
ben, ist die Vorgabe mehrfacher Regelungseigenwerte unter praktischen Gesichtspunkten weniger
hiufig erforderlich. Als nennenswertes Beispiel ist hierbei vor allem der Entwurf auf endliche
Einstellzeit bei Abtastsystemen anzufiihren, da die Regelung in diesem Fall alle Regelungseigen-
werte in den Ursprung der komplexen Ebene verschieben muss. Im Rahmen der vorliegenden
Arbeit werden Abtastsysteme nicht behandelt, so dass eine knappe Beschreibung des Vorgehens
zur Vorgabe mehrfacher Eigenwerte ausreichend ist.

Mit Hilfe der Jordan Normalform lassen sich daher auch fiir die Vorgabe mehrfacher Regelungs-
eigenwerte in Anlehnung an (3.3) bzw. (3.4) handhabbare Entwurfsgleichungen herleiten. Hierzu
wird die Definition eines Hauptvektors genutzt. Allgemein gilt fiir einen Hauptvektor j-ter Stufe
v;,; zum Eigenwert A;

Avij = Avij + vij-1, (3.25)

wobei fiir einen Hauptvektor nullter Stufe v; o = 0 gilt. Damit sind Eigenvektoren Hauptvek-
toren erster Stufe. Um nun einen Regelungseigenwert Ax; € Ak k-fach vorzugeben, also einen
Jordanblock

A1 0
A1
Jik = € Chxk
Aki 1
0 Aki
im geschlossenen Regelkreis mit (4 + BKC) [UK,-J vKi,k] = [UK,',I vKi’k] Jik zu

erzeugen, ergibt sich ausgehend von der Definitionsgleichung (3.25)

(A4 BKC — Axl)vgiy =0
(A + BKC — A I)vgip — vkig =0

(A + BKC — Ax ki — Vkik—1 = 0

bzw. in Matrixschreibweise und zusammen mit den Steuermoden p,; ; = KCuvx;, ;

_UKi,l_
UKi,2
A— Il 0 B 0 :
-1 A— Al B Vkik 0
.. Dvi,t o
0 —I A—AxI O B Dvi2
_pvi,k_
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3.2 Beeinflussung des Stor- und Fiihrungsverhaltens

Mit der Parametrierung der Ausgangsriickfithrung (3.2), die im Abschnitt 3.1 diskutiert wurde,
lassen sich unter der Voraussetzung der Bedingung nach Kimura (3.16) in generischer Hinsicht
stets alle Eigenwerte des geschlossenen Regelkreises beliebig vorgeben. Hierbei ist allerdings fiir
m > 2 sowie p > 2 meist auch m - p > m + p, und somit existieren neben den Regelungsei-
genwerten noch weitere Freiheitsgrade in Form der Parametervektoren ¢,; furi € {1,...,p — 1},
die fiir eine weitere Beeinflussung der Dynamik des geschlossenen Regelkreises genutzt werden
konnen.

Haufig erfolgt die Wahl der noch verbleibenden Freiheitsgrade so, dass die Regelung auch bei
Storungen in den Daten der Matrizen A, B und C stets die Stabilitit der geregelten Strecke si-
cherstellt. In der Literatur wird dies als robuste Eigenstrukturvorgabe (engl. robust exact eigen-
structure assignment, REEA) bezeichnet. Dariiber hinaus ist es oft wiinschenswert, die Strecke
nicht mit allzu groBlen Stellbetriigen zu beaufschlagen, weshalb sich hierbei die Norm der sta-
tischen Riickfiihrmatrix als ein Kriterium in der Literatur etabliert hat. Dieses Problem wird als
Eigenstrukturvorgabe mit minimaler Verstdrkung (engl. minimum gain eigenstructure assignment,
MGEA) bezeichnet. Die vorgenannten Probleme zielen dabei meist auf die Verbesserung des Stor-
verhaltens der geregelten Strecke ab, was im Abschnitt 3.2.1 diskutiert wird.

Soll hingegen gezielt das Fiihrungsverhalten des geschlossenen Regelkreises beeinflusst werden,
so wird unter praktischen Aspekten oftmals gezielt die Entkopplung der Regelgroflen oder aber
auch die Einhaltung algebraischer Beziehungen zwischen einzelnen Regelgrofien gefordert. Dies
fiihrt auf den Entwurf einer Ent- bzw. Verkopplungsregelung und ist Bestandteil der Untersuchun-
gen in den Abschnitten 3.2.2 und 3.2.3.

3.2.1 Robuste Eigenwertvorgabe

Bei der Modellierung realer physikalischer Systeme, die sich in der Nihe eines Arbeitspunktes als
lineare Zustandssysteme wie in (3.1) darstellen lassen, sind die Daten in den Systemmatrizen A, B
und C in den meisten Fillen nie exakt bekannt. Daher ist im Sinne der Stabilitit der Regelung zu
tiberpriifen, ob der geschlossene Regelkreis mit der Systemmatrix des geschlossenen Regelkreises
A 4+ BKC + A durch die Auslegung von K weithin stabil ist, wenn die Systemmatrix durch die
Matrix A gestort wird. Unter praktischen Gesichtspunkten wird die Matrix A nie exakt bekannt
sein, weshalb zumindest Aussagen iiber eine obere Schranke fiir die Norm von A in Abhingigkeit
von K hilfreich sind, um die Stabilitit der gestorten, geregelten Strecke zu bewerten.

Argumentationsgrundlage der folgenden Betrachtungen ist deshalb das Bauer-Fike Theorem in
Satz B.7, welches besagt, dass fiir jedes A € 0 (A + BKC + A) ein Ax € Ag existiert, so dass
die Ungleichung

AR A INERUAIN
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erfiillt ist. Darin ist (4 + BKC) Vg = VkAg und
Vi) = IVl [ Vi (3.26)

bezeichnet die Konditionszahl der Rechtseigenvektormatrix des geregelten Systems Vk. Daraus
wird ersichtlich, dass die betragsmiflige Abweichung der Eigenwerte A — Ak und damit die Ver-
schiebung der Eigenwerte des gestorten gegeniiber dem ungestorten System umso geringer aus-
fallt, je kleiner die Konditionszahl « (V) ist. Dies bildet den Ausgangspunkt der folgenden Be-
trachtungen, die in Ausziigen bereits in [109] publiziert wurden und als Erweiterung der Ergeb-
nisse in [37] auf den Fall einer Ausgangsriickfithrung zu sehen sind.

In [37] untersuchen Kautsky, Nichols und Van Dooren das Problem der robusten Eigenwertvor-
gabe mittels Zustandsriickfiihrung. Es sei ergidnzend erwihnt, dass die Ergebnisse algorithmisch
als Funktion place im Programmpaket MATLAB umgesetzt sind. Grundidee der Autoren ist
die Nutzung der verbleibenden Freiheitsgrade einer Zustandsriickfithrung, die neben den Rege-
lungseigenwerten bei Mehrgrofensystemen existieren, um die Rechtseigenvektormatrix des ge-
schlossenen Regelkreises optimal zu konditionieren. Aufgrund des Bauer-Fike Theorems sind die
vorgegebenen Eigenwerte des geregelten Systems dann weniger sensitiv gegeniiber Storungen in
der Systemmatrix des geschlossenen Regelkreises. Dariiber hinaus ergeben sich mit diesem An-
satz weitere giinstige Eigenschaften fiir die Dynamik des geregelten Systems, wie in den beiden
nachfolgenden Sitzen dargestellt wird. Die Beweise finden sich ebenfalls in [37], werden aber der
Vollstidndigkeit halber trotzdem gefiihrt, da die Aussagen auf die Methodik im Abschnitt 3.1 ange-
passt wurden. Damit folgt zunéchst eine Aussage tiber die Impulsantwort der geregelten Strecke.

Satz 3.6 ([37]). Die Riickfiihrmatrix K und die Impulsantwort x (t) des geschlossenen Regelkrei-
ses X = (A + BKC)x, wobei x(ty) = xo gilt, erfiillen die Ungleichung

ol

Ix ()] < k(Vx) - max {\ew

Beweis. Die Ungleichung folgt aus der Impulsantwort x (t) = exp ((4 + BKC)t) xo. Mit || x (¢)||
und (4 + BKC) = Vg Ax V¢! folgt

@)1 = 1Vl llexp (A Vic " || llxoll
= k(Vk) llexp (Axd)|| [|xoll
< (Vi ma {|e|| ]
1
woraus die Aussage folgt. ]

Mit Satz 3.6 wird deutlich, dass durch eine Minimierung der Konditionszahl «(Vx) eine obe-
re Schranke fiir die Impulsantwort des geregelten Systems minimiert wird. In Abbildung 3.1 ist
in der linken Darstellung dariiber hinaus veranschaulicht, welche Verbesserung sich durch eine
Minimierung der Konditionszahl im Hinblick auf die Impulsantwort ergibt. Anschaulich wird
der ,,Schlauch®, der die Norm aller Impulsantworten nach oben begrenzt, gestaucht. Somit ist zu
erwarten, dass durch die Minimierung der Konditionszahl Verbesserungen im Hinblick auf ein
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mogliches Uberschwingen des Regelkreises zu erzielen sind, was hiufig eine Anforderung an den
geschlossenen Regelkreis darstellt. Dariiber hinaus ergibt sich durch eine geringere Konditions-
zahl auch eine Verbesserung des Stabilitdtsrandes des geregelten Systems, was ebenfalls in der
rechten Darstellung angedeutet ist. Aufgrund der Storungen A verschieben sich die Eigenwer-
te des geschlossenen Regelkreises — moglicherweise in Richtung der rechten s-Halbebene. Der
Regelkreis wird somit instabil. Durch die Konditionszahl ldsst sich eine obere Schranke fiir die
Norm von A angeben, so dass der gestorte Regelkreis weiterhin stabil ist, wie der nachfolgende
Satz zeigt.

Satz 3.7 ([37]). Wenn die Ausgangsriickfiihrmatrix K die Menge der stabilen Eigenwerte Ay
zuweist, dann ist die gestorte Systemmatrix des geschlossenen Regelkreises A + BKC + A fiir
alle A stabil, die

|A]l < ming{sI — (4 + BKC)} =: §(K) (3.27)
s=jw
erfiillen, wobei eine untere Schranke fiir §( K) durch
8(K) > minRe{—Ag;} -k (Vi)™ (3.28)
1

gegeben ist.

Beweis. Die Matrix sI — (A + BKC + A) ist reguldr, wenn mit der Abkiirzung Ax = A+ BKC
und sI — (Ag + A) = (sI — Ag)(I + (sI — Ax)~'(—A)) die Ungleichung

[(sT—Ax) ' (=0)] <1

erfiillt ist (vgl. [35, Corollary 5.6.16]). Aufgrund der Submultiplikativitit der Matrixnorm ||-|| ist
daher auch ||(SI — AK)_l(—A)” < || (s —Ag)~! H |A]l < 1 zu fordern, und dadurch ist mit
[(sT —Ax)™"| = (afs] — Ax})~" ebenfalls

Al < (T = Ax)™]) " = afsl — Ak}

Somit ist notwendig dafiir, dass die Matrix s/ — (A g + A) singulédr auf der imagindren Achse mit
s = jw wird, dass ||A|| > §(K) ist. Da die Eigenwerte einer Matrix allerdings stetige Funktionen
der Eintrige der Matrix sind, ist die Matrix 4 g + A stabil, wenn (3.27) erfiillt ist.

Zur Bestimmung der unteren Schranke fiir §(K) folgt mit Ag Vk = VA
0(K) = ming{sl — (A + BKC)}
s=jw
= mina{Vk(s] — Ax)V '}
s=jw
> o(Vi) - a(Vg ) - mino{(s] — Ax)}
s=jw
_ R R
z I Vit - minRef =i,

woraus (3.28) folgt. O
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2
+
\ !
E 0 x —> +
— +x(K At - xo(Ax)
K ( K)'mt?lx{e } ] +0(Ag + A)
—4
0 1 2 3 4 5 -3 -2 -1 0
t/s Re

Bild 3.1: Eigenschaften des geregelten Systems bei robuster Eigenstrukturvorgabe - Minimie-
rung einer oberen Schranke der Impulsantwort (links) und Maximierung des Stabilitédtsrandes
(rechts)

Mit den Sitzen 3.6 und 3.7 ldsst sich begriinden, dass die Konditionszahl der Rechtseigenvek-
tormatrix des geregelten Systems « (V) ein geeignetes Maf} darstellt, um die Robustheit des ge-
schlossenen Regelkreises im Sinne der Eigenwertvorgabe zu bewerten. Dariiber hinaus stellt die
Konditionszahl (3.26) ebenfalls eine obere Schranke fiir die Konditionszahlen der Eigenwerte dar
[127], die gemaB

il
1

>1, iVell,...n) (3.29)

ekl T
definiert sind. Daraus ergibt sich [37]
max ¢; < (Vi)
1

und das robust mit einer Ausgangsriickfithrung geregelte System ist somit optimal im Sinne des
Giitekriteriums (3.26) bzw. (3.29) konditioniert, wenn « (V) = 1 bzw. max; ¢; = 1 ist. Dies
hat zur Folge, dass die Rechtseigenvektoren des geschlossenen Regelkreises so skaliert werden
konnen, dass sie zueinander orthonormal sind, was ebenfalls darin resultiert, dass die Rechtsei-
genvektormatrix eine orthogonale Matrix darstellt. Damit ist Vic! = VI = W, und es ergibt
sich

(Vi) = Vel Vi = Il V| = 1.

Zur Berechnung von « (Vx) ist aufgrund der Definition der Spektralnorm gemi8 ||-|| = o/(-) stets
eine Singuldrwertzerlegung von Vi und V! vorzunehmen. Soll dieser numerische Aufwand ver-
mieden werden, bietet es sich an, eine obere Schranke der Spektralnorm zu minimieren. Hierzu
kann beispielsweise die Frobeniusnorm einer Matrix ||-||p genutzt werden. Diese ist zwar keine
induzierte Matrix Norm, wie im Bauer-Fike Theorem vorausgesetzt. Allerdings ist aufgrund der
Definition gemif (vgl. [35])

IWille = yJspur (VIVA) = o2 (Vi) + -+ + 02 (V).
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wobei o; (Vi) die Singuldrwerte von Vi bezeichnet, mit

k(i) = IVl [Vic! | = y/spur (V) fspur (VieTvie™) (3.30)
stets
(V) = 5(V)a (Vi)™
< Jor(V) + -+ 02 (Vi 1/02 (V) + - + 1/03 (Vi)
= kr(Ve),

so dass durch Minimierung von (3.30) ebenfalls eine obere Schranke von (3.26) minimiert wird.

Mit Hilfe der Frobeniusnorm lédsst sich noch ein weiteres Maf} definieren, welches in der quadrier-
ten Summe der in (3.29) definierten Sensitivitit der Eigenwerte besteht. Hierzu wird angenom-
men, dass die Rechtseigenvektoren so skaliert sind, dass |Jvg;|| = 1 ist. Daraus ergibt sich die
Linkseigenvektormatrix mit Wy Vx = I, zu

WT = [le e wKn]T

bzw. aufgrund der Normierung der Rechtseigenvektoren ergibt sich (3.29) zu ¢; = [Jwk;| > 1.
Dariiber hinaus ist aufgrund der Annahmen || Vk||p = +/n und damit

Vi e = 1Wklle = &3 +..c2.

Wird daher in (3.30) mit 1/# multipliziert und die Linge der Rechtseigenvektoren auf die Linge
eins normiert, dann folgt aus

1
ke (Vi/m = — Vil [ Vi [ = 4. (331

D=L
NG Foovn
ein weiteres MaB, welches zur Bewertung der Konditionierung des geschlossenen Regelkreises
heran gezogen werden kann.

Neben der robusten Eigenwertvorgabe spielt unter praktischen Gesichtspunkten oftmals eine Ver-
meidung von grofien Stellbetrigen eine Rolle, um die Strecke und vor allem die eingesetzten
Aktoren nicht zu stark zu belasten. Ausgehend von (3.2) ist aufgrund von |u| < || K] ||y| die
Norm der Riickfithrmatrix offensichtlich die entscheidende Einflussgrofe. Im Sinne der Vermei-
dung groBer Stellbetrige ist daher die Norm der Riickfiihrmatrix zu minimieren, was mit Hilfe der
Frobeniusnorm auf die Giitefunktion

| Kllp = v/spur (KTK) (3.32)
fiihrt.

Mit den Gleichungen (3.30), (3.31) und (3.32) sind Giitemalie gegeben, die es im Sinne der Op-
timierung gezielt zu minimieren gilt, um die Dynamik des geschlossenen Regelkreises zu ver-
bessern. Dabei zielen (3.30) und (3.31) auf die robuste Eigenwertvorgabe ab, wihrend (3.32) zur
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Bild 3.2: Veranschaulichung der stereographischen Projektion

Minimierung der benétigten Stellbetrige genutzt werden kann. Zusammenfassend lassen sich da-
her die Giitefunktionen

Jeo = IVklle [ V6 (3.33a)
1, 1

T = Il = Tn G (3.33b)

Jixy = |K|7 = spur (K"K) (3.33¢)

formulieren, die mit Hilfe eines geeigneten Optimierungsverfahrens zu minimieren sind.

Im Hinblick auf die Verwendung eines Verfahrens zur Losung unbeschrinkter Optimierungspro-
bleme ist dabei allerdings noch hinderlich, dass die Linge der Parametervektoren ¢,; zur Berech-
nung von K in (3.18) keinen Einfluss hat und damit auch keinen weiteren Freiheitsgrad darstellt.
Daher ist eine Normierung der Parametervektoren einzufiihren, beispielsweise durch ¢fq,; = 1
firalle i € {1,...,p — 1}. Dies hat allerdings zur Folge, dass nunmehr ein Optimierungsproblem
mit nichtlinearer Nebenbedingung gelost werden muss. ZweckmaBiger ist es daher, eine neue
Parametrierung einzufiihren, die implizit die Normierung der Parametervektoren vornimmt. Dies
leistet die Stereographische Projektion [51].

Wird daher die Normierung der Parametervektoren ¢’;g,; = 1 gefordert, lisst sich jeder Parame-
tervektor als ein Punkt auf der m-dimensionalen Einheitskugel S,, auffassen. Fiir den Einheitskreis
ist die stereographische Projektion in Abbildung 3.2 beispielhaft dargestellt. Die Idee besteht dar-
in, fiir jeden Punkt auf dem Einheitskreis (in der Abbildung bspw. P;) eine Gerade durch den
Stidpol S = (0,-1) zu legen und dann den Schnittpunkt mit der ¢, >-Achse zu bestimmen (in der
Abbildung P{), Es existiert daher die stereographische Projektion f : S, \ {S} — R™7!, die
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durch

j‘(qvi) = qvi Im—l O] qvi

N 1+ e;r,,qvi [
gegeben ist. Damit ldsst sich aus der Kenntnis des auf die Linge eins normierten Parametervek-
tors ¢,; eine um eine Dimension reduzierte Parametrierung g,; € R™! finden. Der reduzierte
Parametervektor g,; ist nunmehr unbeschrinkt und legt zusammen mit der Umkehrabbildung

—1g- 1 2q.i
S = = T I —éﬁ-évi]
den Parametervektor ¢,; wieder eindeutig fest. Die Parametervektoren ¢,; lassen sich dann, wie
in Satz 3.4 formuliert, zur Parametrierung der Rechtseigenvektoren V; bzw. der Steuermoden Q.
nutzen. Die m Freiheitsgrade der Eigenwert-/Rechtseigenvektorpaare (Ag;,vk;) sind daher fiir i €
{l,...,p — 1} eindeutig durch den Regelungseigenwert Ag; und den reduzierten Parametervektor
Gvi € R™! festgelegt.

Ausgehend von der Parametrierung der Ausgangsriickfithrung (3.2) in Satz 3.4 und der Diskussi-
on hinsichtlich der robusten Eigenwertvorgabe bzw. der Eigenwertvorgabe mit minimaler Verstir-
kung in diesem Abschnitt, kann daher das unbeschrinkte Optimierungsproblem

min Ji, k€ b llell 1K (3.34)

mit den Optimierungsvariablen

T
=T =T -
[qvl ‘va—1] , s =m,

&= T
[qVTl e i,y vec(Kz)T], s>m

zusammen mit dem Vektorisierungsoperator vec(-) formuliert werden, um die vorgenannten Re-
gelziele mit einer Ausgangsriickfiihrung zu erreichen.

Zur Losung des Optimierungsproblems (3.34) lassen sich etablierte numerische Verfahren fiir
unbeschréinkte Optimierungsprobleme anwenden. Alle Verfahren bendtigen dabei Informationen
tiber die Zielfunktion Ji (£) durch den Gradienten der Zielfunktion V Ji (£) und teilweise auch der
Hesse-Matrix V2J; (£), um festzustellen, ob ein Punkt é ein lokales Minimum der Zielfunktion
darstellt. Unter der Voraussetzung, dass die Zielfunktion Jx (§) differenzierbar ist, ergibt sich als
notwendige Optimalititsbedingung erster Ordnung fiir ein lokales Minimum am Punkt £, dass der
Gradient der Zielfunktion V Ji(£) in diesem Punkt verschwindet, d.h. es ist VJ (§) = 0 [121].

Steht neben der Information iiber den Gradienten der Zielfunktion V Ji (§) zusitzlich Information
iiber die Hesse-Matrix V2Jy (£) der Zielfunktion zur Verfiigung, ergibt sich als notwendige Opti-
malitdtsbedingung zweiter Ordnung fiir ein lokales Minimum am Punkt é , dass der Gradient der
Zielfunktion V Ji(§) in diesem Punkt verschwindet und die Hesse-Matrix positiv semidefinit ist,
d.h. es ist d"V2J,(E)d > O fiir alle d € R” [121]. Ist die Hesse-Matrix dariiber hinaus posi-
tiv definit in einem Punkt é , dann ist eine hinreichende Bedingung fiir ein lokales Minimum der
Zielfunktion erfiillt.
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Algorithmen zur Losung unrestringierter Optimierungsprobleme beruhen dabei auf dem nachfol-
genden Prinzip: Ausgehend von einem Startwert & wird eine Folge von Punkten &; bestimmt,
die typischerweise die Eigenschaft aufweist, dass der Funktionswert im darauf folgenden Schritt
geringer als der Funktionswert im aktuellen Schritt ist, d.h. es ist Jx(§;4+1) < Jx(&;). Kann keine
wesentliche Verbesserung mehr erzielt werden oder liegt ein stationdrer Punkt vor, d.h. die eben
diskutierten Optimalititsbedingungen sind erfiillt, dann bricht die Iteration ab. Fiir den Ubergang
von einem Punkt & zum nichsten Punkt £,y haben sich in der Praxis im wesentlichen zwei
Strategien etabliert: Liniensuchverfahren und Trust-Region-Verfahren [74].

Bei Liniensuchverfahren erfolgt in jedem Iterationsschritt die Bestimmung einer Abstiegsrichtung
s; gemiB der Bedingung V Ji (£)Ts; < 0 zusammen mit einer geeigneten Schrittweite o; > 0, so
dass Ji (& + 0isi) < Ji (&) erfiillt ist. Aufgrund ihrer guten Konvergenzeigenschaften haben
sich in diesem Bereich Quasi-Newton-Verfahren etabliert, die die Hesse-Matrix durch geeigne-
te Approximationen ersetzen und damit lediglich Informationen tiber den Gradienten benétigen.
Trust-Region-Verfahren bestimmen ausgehend von einer Taylorentwicklung der Zielfunktion eine
quadratische Ansatzfunktion m;, die in der Nihe des Punktes & und innerhalb des sogenann-
ten Vertrauensbereichs eine hinreichend genaue Approximation der Zielfunktion J (&;) darstellt.
Durch Minimieren der quadratischen Ansatzfunktion m; erfolgt die Schrittberechnung s;. Der
Schritt wird akzeptiert, wenn die Abnahme der Zielfunktion Ji (&; 4+ s;) < Ji (&;) hinreichend
grof3 ist. Im anderen Fall muss der Vertrauensbereich angepasst und eine erneute Schrittberech-
nung durch Minimierung von m; durchgefiihrt werden. Beide Strategien sind beispielsweise in der
Funktion fminunc der Optimization Toolbox in MATLAB umgesetzt, wobei alle nachfolgenden
Optimierungsergebnisse zur robusten Eingestrukturvorgabe mittels der Quasi-Newton Implemen-
tierung der Funktion fminunc bestimmt wurden.

Ausgehend von der vorstehenden Diskussion zu notwendigen und hinreichenden Optimalitiits-
bedingungen unbeschrinkter Optimierungsprobleme muss daher vorausgesetzt werden, dass die
Parametrierung der Riickfiihrmatrix K in Satz 3.4 differenzierbar ist und damit der Gradient der
Giitefunktion V Ji (§) existiert sowie die Algorithmen zur Losung unbeschrinkter Optimierungs-
probleme anwendbar sind. Hierzu wird zunéchst ein Resultat hergeleitet, welches fiir die Aussagen
hinsichtlich der Differenzierbarkeit der Riickfithrmatrix von Wichtigkeit ist. Dieses besteht in der
Bedingung, wann die Basis des Kerns einer parameterabhingigen Matrix 4(p) differenzierbar ist.

Lemma 3.8. Sei Ay € R"V" sowie rang (A) = n— 1 und sei uy € R” ein normierter Vektor, der
bild (u¢) = kern (Ay) erfiillt. Eine vektorwertige Funktion u(A) ist fiir alle A in einer Umgebung
N(Aoy) C R"" yon Ag definiert, so dass u(Aq¢) = uo und

Au=0, uTu=1, Ae N(Ay)

gilt. Dariiber hinaus ist die Funktion u unendlich oft differenzierbar in N(Ao), und das Differen-
tial in Ay ist durch

du = (—A Ao) " AS(dA)uo

gegeben.
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Beweis. Mit [9, Proposition 6.1.6] ist kern (4o) = kern (A4yAo), und daher ist mit AgAouo =
Aol ein symmetrisches Eigenwertproblem zum Eigenwert Ao = 0 gegeben, weshalb Satz B.10
angewendet werden kann. Es existiert deshalb eine vektorwertige Funktion u, die unendlich oft
differenzierbar in N(Ay) ist, und das Differential ist aufgrund d(AT4) = (d4)TA4 + ATdA und
Au = 0 durch

du = (holy — A3 Ao) (d(AT A))uo
= (AT 4g) " AT (dA)uo

gegeben, woraus die Aussage folgt. ]

Mit Lemma 3.8 lésst sich somit schlieen, dass die Basis des Nullraums einer parameterabhéngi-
gen Matrix stets differenzierbar ist, wenn die Dimension des Nullraums eins betrigt. Hinsichtlich
der Parametrierung der Riickfithrmatrix K in (3.18) bleibt daher festzuhalten, dass durch die Wahl
r = p — 1 fiir die Matrix U; € R'*? ist und aufgrund von Lemma 3.8 somit differenzierbar ist.
Infolgedessen ist die Matrix K in (3.18) fiir s = m stets differenzierbar, wenn vorausgesetzt wird,
dass die Matrizen C V; und W, B auf offenen Umgebungen konstanten Rang haben, weil dann die
Moore-Penrose-Pseudoinverse differenzierbar ist (vgl. Satz B.13). Ist allerdings m > s, dann ist
U, € R™~* und hinsichtlich Lemma 3.8 ist U, differenzierbar, wenn m — s = 1 ist. Demge-
geniiber ist fiir m — s > 1 und folglich m + p > n + 2 mit der Parametrierung aus Satz 3.4 die
Matrix K nicht differenzierbar. Dieser Umstand ldsst sich umgehen, indem ein teilparametrischer
Ansatz formuliert wird. Hierzu wird auf den Abschnitt 3.3 verwiesen.

Da die ersten beiden Giitefunktionen in (3.33) Funktionen der Rechtseigenvektormatrix des ge-
schlossenen Regelkreises sind, wird daher ebenfalls das Differential dVx benétigt, um die Gradi-
enten der Giitefunktionen zu berechnen. Laut Satz B.12 ist die Annahme einfacher Eigenwerte des
geschlossenen Regelkreises eine Bedingung dafiir, dass die Rechtseigenvektoren differenzierbar
sind. Dies wird nachfolgend somit stets vorausgesetzt. Mit d(4 + BKC) = B(dK)C lisst sich
aber zusammen mit (B.11) dVx aus dK berechnen. Die Uberlegungen zur Differenzierbarkeit der
Matrizen K und Vk fasst der folgende Satz zusammen. Da die Berechnung der Differentiale d K
und dV sich als aufwendig gestaltet, wird fiir den Beweis des Satzes und fiir dK sowie d Vg auf
den Anhang verwiesen.

Satz 3.9. Betrachtet wird die Parametrierung der Ausgangsriickfiihrmatrix K in Satz 3.4, wobei
darin fiir s = m oder s = m — 1 angenommen wird. Dariiber hinaus wird angenommen, dass
die Menge der Regelungseigenwerte Ax nur aus paarweise verschiedenen Eigenwerten besteht.
Sind dariiber hinaus die Annahmen rang (CV;) = r = p — 1 und rang (W, B) = s auf offenen
Umgebungen erfiillt, dann ist die Riickfiihrmatrix differenzierbar und die Differentiale dK bzw.
vec(dK) sowie vec(dVy) sind durch (A.1) bzw. (A.2) sowie (A.3) gegeben.

Beweis. Siehe Abschnitt A.1. 0

Mit Satz 3.9 lasst sich begriinden, dass mit der Parametrierung der Riickfithrung in Satz 3.4 und der
Voraussetzung s = m oder s = m — 1 die Differenzierbarkeit der Riickfiihrung gewihrleistet ist.
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Die Giitekriterien (3.33) konnen daher mit einem gradientenbasierten Verfahren gezielt minimiert
werden. Die Gradienten ergeben sich dabei mit den Differentialen von (3.33)

—1
dJ,, = 1V [ -spur (VdVg) — ”VE]”F -spur (Vi 'V TV N g) (3.35a)
1Vl IV le
-1 —1y/-Ty—1
dJje| :W""spur(VK ViV dk) (3.35b)
c
dJyg = 2 - spur (K"dK) (3.35¢)

sowie mit VK aus (A.2) und V Vi aus (A.3) schlieBlich zu

-1
o = IV e -vee(Vy) "V Ik — ”Vf”F vee(VETVEWVET) VI, (3.36a)
HVKHF Il
Ve = ——vee(VITV V) VI, (3.36b)
el = [ el ( ) K
VJik) = 2-vec(K)"VK. (3.36¢)

Die Verwendung eines gradientenbasierten Verfahrens zur Minimierung einer nichtlinearen Funk-
tion ermoglicht damit eine gezielte Nutzung der verbleibenden Freiheitsgrade der Ausgangs-
riickfithrung, um eine robuste Eigenwertvorgabe beziehungsweise eine minimale Verstarkung der
Riickfithrmatrix zu erzielen. Zur Bewertung der Leistungsfahigkeit des Verfahrens liegt es daher
nahe, einen Vergleich mit bereits etablierten Algorithmen zur Berechnung von Reglern zur Ei-
genwertvorgabe zu ziehen. Dies erfolgt in Abschnitt 3.4, wobei die neue Methodik der MATLAB
Funktion place gegeniiber gestellt wird.

3.2.2 Entwurf einer Entkopplungsregelung

Im Gegensatz zum Entwurf der Regelung auf das Storverhalten im vorhergehenden Abschnitt,
zielen die Entwurfsverfahren in diesem und im nichsten Abschnitt auf die gezielte Beeinflussung
des Fiihrungsverhaltens ab. Von der Entkopplungsregelung wird in diesem Sinne gefordert, dass
im geregelten System jede Regelgrofie y; nur durch die zugehorige Fithrungsgroie w; beeinflusst
wird. In [57] gibt Lohmann hierzu notwendige und hinreichende Bedingungen an, wann ein linea-
res und quadratisches Zustandssystem mit einer Zustandsriickfiihrung und reguldrer Vorfilterung
vollstindig stabil entkoppelbar ist. Ein System wird dabei als quadratisch bezeichnet, wenn es
dieselbe Anzahl an Ein- und Ausgangsgrofen besitzt. Damit ist p = m. Hierzu sind zunichst die
skalaren GroBen §; einzufiihren, die als die kleinsten positiven ganzen Zahlen definiert sind, so
dass fiir eiTCA‘S"_lB # Ofirallei € {1,...,p} gilt, wobei ¢; den p-dimensionalen Koordinaten-
einheitsvektor bezeichnet. Die Summe der § ergibt sich durch

P
-3
i=1

und die Entkoppelbarkeitsbedingung lautet (vgl. [57, S. 15]):
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Die Streckenordnung n vermindert um § muss gleich der Zahl der invarianten Null-
stellen des Systems sein.

Ist diese Bedingung erfiillt, dann wird § als die Differenzordnung des Systems bezeichnet. Die
entkoppelnde Zustandsregelung u = Rx + Fw berechnet sich mit der Vollstindigen Modalen
Synthese aus den Gleichungen R = PV ! und vg; = —(A — Ag;1)~! Bp;, wobei die Rechtsei-
genvektoren und Parametervektoren die Gleichungen

(A — )\.Rij 1) B URij _ 0 . . .

[ C 0]Lpy] Lel” Pedl.ophiedl.... ) 337
und, fallsn —§ > 0,

(A—Ared) B [vre]| _ i

[ e L R R (3.38)

erfiillen miissen. Im Falle n — § > 0 lassen sich somit nicht mehr alle Eigenwerte beliebig vorge-
ben. Vielmehr sind die Agy gleich den invarianten Nullstellen des Systems (vgl. Abschnitt C) zu
wihlen, die nachfolgend in der Menge

Ao = {ARs+1 -+ Arn)

zusammengefasst werden. Dies schrinkt daher auch die Klasse der entkoppelbaren Systeme ein,
wenn neben der Entkopplung zusitzlich die Stabilitdt der entkoppelt geregelten Strecke gefor-
dert wird. Im Hinblick auf die Entkoppelbarkeitsbedingung und die Restriktionen an die Eigen-
und Parametervektoren (3.38) sind folglich nur Systeme mit stabiler Nulldynamik, also solche
Systeme, deren invariante Nullstellen sdamtlich in der linken s-Halbebene liegen, mit konstanter
Zustandsriickfithrung stabil entkoppelbar.

Um die konstruktiven Entwurfsbedingungen (3.37) und (3.38) auf die in Abschnitt 3.1.3 vorge-
stellte Methodik zu iibertragen, ist zunédchst noch eine dquivalente Formulierung der Bedingung
(3.37) anzugeben. Darin ist im Hinblick auf die Methodik aus Abschnitt 3.1.3 und im speziellen
auf (3.3) hinderlich, dass sich die Rechtseigenvektoren und Steuermoden aus der Losung eines
inhomogenen Gleichungssystems ergeben. Diese miissten beispielsweise iiber die Inverse der Ma-
trix auf der linken Seite der Gleichung (3.37) berechnet werden. Auf diesen Zugang kann jedoch
verzichtet werden, indem die zu (3.37) dquivalente Entwurfsbedingung

(A_)\Rij]) B | vrij . .
=0 1,....p}, 1,....6; 3.3
[(Ip—eieiT)C o[y =0 €L ph el } (3:39)

verwendet wird, wie der folgende Satz zeigt.

Satz 3.10. Betrachtet wird das steuer- und beobachtbare sowie als entkoppelbar vorausgesetzte
Zustandssystem (3.1). Die Entwurfsbedingungen (3.37) und (3.39) erzeugen identische Richtun-
gen der Rechtseigenvektoren vg;; und Steuervektoren p;; und sind somit diquivalent, wenn voraus-
gesetzt wird, dass die Regelungseigenwerte Ag;j verschieden von den Eigenwerten von A und von
den invarianten Nullstellen gewdhlt werden.
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Beweis. Der Beweis erfolgt in zwei Schritten. Zunichst wird gezeigt, dass Rechtseigenvektoren
und Steuervektoren, die sich aus der Losung von (3.37) ergeben, ebenfalls (3.39) erfiillen. Im
Anschluss wird die Umkehrung der Aussage gezeigt.

Mit Hilfe der Formel zur Berechnung der Inversen einer partitionierten Matrix (vgl. [35, S. 18])
ist aufgrund der Voraussetzung Ag;; € o (A)

Ay B _[45) (1+ BST'C4;) ) —a3)l BS
c 0 _S-lcAT! s ’

ARij

wobei Ay, = A — ArijIn und § = —C(A4 — Ag;; 1) B abgekiirzt wurde. Mit (3.39) ist

[ A B] Al (In+ BST'CAl ) —a;t BST [o]
(Ip—eie/)C 0 —s7lcay! s-1 e

. A)LR” B —A)TRIUBS_IEI' . —BSilei—FBSflei _ 0
T LU, —ee)H)C 0 S~ le; - (Ip —eie])e; “ o]’

was zeigt, dass die Losung von (3.37) ebenfalls (3.39) erfiillt.

Wird nun angenommen, dass vg;; und p;; (3.39) erfiillen, dann erfiillen vg;; und p;; ebenfalls die
ersten n Zeilen von (3.37). Da die Regelungseigenwerte Ag;; als verschieden von den invarianten
Nullstellen des Systems vorausgesetzt wurden, ist Cvg;; 7 0. Es ist aber aufgrund von (3.39)
(I, — eie])Cug;; = 0 und damit bild (Cvg;;) € kern (I, — e;e]). Aufgrund der Definition ist
kern (I p— eieiT) = bild (¢;) und damit Cvg;; = ce; mit beliebigen ¢, woraus die Aussage folgt,
da vg;; und p;; somit ebenfalls (3.37) erfiillen. O

Im Hinblick auf die Ubertragung des Verfahrens zur Entkopplung auf den Entwurf der Ausgangs-
rickfithrung aus Abschnitt 3.1.3 bleibt somit festzuhalten, dass (3.37) bzw. (3.39) und (3.38) n Re-
striktionen an die Rechtseigenvektoren des geschlossenen Regelkreises formulieren. Damit muss
es durch den Entwurf der Ausgangsriickfiihrung moglich sein, ebenfalls n Eigenwert-/ Rechtsei-
genvektorpaare (Ag;,vk;) im geschlossenen Regelkreis zu erzeugen. Dies ist allerdings unter der
Voraussetzung p < n nur moglich, wenn eine dynamische Riickfithrung gemaf Abschnitt 3.1.4
verwendet wird. Daher wird im Folgenden der Entwurf der statischen Ausgangsriickfiihrung

U, = Keye + Few (3.40)

fur das erweiterte System (3.20) betrachtet und darin die Riickfithrmatrix K. und das Vorfilter F,
fiir das System (3.20) so bestimmt, dass sich fiir die Fithrungsiibertragungsmatrix des geschlosse-
nen Regelkreises entsprechend der Forderung nach Entkopplung die Diagonalgestalt

GW(S) = CW(SIn+n(| - Aci - BciKcCci)_chti (341)
gwl(s)

gwp(s)
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ergibt. Darin wird nach [57] fiir jedes Diagonalelement
T (=hkip)
(s —Aki1) - -+ (s — }\Kié’;y

gefordert, und die Matrix C,, ergibt sich entsprechend der Definition der erweiterten Ausgangs-
matrix in (3.21) aus

gwi(s) = ie{l,....,p}

Cy=[C 0] (3.42)

mit C,, € R?*"*_ Dariiber hinaus ist die Ordnung des dynamischen Reglers n4 so zu wihlen,
dass sich wenigstens 7 Eigenwert-/Rechtseigenvektorpaare (Ag;,vk;) vorgeben lassen, um so die
Restriktionen an die Rechtseigenvektoren aus (3.39) und (3.38) zu erfiillen. Zusammen mit Satz
3.4 und der sich daraus ergebenden Moglichkeit zur Vorgabe von p —1 Rechtseigenvektoren ergibt
sich zusammen mit der Dimension des erweiterten Ausgangs p + nq4, dass

p+mg—1>2n & ng=n—p+1 (3.43)

gewiihlt werden muss. Damit ist aber auch stets die Bedingung nach Kimura (3.16) fiir das erwei-
terte System erfiillt, da p +nqg +m +ng > n + ng + 1 bzw. ng > n + 1 — p — m durch (3.43)
impliziert wird.

Zur Bestimmung der Eigenwert-/Rechtseigenvektorpaare (Ak;,vk;) werden daher die Bedingun-
gen (3.39) und (3.38) modifiziert, woraus sich

(Ae = AxijI)  B.| [vkij (Ae — Akij 1) Be|| Nyij

- - quij = 0. 44

|:([p —e;ie)Cy 0 | L puj (Ip—eie))Cy 0 || My; Pvis (3442)
ie{l,....,p},jell,.... &},

(Ae - )VKkI) B. Ukk [ _ (Ae - )\Kkl) B. N, _
|: C. 0ol pul™ C. 0 || a, qwc =0, (3.44b)

ke{s+1....n

ergibt. Fir k € {n + 1,...,n + ng} ergeben sich entsprechend zum Vorgehen aus Abschnitt 3.1.3
die Eigenwert-/Linkseigenvektorpaare (Agx,wkx) ausgehend von (3.15) aus

[(48, —ae]) CH] [ka} =0, (3.45)
Pwk
wobei darin die Abkiirzungen
Ao = Ae+ B.Q(CV)TC, (3.462)
Ce :=U,C, (3.46b)

in entsprechender Weise fiir das erweiterte System eingefiihrt werden. Dies legt die Riickfiihr-
matrix K. des erweiterten Systems (3.20) und damit die Systemmatrix des entkoppelt geregelten
Systems
Xe = (Ae1 + BeKe1Cer)Xe + B.Fow, (3.47a)
1= Cclxc[ (347]3)
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fest. In (3.47a) ist zur Bestimmung des Vorfilters F, im Gegensatz zum Entkopplungsentwurf
mittels Zustandsriickfithrung anzumerken, dass die Eigenwert-/Linkseigenvektorpaare (Agz,Wxx)
mitk € {n + 1,...,n + ng}, die durch K, erzeugt werden, nicht konsistent mit der Forderung
nach Entkopplung der Fiihrungsgrofen sind, was nachfolgend diskutiert wird. Hierzu wird in An-
lehnung an das Vorgehen in Abschnitt 3.1.3 auf eine neue Koordinatendarstellung iibergegangen
und eine Matrix 7, mit orthogonalen Spaltenvektoren bestimmt, die bild (7", ) = kern (VrT) sowie
T[T, = I, erfiillt. Daraus folgt die neue Koordinatendarstellung aus

=V 1] x
sowie mit
Vo 7] =[w" 1],

und es folgt

% Ay W,Aa Ty W, B, % W,
= Kq[0 C,T - B.F,
) ][] mato cam)[2] [ ps
yi=[0 CqT.]X,

was eine Kalman-Zerlegung von (3.47) darstellt. Auch darin ist wie in Abschnitt 3.1.3 aufgrund
der Blockdreiecksstruktur der resultierenden Systemmatrix der Teilzustand X; beziiglich des Aus-
gangs y; nicht beobachtbar, weshalb die Eigenwerte {Akq,..., Ak, } liber die Ausgangsriickfiih-
rung K.; auch nicht mehr veridndert werden.

Im entkoppelt geregelten Ubertragungsverhalten konnen die Eigenwert-/Linkseigenvektorpaare
(Akk,wkk) fir k € {n 4+ 1,...,n + ny} tber die FihrungsgroBen w allerdings noch gesteuert
werden, was somit nicht konsistent mit der Forderung nach Entkopplung ist. Um dies zu ver-
meiden, muss daher in (3.47a) der Ausdruck TIBCFe = 0 werden beziehungsweise bild (F,) C
kern (T B.) erfiillt sein. Dies ist allerdings stets moglich, da 7T B, € R7ax(m+na) jt und damit
hat die Matrix 7' B. unter der Annahme rang (TIBS) = ng immer einen genau m-dimensionalen
Rechtskern. Der Hochstrang der Matrix T B, ist im Hinblick auf die Annahmen in Satz 3.4
dquivalent zu der Forderung rang (W, B.) = s = nq, da aufgrund der obigen Koordinatentransfor-
mation W, = PT mit einer regulidren Matrix P erfiillt sein muss. Damit ist der Hochstrang der
Matrix T B, durch das parametrische Entwurfsverfahren stets sichergestellt.

Zur Sicherstellung der stationdren Genauigkeit aller Einzeliibertragungsfunktionen in (3.41) ist
abschlielend das Vorfilter ausgehend von der stationdren Betrachtung von (3.47) geméf

F.=F, (CWVr(A,,)*‘ W,Beﬁe>_l (3.48)

zu modifizieren, wobei Fe eine Basis des Rechtskerns von TEBe ist und damit TIBCFe =0
erfiillt. Damit ist die dynamische Ausgangsriickfithrung und das Vorfilter zur Entkopplung des
geschlossenen Regelkreises bestimmt. Die Ergebnisse dieses Abschnitts fasst der nachfolgende
Satz ausgehend von den vorstehenden Diskussionen ohne Beweis zusammen.
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Satz 3.11. Betrachtet wird das als entkoppelbar vorausgesetzte, quadratische Zustandssystem
By mit m = p und p > 2, das mit einer dynamischen Ausgangsriickfiihrung (3.19) der
Ordnung ng = n — p + 1 geregelt wird, woraus das erweiterte System (3.20) entsteht. Die
Menge der Regelungseigenwerte Ax € Dy, wird in zwei selbst-konjugierte Mengen Axy und
Ax2 = {Akn+1s - - - Akn+ng; aufgeteilt, wobei fiir Ax; die Unterscheidung

{Asys. s Mg, §=n,
AKl =
{Agl,...,Agp,Ao}, §<n

mit As; = {Air, ..., is;} € D, fiiri € {1,...,p} vorgenommen werden muss, und worin A
die Menge der invarianten Nullstellen von (3.1) bezeichnet. Sind in (3.44a) fiiri € {1,...,p}
und j € {1,...,8;} die Parametervektoren q;; # 0, in (3.44b) fiir k € {6 + 1,....n} die
Parametervektoren q.x # 0 sowie zu komplexen Regelungseigenwerten selbst-konjugiert, dann
existiert fiir s = nq ein reelles K. gemdf3

K. = Q.(C.V)' + (W.B) Q.U + UK Uy, K, € R™! beliebig, (3.49)

und Vorfilter F,, welche die Fiihrungsiibertragungsfunktion des geschlossenen Regelkreises (3.41)
entkoppeln und die Regelungseigenwerte Ay zuweisen, so dass o (A, + B.K.C.) = Ax =
{Axk1, Ax2}, wenn mit (3.5) und (3.10)

(Al) rang CV)=r=nV, e R#+naxn

(A2) rang (W B.) = s = ng, W, € Raxntna

erfiillt ist, und das Vorfilter gemdf3 (3.48) gewdhlt wird.

3.2.3 Entwurf einer Verkopplungsregelung

Im Vergleich zum Entwurf auf Entkopplung im vorangegangen Abschnitt, wobei der geschlos-
sene Regelkreis beziiglich des Fithrungsverhaltens in p EingroBensysteme zerfillt, kommt beim
Entwurf auf Verkopplung der Regelung die Aufgabe zuteil, gezielt zwischen einzelnen Zustands-
beziehungsweise Ausgangsgrofien des betrachteten dynamischen Systems (3.1) algebraische Be-
ziehungen herzustellen und diese beziiglich des Fithrungsverhaltens des geschlossenen Regelkrei-
ses stets einzuhalten.

Unter praktischen Gesichtspunkten werden Verkopplungsregelungen vor allem bei sicherheitskri-
tischen Anwendungen eingesetzt, wenn eine sensor- oder aktorseitige Redundanz gefordert ist.
Hierbei muss in den meisten Fillen Synchronitit zwischen den einzelnen Teilsystemen hergestellt
werden. Ein Beispiel ist in diesem Zusammenhang der Entwurf einer Steer-by-Wire Lenkung.
Hierbei besteht das Ziel der Regelung darin, moglichst das Lenkgefiihl einer klassischen Servo-
lenkung nachzubilden, was iiber die geeignete Verkopplung des Lenkwinkels mit der Auslenkung
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der Spurstange sowie iiber die Verkopplung der an der Lenk- und Spurstange wirkenden Krifte
und Momente moglich ist [81]. Dariiber hinaus werden aus Sicherheitsgriinden die Antriebe in
der Regel redundant ausgelegt, was sich ebenfalls als Verkopplungsproblem interpretieren lasst.

Neben den praktischen Anwendungen einer Verkopplungsregelung leistet die Verkopplungsrege-
lung ebenfalls einen theoretischen Beitrag bei der Behandlung differential-algebraischer Systeme,
die intuitiv bei der modularen Modellbildung dynamischer Systeme entstehen. In der Literatur
wird hierzu oftmals der Begriff Deskriptorsystem verwendet. Die Interpretation eines Deskrip-
torsystems als spezielles Verkopplungsproblem leistet hierdurch einen wertvollen Beitrag bei der
Analyse und beim Regelungs- und Beobachterentwurf linearer als auch nichtlinearer Deskriptor-
systeme [50, 64].

In diesem Abschnitt soll nun der Entwurf einer Verkopplungsregelung basierend auf der in Ab-
schnitt 3.1.3 eingefiihrten Methodik erfolgen. Die Ergebnisse dieses Abschnitts wurden bereits
ansatzweise in [111] vorgestellt. Dariiber hinaus werden die Ergebnisse aus [44] genutzt, worin
Konigorski die Existenzbedingungen und die Berechnungsvorschriften einer Verkopplungsrege-
lung basierend auf der Vollstindigen Modalen Synthese herleitet. Hierzu wird zunichst durch eine
reguldre Ausgangsgrofentransformation (3.1b) in die Form

L=l lle
tiberfiihrt. Darin bezeichnet y,, die Ausginge, die iiber die Fithrungsgrofien w im verkoppelten,
geschlossenen Regelkreis vorgebbar sein sollen und y, die Ausginge, die durch die Verkopplungs-
regelung asymptotisch zu null werden sollen. Gilt beispielsweise fiir den Verkopplungsausgang,
dass (1) = (C; — Cy)x(t) = 0 beziiglich der AusgangsgroBen y; = Ci;x und y, = Cox
fir t > 1y ist, dann ist dies dquivalent dazu, dass die Ausginge y; und y, synchron und damit
verkoppelt sind. Die Bedingung y,(t) = 0 fiir ¢ > ¢ ist damit gleichbedeutend mit der Verkopp-
lung des geregelten Systems. Ausgehend von der Regelungsstruktur einer Zustandsriickfithrung
mit Vorfilter gemédB ¥ = Rx + Fw lidsst sich die Idee des Verkopplungsentwurfs anschaulich
im Bildbereich der Laplace Transformation darstellen. Fiir den geschlossenen Regelkreis im La-
place Bereich gilt zusammen mit der Partitionierung des Vorfilters gemifl F' = [F 1 Fz] fiir die
transformierten Ausgangsgrofien

_ [TwC(sI — A—BR)™'BF, TyC(sI — A— BR)™'BF,] [w;(s)

o) = o) @sv
Wo(s) T,C(sI — A— BR)"'BF, T,C(sI —A— BR)"'BF, | |wy(s)|

Im Zeitbereich entspricht der Forderung nach Verkopplung der Zusammenhang
lim y,(¢) =0,
r—>00

was sich im Laplace Bereich nach Konigorski [44] durch eine obere Blockdreiecksstruktur in
(3.51) erreichen ldsst, wenn

T,nC(sI —A— BR)"'BF, =0,
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und w;(s) = 0 erfillt ist. Im Hinblick auf den Reglerentwurf mittels Vollstindiger Modaler Syn-
these sind diese Forderungen genau dann erfiillt, wenn

TV2CUR,' = 0, i€ {1, P ,8\,}, (3528.)
weBFy =0, ie{s+1,....n} (3.52b)

fiir den Index &, gilt. Der Index &, ist eine Systemeigenschaft und ldsst sich vorab allein durch
Kenntnis der Matrizen 4, B und 7,,C bestimmen. Im Sprachgebrauch der geometrischen Me-
thode [8, 128] bilden die Rechtseigenvektoren Vs, = [le - vR,;\,], die (3.52a) erfiillen, eine
Basis des maximalen steuerbaren Unterraums von (A4, B) im Kern von 7,,C, der sich mittels des
Invariant Subspace Algorithm (vgl. Abschnitt C) bestimmen ldsst und damit auch die Dimension
38y berechnet. In analoger Weise zum Entkopplungsentwurf im voran gegangenen Abschnitt stellt
(3.52a) Restriktionen an die Rechtseigenvektoren Vs, dar, die sich aus der Losung von

[(A;:\le) g] [l;ff‘]zo, ie{l,... 8} (3.53)

ergeben. Die verbleibenden Eigenwert-/Rechtseigenvektorpaare (Ag;,Ur;) mit i > &, sind nun-
mehr beliebig wihlbar und treten lediglich bei Storanregung, beispielsweise durch impulsartige
Anfangsstorungen x (¢y) fiir die 7,,Cx (t9) # 0 gilt oder Storanregung durch w, (¢) mit w,(¢) # 0,
in Erscheinung.

Im Hinblick auf die Ubertragung des Verfahrens zur Verkopplung auf den Entwurf der Ausgangs-
riickfithrung aus Abschnitt 3.1.3 bleibt somit festzuhalten, dass (3.52a) §, Restriktionen an die
Rechtseigenvektoren des geschlossenen Regelkreises darstellen. Damit muss es durch den Ent-
wurf der Ausgangsriickfithrung moglich sein, ebenfalls §, Eigenwert-/Rechtseigenvektorpaare
(Aki,vk;) im geschlossenen Regelkreis zu erzeugen. Davon ausgehend ist daher zu unterschei-
den, ob im Hinblick auf das Verfahren zum Entwurf von Ausgangsriickfithrungen in Abschnitt
3136, < p—1bzw. §, > p — 1 gilt. Im letztgenannten Fall gelingt der Entwurf der Ver-
kopplungsregelung basierend auf Abschnitt 3.1.3 nur, wenn eine dynamische Riickfithrung ge-
méB Abschnitt 3.1.4 verwendet wird. Mit der Bedingung nach Kimura fiir das erweiterte System
n+1 < m+ p+ nygund zusammen mit der eben diskutierten Forderung, dass wenigstens §,
Rechtseigenvektoren vorgeben werden konnen, folgt daher aus

ng>max(0,n—m—p+1,8,—p+1)

eine notwendige untere Schranke fiir die zur Verkopplung mittels Ausgangsriickfithrung benotig-
ten Reglerordnung ny.

Um Weitldufigkeiten zu vermeiden, wird im Folgenden in Anlehnung an das Vorgehen zum Ent-
wurf der Entkopplungsregelung im vorangegangen Abschnitt der Entwurf der statischen Aus-
gangsriickfiihrung (3.40) fiir das erweiterte System (3.20) betrachtet und darin die Riickfiihrmatrix
K. und das Vorfilter F; fiir das System (3.20) so bestimmt, dass sich zusammen mit der Partitio-
nierung des Vorfilters F, = [Fe1 Fez] fiir die Fithrungstibertragungsmatrix des geschlossenen
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Regelkreises entsprechend der Forderung nach Verkopplung die obere Blockdreiecksmatrix
[yw(s)] — |:Cw(31n+nu - AKe)_lBeFel CW(S1n+nd - AKC)_lBeFeZ] |:w1(S)]
w(s) Cv(51n+nd - AKe)71 B.F; Cv(51n+nd - AKe)71 B.Fey | Lwa(s)

! [CW(SIH+7M - AKe)_lBeFel Cw(S[n+nd - AKC)_IBeFeZ] |:w1(5)

- 0 CV(S[n+nd - AKe)_l BGFEZ 0 ] (354)

zusammen mit der Abkiirzung Ax, = 4. + B.K.C. ergibt. Die Matrizen C,, und C, ergeben sich
entsprechend der Definition der erweiterten Ausgangsmatrix in (3.21) aus

Cy=[TuC 0] (3.55)
C,=[T.C 0] (3.56)

mit G, € RO+ vz, C, € RO, Zur Bestimmung der Eigenwert-/Rechtseigenvektorpaare
(Aki,vk;) wird die Bedingung (3.53) modifiziert, woraus sich

(Ae = Axil) Be|[vki| _ [(Ae = Axij 1) Be|| Ny S =
[ G 0] [pvi] B [ C, 0] [Mvi] ¢vi =0, (3.57a)
ie{l,... 5
[ —hat) B[ | = [de=rat) B[ "] -0 =0 (3.57b)
e Ki e Pui e Ki e Mvi vi N .

i€{5V+1,...,p+nd—1}

ergibt. Firi € {p +ny, ...,n+ ng} ergeben sich entsprechend zum Vorgehen aus Abschnitt 3.1.3
die Eigenwert-/Linkseigenvektorpaare (Ag;,wg;) ausgehend von (3.15) aus

[, —hal) CH] [’”Ki] =0, (3.58)
Dwi

wobei darin die in Abschnitt 3.2.2 eingefiihrten Abkiirzungen (3.46) genutzt werden. Dies legt die

Riickfithrmatrix K. des erweiterten Systems (3.20) und damit die Systemmatrix des verkoppelt

geregelten Systems

)’Cc = (Ac + BcKcCc)xc + Bchw (3593)
v = Cvxei- (359b)

fest. Zur Bestimmung des Vorfilters F, bietet es sich ausgehend von (3.52b) an, ebenfalls wie in
den Abschnitten 3.1.3 und 3.2.2 auf eine neue Koordinatendarstellung iiberzugehen. Da die Eigen-
bewegungen, die nicht konsistent mit der Verkopplung sind, unsteuerbar gemacht werden miissen,
wird eine Matrix 7| mit orthogonalen Spaltenvektoren bestimmt, die bild (77;) = kern (VST)

sowie TITJ_ = Ipyn,—s, erfiillt, wobei V5, = [UK1 UKBV] gilt. Die neue Koordinatendarstel-
lung folgt damit aus

g=[v T.] 'x

v
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sowie mit
1 T
v n] " =[wr ]

und es ergibt sich

S| [As Ws A T [% L [WaBeFa Wa BoFo] [wn 3.60)
Sl L0 TTA T, |[% TTB.Fy T[B.Fu | |ws :
w=1[0 CTL]x. (3.61)

was eine Kalman Zerlegung von (3.59) darstellt. Mit dieser Systemdarstellung wird deutlich, dass
die Eigenwert-/Rechtseigenvektorpaare (Ag;,vk;) firi € {1,...,6,} beziiglich des Verkopplungs-
ausgangs )y, unbeobachtbar sind, was genau der Forderung nach Verkopplung entspricht. Fiir in-
konsistente Anfangswerte, die die Verkopplung verletzen, verschwindet der Verkopplungsfehler
genau dann asymptotisch, wenn die Eigenwerte der Matrix 7 Ag, T in der linken, komplexen
Halbebene liegen, was durch den parametrischen Ansatz stets gewihrleistet werden kann.

Im verkoppelt geregelten Ubertragungsverhalten kann der Verkopplungsausgang y, iiber die Fiih-
rungsgrofen w allerdings noch gesteuert werden, was somit nicht konsistent mit der Forderung
nach asymptotischer Verkopplung ist. Um dies zu verhindern, muss daher in (3.60) neben w, = 0
der Ausdruck TIBe F.; = 0 werden beziehungsweise bild (F.;) C kern (T EBe) erfiillt sein. Dies
ist allerdings stets moglich, da aus

W, P
7t 2.ra =[]

mit beliebiger Matrix P durch Linksmultiplikation mit [ng TL], woraus B. F; = V;, P folgt,
das Vorfilter F,; aus der Losung von

[B. V3] [i;] =0 (3.62)
entnommen werden kann. Aufgrund der Definition eines steuerbaren Unterraums (vgl. Abschnitt
C) ist dies ebenfalls stets moglich, da die Bildraume von B, und Vs, immer eine nichtleere Schnitt-
menge aufweisen (s. hierzu auch die Diskussion in [44]). Damit ist die dynamische Ausgangs-
riickfithrung und das Vorfilter zur Verkopplung des geschlossenen Regelkreises bestimmt. Die
Ergebnisse dieses Abschnitts fasst der nachfolgende Satz ohne Beweis zusammen.

Satz 3.12. Betrachtet wird das Zustandssystem (3.1) mit m > 2 und p > 2 zusammen mit einer
geeignet gewdhlten Ausgangsgrofientransformation (3.50), das mit einer dynamischen Ausgangs-
riickfiihrung (3.19) der Ordnung ng = max(0, n —m — p + 1, 8, — p + 1) geregelt wird, woraus
das erweiterte System (3.20) entsteht. Die Menge der Regelungseigenwerte Ax € Dy, wird in

zwei selbst-konjugierte Mengen Ax; und Axa = {Akp+ny: - - - Akntng) aufgeteilt, wobei fiir Ax,
die Unterscheidung
AS\,, 5V=p+nd71,
Axi =
As, U{Aks 415 - s Akpang—1), O < p+na—1,
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mit Axs, = {A1,...,Aks,} € Ds, und {Ags,+1,- - Akp+na—1} € Dping—s,—1 vOrgenommen wer-
den muss. Sind in (3.57) fiiri € {1,...,p + nq — 1} die Parametervektoren ¢,; # 0 sowie
zu komplexen Regelungseigenwerten selbst-konjugiert, dann existiert fiir r = p + nq — 1 und
s =n—p+ 1einreelles K. gemdfs

oGV + (WeB) T Q.U m=s,
0.(CV)t + (W.B)T QUL + U, KUy, m>s, K, e R beliebig,
(3.63)

und Vorfilter F., welche die Fiihrungsiibertragungsfunktion des geschlossenen Regelkreises in die
obere Blockdreiecksstruktur (3.54) iiberfiihren und die Regelungseigenwerte A zuweisen, so dass
0 (Ae + B.K.C.) = Ax = {Ax1, Axz} gilt, wenn mit (3.5) und (3.10)

(Al) rang (C,V;) = r, V, € RiHnaxr,

(A2) rang (W, B,) = s, W, € R¥*n+m

erfiillt ist, und das Vorfilter Fyy in F, = [Fel Fez] aus der Losung von (3.62) gewdhlt wird.

3.3 Teilparametrisches Entwurfsverfahren

Die in Abschnitt 3.1 eingefiihrte Methodik zum Entwurf von Ausgangsriickfithrungen als auch
die in Abschnitt 3.2 diskutierten Erweiterungen gehen davon aus, dass die Menge der Regelungs-
eigenwerte Ak fest gewdhlt wird. Bei vielen praktischen regelungstechnischen Aufgabenstellun-
gen ist daher Erfahrung vonnéten, um die Regelungseigenwerte im Einklang mit den konkreten
Anforderungen an den geschlossenen Regelkreis zu bringen. Insbesondere bei Systemen mit ver-
gleichsweise hoher Gesamtsystemordnung, die aus der Summe von Strecken- und Reglerordnung
resultiert, wird es schwierig, die Menge der Regelungseigenwerte derart zu wihlen, dass das Er-
gebnis weiterhin interpretierbar und im Sinne der Anforderungen ausfillt. In diesen Fillen ist
es daher einleuchtend, nicht mehr das komplette Spektrum des geschlossenen Regelkreises fest
vorzugeben, sondern dazu iiberzugehen, einen Teil beziehungsweise das komplette Spektrum in
vorab vorgegebene Bereiche der komplexen Ebene, wie in Bild 3.3 dargestellt, zu verschieben.

Im Hinblick auf die robuste Eigenwertvorgabe mittels Ausgangsriickfiihrung, die in Abschnitt
3.2.1 diskutiert wurde, konnen durch Ubergang auf diesen Ansatz neben den Parametervektoren
nun auch die Regelungseigenwerte als Optimierungsvariablen genutzt werden, woraus sich mehr
Freiheitsgrade fiir den Entwurf ergeben. Dariiber hinaus ist mit Satz 3.9 ein hinreichendes Krite-
rium fiir die Differenzierbarkeit der Riickfithrmatrix K gegeben, welches davon ausgeht, dass die
zur Berechnung der Riickfithrung benétigten Nullrdume lediglich die Dimension eins besitzen,
was in vielen Fillen restriktiv sein kann. Durch den Ubergang auf einen teilparametrischen An-
satz kann diese Problematik umgangen werden, was in den nachfolgenden Abschnitten dargestellt
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Fuy (M) =0 b

<

Bild 3.3: Begrenzung des Eigenwertbereichs durch eine Hyperbel

wird. Daraus ergibt sich aber auch, dass ein Verfahren benédtigt wird, um mittels einer Ausgangs-
rickfithrung ¥ = Ky sdmtliche Eigenwerte der Matrix A + BKC in vorab festgelegte Bereiche
der komplexen Ebene zu verschieben. Dies fiihrt auf die Vorgabe von Eigenwertbereichen, die im
nachfolgenden Abschnitt vorgestellt wird. Die Kombination dieser Methodik mit der parametri-
schen Ausgangsriickfithrung wird im Anschluss in Abschnitt 3.3.3 diskutiert, wobei die Methodik
anhand der robusten Entkopplungsregelung motiviert und dargestellt wird.

3.3.1 \Vorgabe von Eigenwertbereichen

Ausgangspunkt der Betrachtungen in diesem Abschnitt ist die steuer- und beobachtbare Strecke
(3.1). Ziel ist die Bestimmung der Riickfithrmatrix K, so dass alle Eigenwerte des geschlossenen
Regelkreises und damit die Eigenwerte der Matrix A + BKC in vorab festgelegte Bereiche der
komplexen Ebene zum Liegen kommen. Das Vorgehen orientiert sich hierbei an Standverfahren
aus der Literatur, wie beispielsweise dem Robustheitsentwurf mittels Straffunktionen in [28, S.
392 ff.]. Anhand der Darstellung in Bild 3.3 wird das Vorgehen verdeutlicht.

Die Parametrierung der Eigenwertbereiche erfolgt durch Definition geeigneter impliziter Funk-
tionen F(A) = 0 mit A € C, deren Losung den Rand der Gebiete begrenzen. Am Beispiel der
Hyperbel, die in Bild 3.3 einen solchen Eigenwertbereich begrenzt, soll das weitere Vorgehen ver-
anschaulicht werden. Die Funktion Fyy (A) ist hierbei so gewihlt, dass links der begrenzenden
Kurve Fyy (A) < 0 bzw. rechts der begrenzenden Kurve Fyy (A) > 0 wird. Damit definiert

Zyy = {A € C|Fyy (M) <0} mit Fyyy (\) = Re(A) + %,/Im(k)z + b2 (3.64)

den grau schraffierten Bereich der komplexen Ebene, in dem die Eigenwerte Axx € 0 (4 + BKC)
des geschlossenen Regelkreises zum Liegen kommen sollen. Dariiber hinaus ist durch die Wahl
der Parameter ¢ > 0 und b > 0 eine weitere Moglichkeit gegeben, um die Dynamik des ge-
schlossenen Regelkreises zu beeinflussen. Durch die VergroBBerung von a wird die Hyperbel in der
komplexen Ebene weiter nach links geschoben, wodurch die Mindestdynamik bzw. Abklingrate
des Regelkreises eingestellt wird, wenn alle Regelungseigenwerte in Zy, zum Liegen kommen.
Uber den Zusammenhang b = atan(y) ist ebenfalls eine Beeinflussung der Mindestdimpfung
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der Eigenwerte moglich, was somit weitreichende Moglichkeiten zur Einstellung der Dynamik
des geschlossenen Regelkreises bietet.

Das Vorgehen ist nicht nur auf eine begrenzende Kurve beschrinkt. Vielmehr ist eine Kombination
verschiedener Bereiche moglich, wobei vorausgesetzt werden muss, dass die Schnittmenge aller
Bereiche nicht die leere Menge ist. Eine Ubersicht iiber die typischen Bereiche, die in der Literatur
angegeben sind, ist in Tabelle 3.1 aufgefiihrt.

Tabelle 3.1: Ubersicht iiber verschiedene Bereiche samt deren Parametrierung

Kurventyp | Parameter | Parametrierung Skizze
Im(})
v
>— Re(X)
a
Hyperbel | a, b Fuy ) = Re(h) + & /im(2 1 62 | .0 = @tan()
Im(A)
a1 Re(A)
Gerade a Fge (A) =Re(A) +a
Im(A)
-
t— Re(A)
Kreis r Fx: (M) = VRe(AM)2 +Im(A)2 —r

Zur Berechnung einer Riickfithrmatrix K, welche die Eigenwerte von A + BKC in die in Tabelle
3.1 aufgefiihrten Bereiche verschiebt, wird ein Min-Max-Optimierungsproblem formuliert, wel-
ches mit der Methodik aus Abschnitt 3.3.2 gelost werden kann. Da der Zusammenhang beziiglich
der Eigenwerte des geregelten Systems {Ax;, ... ,Aks} = 0 (4 + BKC) gilt und die Ag; implizite
Funktionen der Riickfiihrmatrix K sind, kann fiir jeden Eigenwert Ag; eine duBlere quadratische
Straffunktion definiert werden, woraus
pi(§) = {Fk Co @), wemn Fi (@) > 0. Lo {1,....n}. k € {Hy, Ge, Kr}
0, Fie (Aki(§)) =0,
(3.65)

und den Optimierungsvariablen § = vec(K) folgt. Zur Verschiebung aller Eigenwerte in den
festzulegenden Bereich miissen folglich alle Straffunktionen p;(§) = 0 Vi werden, was auf das
Min-Max Optimierungsproblem

msin max  p; (&) (3.66)

1P 216.73.216.36, am 20.01.2026, 12:37:37. Inhalt,
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186250087

58 3 Entwurf strukturbeschrankter Riickfiihrungen

fuhrt. Ein kritischer Aspekt bei dieser Problemklasse ist ausgehend von den Ergebnissen zur Dif-
ferenzierbarkeit des Eigenwertproblems in Satz B.12 offensichtlich das Verhalten der Regelungs-
eigenwerte. Im Folgenden wird nun vorausgesetzt, dass die Eigenwerte der Matrix A + BKC
einfach sind, was die Differenzierbarkeit der Eigenwerte garantiert. Dies hat zur Folge, dass die
Funktionen Fj (Ak;(€)) Vi ebenfalls differenzierbar sind, weshalb der Gradient der Straffunktion
V pi (&) angegeben werden kann. Dies wird im nachfolgenden Satz zusammengefasst.

Satz 3.13. Betrachtet wird die steuer- und beobachtbare Strecke (3.1), welche mit der Ausgangs-
riickfiihrung u = Ky geregelt wird, woraus die Matrix des geschlossenen Regelkreises A+ BKC
entsteht. Unter der Voraussetzung, dass die Eigenwerte der Matrix A + BKC einfach sind, ist die
Straffunktion p;(§) differenzierbar, und die Differentiale sind fiir k € {Hy, Ge, Kr} durch

. dé;
- 1 alm(hk;) ] Ki _
2@ e ] | | k =Hy
dpi(§) = {24/ pi(¢) ddxi, k = Ge
Re(hy; Im(hi;) ddx; _
2\/1”7[«/%@“)2+1max,)2 «/Re(lm)2+1m()»m)z] |:da)1<z:| sk

mit ddg; = Re(d)»K,»), dwk; = Im(d}\](,) und

wi; (dA)vk;

T
Wy; UKi

diki = = (wg;v)) ™' (v €' ® wy; BY) d§

gegeben.

Beweis. Unter der Voraussetzung, dass die Eigenwerte der Matrix A + BKC einfach sind, exis-
tiert nach Satz B.12 eine komplexwertige, unendlich oft differenzierbare Funktion Ay;, die (4 +
BKC)vg; = Ag;vx; erfiillt, womit das Differential (B.10) folgt. Durch Anwendung der Rechen-
regeln aus Abschnitt B.4 auf die Parametrierungen der Kurven in Tabelle 3.1 zusammen mit der
Straffunktion (3.65) folgt die gesuchte Aussage, wie sich einfach nachrechnen ldsst. |

3.3.2 Ldsung unbeschrankter Min-Max Optimierungsprobleme

Im Hinblick auf das in (3.66) formulierte Min-Max Optimierungsproblem zur Eigenwertbereichs-
vorgabe ldsst sich aufgrund des Maximumsoperators nicht auf die in Abschnitt 3.2.1 erwihnten
Algorithmen zur Losung unbeschrinkter Optimierungsprobleme zuriickgreifen. Dies ist darin be-
griindet, dass die Zielfunktion nicht tiberall stetig differenzierbar ist. Infolgedessen soll nachfol-
gend dargestellt werden, wie sich fiir das unbeschrinkte Min-Max Optimierungsproblem

min max fx(§) (3.67)
& keq
mit £ € R und q = {1, ..., q} konstruktiv feststellen lisst, ob ein lokales Minimum von (3.67)

vorliegt. Vorausgesetzt wird hierzu, dass die Funktionen f;(§) stetig differenzierbar sind. Ohne
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weitere Annahmen an die Funktionen f (£) ist (3.67) zunéchst ein nicht-konvexes Optimierungs-
problem, welches schwer zu 16sen ist. Das nachfolgend dargestellte algorithmische Vorgehen ist
daher lediglich ein lokales Optimierungsverfahren, so dass keine Aussagen iiber das globale Mi-
nimum moglich sind. Dennoch belegen die im Rahmen der Arbeit hinsichtlich des Optimierungs-
problems (3.67) erzielten Ergebnisse die praktische Anwendbarkeit des Verfahrens.

Eine notwendige Bedingung fiir einen stationiren Punkt & des Optimierungsproblems (3.67) ist,
dass die Richtungsableitung der Funktion ®(§) := maxxe, fi() nicht-negativ ist [84, Theo-
rem 2.1.1]. D.h. es ist d®(£,4) > O fir alle # € R”, wobei d®(&,/) die Richtungsableitung
der Funktion ®(£) in Richtung von / bezeichnet. Eine notwendige und hinreichende Bedingung,
dass d®(&,h) > O fiir alle &7 € R” erfiillt ist, folgt aus der Existenz eines Vektors ji aus dem
Einheitssimplex ¥, :={u € RY | u; =20, j € ¢, Z?:] fj = 1} mit der Eigenschaft, dass

q
> iV /iE =0
j=1

und

fij (@) — f;(6) =0

M=

-
Il

erfiillt ist. Ein konstruktiver Weg zur Feststellung, ob ein Punkt & ein lokales Minimum von (3.67)
ist und damit die oben genannte Bedingung erfiillt, folgt mittels einer sogenannten Optimalitits-
funktion ®(§). Im Hinblick auf den Pshenichnyi-Pironneau-Polak Algorithmus [84, PPP algo-
rithm 2.4.1] ist durch das quadratische Optimierungsproblem

2

q
O = — min Zu, (&) — f5(E) + Zu,fo (&) (3.68)

mit € > 0 eine solche Optimalititsfunktion gegeben. Darin bezeichnet V f; (&) den Gradienten
der Zielfunktion f; (&) beziiglich £. Durch das iterative Losen von (3.68) mit k = 0,1,2, ... ldsst
sich der Wert der Optimalititsfunktion ®; = ©(&x) bestimmen. Dariiber hinaus folgt aus

1 q
hue(€) = == eV £ &), (3.69)
j=1

wobei g die Losung von (3.68) ist, eine Abstiegsrichtung fiir das Optimierungsproblem (3.67).
Aufgrund der Eigenschaften der Optimalititsfunktion ®y ist diese eine stetige, nicht-positive
Funktion, die nur ®; = 0 erfiillt, falls der Punkt & die notwendige Optimalititsbedingung
d®(&,h) = 0 erfiillt.

Ist daher ®; = 0, dann kann die Iteration zur Minimierung von (3.67) abgebrochen werden. Gilt
O < 0, dann lédsst sich mittels der Suchrichtung (3.69) und mit den Parametern o € (0,1] und
B € (0,1) die iiber

o = 0u(§¢) = arg max {8 | @ (& + B'he) — (&) — BlaOs < 0]
€N
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zu bestimmende Schrittweite berechnen. Damit erfolgt der Ubergang auf den neuen Punkt & 4, =
&x + oxhy, und die Auswertung der Optimalititsfunktion geméB (3.68) beginnt durch das Ersetzen
von k + 1 durch k erneut.

Das Vorgehen zur Losung unbeschrinkter Min-Max Optimierungsprobleme erfordert daher ledig-
lich einen Algorithmus zur Losung quadratischer Optimierungsprobleme. Hierfiir stehen zahlrei-
che Implementierungen zur Verfiigung, wobei die im Rahmen der Arbeit erzielten Ergebnisse auf
Grundlage des Algorithmus quadprog fiir quadratische Probleme der Optimization Toolbox aus
MATLARB entstanden sind.

3.3.3 Robuste Entkopplungsregelung

Mit der im voran gegangenen Abschnitt vorgestellten Methodik ist es moglich, die Eigenwerte ei-
nes iiber Ausgangsriickfithrung geregelten Zustandssystems in vorab festzulegende Bereiche der
komplexen Ebene zu verschieben, was durch Formulierung als Min-Max Optimierungsproblem
erfolgt. Die Kombination der Eigenwertbereichsvorgabe mit dem Verfahren zur Entkopplung mit-
tels dynamischer Ausgangsriickfithrung aus Abschnitt 3.2.2 soll in diesem Abschnitt behandelt
werden, was auf die robuste Entkopplungsregelung fiihrt.

Zur Motivation dieses Abschnitts soll kurz an die Ergebnisse in Satz 3.14 erinnert werden. Beim
Entwurf auf Entkopplung muss ausgehend von der parametrischen Formulierung der Ausgangs-
rickfithrung aus Abschnitt 3.1.3 eine dynamische Riickfithrung verwendet und das Spektrum der
Regelungseigenwerte in zwei Teilmengen aufgeteilt werden. Dabei korrespondiert die erste Teil-
menge Ag;, die aus n Regelungseigenwerten besteht, mit denjenigen Eigenbewegungen, die das
entkoppelt geregelte Ubertragungsverhalten in (3.41) festlegen. Die verbleibenden 74 Regelungs-
eigenwerte treten nur bei Anfangsstorungen in Erscheinung, da diese Eigenbewegungen durch das
Vorfilter unsteuerbar gemacht werden. Dariiber hinaus existieren weitere Freiheitsgrade durch die
Parametervektoren g;; fiir i € {1,...,p}und j € {1,...,6;} sowie fiir die Parametervektoren
qvi mitk € {§+1,...,n}, dadie Matrizen in (3.44) zur Bestimmung der Nullrdume mehr Spalten
als Zeilen besitzen.

Dies zeigt, dass im Vergleich zum Entkopplungsentwurf mittels Zustandsriickfithrung noch wei-
tere Freiheitsgrade durch die Parametervektoren zur Verfiigung stehen, aber auch die Regelungs-
eigenwerte der unsteuerbaren Eigenmoden noch genutzt werden konnen, um das dynamische Ver-
halten des entkoppelt geregelten Systems weiter zu verbessern, was die Anwendung der in Ab-
schnitt 3.2.1 diskutierten Methodik auf die Entkopplungsregelung nahe legt und damit auf die
Minimierung der in (3.33) angegebenen Giitefunktionen fiihrt.

Zur Minimierung der Giitefunktionen (3.33) ist allerdings vorauszusetzen, dass die entkoppelnde
Riickfithrmatrix K, differenzierbar ist. Dies motiviert den nachfolgenden Ubergang auf eine teil-
parametrische Formulierung der Entkopplungsregelung, da dadurch die Differenzierbarkeit von
K. durch Kombination der Methoden aus den Abschnitten 3.1.3 und 3.3.1 sicher gestellt wer-
den kann. Zusitzlich lassen sich die Eigenwerte des geschlossenen Regelkreises, die durch das
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Vorfilter unsteuerbar gemacht werden, als zusitzliche freie Entwurfsparameter in das Optimie-
rungsproblem integrieren, welches fiir die robuste Entkopplungsregelung formuliert wird. Hierzu
wird die Eigenwertbereichsvorgabe aus dem voran gegangenen Abschnitt genutzt. Die Ergebnisse
zur Differenzierbarkeit der Matrix K. im Hinblick auf die Entkopplungsregelung fasst der folgen-
de Satz zusammen. Da darin die Berechnung des Differentials d K. aufwendig ist, findet sich der
Beweis im Anhang.

Satz 3.14. Betrachtet wird das als entkoppelbar vorausgesetzte, quadratische Zustandssystem
B.1)ymitm = pund p > 2, das mit einer dynamischen Ausgangsriickfiihrung (3.19) der Ordnung
ng = n— p+1 geregelt wird, woraus das erweiterte System (3.20) entsteht. Fiir die Teilmenge der
Regelungseigenwerte Ay, € D, die das entkoppelt geregelte Ubertragungsverhalten bestimmt,
muss die Unterscheidung

{{Agl,...,l\gl)}, §=n
AKI =
{A517~~-7ABP7A0}7 §<n

mit As; = {Air,....Ais;} € Dy, fiiri € {1,...,p} vorgenommen werden, wobei darin A, die
Menge der invarianten Nullstellen von (3.1) bezeichnet. Sind in (3.44a) fiiri € {1,...,p} und
Jj € {1,...,8;} die Parametervektoren q;; # 0, in (3.44b) fiir k € {§ + 1,...,n} die Para-
metervektoren ¢y, # 0 sowie die Parametervektoren zu komplexen Regelungseigenwerten selbst-
konjugiert, dann existiert ein reelles und differenzierbares K. gemdyf3

K. = 0.(C.V)" + Ko U, (3.70)

und Vorfilter F,, welche die Fiihrungsiibertragungsfunktion des geschlossenen Regelkreises (3.41)
entkoppeln und die Regelungseigenwerte A, zuweisen, so dass Axy C 0 (Ae + B.K.C.), wenn
mit (3.5) die Bedingung rang (C,V,) = r = n mit V, € R"*"" erfiillt ist, und das Vorfilter gemdfp
(3.48) gewdhlt wird. Dariiber hinaus gilt fiir das Differential

d
dK. = [VKg, VK&][ 51], (3.71)
> Ldé,
wobei & = [q;rl . qVTn]T und &, = vec(Key) gilt sowie VK¢, und V Kg, durch (A.6) gegeben
sind.
Beweis. Siehe Abschnitt A.2. d

Mit Satz 3.14 ist nun eine Moglichkeit gegeben, einen integrierten Entwurf eines Entkopplungs-
reglers fiir ein entkoppelbares quadratisches Zustandssystem (3.1) zu bestimmen. Im Gegensatz
zum Entkopplungsentwurf mittels Zustandsriickfithrung, der unter praktischen Gesichtspunkten
in den meisten Fillen um einen geeigneten Beobachterentwurf ergénzt werden muss, wird eine
praktisch implementierbare Ausgangsregelung bestimmt, die ebenfalls nicht auf die Giiltigkeit
des Separationstheorems angewiesen ist. Dariiber hinaus ist das entkoppelte Fiihrungsverhalten
parametrisch vorgebbar, was die verbleibenden Freiheitsgrade in tibersichtlicher Weise darstellt.
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Aufgrund der Differenzierbarkeit der Matrix K, kann ebenfalls iiber die verbleibenden Freiheits-
grade optimiert werden, was nachfolgend diskutiert wird. Dabei ist die Matrix K.; so zu wihlen,
dass die beziiglich des entkoppelten Fiihrungsverhaltens unsteuerbaren Eigenwerte in einen belie-
big wihlbaren Bereich der komplexen Ebene zum Liegen kommen. Dies ist allerdings mit Satz
3.11 stets moglich, so dass sich hiermit fiir eine Optimierung in einfacher Weise Startwerte fiir K.,
generieren lassen. Als Nachteil dieses Ansatzes ist die gegeniiber einer Zustandsriickfithrung samt
reduziertem Beobachter stets um die Ordnung eins grofere Reglerordnung zu nennen. Allerdings
ist dabei wieder die Giiltigkeit des Separationstheorems vorauszusetzen.

Zur Bestimmung einer robusten Entkopplungsregelung wird nachfolgend die Minimierung der
Giitefunktion J,, in (3.33a) verfolgt, wobei sich als Nebenbedingung ergibt, dass die Eigenwerte
Axi» die (Ao + B. K.Co)vk; = Agivg; und Ag; € Axy miti € {n+ 1, ... ,n+ ny} erfiillen, in den
durch Zyy in (3.64) definierten Bereich der komplexen Ebene zum Liegen kommen. Dies fiihrt
auf das nichtlineare Optimierungsproblem mit Nebenbedingung

min Ji,(6) (3.722)
uBv. pi(§) <0, ie{n+1,...,n+ ng}, (3.72b)

wobei die Straffunktionen p; (&) durch (3.65) mit k = Hy gegeben sind. Das Optimierungspro-
blem (3.72) kann jedoch in einfacher Wiese in ein unbeschrinktes Min-Max Optimierungspro-
blem iiberfiihrt werden, wenn vorausgesetzt wird, dass ein zuldssiger Punkt £ bestimmt wurde,
und somit die Nebenbedingung (3.72b) erfiillt ist. Wie bereits diskutiert, ist dies stets moglich,
da zur Bestimmung eines zuldssigen Punktes die Riickfithrmatrix K; aus Satz 3.11 mit geeignet
gewihlten Regelungseigenwerten bestimmt werden kann. Die Definition der Funktionen

J@) /e, 1=1,

fi®) = {pj(é)/q, Pe(2 a1 j=itn—1

mit ¢, > 0, ¢; > 0 zusammen mit der Indexmenge Dy = {1, ... ,ng + 1} ermdglicht das
Optimierungsproblem (3.72) in das Min-Max Optimierungsproblem

min max f;(§) (3.73)

£ i€q,

zu iiberfiihren. Durch diese Formulierung des Optimierungsproblems ergibt sich eine Ahnlichkeit
mit der Giitevektoroptimierung nach Kreisslemeier und Steinhauser [47] mit dem Unterschied,
dass zur Minimierung der Maximumsfunktion die Methodik aus Abschnitt 3.3.2 genutzt wird und
somit auf eine Anniherung dieser durch eine Exponentialfunktion, wie in [47] vorgeschlagen,
verzichtet werden kann. Die Konstanten bzw. nach [47] als Vorgabewerte bezeichneten ¢, und c;,
miissen entsprechend zu Beginn der Minimierung von (3.73) geeignet gewihlt werden. Bezeichnet
& den zuldssigen Startwert der Optimierungsaufgabe (3.73), dann ist eine mogliche Wahl von ¢,
und ¢, durch

Cp > JKF(EO)
o <1
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gegeben. Dies hat zur Folge, dass das Maximum der f; (&) fiir jede Iteration der Optimierung
k > 0 stets kleiner als eins ist. Dariiber hinaus ist max; f;(£x) eine streng monoton fallende
Folge beziiglich k, wenn ein Abstiegsverfahren wie in Abschnitt 3.3.2 zur Minimierung von (3.73)
genutzt wird. Entsprechend ldsst sich der Vorgabewert c; als Toleranzparameter interpretieren,
inwieweit die nicht steuerbaren Regelungseigenwerte den durch Zy,y in (3.64) definierten Bereich
verlassen diirfen, was die Wahl ¢; < 1 begriindet. Zur Verdeutlichung der Anwendbarkeit der in
diesem Abschnitt vorgestellten robusten Entkopplungsregelung wird auf das Entwurfsbeispiel in
Abschnitt 6.1 verwiesen, worin die Entwurfsmethodik anhand numerischer Simulationen sowie
anhand von Messungen an einem Laboraufbau einer xy-Positioniereinheit verdeutlicht wird.

3.4 Entwurfsbeispiel

Zur Bewertung der Leistungsfiahigkeit der in diesem Kapitel vorgestellten parametrischen Ent-
wurfsmethodik soll dieser Abschnitt dienen. Hierzu wird die robuste Eigenstrukturvorgabe aus
Abschnitt 3.2.1 betrachtet und anhand von Beispielen aus der Literatur ein Vergleich zur Entwurfs-
methodik place aus dem Programmpaket MATLAB, welches eine der bekanntesten Methoden
zum Entwurf einer Zustandsriickfithrung darstellt, gezogen. Ahnliche Betrachtungen finden sich
beispielsweise auch in [100, 101]. Dies hat zur Folge, dass mit Hilfe der Methodik aus Abschnitt
3.1.3 bzw. 3.2.1 eine Zustandsriickfithrung mittels Eigenwertvorgabe entworfen werden soll, die
die Eigenvektormatrix des geschlossenen Regelkreises Vi optimal konditioniert.

Zur Bewertung der Ergebnisse werden die Beispielsysteme nach Byers und Nash aus [13] genutzt.
Die elf Beispielsysteme bilden verschiedene praktische aber auch akademische Beispiele ab. Dar-
unter finden sich unter anderem chemische Reaktoren, Flugzeug- und Raketenantriebe aber auch
zufillig gewihlte Systeme sowie schlecht konditionierte Beispiele mitsamt der Menge der Rege-
lungseigenwerte, die die Zustandsriickfithrung zuweisen muss.

Zur Erzielung der nachfolgenden Ergebnisse wird zunéchst fiir jedes Beispielsystem eine Zu-
standsriickfithrung mittels place entworfen und die dabei erzielte Konditionszahl der Rechtsei-
genvektormatrix ||Vx||p des geregelten Systems sowie die Norm der Riickfithrmatrix || R||p be-
rechnet. Anschliefend wird ein gradientenbasiertes Verfahren fiir unbeschrinkte Optimierungs-
probleme zur Minimierung der Giitefunktion J,, in (3.33a) genutzt, um damit gezielt die verblei-
benden Freiheitsgrade der Zustandsriickfithrung zu nutzen. Die Laufzeit der Optimierung wird
dabei durch maximal 2000 erlaubte Aufrufe der Giitefunktion begrenzt. Dariiber hinaus werden
fiir jedes Beispielsystem zehn zufillig gewéhlte Startwerte genutzt und fiir den besten Punkt bzw.
das kleinste J, die erzielte Konditionszahl der Rechtseigenvektormatrix || V|| des geregelten
Systems sowie die Norm der Riickfithrmatrix || K| berechnet. Die Ergebnisse der Berechnungen
sind in Tabelle 3.2 aufgefiihrt.

Anhand der Konditionszahlen || Vx|l bzw. ||Vk||g ldsst sich festhalten, dass die in dieser Arbeit
in Abschnitt 3.2.1 vorgestellte Methodik stets in der Lage ist, das Ergebnis der Methode place
zu verbessern (vgl. Beispielsysteme {1, 2, 3,4,5,6,7,8,9, 11}). Lediglich bei Beispielsystem 10
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Tabelle 3.2: Robuste Eigenstrukturvorgabe der Beispielsysteme von Byers und Nash [13]

Beispielsystem place [37] Methodik aus Abschnitt 3.2.1
VRl | IRIE | Vil | 1Kl

1 6,57 1,48 6,44 1,43
2 52,87 413,82 50,02 319,51
3 53,43 59,41 45,70 71,65
4 13,43 9,84 13,42 9,45
5 20901,40 2776820,21 | 16524,62 2725262,42
6 6,00 21,50 5,92 22,01
7 12,38 22,42 11,33 24,61
8 36,99 64,52 6,18 69,74
9 23,96 847,01 23,89 896,87
10 4,00 1,49 4,00 1,52
11 14618,32 6692,15 | 14066,90 6620,33

erzielen beide Algorithmen ein gleiches Ergebnis. Im Hinblick auf die Norm der Riickfiihrma-
trizen || R||g bzw. || K || ldsst sich feststellen, dass die Methode place fiir die Beispielsysteme
{3,6,7,8,9,10} bessere Ergebnisse erzielt. In den anderen Fillen erzielt die Methodik aus dieser
Arbeit eine geringere Norm der Riickfithrmatrix.

Zur Verdeutlichung, dass auch in den vorgenannten Fillen eine Verbesserung in der Reglernorm
gegeniiber place erzielt werden kann, wird auf ein kombiniertes Giitemall gemil J = aJ) g +
(1—a)Jy, tibergegangen. Dabei entspricht die Wahl @ = 0 dem bereits diskutierten Optimierungs-
problem. Entsprechend ist der Gewichtungsparameter o derart zu wihlen, dass auch die Norm der
Riickfiihrmatrix einen niedrigeren Wert als der mit place berechnete Wert annimmt. Hierzu wur-
de eine Bisektion mit 10 Iterationen iiber @ durchgefiihrt, was auf die Ergebnisse in Tabelle 3.3
fithrt und die Leistungsfahigkeit der in diesem Kapitel entwickelten Methodik verdeutlicht.

Tabelle 3.3: Robuste Eigenstrukturvorgabe der Beispielsysteme von Byers und Nash [13] mit
dem kombinierten Giitekriterium J = o J) g + (1 — @),

L. place [37] Methodik aus Abschnitt 3.2.1
Beispielsystem

IVl | IRIe [ Ville [ 1Kl | o

3 53,43 59,41 | 48,25 | 55,28 0,1260

6 6,00 21,50 593 | 19,83 0,0146

7 12,38 2242 | 1296 | 14,15 0,1240

8 36,99 64,52 | 16,24 | 57,79 0,6260

9 23,96 847,01 | 24,72 | 812,41 0,2500

10 4,00 1,49 4,10 1,48 0,9990

1P 216.73.216.36, am 20.01.2026, 12:37:37. Inhalt,
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186250087

3.5 Kurzzusammenfassung 65

3.5 Kurzzusammenfassung

Kapitel 3 stellt den methodischen Rahmen vor, der den Ausgangspunkt fiir die Parametrierung der
lokalen Regler aller Agenten in den nachfolgenden Kapiteln bildet. Das parametrische Entwurfs-
verfahren ermoglicht unter der Voraussetzung der Bedingung nach Kimura (3.16) die Vorgabe
aller Eigenwerte des iiber eine Ausgangsriickfithrung geregelten Systems (3.1). Die Erweiterung
des Verfahrens ermoglicht durch die gezielte Nutzung der Parametervektoren den Entwurf einer
Entkopplungs- als auch Verkopplungsregelung sowie die robuste Eigenwertvorgabe, um so die
Dynamik des geschlossenen Regelkreises weiter zu beeinflussen. Der Ubergang auf ein teilpa-
rametrisches Verfahren erlaubt dariiber hinaus eine Teilmenge der Regelungseigenwerte als freie
Parameter zu nutzen, was durch die Eigenwertbereichsvorgabe gelingt. Daraus resultiert die ro-
buste Entkopplungsregelung aus Abschnitt 3.3.3. Die Anwendung der vorgestellten Methoden auf
das Synchronisierungsproblem fiir Multi-Agenten Systeme erfolgt in den nachfolgenden Kapiteln.
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4 Synchronisierung basierend auf Absolut-
und Relativinformation

Die Methoden aus Kapitel 3 bilden zusammen mit den Systembeschreibungen eines homogenen
Multi-Agenten Systems (2.6) bzw. heterogenen Multi-Agenten Systems (2.12) den Ausgangs-
punkt fiir die Betrachtungen in den nachfolgenden Abschnitten. In Abgrenzung zu Kapitel 5 be-
steht hierbei, wie in Bild 4.1 angedeutet, die Moglichkeit, Absolutinformation fiir den Regelungs-
entwurf zu verwenden. Dies bietet weitreichende Moglichkeiten zur Beeinflussung jedes Agenten,
da hierzu auf die Entwurfsverfahren aus Kapitel 3 zuriickgegriffen werden kann.

Hinsichtlich der Systembeschreibungen sowie der Steuer- und Beobachtbarkeit homogener und
heterogener Multi-Agenten Systeme, die in Abschnitt 2.3 untersucht wurden, ist zunichst in Ab-
schnitt 4.1 das Synchronisierungsproblem fiir homogene Agenten Gegenstand der Untersuchun-
gen. Ausgehend von einer Methodik aus der Literatur [119], die den Entwurf einer synchroni-
sierenden Zustandsriickfiihrung fiir homogene Multi-Agenten Systeme auf einen LQR-Entwurf
zuriickfiihrt, lassen sich Bedingungen fiir die Synchronisierung identischer Agenten in einfacher
Weise herleiten. Unter der Voraussetzung, dass alle Agenten das gleiche Regelgesetz implemen-
tieren, sind die Bedingungen fiir Synchronisierung in ein simultanes Stabilisierungsproblem iiber-
fiihrbar. Dies bildet anschliefend den Ausgangspunkt fiir die Synchronisierung identischer Agen-
ten mittels Eigenwertbereichsvorgabe.

Abschnitt 4.2 diskutiert ankniipfend an den zuvor dargestellten und erzielten Ergebnissen das
Synchronisierungsproblem fiir heterogene Agenten. Aufgrund der Verfiigbarkeit von Absolutin-
formation lassen sich ausgehend von der Entkopplungsregelung aus Abschnitt 3.2.2 und der Ver-
kopplungsregelung aus Abschnitt 3.2.3 fiir jeden Agenten unterlagerte Regelkreise entwerfen, so
dass jeder Agent asymptotisch ein identisches dynamisches Verhalten aufweist. Diese Vorgehens-
weise ermoglicht, die Synchronisierung heterogener Agenten mittels Absolutinformation auf die
Synchronisierung der durch die unterlagerten Regelungen herbeigefiihrten homogenen Teilsyste-
me zuriickzufiihren.

Die Erweiterung dieses Vorgehens auf eine spezielle Systemklasse nichtlinearer Agenten erfolgt
abschliefend in Abschnitt 4.3. Fiir nichtlineare Agenten mit Vektorrelativgrad eins und stabiler
Nulldynamik, die zusitzlich parametrische Unsicherheiten aufweisen, ldsst sich ein aus der Lite-
ratur entnommener passivititsbasierter Entwurf zur Synchronisierung identischer Agenten nutzen

chooiser - - 3
.. Agent
Synchronisierung

Bild 4.1: Strukturbild zur Synchronisierung mittels Relativ- und Absolutinformation

A

Vi
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und durch eine adaptive Regelung zur Kompensation der Unsicherheiten ergénzen, was die Syn-
chronisierung dieser Systemklasse ermoglicht.

4.1 Synchronisierung homogener Agenten

4.1.1 \Voriiberlegungen und Synchronisierungsbedingungen

Betrachtet werden homogene Multi-Agenten Systeme nach (2.6) und damit N lineare steuer- und
beobachtbare identische Agenten

X; = Ax; + Bu;, (4.12)
yi = Cx,- (41b)
miti € {1,..., N}, x; € R", u; € R™, y; € R? und dem Anfangswert x;(ty) = X;,. Durch die

Kommunikation der Agenten untereinander erfasst jeder Agent (4.1) die relativen Messgrofien
N N
vi =Y agij(yi—y)) =Y laijy;, 42
Jj=1 j=1

worin die Koeffizienten ag;; bzw. lg;; der Adjazenzmatrix Ag (2.1) und der Laplacematrix Lg
(2.2) durch das Kommunikationsnetzwerk festgelegt werden. In Abschnitt 4.1 wird nun die An-
nahme getroffen, dass alle Agenten das identische Regelgesetz zur Synchronisierung implemen-
tieren.

Anmerkung 4.1. Die Annahme identischer Regelgesetze ist zur Synchronisierung homogener
Agenten nicht notwendig, wie sich durch das einfache Beispiel zweier skalarer Agenten X; = u;,
die iiber einen stark verbundenen Graphen verkoppelt sind und die Regelgesetze uy = ry(x;—x3)
sowie uy = r,(x, — x1) implementieren, widerlegen lisst. Die Uberfiihrung des geregelten Sys-
tems in die nachfolgenden modalen Koordinaten ergibt nimlich, dass

Y | A A [

gilt. Damit ist asymptotische Synchronisierung immer moglich, wenn ry + r, < 0 ist, und die
Forderung identischer Regelgesetze ry = r, < 0 nicht notwendig.

Nichtsdestotrotz ergibt sich unter der Annahme identischer Regelgesetze eine einfache konstrukti-
ve Bedingung, die auf die Synchronisierung identischer Agenten fiihrt, wie nachfolgend diskutiert
wird.

Wird zunichst angenommen, dass jeder Agent seinen vollstandigen Zustand an das Netzwerk
kommuniziert, d.h. in (4.1b) ist C = I,, dann besteht die Regelungsaufgabe darin, in

N
Ui = RZagij(x,« —Xj) (43)

Jj=1
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die Zustandsriickfithrmatrix R derart zu bestimmen, dass Zustandssynchronisierung im Sinne von
Definition 2.12 erreicht wird. Mit der Riickfithrung (4.3) resultiert daher das geregelte homogene
Multi-Agenten System aus

X =((In®A4)+(Lg® BR)) x, (4.4)

wobei x € R™V gilt. Mit Lemma 2.8 ist gezeigt, dass das homogene Multi-Agenten System (2.6a)
beziiglich der relativen Ausgidnge (2.7) bzw. in diesem Fall der Gesamtheit aller Ausginge in (4.2)
stets unbeobachtbar ist. Wird daher der Unterraum

S={xeR"|xebild(Ily ® I,)} (4.5)

betrachtet, so folgt aus (Ixy @ A) + (Lg ® BR)) (In®1,) = (1x¥®1,)A zunichst die Invarianz
von S. Mitv = (Lg ® I,)(Ixn ® I,,) = (Lgly ® I,) = 0 folgt dariiber hinaus die Ausgangs-
nullung, weshalb mit (1 ® I,) eine Basis des n-dimensionalen unbeobachtbaren Unterraums des
geregelten homogenen Multi-Agenten Systems (4.4) gefunden ist.

Der Einsvektor 1y ist, wie in Abschnitt 2.2 diskutiert, der Rechtseigenvektor zum Eigenwert
A = 0 der Laplacematrix Lg. Ist dariiber hinaus der Graph, der der Laplacematrix zugrunde
liegt, verbunden, dann hat der Eigenwert A = 0 die algebraische Vielfachheit eins. Bezeichnet
daher V, die Hauptvektormatrix von Lg mit der Einschrinkung, dass Vi e; = 1y gilt, dann
istmit LgVr, = Vr,Jr, durch Jr, die Jordan’sche Normalform der Laplacematrix gegeben.
Zusitzlich ist

0 0
Tro = [0 JALg]

mit Jaz, € CVN™N=1 sowie diag (Jar,) = {ALgas ... ALgw}, und die Eigenwerte Ay fiir
k > 2 haben stets positiven Realteil.

Zur Bestimmung der Bedingungen, die zur Synchronisierung homogener Agenten durch die Riick-
fithrung (4.3) fithren, wird auf eine neue Koordinatendarstellung von (4.4) iibergegangen. Mittels
der neuen Koordinatendarstellung ¥ = 7~'x und der Transformationsmatrix 7 = (Vi, ® 1)
bzw. der inversen Transformationsmatrix 7~' = (V| ® I,) folgt mit (4.4)

X = (V) ® L) (N ® A) + (Lg ® BR)) (Vi ® I)X,
= (Un® 4) + (Joy ® BR) X (4.6)

bzw. ebenfalls zusammen mit den relativen Ausgingen
i ( A 0 Lo 0 ) X1
X3 0 (In-1®4) 0 (Jars ® BR)]) [%2]°
X
V= [0 (LQVLQZ ® In)] |:)_Cli|
2

mit Vg, aus Vp, = [1 N Vng]' Anhand der vorher stehenden Darstellung des geregelten Sys-
tems wird nochmals deutlich, dass die Dynamik in S beziiglich des Ausgangs v unbeobacht-
bar ist. Gleichermaflen ist ausgehend von Definition 2.12 fiir asymptotische Synchronisierung
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lim; o v(¢) = 0 zu fordern, was mit Lemma 2.8 dquivalent zu lim,_,, ¥»(z) = 0 ist, da das Paar
((Lg Vig, ® In). (In-1 ® A)) fiir ein verbundenes Kommunikationsnetzwerk stets beobachtbar
ist. Folglich miissen die Eigenwerte der Matrix (Iy—; ® 4) + (Jar, ® BR) simtlich in der
linken komplexen Halbebene durch den Entwurf von R zum Liegen kommen. Aufgrund der obe-
ren Dreiecksstruktur von Jar, ergibt sich somit als notwendige und hinreichende Bedingung fiir
die Synchronisierung homogener Agenten (4.1) mittels der Riickfiithrung (4.3), dass alle Matrizen
A+ Agie BRmitk € {2,..., N} Hurwitz-Matrizen sind. Dieses Ergebnis geht auf die Disserta-
tion von Fax [25] zuriick und ergibt sich als Spezialfall von [25, Theorem 5.1]. Zusammenfassend
lasst sich daher aufgrund der Betrachtungen in diesem Abschnitt der nachfolgende Satz festhalten.

Satz 4.2. Betrachtet werden N lineare steuer- und beobachtbare identische Agenten (4.1), wobei
in der Ausgangsgleichung C = I, ist, zusammen mit der Riickfiihrung (4.3). Ist das Kommunika-
tionsnetzwerk, das dem geregelten homogenen Multi-Agenten System zugrunde liegt, verbunden,
dann wird Synchronisierung genau dann erreicht, wenn samtliche Matrizen A + Ay x BR mit
k €{2,..., N} Hurwitz-Matrizen sind.

Mit Satz 4.2 ist die Synchronisierung homogener Multi-Agenten Systeme, die iiber die Riick-
fiihrung (4.3) gekoppelt sind, auf ein simultanes Stabilisierungsproblem zuriickgefiihrt. An die-
sem Ergebnis ankniipfend, finden sich in der Literatur zahlreiche Methoden zur Bestimmung der
Riickfithrmatrix R bzw. einer identischen Rickfithrung aller Agenten, die die Synchronisierung
homogener Agenten ermdglichen [53, 56, 60, 62, 96, 97, 102, 132]. Im folgenden Abschnitt wird
das Verfahren aus [119] vorgestellt, da es in einfacher Weise durch die Losung einer algebraischen
Riccati Gleichung die Berechnung der Riickfithrmatrix R ermdglicht.

4.1.2 Synchronisierung durch LQR-Entwurf

Zur Bestimmung der Matrix R wird ein bekanntes Resultat aus der optimalen Regelung genutzt
(vgl. [2, 133]). Ist das Paar (A4,B) mit A € R™” und B € R™ stabilisierbar, dann hat die
algebraische Riccati Gleichung

AP + PA+1,— PBB"P =0 4.7

eine positiv definite, reelle Losung P = PT. Durch die Nulladdition von PBBTP — PBB™ P lisst
sich (4.7) auch als

(A— BB"P)"P + P(A— BB"P)+ I, + PBB"P =0

schreiben, woraus folgt, dass die Matrix A — BB P eine Hurwitz-Matrix ist. Im Hinblick auf das
simultane Stabilisierungsproblem in Satz 4.2 ist nun die Stabilitidt von A+A;, BR mit R = —BTP
zu untersuchen. Hierzu gibt Tuna das folgende Lemma an.

Lemma 4.3 ([119]). Betrachtet werden die Matrizen A € R"™" und B € R™™, die (4.7) mit
positiv definiter; reeller Losung P = PT erfiillen. Dann ist fiir alle 6 € R, 0 > 1 und w € R die
Matrix A — (0 + jo) BB P eine Hurwitz-Matrix.
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Mit Lemma 4.3 ldsst sich daher schlieflen, dass auch bei Skalierung der Eingangsmatrix B mit
einer komplexen Zahl mit Realteil 0 > 1 der geschlossene Regelkreis bestehend aus der Dyna-
mik (4.1a) mit der Riickfiihrung #; = — BT Px weiterhin stabil ist. Im Hinblick auf die simultane
Stabilisierung zur Synchronisierung homogener Agenten werden die Eigenwerte der Laplacema-
trix gemif ihrer Realteile aufsteigend angeordnet, d.h. Ap ;1 < Re(Arzz) < --- < Re(Argny) mit
Argt = 0.Ist Re(Arg2) < 1, dann ldsst sich mit Lemma 4.3 nicht auf Stabilitit von 4 — (o +
jw)BBT P schlieBen. Wird allerdings die Riickfiihrung gemiB u; = —max (1,8~ !) BT Px mit § <
Re(A1,2) gewihlt, dann impliziert Lemma 4.3 die Stabilitiit von A — (o + jw) max(1,8~")BBT P,
da Re(Ar,2)/8 > 1 ist. Dies stellt das Hauptresultat von Tuna in [119] hinsichtlich der Synchro-
nisierung homogener Agenten dar und wird in folgendem Satz zusammengefasst.

Satz 4.4 ([119]). Betrachtet werden N homogene Agenten wie in (4.1a). Sei P = P" die Lisung
von (4.7) und § > 0. Ist der Graph, der der Laplacematrix Lg € RN*N zugrunde liegt, verbunden
und ist § < Re(AL2), dann synchronisieren sich die Zeitlosungen x;(t) miti = 1,... N und

u; = —max(l,éfl)BTPv,» = Rv;,
wobei v; durch (4.2) gegeben ist, auf

x1(to)
X(t) 1= (wgg ® eA’)

xn(to)

mit dem Linkseigenvektor wi, € RN, der wEng = 0 und wEg In = 1 erfiillt.

Das Resultat lisst sich in einfacher Weise auf die duale Betrachtung erweitern, wenn statt einer
Zustandsriickfithrung eine Ausgangsaufschaltung entworfen wird. Dies ist insbesondere im Hin-
blick auf die Verfahren aus Abschnitt 4.2 eine einfache Moglichkeit, um einen synchronisierenden
Regler fiir voll aktuierte Systeme zu bestimmen.

Satz 4.5 ([119]). Betrachtet werden N homogene Agenten wie in (4.1), wobei B = I, gilt. Sei
P = P" die Losung von AP + PA" + I, — PCYCP = 0 und § > 0. Ist der Graph, der der La-
placematrix Lg € RN*N zugrunde liegt, verbunden, und ist § < Re(AL2), dann synchronisieren
sich die Zeitlosungen x;(t) miti = 1,...,N und

u; = —max(1,6")PCTv; = Lv;,
wobei v; durch (4.2) gegeben ist, auf

x1(fo)
xs(t) == (wEg ® eAt)

xn(to)

mit dem Linkseigenvektor wi, € RY, der wfg Lg =0und wEg In = 1 erfiillt.
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Die vorstehenden Resultate von Tuna nutzen offensichtlich die giinstigen Eigenschaften des Ric-
catireglers aus. Diese Eigenschaften lassen sich hinsichtlich Robustheit gegeniiber (komplexwerti-
ger) Skalierung der Eingangsmatrix B interpretieren, was zur Synchronisierung homogener Agen-
ten fiihrt. Nachteilig ist dabei, dass der Entwurf nicht in geradliniger Weise auf den Ausgangsriick-
fiihrungsfall mit m < n und p < n in (4.1) erweitert werden kann. Dies geschieht im folgenden
Abschnitt, da die Methodik aus Abschnitt 3.3.1 hierzu in der Lage ist.

4.1.3 Synchronisierung durch Vorgabe von Eigenwertbereichen

Im Hinblick auf die Bedingungen zur Synchronisierung homogener Multi-Agenten Systeme in
Satz 4.2 ist durch die Forderung der Stabilitdt der Matrizen A + A s BR mit k € {2,..., N}
ebenfalls eine Modellfamilie gegeben, die durch die fest eingestellte Riickfithrmatrix R stabilisiert
werden muss. Diese Entwurfsaufgabe wurde von Konigorski in [45] durch numerische Minimie-
rung geeignet gewihlter Straffunktionen, die Eigenwerte der geregelten Systeme als Argumente
haben, gelost. Diese Methodik lésst sich in geradliniger Weise auf die Synchronisierung homoge-
ner Agenten iibertragen und soll nachfolgend diskutiert werden.

Hierzu werden die Ergebnisse aus [45] mit der Methodik zur Vorgabe von Eigenwertbereichen
aus Abschnitt 3.3.1 verkniipft. Ausgangspunkt ist daher der homogene Agent (4.1) zusammen mit
der dynamischen Riickfiihrung

X‘d = Adxd + Bdl)i (483-)
U = Cdxd + dei (481’))

mit x4 € R™. Dies stellt den allgemeinen Fall der Synchronisierung homogener Agenten mit-
tels dynamischer Ausgangsriickfiihrung dar. Jedoch ergeben sich die Spezialfille einer konstanten
Riickfithrung durch ng = 0 bzw. die vollstindige Kopplung am Eingang durch die Wahl B = I,
sowie die vollstindige Kopplung am Ausgang durch C = I,,.

Durch Zusammenfassen von (4.1) und (4.8) folgt der erweiterte Zustandsvektor x.; = [x,T x}i]T €

R"*", und es entsteht der erweiterte Agent

Xei = AeXei + Bev;, (493-)
Yi = Cexeis (491’))
mit
_ |4 BG
A, = [0 A i| , (4.10a)
BDy

B. = 4.1

e [ B ] , (4.10b)
C.=[C o]. (4.10c)
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Der geregelte erweiterte Agent folgt mit (4.9) und (4.2) aus

N N
xel’ = Aein + Be Zagij(yi - y]) = Aexei + BeCe Zagij(xei - xej)v
j=1 j=1
was mit dem Zustandsvektor x, = [x] ... x;rN]T € RN@+10) auf das geregelte Gesamtsystem
Xe = ((Uy ® 4.) + (Lg ® B.C)) xe 4.11)

fithrt. Aufgrund der resultierenden Systemstruktur, die identisch zu (4.4) ist, lédsst sich schlie-
Ben, dass Satz 4.2 in gleicher Weise fiir den an dieser Stelle diskutierten Fall gilt. Dies hat zur
Folge, dass die Synchronisierung homogener Multi-Agenten Systeme, die iiber die allgemei-
ne dynamische Ausgangsriickfiihrung (4.8) gekoppelt sind, auf die simultane Stabilisierung von
Ae + Mg B.C.mit k € {2,..., N} zuriickgefiihrt werden kann. Hinsichtlich der Ergebnisse aus
[45] ergibt sich hieraus die an die Problemstellung angepasste Modellfamilie

)'Ci — 4 0 Xi B 0 Uj

[Xdi] N |:0 0] |:xdi:| + |:O Ind:| |:5Cdii| ’ (4.12a)
vi|l _[&C 0 X;

[»’cdi] B [ 0 Ind] [Ad] (4.12b)

ke{l,...,N},

die iiber das Regelgesetz

up | | Da Call| yi
%a]  LBsa Ad [xa

fiir alle N Werte der Parameter { = {1, Ar;2, ..., A g} Stabilisiert werden muss. Mit Satz 3.5
und (3.21) sind daher die Eigenwerte der Matrix Ao+ Be K.C.({) in Anlehnung an die Vorgabe von
Eigenwertbereichen aus Abschnitt 3.3.1 in geeignet zu wihlende Bereiche der linken komplexen
Halbebene zu verschieben. Hierzu wird wie in [45] fiir jedes Modell in (4.12) ein eigener Bereich
definiert. Zur einfacheren Darstellung wird auch in diesem Fall eine Hyperbel, wie in Bild 3.3
dargestellt bzw. durch die Parametrierung von Zyy in (3.64) gegeben, gewihlt, da sich dadurch
in einfacher Weise Mindestanforderungen an Didmpfung und Schnelligkeit formulieren lassen.
Der nachfolgend beschriebene Ansatz lisst sich algorithmisch ohne grofere Anpassungen durch
weitere Begrenzungen aus Tabelle 3.1 erweitern.

Da fiir das Spektrum o (4e + BeKCe($k)) = {Akk,1 - - - »Akk,n+n,) gilt und die Eigenwerte Ag;
implizite Funktionen der Riickfithrmatrix K, sind, kann fiir jeden Eigenwert Agz; und fiir jedes
Modell in (4.12) in Anlehnung an Abschnitt 3.3.1 und [45] eine duflere quadratische Straffunktion
definiert werden, woraus

Fuy (i ()7, wenn Fiyy (At (8)) > 0,

(4.13)
0, Fyy (ki (£)) 0

prj(€) = {
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mit
ag |
FHy ()‘kaj) = Re()\Kkj) + E Im()\,Kkj)z + b]% (4]4)
sowie den Indexmengen gx = {1,...,N},q; = {l,...,n 4+ nq} und den Optimierungsvariablen

& = vec(K.) folgt. Zur Verschiebung aller Eigenwerte in die gewiinschten Bereiche der komple-
xen Ebene miissen folglich alle Straffunktionen py;(§) = 0 Vk,j werden, was auf das Min-Max
Optimierungsproblem

min = max  pg;(§) (4.15)
§ keqi.jeq;

fiihrt, welches mit der Methodik aus Abschnitt 3.3.2 durch numerische Optimierung 16sbar ist.
Mit der individuellen Festlegung von (4.14) ergibt sich zusiitzlich eine flexible Anpassung der Ei-
genwertbereiche fiir jedes k in (4.15). Neben der Festlegung eines gemeinsamen Bereichs fiir die
vollstandige Modellfamilie in (4.12) besteht zudem die Moglichkeit, die Eigenwerte des geschlos-
senen Regelkreises der nominellen Strecke mit {; = 1 gemiB den Anforderungen an Schnelligkeit
und Dampfung in den entsprechenden Bereich zu verschieben. Die Eigenwerte der Systeme in
(4.12) mit {x und £ > 1 miissen fiir die Synchronisierung lediglich in der linken komplexen Halb-
ebene zum Liegen kommen, so dass hierbei der Bereich auch durch eine Gerade, wie in Tabelle
3.1 aufgefiihrt, begrenzt werden kann.

Die Bestimmung geeigneter Startwerte &, fiir die Optimierungsaufgabe (4.15) wird vereinfacht,
wenn angenommen wird, dass fiir die Modellfamilie (4.12) die Bedingung nach Kimura (3.16)
erfiillt ist. Dies ldsst sich stets durch Beriicksichtigung der Gleichung (3.22) und damit durch eine
dynamische Ausgangsriickfithrung geeigneter Ordnung erzielen. Dann lédsst sich mit dem Ver-
fahren aus Abschnitt 3.1.3 zunidchst eine Ausgangsriickfithrung entwerfen, die durch die Wahl
stabiler Eigenwerte des geschlossenen Regelkreises stets die Stabilitdt der nominellen Strecke in
(4.12) gewihrleistet. Im Anschluss liegt es nahe, mit dem Verfahren aus Abschnitt 3.2.1 in Er-
ginzung die Robustheit gegeniiber Storungen A in A, + B.K.C. + A zu optimieren, was durch
die Minimierung der Konditionszahl der Rechtseigenvektormatrix des geschlossenen Regelkreises
bzw. des Giitekriteriums J, in (3.33a) erfolgen kann. Dies fiihrt auf die folgenden Entwurfsschrit-
te zur Bestimmung einer synchronisierenden Ausgangsriickfiithrung fiir homogene Multi-Agenten
Systeme.

Ubersicht der Entwurfsschritte

1. Analyse des Kommunikationsnetzwerks durch Bestimmung der Eigenwerte mit positivem
Realteil Ay ;; der Laplacematrix Lg miti € {2,...,N}.

2. Festlegung der Modellfamilie (4.12) durch § = {1, ALz2, ..., ALgn -

3. Festlegung der Eigenwertbereiche durch Wahl der Parameter a; und by in (4.14) bzw. durch
Auswahl geeigneter Bereiche aus Tabelle 3.1.
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4. Wenn die Bedingung nach Kimura erfiillt ist — Bestimmung der Startwerte &, fiir die Opti-
mierungsaufgabe (4.15) durch den parametrischen Entwurf einer Ausgangsriickfiihrung fiir
die nominelle Strecke (4.12) mit & = 1 mittels der Verfahren aus den Abschnitten 3.1.3
und 3.2.1 mit dem Ziel, die Robustheit gegeniiber Stérungen A in 4. + B.K.C. + A zu
verbessern.

5. Losung des Min-Max Optimierungsproblems (4.15) mittels der Methodik aus Abschnitt
3.3.2.

6. Falls keine zuldssige Losung &* fiir (4.15) bestimmt wurde, zuriick zu Schritt 4 zusammen
mit der Wahl neuer Startwerte &.

4.2 Synchronisierung heterogener Agenten

4.2.1 \Voriiberlegungen zur Synchronisierung heterogener Agenten

Betrachtet werden heterogene Multi-Agenten Systeme nach (2.12) und damit N lineare steuer-
und beobachtbare Agenten

X; = Aix; + Biu;, (4.16a)
Yi = Cixg (4.16b)
miti € {I,...,N}, x; € R", u; € R™ und y; € R? sowie mit dem Anfangswert x;(f) =

Xit,- Die Matrizen 4;, B; und C; seien von passender Dimension. Durch die Kommunikation der
Agenten untereinander erfasst jeder Agent (4.16) die relativen Messgrofien

N N
vi =Y agij(vi—y)) =Y _laijy;. @.17)
=t j=1

worin die Koeffizienten ag;; bzw. lg;; der Adjazenzmatrix Ag (2.1) und der Laplacematrix Lg
(2.2) durch das Kommunikationsnetzwerk festgelegt werden.

Im Gegensatz zu den in Abschnitt 4.1 diskutierten homogenen Multi-Agenten Systemen, die sich
stets auf Losungen des offenen Regelkreises synchronisieren, ist die synchrone Zeitlosung von N
Agenten nach (4.16a) zunichst nicht offensichtlich bzw. je nach Beschaffenheit aller Agenten in
(4.16a) lediglich die triviale Trajektorie ys(z) = 0, was der Stabilisierung aller Agenten entspricht.
Im Hinblick auf die Ergebnisse in Lemma 2.11 lésst sich daher schlieen, dass ohne geeignete
MaBnahmen triviale Synchronisierung stets eintritt, wenn ein heterogenes Multi-Agenten System
beziiglich der relativen Ausginge beobachtbar ist. Dies ist dadurch begriindet, dass in diesem Fall
ein dezentrales Regelgesetz mit den N Ein-/Ausgangsgruppen (u;, v;) bestimmt werden kann,
welches in der Lage ist, das Gesamtsystem zu stabilisieren, was den strukturellen Unterschied
zwischen homogenen und heterogenen Multi-Agenten Systemen zum Ausdruck bringt.
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Zur Vermeidung der Synchronisierung auf die triviale Trajektorie ys(z) = 0 soll eine notwendige
Bedingung aus der Literatur angegeben und diskutiert werden. Ausgangspunkt ist daher der Agent
(4.16) zusammen mit der dynamischen Riickfiihrung

Xai = AyXai + By (4.182)
U = C§ixdi + D;iﬂ,’ (418b)

mit xg; € R"™, wobei das Zeichen (-)* andeuten soll, dass in der Regel die Matrizen des Reglers
nicht voll besetzt sind, sondern eine beliebige Strukturbeschrankung aufweisen konnen. Dariiber
hinaus wird an dieser Stelle nicht vorausgesetzt, dass die Reglerordnung n4; der Agenten identisch
ist. Durch Zusammenfassen von (4.16) und (4.18) lésst sich auch hier der erweiterte Zustandsvek-
tor Xe; = [x] x(}i]T € R+ definieren, woraus der geregelte Agent

Xei = AciXei + Beivi, (4.192)
Yi = Ceixeiv (419b)

mit den Systemmatrizen

A; BiCj; B;D;;
ORI B A R

entsteht. Eine notwendige Bedingung, die jeder Agent nach (4.19) zur Synchronisierung erfiillen
muss, ist nach Wieland und Allgower die Aussage des folgenden Satzes.

Satz 4.6 ([124]). Betrachtet werden N heterogene Agenten wie in (4.16) zusammen mit einem
Kommunikationsnetzwerk, was durch den verbundenen Graphen G beschrieben wird. Angenom-
men, es wurde eine Losung fiir (4.18) bestimmt, so dass sich alle Ausginge im Sinne von Definition
2.12 synchronisieren. Es wird dariiber hinaus angenommen, dass das Paar (Ce;,Ae;) detektierbar

ist. Es existieren dann Matrizen I1;, i = 1,...,N mit vollem Spaltenrang und Matrizen S und Q,
so dass
AeiHi = H,S (4208.)
C,Il; = Q (4.20b)

fiirallei =1,...,N gilt.

Der Beweis des Satzes findet sich in [124] und gibt eine notwendige Bedingung an die struk-
turellen Voraussetzungen einer synchronisierenden Regelung fiir heterogene Agenten (4.16) an.
Ausgehend von der Losung der Sylvester Gleichung mit Nebenbedingung (4.20) ergibt sich ei-
ne Interpretation der notwendigen Voraussetzungen zur Synchronisierung im Hinblick auf das
bekannte Interne Modellprinzip nach Francis und Wonham in [29]. Angenommen es existieren
Losungen I1; von (4.20) fiir alle i = 1,...,N, und die Anfangswerte x.;(fp) des erweiterten
Agenten (4.19) werden gemiB x.;(#) € bild (IT;) gewihlt, dann lassen sich diese stets derart
wihlen, dass die Zeitlosung des Ausgangs (4.19b) aller Agenten identisch und damit synchron ist,

1P 216.73.216.36, am 20.01.2026, 12:37:37. Inhalt,
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186250087

76 4 Synchronisierung basierend auf Absolut- und Relativinformation

was aus

yi(t) = Cee®i'xqi(to)
= Cq[M; Ty]e®™= S, 71]71 Xei(to)

= Q%" %.i(to)

folgt, wobei T') so gewihlt ist, dass

[, 7] A T.] = [3‘ 2]

gilt. Damit enthélt der offene Regelkreis jedes erweiterten Agenten ein identisches internes Mo-
dell, welches durch Wahl geeigneter Anfangswerte dazu fiihrt, dass alle Ausgénge der erweiterten
Agenten identische Zeitlosungen erzeugen und somit synchron verlaufen.

Aufgrund der Notwendigkeit von Satz 4.6 ist hiermit allerdings noch keine Aussage zu treffen, wie
sich stets asymptotische Synchronisierung im Sinne von Definition 2.12 realisieren lédsst. Hierzu
ist eine geeignete Strukturbeschrinkung der Matrizen Ag;, By;, Cj; und Dj; in (4.18) vorzusehen
und die Parameter der Regelung geeignet zu bestimmen, was in den folgenden beiden Abschnitten
auf Grundlage einer unterlagerten Ent- bzw. Verkopplungsregelung mit Riickgriff auf die Ergeb-
nisse aus Abschnitt 4.1 erfolgen soll.

4.2.2 Synchronisierung durch Entkopplung

Mit dem Entwurfsverfahren aus Abschnitt 3.2.2 I4sst sich unter der Voraussetzung, dass der hete-
rogene Agent mit dem Zustandssystem (4.16) quadratisch und stabil entkoppelbar ist, ausgehend
von der Messung des absoluten Ausgangs (4.16b) eine Entkopplungsregelung entwerfen, so dass
sich der entkoppelt geregelte Agent beziiglich der Fithrungsgroen w; wie p EingroBensysteme

v;

51 5 B][=].[#
|:5fs,} = [O /Ij |:Xs,} + [éj vi J/il'(s) B gwi(s) . wil.(s)
w =[G LJ + Dsv; Yip(s) 2up©)] Lwip(s)

Bild 4.2: Synchronisierung mittels Relativ- und Absolutinformation basierend auf einer un-

terlagerten Entkopplungsregelung
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verhilt. Die Ubertragungsmatrix beziiglich Ausgangs- und FithrungsgroBen ist entsprechend ge-
miB G (s) = diag (gwi(s), ..., gwp(s)) diagonalférmig, und in jedem Ubertragungskanal lzsst
sich die Dynamik durch die Ubertagungsfunktion

T (ki)
(s — Aki1) - -+ (s — }\Ki85)7

beschreiben. Die Regelungseigenwerte, die die verbleibenden Freiheitsgrade in jedem Ubertra-
gungskanal darstellen, bilden den Zugang zur Synchronisierung heterogener Agenten mittels Ent-
kopplungsregelung, was ebenfalls in Bild 4.2 im Strukturbild dargestellt ist. Die Idee besteht darin,
in jedem der p Ubertragungskanile aller N Agenten ein identisches, stabiles Verhalten zu erzeu-

gwi(s) = ie{l,....,p}

gen. Damit ist das Fithrungsverhalten aller Agenten beziiglich der Ein-/Ausgangskanile (y;;,w;;)
firallei € {1,...,N}und j € {l,...,p} identisch. Beziiglich dieser Ein-/Ausgangskanile ldsst
sich daher fiir alle Agenten, die durch die unterlagerte Regelung entkoppelt und homogenisiert be-
ziiglich des Fithrungsverhaltens sind, eine gemeinsame synchronisierende Regelung — basierend
auf den Methoden aus Abschnitt 4.1 — entwerfen. Dabei zerfillt der Entwurf der synchronisie-
renden Regelung in die Aufgabe, p homogene Agenten zu synchronisieren, die sich als Eingro-
Bensysteme darstellen lassen. Um den beschriebenen Ansatz basierend auf einer Entkopplungs-
regelung hinsichtlich der Synchronisierung heterogener Agenten zu verwenden, sind im Hinblick
auf das eben diskutierte Vorgehen die folgenden Annahmen zu treffen, was der Vereinfachung der
nachfolgenden Argumentation dient.

Annahme 4.7. Synchronisierung durch Entkopplung

(Al) Das Zustandssystem aller heterogenen Agenten (4.16) ist quadratisch und stabil entkoppel-
bar.

(A2) Die Differenzordnungen aller Agenten beziiglich der Ausgangsgrofien (4.16b) sind iden-
tisch. DamitgiltzS; = Sffﬂralle ikef{l,....N}und j € {1,...,p}.

(A3) Die Regelungseigenwerte, die in den p Ubertragungskandlen aller N Agenten zugewiesen
werden konnen, sind stabil gewdhlt und identisch. Damit gilt Af'(j = Aléj fiir alle i,k €
{I,....,N}und j €{1,...,p}.

In Annahme 4.7 bezeichnet 8; die Differenzordnung des j-ten Ausgangs des i-ten Agenten wih-
rend durch Ak ; die Menge der Regglungseigenwerte imA j-ten Ausgangskanal des i-ten Agenten
gekennzeichnet ist. Damit besitzt Ay ; die Méchtigkeit 8.

Die Annahme (A1) wird héufig im Rahmen der Entkopplung linearer Systeme getroffen, da da-
durch sicher gestellt ist, dass eine statische Zustandsriickfithrung mit regulédrer Vorfilterung exis-
tiert, die jeden Agenten stabil entkoppelt. Dariiber hinaus lésst sich damit Satz 3.11 anwenden und
somit eine Entkopplungsregelung basierend auf einer dynamischen Ausgangsriickfithrung entwer-
fen, was den Ausgangspunkt in diesem Abschnitt darstellt. Mit Annahme (A2) ist sicher gestellt,
dass in jedem Ubertragungskanal eine identische Dynamik erzeugt werden kann. Dies scheint re-
striktiv im Hinblick auf die anwendbare Systemklasse in (4.16) zu sein, lésst sich aber stets durch
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geeignete Maflnahmen erzielen. Zum einen ldsst sich unter praktischen Gesichtspunkten ein he-
terogenes Multi-Agenten System in vielen Anwendungsfillen als eine Abweichung von einem
nominellen System interpretieren, d.h. die Agenten sind strukturell identisch — unterscheiden sich
allerdings im Rahmen ihrer physikalischen Parameter, was auf identische Differenzordnungen
fiihrt. Zum anderen ist es moglich, durch Vorschaltung geeigneter Verzogerungsglieder die Diffe-
renzordnung beziiglich eines Ausgangs zu erhohen, so dass sich diese fiir alle Agenten angleichen
lasst und (A2) erfiillt ist. Damit ist es moglich ebenfalls (A3) zu erfiillen, indem in jedem Uber-
tragungskanal aller Agenten eine identische, stabile und stationdr genaue Dynamik vorgegeben
wird.

Ausgehend von Annahme 4.7 und der Darstellung in Bild 4.2 beruht die folgende Idee zur Syn-
chronisierung darauf, jedem Agenten pro Ubertragungskanal ein identisches dynamisches Modell
vorzuschalten, welches eine gewiinschte Trajektorie im geschlossenen, synchronen Regelkreis er-
zeugt. Im Hinblick auf Satz 4.6 und der damit zusammenhéngenden Theorie zur Ausgangsrege-
lung (engl. output regulation theory, vgl. [95]) lisst sich dies durch Aufschaltung eines geeigneten
Eingangssignals u(¢) und die Wahl geeigneter Anfangswerte erreichen, wie mit folgendem Lem-
ma allgemein gezeigt werden soll.

Lemma 4.8. Betrachtet wird das steuer- und beobachtbare Zustandssystem X = Ax + Bu mit
der Ausgangsgleichung y = Cx, wobei x € R", x(ty) = xo, u € R™, y € R? und m > p ist. Es
ist moglich eine Vorsteuerung der Form

w=Sw, w() = w, 4.21a)
u=rTw, (4.21b)

mitw € R" zu entwerfen, wobei o (S) € (DO+ und die Matrizen I1 und I die sogenannten regulator
equations

1S = ATl + BT (4.222)
Cll=Q (4.22b)

losen, wenn das Zustandssystem rechts-invertierbar ist, die Nullstellen des Zustandssystems nicht
mit den Eigenwerten von S zusammenfallen sowie das Paar (Q,S) beobachtbar ist. Dariiber
hinaus existieren Anfangswerte w(toy) und x(to), so dass y(t) = Qw(t) fiirt > to gilt.

Beweis. Ohne Beschrinkung der Allgemeinheit kann angenommen werden, dass die Matrix S
in Jordan’scher Normalform vorliegt, da sich jede Matrix durch reguldre Transformation in diese
Form tiberfiihren ldsst. Dariiber hinaus ist es aufgrund der Linearitdt von (4.22) ausreichend, die
folgende Argumentation fiir einen 7ig-dimensionalen Jordan Kasten mit 7ig < ng zu betrachten,
da sich die fehlenden Gleichungen in gleicher Weise berechnen lassen. Bezeichnet daher As den
Eigenwert zu einem 7ig-dimensionalen Jordan Kasten der Matrix S, dann folgt mit (4.22), [T =

[[5 II,] und dim (bild (T15)) = iis fiiralle k € {1,....fis} aus (AI1z — IS + BT)ex = 0

A=isly B][Ma], _[0], , _,
c ol T [*FT o T
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bzw.

A—)usln B Hﬁs _ I—[ﬁsek_l
el =[] e

wobei hierbei ausgenutzt wurde, dass die Spaltenvektoren von ITj, Eigen- und Hauptvektoren der
Matrix S zum Eigenwert Ag darstellen.

Da das Zustandssystem als rechts-invertierbar angenommen wurde und dessen Nullstellen nicht
mit den Eigenwerten von .S zusammentfallen, hat die Matrix auf der linken Seite der Gleichung
fiir das Argument Ag stets vollen Zeilenrang. Damit kann die Gleichung fiir jedes k& und fiir jede
rechte Seite, die ungleich null ist, nach (e [ TI}  T'"[)" aufgelost werden, da fiir alle & aufgrund
der vollstindigen Beobachtbarkeit des Paares (Q,S) Qe; # 0 ist, woraus die Vorsteuerung (4.21)
folgt.

Um zu zeigen, dass Anfangswerte w(fy) und x(fy) existieren, so dass y(t) = Qw(z) firz > 1,
gilt, wird das Zustandssystems X = Ax + Bu mit der Ausgangsgleichung y = Cx um (4.21)
erweitert, woraus das erweiterte System

x| |4 BT||x x(t) | _ | xo

wl [0 S ||lw] |w)]| |wo
folgt. Wird beziiglich des erweiterten Systems der Unterraum bild ([HT 1, ,,S]T> betrachtet, so
folgt zusammen mit (4.22a) aus

b sl

dass der Unterraum invariant unter der Dynamik des erweiterten Gesamtsystems ist. Dariiber hin-
aus ldsst sich zusammen mit (4.22b) aus

© -l ]=s

schliefen, dass der Unterraum auch unbeobachtbar am Ausgang e = Cx — Qw ist, was y(t) =
Qw(r) fiir 1 > 1o impliziert, wenn [x] wg]T € span ([HT I,,S]T> ist. O

Mit Lemma 4.8 ist gezeigt, dass durch Verwendung einer Vorsteuerung nach (4.21) Ausgangstra-
jektorien y(¢) erzeugt werden konnen, die sich als Losung der Differentialgleichung (4.21a) mit
der Ausgangsgleichung y(#) = Qw(¢) ergeben, wenn die Anfangswerte des Zustandssystems und
des Trajektoriengenerators gemif [xg wOT]T € span ([HT InS]T) gewihlt werden. Um dieses
Ergebnis fiir die Synchronisierung heterogener Agenten nutzbar zu machen, muss das Vorgehen
noch weiter angepasst werden. Es wird daher angenommen, dass jeder Agent (4.16) Annahme 4.7

erfiillt und durch eine entkoppelnde dynamische Ausgangsriickfiihrung

Xeki = Aek; Xeki + Bek; Vi + Fee; Wi (4.23a)
Ui = Cek; Xeki + Dckiyi + Fck,P,' wi, (423b)
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die nach Satz 3.11 entworfen wurde, geregelt wird. Dies fiihrt dazu, dass beziiglich des Fiihrungs-
verhaltens von w; nach y; eine Minimalrealisierung angegeben werden kann. Das heift, die in
Satz 3.11 mit Ak, bezeichneten Eigenwerte des geschlossenen Regelkreises sind fiir alle Agenten
beziiglich w; unsteuerbar. Werden diese sdmtlich stabil gewihlt, treten diese Eigenbewegungen
asymptotisch nicht mehr in Erscheinung, und es ist ausreichend, beziiglich des Fiithrungsverhal-
tens die Minimalrealisierung

):éi = /I)Z, + éwi, (4.242)
yi=C% (4.24b)
T
mit dem Zustandsvektor ¥; = [)E,Tl . %fp] und
A = diag (Asnr,, - - -, Asnr,) (4.252)
B = diag (bsnr,, - - - Dsnr, ) » (4.25b)
C = diag (cgNF1 yeees CgNFl,) (4.25¢)

zu betrachten. Fiir die Indizes ist i,k € {l,...,N} sowie j € {l,...,p} und aufgrund An-
nahme 4.7 (A2) gilt der Zusammenhang dim (; j) = dim (X, ). Vereinfachend werden dariiber
hinaus die p entkoppelten Teilsysteme in Steuerungsnormalform (vgl. z.B. [28]) angesetzt, da
sich die charakteristischen Polynome jedes Teilsystems sehr einfach aus den Eigenwerten des
geschlossenen Regelkreises iiber den Zusammenhang ]_[‘j.":l(s — Akij) = $% + ag—,s571 +
---+ay,;s + ao, berechnen lassen. Zusitzlich ist aufgrund der geforderten stationiren Genauigkeit
ag; = Hff:l(—)qq,-) und damit ¢y, € R™ durch ¢y, = [ao, 0 ... 0] gegeben.

i

Wird dann fiir allei € {I,...,N}und j € {1,...,p} beziiglich jeder der p FithrungsgréBen eine
Vorsteuerung der Form

iij = SjZij, Zij(l()) = Zijys (4263.)
Wij = FjZl'j (426b)
mit z;; € R vorgeschaltet, wobei I' '; aus der Losung von

Hij = ASij Hj +bszij, (4.27a)
cone, 1 = 4" (4.27b)

bestimmt werden muss, dann lassen sich gemédl Lemma 4.8 Anfangswerte fiir alle Agenten und
(4.27) finden, so dass sich alle Ausginge synchron verhalten. Zur Sicherstellung, dass mit dem
Entkopplungsansatz stets auch asymptotische Synchronisierung erreicht wird, muss eine zusétz-
liche Regelung eingefiihrt werden. Die Kombination von (4.27) mit einem dynamischen Regler
in Anlehnung an das Vorgehen in Abschnitt 4.1.3 fithrt auf die allgemeine Darstellung eines syn-
chronisierenden Reglers in jedem Ubertragungskanal der Form

%5 S; Es [z ks
ij _ J Sj ij Sj P
. = + v, 4.28a
|:xSij:| |:O Asj] |:x5ij:| [st] ' ( )
i
w; = [T Gs,] [x””

XS;ij

]+Dsjvi, Vie{l,...NLVje{l, ... .ph (4.28b)
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woraus durch die abkiirzende Schreibweise einer Blockdiagonalmatrix, beispielhaft durch § =

diag (S Iy ovey S ,,) dargestellt, der synchronisierende Regler fiir alle entkoppelt geregelten Agen-
ten durch
4.7,‘ S ES Zj IES
= - ~ is 4.29
|:5CS,:| |:0 AS Xs; + BS vi ( a)
w; = [f és] [z" ] + Dgv;, Viefl,....N} (4.29b)
XS,-

folgt. Zur Bestimmung notwendiger und hinreichender Bedingungen, die Synchronisierung hete-
rogener Agenten mittels Entkopplung garantieren, wird auf die Ergebnisse aus Satz 4.2 und die
darauf basierende Diskussion in Abschnitt 4.1.3 zuriickgegriffen und auf die vorliegende Problem-
stellung angepasst. Dass auch bei der Synchronisierung heterogener Agenten durch Entkopplung
ein simultanes Stabilisierungsproblem entsteht, zeigt der nachfolgende Satz.

Satz 4.9. Betrachtet werden N heterogene Agenten wie in (4.16), die Annahme 4.7 erfiillen, zu-
sammen mit einem Kommunikationsnetzwerk, was durch den verbundenen Graphen G beschrieben
wird. Es seien dariiber hinaus die Rangannahmen in Satz 3.11 fiir alle Agenten erfiillt, so dass fiir
alle Agenten eine Entkopplungsregelung (4.23) existiert. Werden die beziiglich der Fiihrungsgrofie
w; unsteuerbaren Eigenwerte A, stabil gewdhlt und ist die synchronisierende Regelung (4.29)
fiir alle Agenten identisch, dann wird Synchronisierung fiir alle Agenten im Sinne von Definition
2.12 genau dann erreicht, wenn die Matrizen

ASNFj bSNFij bSNFjCSj bSNFj DSj
0 S; Es, |+hgk| ks [cSTNFj 0 o] , (4.30)
0 0 As. Bs.

7 ]

Vjiel{l,...,p},ke{2,...,N}

stabil sind, wobei A i mitk € {2, ..., N} die Eigenwerte mit positivem Realteil der Laplacema-
trix des Graphen G bezeichnet.

Beweis. Aufgrund der Voraussetzung, dass die Rangannahmen in Satz 3.11 fiir alle Agenten er-
fuillt sind, existiert fiir alle Agenten eine Entkopplungsregelung (4.23). Da die beziiglich der Fiih-
rungsgrofe w; unsteuerbaren Eigenwerte A, stabil zu wihlen sind und diese somit asymptotisch
nicht mehr in Erscheinung treten, kann fiir alle entkoppelt geregelten Agenten eine Minimalrea-
lisierung (4.24) bestimmt werden, die ohne Beschrinkung der Allgemeinheit aus p entkoppelten
Teilsystemen in Steuerungsnormalform besteht, woraus die Darstellung (4.25) folgt. Da aufgrund
von Annahme 4.7 die Differenzordnungen und Regelungseigenwerte aller Agenten identisch sind,
kann beziiglich des Fiihrungsverhaltens der erweiterte Agent

).Cei = Aexei + Beviv

Yi = CeXei,
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mit dem Zustandsvektor x.; = [)'clT z7 xg,_ ]T und den Systemmatrizen
A BT BCs B Ds
Ae=|0 § Es|. Bo=| K |. Ce=[coo}
0 0 Ag By

definiert werden, woraus das Gesamtsystem
xe = ((]N ® Ae) + (IN ® Be)(Lg &® Ce)) Xe

. T .
mit dem Zustandsvektor x, = [xg1 x;FN] entsteht. Dabei ist

D
dim (xer) = Y _ (8; + ns; + dim (xs,,)) = dim (xex) :=n.  Vik € {I..... N}
j=1

und damit dim (x.) = Nn.. Aufgrund der Struktur des geregelten Gesamtsystems, die sich be-
ziiglich des Fithrungsverhaltens als ein homogenes Multi-Agenten System darstellt, ldsst sich wie
in Abschnitt 4.1.1 mittels der neuen Koordinatendarstellung X. = 7 ~'x, und der Transformati-
onsmatrix T = (Vi , ® I,,) bzw. der inversen Transformationsmatrix 7! = (VL_Ql ® I,,,), wobei
VL, die Hauptvektormatrix von Lg darstellt, auf die neue Koordinatendarstellung

Xe= (Vi) ® 1) (N ® 4) + (In ® B)(Lg ® C.) (Vig ® In) e
= ((IN ® Ac) + (JLg ® BcCc)) )_Cc

iibergehen, woraus wieder ein simultanes Stabilisierungsproblem folgt, da die Matrix J, im All-
gemeinen eine obere Dreiecksmatrix ist. Damit folgt ebenfalls die Aussage des Satzes, da die
Stabilisierung von A + Apgk B.C. fiir k € {2,..., N} aufgrund der Blockdiagonalstruktur aller
Submatrizen in A, B. und C, auf die simultane Stabilisierung der p EingroBensysteme in (4.30)
fiihrt. O

Durch Satz 4.9 wird deutlich, dass mit einer unterlagerten Entkopplungsregelung, wobei die Agen-
ten (4.16) hierbei Annahme 4.7 erfiillen miissen, sich beziiglich des Fithrungsverhaltens eine iden-
tische Dynamik ergibt. Durch Vorschaltung des synchronisierenden Reglers (4.29) erhilt jeder
Agent ein identisches internes Modell, d.h. die notwendigen Bedingungen aus Satz 4.6 sind fiir
alle p entkoppelten Ubertragungspfade erfiillt. Mit den notwendigen und hinreichenden Bedin-
gungen aus Satz 4.9 kann somit konstruktiv die Regelung (4.29) entworfen werden, wobei sich
dabei als Vorteil ergibt, dass die Synchronisierung fiir jeden Ubertragungspfad ebenfalls entkop-
pelt entworfen werden kann. Dariiber hinaus ldsst sich iiber die Wahl der Matrizen S; bzw. q]T.
gezielt die synchrone Trajektorie in jedem Ausgang der Agenten einstellen.

Allerdings ergibt sich der Entwurf der synchronisierenden Regelung auch an dieser Stelle wieder
als ein strukturbeschriinktes Regelungsproblem, so dass im Allgemeinen ein Entwurfsverfahren
wie in Abschnitt 4.1.3 fiir jede Ausgangsgrofie anzuwenden ist. Dies ist allerdings leicht mog-
lich, da sich die Differentiale von (4.30) sehr einfach bestimmen lassen, was die Anwendung der
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Methodik zur Vorgabe von Eigenwertbereichen auf das vorliegende Problem ermdglicht. Dariiber
hinaus ergeben sich, obwohl das Vorgehen in diesem Abschnitt auf der Homogenisierung der
Agenten basiert, fiir die Agenten im Allgemeinen nicht-identische Regelgesetze, was durch Kom-
bination von (4.23) und (4.29) auf die Matrizen eines strukturbeschriinkten dynamischen Reglers

Aeki Fek,c,- f Fek,c,- éS Bek; 0
Ay=1]0 S Es |, B,=| 0 Ks]|,
0 0 AS 0 BS
Gy = [Cek; Fxp, T F ek.p; éS] ’ Dy = [Deki Fp, D S]

fiihrt. Das Signal ;(¢) ergibt sich aufgrund (4.18) aus ; (1) = [y:())" v (I)T]T. Damit zeigt sich
ebenfalls die Strukturbeschrinkung dieses Ansatzes, die durch die Methodik aus diesem Abschnitt
gezielt durch eine unterlagerte Entkopplungsregelung und einer Regelung zur Synchronisierung
homogener Agenten aufgelost werden kann.

Anmerkung 4.10. Durch Annahme 4.7 wird gefordert, dass die unterlagerte Entkopplungsrege-
lung allen Agenten eine identische, stabile und stationdir genaue Dynamik zuweist. Eine Alterna-
tive besteht darin, direkt in jedem Ubertragungspfad die Dynamik der Matrizen S; vorzugeben,
wie zum Beispiel in [40] dargestellt. Fiir die nominelle, entkoppelt geregelte Strecke ist dabei das
interne Modellprinzip erfiillt. Allerdings fiihren Abweichungen in den Daten von (4.16), die unter
praktischen Gesichtspunkten stets auftreten, dazu, dass das interne Modellprinzip nicht mehr er-
fiillt ist. Dies ist in diesem Ansatz nicht der Fall, da das interne Modell Bestandteil des Reglers
ist.

Zusammenfassend ist festzuhalten, dass mit den Ergebnissen aus diesem Abschnitt die Entkopp-
lung dynamischer Systeme auf die Synchronisierung heterogener agentenbasierter dynamischer
Systeme iibertragen wurde. Neben der Moglichkeit den synchronisierenden Regler fiir alle p
Ausgangsgrofien getrennt zu entwerfen, was vorteilhaft fiir die Komplexitit des resultierenden
Entwurfes ist, resultiert damit auch die Moglichkeit, die Dynamik des Synchronisierungsfeh-
lers in den entsprechenden Ausgangskanilen weitestgehend unabhingig voneinander einstellen
zu konnen. Durch das Verzichten auf diese Forderung lassen sich weitere Entwurfsverfahren zur
Synchronisierung heterogener Agenten anwenden, was im folgenden Abschnitt am Beispiel der
Verkopplungsregelung diskutiert wird.

4.2.3 Synchronisierung durch Verkopplung

Im vorangegangenen Abschnitt hat sich durch den Synchronisierungsansatz basierend auf einer
unterlagerten Entkopplungsregelung die Moglichkeit ergeben, die synchrone Trajektorie in jedem
Ausgang getrennt vorzugeben. Dariiber hinaus hat sich durch Satz 4.9 gezeigt, dass damit der Ent-
wurf der synchronisierenden Regelung individuell fiir jede Ausgangsgrofe durchfiihrbar ist. Im
Hinblick auf die geringere Anforderung, dass lediglich asymptotische Synchronisierung erzielt
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werden muss, ist dieser Ansatz vergleichsweise restriktiv und hinsichtlich der benotigten Regler-
ordnung meist zu komplex. Dies motiviert daher den Verzicht auf die unterlagerte Entkopplungs-
regelung und die Verwendung einer unterlagerten Verkopplungsregelung in diesem Abschnitt.

In Bild 4.3 ist die Idee der Synchronisierung durch Verkopplung veranschaulicht. Auch bei diesem
Ansatz wird jedem Agenten eine identische Vorsteuerung wie in (4.21) vorgeschaltet, die im syn-
chronen Zustand eine vorab festgelegte Trajektorie generiert und die um eine synchronisierende
Regelung ergénzt wird. Dies hat zur Folge, dass jeder Agent im offenen Regelkreis ein identisches
Modell aufweist, so dass die notwendigen Bedingungen zur Synchronisierung nach Satz 4.6 er-
fullt sind. Der Verkopplungsregelung kommt die Aufgabe zuteil, asymptotisch die Differenz zwi-
schen dem Ausgang des Agenten y; in (4.16) und dem Ausgang ys, = Qz; des Zustandssystems
z; = Sz; + v; mit z; € R™ und z;(ty) = z;,, welches gleichzeitig als dynamische Erweiterung
des Agenten (4.16) dient, zu null zu regeln. Daraus folgt die Forderung nach Verkopplung zu

tl_l)n;o Yit) — ys; (1) =2 py,(t) = 0. 4.31)

Dariiber hinaus soll beziiglich des Fiithrungsverhaltens des verkoppelt geregelten Systems nur noch
eine Dynamik in Erscheinung treten, die die Form

Zi = Szi + Rsw;i,  zi(to) = ziy, (4.32a)
ys; = 0z, (4.32b)

hat. Dies impliziert, dass durch die Verkopplungsregelung ebenfalls eine Homogenisierung aller
Agenten durchgefiihrt wird, so dass sich jeder Agent beziiglich des Netzwerks identisch verhlt.
Dabei ist zu diesem Zeitpunkt die Dimension der Eingangsmatrix Rg noch nicht festgelegt. Unter
der Voraussetzung, dass das Zustandssystem (4.32) iiber den Eingang w; vollstindig steuerbar
ist, ldsst sich eine synchronisierende Regelung in einfacher Weise durch die in Abschnitt 4.1.3
eingefiihrte Methodik berechnen.

Um Weitldufigkeiten im Hinblick auf den Entwurf der Verkopplungsregelung basierend auf der
Methodik aus Abschnitt 3.2.3 zu vermeiden, wird im Folgenden angenommen, dass jeder Agent
(4.16) die Bedingung nach Kimura (3.16) erfiillt. D.h. es ldsst sich mittels der parametrischen
Methodik aus Abschnitt 3.1.3 fiir jeden Agenten eine statische Riickfithrung #; = K;y; finden,

yi(S) _ GWZ(S) Gwilz(s) U)i(S)
P ()| 0 Gy () 0

Bild 4.3: Synchronisierung mittels Relativ- und Absolutinformation basierend auf einer un-

terlagerten Verkopplungsregelung
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so dass 0 (4; + B;K;C;) = Ag; mit nahezu beliebig vorgebbaren Regelungseigenwerten Ag;
gilt. Auch an dieser Stelle stellt dies keine Beschrinkung der Allgemeinheit dar, da mit einem
zusitzlichen dynamischen Ausgangsregler stets die Bedingung nach Kimura erfiillt werden kann.
Aus Griinden der Lesbarkeit der Ergebnisse in diesem Abschnitt wird auf die explizite Darstellung
dieses Ansatzes jedoch verzichtet.

Durch Zusammenfassen von (4.16) mit der dynamischen Erweiterung durch das Zustandssystem
= Sz; + ¥; und im Hinblick auf Lemma 4.8 lésst sich der erweiterte Zustandsvektor x,; =

Zi
[xI zI] € R"*"s definieren, woraus der erweiterte Agent

Xei = AciXei + Beillei, (4.33a)
Yi = CeiXeis (4.33b)

mit den Systemmatrizen

A; BT B; 0 G 0
Ae': ' Il’ Be': ' B Ce': '
o O B A R v

entsteht. Darin resultiert die Matrix I'; aus der Losung der Sylvester Gleichung
I1;S = A;11; + B;T;, (4.34a)
Gl = Q. (4.34b)

Die dynamische Erweiterung des Agenten hat auch an dieser Stelle zur Folge, dass im offenen
Regelkreis der invariante Unterraum bild ([HlT 1, nS]T) existiert, der unbeobachtbar am Verkopp-

lungsausgang y,, = [Ci —Q] Xe; ist, und es somit nach Lemma 4.8 moglich ist, Anfangswerte
zu bestimmen, so dass y;(t) = y;(¢) fur alle i,j € {1,..., N} gilt. Damit sind die notwendi-
gen Voraussetzungen zur Synchronisierung heterogener Agenten aus Satz 4.6 erfiillt. Mittels der
Methodik zum Entwurf einer Verkopplungsregelung aus Abschnitt 3.2.3 ist daher die Ausgangs-
regelung mit Vorfilter

Uej = [ﬁgi 122] |:J;:j| + |:11::i':| Wi = Keiyei + Feiwi (4.35)
derart auszulegen, dass neben der Einhaltung der Verkopplungsbedingung (4.31) und der Beibe-
haltung des invarianten Unterraums bild ([l’lf I ,,S]T> sich zudem fiir alle Agenten beziiglich des
Eingangs w; und des Ausgangs y; ein dynamisches Verhalten nach (4.32) ergibt, was die Homo-
genisierung der Agenten durch die Verkopplungsregelung zur Folge hat.

Zur Verdeutlichung der hierzu notwendigen Anpassungen der Methodik aus Abschnitt 3.2.3 ist zu-
néchst festzuhalten, dass die Rechtseigenvektoren des geschlossenen Regelkreises den Unterraum
bild ([H;r I,,S]T) erzeugen miissen. Damit ergibt sich, dass 8, = ng, und es resultiert ausgehend
von den Entwurfsgleichungen (3.57) zur Bestimmung der Rechtseigenvektoren des geschlossenen

Regelkreises die Bestimmungsgleichung

v
(Ai—hl) B B 07|
0 (S—dxD) 0 Lg|| | =0, ke{l.. 5. (4.36)
G _Q 0 0 Pvik
Pvok
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wobei {Aki, ..., Aks,} = 0 (S). Auf die Bestimmung der Rechtseigenvektoren durch Losung von
(4.36) kann jedoch verzichtet werden, indem auf die Losung I1; und I'; der Gleichung (4.34)
zuriickgegriffen wird. Unter der vereinfachenden Annahme, dass die Eigenwerte der Matrix S
einfach sind, lassen sich aus dem Zusammenhang S Vs = Vsdiag (Ak1, . .., Aks,) = VsAs, wobei
in Vs spaltenweise die Rechtseigenvektoren v, der Matrix S enthalten sind, unter Hinzunahme
von (4.34) die Zusammenhénge

;VsAs = A;I1; Vs + B;T; Vs,
GILiVs = OVs
berechnen. Spaltenweise ergibt sich damit
(Ai = A ) vsg + BiTivse = 0,
Cilljvsk — Qugk = 0.

Um sdmtliche Freiheitsgrade der parametrischen Entwurfsmethodik sichtbar zu machen, ldsst sich
die obige Darstellung durch Nullergéinzung gemif

(A4; = Axae DMvsg + BiTivse + (BiTi Q1 — BiTi Q1) Gue = 0,
(S = Ak Dvsk + (S — Ak 1) Q1 — (S — A 1) Q1) Gvk = 0,
CiTl;vsg — Qusk — QQ1Gwk = 0.

zusammen mit kern (Q) = bild (Q ;) modifizieren, was ebenfalls in die Darstellung

IT;v 0
(Ai — A1) B;T; B; 0 ljskSk 0. |
0 S — Akl 0 I =0,
( xi D) s 0 -T;0.1 [qvk]

C 2 0 0y (s—aDnoy

kefl,...8) Axeo(S)

tiberfiihrbar ist. Somit sind die ersten 6, Spalten der Matrizen V; und Q, bereits durch die L6-
sung der Matrizengleichung (4.34) zusammen mit der Matrix Q parametrierbar und auf den
Zugang iiber (4.36) kann verzichtet werden. Um den Unterraum bild ([HIT InS]T) Zu erzeu-
gen, ergibt sich aus den vorstehenden Umformungen zudem, dass die Parametervektoren ¢, fiir
k € {1,....8,} nicht belicbig wihlbar, sondern gemiB ¢%, = [1 g | zu wihlen sind. In dieser
Darstellung ist der Parametervektor g« beliebig wihlbar und charakterisiert die verbleibenden
Freiheitsgrade der parametrischen Entwurfsmethodik, sofern dim kern (Q) # 0 gilt.

Fiir die verbleibenden Rechtseigenvektoren ist anschliefend die Bestimmungsgleichung

UK,k
(A;i = Axx 1) BT B 0 ] UK,k
=0, kef{d,+1,....6,+p—1},
|: 0 (S _)\'Kkl) 0 Ins Pvik { r }
Dvsk

(4.37)
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beziehungsweise in analoger Weise die Bestimmungsgleichung fiir die verbleibenden Linkseigen-
vektoren (3.58) auszuwerten, wobei die Regelungseigenwerte stabil und derart zu wihlen sind,
dass die Rangannahmen in Satz 3.12 zur Bestimmung der Verkopplungsregelung erfiillt sind. Die
Koordinatentransformation

- -1 T
Si= VeVt Tul v = [WEVE T x

mit bild (7;;) = kern (Vg[) sowie TL T1; = I 4ne—s, Uberfiihrt damit in Anlehnung an die
Diskussion in Abschnitt 3.2.3 jeden geregelten Agenten in die Darstellung

i, S VsWs,i Ak -Tu] |:5€i,:| [Vs%‘,iBeiFei] -

-+ = o - |+ w;, (4.38a)
|:Xi2:| [0 T Ax, Ty Xi, T! B Fei !

[y,-] _ |:Q CiTJ_i:| [ii,} (4.38b)
Wi CoTyi| [ %]’

wobei Ag,, = Aei + BeiK.iCei und Cy; = [C,» fQ] abgekiirzt ist. Diese Darstellung des ver-
koppelt geregelten Systems verdeutlicht, dass die durch den parametrischen Ansatz stets zu ga-
rantierende Stabilitdt der Matrix TLAKC,. T, ; unter der Voraussetzung w; = 0 dafiir sorgt, dass
der Verkopplungsausgang gemif (4.31) verschwindet.

Fiir den Vorfilterentwurf ist daher im Sinne der Verkopplungsregelung aus Abschnitt 3.2.3 neben
der Unsteuerbarkeit der Eigenwerte Agy fiir k > &, dariiber hinaus zu fordern, dass sich beziiglich
des Ausgangs y; und des Eingangs w; eine Dynamik ergibt, die die Form (4.32) hat. Um dieses
Resultat zu erzielen, muss daher nicht nur der Ausdruck 7' Ei B.; F.; = 0 werden, sondern auch fiir
alle Agenten aus der Bestimmungsgleichung des Vorfilters

VsWs,i P; _ F.;
|: TL z] B.iF. = [Ol} & [Bei Vs.i Vs 1] [—1%1 =0 (4.39)

eine Matrix TF, existieren, so dass P;7Ty, = Rs und damit w; = Ty, w; gilt. D.h. die Bildrdume
der Matrizen P; haben eine gemeinsame, nicht-leere Schnittmenge, was die Homogenisierung der
Agenten zur Folge hat, und dies fiihrt zur Losung des Synchronisierungsproblems heterogener
Agenten basierend auf einer unterlagerten Verkopplungsregelung auf die nachfolgende Annahme.

Annahme 4.11. Es gilt bild (Rs) := ﬂi]\;lbild (P;) # @ und das Paar (S, Rs) ist steuerbar.

Unter dieser Annahme ist es moglich, eine identische synchronisierende Regelung geméif

).CS; = ASXS,- + BSUi (4403)
w; = Csxs; + Dsv;, Vied{l,...,N}, (4.40b)
fiir alle Agenten, die sich aufgrund von Annahme 4.11 in die Minimalrealisierung (4.32) iiberfiih-

ren lassen, zu verwenden. Das Resultat der vorstehenden Diskussionen ist in dem nachfolgenden
Satz zusammengefasst.
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Satz 4.12. Betrachtet werden N heterogene Agenten wie in (4.16), die Annahme 4.11 erfiillen, zu-
sammen mit einem Kommunikationsnetzwerk, was durch den verbundenen Graphen G beschrie-
ben wird. Es seien dariiber hinaus die Rangannahmen in Satz 3.12 fiir alle Agenten erfiillt, so
dass fiir alle Agenten eine Verkopplungsregelung (4.35) mit der Verkopplungsbedingung (4.31)
existiert. Werden die beziiglich der Fiihrungsgrofie w; unsteuerbaren Eigenwerte Ay fiir k > 8,
stabil gewdhlt und ist die synchronisierende Regelung (4.29) fiir alle Agenten identisch, dann wird
Synchronisierung fiir alle Agenten im Sinne von Definition 2.12 genau dann erreicht, wenn die

Matrizen
S RsCS RSDS
A 4.41
[0 58] [0 10 o @41)
Vk e{2,...,N}
stabil sind, wobei A i mitk € {2, ..., N} die Eigenwerte mit positivem Realteil der Laplacema-

trix des Graphen G bezeichnet.

Beweis. Aufgrund der Voraussetzung, dass die Rangannahmen in Satz 3.12 fiir alle Agenten er-
fiillt sind, existiert fiir alle Agenten eine Verkopplungsregelung (4.35) mit der Verkopplungsbe-
dingung (4.31). Da die beziiglich der Fiihrungsgrofe w; unsteuerbaren Eigenwerte Agy fiir k& > 8,
stabil zu wihlen sind und diese somit asymptotisch nicht mehr in Erscheinung treten, kann fiir
alle verkoppelt geregelten Agenten geméf (4.38) eine Minimalrealisierung bestimmt werden. Da
aufgrund von Annahme 4.11 das steuerbare Paar (S, Rs) in (4.32) existiert, folgt zusammen mit
(4.40) der steuer- und beobachtbare, geregelte Agent

Xei = AcXei + Bev;,
Yi = Cexei,

T
i

_ S RsGs | RsDs _
o 1) w0 oo n

. T .
mit dem Zustandsvektor x.; = [z xgi] und den Systemmatrizen

woraus das homogene Multi-Agenten System

xc = ((IN ® AL) + (IN ® Bc)(Lg ® Cc)) X

. T . . .
mit dem Zustandsvektor x, = [xCTl xCTN] entsteht. Die verbleibende Argumentation des
Beweises ist daher dquivalent zu der in Satz 4.9, woraus die Aussage des Satzes folgt. O

4.2.4 AbschlieBende Bemerkungen zur synchronen Zeitlosung

Dieser Abschnitt dient der abschlieBenden Betrachtung der in den vorstehenden Abschnitten er-
zielten Ergebnisse zur Synchronisierung heterogener agentenbasierter dynamischer Systeme. Aus-
gehend von den notwendigen Bedingungen zur Synchronisierung, die in Satz 4.6 zusammenge-
fasst sind, zeigt sich die folgende Eigenschaft der betrachteten Systemklasse. Unter der Annahme,
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dass eine synchronisierende Regelung — beispielsweise auf Grundlage einer unterlagerten Ent- be-
ziehungsweise Verkopplungsregelung bestimmt — vorliegt, synchronisieren sich alle Agenten auf
einen identischen Ausgangsverlauf yg(7), der sich damit als Zeitlosung des Exosystems

=S8z, z(t) =z, (4.42a)
ys = 0z, (4.42b)

mit geeignet gewihltem Anfangswert z, darstellen ldsst. Zur Erfiillung des internen Modellprin-
zips zur Synchronisierung nach Satz 4.6 besteht die zugrunde liegende Idee der vorgestellten Ent-
wurfsverfahren darin, ein Modell des Exosystems (4.42) in die Regelungsstruktur zu integrieren.
Dabei ist allerdings anzunehmen, dass jede Agentendynamik nicht bereits Teildynamiken von
(4.42) aufweist, da dies eine unnotige Redundanz nach sich zieht. Es ist daher konstruktiv fest-
zustellen, ob dieser Fall eintritt. Hierzu ldsst sich auf die Losung der Sylvester Gleichung mit
Nebenbedingung

;S = A;TI; + B;T; (4.432)
G = 0 (4.43b)

zuriickgreifen, die zur Berechnung der synchronisierenden Regelungen basierend auf den Ab-
schnitten 4.2.2 und 4.2.3 zu bestimmen ist. Dies fiihrt auf das nachfolgende Lemma.

Lemma 4.13. Wenn das Paar (I';,S) aus der Losung von (4.43) nicht vollstindig beobachtbar
ist, dann existiert mindestens ein Eigenwert A, mit Svs = A, Us, so dass ebenfalls A;jv = A,v mit

Civ = Qus erfiillt ist.

Beweis. Da das Paar (I';,S) nicht vollstindig beobachtbar ist, existiert mindestens ein A, € o (.S)
mit Svs = A,vs, und es gilt

S — A,
|: Fi* "S:|vs=0.

Da I1; und I'; aus der Losung von (4.43) zu bestimmen sind, ist nach Lemma 4.8 der Unterraum
T
bild ((I" 1,.]) invariant unter der Dynamik von

)2?,' _ A[ Bi F,’ Xi
17 Lo S z
und unbeobachtbar am Ausgang e = Cx; — Qz. Damit gilt

A=A, BT}

rang 0 S — Al <ni+ns, VYieo(S)
G -0
und somit auch fiir A = A,. Da (C;,4;) und (Q,S) beobachtbare Paare sind, impliziert dies, dass
ein v mit 4;v = A, existiert, so dass C;v = Quy erfiillt ist. O
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Mit Lemma 4.13 beziehungsweise ausgehend von der Uberpriifung der Beobachtbarkeit des Paa-
res (I';,S) ldsst sich daher konstruktiv iiberpriifen, ob der Agent bereits Teildynamiken enthilt,
die hinsichtlich der synchronen Trajektorie (4.42) gefordert sind. Tritt dieser Fall ein, ldsst sich
somit eine Minimalrealisierung beziiglich des ,,Ausganges* I'; bestimmen, woraus eine um die
unbeobachtbaren Elgenwerte reduzierte Zustandsraumdarstellung mit der Dynamikmatrix S und
der Ausgangsmatrix Q sowie einem reduzierten I'; resultiert, die fiir die Entwiirfe gemiB Satz 4.9
bzw. 4.12 zu beriicksichtigen sind. Dies umfasst ebenfalls den Fall I'; = 0, was bedeutet, dass der
Agent bereits die synchrone Trajektorie vollstdndig enthélt und somit nicht mehr geméfl Lemma
4.8 dynamisch erweitert werden muss.

4.3 Synchronisierung nichtlinearer Agenten mit Vektorrelativgrad
eins

Ausgehend von der Darstellung in Bild 4.1 wird in diesem Abschnitt eine spezielle Klasse von
Multi-Agenten Systemen betrachtet. In Abgrenzung zu den vorstehenden Abschnitten wird die
Dynamik nicht mehr als linear angenommen, sondern nichtlineare Agenten mit Vektorrelativgrad
eins betrachtet. Die Betrachtung dieser speziellen Systemklasse ist darin begriindet, dass nicht-
lineare Systeme mit Vektorrelativgrad eins und Lyapunov stabiler Nulldynamik riickgekoppelt
dquivalent zu einem passiven System sind [15]. Dariiber hinaus zeigt sich, dass Synchronisierung
passiver Systeme mit vergleichsweise einfachen Regelgesetzen durchfiihrbar ist [6, 19, 54].

Das grundsitzliche Vorgehen ist hingegen identisch zu Abschnitt 4.2 — durch eine unterlagerte
Riickfithrung wird jeder Agent beziiglich des Netzwerks homogenisiert und eine iiberlagerte syn-
chronisierende Regelung fiihrt die Ausgangstrajektorien der Agenten auf einen identischen Ver-
lauf. Dariiber hinaus wird angenommen, dass die Agenten parametrische Unsicherheiten aufwei-
sen, die in diesem Falle durch eine adaptive Regelung kompensiert werden, was der unterlagerten
Regelung entspricht. Der synchronisierende Regler nutzt ein Verfahren, das auf der Passivitit ba-
siert und welches auch die Erweiterung des Verfahrens auf spezielle Kommunikationsstrukturen,
die Zeitverzogerungen ausgesetzt sind, ermoglicht. Die in diesem Abschnitt erzielten Ergebnisse
sind ebenfalls in [112] in englischer Sprache zu finden.

4.3.1 \Voriiberlegungen zur betrachteten Systemklasse

Betrachtet werden zunichst nichtlineare, eingangs-affine Zustandssysteme geméf

X = f(x)+ g(x¥)u, (4.44a)
y = h(x), (4.44D)

wobei mit x € R”, u € R™ und y € R der Zustand, der Eingang und der Ausgang des Zustands-
systems bezeichnet wird. Zudem werden die Vektorfelder f(x) und g;(x) miti € {1,...,m} so-
wie die Ausgangsabbildung /(x) als hinreichend glatt angenommen. Zur Vereinfachung der nach-
folgenden Diskussionen werden ohne Beschriankung der Allgemeinheit die Annahmen f(0) = 0
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und /(0) = 0 getroffen. Im Hinblick auf die Passivititseigenschaft eines Zustandssystems (4.44)
wird die folgende Definition benétigt.

Definition 4.14 ([38]). Das Zustandssystem (4.44) ist passiv, wenn eine stetig differenzierbare
positiv semi-definite Funktion V(x) existiert, so dass

7= 20+ g S uTy. V(vw) € RY <R

gilt. Dariiber hinaus ist das Zustandssystem (4.44) strikt passiv, wenn V<u® y — S(x) fiir eine
positiv-definite Funktion S(x) ist, bzw. verlustlos, wenn V = uT y gilt.

Hinsichtlich der Moglichkeit, durch eine Zustandsriickfithrung wesentliche Eigenschaften von
(4.44) zu verindern, stellt sich die Frage, unter welchen Bedingungen ein System (4.44) durch
eine statische Zustandsriickfithrung dquivalent zu einem passiven System mit positiv definierter
Speicherfunktion ist. Hierbei spielt sowohl der relative Grad (vgl. z.B. [36]) eines Systems als
auch eine Normalform, die fiir die weiteren Betrachtungen benétigt wird, eine Rolle. D.h. es wird
eine neue Koordinatendarstellung fiir (4.44) gesucht, so dass sowohl die Passivitidtseigenschaften
als auch die interne Dynamik eines eingangs-affinen Zustandssystems sichtbar werden. Sind daher
nach [14] die Bedingungen

(A1) Die Matrix Lgh(x) := [Lglh(x) Lgmh(x)] ist reguldr fir alle x € R”", wobei
L, h(x) die Lie-Ableitung der Ausgangsfunktion (4.44b) in Richtung des Vektorfeldes
gi(x) bezeichnet.

(A2) Die Vektorfelder g(x), ..., &m(x) sind vollstindig (engl. complete), wobei

[61(x) ... gm(x)]=g)[Lgh(x)]"
ist.

(A3) Die Vektorfelder g (x), ..., &, (x) kommutieren.

erfiillt, dann existiert ein global definierter Diffeomorphismus, welcher (4.44) in die Normalform

A
zZ =

q(z.y) (4.452)
y=>b(z.y)+a(z,y)u (4.45b)

iiberfiihrt. Darin ist aufgrund des relativen Grades, was (A1) zum Ausdruck bringt, a(z,y) re-
guldr und mit z;(x), ..., z,—p(x) und den p Ausgingen y = /(x) sind die neuen Koordina-
ten festgelegt. Annahme (A2) ldsst sich gemél den Betrachtungen in [1, Abschnitt 3.9] dahin-
gehend interpretieren, dass der durch das Vektorfeld g;(x) induzierte Fluss ®,(x) = x(¢) mit
%d),(x) l/=0= &i(x) fiir alle # € R definiert und damit die Zeitlosung x () existiert und eindeu-
tig ist. Aufgrund der Annahme, dass die Vektorfelder g;(x) vollstidndig sind, folgt aus (A3), dass
die Fliisse der Vektorfelder g;(x) fur allei € {1,...,m} vertauschbar sind [1, Satz 36].
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Dariiber hinaus lésst sich aufgrund der Annahme, dass die Vektorfelder f(x) und g;(x) miti €
{1, ..., m} glatt sind, durch eine Taylor Entwicklung (4.45a) auch als

2=¢q(z,0)+ p(z.y)y (4.46)

schreiben, wobei p(z,y) damit ebenfalls eine glatte Funktion ist. Wird fiir (4.45) die nichtlineare
Zustandsriickfiihrung u = @~ (z,y) (v —b(z,y)) eingesetzt, dann ergibt sich die Nulldynamik des
Systems aus z = ¢(z,0) und y(zy) = 0. Zur Synchronisierung nichtlinearer Agenten, die sich in
die Normalform (4.45) tiberfiihren lassen, wird noch eine weitere Einschrénkung der betrachteten
Systemklasse benotigt. Dies umfasst nichtlineare Systeme, die schwach minimalphasig sind, was
die folgende Definition prazisiert.

Definition 4.15 ([15]). Angenommen, Lgh(0) ist regulir. Das Zustandssystem (4.45) wird als
global schwach minimalphasig bezeichnet, wenn eine C”-Funktion W(z) mit r > 2 existiert, die
fiir alle z mit W(0) = 0 definiert, positiv definit und proper ist, so dass

a(%/q(z,o) =0

fiir alle z gilt.

Mit der vorstehenden Definition ist die Minimalphasigkeit eines Systems an die Stabilititseigen-
schaften der Nulldynamik gekniipft. Ist daher eine Lyapunovfunktion W(z) fiir die Nulldynamik
bestimmit, ldsst sich auf Minimalphasigkeit des Zustandssystem (4.45) schlieen.

4.3.2 Passivitatsbasierte Synchronisierung

Zur Herleitung einer adaptiven, synchronisierenden Regelung fiir nichtlineare Agenten mit Vek-
torrelativgrad eins wird zunichst ein Verfahren aus der Literatur vorgestellt, welches die Synchro-
nisierung identischer nichtlinearer passiver Agenten ermoglicht. Hierzu wird auf die Ergebnisse
aus [17, 18] zuriickgegriffen, worin Chopra und Spong bzw. Chopra eine auf der Passivitit ba-
sierende kooperative Regelung vorstellen. Die vorstehenden Resultate werden auf eine modifi-
zierte Systemklasse nichtlinearer Agenten erweitert, was sich in parametrischen Unsicherheiten
der nichtlinearen Dynamik der Agenten ausdriickt. Die unterlagerte Regelung der Agenten ist in
diesem Sinne so auszulegen, dass die Unsicherheiten kompensiert werden, was auf den adaptiven
Anteil der Regelung fiihrt.

Fiir die weiteren Betrachtungen wird daher ein Multi-Agenten System, bestehend aus N nichtli-
nearen Agenten mit unsicherer Dynamik, die sich geméaf

z; = qi(2,0) + pi(zi,yi))yi + po,(zi.y:1) 0, (4.47a)
Vi = bi(zi,yi) + be; (zi.yi)0i, + ai(zi.yi)ui, (4.47b)
mit i € {1,..., N} darstellen lassen, betrachtet, wobei z; € R" ™4, y; € RY, u; € R? sowie

6;, € R”1 und 6;, € R”"2. Die Parameter ¢;, und 6;, sind in dieser Darstellung unbekannte, kon-
stante Vektoren, womit die parametrischen Unsicherheiten jedes Agenten zum Ausdruck kommen.
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Es wird weiterhin angenommen, dass alle Vektorfelder hinreichend glatt sind, und dass die Bedin-
gungen by, (0,0) = 0 und py, (0,0) = 0 erfiillt sind. Dies hat zur Folge, dass die Unsicherheiten
keine Anderung der Ruhelage von (4.47) zur Folge haben.

Gilt hingegen 6;, = Ound 6;, = 0 Vi € {1,--- N}, was der nominalen Dynamik der Agenten
in (4.47) entspricht, resultiert daraus die in [17, 18] angenommene Systemstruktur der Agenten.
Diese bildet somit den Ausgangspunkt fiir die Ergebnisse des Abschnitts, weshalb kurz die beno-
tigten Definitionen und Ergebnisse aus [17, 18] dargestellt werden. Die in Kapitel 2 eingefiihrte
Definition hinsichtlich Ausgangssynchronisierung ist ebenfalls im nichtlinearen Fall giiltig.

Definition 4.16 (Ausgangssynchronisierung, vgl. [17]). Betrachtet werden Multi-Agenten Systeme
mit N Agenten gemdf3 (4.47). Die Agenten erzielen Ausgangssynchronisierung, wenn

Jim i) —y;@0)| =0 Vi j=1....N (4.48)

erfiillt ist.

Die Ergebnisse dieses Abschnitts lassen sich in einfacher Weise auf spezielle Kommunikations-
netzwerke erweitern, bei denen die Kommunikation der Ausgénge mit Verzogerung erfasst wird,
was fiir praktische Problemstellungen von Wichtigkeit ist. Hierzu ist die vorstehende Definition
an die Problemstellung anzupassen, woraus die folgende modifizierte Definition folgt.

Definition 4.17 ([17, 18]). Betrachtet werden Multi-Agenten Systeme mit N Agenten gemdfs
(4.47). Die Agenten erzielen verzogerte Ausgangssynchronisierung, wenn

lim ‘
1—0o0

erfiillt ist.

i (t - T,.’;) - yj(z)H —0 Vi, j Vk. (4.49)

Auch hinsichtlich der vorstehenden Definition werden die Annahmen aus [17] beziiglich der Ver-
zogerungen iibernommen, d.h. die Verzogerungen werden als konstant und beschrankt angenom-
men. Da in Abhéngigkeit der Kommunikationsstruktur mehrere Pfade zwischen zwei Knoten
existieren konnen, wird mit Tl]j‘ die Verzogerung entlang des k-ten Pfades vom i-ten Agenten
zum j-en Agenten bezeichnet. Vorausgesetzt wird lediglich, dass die Verzogerung entlang einer
einzelnen Kante im Kommunikationsgraphen eindeutig ist. D.h. Zeitverzogerungen 7;; zwischen
benachbarten Agenten, was einem Pfad der Lédnge eins entpricht, sind eindeutig. In englischer
Sprache wird dies als one-hop transmission delay bezeichnet.

Im Hinblick auf die Definitionen beziiglich der Ausgangssynchronisierung nichtlinearer Agen-
ten lédsst sich die Problemstellung, die in diesem Abschnitt gelost wird, wie folgt zusammenfas-
sen: Ausgehend von der Systemdarstellung nichtlinearer, unsicherer Agenten in (4.47) wird ein
Multi-Agenten System aus N Agenten betrachtet. Fiir jeden Agenten ist ein synchronisierendes
Regelgesetz zu bestimmen, welches dazu fiihrt, dass sich alle Ausgéinge der Agenten im Sinne von
(4.48) im Fall ohne Verzogerung bzw. im Sinne von (4.49) im Fall mit Verzogerungen synchroni-
sieren. Hierzu wird das nachstehende Resultat benétigt, was die Synchronisierung von N Agenten
in (4.47) zur Folge hat, wenn lediglich die nominale Dynamik der Agenten beriicksichtigt wird.
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Satz 4.18 ([17]). Betrachtet werden Multi-Agenten Systeme mit N Agenten gemdf; (4.47), wobei
0;, = Ound 6;, = 0 fiirallei € {1,--- N} angenommen wird. Nutzt jeder Agent die Zustands-
riickfiihrung u; = a;y'(z;,y;) (vi — bi(zi,y:)) zusammen mit der kooperativen Regelung

N
vi =Y agij (v;(t = Tji) = yi) — (L oy Wi)' (4.50)
j=1

und sind alle Agenten global schwach minimalphasig sowie der Kommunikationsgraph stark ver-
bunden, dann synchronisieren sich alle Ausgdnge der Agenten im Sinne von (4.49).

4.3.3 Struktur des adaptiven Reglers

Zur Motivation der nachfolgend genutzten Regelungsstruktur sollen zunéchst einige Voriiberle-
gungen hinsichtlich der adaptiven Stabilisierung von Systemen der Form (4.47) angestellt werden.
Ein in der Literatur etabliertes Vorgehen zum Entwurf beruht dabei hiufig auf der certainty equi-
valence Eigenschaft [49, 106]. Dies bedeutet, dass zunéchst die Kenntnis der Parameter 6;, und 6;,
angenommen wird, und auf Grundlage dieser Annahme eine stabilisierende Regelung zu bestim-
men ist. Im Anschluss werden die Parameter 6;, sowie 6;, durch Schitzwerte é,», sowie éiz ersetzt
und die Dynamik der Schitzwerte so gewihlt, dass durch eine Lyapunov Funktion die Stabilitét
des Gesamtsystems folgt. Hierbei ist die Ableitung der Lyapunov Funktion typischerweise derart
zu wihlen, dass diese notwendigerweise negativ semi-definit und unabhingig von den unbekann-
ten Parametern ist. Mit diesem Vorgehen ist die Stabilitdt der Ruhelage gesichert und zusétzlich
existiert eine obere Schranke c¢ fiir den Schitzfehler, so dass H 60— @” < c gilt.

Dieses Vorgehen zur adaptiven Stabilisierung wird nun vor dem Hintergrund der Synchronisierung
unsicherer nichtlinearer Agenten diskutiert. Hierzu wird angenommen, dass die Agenten sich le-
diglich durch (4.47b) beschreiben lassen, d.h. keine interne Dynamik besitzen. Mit der Zustands-
riickfiihrung u; = ai_1 (zinyi) (i — bi(zi,yi) — by, (zi,yi)é,-z) ergibt sich fiir die Differentialglei-
chung des Ausgangs (4.47b) fiir jeden Agenten der Zusammenhang y; = bg, (z;,3i)(6;, —éiz) + ;.
Angenommen fiir den neuen Eingang der Agenten gilt v; = 0, was der Synchronisierung der Aus-
ginge entspricht. Dariiber hinaus ist aufgrund der adaptiven Regelung der Schitzfehler 6;, — é,-z
beschrinkt. Im Hinblick auf die notwendigen Bedingungen zur Synchronisierung nichtlinearer
Agenten in [125] und auf den angenommenen synchronen Verlauf der Ausginge muss daher eben-
falls y; = p; = O firallei,j € {1,--- ,N} erfiillt sein. Wird im Allgemeinen von 6;, — éiz #0
fiir den Schitzfehler ausgegangen, ist die notwendige Bedingung zur Synchronisierung nur zu
erfiillen, wenn bg, (z;,y;) = 0 gilt, was y; = O fiiralle/ € {1,--- ,N} und damit triviale Synchro-
nisierung bzw. Stabilisierung impliziert. Zur Vermeidung des eben beschriebenen Sachverhalts ist
es daher notwendig, einen exakten Schitzwert fiir den unbekannten Vektor 6;, durch geeignete
MaBnahmen zu erhalten.

Die adaptive Regelung in diesem Abschnitt nutzt daher das Immersions- und Invarianzprinzip
nach Astolfi, Karagiannis und Ortega [7] (engl. Immersion & Invariance, kurz 1&I approach), da
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mit diesem Ansatz weitreichende Moglichkeiten zur Verfiigung stehen, um einen exakten Schitz-
wert fiir §;, zu bestimmen. Zur kurzen Einfilhrung der dahinter stehenden Idee, wird die Mannig-
faltigkeit

M; = {(zi,yi,éil,éiz) e RMHPTP | 6 — 0 + B (ziyi) =0, j € {1,2}}

definiert, worin die Funktionen B;, (z;,y;) und B, (z;,;) zusitzliche Freiheitsgrade darstellen, um
die vorgenannte Problemstellung der Bestimmung eines exakten Schitzwerts zu 16sen. Dariiber
hinaus folgt fiir alle Agenten zusammen mit der Zustandsriickfithrung

ui = a;' (zi,3i) (—bi(zi.yi) + wy) (4.51)

auf der Mannigfaltigkeit M; die Darstellung

%= qi(z1.0) + piCziovi) i + o, zioyi) @iy + Biy), (4.52a)
i = be, (2. Biy + Bir) + w. (4.52b)
Vi=1,...,N.

Aus dieser Darstellung wird deutlich, dass auf der Mannigfaltigkeit M; die Dynamik der Agen-
ten vollstidndig bekannt ist und daher keine parametrischen Unsicherheiten mehr aufweist. Daraus
lasst sich schliefen, dass durch den adaptiven Reglerentwurf die Mannigfaltigkeit M; die In-
varianzeigenschaft als auch die Eigenschaft der Attraktivitidt aufweisen muss, um einen exakten
Schitzwert fiir 6;, zu bestimmen. Gelingt dies, dann fiihrt das Regelgesetz

R oW, T AW, R
w; = —bg, (2;,y:)(0:, + Bi,) — (gpi(zf,yi)) - 1/figpe,- (zi.y1) O, + Biy) + vi,
(4.53)

worin ¥; so gewihlt ist, dass ¥ y; = 1 fiir |y;| > 0 erfiillt ist, zur Stabilisierung der Ruhelage
(zi,yi) = (0,0) der Agenten, wie das nachfolgende Lemma zeigt.

Lemma 4.19. Betrachtet wird das dynamische System (4.52) auf der Mannigfaltigkeit M; zusam-
men mit dem Regelgesetz (4.53), wobei darin v; = 0 angenommen wird. Ist das Zustandssystem
global schwach minimalphasig, dann ist die Ruhelage (z;,y;) = (0,0) stabil im Sinne von Lyapu-
nov.

Beweis. Da das System (4.52) als global schwach minimalphasig angenommen wurde, existiert
aufgrund von Definition 4.15 eine positiv definite, radial unbeschriinkte C2-Funktion W;(z;), so
dass %—Zqi (z:,0) < 0 gilt. Wird die Lyapunov Funktion V;(z;,y;) = W;(z;) + % V7 y: angesetzt, so
folgt aus der zeitlichen Ableitung der Zusammenhang

W

V= ¥ (%’(Zi,o) + pi(zi.yi)yi + pe (20,900, + ﬂil))

+ 7 (ba,- 1) B, + Biy) + wi) ‘

Wird darin w; gemif (4.53) gewihlt und in die vorstehende Gleichung eingesetzt, folgt daraus
Vi = %—Tqi (z:,0) < 0, woraus die Aussage des Lemmas folgt. d
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An dieser Stelle ist zu betonen, dass die Aussage von Lemma 4.19 nur Giiltigkeit auf der Mannig-
faltigkeit M; besitzt. Dies verdeutlicht, dass M; die Eigenschaften der Invarianz und Attraktivitit
aufweisen muss, um das Regelgesetz (4.53) anwenden zu konnen. Um diese Eigenschaften zu er-
zeugen, lassen sich zundchst Fehlerkoordinaten beziiglich M; gemif

€, = éil =0, + Bi, (4.54a)
€, = 0, — 01, + B, (4.54b)

definieren. Durch zeitliche Ableitung von (4.54) entstehen die Differentialgleichungen fiir die
Fehlerkoordinaten aus

. Ao 0B i
€, =0 + 84-1 zZi + ayly’
ﬂ Bﬁlzy
iz a 3y,- is

worin die Ableitungen der Vektoren é,-l und éiz erscheinen. Zur Festlegung der Dynamik von é,»l

und é,—z ergibt sich im Hinblick auf die Dynamik jedes Agenten (4.47) die intuitive Wahl gemaf

X 8 i
9,'1 = IB ] |:(11(4170) + pi(zi,yi)yi + Do; (myl)(ezl + ,311 ]
- ‘3 [z B + i)+ ] (4550)
5 /3,
i, = 2 |:q,(z,,0) + pi(zi.yi)yi + D, (71,)11)(911 + ,311)]
a 12
— 8'8 2 [boi (z,;y,»)(@,-2 + Bi,) + w,} , (4.55b)
Vi
woraus fiir die Dynamik der Fehlerkoordinaten
. i 0, i
€, = ﬂ : ., Po (zi,yi)ei, — aiyfbei (zi.yi)€iss (4.56a)
. i 0, i
€, = ﬂ 2 e (zi,yi)en, — a/jfbe,- (zi, i€, (4.56b)

folgt. Anhand dieser Darstellung ist verdeutlicht, dass die Stabilitit der Fehlerkoordinaten (4.54)
entscheidend von der Wahl der Funktionen f;, und f3;, abhingt, was die Freiheitsgrade des Ver-
fahrens darstellt. Mit Ausnahme von Spezialfillen entsteht hiermit die Schwierigkeit, dass die
geeignete Wahl der Funktionen f;, und §;, auf die Losung einer partiellen Differentialgleichung
fuhrt, was im Rahmen dieser Arbeit nicht weiter untersucht wird. Nichtsdestotrotz ergibt sich im
Hinblick auf den Begriff der /&1 Stabilisierbarkeit (vgl. Theorem 3.1 und Theorem 3.2 in [7])
das nachfolgende, niitzliche Lemma fiir den Fall, dass geeignete Funktionen f;, und f;, bestimmt
wurden.

Lemma 4.20. Betrachtet wird das dynamische System (4.47) zusammen mit den Regelgesetzen
(4.51) und (4.53) sowie der Dynamik der Fehlerkoordinaten gemdf} (4.55). Zudem wird v; = 0
gewdhlt. Die Stabilisierung der Ruhelage (z;,y;) = (0,0) ist moglich, wenn die folgende Annahme
erfiillt ist:
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(BI) Es existieren Funktionen B;, : R" — R und B;, : R" — RP%2, so dass alle Trajektorien
des Systems (4.56) und

Zi = qi(2i,0) + pi(zi,yi)yi + po,(zi,yi)bi,,
Vi = be, (zi.yi) + wi(zi,i.6;, + €i,.6;, + €iy) (4.57)

beschrinkt sind und die Bedingung
Jim [w; (23,00, + €i1.00, + €6,) — wizi,9i.60;,,60,)] = 0 (4.58)

erfiillen.

Beweis. Nulladdition des Regelgesetzes w; (z;,y;.6;,.6;,) in Gleichung (4.57) zusammen mit (4.58)
ermoglicht Lemma 4.19 anzuwenden. Mit Annahme (B 1) lésst sich daher schlieen, dass alle Tra-
jektorien des geschlossenen Regelkreises (4.47), (4.51), (4.53) und (4.55) beschrinkt sind. O

Lemma 4.20 ldsst sich dahingehend interpretieren, dass sich der geschlossene Regelkreis sta-
bilisieren ldsst, falls es gelingt, asymptotisch das Regelgesetz w;(z;,;.6;,,6i,) zu verwenden,
was (4.58) und damit einer exakten Schitzung der unsicheren Parameter entspricht. Damit er-
gibt sich eine Art Separationsprinzip im Hinblick auf den adaptiven Reglerentwurf, da sich der
Entwurf der Funktionen f;, und B;, getrennt von der eigentlichen stabilisierenden Riickfiihrung
w;(z;,i,0:,,0;,) durchfithren lasst. Es ist lediglich zu fordern, dass die unbekannten Parameter
asymptotisch bekannt sind. Mit den vorstehenden Betrachtungen gelingt es im Folgenden, die
synchronisierende Regelung zu bestimmen, wobei zunéchst der Fall der Kommunikation ohne
Verzogerungen diskutiert wird.

4.3.4 Ausgangssynchronisierung
Ausgangssynchronisierung ohne Verzégerungen

Der auf dem Immersions- und Invarianzprinizip basierende Ansatz ermoglicht, eine adaptive Re-
gelung zur Kompensation parametrischer Unsicherheiten zu entwerfen, sofern geeignete Funktio-
nen f;, und f;, ermittelbar sind. Dieser Ansatz wird im Folgenden mit der synchronisierenden
Regelung in Satz 4.18 kombiniert. Wie der folgende Satz zeigt, gelingt durch diese Kombination
die Ausgangssynchronisierung der Agenten fiir den Fall, dass das Kommunikationsnetzwerk nicht
mit Verzogerungen behaftet ist.

Satz 4.21. Betrachtet werden N Agenten gemdif3 (4.47) zusammen mit den Regelgesetzen (4.51)
und (4.53) sowie der Dynamik der Fehlerkoordinaten gemdf} (4.55). Dariiber hinaus sind die
Agenten beziiglich v; gemdf} des Regelgesetzes (4.50) gekoppelt. Es wird zudem angenommen,
dass die Funktionen B;, und B;, so gewdhlt sind, dass die Annahme (B1) in Lemma 4.20 erfiillt
ist. Sind die Agenten global schwach minimalphasig, der Kommunikationsgraph verzogerungsfrei,
dh.esist T;j = 0 fiirallei,j € {1,... N}, sowie stark verbunden, dann ist das gesamte Multi-
Agenten System stabil im Sinne von Lyapunov und alle Ausginge synchronisieren sich im Sinne
von (2.14).
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Beweis. Da der Kommunikationsgraph stark verbunden ist, existiert aufgrund Lemma 2.5 ein Vek-
tor ¥ mit ausschlieBlich positiven Eintréigen, so dass yTLg = 0 gilt. Wird fiir jeden Agenten der
erweiterte Zustandsvektor

T ot a1 Al
Xej = [zi Vi 9 951]
definiert, dann folgt der Zustandsvektor des gesamten Multi-Agenten Systems aus
T
xe=[ )

Da die Trajektorien der Fehlerkoordinaten (4.56) als beschridnkt angenommen wurden, existiert
eine Lyapunov Funktion W, (€;, ,€;,.z;,»;) mit der Eigenschaft, dass Wei < 0 gilt. Als Lyapunov
Funktion fiir das Gesamtsystem wird die gewichtete, positiv definite Funktion

N
1
Vix) =Y (W[ + We, + Ey?y[) :

i=1
untersucht. Durch Berechnung der Zeitableitung entlang der Losungstrajektorien des geschlosse-
nen Regelkreises folgt daher

N

. W, :

V= E i (78 qi(zi,0) + We, + y,-Tvi>
i=1

N N
Z 8 W 21.0) + W + > aciyvi (v = yi)

j=1

An dieser Stelle ladsst sich die Argumentation des Beweises in [17, Theorem 2.1] nutzen. Es ist

1
i i =y =5 (=05 =) 0 =) = Gl = vjvi).
was den Zusammenhang

N BW N
V Zyl a ql(“lﬁo) + WE, (6115612) + Zlgl]yz (y] yl)

i=1 j=1
N
Z Zag,,(y, ) (i = i) Z%Zagu(yz Vi — yjy])
i=1 j=1 i=1 j=1

a 1

Y n Z agij (y; = y)' (v = 31) = 3y " Lg (YY)

i=1 j=1

N N

Z Zagij =)' (=) =0

zur Folge hat. Darin ist der Vektor YTY durch

Yy = [leyl ygTvyN]T
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gegeben, und es ist yTLg(YTY) = 0 aufgrund von Lemma 2.5. Damit ist die Zeitlosung von
(4.47) und (4.55) zusammen mit den Regelgesetzen (4.51), (4.53) und (4.50) stabil im Sinne von
Lyapunov, und alle Signale sind beschrinkt. Werden nun die Losungstrajektorien aus der Menge

V= {(Zi’yiséilveiz) € Rni+Pil+Pi2 | V = 0}
betrachtet, sind diese durch

aw; .
o €i(E0) =0, W =0, (3 —y)'(rj—y) =0
1

charakterisiert. Mittels des Invarianzprinzips von Lasalle [38] lédsst sich daraus schliefen, dass
alle beschriankten Losungen des geschlossenen Regelkreises in die grofite positiv invariante Teil-
menge der Menge V streben. Aufgrund der Eigenschaft, dass der zugrunde liegende Graph stark
verbunden ist, wird die Ausgangssynchronisierung der Agenten impliziert. ]

Ausgangssynchronisierung bei Verzégerungen

Die Erweiterung von Satz 4.21 auf den Fall, dass die Kommunikation der Agenten unter Verzo-
gerungen erfolgt, ldsst sich durch eine Modifikation der Lyapunov Funktion ebenfalls erreichen,
wie der nachfolgende Satz zeigt.

Satz 4.22. Betrachtet werden N Agenten gemdf} (4.47) zusammen mit den Regelgesetzen (4.51)
und (4.53) sowie der Dynamik der Fehlerkoordinaten gemdf} (4.55). Dariiber hinaus sind die
Agenten beziiglich v; gemdf} des Regelgesetzes (4.50) gekoppelt. Es wird zudem angenommen,
dass die Funktionen B;, und B;, so gewdhlt sind, dass die Annahme (B1) in Lemma 4.20 erfiillt ist.
Sind die Agenten global schwach minimalphasig und der Kommunikationsgraph stark verbunden,
dann ist das gesamte Multi-Agenten System stabil im Sinne von Lyapunov und alle Ausginge
synchronisieren sich im Sinne von (4.49).

Beweis. Der Beweis wird an dieser Stelle nur knapp skizziert, da sich die Argumentation in An-
lehnung an den Beweis von Satz 4.21 mit dem Unterschied in der Wahl der Lyapunov Funkti-
on ergibt. Aufgrund von Lemma 4.21 lisst sich ebenfalls der positive Vektor y zur Gewichtung
der einzelnen Lyapunov Funktionen der Agenten nutzen, was auf die gewichtete, positiv definite
Funktion

N

N N ‘
Ve =3y (W W+ ] y,) EDIED Y N CrTO

i=1 i=1 j=1 Tji

fiihrt, die ein Kandidat fiir eine Lyapunov Funktion des gesamten Multi-Agenten Systems ist.
Die Berechnung der zeitlichen Ableitung entlang der Losungstrajektorien des geregelten Systems
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fithrt dann auf

N
. W, .
V=>"vu (Tziqi(zi’o) + We (e, ,Eiz))

i=1

N N
+ Z Z viagij yi (vj(t — Tji) — yi)

i=1j=1
N N
"
+ 5’ > agii (] — yi =Tyt = Tj)) .
i=1 7 j=1

Auch an dieser Stelle ist es moglich, die Argumentation aus den Beweisen in [17, Theorem 3.1,
Theorem 3.2] zu iibernehmen. Mit dem Zusammenhang

29 (it =Tji) —yi) + (Vjyi —yj @ = Tj)y;(t = Tji))
=— i =T;) = y)" Wi = Tj) = y) — Wi vi—yj»))

folgt daher
N Vi N
V= =305 > (agy (it = Ti) = 30" 0yt = Tja) = o) + agi (5 vi = 53)
i=1 " j=1
N v N
i 2
= *Zfl Zagu‘ |y —Ti)—yi||” <o0.
i=1 j=1

Ausgehend von [17, Theorem 3.1] ldsst sich daher schlieen, dass das geregelte Multi-Agenten
System (4.47), (4.51), (4.53) und (4.55) stabil im Sinne von Lyapunov ist, und sich die Ausginge
aller Agenten y; im Sinne von (4.49) synchronisieren. ]

4.4 Entwurfsbeispiel

Zur Validierung und Veranschaulichung der theoretischen Ergebnisse aus Abschnitt 4.3 wird in
diesem Abschnitt ein akademisches Beispiel betrachtet und die entsprechenden Funktionen be-
stimmt. Hierzu wird das Beispiel aus [17] modifiziert und um parametrische Unsicherheiten er-
ginzt, was auf die Darstellung der Agenten geméf

Zi=—zi + (L +60;,)z7 i,

Vi=0+0,)y tu

Tas

Bild 4.4: Kommunikationsgraph fiir das akademische Simulationsbeispiel
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0,5 £
T 0[N
= 4
H —1 i
_0*5;‘ -2 ol ---Je2 =204 --- Uz
...... 3 1 e Y03 ’ s U3
—1 ! 4 U
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
tls tls tls

Bild 4.5: Simulationsergebnisse zur verzogerten Ausgangssynchronisierung von drei Agenten
basierend auf der adaptiven, synchronisierenden Regelung

fiihrt. Zu beachten ist dabei, dass die Agenten bereits in der Normalform (4.45) vorliegen, wenn

0;, = 6;, = 0 erfiillt ist. Dariiber hinaus ldsst sich mittels der Lyapunov Funktion W; = %zf
durch Bestimmung der zeitlichen Ableitungen in einfacher Weise zeigen, dass die interne Dyna-

mik global asymptotisch stabil und damit der Agent global minimalphasig ist.

Fiir Simulationszwecke werden im Folgenden N = 3 Agenten zugrunde gelegt und das in Bild
4.4 dargestellte, stark verbundene Kommunikationsnetzwerk genutzt. Die Elemente der Laplace-
matrix sind dabei zufillig gewihlt und ergeben sich fiir die numerische Simulation aus

1 0 -1
Lg = *3 8 -5
0 -3 3

Der positive Vektor y ergibt sich dann aus einer Eigenvektorberechnung und folgt ausgehend von
der vorstehenden Laplacematrix zu

y" =1[0,7252 0,2417 0,6447].

Die fiir die numerische Simulation angenommenen Zeitverzogerungen resultieren ebenfalls aus
einer zufélligen Wahl und sind fiir die Simulation gemifl 75; = 0,6 s, 712 = 0,7, T3, = 0,4 s
und 7>3 = 0,3 s gewihlt. Die Funktionen f;, und B;, folgen aus B;, = —X;1(yi + B2) + Ai2By
und B, = A;2f,, worin

z7, |z > 0,
B: = { L

0, sonst,

sign(y;) log(|yi),  |vil > 0,
ﬂy =
0, sonst

gilt. Die Parameter A;, und A;, stellen dabei zusitzliche Einstellparameter dar und erméoglichen
Einfluss auf die Konvergenz des Schitzfehlers zu nehmen. In diesem Beispiel ist die Wahl A;; =
0,01 und A;, = 1 fiir alle Agenten erfolgt. Dariiber hinaus ldsst sich mit der Lyapunov Funktion

We, = %(e,-l —e,)? + %6122 die Stabilitiit des Fehlersystems (4.56) fiir alle Agenten nachweisen.
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In Bild 4.5 sind die numerischen Simulationsergebnisse dargestellt. Von der linken zur rech-
ten Abbildung ist der Verlauf der Ausgangsgrofien, der Verlauf der kommunizierten Variablen
Yei = Z;=1 lgij ( yit =Tj) — y,-) sowie der Verlauf der StellgroBen u; aller Agenten darge-
stellt. Mit Blick auf den Zeitverlauf der Ausginge als auch auf die kommunizierten Variablen
lasst sich festhalten, dass sich alle Ausgénge synchronisieren. Als synchrone Trajektorie ergibt
sich dabei ein konstanter Wert, was somit gleichbedeutend mit dem Konsens der Agenten ist und
die theoretischen Ergebnisse in anschaulicher Weise darstellt.

4.5 Kurzzusammenfassung

Mit Kapitel 4 sind ausgehend von der Annahme, dass jeder Agent liber Absolutinformation zum
Entwurf einer unterlagerten Regelung verfiigt, Moglichkeiten aufgezeigt, die den Entwurf hete-
rogener Multi-Agenten Systeme erlauben. Hierbei ist die zugrunde liegende Idee, eine identische
synchronisierende Regelung fiir die Agenten zu nutzen, die sich aufgrund der unterlagerten Rege-
lung gegeniiber dem Netzwerk als homogene Agenten darstellen. Ausgangspunkt der synchroni-
sierenden Regelungen bilden dabei ein aus der Literatur entnommener LQR-Entwurf beziehungs-
weise eine Erweiterung der Methodik der Eigenwertbereichsvorgabe, da sich die Synchronisie-
rung homogener Agenten in ein simultanes Stabilisierungsproblem tiberfiihren ldsst.

Auf Grundlage der parametrischen Entwurfsmethodik aus Kapitel 3 ist es gelungen, die unterla-
gerten Regelungen fiir lineare heterogene Multi-Agenten Systeme sowohl mittels einer Entkopp-
lungs- als auch einer Verkopplungsregelung anzugeben. Dariiber hinaus ermoglicht die Ubertra-
gung der Idee dieses Ansatzes basierend auf Absolutinformation zusitzlich eine spezielle System-
klasse nichtlinearer Agenten zu entwerfen. Darin ergibt sich die Heterogenitit des Multi-Agenten
Systems aus den als konstant angenommenen Unsicherheiten der Agentendynamik, wobei fiir die
nominale Dynamik der Agenten Vektorrelativgrad eins sowie eine stabile Nulldynamik angenom-
men wurde. Mittels einer adaptiven Regelung gelingt es, die Unsicherheiten zu kompensieren und
ein auf der Passivitdt basierender Regler fithrt zum Konsens der Agenten. Damit sind in Kapi-
tel 4 nutzbringende Entwurfsmethodiken entwickelt worden, die sowohl auf homogene als auch
heterogene agentenbasierte dynamische Systeme anwendbar sind.
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5 Synchronisierung ausschlieBlich basierend
auf Relativinformation

Die Methodik zur Vorgabe von Eigenwertbereichen aus Abschnitt 3.3.1 bildet zusammen mit der
Systembeschreibung eines heterogenen Multi-Agenten Systems (2.12) den Ausgangspunkt fiir die
Betrachtungen in den nachfolgenden Abschnitten. In Abgrenzung zum vorangegangenen Kapitel
4 besteht hierbei, wie in Bild 5.1 angedeutet, fortan nicht mehr die Moglichkeit, Absolutinforma-
tion fiir den Regelungsentwurf jedes Agenten zu verwenden. Die Ergebnisse aus diesem Kapitel
konnen entsprechend als Erweiterung der Betrachtungen in Abschnitt 4.1 auf heterogene Agen-
ten gesehen werden, da dort zur Synchronisierung homogener Multi-Agenten Systeme ebenfalls
nicht Absolutinformation zur Bestimmung einer synchronisierenden Zustands- beziehungsweise
Ausgangsriickfithrung genutzt wurde. Allerdings wird sich zeigen, dass im heterogenen Fall ein
Entwurf der Regelgesetze der Agenten im Allgemeinen nicht mehr auf ein simultanes Stabilisie-
rungsproblem zuriickgefiihrt werden kann. Vielmehr ergibt sich dabei ein dezentrales Stabilisie-
rungsproblem, welches allerdings mit der Methodik aus Abschnitt 3.3.1 16sbar ist.

Zunichst ist daher Gegenstand der Betrachtungen, welche strukturellen Mafinahmen fiir die Re-
gelungen der einzelnen Agenten vorgenommen werden miissen, um Synchronisierung zu garan-
tieren. Hierbei ergeben sich Uberschneidungen zu den Betrachtungen in Abschnitt 4.2.1, da die
notwendigen Bedingungen zur Synchronisierung selbstverstindlich erfiillt sein miissen. Daraus
lassen sich durch eine Betrachtung des Gesamtsystems notwendige und hinreichende Bedingun-
gen zur Synchronisierung basierend auf der angegebenen Regelungsstruktur ableiten, die auf das
eingangs erwihnte dezentrale Stabilisierungsproblem fiihren. Basierend auf der Methodik zur Vor-
gabe von Eigenwertbereichen wird anschlieend diskutiert, wie sich konstruktiv die freien Para-
meter der verteilten Regler zur asymptotischen Synchronisierung bestimmen lassen und welche
Erweiterungsmoglichkeiten daraus resultieren. Die folgenden Ergebnisse sind ebenfalls den Pu-
blikationen [110, 113] zu entnehmen.

Betrachtet werden infolgedessen heterogene Multi-Agenten Systeme nach (2.12) und damit N
lineare steuer- und beobachtbare Agenten

X; = Aix; + Biu;, (5.1a)
i = Gix; (5.1b)

Regler zur Ui i
.. —> Agent
Synchronisierung @/v
w <

Bild 5.1: Strukturbild zur Synchronisierung lediglich mit Relativinformation

Vi
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miti € {1,...,N}, x; € R", u; € R™, y; € R? und m; > p sowie mit dem Anfangs-
wert x;(ty) = Xi. Die Matrizen 4;, B; und C; seien von passender Dimension, wobei darauf
hingewiesen wird, dass lediglich die Ausgangsdimension der Agenten als identisch vorausge-
setzt wird. Diese Voraussetzung resultiert aus praktischen Gesichtspunkten, da Synchronisierung
physikalisch gleichartiger GroBen in den meisten Anwendungen von Bedeutung ist. Durch die
Kommunikation der Agenten untereinander erfasst jeder Agent (5.1) die relativen Messgrofien

N
vi(t) = Zlgijj(f)~ (5.2)

Jj=1

Zusammenfassend ergibt sich die zu 16sende Problemstellung in diesem Kapitel wie folgt: Be-
trachtet wird ein heterogenes Multi-Agenten System bestehend aus N Agenten gemif (5.1).
Als minimale Anforderung an das Kommunikationsnetzwerk wird angenommen, dass der Graph
der Laplacematrix Lg einen Spannbaum enthélt. Ausgehend von den relativen Messgrofen jedes
Agenten (5.2) soll ein dynamisches Regelgesetz fiir jeden Agenten bestimmt werden, so dass sich
alle Ausgénge der Agenten y; im Sinne der Definition (2.14) synchronisieren. Dariiber hinaus ist
ein konstruktives Verfahren anzugeben, welches die geeignete Bestimmung der freien Reglerpa-
rameter ermoglicht.

5.1 Voriiberlegungen zur Regelungsstruktur

Zur Bestimmung notwendiger und hinreichender Bedingungen hinsichtlich der eingangs einge-
fithrten Problemstellung dieses Kapitels sollen zunéchst einige Voriiberlegungen zur verwendeten
Regelungsstruktur der Agenten angestellt werden. Hierzu wird in Ergédnzung zu den in Satz 4.6
eingefiihrten notwendigen Bedingungen der Begriff der System-Schnittmenge (engl. system inter-
section, vgl. [58]) eingefiihrt. Betrachtet werden dabei autonome Zustandssysteme gemif

X = Aixi,  xi(to) = Xio,
2,‘ .
vi =Gx,

wobei x; € R™, y; € R? ist, und dem virtuellen Referenzsystem

5 - {xs = Asxs,  xs(to) = Xso, (5.3)

ys = Csxs

mit xs € R™ sowie ys € RP. Dariiber hinaus gilt ng < n;, und es wird angenommen, dass
die Eigenwerte der Matrix As zur Vermeidung trivialer Synchronisierung sdmtlich nicht-negative
Realteile aufweisen. D.h. esist o (As) € Cg’. Dies fiihrt zur Definition der System-Schnittmenge:

Definition 5.1 ([58]). Die Zustandssysteme %1 und ¥, haben die System-Schnittmenge Xg (sym-
bolisch 1 N X, = Xg), wenn fiir jeden Anfangswert xsg € RS ebenfalls Anfangswerte x19 €
R™ und x50 € R"2 existieren, so dass die Zeitverliufe aller drei Ausgdnge identisch sind, d.h.
»1() = y2(t) = ys(0) fiirt = 10 gilt.
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Mit dem Begriff der System-Schnittmenge lésst sich nach Lunze (vgl. [58, Theorem 2]) die syn-
chrone Zeitlosung ys(¢) aller N Agenten charakterisieren. Diese ergibt gibt sich als gemeinsame
Schnittmenge iiber alle Agenten. Zur Vermeidung der Synchronisierung auf die triviale Trajektorie
ys(t) = 0 ist daher Xg = ﬂili 1 Zi # 9 zu fordern. Der Fall, dass die Agenten keine gemeinsame
Schnittmenge haben, d.h.es gilt ¥, NY¥; = @, Vi,j € {1,...,N},ist ebenfalls im Hinblick auf die
Untersuchungen zur Beobachtbarkeit heterogener Agenten in Lemma 2.11 interpretierbar. Sind
die Agenten beziiglich der relativen Ausginge beobachtbar, so ist die Stabilisierung des Systems
moglich, was der synchronen Trajektorie ys(#) = 0 entspricht, bzw. die gemeinsame Schnittmen-
ge der Agenten ist dann die leere Menge. Ist das Gesamtsystem allerdings beziiglich der relativen
Ausgiinge unbeobachtbar, dann existiert eine nicht-leere gemeinsame Schnittmenge der Agenten,
die sich aus den unbeobachtbaren Eigenbewegungen des Systems ergibt und damit die nicht-
triviale, synchrone Trajektorie festlegt. Die Uberpriifung der Beobachtbarkeit des Gesamtsystems
stellt damit eine konstruktive Moglichkeit zur Uberpriifung der System-Schnittmenge dar.

Wird dariiber hinaus gefordert, dass sich die Agenten asymptotisch auf eine vorab festgelegte
Trajektorie synchronisieren, muss diese Trajektorie eine Zeitlosung des virtuellen Referenzsys-
tems (5.3) sein und entsprechend in der System-Schnittmenge der Agenten enthalten sein. Ist
diese Bedingung nicht erfiillt, so ist jeder Agent geeignet dynamisch zu erweitern, was die Ein-
fithrung unbeobachtbarer Eigenbewegungen in das erweiterte Gesamtsystem notwendig macht.
Hierzu kann auf die Ergebnisse aus Lemma 4.8 zuriickgegriffen werden, was nachfolgend dis-
kutiert wird. Es wird zur Vereinfachung der Diskussion zunichst davon ausgegangen, dass die
System-Schnittmenge der Agenten (5.1) die leere Menge ist, dann ist es nach Lemma 4.8 unter
den Annahmen, dass der Agent (5.1) rechts-invertierbar ist, die Nullstellen von (5.1) nicht mit den
Eigenwerten von S zusammenfallen sowie das Paar (Q,S) beobachtbar ist, moglich, fiir jeden
Agenten (5.1) eine Vorsteuerung der Form

w; = Sw;,  w;i(t) = wio, (5.42)

u; = L'jw;, (5.4b)
zu entwerfen und Anfangswerte w;o und x;o zu bestimmen, so dass y; (1) = Qw;(¢) firt > to ist.
Wird dabei vorausgesetzt, dass o (S) € Cg und die Matrizen I1; und I'; Losungen der regulator
equations

I1;S = 4;11; + B;T; (5.5a)

G, =0 (5.5b)
sind, dann hat der Agent (5.1) aber auch einen Schnitt mit dem virtuellen Referenzsystem Xg,
wenn As = S und Cs = Q gewihlt wird. Dies folgt aus der Kombination von (5.1) mit (5.4)
zusammen mit dem Unterraum bild ([HlT 1 nS]T), der beziiglich des autonomen Zustandssystems

Xi| |4 Bili||xi xi(to) | _ | xio
|:u'),~:|_[0 S Hwi] [wi(fo)]_[wm]

invariant ist, was mit (5.5a) aus

Ai BT ||| |1 B
0 S ||l
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folgt. Dariiber hinaus ist der Unterraum am Ausgang e = y; — Qw; unbeobachtbar, da
I1:
ns

ist, was y; (1) = Qu;(¢) impliziert, wenn [x]) w;ro]T aus span ([HIT I,,S]T) gewiihlt wird. Aus-
gehend von den vorangegangenen Diskussionen ergibt sich daraus die nachfolgende Regelungs-

struktur zur Synchronisierung heterogener Agenten

w; N Edij| |:wi:| [Ks]
= + Vi, 5.6a
[Zi] {0 Agi]lzi By] " (-62)
W
uj = I Cdi][-’]—i-Ddivi, (5.6b)
Zj

worin der Reglerzustand w; als Vorsteuerung (5.4) im synchronen Zustand agiert, da in diesem
Fall v; = 0, und Ausgangssynchronisierung im Sinne von (2.14) dquivalent zu lim; o, v;(t) = 0
Vi € {1,...,N} ist. Dariiber hinaus ist Kg eine beliebige Ausgangsaufschaltung, die das Syn-
chronisierungsproblem homogener Agenten mit der Dynamik w; = Sw; + u,, und den kom-
munizierten Ausgingen (5.2) 16st. Zur Berechnung bietet sich beispielsweise das LQR-basierte
Verfahren aus Abschnitt 4.1.2 an. Zusitzlich wurde der synchronisierende Regler um einen dyna-
mischen Ausgangsregler mit dem Zustand z; ergénzt. Dies hat den Hintergrund, dass im Hinblick
auf das zu losende dezentrale Stabilisierungsproblem im Allgemeinen weitere Freiheitsgrade be-
ndtigt werden, um asymptotische Synchronisierung zu erreichen. Die Strukturbeschrinkung der
Regelung driickt sich darin aus, dass die Dynamikmatrix des Reglers eine obere Blockdreiecks-
matrix ist sowie die Matrizen S, Kg und I fest eingestellt sind. Die Matrizen Ay;, Bai, Cai, Dai
und Eyg; stellen die freien Reglerparameter dar. In den folgenden Abschnitten wird auf Grundlage
der Regelungsstruktur (5.6) eine notwendige und hinreichende Bedingung fiir die asymptotische
Synchronisierung und ein konstruktives Verfahren zur Bestimmung geeigneter Reglerparameter
hergeleitet.

5.2 Synchronisierungsbedingungen

Zur Bestimmung einer Bedingung, die auf asymptotische Synchronisierung fiihrt, ist eine Gesamt-
systembetrachtung anzustellen. Um die hierfiir benotigte Notation lesbarer zu gestalten, wird der
erweiterte Agent geméil

Xei = AeiXei + Beitti,  Xei(to) = Xeio» (5.7a)
Vi = CeiXei (5.7b)
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definiert, wobei fiir den Zustandsvektor x.; = [xlT wiT z,T] gilt, und die darin enthaltenen

Systemmatrizen ausgehend von (5.1) und (5.6) durch

A; BiIi B;iCy
Ai=1]0 S Eq |, (5.8a)
0 0 Agi
B; Dy;
B;=| Ks |, (5.8b)
By
Ci=[C 0 0] (5.8¢)
gegeben sind. Durch Zusammenfassen von N Agenten nach (5.8) entsteht der Zustandsvektor des
Gesamtsystems X = [xeTl, ey x;rN]T. DE Schreibweise (~) bezeichnet nachfolgend eine Block-
diagonalmatrix, d.h. es ist exemplarisch 4. = diag (A1, ..., 4en). Dann ergibt sich das gesamte

heterogene Multi-Agenten System zu

X = (Ze + B(Lg® Ip)ge) x,  Xx(to) = Xo, (5.9a)
v=(Lg® I,)Cex, (5.9b)

wobei x € R" und fiir die Systemordnung n = Zi]\;l(n,- + ng + nz;) mit n;, = dim(z;) gilt.
Um zu zeigen, dass ausgehend von der Wahl der Regelungsstruktur der Agenten in (5.6) stets eine
nicht-leere System-Schnittmenge existiert, wird das folgende Lemma formuliert.

Lemma 5.2. Betrachtet werden N Agenten gemdf3 (5.1) zusammen mit der Regelung (5.6), wo-
raus das heterogene Multi-Agenten System (5.9) entsteht. Es wird dariiber hinaus vorausgesetzt,
dass jeder Agent (5.1) die Annahmen in Lemma 4.8 erfiillt, so dass die Gleichungen (5.5) Vi €
{1...,N}losbar sind. Ist zusditzlich der Graph, der dem Kommunikationsnetzwerk zugrunde liegt,
verbunden, dann haben alle Agenten eine nicht-leere System-Schnittmenge, und es existiert ein
virtuelles Referenzsystem mit As = S und Cs = Q sowie Anfangswerte Xs(to) und X.;i(to)
Vi € {l...,N}, sodass die Zeitlosungen aller Ausgiinge (5.1b) identisch sind, d.h.

@ =...=yn@) = ys@0)

fiirt >ty gilt.

Beweis. Der Beweis erfolgt in zwei Schritten. Zunichst wird gezeigt, dass eine Koordinatentrans-
formation fiir jeden erweiterten Agenten existiert, die die Existenz einer nicht-leeren System-
Schnittmenge impliziert. AnschlieBend wird ein Unterraum des Gesamtsystems angegeben, der
invariant unter der Dynamik und unbeobachtbar am Ausgang von (5.9) ist, was die Existenz von
Anfangswerten x.;(¢p) impliziert, so dass y;(t) = ... = yn(¢) flir t > ¢ ist.

Aufgrund der Voraussetzung, dass jeder Agent (5.1) die Annahmen in Lemma 4.8 erfiillt, sind die
Gleichungen (5.5) losbar Vi € {1...,N} beziiglich IT; und I';. Mit der Aussage in [58, Theo-
rem 1] folgt, dass alle Agenten eine nicht-leere System-Schnittmenge besitzen, wenn regulire
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Matrizen T; existieren, so dass

As 0
—1 T — S
T AuT; [ 0 Api:| .

CaT; = [Cs Gyl

Vi € {1...,N} gilt, und worin die Matrizen A4, und C,; von passender Dimension sind. Um
die Matrizen T; zu bestimmen, wird zunéchst die Sylvestergleichung S¥; + E4 = X; g be-
trachtet, worin die Matrix X; zu bestimmen ist. Ausgehend von [35, Theorem 2.4.4.1] existiert
eine eindeutige Losung X; fiir beliebige E4; genau dann, wenn die Matrizen S und Ay keine
gemeinsamen Eigenwerte haben. Im Hinblick auf die Regelungsstruktur der Agenten (5.6) und
der Eigenschaft, dass im synchronen Zustand der Eingang der Agenten iiber die Zeitlosung von
(5.4) generiert wird, kann daher von ¢ (S) N o (A4;) = 9 ausgegangen werden. Ist daher X; die
eindeutige Losung der Gleichung S¥; + Eg = X;Aq; und wird 7; beziehungsweise Tfl fiir
jeden Agenten gemif3

m; I, ILY;
Ti=|ILs 0 % |,
0 0 I,
0 Ly -3
T7'=|1, -1, 0
0 I,

definiert, folgt daraus unter der Beriicksichtigung von (5.5) und (5.7) mit (5.8) der Zusammenhang

S 0 0
T7'AqTi= |0 A; BiCy+TLEg |,
0 0 Ay

CuT;i = [Q G QEi],
woraus durch die Wahl von Ag = S und Cs = Q der erste Teil der Argumentation folgt.
Fiir den zweiten Teil der Argumentation wird der Unterraum
S ={x e R"|x e bild (IT)} (5.10)
betrachtet, worin die Matrix IT durch
O=[0" I, 0 - MY I, 0] (5.11)

definiert ist. Ausgehend von den relativen Messgrofien aller Agenten (5.2) ergibt sich der relative
Ausgang des Gesamtsystems (5.9b). Gilt x € S, so folgt fiir den Ausgang in S, dass
v=(Lg® I,)C.I
=(Lg®I,)(Ix®[Q 0 0])
=(Lgly®[0Q 0 0])=0
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ist. D.h. der Unterraum S ist ausgangsnullend bzw. beziiglich v unbeobachtbar. Wird dariiber
hinaus die Dynamik des Gesamtsystems (5.9a) unter Beriicksichtigung von (5.8) betrachtet, so
folgt der Zusammenhang

(A + Bu(Lg ® I,)C) T = A.IT = 1S,

was beweist, dass der Unterraum invariant unter der Dynamik von (5.9a) und unbeobachtbar am
Ausgang (5.9b) ist. Aufgrund der Annahme, dass der Graph des Kommunikationsnetzwerks ver-
bunden ist, impliziert dies, dass die Zeitverldufe der Ausgénge y;(7) identisch fiir ¢ > 7, sind,
wenn x(f) € span (IT) gewihlt wird. d

Anmerkung 5.3. In [58, Theorem 1] ist formuliert, dass die Existenz reguliirer Matrizen T;, so
dass

As 0

T AT =
U [0 Api

] . GT =[G Gyl
Vi € {l...,N} gilt, eine notwendige und hinreichende Bedingung fiir eine nicht-leere System-
Schnittmenge ist. Wie das Beispiel der beiden Zustandssysteme

. 100 . 101
X1 = 0 A X1, X2 = 00 X2,
y=[1 1]x, y=[1 0]x

mit beliebigem A zeigt, ist die Bedingung lediglich hinreichend. Aus der Zeitlosung

y1(t) = x1,1(t0) + eMxl,Z(IO)-,
y2(t) = x2,1(to) + £ x2,2(t0)

mit den Anfangswerten x;(ty) = [x,-,l(to) Xi2 (1‘0)]T folgt, dass beide Ausgdnge synchron sind,
wenn X1,1(ty) = X2,1(to) # 0 und x5,1(to) = x2.2(ty) = 0 erfiillt ist. Damit besitzen beide
Zustandssysteme eine nicht-leere System-Schnittmenge mit dem virtuellen Referenzsystem Xs =
0-xs, ys = xs mit xs(to) = x1,1(to) = x2,1(to) # 0 im Sinne von Definition 5.1.

Durch die Wahl der Regelungsstruktur (5.6) ist mit Lemma 5.2 gezeigt, dass die notwendigen
Bedingungen in Satz 4.6 zur Synchronisierung heterogener Multi-Agenten Systeme erfiillt sind,
bzw. durch die Einfithrung des Begriffes der System-Schnittmenge alle Agenten einen gemeinsa-
men Schnitt aufweisen, der die synchrone Trajektorie der Agenten darstellt. Dieser Schnitt 1dsst
sich gleichermalfien als invarianter Unterraum des Gesamtsystems interpretieren, der zudem unbe-
obachtbar an den relativen Ausgéngen ist, was den Zusammenhang zur Beobachtbarkeitsanalyse
heterogener Agenten in Satz 2.11 herstellt.

Allerdings lésst sich ausgehend von dieser Diskussion noch nicht auf asymptotische Synchro-
nisierung schlieBen, da der Unterraum S zwar die Invarianz- und Ausgangsnullungseigenschaft
besitzt, nicht aber notwendigerweise attraktiv beziehungsweise im Sprachgebrauch der geometri-
schen Methode extern stabil ist [8]. Daher hingt asymptotische Synchronisierung entscheidend
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von der Wahl der freien Reglerparameter Aq;, Bqi, C4i, Dgi und Eg; in (5.6) ab. Zur Bestimmung
einer notwendigen und hinreichenden Bedingung hinsichtlich asymptotischer Synchronisierung
wird daher die Definition eines extern stabilen Unterraums benotigt. Betrachtet wird dabei eine
lineare Abbildung 4 : R" — R” und ein A-invarianter Unterraum V, ¥V C R” zusammen mit
einer Koordinatentransformation 7", so dass

7 - A~11 A~12
A=T7'4AT = ~ 12
|: 0 A22i| (5 )

gilt. Dabei ist A“ eine ixh-Matrix mit # = dim(V) [8, Theorem 3.2-1]. Der invariante Unterraum
wird als intern (extern) stabil bezeichnet, wenn die Matrix All (die Matrix A22) Hurwitz ist [8,
Definition 3.2-4].

Mit der Struktur der Matrix in (5.12) ist die Zeitlosung eines dynamischen Systems beziiglich ei-
nes invarianten Unterraums V sehr einfach zu charakterisieren. Durch Uberfiihrung in die Block-
dreiecksstruktur zerfillt die Dynamik des Unterraums in das Zeitverhalten im Unterraum, was in
den entsprechenden Koordinaten der Matrix A;; entspricht. Die Eigenwerte der Matrix 4,, be-
stimmen die Attraktivitdt von V. Ist A,; stabil, dann ist V attraktiv, d.h. asymptotisch streben alle
Zeitlosungen in den Unterraum V hinein. Dieser Sachverhalt ist daher Gegenstand des nachfol-
genden Satzes, der die Attraktivitit eines Unterraums mit der asymptotischen Synchronisierung
in Verbindung bringt.

Satz 5.4. Betrachtet werden N Agenten gemdf3 (5.1) zusammen mit der Regelung (5.6), wo-
raus das heterogene Multi-Agenten System (5.9) entsteht. Es wird dariiber hinaus vorausgesetzt,
dass jeder Agent (5.1) die Annahmen in Lemma 4.8 erfiillt, so dass die Gleichungen (5.5) Vi €
{1...,N} losbar sind. Ist der Graph, der dem Kommunikationsnetzwerk zugrunde liegt, verbun-
den, dann synchronisieren sich die Ausgdnge der Agenten asymptotisch im Sinne von (2.14) genau
dann, wenn der Unterraum S in (5.10) extern stabil ist bzw. attraktiv ist.

Beweis. Zur Bestimmung einer geeigneten Koordinatentransformation, die die Systemmatrix von
(5.9a) in die Struktur (5.12) iiberfiihrt, wird eine Matrix 7, mit orthogonalen Spalten bestimmt, so
dass TI"7, = Ound TZT T, = I,y gilt. Da die Matrix IT aufgrund ihrer Definition in (5.11) vollen
Spaltenrang hat, ist die Matrix 7" = [H Tz] eine reguldre Matrix. Links- und Rechtsmultipli-
kation der Systemmatrix in (5.9a) mit 7~! bzw. T fiihrt auf den transformierten Zustandsvektor
X = T~ 'x und auf das transformierte System

X=T" (4 + B(Lg ® 1,)C.) T%.

S % )
- [0 7 (e + Be(Lg ® I,)C.) Tz] * (5.13)

wobei das Symbol * darauf hindeutet, dass die damit ausgeblendete Matrix keinerlei Einfluss auf
die nachfolgende Argumentation mehr hat. Aufgrund der resultierenden Struktur, die identisch zu
(5.12) ist, sowie aufgrund der Annahme, dass der zugrunde liegende Graph des Kommunikations-
netzwerks verbunden ist, konvergiert der Ausgang

v=[0 (Lg®1I,)C.T>]%
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Fry (Ax) =0 b

Bild 5.2: Hyperbel basierend auf der Parametrierung Fy (A ) zur Begrenzung des Bereiches

der Eigenwerte von A,

genau dann zu null, wenn die Matrix
Ar, = TF (Ac + Bo(Lg ® 1,)C.) Ts (5.14)
Hurwitz, bzw. der invariante Unterraum S definiert durch (5.10) und (5.11) extern stabil ist. [

Anmerkung 5.5. Die in Abschnitt 4.2.4 diskutierten Sachverhalte gelten fiir die Ergebnisse in
diesem Kapitel analog. Enthdlt daher ein Agent bereits Teildynamiken, die hinsichtlich der syn-
chronen Zeitlosung beziehungsweise hinsichtlich des virtuellen Referenzsystems in (5.3) gefordert
sind, ist eine Minimalrealisierung beziiglich des ,,Ausganges* T'; zu bestimmen. Dies fiihrt auf
Matrizen reduzierter Ordnung S', l:i, 165 und lt:di, die in (5.6) zu beriicksichtigen sind. Neben
einer Reduzierung der benotigten Reglerordnung ist mit den Betrachtungen aus Abschnitt 4.2.4
dariiber hinaus eine einfache Moglichkeit gegeben, um die System-Schnittmenge der Agenten mit
dem virtuellen Referenzsystem zu bestimmen, wenn dieses gezielt vorgegeben werden soll.

Zusammenfassend ldsst sich durch die Aussagen von Lemma 5.2 und Satz 5.4 festhalten, dass
die Wahl der strukturbeschrinkten Regelung der Agenten (5.6) dazu fiihrt, dass der invariante und
unbeobachtbare Unterraum (5.10) existiert und die synchrone Zeitlosung der erweiterten Agenten
(5.7) festlegt. Dartiber hinaus ist die notwendige und hinreichende Bedingung, die asymptotische
Synchronisierung der Agenten bzw. das Konvergieren der Zeitlosung in den Unterraum S garan-
tiert, durch die Stabilitédt der Matrix (5.14) gegeben. Mit der in Abschnitt 3.3.1 eingefiihrten Me-
thodik zur Vorgabe von Eigenwertbereichen steht ein Entwurfsverfahren zur Verfiigung, welches
die konstruktive Bestimmung der freien Reglerparameter in (5.6) ermoglicht und zudem Einfluss-
moglichkeiten auf die Lage der Eigenwerte der Matrix (5.14) bereit stellt. Das Vorgehen wird im
nachfolgenden Abschnitt diskutiert.
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Im Hinblick auf die Resultate im vorangegangenen Abschnitt héngt die asymptotische Synchro-
nisierung heterogener Agenten (5.1), die die Regelung (5.6) verwenden, entscheidend von der
Stabilitdt der Matrix in (5.14) und damit von der Lage der Eigenwert von Ar, ab. Die Lage der
Eigenwerte lésst sich tiber die Wahl der freien Reglerparameter in (5.6) beeinflussen, was in die-
sem Abschnitt genutzt wird, um diese in die bereits in Abschnitt 3.3.1 eingefiihrten Bereiche der
komplexen Ebene zu verschieben. Die anschauliche Darstellung des Vorgehens erfolgt an der in
Bild 5.2 dargestellten Hyperbel, die den Bereich der Regelungseigenwerte nach rechts begrenzt.
Zur Losung des Entwurfsproblems wird ebenfalls ein Min-Max Optimierungsproblem formuliert,
was mit der Methodik aus Abschnitt 3.3.2 zu 16sen ist. Hierzu wird in Anlehnung an die Definition
des Eigenwertbereichs (3.64) die Parametrierung der Hyperbel

Fity () = Re(he) + 5/ Im(31)? + b2 (5.15)

betrachtet, wobei als Argument die Eigenwerte Ay der Matrix Ar, dienen und fiir den Zihlin-
dex k € {1,,...,n — ng} gilt. Wie bereits in Abschnitt 3.3.1 diskutiert, ldsst sich der Bereich
an die Anforderungen des Synchronisierungsvorgangs anpassen, indem die Parameter ¢ > 0 und
b > 0 geeignet vorgegeben werden. Hinsichtlich der Darstellung in Bild 5.2 ist die Mindestdy-
namik iiber den Parameter ¢ zu beeinflussen, wihrend tiber den Zusammenhang » = atan(y)
die Mindestdampfung der Regelungseigenwerte eingestellt wird. Dariiber hinaus ist die Parame-
trierung in (5.15) derart gewihlt, dass positive Funktionswerte von Fj (Ax) auf einen auBerhalb
des Bereiches liegenden Eigenwert hindeuten. Negative Werte von Fj (Ax) kennzeichnen entspre-
chend einen innerhalb des vorgegebenen Bereiches liegenden Eigenwert A;. Durch Einfithrung
der quadratischen Straffunktion

£%, wenn¢ >0,

p©) = { (5.16)

0, wenn{ <0,

folgen daher die mittels des Optimierungsverfahrens zu minimierenden Giitefunktionen

Je(x) = p(Fuy (Ax)),

so dass alle Eigenwerte der Matrix Ar, in den durch (5.15) definierten Bereich zum Liegen kom-
men. Da die Eigenwerte einer Matrix implizite Funktionen der Eintrige der Matrix sind, ergibt
sich, dass Ay entsprechend eine Funktion der freien Reglerparamter in (5.6) ist. Die freien Para-
meter aller N Regler werden im Vektor der Optimierungsvariablen £ = [ST g]T\,]T zusam-
mengefasst, wobei sich fiir jeden Regler in (5.6) der Zusammenhang

& = [vec(Aa) " vee(Cap) " vec(Eq) " vee(Ba) " vee(Da)']'

ergibt. Zusammen mit der Indexmenge ¢, die durch ¢ := {1,...,n — ny} gegeben ist, sowie
ausgehend von den Betrachtungen in diesem Abschnitt, dass fj eine implizite Funktion der Opti-
mierungsvariablen £ ist, wird das unbeschriankte Min-Max Optimierungsproblem

msin max Ji (&) (5.17)
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formuliert, um die Eigenwerte der Matrix (5.14) in den durch (5.15) parametrierten Bereich der
offenen linken komplexen Zahlenebene zu verschieben, was Ausgangssynchronisierung im Sinne
von (2.14) zur Folge hat.

Auch an dieser Stelle haben die Betrachtungen in Abschnitt 3.3.1 beziehungsweise die Aussage
von Satz 3.13 Giiltigkeit beziiglich des im Allgemeinen nicht konvexen Optimierungsproblems
(5.17). Daher fiihrt die Verwendung gradientenbasierter, lokaler Optimierungsverfahren, wie die
in Abschnitt 3.3.2 dargestellte Methodik, stets auf lokale Minima, so dass keine Aussage tiber
das globale Minimum von (5.17) zu treffen ist. Zur Losung des Optimierungsproblems sind daher
typischerweise mehrere Startwerte fiir die Optimierungsaufgabe vorzusehen. Dariiber hinaus ist
im Hinblick auf Satz 3.13 das Verhalten der Eigenwerte A; der Matrix Az, entscheidend fiir
das Optimierungsverfahren. Es wird daher angenommen, dass fiir alle £ die Regelungseigenwerte
einfach sind, was die Differenzierbarkeit der Eigenwertfunktion und damit ebenfalls von f;(Ax)
zur Folge hat.

Berechnung der Gradienten

AbschlieBend wird das Vorgehen zur Bestimmung des Gradienten V fj skizziert. Auch an dieser
Stelle vereinfacht sich die Darstellung, wenn statt der Berechnung aller partieller Ableitungen das
Differential d f; (&) betrachtet wird, da sich iiber den Zusammenhang d fz (§) = V fx(§)d§ eine
eineindeutige Beziehung zwischen Differential und Gradient ergibt [63, Theorem 5.6]. Zusammen
mit Satz 3.13 bzw. (5.15) und (5.16) ldsst sich

dfk = 2/ p(Fi(At)) dFy,

awy, déx
dFe = [1 bvw,%+b2} {dwk]

-1
dfi =2V p(Fr (M) |:1 aw (b,/wi + bz) ] |:§f)];i| , (5.18)

berechnen, wobei dé; = Re(dAg) und dwy = Im(dAg) abgekiirzt wurde. Mit Satz B.12 folgt
zudem

und

wl(dAz,)v
dig = M _ (wzvk)—l (UIE ® wz) vec(dAr,). (5.19)
W Vg
wobei v; und wz die Rechts- und Linkseigenvektoren zum Eigenwert A der Matrix Az, kenn-
zeichnen. Aufgrund der Struktur der Matrix Ar, in (5.14) ist die Berechnung der Jacobi Matrix
DATr,, so dass vec(dAr,) = (DAr,)d§ gilt, einfach moglich, wenn zunichst iiber (5.8) die Zu-

sammenhinge

0 0 B;dCy B;dDy;
dAe[ = 0 0 dEdi 5 dBe[ = 0
0 0 dAg dBy;
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betrachtet werden, woraus mit Hilfe des Vektorisierungsoperators

o 0 0 B; 0 0 vec(dAq;)
vec(d4.) = 0 [®@[ 0], |0 |®|0]. |0 |®I vec(dCy) |,
]”Zi Inzi In:l. 0 [”Si 0 VeC(dEd,')
(5.20a)
= (DA4) &),
i 0 B;
vec(dBy;)
B.)=|1 1 2
vec(dBe;) »p®[ 0 [, [,®]|0 |:vec(dDd,») . (5.20b)
L.,
= (DB.) &,

folgt. Aufgrund der Blockdiagonalstruktur der Matrizen Z; und l’i in (5.14) und mit Hilfe der
Auswahlmatrizen L 4,;, R4,;, L, und Rp,, die

ei ei *

LYy AR4, = Aq
LY B.Rp, = B

erfiillen, setzt sich die Jacobi Matrix D A7, unter Beriicksichtigung von (5.20) spaltenweise aus
Matrizen der Form

DAY :=[(R4, ® La,) DAet) (Rp, ® CNLE® I,)L3,) (DBe)]
gemail
DAg, == (T] ® T) [DA‘T‘; DA(T’ZV)] (5.21)

zusammen. Das Einsetzen von (5.21) in (5.19) mit anschlieBendem Einsetzen in (5.18) ergibt dann
den gesuchten Ausdruck fiir den Gradienten V f (£).

5.4 Hinzunahme weiterer Giitekriterien

Durch Formulierung des Synchronisierungsproblems heterogener Agenten als strukturbeschrank-
ten dezentralen Reglerentwurf am Gesamtsystem, welcher im vorangegangen Abschnitt disku-
tiert wurde, ist die wesentliche Aufgabe des Optimierungsproblems (5.17) die Stabilisierung der
Matrix Az, bzw. die Verschiebung der ihr zugeordneten Eigenwerte Ay in den durch (5.15) pa-
rametrierten Bereich der offenen linken komplexen Zahlenebene. Aufgrund der Definition der
Straffunktion (5.16) in der Optimierungsaufgabe bricht das Verfahren in jedem Fall ab, wenn alle
Eigenwerte in dem vorgegebenen Bereich zum Liegen kommen. In diesem Fall besteht die Mog-
lichkeit, weitere Anforderungen an den Synchronisierungsprozess zu formulieren, indem ausge-
hend von (5.13) fiir das System

% =T (A + BLg ® [,)C.) Tr%a,  %allty) = %, (5.22)
v=(Lg ® I,)C.Thi, (5.22b)
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gezielt weitere Kenngroflen minimiert werden. Auch fiir diese Entwurfsaufgabe ist eine Moglich-
keit, das in Abschnitt 3.3.3 skizzierte Vorgehen zur Uberfiihrung des nichtlinearen Optimierungs-
problems mit Nebenbedingung

msin J*E) (5.23a)
uB.v. fix(§) <0, ke{l,...,n—ns} (5.23b)
durch Definition der Funktionen

JXE)Jc*, i =1,

fi€) = {fk(é)/c‘x, ief2,...n—ns+ 1}, k=i-1

und unter der Voraussetzung, dass bereits ein zuldssiger Wert £ fiir das Optimierungsproblem
(5.17) vorliegt, in das Min-Max-Optimierungsproblem

mgn max f;(£) (5.24)
ieq

mit der modifizierten Indexmenge ¢ = {1, ... ,n —ngs + 1} zu iiberfithren, wobei fiir die Vorgabe-
werte ¢* > J*, 0 < ¢ < | angenommen wird und zur Losung von (5.24) ein Abstiegsverfahren
genutzt wird. Dies ermoglicht ein zweistufiger Prozess, wobei zunéchst durch Losung von (5.17)
ein zuldssiger Wert fiir (5.23) zu bestimmen ist. Im zweiten Schritt entstehen durch die Veridnde-
rung der Eigenwerte von Ar, im vorgegebenen Bereich der komplexen Ebene zusitzliche Frei-
heitsgrade, die gezielt fiir weitere Verbesserungen des dynamischen Verhaltens von (5.22) nutzbar
sind.

Bei der Auswahl geeigneter Kriterien hinsichtlich J*(§) sind die Moglichkeiten zahlreich, wes-
halb im Folgenden nur eine iibersichtliche Auswahl diskutiert wird, die sich in einfacher Weise
mit der im vorangegangenen vorgestellten Methodik kombinieren ldsst. Auch auf die explizite
Berechnung der entsprechenden Gradienten wird verzichtet. Diese lassen sich allesamt durch An-
wendung der Rechenregeln in Abschnitt B.4 mit vertretbarem Aufwand berechnen.

Im Hinblick auf den Synchronisierungsvorgang ist der Zeitverlauf des Ausgangs v(¢) in (5.22b)
ein wesentlicher Indikator fiir die Wahl der freien Reglerparameter in (5.6). Daher liegt es nahe,
ein quadratisches Giitekriterium fiir J* anzusetzen, woraus

J* = %/000 VI(0)Ouu(t) dt

mit positiv definiter Matrix 0, folgt. Durch Berechnung der Zeitlosung von v(¢) und Einsetzen
in das Giitekriterium ldsst sich dieses mit dem Anfangswert von (5.22a) auch als J* = %)Ego Pxs,
schreiben (vgl. z.B. [28]), wobei P aus der Losung der Lyapunov Gleichung

PAp, + AL P = —T;CHLE ® 1,)00(Lg ® 1,)C.T =1 —Q,

zu bestimmen ist. Da das System (5.22) iiber den Ausgang v vollstindig beobachtbar ist, handelt
es sich bei Q, um eine positiv semidefinite Matrix. Dariiber hinaus ist die Matrix Ar, fiir alle
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zuldssigen Werte aus (5.23) Hurwitz und damit ist in diesem Falle die Losung der Lyapunov Glei-
chung P symmetrisch positiv definit [38]. Die Minimierung des quadratischen Giitemales kann
daher in einfacher Weise fiir beliebige Anfangswerte X,, durch Losung der Lyapunov Gleichung
erfolgen, woraus sich ebenfalls ein Ausdruck fiir den Gradienten VJ* ermitteln lisst.

Eine weitere Moglichkeit zur gezielten Minimierung eines Giitekriteriums entsteht, indem fiir das
stabile Zustandssystem (5.22) geeignete Performance Ein- und Ausginge z, und w, definiert
werden, woraus fiir die Dynamik X, = A7,X2 + Bpz, und den Ausgang w, = Cp,X, mit den zu
wihlenden Matrizen B, und C), folgt. Wird nunmehr angenommen, dass das Eingangssignal ein
weiBer Rauschprozess ist, dann lésst sich der Einfluss des Rauschens auf den Ausgang w, gezielt
reduzieren, indem fiir die Ubertragungsmatrix G(s) = C,(sI — Ar,)”' B, das Giitekriterium

1 [ee]
I =166 = o= [ spur (67 (-i0)G (o) do

minimiert wird, was in der Literatur als H,-Performance des Systems bezeichnet wird [116]. Auch
an dieser Stelle kann auf die direkte Losung des Integrals verzichtet werden und eine dquivalen-
te Formulierung basierend auf der Losung einer Riccati Gleichung gefunden werden. Mit [133,
Lemma 4.6] ist nimlich [|G(s)||3 = spur (C, PpC}) = spur (BT Pc B,), wobei Pp und Pc aus
der Losung der Riccati Gleichungen

Ar, Pg + PpAL = —B,BY,  PcAr, + AL Pc = —CIC,,

zu bestimmen sind. Der Gradient V J* errechnet sich dabei in einfacher Weise iiber die vorstehen-
den Riccati Gleichungen.

Es soll abschlieBend erwihnt werden, dass neben der H,-Synthese mit der Ho-Synthese eine
weitere Frequenzbereichsmethodik gegeben ist, um gezielt das Ubertragungsverhalten zwischen
den Performance Ein- und Ausgéngen zu verbessern. Hierzu ldsst sich der Performance-Ausgang
ebenfalls um einen Durchgriff erweitern, woraus w, = CpX> + Dpz, und damit die Ubertra-
gungsmatrix G(s) = C,(sI — A1,)"' B, + D, folgt. Als Giitekriterium ergibt sich dann

T =1G ()l -

welches durch Optimierung tiber die freien Parameter in (5.6) minimiert werden muss. Aufgrund
der Strukturbeschrinkung der Regelung ist allerdings der Zugang tiber das sogenannte Bounded
Real Lemma (vgl. [10]) und Semidefinite Programmierung (SDP) nicht méglich, da sich daraus
keine LMI-Nebenbedingung ergibt. Zur strukturierten H.-Synthese ist deshalb auf alternative
Methoden der Nichtglatten Optimierung [3] zuriickzugreifen, was allerdings im Rahmen dieser
Arbeit nicht betrachtet wird. Es sei lediglich erwihnt, dass sich iiber diesen Zugang Ankniip-
fungspunkte zu dieser Arbeit ergeben, insbesondere im Hinblick auf zeitvariante Kommunikati-
onstopologien (bspw. durch [104, 117]).

5.5 Entwurfsbeispiel

Zur anschaulichen Darstellung der Vorgehensweise zur Bestimmung der synchronisierenden Re-
gelung (5.6) fiir die heterogenen Agenten (5.1) und zur Bewertung der Ergebnisse dieses Kapi-
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Bild 5.3: Ringstruktur des betrachteten Kommunikationsnetzwerks (links) und Lage der Ei-
genwerte Az im offenen und geschlossenen Regelkreis (rechts)

tels wird nachfolgend ein akademisches Beispielsystem betrachtet. Die heterogene Dynamik der
Agenten wird aus der Ubertragungsfunktion

(s = pzi1) (s = pzia)(s — pzi3)

Gi(s) = k; (s — pi1)(s — pi2)(s — pi3)(s — pia)

generiert, wobei fiir die spitere Entwurfsaufgabe N = 10 Agenten betrachtet werden. Dabei ist
vorauszusetzen, dass der Zihlergrad der Ubertragungsfunktion strikt kleiner als der Nennergrad
ist, um konsistent mit der betrachteten Systemstruktur in (5.1) zu sein. Durch die geeignete Wahl
der Parameter k;, p,;; und p;; lassen sich daher weitreichende Systemdynamiken einstellen, da
durch Pol-Nullstellenkiirzungen die Agenten unterschiedliche Zustandsdimensionen aufweisen
konnen. Dariiber hinaus kann das Systemverhalten oder auch die Nulldynamik sowohl stabil als
auch instabil ausgelegt werden. Die Matrizen S und Q, die die synchrone Trajektorie der Agenten
festlegen, sind gemél

01 0
S=]0 0 1|, 0=[1 0 0]
0 -1 0

gewihlt, was auf die asymptotische Synchronisierung auf ein sinusformiges Signal mit der Fre-
quenz 1 Hz mit einem iiberlagerten konstanten Anteil fiihrt. Es lédsst sich einfach nachrechnen,
dass das Paar (Q,S) beobachtbar ist. Die Kommunikationsstruktur der Agenten ist in der linken
Darstellung in Bild 5.3 abgebildet. Hierbei wurde bewusst eine Ringstruktur gewihlt, da damit
nicht allein die Stabilisierung der einzelnen Agenten bereits hinreichend fiir die Stabilisierung des
Synchronisierungsprozesses ist.

Die Ergebnisse des Optimierungsproblems (5.17) sind der rechten Darstellung in Bild 5.3 zu ent-
nehmen. Neben den Eigenwerten des offenen Regelkreises ist aus der Darstellung zu erkennen,
dass das Optimierungsverfahren in der Lage ist, alle Eigenwerte der Matrix A7, in den durch
(5.15) parametrierten Bereich der komplexen Ebene zu verschieben. Hierbei ergibt sich fiir die
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v; (1)

—50

Bild 5.4: Simulationsergebnisse zur Ausgangssynchronisierung heterogener Agenten basie-
rend auf der Regelung (5.6); Verlauf der Ausgangsgrofien (oben) und Verlauf der Messgroien
(5.2) (unten)

Eigenwerte des Synchronisierungsprozesses eine Mindestdynamik von @ = 0,35 und eine Min-
destddmpfung von y = 85°. Dieses Ergebnis fiihrt zu den Simulationsergebnissen, die in Bild
5.4 dargestellt sind. In der oberen Darstellung ist der Verlauf aller Ausgangsgrofien y;(¢) und in
der unteren Darstellung der Verlauf aller Messgrofen bzw. der kommunzierten Variablen v; (¢)
dargestellt. Anhand der Verldufe ist zu erkennen, dass nach ca. 20 Sekunden alle Ausgangsgrofien
synchron gemif der Zeitlosung des dynamischen Systems @ = Sw mit dem Ausgang Qw ()
verlaufen, was die Anwendbarkeit der in diesem Kapitel entwickelten Methodik verdeutlicht.

5.6 Kurzzusammenfassung

Kapitel 5 ist von den minimalen Anforderungen an die Synchronisierung heterogener linearer
Multi-Agenten Systeme ausgegangen. Diese bestehen darin, dass hinsichtlich der Kommunikati-
onsstruktur lediglich die Existenz eines Spannbaums vorausgesetzt wurde. Dariiber hinaus ist der
Kommunikationsaufwand der Agenten minimal, da nur Ausgangsinformation an das Netzwerk
kommuniziert wird. Ausgehend von der Analyse der benétigten Regelungsstruktur der Agenten
zeigt sich, dass die Wahl stets auf einen invarianten Unterraum S des Gesamtsystems gemaf
(5.10) fiihrt, der beziiglich der relativen Ausgénge unbeobachtbar ist. Damit ist die notwendige
Bedingung fiir die Ausgangssynchronisierung heterogener Agenten stets erfiillt.
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Die Attraktivitit des Unterraums S, die eine notwendige und hinreichende Bedingung fiir die in
diesem Kapitel betrachtete Problemstellung ist, lidsst sich durch die Betrachtung der dieser Eigen-
schaft zugeordneten Systemmatrix A7, analysieren und beeinflussen. Durch die Wahl der freien
Reglerparameter ist die Beeinflussung der Eigenwerte von A7, moglich, was die Entwurfsaufga-
be in ein dezentrales Stabilisierungsproblem iibersetzt. Zur Losung dieser Aufgabe ist das Vorge-
hen zur Vorgabe von Eigenwertbereichen aus Abschnitt 3.3.1 auf die Problemstellung modifiziert
worden, was neben der eigentlichen Stabilisierungsaufgabe zusitzliche Einflussmoglichkeiten auf
die Lage der Regelungseigenwerte bietet. Die Beeinflussung der Mindestdynamik als auch der
Mindestdampfung wird durch die Parametrierung der Hyperbel, die den Bereich der Eigenwerte
begrenzt, ermdglicht und ist somit beim Entwurf einstellbar.

Aufgrund der Wahl der quadratischen Straffunktion (5.16) in der Optimierungsaufgabe bricht das
Verfahren auf jeden Fall ab, wenn alle Eigenwerte in dem vorgegebenen Bereich zum Liegen
kommen. In diesem Fall besteht die Moglichkeit, weitere Anforderungen an den Synchronisie-
rungsprozess zu formulieren, indem fiir das System (5.22) gezielt weitere Giitekriterien minimiert
werden. Die Verwendung eines quadratischen Giitekriteriums sowie die H,-Synthese liefern an
dieser Stelle mogliche Ansatzpunkte fiir weiterfithrende Untersuchungen. Zusammenfassend lésst
sich festhalten, dass es in Kapitel 5 gelungen ist, die aus der Literatur bekannten Resultate zur Syn-
chronisierung heterogener Multi-Agenten Systeme mit einem konstruktiven Verfahren zu verbin-
den, was ein wichtiges, neues Resultat im Hinblick auf den Entwurf und die Analyse heterogener
Multi-Agenten Systeme darstellt.

1P 216.73.216.36, am 20.01.2026, 12:37:37. Inhalt,
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186250087

120

6 Entwurfsbeispiele

6.1 Entkopplungsregelung einer xy-Positioniereinheit

Zur Demonstration der parametrischen Entwurfsmethodik, die in Kapitel 3 vorgestellt wurde,
dient der Laboraufbau einer xy-Positioniereinheit, deren Prinzipskizze und Aufbau in Bild 6.1
dargestellt ist. Dieser Laboraufbau veranschaulicht die am Fachgebiet Regelungstechnik und Me-
chatronik der TU Darmstadt in der Lehrveranstaltung ,,Mehrgroenreglerentwurf im Zustands-
raum“ vermittelten Lehrinhalte. Dies umfasst sowohl die Systemanalyse als auch den Entwurf von
MehrgroBenregelungen, beispielsweise durch Ent- oder Verkopplung. Der Laboraufbau wurde im
Rahmen einer studentischen Arbeit [33] am Fachgebiet konstruiert und aufgebaut. In diesem Ab-
schnitt besteht das Ziel der Regelung darin, die Position des Endeffektors durch den Entwurf einer
robusten Entkopplungsregelung aus Abschnitt 3.3.3 innerhalb des Arbeitsraumes frei vorzugeben
und dariiber hinaus die mechanische Kopplung des Systems durch die Regelung weitestgehend zu
kompensieren.

Beschreibung des Aufbaus

Die Hauptaufgabe des Aufbaus besteht in der Positionierung des Endeffektors in der xy-Ebene.
Hierzu sind auf zwei parallelen Linearfiihrungen, die im Abstand ¢ zueinander angeordnet sind,
jeweils ein Schlitten angebracht. Die Schlitten sind iiber einen Zahnriemen mit einem stromge-
regelten Gleichstrommotor mit integriertem Getriebe verbunden, so dass beziiglich der Regelung
von einer Kraft, beziehungsweise Momentenvorgabe ausgegangen werden kann. Die Positionen
der Schlitten werden tiber die Koordinaten ¢; und ¢, beschrieben und lassen sich iiber analoge
magnetostriktive Sensoren direkt im Echtzeitsystem der Firma dSpace (DS1104) erfassen.

Auf den parallelen Linearfiihrungen ist die Portalschiene angebracht, worauf sich ein Schlitten
(Koordinate ¢3) durch einen weiteren stromgeregelten Gleichstrommotor translatorisch bewegen
lasst. Die Erfassung der Position des Schlittens erfolgt durch einen Seilzug und ein Potentiometer

Bild 6.1: Prinzipskizze (links) und Laboraufbau (rechts) der xy-Positioniereinheit nach [33]
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und ist damit ebenfalls direkt im Echtzeitsystem messbar. Die Lagerung der Portalschiene durch
ein Kugellager auf der ¢;-Achse sowie durch eine Linearfithrung auf der g,-Achse ermoglicht
dariiber hinaus den Winkel o gezielt zu verdndern. Dies stellt neben der stets bei mechatronischen
Systemen auftretenden Reibung eine der wesentlichen Nichtlinearititen des Aufbaus dar, was bei
der Modellierung des Systems zu beriicksichtigen ist. Uber die Zusammenhiinge

Xtcp = ¢1 — sin(a)gs,

Yrcp = cos(a)gs,
(q 1= 492 )
a = arctan | ————
a
lassen sich aus den Messgrofien die Position des Endeffektors (engl. tool center point, TCP) sowie

der Winkel  bestimmen, was den Regelgroflen des Systems entspricht.

Modellierung des Systems

Zur Modellierung des Systems bietet es sich aufgrund der Struktur der xy-Positioniereinheit an,
diese basierend auf einer Deskriptordarstellung des Systems vorzunehmen. Als Vorteil ergibt sich
dabei, dass das System in modulare Teilsysteme zerlegt werden kann, die fiir sich betrachtet
einfacher zu modellieren sind. Im Gegensatz zur Modellierung in Minimalkoordinaten und der
anschlieBenden Anwendung der Energiemethode nach Lagrange bleiben bei diesem Ansatz die
aufzustellenden Gleichungen iibersichtlich. Die Herausforderung bei der Modellierung als De-
skriptorsystem, ein dquivalentes Zustandsraumsystem zu bestimmen, gestaltet sich durch die in
[50, 64] diskutierten Methoden vergleichsweise einfach, indem auf Programme zur Berechnung
symbolischer Ausdriicke zuriickgegriffen wird.

Dieser Ansatz ist in der studentischen Arbeit [99] ausfiihrlich diskutiert, so dass eine kurze Be-
schreibung des Vorgehens sowie die Darstellung der Ergebnisse fiir die nachfolgenden Zwecke
ausreichend ist. Das zugrunde liegende Vorgehen besteht darin, die einzelnen Teilsysteme freizu-
schneiden und geeignete Zwangsbedingungen zwischen den Teilsystemen zu formulieren, woraus
das nichtlineare Deskriptorsystem in der semi-expliziten Form

§'1 = f(¢1.5.u), (6.1a)
0 = g(1.82.u), (6.1b)
¥y = h(&1,62,u) 6.1¢)

folgt. Darin bezeichnet ¢; die differentielle Variable und ¢, die algebraische Variable, die zu-
sammen den Deskriptor { = [¢] Q]T bilden. Bei der betrachteten xy-Positioniereinheit ent-
spricht die algebraische Variable den freigelegten Schnittkriften. Mittels der Methode aus [50]
wird die Forderung 0 = g(¢;,{,,u) gemidB z = g(¢y,{,,u) mit ;l—IHJo z(t) = 0 abgeschwicht und
eine Riickfiihrung fiir ¢, derart bestimmt, dass die mit dem Verkopplungsausgang z assoziierte
Untermannigfaltigkeit ausgangsnullend, geregelt invariant und attraktiv ist. Damit hat die fiktive
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Zustandsraumdarstellung

él = f(¢1.5.u), (6.2a)
z = g(61.82.u), (6.2b)
Y = h(1.52.u) 6.2¢)

auf der durch die Riickfiihrung erzeugten Untermannigfaltigkeit dieselbe Losung wie das Deskrip-
torsystem (6.1). Die Darstellung (6.2) ermoglicht damit bekannte Methoden fiir Zustandssysteme
in entsprechender Weise anzuwenden.

Hinsichtlich der xy-Positioniereinheit und dem Ziel, eine Entkopplungsregelung fiir ein lineares
Zustandssystem zu entwerfen, muss (6.2) um einen geeigneten Arbeitspunkt linearisiert werden.
Da der Verkopplungsausgang z durch die Wahl der Riickfiihrung fiir {, stets asymptotisch ver-
schwindet, ldsst sich beziiglich z eine Minimalrealisierung des linearisierten Systems bestimmen,
die den realen physikalischen Zustinden der xy-Positioniereinheit in der Néhe des Arbeitspunktes
entspricht. Die Wahl des Arbeitspunktes

. . .qT T
Xap =[G G G20 G20 G G3] =[0.15 0,00 007 0,00 0.10 0.00]
fiihrt auf das lineare Zustandssystem

X = Ax + Bu, (6.3a)
y=Cx (6.3b)

mit den Systemmatrizen

0 1 0 0 0 0
0 —1,37 0 —0,05 0 0
L_0 0 0 1 0 o
0 —005 0 —121 0 0
0 0 0 0 0 1
[0 —0.19 0 —0,01 0 —2.99
T0 0 0
509 0,18 0
0 0 0
B=1o1s 405 o |’
0 0 0
1072 0,03 7.86
70,80 0 020 0 0,17 0
C=1]-004 0 004 0 098 0],
| 206 0 206 0 0 0

welches fiir den weiteren Reglerentwurf zugrunde gelegt wird. Da das lineare Zustandssystem
eine Minimalrealisierung des linearisierten fiktiven Zustandssystem darstellt, ist dieses definiti-
onsgemil steuer- und beobachtbar.
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Entwurf der Entkopplungsregelung

Zum Entwurf der Entkopplungsregelung ist zunichst die stabile Entkoppelbarkeit des Systems
zu iiberpriifen. Wie sich leicht nachrechnen lésst, ergibt sich § = 6, und das System hat keine
invarianten Nullstellen. Damit entspricht die Differenzordnung § der Systemordnung n = 6, und
somit ist die xy-Positioniereinheit mittels Zustandsriickfiihrung stabil entkoppelbar. Der Ubergang
zum Entwurf mittels Ausgangsriickfiihrung erfolgt zunichst basierend auf Satz 3.11. Zur Sicher-
stellung der stationdren Genauigkeit des geschlossenen Regelkreises werden die Regelgrofien des
Systems entsprechend des internen Modellprinzips um drei Integratoren erweitert, was die Ord-
nung des Systems um drei erhoht. Da sich durch dieses Vorgehen die Anzahl der Ausgangsgroflen
um die entsprechende Anzahl der Integratoren erweitert, wird zur Entkopplung des Systems ge-
maB Satz 3.11 weiterhin eine Reglerordnung von ny = 4 benétigt. Zudem ist zu beachten, dass
fiir das Integral iiber die Regelabweichung gemél der Forderung nach stationdrer Genauigkeit der
Zusammenhang X; = w — y einzuhalten ist. Dies fiihrt daher auf das erweiterte System

X A 00 X B 0 0
x|=[-C 0 0 Xt |+[0 0 |ue+ |1, |w= AcXe + Beue + Frw, (6.4a)
).Cd 0 0 0 Xd, 0 Ind 0
cC 0 0 X
Ye=|0 I, 0 x| = Cexe (6.4b)
0 0 I, [xa
mit dem erweiterten Zustandsvektor x, = [xT x] xg]T € R™ mit n, = 13, welches zum

Entwurf der dynamischen Regelung zugrunde gelegt wird. Gemall Satz 3.5 ist dies dquivalent
zum Entwurf der statischen Ausgangsriickfithrung

Dy Dy Cdi| [Fu]
Ue = e + w = K.y. + F.w (6.5)
{Bd By A¢)” 7 |Fa g

fiir das erweiterte System (6.4). Die Bedingung nach Kimura (3.16) ist dabei immer noch erfiillt,
dan+nqg+4 <m+nqg+ p+ ng+ 3 gilt. Somit lassen sich alle Eigenwerte des geschlossenen
Regelkreises vorgeben.

Aufgrund der Forderung nach stationédrer Genauigkeit und der damit einhergehenden Erweiterung
um die Integratoren ergibt sich eine Modifikation des Entwurfs der Riickfithrung (6.5). Ausgehend
vom erweiterten System (6.4) zusammen mit dem Ausgang y; = —x; ldsst sich durch zeitliche
Ableitung mit w = 0 der Zusammenhang y; = —X; = y herleiten. Damit ergibt sich beziig-
lich des Ausgangs y; eine Differenzordnung § = 9, und der Entwurf der Entkopplungsregelung
kann formal beziiglich des Ausgangs y; erfolgen, da durch Entkopplung beziiglich y; ebenfalls
Entkopplung beziiglich y gegeben ist.

Zur Bestimmung des Vorfilters ist gegeniiber der Wahl gemif (3.48) aufgrund der Erweiterung
um den Zustand x; eine Modifikation vorzunehmen. Durch Einsetzen von (6.5) in (6.4) ergibt sich
der geschlossene Regelkreis zu X, = (A + B K.Ce)x. + (B. F. + F1)w, worin sich aufgrund der
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Forderung x; = w — y die Struktur des Vorfilters zu

B 0 O07[F
BFe+F=|0 0 I,||Fs|=B:F.
0 I, o]L1,

ergibt. Gemil den Betrachtungen in Abschnitt 3.2.2 und der Modifikation des Entwurfes der
Entkopplungsregelung sind die Eigenwerte des geschlossenen Regelkreises Ag; fiir i > §=09
unsteuerbar zu machen, wobei hierzu die erweiterte Eingangsmatrix Bz zugrunde zu legen ist.
Nachfolgend bezeichnet daher F, eine beliebige Vorfiltermatrix, die diese Forderung erfiillt. Fiir
das erweiterte Zustandssystem der xy-Positioniereinheit errechnet sich der Zusammenhang

dim bild (Fe) = 2.

Das Vorfilter 1:"e ist daher mittels einer Matrix TF, derart zu modifizieren, dass weiterhin der
Zusammenhang

[OPXm 0pxny Ip] FeTFc =1,
erfiillt ist. Dariiber hinaus ergibt sich aus der stationdren Betrachtung des geschlossenen Regelkrei-
ses, dass fiir stationdre Genauigkeit beziiglich der RegelgroBen y der Zusammenhang —C, (A4, +

BeKeCe)‘lBgI:"eTFe =1, mitC, = [C Opxpﬂ,d] erfiillt sein muss, woraus die Bestimmungs-
gleichung fiir 75, aus dem linearen Gleichungssystem

_Cey(AC + BeKeCe)_lBE F Tr = |:117:|
[Opxm OPX”d 117] s Ip

folgt. Fiir das vorliegende Beispiel der xy-Positioniereinheit ist das lineare Gleichungssystem ein-
deutig 16sbar und somit das Vorfilter F, festgelegt.

Parametrierung der Entkopplungsregelung

Aufgrund der Struktur des erweiterten Systems (6.4) lassen sich durch Betrachtung der Ausgangs-
dimension 2p +n4—1 = 9 Rechtseigenvektoren des geregelten Systems tiber den parametrischen
Ansatz aus Abschnitt 3.2.2 vorgeben. Da § = 9ist, legen die ersten § Eigenwerte und Rechts-
eigenvektoren das entkoppelte Fiihrungsverhalten beziiglich y und w fest. Somit ldsst sich die
Eigenwertmenge Ax; gemdB Ax; = Ax, U Ak, U Ak, partitionieren, und die Menge A, cha-
rakterisiert diejenigen Eigenwerte, die als Pole im entkoppelt geregelten Ubertragungsverhalten
sichtbar sind.

Zunichst werden alle Regelungseigenwerte fest vorgegeben, was geméB der Unterteilung von A
zusammen mit Ak, auf

Ax, = {—12,16 +10,83j, —3,13}

Ak, = {—12,08 £ 10,90j, —3,12}

Ax, = {—14,52 £ 12,04j, —3,40}

Ax, = {—1,86 £ —20,11j,—0,51 £ —1,38;j}
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fuhrt. Dies hat eine Konditionszahl der Rechtseigenvektormatrix von « (V) = 214,96 zur Folge.
Mit dem Ubergang auf den teilparametrischen Ansatz aus Abschnitt 3.3.3 lisst sich die Menge der
Regelungseigenwerte Ak, als zusitzliche Freiheitsgrade im Optimierungsverfahren nutzen. Die
Wahl von 25 weiteren zufilligen Startwerten fiihrt abschlieBend auf die modifizierte Menge der
Eigenwerte

Ay = {—1,77 £ —19,38j,—0,50, —6,07},

was auf die Konditionszahl der Eigenvektoren des geschlossenen Regelkreises von «(Vy) =
145,32 und damit auf eine weitere Verbesserung fiihrt. Dies hat die Matrizen der Regelung

[—1496 1,76 —19,57 11,73
sy | 05T S1974 476 421 |
1321 3,57 —52,55 1626
| 1614 16,85 —21.19 —23.14
(11,09 —69,36 —0,96 —0,94 3231 32,10
B, | 6443 3542 1359 By — | 1406 5482 43,69
78,74 —108,13 2,15 |’ T —101,15 5930 7,63 |7
| 2388 109 -2355 —34,67 —116,15 111,62
r—722 —11,97 14,53 —11,57
Ci=|-69,08 48,12 40,74 40,74 |,
| 322 634 —1912 13,18
[—64,49 2275 —12,83 90,90 —41,95 55,18
Dy=|-7122 3245 4934 |, Dy = | 1795 60,78 —153,64
| 43,35 —60,97 8,52 —61,14 78,62 —30,13

und des Vorfilters

142,45 —115,09 4,44

240,23 265,90 4438
700 —-113,80 3,57

—126,43 —383,54 —15,92

110,54 —19,37 13,79
F, = [151,69 —26,58 —59,59 |, Fy =
=556 79,48 0,79

in (6.5) zur Folge. Dies legt das entkoppelt geregelte Ubertragungsverhalten gemiB G, (s) =
diag (gwx (5), &w, (8), gwo (s)) mit den skalaren Ubertragungsfunktionen

1172,5(s + 0,71)

(8 = 313 (52 + 24,335 + 265.2)
1167,2(s + 0,71)

8 (8) = T312) (% + 24,165 + 264.8)
1665,7(s + 0,73)

8wa(8) = (7373.40) (5% + 29,045 + 355.9)

fest. Im Unterschied zur Entkopplung mittels Zustandsriickfiihrung ergeben sich in den Ubertra-
gungsfunktionen Zihlernullstellen. Dies ist darin begriindet, dass der Entwurf der entkoppelnden
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Bild 6.2: Zeitverlauf der Simulations- und Messergebnisse der xy-Positioniereinheit

Riickfithrung beziiglich des Ausgangs y; erfolgt, wihrend der Entwurf des Vorfilters stationér
genau beziiglich y ausgelegt ist.

Simulation und Messergebnisse des entkoppelt geregelten Systems

Die Leistungsfihigkeit des parametrischen Entwurfes zur Entkopplung soll abschliefend in nu-
merischen Simulationen sowie anhand von Messungen am Laboraufbau bewertet werden. Die
Simulations- und Messergebnisse mit der zuvor entworfenen Regelung sind in Bild 6.2 dargestellt.
Dabei wurde ein identischer Fithrungsgrof3enverlauf fiir die Simulation als auch fiir die Messung
zugrunde gelegt.
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0,25
‘ - - - Sollverlauf — Simulation Messung
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0,15 3\ :
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~ |
0,1 ; / 1
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Bild 6.3: Simulation und Messergebnisse dargestellt im Arbeitsraum der xy-Positioniereinheit

Ausgehend vom Arbeitspunkt sollen mittels der Entkopplungsregelung die Eckpunkte eines Qua-
drates mit der Seitenldnge 15 cm angefahren werden. Dabei wird zunéchst die rechte obere Ecke
und anschlieBend die Ecken des Quadrates entgegen des Uhrzeigersinnes angefahren, was eben-
falls in Bild 6.3 dargestellt ist. Der Winkel «, d.h. die Schrigstellung des Portals, soll wihrend des
kompletten Verfahrvorgangs konstant bei « = 10° gehalten werden.

Es ist sowohl anhand der Zeitverldufe der Regelgrofien in Bild 6.2 als auch anhand der Darstellung
im Arbeitsraum der xy-Positioniereinheit in Bild 6.3 zu erkennen, dass die lineare Entkopplungs-
regelung in der Lage ist, den gewiinschten konstanten Fithrungsgroen stationir genau zu folgen.
Aufgrund des nichtlinearen Simulationsmodells und der nichtlinearen Effekte der Reibung am La-
boraufbau ist nicht zu erwarten, dass die lineare Regelung in der Lage ist, die xy-Positioniereinheit
exakt zu entkoppeln. Dennoch verdeutlichen die Ergebnisse aufgrund der vergleichsweise gerin-
gen Abweichungen im Hinblick auf den kostengiinstigen Demonstrator, dass mit der parametri-
schen Entwicklungsmethodik ein leistungsfahiges Werkzeug zur Verfiigung steht, um zahlreiche
praktische Regelungsaufgaben zu 16sen.

Dariiber hinaus ist damit auch verdeutlicht, dass die Konditionszahl der Eigenvektormatrix des
geschlossenen Regelkreises ein geeignetes Mal} darstellt, um die bei Mehrgroensystemen zur
Verfiigung stehenden weiteren Freiheitsgrade gezielt durch ein Optimierungsverfahren aufzuls-
sen. Durch den in dieser Arbeit entwickelten integrierten Ansatz entfillt zudem der Einsatz eines
Beobachters, und der Entwurf kann in einem Schritt direkt erfolgen.
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6.2 Entkopplungs- und Verkopplungsbasierte Synchronisierung
von Helikoptern

Zur Veranschaulichung der in den Abschnitten 4.2.2 und 4.2.3 entwickelten Methodik zur Syn-
chronisierung heterogener agentenbasierter Systeme basierend auf dem unterlagerten Entwurf ei-
ner Entkopplungs- beziehungsweise Verkopplungsregelung soll das lineare Zustandssystem eines
gefesselten Modellhelikopters dienen. Dieses Modell wird ebenfalls von der Firma Quanser als
Labor Demonstrator unter dem Produktnamen 3 DOF Helicopter vertrieben und soll vornehmlich
in Laborpraktika zur Vermittlung von regelungstechnischen Kenntnissen im Bereich der Modell-
bildung des Systems und des modellbasierten Entwurfes von Zustandsregelungen dienen.

Beschreibung des Systems

Der Aufbau, dessen Prinzipskizze in Bild 6.4 dargestellt ist, besteht dabei aus einem Sockel, wor-
auf ein Ausleger mit zwei mechanischen Freiheitsgraden angebracht ist. Die Rotation um die zo-
Achse (Gierwinkel 6,) bildet die Vorwirtsbewegung des Helikopters nach, wihrend die Rotation
um die z;-Achse (Neigungswinkel 60,) aufgrund der Verbindung mit dem Ausleger eine Steigbe-
wegung nachbildet. An den Enden des Auslegers ist ein Gegengewicht auf der einen Seite und auf
der anderen Seite das Modell des Helikopters angebracht. Der Helikopter ist hierbei in Tandem-
Konfiguration mit identischem Front- und Heckrotor (Schub F; und F},) ausgefiihrt, weshalb die
Rotation um die z3-Achse (Nickwinkel 6g) durch die Schubdifferenz der beiden Rotoren erfolgt.
Dariiber hinaus ldsst sich iiber den Gleichanteil des Schubs der Rotoren die Hohe des Helikopters
iiber Grund einstellen. Ist zudem der Winkel 6g # 0, entsteht aufgrund des Schubs der Rotoren
eine Kraftkomponente in horizontaler Richtung, was die Vorwirtsbewegung beziehungsweise das
Gieren des Helikopters zur Folge hat.

Bild 6.4: Prinzipskizze des betrachteten Modellhelikopters nach [48]
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In der Simulation soll nachfolgend untersucht werden, wie sich basierend auf den in dieser Arbeit
entwickelten Methoden asymptotische Synchronisierung fiir N = 4 der betrachteten Helikopter
erzielen lédsst. Da jeder Helikopter iiber zwei Eingangsgrofien verfiigt, sind zusétzlich fiir den
Gierwinkel 6, und den Neigungswinkel 6, Referenzmodelle zu bestimmen, die die synchrone
Zeitlosung des synchronisierten Multi-Agenten Systems festlegen. Die Masse des Auslegers m1,
und des Gegengewichts m. sowie die als identisch angenommenen Massen der Rotoren m, stel-
len zusammen mit den geometrischen Abmessungen des Aufbaus (/,, /. und /;) die physikalischen
Parameter des Helikopters dar. Da die Parameter unter praktischen Gesichtspunkten stets Schwan-
kungen unterworfen sind, handelt es sich bei diesem Beispiel um strukturell identische Agenten,
die allerdings Unterschiede in den Parametern aufweisen, weshalb ein heterogenes Multi-Agenten
System vorliegt.

Modellierung des Systems

Die Bestimmung des fiir den Reglerentwurf benétigten linearen Modells erfolgt durch Linearisie-
rung des nichtlinearen Modells in einem Arbeitspunkt. Die Modellbildung des nichtlinearen Mo-
dells soll an dieser Stelle nur kurz skizziert werden, da die resultierenden Gleichungen aufgrund
der darin auftretenden trigonometrischen Zusammenhénge recht uniibersichtlich werden. Als Her-
ausforderung bei der Modellbildung stellt sich die Bestimmung der Ortsvektoren der einzelnen
Massen im ortsfesten Koordinatensystem dar. Eine einfache Moglichkeit dies aufzulosen besteht
darin, den Aufbau mittels der Konvention nach Denavit und Hartenberg [22] (DH-Konvention)
durch homogene Koordinaten zu beschreiben, wobei nachfolgend der Darstellung in [114] ge-
folgt wird. Die homogene Transformation tiberfiihrt dabei die klassische Transformationsbezie-
hung “p = %ry + Ry, ? p in die Matrixdarstellung

a a a b
an P _ Ry Iy Pl _apba
=[] =[]

wobei mit ¢ p und ? p jeweils Punkte in den Koordinatensystemen @ und b bezeichnet sind. Mit %7,
ist die Translation des Koordinatenursprungs von a in den Ursprung von Koordinatensystem b so-
wie mit ? R, die Rotationsmatrix der Verdrehung der beiden Koordinatensysteme gekennzeichnet.
Mittels der DH-Konvention lisst sich der Ubergang von einem auf ein anderes Koordinatensystem
durch vier Parameter beschreiben und durch die homogene Transformationsmatrix

cos; —sinf;cosq; sinf;sina;  a;cosb;

i1, sinf; cos@;cosa; —cosb;sina; a;sinb;
i = .
0 sin ; CoS d;
0 0 0 1

ausdriicken. Dabei erfolgt zunéchst eine Drehung und Translation um die z;_;-Achse (Parameter
0; und d;) und im Anschluss eine Translation und Rotation um die neue x;-Achse (Parameter a;
und «;). Die Festlegung der Koordinatensysteme fiir den Aufbau des Modell Helikopters ist in
Bild 6.4 eingetragen. Damit ergeben sich die in Tabelle 6.1 aufgefiihrten DH-Parameter.

Mittels der hiermit festgelegten Koordinatenbeziehungen lassen sich in einfacher Weise die Orts-
vektoren zu den einzelnen Massen berechnen. Uber die zeitliche Ableitung der Ortsvektoren re-
sultieren die Geschwindigkeiten der Punktmassen, woraus sich die entsprechenden kinetischen
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Tabelle 6.1: DH-Parameter zur Beschreibung der Koordinaten des Helikopters

- 0 |di| ai | oi|
0>1 ] 6 Jo0]o]Z
152 [6,+%Z]0] 0| %
253 | T L]0 |-
35>F | 65 |0 | %
3>H| 65 |0 || %

Energien berechnen lassen. Zusammen mit der potentiellen Energie erfolgt die Berechnung der
Bewegungsgleichung des Helikopters aus der Anwendung der Lagrangeschen Gleichungen [65].
Dies hat ein nichtlineares Differentialgleichungssystem zweiter Ordnung M (q¢)§ + C(q.9) =
Gi(q) Fy + Gn(g) Fy, zur Folge, worin ¢ die generalisierten Koordinaten und ¢ die generalisierten
Geschwindigkeiten bezeichnet, und es gilt

T
q:=1[0u 0, 0] .
.. .7
qi=[6. 6, 6] .
Die Wahl des Arbeitspunktes
T
aw=[0 1 0]
mit
. T
gar:=1[0 0 0]
sowie die Linearisierung der nichtlinearen Bewegungsgleichungen fiihrt mit dem Zustandsvektor
. . .17
xii=[Ab, Ab, MG Ay A6, A,

auf das gesuchte lineare Modell des Helikopters gemif

01 o 0 0 0 0 0
00 —pil 0o 0 O 0 0
00 0 1 0 O 0 0
¢ = x; ’ 6.6
Xi 0 0 0 0 0 0 Xi + /713 _/0,-3 Ui (6.6a)
00 0O 0 O 1 0 0
00 0 0 —p 0 ot pt
M 0 0 0 0 O
y=100001 0|x (6.6b)
001000

worin die Parameter p}, p?, p; und pf von den physikalischen Parametern des Demonstrators
abhingen. Eine Zusammenstellung der Parameter, die fiir die nachfolgende Simulation der N = 4
Agenten zugrunde gelegt ist, fasst Tabelle 6.2 zusammen.
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Tabelle 6.2: Parameter des Zustandssystems der vier Agenten in Abhéngigkeit der gewihlten
Massen und Abmessungen

Lillma [me [m [ 0 [0 [k [ ol [ o} [ A ]0pl]
1 2,05 14,50 | 0,33 | 0,52 0,78 | 0,25 1,86 | 0,56 | 6,00 | 0,75
212,10 | 3,751 0,03 | 0,54 | 0,66 | 0,25 1,72 1 0,46 | 5,80 | 0,71
31225|4,0510,33]|0,571]0,70 | 0,25 || 2,33 | 0,72 | 6,10 | 0,65
4

1,85 | 4,00 | 0,36 | 0,53 | 0,72 | 0,25 || 2,63 | 0,71 | 5,60 | 0,77

Entwurf der synchronisierenden Regler

Zunichst werden die Referenzmodelle fiir die beiden Ausgangsgrofien 6, und 6, festgelegt. Mit
Blick auf die Diskussionen in Abschnitt 4.2.4 muss sich die synchrone Zeitlosung der Agenten als
Losung des homogenen Zustandssystems (4.42) darstellen lassen. Referenzsignale, die einen nicht
stetig differenzierbaren Zeitverlauf aufweisen, konnen damit nicht exakt vorgegeben werden. Das
nachfolgende Simulationsbeispiel zeigt daher anhand eines Sidgezahn- und Dreieckssignals, wie
sich durch eine Annidherung mittels Fourrierreihen der Zeitverlauf dieser Signale approximieren
lasst. Zu erwéhnen ist in diesem Zusammenhang, dass sich Sdgezahn- und Dreieckssignale exakt
iiber abschnittsweise geeignet gewihlte Rampensignale und damit als Zeitlosung eines Doppelin-
tegrators darstellen lassen. Um diese Ergebnisse zu erzielen, sind allerdings die Zustinde des
Doppelintegrators in periodischer Weise neu zu setzen, woraus eine hybride Dynamik folgt. Die-
ser Ansatz ist damit nicht mit den Methoden der vorliegenden Arbeit zu entwerfen. Ein moglicher
Ankniipfungspunkt an die Ergebnisse dieser Arbeit ist damit allerdings gegeben, insbesondere hin-
sichtlich einer Reduktion der benotigten Ordnung der Regelgesetze zur Synchronisierung. Diese
sind dann in der Regel jedoch mit nichtlinearen Methoden auszulegen.

Fiir die nachfolgend erzielten Simulationsergebnisse wird daher die Fourierreihendarstellung ei-
nes Sdgezahn- ysz(¢) und eines Dreieckssignals ya (¢) betrachtet. Diese periodischen Signale las-
sen sich durch die Fourierreihen

Ysz(t) = —

2¥sz > w1 Sin(kwszt)
-1 _
b1 ;( ) k

8Ja v sin((2k — 1
R
k=1

darstellen [11], wobei j(, die entsprechenden Amplituden und (., die Frequenz der Signale kenn-
zeichnen. Zur Uberfiihrung in ein lineares Zustandssystem wird die Fourierreihe nach einer end-
lichen Anzahl von Sinusschwingungen abgebrochen. Zudem folgt aus der zweifachen zeitlichen
Ableitung der Signale, dass sich die einzelnen Sinusschwingungen jeweils durch autonome Zu-
standssysteme zweiter Ordnung darstellen lassen, woraus fiir die entsprechende Frequenz

. 0 1
Xsz; = |: P Xsz; =: Ssz;Xsz;
—Jjwg; 0

29, (—1) 1 .
Ysz; = [—% 0] Xsz; =t Osz,Xsz;
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sowie
P 0 1
47 =2 - D%k 0

8ya(=1)/"1 .
ya; = [% 0] RINE R NEIN

:|XA,- =:SA;Xa;,

folgt. Fiir den nachfolgenden Entwurf wird beriicksichtigt, dass der Gierwinkel asymptotisch
mit dem Sigezahnsignal und der Neigungswinkel asymptotisch mit dem Dreieckssignal iiber-
einstimmt. Dabei wird fiir die Amplituden js; = 27 und 5o = 0,1 sowie fiir die Frequenzen
wsz = 27 /25 und wa = 27/15 gewihlt. Die Fourierreihen werden bis zur dritten Sinusschwin-
gung beriicksichtigt. Damit ist

Ssz 1= diag (Sszlv Sszl, Ssz;) ,
Sa = diag (Sa,, Sa,, Say)

und

Osz = [Qszl Osz, Qsz;]-,
On:=[0a, Qa, Qail

woraus das Referenzsystem

éi = |:SSZ 0 :|Zi = SZ,'

0 Sa
_|Qsz 0 |_ _
oo OTuzon

folgt. Dabei ist z; € R™ mitns = 12 und ys, € R%.

Hinsichtlich des Entwurfes der unterlagerten Regelkreise fiir die N = 4 Agenten, soll zu Beginn
das Vorgehen basierend auf einer Entkopplungsregelung beschrieben werden. Zunichst ist An-
nahme 4.7 zu tiberpriifen. Da beziiglich des Gier- und Neigungswinkels die synchrone Trajektorie
s, (¢) mit ys, € R? vorgegeben werden soll und zwei EingangsgroBen zur Verfiigung stehen, ist
das System unter Beriicksichtigung der ersten beiden Ausgangsgrofien in (6.6) quadratisch. Wie
sich anhand von (6.6) nachrechnen ldsst, ist das System beziiglich dieser Ausginge entkoppel-
bar. Zudem ist § = 6, und das System weist keine invarianten Nullstellen auf. Damit entspricht
die Differenzordnung der Systemordnung und das System ist mittels statischer Zustandsriickfiih-
rung stabil entkoppelbar. Da die Agenten strukturell identisch sind, ergeben sich ebenfalls gleiche
Differenzordnungen. Somit lésst sich in jedem Kanal eine identische, stabile Dynamik vorgeben.
Diese wird, da 6; = 4 und §, = 2 gilt, gemif

Ax1 = {—4,73,—4,45,—1,06,—1,48} U {—2,71,—2,43}

gewiihlt. Die verbleibenden, unsteuerbaren Eigenwerte des entkoppelt geregelten Agenten sind so
gewihlt, dass ein moglichst geringer Wert der Konditionszahl der Rechtseigenvektormatrix des
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2 . . + x x
= + o x4+ ox +8
° < 0 - XX xx: X+ 206X+ ¥
=) + . X+ x +8
Pt x + + x
-2 + X x
+
—4 || xEntkopplung + Verkopplung o o (Ssz) xo (Sa)
a -3 -2,5 -2  —15 -1 -0,5 0 0,5

Re(Ax)

Bild 6.5: Stark verbundene Kommunikationstopologie (links) und Ausschnitt der komplexen
Ebene (rechts) mit den Eigenwerten der geregelten Multi-Agenten Systeme

geschlossenen Regelkreises entsteht. Dariiber hinaus wird durch Riickgriff auf die teilparame-
trische Methodik aus Abschnitt 3.3.3 die Entkopplungsregelung jedes Agenten hinsichtlich der
robusten Eigenstrukturvorgabe optimiert. Die begrenzende Hyperbel ist dabei mit @ = 0,5 und
b = atan(m/4) parametriert (vgl. Bild 3.3), was der Mindestdynamik und einer Mindestddmp-
fung der Eigenwerte von y = 45° entspricht.

Aufgrund der unterlagerten Entkopplungsregelung ldsst sich die synchronisierende Regelung fiir
jede Ausgangsgrofie getrennt berechnen. Da das System stabil entkoppelbar ist, lasst sich fiir jede
Ausgangsgrofie die Sylvester Gleichung (4.27) 16sen, woraus die Vorsteuerung (4.26) und damit
der erweiterte Agent (4.30) folgt. Zur Berechnung der Matrizen der Riickfithrung wird die Metho-
dik aus Abschnitt 4.1.3 genutzt. Im Hinblick auf die Bedingung nach Kimura und die fiir jede Aus-
gangsgrofle zu entwerfende Regelung (4.28) ergibt sich fiir die Synchronisierung des Gierwinkels
gemiB (3.22) eine untere Schranke fiir die Reglerordnung von ngg, > 4 beziehungsweise fiir den
Neigungswinkel eine untere Schranke von 49, > 2. In beiden Fillen ldsst sich mit der Methodik
eine synchronisierende Regelung bestimmen, wobei fiir die Ausgangsgrofe 6, eine Mindestdy-
namik von @ = 0,1 und fiir die Ausgangsgrofie 0, eine Mindestdynamik von a = 0.5 erzielbar
ist. Damit ist es gelungen, basierend auf der Methodik aus Abschnitt 4.2.2 eine synchronisierende
Regelung zu entwerfen.

Im Hinblick auf den Entwurf der synchronisierenden Regelung basierend auf einer unterlagerten
Verkopplungsregelung ist die Giiltigkeit von Annahme 4.11 zu tiberpriifen. Hierzu ist fiir jeden
Agenten zunichst die Verkopplungsregelung zu berechnen. Gemafl Abschnitt 4.2.3 ergibt sich fiir
das betrachtete Beispiel die Forderung nach Verkopplung zu

[ Oa(t)
lim [9},([)

Ausgehend von der Losung der Sylvester Gleichung (4.34) entstehen die erweiterten Agenten
gemif (4.33). Auch an dieser Stelle ist die Existenz der Losung der Sylvester Gleichung gesichert,

} =5, () =2 yy; (1) = 0.

t—>00
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Bild 6.6: Asymptotische Synchronisierung von vier Modellhelikoptern basierend auf unterla-
gerter Entkopplungsregelung (linke Spalte) sowie Verkopplungsregelung (rechte Spalte)
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da das zugrunde liegende Modell entkoppelbar ist und keine invarianten Nullstellen aufweist. Die
verbleibenden, unsteuerbaren Eigenwerte des mittels (4.35) verkoppelt geregelten Agenten sind
auch in diesem Fall so gewihlt, dass sich ein moglichst geringer Wert der Konditionszahl der
Rechtseigenvektormatrix des geschlossenen Regelkreises ergibt. Dariiber hinaus wird ebenfalls in
Anlehnung an die teilparametrische Methodik aus Abschnitt 3.3.3 die Verkopplungsregelung jedes
Agenten hinsichtlich einer robusten Eigenstrukturvorgabe optimiert. Die begrenzende Hyperbel
ist dabei mit « = 1 und b = atan(57/12) parametriert (vgl. Bild 3.3), was der Mindestdynamik
und einer Mindestdampfung der Eigenwerte von y = 75° entspricht.

Ausgehend von der Koordinatendarstellung (4.38) des verkoppelt geregelten Agenten lésst sich
anschlieBend Annahme 4.11 tiberpriifen. Wie sich numerisch bestimmen lésst, gilt bild (Rs) =
ﬂlN: \bild (P;) # @, und das Paar (S,Rs) ist steuerbar. Dariiber hinaus ist dim (bild (Rs)) =
8. Somit ist es moglich, eine identische synchronisierende Regelung (4.40) fiir alle verkoppelt
geregelten Agenten zu entwerfen. Im Hinblick auf die Bedingung nach Kimura ergibt sich hierbei
eine untere Schranke fiir die Reglerordnung aus ngq > 3. Mittels der Methodik aus Abschnitt 4.1.3
lasst sich eine synchronisierende Regelung bestimmen, wobei eine Mindestdynamik von a = 0,1
erzielbar ist. Damit ist es ebenfalls gelungen, basierend auf der Methodik aus Abschnitt 4.2.3 eine
synchronisierende Regelung zu entwerfen.

Diskussion der Ergebnisse

Die mit den zuvor entworfenen Regelungen erzielten Ergebnisse sind in den Bildern 6.5 und
6.6 dargestellt. Bild 6.5 zeigt in der linken Darstellung die fiir den Entwurf zugrunde gelegte
Kommunikationstopologie eines stark verbundenen Graphen. Zum anderen ist ein Ausschnitt der
komplexen Ebene dargestellt, worin die Eigenwerte der geregelten Multi-Agenten Systeme in der
Umgebung der imaginédren Achse sowie die Eigenwerte des Referenzmodells auf der imaginéren
Achse eingezeichnet sind. Es ist zu erkennen, dass sowohl die Eigenwerte des mittels Verkopplung
entworfenen Ansatzes als auch die Eigenwerte des mittels Entkopplung entworfenen Ansatzes in
der Néhe der imaginiren Achse zum Liegen kommen, was auf die erzielbare Mindestdynamik von
a = 0,1 in beiden Fillen zuriickzufiihren ist.

Bild 6.6 zeigt die numerischen Simulationsergebnisse. In der linken Spalte sind die Ergebnis-
se basierend auf Entkopplung und in der rechten Spalte basierend auf Verkopplung dargestellt.
In den Zeitverldufen sind von oben nach unten die Zeitsignale des Gierwinkels 6, (z) und des
Neigungswinkels 8, (¢) sowie die iiber das Netzwerk kommunizierten Signale und damit der Syn-
chronisierungsfehler vg, (r) und v, (¢) dargestellt. Anhand der absoluten Ausgangsverliufe 0, (7)
und 6, (¢) ist zu erkennen, dass diese dem zuvor festgelegten Referenzsystem und damit einem ap-
proximierten Sigezahn- und Dreieckssignal mit den Amplituden ys; = 27 und o = 0,1 sowie
den Frequenzen wsz = 27/25 und wa = 27 /15 asymptotisch folgen.

Im Hinblick auf die Zeitverldufe der Synchronisierungsfehler zeigt sich eine anndhernd identi-
sche Konvergenzgeschwindigkeit der geregelten Multi-Agenten Systeme, was im Einklang mit
der in Bild 6.5 in der rechten Darstellung abgebildeten Lage der Eigenwerte ist. Da sowohl die
Eigenwerte des tiber Verkopplung geregelten Systems als auch die Eigenwerte des tiber Entkopp-
lung geregelten Systems in der Nihe der imagindren Achse zum Liegen kommen, stellt sich ein
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synchroner Zustand nach ungefihr 12 Sekunden ein. Stellt sich bei dem Ansatz basierend auf
Verkopplung in beiden Ausgangsgrofien der synchrone Zeitverlauf in etwa gleich schnell ein,
ist bei dem Ansatz basierend auf Entkopplung zu erkennen, dass der Neigungswinkel gegeniiber
dem Gierwinkel schneller konvergiert. Dies ist durch die hohere erzielbare Mindestdynamik im
Ausgangskanal des Neigungswinkels zuriickzufiihren und stellt damit einen Vorteil des Ansat-
zes basierend auf Entkopplung dar, da die Synchronisierungsvorgéinge weitestgehend unabhingig
voneinander einstellbar sind. Dies geht allerdings zu Lasten einer hoheren bendtigten Reglerord-
nung. Der synchronisierende Regler basierend auf Verkopplung hat eine Ordnung von nq = 17,
wihrend der synchronisierende Regler basierend auf Entkopplung eine Ordnung von ng e = 22
aufweist. Die Reglerordnung setzt sich dabei aus dem Referenzsystem, dem dynamischen Reg-
ler zur Entkopplung beziehungsweise Verkopplung sowie dem Regler zur Synchronisierung der
unterlagert geregelten Agenten zusammen.

Abschlielend lasst sich festhalten, dass mit den Methoden aus Abschnitt 4.2.2 und 4.2.3 leistungs-
fahige Entwurfswerkzeuge entstanden sind, um Synchronisierungsprobleme heterogener agenten-
basierter dynamischer Systeme zu 16sen, was das Beispiel in diesem Abschnitt belegt.

6.3 Dezentrale Synchronisierung einer autonomen
Fahrzeugkolonne

In diesem Abschnitt erfolgt die Anwendung der in Kapitel 5 entwickelten Methodik zur Syn-
chronisierung agentenbasierter Systeme basierend ausschlielich auf Relativinformation an ei-
nem vergleichsweise praxisnahen Beispiel. Hierzu wird das automatisierte Fahren in Kolonnen
auf Landstraflen oder Autobahnen mit einem Kraftfahrzeug betrachtet. Das Regelziel der verteilt
geregelten Kraftfahrzeuge besteht darin, asymptotisch einem vorausfahrenden Fahrzeug in einem
definierten Abstand mit der gleichen Geschwindigkeit zu folgen. Die fiir diese Regelungsaufga-
be bendtigte Sensorik erfasst daher den Relativabstand und die Relativgeschwindigkeit zu dem
voraus- und hinterherfahrenden Fahrzeug und nutzt die Geschwindigkeitsregelung des Fahrzeugs
zur Anpassung der Fahrzeuggeschwindigkeit, was den Aktor fiir das betrachtete Beispiel darstellt.

In Bild 6.8 ist eine Skizze des Entwurfsbeispiels dargestellt, wobei im nachfolgenden Entwurf und
den Simulationen von N = 20 Kraftfahrzeugen ausgegangen wird. Der ebenfalls in der Skizze
abgebildete Graph deutet die Kommunikationstopologie des zugrunde liegenden Netzwerks an.
Somit gibt das erste Fahrzeug die Geschwindigkeit fiir die nachfolgenden Fahrzeuge vor. Damit

Bild 6.7: Prinzip der autonomen Fahrzeugkolonne basierend auf Relativsensorik
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resultieren die Messgrofen der Fahrzeuge gemif (5.2) zu

0 |
, i=1,
_O

1 1 1 1

v; X; —X;_y+Xx; —X; .

”]: R ’;1’}, ief2,....N—1}
| Xi =X T X=Xy

vi(1) = [

2

M1 1

X! —x )

; } P= N
1 1

wobei x! die Position und x} die Geschwindigkeit des Fahrzeugs mit dem Index i bezeichnet.

Dariiber hinaus ist mit Bild 6.8 angedeutet, dass es sich unter praktischen Gesichtspunkten beim
betrachteten Beispiel um ein heterogenes Multi-Agenten System handelt. Dies ist mitunter auf un-
terschiedliche Motorisierungen der am Markt verfiigbaren Kraftfahrzeuge aber auch auf verschie-
dene Luftwiderstandsbeiwerte beziehungsweise unterschiedliche Anstromflachen der Fahrzeuge
zuriickzufiihren. Nach Mitschke und Wallentowitz [68] ergibt sich beim Fahren in der Ebene, bei
Windstille und durch Linearisierung ein linearer Zusammenhang zwischen Gaspedalstellung und
Geschwindigkeit des Fahrzeugs gemif der Differentialgleichung

.2 2
Xi Trz; + Xi = Kpy,0a, -

Danach verhilt sich das Fahrzeug bei einer Anderung des Gaspedals wie ein PT;-Glied mit der
Zeitkonstanten 7y,, und dem Verstirkungsfaktor Kg,,. Diese Parameter hiingen im Wesentlichen
von der Fahrzeugmasse, dem Motorkennfeld, dem gewihlten Gang, den aerodynamischen Para-
metern, den Reifen und der Fahrzeuggeschwindigkeit ab [68]. Zusammen mit einem dynamischen
Regler

< 2
Xai = AqiXai + Bai(X; — Vson),

1
as; = Cyixai + Dd,-x,»z + (K - Ddi) Usolls
Fz;

der der stationdr genauen Geschwindigkeitsregelung beziiglich v, dient und damit an dieser Stel-

1 2

. . T
le den Tempomat nachbildet, folgt zusammen mit dem Zustandsvektor x; = [xi X; xdi] €

R™ die Dynamik des heterogenen Agenten beziehungsweise des autonomen Kraftfahrzeugs zu

0 1 0 0
. K, K, K,
X =10 %}' <Ddi - ﬁ) T:: Co | xi+ |- T:}' (Ddi - ﬁ,) Vsoll (6.72)
_0 Bdi Adi —Bdi
= Aixi + Bivsn,
1 0 0
Yi = 0 1 O] x; = Cix;, (6.7b)

wobei die in der Simulation zugrunde gelegten Parameterwerte der N = 20 Zustandssysteme in
Tabelle 6.3 aufgefiihrt sind.
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Tabelle 6.3: Zeitkonstanten und Verstirkungsfaktoren fiir die Kraftfahrzeuge gemaf (6.7)

i [ v [2[3[4]s5]6]7][8 ]9 [10]
Kry,; || 63,9 [ 653 [87.8 [43,1[46,7]486]875]653]49,7] 56,1
Ty, | 0,29 [ 035 0,88 0,08 | 0,14 [ 0,16 | 0,90 | 0,29 | 0,15 | 0,21
i [ ]]is[16]17]18]19]20 |
Kry; || 43,1 44,7556 [ 54,4903 456508 51,4]694] 694
Ty, | 0,15 ] 0,18 [ 0,18 [ 020 | 1,02 [ 0.12] 0,14 [ 0,15 | 0,64 | 0,57

Hinsichtlich des eingangs formulierten Regelungsziels ist im Folgenden die synchrone Trajek-
torie festzulegen. Ausgehend von der Forderung, dass sich die Kolonne mit einer identischen
Geschwindigkeit und mit einem definierten Abstand zwischen den Fahrzeugen fortbewegen soll,
ergibt sich die synchrone Trajektorie gemaf3

ys(t) = vot + ys(to),

was sich ebenfalls tiber die homogene Differentialgleichung

01
Xs = |:0 0:| Xs = SXS (683)
ys =[1 0]xs = Oxs (6.8b)

mit dem Anfangswert xs(f) = [ s (to) UO]T und xs € R" mit ng = 2 darstellen lisst. Dies legt
damit das virtuelle Referenzsystem (5.3) beziehungsweise die Dynamikmatrix der zu beriicksich-
tigenden Vorsteuerung (5.4a) beim weiteren Entwurf der Regelung fest.

Fiir die Losung der Sylvester Gleichung (5.5) lisst sich an dieser Stelle ein geschlossener Aus-
druck fiir jeden Agenten angeben. Es folgt mit (5.5), (6.7) und (6.8), dass

10 0 1 0 10 0

KL’. 1 Kll- Kz,' 1
0 1[s=10 72 (Du—5-) 72Ca||0 1|+ |72 (z = Da) [[0 1],
00 0 By Aqi 00 —Byi

gilt. Damit ist fiir alle i € {1,..., N}

Hi=

S O =

0
1. i=[o 1].
0

Allerdings ist auch

rang( FFIS]) = rang (|:8 é]) < ng,
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was zeigt, dass das Paar (I';, S) nicht vollstindig beobachtbar ist. Somit miissen bei diesem Bei-
spiel die Ergebnisse aus Abschnitt 4.2.4 beachtet werden. Es lidsst sich daher eine Minimalrea-
lisierung beziiglich des Ausganges I'; bestimmen. Da (6.8) bereits in Jordanscher Normalform
vorliegt, ergibt sich eine Basis des beobachtbaren Unterraums aus den entsprechenden Eigen- und
Hauptvektoren und in diesem Beispiel zu bild <[O l]T>. Damit resultiert die reduzierte Darstel-
lung der Matrizen S — S, 0 — Q und I'; — I, die fiir den Entwurf der Regelung (5.6) zu
beriicksichtigen sind, aus

S=Jo 1][8 é]mzo, 0=|1 0][?]:0, I =0 1]m=1.

Damit ist, wie in Satz 4.6 gefordert, die Basis des Unterraumes

S,' = {xei € R |xei € bild ([ri;'])} , He,' =

zusammen mit den erweiterten Agenten (5.7), die aus (6.7) und (5.6) entstehen, eine Losung der
Sylvester Gleichung (4.20), was aus

. Ne; =N +ng + ng

i

S O O =
—_ 0 = O

- 0 1
A;i BTy BiCy ~
I S=|0 S Eqi I & IS = Ai Bili ., = 00
0 0 0 A 0 ! 0 S ! 00
di 00
und
10
01
i II.. = =
0 1

folgt. Damit sind die notwendigen Bedingungen zur Synchronisierung heterogener Agenten aus
Satz 4.6 erfiillt, und damit haben alle Agenten ebenfalls eine nicht-leere System-Schnittmenge.
Dies hat zur Folge, dass die Bestimmung der freien Reglerparameter in (5.6) basierend auf der
Methodik aus Abschnitt 5.2 erfolgen kann.

Diskussion der Ergebnisse
Zunichst erfolgt die Definition des Gesamtsystems gemif (5.9), woraus

%= (Ae+ B(Lg ® 1,)C)x,  x(to) = o,
v=(Lg® I,)Cox
mit x € R” folgt. Fiir die Systemordnung n ergibt sich zusammen mit der Ordnung des dynami-

schen Reglers n;, = 2, dassn = ZIN=, (ni + ns + n;;) = 120 gilt. Die Matrix Ar,, die mittels
der Methodik aus Abschnitt 5.2 stabilisiert werden muss, errechnet sich dabei aus (5.14).
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Bild 6.8: Asymptotische Synchronisierung einer autonomen Fahrzeugkolonne basierend auf
einem dezentralen Regelungsentwurf
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Zur Bestimmung geeigneter Startwerte &, fiir das Optimierungsproblem (5.17) hat es sich in zahl-
reichen numerischen Beispielen bewihrt, zunichst die Reglerparameter jedes erweiterten Agenten
(5.7) derart zu bestimmen, dass die Systemmatrix A; + B.; Ce; ausgehend von (5.8) eine Hurwitz
Matrix ist. Als zweckmiBig erweist es sich zudem, die stabilisierende Regelung hinsichtlich der
robusten Eigenwertvorgabe weiter zu optimieren. Durch dieses Vorgehen gelingt es, in wenigen
Iterationen zur Losung von (5.17) einen Parametersatz zu bestimmen, der die Matrix A7, stabili-
siert. Bei dieser Losung ergibt sich dariiber hinaus eine Mindestdynamik von ¢ = 0.01, die iiber
den Bereich der Eigenwerte in Bild 5.2 einstellbar ist.

Bild 6.8 zeigt die numerischen Simulationsergebnisse. Von oben nach unten ist der Zeitverlauf der
Fahrzeugpositionen und der Fahrzeuggeschwindigkeiten sowie die Synchronisierungsfehler hin-
sichtlich der Relativposition und -geschwindigkeit dargestellt. Dabei wurde zudem beriicksichtigt,
dass asymptotisch alle Fahrzeuge den Mindestabstand 50 Metern einhalten, da als Referenzge-
schwindigkeit vo = 100 km/h zugrunde gelegt wurde. Anhand der Simulationsergebnisse ist zu
erkennen, dass sich alle Fahrzeuge gemil3 des eingangs formulierten Regelziels auf die Trajek-
torie ys(¢) nach ungefihr 150 Sekunden synchronisieren. Damit ist es gelungen, eine synchro-
nisierende Regelung zu entwerfen, die im Gegensatz zu den in den Abschnitten 4.2.2, 4.2.3 und
4.3 entwickelten Methoden, nicht auf die Verwendung von absoluter Messinformation angewie-
sen ist. Dies wird zwar durch den erhohten Aufwand, der sich aus dem Entwurf der dezentralen
Regelung ergibt, erkauft. Das Beispiel in diesem Abschnitt belegt allerdings, dass der Entwurf
komplexer Beispiele hinsichtlich der Ordnung des Gesamtsystems durch die entwickelte Methode
moglich ist. AbschlieBend lisst sich festhalten, dass die Methode aus Kapitel 5 ein leistungsfihi-
ges Entwurfswerkzeug darstellt, um heterogene agentenbasierte Systeme ohne Verwendung von
Absolutinformation zu entwerfen.
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7 Zusammenfassung der Arbeit

Diese Arbeit beschreibt die Weiterentwicklung bestehender und die Entwicklung neuer Ansitze,
um Regelungen fiir agentenbasierte dynamische Systeme zu entwerfen. Alle betrachteten Metho-
den haben die Synchronisierung des geregelten Multi-Agenten Systems zum Ziel, wobei in dieser
Arbeit stets der allgemeine Fall der Ausgangssynchronisierung beleuchtet wird. Der Spezialfall
der Zustandssynchronisierung ist in den Ansédtzen immer enthalten, fiihrt aber in den meisten Fal-
len auf agentenbasierte dynamische Systeme, die sich aus identischen Teilsystemen zusammen
setzen. Dies begriindet damit den Schwerpunkt der Arbeit, der vornehmlich in der Betrachtung
von Synchronisierungsproblemen heterogener Multi-Agenten Systeme besteht.

Ausgangspunkt der Methoden in dieser Arbeit stellt zunéchst die Systemanalyse der betrachte-
ten Systemklassen dar, woraus sich notwendige Bedingungen zur Synchronisierung aus der Li-
teratur im Hinblick auf die verwendeten Methoden der Arbeit ableiten und interpretieren lassen.
Wiihrend die Synchronisierung homogener Multi-Agenten Systeme in ein simultanes Stabilisie-
rungsproblem iiberfiihrbar ist [25], gestaltet sich die Synchronisierung heterogener Multi-Agenten
Systeme vergleichsweise schwieriger, da die synchrone Zeitlosung der Agenten zunéchst nicht
offensichtlich ist. Ausgehend vom Internen Modell Prinzip zur Synchronisierung [125], gibt die
vorliegende Arbeit eine Interpretation dieser notwendigen Bedingungen im Hinblick auf einen in-
varianten Unterraum des geregelten Systems, der durch die Regelung explizit die Eigenschaft der
Ausgangsnullung und der Attraktivitit fiir asymptotische Synchronisierung aufweisen muss.

Als hilfreich erweisen sich in diesem Zusammenhang die Verwendung parametrischer bezie-
hungsweise teilparametrischer Ansitze zum Regelungsentwurf, die die Berechnung der lokalen
Regler aller Agenten ermoglichen. Hierzu wird konsequent von einer konstanten beziehungswei-
se dynamischen Ausgangsregelung der Agenten ausgegangen, was die praktische Implementie-
rung der entwickelten Methoden begiinstigt und dariiber hinaus keine wesentliche Einschrinkung
der betrachteten Systemklasse der Agenten darstellt. Losgelost von der eigentlichen Kernthematik
der Arbeit — der Synchronisierung agentenbasierter dynamischer Systeme — entstehen Weiterent-
wicklungen von Methoden zur robusten Eigenstrukturvorgabe sowie Methoden zum Entwurf von
Ent- und Verkopplungsregelungen, die allesamt als dynamische Ausgangsriickfiihrung in der Pra-
xis implementierbar sind. Das Beispiel der Entkopplungsregelung einer xy-Positioniereinheit im
Rahmen der Entwurfsbeispiele der Arbeit belegt die Anwendbarkeit der Methode sowohl in der
Simulation als auch im Laborversuch.

Hinsichtlich der Synchronisierung agentenbasierter Systeme erfolgt in dieser Arbeit eine Unter-
scheidung der Ansitze beziiglich der Messgrofien der Agenten. Zunichst wird davon ausgegan-
gen, dass die Agenten sowohl die zur Synchronisierung benétigte Relativinformation als auch Ab-
solutinformation messtechnisch erfassen konnen. Diese Annahme ermoglicht durch unterlagerte
Regelkreise die Agenten hinsichtlich des Kommunikationsnetzwerks, welches die Relativinfor-
mation zur Verfiigung stellt, zu homogenisieren. Die Homogenisierung erfolgt in dieser Arbeit
durch Ent- und Verkopplungsansétze, was einen Riickgriff auf die parametrische Entwurfsme-
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thodik darstellt. Der Entwurf der tiberlagerten Regelung zur Synchronisierung stellt sich als ein
Synchronisierungsproblem fiir identische Agenten und damit als ein simultanes Stabilisierungs-
problem dar. Der Entwurf dieser Reglung kann mit Verfahren aus der Literatur erfolgen — die
vorliegende Arbeit diskutiert allerdings auch einen einfachen Ansatz zur Synchronisierung identi-
scher Agenten basierend auf der Vorgabe von Eigenwertbereichen, was ebenfalls einen Riickgriff
auf die gewihlten strukturbeschrinkten Regelungsmethoden darstellt.

Dariiber hinaus erméglicht die Kenntnis von Zustandsinformation fiir die spezielle Systemklasse
nichtlinearer Agenten, die riickgekoppelt dquivalent zu einem passiven System sind, ein adaptives
Regelgesetz mit einem auf der Passivitiit basierenden Ansatz zur Synchronisierung zu kombinie-
ren. Dadurch gelingt die Weiterentwicklung einer Methode aus der Literatur [17] zur Synchroni-
sierung nichtlinearer Agenten auf eine erweiterte Systemklasse. Diese Systemklasse ergibt sich
aus Agenten, die den Vektorrelativgrad eins als auch parametrische Unsicherheiten aufweisen.
Dabei kompensiert die adaptive Regelung die unsicheren Vektorfelder, was der Homogenisierung
der Agenten entspricht und durch den passivititsbasierten Ansatz aus der Literatur wird die Syn-
chronisierung des nichtlinearen Multi-Agenten Systems erméglicht.

Der Verzicht auf Absolutinformation beim Regelungsentwurf ist gleichbedeutend mit dem Weg-
fallen der unterlagerten Regelkreise. Nichtsdestotrotz ldsst sich auch fiir diesen Fall ein Regelge-
setz zur Synchronisierung agentenbasierter dynamischer Systeme bestimmen. In der vorliegenden
Arbeit wird der Entwurf der synchronisierenden Regelung in ein dezentrales Stabilisierungspro-
blem iibersetzt, wobei durch die Wahl der Regelungsstruktur der Agenten stets die notwendigen
Bedingungen zur Synchronisierung erfiillt sind. Durch numerische Min-Max Optimierung lassen
sich die Parameter fiir die lokalen Regler der Agenten bestimmen, was dem Verschieben der Ei-
genwerte des Synchronisierungsfehlers in einen Bereich der linken offenen komplexen Ebene ent-
spricht. Das vorgestellte Verfahren ist lediglich in der Lage, lokale Minima des Entwurfsproblems
zu bestimmen, so dass Aussagen iiber das globale Minimum nicht méglich sind. Die Entwurfs-
beispiele in dieser Arbeit belegen allerdings, dass es durch die vorgestellte Methodik méglich ist,
hinsichtlich der Gesamtsystemordnung komplexe Entwurfsaufgaben zu 16sen.

Insgesamt ermoglichen die in dieser Arbeit neu- und weiterentwickelten Entwurfsmethoden das
Synchronisierungsproblem fiir lineare agentenbasierte dynamische Systeme zu 16sen, wobei die
Anforderungen an die Systemklasse der Agenten nicht restriktiv sind. Die zugrunde liegenden pa-
rametrischen beziehungsweise teilparametrischen Ansitze zeigen auch in dieser Arbeit ihre weit-
reichenden Leistungsfihigkeiten, wozu die Ergebnisse einen neuen Beitrag leisten.
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A Beweise

A.1 Beweis von Satz 3.9

Beweis. Mit Gleichung (3.18) und den Regeln zum Rechnen mit Differentialen in (B.6) folgt

dK = dQ.(CV)T + 0d(CVy)T
+d(W.B)t Q.U, + (W.B)"dQ.U, + (W.B)" Q.dU, (A.1)
+ dU, KUy + U,dK,U; + U, K,dU;.

Mit Satz B.13 und Lemma 3.8 kann darin d(CV,)*, d(W,B)™, dU, und dU, durch

dCV)T = —(CVYTECT)CV)T + (CV)T(CV)TTEACT) (I, — (CV(CV)™)
d(W.B)" = —(W.B)" (dW,B)(W,B)* + (I, — (W,B)" (W, B))(dW,B)"(W,B)*"(W,B)*
du = —(Ccvy*tdcvy'uf
dU, = —(W.B)" (dW,) BU,

berechnet werden. Mit Gleichung (3.5) und der Festlegung der Rechtseigenvektoren und der Steu-
ermoden gemif vg; = Ny;qyi bzw. py; = M,;qy; ldsst sich aus obiger Gleichung

[CNy
vec(dCV;) = &, = V(C.V)dE
L CNyp—i
_le
vec(dQ,) = d&; =: VQ.d§
L Mvp—l
mit & = [¢7, ... qvp_l]T berechnen.

Zur Berechnung von dW, B und dQ; kann die Entwurfsgleichung (3.15) zu einem symmetrischen
Eigenwertproblem zum Eigenwert null gema

wKi:| _ [(Al _)VKi[)(AT_)VKi]) (4, —)»Ki[)clT] [wxi] -0

T_ 5. . T
[(Al )LKzl) C1]|: C](Arf—)x](il) CICIT Pwi

DPwi

modifiziert werden, da mit der Abkiirzung Sc; = [(A] —Ax;I) C[]folgt, dass dim (kern (S¢;)) =
1 ist. Mit Lemma 3.8 ist daher

dwg; * -
[dp::] = (—S&Sci) " S&(dScr) [pfj

1P 216.73.216.36, am 20.01.2026, 12:37:37. Inhalt,
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186250087

A.1 Beweis von Satz 3.9 145

und mit (3.13)
dSci = dSc = [CT(dQ(CV)* + 0 V™)' BT CTaU]
= [cr@ewy T @) BT + T (@) TBT CTauy ]
und daraus mit dem Vektorisierungsoperator sowie mit der Kommutierungsmatrix
B®CT(CW)'™) (BO,®CT) 0 Kom,p-ivec(@Qn)
0 0 (1®CT) Kp—1,pvec(d(CV)T) |.
vec(dUy)
Zur Berechnung von dW; B und dQ, folgt daher mit vec (dQST) = vec(dQ;) und
vec(dW;B) = ICsmlCmsvec((BTdWsT)T)
= Kymvec(BTdW,")
= Ksm (I; ® B") vec(dW,")
= (B" ® I;) Kugvec(dW,")
zur Berechnung von vec(dW,") und vec(dQ;) durch

[([wt, Pt [L 0](-SE,Sc,) st

vec(dSc) = |:(

VEC(dVVST) = vec(dSc) =: VWSTdél,

)
(o )@ (1 0] -5, Sen*sE)
)

([wt, Pile[0 1 (=S&,5¢p) " SE,
vec(dQ7) = : vec(dSc) =: VO,dE.
(ks PEJ®[0 1] (-S2,500"S5)
Aus der Kenntnis von vec(dC V;) und vec(dQ,) folgt daher die Kenntnis von dU;" und damit auch
vec(dSc), woraus sich dann vec(dW,") und vec(d Q) berechnen ldsst. Somit folgt
vee(d(CVy)*) = ((CV)*T @ —(CV)™) vec(dC V)
+ (U = (CVCVHT @ (CV)HCV)™T) Kprvec(dC ;)
((WB)™" @ —(W,B)") vec(dW,B)
+ ((W.B)*"(W,B)" ® (Iu — (W, B)* (W, B))) Kgmvec(dW,B)
vee(dU)) = (U ® —(CV) ") Kppvec(dC V)
vee(dUs) = (Uy ® —(W,B)") vec(dW,B)

vec(d(W,B)") =

sowie
vee(dK) = ((CV)*" ® Iy) vec(dQ,) + (Ip—1 ® Q;) vec(d(C V) )
+ (UTQT ® 1) vec(d(W,B)") + (U ® (W.B)™) vec(dQ,)
+ (I, ® (W,B)" Q, + U, K;) vec(dU,)
+(U;

(A.2)
{1 K] ® Iy) vec(dUs) + (U] ® Us) vec(dK>)

=[VKe, VK] [g;]

1P 216.73.216.36, am 20.01.2026, 12:37:37. Inhalt,
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186250087

146 A Beweise

und daraus das geforderte Resultat fiir vec(dK) mit den Optimierungsvariablen &, = vec(K3)
sowie den Jacobi Matrizen VK¢, und VK¢, der Riickfithrmatrix K, die aus obiger Gleichung
durch

VKe = (CV)TT @ 1n) VO, — ((CV)TT ® 0(CV)T) V(C.VY)
+ (I = ([CVICVIHT® 0.(CV)T(CV)TT) K, V(CVH)
— (U1 ® (W,B)" Qs + U, K2)(CV) ™) K, V(C V)
— (U QI (W,B)"" BT @ (W, B)") Kus VW,
(U QI (W.B)* T (W.B)* & (I, — (W.B)" (W.B)) BT) VW
— (UK Uy B ® (W,B)") Ky VW,
+ (Ul ® (W.B)*) VO
VK, = (Ul @ Us)

J’_

gegeben sind.

Zur Berechnung von dVx wird Vg gemdB Vg = [14 Vkp .- vK,,] partitioniert. Mit Gleichung
(3.5) und der Festlegung der Rechtseigenvektoren gemill vk; = Ny;qy; ldsst sich aus obiger Glei-
chung zunichst

Nvl
vec(dV;) = dé;

bestimmen. Mit Gleichung (B.11) folgt fiiri € {p,...,n} dariiber hinaus

dug; = (i o — (A + BKC))* (1,, — it ) BK)Cg.
Wi~ VKi

Damit ist zusammen mit d(4 + BKC) = B(dK)C abschlieend

Nvl
vafl
vee(dVy) = (U,EI,CT ® (Axpls — (A + BKC)) " ( I ;KK,;u:Kvip)) VK, | s
(VE,CT ® Cuacnla — (4 + BKC)* (I, — 2™ )) VK
L Kn Knin n W Ve £ |

V Vidt, .
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A.2 Beweis von Satz 3.14

Beweis. Mit Gleichung (3.70) und den Regeln zum Rechnen mit Differentialen in (B.6) folgt
dK. = dO(C V)™ + Qd(C.V)) " + KudUy + dKey Uy (A4
Mit Satz B.13 und Lemma 3.8 kann darin d(C, Vr)+ und dU; durch

dCV)T = ~(CV)TWCIYCIDT + (CT)T(CV) T ACT) (T, = (CVN(CV))
AUy = —(CV) ™ @C V) Uy

berechnet werden. Mit Gleichung (3.5) und der Festlegung der Rechtseigenvektoren und der Steu-

ermoden gemil vk; = Nyiqyi bzw. py; = M,;qy; aus (3.44) ldsst sich aus obiger Gleichung

_Ce N vl
vec(dC,V;) = d¢; = V(C. ) dé,
L CeNyn
_M vl
vec(dQ,) = d& = VQ.d§

L M,y

mit &) = [qVT] ... qv,,]T berechnen. Aus der Kenntnis von vec(dC, V;) und vec(d Q,) folgt daher

die Kenntnis von dU . Somit folgt

vee(d(CeV)™) = ((CVD ™ ® —(CV)T) vee(dC.V;)
+ ((Ip, = (CVNCV) T & (CV) T (CVi)™T) K porvec(dCe Vi)
vee(dUy) = (—(C.V,)™" ® Uy) vee(dC.V;)

sowie
vec(dKe) = ((C.V)™" ® Iy,) vec(dQ,) + (I, ® Q) vec(d(C.V)™)
+ (Ipc ® Kel)vec(dUl)
+ (U ® Ly,) vec(dKer) (A.5)
=

d.
VK VK] [dg]

und daraus das geforderte Resultat fiir vec(dK.) mit den Optimierungsvariablen & und & =
vec(K,;) sowie den Jacobi Matrizen VK¢ und VK¢, der Riickfilhrmatrix K., die aus obigen
Gleichungen durch

VKe = ((CV)T ® L) VO, + (—(CV)H ® QUCV)T + KaUy) VGV (A6)

+ ((Ip, = (CVNCVIHT @ 0U(CV)T(CV)TT) Ko V(CVS) (A7)
VKe, = (U] ® In,) (A.8)
gegeben sind. ]
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B Mathematischer Anhang

B.1 Lineare Gleichungssysteme

Satz B.1 ([9, Proposition 6.1.7] ). Betrachtet wird die Matrix A € R™™ sowie der Vektor b € R".
Dann sind die folgenden Aussagen dquivalent:

i) Es existiert ein Vektor x € R™, der Ax = b erfiillt.

ii) rang (A) = rang ([A b])

iii) b € bild (4)

iv) AATh =10
Angenommen, die Bedingungen i)-iv) sind erfiillt, dann sind die folgenden Aussagen giiltig:

v) Wenn x € R™ die Gleichung Ax = b erfiillt, dann gilt

X=ATb+ (I - AT A)x. (B.1)

vi) Fiiralle y € R™, erfiillt x € R™ gegeben durch
XxX=ATb+ (I —-ATA)y (B.2)
die Gleichung Ax = b.

vii) Sei x € R™ durch (B.2) gegeben, wobei y € R™. Dann wird durch y = 0 die Funktion x"x
minimiert.

viii) Angenommen, es gilt rang (A) = m. Dann existiert ein eindeutiger Vektor x € R™, der
Ax = b erfiillt und durch x = A*b gegeben ist. Ist dariiber hinaus A" eine Links-Inverse
von A, dann gilt A*b = A™"b.

ix) Angenommen, es gilt rang (A) = n und es sei AR eine Rechts-Inverse von A. Dann erfiillt
x = ARb die Gleichung Ax = b.

B.2 Matrix Analysis

Definition B.2 ([35, vgl. S. 399]). Der gerichtete Graph einer Matrix A € R™*", bezeichnet mit
T'(A), ist ein gerichteter Graph mit n Knoten vy, v, ..., v, mit der Eigenschaft, dass eine gerich-
tete Kante in I'(A) genau dann existiert, wenn a;j # 0 gilt.
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Definition B.3 ([35, vgl. S. 402]). Eine Matrix A € R™" ist reduzibel, wenn eine Permutations-
matrix P € R™" existiert, so dass

B C
PTAP = |: :|
Onfr,r D

mitl <r <n-—1gilt

Definition B.4 ([35, vgl. S. 402]). Eine Matrix A € R"™" ist irreduzibel, wenn sie nicht reduzibel
ist.

Satz B.5 ( [35, Theorem 6.2.24] ). Sei A € R"". Es sind die folgenden Aussagen dquivalent:

(a) A istirreduzibel.
(b) T'(A) ist stark verbunden.

Satz B.6 ([35, Theorem 8.4.4 (Perron-Frobenius)]). Sei A € R™" eine irreduzible und nicht-
negative Matrix. Angenommen es gilt n > 2, dann gilt:

(a) Fiir den Spektralradius p(A) gilt p(A) > 0.
(b) p(A) ist ein Eigenwert von A mit algebraischer Vielfachheit eins.

(c) Es existiert ein eindeutiger reeller Vektor x = [x;], so dass Ax = p(A)x und x1+---+x, = 1
gilt; x ist positiv.

(d) Es existiert ein eindeutiger reeller Vektor y = [y;], so dass y*A = yTp(A) und x,y, + -+ +
Xpyn = 1 gilt; y ist positiv.

Satz B.7 ([35, Theorem 6.3.2 (Bauer and Fike)]). Sei A € C"™" diagonalisierbar. Weiterhin sei
angenommen, dass A = SAS™!, worin S reguliir und die Matrix A eine Diagonalmatrix ist. Sei
E € C"™" und ||| eine Matrix Norm auf C"™*", die von einer absoluten Norm auf C" induziert
wird. Wenn i eine Eigenwert von A + E ist, dann existiert ein A von A, so dass

=] < ISI ST IEN = k() IET,

worin k() die Konditionszahl beziiglich der Matrix Norm ||-|| bezeichnet.

B.3 Kronecker Produkt

Definition B.8 ([9, S. 400]). Sei A € R™™ und B € R'*k. Dann ist das Kronecker Produkt
A ® B € Rk der Matrizen A und B durch die partitionierte Matrix

a”B almB
A®B=| @ - :

amB -+ aymB

gegeben.
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Fiir das Kronecker Produkt gelten die folgenden Rechenregeln (vgl. [9, S. 400 ff.]):
AQ® (aB)=(xA)® B=ao(4® B),
(A® B)" = AT ® BT,
(A+B)®C=4A0C+BQC,
CRA+B)=CR®A+CQ® B,
(A®B)®C =40 (B®C),
(A® B)(C ® D) = (AC ® BD),
(A®B)'=U"1® B™).
AufBerdem gilt (vgl. [9, Fact 7.4.23])

rang (A ® B) = rang (A4) -rang (B) = rang (B ® A) (B.3)
sowie mit dem Vektorisierungsoperator (vgl. [63, Theorem 4.2])

vec(B) 1= vec([by ... by])=[bT ... b,f]T (B4)
ist

vec(ABC) = (CT @ A)vec(B). (B.5)

B.4 Rechnen mit Differentialen

Zur Berechnung von Differentialen sind die folgenden Regeln hilfreich, wobei « eine reelle Kon-
stante, A eine reelle konstante Matrix und U und V Matrizenfunktionen sind:

da =0, (B.6a)

d4 =0, (B.6b)
d(@U) = adU, (B.6c)
d(U £ V) =dU +4dvV, (B.6d)
diUV)=(@U)V +U(@V), (B.6e)
dUT = (dU)T, (B.6f)
dvec(U) = vec(dU), (B.6g)
dspur (U) = spur(dU). (B.6h)

Satz B.9 ([63, Theorem 5.6 (first identification theorem)]). Sei f : S — R™ eine vektorwertige
Funktion, die auf einer offenen Menge S C R" definiert ist und die an einem inneren Punkt ¢ von
S differenzierbar ist. Sei u € R". Die Elemente der m x n Matrix in

df(cu) = Df()u,
also die Elemente D fi(c) sind die partiellen Ableitungen der Funktion f ausgewertet an der
Stelle c. Ist dariiber hinaus A(c) eine Matrix, die

df(c,u) = A(c)u
fiir alle reellen u erfiillt, dann ist A(c) = D f(c).
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Differenzierbarkeit des symmetrischen Eigenwertproblems

Satz B.10 ([63, Theorem 8.7]). Sei Ag eine reelle symmetrische n x n Matrix und sei vy ein
normierter Eigenvektor zu einem einfachen Eigenwert Ao von Ag. Eine reellwertige Funktion X
und eine vektorwertige Funktion v sind fiir alle A in einer Umgebung N (Ao) C R™" von Ay
definiert, so dass

A(Ao) = ko, v(A4o) = Vo
und
Av =2, vv=1, A € N(Ao)

gilt. Dariiber hinaus sind die Funktionen A und v unendlich oft differenzierbar in N(Ay) und die
Differentiale in Ay sind durch

dA = voT(dA)vo (B.7)
und

dv = (oI, — Ao) " (dA)vo (B.8)
gegeben.

Die Kommutierungsmatrix 1C,, ,

Sei A eine m x n Matrix. Die Vektoren vec(A) und VGC(AT) enthalten offensichtlich dieselben mn
Komponenten, lediglich in verschiedener Anordnung. Daher existiert eine eindeutige mn X mn
Permutationsmatrix, welche vec(4) in vec(AT) iberfiihrt. Diese Matrix heifft Kommutierungs-
matrix und wird mit /C,,,, oder KCpp, , bezeichnet. Daher ist

Kmnvec(4) = vec(AT).

Da KC,,,, eine Permutationsmatrix ist, ist diese ebenfalls eine orthogonale Matrix. D.h. KT = K1

und dariiber hinaus ist /Cp,,,, KCpnvec(A) = vec(A), so dass Ky KCpun = Iy Daher ist
Koun = Ko = Kum
und K,y = Ky = I,

Eine der wichtigsten Eigenschaften der Kommutierungsmatrix ist die Moglichkeit, die Matrizen
eines Kronecker Produktes zu vertauschen (,,zu kommutieren®).

Satz B.11 ([63, Theorem 3.9]). Sei A eine m x n Matrix, B eine p x ¢ Matrix und b ein p x 1
Vektor, dann ist

Kpm(A® B) = (B ® A)Kyn, (B.9a)
Kpm(A® B)ng = (B ® A), (B.9b)
Kpm(A®b) = (b® A), (B.9¢)
Kmp(b ® A) = (A ®b). (B.9d)
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Differenzierbarkeit des (i.A. komplexen) Eigenwertproblems

Satz B.12 ([63, Theorem 8.8]). Sei Ag ein einfacher Eigenwert einer (moglicherweise komplexen)
Matrix Ay € C" und sei vy der dazu korrespondierende normierte Eigenvektor, so dass Agvy =
Aovo gilt. Eine komplexwertige Funktion A und eine vektorwertige (komplexe) Funktion v sind fiir
alle A in einer Umgebung N(Ao) C C™" von Ay definiert, so dass

A(Ao) = Ao, v(4o) = o
und
Av=2Av, vv=1, A€ N(4)

gilt. Dariiber hinaus sind die Funktionen A und v unendlich oft differenzierbar in N (Ao) und die
Differentiale in Ao sind durch

*(dA
ar = woldAv (B.10)
W, Vo
und
.
dv = (olp — Ag)* (I,, — v"*w") (dA)vo (B.11)
W, Vo

gegeben, wobei wy ein Eigenvektor zum Eigenwert )_»o von Ay ist, so dass Ay*wo = )_»owo gilt.

Differential der Moore-Penrose-Pseudoinverse

Satz B.13 ([63, Theorem 8.5]). Sei S eine offene Teilmenge von R"™? und sei A : S — R™*?
eine Matrizenfunktion, die k > 1 mal differenzierbar auf S ist. Wenn rang (A(x)) konstant auf S
ist, dann ist AT © S — RP*™ k-mal stetig differenzierbar auf S und das Differential folgt aus

dAT = —AT(dA)AT + AT ATTdAN(T — A4 + (T, — AT A)(dAT) AT AT,
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C Eigenschaften linearer Zustandssysteme

Betrachtet wird das lineare Zustandssystem

X = Ax + Bu, (C.1a)

y = Cx, (C.1b)

wobei fiir den Zustandsvektor x € R”, den Anfangswert x(#)) = x;,, den Eingang u € R™ und
fiir den Ausgang y € R? gilt. Die Matrizen A, B und C seien von passender Dimension.

Steuerbarkeit und Beobachtbarkeit

Eine Aussage iiber die Steuerbarkeit des Zustandssystem (C.1) gelingt mit

Satz C.1 (Steuerbarkeit, vgl. [133]). Betrachtet wird das Zustandssystem (C.1). Die folgenden
Aussagen sind dquivalent:
i) (A,B) ist steuerbar.

ii) Die Gram’sche Steuerbarkeitsmatrix (engl. Controllability Gramian)
W,(t) := /Ot e4"BB*e4 T dr
ist positiv definit fiir alle t > 0.
iii) Die Steuerbarkeitsmatrix nach Kalman
C=[B 4B --- A"!] (C2)
hat vollen Zeilenrang.

iv) Die Matrix [A — Al B] hat vollen Zeilenrang fiir alle A € C.

Hinsichtlich der Beobachtbarkeit des Zustandssystems (C.1) sind die Aussagen von Satz C.1
aufgrund der Dualitit in gleicher Weise giiltig, indem die Variablensubstitution A — AT und
B — CT vorgenommen wird.

Invariante Nulistellen

Zur Analyse der invarianten Nullstellen eines Zustandssystems wird die Rosenbrock’sche System-

matrix

Pel) = [A ;u g]
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und die Ubertragungsmatrix
G =C(A-A)"B
benotigt, wobei A € C gilt.
Definition C.2 ([86]). A = A¢ heifst invariante Nullstelle des Zustandsystems (C.1), wenn

rang (Pr(Ro)) < I{laé( rang (Pr(1))

fiir ein Ao € C gilt.

Definition C.3 ([86]). Gilt rang ([A — Aol B]) < n, so wird Ao als Eingangsentkopplungsnull-
stelle des Zustandssystems (C.1) bezeichnet.

Gilt rang ([AT — AoI C™]) < n, so wird Aq als Ausgangsentkopplungsnullstelle des Zustands-
systems (C.1) bezeichnet.

Aufgrund des Hautus-Kriteriums (vgl. Punkt iv) in Satz C.1) entsprechen die nicht steuerbaren
Eigenwerte des Zustandssystems (C.1) den Eingangsentkopplungsnullstellen beziehungsweise die
nicht beobachtbaren Eigenwerte des Zustandssystems (C.1) den Ausgangsentkopplungsnullstel-
len.

Satz C.4 ([116]). Fiir das Zustandssystem (C.1) wird angenommen, dass m > p gilt. Die folgen-
den Aussagen sind dquivalent:

i) Das Zustandssystem (C.1) ist rechts-invertierbar.

ii) Es gilt rang (Pr(A)) = n + p fiir fast alle ). € C.

Fiir quadratische Zustandssysteme ergibt sich der nachfolgende Korollar.

Korollar C.5 ([116]). Fiir das Zustandssystem (C.1) wird angenommen, dass m = p gilt. Die
folgenden Aussagen sind dquivalent:

i) Das Zustandssystem (C.1) ist invertierbar.

ii) Es gilt rang (Pr(X)) = n + m fiir fast alle . € C.

Geometrische Methode

Im folgenden werden einige Aspekte der geometrischen Methode, die hauptsichlich auf die Au-
toren der Biicher [8, 128] zuriickgehen, dargestellt. Als wesentliches Konzept der geometrischen
Methode stellt sich die Eigenschaft der Invarianz beziehungsweise der geregelten Invarianz eines
Unterraums dar. Hinsichtlich der Systemdynamik (C.1a) ist ein Unterraum des Zustandsraum ge-
regelt invariant, wenn fiir alle Anfangswerte, die aus dem Unterraum gewahlt werden, eine zulés-
sige Eingangsfunktion u(¢) existiert, so dass der Zeitverlauf des Zustandsvektors im betrachteten
Unterraum verbleibt.
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Satz C.6 ([116]). Betrachtet wird die Systemdynamik (C.1a). Sei V ein Unterraum, d.h. es ist
V C R". Die folgenden Aussagen sind dquivalent:

i) V ist geregelt invariant.
ii) AV C V + bild (B).

iii) Es existiert eine lineare Abbildung R : R" — R™ mit der Eigenschaft (A + BR)Y C V.

Hinsichtlich eines Unterraums K, der nicht geregelt invariant ist, wird hdufig der grofite, geregelt
invariante Unterraum, der in C enthalten ist, benotigt. Dieser wird mit V*(K) bezeichnet und es
gilt.

Satz C.7 ([116]). Sei K ein Unterraum, d.h. es ist K C R". Der Unterraum V*(K) ist der grofite
geregelt invariante Unterraum, der in IC enthalten ist und es gilt:

i) V*(K) ist geregelt invariant.
ii) V¥(K) C K.
iii) WennV C K geregelt invariant ist, dann ist V C V*(K).
Daran ankniipfend ergibt sich die Fragestellung, wie sich V*(K) ausgehend von (C.la) und

berechnen ldsst. Dies fiihrt auf den invariant subspace algorithmus, der den Unterraum V*(KC)
durch die Rekursion

Vo=V, Vi1 =KnNA (Vi +bild(B)) (C.3)

bestimmt. Darin ist die Operation A~'(V, + bild (B)) allgemein gemidB X = A1) = {x :
y = Ax, y € Y} definiert. Damit folgt:

Satz C.8 ([116]). Betrachtet wird die Systemdynamik (C.1a). Sei IC ein Unterraum, d.h. es ist
K C R™ Eswird V, mitt = 0,1,2, ... durch (C.3) bestimmt. Damit gilt:

D) VoDViDVyD....

ii) Es existiert ein k < dim K mit der Eigenschaft, dass Vi = Vi1 gilt.

iii) Wenn Vi = Viy1 gilt, dann ist Vi, =V, fiir alle t > k.

iv) Wenn Vi = Vi4 gilt, dann ist V*(K) = V.
Der vorstehende Satz zeigt, dass der groite geregelt invariante Unterraum V*(K) in einer end-
lichen Anzahl von Schritten mittels der Rekursion (C.3) bestimmt werden kann. Hierfiir sind
maximal n Schritte notwendig. Gilt = kern (C), dann ldsst sich mit (C.3) der groBte ge-
regelt invariante Unterraum im Kern der Ausgangsmatrix C bestimmen. Hinsichtlich des Ent-

wurfes einer Verkopplungsregelung ist damit (vgl. (3.52)) Vs, = V*(kern (7,,C)) und é, :=
dim V*(kern (7,,C)).
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