

Fortschritt-Berichte VDIFortschritt-Berichte VDI

Dipl.-Ing. Holger Zipper,
Magdeburg

Nr. 1271Nr. 1271

Mess-,
Steuerungs- und
Regelungstechnik

Reihe 8Reihe 8

Verfahren zur Verfahren zur
Synchronisation Synchronisation
betriebsparallelerbetriebsparalleler
Simulationen Simulationen
durch Online-durch Online-
ParameterschätzungParameterschätzung

Z
ip

pe
r

 S
yn

ch
ro

ni
sa

ti
on

 v
on

 O
nl

in
e-

S
im

ul
at

io
n

S
yn

ch
ro

ni
sa

ti
on

 v
on

 O
nl

in
e-

S
im

ul
at

io
n

R
ei

he
 88

 ·
 N

r.
 1

27
1

12
71

D ie Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-52710827108-3

Cyan Magenta Black
Preflight Lx3 am März 15, 2021 | 10:16:04 | 350 mm x 250 mm

L_
21

03
00

_R
ei

he
_0

8_
12

71
_U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 1

L_210300_Reihe_08_1271_Umschlag.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

I N K O O P E R A T I O N M I T V D I N A C H R I C H T E N

J E T Z T R E I N H Ö R E N U N D K O S T E N F R E I A B O N N I E R E N :
W W W . I N G E N I E U R . D E / P O D C A S T

O H N E P R O T O T Y P G E H T N I C H T S I N S E R I E .
Unser Podcast ist das Werkzeug, mit dem Sie Ihre Karriere in allen Phasen entwickeln –

vom Studium bis zum Chefsessel. Egal, ob Sie Ingenieur*in, Mechatroniker*in oder
Wissenschaftler*in sind: Prototyp begleitet Sie. Alle 14 Tage hören Sie die Redaktion

von INGENIEUR.de und VDI nachrichten im Gespräch mit prominenten Gästen.

PROTO TYP
Karriere-Podcast

Cyan Magenta Yellow Black
Preflight Lx3 am März 15, 2021 | 10:16:04 | 350 mm x 250 mm

L_
21

03
00

_R
ei

he
_0

8_
12

71
_U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 2

L_210300_Reihe_08_1271_Umschlag.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Verfahren zur Synchronisation betriebsparalleler
Simulationen durch Online-Parameterschätzung

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

von Dipl.-Ing. Holger Zipper
geboren am 17.10.1986 in Gera

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik
der Otto-von-Guericke Universität Magdeburg

Gutachter: Prof. Dr.-Ing. Christian Diedrich
Prof. Dr.-Ing. Dr. h. c. Michael Weyrich

Promotionskolloquium am 19.02.2021

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

L_210300_Reihe_08_1271_Innentitel.indd 1L_210300_Reihe_08_1271_Innentitel.indd 1 15.03.2021 10:14:5315.03.2021 10:14:53

Verfahren zur Verfahren zur
Synchronisation Synchronisation
betriebsparalleler betriebsparalleler
Simulationen Simulationen
durch Online- durch Online-
ParameterschätzungParameterschätzung

Dipl .-Ing. Holger Zipper,
Magdeburg

Mess-, Steuerungs-
und Regelungstechnik

Nr. 1271Nr. 1271

Reihe 8Reihe 8

Fortschritt-Berichte VDIFortschritt-Berichte VDI

Black
Preflight Lx3 am März 15, 2021 | 10:15:27 | 148 mm x 210 mm

L_
21

03
00

_R
ei

he
_0

8_
12

71
_I

nn
en

tit
el

.p
df

 ·
S

ei
te

 1

L_210300_Reihe_08_1271_Innentitel.pdf · Seite 1
1

1https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

L_210300_Reihe_08_1271_Innentitel.indd 2L_210300_Reihe_08_1271_Innentitel.indd 2 15.03.2021 10:14:5315.03.2021 10:14:53

© VDI Verlag GmbH · Düsseldorf 2021
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9546
ISBN 978-3-18-527108-3

Zipper, Holger
Verfahren zur Synchronisation betriebsparalleler Simulationen durch
Online-Parameterschätzung
Fortschr.-Ber. VDI Reihe 08 Nr. 1271. Düsseldorf: VDI Verlag 2021.
104 Seiten, 40 Bilder, 22 Tabellen.
ISBN 978-3-18-527108-3 ISSN 0178-9546,
€ 43,00/VDI-Mitgliederpreis € 38,70.
Für die Dokumentation: Betriebsparallele Simulationen – Synchronisation – Optimierung –
Co-Simulation – Digitaler Zwilling

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung der Zustandssynchronisierung,
welche eine betriebsparallele Simulation an eine industrielle Anlage kontinuierlich angleicht.
Die betrachteten Simulationsmodelle liegen als Co-Simulation nach dem FMI Standard vor.
Die Zustandssynchronisierung funktioniert nachdem Prinzip der Signal-Rückkopplung der
Differenz zwischen betriebsparalleler Simulation und physischer Anlage. Die Synchronisation
wird durch einen Optimierungsalgorithmus online erreicht, welche den Unterschied zwischen
physischer Anlage und Simulation minimiert. Dabei wird der Einsatz von statischen und dyna-
mischen Optimierungsalgorithmen untersucht. Es werden weiterhin Möglichkeiten zur
 Gewährleistung der Echtzeitfähigkeit sowie zur Zeitsynchronisation erarbeitet. Die entwickel-
ten Methoden und Algorithmen werden anschließend an unterschiedlichen technischen
 Systemen erfolgreich validiert.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

Black
Preflight Lx3 am März 15, 2021 | 10:15:27 | 148 mm x 210 mm

L_
21

03
00

_R
ei

he
_0

8_
12

71
_I

nn
en

tit
el

.p
df

 ·
S

ei
te

 2

L_210300_Reihe_08_1271_Innentitel.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Danksagung

Ich danke Prof. Christian Diedrich für die gute Betreuung während der Promotion sowie
Prof. Michael Weyrich für seinen Einsatz als Zweitgutachter.

Für Ihre Unterstützung während der Zeit meiner Promotion danke ich meiner Frau,
Darina Schulze-Zipper, und meiner Familie.

Darüber hinaus gilt mein Dank den Kolleginnen und Kollegen sowie dem Institut ifak
e.V. Magdeburg, welche mir das Umfeld zur Erstellung der Promotionsarbeit gegeben

haben.

III

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Inhaltsverzeichnis

Glossar VII

Symbole VIII

Kurzfassung XI

Abstract XIII

1. Einleitung 1
1.1. Motivation . 1
1.2. Erklärung an einem Beispiel . 2
1.3. Struktur der Arbeit . 4

2. Stand der Wissenschaft 5
2.1. Überblick . 5
2.2. Schlussfolgerung . 11
2.3. Formulierung der wissenschaftlichen Fragestellung 12

3. Formale Beschreibung der Blackbox Co-Simulation 13
3.1. Einführung Co-Simulation . 13

3.1.1. Technischer Hintergrund . 13
3.1.2. Simulationskomponenten . 13
3.1.3. Co-Simulationsmaster . 15

3.2. Modell einer Co-Simulation . 15
3.2.1. Repräsentation einer Co-Simulation als Graph 17

3.3. Sequenzdiagramm einer Co-Simulation 18

4. Synchronisierungskonzept 20
4.1. Prinzip der Zustandssynchronisierung 20
4.2. Realisierung der Zustandssynchronisierung mit Hilfe eines Optimie-

rungsalgorithmus . 22
4.3. Einbetten der Optimierung in den Co-Simulationsmasteralgorithmus . 24

V

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Inhaltsverzeichnis

4.4. Verbesserung der Performance der Zustandssynchronisierung 28
4.4.1. Ansatz 1: Unter welchen Bedingungen kann die Ausführung ei-

ner Simulationskomponente das Ergebnis der Optimierung be-
einflussen? . 30

4.4.2. Ansatz 2: Unter welchen Bedingungen liefern zwei Ausführun-
gen einer Simulationskomponente das identische Ergebnis? . . . 31

4.4.3. Kombination von Ansatz 1 und Ansatz 2 35
4.4.4. Anwendung von Ansatz 1 und Ansatz 2 36

4.5. Integration der Performanceverbesserungen in den Algorithmus 37
4.6. Zeitliche Synchronisierung . 37
4.7. Diskussion der Methodik . 42

5. Validierung 44
5.1. Umsetzung des Co-Simulationsmasters 44
5.2. Simulationskomponente Optimierung 45
5.3. Metriken für die Auswertung der Validierung 46

5.3.1. Anzahl Iterationen der Simulationskomponenten 47
5.3.2. Mittlere quadratische Abweichung 47
5.3.3. Maximale absolute Abweichung 48

5.4. Wertekontinuierliches System: Motorsystem 48
5.4.1. Beschreibung des Systems . 48
5.4.2. Aufbau der Co-Simulation . 50
5.4.3. Parametrierung der Simulationsmodelle und der Optimierung . 52
5.4.4. Formulieren von Szenarien für die Validierung 53
5.4.5. Auswertung . 54

5.5. Hybrides System: Transportsystem . 61
5.5.1. Beschreibung des Systems . 61
5.5.2. Aufbau der Co-Simulation . 64
5.5.3. Parametrierung der Simulationsmodelle und der Optimierung . 64
5.5.4. Auswertung . 66

5.6. Hybrides System: Zylindersystem . 69
5.6.1. Beschreibung des Systems . 69
5.6.2. Aufbau der Co-Simulation . 71
5.6.3. Parametrierung der Simulationsmodelle und der Optimierung . 73
5.6.4. Auswertung . 75

5.7. Simulative Validierung der zeitlichen Synchronisation 77
5.8. Auswertung der Validierung . 81

6. Zusammenfassung und Ausblick 82
6.1. Zusammenfassung . 82

VI

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Inhaltsverzeichnis

6.2. Lessons-Learned . 84
6.3. Ausblick . 85

Anhang A Überblick über die im Rahmen der Arbeit erstellten Implemen-
tierungen 86

Eigene Publikationen 87

Literaturverzeichnis 89

VII

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Glossar

Co-Simulation beschreibt die Simulation eines Gesamtsystems be-
stehend aus mehreren, gekoppelten Simulatoren. Im
Rahmen dieser Arbeit wird ein einzelner Simulator
als Simulationskomponente bezeichnet (Gomes u. a.,
2017).

Distanz beschreibt die minimale Anzahl von Iterationen der
Co-Simulation für die Zustandssynchronisierung

Horizont beschreibt die Anzahl von Iterationen der Co-
Simulation, welche von der Zustandssynchronisierung
betrachtet werden. Diese kann über die minimale An-
zahl der Iterationen der Co-Simulation hinausgehen.

Regelungs- und Steuerungsfunktion beschreibt die den Regelungs- oder Steuerungsalgo-
rithmus umsetzende Komponente in der physischen
Anlage.

Simulation bezeichnet die Ausführung einer parametrierten In-
stanz Simulationsmodells.

Simulationskomponente beschreibt einen einzelnen Simulator als Teil einer
gekoppelten Co-Simulation. Jede Simulationskompo-
nente enthält ein Simulationsmodell und einen aus-
führbaren Algorithmus, welcher das Simulationsmo-
dell simulieren kann.

Simulationsmodell bezeichnet ein simulierbares Modell einer mechatroni-
schen Komponente.

Simulierte Anlage bezeichnet das durch eine Co-Simulation ermöglichte
digitale Abbild einer physischen Anlage.

VIII

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Symbole

A Index des Aktors
α Verzögerung

C Index des Kommunikationssystems

f zeitvariantes, internes Verhalten einer Simulations-
komponente

α1 ∗ α2 Faltung von α1 und α2

h Abbildung von internen Zuständen einer Simulations-
komponente auf deren Ausgänge

[̂] von der physischen Anlage gemessene Variable

i Index eines Simulationsschritt

k Index einer Simulationskomponente
K Gesamtzahl von Simulationskomponenten

Nges Gesamtzahl der Iterationen aller Simulationskompo-
nenten

n Gesamtzahl der Simulationsschritte
αn n-fache Faltung von α mit sich selbst

c Weglänge
c̃ kürzeste Weglänge

R Index der Regelungs- und Steuerungsfunktion

S Index der Simulation

τ• Totzeit von •
θ• Zykluszeit von •

IX

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Symbole

TS Makroschrittweite

u Eingang
U Gesamtheit der Eingänge aller Simulationskomponen-

ten

α•◦ Verzögerung • → ◦

x interner Zustand

y Ausgang
Y Gesamtheit der Ausgänge aller Simulationskomponen-

ten

X

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Kurzfassung

Die Digitalisierung der Industrie schreitet durch Initiativen wie Industrie 4.0 voran. Dabei
kommen zunehmend Methoden in den Fokus, welche auf Basis von Simulationsmodellen
Online-Analysen und Online-Optimierungen industrieller Anlagen durchführen sollen.

Als Konsequenz nimmt die Bedeutung der betriebsparallelen Simulation zu. Die be-
triebsparallele Simulation muss jedoch stetig an die physische Anlage angepasst werden,
da die physische Anlage Änderungen unterliegt. Hervorgerufen werden diese beispielswei-
se durch Alterung oder Umbauten aufgrund von Produktupdates. Um diese Anpassung
zu erreichen, wird in der vorliegenden Arbeit die Methode der Zustandssynchronisierung
entwickelt. Diese dient zur Synchronisation zwischen betriebsparalleler Simulation und
der entsprechenden physischen Anlage.

Dazu wird zunächst der Stand der Wissenschaft untersucht und diese Arbeit eingeord-
net. Als Grundlage für die weiteren Arbeiten wird anschließend ein formales Modell der
Co-Simulation aufgestellt. Dieses richtet sich nach der Funktionsweise des FMI -Standards,
wie er aktuell für Simulationen in der virtuellen Inbetriebnahme industrieller Anlagen ein-
gesetzt wird.

Der Hauptteil der Arbeit beschäftigt sich mit der Entwicklung der Zustandssynchroni-
sierung, welche ohne zusätzliche Steuerungskomponenten auskommt. Sie funktioniert nach
dem Prinzip der Signal-Rückkopplung der Differenz zwischen betriebsparalleler Simulation
und physischer Anlage. Die Synchronisation wird durch einen Optimierungsalgorithmus
auf Basis dieses Unterschieds online durchgeführt. Dabei wird der Einsatz von statischen
und dynamischen Optimierungsalgorithmen untersucht. Es werden weiterhin Möglichkei-
ten erarbeitet, mit denen sich die Anzahl der Ausführungen der Co-Simulation deutlich
verringern lassen, ohne dass dies einen Einfluss auf die Funktionsweise der Zustandssyn-
chronisierung hat. Zudem werden Aspekte der zeitlichen Synchronisation erläutert.

Die entwickelten Methoden und Algorithmen werden anschließend validiert. Dazu wird
ein Co-Simulationsmasteralgorithmus nach dem FMI -Standard implementiert, welcher
die Zustandssynchronisierung umsetzen kann. Zur Durchführung der Optimierung kom-
men unterschiedliche Optimierungsalgorithmen zum Einsatz. Zur Validierung wird die
Zustandssynchronisierung im Hardware-in-the-Loop Betrieb an drei unterschiedliche De-
monstratoren eingesetzt.

Mit Hilfe der Demonstratoren kann das erfolgreiche angleichen der betriebsparallelen
Simulation an die physische Anlage durch die Zustandssynchronisierung nachgewiesen

XI

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Kurzfassung

werden. Weiterhin wird gezeigt, dass sich die Simulation dabei in Echtzeit durchführen
lässt.

XII

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Abstract

The implementation of industry digitization is progressing through initiatives such as
Industry 4.0. The focus is increasingly on methods that use simulation models to perform
online analyses and online optimization of industrial plants.

As a consequence, the importance of online simulation in parallel to plant operation
is increasing. However, the online simulation has to be constantly adapted to the physi-
cal plant, since the physical plant is subject to changes, caused for example by aging or
changes due to product updates. To achieve this adaptation, the method of state synchro-
nization is developed in this thesis. This method is used to synchronize the simulation
with the corresponding physical plant.

For this purpose, the state of the art is first examined and this thesis is categorized.
As a basis for the further work a formal model of the co-simulation is then established.
This model is based on the functionality of the FMI standard, as it is currently used for
simulation in the virtual commissioning of industrial plants.

The main part of the work deals with the development of the state synchronization,
which does not require additional control components. It works according to the principle
of signal feedback of the difference between online simulation and physical plant. The syn-
chronization is performed online by an optimization algorithm based on this difference.
The use of static and dynamic optimization algorithms is investigated. Furthermore, pos-
sibilities are being developed to significantly reduce the number of co-simulation runs
without affecting the functionality of the state synchronization. In addition, aspects of
time synchronization are explained.

The developed methods and algorithms are then validated. For this purpose, a co-
simulation master algorithm according to the FMI standard is implemented, which can
perform the state synchronization. Different optimization algorithms are used to perform
the optimization. For validation purposes, state synchronization in hardware-in-the-loop
operation is applied to three different demonstrators.

With the help of the demonstrators, the successful alignment of the online simulation
with the physical plant by the state synchronization is proved. Furthermore, it is shown
that the simulation can be performed in real time.

XIII

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

1. Einleitung

1.1. Motivation

In den letzten Jahrzehnten nahm der Grad der Digitalisierung im industriellen Umfeld
stetig zu. Dieser Prozess wird sich in den kommenden Jahren weiter fortsetzen. Erken-
nen lässt sich dieser Umstand auch durch Trends wie Cyber Physical Production Systems,
Industrie 4.0 oder die digitale Repräsentation und digitale Nutzung aller Komponenten
industrieller Anlagen über ihren gesamten Lebenszyklus hinweg. Die Basis dafür stel-
len die zahlreichen Engineeringmodelle dar, welche durchgehend weiter genutzt werden
sollen. Der Digitale Zwilling beschreibt das digitale Abbild, welches ein Asset über den
kompletten Lebenszyklus hinweg abbildet. Die Engineeringmodelle bilden eine Grundlage
für diesen Digitalen Zwilling.

Ein Kernbestandteil dieser Digitalen Zwillinge sind die Simulationsmodelle, mit denen
Produkte und industrielle Anlagen bereits während ihrer Planung getestet und optimiert
werden. Zum Beispiel gibt es die virtuelle Inbetriebnahme, wo ein Simulationsmodell
der gesamten Anlage aufgebaut wird, um die Korrektheit der Steuerungsprogramme zu
testen. Diese Simulationsmodelle sind mindestens so präzise, dass sie gegen möglichst
nicht modifizierte Versionen des Steuerungsprograms laufen (Drath, Weber und Mauser,
2008).

Soll ein Digitaler Zwilling auch während der Betriebsphase der industriellen Anlage
genutzt werden, ist die Nachnutzung der Simulationsmodelle aus der virtuellen Inbetrieb-
nahme zur betriebsparallelen Simulation eine mögliche Option. Diese Simulationsmodelle
können die Grundlage für viele der Self-X (-Optimierung, -Organisation, -Konfiguration,
…) Szenarien von Industrie 4.0 bilden (Schluse u. a., 2018).

Diese Simulationsmodelle sowie deren Parameter können jedoch nicht starr und un-
veränderlich sein, sondern müssen über die Zeit angepasst werden: Industrielle Anlagen
unterliegen Änderungen. Ein Grund sind geplante Umbauten oder Anpassungen, zum Bei-
spiel aufgrund von neuen Produkten oder Facelifts. Diese Art der Änderung wird durch
Industrie 4.0 und das Bestreben nach der Losgröße eins in Zukunft zunehmen. Ein anderer
Grund sind ungeplante Änderungen aufgrund Alterung und Verschleiß. In all diesen Fäl-
len müssen diese Änderungen auch in der Simulation wieder gespiegelt werden. Darüber
hinaus können Simulationen genutzt werden, um solche Änderungen überhaupt zu erken-
nen — durch einen Vergleich der physischen Anlage und des digitalen Zwillings, speziell

1

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

1. Einleitung

der Simulation.
Die subtilen Änderungen, welche bei der Alterung einer industriellen Anlage auftre-

ten, können jedoch leicht dazu führen, dass das Verhalten der physischen Anlage und der
simulierten Anlage nicht mehr übereinstimmen. Ein weiteres Problem ist die Parametrie-
rung der Simulationsmodelle einer betriebsparallelen Simulation. Nicht alle Parameter
einer mechatronischen Komponente einer industriellen Anlage lassen sich während der
Inbetriebnahme exakt erfassen. Die Parametrierungen der physischen Anlage und der
Simulationsmodelle weichen zwangsweise zu einem gewissen Grad voneinander ab. Wird
die Simulation beispielsweise zur Überwachung der Anlage genutzt, kann sie dadurch sehr
schnell ihre Aussagekraft verlieren und liefert falsche Aussagen über den Anlagenzustand.

Die in dieser Arbeit entwickelte Methode der Zustandssynchronisierung verhindert das
Problem des Auseinanderlaufens von physischer Anlage und simulierter Anlage rückwir-
kungsfrei, daher ohne die physische Anlage zu beeinflussen. Die Zustandssynchronisierung
funktioniert nach dem Prinzip der Signal-Rückkopplung der Differenz zwischen betriebs-
paralleler Simulation und physischer Anlage. Die Synchronisation wird durch einen Op-
timierungsalgorithmus auf Basis dieses Unterschieds online durchgeführt, wobei statische
und dynamische Optimierungsalgorithmen zum Einsatz kommen. Die Optimierung soll in
Echtzeit stattfinden, so dass weiterhin Ansätze untersucht werden, um die Echtzeitfähig-
keit der Zustandssynchronisierung sicherzustellen. Trotz des Ausgleichs der Unterschiede
zwischen physischer Anlage und simulierter Anlage bleibt es weiterhin möglich, den Un-
terschied zwischen physischer Anlage und simulierter Anlage zu ermitteln.

1.2. Erklärung an einem Beispiel

Um den Forschungsbedarf dieser Arbeit hervorzuheben wird folgendes Beispiel eingeführt:
In Abbildung 1.1 ist ein vereinfachter Materialfluss-Prozess abgebildet. In der unteren
Hälfte ist die physische Anlage dargestellt, in der oberen Hälfte die Simulation dieser
Anlage. Folgendes Szenario wird beschrieben: Ein Produkt (Quadrat in der Abbildung)
wird auf einem Förderband transportiert. Am Ende des Förderbandes wird das Produkt
von einem Greifer gefasst, um es zu einer weiteren Bearbeitungsstation zu transportieren.
Die Regelungs- und Steuerungsfunktion, also die SPS welche eine Steuerungs- und Rege-
lungsaufgabe ausführt, aktiviert das Förderband. Sobald das Produkt durch den Sensor
(Dreieck) erfasst wird, hält die Regelungs- und Steuerungsfunktion das Förderband an.
Daraufhin fährt die Regelungs- und Steuerungsfunktion den Greifer herunter.

Die Anlage wird nun mit einer Simulation dieser Anlage zusammengeschaltet. Die Si-
gnale der Regelungs- und Steuerungsfunktion für das Förderband und den Greifer werden
auch in das Simulationsmodell transportiert. Ob sich in der Simulation ein Modell des Sen-
sors befindet oder nicht ist für die betriebsparallele Simulation unerheblich, denn es kann
nicht mit der Regelungs- und Steuerungsfunktion verbunden werden. Das führt dazu, dass

2

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

1.2. Erklärung an einem Beispiel

Physische
Anlage

Simulation der Anlage

Sensor

SPS

Abbildung 1.1.: Beispiel zur Motivation der Zustandssynchronisierung

die simulierte Anlage mit einem offenen Wirkungsweg betrieben wird. Die Regelungs- und
Steuerungsfunktion kann also nicht auf geringfügige Abweichungen vom Zeitverhalten der
Simulation reagieren.

In Abbildung 1.1 ist eine solche Abweichung des Zeitverhaltens dargestellt. Das simu-
lierte Förderband bewegt sich etwas langsamer. Die Folge davon ist, dass das Produkt
in der physischen Anlage schneller den Platz unter dem Greifer erreicht. Die Regelungs-
und Steuerungsfunktion stoppt nun aufgrund des Sensorsignals beide Bänder. Ergebnis
ist, dass in der Simulation der Greifer mit dem Produkt kollidiert. Die betriebsparallele
Simulation kann zum Erkennen genau solcher Fehlerfälle durchgeführt werden. In diesem
Fall tritt die Kollision jedoch ausschließlich in der Simulation durch eine von der Anlage
abweichende Parametrierung des Förderbandes auf. Ein so aufgebautes Simulationsmo-
dell zur Überwachung der Anlage würde also zu falschen Alarmmeldungen oder unnötigen
Aktionen führen.

An diesem Problem soll diese Arbeit ansetzen: Der Zustand der Simulation, in die-
sem Fall beispielsweise die Produktposition oder die Förderbandgeschwindigkeit, soll an
die physische Anlage angepasst werden. So behält die betriebsparallele Simulation bei
abweichenden oder sich ändernden Parametern und physikalischem Verhalten ihre Aus-
sagekraft. Diese Anpassung wird hier als Zustandssynchronisierung bezeichnet und bildet
den Untersuchungsgegenstand der Arbeit.

3

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

1. Einleitung

1.3. Struktur der Arbeit
Zur Untersuchung der oben beschriebenen Problemstellung ist die Arbeit im Weiteren
wie folgt strukturiert: Zunächst wird in Kapitel 2 der Stand der Wissenschaft dargelegt
und analysiert. Aus dieser Analyse wird die dieser Arbeit zugrundeliegende wissenschaftli-
che Fragestellung abgeleitet. In Kapitel 3 wird eine Beschreibung und Formalisierung der
zu untersuchenden Co-Simulation gegeben. Aufbauend auf der formalen Beschreibung
der Co-Simulation wird ein Standard-Co-Simulationsmasteralgorithmus gezeigt und ei-
ne Graphen-Darstellung der Co-Simulation eingeführt. Diese bilden die Grundlage für die
weiteren Betrachtungen. In Kapitel 4 wird das Konzept der Zustandssynchronisierung aus-
führlich vorgestellt. Dazu wird das Optimierungsproblem aufgestellt und die Zielfunktion
definiert. Darüber hinaus werden Betrachtungen für die Echtzeitfähigkeit der Zustands-
synchronisierung und die Zeitsynchronisation vorgenommen. Der vorgestellte Standardal-
gorithmus des Co-Simulationsmasters wird um die Methoden der Zustandssynchronisie-
rung erweitert. Der resultierende Algorithmus und die Methodik werden in Kapitel 5 mit
Hilfe verschiedener physischer Systeme validiert. Dort wird zudem eine Übersicht über
die im Rahmen der Arbeit vorgenommenen Implementierungen gegeben. Es wird gezeigt,
dass die Zustandssynchronisierung erfolgreich und in Echtzeit die simulierte Anlage an die
physische Anlage angleichen kann. In Kapitel 6 wird eine Zusammenfassung der Arbeit
gegeben, die Lessons-Learned diskutiert und ein Ausblick aufgezeigt.

4

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

2. Stand der Wissenschaft
Dieses Kapitel gibt einen Überblick zur betriebsparallelen Simulationen unter
Nutzung von Simulationsmodellen aus der virtuellen Inbetriebnahme sowie der
Synchronisation der simulierten Anlage mit der physischen Anlage geben. Es
wird gezeigt, dass dies ein aktuell verfolgtes Ziel im Engineering industrieller
Anlagen ist und dass wichtige Herausforderungen bei der Synchronisation lie-
gen. Aus einer Gegenüberstellung der Herausforderungen auf der einen Seite
und den Ergebnissen aus der Literaturrecherche auf der anderen Seite wird der
Forschungsschwerpunkt dieser Arbeit abgeleitet.

2.1. Überblick betriebsparallele Simulation
Laut (VDI/VDE 3693 Blatt 1, 2016) ist die virtuelle Inbetriebnahme im engeren Sin-
ne der Test des Automatisierungssystems mit Hilfe von Simulationsmodellen. In vielen
Branchen, wie beispielsweise Fertigung (Damrath u. a., 2015), Wassermanagement (Hüb-
ner, Suchold und Alex, 2018) und der Prozessindustrie (Chan und Krauss, 2014), ist
es damit üblich, während des Engineerings ein Simulationsmodell der automatisierungs-
technischen Anlage aufzubauen. Die virtuelle Inbetriebnahme führt letztendlich zu einer
Hardware-in-the-Loop Simulation zum Test der Anlagensteuerung. Daher muss dieses Si-
mulationsmodell so präzise arbeiten, dass die Regelungs- und Steuerungsfunktion diese
Simulation nicht von der physischen Anlage unterscheiden kann (Drath, Weber und Mau-
ser, 2008). Darüber hinaus muss die Simulation echtzeitfähig sein. Die Simulationszeit
darf weder signifikant langsamer, noch signifikant schneller als die Zeit in der physischen
Anlage vergehen, da nach Möglichkeit keine Zeitkonstanten im Programm der Regelungs-
und Steuerungsfunktion angepasst werden sollen.

In den letzten Jahren wurden die Simulationsmodelle für die virtuelle Inbetriebnah-
me zunehmend auf Basis physikalischer Verhaltensmodelle aufgebaut (Rodriguez-Guerra
u. a., 2019), (Puntel Schmidt, 2017), (Nicolae u. a., 2018), (Vathoopan u. a., 2017), (Bran-
denbourger, Vathoopan und Zoitl, 2016).

In (Süß u. a., 2016) wurde vorgeschlagen, das Simulationsmodell für die virtuelle Inbe-
triebnahme in einzelne Simulationskomponenten aufzuteilen. Dieses Verfahren wird Co-
Simulation genannt. Gegenüber der Nutzung monolithischer Simulationsmodelle hat dies
folgenden Vorteile:

• Die Dekomposition erhöht die Wiederverwendbarkeit: Simulationskomponenten für

5

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

2. Stand der Wissenschaft

beispielsweise einen Sensor müssen nicht für jede Anlage neu entwickelt werden.
Stattdessen kann eine Bibliothek aufgebaut werden.

• Von den Simulationskomponenten müssen nur Eingänge, Ausgänge und Parame-
ter bekannt sein. Das interne Verhalten, wie mathematische Modelle, Konstanten,
Zusammenhänge, können verborgen werden. Dadurch werden Hersteller automati-
sierungstechnischer Komponenten motiviert, neben den physischen Komponenten
auch Simulationskomponente anzubieten. Diese können durch die Möglichkeit des
Know-How-Schutzes deutlich genauer sein, da der Hersteller detailliertes Kompo-
nentenwissen einbringt.

• In einer Co-Simulation können Simulationskomponenten einzelner Sensoren und Ak-
toren mit einer 3D-Festkörperphysiksimulation kombiniert werden.

In (Scheifele, Verl und Riedel, 2018) wird gezeigt, dass solche Co-Simulationen für die
virtuelle Inbetriebnahme durchaus in Echtzeit durchgeführt werden können. Dazu wur-
de dort die Verteilung der Co-Simulation auf mehrere Rechenkerne und Betriebssyste-
me erforscht. Es konnte für Beispiele aus dem Materialfluss gezeigt werden, dass eine
Co-Simulation verteilt auf einen Rechenkern mit Windows und einem Rechenkern mit
RTOS Zykluszeiten von 16ms beziehungsweise 1ms in Echtzeit erreichen konnte. Einen
ähnlichen Fokus haben (Lämmle und Oppelt, 2018). Auch dort werden die Echtzeiteigen-
schaften von Co-Simulationen für die virtuelle Inbetriebnahme untersucht. Dabei wird eine
Methode zur Kopplung von Modellen aus unterschiedlichen Werkzeugen zu einer determi-
nistischen, echtzeitfähigen Co-Simulation einer industriellen Anlage entwickelt. In (Tobias
Jung, Jazdi und M. Weyrich, 2017) werden verschiedene Simulationswerkzeuge für den
Einsatz bei Anwendungen im Internet der Dinge (IOT) untersucht. Auch dort ist die Echt-
zeitfähigkeit in wichtiges Kriterium. Als Möglichkeit der Umsetzung einer echtzeitfähigen
Co-Simulation wird ein agentenbasiertes System vorgeschlagen.

Die in der virtuellen Inbetriebnahme genutzten Modelle finden auch in weiteren Pha-
sen des Engineerings Anwendung. Dafür wurde in den letzten Jahren das Konzept des
digitalen Zwillings vorgeschlagen (Auris, Zipper u. a., 2018), (Hübner und Alex, 2018).
Dieser soll physische Assets, wie Anlagen oder Geräte, im gesamten Lebenszyklus digital
repräsentieren (Klein u. a., 2019), (Kritzinger u. a., 2018). Auch in der Betriebsphase ei-
nes Assets werden für den Einsatz von digitalen Zwillingen Vorteile prognostiziert (Negri,
Fumagalli und Macchi, 2017), (Pfeiffer, 2018):

• Optimierung des Prozesses, zum Beispiel Zeiten oder Energieverbrauch

• Vorbereiten und Validierung von Änderungen am Asset (Umbauten, Anlagenrekon-
figuration)

• Fehlerdetektierung und Fehlerdiagnose

6

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

2.1. Überblick

Ebenfalls sehen die Aktivitäten im Bereich Industrie 4.0 den Einsatz digitaler Zwillin-
ge vor: In (Plattform Industrie 4.0, 2019) wird das Konzept der Verwaltungsschale als
Realisierung des Konzeptes digitaler Zwilling im Rahmen von Industrie 4.0 aufgefasst,
wobei Simulation als eine der Grundlagen hierfür gesehen wird. Auch in der Namur Open
Architecture wird betriebsparallele Simulation Teil der zentralen Monitoring- und Opti-
mierungsdienste sein (Klettner u. a., 2017), (Tauchnitz u. a., 2019).

Generell wird davon ausgegangen, das digitale Zwillinge, welche zur Betriebsphase An-
wendung finden, ein Simulationsmodell des Assets enthalten (Glaessgen und Stargel,
2012), (Rosen u. a., 2019), (Vögeli, Göhner und Michael Weyrich, 2018), (Klein u. a.,
2019).

In (Oppelt, Barth und Urbas, 2015) wird eine global angelegte Umfrage beschrieben.
Diese stellt den damaligen Stand der Nutzung von Simulation in der Prozessindustrie
dar und schildert (aus der damaligen Sicht) zukünftige Entwicklungen. Die Befragten
sehen die Integration von Simulationsmodellen aus verschiedenen Werkzeugen und die
Kopplung unterschiedler Simulationswerkzeuge als wichtig an. Von vier dargestellten An-
wendungsfällen beziehen sich zwei Anwendungsfälle auf die Betriebsphase: Training des
Anlagenpersonals und Anlagenoptimierung. Zum Zeitpunkt der Studie lag der Einsatz
von Simulation für diese Anwendungsfälle jedoch bei 20%, jedoch sahen 82% der Befrag-
ten eine zukünftige Zunahme beziehungsweise deutliche Zunahme der Wichtigkeit von
Simulation in der Betriebsphase.

Simulation als eine der zentralen Komponenten des Lebenszyklus industrieller Anlagen
wird auch in (Markus Graube und Leon Urbas, 2018) untersucht, wobei auch die Rolle
der Co-Simulation für die Betriebsphase herausgestellt wird.

(Tobias Jung, Shah und Michael Weyrich, 2018) beschreiben die Anforderungen zur
Umsetzung heterogener simulationsbasierter digitaler Zwillinge für Komponenten im In-
ternet der Dinge (IOT). Als eine Anforderung wird die lebenszyklusübergreifende Nut-
zung von Simulation genannt. Dabei wird ein Plug and Simulate Konzept vorgestellt, mit
welchen Simulationen unterschiedlicher Komponenten dynamisch zur Betriebsphase eine
Co-Simulation bilden können. In dem Beitrag wird vor allem die dynamische Orchestrie-
rung der Co-Simulation durch die Realisierung als Multi-Agentensystem untersucht. Zum
Erreichen der Echtzeitfähigkeit der Co-Simulation wurde ein lernender Algorithmus zur
Reduzieren der Nachrichten implementiert. Als offene Punkte werden die Synchronisie-
rung und die Interaktion mit der physischen Anlage genannt.

Die Verbindung einer industriellen Anlage mit einer Simulation wird als betriebspar-
allele Simulation bezeichnet (Kain und Schiller, 2010). In (Bergs und Heizmann, 2019)
wird eine Methode gezeigt, welche betriebsparallele Simulation durch die Kombination
von White-Box und datengetriebenen Modellen ermöglicht. Da Whitebox Modelle mög-
licherweise hohe Rechenzeit bedürfen und dadurch von den Autoren als nicht geeignet
für die Echtzeitsimulation angesehen werden, werden diese durch sogenannte Surrogat

7

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

2. Stand der Wissenschaft

Modelle angenähert. Gleichzeitig wird ein auf Machine-Learning basierendes, datengetrie-
benes Modell mit Hilfe des White-Box Modells erzeugt. Die Kombination erlaubt dann
eine echtzeitfähige und betriebsparallele Simulation. Weitere Beispiele für den Einsatz von
White-Box Modellen in der betriebsparallelen Simulation finden sich in (Hübner, Suchold
und Alex, 2018) zur Optimierung im Wassermanagement.

Auch (Härle, Barth und Fay, 2018) nennen betriebsparallele Simulation als wichtiges
Szenario von Simulation im industriellen Einsatz. Darin wird eine Möglichkeit beschrieben,
solche Simulationen auf preisgünstige, jedoch ausreichend leistungsfähige Einplatinenrech-
ner zu verteilen. Jedem Feldgerät einer industriellen Anlage könnte solch ein Einplatinen-
rechner zugeordnet werden. Der Beitrag beschreibt weiterhin, wie eine Co-Simulation auf
dieser Art von Hardware-Verbund verteilt werden kann und dabei echtzeitfähig bleibt.

In (Putman u. a., 2017) wird eine Methodik vorgeschlagen, mit der eine physische Anla-
ge und deren Simulationsmodell mit Hilfe eines Virtual Fusion Filters verbunden werden.
Dieser nimmt die Messwerte der physischen Anlage und deren simulierte Pendants auf.
Die Aufnahmen der physischen Anlage und der simulierten Werte werden zeitlich zuein-
ander zugeordnet und die Differenz berechnet. Diese Differenz wird statt der eigentlichen
Messwerte in die Anlagensteuerung gegeben. Der Anwendungsfall liegt bei der Simulation
virtueller Werkstücke in physischen automatisierungstechnischen Anlagen. Jedoch wird
bei dieser Methodik die Übereinstimmung des Verhaltens und der Parameter des physi-
schen Systems und des simulierten Systems als notwendige Voraussetzung genannt. Wie
sich die Methodik verhält, wenn diese Voraussetzung nicht erfüllt sind, wird nicht weiter
untersucht.

In (Kain, Dominka u. a., 2009) wird eine Architektur vorgeschlagen, womit die Simu-
lationsmodelle, welche bereits für die virtuelle Inbetriebnahme aufgebaut wurden, zur
Betriebszeit einer Anlage weiter genutzt werden können, nennt aber die Synchronisierung
von simulierter und physischer Anlage als Herausforderung. Konkret wird davon ausge-
gangen, dass im Falle der Betrachtung von geschlossenen Regelkreisen als Anlage / Simu-
lationsgegenstand eine zusätzliche Steuerung genutzt werden muss, um den Regelkreis in
der simulierten Anlage zu schließen.

Auch (Kapp, 2011) beschreibt die Synchronisation von betriebsparalleler Simulation
und dem Prozess als Voraussetzung für die dort entwickelte Architektur zur betriebspar-
allelen Fabriksimulation. Jedoch wird die Synchronisation zur Laufzeit als zu Aufwändig
angesehen und die Erweiterbarkeit und Adaptierbarkeit erschwerend angesehen. Stattdes-
sen wird die Synchronisierung lediglich bei der Initialisierung der Modelle, der erstmaligen
Verbindung der betriebsparallelen Simulation und Prozess, durch einmaliges Setzen der
Zustände durchgeführt. Die Untersuchung der Synchronisation aus Sicht der Initialisie-
rung der Modelle geschah auch in (Hanisch, Tolujew und Schulze, 2005), geht aber von
modellspezifischen sowie verhaltensspezifischen Verfahren aus.

Auch (Rosen u. a., 2019) nennt die Synchronisierung als zukünftige Herausforderung zur

8

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

2.1. Überblick

Nutzung betriebsparalleler Simulation und sieht dabei Online-Parameterschätzverfahren,
zusätzliche Beobachter oder eine Verbindung von Black- und Whitebox Modellen als Lö-
sung, jedoch ohne detailliert auf diese Ansätze einzugehen.

(Ashtari Talkhestani, T. Jung u. a., 2019) nennen Synchronisierung mit dem physischen
Asset, aktiver Datenabgriff und Möglichkeit zur Simulation des Verhaltens des physischen
Assets als die Voraussetzungen für digitale Zwillinge. Die Synchronisation mit dem physi-
schen Asset wird als wichtige Voraussetzung für den Erfolg des digitalen Zwillings gesehen.
Daher wird das als Ankerpunktmethode bezeichnete Konzept zur Synchronisierung vorge-
stellt. Dieses allgemeingültige Konzept wird zum Beispiel in (Ashtari Talkhestani, Jazdi
u. a., 2018) näher beschrieben. Die Ankerpunktmethode ist ein Ansatz zur Synchronisie-
rung mittels Korrelation der Informationen zu einer mechatronischen Komponente aus
unterschiedlichen Teilmodellen des Engineerings industrieller Anlagen. Beispiele für sol-
che Informationen sind Signale im Steuerungsprogramm oder Objekte in einem 3D-Scan
des Assets. Der Fokus liegt darauf, die Teilmodelle zu aktualisieren auf der Basis der
Erkennung von Unterschieden zwischen den aktuellen Daten eines Teilmodells und der
zu einem früheren Zeitpunkt gespeicherten Version. Der Aspekt der Synchronisierung der
Simulationsmodelle mit der physischen Anlage zur Laufzeit wird nicht näher untersucht.

Die Aufgabe, aktuelle Parameterwerte einer mechatronischen Komponente mit Hilfe
eines Simulationsmodells zu bestimmen ist als Parameterschätzung bekannt. Es gibt di-
verse Arbeiten, welche Parameterschätzung für Modelle nach dem FMI Standard (FMI
2.0, 2014), welcher auch für die Co-Simulation der virtuellen Inbetriebnahme genutzt
wird, durchführen. In (Kampfmann, Mösch und Menager, 2017) wird eine FMI -basierte
Werkzeugkette vorgestellt. Es wird dargestellt, wie sich mit dieser Werkzeugkette offline
die Parameter eines Roboters schätzen lassen. Dazu wird eine Messung der Eingänge und
Ausgänge des Roboters mit einem Simulationsmodell und einem Optimierungsalgorithmus
kombiniert. Anders als die Co-Simulation der virtuellen Inbetriebnahme handelt sich bei
der Simulation nicht um eine Black-Box Co-Simulation. Ähnliche Ansätze zur Offlinepa-
rameterschätzung eines einzelnen Modells verfolgen auch (Bonilla u. a., 2017), (Vanfretti
u. a., 2016). (Gedda u. a., 2012) nutzt für dieses Optimierungsproblem ableitungsfreie Op-
timierungsalgorithmen.

In (Otto, Vogel-Heuser und Niggemann, 2018) wird der CyberOpt Online Ansatz vorge-
stellt, um Geschwindigkeits-Parameter von cyber-physischen Produktionssystemen ohne
vordefinierte Modelle zu schätzen. Dabei handelt es sich um einen Datengetriebenen An-
satz, welcher Process Mining und Surrogat Modelle nutzt, um die Parameter Online zu
bestimmen.

Auch in (Biesinger u. a., 2018) wird ein datengetriebener Ansatz verfolgt. Das Ziel dabei
ist es, einen digitalen Zwilling automatisch durch die Kombination von Offlinedaten des
Engineerings und Onlinedaten zu bilden. Dazu werden die Steuerungs- und Roboterpro-
gramme analysiert, um daraus beispielsweise Prozess-Zykluszeiten zu gewinnen.

9

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

2. Stand der Wissenschaft

Physisches System

Simulation des Systems

Regler
Stellsignale

Sim. Messgrößen

Messgrößen

∆

Beobachtete Zustände

Abbildung 2.1.: Geregeltes System mit Beobachter

Selbst aktuelle, präzise Simulationsmodelle, besitzen Einschränkungen, welche den Ab-
gleich zwischen physischem System und den Simulationsmodellen erschweren (Auris, Fisch
u. a., 2018). Effekte wie Rauschen der Signale, Alterung oder Abnutzung lassen sich in Si-
mulationsmodellen, welche auf Differenzialgleichungen oder auf differential-algebraischen
Systemen basieren, nur schwer Modellieren. Zudem müssen alle eventuell möglichen so
entstehenden Fehler zusätzlich zum nominalen Verhalten implementiert, parametriert und
aktiviert werden (Gundermann u. a., 2019).

In der Regelungstechnik existiert das Konzept des Beobachters, siehe z.B. (Lunze, 2008),
mit welchem interne, nicht messbare, Zustände geschätzt werden können. Hierbei wird ei-
ne Simulation betriebsparallel durchgeführt. Die Reglerausgänge werden sowohl in die
Simulationsmodelle, als auch in das physische System gegeben. Nicht messbare Zustände
sind im Simulationsmodell hinterlegt und können daher abgegriffen werden. Die Mess-
größen des physischen Systems werden mit ihren Entsprechungen der Simulationsmodelle
verglichen und die Differenz, der Beobachterfehler, als Korrektur zurück in das Simulati-
onsmodell geführt. In Abbildung 2.1 ist ein Schema von Beobachtern dargestellt. Anhand
dieses Schemas ist erkennbar, dass Beobachter eine Art von betriebsparalleler Simulation
sind, welche sich mit dem physischen System synchronisieren.

Es existiert eine Vielzahl von Entwurfsverfahren für Beobachter um Zustände und Para-
meter zu schätzen. Beispielsweise kann das in (Bonvini, Wetter und Sohn, 2014) vorgestell-
te Verfahren den FMI -Standard nutzten. Allgemein haben Beobachter die gemeinsame
Eigenschaft, dass speziell entwickelte White-Box Modelle zum Einsatz kommen (Radke
und Gao, 2006). Der in (Han, 2009) beschriebene extended state observers ermöglicht eine
datengetriebene Schätzung der Zustände und kommt ohne eine theoretische Prozessana-
lyse aus, enthält entsprechend auch kein Modell des Prozesses.

10

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

2.2. Schlussfolgerung

2.2. Schlussfolgerung
Für die virtuelle Inbetriebnahme, und generell im virtuellen Engineering, entstehen hoch-
wertige Simulationsmodelle, welche sowohl echtzeitfähig als auch präzise sind (Süß u. a.,
2016). Diese können in digitalen Zwillingen eingesetzt werden, um über das Engineering
hinausgehende Mehrwerte zu erzielen. Ein solcher Mehrwert entsteht zur Betriebszeit in-
dustrieller Anlagen. White-Box Simulation zur Betriebszeit wird bereits vielfältig einge-
setzt und untersucht, beispielsweise auch im Zusammenhang mit dem digitalen Zwilling.
Während des Engineerings industrieller Anlagen werden jedoch vermehrt Black-Box Mo-
delle genutzt, da sich so Modellierungsaufwand von den Anlagenherstellern zu den Kom-
ponentenherstellern verlagern lässt. Die Komponentenhersteller besitzen das notwendige
Wissen über ihre Komponenten und können es aufgrund des Black-Box Ansatzes schüt-
zen. Die Nachnutzung diese (Black-Box) Modelle aus der virtuellen Inbetriebnahme wird
als wirtschaftlich sinnvoll angesehen, jedoch aktuell nicht praktiziert. Der Aspekt der
Echtzeitfähigkeit der betriebsparallelen Simulation wird derzeit aus verschiedenen Per-
spektiven untersucht, wobei bereits einige vielversprechende Lösungsansätze entwickelt
wurden. Das Problem der Synchronisierung zwischen physischer Anlage und simulierter
Anlage wird in der Literatur als Herausforderung beschrieben und ist bis dato noch nicht
vollständig gelöst.

Zusammenfassend kann gesagt werden, dass die Zielstellung dieser Arbeit, die Nach-
nutzung der Modelle aus der virtuellen Inbetriebnahme zur synchronisierten betriebs-
parallelen Simulation, noch nicht vom aktuellen Stand der Wissenschaft abgebildet ist.
Die relevante Literatur im Bereich der betriebsparallelen Simulation ist in Tabelle 2.1
dargestellt. Die Literatur wird den folgenden, für die Zielstellung relevanten, Kategorien
zugeordnet:

(a) Nutzung von Simulationsmodellen aus der virtuellen Inbetriebnahme

(b) Nutzung von Black-Box Modellen

(c) Ermittlung nicht messbarer Zustände

(d) Synchronisierung von physischer Anlage und simulierter Anlage

Mit Xwerden diejenigen Eigenschaften markiert, welche in der jeweiligen Arbeit be-
handelt werden, mit - jene Eigenschaften, welche nicht untersucht wurden. Ist die Be-
wertung in Klammern angegeben, sind diese nur teilweise Beschrieben, oder es wurden
andere Engineering-Modelle als Verhaltensmodelle beziehungsweise Simulationen unter-
sucht (siehe zum Beispiel Ankerpunktmethode).

11

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

2. Stand der Wissenschaft

Tabelle 2.1.: Einordnung in den Stand der Wissenschaft

Literatur (a) (b) (c) (d)

(Ashtari Talkhestani, Jazdi u. a., 2018) X - - (X)
(Bergs und Heizmann, 2019) (X) X - -
(Biesinger u. a., 2018) - X (X) -
(Han, 2009) - X - X

(Hanisch, Tolujew und Schulze, 2005) - - X (X)
(Härle, Barth und Fay, 2018) X - - -
(Hübner, Suchold und Alex, 2018) X - X (X)
(Kain, Dominka u. a., 2009) X - X -
(Kapp, 2011) - - X (X)
(Otto, Vogel-Heuser und Niggemann, 2018) - X - -
(Putman u. a., 2017) - - X (X)
(Radke und Gao, 2006) - - X X

(Rosen u. a., 2019) X - X -
(Scheifele, Verl und Riedel, 2018) X X - -
(Tobias Jung, Shah und Michael Weyrich, 2018) X - - -

2.3. Formulierung der wissenschaftlichen Fragestellung
Aus Tabelle 2.1 wird ersichtlich, dass die Ziele dieser Arbeit und die sich so ergebende
Kombination von Anforderungen aktuell nicht vom Stand der Wissenschaft abgedeckt
werden. Speziell die Anforderung der Synchronisierung einer aus Black-Box Modellen
der virtuellen Inbetriebnahme aufgebauten simulierten Anlage mit der physischen Anlage
bleibt offen. Für diese Arbeit leitet sich daraus die folgende wissenschaftliche Fragestellung
ab:

”Wie kann der Zustand einer Co-Simulation einer industriellen Anlage, von
der nur die Struktur sowie die Ein- und Ausgänge der einzelnen Simulations-
komponenten, nicht jedoch deren internes Verhalten, bekannt sind, mit der
physischen Anlage synchronisiert werden?”

Der Schwerpunkt soll dabei auf der Entwicklung eines Co-Simulationsalgorithmus lie-
gen, welcher diese Synchronisierung zur Laufzeit und in Echtzeit durchführen kann.

12

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

3. Formale Beschreibung der Blackbox
Co-Simulation

In diesem Kapitel soll die betrachtete Co-Simulation, der Co-Simulationsmaster
und die Simulationskomponenten genauer beschrieben werden. Die Darstellun-
gen erfolgen anhand einer formalen Beschreibung, einer Graphen-Darstellung
und anhand eines Sequenzdiagramms. Zudem wird ein Standard-Algorithmus für
einen Co-Simulationsmaster vorgestellt.

3.1. Einführung Co-Simulation

3.1.1. Technischer Hintergrund

Wie in Kapitel 1 beschrieben, sollen die Simulationsmodelle aus der virtuellen Inbetrieb-
nahme zur Laufzeit der Anlage weitergenutzt werden. Hier wird davon ausgegangen, dass
dies eine Co-Simulation nach dem FMI for Co-Simulation Standard ist (FMI 2.0, 2014).
Dieser wurde im Rahmen des ITEA 2 MODELISAR Verbundprojektes (07006) zur Reali-
sierung von „Software-, Modell- und Hardware-in-the-Loop Simulationen“ zur Unterstüt-
zung der Automobilentwicklung entworfen (Chombart, 2012). Seitdem wird die Anwen-
dung ausgedehnt auf den Einsatz in der virtuellen Inbetriebnahme, siehe Abschnitt 2.1.

In einer Co-Simulation nach FMI wird das Simulationsmodell eines Gesamtsystems
in mehrere Teil-Simulationsmodelle der Teilsysteme zerlegt. Ein Simulationsmodell eines
Teilsystems wird FMU (Functional Mockup Unit) genannt. Im weiteren Verlauf dieser
Arbeit werden Simulationsmodelle eines Teilsystems technologieunabhängig als Simula-
tionskomponente bezeichnet, in Anlehnung an (Gomes u. a., 2017). Der Grund ist, dass
neben FMI weitere Mechanismen zur Co-Simulation, zum Beispiel High Level Architectu-
re (IEEE 1516-2010, 2010) existieren.

Ein als Co-Simulationsmaster bezeichneter Algorithmus organisiert die einzelnen Simu-
lationskomponenten, deren Lebenszyklus und den Austausch von Informationen zwischen
Simulationskomponenten. Auf diese Weise kommt die Gesamtsystemsimulation zu Stande.

3.1.2. Simulationskomponenten

In Abbildung 3.1 wird eine Simulationskomponente schematisch dargestellt. Die in dieser
Arbeit zu entwickelnde Zustandssynchronisierung soll mit den Modellen aus der virtuellen

13

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

3. Formale Beschreibung der Blackbox Co-Simulation

Simulati-
onskom-

ponente k

Verhalten f
Zustand x

Eingänge u,
Parameter p

Ausgänge y

Abbildung 3.1.: Schema Simulationskomponente

Inbetriebnahme nach dem FMI -Standard (FMI 2.0, 2014) funktionieren. Daher werden
die grundlegenden Eigenschaften der hier betrachteten Simulationskomponenten in An-
lehnung an diesen Standard definiert:

• Eine Simulationskomponente ist in sich abgeschlossen, sie kann keine Änderungen
an der Co-Simulation außerhalb des eigenen Simulationsmodells vornehmen. Das
bedeutet, eine Simulationskomponente beeinflusst andere Simulationskomponenten
nicht direkt, sondern nur indirekt über den durch den Co-Simulationsmaster gesteu-
erten Variablenaustausch.

• Eine Simulationskomponente besitzt Variablen und Parameter.

• Variablen können Eingänge u sein. Über diese Eingänge gelangen Informationen in
eine Simulationskomponente.

• Variablen können Ausgänge y sein. Über diese Ausgänge gelangen Information aus
einer Simulationskomponente nach außen.

• Parameter erlauben die Konfiguration einer Simulationskomponente. Die Konfigu-
ration kann nur in Vorbereitung der Simulation durchgeführt werden, jedoch nicht
während der Simulation.

• Das interne Verhalten f der Simulationskomponente ist im Allgemeinen nicht be-
kannt. Simulationskomponenten besitzen daher Black-Box-Verhalten. Modellglei-
chungen, Konstanten, Tabelle etc. liegen im ausführbaren Binärformat vor (zum
Beispiel .dll Datei unter Windows und .so Datei unter Linux).

• Der interne Zustand x der Simulationskomponente kann als unstrukturierte Bi-
närdaten exportiert und importiert werden. Der Aufbau der Binärdaten ist nur
innerhalb dieser Instanz der Simulationskomponente bekannt beziehungsweise
nutzbar. In der technologischen Umsetzung finden sich solche Ex- und Import-
Funktionalitäten zum Beispiel in (FMI 2.0, 2014) (Funktionen fmi2GetFMUstate,
fmi2SetFMUstate, fmi2FreeFMUstate), jedoch optional.

14

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

3.2. Modell einer Co-Simulation

• Die Simulationskomponenten besitzen die Fähigkeit der Selbstbeschreibung, um
dem Co-Simulationsmaster die zum Einbinden der Simulationskomponente in die
Co-Simulation notwendigen Informationen bereitstellen zu können. Diese Informa-
tionen sind die Modellidentifikation, Eingänge, Ausgänge und Parameter.

3.1.3. Co-Simulationsmaster

Die Aufgabe des Co-Simulationsmasters ist die Durchführung der Co-Simulation. Dazu
wird dieser entsprechend des zu simulierenden Setups parametriert.

Der Co-Simulationsmaster organisiert den Variablenaustausch und koordiniert alle Si-
mulationskomponenten. Dazu gehört neben der eigentlichen Simulation auch das Ma-
nagement des Lebenszyklus der Simulationskomponenten, das Logging, das Speichern der
Simulationsergebnisse zur späteren Auswertung und die Realisierung der Echtzeitfähigkeit
der Simulation.

Zur Umsetzung dieser Aufgaben muss der Co-Simulationsmaster die folgenden grund-
legenden Schritte durchführen:

1. Einlesen einer Beschreibungsdatei über den Aufbau der Co-Simulation und der be-
teiligten Simulationskomponenten sowie deren Parameter

2. Laden und Instanziieren der Simulationskomponenten

3. Parametrieren der Simulationskomponenten

4. Durchführen der Co-Simulation, Organisation des Variablenaustausches

5. Überprüfen auf Erreichen des Simulationsendes

6. Freigeben und Entladen der Simulationskomponenten

Zur Synchronisation des Zustandes zwischen simulierter Anlage und physischer Anlage
soll in Punkt 4 eingegriffen werden.

3.2. Modell einer Co-Simulation

In diesem Abschnitt werden die vorherigen Beschreibungen formalisiert. Dafür wird
ein Modell des Algorithmus des Co-Simulationsmasters in Gleichung 3.2 in Anlehnung
an (Kübler und Schiehlen, 2000) und (FMI 2.0, 2014) aufgestellt.

x
(k)
i+1 = f (k)(x

(k)
i , u

(k)
i , ti) (3.1)

y
(k)
i = h(k)(x

(k)
i) (3.2)

15

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

3. Formale Beschreibung der Blackbox Co-Simulation

f (k) steht für das zeitvariante Verhalten der k-ten Simulationskomponente, wobei 1 ≤
k ≤ K gilt und K die Gesamtzahl der Simulationskomponenten repräsentiert. x(k) sind
die internen Zustände der k-ten Simulationskomponente. y(k) ∈ Y sind deren Ausgän-
ge, wobei Y die Menge aller Ausgänge aller Simulationskomponenten ist welche dem Co-
Simulationsmaster bekannt sind. u(k) ∈ U (k) sind die Eingänge der Simulationskomponen-
te k. Aus der Sicht des Co-Simulationsmasteralgorithmus sind x(k) unbekannt. Mit h(k)

wird die Abbildung von internen Zuständen einer Simulationskomponente auf deren Aus-
gänge bezeichnet. Diese ist, wie auch das interne Verhalten, dem Co-Simulationsmaster
unbekannt. TS stellt die Makroschrittweite dar. Die Makroschrittweite gibt diejenige
Schrittweite an, mit der die Co-Simulation voranschreitet. Jede Simulationskomponen-
te kann intern den Makroschritt in kleinere Schritte aufteilen. Damit kann die Simu-
lationszeit durch die Reihe ti = tstart +

∑i
1 TS ausgedrückt werden. Dabei gilt, dass i

den i-ten Simulationsschritt angibt. Die Gesamtzahl der Simulationsschritte ergibt sich
als n = tend−tstart

TS
. Einzelne Ausgänge einer Simulationskomponente können mit einzel-

nen Eingänge einer oder mehrerer anderer Simulationskomponenten verbunden werden.
Darum wird eine Abbildung definiert: M (k) : Y → U (k). Diese Abbildung bildet von der
Menge aller in der Co-Simulation vorliegenden Ausgänge aller Simulationskomponenten
auf die Eingänge einer Simulationskomponente ab. Die Messwerte der physischen Anlage
entsprechen einer Teilmenge der Ausgänge der Simulationskomponenten.

Im weiteren Verlauf dieser Arbeit werden die Größen des Modells der Co-Simulation wie
oben beschrieben benutzt. Die korrespondierenden Größen der physischen Anlage werden
mit demselben Symbol ergänzt um ein ˆ dargestellt. Beispielweise wird der Eingang in
die physische Anlage mit û dargestellt, die Zustände der physischen Anlage x̂ und die
Ausgänge der physischen Anlage ŷ.

Im Rahmen dieser Arbeit wird der Co-Simulationsmasteralgorithmus aus (FMI 2.0,
2014) betrachtet. Mit der Hilfe des vorgestellten Formalismus wird ein Simulationsschritt
wie in Algorithmus 1 dargestellt definiert.

Algorithmus 1 Ausführung eines Schrittes der Co-Simulation nach (FMI 2.0, 2014)
function Simulationsschritt(i)

for all k ∈ K do
x
(k)
i+1 = f (k)(x

(k)
i , u

(k)
i , ti) .Ausführen der Simulationskomponente, f und x intern

y
(k)
i+1 = h(k)(x

(k)
i) .Lesen der Ausgänge, h und x intern

u
(k)
i+1 = M (k)(y

(1)
i+1, . . . , y

(K)
i+1) .Zuweisen der Eingänge

end for
end function

Der Schritt Ausführen der Simulationskomponente geschieht dabei innerhalb der Black-
box Simulationskomponente. Der Co-Simulation liegt von dieser Gleichung lediglich das
Ergebnis nach dem Ausführen des Schrittes Lesen der Ausgänge vor. Die Co-Simulation

16

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

3.2. Modell einer Co-Simulation

Algorithmus 2 Co-Simulationsmaster nach (FMI 2.0, 2014)
for all k ∈ K do

Initialisiere(u(k)
0 , p(k)) .Setzen der Startwerte und Parameter

end for
for all i ∈ [0, n] do

Simulationsschritt(i)
end for

über die gesamte Zeitspanne erfolgt wie in Algorithmus 2 beschrieben.
Es wird ein Algorithmus ohne Schrittweitensteuerung genutzt. Die Schrittweitensteue-

rung hat keinen Einfluss auf das im Rahmen der Arbeit zu entwickelte Synchronisierungs-
konzept. Diese nicht zu nutzen erleichtert jedoch die Implementierung und die Validierung
des Konzeptes erheblich.

3.2.1. Repräsentation einer Co-Simulation als Graph

Eine Co-Simulation kann als gerichteter Graph verbundener Simulationskomponenten ver-
standen werden. Die Simulationskomponenten werden von Knoten repräsentiert. Alle Ver-
bindungen von den Ausgängen einer Simulationskomponente zu den Eingängen einer zwei-
ten Simulationskomponente werden durch eine gerichtete Kante im Graph beschrieben.
Im weiteren Verlauf dieser Arbeit werden die Co-Simulationen als Graph veranschaulicht.
In Abbildung 3.2 ist ein Beispiel eines solchen Graphen dargestellt. Mit kinput werden
diejenigen Komponenten bezeichnet, welche die Eingänge von dem Optimierungsalgorith-
mus zur Zustandssynchronisierung erhalten. Mit koutput werden diejenigen Komponenten
bezeichnet, welche y für die Berechnung von ∆y = y− ŷ bereitstellen. Alle weiteren Simu-
lationskomponenten werden durchnummeriert, zum Beispiel k1, . . . kK. Wege werden mit
W = {kinput, koutput} (hier am Beispiel des Wegs von kinput zu koutput) dargestellt. M ist
in dem Graph nicht darstellbar, denn es beschreibt die Abbildung von Ausgängen aller
Simulationskomponenten auf die Eingänge einer weiteren Simulationskomponente. Die
Kanten im Graph hingegen beschreiben die Abbildung von Ausgängen einer Simulations-
komponente auf die Eingänge einer weiteren Simulationskomponente. Zusätzlich sind zum
besseren Verständnis x, f , u und y in Abbildung 3.2 eingetragen. Bei weiteren Nutzungen
der Graphen werden diese jedoch aus Gründen der Übersichtlichkeit weggelassen.

17

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

3. Formale Beschreibung der Blackbox Co-Simulation

kinput
fkinput , xkinput

u
koutput

fkoutput , xkoutput

ykinput

k1
fk1 , xk1

ykoutputyk1

k2
fk2 , xk2

ykinput yk2

y

Abbildung 3.2.: Beispielgraph von vier Simulationskomponenten

3.3. Sequenzdiagramm einer Co-Simulation
In Abbildung 3.3 ist ein Sequenzdiagramm des Ablaufs einer Co-Simulation dargestellt.
Dort sind Algorithmus 1 und Algorithmus 2 eingeordnet und die einzelnen Funktionsauf-
rufe sind zwischen Co-Simulationsmaster und Simulationskomponenten aufgeteilt.

18

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

3.3. Sequenzdiagramm einer Co-Simulation

instanziieren()

setzeStartwerte(u(k)0 , p(k))

x
(k)
i+1 = f (k)(x

(k)
i , u

(k)
i , ti)

führeZeitschrittAus(u(k)i , ti)

y
(k)
i+1 = h(k)(x

(k)
i)

leseAusgänge()

y
(k)
i+1

Zuweisen der Eingänge: u(k)i+1 = M (k)(y
(1)
i+1, . . . , y

(K)
i+1)

freigeben()

Co-Simulationsmaster

k1..kK

loop

[i ∈ [0, n]]

Abbildung 3.3.: Sequenzdiagramm einer Co-Simulation

19

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Konzept Zustandssynchronisierung

In diesem Kapitel wird das Konzept zur Zustandssynchronisierung eingeführt.
Dafür wird zunächst eine geeignete Architektur dargestellt und das Konzept
daran vorgestellt. Im Anschluss wird eine Formalisierung vorgenommen wobei
die Formulierung der Zustandssynchronisierung als Optimierungsproblem erfolgt.
Möglichkeiten zur Optimierung werden aufgezeigt, so dass die Synchronisierung
echtzeitfähig durchgeführt werden kann. Außerdem werden Aspekte der zeitlichen
Synchronisierung beschrieben.

4.1. Prinzip der Zustandssynchronisierung

Die in Abschnitt 1.2 vorgestellten Probleme bei der betriebsparallelen Simulation beruhen
darauf, dass die Regelungs- und Steuerungsfunktion aufgrund des fehlenden Feedbacks von
der simulierten Anlage diese nicht korrekt regeln beziehungsweise steuern kann. Eine Mög-
lichkeit wäre, eine zweite Einheit der Regelungs- und Steuerungsfunktion zu verwenden,
um die simulierte Anlage zu beeinflussen. Dieses entspräche einer zweiten SPS. Beide Ex-
emplare der Regelungs- und Steuerungsfunktion müssten dann miteinander synchronisiert
werden (Kain, Dominka u. a., 2009).

Das Ziel dieser Arbeit ist es, ohne eine zweite Einheit der Regelungs- und Steuerungs-
funktion auszukommen. Dazu wird ein zusätzlicher Regelungs- und Steuerungsfunktions-
baustein in die Co-Simulation eingebracht. Dieser wird hier Adaption genannt und als
Simulationskomponente realisiert. Er enthält nicht eine Kopie der Regelungs- und Steue-
rungsfunktion, sondern enthält einen generischen Algorithmus, der auf Basis der Signale
der Regelungs- und Steuerungsfunktion funktioniert. Statt das Stellsignal direkt von der
Kommunikationssimulationskomponente an die simulierte Anlage zu geben, wird es an die
Adaption gegeben, welche es dann weiterleitet. Die Adaption manipuliert das Signal so,
dass der Unterschied zwischen physischer Anlage und simulierter Anlage verschwindet. In
Abbildung 4.1 ist die Architektur dargestellt, mit welcher eine betriebsparallele Simulation
betrieben werden kann. So können die Probleme des Beispiels in Abbildung 1.1 vermieden
werden. Das bedeutet, mit jeder neuen Nachricht der Regelungs- und Steuerungsfunktion
muss folgendes Problem gelöst werden:

Suche Werte für diejenigen Eingänge der Simulationskomponenten, welche den
Aktoren der physischen Anlage entsprechen, so dass ∆y = 0 gilt.

20

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.1. Prinzip der Zustandssynchronisierung

Physische Anlage

Simulierte AnlageSimu-
lation

Prozess SensorAktorSPS

-

y

ŷ

ŷ

û

Adaption
minu

û u

∆y

Abbildung 4.1.: Architektur für die Zustandssynchronisierung

Werden diese Werte gefunden, lassen sich die in Abschnitt 1.2 beschriebenen Probleme
vermeiden. Zur Umsetzung der Suche können Optimierungsalgorithmen genutzt werden.

Das vorgehen kann so verstanden werden, dass in Adaption das Signal der Regelungs-
und Steuerungsfunktion û derart angepasst wird, dass der Unterschied zwischen den Re-
aktionen der physischen und der simulierten Anlage minimiert wird. Die dabei zugrun-
deliegende Annahme ist, dass das Verhalten des Simulationsmodells der Anlage bereits
eine sehr hohe Ähnlichkeit mit dem Verhalten der physischen Anlage aufweist. Diese An-
nahme wird dadurch gerechtfertigt, dass die simulierte Anlage jene Simulationsmodelle
enthält, welche bereits für die virtuelle Inbetriebnahme zum Einsatz kommen, siehe Ab-
schnitt 2.1. Die hohe Übereinstimmung zwischen beiden Systemen und die Gleichheit der
Ausgänge sollen dafür sorgen, dass sich die physische und die simulierte Anlage im selben
Arbeitspunkt befinden.

Zentraler Bestandteil ist die Adaption genannte Komponente, welche einen Optimie-
rungsalgorithmus ausführt. Dieser soll die Differenz der Messwerte der physischen Anlage
und der entsprechenden Ausgänge der Simulationsmodelle minimieren. Die Zielfunktion
wird durch die Co-Simulation gebildet. Also Optimierungsvariablen gibt der Optimie-
rungsalgorithmus Eingänge ausgewählter Simulationskomponenten vor. Dabei ist die oben
beschriebene Vorgehensweise denkbar, die Signale der Regelungs- und Steuerungsfunktion
entsprechend zu manipulieren. Alternativ ist es möglich, von den Signalen der Regelungs-
oder Steuerungsfunktion unbeeinflusste Eingänge oder Parameter als Optimierungsvaria-
blen zu nutzen um ∆y = 0 zu erreichen.

Wenn jedoch ∆y = 0 erreicht wird, ist der Unterschied zwischen simulierter Anlage und
physischer Anlage immer null. Es können also keine Unterschiede mehr erkannt werden.
Um die Verhalten von physischer und simulierter Anlage weiterhin vergleichen zu können,
können diese Informationen aus der Adaption der Stellsignale gewonnen werden.

21

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

Für das Beispiel in Abschnitt 1.2, in dem das simulierte Förderband langsamer ist als
das physische Förderband, gilt folgende Argumentation: Das Ausschalten des simulierten
Förderbandes muss verzögert werden, genauso wie das Aktivieren des simulierten Greifers.
Zur Diagnose einer möglichen Ursache könnte also wie folgt vorgegangen werden, wobei
Methoden zur Diagnose kein Bestandteil dieser Arbeit sind:

Förderband später angehalten

⇒ Greifer wurde später erreicht

⇒ Simuliertes Förderband ist langsamer

4.2. Realisierung der Zustandssynchronisierung mit Hilfe
eines Optimierungsalgorithmus

In diesem Abschnitt erfolgt die Formalisierung des in Abschnitt 4.1 entwickelten Konzep-
tes zur Zustandssynchronisierung. Dazu wird ein Optimierungsproblem formuliert.

Aus Gleichung 3.2 ist erkennbar, dass die hier betrachteten Simulationskomponen-
ten nicht sprungfähig sind. Wird ein Eingang in Simulationskomponente kinput gesetzt,
kann ein Ausgang der Simulationskomponente koutput erst nach Durchführung der Co-
Simulation beeinflusst werden. Im Fall von kinput = koutput ist wenigstens ein Simula-
tionsschritt erforderlich. Falls kinput 6= koutput, sind mindestens zwei Simulationsschritte
erforderlich. Diese Eigenschaft wird Distanz TD genannt. Die Distanz ergibt sich aus dem
Graph der Verbundenen Simulationskomponenten. Formal kann die Distanz nach (Krum-
ke und Noltemeier, 2012) folgendermaßen ermittelt werden: Die Länge c eines Weges
{k1, k2} zwischen zwei Knoten wird durch Aufsummierung der Kantengewichte ei zwi-
schen den am Weg beteiligten Knoten ermittelt:

c({k1, k2}) =
k2∑

k=k1

ek (4.1)

Aufgrund der Funktionsweise der Co-Simulation, wie sie Gleichung 3.2 beschrieben ist
gilt, dass ei = 1. Damit ergibt sich TD zu:

TD = inf {c({u, y})}

= c̃({u, y}) (4.2)

TD entspricht der Länge des kürzesten Weges von u nach y. Die Länge eines kürzesten
Weges allgemein zwischen zwei Knoten wird darüber hinaus mit c̃({. . . }) bezeichnet.

Der Optimierungsalgorithmus muss nicht nach Distanz Schritten aufhören. Das weitere
Verhalten der simulierten Anlage, auch deutlich über die aktuelle physische Zeit hinaus,

22

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.2. Realisierung der Zustandssynchronisierung mit Hilfe eines Optimierungsalgorithmus

kinputu koutput

k1

k2

y

Abbildung 4.2.: Graph von vier Simulationskomponenten — roter Weg: TD, blauer Weg:
Vorschlag für TP

kann für die Synchronisierung mit betrachtet werden. Diese Eigenschaft wird Prädiktion
TP genannt. Es gilt automatisch TD ≤ TP. In Abbildung 4.2 ist ein Beispiel für einen
Graphen einer Co-Simulation abgebildet. Die roten Kanten stehen für den minimalen Weg
vom relevanten Eingang bis zum relevanten Ausgang der Simulationskomponenten. TD

wird bestimmt durch die Anzahl der Knoten entlang dieses Wegs. TP könnte entsprechend
der Anzahl der Knoten entlang des blauen Wegs gewählt werden.

Mit Hilfe dieser Zusammenhänge und den Definitionen aus Abschnitt 3.2 kann nun
die Zielfunktion J für das Optimierungsproblem formuliert werden. Diese ist durch Glei-
chung 4.3 gegeben.

min
(uj)∈U

J

= min
(uj)∈U

i+TP∑
j=i+TD

(yj − ŷ(j−∆o))
2

= min
(uj)∈U

i+TP∑
j=i+TD

(∆yj)
2 (4.3)

Die Zielfunktion wird für jeden Simulationsschritt der Co-Simulation optimiert. Dabei
wird die Co-Simulation für TP Schritte ausgeführt. Ergebnisse der Co-Simulation vor TD

beeinflussen den Wert der Zielfunktion nicht. Ergebnisse vor TD können aufgrund des Co-
Simulationsmasteralgorithmus nicht durch die vom Optimierungsalgorithmus angelegten
Eingänge verursacht sein. Anwendungsfälle für die Wahl TP > TD können sein: Berück-
sichtigung von Schleifen im Co-Simulationsgraph, mehrere Wege von kinput nach koutput,
der Einsatz für ereignisdiskreten Systeme und die Verringerung von Schwingungen. Wird
TP > TD gewählt, gibt es zwei Möglichkeiten, die Optimierung durchzuführen: Es kann
weiterhin eine statische Optimierung durchgeführt werden. Bei dieser wird ein u gesucht,
welches die Zielfunktion über mehrere Simulationsschritte hinweg minimiert. Alternativ
kann eine dynamische Optimierung durchgeführt werden. Dann wird eine Folge (uj) ge-
sucht, welche die Zielfunktion minimiert.

Im Falle des statischen Optimierungsproblems wird in Gleichung 4.3 eine konstante

23

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

Folge (uj) betrachtet, was als u geschrieben werden kann. Zur Lösung des dynamischen
Optimierungsproblems kann die Zielfunktion von Gleichung 4.3 in die folgende Form
umformuliert werden.

min

ui+TD

ui+TD+1

· · ·

ui+TP


∈UTP−TD+1

{
(∆yi+TD)

2 + (∆yi+TD+1)
2 + · · ·+ (∆yi+TP)

2} (4.4)

Pro Variable zur Optimierung wird stattdessen für einen Vektor der Länge TP − TD + 1

optimiert.
Der Fehler wird aus den Ergebnissen der Simulation y und den entsprechenden Mes-

sungen ŷ berechnet. Die entsprechenden Messungen finden sich nicht zwangsläufig zur
Zeit j aufgrund der unterschiedlichen Totzeiten innerhalb der physischen Anlage und der
Co-Simulation. Daher wird die Messung ŷ zum Zeitpunkt j −∆o genommen. ∆o soll den
Unterschied der Totzeiten kompensieren. In Abschnitt 4.6 wird dieser Aspekt genauer
untersucht.

Das Abbruchkriterium für den Optimierungsalgorithmus tritt ein, wenn die Differenz
zwischen physischer und simulierter Anlage klein genug ist, also

∑i+TP
j=i+TD

(∆yj)
2 < ε gilt.

Der Wert für ε muss entsprechend parametriert werden.
Durch die Formulierung der Zustandssynchronisierung als Optimierungsproblem ergibt

sich der Vorteil, dass bei Bedarf zusätzliche Anforderungen leicht berücksichtigt werden
können: Zum Beispiel kann die Zielfunktion angepasst werden, falls Nebenbedingungen
berücksichtigt werden sollen. So können obere und untere Schranken für Variablen festge-
legt werden, falls zu niedrige oder zu hohe Werte für die Simulationskomponente Probleme
darstellen. Zudem lassen sich leicht weitere Strafterme zur Zielfunktion hinzufügen, zum
Beispiel um ∆u = u− û möglichst klein zu halten.

4.3. Einbetten der Optimierung in den
Co-Simulationsmasteralgorithmus

Nachfolgend wird der Algorithmus für die Durchführung von einem Schritt der Co-
Simulation mit Zustandssynchronisierung beschrieben. In diesem Zusammenhang gibt
es drei Arten von Iterationen. Bei der Iteration der Co-Simulation werden alle Simu-
lationskomponenten für einen Zeitschritt berechnet. Dabei schreitet die Simulationszeit
voran. Bei der Iteration des Optimierungsalgorithmus wird die Optimierung ausgeführt.
Dabei werden Eingänge gesetzt. Dann werden pro Iteration des Optimierungsalgorithmus
TP Iterationen der Co-Simulation ausgeführt. Anschließend werden die Ausgänge gelesen

24

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.3. Einbetten der Optimierung in den Co-Simulationsmasteralgorithmus

und bewertet, ob das Optimum erreicht ist. Nach jeder Iteration des Optimierungsal-
gorithmus wird die Co-Simulation zurückgesetzt auf den Zustand vor der Iteration des
Optimierungsalgorithmus. Bei einer Iteration der betriebsparallelen Simulation schreitet
diese in Echtzeit voran. Mit jeder Iteration der betriebsparallelen Simulation müssen so
viele Iterationen des Optimierungsalgorithmus ausgeführt werden, bis die optimale Zu-
standssynchronisierung erreicht ist, oder bis abgebrochen wird. Ohne Zustandssynchro-
nisierung entspricht eine Iteration der betriebsparallelen Simulation einer Iteration der
Co-Simulation.

Algorithmus 3 Algorithmus Co-Simulationsmaster mit Zustandssynchronisierung
for all k ∈ K do

Initialisiere(u(k)
0 , p(k)) .Setzen der Startwerte und Parameter

end for
for all i ∈ [0, n] do

Speichere den Zustand aller Simulationskomponenten
Initialisiere den Optimierungsalgorithmus(Ui, ŷi)
optimal ← ∆yi < ε

while nicht optimal do
for all j ∈ [i, TD) do .Beeinflussen Ergebnis der Optimierung nicht

Simulationsschritt(j)
end for
for all j ∈ [TD, TP) do .Beeinflussen Ergebnis der Optimierung

Simulationsschritt(j)
∆yj ← yj − ŷj−∆o .Ermittle Vektor der Differenzen Simulation — Anlage

end for
optimal ←

∑i+TP
j=i+TD

(∆yj)
2 < ε

if nicht optimal then
Lade gespeicherten Zustand
um ←Iteration des Optimierers(

∑i+TP
j=i+TD

(∆yj)
2)

end if
end while
Lade gespeicherten Zustand
Simulationsschritt(i) .Simulationsschritt i mit optimalen u

end for

Der Algorithmus 3 beschreibt eine Iteration der betriebsparallelen Simulation zur Um-
setzung der Optimierung zur Zustandssynchronisierung. Algorithmus 3 erweitert Algorith-
mus 2. Der Algorithmus des Co-Simulationsmasters in Algorithmus 3 ist so aufgebaut,
dass für die Zustandssynchronisierung die folgende Schnittstelle zu einem Optimierer exis-
tieren muss:

25

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

• Initialisierung des Optimierungsalgorithmus

• Austausch von Variablen zwischen Optimierungsalgorithmus und Co-Simulation

• Ausführen einer Iteration des Optimierungsalgorithmus

Es bietet sich an, den Optimierer als Simulationskomponente zu realisieren. So wird der
Austausch von Variablen zwischen Optimierungsalgorithmus und den weiteren Simula-
tionskomponenten vom Co-Simulationsmaster verwaltet. Die Initialisierung und Ausfüh-
rung der Optimierung sowie das Prüfen des Abbruchkriteriums kann durch Variablen
abgebildet werden. Den Optimierer als Simulationskomponente zu realisieren hat den Vor-
teil, dass verschiedene Optimierungsalgorithmen und Synchronisierungsstrategien genutzt
werden können. Je nach Problem kann die passende Strategie ausgewählt werden, ohne
die restliche Co-Simulation zu ändern. Ein Nachteil ist, dass die Schnittstelle zwischen
Co-Simulationsmaster und Optimierer exakt bekannt sein muss, zum Beispiel: Was sind
die Namen der Variablen? Wird die Initialisierung durch eine steigende Flanke ausgelöst?

Die Schnittstelle ist jedoch so allgemein, dass eine weitere Möglichkeit der Realisierung
darin besteht, in einer Simulationskomponente des Optimierers mehrere Optimierungs-
algorithmen zu integrieren. Der letztendlich eingesetzte Optimierungsalgorithmus kann
dann durch eine Variable ausgewählt werden, welche wie alle anderen Parameter zu Be-
ginn der Co-Simulation gesetzt wird.

In Abbildung 4.3 wird ein Sequenzdiagramm der Co-Simulation mit Zustandssynchro-
nisierung gezeigt. Dabei ist der Optimierer als separate Simulationskomponente realisiert.
Daher werden alle Funktionsaufrufe an die Simulationskomponenten auch an den Opti-
mierer gesendet. Aus Gründen der Übersichtlichkeit werden die meisten dieser Funkti-
onsaufrufe im Sequenzdiagramm allerdings ausgelassen. Die Simulationskomponente des
Optimierers wird bei diesen Funktionsaufrufen keine Aktion durchführen.

26

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.3. Einbetten der Optimierung in den Co-Simulationsmasteralgorithmus

instanziieren()

instanziieren()

setzeStartwerte(u(k)0 , p(k))

zustandSpeichern()
x (binär)

Initialisiere()

∆yi ≥ ε

inoptimal

SimSchritt(j)

SimSchritt(j)

∆yj ← yj − ŷj−∆o

∑i+TP
j=i+TD

(∆yj)
2 ≥ ε

inoptimal

ladeZustand()

iteration(
∑i+TP

j=i+TD
(∆yj)

2)

u

ladeZustand()

SimSchritt(i)

freigeben()

freigeben()

Co-Simulationsmaster

k1..kK

Optimierer

loop

[j ∈ [i, TD)]

loop

[j ∈ [TD, TP)]

opt

[inoptimal]

loop

[inoptimal]

loop

[i ∈ [0, n]]

Abbildung 4.3.: Sequenzdiagramm der Co-Simulation mit Zustandssynchronisierung

27

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

4.4. Verbesserung der Performance der
Zustandssynchronisierung

Die Anwendung von Optimierung zur Zustandssynchronisierung führt zwangsläufig zu ei-
ner höheren Zahl von notwendigen Simulationsschritten, da für die Co-Simulation mehrere
Iterationen pro Iteration des Optimierungsalgorithmus durchgeführt werden müssen.

Um die benötigte Zeit zur Durchführung der Optimierung zu reduzieren gibt es zwei
Möglichkeiten: Verringerung der Anzahl der notwendigen Iterationen und Verringerung
der Zeit pro Iteration. Die nachfolgenden Betrachtungen wurden erstmals in (Zipper und
Diedrich, 2020) veröffentlicht.

Die Zahl der Iterationen der Co-Simulation ist im Allgemeinen vom Optimierungsalgo-
rithmus abhängig. Die Wahl des Optimierungsalgorithmus und der Startwerte ist daher
wichtig und von den konkreten Simulationsmodellen und der physischen Anlage abhängig.
Zu beachten ist, dass Optimierungsalgorithmen, welche eine Ableitung der Zielfunktion
benötigen, zu zusätzlichen Iterationen der Co-Simulation führen. Unterschiede zwischen
physischer und simulierter Anlage können auch durch Rauschen der betrachteten Signa-
le zustande kommen. Die Zahl der Iterationen des Optimierungsalgorithmus lässt sich
beispielsweise durch Glätten der Signale reduzieren.

In diesem Abschnitt 4.4 sollen Möglichkeiten aufgezeigt werden, die Anzahl der Iteratio-
nen der Co-Simulation zu verringern, ohne das Ergebnis der Zustandssynchronisierung zu
beeinflussen oder zu ändern. Diese Performance-Steigerungen funktionieren unabhängig
vom gewählten Optimierungsalgorithmus und dem Verhalten der Simulationsmodelle.

Die Laufzeit einer Blackbox Simulationskomponente lässt sich nicht beeinflussen. Für
eine Iteration des Optimierungsalgorithmus müssen mehrere (insgesamt TP) Iterationen
der Co-Simulation ausgeführt werden. In jeder Iteration der Co-Simulation müssen alle
(K) Simulationskomponenten ausgeführt werden, insgesamt sind dies TP ·K Iterationen
der Co-Simulation. Um diese Zahl zu reduzieren werden die nachstehenden Fragen beant-
wortet:

1. Unter welchen Bedingungen kann die Ausführung einer Simulationskomponente das
Ergebnis der Optimierung beeinflussen?

2. Unter welchen Bedingungen liefern zwei Ausführungen einer Simulationskomponen-
te das identische Ergebnis?

Mit Hilfe dieser Fragen lassen sich zwei, sich ergänzende, Ansätze ableiten.
Für die Anzahl der Ausführungen von Simulationskomponenten während der Optimie-

rung sind die Teilgraphen der Co-Simulation relevant, welche Simulationskomponenten
enthalten, die durch die Optimierung beeinflusst werden. In Abbildung 4.4 werden dazu
einige Beispiele von Co-Simulationssetups vorgestellt, welche die möglichen Strukturen
eines Co-Simulationsgraphen darstellen.

28

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.4. Verbesserung der Performance der Zustandssynchronisierung

kinput k1 koutputu y

(a) Sequenzielle Anordnung von Simulationskomponenten

kinput k1

k3k2

koutputu y

(b) Parallele Anordnung von Simulationskomponenten

kinput
=

koutput

k1

u y

(c) Von u nicht beeinflusste Knoten

kinput k1 koutputu y

(d) Zyklus von Simulationskomponenten

Abbildung 4.4.: Beispiele von Co-Simulationen

Abbildung 4.4a zeigt ein Beispiel für eine Co-Simulation, in der die Simulationskompo-
nenten zwischen u und y sequenziell angeordnet sind. Nach Gleichung 4.1 gilt TD = 3, da
sich zwischen u und y drei Simulationskomponenten befinden. Daher müssen drei Itera-
tionen der Co-Simulation ausgeführt werden wobei mit jeder Iteration der Co-Simulation
jede der Simulationskomponenten ausgeführt werden muss. Daher ist die Gesamtzahl der
zusätzlichen Ausführungen von Simulationskomponenten pro Iteration des Optimierungs-
algorithmus 3 · 3 = 9 = T 2

D. TD wirkt sich also quadratisch auf die Zahl der zusätzlichen
Ausführungen von Simulationskomponenten aus. Die Skalierbarkeit der Zustandssynchro-
nisierung wird dadurch beeinträchtigt, denn die benötigte Rechenzeit für die Zustands-
synchronisierung steigt mit zunehmende Zahl der Simulationskomponenten in der Co-
Simulation. Ein praktisches Beispiel für solch eine Struktur findet sich, wenn sich in der
Signalkette zwischen u und y mehrere Simulationskomponenten befinden.

Abbildung 4.4b zeigt ein Beispiel für eine Co-Simulation, in dem mehrere Wege von
u nach y existieren. Nach Gleichung 4.1 ergibt sich TD = 3, da der längste Weg von u

nach y drei Simulationskomponenten umfasst, über kinput, k1 und koutput. Daher müssen
drei Iterationen der Co-Simulation pro Iteration des Optimierungsalgorithmus ausgeführt
werden, bei jeder Iteration der Co-Simulation müssen fünf Simulationskomponenten aus-

29

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

geführt werden. Die Zahl der zusätzlichen Ausführungen von Simulationskomponenten
ergibt sich also zu 3 · 5 = 15. Parallele Wege gehen also linear ein. Im praktischen Anwen-
dungsfall finden sich solche Strukturen, falls die Zustandssynchronisierung Eingänge oder
Parameter mehrerer Simulationskomponenten betrachten soll.

Abbildung 4.4c zeigt ein Beispiel einer Co-Simulation, in welcher sich Simulations-
komponenten befinden, die nicht vom Optimierungsalgorithmus beeinflusst werden. Nach
Gleichung 4.1 ist TD = 1. Mit jeder Iteration der Co-Simulation müssen zwei Simulations-
komponenten ausgeführt werden, die zusätzliche Zahl an Ausführungen von Simulations-
komponenten pro Iteration des Optimierungsalgorithmus ergibt sich daher zu 1 · 2 = 2.
Mit u nicht verbundene Simulationskomponenten gehen linear ein. In der Praxis existieren
solche Strukturen beispielsweise durch Simulationskomponenten zur Datenaufnahme aus
dem physischen System.

In Abbildung 4.4d ist ein Beispiel einer Co-Simulation mit Zyklen dargestellt. Auch
hier ergibt Gleichung 4.1 TD = 3. Die Zahl der zusätzlichen Ausführungen pro Iterati-
on des Optimierungsalgorithmus ist also gleich wie im Beispiel aus Abbildung 4.4a. Im
praktischen Einsatz lässt sich eine solche Co-Simulation beispielsweise für Systeme fin-
den, in denen ein Regler eine weitere Komponente regelt, oder bei der bidirektionalen
Kopplung eines Verhaltensmodells einer mechatronischen Komponente und einer 3D- und
Physikengine.

Die Reduzierung der Ausführungen der Simulationskomponenten soll die an den Bei-
spielen gezeigten, zusätzlichen Ausführungen reduzieren und die folgenden Randbedin-
gungen beachten:

1. Es werden keine Maßnahmen genutzt, welche das Ergebnis einer oder mehrerer
Simulationskomponenten schätzen oder lernen.

2. Wird ein Ergebnis einer Simulationskomponente zu einem Zeitpunkt benötigt, muss
diese für diesen Zeitpunkt und alle vorhergehenden Zeitpunkte ausgeführt werden.
Grund hierfür ist der beliebige, unbekannte, interne Zustand der Simulationskom-
ponente.

3. Die Performance-Optimierungen setzen kein bestimmtes Verhalten der Simulations-
komponenten voraus.

4. Die Performance-Optimierungen sind unabhängig vom Optimierungsalgorithmus.

4.4.1. Ansatz 1: Unter welchen Bedingungen kann die Ausführung
einer Simulationskomponente das Ergebnis der Optimierung
beeinflussen?

Diese Frage zielt darauf ab, die Ausführung jener Simulationskomponenten zu vermeiden,
deren Ausgänge das Ergebnis der Iteration des Optimierungsalgorithmus (y) bis zum

30

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.4. Verbesserung der Performance der Zustandssynchronisierung

Erreichen von TP nicht mehr beeinflussen können.
Ein Beispielszenario hierfür ist in Abbildung 4.4c abgebildet. In diesem Beispiel ist eine

Co-Simulation bestehend aus zwei Simulationskomponenten abgebildet. Es gelte TD =

TP = 1, d.h. für eine Iteration des Optimierungsalgorithmus ist auch eine Iteration der
Co-Simulation notwendig, denn nach einer Ausführung von kinput wirkt u bereits auf y.
Da die Ausgänge von k1 die Eingänge von kinput sind, brauchen sie zwei Iterationen bis
sie y beeinflussen. Während der Optimierung können also die Ausgänge von k1 y nicht
beeinflussen, es kann daher auf die Ausführung von k1 verzichtet werden.

Diese Argumentation kann auch auf die weiteren Beispiele von Abbildung 4.4 ange-
wendet werden. In Beispiel aus Abbildung 4.4a ist eine Co-Simulation bestehend aus drei
Simulationskomponenten abgebildet. Es gelte TD = TP = 3, d.h. für eine Iteration des
Optimierungsalgorithmus sind drei Iterationen der Co-Simulation notwendig. Das bedeu-
tet, u braucht drei Iterationen bis es y beeinflusst hat, die Ausgänge von kinput brauchen
zwei Iterationen und die Ausgänge von k1 eine Iteration. Sobald also bereits eine Iterati-
on der Co-Simulation ausgeführt wurde, sind nur noch zwei weitere bis TP zu erledigen.
Da die in der zweiten Iteration entstehenden Ausgänge von kinput jedoch zusätzlich noch
zwei Iterationen benötigen, können diese y nicht mehr beeinflussen. Das bedeutet, in den
zwei verbleibenden Iterationen der Co-Simulation kann kinput ignoriert werden ohne das
Ergebnis dieser Iteration des Optimierungsalgorithmus zu verfälschen. Analog dazu kann
mit k1 ab der zweiten Iteration der Co-Simulation verfahren werden. Dadurch sinkt die
Zahl der durchzuführenden Iterationen der Co-Simulation pro Iteration der Optimierung
von TP ·K = 9 auf 3 + 2 + 1 = 6.

Mit Gleichung 4.1 zur Beschreibung der Länge eines Weges in einem Graphen kann
für eine Simulationskomponente die maximale Anzahl an zusätzlichen Ausführungen pro
Iteration der Co-Simulation (Γk) wie in Gleichung 4.5 ausgedrückt werden.

Γk =

TP − c̃({k, koutput}) koutput von k erreichbar

0 sonst
(4.5)

4.4.2. Ansatz 2: Unter welchen Bedingungen liefern zwei
Ausführungen einer Simulationskomponente das identische
Ergebnis?

Diese Frage zielt darauf ab, Informationen aus vorrangegangen Iterationen der Co-
Simulation zu nutzen und so die wiederholte Ausführung von Simulationskomponenten
zu vermeiden.

In jeder Iteration der Co-Simulation werden die Ausgänge auf die entsprechenden Ein-
gänge übertragen, siehe Algorithmus 2. So ergibt sich über mehrere Iterationen der Co-
Simulation hinweg eine Folge von Eingängen in eine Simulationskomponente. Eine Simu-

31

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

lationskomponente wird bei gleichem Anfangszustand und gleicher Folge von Eingängen
auch immer dieselbe Folge von Ausgängen produzieren. Wird die Folge der Eingänge und
die daraus resultierende Folge von Ausgängen gespeichert, kann dies für eine Steigerung
der Performance genutzt werden: Tritt in einer Iteration des Optimierungsalgorithmus
die gleiche Folge von Eingängen auf, wie in einer vorhergehenden Iteration des Optimie-
rungsalgorithmus, kann auf die Ausführung der Simulationskomponente verzichtet werden
und stattdessen die gespeicherten Werte an die nachfolgenden Simulationskomponenten
kommuniziert werden.

Sobald sich die Folge von Eingängen aber in mindestens einem Wert unterscheidet, muss
die Simulationskomponente für alle Iterationen der Co-Simulation ausgeführt werden. Erst
bei der letzten Iteration der Co-Simulation ist die komplette, aktuelle Folge der Eingänge
bekannt. Soll also dieser Ansatz verwendet werden, muss die in Algorithmus 3 vorgestellte
Abarbeitung der Co-Simulation dahingehend angepasst werden.

Eine Simulationskomponente wird während einer Iteration der Co-Simulation nur dann
ausgeführt, wenn sich die bis zu dieser Iteration der Co-Simulation entstandene Teilfolge
von Eingängen von allen gespeicherten Teilfolgen der gleichen Länge unterscheidet. Tritt
ein Unterschied erst ab einer späteren Iteration der Co-Simulation auf, müssen die zuvor
übersprungenen Iteration der Co-Simulation für diese Simulationskomponente nachge-
holt werden. Dafür wird eine bis zum Auftreten des Unterschieds passende Folge von
Eingängen genutzt. Es ist ausreichend, die Ausführungen nur für die betreffende Simula-
tionskomponente nachzuholen, da deren Ausgänge für die nachzuholenden Ausführungen
bereits bekannt sind und an die weiteren Simulationskomponenten kommuniziert wur-
den. Beim Nachholen der Ausführungen geht es alleine darum, den internen Zustand der
betreffenden Simulationskomponente korrekt zu aktualisieren.

Werden mit der Folge der Eingänge neben den Ausgängen zusätzlich auch die internen
Zustände gespeichert, lässt sich das Nachholen der Ausführungen umgehen: Statt eine
Ausführung einer Simulationskomponente nachzuholen, wird deren interner Zustand ent-
sprechend des zuvor gespeicherten, aus der gleichen Folge von Eingängen resultierenden,
Zustandes gesetzt.

Zur Veranschaulichung hierfür kommt das in Abbildung 4.4a gezeigte Beispiel zum Ein-
satz. In Tabelle 4.1 wird das Vorgehen für eine Simulationskomponente veranschaulicht:
Zu einem Zeitpunkt während der Simulation wird der Optimierungsalgorithmus für sechs
Iterationen ausgeführt, siehe Spalte n. In den Spalten ut=1, ut=2 und ut=3 sind die Eingän-
ge für die Iterationen der Co-Simulation dargestellt, zur Verdeutlichung seien in diesem
Beispiel nur die Werte ◦ und ? möglich.

Nachfolgend wird anhand von Tabelle 4.1 erläutert, aus welchem Grund die Simula-
tionskomponente wie oft ausgeführt werden muss, in Abhängigkeit von der Folge der
Eingänge.

1. In der ersten Iteration des Optimierungsalgorithmus muss die Simulationskompo-

32

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.4. Verbesserung der Performance der Zustandssynchronisierung

Tabelle 4.1.: Veranschaulichung Ansatz 2 für Beispiel aus Abbildung 4.4a

n ut=1 ut=2 ut=3 Ausführungen Ausführungen (Zustände speichern)

1 ◦ ◦ ◦ 3 3
2 ? ? ? 3 3
3 ◦ ◦ ◦ 0 0
4 ◦ ? ? 3 2
5 ? ◦ ? 3 2
6 ? ? ◦ 3 1

nente für jede Iteration der Co-Simulation ausgeführt werden, also dreimal. Da dies
die erste Iteration ist, wurde noch keine Folge von Eingängen gespeichert.

2. Auch in der zweiten Iteration des Optimierungsalgorithmus muss die Simulations-
komponente dreimal ausgeführt werden, da die komplette Folge der Eingänge zur
ersten Iteration verschieden ist.

3. In der dritten Iteration des Optimierungsalgorithmus muss die Simulationskompo-
nente nicht ausgeführt werden, da die komplette Folge der Eingänge der Folge der
ersten Iteration des Optimierungsalgorithmus gleicht.

4. In der vierten Iteration des Optimierungsalgorithmus muss die Simulationskompo-
nente dreimal ausgeführt werden, da die Folge der Eingänge teilweise abweicht. Auch
wenn in der ersten Iteration der Co-Simulation die Eingänge noch gleich sind, muss
die Simulationskomponente trotzdem auch in der ersten Iteration der Co-Simulation
ausgeführt werden. Der Grund dafür ist, dass bei dieser Ausführung der interne Zu-
stand der Simulationskomponente verändert wird, so dass die Iterationen zwei und
drei der Co-Simulation andere Ergebnisse liefern würden. Durch die Nutzung des
zuvor gespeicherten internen Zustands kann die Anzahl der Ausführungen auf 2
reduziert werden.

5. Analog verhält es sich für die Iteration fünf des Optimierungsalgorithmus, so dass
dort die Simulationskomponente dreimal ausgeführt werden muss. Durch die Nut-
zung des zuvor gespeicherten internen Zustands kann die Anzahl der Ausführungen
auf 2 reduziert werden.

6. Analog verhält es sich für die Iteration sechs des Optimierungsalgorithmus, so dass
dort die Simulationskomponente dreimal ausgeführt werden muss. Durch die Nut-
zung des zuvor gespeicherten internen Zustands kann die Anzahl der Ausführungen
auf 1 reduziert werden.

Dieser Ansatz funktioniert zur Verbesserung der Performance der Optimierung sowohl

33

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

aufgrund der Daten, als auch aufgrund der Struktur der Co-Simulation. Nachfolgend
werden die durch die Struktur bedingten Verbesserungspotenziale vorgestellt.

Vom Optimierungsalgorithmus unbeeinflusste Simulationskomponenten

Ein Beispiel für die Anwendung dieses Ansatzes für eine Verbesserung der Performance
aufgrund der Struktur der Co-Simulation ist in Abbildung 4.4c dargestellt. Der Optimie-
rungsalgorithmus versucht durch Variation von u ein optimales y zu finden. Die Simu-
lationskomponente k1 ist nicht direkt oder indirekt von u beeinflusst. Dadurch führt die
Ausführung dieser Simulationskomponente in jeder Iteration des Optimierungsalgorith-
mus zu denselben Ausgängen. In einer so strukturierten Co-Simulation müssen die von
u nicht erreichbaren Simulationskomponenten demnach nur bei der ersten Iteration des
Optimierungsalgorithmus ausgeführt werden. Darüber hinaus entfällt für diese Simulati-
onskomponenten die Anforderung, dass der interne Zustand gespeichert werden muss.

Redundante Ausführungen aufgrund der Distanz

Ein weiteres Potenzial die Performance zu verbessern bringt der Ansatz, wenn TD > 1

ist. Für eine Simulationskomponente k wird ihr Eingang vom Optimierer erst ab der
(c̃({kinput, k}) + 1)-ten Iteration aktiv (siehe Gleichung 4.1). Das bedeutet, dass in jeder
Iteration des Optimierers die ersten

c̃({kinput, k}) (4.6)

Ausführungen identisch sind. Demnach können nach der ersten Iteration des Optimie-
rungsalgorithmus für einen Zeitschritt die Ergebnisse für diese Ausführungen nachge-
nutzt werden, da sie als wiederholte Folge von Eingängen erkannt werden. Dies kann am
Beispiel Abbildung 4.4a, Simulationskomponente koutput nachvollzogen werden: In einer
Iteration des Optimierungsalgorithmus hat u in koutput erst bei der dritten Iteration der
Co-Simulation einen Effekt. Generell kann aufgrund des internen Zustands nicht auf die
ersten zwei Iterationen der Co-Simulation verzichtet werden. Jedoch sind die Eingänge
von koutput in den ersten zwei Iteration der Co-Simulation immer gleich. Deren Werte
hängen von den vorhergehenden Iterationen der betriebsparallelen Simulation ab. Daher
sind die Ergebnisse — Ausgänge und interne Zustände — noch gespeichert aufgrund von
Ansatz 2. Die ersten zwei Ausführungen können daher übersprungen werden.

Redundante Ausführungen aufgrund dynamischer Optimierung

Analog zur vorrangegangen Argumentation lassen sich Ausführungen der Simulationskom-
ponenten bei der Nutzung von dynamischer Optimierung einsparen: Mit TP > TD wird
aus Sicht der aktuellen Simulationszeit das zukünftige Verhalten simuliert. Es besteht die

34

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.4. Verbesserung der Performance der Zustandssynchronisierung

Möglichkeit, dass die so erhaltenen Folgen von Eingängen in einer darauffolgenden Iterati-
on der betriebsparallelen Simulation erneut auftreten. Ob dies tatsächlich geschieht, hängt
vom Verhalten der physischen Anlage und der Datenerfassung ab: Wird während der Prä-
diktion ein Datenabgriff erlaubt, also auf zu den Simulationszeiten passende Werte der
physischen Anlage gewartet, kommen die prädizierten Folgen von Eingängen garantiert in
der darauffolgenden Iteration der betriebsparallelen Simulation vor. Es lassen sich dann
die ersten TP−TD Ausführungen von Simulationskomponenten einsparen. Wird nicht auf
die physische Anlage gewartet, sondern der letzte Messwert der physischen Anlage genutzt
während der Prädiktion, sind Einsparungen vom Verhalten der physischen Anlage abhän-
gig. Einsparungen können dann beispielsweise auftreten, wenn die Makroschrittweite der
Co-Simulation kleiner ist als die Abtastrate der Datenerfassung am physischen Prozess.

4.4.3. Kombination von Ansatz 1 und Ansatz 2

Die Kombination der vorgestellten Ansätze, welche in (Zipper und Diedrich, 2020) erstma-
lig vorgestellt wurde, wird hier noch einmal beschrieben. Diese Kombination ermöglicht
es, die Ausführungen der Simulationskomponenten während der Optimierung deutlich zu
reduzieren, ohne das Verhalten zu beeinflussen. Anhand der Beispiele aus Abbildung 4.4
kann nachvollzogen werden, dass die Anzahl der Ausführungen von Simulationskompo-
nente während der Optimierung mindestens quadratisch mit TD anwächst.

Durch die Kombination von Gleichung 4.5 und Gleichung 4.6 kann diese Zahl auf exakt
eine Ausführung pro Simulationskomponente reduziert werden für TP = TD und je eine
weitere Ausführung für TP > TD. Die Anzahl ist daher ab der zweiten Iteration des Opti-
mierungsalgorithmus linear in TD. Das kann durch folgende Überlegungen nachvollzogen
werden:

Nach dem Optimalitätsprinzip von Bellman (Bellman und Dreyfus, 1962) kann der kür-
zeste Weg in einem Graph durch eine Summe aus den kürzesten Teilstrecken ausgedrückt
werden. Für die Position von k im Graph gibt es exakt drei Möglichkeiten:

1. k liegt auf gar keinen Weg {kinput, koutput}. Dann muss es aufgrund mangelnden Ein-
flusses auf die Zielfunktion oder mangelnder Beeinflussbarkeit durch den Optimie-
rungsalgorithmus spätestens ab der zweiten Iteration des Optimierungsalgorithmus
nicht mehr ausgeführt werden.

2. k liegt auf dem kürzesten Weg {kinput, koutput}. Dann entspricht die Summe der
Längen der Wege {kinput, k} und {k, koutput} gleich der Länge des kürzesten Weges
{kinput, koutput}.

c̃({kinput, koutput}) = c̃({kinput, k}) + c̃({k, koutput})

3. k liegt auf einem längeren Weg als dem kürzesten Weg {kinput, koutput}. Dieser längere

35

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

Weg ist um Ck länger als der kürzeste Weg {kinput, koutput}. Dann gilt

c̃({kinput, koutput}) + Ck = c̃({kinput, k}) + c̃({k, koutput})

⇒

c̃({kinput, koutput}) = c̃({kinput, k}) + c̃({k, koutput})− Ck

Γk aus Gleichung 4.5 gibt die aus Ansatz 1 folgende maximale Zahl an Ausführungen
einer Simulationskomponente pro Iteration des Optimierungsalgorithmus an. Ansatz 2,
Gleichung 4.6, stellt ein Maß für redundante Ausführungen dar. Die Differenz aus beiden
bildet die maximale Anzahl an Ausführungen durch die Kombination von Ansatz 1 und
Ansatz 2.

Maximale Anzahl von Ausführungen nach Ansatz 1 und Ansatz 2

=Γk − c̃({kinput, k}) (4.7)

=TP − c̃({k, koutput})− c̃({kinput, k}) (4.8)

=(TP − TD) + TD − c̃({k, koutput})− c̃({kinput, k}) (4.9)

=(TP − TD) + c̃({u, y})− c̃({k, koutput})− c̃({kinput, k}) (4.10)

=(TP − TD) + 1 + c̃({kinput, koutput})− c̃({k, koutput})− c̃({kinput, k}) (4.11)

=(TP − TD) + 1 + c̃({kinput, k}) + c̃({k, koutput})− Ck−c̃({k, koutput}) −c̃({kinput, k}) (4.12)

=(TP − TD) + 1− Ck (4.13)

Der kürzeste Weg {u, y} entspricht dem kürzesten Weg von {kinput, koutput} + 1, denn
von koutput nach y ist noch eine Ausführung von koutput erforderlich. Dadurch ergibt sich
Gleichung 4.11. Aus Gleichung 4.13 ist die Anzahl an Ausführungen einer Simulationskom-
ponente ab der zweiten Iteration des Optimierungsalgorithmus ersichtlich. Bei TP = TD

wird maximal eine Ausführung benötigt. Für jeden zusätzlichen Simulationsschritt bei
einer Prädiktion kommt eine Ausführung hinzu, wobei Simulationskomponenten, welche
sich nicht auf dem kürzesten Weg befinden erst ab einem Schritt >= TP − TD − Ck aus-
geführt werden müssen.

4.4.4. Anwendung von Ansatz 1 und Ansatz 2

In Tabelle 4.2 sind die reduzierten Anzahlen zusätzlicher Iteration für die Beispiele aus
Abbildung 4.4 dargestellt. Wie in Tabelle 4.2 zu sehen ist, kann durch Ansatz 1 und
Ansatz 2 die Zustandssynchronisierung von einem Problem mit mindestens quadratischer
Komplexität bezüglich TD in ein Problem geringerer Komplexität überführt werden. Zu-
dem lässt sich die zusätzliche Anzahl an Ausführungen abhängig vom genauen Aufbau
der Co-Simulation signifikant verringern. Die Reduzierung durch Ansatz 2 erfolgen teil-
weise erst bei der zweiten Iteration der Co-Simulation. Dies wird in Tabelle 4.2 durch die
Angabe → 3 beziehungsweise → 5 dargestellt.

36

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.5. Integration der Performanceverbesserungen in den Algorithmus

Tabelle 4.2.: Gegenüberstellung der zusätzlichen Anzahl an Ausführungen pro Iteration
des Optimierungsalgorithmus ohne und mit Reduzierung (TP = TD)

Beispiel Ohne Reduzierung Mit Reduzierung

Abbildung 4.4a 9 → 3

Abbildung 4.4b 15 → 5

Abbildung 4.4c 2 1

Abbildung 4.4d 9 → 3

4.5. Integration der Performanceverbesserungen in den
Algorithmus

Die Verbesserungen der Performance aus Abschnitt 4.4 betreffen den Algorithmus zur
Ausführung eines Schrittes der Co-Simulation. Daher integriert Algorithmus 4 diese Ver-
besserungen in Algorithmus 1. j bezieht sich dabei auf den Zeitpunkt während der Itera-
tion des Optimierungsalgorithmus. i bezieht sich auf den Zeitpunkt der Simulation.

Algorithmus 4 Ausführung eines Schrittes der Co-Simulation mit Performanceverbes-
serungen

function Simulationsschritt(i, j)
for all k ∈ K do

if j − i < Γk then .Ansatz 1 (Unterabschnitt 4.4.1)

if (u(k)
0 , u

(k)
1 , . . . , u

(k)
j) gespeichert then .Ansatz 2 (Unterabschnitt 4.4.2)

x
(k)
j+1 ←LadeZustand((u(k)

0 , u
(k)
1 , . . . , u

(k)
j)) .Ansatz 2 (Unterabschnitt 4.4.2)

else
x
(k)
j+1 = f (k)(x

(k)
j , u

(k)
j , tj)

Speichere(x(k)
j+1, (u

(k)
0 , u

(k)
1 , . . . , u

(k)
j)) .Ansatz 2 (Unterabschnitt 4.4.2)

end if
y
(k)
j+1 = h(k)(x

(k)
j)

u
(k)
j+1 = M (k)(y

(1)
j+1, . . . , y

(K)
j+1)

end if
end for

end function

4.6. Zeitliche Synchronisierung

Neben dem Problem der Zustandssynchronisierung steht bei der betriebsparallelen Si-
mulation die Herausforderung der Zeitsynchronisation an. Dabei werden Unterschiede
des zeitlichen Verhaltens von physischer und simulierter Anlage untersucht, welche nicht

37

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

Regelungs- / Steue-
rungsfunktion τR, θR

Kommunikation
τC, θC

Prozess
τP, θP

Datenerfassung
τM, θM

Simulation
τS, θS

û

û

û
ŷ

ŷ
∆y

Co-Simulation

Abbildung 4.5.: Durch Vernetzung bedingte Zyklus- und Totzeiten

durch die verwendeten Modelle entstehen, sondern durch die Kommunikation zwischen
den an der betriebsparallelen Simulation beteiligten Entitäten. Die Untersuchungen wur-
den in (Zipper und Diedrich, 2018a) erstmals veröffentlicht.

Es sollen nachfolgend die Signalketten der physischen Anlage und der simulierten Anla-
ge ausgehend vom Prozess untersucht werden. Die Signalkette kann wie folgt aufgeschrie-
ben werden:

Prozess → Sensor → Regelungs- und Steuerungsfunktion → Aktor → Prozess

Entlang dieser Signalkette werden die Auswirkungen bei einer Änderung eines Signals
verzögert. Ursachen für solche Verzögerungen können sein: Analog-Digital-Wandlung, Ver-
arbeitungszeiten innerhalb der Komponenten, Kommunikation zwischen Komponenten
und Digital-Analog-Wandlung. Die Signalkette der physischen Anlage umfasst nur physi-
sche Komponenten während die Signalkette der simulierten Anlage zusätzlich simulierte
Versionen aller Komponenten beinhaltet, die Regelungs- und Steuerungsfunktion aus-
genommen. Dabei werden die in Abbildung 4.1 dargestellten Komponenten betrachtet.
Zusätzlich wird das Kommunikationssystem zwischen den Komponenten und eine Da-
tenerfassungskomponente betrachtet. Die Datenerfassungskomponente ist die technische
Realisierung der Verbindung von physischer und simulierter Anlage. Die Zeitbasis der
physischen und simulierten Anlage beziehungsweise der darin befindlichen Komponenten
sind unterschiedlich. Zudem sind die Totzeiten der physischen und simulierten Anlage
unterschiedlich. Das führt zu unterschiedlichen Verzögerungen entlang der Signalketten.
Diese haben Auswirkungen auf alle Vergleiche zwischen Messungen der physischen Anlage
und der simulierten Anlage.

Für die folgenden Betrachtungen werden die in Tabelle 4.3 definierten Symbole genutzt.
Die zwischen zwei verbundenen Systemen auftretenden Verzögerungen können mit den

Verzögerungseigenschaften Totzeit τ und Zykluszeit θ beschrieben werden (Höme, Palis

38

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.6. Zeitliche Synchronisierung

Tabelle 4.3.: Übersicht über Symbole zur Beschreibung der zeitlichen Synchronisation

Symbol Description Symbol Beschreibung

R Regelungs- und
Steuerungsfunktion

C Kommunikation

P physische Anlage M Sensor
S Co-Simulation A Aktor
αQuelle,Ziel Verzögerung Quelle → Ziel
τ Totzeit θ Zykluszeit
α1 ∗ α2 Faltung von α1 und α2 αn n-fache Faltung von α mit sich

selbst

und Diedrich, 2014). Diese gilt auch für das Kommunikationssystem selbst. In Abbil-
dung 4.5 sind die Verzögerungen dargestellt, welche entlang der oben gezeigte Signalkette
sowie innerhalb der Co-Simulation auftreten.

Für die weiteren Betrachtungen wird die abstrakte Funktion αQuelle,Ziel eingeführt. Diese
ermöglicht die Beschreibung der Verzögerung der Ankunft eines Datums im Ziel ausgehend
von den Verzögerungseigenschaften des Quellsystems und des Zielsystems. α hängt also
von den Totzeiten und Zykluszeiten des Quell- und Zielsystems ab. Letztendlich wird
α eine Wahrscheinlichkeitsdichtefunktion repräsentieren, so dass die Gesamtverzögerung
entlang der Signalkette durch Faltung und den Operator ∗ dargestellt wird.

Angenommen zu einer Zeit ti wird eine Nachricht û von der Regelungs- und Steue-
rungsfunktion zur physischen Anlage über das Kommunikationssystem transportiert. Die
physische Anlage empfängt die Nachricht bei αCP(ti). Dieselbe Nachricht wird von einer
Simulationskomponente zur Zeit (αCM ∗ αMS)(ti) empfangen, da sie zusätzlich durch die
Datenerfassungskomponente geht.

Nachdem die simulierte oder die physische Anlage einen Eingang erhalten haben, ist eine
Reaktion auf diesen Eingang über die Sensoren beobachtbar basierend auf deren internen
Verhalten. Nur der Sensorausgang ŷ der physischen Anlage wird zurück zur Regelungs-
und Steuerungsfunktion kommuniziert. Nach dem Schema in Abbildung 4.1 werden die
Ausgänge der physischen Anlage mit den Ausgängen der simulierten Anlage verglichen
um ∆y zu erhalten.

Die Signale der Regelungs- und Steuerungsfunktion werden zu diskreten Zeitpunkten
von der Anlage empfangen. Entsprechend werden diese in der Anlage eine bestimmte Zeit
gehalten, bis der nächste Eingang empfangen wird. Da die simulierte Anlage durch das sel-
be Signal geregelt oder gesteuert wird, muss die Co-Simulation über die exakte Zeitspanne
durchgeführt werden um einen Ausgang zu erhalten, welcher äquivalent zum Ausgang der
physischen Anlage ist. Zudem ist die Kopplung von simulierter und physischer Anlage
asynchron, denn deren jeweilige Zeitbasen sind unterschiedlich. Daher entspricht der k-te
gemessene Ausgang der physischen Anlage nicht dem k-ten Ausgang der simulierten An-

39

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

lage. Die Zeiten, welche für die Kommunikation zwischen den verschiedenen Elementen
benötigt werden, müssen berücksichtigt werden. So wird ein geeignetes Paar von Ausgän-
gen für die Berechnung von ∆y gefunden.

Die Ausgänge der physischen Anlage werden über das Kommunikationssystem zur
Regelungs- und Steuerungsfunktion gesendet. Die Regelungs- und Steuerungsfunktion
berechnet daraufhin einen neuen Eingangswert basierend auf dem Ausgang. Der neue
Eingangswert wird über das Kommunikationssystem zur physischen Anlage gesendet.

Ausgehend von der Zeit ti wird ein Ausgang von der physischen Anlage nach einer Zeit
(αCP ∗αPC)(ti) gemessen. Der nächste Eingang zur physischen Anlage liegt zum Zeitpunkt
(αCP∗αPC∗αCR∗αRC∗αCP)(t0) an. Ausgehend von der Zeit ti liegt der resultierende Ausgang
aus der Simulation zur Zeit (αTD

CM ∗ αMS ∗ αSS)(t0) vor.
Zusammengefasst kann festgehalten werden: Selbst, wenn ein perfektes Simulationsmo-

dell der physischen Anlage genutzt wird, wird sich das zeitliche Verhalten (∆y) zwischen
simulierter und physischer Anlage unterscheiden. Um ein geeignetes Paar von Ausgängen
zu erhalten müssen die folgenden zwei Aspekte berücksichtigt werden.

Bestimmung der Eingangsverzögerung Die Eingangsverzögerung beschreibt die Zeit-
spanne, für welche die Co-Simulation für einen Eingang der Regelungs- und Steuerungs-
funktion ausgeführt werden muss. Sie ist nach Gleichung 4.14 definiert:

∆i = αCP(ti)︸ ︷︷ ︸
u in phys. Anlage

− (αCM ∗ αMS)(ti)︸ ︷︷ ︸
u in Simulation

(4.14)

Bestimmung der Ausgangsverzögerung Die Ausgangsverzögerung beschreibt die un-
terschiedlichen Zeitpunkte, zu denen Reaktionen der physischen und der simulierten An-
lage auftreten, welche durch das selbe Eingangssignal ausgelöst wurden. Sie ist nach Glei-
chung 4.15 definiert:

∆o = (αCP ∗ αPC)(ti)︸ ︷︷ ︸
ŷ verfügbar

− (αn
CM ∗ αMS ∗ αSS)(ti)︸ ︷︷ ︸

y verfügbar

(4.15)

Für die Berechnung der Ausgangsverzögerung und der Eingangsverzögerung werden die
in Abbildung 4.5 dargestellten Zeiten berücksichtigt.

Zur konkreten Berechnung wird das Modell der asynchronen Zyklen genutzt, welches
in (Höme, Palis und Diedrich, 2014) beschrieben wird. Das Gesamtsystem wird in Teil-
systeme und das Kommunikationssystem zwischen diesen Teilsystemen zerlegt. Zwischen
den Teilsystemen können Kommunikationsverbindungen hergestellt werden. Die Kom-
munikationszeiten werden entlang einer Signalkette modelliert. Eine Signalkette reicht
von ihrer Quelle zu ihrem Ziel über alle involvierten Teilsysteme. Die Verbindung zweier
Teilsysteme kann dabei entweder synchron oder asynchron sein. Teilsysteme, welche auf

40

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.6. Zeitliche Synchronisierung

Tabelle 4.4.: Klassifikation von Verbindungen zwischen Teilsystemen

Verbindung Sync./ Async.

Regelungs- und
Steuerungsfunktion

→ physische Anlage sync. oder async.

Regelungs- und
Steuerungsfunktion

→ Signalerfassung async

physische Anlage → Regelungs- und
Steuerungsfunktion

sync. oder async.

Signalerfassung → Simulation sync
Simulationskomponente → Simulationskomponente sync

einer gemeinsamen Zeitbasis beruhen, sind synchron. Teilsysteme mit unterschiedlichen
Zeitbasen sind asynchron zueinander.

In (Höme, Palis und Diedrich, 2014) wird dieser Formalismus zur Berechnung der
Klemme-Klemme-Reaktionszeit genutzt. Hier wird der Formalismus zur Berechnung der
Eingangsverzögerung und Ausgangsverzögerung adaptiert. In Abbildung 4.5 ist auch die
Dekomposition in Teilsysteme dargestellt. Der nächste Schritt ist die Klassifikation der
Verbindungen zwischen Teilsysteme. Diese Klassifikation ist in Tabelle 4.4 dargestellt.
Die Verbindungen innerhalb der Co-Simulation zwischen den Simulationskomponenten
sind synchron. Der Grund dafür liegt in der Vorgabe der globalen Simulationszeit durch
den Co-Simulationsmaster (siehe Algorithmus 2 und Algorithmus 3). Die Verbindung
zwischen der Datenerfassungskomponente und den weiteren Simulationskomponenten ist
ebenfalls synchron, da die Datenerfassungskomponente als Simulationskomponente rea-
lisiert wird und so Teil der Co-Simulation ist. Die Verbindung der physischen Anlage
und der Regelungs- und Steuerungsfunktion ist synchron oder asynchron, abhängig vom
verwendeten Synchronisationsschema.

Nach (Höme, 2016) und (Cristian und Fetzer, 1999) können die Verzögerungszeiten
einzelner Verbindungen zwischen zwei Systemen wie folgt ausgedrückt werden:

• Die Verteilungsdichtefunktion der Gleichverteilung zur zeitlichen Beschreibung des
Informationstransports kann zwischen asynchron verbundenen Systemen genutzt
werden. Die Verteilungsdichtefunktionen wird mit der Zykluszeit des Zielsystems
parametriert, nicht jedoch mit der Verarbeitungszeit (Höme, 2016, S. 74).

• Synchron verbundene Teilsysteme werden zu einem Teilsystem gruppiert. Die resul-
tierende Verzögerung ergibt sich aus der Summe der Verzögerungen der einzelnen
Teilsysteme.

• Für die zeitliche Beschreibung von Verarbeitungszeiten kann die Verteilungsdichte-
funktion der δ-Verteilung dienen.

41

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4. Synchronisierungskonzept

Anhand dieser Vorgaben kann die oben deklarierte α-Funktion in Gleichung 4.16 defi-
niert werden. Für Verarbeitungszeiten wird die δ-Verteilungsdichtefunktion genutzt. Tran-
sitionen zwischen zyklischen Systemen werden durch die Verteilungsdichtefunktion der
Gleichverteilung U ausgedrückt.

α•◦(t) =

δ(t− (τ• + τ◦)) • zu ◦ synchron

U(t, θ◦) sonst
(4.16)

Liegt eine passende Parametrierung für die betriebsparallele Simulation vor, können ∆i

und ∆o mit Hilfe der Gleichung 4.16 geschätzt werden. Um einen fixen Wert zu erhalten,
findet der Modalwert der resultierenden Verteilungsdichtefunktion Anwendung.

4.7. Diskussion der Methodik

In diesem Kapitel wurde die Zustandssynchronisierung vorgestellt. Das Ergebnis davon ist
ein Algorithmus, welcher in einem Co-Simulationsmaster integriert wird. Dieser Algorith-
mus führt kontinuierlich ein Optimierungsalgorithmus aus. Mithilfe dieses Optimierungs-
algorithmus wird die Zustandssynchronisierung erreicht. Das übergeordnete Ziel dabei ist,
das Auseinanderlaufen der Verhalten der physischen Anlage und der simulierten Anlage
zu verhindern, also die Differenz der Messwerte der physischen Anlage und der entspre-
chenden Variablen der simulierten Anlage innerhalb eines definierten Bereiches bleibt.
Dabei bleibt die simulierte Anlage auch bei Änderungen der Anlage aussagefähig. Zudem
kann gezeigt werden, dass die Performance der Zustandssynchronisierung durchaus echt-
zeitfähig realisiert werden kann. So kann sichergestellt werden, dass die betriebsparallele
Simulation jederzeit realistische Aussagen über die physische Anlage liefert. Ohne eine
kontinuierliche Synchronisierung wäre die Aussagefähigkeit der betriebsparallelen Simu-
lation nicht gegeben, sobald Änderungen an der physischen Anlage auftreten. Der Unter-
schied zwischen physischer und simulierte Anlage lässt sich nicht mehr am Unterschied
des Verhaltens feststellen, sondern am Verhalten der Zustandssynchronisierung.

Die Zustandssynchronisierung kann auf zwei verschiedene Arten eingesetzt werden.
Wird das Signal der Regelungs- und Steuerungsfunktion in den Optimierer gegeben und
wird der Ausgang des Optimierungsalgorithmus in die den Aktoren entsprechenden Ein-
gänge der Simulationskomponenten gegeben, lässt sich ein Zustandsbeobachter realisieren.
Diese Möglichkeit wird in Abbildung 4.6 beschrieben. Der Unterschied zwischen physika-
lischer und simulierter Anlage lässt sich aus der Betrachtung von ∆u gewinnen, also dem
Unterschied der Stellsignale der Regelungs- und Steuerungsfunktion und deren Manipu-
lation durch den Optimierer.

Wird das Signal der Regelungs- und Steuerungsfunktion mit den entsprechenden Ein-
gängen der Simulationskomponenten verbunden und wird der Optimierer mit Parametern

42

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

4.7. Diskussion der Methodik

Sim.
Prozess

Physische Anlage

Sim.
Aktor

Sim.
Sensorminu J

-

y

û
u

∆y

∆y

- ∆u

Abbildung 4.6.: Einsatz der Zustandssynchronisierung als Beobachter

Sim.
Prozess

Physische Anlage

Sim.
Aktor

Sim.
Sensor

minu J

-

y

û

∆y

∆y

∆ Parameter

Abbildung 4.7.: Einsatz der Zustandssynchronisierung als Parameteroptimierung

von Simulationskomponenten verbunden, findet eine Parameteroptimierung statt. Diese
Möglichkeit ist in Abbildung 4.7 dargestellt. Der Unterschied zwischen physikalischer und
simulierter Anlage lässt sich aus der Änderung der entsprechenden Parameter durch den
Optimierer feststellen.

Das Tuning der betriebsparallelen Simulation kann vorbereitend offline erfolgen. Dies
ist möglich, da das vorgestellte Konzept vollständig rückwirkungsfrei bezüglich der phy-
sischen Anlage ist. Für das offline Tuning müssen die entsprechenden Signale der physi-
schen Anlage aufgezeichnet werden. Diese Aufzeichnung kann dann mit der Co-Simulation
und der aktivierten Zustandssynchronisierung genutzt werden, um den geeignetsten Opti-
mierungsalgorithmus zu ermitteln und eine optimale Parametrierung dieser Optimierung
herauszufinden.

Die Formulierung als Optimierungsproblem birgt zudem den Vorteil, dass abhängig
vom konkreten Szenario Anpassungen möglich sind. So können beispielsweise Nebenbe-
dingungen einfach berücksichtigt werden. Außerdem können Kosten für Abweichungen
der Eingänge, also den Standardparametern beziehungsweise im Fall der Realisierung als
Beobachter den Steuersignalen, formuliert werden.

43

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

In diesem Kapitel wird die Validierung der Zustandssynchronisierung an ver-
schiedenen Systemen dargestellt. Dazu wird zunächst kurz auf die Umsetzung der
zuvor entwickelten Algorithmen und Methoden eingegangen. Anschließend erfolgt
die Validierung an drei physischen Systemen. Die zeitliche Synchronisation wird
simulativ validiert. Neben der Validierung zeigt dieses Kapitel auch den Einsatz
und die Möglichkeiten der Parametrierung der Zustandssynchronisierung für die-
se unterschiedlichen Systeme.

5.1. Umsetzung des Co-Simulationsmasters

Zur Validierung der Zustandssynchronisierung sind Implementierungen für den Co-
Simulationsmaster und die Simulationskomponente der Optimierung notwendig. Diese
Implementierungen werden nach dem FMI 2.0 Standard (FMI 2.0, 2014) umgesetzt in
C++. In FMI werden Simulationskomponenten als Functional Mockup Unit — FMU
bezeichnet.

Als Technologie wird die Middleware DOME genutzt (DOME 2020). Dort werden Ap-
plikationen in Funktionsblöcke zerlegt. Der Vorteil für die Implementierung der Zustands-
synchronisierung ist, dass diese Funktionsblöcke innerhalb eines Prozesses laufen können.
Darüber hinaus können die Funktionsblöcke auf mehrere Prozesse beziehungsweise auf
mehrere Rechner verteilt werden. Diese Möglichkeit der Verteilung erleichtert die notwen-
digen Implementierungen für die Validierung am System in Abschnitt 5.6.

Daher wird eine Klasse für einen Funktionsblock eines Co-Simulationsmasters erstellt,
welcher den Algorithmus aus Abschnitt 4.3 implementiert. Weiterhin wird eine Klasse für
generische Funktionsblöcke erstellt, welche eine FMU laden und in die Co-Simulation ein-
binden kann. Zusätzlich werden die Performanceverbesserungen aus Abschnitt 4.4 dort
implementiert. Mehr Informationen über die Entwicklung von verteilten Systemen mit
DOME lassen sich zum Beispiel in (Riedl u. a., 2014) finden. Die Konfiguration der Co-
Simulation wird über Lua Skripte erledigt. So wird festgelegt, welche FMUs geladen wer-
den, wie die Zuweisen der Parameter erfolgt, wie Variablen verbunden werden sollen sowie
die Auswahl und Parameteroptimierung der Optimierung.

44

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.2. Simulationskomponente Optimierung

5.2. Umsetzung der Simulationskomponente des
Optimierers

Die Optimierung wird in einer extra Simulationskomponente als FMU implementiert.
Wie bereits in Abschnitt 4.3 beschrieben, implementiert diese Simulationskomponente
die folgenden Funktionalitäten:

• Ausführung der Initialisierung des Optimierungsalgorithmus

• Ausführen einer Iteration des Optimierungsalgorithmus

• Austausch von Variablen zwischen Optimierungsalgorithmus und Co-Simulation

• Überprüfen der Abbruchbedingung

• Überwachung auf Fehler — Fehlermeldung vom Optimierungsalgorithmus, numeri-
sche Probleme, Inkonsistenzen

Die Variablen, welche diese Simulationskomponente zur Optimierung austauschen muss,
sind u, û, y und ŷ. Diese werden vom Typ fmi2Real umgesetzt mit der Kausalität Eingang
beziehungsweise Ausgang.

Das Ausführen von Funktionen ist in FMI nicht vorgesehen. Daher wird die Ausfüh-
rung der Initialisierung des Optimierungsalgorithmus und das Ausführen einer Iteration
des Optimierungsalgorithmus an je eine boolesche Variable geknüpft. Das Schreiben von
booleschen Variablen erfolgt in FMI, indem eine FMU eine Funktion fmi2SetBoolean im-
plementiert, welche für einen Schreibvorgang aufgerufen wird. Dies ist der Einstiegspunkt
für die beiden Funktionen zum Ausführen: Wird fmi2SetBoolean für eine entsprechende
Variable aufgerufen, wird auf eine steigende Flanke geprüft und die Funktion ausgeführt.

Eine Variable algorithm vom Typ fmi2Integer erlaubt die Auswahl eines Optimie-
rungsalgorithmus. Dadurch kann eine Simulationskomponente zur Optimierung mit meh-
reren unterschiedlichen Optimierungsalgorithmen genutzt werden. Weiterhin ist es so auch
möglich auf einen anderen Algorithmus zu wechseln falls keine Lösung gefunden wird.

In Tabelle 5.1 sind die umgesetzten Algorithmen aufgelistet. Das Ziel ist es, sowohl
Algorithmen zu testen, welche keine Ableitung der Zielfunktionen benötigen, sowie Algo-
rithmen, welche eine Ableitung benötigen.

Die Optimierungsalgorithmen Nelder-Mead-Simplex (Nelder und Mead, 1965)
und BOBYQA (Powell, 2009) benötigen keine Ableitung der Zielfunktion. Dies
ist von Vorteil, da die Ableitung nicht bekannt ist. Über die FMI Interfaces
fmi2GetDirectionalDerivative und fmi2GetRealOutputDerivatives können Simula-
tionskomponenten Ableitungen bekannt geben. Diese Interfaces geben jedoch in der Re-
gel keine Ableitungen bezüglich der zu optimierenden Variablen und Parameter zurück.

45

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Tabelle 5.1.: Umgesetzte Optimierungsalgorithmen

Nr. Algorithmus Implementierung

1 Nelder-Mead-Simplex Eigene Implementierung nach (Nelder und Mead,
1965)

100 L-BFGS (Bochkanov, 2020)
1000 BOBYQA (King, 2009)

Zudem muss für eine Ableitung der Zielfunktion nicht nur die Ableitung einer Simula-
tionskomponente bekannt sein. Vielmehr muss diese Ableitung bezüglich der gesamten
Co-Simulation betrachtet werden.

L-BFGS ist in vielen Optimierungsbibliotheken für C++ zu finden. Der Algorithmus L-
BFGS ist ein Quasi-Newton-Verfahren und benötigt neben der Zielfunktion die Ableitung
erster Ordnung der Zielfunktion als Eingabe. Falls die erste Ableitung nicht verfügbar ist,
muss sie numerisch aus Auswertungen der Zielfunktion approximiert werden. In der Imple-
mentierung von (Bochkanov, 2020) geschieht dies durch vier zusätzliche Funktionsauswer-
tungen pro Optimierungsvariable. Es werden also fünf Ausführungen der Co-Simulation
pro Iteration des Optimierungsalgorithmus benötigt.

Die ausgewählten Algorithmen werden vielfältig eingesetzt zur numerischen Optimie-
rung. Sie sind in vielen freien Softwarebibliotheken zur Optimierung enthalten und
werden in einer Vielzahl verschiedener Domänen genutzt (beispielsweise (Bochkanov,
2020), (King, 2009), (Gough, 2009), (Melo und Iacca, 2014) oder (Nash, Varadhan u. a.,
2011)).

Die Untersuchungen der Performance verschiedener Optimierungsalgorithmen und die
Ergebnisse der Ansätze zur Steigerung der Performance werden anhand von L-BFGS und
BOBYQA am Motorsystem dargestellt. Der Nelder-Mead-Simplex wird für die Validie-
rung am Zylindersystem genutzt aus dem technischen Grund, dass sich die bereits für
Linux umgesetzte Implementierung im Gegensatz zu den weiteren umgesetzten Verfahren
leichter auf Windows portieren ließ.

Unabhängig vom verwendeten Optimierungsalgorithmus erfolgt durch die Simulations-
komponente des Optimierungsalgorithmus eine Überprüfung des Abbruchkriteriums. So-
bald diese erfüllt ist, wird die Optimierung als erfolgreich angesehen, unabhängig zum
Beispiel vom Gradienten der Zielfunktion.

5.3. Metriken für die Auswertung der Validierung

Die Validierung wird an verschiedenen Systemen durchgeführt. Dazu werden Simulati-
onsergebnisse ohne aktivierte Zustandssynchronisierung mit Simulationsergebnissen bei
aktivierter Zustandssynchronisierung verglichen. Zudem werden anhand des Motorsys-

46

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.3. Metriken für die Auswertung der Validierung

tems verschiedene Anwendungen der Zustandssynchronisierung untereinander evaluiert.
Zur Realisierung dieser Vergleiche werden folgend einige Metriken eingeführt: Die Zahl

der Iterationen der einzelnen Simulationskomponenten, die mittlere quadratische Abwei-
chung sowie die maximale Abweichung.

5.3.1. Anzahl Iterationen der Simulationskomponenten

Die Anzahl der Iterationen N der Simulationskomponenten berechnet sich aus der Summe
der Iterationen jeder einzelnen Simulationskomponente und wird in Gleichung 5.1 umge-
setzt. Die Anzahl der Iterationen jeder einzelnen Simulationskomponente wird bei Beginn
der Co-Simulation mit 0 initialisiert und bei jeder Iteration der Co-Simulation um eins
erhöht. In der Implementierung in FMI findet daher eine Erhöhung bei jedem Aufruf von
fmi2DoStep einer FMU statt. Dabei ist zu beachten, dass hier die Simulationskomponente
des Optimierers nicht berücksichtigt wird, denn diese ist eine Implementierungsstrategie
für die Kapselung des Optimierungsalgorithmus und führt in fmi2DoStep keine Berech-
nungen durch.

Nges =
K∑
k=1

Nk (5.1)

Die Zahl der Iterationen der einzelnen Simulationskomponenten soll als Benchmark für
die Performance der Zustandssynchronisierung dienen. Diese Zahl ist unabhängig von der
eingesetzten Hardware und weiteren Optimierungen am Quelltext der Implementierung.
Außerdem variiert diese Zahl nicht mit jeder Durchführung eines Szenarios der Validie-
rung. So kann die Performance qualitativ sowie wiederholbar abgeschätzt werden.

5.3.2. Mittlere quadratische Abweichung

Als eine Metrik zum Vergleich zwischen der betriebsparallelen Simulation ohne und mit
Zustandssynchronisierung soll die mittlere quadratische Abweichung (MSE, aus dem Eng-
lischen Mean-Squared-Error) genutzt werden. Diese berechnet sich nach (Botchkarev,
2018) wie folgt:

MSE =
1

n

n∑
i=0

(yi − ŷi)
2 (5.2)

Die mittlere quadratische Abweichung wird aus den Differenzen zwischen den Varia-
blen der Ausgänge des physischen Systems und des simulierten Systems gebildet. Gene-
rell dient sie zur Bewertung von Modellen (zum Beispiel (Botchkarev, 2018) oder (Wu,
McAuley und Harris, 2011)). Hier wird die Summe der Abweichungen auf die Anzahl

47

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

der Messpunkte normiert. So soll eine Aussage über Durchschnittswerte der Güte der
Zustandssynchronisierung getroffen werden. Ein hoher Wert der mittleren quadratischen
Abweichung ist ein Indiz dafür, dass die Zustandssynchronisierung während der gesamten
Zeit die betriebsparallele Simulation unzureichend synchronisiert.

5.3.3. Maximale absolute Abweichung

Als weitere Metrik zum Vergleich zwischen der betriebsparallelen Simulation ohne und
mit Zustandssynchronisierung wird die maximale absolute Abweichung genutzt. Diese
berechnet sich nach (Botchkarev, 2018) wie folgt:

MAX = max
i∈0..n

|yi − ŷi| (5.3)

Die maximale absolute Abweichung gibt den maximalen Unterschied zwischen den Va-
riablen der Ausgänge des physischen Systems und des simulierten Systems an. Eine hohe
maximale absolute Abweichung ist ein Indiz dafür, dass die Zustandssynchronisierung zu
bestimmten Zeitpunkten die betriebsparallele Simulation unzureichend synchronisiert.

5.4. Wertekontinuierliches System: Motorsystem

5.4.1. Beschreibung des Systems

Das Motorsystem wurde erstmals in (Zipper, 2019) vorgestellt und ist in Abbildung 5.1
abgebildet. Das Motorsystem besteht aus folgenden, für die Validierung relevanten, Kom-
ponenten:

(1) Schalter zur Drehzahlwahl

(2) Antriebsregler und Microcontroller zur Messwerterfassung

(3) Bremshebel

(4) Scheibenbremse

(5) Drehzahlsensor

(6) Motor

(7) Temperatursensor

An dem Motor (6) ist ein Rohr angebracht. Diesem rotierenden Rohr steht ein festes Rohr
gegenüber. An dem rotierenden Ende ist eine Bremsscheibe (4) befestigt. Mit Hilfe des
Hebels (3) kann der Motor so gebremst werden. In unmittelbarer Nähe zur Bremsscheibe

48

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.4. Wertekontinuierliches System: Motorsystem

(1)

(2)

(3)

(4)
(5)
(6)

(7)

Abbildung 5.1.: Motorsystem (Zipper und Diedrich, 2020)

ist ein Temperatursensor angebracht (7), welcher im Rahmen der Validierung allerdings
ungenutzt bleibt. Des Weiteren ist am rotierenden Rohr ein Drehzahlsensor installiert (5).
Der Motor wird über einen Antriebsregler (2) geregelt. Der Antriebsregler nimmt weiter-
hin Steuersignale zum Einstellen der gewünschten Drehzahl über den Schalter (1) ent-
gegen. Darüber hinaus liefert der Antriebsregler verschiedene Messwerte. Darunter sind
zum Beispiel die aktuelle Drehzahl, das aktuell anliegende Drehmoment und der Strom.
Alle verfügbaren Messwerte werden zentral über einen Microcontroller erfasst. Dieser Mi-
krocontroller ist innerhalb des Gehäuses des Antriebsreglers (2) installiert und stellt diese
Werte per seriellem Anschluss über USB bereit. Dieser USB Anschluss befindet sich auf
der Rückseite des Gehäuses des Antriebsreglers und ist daher nicht in Abbildung 5.1 zu
sehen. Über die Verbindung mit USB können die Motordaten in Echtzeit zum Beispiel an
einen PC übermittelt werden. Der Takt der Datenübertragung schwankt zwischen 25 ms
und 40 ms.

Die Informationsflüsse des Motorsystems sind in Abbildung 5.2 dargestellt. Einfluss auf
das Verhalten des Motors kann mechanisch durch Bremsen über (a) erfolgen und durch
die Wahl der Soll-Drehzahl bei (b). Der Antriebsregler als Black-Box regelt den Motor
so, dass die eingestellte Soll-Drehzahl auch bei Anliegen eines Bremsmomentes möglichst
erreicht wird. Die Ist-Drehzahl wird durch den Drehzahlsensor gemessen.

Der Antriebsregler ermöglicht die Ausgabe verschiedener Parameter und Messdaten
über eine proprietäre Schnittstelle (d). Der Microcontroller greift hier nur das Bremsmo-
ment ab. Die Ist-Drehzahl wird durch eine elektrische Anbindung des Drehzahlsensors

49

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Mo-
tor (6)

Bremsmo-
ment (3)

Antriebs-
regler (2)

Drehzahl-
wahl (1)

Micro-
control-
ler (2)

PC /
CSV

. . .

Drehzahl-
sensor (5)

(a)

(b)

(d) (e) (f)

(c)

Abbildung 5.2.: Informationsflüsse Motorsystem

bei (c) realisiert. Der Microcontroller stellt alle Daten über USB (e) per seriellem Proto-
koll bereit. Auf einem PC läuft eine Software, welche den Daten-Stream von der seriellen
Schnittstelle ausließt und in eine CSV Datei speichert. Die Anbindung der Co-Simulation
an das Motorsystem wird über diese CSV Datei realisiert (f). Die CSV Datei findet sich
im Dateisystem des PC, wird jedoch durch den Befehl mkfifo erzeugt (MacKenzie, 2010).
Auf diese Weise erfolgt die Anbindung der Co-Simulation an das Motorsystem über eine
Shared Memory Schnittstelle ohne tatsächlichen Zugriff auf die Festplatte des PCs.

5.4.2. Aufbau der Co-Simulation

Die Co-Simulation besteht aus drei Simulationskomponenten:

1. Verhalten des Motors

2. Verhalten des Antriebsreglers, als PID Regler angenommen

3. Erfassung der Messwerte

Das für das Modell des geregelten Motors zugrundeliegende Blockschaltbild ist in Abbil-
dung 5.3 dargestellt. Dieses wird in zwei Simulationskomponenten aufgeteilt. Das Modell
wurde in studentischer Zusammenarbeit mit einem Mechatroniker erstellt, welcher den
theoretischen Hintergrund im Bereich Motoren zur Modellierung beitragen konnte.

Die Kopplung mit dem physischen System erfolgt über eine CSV Datei. Dafür wird
eine Simulationskomponente genutzt, welche Zeitreihen aus CSV Dateien einlesen und
der Co-Simulation bereitstellen kann. Entweder kann die Anbindung des physischen Mo-
tors über eine bereits existierende Aufzeichnung erfolgen, oder die CSV Datei wird online
kontinuierlich erzeugt. Bei der Inbetriebnahme kann die verwendete CSV Datei leicht
erstellt werden. Hier werden aufeinanderfolgende Datensätze als Zeile abgespeichert. Ei-
ne Zeile besteht dabei aus mehreren Spalten, wobei jede Spalte eine gemessene Variable

50

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.4. Wertekontinuierliches System: Motorsystem

1
s omega

IsdPsiref Psird

ref_omega

Mr

Mm

omega

omega

omega

IsqIin Isq

refref

Isq

Mw

Simulationskomponente
Antriebsregler

Simulationskomponente
Motor

Abbildung 5.3.: Blockschaltbild Motorsimulation in Anlehnung an (Riefenstahl, 2000)

k1
Regler

kinput = koutput
Motor

uR

ω

k2
CSV

Mw

Optimierer

u (d;Iin)
y (ω)u (d;Iin)

û (ˆref)

ŷ (ω̂)

Abbildung 5.4.: Co-Simulation des Motorsystems

repräsentiert. Üblicherweise steht in der ersten Spalte ein Zeitstempel der entsprechen-
den Messung. Über diesen Zeitstempel kann die CSV Datei, also die Aufnahme oder die
Online-Messung, mit der Simulationszeit synchronisiert werden.

In Tabelle 5.2 werden die Variablen der Simulationskomponente für den Motor aufge-
führt. In Tabelle 5.3 werden die Variablen der Simulationskomponente des Antriebsreglers
aufgeführt.

Abbildung 5.4 zeigt die Co-Simulation des Motorsystems. Die Co-Simulation besteht
insgesamt aus vier Stimulationskomponenten. Eine der Stimulationskomponenten ist der
Optimierungsalgorithmus. Die Co-Simulation des Motorsystems besteht aus einer Simula-
tionskomponente für den Motor und einer Simulationskomponente für den Antriebsregler.
Die Kopplung mit dem physischen System erfolgt über die CSV Simulationskomponente.
Diese gibt das Bremsmoment, welches vom physischen Antriebsregler ermittelt wird, in
die Simulationskomponente für den Motor. Welche Eingänge u im konkreten Fall vom Op-

51

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Tabelle 5.2.: Variablen der Simulationskomponenten des Motorsystems nach (Riefenstahl,
2000)

Variable Einheit Richtung Bedeutung

Zp Parameter Polpaarzahl
Lh H Parameter Hauptinduktivität
Lr H Parameter Rotorinduktivität
Rr Ω Parameter Rotorwiderstand
Tr s Parameter Zeitkonstante Rotor
d Nm/rad/s Parameter Widerstandsbeiwert
J kg/m2 Parameter Massenträgheitsmo-

ment
ratio Parameter Verhältnis Lr zu Lh

Ψref V s Parameter Referenz-
Flussverkettung

Ψrd V s Parameter Magnetische
Flussverkettung

Ts s Parameter Summenzeitkonstante
Umformer

Isd A Parameter d-Anteil Strom
Isq A Parameter q-Anteil Strom
Iges A Parameter Gesamtmotorstrom
Mm N m Parameter Motormoment
Mr N m Parameter Reibmoment

Iin A Eingang Eingangsstrom aus
Regler (q-Anteil)

Mw N m Eingang ext.
Widerstandsmoment

ω rad/s Ausgang Motordrehzahl

timierer zu den weiteren Simulationskomponenten gegeben werden, hängt vom Szenario
ab. So können sowohl die Parameter P , I oder D des Antriebsreglers optimiert werden. Al-
ternativ können auch die Höhe des anliegenden Bremsmomentes oder die Zeitkonstanten
des Umformers variiert werden.

5.4.3. Parametrierung der Simulationsmodelle und der Optimierung

Die Parametrierung der Simulationskomponenten ist in Tabelle 5.4 dargestellt. Die Werte
der Parameter sind größtenteils der Dokumentation des Motorsystems und der Bedien-
software vom Hersteller des Antriebs entnommen. Für die vom Optimierer während der
Zustandssynchronisierung angepassten Variablen ist in Tabelle 5.4 der initiale Wert des

52

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.4. Wertekontinuierliches System: Motorsystem

Tabelle 5.3.: Variablen der Simulationskomponenten des Antriebsreglers

Variable Einheit Richtung Bedeutung

P A/rad/s Parameter P-Anteil
I 1/s Parameter I-Anteil
D s Parameter D-Anteil
rise Hz/s Parameter Anstieg Rampe

Frequenz
Wgh A m/N Parameter Frequenzanpassung

(Schlupf)
Ψref V s Parameter Referenzflussverkettung

ref Hz Eingang Sollwert (Frequenz)
y rad/s Eingang Istwert (Drehzahl)

e rad/s Ausgang Reglerfehler
uR A Ausgang Reglerausgang

(Stellstrom)
ΨrefPID V s Ausgang Nennfluss

Tabelle 5.4.: Parametrierung (Startwerte) Motorsystem

Parameter Wert Parameter Wert

P 51,7 A/rad/s tstep 0,001 s
I 309,7/s ratio 0,25
D 0 s Ts 0,0025 s
ref 10 Hz d 0,0031 Nm/rad/s
Ψref 0,5 V s J 0,0015 kg/m2

rise 12 Hz s Rr 2Ω
Wgh 0,01 A/Nm Lr 0,025 H
Zp 1 Lh 0,02 H

Parameters dargestellt.
Die Darstellung der Ergebnisse erfolgt unter Verwendung BOBYQA als Vertreter eines

ableitungsfreien Algorithmus und L-BFGS als Vertreter für einen Algorithmus, der die
erste Ableitung der Zielfunktion nutzt (siehe Tabelle 5.1).

5.4.4. Formulieren von Szenarien für die Validierung

Als Szenario wird angenommen, dass der Motorparameter J statt der eigentlichen Para-
metrierung von 0,0015 kg/m2 auf einen Wert von 0,0515 kg/m2 gesetzt ist. In der Praxis
kann ein Unterschied im Massenträgheitsmoment des Motors neben einer fehlerhaften

53

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Parametrierung beispielsweise durch Verschleiß oder Änderungen am Prozess und am
Produkt ausgelöst werden.

Zur Validierung werden unterschiedliche Strategien untersucht. Zunächst wird die be-
triebsparallele Simulation ohne Synchronisierung durchgeführt, um einen Vergleich zu
ermöglichen. Die betriebsparallele Simulation mit Synchronisierung wird für zwei ver-
schiedene Fälle durchgeführt. Zum einen als Parameteroptimierung für den Parameter
d des Motors, zum anderen als kontinuierliche Modifikation des Eingangsstroms Iin des
Motors.

Diese zwei Fälle werden zunächst ohne Performanceverbesserung durchgeführt für einen
Horizont von eins. Anschließend werden sie mit einem Horizont von eins (TP = 1), mit
einem Horizont fünf (TP = 5) ohne dynamische Optimierung und mit einem Horizont
von fünf (TP = 5) und mit dynamischer Optimierung untersucht, jeweils mit aktivierter
Performanceverbesserung.

Die Berechnung der Metriken aus Abschnitt 5.3 wird wie folgt auf das Motorsystem
angewendet: Zur Berechnung der Anzahl der Iterationen Nges werden die Simulationskom-
ponenten Regler, CSV und Motor betrachtet. Zur Berechnungen der MSE und MAX

Metriken werden die Motordrehzahlen ω des simulierten Motors und ω̂ (aus (c) in Abbil-
dung 5.2) des physischen Motors betrachtet.

5.4.5. Auswertung

In Abbildung 5.5 ist die betriebsparallele Simulation ohne Synchronisation dargestellt. Es
ist zu sehen, dass die Drehzahlkurven der simulierten und der physischen Anlage über-
einstimmen. In Abbildung 5.6 ist die betriebsparallele Simulation mit falschen Parameter
J = 0,0515 kg/m2 ohne Synchronisation dargestellt. Die fehlerhafte Parametrierung führt
dazu, dass der simulierte Antriebsregler bei anliegendem Moment die Drehzahl nicht im
selben Maß stabilisieren kann, wie der physische Antriebsregler.

Ohne Synchronisation benötigt die Simulation aufgrund der zu simulierenden Zeitspan-
ne von 14 s und der Schrittweite von 0,01 s 1401 Schritte. Da drei Simulationskomponenten
beteiligt sind, werden insgesamt 3 · 1401 = 4203 Ausführungen von Simulationskompo-
nenten benötigt. Diese Zahl stellt das Minimum der benötigten Ausführungen von Simu-
lationskomponenten dar.

Bei den Abbildungen (5.7, 5.8, 5.9, 5.10, 5.11 und 5.12) der Synchronisation wird statt
des Bremsmomentes die vom Optimierer beeinflusste Größe (d oder Iin) dargestellt. Nach-
folgend werden die Ergebnisse bei aktivierter Synchronisation beschrieben.

Abbildung 5.7 zeigt die betriebsparallele Simulation mit Synchronisation und bei
TP = 1. Es ist zu sehen, dass die Synchronisation funktioniert, da die Drehzahl der Mo-
torsimulation lediglich eine kleine Differenz zur Drehzahl der physischen Anlage aufweist
und die Auswirkung der abweichenden Parametrierung ausgeglichen wird. d unterliegt da-
bei starken Schwankungen und muss mit jedem Zeitschritt signifikant angepasst werden

54

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.4. Wertekontinuierliches System: Motorsystem

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

70

80

90

Zeit in s

ω̂ in rad/s
ω in rad/s

Bremsmoment in 0,3 N m

Abbildung 5.5.: Motorsystem ohne Synchronisation

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

70

80

90

Zeit in s

ω̂ in rad/s
ω in rad/s

Bremsmoment in 0,3 N m

Abbildung 5.6.: Motorsystem ohne Synchronisation mit abweichendem Parameter
J = 0,0515 kg/m2

55

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

70

80

90

Zeit in s

ω̂ in rad/s
ω in rad/s
d in Nm/rad/s

Abbildung 5.7.: Motorsystem mit Synchronisation durch d

durch den Optimierungsalgorithmus. In Abbildung 5.8 ist die betriebsparallele Simula-
tion mit Synchronisation und TP = 5 dargestellt, ohne dynamische Optimierung. Auch
hier funktioniert die Synchronisation und d schwankt dabei weniger stark. Abbildung 5.9
zeigt die betriebsparallele Simulation mit Synchronisation und TP = 5, mit dynamischer
Optimierung. Hier wird die betriebsparallele Simulation am besten mit der physischen
Anlage synchronisiert. Dabei sind die Schwankungen von d geringer als in den vorherigen
Szenarien. Die Abbildungen 5.10, 5.11 und 5.12 zeigen die Synchronisation bei Nutzung
des Stroms Iin.

Insgesamt ist erkennbar, dass die Synchronisation mit dem Parameter d besser funk-
tioniert als mit dem Strom Iin. Bei Nutzung des Stroms funktioniert die Synchronisation
nur mit Hilfe der dynamischen Optimierung. Auch dann werden große Änderungen an Iin

zur Realisierung der Synchronisation notwendig.

56

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.4. Wertekontinuierliches System: Motorsystem

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

70

80

90

Zeit in s

ω̂ in rad/s
ω in rad/s
d in Nm/rad/s

Abbildung 5.8.: Motorsystem mit Synchronisation durch d und TP = 5

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

70

80

90

Zeit in s

ω̂ in rad/s
ω in rad/s
d in Nm/rad/s

Abbildung 5.9.: Motorsystem mit Synchronisation durch d und TP = 5 und dynamischer
Optimierung

57

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

70

80

90

Zeit in s

Iin in A
ω̂ in rad/s
ω in rad/s

Abbildung 5.10.: Motorsystem mit Synchronisation durch Iin

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

70

80

90

Zeit in s

Iin in A
ω̂ in rad/s
ω in rad/s

Abbildung 5.11.: Motorsystem mit Synchronisation durch Iin und TP = 5

58

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.4. Wertekontinuierliches System: Motorsystem

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

70

80

90

Zeit in s

Iin in A
ω̂ in rad/s
ω in rad/s

Abbildung 5.12.: Motorsystem mit Synchronisation durch Iin und TP = 5 und dynami-
scher Optimierung

In Tabelle 5.5 befindet sich die Auswertung der unterschiedlichen Szenarien anhand der
zuvor eingeführten Metriken. Eine Iteration einer Simulationskomponente für das Mo-
torsystem benötigt etwa 0,05 ms auf dem Simulationsrechner (parallele Ausführung der
Simulationskomponenten, Hardware: Intel e3 Quad-Core CPU, 3,3 GHz, 16 GB RAM,
Linux). Über die gesamte Simulationszeit von 14 s betrachtet sind somit alle Fälle echt-
zeitfähig.

Tabelle 5.6 stellt die notwendigen Ausführungen der Simulationskomponenten bei glei-
chen MSE = 1, 5 unter Nutzung des Parameters d zur Zustandssynchronisierung gegen-
über. Zur Erzeugung gleicher MSE wird die Abbruchbedingung entsprechend angepasst.
Es werden sowohl die benötigten Ausführungen absolut dargestellt als auch das Ver-
hältnis der benötigten Ausführungen zu der minimalen Anzahl an Ausführungen, also
Ausführungen/(3 · 1401).

Das beste Ergebnis wird für TP = 2 und der Nutzung des Parameters d und dynamischer
Optimierung erreicht (Fall e)). Dort sind die Unterschiede zur physischen Anlage minimal.
Das lässt sich dadurch erklären, dass durch die dynamische Optimierung das zukünftige
Verhalten mit betrachtet werden kann. So werden die Auswirkungen von Rauschen oder
Ausreißern in den Messdaten von der physischen Anlage abgemildert, sichtbar im Ver-
gleich von Abbildung 5.7 und Abbildung 5.9. Zudem treten die niedrigsten Anzahlen an
Ausführungen der Simulationskomponenten auf. Das lässt sich dadurch erklären, dass die

59

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Tabelle 5.5.: Auswertung Motorsystem

Szenario Nr. MSE in rad/s2 MAX in rad/s Nges

Ohne Sync - 55,14 27,74 4203

Parameter d

TP = 1 a) 1,43 7,02 19 875
TP = 1 schnell b) 1,43 7,02 9345
TP = 5, u statisch c) 4,45 15,81 32 818
TP = 5, u dynamisch d) 0,69 9,12 48 616
TP = 2, u dynamisch e) 0,53 4,5 16 096

Strom Iin

TP = 1 f) 5,70 7,60 82 254
TP = 1 schnell g) 5,70 7,60 30 454
TP = 5, u statisch h) 1,74 10,64 41 929
TP = 5, u dynamisch i) 0,57 9,10 34 570
TP = 2, u dynamisch j) 66,57 65,42 44 180

Tabelle 5.6.: Anzahl der Ausführungen von Simulationskomponenten (Nges) nach Glei-
chung 5.1 mit und ohne Performanceverbesserung bei Nutzung des Parame-
ters d zur Zustandssynchronisierung

a)/b) c) d) e)

BOBYQA

Nges ohne 19 626 96 783 31 293 9694
Nges mit 8604 45 495 11 639 5804
Verhältnis ohne 4,67 23,04 7,45 2,31
Verhältnis mit 2,04 10,83 2,77 1,38

L-BFGS

Nges ohne 229 638 920 958 769 653 55 233
Nges mit 16 902 70 390 53 268 8148
Verhältnis ohne 54,68 219,28 183,25 13,15
Verhältnis mit 4,02 16,76 12,68 1,94

60

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.5. Hybrides System: Transportsystem

Optimierung gut funktioniert und so die Ausgänge des simulierten Systems stets nah am
physischen System bleiben. Weiterhin trägt vor allem Ansatz 2 aus Unterabschnitt 4.4.2
zur Reduzierung der Ausführungen bei.

Neben der Nutzung von BOBYQA aus (King, 2009) wurde ebenfalls L-BFGS aus (Bo-
chkanov, 2020) getestet. Damit sind die notwendigen Ausführungen von Simulationskom-
ponenten bei gleicher Qualität der Zustandssynchronisierung stets höher. Hervorzuheben
ist, dass die Nutzung der Prädiktion, als statische Optimierung oder als dynamische Op-
timierung, die Anzahl der Ausführungen stark erhöht, bedingt durch das approximieren
der Ableitung. Erwähnenswert ist, dass diese zusätzlichen Ausführungen zu einem er-
heblichen Teil durch die Performanceverbesserung reduziert werden können: Einerseits,
da aufgrund von Ansatz 1 aus Unterabschnitt 4.4.1 zwei der drei Simulationskomponen-
te während der Optimierung nicht ausgeführt werden. Andererseits werden durch das
approximieren der Ableitungen Folgen von Eingängen produziert, welche in weiteren Ite-
rationen durch Ansatz 2 aus Unterabschnitt 4.4.2 wiedergenutzt werden können ohne die
Simulationskomponente erneut auszuführen.

5.5. Hybrides System: Transportsystem

5.5.1. Beschreibung des Systems

Zur Validierung des Konzeptes der Zustandssynchronisierung erfolgte auch eine Untersu-
chung an dem Transportsystem in Abbildung 5.13. Im Gegensatz zum vorherigen System
in Abschnitt 5.4 handelt es sich bei dem Transportsystem um ein hybrides System. Die
Stellsignale sind binär. Die Messsignale sind kontinuierlich. Zudem erfolgt die Kommu-
nikation zwischen Prozess und Regelungs- und Steuerungsfunktion nachrichtenbasiert.
Die Validierung der Methodik der Zustandssynchronisierung an diesem Transportsystem
wurde in (Zipper und Diedrich, 2018b) vorgestellt. Das System besteht aus folgenden
Elementen:

(1) Optischer Sensor für die Aktivierung von Band 2

(2) Band 2

(3) Band 1

(4) Rutsche

(5) Motor für Band 2

(6) Motor für Band 1

(7) Produkte

(8) Optischer Sensor für die Aktivierung von Band 1

61

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

(1)

(2)
(3)
(4)
(5)
(8)

(7)
(6)

Abbildung 5.13.: Transportsystem

(9) Kamera zur Erfassung der Produktposition

Das Transportsystem stellt einen Fertigungsprozess nach. Produkte können über zwei
Förderbänder (2) und (3) transportiert werden. Am Ende des Fertigungsprozesses wer-
den die Produkte über eine Rutsche (4) aus dem Transportsystem heraus transportiert.
Während sich ein Produkt in der Mitte des ersten Förderbandes befindet, kann es von der
Bohrmaschine bearbeitet werden. Diese Funktion wird für die Validierung der Synchroni-
sation nicht genutzt. Bevor ein Produkt das Transportsystem über die Rutsche verlässt,
kann es sortiert werden, je nachdem ob es aus Metall oder aus Kunststoff ist. Dies wird
mithilfe eines induktiven Sensors und Sortierers auf dem zweiten Förderband erreicht.
Auch diese Funktion des Demonstrators wird für die Validierung der Synchronisation
nicht genutzt. Als Sensoren werden zur Validierung lediglich die optischen Sensoren und
eine zusätzlich angebrachte Kamera (9) genutzt (in Abbildung 5.13 nicht enthalten). Am
Anfang des ersten Förderbandes befindet sich ein optischer Sensor (8). Mit dessen Hilfe
ist bekannt, dass ein Produkt auf Förderband eins liegt. Daraufhin wird dieses Förder-
band eingeschaltet. Erreicht ein Produkt das Ende des ersten Förderbandes, soll dieses
deaktiviert werden und das zweite Förderband soll durch den Sensor (1) aktiviert werden.
Dieses bleibt so lange aktiv, bis das Produkt aus dem Transportsystem entfernt wird. Die
Förderbänder werden durch die Motoren (5) und (6) angetrieben. Mit Hilfe der Kamera
kann das Produkt an jedem Ort des Transportsystems lokalisiert werden.

In Abbildung 5.14 werden die Informationsflüsse zur Validierung des Transportsystems

62

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.5. Hybrides System: Transportsystem

Sensor
Band 2

Motor
Band 2

Sensor
Band 1

Motor
Band 1

WAGO PFC200,
digitale IOs

PC

Ka-
mera

Prozess-FMU

. . .

(d)(a)

(c)(b)

(e)

(f)

(g)

(h)

Abbildung 5.14.: Informationsflüsse Transportsystem

dargestellt. Die Sensoren und Aktoren sind über eine digitale Ein-Ausgangsbaugruppe an
eine WAGO PFC200 Steuerung angeschlossen (a)-(d). Die Regelungs- und Steuerungs-
funktion ist als verteiltes Steuerungsprogramm durch DOME auf der Steuerung imple-
mentiert (siehe Beschreibung in Abschnitt 5.1, (DOME 2020)). Die Bilderkennung für
das Erfassen der Produktposition durch die Kamera ist auf dem PC als Teil des verteil-
ten Steuerungsprogramms implementiert. Die Kamera überträgt das Video per USB (e)
zum PC. Für eine auf dem PC befindliche Visualisierung stellt das Steuerungsprogramm
Informationen über den Zustand des Transportsystems bereit (f): Geschwindigkeiten der
Förderbänder, Zustände der Sensoren, Position und Id der Produkte. Diese Informationen
werden ebenfalls von der Simulationskomponente für die Anbindung an die Co-Simulation
(Prozess-FMU) genutzt (g) und (h).

Durch die Alterung des Demonstrators bedingt, kann es passieren, dass Produkte beim
Übergang zwischen Förderband eins und Förderband zwei eine Weile hängen bleiben.
Dies kann dazu führen, dass Produkte deutlich später aus dem Transportsystem abtrans-
portiert werden, oder gar auf Förderband zwei verbleiben und manuell entfernt werden
müssen. Dieser Alterungsaspekt soll den Nutzen der Synchronisation sichtbar machen und
bildet so das Szenario für die Validierung der hybriden Zustandssynchronisierung an dem
Transportsystem.

Tabelle 5.7 fasst die Möglichkeiten der Regelungs- und Steuerungsfunktion zur Beein-
flussung des Transportsystems abhängig von den optischen Sensoren zusammen. Insge-
samt existieren zur Regelungs- und Steuerungsfunktion drei Regeln mit unterschiedlicher
Priorität. Regeln mit einer höheren Priorität haben Vorrang.

Der Startzustand für die Validierung ist: Beide Förderbänder sind leer und es wird ein

63

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Tabelle 5.7.: Beispiel Steuerung Transportsystem

Nr. Bedingung Aktion Priorität

1 Produkt auf Band 1 aktiviere Band 1 1
2 Produkt auf Band 2 aktiviere Band 2 1
3 Produkt beim Übergang Band 1 nach Band 2 deaktiviere Band 1 2

Produkt auf Förderband eins gegeben.

5.5.2. Aufbau der Co-Simulation

Die Co-Simulation für das Transportsystem besteht aus fünf Simulationskomponenten:

1. Simulationskomponente für die Verbindung zu den Signalen zwischen der Regelungs-
und Steuerungsfunktion und der physischen Anlage.

2. Da diese Kommunikation nachrichtenbasiert ist, also Werte nur einmalig übertra-
gen werden wenn sie sich ändern, wird eine Simulationskomponente zur Umsetzung
der nachrichtenbasierten Kommunikation in die zyklische Kommunikation der Co-
Simulation notwendig

3. Simulationskomponente für das horizontale Förderband

4. Simulationskomponente für das vertikale Förderband

5. Simulationskomponente für das Verhalten des Produktes

Der Zusammenhang zwischen diesen Simulationskomponenten ist in dem Graphen in Ab-
bildung 5.15 dargestellt. Die Parameter der Simulationskomponenten für die Förderbän-
der sind in Tabelle 5.8 und die Parameter der Simulationskomponente für das Produkt in
Tabelle 5.9 aufgelistet.

5.5.3. Parametrierung der Simulationsmodelle und der Optimierung

Die Parametrierung der Simulationskomponenten ist in Tabelle 5.10 dargestellt. Wo Para-
meter vom Optimierer während der Zustandssynchronisierung angepasst werden, enthält
Tabelle 5.10 den initialen Wert des Parameters. Es gilt TD = 2. Zudem wird TP = 2

gewählt und eine statische Optimierung durchgeführt. Die Variable der Zielfunktion ist
hier enabled und kann nur die Werte 0 oder 1 annehmen. Daher muss ein Optimierungsal-
gorithmus maximal zwei Iterationen durchlaufen. Zuerst wird die Lösung der vorherigen
Iteration des Optimierungsalgorithmus gewählt. Ist dies nicht optimal, wird die logische
Negation der Lösung der vorherigen Iteration des Optimierungsalgorithmus gewählt.

Zur Berechnungen der Metriken MSE und MAX werden die Positionen px des simu-
lierten Produktes und p̂x des physischen Produktes (von Abbildung 5.14 (e)) betrachtet.

64

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.5. Hybrides System: Transportsystem

Tabelle 5.8.: Variablen der Simulationskomponente Förderband

Variable Einheit Richtung Bedeutung

x, y mm Parameter Position
w, h mm Parameter Ausdehnung in x beziehungsweise

y Richtung
vx, vy mm/s Parameter Geschwindigkeit in x

beziehungsweise y Richtung

px, py mm Eingang Position des Produktes
enabled bool Eingang an / aus

pv mm/s Ausgang Geschwindigkeit des Produktes

Tabelle 5.9.: Variablen der Simulationskomponente Produkt

Variable Einheit Richtung Bedeutung

pv,x, pv,y mm/s Eingang Geschwindigkeit des Produktes

x, y mm Ausgang Position

k1
Prozess

k2
Ereignis
→

Zyklisch

enabled, p̂x

Optimierer

enabled (û), p̂x (ŷ)

kinput
Band2

enabled (u)

k3
Band1

enabled

koutput
Produkt

px

pv,x

py pv,ypx (y)

Abbildung 5.15.: Co-Simulation des Transportsystems

65

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Tabelle 5.10.: Parametrierung (Startwerte) Transportsystem

Parameter Wert Parameter Wert

Förderband 1

x 0 mm y 0 mm
w 30 mm h 270 mm
vx 0 mm/s vy 150 mm/s

Förderband 2

x 0 mm y 300 mm
w 270 mm h 30 mm
vx 70 mm/s vy 0 mm/s

5.5.4. Auswertung

In Abbildung 5.16 wird die nicht synchronisierte Simulation des Transportsystems dar-
gestellt. Es werden lediglich die für den Transport über Band zwei relevanten Größen
gezeigt. Bis ca. 3 s ist das Band ausgeschaltet. x und x̂ sind verschieden aufgrund der
Initialisierung der Simulationskomponente — an welcher Position genau das Produkt von
Band eins auf Band zwei übergeht hängt auch davon ab, wie das Produkt auf Band eins
gelegt wird und ist daher etwas zufällig. Sobald Band zwei eingeschaltet wird, bewegt
sich das Produkt nur in der simulierten Anlage und hängt in der physischen Anlage eine
Weile am Übergang zwischen Band zwei und Band eins. Erst bei ca. 5 s fängt es sich an zu
bewegen. Zu sehen ist außerdem, dass die Anstiege der Kurven von x und x̂ verschieden
sind, also das simulierte Band zwei mit höherer Geschwindigkeit läuft.

Die synchronisierte Simulation ist in Abbildung 5.17 dargestellt. Wieder ist zu sehen,
dass zwar das physische Band zwei aktiviert wird, aber das physische Produkt am Über-
gang hängen bleibt. Durch die Zustandssynchronisierung wird das simulierte Band zwei
jedoch weiterhin angehalten. Erst wenn sich das physische Produkt tatsächlich bewegt
wird auch das simulierte Band zwei aktiviert. Zudem ist zu sehen, dass die Anstiege der
Kurven von x und x̂ gleich sind. Dies wird dadurch erreicht, dass der Optimierer das
simulierte Band zwei abwechselnd ein und aus schaltet.

Das Funktionieren der Zustandssynchronisierung wird auch durch die Metriken MSE

und MAX bestätigt. Diese sind in Tabelle 5.11 dargestellt. Beide Metriken ergeben deut-
lich niedrigere Abweichung zwischen physischen System und simulierten System bei akti-
vierter Zustandssynchronisierung.

66

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.5. Hybrides System: Transportsystem

0 1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

Zeit in s

Produkt x in mm
Produkt x̂ in mm

enabled (u) in 0; 30
enabled (û) in 0; 30

Abbildung 5.16.: Förderband nicht synchronisiert

0 1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

Zeit in s

Produkt x in mm
Produkt x̂ in mm

enabled (u) in 0; 30
enabled (û) in 0; 30

Abbildung 5.17.: Förderband synchronisiert

67

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Tabelle 5.11.: Auswertung Transportsystem

Szenario MSE in mm2 MAX in mm

Ohne Zustandssynchronisierung 15 623 281
Mit Zustandssynchronisierung 226 33

Am Transportsystem wird das Verhalten untersucht, welches eintritt wenn das För-
derband der physischen Anlage langsamer läuft als das Förderband in der simulierten
Anlage und das physische Produkt festhängt. Die Zustandssynchronisierung funktioniert,
in dem das Förderband in der simulierten Anlage angehalten wird. Wäre das Förder-
band in der physischen Anlage schneller als das Förderband in der simulierten Anlage,
würde dieser Ansatz nicht funktionieren. Die Zustandssynchronisierung wäre für diesen
Fall mit Hilfe der Eingänge enabled der Simulationsmodelle der Förderbänder nicht mög-
lich. Eine Möglichkeit, die Zustandssynchronisierung in einem solchen Fall zu erreichen,
ist in Abbildung 5.18 dargestellt. Die Simulationsmodelle der Förderbänder haben einen
Parameter für die Geschwindigkeit, welcher jedoch nur initial gesetzt werden kann und
während der Simulation nicht geändert werden kann. Die Idee ist daher, den Ausgang pv,x

entsprechend so zu manipulieren, dass die Zustandssynchronisierung erreicht wird. Dieses
Vorgehen würde für schneller und langsamere physische Förderbänder funktionieren.

68

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.6. Hybrides System: Zylindersystem

k1
Prozess

k2
Ereignis
→

Zyklisch

enabled, p̂x

k3
Band1

enabled

k4
Band2

enabled

Optimierer

p̂x (ŷ)

pv,x (û)

kinput = koutput
Produkt

px

px (y)
p̃v,x (u)

py pv,y

Abbildung 5.18.: Möglichkeit der Zustandssynchronisierung, wenn das physische Förder-
band schneller ist als das simulierte Förderband

5.6. Hybrides System: Zylindersystem

5.6.1. Beschreibung des Systems

Zur Validierung wird weiterhin der in Abbildung 5.19 und Abbildung 5.20 abgebildete
Demonstrator genutzt. Dieser wurde erstmalig in (Zipper, Auris u. a., 2018) vorgestellt.

Die Anlage enthält einen pneumatischen Zylinder, welcher beim Ausfahren den Balken
nach oben bewegt und beim Einfahren den Balken nach unten bewegt. In der Abbildung
sind der Kompressor und die Elektromotoren aus Gründen der Übersichtlichkeit wegge-
lassen. Die Kraft, welche auf den Zylinder wirkt, kann durch das Verfahren der Masse
entlang des Balkens mithilfe des Elektromotors beeinflusst werden. Daher beeinflusst die
Position der Masse die Zeit, welche der pneumatische Zylinder zum Ein- und Ausfahren
benötigt.

Die Informationsflüsse werden in Abbildung 5.21 dargestellt. Der pneumatische Zylin-
der wird durch eine Ventilinsel angesteuert (a). Die Regelungs- und Steuerungsfunktion
sendet Signale zu dieser Ventilinsel um den Zylinder einzufahren oder auszufahren via

69

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Abbildung 5.19.: Zylindersystem (Quelle Foto: Mercedes-Benz AG)

PROFINET (b). Zwei Drosseln beeinflussen das Verhalten des Zylinders. Drossel eins be-
einflusst das Ausfahren und Drossel zwei beeinflusst das Einfahren. Die Ventilinsel sendet
Sensorwerte (b), sobald der Zylinder eine Endlage erreicht. Andere Variablen des Zylin-
ders, wie zum Beispiel die Geschwindigkeit oder Kräfte sind nicht messbar. Durch eine
interne Software des Herstellers des Demonstrators werden die Stell- und Messsignale
bezüglich der Ventilinsel als CSV-Datei aufgezeichnet (c) und (d).

Für die Validierung wird ein Sensor zur Messung des Luftstroms durch den Zylinder
hinzugefügt. Solche Sensoren sind normalerweise nicht in den Zylindern enthalten, welche
in industriellen Anlagen ihre Anwendung finden. Hier werden sie hinzugefügt, um die
Genauigkeit der Synchronisation und der Simulation zu bestimmen, auch hinsichtlich nicht
messbarer Zustände. Die Validierung der Synchronisation anhand dieses Zylindersystems
wurde erstmals in (Zipper und Diedrich, 2019) vorgestellt.

70

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.6. Hybrides System: Zylindersystem

Masse

Balken

Zylinder

	

Abbildung 5.20.: Schema Zylindersystem nach (Zipper, Auris u. a., 2018)

Zy-
linder

Ventil-
insel SPS

Interne
Soft-
ware

CSV . . .
(a) (b) (c) (d)

Abbildung 5.21.: Informationsflüsse des Zylindersystems

5.6.2. Aufbau der Co-Simulation

In Tabelle 5.12 werden die Variablen der Simulationskomponente 3D und Physik Engine
aufgelistet, in Tabelle 5.13 sind die Variablen der Simulationskomponente des Zylinders
beschrieben. Der Aufbau der Co-Simulation ist in Abbildung 5.22 dargestellt. Die Simula-
tionskomponenten 3D und Physik Engine sowie Zylinder sind Produkte, welche auch für
den industriellen Einsatz genutzt werden, zum Beispiel für die virtuelle Inbetriebnahme.
Das interne Verhalten dieser Komponenten ist daher gänzlich unbekannt.

Die Kraft, welche der pneumatische Zylinder zum Einfahren und Ausfahren benötigt
wird von der Masse des Balkens und der darauf liegenden, verfahrbaren Masse beein-
flusst. Zur Umsetzung dieses Zusammenhangs wird eine Simulationskomponente, welche
die Signallogik und die physikalischen Zusammenhänge innerhalb des pneumatischen Zy-
linders modelliert, gekoppelt mit einer Simulationskomponente, welche anhand von CAD-
Daten (3D Modelle, Massen, Gelenke) eine Simulation der Physik starrer Körper durch-
führt. Die Simulationskomponente des Zylinders gibt die aus den anliegenden Signalen
der Regelungs- und Steuerungsfunktion und den wirkenden Kräften resultierende Aus-
fahrposition des Zylinders an die 3D und Physik Engine. Diese berechnet die aufgrund
der geometrischen Gegebenheiten resultierende Kraft auf den pneumatischen Zylinder.
Diese Kraft wird als Eingang in die Simulationskomponente des Zylinders gegeben.

Eine Schwierigkeit bei der Validierung der Zustandssynchronisierung an dem Zylinder-
system besteht darin, dass der Zustand der Simulationskomponente des Zylinders nicht
zurückgesetzt werden kann — die optionalen Features von FMI fmi2GetFMUstate und

71

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

Tabelle 5.12.: Variablen der Simulationskomponente 3D- und Physik Engine

Variable Einheit Richtung Bedeutung

cylinderjointLockPosition m Eingang Position des Zylinders
cylinderjointForce N Ausgang Kraft, welche auf den

Zylinder wirkt

Tabelle 5.13.: Variablen der Simulationskomponente Zylinder

Variable Einheit Richtung Bedeutung

throttle extend 1 = 100% of-
fen, 0 =zu

Parameter Drossel 1, legt Luftdurchflusses
beim Ausfahren fest

throttle rectract 1 = 100% of-
fen, 0 =zu

Parameter Drossel 2, legt Luftdurchflusses
beim Einfahren fest

power supply bar Parameter Versorgungsdruck

move out bool Eingang fahre Zylinder aus
move in bool Eingang fahre Zylinder ein
Fext N Eingang Externe Kraft auf den Zylinder

Fpneu N Ausgang resultierende Kraft
pos m Ausgang Position
v m/s Ausgang Geschwindigkeit
airflow l/s Ausgang Luftdurchfluss
rectract signal bool Ausgang Eingefahren — Endlage

erreicht
extend signal bool Ausgang Ausgefahren — Endlage

erreicht

fmi2SetFMUstate werden nicht unterstützt. Um die Validierung dennoch durchführen zu
können, werden Anforderungen an die praktische Relevanz zurückgestellt. Statt einer
Instanz der Simulationskomponente für den Zylinder werden eine große Menge Instan-
zen dieser Simulationskomponente der Co-Simulation hinzugefügt. Die genaue Anzahl
richtet sich nach der Schrittweite, der gesamten Simulationszeit und der durchschnitt-
lich zu erwartenden Anzahl der Iterationen des Optimierungsalgorithmus, zum Beispiel
1/0,005 ·3 ·20 = 12000 Instanzen. Mit jeder Iteration der Co-Simulation, die nicht innerhalb
einer Iteration der Optimierung stattfindet, werden alle Instanzen simuliert. Davon ist
jedoch nur eine Instanz als aktiv markiert. Nur die als aktiv markierte Simulationskom-
ponente wird während einer Iteration des Optimierungsalgorithmus ausgeführt. Zwischen
zwei Iterationen des Optimierungsalgorithmus müsste normalerweise das Zurücksetzen
der Simulationskomponenten erfolgen. Stattdessen wird die aktive Instanz auf eine In-
stanz gesetzt, welche in der gesamten Simulation bis dahin noch nicht aktiv war. So kann

72

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.6. Hybrides System: Zylindersystem

k1
3D- und

Physikengine

kinput = koutput
Zylinder

Fext

pos

k2
CSV

move out

Optimierer

throttle extend (u)

extend signal (y)

extend signal (ŷ)

Abbildung 5.22.: Co-Simulation des Zylindersystems

die Zustandssynchronisierung validiert. Für den praktischen Einsatz ist dieses Vorgehen
jedoch nicht geeignet, denn durch die hohe Anzahl der parallel ausgeführten Simulations-
komponenten ist die Co-Simulation nicht echtzeitfähig.

5.6.3. Parametrierung der Simulationsmodelle und der Optimierung

Für die Messungen wird ein Druck von 4bar bereitgestellt und die Masse auf dem Balken
zentriert, sowohl in der physischen Anlage, als auch in der simulierten Anlage. Die Dros-
seln werden in der simulierten Anlage auf ein Prozent geöffnet gestellt. Die tatsächliche
Drosselstellung in der physischen Anlage wird nicht gemessen.

Die Drosselstellung beeinflusst die Geschwindigkeit und den Luftdurchfluss während
des gesamten Ausfahrvorgangs. Da jedoch für die Synchronisation nur die Variable extend
signal beim Erreichen des Endpunktes und das dazugehörige Signal der physischen Anlage
betrachtet werden, steht die Wirkung der Drosselstellung erst am Ende des Ausfahrvor-
gangs fest. Dies muss bei der Wahl von TD und TP berücksichtigt werden. Zur Validierung
am Zylindersystem wird daher bei der Wahl von TD und TP wie folgt vorgegangen.

Die Grundidee ist es, TD und TP abhängig vom Zeitpunkt des Erreichens der Endlage
(hier Textend signal) festzulegen. Die booleschen Signale über das Erreichen der Endlage
werden in 1 und 0 umgerechnet, für Endlage ist erreicht beziehungsweise nicht erreicht.
Nun wird ein Zeitfenster TF festgelegt.

73

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

0 1 2 3 4 5 6 7 8 9 10

TD TP

extend signal

Iterationen der
Simulation

Abbildung 5.23.: Wahl von TD und TP zur Synchronisation des Zylindersystems

Tabelle 5.14.: Parametrierung (Startwerte) Zylindersystem

Parameter Wert Parameter Wert

Zylinder

throttle extend 0,01 throttle rectract 0,01
power supply 4 bar

TD = Textend signal −
TF

2
(5.4)

TP = Textend signal +
TF

2
(5.5)

In Abbildung 5.23 ist ein Zeitstrahl als Beispiel dargestellt. An dem Zeitstrahl stehen
die Iterationen der Simulation. In dem Beispiel kommt das Signal des Erreichens der
Endlage der physischen Anlage zum Simulationszeitschritt 8. Das Zeitfenster ist hier auf
TF = 4 festgelegt. Dadurch ergibt sich für das Beispiel TD = 6 und TP = 10. Nun wird
die Zielfunktion der Optimierung in Gleichung 4.3 betrachtet. Da die booleschen Signale
zu 0 und 1 umgewandelt werden, kann (∆y)2 in jedem Zeitschritt entweder nur 0 oder 1

betragen. (∆y)2 ist 0 für den Fall, dass physische und simulierte Anlage dieselbe Aussage
über das Erreichen der Endlage treffen. Es ist 1 für den Fall, dass in einem System der
Zylinder vollständig ausgefahren ist und in dem anderen System noch nicht. Durch die
Summe in der Zielfunktion werden die Unterschiede zwischen den Systemen aufsummiert.
Das Optimum beträgt 0. TD wird kleiner als der eigentliche Zeitpunkt des Erreichens
der Endlage gesetzt, um zu bestrafen, wenn in der simulierten Anlage die Endlage eher
erreicht wird.

In Tabelle 5.14 sind die Parameter der Simulationskomponenten aufgelistet. Als Op-
timierungsalgorithmus kommt ein Nelder-Mead Simplex zum Einsatz. Die Simulations-
schrittweite beträgt 0,005 s. Es wird TF = 10 genutzt. Es wird eine statische Optimierung
durchgeführt, um das Zeitfenster für die Wahl von TD und TP umsetzen zu können.

Die Metriken werden sowohl für die Ausgänge, welche die Zustandssynchronisierung
betrachtet, als auch für die Zustände ermittelt. Die Berechnung von MSE und MAX für
die Ausgänge erfolgt für die Variablen extended signal der simulierten und physischen Zy-
linder. MSE und MAX für die Zustände werden anhand der Variablen airflow ermittelt.

74

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.6. Hybrides System: Zylindersystem

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8

0

0,2

0,4

0,6

0,8

1

1,2

Zeit in s

ŷ in 1; 0 y in 1; 0 x̂ in l/s x in l/s

Abbildung 5.24.: Zylindersystem ohne Zustandssynchronisierung, Drossel 1 bei 1%

5.6.4. Auswertung

Abbildung 5.24 stellt das Zylindersystem ohne Zustandssynchronisierung dar. Die abwei-
chend gewählte Parametrierung führt zu einem deutlichen Unterschied des gemessen und
simulierten Luftdurchflusses. Darüber hinaus führt die abweichende Parametrierung zu
unterschiedlichen Zeiten an denen der physische und der simulierte Zylinder voll ausge-
fahren sind, also das Signal für das Erreichen der Endlage anliegt. Die Ergebnisse der
Validierung der Zustandssynchronisierung sind in Abbildung 5.25 zu sehen. Die Endlagen
der Zylinder werden fast zur gleichen Zeit erreicht. Zudem gleichen sich die Kurven des
Luftdurchflusses signifikant besser als im Fall ohne Zustandssynchronisierung.

Die Anwendung der Metriken MSE und MAX auf das Zylindersystem ist in Tabel-
le 5.15 dargestellt. Die Ausgänge, welche von der Zustandssynchronisierung betrachtet
werden sind extended signal. Für diese ist mit aktivierter Zustandssynchronisierung eine
Verbesserung gegenüber dem Szenario ohne Zustandssynchronisierung sichtbar. Für den
Anwendungsfall Beobachter sind die Zustände airflow interessant. Hier ist für MSE und
MAX eine geringfügige Verschlechterung bei aktivierter Zustandssynchronisierung sicht-
bar. Bei der Analyse der Abbildungen 5.24 und 5.25 ist eine Schwingung der Zustände des
simulierten Zylinders zu erkennen. Diese Schwingung tritt unabhängig von der Verwen-
dung der Zustandssynchronisierung auf und ist ursächlich dafür, dass durch die aktivierte
Zustandssynchronisierung keine Verbesserung durch die Metriken sichtbar wird.

75

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8

0

0,2

0,4

0,6

0,8

1

1,2

Zeit in s

ŷ in 1; 0 y in 1; 0 x̂ in l/s x in l/s

Abbildung 5.25.: Zylindersystem mit Zustandssynchronisierung, Drossel 1 bei 2, 3%

Zum Vergleich können die Metriken ab einen späteren Zeitpunkt nach der Schwingung
gebildet werden. In Tabelle 5.15 ist dies für die Zeit ab 0,2 s dargestellt. Daraus ist ersicht-
lich, dass nach den Schwingungen zu Beginn der Simulation die Zustandssynchronisierung
durchaus eine Verbesserung hinsichtlich der Synchronisation der Zustände erreichen kann.
Für die tatsächliche Anwendung der betriebsparallelen Simulation in diesem Fall müssten
die numerischen Eigenschaften der vorliegenden Co-Simulation jedoch verbessert werden.

76

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.7. Simulative Validierung der zeitlichen Synchronisation

Tabelle 5.15.: Auswertung Zylindersystem

extended signal y und ŷ MSE MAX

Ohne Zustandssynchronisierung 0,092 1
Mit Zustandssynchronisierung 0,014 1

airflow x und x̂ MSE in (l/s)2 MAX in l/s

Ohne Zustandssynchronisierung 0,38 3,37
Mit Zustandssynchronisierung 0,34 4,16

airflow x und x̂ ab 0,2s MSE in (l/s)2 MAX in l/s

Ohne Zustandssynchronisierung 0,172 1,03
Mit Zustandssynchronisierung 0,006 0,35

5.7. Simulative Validierung der zeitlichen Synchronisation

Das in Abschnitt 4.6 vorgestellte Konzept zur zeitlichen Synchronisation wird, wie in (Zip-
per und Diedrich, 2018a) beschrieben, simulativ validiert.

Dazu wird das System zweiter Ordnung unter Gleichung 5.6 als physische Anlage ge-
nutzt. In Tabelle 5.16 sind die Parameter des Test-Systems und der zeitlichen Parameter
für Gleichung 4.14, Gleichung 4.15 und Gleichung 4.16 aufgelistet.

ˆ̇x1

ˆ̇x2

 =

 0 1

−1/T 2 −2d/T

x̂1

x̂2

+

 0

K/T 2

 û (5.6)

Tabelle 5.16.: Parametrierung zur Validierung der zeitlichen Synchronisation

Parameter Wert Parameter Wert

TR 0,0001 s tR 0,032 s
TC 0 s tC 0,008 s
TP 0,01 s tP 0,0001 s
TM 0,004 s tM 0,004 s
TS 0,004 s tS 0,004 s
T 0,125 K 1
d 0,225 û 1 (Sprung)

Die physische Anlage wird durch eine Simulation von Gleichung 5.6 gebildet. Die Um-
setzung der simulierten Anlage erfolgt auch auf Basis des Systems in Gleichung 5.6. Dieses
wird zunächst diskretisiert und in die Form von Gleichung 3.2 gebracht und anschließend

77

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Zeit in s

û
ŷ
y

Abbildung 5.26.: Sprungantworten der physischen und der simulierten Anlage

in die Gleichungen entsprechend Algorithmus 2 eingesetzt. Dadurch entsteht eine Simu-
lation der Co-Simulation.

Als Eingang wird ein Sprung zur Zeit 1s simuliert und in die physische und in die si-
mulierte Anlage gegeben. Von beiden wird die Sprungantwort aufgenommen, welche dann
für die Fälle mit und ohne Kompensation der Ausgangsverzögerung verglichen werden.
Wie in Abbildung 5.26 zu sehen ist, zeigen physische und simulierte Anlage die gleichen
Antworten. Die simulierte Anlage folgt der physischen Anlage.

In Abbildung 5.28 wird ∆y zu jedem Zeitpunkt dargestellt. Da physische und simulierte
Anlage auf dem selben mathematischen System basieren, würde ein optimaler Vergleich
von beiden Systemen zu jedem Zeitpunkt ein ∆y = 0 ergeben. Das bedeutet, dass die
Differenz in Abbildung 5.28 als Fehler des Vergleichs interpretiert werden kann. Diese
Differenzen treten auf, da der diskrete Algorithmus (Algorithmus 2) der Co-Simulation
zum Ausführen der simulierten Anlage genutzt wird.

Zunächst werden die Verteilungsdichtefunktionen anhand von Gleichung 4.15 und Glei-
chung 4.16 berechnet. Die sich daraus ergebenden Verteilungsdichtefunktionen sind in
Abbildung 5.27 dargestellt. Um einen Wert ∆0 für alle Vergleiche zu erhalten, kann die-
ser von den Modalwerten der beiden Verteilungsdichtefunktionen gebildet werden. Da die
Modalwerte nicht eindeutig sind, werden die am weitesten rechtsliegenden Modalwerte
genutzt. Daraus resultiert eine Ausgangsverzögerung von ∆o = 0,008 s.

Die Metriken aus Abschnitt 5.3 werden für die in Abbildung 5.28 gezeigten Differenzen

78

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.7. Simulative Validierung der zeitlichen Synchronisation

0 20 40 60 80 100 120 140
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Zeit in s

Verteilungsdichtefunktion physische Anlage
Verteilungsdichtefunktion simulierte Anlage

Abbildung 5.27.: Verteilungsdichtefunktion der Verzögerungen

Tabelle 5.17.: Werte der Metriken für die simulative Validierung der Zeitsynchronisation

Szenario MSE MAX

Ohne Kompensation 0,001 47 0,18
Mit Kompensation 0,000 27 0,18

∆y berechnet. In Gleichung 5.2 und in Gleichung 5.3 wird jeweils von yi− ŷi ausgegangen,
wobei ∆y = yi− ŷi gilt. Die Ergebnisse der Berechnung der Metriken sind in Tabelle 5.17
dargestellt.

Mit Kompensation der Ausgangsverzögerung ist die Differenz ∆y kleiner als ohne diese
Kompensation. Dies wird auch durch die in Tabelle 5.17 dargestellten Angaben bestätigt.
Wie zu sehen ist, sind die Werte der absoluten Abweichung gleich. Die Werte der mittleren
quadratischen Abweichung sind deutlich niedriger.

Wie in Abbildung 5.28 zu sehen, bleibt auch mit Berücksichtigung der Ausgangsverzö-
gerung ein Fehler. Durch Gleichung 4.15 werden günstige Wertepaare für den Vergleich der
physischen und der simulierten Anlage bestimmt. Jedoch sind die Ausgänge des physischen
Systems nur zu bestimmten Zeitpunkten verfügbar, basierend auf der Datenerfassungs-
komponente. Es können Zeitpunkte berechnet werden, an denen keine Daten vorliegen.
In diesem Fall muss das nächste verfügbare Datum genutzt werden. Daraus entsteht ein
Fehler. Zudem wird durch Gleichung 4.15 ein durchschnittlicher für alle Vergleiche zu

79

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5. Validierung

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0,1

0,12

0,14

0,16

0,18

0,2

Zeit in s

∆y Ohne Kompensation von ∆o
∆y Mit Kompensation von ∆o

Abbildung 5.28.: ∆y ohne Kompensation (o) und mit Kompensation (x)

verwendender Wert berechnet.

80

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

5.8. Auswertung der Validierung

5.8. Auswertung der Validierung
Anhand der Validierung an den drei technischen Systemen wird ersichtlich, dass eine be-
triebsparallele Simulation erfolgreich mit einer physischen Anlage synchronisiert werden
kann und dabei weiterhin echtzeitfähig bleibt. Die gezeigten technischen Systeme nut-
zen unterschiedle Signaltypen — wertekontinuierlich, wertediskret und ereignisdiskret.
Dadurch wird die vielfältige Einsetzbarkeit der Zustandssynchronisierung nachgewiesen.
Weiterhin wird am Motorsystem die Nutzung dynamischer Optimierung in Verbindung
mit den Performanceverbesserungen zur genauen und echtzeitfähigen Synchronisierung
gezeigt.

Zudem wird an dem Zylindersystem deutlich, dass für den praktischen Einsatz zwingend
die optionalen Features des FMI Standards zum Export und Import des Zustandes aus
beziehungsweise in die Simulationskomponenten benötigt werden.

81

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

6. Zusammenfassung und Ausblick

6.1. Zusammenfassung

Das Ziel dieser Arbeit war die Beantwortung der wissenschaftlichen Fragestellung aus
Abschnitt 2.1:

”Wie kann der Zustand einer Co-Simulation einer industriellen Anlage, von
der nur die Struktur sowie die Ein- und Ausgänge der einzelnen Simulations-
komponenten, nicht jedoch deren internes Verhalten, bekannt sind, mit der
physischen Anlage synchronisiert werden?”

Aus dieser Fragestellung wurden die in Abschnitt Abschnitt 2.2 gezeigten Punkte ab-
geleitet:

(a) Nutzung von Simulationsmodellen aus der virtuellen Inbetriebnahme

(b) Nutzung von Black-Box Modellen

(c) Ermittlung nicht messbarer Zustände

(d) Synchronisierung von physischer Anlage und simulierter Anlage

Dazu wird zunächst der Stand der Wissenschaft untersucht und diese Arbeit eingeord-
net. Gerade im Zusammenhang mit Industrie 4.0 und digitalen Zwillingen gewinnt aktuell
die betriebsparallele Simulation weiter an Bedeutung. Zudem wird aus der Analyse aktu-
eller Literatur ersichtlich, dass die Synchronisation dieser Simulation mit der physischen
Anlage weiterhin ein offener Punkt ist, für welchen weiterer Forschungsbedarf existiert.
Nur so kann bei Abweichungen zwischen der betriebsparallelen Simulation und der phy-
sischen Anlage, beispielsweise aufgrund von Alterung, ungenauer Parametrierung oder
Änderungen am Prozess, die Simulation aussagefähig bleiben.

Als Grundlage für die weiteren Arbeiten wird anschließend ein formales Modell der Co-
Simulation aufgestellt. Dieses richtet sich nach der Funktionsweise des FMI -Standards,
wie er aktuell für Simulationen in der virtuellen Inbetriebnahme industrieller Anlagen
eingesetzt wird. Zudem wird ein Standard-Algorithmus der Co-Simulation aus diesem
Standard eingeführt. Das Modell der Co-Simulation betrachtet dabei die Simulations-
komponenten als Blackbox, so dass die Punkte (a) und (b) berücksichtigt werden.

82

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

6.1. Zusammenfassung

Der Hauptteil der Arbeit beschäftigt sich darauf aufbauend mit der Entwicklung der Zu-
standssynchronisierung. Im Gegensatz zu bisherigen Ansätzen der Synchronisation kommt
die Zustandssynchronisierung ohne zusätzliche Steuerungskomponenten beziehungsweise
SPS aus. Die Zustandssynchronisierung funktioniert nach dem Prinzip der Rückkopp-
lung des Unterschiedes zwischen betriebsparalleler Simulation und physischer Anlage. Die
Synchronisation wird durch einen Optimierungsalgorithmus auf Basis dieses Unterschieds
online durchgeführt.

Dafür wird zunächst das Optimierungsproblem formal aufgestellt. Dabei kommt eine
dynamische Optimierung zum Einsatz. Dieses Optimierungsproblem wird anschließend
in den Standard-Algorithmus der Co-Simulation eingebettet. Dies geschieht so, dass der
Algorithmus des Co-Simulationsmasters und der Optimierung getrennt sind. Für die Ver-
bindung von Co-Simulationsmaster und Optimierungsalgorithmus wird eine Schnittstelle
definiert. Dadurch ist es möglich, die Optimierung in eine Simulationskomponente auszu-
lagern. Das erlaubt es, bestehende Co-Simulationen mit wenig Aufwand um die Zustands-
synchronisierung zu erweitern.

Optimierer finden durch wiederholtes Auswerten einer Zielfunktion ein Optimum. Dies
bedeutet in diesem Fall die mehrmalige Ausführung der Co-Simulation. Die Echtzeitfä-
higkeit der Zustandssynchronisierung wäre dadurch erschwert. Daher werden weiterhin
Möglichkeiten erarbeitet, mit denen sich die Anzahl der Ausführungen der Co-Simulation
deutlich verringern lassen, ohne dass dies einen Einfluss auf die Funktionsweise der Zu-
standssynchronisierung hat. Zudem werden Aspekte der zeitlichen Synchronisation erläu-
tert.

Die entwickelten Methoden und Algorithmen werden anschließend validiert. Dazu wird
ein Co-Simulationsmasteralgorithmus nach dem FMI -Standard implementiert, welcher
die Zustandssynchronisierung umsetzen kann. Der Optimierer wird als separate Simulati-
onskomponente implementiert, wobei unterschiedliche Optimierungsalgorithmen genutzt
werden.

Das Motorsystem wird zur Validierung am ausführlichsten untersucht. Das Motorsys-
tem besitzt eine hohe Dynamik und reagiert stark auf Änderungen der Parameter. Zudem
wurden alle Simulationskomponenten im Rahmen der Arbeit entwickelt. So können im Ge-
gensatz zu industriell eingesetzten Simulationskomponenten alle notwendigen Funktionen
des FMI Standards, vor allem das Speichern und Zurücksetzens des internen Zustands, ge-
nutzt werden. Aus diesem Grund kann an dem Motorsystem ein großer Teil der Methodik
getestet werden.

Anhand des Motorsystems kann für unterschiedliche Varianten der Einbindung der
Simulationsmodelle und des Optimierers gezeigt werden, dass der Algorithmus der Zu-
standssynchronisierung funktioniert. Verschiedene Varianten — statische Optimierung
ohne Horizont, statische Optimierung über einen zeitlichen Horizont und die dynamische
Optimierung über einen zeitlichen Horizont — werden untersucht. Dabei wird festgestellt,

83

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

6. Zusammenfassung und Ausblick

dass die dynamische Optimierung über einen Horizont von zwei Simulationsschritten die
besten Ergebnisse liefert, sowohl qualitativ als auch in Bezug zu den benötigten Ite-
rationen. Zudem wurde gezeigt, dass die notwendigen Iterationen durch die vorherigen
Betrachtungen zur Echtzeit reduziert werden können. Generell wurde festgestellt, dass
die Simulation des Motorsystems in Echtzeit stattfinden kann.

Das Transportsystem und das Zylindersystem werden als weitere Beispiele der Anwen-
dung der Zustandssynchronisierung untersucht. Die Untersuchung zeigt damit die Ein-
setzbarkeit der Zustandssynchronisierung an unterschiedlichen technischen Systemen und
beantwortet somit den Punkt (d) der wissenschaftlichen Fragestellung. Dabei kann an
dem Transportsystem die Funktionsfähigkeit der Zustandssynchronisierung in Systemen
mit booleschen Signalen und nachrichtenbasierter Kommunikation nachgewiesen werden.

In der Co-Simulation des Zylindersystems werden kommerzielle Simulationskomponen-
ten, wie sie für den industriellen Einsatz finden können, genutzt. Zum einen kann die
Zustandssynchronisierung an einem ereignisbasierten Fall demonstriert werden. Zum an-
deren kann die erfolgreiche Nutzung im Beobachter-Szenario gezeigt werden und erfüllt
somit Punkt (c).

Die zeitliche Synchronisation für betriebsparallele Simulationen wird simulativ durchge-
führt. So kann bestätigt werden, dass die Kompensation der Ausgangsverzögerung bereits
die Qualität des Abgleichs zwischen physischer Anlage und simulierte Anlage verbessern
kann.

Zusammenfassend lässt sich aufgrund der erzielten Ergebnisse feststellen, dass die wis-
senschaftliche Fragestellung in dieser Arbeit positiv beantwortet werden konnte.

6.2. Lessons-Learned

Aus der Umsetzung der Zustandssynchronisierung für die drei Systeme zur Validierung
lassen sich Erkenntnisse für das Vorgehen zur Nutzung der Zustandssynchronisierung
ableiten.

Zunächst ist es angeraten, Messreihen der Anlage aufzuzeichnen. Anhand dieser kann
die Zustandssynchronisierung offline entwickelt werden. So kann die Wahl von u und y

entschieden werden. Dabei können typische Änderungen an Parametern oder Eingängen
eingefügt werden, wie sie im Betrieb der physischen Anlage auftreten können, beispiels-
weise durch Abnutzung, Verschleiß oder Störungen. So kann das funktionieren der Zu-
standssynchronisierung abgestimmt werden.

Dazu können verschiedene Optimierungsalgorithmen getestet werden. Es bietet sich an,
die Implementierung der Zielfunktion von der Implementierung des Optimierungsalgorith-
mus zu trennen, so dass leicht zwischen einer Reihe von Algorithmen umgeschaltet werden
kann. Die Nutzung ableitungsfreier Optimierungsalgorithmen ist sinnvoll, da Simulations-
komponenten keine Ableitungen in der benötigten Form bereitstellen und die Approxi-

84

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

6.3. Ausblick

mation der Ableitung die Performance beeinträchtigen kann. Vor allem bei der Nutzung
der Prädiktion in Zusammenhang dynamischer oder statischer Optimierung kann sich die
Anzahl der zusätzlichen Ausführungen der Simulationskomponenten vervielfachen. Durch
die Nutzung der beschriebenen Ansätze zur Reduzierung der Ausführungen können diese
jedoch zu einem Teil vermieden werden. Daher sollten auch Algorithmen, welche Ablei-
tungen nutzen in Betracht gezogen werden.

Die Zustandssynchronisierung mit Hilfe der dynamischen Optimierung erzielte die bes-
ten Resultate. Durch die Prädiktion ist die Zustandssynchronisierung weniger anfällig
für Schwingungen und Ausreißer in den Messwerten der physischen Anlage. Durch die
Ansätze zur Reduzierung der Anzahl der zusätzlichen Ausführungen können die durch
die dynamische Optimierung anfallenden zusätzlichen Iterationen zu einem großen Teil
ausgeglichen werden.

6.3. Ausblick
Weitere Möglichkeiten der Forschung für die Zustandssynchronisierung ergeben sich durch
die Kombination mit datenbasierten Verfahren und Verfahren, die zur Simulation Surro-
gat Modelle nutzen. Dadurch könnte einerseits die Zustandssynchronisierung beschleunigt
werden. Andererseits wären in solchen Modellen mehr Informationen über das interne
Verhalten vorhanden. Dadurch ließe sich die Zustandssynchronisierung verbessern.

Weiterhin könnten Simulationskomponenten von Herstellern mit Informationen über
das interne Verhalten angereichert werden. Beispielsweise könnte angegeben werden, in
welchen Intervallen eine Simulationskomponente welches Verhalten (z.B. linear, Totzeit
oder Anlaufphase) aufweist.

Neben diesen Verbesserungsmöglichkeiten könnten gerade Methoden der künstlichen
Intelligenz dafür eingesetzt werden, den zu nutzenden Optimierungsalgorithmus auszu-
wählen und zu parametrieren. So wäre es möglich, während verschiedener Phasen des
Anlagenbetriebs die Zielfunktion oder den Optimierungsalgorithmus anzupassen bezie-
hungsweise unterschiedlich zu parametrieren.

Die Validierung der Zustandssynchronisierung sollte als nächster Schritt an komple-
xeren industriellen Anlagen erfolgen, zum Beispiel einer Fertigungszelle. So würden sich
gerade die Echtzeiteigenschaften und die Robustheit weiter untersuchen lassen. Zunächst
müsste für einen industriellen Einsatz eine Implementierung der Zustandssynchronisierung
erfolgen, deren Quelltext weit besser optimiert wird, als es im Rahmen dieser Dissertation
möglich war.

Generell müsste für einen industriellen Einsatz eine breitere Werkzeugunterstützung
für das Erstellen von Simulationskomponenten geschaffen werden, welche die Funktion
des Speicherns und Ladens des internen Zustands unterstützten.

85

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Anhang A

Überblick über die im Rahmen der
Arbeit erstellten Implementierungen

Zur Validierung der Ergebnisse und der Realisierung von Kapitel 5 wurden die folgenden
Komponenten implementiert:

• Verteilter Co-Simulationsmaster für FMI 2.0 für Co-Simulation

• Implementierung Nelder-Mead Algorithmus

• Simulationskomponenten nach FMI 2.0 für Co-Simulation:

– Optimierung mit Anbindung an verschiedene Optimierungsalgorithmen

– CSV

– Motor

– PID Regler

– Ereignis → Zyklisch

– Förderband

– Produkt

• Simulation in Octave für die Validierung der zeitlichen Synchronisation in Ab-
schnitt 5.7

Aufgrund des Umfangs ist der Quelltext nicht in der Arbeit enthalten, kann aber auf
Anfrage zur Verfügung gestellt werden.

86

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Eigene Publikationen

Auris, Felix, Holger Zipper, Michael Brandl, Sebastian Süss und Christian Diedrich (2018).
„Durchgängige Nutzung von Anlagenmodellen“. In: atp magazin 60 (06), S. 90–91.

Riedl, Matthias, Holger Zipper, Marco Meier und Christian Diedrich (2014). „Cyber-
physical systems alter automation architectures“. In: Annual Reviews in Control 38 (1),
S. 123–133.

Strahilov, Anton, Ender Yemenicioglu, Mario Thron, Holger Zipper, Matthias Riedl, Ulf
Zimmermann, Ireneus Wior und Sebastian Süß (2016). „Improving the transition and
modularity of the virtual commissioning workflow with AutomationML“. In: 4th Auto-
mationML User Conference.

Süß, Sebastian, Stephan Magnus, Mario Thron, Holger Zipper, Ulrich Odefey, Victor Fäß-
ler, Anton Strahilov, Adam Kłodowski, Thomas Bär und Christian Diedrich (2016).
„Test methodology for virtual commissioning based on behaviour simulation of produc-
tion systems“. In: Emerging Technologies and Factory Automation (ETFA), 2016 IEEE
21st International Conference on. IEEE, S. 1–9.

Zipper, Holger (2019). „Gateway zur Erfassung, Auswertung und Bereitstellung von Ma-
schinendaten nach den aktuellen Spezifikationen der Plattform Industrie 4.0“. In: 14.
Magdeburger Maschinenbautage MMT, 24.-25.09.2019. Otto-von-Guericke-Universität
Magdeburg.

Zipper, Holger, Felix Auris, Anton Strahilov und Manuel Paul (2018). „Keeping the digital
twin up-to-date—Process monitoring to identify changes in a plant“. In: 2018 IEEE
International Conference on Industrial Technology (ICIT). IEEE, S. 1592–1597.

Zipper, Holger, Alexander Belyaev und Christian Diedrich (2019). „Generische Umsetzung
von Verwaltungsschalen auf Basis der aktuellen Handlungsempfehlungen der Plattform
Industrie 4.0“. In: AUTOMATION VDI-Berichte 2351. VDI Verlag, Düsseldorf, S. 1025–
1043.

Zipper, Holger und Christian Diedrich (2018a). „Communication-delay-caused errors in
process monitoring scenarios“. In: Industrial Technology (ICIT), 2018 19th IEEE Con-
ference on. IEEE.

– (2018b). „Echtzeit-Prozessmonitoring auf Basis standardisierter Simulationsmodelle
und Anlagenbeschreibungen“. In: AUTOMATION VDI-Berichte 2330. VDI Verlag,
Düsseldorf, S. 1131–1141.

87

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Zipper, Holger und Christian Diedrich (2019). „Synchronization of Industrial Plant and
Digital Twin“. In: Emerging Technologies and Factory Automation (ETFA), 2019 IEEE
24st International Conference on. IEEE.

– (2020). „Effiziente Synchronisation einer industriellen Anlage und deren betriebsbeglei-
tender Simulation“. In: 16. Fachtagung Entwurf komplexer Automatisierungssysteme
(EKA).

88

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Literaturverzeichnis

Ashtari Talkhestani, B., Nasser Jazdi, Wolfgang Schlögl und Michael Weyrich (2018).
„A concept in synchronization of virtual production system with real factory based on
anchor-point method“. In: Procedia CIRP 67, S. 13–17.

Ashtari Talkhestani, B., T. Jung, B. Lindemann, N. Sahlab, N. Jazdi, W. Schloegl und
M Weyrich (2019). „An architecture of an Intelligent Digital Twin in a Cyber-Physical
Production System“. In: at - Automatisierungstechnik, Band 67, Heft 9, Seiten 762–782.
issn: ISSN (Print) 0178-2312. doi: https://doi.org/10.1515/auto-2019-0039.
url: https://www.ias.uni-stuttgart.de/dokumente/publikationen/2019_
An_architecture_of_an_Intelligent_Digital_Twin_in_a_Cyber-Physical_
Production_System.pdf.

Auris, Felix, Jessica Fisch, Michael Brandl, Sebastian Süß, Abedalhameed Soubar und
Christian Diedrich (2018). „Enhancing Data-Driven Models with Knowledge from En-
gineering Models in Manufacturing“. In: 2018 IEEE 14th International Conference on
Automation Science and Engineering (CASE). IEEE, S. 653–656.

Bellman, R.E. und S.E. Dreyfus (1962). Applied Dynamic Programming. Princeton Legacy
Library. Princeton University Press.

Bergs, Christoph und Michael Heizmann (2019). „Kombination unterschiedlicher Model-
lierungsansätze für die betriebsbegleitende Simulation industrieller Prozesse“. In: at -
Automatisierungstechnik 67 (3), S. 183–192.

Biesinger, Florian, Davis Meike, Benedikt Kraß und Michael Weyrich (Dez. 2018). „A
Digital Twin for the Production Planning based on Cyber-Physical Systems“. In: 12th
CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP
ICME 2018; Procedia CIRP volume, CIRP ICME’18 proceedings.

Bonilla, Javier, Jose Antonio Carballo, Lidia Roca und Manuel Berenguel (2017). „De-
velopment of an open source multi-platform software tool for parameter estimation
studies in FMI models“. In: Proceedings of the 12th International Modelica Conference,
Prague, Czech Republic, May 15-17, 2017. 132. Linköping University Electronic Press,
S. 683–692.

Bonvini, Marco, Michael Wetter und Michael D Sohn (2014). „An fmi-based framework
for state and parameter estimation“. In: Proceedings of the 10 th International Modelica
Conference; March 10-12; 2014; Lund; Sweden. 096. Linköping University Electronic
Press, S. 647–656.

89

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Botchkarev, Alexei (2018). „Performance metrics (error measures) in machine learning
regression, forecasting and prognostics: Properties and typology“. In: arXiv preprint
arXiv:1809.03006.

Brandenbourger, Benjamin, Milan Vathoopan und Alois Zoitl (2016). „Behavior modeling
of automation components using cross-domain interdependencies“. In: 2016 IEEE 21st
International Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, S. 1–4.

Chan, Rachel und Michael Krauss (2014). „Virtuelle Inbetriebnahme in der Prozessindus-
trie“. In: atp magazin 56 (06), S. 52–57.

Chombart, Patrick (2012). MODELISAR Innovation report. Techn. Ber. Dassault Systè-
mes.

Cristian, Flaviu und Christof Fetzer (1999). „The timed asynchronous distributed system
model“. In: IEEE Transactions on Parallel and Distributed systems 10 (6), S. 642–657.

Damrath, Felix, Anton Strahilov, Thomas Bär und Michael Vielhaber (2015). „Experi-
mental validation of a physics-based simulation approach for pneumatic components
for production systems in the automotive industry“. In: Procedia CIRP 31, S. 35–40.

DOME (2020). https://www.ifak-ts.com/en/pf/ifak-dome/.
Drath, Rainer, Peter Weber und Nicolas Mauser (2008). „Virtuelle Inbetriebnahme —

ein evolutionares Konzept fur die praktische Einfuhrung“. In: AUTOMATION, VDI
Wissensforum GmbH 2032, S. 73.

FMI 2.0 (2014). Functional Mockup Interface for Model Exchange and Co-Simulation 2.0.
Gedda, Sofia, Christian Andersson, Johan Åkesson und Stefan Diehl (2012). „Derivative-

free parameter optimization of functional mock-up units“. In: Proceedings of the 9th
International MODELICA Conference; September 3-5; 2012; Munich; Germany. 076.
Linköping University Electronic Press, S. 819–828.

Glaessgen, Edward H und David Stargel (2012). „The Digital Twin paradigm for future
NASA and US Air Force vehicles“. In: 53rd Struct. Dyn. Mater. Conf. Special Session:
Digital Twin, Honolulu, HI, US, S. 1–14.

Gomes, Cláudio, Casper Thule, David Broman, Peter Gorm Larsen und Hans Vangheluwe
(2017). „Co-simulation: State of the art“. In: arXiv preprint arXiv:1702.00686.

Gough, Brian (2009). GNU scientific library reference manual. Network Theory Ltd.
Gundermann, Julia, Artem Kolesnikov, Morgan Cameron und Torsten Blochwitz (2019).

„The Fault library-A new Modelica library allows for the systematic simulation of non-
nominal system behavior“. In: Proceedings of the 2nd Japanese Modelica Conference
Tokyo, Japan, May 17-18, 2018. 148. Linköping University Electronic Press, S. 161–
168.

Han, Jingqing (2009). „From PID to active disturbance rejection control“. In: IEEE tran-
sactions on Industrial Electronics 56 (3), S. 900–906.

90

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Hanisch, Andre, Juri Tolujew und Thomas Schulze (2005). „Methoden zur Initialisierung
von Online-Simulationsmodellen“. In: Simulationstechnik, ASIM 18, S. 388–393.

Härle, Christian, Mike Barth und Alexander Fay (2018). „Einplatinenrechner als Simula-
tionsplattform“. In: atp magazin 60 (11-12), S. 56–67.

Höme, Stephan (Apr. 2016). „Analytische Modellierung des Zeitverhaltens von verteilten
industriellen Steuerungssystemen“. Diss. Fakultät für Elektrotechnik und Informations-
technik der Otto-von-Guericke-Universität Magdeburg.

Höme, Stephan, Stefan Palis und Christian Diedrich (2014). „Design of communication
systems for networked control system running on PROFINET“. In: Factory Communi-
cation Systems (WFCS), 2014 10th IEEE Workshop on. IEEE, S. 1–8.

Hübner, Christian und Jens Alex (2018). „Digitaler Zwilling im Wassermanagement 4.0“.
In: gwf Wasser|Abwasser 159 (11), S. 50–57.

Hübner, Christian, Nico Suchold und Jens Alex (2018). „Realisierung überlagerter Rege-
lungsfunktionen im Abwassermanagement auf Grundlage von Simulationsmodellen“. In:
AUTOMATION 2018, Seamless Convergence of Automation & IT. VDI Verlag GmbH.

IEEE 1516-2010 (2010). IEEE Standard for Modeling and Simulation (M&S) High Le-
vel Architecture (HLA)– Framework and Rules. New York: Institute of Electrical und
Electronics Engineers. isbn: 978-0-7381-6251-5.

Jung, Tobias, Nasser Jazdi und M. Weyrich (Sep. 2017). „A Survey on Dynamic Simu-
lation of Automation Systems and Components in the Internet of Things“. In: 2017
22nd IEEE International Conference on Emerging Technologies and Factory Automati-
on (ETFA), S. 1–4. isbn: 978-1-5090-6505-9. doi: 10.1109/ETFA.2017.8247770. url:
https://doi.org/10.1109/ETFA.2017.8247770.

Jung, Tobias, Payal Shah und Michael Weyrich (Mai 2018). „Dynamic Co-Simulation of
Internet-of-Things-Components using a Multi-Agent System“. In: 51st CIRP Confe-
rence on Manufacturing Systems, Stockholm. url: https://www.ias.uni-stuttgart.
de/dokumente/publikationen/2018_Dynamic_Co-Simulation_of_Internet-of-
Things-Components_using_a_Multi-Agent-System.pdf.

Kain, Sebastian, Sven Dominka, Martin Merz und Frank Schiller (2009). „Reuse of HiL si-
mulation models in the operation phase of production plants“. In: Industrial Technology,
2009. ICIT 2009. IEEE International Conference on. IEEE, S. 1–6.

Kain, Sebastian und Frank Schiller (2010). „Überwachung und Diagnose mit betriebspar-
allelen Simulationsmethoden“. In: Integrationsaspekte der Simulation: Technik, Organi-
sation und Personal: Karlsruhe, 7. und 8. Oktober 2010 (131), S. 445.

Kampfmann, Rüdiger, Danny Mösch und Nils Menager (2017). „Parameter Estimation
based on FMI“. In: Proceedings of the 12th International Modelica Conference, Prague,
Czech Republic, May 15-17, 2017. 132. Linköping University Electronic Press, S. 313–
319.

91

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Kapp, Ralf (Feb. 2011). „Ein betriebsbegleitendes Fabriksimulationssystem zur durchgän-
gigen Unterstützung der kontinuierlichen Fabrikadaption“. Diss. Universität Stuttgart.

King, Davis E. (2009). „Dlib-ml: A Machine Learning Toolkit“. In: Journal of Machine
Learning Research 10, S. 1755–1758.

Klein, M., B. Maschler, A. Zeller, B. Ashtari Talkhestani, N. Jazdi und M. Weyrich (2019).
„Architektur und Technologiekomponenten eines digitalen Zwillings“. In: VDI-Berichte
Nr. 2351, S. 89–102.

Klettner, Christian, Thomas Tauchnitz, Ulrich Epple, Lars Nothdurft, Christian Diedrich,
Tizian Schröder, Daniel Großmann, Suprateek Banerjee, Michael Krauß, Chris Iatrou
u. a. (2017). „Namur open architecture“. In: atp magazin 59 (01-02), S. 20–37.

Kritzinger, Werner, Matthias Karner, Georg Traar, Jan Henjes und Wilfried Sihn (2018).
„Digital Twin in manufacturing: A categorical literature review and classification“. In:
16th IFAC Symposium on Information Control Problems in Manufacturing INCOM,
IFAC-PapersOnLine 51 (11), S. 1016–1022.

Krumke, S.O. und H. Noltemeier (2012). Graphentheoretische Konzepte und Algorithmen.
Leitfäden der Informatik. Vieweg+Teubner Verlag. isbn: 9783834822642. url: https:
//books.google.de/books?id=njUpBAAAQBAJ.

Kübler, Ralf und Werner Schiehlen (2000). „Two methods of simulator coupling“. In:
Mathematical and computer modelling of dynamical systems 6 (2), S. 93–113.

Lämmle, Beat und Mathias Oppelt (2018). „Virtuelle Inbetriebnahme im Takt“. In: atp
magazin 60 (11-12), S. 90–103.

Lunze, Jan (2008). Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung (Springer-
Lehrbuch). Springer. isbn: 978-3-540-78462-3.

MacKenzie, David (Juli 2010). mkfifo(1) - Linux User’s Manual.
Markus Graube und Leon Urbas, Stephan Hensel und (2018). „Informationsmodelle im

Lebenszyklus“. In: atp magazin 60 (04-05), S. 30–51. issn: 2364-3137. doi: 10.17560/
atp.v60i04-05.2345. url: http://ojs.di-verlag.de/index.php/atp_edition/
article/view/2345.

Melo, Vinı́cius Veloso de und Giovanni Iacca (2014). „A CMA-ES-based 2-stage memetic
framework for solving constrained optimization problems“. In: 2014 IEEE Symposium
on Foundations of Computational Intelligence (FOCI). IEEE, S. 143–150.

Nash, John C, Ravi Varadhan u. a. (2011). „Unifying optimization algorithms to aid
software system users: optimx for R“. In: Journal of Statistical Software 43 (9), S. 1–14.

Negri, Elisa, Luca Fumagalli und Marco Macchi (2017). „A review of the roles of digital
twin in cps-based production systems“. In: Procedia Manufacturing 11, S. 939–948.

Nelder, John A und Roger Mead (1965). „A simplex method for function minimization“.
In: The computer journal 7 (4), S. 308–313.

Nicolae, Maximilian, Stefan Mocanu, Mihai Craciunescu und Radu Dobrescu (2018).
„Framework Architecture for Manufacturing Systems Emulation“. In: 2018 22nd In-

92

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

ternational Conference on System Theory, Control and Computing (ICSTCC). IEEE,
S. 311–316.

Oppelt, Mathias, Mike Barth und Leon Urbas (2015). „The role of simulation within the
life-cycle of a process plant“. In: Results of a global online survey.

Otto, Jens, Birgit Vogel-Heuser und Oliver Niggemann (2018). „Online parameter esti-
mation for cyber-physical production systems based on mixed integer nonlinear pro-
gramming, process mining and black-box optimization techniques“. In: at — Automa-
tisierungstechnik 66 (4), S. 331–343.

Pfeiffer, Marcel (2018). „SMART OPTIMIEREN statt investieren“. In: DIGITAL ENGI-
NEERING Magazin 8 (8), S. 16–17.

Plattform Industrie 4.0 (2019). Die Verwaltungsschale im Detail, von der Idee zum im-
plementierbaren Konzept. Bundesministerium für Wirtschaft und Energie.

Powell, Michael JD (2009). „The BOBYQA algorithm for bound constrained optimization
without derivatives“. In: Cambridge NA Report NA2009/06, University of Cambridge,
Cambridge, S. 26–46.

Puntel Schmidt, Philipp (2017). „Methoden zur simulationsbasierten Absicherung von
Steuerungscode fertigungstechnischer Anlagen“. In:

Putman, Nicholas M, Francisco Maturana, Kira Barton und Dawn M Tilbury (2017).
„Virtual fusion: a hybrid environment for improved commissioning in manufacturing
systems“. In: International Journal of Production Research 55 (21), S. 6254–6265.

Radke, Aaron und Zhiqiang Gao (2006). „A survey of state and disturbance observers for
practitioners“. In: 2006 American Control Conference. IEEE.

Riefenstahl, Ulrich (Jan. 2000). Elektrische Antriebstechnik. Teubner Verlag. isbn:
3519064294. url: https://www.xarg.org/ref/a/3519064294/.

Rodriguez-Guerra, Jorge, Carlos Calleja, Iker Elorza, Ana Maria Macarulla, Aron Pu-
jana und Igor Azurmendi (2019). „A Methodology for Real-Time HiL Validation of
Hydraulic-Press Controllers Based on Novel Modeling Techniques“. In: IEEE Access 7,
S. 110541–110553.

Rosen, Roland, Jens Jäkel, Mike Barth, Oliver Stern, Ronald Schmidt-Vollus, Till Hein-
zerling, Peter Hoffmann, Christoph Richter, Philipp Puntel Schmidt und Christian
Scheifele (2019). „Simulation und Digitaler Zwilling im Engineering und Betrieb au-
tomatisierter Anlagen“. In: VDI-Berichte Nr. 2351, S. 531–546.

Scheifele, Christian, Alexander Verl und Oliver Riedel (2018). „Echtzeit-Co-Simulation
für die Virtuelle Inbetriebnahme“. In: atp magazin 60 (11-12), S. 44–55.

Schluse, Michael, Marc Priggemeyer, Linus Atorf und Juergen Rossmann (2018). „Experi-
mentable digital twins—Streamlining simulation-based systems engineering for industry
4.0“. In: IEEE Transactions on Industrial Informatics 14 (4), S. 1722–1731.

Bochkanov, Sergey (2020). ALGLIB. www.alglib.net.

93

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Tauchnitz, Thomas, Ronny Becker, Christian Diedrich, Tizian Schröder, Daniel Gross-
mann, Suprateek Banerjee, Leon Urbas und Markus Graube (2019). „NOA –– Von
Demonstratoren zu Pilotanwendungen“. In: atp magazin 61 (1–2), S. 44–55.

Vanfretti, Luigi, Maxime Baudette, Achour Amazouz, Tetiana Bogodorova, Tin Rabu-
zin, Jan Lavenius und Francisco José Goméz-López (2016). „RaPId: A modular and
extensible toolbox for parameter estimation of Modelica and FMI compliant models“.
In: SoftwareX 5, S. 144–149.

Vathoopan, Milan, Benjamin Brandenbourger, Amil George und Alois Zoitl (2017).
„Towards an integrated plant engineering process using a data conversion tool for Auto-
mationML“. In: 2017 IEEE International Conference on Industrial Technology (ICIT).
IEEE, S. 1205–1210.

VDI/VDE 3693 Blatt 1 (2016). Virtuelle Inbetriebnahme - Modellarten und Glossar.
VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik.

Vögeli, Desirée, Peter Göhner und Michael Weyrich (2018). „Framework für Agenten-
systeme zur Parallelisierung von simulationsbasierten Entwicklungsaufgaben“. In: 15.
Fachtagung Entwurf komplexer Automatisierungssysteme (EKA).

Wu, Shaohua, KB McAuley und TJ Harris (2011). „Selection of simplified models: II.
Development of a model selection criterion based on mean squared error“. In: The
Canadian Journal of Chemical Engineering 89 (2), S. 325–336.

94

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

I N K O O P E R A T I O N M I T V D I N A C H R I C H T E N

J E T Z T R E I N H Ö R E N U N D K O S T E N F R E I A B O N N I E R E N :
W W W . I N G E N I E U R . D E / P O D C A S T

O H N E P R O T O T Y P G E H T N I C H T S I N S E R I E .
Unser Podcast ist das Werkzeug, mit dem Sie Ihre Karriere in allen Phasen entwickeln –

vom Studium bis zum Chefsessel. Egal, ob Sie Ingenieur*in, Mechatroniker*in oder
Wissenschaftler*in sind: Prototyp begleitet Sie. Alle 14 Tage hören Sie die Redaktion

von INGENIEUR.de und VDI nachrichten im Gespräch mit prominenten Gästen.

PROTO TYP
Karriere-Podcast

Cyan Magenta Yellow Black
Preflight Lx3 am März 15, 2021 | 10:16:04 | 350 mm x 250 mm

L_
21

03
00

_R
ei

he
_0

8_
12

71
_U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 2

L_210300_Reihe_08_1271_Umschlag.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

Fortschritt-Berichte VDIFortschritt-Berichte VDI

Dipl.-Ing. Holger Zipper,
Magdeburg

Nr. 1271Nr. 1271

Mess-,
Steuerungs- und
Regelungstechnik

Reihe 8Reihe 8

Verfahren zur Verfahren zur
Synchronisation Synchronisation
betriebsparallelerbetriebsparalleler
Simulationen Simulationen
durch Online-durch Online-
ParameterschätzungParameterschätzung

Z
ip

pe
r

 S
yn

ch
ro

ni
sa

ti
on

 v
on

 O
nl

in
e-

S
im

ul
at

io
n

S
yn

ch
ro

ni
sa

ti
on

 v
on

 O
nl

in
e-

S
im

ul
at

io
n

R
ei

he
 88

 ·
 N

r.
 1

27
1

12
71

D ie Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-52710827108-3

Cyan Magenta Black
Preflight Lx3 am März 15, 2021 | 10:16:04 | 350 mm x 250 mm

L_
21

03
00

_R
ei

he
_0

8_
12

71
_U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 1

L_210300_Reihe_08_1271_Umschlag.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186271082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:54:13. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186271082

	Cover
	1. Einleitung
	1.1. Motivation
	1.2. Erklärung an einem Beispiel
	1.3. Struktur der Arbeit

	2. Stand der Wissenschaft
	2.1. Überblick
	2.2. Schlussfolgerung
	2.3. Formulierung der wissenschaftlichen Fragestellung

	3. Formale Beschreibung der Blackbox Co-Simulation
	3.1. Einführung Co-Simulation
	3.1.1. Technischer Hintergrund
	3.1.2. Simulationskomponenten
	3.1.3. Co-Simulationsmaster

	3.2. Modell einer Co-Simulation
	3.2.1. Repräsentation einer Co-Simulation als Graph

	3.3. Sequenzdiagramm einer Co-Simulation

	4. Synchronisierungskonzept
	4.1. Prinzip der Zustandssynchronisierung
	4.2. Realisierung der Zustandssynchronisierung mit Hilfe eines Optimierungsalgorithmus
	4.3. Einbetten der Optimierung in den Co-Simulationsmasteralgorithmus
	4.4. Verbesserung der Performance der Zustandssynchronisierung
	4.4.1. Ansatz 1: Unter welchen Bedingungen kann die Ausführung einer Simulationskomponente das Ergebnis der Optimierung beeinflussen?
	4.4.2. Ansatz 2: Unter welchen Bedingungen liefern zwei Ausführungen einer Simulationskomponente das identische Ergebnis?
	4.4.3. Kombination von Ansatz 1 und Ansatz 2
	4.4.4. Anwendung von Ansatz 1 und Ansatz 2

	4.5. Integration der Performanceverbesserungen in den Algorithmus
	4.6. Zeitliche Synchronisierung
	4.7. Diskussion der Methodik

	5. Validierung
	5.1. Umsetzung des Co-Simulationsmasters
	5.2. Simulationskomponente Optimierung
	5.3. Metriken für die Auswertung der Validierung
	5.3.1. Anzahl Iterationen der Simulationskomponenten
	5.3.2. Mittlere quadratische Abweichung
	5.3.3. Maximale absolute Abweichung

	5.4. Wertekontinuierliches System: Motorsystem
	5.4.1. Beschreibung des Systems
	5.4.2. Aufbau der Co-Simulation
	5.4.3. Parametrierung der Simulationsmodelle und der Optimierung
	5.4.4. Formulieren von Szenarien für die Validierung
	5.4.5. Auswertung

	5.5. Hybrides System: Transportsystem
	5.5.1. Beschreibung des Systems
	5.5.2. Aufbau der Co-Simulation
	5.5.3. Parametrierung der Simulationsmodelle und der Optimierung
	5.5.4. Auswertung

	5.6. Hybrides System: Zylindersystem
	5.6.1. Beschreibung des Systems
	5.6.2. Aufbau der Co-Simulation
	5.6.3. Parametrierung der Simulationsmodelle und der Optimierung
	5.6.4. Auswertung

	5.7. Simulative Validierung der zeitlichen Synchronisation
	5.8. Auswertung der Validierung

	6. Zusammenfassung und Ausblick
	6.1. Zusammenfassung
	6.2. Lessons-Learned
	6.3. Ausblick

	Anhang A Überblick über die im Rahmen der Arbeit erstellten Implementierungen
	Eigene Publikationen
	Literaturverzeichnis

