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ZUSAMMENFASSUNG Die Steuerung von Produktions-
prozessen stellt aufgrund der hohen Prozesskomplexitat eine
zentrale Herausforderung fur produzierende Unternehmen dar.
Vor diesem Hintergrund gewinnt die Automatisierung von
Planungs- und Steuerungsaufgaben durch Algorithmen zuneh-
mend an Bedeutung. Methoden des Reinforcement Learning
bieten vielversprechendes Potenzial, um diese Herausforde-
rung zu adressieren. Dieser Beitrag vergleicht Methoden des
Reinforcement Learning mit exakten und metaheuristischen
Algorithmen, um die Einsatzgrenzen und die Konkurrenzféahig-
keit lernbasierter Verfahren im aktuellen Entwicklungsstand zu
bewerten.
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1 Einleitung

Bei der Herstellung von Produkten konnen vielfaltige Faktoren
den Produktionsablauf storen und die Erreichbarkeit von Produk-
tionszielgroflen wie die Liefertermintreue oder die Ressourcen-
auslastung gefiahrden. Aufgabe der Produktionssteuerung ist es,
trotz dieser Storeinfliisse, die effiziente Bearbeitung von Produk-
tionsauftrigen zu erméglichen [1]. Tm Hinblick darauf stellt die
Organisation des Produktionsablaufs fiir produzierende Unter-
nehmen eine zentrale Herausforderung dar. Neben unerwarteten
Ereignissen wie Personal- und Maschinenausfillen miissen unter
anderem Material-, Ressourcenverfiigbarkeiten, Liefertermine und
Instandhaltungsbedarfe beriicksichtigt werden, die sich stets
verindern kénnen. Insbesondere Unternehmen mit einer hohen
Variantenvielfalt und geringen Losgroflen miissen unter solchen
Bedingungen ihre Produktionsabldufe kontinuierlich iitberwachen
und an verdnderte Bedingungen flexibel anpassen.

Vor diesem Hintergrund hat das Bestreben, Planungs- und
Steuerungsaufgaben mithilfe von Algorithmen zu automatisieren,
langjahrigen Bestand in der angewandten Forschung. Im For-
schungsfeld Operations Research wurden in der Vergangenheit
zahlreiche Ansitze fiir die Losung von Maschinenbelegungspro-
blemen prisentiert, die sich allgemein in exakte und approximati-
ve Verfahren einteilen lassen [2]. Dabei gewinnen insbesondere
lernbasierte Verfahren angesichts der technologischen Fortschritte
im Bereich der Halbleitertechnik und der Kiinstlichen Intelligenz
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ABSTRACT Due to the high complexity of processes,
production control represents a key challenge for manufactu-
ring companies. In this regard, the automation of planning

and control tasks using algorithms is becoming increasingly
important. Reinforcement Learning methods offer promising
potential to address these challenges. This article compares
Reinforcement Learning methods with exact and metaheuristic
algorithms in order to evaluate the limits of application and
competitiveness of learning-based methods in their current
state of development.

zunehmend an Bedeutung, da sie die Bestimmung komplexer Ent-
scheidungsstrategien ermdglichen. Fiir das Lernern optimaler
Entscheidungsstrategien im Kontext der Produktionssteuerung
weisen Methoden des Reinforcement Learning (RL) ein vielver-
sprechendes Potenzial auf [3] Im RL lernen Agenten aus der
Interaktion mit einer simulierten Produktionsumgebung, wie zur
Erreichung verschiedenartiger Produktionsziele Auftrige auf Res-
sourcen ideal verteilt werden konnen. Dabei agieren Agenten
nach dem Fehler-Irrtum-Prinzip, indem sie die Wirkung unbe-
kannter Entscheidungsstrategien durch Exploration in einer
simulierten Produktionsumgebung bestimmen und die Erkennt-
nisse in die Steuerung zukiinftiger Verhaltensweisen einfliefen
lassen. Maf3gebend dabei ist die sogenannte Belohnungsfunktion,
die einem Agenten signalisiert, inwiefern eine Entscheidung zur
Erreichung vordefinierter Zielgrofen beitrigt. Positive Lernsigna-
le bestirken einen Agenten in der jeweiligen Verhaltensweise.
Negative Lernsignale fithren hingegen dazu, dass ein Agent
entsprechende Entscheidungen als Handlungsoption abwertet.
Aufgabe eines Agenten ist es, das individuelle Entscheidungs-
verhalten so anzupassen, dass die positiven Lernsignale maximiert
und das zugehorige Optimierungsziel erreicht wird.

Methoden des RL zeichnen sich durch die Fihigkeit aus, gene-
ralisierbare Entscheidungsstrategien fiir komplexe und hochdyna-
mische Produktionssysteme zu approximieren, wihrend exakte
Verfahren infolge des erh6hten Rechenaufwands in ihrer Skalier-
barkeit eingeschrinkt sind. Trotz des Potenzials von RL-Metho-
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Bild 1 Einteilung von Algorithmen zur Lésung von Problemen der Maschinenbelegungsplanung. Grafik: Fraunhofer IPK

den liegen empirische Nachweise fiir deren industriellen Nutzen
lediglich in begrenztem Umfang vor, wodurch Aussagen iiber die
industrielle Anwendbarkeit nur bedingt méglich sind. Um die
Einsatzgrenzen von RL zu bestimmen, benétigt es einen systema-
tischen Vergleich zwischen lernbasierten und konventionellen
Berechnungsverfahren. Ziel des Beitrags ist es, durch die Gegen-
iiberstellung von Berechnungsverfahren die zentralen Unterschei-
dungsmerkmale der Verfahrenskategorien zu identifizieren und
zu charakterisieren. Anhand ausgewihlter Benchmark-Datensétze
werden die Eigenschaften sowie Vor- und Nachteile der jeweili-
gen Berechnungsverfahren bestimmt, die produzierende Unter-
nehmen zur Bewertung des Potenzials von Algorithmen fiir den
Einsatz in der Produktionssteuerung nutzen konnen.

2 Stand der Technik

Algorithmen zur Ldsung von Maschinenbelegungsproblemen
lassen sich wie in Bild 1 dargestellt in exakte, heuristische, meta-
heuristische sowie lernbasierte Verfahren einteilen. Exakte
Berechnungsverfahren zeichnen sich dadurch aus, dass diese das
Finden der optimalen Losung garantieren, sofern ausreichend
Zeit fiir die Berechnung gegeben ist. In dieser Verfahrenskatego-
rie werden Planungsprobleme zumeist als gemischt-ganzzahliges
lineares Optimierungsproblem oder als Optimierungsproblem mit
Nebenbedingungen formuliert. Beide Modellparadigmen nutzen
Baumsuchverfahren wie den Branch-and-Bound-Algorithmus [4],
um den Losungsraum systematisch zu durchsuchen und die
Bestimmung einer optimalen Losung mathematisch abzusichern.
Zentrale Unterschiede bestehen jedoch in der Problemmodellie-
rung sowie im Ablauf und Mechanismus der Suchverfahren. Ein
wesentlicher Nachteil der exakten Berechnungsverfahren ist die
begrenzte Skalierbarkeit. Die Maschinenbelegung beschreibt in
der industriellen Praxis aufgrund der Vielzahl von Auftrigen,
Ressourcen und variablen Einflussfaktoren ein NP-schweres
Planungsproblem, das weder trivial in Nebenbedingungen und
ganzzahligen Variablen zu modellieren noch in akzeptabler Zeit
optimal zu lésen ist. In der Folge beschrinkt sich der Einsatz auf
kleine bis mittlere Probleminstanzen, wobei die Weiterentwick-
lung der Suchverfahren in den vergangenen Jahren die Leistungs-
kapazititen deutlich erhoht haben. Namhafte Vertreter umfassen
kommerzielle Solver wie Cplex [5], Gurobi [6} und CP-SAT von
Google OR Tools [7]. Wihrend Cplex und Gurobi ein gemischt-
ganzzahliges lineares Optimierungsproblem losen, kombiniert
CP-SAT die

Constraint-Programmierung mit verschiedenen
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Techniken wie die boolsche Erfiillbarkeitssuche. Damit kann CP-
SAT effizient zuldssige Losungen fiir komplexe Planungsaufgaben
bestimmen und diese mit fortschreitender Rechenzeit iterativ
verbessern.

Wihrend sich exakte Berechnungsverfahren aufgrund des ex-
ponentiell steigenden Rechenaufwands nur bedingt fiir praxisnahe
Planungsaufgaben eignen, konnen Heuristiken und Metaheuristi-
ken Losungen fiir komplexe Problemstellungen in akzeptabler
Zeit approximieren. Klassische Heuristiken beruhen dabei insbe-
sondere auf problemspezifischen Dispositionsregeln wie First-
In-First-Out oder die Priorisierung nach der kiirzesten Bearbei-
tungszeit [8]. Heuristiken dieser Art konnen interdisziplinires
Doménenwissen integrieren und Losungen in kurzen Berech-
nungszeiten generieren, die jedoch in der Losungsgiite alternati-
ven Berechnungsverfahren zumeist unterlegen sind. Metaheuristi-
ken hingegen kombinieren verschiedene Heuristiken in ein ge-
meinsames Suchverfahren, um Optimierungsprobleme unabhin-
gig von der Problemstruktur effizient zu lésen. Diese Verfahren
lassen sich grundsitzlich in populations- und trajektorienbasierte
Verfahren einteilen, wobei der zentrale Unterschied in der Anzahl
der betrachteten Losungskandidaten besteht [9]. Populations-
basierte Verfahren beginnen die Losungssuche mit einer Menge
von Kandidaten, die mithilfe naturinspirierter Mechanismen wie
Selektion und Mutation iterativ weiterentwickelt werden. Der
bekannteste Vertreter dieser Kategorie ist der
Algorithmus, der in vielfachen Variationen und Kombinationen
mit alternativen Verfahren zur Losung von Planungsproblemen
eingesetzt wird. Trajektorienbasierte Metaheuristiken betrachten

genetische

dementgegen nur einen Losungskandidaten, der unter Verwen-
dung lokaler Suchverfahren in seiner Lgsungsgiite inkrementell
optimiert wird. Relevante Algorithmen umfassen die Tabu-Suche,
Simulated Annealing oder die variable Nachbarschaftssuche. Eine
umfassende Ubersicht zu heuristischen und metaheuristischen
Ansitzen im Kontext der Maschinenbelegungsplanung ist in den
Arbeiten von Chaudry et al. [10] sowie Tiirkyilmaz et al. [11] zu
finden.

Analog zu heuristischen und metaheuristischen Verfahren
lassen sich mithilfe lernbasierter Ansitze Losungen fiir komplexe
Planungsprobleme approximieren. Eine besondere Rolle im Kon-
text der Forschung spielen dabei Methoden des RL, die aufgrund
ihrer Kombination mit Deep Learning Methoden Planungsproble-
me unterschiedlicher Schwierigkeitsgrade naherungsweise 19sen
konnen. Im RL lernt ein Agent durch die Interaktion mit einer
simulierten Umgebung optimale Entscheidungen zu treffen. Der
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Lernsignal R(s, a)

Zustands-
merkmale von
Auftragen und
Ressourcen s € S

Bild 2 Simulationsbasierte Inter-
aktionen eines Agenten im Kon-
text von RL. Grafik: in Anlehnung an
Sutton und Barto [14]

Agent
m(s) = argmaxg Q(s, a)

Aktion a € A(s)
Zuweisung von
Arbeitsvorgangen zu
Ressourcen

Simulierte
Produktionsumgebung

Lernprozess erfolgt iterativ, indem ein Agent wiederholt Ent-
scheidungen trifft, diese ausfithrt und anschliefend durch den
Erhalt einer Belohnung oder Bestrafung eine Riickmeldung iiber
die Giite der getroffenen Entscheidung erhilt. Ziel eines Agenten
ist es, durch die fortlaufende Optimierung der verfolgten Hand-
lungsstrategie die Belohnung iiber die Simulationszeit hinweg zu
maximieren. Obwohl das Training von RL-Modellen in der Regel
mit hohem Aufwand verbunden ist, konnen gut trainierte Model-
le vergleichbare Losungen in kurzen Rechenzeiten wie heuristi-
sche Verfahren erzielen [12]. Algorithmen wie Deep-Q-Networks
(DQN) und Actor-Critic gehdren zu den fortschrittlichsten
Ansitzen zur Losung komplexer Entscheidungsstrategien, die auf-
grund ihres Potenzials fiir den Einsatz in der Produktionssteue-
rung zunehmend in den Fokus wissenschaftlicher Untersuchun-
gen riicken [13, 14].

3 Reinforcement Learning
3.1 Markov Entscheidungsprozess

Methoden des RL 16sen formal das Problem eines Markov-
Entscheidungsprozesses (MEP) [14]. Bild 2 zeigt die Grund-
struktur eines MEP, in dem ein Agent durch die Auswahl und
Ausfithrung einer Entscheidung mit einer Umgebung in Interakti-
on tritt. Eine Entscheidungssituation wird durch den Zustand s
bestimmt, in dem sich ein Agent zum Zeitpunkt t befindet. Der
Zustand s enthilt jene Merkmale, die den Zustand einer Produk-
tionsumgebung charakterisieren und relevant fiir die Bestimmung
eines Belegungsplans sind. Dies umfasst Auftragsmerkmale wie
Prozesszeiten und Maschinenalternativen pro Arbeitsvorgang
sowie auch die Merkmale der am Produktionsprozess beteiligten
Ressourcen. Zu Letzteren gehdren insbesondere leistungsbestim-
mende Merkmale wie die Auslastung der Arbeitssysteme.

In jedem Zustand s wihlt ein Agent eine Aktion a auf Grund-
lage seiner Entscheidungsstrategie m(s) aus. Der Aktionsraum
A(s) bezeichnet dabei die Menge aller Aktionen, die von einem
Agenten in einem Zustand s ausfithrbar sind. Im Fall der Produk-
tionssteuerung kann der Aktionsraum A(s) durch die Menge aller
zuldssigen Zuweisungsmdoglichkeiten von Arbeitsvorgingen zu
Produktionsressourcen beschrieben werden. Nach Ausfithrung
einer Aktion a in der simulierten Produktionsumgebung erhalt
ein Agent ein Lernsignal durch die Belohnungsfunktion R(s, a),
welche die Giite einer getroffenen Entscheidung als skalaren Wert
r ausdriickt. Je hoher der Belohnungswert r, desto grofler der Bei-
trag der getroffenen Entscheidung zur Zielerreichung.

Im RL nutzt ein Agent das Lernsignal der simulierten Produk-
tionsumgebung, um die verfolgte Entscheidungsstrategie 7(s) in-
krementell zu verbessern. Die Entscheidungsstrategie m(s) kann
mithilfe der sogenannten Q-Funktion Q(s, a) bestimmt werden.
Die Q-Funktion besagt, welche kumulative Belohnung ein Agent
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iiber den Verlauf der Simulation erwarten kann, wenn er eine Ak-
tion a im Zustand s ausfiihrt. Damit kann ein Agent fiir einen ge-
gebenen Zustand s die Entscheidung mit dem maximalen Erwar-
tungswert ermitteln, indem er die Q-Werte aller verfiigbaren Ent-
scheidungsoptionen vergleicht und diejenige mit dem Hochstwert
auswihlt. Die Bestimmung einer optimalen Q-Funktion Q* (s, a)
beschreibt die Losung eines MEP. Diese kann in wertebasierten
RL-Methoden sowohl in tabellarischer Form mithilfe stochasti-
scher Aktualisierungsregeln als auch mit Funktionsapproximato-
ren wie tiefen neuronalen Netzen niherungsweise ermittelt wer-
den.

3.2 Modell der Produktionsumgebung

In diesem Beitrag erfolgt das Training der RL-Modelle in einer
simulierten Produktionsumgebung, in der ausschlieflich Produk-
tionsauftrage und Maschinen als planungsrelevante Entititen
betrachtet werden. Ein Produktionsauftrag besteht aus einer
Menge von Arbeitsvorgingen, die entsprechend einer technisch
bedingten Bearbeitungsreihenfolge sind. Jeder
Arbeitsvorgang kann durch eine Maschine oder mehrere Maschi-
nen mit unterschiedlichen Prozesszeiten bearbeitet werden. Im
Beitrag wird die Aufgabe der Produktionssteuerung als Mehrziel-
optimierungsproblem betrachtet. Ziel der Produktionssteuerung
ist es, die mittleren Auftragsdurchlaufzeiten ZDL, zu minimieren
und zugleich die Leistungsdifferenzen aller Produktionsressour-
cen auf einem moglichst hohem Auslastungsniveau A, auszuglei-
chen. Die Belohnungsfunktion R(s, a) setzt sich demzufolge
gemifl Formel 1 aus einem durchlaufzeit- und einem leistungs-

auszufiithren

orientierten Anteil zusammen. Beide Belohnungsterme werden als
normierte Groflen berechnet, wobei hohere Werte einem grofie-
ren Zielerfiillungsgrad entsprechen.

R(s, a) = wzpr Rgp + (1 - wzpr) Ry (1)

Anteil Ryp, formuliert gemif
Formel 2 das Ziel der Durchlaufzeitminimierung als Lernsignal,
indem Belegungspline mit einer mittleren Auftragsdurchlauf-
zeit ZDL,, nahe dem theoretischen Minimum ZDL,;, die hochs-
ten Belohnungswerte erhalten.

Der durchlaufzeitorientierte

ZDL,y — 1

R, =1 - 2
ZDL ZDLrel,max -1 ( )

Hierzu wird das relative Durchlaufzeitverhiltnis ZDL,, nach For-
mel 3 als Quotient der tatsdchlichen und minimalen Auftrags-
durchlaufzeit ausgedriickt. Je grofler das relative Durchlaufzeit-

verhdltnis  ZDL,,, desto mehr weicht die mittlere
Auftragsdurchlaufzeit ZDL,, vom Idealwert ab.

ZDL,,
ZDLy = 75 (3)
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Tabelle 1 Zustandsmerkmale der planungsrelevanten Entitaten.

PRODUKTIONSSTEUERUNG

Planungsrelevante Entitat Zustandsmerkmale

Produktionsauftrag

Produktionsmaschine

Der leistungsorientierte Belohnungsterm R, verfolgt hingegen das
Ziel, Leistungsdifferenzen zu minimieren und die mittlere Auslas-
tung A,, zu maximieren. Hierzu erhilt ein Agent nach Formel 4
fiir Entscheidungen umso groflere Belohnungen, je hoher die
mittlere Auslastung A, der Maschinen und je niedriger die zuge-
horige Standardabweichung G ist.

Ry=A, - Ay Gy (4)

Der differenzbildende Einfluss der Auslastungsstreuung o, wird
iiber den Gewichtsfaktor A, gesteuert, der empirisch zu bestim-
men ist. Wichtig anzumerken ist, dass die Belohnungen nach
Formel 1 nur am Ende eines Simulationsdurchlaufes an einen
Agenten ausgegeben werden, da nur nach Zuweisung aller
Arbeitsvorgiange die Giite eines Belegungsplans ermittelt werden
kann.

Um die Leistungsfihigkeit von Algorithmen systematisch zu
bewerten, wird die Simulationsumgebung dariiber hinaus als
statisch angenommen. In statischen Produktionsumgebungen sind
vor Simulationsbeginn alle Produktionsauftriage, Maschinen sowie
deren Zuweisungsmoglichkeiten bekannt. Wihrend der Simulati-
onszeit treten keine Verdnderungen auf, womit unerwartete Auf-
tragseinginge und Maschinenausfille unberiicksichtigt bleiben.
Zudem werden Riist- und Transportzeiten nicht betrachtet.

Infolge der vereinfachenden Annahmen konzentriert sich die
Zustandsraummodellierung auf die Merkmale, die unter stati-
schen Bedingungen die Zuweisungsentscheidung eines Agenten
beeinflussen. Der Zustand s eines Agenten setzt sich aus den
Merkmalen nach Tabelle 1 zusammen. In jedem Zustand s muss
ein Agent eine Auswahl auf Basis der verfiigbaren Handlungs-
optionen treffen, die durch den Aktionsraum A(s) reprisentiert
werden. Der Aktionsraum A(s) enthilt alle kombinatorischen
Zuweisungsmoglichkeiten, wobei die Menge an Aktionen zu-
standsabhingig durch die Ausfiihrbarkeit von Arbeitsvorgingen
und die Maschinenverfiigbarkeit eingeschrinkt wird.

3.3 Deep-Q-Network

Als Deep-Q-Networks [13] werden wertebasierte RL-Verfah-
ren bezeichnet, die ein tiefes neuronales Netz zur Approximation
der Q-Funktion Q(s, a) und Losung eines MEP verwenden.

Charakteristisch fiir diese Verfahrenskategorie ist die Nutzung
von Experience Replay [15]. Hierbei werden die Erfahrungen
eines Agenten in einem Zwischenspeicher abgelegt und fiir das
Training eines RL-Modells stichprobenartig abgerufen. Jede
Erfahrung wird dabei durch ein Tupel (s, a1, s') bestimmt, dass
den Ubergang von einem Zustand s in den Folgezustand s
beschreibt. Die Aktion a bezeichnet das kausale Ereignis fiir den
Zustandsiibergang, das mit einem Belohnungswert r in seiner
Giite quantifiziert wird. Das Training von neuronalen Netzen auf
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Maschinenindividuelle Prozesszeiten der Arbeitsvorgange
Bearbeitungsstatus der Arbeitsvorgange

Auftragsbestand

Mittelwert und Streuung der Auftragszeit im Bestand
Mittlere Reichweite des Arbeitssystems

Auslastung

Grundlage stochastischer Gradientenverfahren setzt voraus, dass
die verwendeten Daten unabhingig und identisch verteilt sind.
Experience Replay ermoglicht es, durch das Ziehen von Stichpro-
ben aus einem Zwischenspeicher die Korrelation zwischen auf-
einanderfolgenden Zustandstransitionen zu relativieren und das
Modelltraining zu stabilisieren. Eine weitere Mafinahme zur
Stabilisierung des Modelltrainings beschreibt die Verwendung
von Target Networks. Unter einem Target Network wird die
Kopie eines Deep-Q-Networks verstanden, das in periodischen
Intervallen mit den Gewichten des Hauptnetzes aktualisiert wird.

4 Vergleich

Um das Potenzial von RL-Methoden fiir den Einsatz in der
Produktionssteuerung zu bewerten, wurde ein DQN [13] mit
Algorithmen aus dem Stand der Technik verglichen. Die Referen-
zalgorithmen umfassen den CP-SAT Solver [7], die Tabu-Suche
[16], den genetischen Algorithmus NSGA-IT [17] sowie die Parti-
kelschwarmoptimierung [18]. Zur Untersuchung der Algorith-
men wurden ausgewihlte Benchmark-Datensitze Kacem 1 und
Kacem 2 von Kacem et al. [19] verwendet. Als Bewertungskrite-
rien wurden die mittlere Durchlaufzeit ZDL,, die mittlere
Maschinenauslastung A, sowie der Variationskoeffizient der Aus-
lastung CV[A] herangezogen, die auf Basis des erstellten Maschi-
nenbelegungsplans berechnet wurden. Der Variationskoeffizient
CV[A] wird durch das Verhiltnis der Auslastungsstreuung 6, und
der mittleren Auslastung A, bestimmt. Diese Metrik dient als
Maf fiir die Gleichmafiigkeit der Auslastungsverteilung. Je niher
der Variationskoeffizient bei null liegt, desto ausgeglichener sind
die Arbeitsvorginge gemessen an den Prozesszeiten auf die ver-
fiigbaren Produktionsmaschinen verteilt.

Die Modellarchitektur des DQN setzt sich aus einem Encoder
und einem Decoder zusammen. Der Encoder besitzt zwei separa-
te Eingangskanile, iiber welche die Auftrags- und Ressourcen-
merkmale in eine latente Vektorreprisentation transformiert wer-
den. Beide Encoder-Komponenten bestehen aus N, | = 2 Schich-
ten mit jeweils N, , = 128 Neuronen. Die latenten Merkmals-
reprisentationen werden iiber ein Masked-Mean-Pooling Verfah-
ren zusammengefasst, um einen Vektor fester Grofe fiir den De-
coder zu erstellen. Hierbei werden die Mittelwerte tiber diejeni-
gen Elemente gebildet, die im betrachteten Zustand aktiv sind.
Die Aktivitit der Auftragsmerkmale wird iiber die zuweisbaren
Arbeitsvorginge gemifl der technisch bedingten Bearbeitungs-
reihenfolge bestimmt. Bei den Ressourcenmerkmalen ist hingegen
die Verfiigbarkeit der Produktionsmaschinen mafigebend. Mithilfe
des Decoders wird anschliefend die latente Merkmalsreprisenta-
tion zur Bestimmung der Q-Werte genutzt. Der Decoder setzt
sich analog zur Encoder-Architektur aus Ny ; = 2 Schichten mit
jeweils Ny , = 128 Neuronen zusammen, die in der Ausgangs-
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Tabelle 2 Vergleich von exakten, metaheuristischen und lernbasierten Berechnungsverfahren.

I I N N TR R

Algorithmus Metrik Einheit

ZDL,,
Cp-sAT
CVIA]
ZDL,,
Tabu-Suche
CVI[A]
ZDL,,
NSGA-II
CV[A]
ZDL,,
Partikelschwarmoptimierung
CVIA]
ZDL,,
DQON

CVI[A]

schicht in eine separate Q-Komponente pro Produktionsmaschine
iberfithrt werden. Jede Q-Komponente schitzt die Q-Werte aller
Aktionen einer Produktionsmaschine. Fiir das Training des DQN
wurden insgesamt Ns = 500 000 Entscheidungssituationen simu-
liert, im Zwischenspeicher abgelegt und dem Modell in Batch-
Groflen von Ng = 1024 zur Anpassung der Gewichte zugefiihrt.
Die Gewichtsanpassung erfolgt mit einer Lernrate, die {iber den
Trainingsverlauf von o = 0,001 auf o = 0,0002 linear absinkt.
Die Aktualisierung des Target Networks wurde in einem Intervall
von Np = 5000 simulierten Entscheidungssituationen vorgenom-
men. Fir das Modelltraining wurde das Ray RLIib Framework
[20] verwendet. Weitere Hyperparametereinstellungen wurden
von der dort verfiigharen DQN-Implementierung itbernommen.
In Tabelle 2 sind die Auswertungen der untersuchten Algo-
rithmen dargestellt. Die Ergebnisse zeigen, dass der CP-SAT Sol-
ver im Hinblick auf die Durchlaufzeitminimierung und dem
Ausgleich von Leistungsdifferenzen auf einem méglichst hohem
Auslastungsniveau den anderen Verfahren iiberlegen ist. Beson-
ders fiir die kleine Probleminstanz des Kacem 1 Benchmark-
Datensatzes konnte der Solver in nur tg = 6,7 s die optimale
Losung bestimmen. Fiir das Kacem 2 Benchmark konnte jedoch
ein deutlicher Anstieg der Berechnungszeit festgestellt werden,
der auf die erhohte Planungskomplexitit zuriickzufithren ist.
Wihrend das Kacem 1 Benchmark vier Produktionsauftrige und
fiinf Maschinen enthilt, miissen im Kacem 2 Benchmark bereits
zehn Auftrige und sieben Maschinen beriicksichtigt werden. Dem
gegeniiber liefern die untersuchten Metaheuristiken unabhingig
von der Planungskomplexitit Losungen in wenigen Sekunden.
Die Losungsgiite der Tabu-Suche, des NSGA-II und der Partikel-
schwarmoptimierung ist dem CP-SAT Solver jedoch unterlegen.
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12,8 13,6
62,9 95,9
0,243 0,054
18 41,4
53,6 55,4
0,664 0,478
18 21,4
56,8 739
0,122 0,120
13,8 24,3
67,9 772
0,114 0,056
19 35,6
57,3 55,1
0,384 0,654

Wihrend die Leistungsunterschiede beim Kacem 1 Benchmark
noch moderat ausfallen, werden diese beim Kacem 2 Benchmark
infolge der hoheren Planungskomplexitit signifikant. Metaheuris-
tiken haben folglich den Vorteil, dass sie Losungen auch fiir kom-
plexere Problemstellungen konsistent mit kurzen Berechnungszei-
ten bestimmen koénnen. Dieser Vorteil kommt jedoch zu Kosten
der Losungsgiite. Das DQN weist gegeniiber dem CP-SAT eben-
falls deutliche Leistungsdefizite auf. Beim Kacem 1 Benchmark
fallt die mittlere Durchlaufzeit ZDL, des DQN um
AZDL,, = 48,4 % hoher und die mittlere Auslastung A, um
AA, =56 % geringer aus. Der hohere Variationskoeffizient
CV[A] des DQN ldsst zudem eine ungleichmifigere Auslastungs-
verteilung erkennen. Das Leistungsdefizit nimmt bei steigender
Planungskomplexitit signifikant zu, was anhand der Losungsgiite
des Kacem 2 Benchmarks zu erkennen ist. Die Schwichen des
DQN sind insbesondere auf die methodischen Herausforderungen
von RL zuriickzufithren. Methoden des RL erfordern eine anwen-
dungsfallspezifische Modellierung des Zustands-, Aktionsraums
sowie der Belohnungsfunktion, die durch aufwendige Versuche
empirisch zu ermitteln sind. Irrelevante Zustandsmerkmale sowie
ungiinstige Aktionsreprisentationen konnen ein RL-Modell daran
hindern, die Wirkzusammenhinge zwischen den Merkmalen der
Produktionsumgebung und den Auftragszuweisungen korrekt zu
erkennen. Dariiber hinaus stellt die Auswahl einer geeigneten
Modellarchitektur und das stabile Training von tiefen neuronalen
Netzen eine zentrale Herausforderung dar. Eine unzureichende
Abstimmung der Encoder-, der Decoder-Architektur sowie der
Hyperparameter wie Lernrate und Explorationsstrategie kann die
Stabilitit und die Effizienz des zeitaufwendigen Modelltrainings
erheblich beeintrichtigen.
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5 Fazit und Ausblick

Die Untersuchungsergebnisse zeigen, dass DQN im betrachte-
ten Zustand nicht konkurrenzfihig zu etablierten Algorithmen
aus dem Stand der Technik sind. Wihrend die Leistungsunter-
schiede zu Metaheuristiken moderat ausfallen, sind deutliche
Defizite im Hinblick auf die Durchlaufzeit- und Auslastungsopti-
mierung zu erkennen. Nichtsdestotrotz liefern weiterfithrende
wissenschaftliche Untersuchungen Indizien fiir die Leistungs-
fahigkeit von RL-Methoden [21,22]. Um das identifizierte
Potenzial in die praktische Anwendung zu bringen, bedarf es
jedoch weitere Forschung und Entwicklung. Hierzu sind insbe-
sondere erweiterte Modellarchitekturen, wie zum Beispiel Double
DQN oder Dueling DQN Ansitze, und Explorationsstrategien zu
untersuchen, um die Trainingsstabilitit und Konvergenzgeschwin-
digkeit zu erhghen. Dariiber hinaus gilt es, Methoden zur Model-
lierung des Zustandsraums und der Belohnungsfunktion experi-
mentell zu evaluieren. Mithilfe von Methoden des State Repre-
sentation Learning konnen beispielsweise Merkmale der Produk-
tionsumgebung in latente und semantisch aussagekriftige Zu-
standsreprisentationen iiberfiithrt werden, die eine Approximation
optimaler Entscheidungsstrategien unterstiitzen. Ergianzend dazu
konnen Methoden des Inverse Reinforcement Learning verwen-
det werden, um aus beobachtetem Expertenverhalten von
Produktionsplanern die Belohnungsfunktionen fiir Agenten zu
rekonstruieren. Dariiber hinaus riicken Methoden des Multi-
Agent Reinforcement Learning zunehmend in den Fokus der For-
schung, um die Komplexitit des Optimierungsproblems durch
eine Dekomposition des Zustands- und Aktionsraums von Agen-
ten zu reduzieren. Von besonderem Interesse ist dabei das expli-
zite Lernen kooperativer Entscheidungsstrategien, das zur Auf-
losung von Zielkonflikten zwischen autonom agierenden Agenten
beitragen kann. Verfahren dieser Art besitzen das Potenzial, eine
vollstindig dezentrale Steuerung von Produktionsprozessen in
der Zukunft zu erméglichen.
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