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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Automatisierung von Planungs- und Steuerungsaufgaben in der Produktion

Reinforcement Learning  
in der Produktionssteuerung

E. Uhlmann, J. Polte, C. Mühlich

Z U S A M M E N FA S S U N G  Die Steuerung von Produktions-
prozessen stellt aufgrund der hohen Prozesskomplexität eine 
zentrale Herausforderung für produzierende Unternehmen dar. 
Vor diesem Hintergrund gewinnt die Automatisierung von 
 Planungs- und Steuerungsaufgaben durch Algorithmen zuneh-
mend an Bedeutung. Methoden des Reinforcement Learning 
bieten vielversprechendes Potenzial, um diese Herausforde-
rung zu adressieren. Dieser Beitrag vergleicht Methoden des 
Reinforcement Learning mit exakten und metaheuristischen 
Algorithmen, um die Einsatzgrenzen und die Konkurrenzfähig-
keit lernbasierter Verfahren im aktuellen Entwicklungsstand zu 
bewerten.

Reinforcement Learning  
for production control

A B ST R A C T  Due to the high complexity of processes, 
 production control represents a key challenge for manufactu-
ring companies. In this regard, the automation of planning  
and control tasks using algorithms is becoming increasingly 
important. Reinforcement Learning methods offer promising 
potential to address these challenges. This article compares 
Reinforcement Learning methods with exact and metaheuristic 
algorithms in order to evaluate the limits of application and 
competitiveness of learning-based methods in their current 
state of development.

1 Einleitung

Bei der Herstellung von Produkten können vielfältige Faktoren 
den Produktionsablauf stören und die Erreichbarkeit von Produk-
tionszielgrößen wie die Liefertermintreue oder die Ressourcen-
auslastung gefährden. Aufgabe der Produktionssteuerung ist es, 
trotz dieser Störeinflüsse, die effiziente Bearbeitung von Produk-
tionsaufträgen zu ermöglichen [1]. Im Hinblick darauf stellt die 
Organisation des Produktionsablaufs für produzierende Unter-
nehmen eine zentrale Herausforderung dar. Neben unerwarteten 
Ereignissen wie Personal- und Maschinenausfällen müssen unter 
anderem Material-, Ressourcenverfügbarkeiten, Liefertermine und 
Instandhaltungsbedarfe berücksichtigt werden, die sich stets 
 verändern können. Insbesondere Unternehmen mit einer hohen 
Variantenvielfalt und geringen Losgrößen müssen unter solchen 
Bedingungen ihre Produktionsabläufe kontinuierlich überwachen 
und an veränderte Bedingungen flexibel anpassen. 

Vor diesem Hintergrund hat das Bestreben, Planungs- und 
Steuerungsaufgaben mithilfe von Algorithmen zu automatisieren, 
langjährigen Bestand in der angewandten Forschung. Im For-
schungsfeld Operations Research wurden in der Vergangenheit 
zahlreiche Ansätze für die Lösung von Maschinenbelegungspro-
blemen präsentiert, die sich allgemein in exakte und approximati-
ve Verfahren einteilen lassen [2]. Dabei gewinnen insbesondere 
lernbasierte Verfahren angesichts der technologischen Fortschritte 
im Bereich der Halbleitertechnik und der Künstlichen Intelligenz 

zunehmend an Bedeutung, da sie die Bestimmung komplexer Ent-
scheidungsstrategien ermöglichen. Für das Lernern optimaler 
Entscheidungsstrategien im Kontext der Produktionssteuerung 
weisen Methoden des Reinforcement Learning (RL) ein vielver-
sprechendes Potenzial auf [3]. Im RL lernen Agenten aus der 
 Interaktion mit einer simulierten Produktionsumgebung, wie zur 
Erreichung verschiedenartiger Produktionsziele Aufträge auf Res-
sourcen ideal verteilt werden können. Dabei agieren Agenten 
nach dem Fehler-Irrtum-Prinzip, indem sie die Wirkung unbe-
kannter Entscheidungsstrategien durch Exploration in einer 
 simulierten Produktionsumgebung bestimmen und die Erkennt-
nisse in die Steuerung zukünftiger Verhaltensweisen einfließen 
lassen. Maßgebend dabei ist die sogenannte Belohnungsfunktion, 
die einem Agenten signalisiert, inwiefern eine Entscheidung zur 
Erreichung vordefinierter Zielgrößen beiträgt. Positive Lernsigna-
le bestärken einen Agenten in der jeweiligen Verhaltensweise. 
 Negative Lernsignale führen hingegen dazu, dass ein Agent 
 entsprechende Entscheidungen als Handlungsoption abwertet. 
Aufgabe eines Agenten ist es, das individuelle Entscheidungs -
verhalten so anzupassen, dass die positiven Lernsignale maximiert 
und das zugehörige Optimierungsziel erreicht wird.

Methoden des RL zeichnen sich durch die Fähigkeit aus, gene-
ralisierbare Entscheidungsstrategien für komplexe und hochdyna-
mische Produktionssysteme zu approximieren, während exakte 
Verfahren infolge des erhöhten Rechenaufwands in ihrer Skalier-
barkeit eingeschränkt sind. Trotz des Potenzials von RL-Metho-
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den liegen empirische Nachweise für deren industriellen Nutzen 
lediglich in begrenztem Umfang vor, wodurch Aussagen über die 
industrielle Anwendbarkeit nur bedingt möglich sind. Um die 
Einsatzgrenzen von RL zu bestimmen, benötigt es einen systema-
tischen Vergleich zwischen lernbasierten und konventionellen 
 Berechnungsverfahren. Ziel des Beitrags ist es, durch die Gegen-
überstellung von Berechnungsverfahren die zentralen Unterschei-
dungsmerkmale der Verfahrenskategorien zu identifizieren und 
zu charakterisieren. Anhand ausgewählter Benchmark-Datensätze 
werden die Eigenschaften sowie Vor- und Nachteile der jeweili-
gen Berechnungsverfahren bestimmt, die produzierende Unter-
nehmen zur Bewertung des Potenzials von Algorithmen für den 
Einsatz in der Produktionssteuerung nutzen können. 

2 Stand der Technik

Algorithmen zur Lösung von Maschinenbelegungsproblemen 
lassen sich wie in Bild 1 dargestellt in exakte, heuristische, meta-
heuristische sowie lernbasierte Verfahren einteilen. Exakte 
 Berechnungsverfahren zeichnen sich dadurch aus, dass diese das 
Finden der optimalen Lösung garantieren, sofern ausreichend 
Zeit für die Berechnung gegeben ist. In dieser Verfahrenskatego-
rie werden Planungsprobleme zumeist als gemischt-ganzzahliges 
lineares Optimierungsproblem oder als Optimierungsproblem mit 
Nebenbedingungen formuliert. Beide Modellparadigmen nutzen 
Baumsuchverfahren wie den Branch-and-Bound-Algorithmus [4], 
um den Lösungsraum systematisch zu durchsuchen und die 
 Bestimmung einer optimalen Lösung mathematisch abzusichern. 
Zentrale Unterschiede bestehen jedoch in der Problemmodellie-
rung sowie im Ablauf und Mechanismus der Suchverfahren. Ein 
wesentlicher Nachteil der exakten Berechnungsverfahren ist die 
begrenzte Skalierbarkeit. Die Maschinenbelegung beschreibt in 
der industriellen Praxis aufgrund der Vielzahl von Aufträgen, 
Ressourcen und variablen Einflussfaktoren ein NP-schweres 
 Planungsproblem, das weder trivial in Nebenbedingungen und 
ganzzahligen Variablen zu modellieren noch in akzeptabler Zeit 
optimal zu lösen ist. In der Folge beschränkt sich der Einsatz auf 
kleine bis mittlere Probleminstanzen, wobei die Weiterentwick-
lung der Suchverfahren in den vergangenen Jahren die Leistungs-
kapazitäten deutlich erhöht haben. Namhafte Vertreter umfassen 
kommerzielle Solver wie Cplex [5], Gurobi [6] und CP-SAT von 
Google OR Tools [7]. Während Cplex und Gurobi ein gemischt-
ganzzahliges lineares Optimierungsproblem lösen, kombiniert 
CP-SAT die Constraint-Programmierung mit verschiedenen 

Techniken wie die boolsche Erfüllbarkeitssuche. Damit kann CP-
SAT effizient zulässige Lösungen für komplexe Planungsaufgaben 
 bestimmen und diese mit fortschreitender Rechenzeit iterativ 
 verbessern.

Während sich exakte Berechnungsverfahren aufgrund des ex-
ponentiell steigenden Rechenaufwands nur bedingt für praxisnahe 
Planungsaufgaben eignen, können Heuristiken und Metaheuristi-
ken Lösungen für komplexe Problemstellungen in akzeptabler 
Zeit approximieren. Klassische Heuristiken beruhen dabei insbe-
sondere auf problemspezifischen Dispositionsregeln wie First-
 In-First-Out oder die Priorisierung nach der kürzesten Bearbei-
tungszeit [8]. Heuristiken dieser Art können interdisziplinäres 
Domänenwissen integrieren und Lösungen in kurzen Berech-
nungszeiten generieren, die jedoch in der Lösungsgüte alternati-
ven Berechnungsverfahren zumeist unterlegen sind. Metaheuristi-
ken hingegen kombinieren verschiedene Heuristiken in ein ge-
meinsames Suchverfahren, um Optimierungsprobleme unabhän-
gig von der Problemstruktur effizient zu lösen. Diese Verfahren 
lassen sich grundsätzlich in populations- und trajektorienbasierte 
Verfahren einteilen, wobei der zentrale Unterschied in der Anzahl 
der betrachteten Lösungskandidaten besteht [9]. Populations -
basierte Verfahren beginnen die Lösungssuche mit einer Menge 
von Kandidaten, die mithilfe naturinspirierter Mechanismen wie 
Selektion und Mutation iterativ weiterentwickelt werden. Der 
 bekannteste Vertreter dieser Kategorie ist der genetische 
 Algorithmus, der in vielfachen Variationen und Kombinationen 
mit alternativen Verfahren zur Lösung von Planungsproblemen 
eingesetzt wird. Trajektorienbasierte Metaheuristiken betrachten 
dementgegen nur einen Lösungskandidaten, der unter Verwen-
dung lokaler Suchverfahren in seiner Lösungsgüte inkrementell 
optimiert wird. Relevante Algorithmen umfassen die Tabu-Suche, 
Simulated Annealing oder die variable Nachbarschaftssuche. Eine 
umfassende Übersicht zu heuristischen und metaheuristischen 
Ansätzen im Kontext der Maschinenbelegungsplanung ist in den 
Arbeiten von Chaudry et al. [10] sowie Türkyilmaz et al. [11] zu 
finden.

Analog zu heuristischen und metaheuristischen Verfahren 
 lassen sich mithilfe lernbasierter Ansätze Lösungen für komplexe 
Planungsprobleme approximieren. Eine besondere Rolle im Kon-
text der Forschung spielen dabei Methoden des RL, die aufgrund 
ihrer Kombination mit Deep Learning Methoden Planungsproble-
me unterschiedlicher Schwierigkeitsgrade näherungsweise lösen 
können. Im RL lernt ein Agent durch die Interaktion mit einer 
 simulierten Umgebung optimale Entscheidungen zu treffen. Der 

Bild 1 Einteilung von Algorithmen zur Lösung von Problemen der Maschinenbelegungsplanung. Grafik: Fraunhofer IPK 
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Lernprozess erfolgt iterativ, indem ein Agent wiederholt Ent-
scheidungen trifft, diese ausführt und anschließend durch den 
 Erhalt einer Belohnung oder Bestrafung eine Rückmeldung über 
die Güte der getroffenen Entscheidung erhält. Ziel eines Agenten 
ist es, durch die fortlaufende Optimierung der verfolgten Hand-
lungsstrategie die Belohnung über die Simulationszeit hinweg zu 
maximieren. Obwohl das Training von RL-Modellen in der Regel 
mit hohem Aufwand verbunden ist, können gut trainierte Model-
le vergleichbare Lösungen in kurzen Rechenzeiten wie heuristi-
sche Verfahren erzielen [12]. Algorithmen wie Deep-Q-Networks 
(DQN) und Actor-Critic gehören zu den fortschrittlichsten 
 Ansätzen zur Lösung komplexer Entscheidungsstrategien, die auf-
grund ihres Potenzials für den Einsatz in der Produktionssteue-
rung zunehmend in den Fokus wissenschaftlicher Untersuchun-
gen rücken [13, 14]. 

3 Reinforcement Learning
3.1 Markov Entscheidungsprozess

Methoden des RL lösen formal das Problem eines Markov-
Entscheidungsprozesses (MEP) [14]. Bild 2 zeigt die Grund-
struktur eines MEP, in dem ein Agent durch die Auswahl und 
Ausführung einer Entscheidung mit einer Umgebung in Interakti-
on tritt. Eine Entscheidungssituation wird durch den Zustand s 
bestimmt, in dem sich ein Agent zum Zeitpunkt t befindet. Der 
Zustand s enthält jene Merkmale, die den Zustand einer Produk-
tionsumgebung charakterisieren und relevant für die Bestimmung 
eines Belegungsplans sind. Dies umfasst Auftragsmerkmale wie 
Prozesszeiten und Maschinenalternativen pro Arbeitsvorgang 
 sowie auch die Merkmale der am Produktionsprozess beteiligten 
Ressourcen. Zu Letzteren gehören insbesondere leistungsbestim-
mende Merkmale wie die Auslastung der Arbeitssysteme.

In jedem Zustand s wählt ein Agent eine Aktion a auf Grund-
lage seiner Entscheidungsstrategie π(s) aus. Der Aktionsraum 
A(s) bezeichnet dabei die Menge aller Aktionen, die von einem 
Agenten in einem Zustand s ausführbar sind. Im Fall der Produk-
tionssteuerung kann der Aktionsraum A(s) durch die Menge aller 
zulässigen Zuweisungsmöglichkeiten von Arbeitsvorgängen zu 
Produktionsressourcen beschrieben werden. Nach Ausführung 
 einer Aktion a in der simulierten Produktionsumgebung erhält 
ein Agent ein Lernsignal durch die Belohnungsfunktion R(s, a), 
welche die Güte einer getroffenen Entscheidung als skalaren Wert 
r ausdrückt. Je höher der Belohnungswert r, desto größer der Bei-
trag der getroffenen Entscheidung zur Zielerreichung. 

Im RL nutzt ein Agent das Lernsignal der simulierten Produk-
tionsumgebung, um die verfolgte Entscheidungsstrategie π(s) in-
krementell zu verbessern. Die Entscheidungsstrategie π(s) kann 
mithilfe der sogenannten Q-Funktion Q(s, a) bestimmt werden. 
Die Q-Funktion besagt, welche kumulative Belohnung ein Agent 

über den Verlauf der Simulation erwarten kann, wenn er eine Ak-
tion a im Zustand s ausführt. Damit kann ein Agent für einen ge-
gebenen Zustand s die Entscheidung mit dem maximalen Erwar-
tungswert ermitteln, indem er die Q-Werte aller verfügbaren Ent-
scheidungsoptionen vergleicht und diejenige mit dem Höchstwert 
auswählt. Die Bestimmung einer optimalen Q-Funktion Q*(s, a) 
beschreibt die Lösung eines MEP. Diese kann in wertebasierten 
RL-Methoden sowohl in tabellarischer Form mithilfe stochasti-
scher Aktualisierungsregeln als auch mit Funktionsapproximato-
ren wie tiefen neuronalen Netzen näherungsweise ermittelt wer-
den.

3.2 Modell der Produktionsumgebung

In diesem Beitrag erfolgt das Training der RL-Modelle in einer 
simulierten Produktionsumgebung, in der ausschließlich Produk-
tionsaufträge und Maschinen als planungsrelevante Entitäten 
 betrachtet werden. Ein Produktionsauftrag besteht aus einer 
Menge von Arbeitsvorgängen, die entsprechend einer technisch 
bedingten Bearbeitungsreihenfolge auszuführen sind. Jeder 
 Arbeitsvorgang kann durch eine Maschine oder mehrere Maschi-
nen mit unterschiedlichen Prozesszeiten bearbeitet werden. Im 
Beitrag wird die Aufgabe der Produktionssteuerung als Mehrziel-
optimierungsproblem betrachtet. Ziel der Produktionssteuerung 
ist es, die mittleren Auftragsdurchlaufzeiten ZDLm zu minimieren 
und zugleich die Leistungsdifferenzen aller Produktionsressour-
cen auf einem möglichst hohem Auslastungsniveau Am auszuglei-
chen. Die Belohnungsfunktion R(s, a) setzt sich demzufolge 
 gemäß Formel 1 aus einem durchlaufzeit- und einem leistungs-
orientierten Anteil zusammen. Beide Belohnungsterme werden als 
normierte Größen berechnet, wobei höhere Werte einem größe-
ren Zielerfüllungsgrad entsprechen.

R(s, a) = wZDL RZDL + (1 - wZDL) RA (1)

Der durchlaufzeitorientierte Anteil RZDL formuliert gemäß 
 Formel 2 das Ziel der Durchlaufzeitminimierung als Lernsignal, 
indem Belegungspläne mit einer mittleren Auftragsdurchlauf-
zeit ZDLm nahe dem theoretischen Minimum ZDLmin die höchs-
ten Belohnungswerte erhalten.

  (2)

Hierzu wird das relative Durchlaufzeitverhältnis ZDLrel nach For-
mel 3 als Quotient der tatsächlichen und minimalen Auftrags-
durchlaufzeit ausgedrückt. Je größer das relative Durchlaufzeit-
verhältnis ZDLrel, desto mehr weicht die mittlere 
Auftragsdurchlaufzeit ZDLm vom Idealwert ab.

  (3)

Bild 2 Simulationsbasierte Inter-
aktionen eines Agenten im Kon-
text von RL. Grafik: in Anlehnung an 
Sutton und Barto [14]
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Der leistungsorientierte Belohnungsterm RA verfolgt hingegen das 
Ziel, Leistungsdifferenzen zu minimieren und die mittlere Auslas-
tung Am zu maximieren. Hierzu erhält ein Agent nach Formel 4 
für Entscheidungen umso größere Belohnungen, je höher die 
mittlere Auslastung Am der Maschinen und je niedriger die zuge-
hörige Standardabweichung σA ist.

RA = Am - λA σA  (4)

Der differenzbildende Einfluss der Auslastungsstreuung σA wird 
über den Gewichtsfaktor λA gesteuert, der empirisch zu bestim-
men ist. Wichtig anzumerken ist, dass die Belohnungen nach 
 Formel 1 nur am Ende eines Simulationsdurchlaufes an einen 
Agenten ausgegeben werden, da nur nach Zuweisung aller 
 Arbeitsvorgänge die Güte eines Belegungsplans ermittelt werden 
kann.

Um die Leistungsfähigkeit von Algorithmen systematisch zu 
bewerten, wird die Simulationsumgebung darüber hinaus als 
 statisch angenommen. In statischen Produktionsumgebungen sind 
vor Simulationsbeginn alle Produktionsaufträge, Maschinen sowie 
deren Zuweisungsmöglichkeiten bekannt. Während der Simulati-
onszeit treten keine Veränderungen auf, womit unerwartete Auf-
tragseingänge und Maschinenausfälle unberücksichtigt bleiben. 
Zudem werden Rüst- und Transportzeiten nicht betrachtet.

Infolge der vereinfachenden Annahmen konzentriert sich die 
Zustandsraummodellierung auf die Merkmale, die unter stati-
schen Bedingungen die Zuweisungsentscheidung eines Agenten 
beeinflussen. Der Zustand s eines Agenten setzt sich aus den 
Merkmalen nach Tabelle 1 zusammen. In jedem Zustand s muss 
ein Agent eine Auswahl auf Basis der verfügbaren Handlungs -
optionen treffen, die durch den Aktionsraum A(s) repräsentiert 
werden. Der Aktionsraum A(s) enthält alle kombinatorischen 
 Zuweisungsmöglichkeiten, wobei die Menge an Aktionen zu-
standsabhängig durch die Ausführbarkeit von Arbeitsvorgängen 
und die Maschinenverfügbarkeit eingeschränkt wird.

3.3 Deep-Q-Network

Als Deep-Q-Networks [13] werden wertebasierte RL-Verfah-
ren bezeichnet, die ein tiefes neuronales Netz zur Approximation 
der Q-Funktion Q(s, a) und Lösung eines MEP verwenden. 

Charakteristisch für diese Verfahrenskategorie ist die Nutzung 
von Experience Replay [15]. Hierbei werden die Erfahrungen 
 eines Agenten in einem Zwischenspeicher abgelegt und für das 
Training eines RL-Modells stichprobenartig abgerufen. Jede 
 Erfahrung wird dabei durch ein Tupel (s, a, r, s´) bestimmt, dass 
den Übergang von einem Zustand s in den Folgezustand s´ 
 beschreibt. Die Aktion a bezeichnet das kausale Ereignis für den 
Zustandsübergang, das mit einem Belohnungswert r in seiner 
 Güte quantifiziert wird. Das Training von neuronalen Netzen auf 

Grundlage stochastischer Gradientenverfahren setzt voraus, dass 
die verwendeten Daten unabhängig und identisch verteilt sind. 
Experience Replay ermöglicht es, durch das Ziehen von Stichpro-
ben aus einem Zwischenspeicher die Korrelation zwischen auf -
einanderfolgenden Zustandstransitionen zu relativieren und das 
Modelltraining zu stabilisieren. Eine weitere Maßnahme zur 
 Stabilisierung des Modelltrainings beschreibt die Verwendung 
von Target Networks. Unter einem Target Network wird die 
 Kopie  eines Deep-Q-Networks verstanden, das in periodischen 
Inter vallen mit den Gewichten des Hauptnetzes aktualisiert wird.

4 Vergleich

Um das Potenzial von RL-Methoden für den Einsatz in der 
Produktionssteuerung zu bewerten, wurde ein DQN [13] mit 
 Algorithmen aus dem Stand der Technik verglichen. Die Referen-
zalgorithmen umfassen den CP-SAT Solver [7], die Tabu-Suche 
[16], den genetischen Algorithmus NSGA-II [17] sowie die Parti-
kelschwarmoptimierung [18]. Zur Untersuchung der Algorith-
men wurden ausgewählte Benchmark-Datensätze Kacem 1 und 
Kacem 2 von Kacem et al. [19] verwendet. Als Bewertungskrite-
rien wurden die mittlere Durchlaufzeit ZDLm, die mittlere 
 Maschinenauslastung Am sowie der Variationskoeffizient der Aus-
lastung CV[A] herangezogen, die auf Basis des erstellten Maschi-
nenbelegungsplans berechnet wurden. Der Variationskoeffizient 
CV[A] wird durch das Verhältnis der Auslastungsstreuung σA und 
der mittleren Auslastung Am bestimmt. Diese Metrik dient als 
Maß für die Gleichmäßigkeit der Auslastungsverteilung. Je näher 
der Variationskoeffizient bei null liegt, desto ausgeglichener sind 
die Arbeitsvorgänge gemessen an den Prozesszeiten auf die ver-
fügbaren Produktionsmaschinen verteilt.

Die Modellarchitektur des DQN setzt sich aus einem Encoder 
und einem Decoder zusammen. Der Encoder besitzt zwei separa-
te Eingangskanäle, über welche die Auftrags- und Ressourcen-
merkmale in eine latente Vektorrepräsentation transformiert wer-
den. Beide Encoder-Komponenten bestehen aus Ne, l = 2 Schich-
ten mit jeweils Ne, n = 128 Neuronen. Die latenten Merkmals -
repräsentationen werden über ein Masked-Mean-Pooling Verfah-
ren zusammengefasst, um einen Vektor fester Größe für den De-
coder zu erstellen. Hierbei werden die Mittelwerte über diejeni-
gen  Elemente gebildet, die im betrachteten Zustand aktiv sind. 
Die Aktivität der Auftragsmerkmale wird über die zuweisbaren 
 Arbeitsvorgänge gemäß der technisch bedingten Bearbeitungs -
reihenfolge bestimmt. Bei den Ressourcenmerkmalen ist hingegen 
die Verfügbarkeit der Produktionsmaschinen maßgebend. Mithilfe 
des Decoders wird anschließend die latente Merkmalsrepräsenta-
tion zur Bestimmung der Q-Werte genutzt. Der Decoder setzt 
sich analog zur Encoder-Architektur aus Nd, l = 2 Schichten mit 
jeweils Nd, n = 128 Neuronen zusammen, die in der Ausgangs-

Tabelle 1 Zustandsmerkmale der planungsrelevanten Entitäten.

Planungsrelevante Entität

Produktionsauftrag

Produktionsmaschine

Zustandsmerkmale

- Maschinenindividuelle Prozesszeiten der Arbeitsvorgänge
- Bearbeitungsstatus der Arbeitsvorgänge

- Auftragsbestand
- Mittelwert und Streuung der Auftragszeit im Bestand
- Mittlere Reichweite des Arbeitssystems
- Auslastung
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schicht in eine separate Q-Komponente pro Produktionsmaschine 
überführt werden. Jede Q-Komponente schätzt die Q-Werte aller 
Aktionen einer Produktionsmaschine. Für das Training des DQN 
wurden insgesamt Ns = 500 000 Entscheidungssituationen simu-
liert, im Zwischenspeicher abgelegt und dem Modell in Batch-
Größen von NB = 1 024 zur Anpassung der Gewichte zugeführt. 
Die Gewichtsanpassung erfolgt mit einer Lernrate, die über den 
Trainingsverlauf von α = 0,001 auf α = 0,0002 linear absinkt. 
Die Aktualisierung des Target Networks wurde in einem Intervall 
von NT = 5 000 simulierten Entscheidungssituationen vorgenom-
men. Für das Modelltraining wurde das Ray RLlib Framework 
[20] verwendet. Weitere Hyperparametereinstellungen wurden 
von der dort verfügbaren DQN-Implementierung übernommen.

In Tabelle 2 sind die Auswertungen der untersuchten Algo-
rithmen dargestellt. Die Ergebnisse zeigen, dass der CP-SAT Sol-
ver im Hinblick auf die Durchlaufzeitminimierung und dem 
 Ausgleich von Leistungsdifferenzen auf einem möglichst hohem 
Auslastungsniveau den anderen Verfahren überlegen ist. Beson-
ders für die kleine Probleminstanz des Kacem 1 Benchmark-
 Datensatzes konnte der Solver in nur tR = 6,7 s die optimale 
 Lösung bestimmen. Für das Kacem 2 Benchmark konnte jedoch 
ein deutlicher Anstieg der Berechnungszeit festgestellt werden, 
der auf die erhöhte Planungskomplexität zurückzuführen ist. 
Während das Kacem 1 Benchmark vier Produktionsaufträge und 
fünf Maschinen enthält, müssen im Kacem 2 Benchmark bereits 
zehn Aufträge und sieben Maschinen berücksichtigt werden. Dem 
gegenüber liefern die untersuchten Metaheuristiken unabhängig 
von der Planungskomplexität Lösungen in wenigen Sekunden. 
Die Lösungsgüte der Tabu-Suche, des NSGA-II und der Partikel-
schwarmoptimierung ist dem CP-SAT Solver jedoch unterlegen. 

Während die Leistungsunterschiede beim Kacem 1 Benchmark 
noch moderat ausfallen, werden diese beim Kacem 2 Benchmark 
infolge der höheren Planungskomplexität signifikant. Metaheuris-
tiken haben folglich den Vorteil, dass sie Lösungen auch für kom-
plexere Problemstellungen konsistent mit kurzen Berechnungszei-
ten bestimmen können. Dieser Vorteil kommt jedoch zu Kosten 
der Lösungsgüte. Das DQN weist gegenüber dem CP-SAT eben-
falls deutliche Leistungsdefizite auf. Beim Kacem 1 Benchmark 
fällt die mittlere Durchlaufzeit ZDLm des DQN um 
ΔZDLm = 48,4 % höher und die mittlere Auslastung Am um 
ΔAm = 5,6 % geringer aus. Der höhere Variationskoeffizient 
CV[A] des DQN lässt zudem eine ungleichmäßigere Auslastungs-
verteilung erkennen. Das Leistungsdefizit nimmt bei steigender 
Planungskomplexität signifikant zu, was anhand der Lösungsgüte 
des Kacem 2 Benchmarks zu erkennen ist. Die Schwächen des 
DQN sind insbesondere auf die methodischen Herausforderungen 
von RL zurückzuführen. Methoden des RL erfordern eine anwen-
dungsfallspezifische Modellierung des Zustands-, Aktionsraums 
sowie der Belohnungsfunktion, die durch aufwendige Versuche 
empirisch zu ermitteln sind. Irrelevante Zustandsmerkmale sowie 
ungünstige Aktionsrepräsentationen können ein RL-Modell daran 
hindern, die Wirkzusammenhänge zwischen den Merkmalen der 
Produktionsumgebung und den Auftragszuweisungen korrekt zu 
erkennen. Darüber hinaus stellt die Auswahl einer geeigneten 
Modellarchitektur und das stabile Training von tiefen neuronalen 
Netzen eine zentrale Herausforderung dar. Eine unzureichende 
Abstimmung der Encoder-, der Decoder-Architektur sowie der 
Hyperparameter wie Lernrate und Explorationsstrategie kann die 
Stabilität und die Effizienz des zeitaufwendigen Modelltrainings 
erheblich beeinträchtigen.

Tabelle 2 Vergleich von exakten, metaheuristischen und lernbasierten Berechnungsverfahren. 

Benchmark

Algorithmus

CP-SAT

Tabu-Suche

NSGA-II

Partikelschwarmoptimierung

DQN

Metrik

ZDLm

Am

CV[A]

ZDLm

Am

CV[A]

ZDLm

Am

CV[A]

ZDLm

Am

CV[A]

ZDLm

Am

CV[A]

Einheit

[-]

[%]

[-]

[-]

[%]

[-]

[-]

[%]

[-]

[-]

[%]

[-]

[-]

[%]

[-]

Kacem 1

12,8

62,9

0,243

18

53,6

0,664

18

56,8

0,122

13,8

67,9

0,114

19

57,3

0,384

Kacem 2

13,6

95,9

0,054

41,4

55,4

0,478

21,4

73,9

0,120

24,3

77,2

0,056

35,6

55,1

0,654
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5 Fazit und Ausblick

Die Untersuchungsergebnisse zeigen, dass DQN im betrachte-
ten Zustand nicht konkurrenzfähig zu etablierten Algorithmen 
aus dem Stand der Technik sind. Während die Leistungsunter-
schiede zu Metaheuristiken moderat ausfallen, sind deutliche 
 Defizite im Hinblick auf die Durchlaufzeit- und Auslastungsopti-
mierung zu erkennen. Nichtsdestotrotz liefern weiterführende 
wissenschaftliche Untersuchungen Indizien für die Leistungs -
fähigkeit von RL-Methoden [21, 22]. Um das identifizierte 
 Potenzial in die praktische Anwendung zu bringen, bedarf es 
 jedoch weitere Forschung und Entwicklung. Hierzu sind insbe-
sondere erweiterte Modellarchitekturen, wie zum Beispiel Double 
DQN oder Dueling DQN Ansätze, und Explorationsstrategien zu 
untersuchen, um die Trainingsstabilität und Konvergenzgeschwin-
digkeit zu erhöhen. Darüber hinaus gilt es, Methoden zur Model-
lierung des Zustandsraums und der Belohnungsfunktion experi-
mentell zu evaluieren. Mithilfe von Methoden des State Repre-
sentation Learning können beispielsweise Merkmale der Produk-
tionsumgebung in latente und semantisch aussagekräftige Zu-
standsrepräsentationen überführt werden, die eine Approximation 
optimaler Entscheidungsstrategien unterstützen. Ergänzend dazu 
können Methoden des Inverse Reinforcement Learning verwen-
det werden, um aus beobachtetem Expertenverhalten von 
 Produktionsplanern die Belohnungsfunktionen für Agenten zu 
rekonstruieren. Darüber hinaus rücken Methoden des Multi-
Agent Reinforcement Learning zunehmend in den Fokus der For-
schung, um die Komplexität des Optimierungsproblems durch 
 eine Dekomposition des Zustands- und Aktionsraums von Agen-
ten zu reduzieren. Von besonderem Interesse ist dabei das expli-
zite Lernen kooperativer Entscheidungsstrategien, das zur Auf -
lösung von Zielkonflikten zwischen autonom agierenden Agenten 
beitragen kann. Verfahren dieser Art besitzen das Potenzial, eine 
vollständig dezentrale Steuerung von Produktionsprozessen in 
der Zukunft zu ermöglichen.
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