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VIII

Notation

The notation and operators that are used throughout this thesis are defined here. Note the
definitions are based on the Cartesian coordinate system with base vectors �ei, i = 1, 2, 3. All the
operators and variables will be defined when they appear for the first time.

Tensors

A, a Scalar value
�a = ai �ei First order tensor (vector)

∼S = Sij �ei ⊗ �ej Second order tensor

∼C = Cijkl �ei ⊗ �ej ⊗ �ek ⊗ �el Fourth order tensors

Matrices

a Local element single column matrix
a Global single column matrix
A Local element matrix
A Global matrix

Mathematical tensor operations

�u ⊗ �v = ui vj �ei ⊗ �ej Dyadic product

∼S · ∼F = Sij Fij Inner, scalar or dot product

∼S ∼F = Sij Fjk �ei ⊗ �ek Tensor product

∼S
T = Sij �ej ⊗ �ei Transposed tensor

∼S
−1 Inverse of a tensor

det ∼S Determinant of a tensor
div Divergence operator
grad Gradient operator
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IX

Abstract

The finite cell method (FCM) is a combination of the fictitious domain approach and high-order
finite elements. Thanks to the fictitious domain approach, the task of the mesh generation in
the FCM is drastically simplified as compared to the standard finite element method, where
boundary-fitted meshes have to be employed. Moreover, due to applying high-order approaches,
with the FCM it is possible to obtain high convergence rates similar to those of high-order finite
element methods. These two main characteristics make the FCM a viable tool for the numerical
analysis of problems in solid mechanics where the mesh generation is the main bottleneck of
the simulation – for instance regarding structures consisting of highly heterogeneous materials,
foam-like materials, sandwich plates, or composites which may exhibit debonding, delamination
or fiber breakage due to a loading. The FCM’s interesting properties do however come with
some numerical challenges. This thesis is concerned with the study of some of these challenges,
and it investigates possible approaches to overcome them.

The first challenge that is addressed in this thesis is the task of performing numerical integra-
tion. In the scope of the FCM, we commonly have to compute integrals with discontinuous

integrands. Such integrals, unfortunately, cannot be accurately computed with standard quadra-
ture rules. To overcome this issue, we will introduce and study different numerical integration
schemes, particularly the adaptive integration method and the moment fitting approach. We will
discuss the algorithms and characteristics of each of these approaches and show that the proposed
methods enable us to efficiently and reliably compute the corresponding integrals for 1D, 2D and
3D problems. The second concern of this thesis is the local enrichment in the context of the

FCM. The local enrichment is required for problems including discontinuities or singularities,
for which a degradation of the convergence rate of the FCM is to be expected. An example for
such a situation is the case of a problem that involves material interfaces, which is one of our
focal points in this thesis. To avoid such drawbacks, we will propose two high-order enrichment
strategies based on the hp-d approach and the partition of unity method. Based on several nu-
merical examples, the proposed local enrichment strategies will be examined in 1D, 2D, and 3D
in order to point out the advantages and disadvantages of each method. We will show that if the
local enrichment is performed properly in the FCM, it is possible to obtain an accurate represen-
tation of the displacements and stresses and to retain the high convergence rate of the method.
Finally, the application of the finite cell method will be extended to the simulation of wave prop-

agation problems. To this end, we will propose a novel approach based on the combination of
the FCM and spectral elements. Here, the main focus will be on the issue of the mass lumping
when the fictitious domain method is applied as well as on the aspect of efficiently employing an
explicit time-integration algorithm such as, for instance, the central difference method. We will
show that the proposed approach, which is referred to as the spectral cell method, offers a very
fast and novel technique with a high convergence rate for the simulation of wave propagation
problems of structures obeying complicated geometries.
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X

Zusammentfassung

Die Finite-Cell-Methode (FCM) basiert auf einer Kombination der Fictitious-Domain-Methode
mit finiten Elementen hoher Ordnung. Im Vergleich zur Finite-Elemente-Methode, welche
oberflächen-angepasste Netze erfordert, wird die Netzgenerierung durch die Verwendung eines
fiktiven Gebiets erheblich vereinfacht. Des Weiteren ermöglicht die Verwendung von Ansätzen
hoher Ordnung hohe Konvergenzraten, ähnlich denen der Finite-Elemente-Methode hoher Ord-
nung. Aufgrund dieser beiden Hauptmerkmale ist die FCM als eine effiziente Methode für die
numerische Analyse von Problemen im Bereich der Festkörpermechanik anzusehen, bei denen
die Netzgenerierung die größte Herausforderung für die Simulation darstellt. Ein Beispiel hierfür
sind Probleme mit stark heterogenen Materialien, schaumartige Materialien sowie Sandwichplat-
ten oder Verbundwerkstoffe, bei denen Belastungen zu Delamination oder Faserbrüchen führen
können. Die vorteilhaften Eigenschaften der FCM bringen allerdings auch numerische Heraus-
forderungen mit sich. Im Rahmen dieser Arbeit werden einige dieser Herausforderungen näher
erläutert sowie verschiedene Lösungsansätze vorgestellt.

Zuerst wird dabei auf die numerische Integration eingegangen. Die wesentliche Herausforderung
ist hierbei die Berechnung von Integralen mit diskontinuierlichem Integrand. Solche In-
tegrale lassen sich üblicherweise nicht effizient mit herkömmlichen Quadratur-Regeln berech-
nen. Um dieses Problem zu lösen, werden in diesem Zusammenhang verschiedene numerische
Integrationsverfahren vorgestellt und untersucht, wobei vor allem auf die adaptive Gauß-
Quadratur und die Moment-Fitting-Methode eingegangen wird. Die Algorithmen und Eigen-
schaften der einzelnen Ansätze werden diskutiert, um zu zeigen, dass die vorgestellten Meth-
oden es ermöglichen, die entsprechenden Integrale für 1D-, 2D- und 3D-Probleme effizient
und zuverlässig zu berechnen. Der zweite Schwerpunkt dieser Arbeit liegt auf der lokalen

Anreicherung in der FCM. Die lokale Anreicherung ist in Problemstellungen erforderlich,
die Diskontinuitäten oder Singularitäten beinhalten, die in der FCM die Konvergenzrate re-
duzieren. Ein Beispiel hierfür sind Probleme, bei denen Materialgrenzflächen auftreten, was
gleichsam einer der Schwerpunkte dieser Arbeit ist. Um diese Herausforderung zu lösen, wer-
den zwei Anreicherungsstrategien höherer Ordnung vorgestellt, welche auf dem hp-d Ansatz
sowie der Partition-of-Unity-Methode basieren. Anhand verschiedener numerischer Beispiele
werden die vorgeschlagenen lokalen Anreicherungsstrategien in 1D, 2D und 3D untersucht, um
die Vor- und Nachteile der einzelnen Methoden aufzuzeigen. Es wird gezeigt, dass durch eine
geeignete lokale Anreicherung eine genaue Berechnung der Verschiebungen und Spannungen
ermöglicht wird, und somit die hohe Konvergenzrate erhalten bleibt. Abschließend wird die
Finite-Cell-Methode auf die Simulation von Wellenausbreitungsproblemen angewendet. Zu
diesem Zweck wird ein neuer Ansatz vorgestellt, der auf einer Kombination der FCM mit spek-
tralen Elementen basiert. Hierbei liegt der Schwerpunkt auf dem Mass-Lumping unter Verwen-
dung der Fictitious-Domain-Methode sowie auf dem effizienten Einsatz eines expliziten Zeit-
integrationsalgorithmus, wie z.B. des zentralen Differenzverfahrens. Es wird gezeigt, dass der
vorgestellte Ansatz, die Spectral-Cell-Methode, eine sehr schnelle und innovativ Methode ist,
die bei der Simulation von Wellenausbreitungsproblemen in geometrisch komplexen Strukturen
zu hohen Konvergenzraten führt.
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1

Chapter 1

Introduction

1.1 Motivation

The standard finite element method (FEM) is surely a widely applied numerical approach for
solving boundary value problems. In this method, the geometry of the problem under investiga-
tion is discretized with the help of a mesh. Then, the governing equations are approximated on
the resulting smaller domains, which are referred to as the elements. The elements are usually
triangles or quadrilaterals in 2D, and tetrahedra or hexahedra in 3D. The resulting accuracy of an
analysis performed using the FEM therefore generally depends on the accuracy of the employed
geometrical discretization and the accuracy of the applied approximation of the primary vari-
ables on the element level. The accuracy of the geometrical discretization is controlled by the
number of the elements in the mesh and the applied mapping functions. That is, the elements are
boundary-fitted – and they either provide a low-order (i.e. where the elements are straight-sided),
or a high-order (i.e. where the elements can have curved boundaries) description of the geome-
try. The geometry representation can therefore be improved by employing more elements with
smaller sizes or by choosing elements with a better approximation of the curved boundaries. In
many cases, obtaining such meshes is straightforward – especially for 2D problems. For some
simple applications, it should even be possible to perform such a task in a fully automatic man-
ner. There are several commercial software and non-commercial packages for this purpose; for
instance, see [1–4, 13, 160, 161].

Unfortunately, however, there are situations in which the drawing up of an appropriate mesh
for a finite element analysis is not feasible or requires a lot of effort. Examples of such prob-
lems include structures that obey very complicated geometries, such as structures with highly
heterogeneous materials, foam-like materials, sandwich plates, or composites which may exhibit
debonding, delamination or fiber breakage due to a loading. Just to give an impression of the
complexity of the geometry of such problems, Fig. 1.1 [86] shows different foam-like structures
with different pore per inch (ppi) configurations. There is a significant need for methods to ana-
lyze these types of structure, as they have recently attracted a lot of interest in different industrial
areas, such as aviation and aerospace, automobiles, maritime and environmental applications,
as well as household supplies. The reason why these structures have become so popular is that
they exhibit excellent manufacturing and maintenance abilities – and they are also light-weight,
feature high strength-to-weight and stiffness-to-weight ratios and, furthermore, have a good ab-
sorption ability. Nevertheless, from the numerical point of view, it is very challenging to perform
a finite element analysis on such structures, mostly because generating proper boundary-fitted
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(a) 10 ppi (b) 20 ppi (c) 30 ppi

Figure 1.1: An example of foam-like materials with different pore sizes [86].

meshes for them is usually burdensome and very labor-intensive. Another problem is that re-
solving all geometrical features of these structures with geometrically conforming finite element
meshes may result in a numerical model with a huge number of degrees of freedom, which could
be prohibitive to solve. If the aspect of interest is the dynamic simulation of the aforementioned
structures under high frequency loadings – which falls into the category of wave propagation
problems – the situation reaches an entirely new level, which is significantly more cumbersome
from the perspective of numerical simulation. Possible and important applications in this field
include structural health monitoring (SHM) [79], quantitative ultrasound (QUS) [111], the active
control of vibrations and noise [78] or crack detection by monitoring heat generation induced
by mechanical loadings at the tip of cracks [17], to name a few. Take the SHM, for instance, a
well-known technology for estimating the location and the severity of flaws in structures before
the defect reaches failure level. The modeling obviously plays a key role – both in obtaining a
clear understanding of the process as well as in establishing an optimal measurement procedure.
In the SHM, it is necessary to employ signals that include very high frequency contents in order
to be able to detect small-scale flaws. Due to the presence of very short wavelengths at high
frequencies, it is accordingly essential to employ very small element sizes in the FEM model.
This task becomes even more challenging when the structure under examination is composed
of anisotropic and heterogeneous materials. Another example of a complicated mesh genera-
tion is when the geometry undergoes noticeable changes during the simulation, for example in
optimization processes or in the numerical analysis of cracks in weld joints on large supporting
structures. An example of a topology optimization process of a structure under certain constrains
and loadings is depicted in Fig. 1.2, just to show another example [41, 137]. Generally for such
cases, it is the mesh updating, the mesh distortion, and the re-meshing that are to be seen as the
main bottlenecks of the simulation when applying the standard FEM. The meshing step in these
problems requires a lot of input from an experienced user, and it may take up about 80% of the
whole computational time devoted for the simulation [44].

In order to overcome the aforementioned difficulties and obtain an appropriate, robust, and
reliable numerical tool to perform numerical simulations on such problems, several techniques
have been developed during the last decades. Most of them are attempts to simplify the mesh
generation of the FEM. One class of these approaches are the mesh-free methods, in which the
idea of using a mesh for the geometrical discretization is dropped entirely. Instead, the governing
equations are discretized on a set of discrete points [28, 30, 54, 55, 82, 115]. Since the points can
move freely in the solution domain, the resulting approach is capable of simulating problems
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Clamped

Pressure

(a) Initial geometry (b) 10 optimization steps (c) 30 optimization steps

Figure 1.2: An example of a topology optimization process [41, 137].

with complicated geometries and large deformations. Unfortunately, however, these methods
are usually computationally very expensive, especially for problems in structural analysis [72].
This drawback makes them less attractive as compared to other alternative approaches for the
aforementioned problems.

In another attempt to alleviate the difficulties of the mesh generation, a class of techniques has
been developed in which the domain of interest is still discretized with the help of a mesh – but
without the requirement that the mesh has to conform to the internal boundaries. Approaches like
the partition of unity method (PUM) [24, 122], the generalized finite element method (GFEM)
[53, 165, 166], and the eXtended finite element method (XFEM) [27, 125] fall in this category.
In these methods, geometrical boundaries are usually resolved by applying a conforming mesh,
while local features such as cracks, jumps, holes, interfaces, or singularities, are resolved by
employing specially designed shape functions which resemble the local feature of interest.

Alike to the methods based on the partition of unity, a successful approach to reduce meshing
difficulties of the standard FEM is to employ the fictitious domain method – also referred to as
the immersed boundary method [33, 77, 142, 143, 152, 153]. In methods based on this approach,
the complex geometry of the problem is replaced by a simpler domain that contains the original
geometry. The resulting bigger domain, which is usually referred to as the extended domain, can
be discretized with a mesh more easily than the original geometry, due to its simpler shape. In
the resulting mesh, the applied elements do not necessarily conform to the geometry, and they
only represent domains on which the shape functions of the finite elements are defined and the
finite element computations are carried out. One of the successful methods based on the fictitious
domain approach is the finite cell method (FCM) which employs high-order shape functions on
the resulting meshes of the extended domain [63, 136]. Thanks to the simple mesh generation
of the FCM due to applying the fictitious domain approach and its high convergence rate similar
to the high-order FEM, the FCM has been successfully applied to several problems such as
the homogenization of cellular and foamed materials [66, 85, 86, 88], geometrically nonlinear
problems [155, 157], optimization problems [37, 137], multi-material problems [98, 99, 101],
contact simulation [34, 35, 105], elastoplastic problems [15, 16], and multi-fields problems [181,
183].

From among the aforementioned methods to overcome obstacles in generating suitable meshes
for the standard FEM, our focus in this thesis will be on the FCM, its challenges and its appli-
cations. The reason is that (although the FCM features expedient mesh generation possibilities)
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its simplicity comes at the cost of some numerical challenges – which are, for instance, the
numerical integration of elements that are cut by the boundary [14, 63, 130, 180], applying the
boundary conditions [103, 149, 157], capturing weak discontinuities and singularities [156, 181],
or difficulties in applying iterative solvers due to commonly ill-conditioned stiffness matrices
[26, 87, 110]. Although many efforts have been devoted to overcome these challenges, there is
still much room to improve this method and to make it more robust and more efficient. In addi-
tion, the FCM is a rather new and young approach as compared to the FEM, and therefore there
is a great interest to extend and study the performance of this method in different applications.
With all these points in mind, the scopes of this thesis are as follows.

1.2 Scope and outline of this work
• Part one: In the first part of this thesis, the main focus is on the numerical behavior of

the FCM, its challenges and the possible remedies to overcome some of these challenges.
To this end, we start off by explaining the idea of the FCM and by deriving the governing
equations in Chapter 2. We will emphasize the similarities and differences of the FEM
and the FCM. We will also discuss the numerical challenges of performing a simulation
with the FCM. In Chapter 3, we will then focus on the issue of numerical integration

in the FCM. The main issue in this chapter will be to reliably and efficiently compute
integrals with discontinuous integrands which occur in an analysis based on the FCM.
To answer this question, we will employ and further develop the adaptive quadtree- and
octree-based integration [14, 130]. We will also propose a novel integration approach
based on the moment fitting method [127, 129, 167]. Several numerical examples in 2D
and 3D will be given, emphasizing the advantages and disadvantages of each numerical
integration method. In Chapter 4, we will study the local enrichment of the FCM, which
might be needed in the scope of problems including discontinuities or singularities. We
will investigate the performance of the FCM in simulations of problems including material
interfaces, showing that the local enrichment is able to ensure a high convergence rate for
the FCM. The main idea of the proposed local enrichment strategy is to locally extend the
Ansatz of the FCM with some specially designed shape functions that resemble the local
phenomenon of interest. These special shape functions are introduced into the Ansatz
with the help of either the partition of unity method [24, 122] or the hp-d method [62, 106,
144, 146]. Several versions of these methods (based on low- and high-order discretization
techniques) will be discussed, and the performance of each method will be examined.

• Part two: In the second part of this thesis, we will extend the application of the FCM to
wave propagation problems. In Chapter 5, we will thus propose the spectral cell method

(SCM), which is based on the FCM – borrowing ideas from the spectral element method
[104, 120, 138, 148]. We will thoroughly examine the numerical behavior of the proposed
approach, such as the h- and p-refinement of the method, its convergence behavior, and its
computational expenditure in 2D and 3D.

Finally, in Chapter 6, we will summarize the results and findings of this thesis and also suggest
further research possibilities with the FCM.
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Chapter 2

Finite cell method for problems in
solid mechanics

In this chapter, we focus on the basics of the finite cell method (FCM) such as the governing
equations, the mesh generation and the challenges of the method. To this end, we start off by
briefly explaining the formulation of the standard FEM and its extension to the FCM. Then, we
explain the advantages of employing the FCM as well as the numerical challenges related to
the method. To finish off this chapter, we present several numerical examples to point out the
performance of the FCM as compared to the standard FEM. The mathematical formulation given
here is closely related to the work of [63, 93, 136, 170].

2.1 The strong and weak form of the governing
equations

In this thesis, we deal with the numerical simulation of problems in structural analysis. Thus,
in order to explain the governing equations, let us consider a problem of linear elasticity in 3D,
defined on a physical domain Ω. For the sake of simplicity, Fig. 2.1 shows the geometry in
2D. The governing equations for such a problem – without considering the effects of viscous

Ω

�̂
T

∂ΩD

∂ΩN

��f b

Figure 2.1: A physical domain with the corresponding boundary conditions.

damping – are as follows

div ∼σ + �f b = ρ �̈u on Ω ×
]
0, t̂
[

�u = �̂u on ∂ΩD ×
]
0, t̂
[

∼σ �n = �̂
T on ∂ΩN ×

]
0, t̂
[ (2.1)
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6 2 Finite cell method for problems in solid mechanics

where ∼σ is the stress tensor, �f b denotes the vector of body force per unit volume, �u and �̈u are
respectively the displacement and the acceleration vector, ρ denotes the density of the body, �̂u

and �̂
T are the prescribed displacement and traction on the Dirichlet ∂ΩD and Neumann ∂ΩN

boundaries, respectively, and �n is the outward unit normal vector. The stresses are connected to
the strains with the generalized Hooke’s law

∼σ = ∼C∼ε

∼ε = 1
2
(
grad �u + gradT�u

) (2.2)

where ∼ε is the strain tensor and ∼C is the fourth-order elasticity tensor. These equations are defined
along with the following initial conditions,

�u(�x, 0) = �u0 �x ∈ Ω
�̇u(�x, 0) = �̇u0 �x ∈ Ω

(2.3)

where �u0 and �̇u0 are the initial displacement and velocity vector, respectively. Note that the
single and double dots over a variable define, respectively, the first and second order derivatives
of that variable with respect to the time. In addition, Ω×]0, t̂[ means that the expression is valid
for every �x ∈ Ω and t ∈]0, t̂[, which is an open time interval of length t̂ > 0. These sets of
equations are called the strong form of the balance of linear momentum. We usually convert the
strong form to the weak form, stated as [93]

Weak form of the balance of linear momentum

Given �f b, �̂u, �̂
T , �u0 and �̇u0, find �u ∈ St, t ∈

[
0, t̂
]

such that for all δ�u ∈ V

(ρ �̈u, δ�u) + B(�u, δ�u) = F(δ�u) ,

(ρ �u(0), δ�u) = (ρ �u0, δ�u) ,

(ρ �̇u(0), δ�u) = (ρ �̇u0, δ�u) .

(2.4)

Here, (ρ �̈u, δ�u), B(�u, δ�u) and F(δ�u) are defined as

(ρ �̈u, δ�u) :=
∫
Ω

ρ �̈u · δ�u dΩ , (2.5a)

B(�u, δ�u) :=
∫
Ω

∼σ · δ∼ε dΩ , (2.5b)

F(δ�u) :=
∫
Ω

�f b · δ�u dΩ +
∫

∂ΩN

�̂
T · δ�u dΓ . (2.5c)

where (ρ �̈u, δ�u) is the virtual work of inertia forces, B(�u, δ�u) is the virtual work of internal
forces, and F(δ�u) is the virtual work of external forces. In (2.4), St is the space of admissible
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2.2 The finite element method 7

displacements or the trial space which consists of functions with a specific level of smoothness
where all the members of this space satisfy �u = �̂u on ∂ΩD as

St :=
{
�u(·, t) | �u(�x, t) = �̂u(�x, t), �x ∈ ∂ΩD, �u(·, t) ∈ H1(Ω)

}
(2.6)

and V is the space of admissible virtual displacement functions or the test space where each
member of this space vanishes at the Dirichlet boundaries, i.e. for each �u ∈ V , �u = 0 on ∂ΩD.
It is to be noted that the trial space depends on the time due to the time-dependent Dirichlet
boundary conditions, whereas the test space has no dependency to the time. In engineering
applications, it is often difficult to solve Eq. (2.4) analytically. The finite element method is a
successful numerical approach when trying to find a solution (usually an approximate solution)
that satisfies the governing equation in the weak form. We will briefly explain this method in the
following.

2.2 The finite element method
In practice – i.e. in the scope of a computer implementation – it is impractical to find the solution
to (2.4) in the space St because it includes an infinite number of possible functions. So for the
sake of simplification in the FEM, we restrict the search for the solution to a smaller and finite
dimensional space Sh

t ⊂ St. In other words, we are looking for an approximate solution to the
weak form in the finite-element sense as uFE, leading to

Semi-discrete Galerkin formulation of the balance of linear momentum

Given f b, û, T̂, u0 and u̇0, find uFE ∈ Sh
t , such that for all δu ∈ Vh

(ρ üFE, δu) + B(uFE, δu) = F(δu) ,

(ρ u(0), δu) = (ρ u0, δu) ,

(ρ u̇(0), δu) = (ρ u̇0, δu) ,

(2.7)

where uFE is a single column matrix containing the discretized form of the displacement vector
�u. Several assumptions are made in order to approximate the solution and define the space Sh

t .
First, it is assumed that the solution domain can be partitioned into a number of finite elements
ne as

Ω ≈ Ωh =
ne⋃

e=1
Ωe , (2.8)

where Ωh is an approximate description of the physical domain and Ωe is the element domain.
Note that we used an approximation symbol since the elements cannot necessarily capture the
curved boundaries of the body exactly. The elements that are employed to partition the physical
domain can be, for instance, triangles or quadrilaterals in 2D and tetrahedra or hexahedra in 3D.
Along with the elements, a mapping function Qe is defined as well. It maps the element local
coordinates ξ on the reference domain � to the element global coordinates x on the physical
domain Ωe as

�x ⇒ x = Qe(ξ) . (2.9)
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Figure 2.2: Local and global coordinates for a hexahedral element.

For instance, Fig. 2.2 shows the corresponding coordinates for a hexahedral element. The next
step in defining the space Sh

t is to assume that the solution can be approximated on each element
with the help of shape functions N as

uFE =
∑
i∈D

Nidi(t) = Nd , (2.10)

where vector d denotes the discrete unknowns or the vector of degrees of freedom D. Please
note that the degrees of freedom are time-dependent, whereas the shape functions are usually
only functions of space. For the sake of simplicity, the shape functions are usually chosen to
be polynomials – such as Lagrange polynomials [25, 93, 184], integrated Legendre polynomials,
also known as the hierarchical shape functions [170, 171], or B-splines and NURBS1 [44, 90, 94]
that are employed in the isogeometric analysis. Unless stated otherwise, the hierarchical shape
function is applied throughout this thesis.

Based on the mentioned approximations, the space Sh
t is identified by the number of finite el-

ements ne employed in partitioning the domain of interest, the polynomial degree of the shape
functions p, and the mapping functions associated to each element Qe. In other words, the space
Sh

t is defined as

Sh
t := {uFE(·, t) | uFE ∈ St, uFE(Qe) ∈ Pp, e = 1, 2, . . . , ne} , (2.11)

where Pp is the polynomial space of order p. By applying the Bubnov-Galerkin approach – i.e.
employing the same approximation for δu as uFE – and taking advantage of the symmetry of the
stress and strain tensors and also employing the Voigt notation as

∼σ ⇐⇒ σ =
[
σ11 σ22 σ33 σ12 σ23 σ13

]T
,

∼ε ⇐⇒ ε =
[
ε11 ε22 ε33 γ12 γ23 γ13

]T
,

(2.12)

we deduce the discretized version of the strains as

ε = LNd = Bd ,

δε = LNδd = Bδd,
(2.13)

1Non-uniform rational B-splines
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where L is the standard strain-displacement operator defined as

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

0 ∂

∂y
0

0 0 ∂

∂z
∂

∂y

∂

∂x
0

0 ∂

∂z

∂

∂y
∂

∂z
0 ∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.14)

and B = LN is the strain-displacement matrix. Taking into account the assumptions made to
construct the space Sh

t , the finite element solution is obtained by solving the following system
of ordinary differential equations

Semi-discrete equation of motion in matrix form

Given f(t), t ∈
]
0, t̂
[
, find d, t ∈

]
0, t̂
[
, such that

Md̈(t) + Kd(t) = f(t) t ∈
]
0, t̂
[

,

d(0) = d0 ,

ḋ(0) = ḋ0 ,

(2.15)

where M is the global mass matrix, K is the global stiffness matrix, d and f are, respectively, the
global vector of unknowns and the global load vector in matrix notation. The global mass matrix,
stiffness matrix, and the load vector are the result of assembling the corresponding element
matrices as

M =
ne

A
i=1

M e ,

K =
ne

A
i=1

Ke ,

f =
ne

A
i=1

f e ,

(2.16)

where the element mass matrix M e, the element stiffness matrix Ke, and the element load vector
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10 2 Finite cell method for problems in solid mechanics

f e are given as

M e =
∫

Ωe

ρ NTN dΩ ,

Ke =
∫

Ωe

BTDB dΩ ,

f e =
∫

Ωe

NTf b dΩ +
∫

Γe,N

NTT̂ dΓ .

(2.17)

Here, D is the elasticity matrix for isotropic linear-elastic materials. The semi-discrete equation
of motion (2.15) is a coupled system of second-order ordinary differential equations which needs
to be integrated in time. We will discuss the question of temporal discretization in Chapter 5.

2.3 Mesh generation and the finite cell method

As mentioned before, we need a proper geometrically conforming mesh that discretizes the do-
main of interest in order to construct the space Sh

t . Nevertheless, there are many applications
for which it is very challenging or even impossible to obtain meshes like this. Examples for ap-
plications are mentioned in Chapter 1. In order to simplify the task of generating geometrically
conforming meshes, we can apply the idea of the fictitious domain method as shown in Fig. 2.3
for a 2D configuration [33, 77, 142, 143, 152, 153]. Based on this method, the physical domain
of interest Ω is embedded in a larger fictitious domain Ωex \ Ω, resulting in the extended domain
Ωex. The main characteristic of the extended domain is its simple boundary, which allows for a
straightforward, fast, and utterly simple mesh generation. Since the resulting mesh will not nec-
essarily conform to the geometry, an indicator function α(�x) needs to be defined to account for
the geometry properly and accurately on the extended domain. The indicator function specifies
whether a point of interest happens to be located in the physical domain

α(�x) =
{

1 ∀�x ∈ Ω
α0 = 10−q ∀�x ∈ Ωex \ Ω , (2.18)

where �x is the location of the point of interest. Note that α0 should be zero, yet, for numerical
reasons, it is often set to a very small value by choosing the exponent q in the range of 4 to 15.
The indicator function can be defined for a variety of geometrical representations, for instance
for voxel-based models that are obtained directly from quantitative computer tomography scans

Ω Ωex \ Ω Ωex�̂
T

∂ΩD

∂ΩN

�̂
T

∂ΩD

∂ΩN

+ = ⇒

Figure 2.3: The idea of the fictitious domain method.
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2.3 Mesh generation and the finite cell method 11

(qCT-scans), or B-rep2 models with triangulated surfaces, i.e. STL3 format, which are available
in almost all CAD software products [63, 65].

When the fictitious domain approach is applied in the context of the FEM, the next task is to
transform the weak form of balance of linear momentum given in Eq. (2.4) from the physical do-
main to the extended domain. As can be seen from Fig. 2.3, the extended domain is an extension
of the physical domain, and, accordingly, the weak form of equilibrium defined on the extended
domain is also an extension of the weak form defined on the physical domain. The key point
here is that all the material properties of the fictitious domain are considered to be zero, and it is
assumed that the fictitious domain cannot bear any sort of loading either. The weak form on the
extended domain is therefore stated as

Weak form of the balance of linear momentum on the extended domain

Given α, �f b, �̂u, �̂
T , �u0 and �̇u0, find �u ∈ St, t ∈

[
0, t̂
]

such that for all δ�u ∈ V

(α ρ �̈u, δ�u) + Bex(�u, δ�u) = F ex(δ�u) ,

(α ρ �u(0), δ�u) = (α ρ �u0, δ�u) ,

(α ρ �̇u(0), δ�u) = (α ρ �̇u0, δ�u) ,

(2.19)

where

(α ρ �̈u, δ�u) =
∫

Ωex

α ρ �̈u · δ�u dΩ =
∫
Ω

ρ �̈u · δ�u dΩ +
∫

Ωex\Ω

α0 ρ �̈u · δ�u dΩ

≈ (ρ �̈u, δ�u)
(2.20)

Bex(�u, δ�u) =
∫

Ωex

α ∼σ · δ∼ε dΩ =
∫
Ω

∼σ · δ∼ε dΩ +
∫

Ωex\Ω

α0 ∼σ · δ∼ε dΩ

≈ B(�u, δ�u)
(2.21)

F ex(δ�u) =
∫

Ωex

α �f b · δ�u dΩ +
∫

∂ΩN

�̂
T · δ�u dΓ =

∫
Ω

�f b · δ�u dΩ +
∫

Ωex\Ω

α0 �f b · δ�u dΩ +
∫

∂ΩN

�̂
T · δ�u dΓ

≈ F(δ�u)
(2.22)

It is to be noted that in Eqs. (2.20)–(2.22) we take advantage of the indicator function α to define
the weak form on the extended domain. Consequently, the extended weak form is only identical
to the original weak form if α0 = 0 in the fictitious domain. In addition, we assume that the
boundaries of the fictitious domain are traction free.

Next, likewise to the standard FEM, we try to find an approximate solution to the extended
weak form by looking into a smaller space Sh

t ⊂ St. Recall that, in order to define the approx-
imation space Sh

t , we need to introduce the mesh, the shape functions, and the corresponding
2Boundary-representation
3Standard Triangulation Language
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Figure 2.4: Local and global coordinates for a hexahedral cell.

mapping functions, see Eq. (2.11). In the scope of the fictitious domain method, the boundary
of the extended domain is very simple, which is why we can readily discretize the domain with
the help of any type of elements, for instance by applying Cartesian meshes; see Fig. 2.3. In
other words, we can apply structured or unstructured meshes where the resulting elements do
not necessarily conform to the physical domain. As a result, the elements are allowed to contain
geometrical features, e.g. holes or material interfaces, and they can be cut by the geometrical
boundaries. To emphasize the fact that the elements in this approach do not necessarily represent
the physical boundary, we refer to them as cells. Cells that are fully outside the physical domain
are discarded – so we are left with cells that are either completely inside the physical domain or
with cells that are cut by the boundary of the physical domain. Without loss of generality, we
only focus on the structured meshes based on Cartesian grids. In this case the resulting mapping
function is simple, and it obeys a constant Jacobian in each cell. For instance, for a hexahedral
cell as depicted in Fig. 2.4, the mapping function Qc which maps the cell local coordinates on
the standard domain � to the cell global coordinate on the physical domain Ωc is defined as

�x ⇒ x = Qc(ξ) =

⎡
⎢⎢⎣
x1 + 1

2(1 + ξ)hx

y1 + 1
2(1 + η)hy

z1 + 1
2(1 + ζ)hz

⎤
⎥⎥⎦ (2.23)

where hx, hy, and hz are the cell size with respect to the global direction x, y, and z, respectively.
As a result of such a mapping, the Jacobian of the transformation is simply computed as

J c = gradTQc(ξ, η, ζ) = 1
2

⎡
⎢⎣hx 0 0

0 hy 0
0 0 hz

⎤
⎥⎦ . (2.24)

One of the advantages of a simple mapping is that it allows an exact numerical integration of the
unbroken cells matrices. We will discuss this issue in detail in Chapter 3.

Concerning the shape functions defined on the cells, different choices are possible. In that re-
gard, one possible option is to employ low-order shape functions together with a local averaging
of the material properties in a cut cell, see, for instance, [74, 95]. However, methods of this kind

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


2.3 Mesh generation and the finite cell method 13

did not attract a lot of interest because they often lack accuracy and exhibit a non-monotonic
convergence behavior. A more promising alternative is to employ high-order approximations,
which is the main idea of the approach the finite cell method (FCM) that combines the fictitious
domain method together with high-order finite elements [63, 136]. The FCM bears several sim-
ilarities with the standard FEM. For instance, the displacement approximation in this method is
defined similar to Eq. (2.10) as

uFCM =
∑
i∈D

Nidi(t) = Nd . (2.25)

Applying the approximation (2.25) yields cell matrices that are very similar to the ones of the
standard FEM, as

M c =
∫
Ωc

α ρ NTN dΩ ,

Kc =
∫
Ωc

BTα DB dΩ ,

f c =
∫
Ωc

NTα f b dΩ +
∫

Γc,N

NTT̂ dΓ ,

(2.26)

which in turn leads to an equation system with the same structure as Eq. (2.15). Thanks to these
similarities, it is possible to readily take advantage of an existing high-order FEM code and adjust
it to the FCM. Several variations of the FCM based on the type of high-order shape functions
can be found in the literature. Parvizian et al. [136] and Düster et al. [63] introduced the p-
version of the FCM employing the hierarchic shape functions based on the integrated Legendre
polynomials. They were able to show that it is possible to obtain high convergence rates – up to
an exponential rate of convergence – with this method, provided that there is neither a singularity
nor a material interface in the domain of interest, i.e. the solution is smooth enough. Schillinger
et al. [154, 157] and Ruess et al. [149] applied the B-spline version of the FCM. Joulaian et
al. and Duczek et al. [56, 57, 96, 97] applied the spectral version of the FCM to simulate wave
propagation problems. This variation of the FCM will be discussed thoroughly in Chapter 5.
Regardless of the selection of the shape functions, it has been shown that the FCM is capable
of achieving convergence rates very similar to that of the high-order FEM [45]. Before showing
some of the applications of the FCM in Section 2.5, we will first address some of the numerical
properties of this method in the next section.
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14 2 Finite cell method for problems in solid mechanics

2.4 Numerical challenges of the finite cell method

With a simple mesh generation and capability of providing high convergence rates, the FCM is
a viable tool for problems in solid mechanics involving complicated geometries. These interest-
ing properties, however, come at the price of several numerical difficulties that we should take
into account when applying the FCM. We will summarize some of the main challenges in the
following.

2.4.1 Fast algorithms to introduce the indicator function

In the FCM, the geometry of the problem is not resolved by the mesh, but is captured during
the numerical integration of the (discretized) weak form. To obtain an efficient computation, we
therefore need to provide a fast algorithm to introduce the indicator function α. That is, in the
scope of the numerical integration, we need to find out whether an integration point happens to be
inside the physical domain. To this end, several types of geometric models, such as voxel models
[63, 65, 177, 179, 180], B-rep models (STL format) [65] or implicit representations [63, 136, 145]
can be of interest. The voxel models, which are direct descriptions of the geometry, are usually
obtained directly from quantitative computer tomography scans (qCT-scans) or X-ray images.
These models consist of a uniform grid subdividing the geometry of interest into nx × ny × nz

voxels. The voxel models are usually geometrically complicated, which is why it is often quite
challenging to obtain a proper conforming mesh for them. To simplify the meshing process, we
may employ the voxel-based finite element method where each voxel in the model is converted
into an element [113]. The main problem with this approach is that the resolution of the voxel
model dictates the number of elements in the corresponding FE model. Alternatively, we may
employ the FCM, which allows to obtain an excellent computational efficiency when working
with this type of geometry representations [86, 137, 179, 180]. Since the mesh does not conform
to the geometry in the scope of the FCM, it is possible to use different resolutions for each
of them, allowing for full control over the computational expenditure. With the voxel models,
it is also very easy to define the indicator function. To this end, we can employ the soft kill
method, where the value of α in each voxel ranges from α0 to 1, or the hard kill criterion,
where α is either α0 or 1 in each voxel [137]. Employing voxel models in the FCM does not
only facilitate the task of conducting the inside/outside test, but also allows to pre-integrate the
stiffness or mass matrix of the cells [179, 180], thus enabling a fast simulation. The B-rep
models are based on a surface description of the body under consideration. In order to evaluate
the indicator function in this case, we can convert the B-rep models to the corresponding voxel
models by applying the procedure suggested in [63, 177]. Alternatively, we can perform the
inside/outside test based on a ray-tracing algorithm as proposed in [32]. With the aid of such an
algorithm, the FCM turns out to be suitable for a wide range of engineering models, as shown in
[65, 147]. The implicit representation is also a very interesting way of introducing the geometry
and, correspondingly, the indicator function. This kind of geometry representation does not
only enable us to take highly complex geometries into account, it also allows the geometry to
be changed freely during the simulation. By way of an extension to this approach, Joulaian and
Düster [98] proposed an efficient level set interpolation procedure based on using Lagrange shape
functions defined at Chen-Babuška points. In this manner, it is not only possible to perform the
task of the inside/outside test, the approach allows us to compute the distance to the boundaries or
material interfaces as well. In the standard version of the FCM, the latter quantity is not generally
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2.4 Numerical challenges of the finite cell method 15

of interest – but it is required for the modifications of the FCM we present in Chapter 4. We will
explain this interpolation method in detail in Section 4.3.

2.4.2 Imposition of boundary conditions
The treatment of boundary conditions is an essential problem of any fictitious domain approach,
including the FCM. This is due to the fact that, in this method, the cells do not generally conform
to the geometry, which is why the boundary ∂ΩN and ∂ΩD may lie inside the cells, as depicted
in Fig. 2.3. Herein, we briefly explain how to properly account for homogeneous and inhomo-
geneous Neumann and Dirichlet boundary conditions for the kind of problems investigated in
solid mechanics. For a detailed description of imposing boundary conditions in the FCM, the
interested reader is referred to [63, 103].

2.4.2.1 Neumann boundary conditions

In the scope of the FCM – and likewise in the FEM – the Neumann boundary conditions are
commonly satisfied in the weak sense. To impose the Neumann boundary conditions, we need
to compute the corresponding boundary integral in the weak form,

f t =
∫

∂ΩN

NTT̂ dΓ . (2.27)

In the case of homogeneous Neumann boundary conditions, the above term in the weak form
vanishes, so that this type of boundary condition is naturally satisfied – as is also the case in
the standard FEM. In other words, homogeneous boundary conditions in the FCM are satisfied
by only considering materials with no stiffness in the fictitious domain Ωex \ Ω. In the case
of inhomogeneous Neumann boundary conditions, in order to compute the integral (2.27), we
need to have a parametric description of the boundary within the cells that are intersected by the
corresponding boundary. To meet this requirement, we can employ triangulated surfaces during
the numerical integration with the aid of B-rep models [63], for instance. Alternatively, we may
apply algorithms based on the marching cubes [132] to reconstruct the corresponding boundary
within the broken cell. In either case, the procedure involves an approximation of the boundary
and the computing of surface integrals by applying standard quadrature rules on the resulting
boundary approximation; see [63] for instance. This approach enables to have full control over
the integration error related to the computation of the load vector in each cell. Numerical studies
suggest that this approach leads to a very accurate load vector computation, provided that the
corresponding surface mesh representing the boundary is sufficiently fine. Furthermore, the
computational cost of this method is negligible as compared to the overall computational time,
so the resulting approach does not significantly increase the computational expenditure of the
FCM.

2.4.2.2 Dirichlet boundary conditions

Other than for the standard FEM, Dirichlet boundary conditions in the FCM are often satisfied in
the weak sense. There are different approaches to achieve this goal – see [77, 143], for instance
– but we will herein only give a brief overview of the penalty method and Nitsche’s method. In
both of these methods, it is mandatory to have a parametric description of the boundary where
the Dirichlet boundary conditions are applied. The penalty method [23, 103, 114, 175] modifies
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16 2 Finite cell method for problems in solid mechanics

the equation system by employing a penalty factor such that the number of degrees of free-
dom remains unchanged. With this method, unfortunately, the accuracy in imposing Dirichlet
boundary conditions and solvability of the resulting equation system is highly dependent upon
the penalty factor. Selecting a large penalty factor both leads to a more accurate consideration
of the Dirichlet boundary conditions and to an equation system with a larger condition number.
As a result, correctly adjusting the penalty factor is one of the main difficulties in this method.
Another possibility is to apply Nitsche’s method [103, 157]. This method leads to a symmetric,
positive definite stiffness matrix, without introducing additional degrees of freedom. The cor-
responding parameters in this method are usually adjusted empirically. It is worth mentioning
that the penalty method can be derived from Nitsche’s method as a special case. Numerical tests
have shown that it is possible to achieve a successful approximation of the Dirichlet boundary
conditions in 2D and 3D by applying this method [103].

2.4.3 Numerical integration of cut cells
The underlying matrices of cells that are cut either by the geometry or the material interface
exhibit integrals with a discontinuous integrand; see Eq. (2.26). It is well known that the standard
Gaussian integration rules performs very poorly for this type of integrals. Since determining the
optimal rate of convergence is highly dependent upon computing these integrals accurately, we
need to employ an efficient, effective, and reliable numerical integration algorithm with the FCM.
We will discuss this issue thoroughly in Chapter 3.

2.4.4 Material interfaces and weak discontinuities
Similar to the standard FEM, the convergence rate of the FCM may drop when the exact solution
exhibits a loss of regularity in the domain of interest. The problem essentially may appear in
the numerical simulation of structures with heterogeneous materials, elastoplastic simulation, or
problems containing singularities resulting from reentrant corners or cracks, for instance. Under
these circumstances, the smooth high-order shape functions presented in the FCM are unable
to accurately approximate the non-smooth behavior of the displacement field [98, 181]. In the
standard FEM, we usually perform a mesh refinement towards these local features to improve the
quality of the approximation [170, 171]. In the FCM, we need also to find a refinement strategy
to ensure that it will fit into the framework of the method with a minimum of computational
effort. In addition, it is important to keep the attractive characteristics of the method, such as the
simple mesh generation and the high rate of convergence. To this end, we will present different
approaches in Chapter 4.

2.4.5 Efficient iterative solvers
The equation system resulting from the FCM discretization usually obeys a poor condition num-
ber. This is mainly due to the following two reasons. Firstly, due to the cells which contain only
a small fraction of physical material – as this leads to large ratios between the entries of the stiff-
ness matrix. Secondly, in cut cells, part of the support of the shape functions is missing, which
is why the shape functions can become linearly dependent – at least partially. A bad condition
number is prohibitive to applying iterative solvers, and it can also adversely affect direct solvers,
leading to a sever loss in significant digits of the resulting solution. Iterative solvers are of in-
terest due to the fact that they require less computational memory as compared to direct solvers.
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Thus, they are generally more attractive when computing larger equation systems. There are still
ongoing research studies to obtain a proper pre-conditioner for the FCM. Preliminary studies on
this topic can be found in [50, 87].

2.5 Some applications of the FCM
In this section, we demonstrate some selective applications of the FCM to give an impression
of the accuracy, the advantages, as well as the difficulties of the method. In these examples, we
only briefly discuss the general properties of the method. A detailed discussion will be postponed
to the following chapters. Several other examples of the FCM can be found in the literature –
for instance: for multi-material problems [98, 99, 103, 181], homogenization of cellular and
foamed materials [66, 85, 86, 159], multi-fields problems [182, 183], geometrically nonlinear
problems [155, 157], elastoplasticity problems [15, 16], elastodynamic problems [56, 57, 96, 97]
and optimization problems [37, 41, 42, 137].

2.5.1 Elastostatic analysis of a one-dimensional rod
We start by discussing a very simple one-dimensional bar that is shown in Fig. 2.5. The bar

Parameters:
Young’s modulus: E = 10.0
Young’s modulus: Ef = α0E

Body force: fb(x) =
− sin(8x)
L1 = 1, L2 = 0.5, A = 1 L1 L2

x

Ω Ωex \ Ω

E Ef

fb(x)

Discretization with 1 finite cell

Figure 2.5: One-dimensional rod discretized with one finite cell.

under consideration is fixed at one end and subjected to a body force fb(x). Under the given
conditions, the strong form of the governing equation is

{
(EAu′(x))′ + fb(x) = 0 on Ω

u = 0 at x = 0 (2.28)

and the exact solution reads

u(x) = −sin(8x)
64 + cos(8)

8 x for 0 ≤ x ≤ L1

ε(x) = −cos(8x)
8 + cos(8)

8 for 0 ≤ x ≤ L1

(2.29)

where u is the displacement in the longitudinal direction, and ε = ∂u/∂x is the strain field.
A similar example has been considered in [170] to study the performance of the p-version and
h-version of the FEM. Although this problem is very easy to solve and even the solution can
be stated in closed form, a simulation of this problem using the FCM gives us a very good
insight into the solution characteristics of the method, which may also appear in more complex
problems. Here, we discretize the bar with one finite cell where a part of the cell belongs to the
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18 2 Finite cell method for problems in solid mechanics

physical domain Ω and the rest of it to the fictitious domain Ωex \ Ω; see Fig. 2.5. The geometry
of the problem is defined with the aid of the indicator function, defined as

α(x) =
{

1 for 0 ≤ x ≤ L1
α0 = 10−12 for L1 < x ≤ lc

, (2.30)

where lc = L1 + L2. Under these circumstances, the resulting stiffness matrix and load vector of
the cell are computed as follows

Kc = 2
lc

1∫
−1

dNT

dξ
α E

dN

dξ
dξ (2.31a)

f c = lc
2

1∫
−1

NTα fb(x(ξ)) dξ (2.31b)

where N is the matrix of shape functions and E is the Young’s modulus. For N , we apply the
hierarchical shape functions based on the integrated Legendre polynomials as in the standard
p-version FEM [170]. Please note that in Eq. (2.31), we took advantage of the indicator function
to penalize the Young’s modulus of the fictitious domain, i.e. Ef = α0E = 10−11. Consequently,
the fictitious domain obeys a much softer material as compared to the physical domain. With
regard to the numerical integration of the above integrals, we should bear in mind that the inte-
grals of interest obey a discontinuous integrand and, therefore, cannot be computed accurately
by applying standard quadrature rules. It is, however, possible to perform the integration exactly
if the domain of integration is subdivided at the location of discontinuity, i.e. x = L1, and the
numerical integration is performed on each of the resulting sub-domains. To this end, we employ
the standard Gauss-Legendre quadrature rule on each of the sub-domains and apply ng = p + 1
integration points where p is the polynomial order of the applied shape functions. Figure 2.6
shows the resulting displacement field for a p-refinement. Although the mesh does not conform
to the boundary, the FCM is able to deliver a very accurate approximation of the solution in the
physical domain if a p-refinement is performed. Please note that, since smooth shape functions
are employed in the Ansatz, the solution in the fictitious domain is also smoothly extended from
the physical one. That is, the displacements in the fictitious domain can move arbitrary such that
the best fit of the strains in the least square sense is obtained on the physical domain. It is worth
mentioning that the part of the solution belonging to the fictitious domain is not of interest and
we can simply discard it. An explanation for the solution behavior in the fictitious domain is that
the material in this region is so soft that it can move freely requiring almost no energy at all. As
a result, the minimization of the potential energy function leads to the same solution as if there
were no fictitious domain.

Figure 2.7 show the convergence behavior of the error in energy norm that is defined as [170]

‖e‖E(Ω) =

√√√√∣∣∣∣∣B(uref , uref) − Bex(uFCM, uFCM)
B(uref , uref)

∣∣∣∣∣× 100[%] . (2.32)

Here, uFCM is the solution computed by the FCM, and uref is the analytical solution of this
example. As it is shown, the convergence rate of the FCM is exponential, similar to the standard
p-version of the FEM. Please note that the value of α0 has a great influence on the conver-
gence behavior of the FCM. Increasing α0 will introduce a modeling error, and consequently

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


2.5 Some applications of the FCM 19

-0.05

-0.03

-0.01

 0.01

 0.3  0.6  0.9  1.2  1.5

(i) p = 1

-0.05

-0.03

-0.01

 0.01

 0.3  0.6  0.9  1.2  1.5

(ii) p = 2

-0.05

-0.03

-0.01

 0.01

 0.3  0.6  0.9  1.2  1.5

(iii) p = 3

-0.05

-0.03

-0.01

 0.01

 0.3  0.6  0.9  1.2  1.5

(iv) p = 4

-0.05

-0.03

-0.01

 0.01

 0.3  0.6  0.9  1.2  1.5

(v) p = 5

-0.05

-0.03

-0.01

 0.01

 0.3  0.6  0.9  1.2  1.5

(vi) p = 6

-0.05

-0.03

-0.01

 0.01

 0.3  0.6  0.9  1.2  1.5

(vii) p = 7

-0.05

-0.03

-0.01

 0.01

 0.3  0.6  0.9  1.2  1.5

(viii) p = 8

(a) Displacements

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.3  0.6  0.9  1.2  1.5

(i) p = 1
-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.3  0.6  0.9  1.2  1.5

(ii) p = 2
-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.3  0.6  0.9  1.2  1.5

(iii) p = 3
-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.3  0.6  0.9  1.2  1.5

(iv) p = 4

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.3  0.6  0.9  1.2  1.5

(v) p = 5
-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.3  0.6  0.9  1.2  1.5

(vi) p = 6
-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.3  0.6  0.9  1.2  1.5

(vii) p = 7
-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.3  0.6  0.9  1.2  1.5

(viii) p = 8

(b) Strains

Figure 2.6: The FCM results (red) as compared to the analytical solution (black).
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Figure 2.7: Convergence in the relative error in energy norm of a one-dimensional bar.

will deteriorate the exponential convergence behavior of the FCM. It is therefore recommended
to sufficiently reduce the value of α0 so that the modeling error of the FCM is diminished. Let
us now take a look at the condition number κ of the resulting equation system in the FCM. The
condition number is an important property as it somehow identifies the solvabilty of an equation
system. The condition number can be defined as

κ = λmax

λmin
λmin �= 0 , (2.33)

where λmax and λmin are the maximum and minimum eigenvalues of the equation system. The
condition number in a finite element analysis depends on the type of the shape functions, the
shape of the elements, as well as the type of the differential operator appearing in the weak
form. It is well known that the shape functions based on the integrated Legendre polynomials
offer a well-conditioned stiffness matrix due to their orthogonality property. Figure 2.8 shows
the condition number of the equation system when the standard p-FEM is employed. For this
specific example, the condition number related to the standard p-FEM is constant for p ≥ 2 due
to the fact that the stiffness matrix is almost diagonal. Nevertheless, in the case of the FCM,
the orthogonality property of the shape functions is disturbed because of the indicator function.
As a result, the stiffness matrix is not only fully populated, but also ill-conditioned. As shown
in Fig. 2.8, the stiffness matrix becomes more ill-conditioned when the polynomial order of the
shape functions increases. In order to improve the condition number, we can increase the value
of α0 inside the fictitious domain. However, we should keep in mind that such a modification
can adversely affect the accuracy of the simulation; see Figs. 2.7 and 2.8.
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https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


22 2 Finite cell method for problems in solid mechanics

2.5.2 Perforated plate
The next example for us to focus on is a square plate that is perforated by a circle, as depicted
in Fig. 2.9. The plate under consideration is in a state of plane stress, and its material is as-

Parameters:
Plane stress conditions
Young’s modulus E = 206, 900 MPa
Poisson’s ratio ν = 0.29
Normal traction T̂n = 100 MPa
L = 4 mm, R = 1 mm
line AA′ from (−2, 0) to (2, 0)

T̂n

y

x

R

L

L

A′A

Figure 2.9: Square plate with a circular hole subjected to an axial tension.

sumed to be linear-elastic and isotropic. The plate is under symmetry boundary conditions at the
bottom and the left-hand side, and it is loaded by a uniform traction at the top. The aim here
is to compare different discretizations based on the standard FEM and the FCM. The standard
FEM discretization in one case is based on the p-version FEM, where the mesh – as depicted
in Fig. 2.10a – resolves the geometry exactly with the help of the blending function method
[60, 102, 170]. In this case, the accuracy of the displacement field is increased by elevating the
polynomial order of the shape functions. In another case, we employ the h-version FEM. Here,
the accuracy of the displacement field and the geometry representation is increased by applying
more elements with smaller sizes. Figure 2.10b shows an example of a low-order mesh with
400 elements that is used during the convergence study. In the case of the FCM, the domain of
interest is discretized by applying 2×2 cells, as shown in Fig. 2.10c. The geometry is introduced
with the help of an indicator function defined as

α(x, y) =
{

1 for x2 + y2 > R2

α0 = 10−12 for otherwise . (2.34)

(a) High-order mesh (b) Low-order mesh (c) FCM mesh

Figure 2.10: The applied meshes for the example of perforated plate.
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Regarding the shape functions in the FCM, we employ the hierarchical ones that are based on the
integrated Legendre polynomials. The accuracy of the simulation is then increased by varying
the order of the shape functions as p = 1, 2, . . . , 10. Please note that the cell matrices obey a
discontinuous integrand due to the jump in the material properties. Thus, they call for a special
type of integration technique. In this example, we compute the corresponding integrals with the
help of the adaptive quadtree integration, which will be explained in Chapter 3. Similar to the
previous example, the material of the fictitious domain is considered to be very soft by setting
the Young’s modulus in the fictitious domain to Ef = α0E.

In order to judge the accuracy of the considered discretizations, we take a look at the convergence
behavior in terms of the relative error in energy norm defined in Eq. (2.32). The reference value
of the strain energy, 7.021812127 × 10−4 J, in this example is computed with the help of an
overkill solution, applying the standard FEM with a sufficiently fine resolution in the spatial
discretization. The results of this study are given in Fig. 2.11. Since the displacement field for
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Figure 2.11: Convergence study based on the relative error in energy norm.

this example is smooth, we observe that – in terms of the number of degrees of freedom – it is
more efficient to perform the simulation with the p-version FEM than to employ the h-version
FEM. In other words, the p-version FEM delivers an exponential rate of convergence, whereas
the h-version exhibits a convergence rate that is algebraic with a slope of 0.48 (the optimal rate is
1/2). Interestingly, the FCM shows a similar convergence behavior to that of the p-version FEM,
although the FCM mesh is very simple and does not conform to the geometry of the hole. In the
FCM, however, it is vital to perform the numerical integration accurately, or the integration error
will dominate the overall error. If the error is dominant by the numerical integration, increasing
the polynomial order of the shape functions will not improve the quality of the solution.

Figure 2.12 shows the von Mises stress σvM and the displacements in y-direction along the
line AA′ depicted in Fig. 2.9. As can be seen, both of these quantities computed by the FCM are
in a very good agreement with the reference solution, even close to the hole. The displacements
in the fictitious domain are very large due to its very soft material. The stresses in this region
are, however, very small since they are scaled with α0. In any case, this part of the solution is
not particularly of interest, and we can simply discard it.
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depicted in Fig. 2.9.
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2.5.3 Porous domain
By way of another example, we take a look at the simulation of a porous domain as depicted in
Fig. 2.13a [66, 100, 159]. The geometry of interest is a cube with the dimensions of 10 × 10 ×

Parameters:
Young’s modulus: E = 5.0 GPa
Poisson’s ratio: ν = 0.3
Normal traction: T̂n = 100 MPa
Cube size: 10 × 10 × 10 mm3

z

x y

T̂n

(a) Boundary conditions (b) Mesh with 512 cells

Figure 2.13: Porous domain with ellipsoidal pores.

10 mm3, containing 27 ellipsoidal pores randomly distributed inside the cube. The cube under
consideration is subjected to symmetry boundary conditions, and a uniform pressure acts at the
top. The material is assumed to be linear-elastic and isotropic. It is obvious that generating a
boundary-fitted mesh for such a problem is neither easy nor straightforward. On the other hand,
with the FCM, we simply discretize the domain of interest by applying Cartesian grids containing
either 8×8×8 cells or 16×16×16 cells. The mesh containing 512 cells is shown in Fig. 2.13b.
In both cases, the geometrical features are captured during the numerical integration of the weak
form by applying one of the methods, which will be explained in Chapter 3. The indicator
function in this example is introduced with the help of the ray-tracing algorithm suggested in
[32]. With this algorithm, it is sufficient to provide a B-rep model representing the surface of
the geometry under consideration. In order to improve the accuracy of the discretization, we
perform a p-extension as p = 1, 2, . . . on each mesh where the shape functions are based on the
integrated Legendre polynomials. The convergence of the strain energy is depicted in Fig. 2.14.
In both cases – despite the complexity of the geometry – the strain energy evidently converges to
the reference value of 1.065820653 J, which is obtained from an overkill solution. This example
shows the great potential of the finite cell method for the purpose of dealing with structures
where the mesh generation is the main bottleneck of the simulation.
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Figure 2.14: Convergence behavior in terms of strain energy for the porous domain example.
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Chapter 3

Numerical integration algorithms for
the FCM

In this chapter, our aim is to study the numerical integration algorithms for the FCM. As the
mesh does not necessarily conform geometrically to the physical boundaries in the scope of this
method, we may encounter two types of cells during the simulation,

• cells that are unbroken, i.e. cells that are completely filled with one type of material,

• and cells that are cut. A cell can be cut by a boundary passing through – or due to an
existing material interface within the cell.

In view of the numerical integration, the underlying integrals of unbroken cells obey a continuous
integrand, which is why they can be computed by applying any standard numerical quadrature,
such as the Gaussian quadrature rules. In the case of cut cells, the underlying integrals exhibit a
discontinuous integrand; see Eq. (2.26). For example, consider a hexahedral cell that is crossed
by a material interface as depicted in Fig. 3.1. The stiffness or mass matrix of such a cell can be

Ωc

(a)

ΩB

ΩA

(b)

Figure 3.1: (a) A cut cell and (b) the corresponding sub-domains.
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28 3 Numerical integration algorithms for the FCM

generally expressed as∫
Ωc

α(x)P(x) dΩ . (3.1)

Here, P(x) is an arbitrary and sufficiently smooth function that is in general not known ex-
plicitly, although it can be evaluated at any point. The indicator function α(x) describes the
geometry of the interface inside the cell Ωc and subdivides the cell into two sub-domains ΩA

and ΩB. This function, which – in itself – is smooth on each sub-domain, turns the integrand
of Eq. (3.1) into a discontinuous function. It is well known that standard numerical quadrature
rules cannot compute this kind of integrals accurately. Thus, more advanced numerical integra-
tion algorithms are required. Such types of integrals are not specific to the FCM, and they may
appear in almost any finite element-based method that involves non-conforming meshes, e.g.
in the eXtended/generalized finite element method or in the partition of unity based approaches
[27, 53, 125, 165, 166, 168]. Considerable efforts have been devoted to overcoming the dif-
ficulties arising in the numerical integration of a discontinuous function. Höllig and Hörner
[91] present a recursive quadrature based on the Fubini’s theorem to compute the integrals of
interest on the cut cells. The proposed method leads to piecewise smooth functions that can
be computed with, for instance, Gaussian quadrature rules. Ventura and Benvenuti [173, 174]
propose to replace the discontinuous integrand with a smooth function whose integral on the
whole domain is equal to the integral of interest. This method has been applied by Abedian et
al. [14] in order to compute two-dimensional linear-elastic problems using the FCM. Another
class of numerical integration methods is based on constructing an integration mesh for the cut
cell, to subdivide the domain of integration into smaller sub-domains where the numerical in-
tegration can be carried out more accurately with the standard numerical integration quadrature
rules [14, 39, 107, 125, 166]. These approaches, which are referred to as the composed integra-
tion methods, are explained in detail in this chapter, in Section 3.3. Another suitable method to
accomplish the numerical integration of the form (3.1) is to construct a numerical quadrature
specific to that integral. Such a goal can be achieved with the aid of the moment fitting method,
which will be explained in this chapter as well – see Section 3.4.

In the following, starting with the standard Gaussian quadrature rules, we will briefly explain
the problem of computing the integral of a discontinuous function by applying such techniques.
We will then thoroughly discuss different numerical integration algorithms that are suitable for
the FCM. Finally, we will scrutinize the properties of the presented methods and compare their
performances with the help of several numerical examples.

3.1 Numerical integration of unbroken cells

In the case of unbroken cells, the integral (3.1) obeys a continuous integrand. Therefore, it can
be computed by applying any standard numerical quadrature technique. Of all the possibilities
available, one of the most efficient integration methods is the Gaussian quadrature family, which
is frequently used in the context of the FEM. In these methods, the integral of interest is trans-
formed to the standard domain using a mapping function, after which the resulting integral is
converted to a weighted sum. In 1D, this reads

1∫
−1

(·) dξ =
ng∑
i=1

(·)|ξi
wi , (3.2)
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3.1 Numerical integration of unbroken cells 29

Table 3.1: The most common Gaussian quadrature rules.

Quadrature Interval Accuracy
Gauss-Legendre (−1, 1) pq = 2ng − 1
Gauss-Legendre-Lobatto [−1, 1] pq = 2ng − 3

in which the integrand is sampled at ng integration points. The integration points in this family
are commonly referred to as the Gauss points. Different types of Gaussian quadrature rules can
be defined according to the location of the Gauss points and the weights. Usually, the Gauss-
Legendre (GL) quadrature or Gauss-Legendre-Lobatto (GLL) quadrature are applied in the FEM.
The abscissas and the corresponding weights of these algorithms are given in appendix A. The
order of accuracy of these two algorithms depends on the number of Gauss points employed
during the integration; see Table 3.1. Among these two methods, the GL quadrature delivers
a higher accuracy with a lower number of integration points, while the GLL quadrature has
the advantage that the endpoints of the interval are included in the abscissas as well. A GL
quadrature with ng Gauss points guarantees a numerically exact integration of a polynomial of
order pq = 2ng − 1. Here, pq defines the order of the quadrature. The same also holds for the
GLL quadrature, but with the order of pq = 2ng −3. In these methods, the weights and the Gauss
points are commonly given on the standard domain �, which is why it is necessary to map them
to the physical domain – see the following mapping

x = Qc(ξ) , (3.3)
where Qc is the mapping from the standard domain to the physical domain. Considering this
mapping, the Gaussian quadrature which computes the integral of the function P(x) on the
domain Ωc reads∫

Ωc

P(x) dΩ =
∫
�

P(x(ξ)) det J c d� =
ng∑
i=1

P(x(ξi)) det J c wi , (3.4)

where J c is the Jacobian of the transformation Qc. In the FCM, we usually apply Cartesian
meshes. This leads to a simple Jacobian matrix with a constant determinant; see Eqs. (2.23) and
(2.24). Thanks to this simple mapping, the polynomial integrands remain polynomials of the
same order after the mapping. This allows to compute the underlying integrals on the unbroken
cells very accurately. In a 3D case, Eq. (3.4) is usually computed by applying a tensor-product
of the one-dimensional Gaussian quadrature as

∫
�

P(x(ξ)) det J c d� =
nζ

g∑
k=1

nη
g∑

j=1

nξ
g∑

i=1
P(x(ξi, ηj, ζk)) det J c wi wj wk , (3.5)

where nξ
g, nη

g and nζ
g are the number of integration points in each direction, chosen with regard to

the maximum order of P(x) in x, y, and z direction, respectively. The coordinates of the Gauss
points on the standard domain � are given as ξi, ηj , and ζk, and the corresponding weights are
wi, wj , and wk.

Remark: The maximum order of the integrand of the stiffness or mass matrix in the FCM is 2p,
where p is the order of the Ansatz. To accurately compute these integrals on unbroken cells, we
consequently need to apply at least ng = p + 1 integration points in each direction for the GL
quadrature – or ng = p + 2 points for the GLL quadrature.
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3.2 Performance of Gaussian quadrature rules in
facing discontinuities

Although both the GL and the GLL quadrature rules are frequently used in the FEM – thanks to
their accuracy and low computational costs – their performance is very poor when it comes to
computing integrals with a discontinuous integrand. This can easily be observed by numerically
computing the integral of the following indicator function

α(ξ) =
{

0 −1 ≤ ξ ≤ −0.5
1 −0.5 < ξ ≤ 1 (3.6)

on −1 ≤ ξ ≤ 1 using the GL quadrature. Here, let us monitor the error in integration in terms of
the following error definition

eI =
∣∣∣∣Iref − Iq

Iref

∣∣∣∣ , (3.7)

where Iref is the reference value of the integral under examination, and Iq is the computed
value applying the quadrature. The exact value of Iref in this example is 3/2. The results of the
numerical integration and the corresponding error are depicted in Fig. 3.2a, where the number
of Gauss points is varied from 2 to 50. It is clear that the GL quadrature is not a good choice for
computing the integral of such a function. Nevertheless, it is interesting to observe that the error
is directly proportional to the maximum distance between the Gauss points, hmax. This means
that hmax decreases if the number of the Gauss points is increased, and the same applies to the
error of integration. The variation of hmax with respect to the number of Gauss points is given in
Fig. 3.2b. Looking at these results, the first applicable numerical technique that comes to mind
for computing the integral of a discontinuous function is to decrease the distance between the
Gauss points by increasing the number of Gauss points, i.e. employing a Gaussian quadrature
with a higher order of accuracy. Nevertheless, the convergence of such a technique is very slow.
Another possibility to decrease hmax is to subdivide the domain of integration and perform the
numerical integration on the resulting sub-domains. It should be borne in mind that if the domain
is subdivided in such a way that the resulting integrands on the sub-domains are continuous, the
numerical integration can be performed very accurately, depending on the order of the applied
Gaussian quadrature rule. This approach is actually the main idea of the composed integration,
as to be explained in the next section.

3.3 Composed integration
In order to compute the integral of a discontinuous function, we can apply the composed inte-
gration. In the context of the FCM, this method can be seen as a kind of domain decomposition
technique carried out on the cut cell undergoing integration. This numerical integration method
can generally be expressed as∫

Ωc

α(x)P(x)dΩ =
∫

ΩA

α(x)P(x)dΩ +
∫

ΩB

α(x)P(x)dΩ . (3.8)

Here, the corresponding sub-domains are depicted in Fig. 3.1. In the above equation, the integral
on the left-hand side exhibits a discontinuous integrand, whereas the ones on the right-hand
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Figure 3.2: (a) Result of the numerical integration of a discontinuous function using the GL
quadrature. (b) Maximum distance between the Gauss points vs. the number of
Gauss points.
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side obey a continuous integrand. Theoretically, the integrals on the right-hand side can thus be
computed accurately by applying one of the standard Gaussian quadrature rules. Nonetheless,
this requires the computation of a mapping function that maps the domain of the integrals to the
standard domain �. It can be quite difficult or even impossible to obtain such a mapping, because
each of the sub-domains ΩA and ΩB may have a complex topology. In order to overcome this
obstacle, we can perform further domain decompositions on each sub-domain. That is to say,
each sub-domain can be geometrically subdivided into sub-cells for which it is possible to find
the corresponding mapping to the standard domain �. To explain this procedure, let us, without
loss of generality, consider a case where the indicator function is defined as follows

α(x) =
{

1 on ΩA

0 on ΩB
(3.9)

The composed integration of the cut cell can be stated as

∫
Ωc

α(x)P(x) dΩ =
∫

ΩA

P(x) dΩ =
nsc∑

sc=1

∫
Ωsc

P(x) dΩ , (3.10)

where nsc defines the number of sub-cells spanning the integration domain ΩA

ΩA ≈
nsc⋃

sc=1
Ωsc . (3.11)

The applied local mesh on the cut cell – also referred to as the integration mesh – may represent
an approximate or exact description of the geometry of the cut within the cell under consid-
eration. If the applied integration mesh resolves the geometry approximately, there can be cut
sub-cells in the resulting mesh too. Under these circumstances, the global error of the numerical
integration is mostly dominated by the error on the cut sub-cells. As will be discussed in the
following, several approaches might serve to obtain an integration mesh on a cut cell.

3.3.1 Composed integration based on conforming local meshes
We can apply geometrically conforming meshes to resolve ΩA on a cut cell [53, 117, 125, 165,
166, 168, 169]. Such a mesh can be obtained by applying, for instance, triangular or quadrilat-
eral sub-cells in 2D and hexahedral or tetrahedral sub-cells in 3D. It is also possible to employ
the blending function technique [36, 64, 80, 81, 102, 170] on the sub-cell level to improve the
quality of the integration mesh for cases in which the boundary of the cut obeys curved surfaces
[73, 107, 108]. The integrals on the sub-cells can then be computed by applying standard nu-
merical quadrature algorithms that are suitable for the corresponding sub-cells in the integration
mesh. As a result, the accuracy of this integration technique depends on how well the under-
lying integration mesh can describe the integration domain ΩA and the accuracy of the applied
numerical integration algorithm on the sub-cells. This method can serve to achieve a very high
accuracy in the numerical integration of the cut cells, but the implementation of the composed
integration (employing sub-cells to accurately resolve the geometry of the cut) is complicated,
especially for 3D cases. This leads us back to the question of the mesh generation which we
wanted to avoid in the first place by applying non-conforming meshes in the FCM. Neverthe-
less, it should be borne in mind that generating geometrically conforming meshes on the cell
level is much simpler as compared to the mesh generation for the whole structure. This is due
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to the fact that, first of all, the applied integration mesh is meant only for the purpose of the
numerical integration and, therefore, badly shaped sub-cells with high aspect ratios are generally
allowed. Secondly, the integration mesh is purely local to the cut cell, which is why it possible
to have different mesh resolutions on each of the cut cells. Finally, the sub-cells do not add any
additional degrees of freedom to the approximation, so it is possible to freely perform the mesh
refinement to improve the accuracy of the numerical integration. It should, however, be noted
that increasing the number of sub-cells yields more integration points, which in turn leads to a
more expensive numerical integration method.

3.3.2 Composed integration based on uniform sub-cell division
It can be a complicated task to accurately follow the boundary of the cut in the composed in-
tegration, because this involves mesh generation algorithms. Alternatively, we may attempt to
approximate the boundary instead. In order to accomplish such a task in the FCM, where the
cells are usually quadrilaterals in 2D and hexahedrals in 3D, we can apply a uniform sub-cell
division on the cut cell using Cartesian grids. In these types of numerical integration algorithms,
the domain of integration is subdivided into several smaller, non-overlapping and not necessarily
conforming quadrilateral or hexahedral sub-cells, which can also be seen as pixels or voxels1 in
2D and 3D, respectively. In other words, the geometry of the cut is approximated by employing
Cartesian grids on the standard domain � with nξ × nη × nζ subdivisions. Throughout this
thesis, we refer to this type of numerical integration as the composed pixel integration in 2D and
the composed voxel integration in 3D. The accuracy of the geometry approximation can then be
increased by using finer pixels or voxels. Figure 3.3 schematically depicts the concept of the
composed pixel integration for a 2D cut cell where the geometry approximation is improved by
employing finer pixels.

x

y

Cut cell

Ωc ξ

η

Standard domain

�

r

s

k = 1 k = 2 k = 3

k = 4 k = 5 k = 6 k = 7

Qc

Figure 3.3: The composed pixel integration.

1A voxel is a three-dimensional or volumetric pixel.
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Please note that in this algorithm, the task of generating pixels or voxels is usually performed on
the standard domain �. The composed voxel integration for a cut cell, for which the indicator
function is defined as (3.9), reads [63]

∫
Ωc

α(x)P(x) dΩ =
∫
�

α(x(ξ))P(x(ξ)) det J c d�

≈
nsc∑

sc=1

∫
t

∫
s

∫
r

α (x(ξ(r, s, t))) P (x(ξ(r, s, t))) det J c det J sc dr ds dt ,

(3.12)

where nsc is the total number of sub-cells, i.e. pixels or voxels, det J c is the determinant of
the Jacobian matrix arising from the mapping of [ξ, η, ζ] → [x, y, z], i.e. from the standard cell
� to the physical cell Ωc, and det J sc is the determinant of the Jacobian matrix arising from
the mapping of [r, s, t] → [ξ, η, ζ], i.e. from the sub-cells Ωsc to the standard cell �. Since we
employ Cartesian grids for the FCM mesh, the mapping of the standard domain to the physical
domain Qc is linear – as given in Eq. (2.23). The integration mesh is also a Cartesian grid, so
all the mappings on sub-cells are linear too. The mapping for the sub-cells Qsc is defined in a
similar way to Eq. (2.23)

ξ = Qsc(r) =

⎡
⎢⎢⎣

ξ1 + 1
2(1 + r)hξ

η1 + 1
2(1 + s)hη

ζ1 + 1
2(1 + t)hζ

⎤
⎥⎥⎦ , (3.13)

where hξ, hη, and hζ are the sub-cell size with respect to the direction ξ, η, and ζ, respectively.
As a result of this kind of mapping, the Jacobian of the transformation is very simple:

J sc = gradTQsc(r) = 1
2

⎡
⎢⎣hξ 0 0

0 hη 0
0 0 hζ

⎤
⎥⎦ . (3.14)

The process of choosing an appropriate resolution for the integration mesh is discussed in Sec-
tion 3.3.4. When the integration mesh is established, one of the standard Gaussian quadrature
rules is employed to compute the underlying integrals on each sub-cell. Please note that the sub-
cells in this method can be empty, unbroken, or cut; see Fig. 3.3. For the sake of a cheaper nu-
merical integration, we can avoid numerical integrations in empty sub-cells and instead employ
the methods suggested in [15] to avoid numerical instabilities. Since the underlying integrals
on unbroken sub-cells are computed very accurately using a Gaussian quadrature, the error of
integration in these methods is merely restricted to the sub-cells that are cut. As it was discussed
in Section 3.2, a decreasing maximum distance between the Gauss points leads to a decreasing
error of the Gaussian quadrature while computing the integral of a discontinuous function. Thus,
it is safe to conclude that the resulting integration error on the cut sub-cells is smaller than that on
the cut cell. The main drawback of the composed pixel and voxel integration is that increasing
the number of sub-cells with the aim of obtaining a better accuracy in the numerical integration
simultaneously leads to a higher number of integration points and, subsequently, to higher com-
putational costs. We will investigate the performance of this method numerically in Sections 3.5
and 3.6.
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Remark 1: It is worth mentioning that applying a Gaussian quadrature on each cut sub-cell leads
to another level of approximation of the integration domain. That is, the geometry is actually
represented by the Gauss points that are located inside the integration domain and not the gray
sub-cells depicted in Fig. 3.3.

Remark 2: The composed pixel and voxel integration algorithms are very suitable for cases in
which the integration domain itself is defined based on pixels or voxels, i.e. geometries obtained
through computer tomography (CT) scans. In these cases, a very accurate numerical integration
is achieved if the resolution of the integration mesh is chosen to be the same as the resolution of
the scans. For models like this and for linear cases, it is also possible to perform a pre-integration
of the underlying integrals on cut cell as suggested in [179, 180].

3.3.3 Composed integration based on spacetrees
With the composed integration based on uniform sub-cell division, a very fine resolution is usu-
ally required to achieve an accurate approximation, especially if the geometry of the cut obeys
curved surfaces. In order to optimize this algorithm, we can perform the mesh refinement more
efficiently by restricting the refinements to the vicinity of the boundary of the cut. The idea
is to employ bigger sub-cells for the unbroken part of the cells and finer ones for the cut part
by employing spacetrees [14, 20, 130, 158]. In such algorithms, the partitioning obeys a hier-
archical nature where in each adaptive refinement only cut sub-cells participate in the domain
partitioning. As the spacetrees, we can employ, for instance, a quadtree or an octree partition-
ing algorithm2 [49, 151]. A sample quadtree refinement in a cut cell is schematically depicted
in Fig. 3.4. As a result of this kind of refinements, the sub-cells are mostly gathered near the
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Ωc
ξ

η

Standard domain

�

r

s

k = 1 k = 2

k = 3 k = 4 k = 5

Qc

Figure 3.4: The adaptive quadtree integration.

discontinuity, leading to a more efficient boundary representation. In this method, each cell cor-
responds to a root in a tree where the refinement commences. The anchor point of the cell is
called root node or parent node. In a quadtree (octree), each node has either four (eight) children

2It is also possible to employ a kd-tree partitioning algorithm [158].

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


36 3 Numerical integration algorithms for the FCM

or no children, each child corresponding to a specific sub-cell. The resulting sub-cells form a
2d regular subdivision of the cell where d is the dimension of the space. In the generated tree,
internal nodes are called branches, and nodes without children are referred to as leaves on which
the numerical integration is carried out. Figure 3.5 schematically depicts a data structure of a
quadtree with two levels of refinements. After the sub-cells are generated, we apply a Gaussian

root

leafleafleafbranch

leafleafleafleaf

Figure 3.5: Quadtree data structure.

quadrature rule with an appropriate order to each (full and cut) sub-cell – resulting in a com-
posed integration (3.12). Since the refinements in this method are obtained adaptively, we refer
to this numerical integration algorithm as the adaptive integration in the remainder of this thesis.
The adaptive integration bears similar characteristics to the composed pixel or voxel integration,
except for the fact that the refinements are performed more localized in this case. With this
numerical integration technique, it is also possible to employ methods that are discussed in Sec-
tion 3.3.2 to enhance the performance of the algorithm. The accuracy of this method will also be
discussed in Sections 3.5 and 3.6.

3.3.4 Resolution of the integration mesh
A very important parameter in the composed integration algorithm is the appropriate resolution
of the integration mesh, i.e. the size of the finest sub-cell that is needed to achieve an accurate
numerical integration algorithm. In order to set this parameter, we should recall that in the FCM,
the geometry is not introduced by the mesh, but is captured during the numerical integration
of the (discretized) weak form. Accordingly, the accuracy of the numerical integration in this
method indicates the accuracy of the geometry representation. We also have to take into account
that in a finite element analysis, the geometry representation must be accurate enough to make
sure that its error will not govern the total error in the simulation. In other words, the error in
the geometry representation should be below the discretization error introduced by the applied
Ansatz. Taking these two facts into account, the accuracy of the numerical integration in the
FCM should be set such that the required accuracy in the geometry representation is ensured.
In many cases, however, it is not possible to define a priori the correct relation between the
integration error, the geometry representation error, and the discretization error. That being the
case, it is – in real applications of the FCM – common to define the accuracy of the numerical
integration εI based on experience.

To assure that the resolution of the composed integration is fine enough to deliver a given accu-
racy during the numerical integration, we may apply the algorithm depicted in Alg. 1. Following
this approach, the integration mesh on each cut cell is built before computing the stiffness matrix
or mass matrix of the cut cell under investigation. While building the integration mesh, we mon-
itor the convergence in computing the integral I of an arbitrary polynomial P(x) defined on the
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Algorithm 1 Finding the appropriate resolution of the integration mesh on each cut cell
in the composed integration.

1: refinement level n = 0
2: Compute I0 and I full

3: while eI > εI do
4: n = n + 1
5: In = 0
6: Generate the next level of sub-cells n
7: for sc: all active sub-cells do
8: for i: all the Gauss points on this sub-cell do
9: Perform the mapping: ri → ξi → xi

10: ΔI = P(xi) · α(xi) · ωi · det J sc · det J c

11: In = In + ΔI
12: end for
13: end for
14: Compute the error eI
15: end while
16: Save the current integration mesh

cut cell undergoing integration, where the error in integration is defined as

eI =
∣∣∣∣∣I

n − In−1

I full

∣∣∣∣∣ . (3.15)

Here, n indicates the refinement level, and I full is the value of the integral computed by assum-
ing that the cell undergoing integration is unbroken, i.e. α(x) = 1 everywhere in the cell. The
parameter In is the value of the integral computed on the current sub-cell configuration by ap-
plying a Gaussian quadrature rule with a proper order, chosen based on the order of the applied
Ansatz in the FCM. The value of the integral computed on the cell by applying the standard
Gaussian quadrature rule is also denoted by I0. With the applied integration mesh on level n, the
algorithm stops if eI < εI , otherwise, the next level of integration mesh with finer sub-cells will
be generated and the procedure will be repeated. At the final step, when the required accuracy
in the integration is achieved, the integration mesh will be stored in order to compute further
integrals on this cell. Algorithms like this are to be performed for all the cut cells. As regards
the arbitrary integrand P(x), we can choose P(x) = 1 as its value, meaning that I is identical
to the volume of the cell under consideration. In our numerical studies, however, we found that
selecting P(x) = 1 as the integrand would result in an unreliable integration algorithm. This is
due to fact that an integration mesh that ensures an accurate integration of a low-order polyno-
mial integrand does not necessarily guarantee the same for high-order integrands. Bearing this
behavior in mind, we suggest to define the convergence criterion based on the applied Ansatz p.
That is to say, P(x) should be chosen as the highest polynomial term available in the stiffness
matrix or the mass matrix, i.e. 2p. The central idea behind this choice is the fact that an integral
with an integrand of 2p is often the most difficult term to be computed during the numerical
integration of the mass or stiffness matrix. If the applied numerical integration algorithm is able
to compute the integral of an integrand of order 2p, it is most likely also suitable to compute the
integral of lower order polynomials as well.
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3.3.5 Composed integration with an hp-refinement procedure
As mentioned before, the main drawback of the composed integration is that the accuracy of this
algorithm and the number of generated integration points is strongly linked. Thus, by adding
further levels of refinement in the spacetree with the aim of increasing the integration accuracy,
the number of integration points increases very fast. A high number of integration points can
be problematic, especially in nonlinear computations where several quantities like the stiffness
matrix are to be computed again and again during the Newton-Raphson algorithm. In order to
reduce the computational expenditure of this method, the hp-version of the composed integration
has been proposed [15, 20, 86]. The central idea is that the refinement in the composed integra-
tion resembles an h-refinement in the FEM, so it is safe to assume that the order of the integrand
reduces as the size of the sub-cells decreases. We can therefore assume that employing a lower
order Gaussian quadrature rule in the finer refinement sub-cells does not significantly harm the
accuracy of integration. Accordingly, the resulting method resembles an hp-refinement proce-
dure where h and p represent the size of the sub-cells and the order of applied Gaussian quadra-
ture rule on the sub-cells, respectively. In this sense, h and p are determined on-the-fly. Here, the
smaller sub-cells correspond to a low-order Gaussian scheme, and the larger ones are computed
using a higher order Gaussian quadrature. The maximum order of Gaussian quadrature rule on
the sub-cells is aligned to the highest polynomial order of the FCM Ansatz as nsc

g = (p + 1)d,
where d denotes the dimension of the problem. The number of the Gauss points on a sub-cell in
level l of the refinement can be computed as

nsc
g =

(
(p + 1) −

⌊
p

l

lmax

⌋)d

, (3.16)

where the lowest permissible Gauss order is 1. Here, lmax is the highest permissible number of
refinement, which is a pre-defined value. In our numerical tests, we found that lmax = 2p results
in an acceptable balance between the numerical costs and the accuracy. The performance of such
a technique will be examined in Section 3.6.

3.4 Moment fitting method

One potential option for computing the integral of form (3.8) is to abandon the idea of em-
ploying the standard numerical quadrature rules and instead strive to design a special quadrature
rule specific to the cut cell undergoing integration. This goal can be reached by employing
the moment fitting method [58, 59, 118, 119]. The aim in this method is to find on-the-fly
the position, the weight, and the required number of quadrature points for a given topology
[100, 127, 129, 167, 172]. In its general form, the quadrature rule to be constructed has the
following form

∫
Ω

P(x) dΩ ≈
ng∑
i=1

P(xi) wi , (3.17)

where, in contrast to the standard numerical quadrature rule, Ω may obey any arbitrary shape3.
The considered quadrature in (3.17) includes ng integration points with xi representing their

3Recall that in the standard Gaussian quadrature rules, the integration domain is a regular domain, e.g.
quadrilateral and triangle in 2D or hexahedron and tetrahedron in 3D.
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locations and wi being their corresponding weights. To set up such a quadrature with the mo-
ment fitting method, the first step is to approximate the integrand with a set of arbitrary, linear-
independent basis functions fj as

P(x) ≈
m∑

j=1
βj fj(x) , (3.18)

where F = {fj}m
j=1 is the space of m basis functions and βj ∈ R are the corresponding amplitude

of each basis function. By integrating (3.18) and applying the quadrature (3.17), we deduce

∫
Ω

P(x) dΩ ≈
m∑

j=1
βj

∫
Ω

fj(x) dΩ =
m∑

j=1
βj

ng∑
i=1

fj(xi) wi . (3.19)

That is, to compute the integral of the function P(x), we need a quadrature rule that is able to
accurately compute the integral of the basis functions, approximating P(x) on the same integra-
tion domain. The integrals of the basis function in this method are referred to as the moments.
Procedures like this lead to the following moment fitting equations

ng∑
i=1

fj(xi) wi =
∫
Ω

fj(x) dΩ , j = 1, 2, . . . , m (3.20)

or, in matrix notation,
⎡
⎢⎢⎣
f1(x1) . . . f1(xng)

... . . . ...
fm(x1) . . . fm(xng)

⎤
⎥⎥⎦

︸ ︷︷ ︸
:=A

⎧⎪⎪⎨
⎪⎪⎩

w1
...

wng

⎫⎪⎪⎬
⎪⎪⎭︸ ︷︷ ︸

:=w

=

⎧⎪⎪⎨
⎪⎪⎩
∫

Ω f1(x) dΩ
...∫

Ω fm(x) dΩ

⎫⎪⎪⎬
⎪⎪⎭︸ ︷︷ ︸

:=b

, (3.21)

which needs to be solved for the weights and the integration points. Provided that this equation
system is solvable, the resulting quadrature rule is suitable to compute the integral of any function
that can be represented by a linear combination of the basis functions. In the following, we will
explain the procedure of setting up the quadrature based on the moment fitting method in order
to compute the integrals on cut cells that are of the form

∫
Ωc

α(x)P(x) dΩ =
∫

ΩA

P(x) dΩ ≈
ng∑
i=1

P(xi) wi . (3.22)

where the indicator function is defined as Eq. (3.9). Figure 3.6 schematically depicts the proce-
dure. Note that, for the sake of consistency with standard Gaussian quadrature rules, we set up
the quadrature on the standard domain and not on the physical domain.

3.4.1 Step 1 : Selection of the basis functions
The first step in the moment fitting method is to choose the basis function such that the resulting
approximation in Eq. (3.18) describes the integrand accurately enough. A simple choice for the
basis functions is the set of polynomials of order pq in R

d, where d is the space dimension of the
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Figure 3.6: The moment fitting approach for integration.

quadrature at hand. In this thesis, we select the basis function based on the tensor-product of the
orthogonal Legendre polynomials

F = {Li(ξ)Lj(η)Lk(ζ) , i, j, k = 0, . . . , pq} , (3.23)

for a three-dimensional problem. The orthogonal Legendre polynomial of order p can be ob-
tained using Rodrigues’ formula as

Lp(x) = 1
2pp!

dp

dxp
(x2 − 1)p . (3.24)

Since in 2D and 3D the basis functions are obtained by a tensor-product, the following relation
between the order of the quadrature pq and the number of the basis functions m holds,

m = (pq + 1)d. (3.25)

If the quadrature to be constructed is for integrating polynomials, the order of the quadrature is
set based on the highest order of the integrand. If the integrand is a non-polynomial function, it
is necessary to either increase the order of the quadrature or to reduce the domain of integration
in order to decrease the numerical integration error.

3.4.2 Step 2 : Setting up the position of the quadrature points
The equation system (3.21) is nonlinear in terms of xi and linear in terms of wi. In order to find
the optimal position of the quadrature points, xi, on a given integration domain optimization
algorithms can be applied with the moment fitting method; see for instance [58, 59, 126, 128,
178]. Optimization methods like this are usually combined with a node-elimination algorithm
to find the optimal number of integration points. Nonetheless, employing these methods for
our purpose could result in an expensive setup of the quadrature. That is, in the FCM, every
cut cell might obey a different cut topology, so the optimization algorithm to determine the
optimal integration points needs to be performed on each and every of these cells separately,
which can become a computationally expensive task. In order to avoid such difficulties, we
can waive the idea of having an optimal quadrature rule and, in return, obtain a simple solution
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procedure as suggested in [127, 129]. The core idea is to select the position and the number of
the quadrature points a priori and turn (3.21) into a linear equation system, which is easier to
solve. In order to assure an accurate integration in this method, the number of the integration
points is usually chosen to be bigger than the number of the basis functions i.e. ng ≥ m [100,
129]. One possible side effect of this assumption is that the resulting equation system might
become ill-conditioned, especially for quadrature rules of high order. Nevertheless, as to be
shown numerically in Sections 3.5 and 3.6, the resulting quadrature rules are accurate enough
for the considered applications in this thesis.

Several approaches can be considered to set the integration points a priori. One option is to
set the positions in a similar way to the Gaussian quadrature rules – meaning that the points
are distributed throughout the cell Ωc instead of ΩA [129]. Such a distribution may improve
the condition number of the moment fitting equation system, but some of the integration points
in this case are located outside the integration domain. The problem is that if an integration
point is located outside the integration domain ΩA, extrapolation techniques might be required to
evaluate the integrand at that point. This can be problematic if the integrand is defined merely on
ΩA and it is unknown outside ΩA. Alternatively, we can limit the integration points to be located
only inside ΩA by taking advantage of the adaptive point distribution method as proposed in
[100]. The implementation of this method is very easy in 2D as well as in 3D, and it is suitable
for various types of geometries. The idea in the adaptive point distribution method is to create
an adaptive uniform grid on the cell under consideration using ni subdivisions in each spatial
direction, where the first guess for ni is

ni = pq + 1 . (3.26)

In the next step, all the resulting sub-cells that are cut by the boundary or located outside the
integration domain ΩA are discarded. If the number of the interior sub-cells nsc is smaller than
the required number of the integration points, (pq + 1)d – d is the dimension of the problem –
another grid with ni + 1 subdivisions in each direction will be created. The refinement stops
when nsc ≥ (pq + 1)d. At the final step, an integration point will be created in each interior sub-
cell, and its position inside the sub-cell is determined randomly by applying a standard random
number generation algorithm. The reason for applying a random distribution is to reduce the
possibility of a linear dependency in the resulting equation system. Please note that in order
to obtain a deterministic algorithm, the random number generation algorithm should always be
started at the same seed point. The main advantage of this method is that it makes sure that all
the integration points will be located inside the integration domain ΩA and that their numbers
will not turn out less than m in Eq. (3.25).

3.4.3 Step 3 : Computation of the right-hand side
The right-hand side of the moment fitting equation is basically the integral of the basis functions
that are defined on the same integration domain on which we aim to set up the quadrature rule.
There are different ways to compute these integrals. Müller et al. [129] suggested to apply the
divergence theorem and, again, the moment fitting method combined with some divergence-free
basis functions in order to set up a quadrature rule for the right-hand side as well. The pro-
posed method is very attractive and delivers accurate results for geometries with planar surfaces.
Nevertheless, this method is less accurate when the integration domain obeys curved surfaces.
Sudhakar and Wall [167] proposed multiple applications of the divergence theorem to convert
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the volume integrals to line integrals and compute the resulting line integrals by employing a
Gaussian quadrature rule. Mousavi and Sukumar [127] suggested to employ Laserre’s method
and Euler’s homogeneous function theorem to transform the volume integrals to line integrals.
The suggested algorithm is very well suited for computing integrals on domains represented by
polygonal planar surfaces. Thiagarajan and Shapiro [172] proposed a method for 2D cases that
applies quadtree refinements and shape sensitivity analysis. However, the extension of this algo-
rithm to 3D is not given. In [92, 100] and in this work, we propose a method that is suitable for
2D and 3D problems where the integration domain can include both planar and curved surfaces.
The suggested algorithm is based on applying the divergence theorem once and directly comput-
ing the resulting surface integrals using a Gaussian quadrature rule and a surface representation
of the integration domain. The divergence theorem applied to the right-hand side of the moment
fitting equation system reads∫

ΩA

fj (x) dΩ =
∫

ΩA

divgj (x) dΩ =
∫

ΓA

gj (x) · n (x) dΓ , (3.27)

where ΓA is the closed surface of the integration domain ΩA, and n(x) is the outward normal
of ΓA. Please note that the integration domain itself can be discontinuous, meaning that it might
consist of several disconnected regions. Therefore, ΓA can also be discontinuous, and it should
only describe the closed surface of all the regions. The anti-derivatives of the basis function F
are G = {gj(x)}m

j=1 that are given as [129]

gj(x) = 1
3

⎡
⎢⎣
∫
fj (x) dx∫
fj (x) dy∫
fj (x) dz

⎤
⎥⎦ . (3.28)

We would like to emphasize that, in view of the numerical integration, the surface integrals are in
general numerically less expensive than the volume integrals. In the following, we will explain
how such integrals can be computed for different types of geometries in the context of the FCM.

3.4.3.1 Computing the right-hand side on B-rep models

A wide variety of geometrical models used in structural analysis are based on B-rep models.
These models commonly employ splines to provide a surface representation of the geometry. In
order to take such models into account with the FCM, we usually convert the spline surfaces
to triangulated surfaces – for instance for applying Neumann boundary conditions [63]. The
triangulated representation of the surface can be obtained using the available tools in almost
all CAD programs. We should bear in mind that the triangulated version of the B-rep model,
which is frequently given in the STL format, may deviate from the exact geometry, especially
if the geometry obeys curved surfaces. In CAD programs, it is however possible to specify the
maximum value of the deviation tolerance from the original surface, meaning that we can have
full control over the error in triangulation.
In the case of the moment fitting method, B-rep models can be taken into account very efficiently.
Here, we also employ a triangulated representation of B-rep models. For the sake of simplicity,
let us explain the process of including a triangulated surface in the moment fitting method by
taking a look at the 2D-situation depicted in Fig. 3.7. The figure on the left-hand side depicts the
FCM mesh (dashed line), the physical domain (gray area), and its B-rep description (solid line).
The figure on the right-hand side shows a typical cut cell undergoing numerical integration,
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Ω

Ωc

ΩA

Figure 3.7: Boolean operation between the FCM mesh and the B-rep model of the geometry.

in this case with the moment fitting method. In order to compute the right-hand side of the
moment fitting equation system when the divergence theorem is applied, a closed surface of the
integration domain ΩA is required. Please note that the triangulated description of the geometry
obtained from CAD programs usually represent the surface of Ω and not ΩA. However, it is
simple and straightforward to obtain the latter. To this end, we can perform a boolean operation
between the cut cell undergoing integration Ωc and the triangulated geometry Ω. Such a boolean
operation can readily be obtained, either analytically or numerically, with the help of packages
such as OpenCascade [5], CGAL [6], GTS [7], libigl [8], or Cork [9]. In this thesis, we employ
the Cork library, which offers fast boolean operations such as union, difference, intersection,
etc., and can be integrated into our in-house code AdhoC [61] with a minimum of effort. Having
obtained the triangulated surface of ΩA, the integrals of Eq. (3.27) can be computed as

∫
ΓA

gj (x) · n (x) dΓ ≈
nt∑

t=1

∫
Γt

gj (x) · nt (x) dΓ , (3.29)

where Γt is the boundary of the tth triangle in the surface mesh as

ΓA ≈
nt⋃

t=1
Γt , (3.30)

and nt is the unit outward normal of that triangle. The resulting integral on the triangles can,
for instance, be computed numerically by employing standard numerical quadrature rules for
triangles or by using the method described in [63].

Remark: As mentioned before, the geometry in the FCM is resolved during the numerical in-
tegration of the (discretized) weak form. In the case of B-rep models and the moment fitting
method, the resolution of the triangulated surface limits the accuracy of the quadrature and, con-
sequently, the geometry in the FCM. Here, it is thus vital to choose sufficiently small triangles
when the triangulated surface of the B-rep model in CAD programs is exported. Considering
the fact that the computation of Eq. (3.29) is very cheap, we suggest to always aim for fine
resolutions to be on the safe side.

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


44 3 Numerical integration algorithms for the FCM

3.4.3.2 Computing the right-hand side on voxel models

The voxel models are a direct description of the geometry. In order to compute the right-hand
side of the moment fitting method with this kind of geometry representation, it is possible to
either take advantage of the divergence theorem or to compute the volume integrals directly.
To explain both of these approaches, let us again consider a 2D configuration as depicted in
Fig. 3.8. In the FCM, it is common to employ aligned meshes with voxels, i.e. we do not allow

Ω

Ωc

ΩA

Figure 3.8: Boolean operation between the FCM mesh and the voxel model of the geometry.

cut voxels in the FCM. Under such circumstances, performing the boolean operation between
the cell and the voxel model is trivial, meaning that the closed surface of ΩA can be determined
easily. Having found the closed surface of the integration domain, the moments can be computed
by applying the divergence theorem as∫

ΩA

fj (x) dΩ =
∫

ΓA

gj (x) · n (x) dΓ =
ns∑

s=1

∫
Γs

gj (x) · ns (x) dΓ , (3.31)

where Γs is the surface of a voxel which coincides with the boundary ΓA. The closed surface of
the integration domain ΓA can be expressed in terms of Γs as

ΓA =
ns⋃

s=1
Γs . (3.32)

Alternatively, to directly compute the right-hand side of the moment fitting equation on a cell
containing nv full voxels, we may use the composed voxel integration as∫

ΩA

fj (x) dΩ =
nv∑

v=1

∫
Ωv

fj (x) dΩ , (3.33)

where Ωv is the domain of the vth voxel. The voxels span the integration domain as

ΩA =
nv⋃

v=1
Ωv . (3.34)

The integrals on the voxels can be computed analytically or numerically by applying, for in-
stance, a Gaussian quadrature rule.
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3.4.3.3 Computing the right-hand side on implicitly described geometries

The implicit representation of a geometry is usually given by the iso-zero contour of the level set
function as

φ (x) = 0 , (3.35)

that is given on the cell level. In Chapter 4, we will explain how to efficiently set up the level set
function on cut cells. With the level set function, the integration domain can be expressed as

ΩA = {x ∈ Ωc : φ (x) ≤ 0} . (3.36)

With this type of geometry representation, different approaches can be considered to compute
the right-hand side of the moment fitting equation system. The first approach is to employ tech-
niques such as the marching cube algorithm, or the marching tetrahedra algorithm to create a
triangulated representation of the surface [132]. Having determined the triangulated representa-
tion of the geometry, we can compute the right-hand side of the moment fitting equation with the
help of the methods described for the B-rep models in Section 3.4.3.1. Alternatively, the adap-
tive refinements based on spacetrees can be employed to approximate the integration domain.
In order to compute the right-hand side of the moment fitting method in this case, it is possible
to apply similar methods to those explained with regard to the voxel models in Section 3.4.3.2.
The first approach is more accurate and a bit more expensive – whereas the second approach is
cheaper and less accurate.

3.4.4 Step 4 : Solving the equation system
After step 1 and step 2, the coefficient matrix of the moment fitting equation system is set up. In
step 3, the right-hand is computed. The final step is to solve the resulting equation system. As we
made sure to have ng ≥ m, the resulting equation system is usually under-determined or square.
The solution of such an equation system can be obtained through the following optimization
problem [129]

”minimize wiwi such that Aw = b” , (3.37)

that is equivalent to

w =
(
AT(AAT)−1

)
b . (3.38)

Due to simply pre-defining the position of the integration points instead of computing their op-
timal location, the resulting equation system of the moment fitting is usually ill-conditioned.
Therefore, it is advised to solve the equation system with the help of the available packages in
the LAPACK library, such as DGELSY4 or DGELSS5[10].

3.4.5 Recovery of the Gauss quadrature rule
With the moment fitting method, it is possible to recover standard quadrature rules. Here, for in-
stance, we show the recovery of the Gauss-Legendre scheme. To this end, we consider a quadra-
ture rule on the standard domain, see Fig. 3.9. The study is performed for different quadrature

4A complete orthogonal factorization algorithm.
5An algorithm for minimizing the norm of the solution.
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Figure 3.9: Distribution of integration points according to the GL quadrature of order 4.

orders as pq = 1, 2, . . . , 18. According to (3.25), the number of integration points is set to
m = ng = (pq + 1)3. The position of the quadrature points is also set according to the lo-
cation of the Gauss points in a Gauss-Legendre quadrature rule that includes the same number
of points. In this example, it is very easy to compute the right-hand side of the moment fitting
equation system, for instance by applying analytic methods, standard numerical methods, or one
of the methods explained in Section 3.4.3. Here, we employ the latter one and compute the right-
hand side by employing a B-rep model of the cube. The following error definition is taken into
account to compare the weights resulting from the moment fitting method to the Gauss-Legendre
weights

ew = 1
ng

√√√√ ng∑
i=1

(
wGL

i − wMF
i

wGL
i

)2

× 100 [%] , (3.39)

where wGL
i are the Gauss-Legendre weights and wMF

i are the ones obtained from the moment
fitting method. The result of this study is given in Fig. 3.10. As can be observed, the error in
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Figure 3.10: Relative error of the moment fitting weights as compared to Gauss-Legendre weights.
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the computed weights is in the range of machine accuracy. Please note that with such weights,
it is possible to integrate polynomials up to the order 2ng − 1, which is higher than the order of
the considered basis functions in the moment fitting. This is mainly due the fact that the Gauss-
Legendre points are somewhat optimal in terms of the numerical integration. However, we would
like to again emphasize the fact that it can be very expensive, or even impossible, to obtain such
points in a general case. Therefore, we decide to abandon the idea of optimality and opt for
the simplicity of the method by choosing an arbitrary set of integration points, as explained in
Section 3.4.2. Based on this, it is still possible to obtain an accurate numerical integration scheme
with reasonable computational costs – as to be shown in the following section.

3.5 Performance of the suggested numerical
integration schemes

In this section, we consider several numerical examples to investigate the performance of the
suggested numerical integration methods. Since we usually employ Cartesian grids in the FCM,
the following examples will only take quadrilateral cells in 2D and hexahedral cells in 3D into
account. With regard to the integrands, we consider polynomials of different orders unless oth-
erwise stated. The considered polynomials are given in appendix B. The performance of the
numerical integration algorithms is measured in terms of accuracy and the devoted computa-
tional expenditure.

3.5.1 Cell cut by a planar surface
The first example to be considered in this section is a hexahedral cell – depicted in Fig. 3.11 –
which is cut by a planar surface. The resulting physical domain ΩA is a tetrahedron. We are

Figure 3.11: A cell cut by a planar surface and the integration points for pq = 16.

interested in computing the integrals of polynomials up to the order pi ≤ 17 on such a cut cell.
Although, for this particular case, the underlying integrals can be readily computed, for instance
by the composed integration using tetrahedral sub-cells, we aim to use the moment fitting method
to evaluate the performance of the proposed approach in cases where the integration domain only

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


48 3 Numerical integration algorithms for the FCM

10-15

10-10

10-5

100

105

 0  2  4  6  8  10  12  14  16  18

R
el

at
iv

e 
er

ro
r 

in
 in

te
gr

at
io

n 
e I

 [
-]

Polynomial order of the integrand pi [-]

pq = 4, ng = 165
pq = 7, ng = 560

pq = 11, ng = 1771
pq = 16, ng = 4960

Figure 3.12: Relative error in integrating polynomials applying the moment fitting method.

obeys planar surfaces. In cases like this, it is easily possible to compute the right-hand side of the
moment fitting equation system exactly up to machine precision. This is possible thanks to the
fact that the planar surfaces can be described exactly by employing a triangulated representation
of B-rep models, for instance. Such a situation allows the moment fitting method to precisely
resolve the geometry during the numerical integration. In this example, we construct quadratures
of orders pq = 4, 7, 11 and 16. For each quadrature order, at least ng = (pq + 1)3 integration
points are placed inside the integration domain with the help of the adaptive point distribution
algorithm described in Section 3.4.2. The resulting integration points for the case of pq = 16 are
depicted in Fig. 3.11.

The behavior of the moment fitting method while computing integrals on this domain is de-
picted in Fig. 3.12. The figure shows the error in integration in terms of Eq. (3.7), where the
reference value is computed with the aid of the symbolic integration tool from the open-source
program Maxima [11]. As we can see, the resulting quadrature is very accurate – in the range of
machine accuracy – for the cases of pi ≤ pq. The reasons for accurate results like this are:

1. The integration domain is resolved very accurately during the computation of the right-
hand side of the moment fitting equation system. Thus, the error related to the geometry
is vanished for the obtained quadrature rule.

2. The considered integrands are polynomials, which is why they can be described exactly
with the applied basis function employed in the moment fitting method. Thus, the error
due to approximating the integrand is vanished as well.

The second property is of a great interest in the context of the FCM. In this method, the available
integrands in the weak form are usually polynomials – and they remain polynomials after the
mapping too. Hence, the moment fitting method is suitable to obtain a quadrature rule that leads
to an exact numerical integration – in the range of machine accuracy – provided that the right-
hand side of the moment fitting equation can be computed very accurately. It should, however,
be borne in mind that the numerical integration in the FCM only has to be accurate enough to
ensure that its error is smaller than the discretization error.
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Figure 3.13: The condition number of the moment fitting equation system.

Looking at Fig. 3.12, we also observe that the error of the moment fitting method increases
for quadratures of higher orders. This can be due to employing arbitrary points instead of the
optimal ones. Such a simplification may lead to an ill-conditioned equation system, which,
in turn, will inhibit an accurate solution, i.e. accurate weights. The condition number of the
equation system given in Eq. (2.33) is plotted in Fig. 3.13 for different quadrature orders. An
ill-conditioned equation system does not only lead to a less accurate quadrature, it will also result
in a more costly solution step. Therefore, a possible direction of research for future works is to
increase the efficiency of the method by finding a better set of integration points. Nevertheless,
we would like to stress the fact that the current results are sufficiently accurate for an analysis
based on the FCM. In addition, the overhead due to the most likely quite costly solution step
of the moment fitting equation system can simply be amortized by the number of times the
quadrature is employed during the computations.

3.5.2 Cell cut by several planar surfaces
There are situations where a cell is cut several times at different locations. An example for
situations like this, where the interface only obeys planar surfaces, is depicted in Fig. 3.14. The
integration domain here contains eight cubes, each with the size of 1 × 1 × 1, that are randomly
distributed in a cell with the size of 10 × 10 × 10. In this case, we are again interested in
computing the integral of polynomials up to the order pi ≤ 17. Once again, we will only consider
the moment fitting method. In this method, the integration domain can obey any topology with
any sort of topological discontinuity. Here, as in the previous example, the right-hand side of
the moment fitting equation system can again be computed exactly, up to machine accuracy.
Since the integrands in this example are polynomials, the applied basis functions in the moment
fitting method are able to describe them exactly as well. Therefore, the only source of error
in this method is the fact that the integration points are chosen in a non-optimal way. The
results of the numerical integration in terms of Eq. (3.7) are depicted in Fig. 3.15, where the
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Figure 3.14: Disconnected regions in one cell and the integration points for pq = 16.

reference solution is computed analytically. Again, we can see that the resulting quadrature is
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Figure 3.15: Relative error in integrating polynomials applying different quadrature orders of the
moment fitting.

very accurate for pi ≤ pq and that there is a jump in the error for pi > pq. It is interesting to
note that, in order to obtain comparable results on such a domain with the help of the composed
integration, several subdivisions are required to accurately resolve the integration domain. As a
result of subdivisions like this, the resulting number of integration points will be higher than for
the moment fitting method.

3.5.3 Cell cut by a curved surface
Let us now focus on the case of numerical integration on domains obeying curved surfaces, for
instance by taking a look at a case where the integration domain is an ellipsoid – as depicted in
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Fig. 3.16. The ellipsoid is defined with the help of the following level set function

(a) (b)

Figure 3.16: (a) Cell cut by an ellipsoid and (b) 2296 integration points in the moment fitting
for pq = 12.

φ(x) = x2 + 16y2 + 16z2 − 1 , (3.40)

leading to the following indicator function

α(x) =

⎧⎨
⎩1 φ(x) ≤ 0

0 otherwise
(3.41)

Computing integrals on such a domain is more challenging than the case of domains obeying
only planar surfaces. If the composed integration method is applied, e.g. the adaptive octree
integration, several refinements are usually needed to obtain a sufficiently accurate description of
the geometry. Unfavorably, these refinements simultaneously increase the number of integration
points too. With the moment fitting method, on the other hand, the number of integration points
in the resulting quadrature is not dependent on the accuracy of the geometry description. This is
thanks to the fact that in the moment fitting method, the geometry accuracy is controlled during
the computation of the right-hand side of the equation system. In the following, we will compare
the performance of the moment fitting method and the adaptive octree integration on this cell.

First, let us consider the setup of the quadrature rules based on the moment fitting method.
For the sake of geometry representation, we employ a triangulated description of the surfaces, as
can be obtained from any CAD software, and control the accuracy by reducing maximal chordal
deviation tolerances for the surface triangles. To study the influence of the accuracy of the right-
hand side on the performance of the moment fitting method, we take a look at the computation
of the integral of polynomials with the orders of pi = 0, 4, 8 and 12 when a quadrature of order
pq = 12 is applied. In this case, at least ng = (12 + 1)3 integration points are placed inside the
ellipsoid with the help of the adaptive point distribution algorithm presented in Section 3.4.2; see
Fig. 3.16b. The coarsest considered surface mesh includes nt =1150 triangles, while the finest
one has nt =1,996,000 triangles. The integrals on the triangles are also computed numerically
with the method described in [63]. The results of this study are depicted in Fig. 3.17. Here,
the error in integration based on Eq. (3.7) is plotted in terms of the number of triangles in the
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Figure 3.17: Relative error in integration based on the number of triangles.

surface mesh. The reference solution is again computed analytically with the help of the open-
source package Maxima [11]. As we can see, the error in integration decreases algebraically
by increasing the number of triangles in the employed surface mesh. This indicates that the
error of the quadrature is mostly governed by the geometry for the given range. The slope of the
convergence is approximately 1, which is a result of applying standard linear three-node triangles
in the surface mesh. Although it is possible to increase the rate of convergence by applying,
e.g., higher-order triangles, we will stick to standard linear three-node triangles because, first of
all, they are readily available in almost any CAD software, and, secondly, computing surface
integrals is numerically inexpensive.

Now let us compare the results with the adaptive octree integration. In order to boost the
accuracy of the adaptive octree integration, the refinement level in the octree is increased from 1
to 7. We employ a GL quadrature on the unbroken and cut sub-cells, with ng = �(12+1/2)�3 = 73

Gauss points. Here, all the points that are located outside the integration domain are discarded.
The resulting sub-cells and the integration points after 3 levels of octree refinement are depicted
in Fig. 3.18. The performance of the adaptive octree integration is compared to the moment
fitting for the case of computing the integral of a polynomial of order pi = 12 in Fig. 3.19. In the
moment fitting method, the number of integration points in the resulting quadrature evidently
remains constant, while performing a surface refinement leads to a more accurate numerical
integration. In the case of the adaptive octree integration, on the other hand, the number of
integration points increases after each octree refinement. This indicates that the moment fitting
method has advantages over the adaptive integration. It should be noted that, although it is
possible to reduce the number of integration points in the adaptive octree integration with the
method explained in Section 3.3.4, the number of integration points will definitely be much
higher than for the moment fitting method.

Next, let us take a look at the numerical integration of a non-polynomial function defined on the
ellipsoid. Under these circumstances, both the adaptive octree integration and the moment fitting
method suffer from two different sources of error, namely, the geometrical description error and

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


3.5 Performance of the suggested numerical integration schemes 53

(a) (b)

Figure 3.18: (a) Resulting sub-cells and (b) 5104 integration points associated with 3 levels of
octree refinement.
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Figure 3.19: Error in the numerical integration of a polynomial of order pi = 12 applying the
moment fitting method and the adaptive octree integration.
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the error due to the polynomial approximation of the integrand. Depending on the order of the
quadrature and the resolution of the surface mesh, each of these errors may dominate the total
numerical integration error. In order to study a case like this, let us compute the integral of the
following trigonometric function

T (x) = cos
(

πx − π

3

)
sin
(

πy

2 − π

4

)
cos
(

πz

2 − π

6

)
, (3.42)

by applying quadrature rules of different orders as pq = 4, 6, . . . , 12, once on a coarse and once
on a rather fine surface mesh. The results of this study are given in Fig. 3.20. For the moment
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Figure 3.20: Relative error of computing the integral of a trigonometric function with different
quadrature orders.

fitting method and the coarse surface mesh, the error in geometry is obviously dominant for the
case of pq > 8. With the fine mesh, the error of the integration is mostly dominated by the
polynomial approximation of the trigonometric function, and that is why increasing the order of
the quadrature leads to more accurate results. In the case of the adaptive octree integration, 5
levels of refinement yield a rather rough approximation of the geometry and, therefore, increasing
the quadrature order does not lead to more accurate results. This means that the error in geometry
is dominant. The tree with 7 refinements resolves the geometry more accurately, which is why
the integration algorithm delivers results comparable to the one of the moment fitting with a fine
surface mesh. Please note that for a given accuracy, the resulting number of integration points
in the adaptive octree integration is, however, 3 or 4 orders of magnitude higher than for the
moment fitting method.
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3.5.4 Cell cut by several curved surfaces
By way of another example of cells being cut at different locations, we consider a case where
the cell is cut by several curved surfaces. The example under consideration is a hexahedral cell
with the size of 10 × 10 × 10 mm3, with 27 ellipsoidal holes randomly distributed in the cell,
as depicted in Fig. 3.21. In this example, we are interested in computing the integral of the

Figure 3.21: Cube with ellipsoidal holes.

polynomials up to the order pi ≤ 12 on the cell. These integrals can be computed analytically
by applying the symbolic integration tool Maxima [11]. For the sake of numerical integration,
both the adaptive octree integration and the moment fitting method are applied. In the case
of the adaptive octree integration, the tree-depth in the octree is increased to achieve a better
approximation of the curved surfaces. For the moment fitting, a triangulated representation of
the surfaces is required to compute the right-hand side of the equation system. To this end, we
employ surface meshes that are directly obtained from a CAD program. As mentioned before,
due to applying a triangulated representation of curved surfaces, some errors will be introduced in
the resulting quadrature. Still, the main advantage of the moment fitting over the adaptive octree
integration is that it allows to control the integration error without changing the number of the
integration points of the resulting quadrature. Figure 3.22 shows how the error in the numerical
integration is dependent on the number of triangles in the surface mesh when the moment fitting
is employed. The error is computed in terms of Eq. (3.7). Again, this shows that increasing the
number of triangles in the surface mesh will lead to a reduction of the error – meaning that the
error is mostly dominated by the geometry for the given range. The performance of the adaptive
octree integration while computing the integral of a polynomial of order pq = 12 is compared to
the moment fitting method in Fig. 3.23. As in the previous example, we observe that the moment
fitting requires much less integration points to reach the same level of accuracy as compared to
the adaptive octree integration. This is mainly due to the fact that all the geometrical details of
the integration domain are absorbed in the right-hand side of the moment fitting method. Again,
we would like to emphasize that, in this method, increasing the number of triangles in the surface
mesh leads to a more expensive computation of the right-hand side. Nonetheless, the resulting
overhead is negligible due to fact that is generally cheaper to compute surface integrals than
volume integrals. In this case, apart from that, we only integrate polynomials – not element
matrices.
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Figure 3.22: Relative error in integration depending on the number of triangles in the case of the
moment fitting method.
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Figure 3.23: Comparing the moment fitting method with the adaptive octree integration in com-
puting the integral of a polynomial of order pi = 12
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3.5.5 Numerical integration on voxel models
The last example to be considered in this section is a foam-like structure that is part of a quanti-
tative computed tomography (qCT) scan of an aluminum foam [86]; see Fig. 3.24. The depicted

Parameters:
Size of the domain: 2.4×2.4×2.4 mm3

Number of voxels: 100 × 100 × 100
Voxel size: 24 × 24 × 24 μm3

Figure 3.24: A foam-like structure.

geometry only shows the full voxels in the corresponding voxel model. Models like this can
be taken into account with the FCM very efficiently thanks to the application of the fictitious
domain property of the method. Each finite cell can contain several voxels, allowing to choose
the size of the mesh based on the required accuracy and not on the size of the voxels, as it is the
case in the voxel-based finite element method. Here, we consider two different discretizations.
In the first case, the mesh is a Cartesian grid with 25 × 25 × 25 cells – resulting in a cell size
of 96 × 96 × 96 μm3, each cell containing 22 × 22 × 22 voxels. After discarding all the cells
that do not contain at least one full voxel, we obtain a mesh with a total number of 3694 cells,
of which 1892 are cut by the boundary; see Fig. 3.25a. For the next discretization, we employ a
Cartesian grid containing 20 × 20 × 20 cells, with a cell size of 120 × 120 × 120 μm3 and every
cell including 5 × 5 × 5 voxels. This mesh contains a total number of 2047 cells, 1248 of which
are cut; see Fig. 3.26a. The aim in this example is to compute the integral of the polynomials up
to the degree pi ≤ 9 on the whole voxel model. The unbroken cells are computed with the help of
a GL quadrature rule with ng = �(9+1/2)�3 = 53 integration points. For the numerical integration
of the cut cells, we consider the composed voxel integration, the adaptive octree integration, and
the moment fitting method.

In the case of voxel models, the composed voxel integration can fortunately always rely on
the exact geometry, regardless of the discretization, provided that the employed sub-cells have
the same size as the voxels. Moreover, if we apply a GL quadrature rule with a proper order on
the sub-cells – in this case ng = 53 Gauss points – the numerical integration will be exact up to
machine precision. Therefore, we can use the results obtained from this numerical integration
method as the reference solution.

In the case of the adaptive octree integration, very accurate results can be achieved as long as
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(a) The FCM mesh with 3694 cells

(b) The octree with 2 refinement levels

Figure 3.25: Discretization of a foam-like structure with 22 × 22 × 22 voxels per cell.
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(a) The FCM mesh 2047 cells

(b) The octree with 4 refinement levels

Figure 3.26: Discretization of a foam-like structure with 5 × 5 × 5 voxels per cell.
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each cell contains 2n ×2n ×2n voxels. If this is the case, the adaptive octree integration captures
the exact geometry after n refinements of the octree. Such a case is depicted in Fig. 3.25b in
which the exact geometry is captured after only 2 refinements of octree. In other situations, where
the number of voxels in each cell is not in the form of 2n×2n×2n, the adaptive octree integration
will generally not serve to resolve the geometry exactly, not even after multiple refinements. For
instance, Fig. 3.26b shows the octree mesh with 4 refinement levels in the case of 5×5×5 voxels
per cell. Again a GL quadrature with ng = 53 Gauss point is applied to the resulting sub-cells to
ensure an accurate numerical integration.

When considering the quadrature based on the moment fitting method, it is possible to resolve
the geometry exactly, independent of the employed mesh. This is possible thanks to the fact
that, in this method, the geometry is taken into account directly during the computation of the
right-hand side of the moment fitting equation. It should be noted that different quadrature rules
are constructed on each and every cut cell; hence, the closed surface of the integration domain
in each cut cell undergoing integration is required. To this end, a boolean operation between the
mesh and the voxel model is needed. However, since both the voxel model and the FCM mesh
are Cartesian grids, performing the boolean operation is trivial. With regard to the integration
order, we set up a quadrature of order pq = 8. Here, at least ng = (8 + 1)3 integration points are
placed inside the integration domain with the aid of the adaptive point distribution method.

Figure 3.27 shows the error of the applied numerical integration methods in terms of Eq. (3.7).
As mentioned before, the results of the composed voxel integration are considered as the refer-
ence solution. The resulting number of integration points that are used in each integration method
are also given in Table 3.2. As can be seen, the adaptive octree integration is able to provide ex-

Table 3.2: Number of integration points for the foam-like geometry shown in Fig. 3.24.

Integration technique 22 × 22 × 22 voxels per cell 5 × 5 × 5 voxels per cell

Composed voxel integration 7,348,250 9,154,500
Adaptive octree integration 3,311,000 228,973,250
Moment fitting method 1,852,753 1,167,151

act results up to machine accuracy in the case of the mesh with 22 × 22 × 22 voxels per cell. It
also noticeably cuts down the number of integration points as compared to the composed voxel
integration, because it allows for bigger sub-cells. Nonetheless, it performs very poorly in the
case of 5 × 5 × 5 voxels per cell due to the existing geometry representation error. Considering
the resulting number of integration points, the adaptive octree integration is not recommended in
cases where the number of voxels in the cell is not of the form 2n × 2n × 2n. In both cases, the
error introduced by the moment fitting method is very low as well, somewhat independent of the
mesh. The number of integration points resulting from the moment fitting is also the lowest of
all; see Table 3.2.
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Figure 3.27: Relative error in integration using the moment fitting method and the adaptive
octree integration on (a) a mesh with 22 × 22 × 22 voxels per cell and (b) a mesh
with 5 × 5 × 5 voxels per cell.
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3.6 Performance of the numerical integration
methods in the FCM

In the following, we employ the presented numerical integration algorithms to investigate their
performance and their effect on the convergence of the FCM. All the computations in this section
are carried out with the in-house code AdhoC [61] on a machine that features eight processors
each with six cores.

3.6.1 Perforated plate

The first numerical example to be considered in this section is, again, the example of the per-
forated plate that was examined in Section 2.5.2. In this example, the domain of interest is
discretized by means of four quadrilateral finite cells where the polynomial degree of the Ansatz
is varied as p = 1, 2, . . . , 10; see Fig. 3.28. Here, we study the error in energy norm based on

(a) The FCM mesh (b) Pixel integration (c) Quadtree integration

Figure 3.28: The FCM mesh and sub-cells generated using different composed integration ap-
proaches.

(2.32) where different numerical integration algorithms are taken into account during analysis.
The reference value of the strain energy is obtained with the help of an overkill solution employ-
ing a very fine p-FEM discretization. Let us first take a look at the performance of the adaptive
quadtree integration by looking at Fig. 2.11. As we can see from this figure, the accuracy of the
FCM is highly dependent on the accuracy of the numerical integration. When the tree-depth in
the quadtree is low, the overall convergence behavior deteriorates due to the integration error,
and increasing the polynomial order of the Ansatz does not lead to more accurate results. On
the other hand, when the tree-depth is increased – i.e. when the numerical integration algorithms
captures the geometry more accurately – the exponential convergence of the FCM is recovered.

Now let us compare the performance of different numerical integration methods for this prob-
lem. Here, the resolution of the integration mesh is chosen by applying Alg. 1 as discussed in
Section 3.3.4. The results shown in Fig. 3.29a correspond to the cases in which the standard
Gauss-Legendre quadrature, the composed pixel integration, and the adaptive quadtree integra-
tion are employed. Examples of sub-cells generated by each composed integration are depicted
in Fig. 3.28. As can be seen from Fig. 3.29a, employing the standard Gauss-Legendre quadrature
scheme has the disadvantage of deteriorating the expected exponential convergence rate of the
energy norm in the FCM. The reason for this is that the algorithm is not sufficiently tailored to
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Figure 3.29: (a) Effect of different numerical integration algorithms on the convergence behavior.
(b) The numerical cost of different integration algorithms for different Ansatz orders.
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the geometry during the numerical integration. On the other hand, neither version of the com-
posed integration approaches has a negative effect on the convergence behavior of the FCM for
the given mesh and polynomial orders. The number of integration points needed for an accurate
numerical integration, to avoid deterioration of the exponential convergence behavior, is however
different; see Fig. 3.29b. The number of integration points in the case of the adaptive quadtree
integration is much lower than that of the composed pixel integration, especially in the case of
p > 5.

In order to reduce the computational costs of the adaptive quadtree integration even further,
we can employ Eq. (3.16) to linearly decrease the integration order in smaller sub-cells, i.e. by
applying an hp-version of the adaptive integration. Numerical tests suggest that lmax = 2p leads
to an efficient integration. The results of this integration approach are depicted in Figs. 3.29a
and 3.29b. While this method does not deteriorate the convergence behavior obtained by the
standard adaptive quadtree integration, it reduces the number of integration points, especially in
the case of p ≤ 5.

3.6.2 Sphere under hydrostatic stress state

By way of another example, we consider the sphere depicted in Fig. 3.30a, which experiences
a hydrostatic stress state. The sphere is made of a material that obeys an isotropic linear-elastic

Parameters:
Young’s modulus: E = 1 N/mm2

Poisson’s ratio: ν = 0.3
Normal traction: T̂n = 1 N/mm2

Radius of the sphere: R = 5.0mm

x y

z

T̂n

(a) The geometry (b) The FCM mesh

Figure 3.30: A sphere under hydrostatic stress state.

law. The material parameters are also given in Fig. 3.30. Under the given conditions, the exact
displacement field can be described in closed form as

�u(�x) =

⎧⎪⎨
⎪⎩

C x
C y
C z

⎫⎪⎬
⎪⎭ with C = 1

E
(1 − 2ν)T̂n , (3.43)

Considering the symmetry of the structure and the loading, it is sufficient to simulate only one-
eighth of the sphere; see Fig. 3.30b. Despite the linear displacement field, several elements are
required to represent the curved surfaces of the structure exactly when the standard finite element
method is employed. The FCM, on the other hand, separates the displacement approximation
from the geometry description. Thus, it is possible to describe the displacement field only con-
sidering one finite cell, which totally embeds the geometry, and the Ansatz order of p = 1. The
geometry of the sphere is then taken into account during the numerical integration of the (dis-
cretized) weak form. To this end, we define the indicator function with the help of the level set
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function as

α(x) =

⎧⎨
⎩1 if φ (x) ≤ 0

0 otherwise ,
(3.44)

where the level set function is defined as

φ (x) = x2 + y2 + z2 − R2 . (3.45)

The cell under consideration is subjected to symmetry boundary conditions on the left, the bot-
tom, and the back. With regard to the cell load vector, we compute the corresponding integrals
by employing a triangulated description of the surface on which the load is acting; see Sec-
tion 2.4.2.1.

To compute the stiffness matrix, which obeys a discontinuous integrand due to applying a non-
conforming mesh, we employ the adaptive octree integration and the moment fitting method. In
the case of the adaptive octree integration, the accuracy of the method is boosted by increasing the
number of refinements in the octree. The resulting geometry approximation for different levels
of refinement of the octree are depicted in the left-hand side of Fig. 3.31. Please note that all the
empty sub-cells are discarded. On each (full and cut) sub-cell, we apply a GL quadrature with
(p + 1)3 = 23 Gauss points. In the case of the moment fitting method, triangulated descriptions
of the surface with different resolutions are applied. Here, the coarsest surface mesh contains
402 triangles, and the finest one has 525,718 triangles; see the right-hand side of Fig. 3.31. Since
the Ansatz order in this example is p = 1 and all the mappings are linear, the resulting integrands
on the standard domain are polynomials with the highest order of 2p. In order to compute these
integrals with the moment fitting method, we need at least (2p + 1)3 = 27 integration points.
These integration points are distributed in the physical domain of the cell with the help of the
adaptive point distribution algorithm presented in Section 3.4.2.

In order to evaluate the accuracy of the numerical integration algorithm, we first take a look at
the computation of the volume of the physical domain, given as

V =
∫
Ωc

α(x) dΩ . (3.46)

The results are compared in Fig. 3.32 in terms of Eq. (3.7) where the exact volume is Vex =
1/6πR3. Apparently, both methods are able to yield very accurate results. Nevertheless, the
resulting number of integration points of the adaptive octree integration is much higher than for
the moment fitting method; see Table 3.3.

Table 3.3: Computational costs of the moment fitting and the adaptive octree integration.

Relative error in volume nada
g nmom

g tada
q tmom

q tada
K tmom

K

≈ 10−4 1720 27 ≈ 9.2 ms ≈ 0.1 s ≈ 8.7 ms ≈ 0.2 ms
≈ 10−5 510,728 27 ≈ 2.9 s ≈ 13.7 s ≈ 2.5 s ≈ 0.2 ms
≈ 10−6 2,061,424 27 ≈ 11.6 s ≈ 26.3 s ≈ 10.3 s ≈ 0.2 ms

Next, let us take a look at the computed von Mises stress σvM using each integration method.
In the case of a hydrostatic stress state, all the normal stress components are equal to the applied
tension, and all the shear stress components are zero. Under these circumstances, the von Mises
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(a) 3 refinement levels

(b) 5 refinement levels

(c) 7 refinement levels

(d) 892 triangles

(e) 33,996 triangles

(f) 263,220 triangles

Figure 3.31: Left) Sub-cells generated during the adaptive octree integration, right) The para-
metric description of the octant employing different STL models.
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Figure 3.32: Relative error in the volume where a quadrature rule of order pq = 2 is applied.

stress is zero as well. The contour plot of this stress, computed with the applied integration
schemes, is depicted in Fig. 3.33. To get a better insight into the results, the error in the von
Mises stress evM

evM =
∣∣∣∣∣σvM

T̂n

∣∣∣∣∣× 100[%] , (3.47)

is also plotted in Fig. 3.34 along the radial line x = y = z ∈ [0, R/
√

3]. As can be seen, the
case of the moment fitting method is able to provide a very accurate representation of the von
Mises stress, while the von Mises stress does not vanish completely when the octree integration
is applied.

It should, however, be noted that the numerical integration based on the moment fitting – which
is more accurate than the adaptive octree integration – comes at the cost of a more expensive
setup of the quadrature. In order to shed more light on this issue, let us take another look at
Table 3.3. In this table, tq is the time devoted to setting up the quadrature, tK is the time spent
during the integration of the stiffness matrix, and the superscripts "ada" and "mom" denote the
values related to the adaptive octree integration and the moment fitting, respectively. As we can
see, the overhead introduced by the moment fitting method is generally higher than that of the
adaptive octree integration. On the other hand, tK for the moment fitting method is less than the
one of the adaptive octree integration method. This means that it is more expensive to set up the
moment fitting method, but it will lead to a cheaper numerical integration. These characteristics
make the method very well suited for cases where the quadrature rule needs to be built only once
in order to be used several times. In this way, the extra computational time devoted to set up
the quadrature is amortized by the number of times the quadrature is employed. Such situations
occur in almost all nonlinear computations. Furthermore, the moment fitting method can also
be very much of interest in cases where several computations have to be carried out on each
integration point, for instance in elastoplastic problems.
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(a)

(b)

Figure 3.33: The contour plot of the von Mises stress for the sphere under hydrostatic state with
(a) the adaptive octree integration including 8 refinements, ng =2,061,424 and (b)
the moment fitting method including 33,996 triangles in the surface mesh, ng = 27.
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Figure 3.34: Relative error in the von Mises stress along the radial line.

3.6.3 Porous domain under pressure

By way of the last example in this chapter, we once more take a look at the simulation of a porous
domain as depicted in Fig. 2.13a, this time from the point of view of the numerical integration.
Here, we only consider the case where the mesh contains 8 × 8 × 8 cells. In this mesh, there are
175 cut cells and 337 unbroken ones. The error of the numerical integration is merely related to
these 175 cut cells, because the underlying integral on the unbroken cells can be computed very
accurately with the help of a Gauss-Legendre quadrature with (p + 1)3 Gauss points. For the
cut cells, we compare the performance of the adaptive octree integration and the moment fitting
method. Since the geometry is the same as in the last example of Section 3.5, we can decide
about the accuracy of the integration algorithms by taking a look at Fig. 3.23. In order to be on
the safe side and to not affect the convergence behavior of the FCM, we allow a maximum error
of 10−6 in the numerical integration. For this level of accuracy, we need to employ a surface
mesh with nt = 3,762,310 triangles in the case of the moment fitting and 7 levels of refinement
in the case of the adaptive octree integration. It is to be noted that the mesh applied in this ex-
ample – as compared to the one in Section 3.5.4 – needs only 4 extra refinements of octree to
achieve the same accuracy.

Remark: Please note that in the moment fitting case, we need a surface description of the integra-
tion domain on each cut cell. The STL model obtained from the CAD program, however, only
represents the whole geometry. Therefore, we perform a boolean operation between the FCM
mesh and the STL model, as explained in Section 3.4.3.1, to find the common surface mesh that
describes the physical domain in the cell. For instance, the outcome of such an operation using
the Cork library [9] for one of the cut cells is depicted in Fig. 3.35.

With regard to the number of integration points, we need at least (2p + 1)3 of them in each of
the cut cells when the moment fitting method is employed. As before, the integration points are
placed inside the physical part of each cut cell with the help of the adaptive point distribution
method. Figure 3.36 shows the convergence behavior of the FCM in terms of the error in energy
norm based on Eq. (2.32). Since increasing the polynomial order of Ansatz leads to a lower error
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Figure 3.35: Surface mesh in one cut cell.
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Figure 3.36: Convergence behavior of the FCM applying different numerical integration algo-
rithms.
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in energy norm, we can conclude that the error in geometry is smaller than the discretization er-
ror. This is a sign that both of the numerical integration methods are able to resolve the geometry
accurately enough. The computational expenditure of these methods is compared in Fig. 3.37.
For almost all the orders of the Ansatz, the moment fitting requires around 40 times less integra-
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Figure 3.37: Cost comparison of different numerical integration algorithms.

tion points as compared to the adaptive octree integration. As discussed in the previous example,
these savings come at the cost of a slightly more expensive setup of the quadrature. However,
we would like to once more emphasize that the overhead introduced by the moment fitting can
be easily amortized by the number of times the quadrature is used during the computation.
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Chapter 4

Local enrichment of the FCM

In the field of numerical analysis, there are several situations where the solution is smooth ev-
erywhere except at some specific and limited locations, i.e. there is a loss of regularity in the
solution. In solid mechanics, such a situation might essentially appear, for instance, in the numer-
ical simulation of structures with heterogeneous materials, composites, or problems containing
singularities resulting from reentrant corners or cracks, just to name a few. Under these circum-
stances, the solution may obey different kinds of discontinuities and singularities that cannot be
represented accurately within an element with the commonly smooth shape functions applied
in finite element based methods. In other words, if the non-smooth part of the solution appears
within elements, there will be a significant reduction in the convergence rate of the method. To
avoid such difficulties, it is therefore vital to design the mesh in such a way that the phenomena
leading to a non-smooth solution are resolved by the elements, i.e. a geometrically conforming
mesh that resolves the discontinuities and the singularities [170, 171]. However, in the FCM, the
mesh does not necessarily follow the boundaries, so discontinuities and singularities are gener-
ally allowed to appear in cells. Due to the fact that in the standard FCM, shape functions are also
smooth – commonly polynomials – there is expected to be a reduction in the convergence rate of
the method too if the cells include such local features. In order to recover the loss of the conver-
gence rate and assure an accurate numerical analysis with the FCM, it is necessary to properly
account for these situations with an appropriate enrichment strategy. In this thesis, our focus is
on one of these cases in which the structure under examination involves heterogeneous materials
and, therefore, the solution exhibits a kink in the displacements and a jump in the strains at ma-
terial interfaces. This kind of discontinuity in the solution is known as the weak discontinuity.
In this chapter, we will investigate the solution characteristics of the FCM with regard to such
problems and, accordingly, propose several approaches to obtain a reliable simulation procedure.

4.1 FCM for problems with material interfaces

In order to understand the solution behavior of the FCM for problems with material interfaces,
let us consider a problem setting that is very similar to the one discussed in Section 2.5.1, but
now with a material interface instead of the fictitious domain; see Fig. 4.1. The bar consists of
two materials, one of them being ten times stiffer than the other one, i.e. E2 = 10E1. The bar is
again fixed at one end, and it is subjected to a body force fb(x). Under the given conditions, the
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Parameters:
Young’s modulus: E1 = 1.0
Young’s modulus: E2 = 10.0
Body force: fb(x) =
− sin(8x)
L1 = 1, L2 = 0.5, A = 1

x

L1 L2

Ω1 Ω2

E1 E2

fb(x)

Discretization with 1 finite cell

Figure 4.1: A bi-material one-dimensional rod discretized with one finite cell.

governing equation is
{

(EAu′(x))′ + fb(x) = 0 on Ω = Ω1 ∪ Ω2
u = 0 at x = 0 (4.1)

The exact displacement u in the longitudinal direction is computed as

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−sin(8x)
64 + cos(12)

8 x for 0 ≤ x ≤ L1

−sin(8x)
640 + cos(12)

80 x − 9 sin(8)
640 + 9 cos(12)

80 for L1 < x ≤ L1 + L2

(4.2)

and the strain field ε = ∂u

∂x
is given as

ε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−cos(8x)
8 + cos(12)

8 for 0 ≤ x ≤ L1

−cos(8x)
80 + cos(12)

80 for L1 < x ≤ L1 + L2

(4.3)

Similar to Section 2.5.1, we apply the FCM and discretize the domain with one finite cell, as
depicted in Fig. 4.1. The shape functions are of order p, based on the integrated Legendre
polynomials, where the polynomial order of the shape functions is increased from 1 to 8 to
improve the quality of the approximation. The stiffness matrix and the load vector are similar to
Eq. (2.31), except for the facts that α is equal to one in this case and that the material property
is varied along the rod. Please note that the stiffness matrix here also obeys a discontinuous
integrand due to the jump in the material properties at the material interface, which is why it is
necessary to apply the methods described in Chapter 3 to compute the stiffness matrix accurately.
In this particular case, it is possible to perform the numerical integration exactly up to machine
accuracy by employing a composed integration method with an integration mesh including 2
sub-cells that resolve the material interface.

The resulting displacement field and the strain field are depicted in Fig. 4.2a and Fig. 4.2b,
respectively. It is clear that a better least square approximation of the strains is achieved by
performing a p-extension. However, the applied smooth shape functions can never represent
the jump in the strain field exactly. Subsequently, the convergence rate of the FCM reduces, as
depicted in Fig. 4.3. Here, the convergence study is performed in terms of the error in energy
norm defined in Eq. (2.32). The convergence behavior of the standard p-FEM is also shown in
the figure. This solution is related to a case where the material interface is resolved by employing
two conforming elements of order p. As can be seen, in contrast to the problem with no material
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Figure 4.2: The FCM results (red) of an elastostatic analysis of the one-dimensional bar with a
material interface. The black curves are the analytical solution.
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Figure 4.3: Convergence study of the one-dimensional bar based on the relative error in energy
norm.

interface, the convergence rate of the FCM is algebraic instead of exponential; see also Fig. 2.7.
In order to avoid a reduction of the convergence rate and obtain an accurate representation of
the strains and stresses with the FCM, it is therefore essential to accurately take care of the
discontinuities introduced by the material interface within the cells. In the following, we will
thus present different approaches that are suitable to deal with this kind of problems.

4.2 Local refinement and adaptivity
There are different approaches to improve the quality of a finite element approximation, some
of them based on modifying the approximation globally and some of them locally. Here, we
are only interested in the latter, because this commonly requires less degrees of freedom than
a global refinement. With this approach, our goal will be to improve the approximation of the
FCM only in those cells which include the material interface. In order to explain the procedure
of the local refinement1 in the context of the FCM, let us take a look at a 2D configuration that
contains a material interface Γint, as depicted in Fig. 4.4. The domain of interest is discretized
with the FCM, discarding all the cells that are completely outside the physical domain. Under
these circumstances, the gray cells are cut by the material interface, and they require additional
terms in their Ansatz to accurately represent the strain and stress fields. These cells are called
the enriched cells, and they should be equipped with some additional degrees of freedom. The
hatched cells do not need any enrichment – but, due to the fact that they are connected to the
enriched cells, they include some additional degrees of freedom. These cells are called the
blending cells [40, 70]. The white cells are the standard FCM cells with the standard smooth
shape functions of higher order.

The local enrichment can be obtained in different ways – such as an h-refinement, where the
size of the mesh is reduced in the enriched cells, a p-refinement, where the polynomial order

1The local refinement is sometimes referred to as the local enrichment.
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Enriched cell

Blended cell

Γint

Figure 4.4: FCM discretization and the resulting enriched, and blended cells.

of the Ansatz is increased locally, or an hp-refinement, which is a combination of both h- and
p-refinement. Choosing between these refinement strategies highly depends on the nature of
the underlying problem and the quantities of interest. Another possible approach to locally
improve the approximation is to locally enrich the Ansatz by carefully designed shape functions
that can represent the local phenomenon of interest more accurately than the standard smooth
shape functions. This refinement strategy is very much of interest to simulate problems with
heterogeneous materials, cracks, crack tips, or shear bands, for instance. Regardless of the way
the enrichment is constructed, the modified approximation can be stated as follows

u = ub + ue (4.4)

where ub is the displacement approximation coming from the standard shape functions applied
on the base mesh, and ue is the enrichment related to the additional degrees of freedom connected
to the enriched cells. The displacements ub and ue are defined in the standard manner as

ub = Nb db

ue = Ne de (4.5)

where Nb are the smooth shape functions, and Ne are the designed shape functions that can
represent the local phenomena of interest. Please note that the order of the shape functions on
the base mesh and the enrichment are independent from each other. In Chapter 2, we discussed
the approximation on the base mesh and its properties, so we will only focus on the enrichment
part here. The enrichment basically needs to fulfill the following conditions:

1. The enrichment must be defined only locally, in such a way that it does not affect the
regions with no need of refinement.

2. If there exist no discontinuities or singularities, the enrichment should fulfill the same
continuity properties as the approximation on the base mesh.

3. The additional enrichment terms and the approximation on the base mesh should be lin-
early independent.
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The first condition ensures that the enrichment will modify the approximation only locally. In
other words, only some of the cells are enriched in this method, as

u =
∑
i ∈ D

Nb
i db

i +
∑

i ∈ D∗
N e

i de
i , (4.6)

where D are the degrees of freedom related to the approximation on the base mesh, and D∗ ⊂ D
is the space of the degrees of freedom related to the approximation due to the enrichment. In or-
der to modify the approximation only locally, the enrichment needs to vanish along the boundary
of the enriched zone. This can be achieved by applying homogeneous Dirichlet boundary condi-
tions on the boundary of the enriched zone, or by constructing Ne such that the shape functions
themselves vanish along the boundary. We will put more emphasis on this issue in Sections 4.4
and 4.5. The second item of the above list guarantees the continuity of the solution. That is, if
the approximation on the base mesh is, e.g., C0 continuous and the solution does not exhibit any
sort of discontinuity, the enrichment needs to be at least C0 continuous as well.

Considering the approximation (4.6) the weak form (2.7) can be stated as follows. Please note
that the dynamic terms are neglected.

Semidiscrete Galerkin formulation of the equilibrium equation

Given α, f b, û, T̂, find u ∈ Sh
b ⊕ Sh

e such that for all δu ∈ Vh

Bex(u, δu) = F ex(δu) (4.7)

Here, Sh
b is the space related to the approximation on the base mesh, and Sh

e is the space related
to the enrichment. Applying the Bubnov-Galerkin approach, i.e. discretizing the test functions in
the same way as the displacement field, and by inserting the displacement approximation (4.6)
into (4.7), we arrive at the following coupled equation system[

Kbb Kbe

Keb Kee

] [
db

de

]
=
[
fb

f e

]
. (4.8)

Here, Kbb and fb are the global stiffness matrix and the global load vector related to the base
mesh, respectively. In these quantities, only shape functions from the base mesh Nb are involved.
The global stiffness matrix and the global load vector related to the enrichment are Kee and f e.
In these two quantities, only shape functions related to the enrichment Ne are involved. For the
coupled terms Kbe and Keb = (Kbe)T, there is a coupling between the approximation on the
base mesh and the enrichment. In order to solve (4.8), we may apply different approaches. One
possible way is to compute the coupling terms and create the augmented stiffness matrix and
load vector as (4.8) and solve the resulting equation system by applying either direct or iterative
solvers. This method is referred to as the monolithic approach. Alternatively, we can apply a
partitioned approach based on the block Gauss-Seidel iteration procedure as

Kbb(db)(i+1) = fb − Kbe(de)(i)

Kee(de)(i+1) = f e − Keb(db)(i+1) (4.9)

were i is the iteration counter. The main advantage of the partitioned approach over the mono-
lithic one is that it is no longer necessary to explicitly compute the coupling terms Kbe and Keb.
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Instead, we need to compute the vectors Kbe(de)(i) and Keb(db)(i+1), which can be interpreted
as the pseudo load vectors arising from the negative pre-strains in the last Gauss-Seidel iteration
[62, 106, 144, 146]. Such a technique paves the way for the use of different software to provide
the approximation on the base mesh and the enrichment. The main disadvantage of a partitioned
procedure is that the convergence of the block Gauss-Seidel iteration is highly dependent on the
condition number of the equation system (4.8). To alleviate such difficulties of a partitioned
solution and to speed up the iteration procedure, it is usually advised to apply pre-conditioners
and employ acceleration techniques together with stabilization methods such as those suggested
in [68, 69, 141].

Now, the Ansatz related to the local enrichment can be introduced. Here, we focus on the ap-
proaches based on the hp-d method [62, 106, 144, 146] and the partition of unity method (PUM)
[24, 122]. Before discussing these methods and their properties, we would first like to explain
how to find the location of the material interface within each cut cell. For this purpose, we take
advantage of the level set function, which is commonly used for problems involving interface
tracking [134]. This approach is explained in the following section.

4.3 Describing material interfaces using the level set
function

The level set function φ is a scalar function that is defined in such a way that it is positive on one
side of the interface and negative on the other side. This function can be obtained with the help
of the signed distance to the interface as

φ(x) = ± min ||x − xint|| ∀xint ∈ Γint ∀x ∈ Ωex , (4.10)

where xint is the location of material interface Γint, and || · || is the Euclidean norm. The level
set function, similar to the indicator function α, indicates to which domain a (integration) point
belongs. Furthermore, the level set function also gives the minimum distance of that point to the
interface. Based on the definition of the level set function, a cell is not cut by the interface if it
does not show a change in the sign of this function. The level set function is usually given in
discrete form, which makes it difficult to evaluate it at any arbitrary point within the cell. During
the numerical analysis, it is sometimes also necessary to compute the derivative of this function
as well. To fulfill these requirements, a feasible approach is to provide a polynomial description
of the level set function in each cell as

Ip(φ) =
m∑

i=1
Mpm

i Φi , (4.11)

where M are the polynomial interpolation functions of order pm, m = (pm + 1)d is the number
of interpolation points in which d = 1, 2 or 3 is the dimension of the interpolation2, and Φi are
the discrete values of the level set function at the interpolation points. For M we apply Lagrange
shape functions that are given in one-dimension as follows

Mpm
i (ξ) =

pm+1∏
j=1, j �=i

ξ − ξj

ξi − ξj

, i = 1, 2, . . . , pm + 1. (4.12)

2For 2D and 3D, a tensor-product rule of 1D interpolation functions is applied.
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where ξi are called the nodes. For higher dimensions, the interpolation functions can be con-
structed by using a tensor-product of the one-dimensional functions [25, 93]. The accuracy of
such an interpolation can be increased by employing more sampling points – either by perform-
ing a mesh refinement, i.e. an h-version approach, or by elevating the order of the interpolation
function, which corresponds to a p-version approach. From the numerical point of view, the h-
refinement is less interesting, because elevating the accuracy of the level set function by raising
up the number of the cells also leads to an increase in the number of degrees of freedom, which
is undesirable. An alternative approach was suggested in [52, 112], where a geometrical mesh,
alongside with the discretization mesh, is defined to separate the approximation of the level set
function from the displacement field. Although this method allows to boost up the accuracy of
the level set function representation and to obtain a more accurate interpolation without increas-
ing the number of degrees of freedom, the main disadvantage of such techniques is their low
convergence rate due to employing low-order shape functions. Moreover, due to the different
resolutions of the geometrical mesh and the discretization mesh, special care has to be taken dur-
ing the numerical integration. That is, the numerical integration has to be carried out on the finer
mesh – usually the geometrical mesh – to account for the discontinuities due to the essence of
the interpolation which exists along the boundaries of the finer mesh. Another possible remedy
to increase the accuracy of the interpolation is to keep the interpolation mesh the same as the
discretization mesh and increase the order of the interpolation function, as suggested by Joulaian
and Düster in [98]. Here, the choice of the interpolation points becomes very important. It is
well known that Lagrange shape functions defined at equidistant points are not a good choice
because they can lead to the so-called Runge phenomenon [150]. This phenomenon is a problem
that occurs at the boundaries of an interval on which a function is interpolated. It has been shown
that with equidistant points, increasing the polynomial order of the interpolation may even in-
crease the error of the interpolation. A possible remedy is to shift the interpolation points to the
boundaries of the interpolation region, where the error of interpolation is higher. Such interpola-
tion points are, for instance, the Gauss-Legendre-Lobatto (GLL) points, or Chen-Babuška points
[38]. These points, which are given in appendix A and appendix C, obey a smaller Lebesque
constant than the equidistant points. The Lebesque constant indicates how close the interpolant
of a function and its best polynomial interpolation are at a specific point.

In order to investigate the aforementioned level set interpolation techniques, we will, in the fol-
lowing, study the interpolation behavior based on the h-version, the p-version using equidistant
points, and the p-version using Chen-Babuška points.

4.3.1 Smooth level set functions
When the level set function corresponds to a smooth surface, a very accurate representation can
be obtained by employing high-order polynomials in (4.11). For instance, take the example
of a level set function, the iso-zero contour of which describes a circle, its center located at
(xc, yc) = (0, 0), and its radius being r =

√
0.5

φ(x, y) = (x − xc)2 + (y − yc)2 − r2
{

−1 < x < 1
−1 < y < 1 (4.13)

The contour plot of this function is given in Fig. 4.5a. Let us interpolate this function employing
only one cell with Lagrange shape functions of order pm = 2 (9 interpolation points) and, alter-
natively, with 9 cells and Lagrange shape functions of order pm = 1 (16 interpolation points).
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Figure 4.5: (a) The level set contour lines for a circle in a quadratic domain and the difference
between the exact and the interpolated value using (b) nine low-order (pm = 1)
interpolation cells and (c) employing one quadratic (pm = 2) Lagrange cell.

The error of the interpolation, |φ − Ip(φ)|, is depicted in Figs. 4.5b and 4.5c. As can be seen,
this level set function can be interpolated exactly, up to machine precision, when the p-version
is employed. However, using the h-version interpolation leads to some errors. In order to take
a closer look into the results, let us now measure the accuracy in terms of the following relative
error

‖e‖φ =

√√√√∫Ω (φ − Ip(φ))2 dΩ∫
Ω φ2 dΩ × 100 [%] (4.14)

where φ and Ip(φ) denote the exact and polynomial representation of the level set function,
respectively, and Ω is the domain of interpolation. The accuracy of the results is depicted in
Fig. 4.6. As mentioned before, an interpolation with polynomials of order pm = 2 leads to an
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Figure 4.6: (a) Iso-zero contour of the level set function (4.13) and (b) the relative interpolation
error versus the number of interpolation points using low-order cells with pm = 1 and
one high-order cell with pm = 2.

exact representation of the level set function. The low-order interpolation, on the other hand,
leads to an algebraic convergence rate.
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Next, let us consider a more complicated level set function. The following function will serve
as an example:

φ(x, y) =
[

(x + y)2

2

]n

+
[

2(y − x)2

9

]n

− 1
{

−2 < x < 2
−2 < y < 2 (4.15)

where n = 6. The iso-zero contour of this function, which is a superellipse, is depicted in
Fig. 4.7a. Here, we once again consider the h- and the p-version interpolation to represent the
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Figure 4.7: (a) Iso-zero contour of the level set function (4.15) with n = 6 and (b) the relative
interpolation error versus the number of interpolation points using low-order cells
with pm = 1 and one high-order cell.

level set function on the cell depicted in Fig. 4.7a. In the h-version case, the polynomial order
of the interpolation functions in (4.12) is fixed as pm = 1, and the domain of interpolation in
x and y directions is uniformly subdivided to increase the accuracy of the interpolation. In the
case of the p-version, the domain of interest is discretized with one cell, and the order of the
interpolation functions is increased as pm = 1, 2, . . . , 10. The high-order interpolation functions
are either based on the equidistant points or Chen-Babuška points. The error of the interpolation
in terms of Eq. (4.14) versus the number of interpolation points for each case is depicted in
Fig. 4.7b. We can see that both versions of the high-order interpolation lead to an exponential
convergence rate with almost similar behavior, whereas the h-version delivers an algebraic rate
of convergence. Please note that this level set function is a polynomial of order 12, so employing
a high-order interpolation with pm = 12 will lead to the exact representation.

In cases where the level set function is a smooth function but not a polynomial, it is still very
efficient to perform the interpolation with high-order polynomials. This can be easily observed,
for instance, by looking at the following level set function

φ(x, y, z) = sin(x) cos(y) + z (4.16)

which is defined on a cubical domain with a side length of 4. The iso-zero contour of this level set
function is depicted in Fig. 4.8a. Since the sin and cos functions can be represented accurately in
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Figure 4.8: (a) Iso-zero contour of the level set function (4.16) and (b) the relative interpolation
error versus the number of interpolation points using low-order cells with pm = 1 and
one high-order cell.

terms of polynomials, we see that it is more efficient to increase the accuracy of the interpolation
by employing a p-refinement rather than an h-refinement; see Fig. 4.8b. The error in this figure
is also computed with the help of Eq. (4.14). Again, the low-order interpolation leads to an
algebraic convergence rate, whereas the high-order one results in an exponential convergence
rate.

4.3.2 Non-smooth level set functions

Most of the time, we have to interpolate level set functions that are non-smooth. Thus, inter-
polating such functions with Eq. (4.11) might prove to be a challenging numerical task. This
can be shown, for instance, by interpolating a non-polynomial level set function as described by
Eq. (4.15), where n = 0.125. This results in a superellipse, as depicted in Fig. 4.9a. For the
sake of the numerical representation of this level set function, we again consider a low-order
interpolation. Here, the entire domain is discretized with a Cartesian mesh, and interpolation
functions of order pm = 1 are applied on each cell. In this case, the error of the interpolation
is reduced by employing more interpolation points, i.e. smaller cells in the applied Cartesian
mesh. In a second approach, the entire domain of interpolation is discretized with one cell, and
the accuracy of the interpolation is increased by raising the order of interpolation functions as
pm = 1, 2, . . . , 10. The high-order interpolation functions are based on Lagrange polynomials
which are defined either at equidistant points or Chen-Babuška points. The results of these inter-
polations in terms of Eq. (4.14) are depicted in Fig. 4.9b. For this case, the convergence rate of
the high-order interpolation scheme is not exponential anymore, and it is reduced to an algebraic
rate of convergence. Nevertheless, the rate of convergence related to the p-version interpolation
is approximately twice higher than the h-version. In addition, it is interesting to observe the in-
fluence of the position of interpolation points on the accuracy of the p-version interpolation. The
Lagrange polynomials defined at equidistant points lead to an oscillatory convergence behavior,
whereas the same interpolation functions defined at Chen-Babuška points are more accurate and

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


4.3 Describing material interfaces using the level set function 83

-2 -1  0  1  2

-2

-1

 0

 1

 2

(a)

10-4

10-3

10-2

10-1

100

101

102

103

 1  10  100  1000

R
el

at
iv

e 
er

ro
r 

in
 in

te
rp

ol
at

io
n 

[%
]

Number of interpolation points [-]

h-refinment, pm = 1, Slope ≈ 1.2 
p-refinment / equidistant points
p-refinment / Chen-Babuska points, Slope ≈ 2.3 

(b)

Figure 4.9: (a) Iso-zero contour of the level set function (4.15) with n = 0.125 and (b) the
relative interpolation error versus the number of interpolation points using low-order
cells with pm = 1 and one high-order cell.

deliver a monotonic convergence behavior. A very similar behavior can be also observed in 3D.
For instance, let us consider the following level set function

φ(x, y, z) = y
√

x + x
√

y + 6z . (4.17)

The iso-zero contour of this level set function is depicted in Fig. 4.10a. Although the resulting
interface seems to be rather easy to interpolate, it is a non-smooth surface. Thus, the interpo-
lation is more challenging. The results of the low-order and high-order interpolation are given
in Fig. 4.10b. As we can see, the high-order interpolation converges algebraically similar to the
low-order interpolation, but almost twice as fast.

Remark: It is important to note that, in general cases where the level set function and, accord-
ingly, the interface is very complicated, performing both h- and p-refinements has been proven
to be more efficient. This is due to the fact that cases like this are too complex for the applied FE
Ansatz anyhow, which is why we have to apply both h- and p-refinements to obtain an accurate
approximation. Such a situation is depicted, for instance, in Fig. 4.11, where the following level
set function has to be interpolated

φ(x, y) =
√

x2 + y2 − r(θ),
r(θ) = [cos10(1.25θ) + sin10(1.25θ)]−1/6

,

θ = tan−1

(
x

y

)
− 2 < x < 2 − 2 < y < 2.

(4.18)

This function is interpolated once with the h-version employing 256 cells, applying pm = 1,
and once with the p-version using 4 cells, applying pm = 4. In both scenarios, the number
of interpolation points is the same, so it is fair to claim that both cases are equivalent in terms
of the computational cost related to the interpolation. As shown in Figs. 4.11a and 4.11b, the
resulting interpolation curves are very similar in both cases as well. Nevertheless, in the case of
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Figure 4.10: (a) Iso-zero contour of the level set function (4.17) and (b) the relative interpolation
error versus the number of interpolation points using low-order cells with pm = 1
and one high-order cell.
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Figure 4.11: (a) Low-order interpolation, pm = 1 using 256 cells and (b) high-order interpolation
with Chen-Babuška points, pm = 4 using 4 cells.
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the h-version, the number of cells is higher than the p-version case. Accordingly, there are more
edges at which the interpolation is C0 continuous, which in turn makes the resulting interpolated
function less attractive from the point of view of numerical integration.

Having studied the interpolation of the level set function and having identified the cells that
include the material interface, the next task is to introduce the enriched Ansatz space, which will
be discussed in the following.

4.4 Local enrichment with the aid of the PU method

A successful and interesting approach to obtain the local enrichment defined in Section 4.2 is
to add carefully designed shape functions Ne to the Ansatz space. Such an approach is very
much of interest for cases where the standard smooth shape functions cannot deliver a good
approximation of the phenomenon under investigation. This technique is the central idea of the
approaches that are based on the partition of unity (PU) method [24, 122] such as, for example,
the extended finite element method (XFEM) [27, 125, 168] – where the additional special shape
functions and their corresponding degrees of freedom are defined locally – or the generalized
finite element method (GFEM) [53, 165, 166], where the enrichment is defined globally. The
PU-based approaches have been widely applied for the simulation of evolving discontinuities
such as crack propagation [21, 76, 84], two-phase fluids [40, 83], fluid-structure interactions
[75, 121], or heterogeneous materials [168]. In this concept, the additional shape functions Ne

in (4.6) are built by employing the PU shape functions N∗ and a proper enrichment function F
as

Ne = N∗F . (4.19)

The shape functions N∗ are partition of unity and they hold the following properties

∑
i ∈D∗

N∗
i = 1 . (4.20)

The first outcome of using PU shape functions is

∑
i ∈D∗

N∗
i F = F , (4.21)

which means that the PU shape functions are basically a vehicle to introduce the enrichment
function F into the approximation space. For the PU shape functions, it is common to employ
the standard Lagrange family of order p. The key point in this method is the enrichment function
F , which resembles the local behavior of interest, such as discontinuities or singularities. This
function, for instance, is defined with the help of the level set function in the case of problems
with heterogeneous materials [168] or by using the Heaviside function together with some sin-
gular functions for the crack simulation [31, 125]. Therefore, whether the method can serve as
a basis for a reliable and efficient enrichment procedure depends on how good the enrichment
function F represents the desired feature. In the following – since our focus in this thesis is on
problems involving material interfaces – we will explain how to set up the enrichment function
for such cases.
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4.4.1 Enrichment function for problems with material interfaces
At the material interface, the solution exhibits a weak discontinuity. This means that the primary
variables (displacements) are continuous whereas the secondary variables (strains) are discon-
tinuous. An enrichment function that fulfills these conditions can be obtained with the aid of
the level set method [40, 168]. As explained in the last section, the iso-zero contour of the level
set function describes the location of the interface, i.e. the weak discontinuity. Interestingly, the
absolute value of this function ψ = |φ|, known as the hat function, mimics the behavior of the
solution at the material interface as well. This makes the level set function very suitable for the
simulation, as it does not only describe the location of the material interface, but also helps to
build up the enrichment function. Nevertheless, the hat function cannot be employed directly as
the enrichment function due to problems that might appear in the blending cells. The blending
cells are the neighbors of the enriched cells, which include the material interface and, therefore,
are enriched with additional degrees of freedom; see Section 4.2. Since the blending cells are
partially enriched, the partition of unity is not satisfied in these cells. In consequence, if the
enrichment function does not vanish at the boundary of the enriched zone, there will be some
extra terms that are not needed in the approximation space. These terms, which are sometimes
referred to as the parasitic terms, can lead to several numerical problems such as, for instance,
degradation of the rate of convergence of the method [71]. One possible and effective way to get
rid of these terms in the case of the material interfaces is to modify the hat function such that
the resulting enrichment terms in the blending cells become zero automatically, by definition.
That is, the enrichment function has to be defined in such a way that it vanishes at the interface
between the enriched cells and the blending cells. Several strategies have been proposed to ob-
tain such an enrichment function, e.g. the corrected XFEM [70], the modified abs-enrichment
[124], the stable XFEM/GFEM [22], or the blended enrichment [101], each with advantages and
disadvantages. In the following, we will explain the two latter ones in more detail, including
some numerical examples.

4.4.1.1 Stable XFEM/GFEM

The stable XFEM/GFEM [22], which is referred to as the SGFEM from now on, is a success-
ful approach to avoid parasitic terms in the blending cells. Not only does this method allow to
obtain a proper enrichment function – it also does not have any negative effects on the condi-
tion number of the resulting equation system. Moreover, the SGFEM allows to obtain a reliable
mesh refinement with PU-based methods. Essentially, this method is very similar to an approach
known as the modified abs-enrichment, which was proposed by Möes et al. [124]. For the ma-
terial interfaces, the enrichment function F in this method is constructed on each cell that is cut
by the interface as

F = ψ − Ip(ψ) , (4.22)

where the hat function ψ = |φ| describes the kink at the material interface, and Ip(ψ) is the
polynomial description of the hat function. We commonly employ a polynomial representation
of the level set function, which is why the hat function can be written as

ψ = |Ip(φ)| =
∣∣∣∣∣

m∑
i=1

Mpm
i Φi

∣∣∣∣∣ . (4.23)

The second term on the right-hand side of (4.22) is the correction term that brings the enrichment
function F to zero at any cell boundary that is not cut by the interface, i.e. at the interface between
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enriched cells and blending cells. This term is the polynomial description of the hat function,
which is defined as

Ip(ψ) =
m∑

i=1
Mpm

i Ψi . (4.24)

Please note that the orders of the interpolation function in (4.23) and (4.24) are usually chosen
to be the same. Therefore, Ψi = |Φi| – and we have

F =
∣∣∣∣∣

m∑
i=1

Mpm
i Φi

∣∣∣∣∣−
m∑

i=1
Mpm

i Ψi

=
∣∣∣∣∣

m∑
i=1

Mpm
i Φi

∣∣∣∣∣−
m∑

i=1
Mpm

i |Φi| ,

(4.25)

which means the resulting enrichment function is zero at all the interpolation nodes ξj , due to
the Kronecker-Delta property of the interpolation functions∣∣∣∣∣

m∑
i=1

Mpm
i (ξj)Φi

∣∣∣∣∣ = |Φj| ,

m∑
i=1

Mpm
i (ξj) |Φi| = |Φj| ,

⇒ F (ξj) = 0 .

(4.26)

Figure 4.12 schematically depicts the resulting enrichment function and each involving term for
a one-dimensional problem. Here, pm = 1 is employed in (4.25).

material interface

φ

ψ = |φ|

Ip(ψ)

F = ψ − Ip(ψ)

Figure 4.12: Enrichment function obtained by the SGFEM in the case of a one-dimensional prob-
lem applying pm = 1 in (4.25).
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88 4 Local enrichment of the FCM

In order to observe the effect of each term in 2D, let us consider the following material inter-
face which is described in a quadratic cell as

φ(ξ, η) = (ξ + 1)4 + (η + 0.5)4 − 1
{

−1 < ξ < 1
−1 < η < 1 (4.27)

The resulting surface and the iso-zero contour of the considered level set function are depicted
in Fig. 4.13. Please note that the cell is cut at E1 and E4. Therefore, the enrichment function
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Figure 4.13: (a) The level set function given in (4.27) and (b) the corresponding iso-zero contour.

must vanish at E2 and E3, i.e. the uncut edges, to avoid parasitic terms in the blending cells. As
explained in the last section, the exact description of such a level set function can be obtained
by employing pm = 4 in (4.11). We also use the same interpolation order in (4.24). The
corresponding terms and the resulting enrichment function obtained by applying the SGFEM are
plotted in Fig. 4.14. As shown in the figure, the enrichment function both exhibits a kink at the
material interface and vanishes along unbroken boundaries. It is worth noting that the resulting
enrichment function is also zero at all the interpolation points, due to the fact that the employed
interpolation order is the same for the level set function and the hat function in (4.25).

4.4.1.2 Blended enrichment

Another interesting approach to obtain a suitable enrichment function for material interfaces is
to employ the blending technique, as the author and colleagues suggested in [101], which is very
similar to the blending function technique [60, 102, 170]. In this method, the enrichment function
is also defined with the help of the hat function ψ = |φ| as in the SGFEM. Yet, the correction
terms that bring the enrichment function to zero in blending cells are obtained differently. In this
method, the enrichment function for the case of material interfaces in 2D is obtained as

F = ψ − node correction − edge correction . (4.28)

The first term on the right-hand side is defined in the same way as before; see Eq. (4.23). The
second and the third terms are the correction terms, which make sure that the enrichment function
is vanished at nodes and along uncut edges, respectively. In order to define these terms, let
us again consider a 2D case for which the material interface is defined as (4.27). The node
correction term is computed as

node correction = |I1(φ)| =
∣∣∣∣∣

4∑
i=1

M1
i ΦNi

∣∣∣∣∣ , (4.29)
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Figure 4.14: Procedure of constructing the enrichment function for material interfaces employing
the SGFEM approach.
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where M1
i are the standard bilinear (pm = 1) Lagrange shape functions, and ΦNi are the values

of the level set function at the nodes. This term, which is depicted in Fig. 4.15b, brings the
enrichment function to zero at the nodes. Next, we need the correction terms for E2 and E3 in
order to bring the enrichment function to zero along these edges as well. The edge corrections are
the blended differences between the hat function and the linear interpolation of the hat function
along an uncut edge. In our example, the correction term at edge 2 is defined as

edge 2 correction =
(

ψE2 −
(1 − η

2 ψN2 + 1 + η

2 ψN3

)) 1 + ξ

2 , (4.30)

which is the blended difference of ψ along E2 and the linear interpolation of ψ between N2
and N3. The blending term 1+ξ/2 makes sure that the opposite edge E4 is not affected by the
correction term. The same procedure should also be performed for edge 3 so as to bring the
enrichment function to zero along that edge. The corresponding correction term reads

edge 3 correction =
(

ψE3 −
(

1 − ξ

2 ψN4 + 1 + ξ

2 ψN3

))
1 + η

2 , (4.31)

The correction terms for edge 2 and edge 3 are plotted in Fig. 4.15c and 4.15d, respectively. The
resulting enrichment function is given in Fig. 4.15e. As can be seen, the enrichment function
vanishes along all the uncut edges, and it exhibits a kink at the material interface. As compared
to the SGFEM, the enrichment function obtained by the blended method is much more smooth,
which could be of advantage for the numerical simulation. For the case of material interfaces in
3D, the enrichment function can be defined in a similar way. The only difference is that, in this
case, the face correction terms have to be also taken into account as

F = ψ − node correction − edge correction − face correction . (4.32)

4.5 Local enrichment with the aid of the hp-d method
An alternative approach to introduce the local enrichment defined in Section 4.2 is to employ
the hp-d method [62, 106, 144, 146]. Basically, this method is a combination of an h-, p-, or
hp-refinement with a domain decomposition approach. The main idea of this method in 1D is
schematically depicted in Fig. 4.16. In this method, an overlay mesh is defined for cells with
a local feature that cannot be represented accurately by the employed approximation. Thanks
to this mesh, the local feature of interest can be resolved more accurately. Then, the improved
solution is obtained by a superposition of the solution on the base mesh and on the overlay mesh.
It is important to note that the resolutions of the overlay mesh and the base mesh are not generally
the same. Therefore, this may lead to the problem of hanging nodes, which is one of the main
difficulties of the standard hp methods [51]. In the hp-d method, to guarantee a compatible
solution and solve the problem of hanging nodes, homogeneous Dirichlet boundary conditions
are applied on the overlay mesh at the boundary of the superposition domain. In that way, there
will be no blending cell in the domain, and the enrichment will be only restricted to the enriched
cells. The refined solution on the overlay mesh can be obtained in different ways; for instance,
by applying either the standard h-, p-, or hp-refinement, or by employing the PUM, as Joulaian
and Düster suggested in [98, 99]. Depending on the phenomenon under investigation, one of
these methods is preferred over the other ones.
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Figure 4.15: Procedure of constructing the enrichment function for material interfaces employing
the blended enrichment approach.
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Base mesh: ub Enrichment: ue u = ub + ue

+ =

Figure 4.16: The idea of the hp-d method in 1D.

The overlay meshes can be superimposed over the base mesh at any location, but – due to
numerical reasons – it is more convenient to align the outer boundary of the overlay mesh with
the cells on the base mesh. That is, a cell that needs enrichment will be equipped with an overlay
mesh with boundaries that are aligned to its boundary. In the hp-d method, it is also possible to
apply several layers of overlay meshes to improve the quality of the solution even further. This
is actually the main idea of the multi-level hp-d method proposed in [156, 181]. In the multi-
level hp-d method, the overlay meshes are generated hierarchically with the help of a spacetree
refinement strategy, similar to those explained in Section 3.3.3 for the numerical integration of
cut cells.

Remark: Special care has to be taken during the numerical integration of the enriched cells in the
hp-d method. This is due to the fact that the resolutions of the base and the overlay meshes can
be different in general. In order to carry out the numerical integration accurately, it is advised
to perform the numerical integration on the finer mesh, i.e. the intersection of both. Needless to
mention that if there is a cut cell on the overlay mesh, one of the numerical integration algorithms
discussed in Chapter 3 has to be applied.

4.6 Selection of proper enrichment strategy

In order to capture local features that cannot be represented with the standard FCM, either the hp-
d approach or the PU method – or a combination of both – are suggested. The type of enrichment
strategy to be applied depends on the problem under consideration. In order to explain how the
proper enrichment strategy should be chosen, let us take a look at Fig. 4.17.

PUM

hp-d
hp-d/PUM

FCM

Figure 4.17: Different enrichment strategies in the context of the FCM.
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Here, we suggest the following classification of enrichment strategies:

1. Pores and voids: In this case, generally, no enrichment is needed since the standard FCM
is able to resolve such features, provided that the numerical integration of the weak form
is performed sufficiently accurate. The applied discretization should be, however, fine
enough to resolve these features. To this end, we usually increase the polynomial order of
the shape function. If the shape functions are based on the hierarchical Legendre polyno-
mials, it is possible to use different polynomial orders in each cell and in each direction
independently. In the case of the shape functions based on the Lagrange polynomials, it
is possible to change the polynomial order direction-wise. There can be cases in which
the p-refinement alone is not enough and an h-refinement in some of the cells is needed as
well. To this end, we can use the hp-d method and overlay meshes with finer cell sizes on
the cells that require an h-refinement; see, for instance, [181].

2. Material interfaces and cracks: In these cases, the structure of the solution is known
in advance, and it cannot generally be captured accurately by the standard smooth shape
function applied in the FCM. Here, the proper enrichment function should be added to the
standard FCM Ansatz with the aid of the PUM. For instance, the Ansatz can be enriched
with the hat function in the case of material interfaces or the Heaviside function for the
cracks. It is also possible to combine the hp-d method with the PUM and define the
enrichment functions on the overlay mesh, as suggested in [98, 99].

3. Singularities and crack tips: In cases where the structure of the solution is not known
in advance, for instance in the case of simulating crack tips in 3D, it is of advantage to
employ an hp-refinement strategy through the hp-d method. Here, it is more efficient
to use meshes on the overlay which geometrically resolve the singularity. In this way,
it should be possible to obtain high rates of convergence without the need of an optimal
enrichment function.

4.7 Numerical examples

4.7.1 Elastostatic analysis of a bi-material one-dimensional rod
Let us again reconsider the bi-material one-dimensional rod described in the beginning of this
chapter, see Fig. 4.1, this time discretizing it by employing the PUM. The location of disconti-
nuity is defined with the help of the following level set function

φ(x) = x − 1 . (4.33)
This level set function can be represented exactly when the interpolation functions are of or-
der pm = 1 in (4.11). Since this is the problem involving the material interface, we define the
enrichment function F employing the hat function, i.e. ψ = |φ|. In order to bring the enrich-
ment function to zero at the boundary of the enriched cell, we can apply either the SGFEM or
the blended enrichment explained in the last section. In both of these methods, the resulting
enrichment function reads

F =
∣∣∣∣∣

2∑
i=1

M1
i ΦNi

∣∣∣∣∣−
2∑

i=1
M1

i

∣∣∣ΦNi

∣∣∣
=
∣∣∣∣14(3ξ − 1)

∣∣∣∣− 1
4(3 − ξ)

(4.34)
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where ξ = 4/3x − 1 is the mapping from the cell in the global domain to the standard domain.
Each of the terms in the above equation and the resulting enrichment functions are plotted in
Fig. 4.18. As can be seen, the enrichment function F exhibits a kink at the material interface,
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Figure 4.18: The 1D enrichment function obtained with the blended enrichment.

and it is zero at the boundary of the enriched cell. In the first try, we add this enrichment
function to the Ansatz space by applying PU shape functions N∗ of order 1, which results in
enrichment shape functions of order pe = 2; see Eq. (4.19). The resulting shape functions Ne

are plotted in Fig. 4.19. As the shape functions on the base mesh, we apply the hierarchical shape
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Figure 4.19: Shape functions of order pe = 2 employed in the enrichment.

functions based on the integrated Legendre polynomials, the same as in the standard FCM. The
accuracy of the discretization is then increased by elevating the order of the hierarchical shape
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functions as pb = 1, 2, . . . , 8. It should be noted that the stiffness matrix and the load vector
here also obey a discontinuous integrand; hence, one of the algorithms presented in Chapter 3
has to be applied to perform the numerical integration accurately. Here, this can be achieved by
applying a composed integration including two sub-cells to resolve the material interface. The
resulting displacements and strains are depicted in Fig. 4.20. It turns out that both displacements
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Figure 4.20: The results related to the enriched FCM employing PUM of order pe = 2 (red) as
compared to the analytical solution (black) for the case of a one-dimensional rod
with a material interface.

and strains are approximated very well as compared to the standard FCM; see Fig. 4.2. In
addition, the strain field now exhibits the jump at the interface thanks to the applied enrichment
shape functions. In order to study the efficiency of the discretization, let us take a look at the
convergence behavior in terms of the error in the energy norm given in Eq. (2.32). To this end,
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we fix the order of shape functions on the base mesh as well as enrichment shape functions and
perform an h-refinement. The mesh refinement is performed in such a way that there is always
one cell that is cut by the material interface. The resulting convergence study is depicted in
Fig. 4.21. By increasing the polynomial order of shape functions on the base mesh, pb, the rate of
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Figure 4.21: Convergence behavior of the enrichment strategy with PUM employing pe = 2.

convergence of the method increases as well – but it remains constant for high orders. A similar
behavior has also been reported by Fries in [70]. If the order of the enrichment increases in a
similar way to that on the base mesh, i.e. pb = pe, it is possible to obtain an optimal convergence
rate, as can be seen in Fig. 4.22. The convergence rate of the given enrichment strategy is
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Figure 4.22: Convergence behavior of the enrichment strategy with PUM employing pe = pb.

compared to the FEM and the standard FCM in Fig. 4.23. As can be seen, the convergence rate
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Figure 4.23: Convergence behavior in the case of elastostatic analysis of a one-dimensional rod
exhibiting a kink in the solution, employing standard FEM, standard FCM, and the
enriched FCM using PUM with pe = pb.

of the enriched FCM is exponential and in very good agreement with the standard p-FEM.

4.7.2 Bi-material perforated plate with curved holes
Here, as another example, we consider a two-dimensional bi-material plate that is perforated by
circular holes, as shown in Fig. 4.24. One of the materials is ten times stiffer than the other one,
i.e. E2 = 10E1. The plate is under symmetry conditions at the left-hand side and the bottom.
The holes are defined with the help of several level set functions as

φi(x, y) = (x − xi
c)2 + (y − yi

c)2 − r2 (4.35)

where (xi
c, yi

c) is the center of the ith hole, and r = 0.25 mm is the radius of the holes. The
material interface is a straight line, and it is defined by the following level set function

φ(x, y) = y . (4.36)

For the sake of a numerical analysis of the contemplated example, we employ a structured mesh
including 7 × 7 p-version finite cells, as shown in Fig. 4.25. The applied cells neither resolve the
geometry of the holes nor the material interface. In order to account for the holes, the indicator
function α is defined as

α(x) =
{

1 φi(x) ≥ 0
α0 = 10−12 otherwise (4.37)

It is to be noted that the underlying integrals of the cells that are cut either by the holes or
the material interface obey a discontinuous integrand and that, therefore, one of the algorithms
presented in Chapter 3 has to be applied to assure a reliable numerical integration. Here, we
apply the adaptive quadtree integration with an appropriate number of refinements; see Fig. 4.26.
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Parameters:
Young’s modulus: E1 = 2.1 GPa
Young’s modulus: E2 = 21 GPa
Poisson’s ratio: ν1 = ν2 = 0.3
Normal traction: T̂n = 100 MPa
L = 4 mm
line AA′ from (−0.5, −2) to (0.5, 2)

A

A′

L

L

y

x
E1

E2

T̂n

Figure 4.24: A bi-material plate with several circular holes.

Overlay mesh with 2 aligned cells

Base mesh

Figure 4.25: The FCM mesh and the overlay mesh employed for the hp-d enrichment.
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Figure 4.26: The integration mesh obtained from adaptive quadtree integration.
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Figure 4.27: The stress component σxx along the line AA′ depicted in Fig. 4.24.

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


100 4 Local enrichment of the FCM

In order to judge the accuracy of the results, the stress component σxx along the line AA′ is
compared to the reference values in Fig. 4.27. The reference values are related to an overkill
solution based on the standard p-FEM, using sufficiently fine meshes to resolve the geometry
accurately. As shown in the figure, the FCM resolves the stresses accurately everywhere in the
domain, even very close to the curved geometries of holes. Nevertheless, there are significant
oscillations in the results for the cell containing the material interface. This is due the fact that
the kink in the solution cannot be represented accurately with the polynomial basis functions
employed in the FCM. This also results in a significant loss of convergence rate of the FCM. In
cases like this, the convergence rate of the FCM drops from an exponential rate to an algebraic
rate; see Fig. 4.28 which shows the convergence behavior in terms of the error in energy norm
defined in Eq. (2.32). In order to improve the discretization and achieve a better approximation
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Figure 4.28: The convergence behavior in terms of the error in energy norm for the FCM with
and without enrichment.

in the stresses, we perform local enrichment in the cells that are cut by the material interface.
To this end, we apply the hp-d method and introduce the enrichment on an overlay mesh, as
explained in Section 4.5. The overlay mesh is needed on each cell that is cut by the interface,
but – in this particular case – we can define the overlay in such a way that it resolves the material
interface and covers all cells that are cut by the material interface, as depicted in Fig. 4.25. In this
way, by using less degrees of freedom, we can achieve a reduction of the numerical costs. On
the overlay mesh, we apply the standard FEM with pe = 1. To assure the global C0 continuity,
homogeneous Dirichlet boundary conditions are applied on the overlay mesh.

Thanks to the enrichment, the results close to the material interface are significantly improved;
see Fig. 4.27. In addition, the enrichment term leads to an improvement of the convergence
behavior of the FCM. The increase of the convergence rate with the hp-d enrichment is also
depicted in Fig. 4.28. Although we only applied an enrichment of the order pe = 1 on the
overlay mesh, we can see that the resulting method obeys a higher convergence rate than the
standard FCM.
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4.7.3 Interplay between the fictitious domain and the
enrichment zone

Since there is no restriction in the mesh generation of the FCM, there can be situations where
the fictitious domain and the material interface are located within one cell. In this case, the
enrichment term is only needed for the material interface because the fictitious domain can be
represented accurately enough using the standard FCM. In order to examine cases like this, let us
take a look at the two following examples. In the first example, we consider a 2D cell that con-
tains a circular hole and a straight-sided material interface. The ratio between the Young’s moduli
of the material is E2 = 10E1. The geometry, the boundary conditions, and the corresponding
parameters are depicted in Fig. 4.29. There is also a body force of fb = 100 N/mm3 acting on

Parameters:
Plane stress conditions
Young’s modulus: E1 = 2.1 GPa
Young’s modulus: E2 = 21 GPa
Poisson’s ratio: ν1 = ν2 = 0.3
Body force: fy

b = 100 N/mm3

L = 4 mm, a = 2 mm, r = 1 mm
line AA′ from (−2, −2) to (2, 2)

L

L

a

r

A

A′

y

x
E2

E1

fy
b

Figure 4.29: One quadrilateral cell with a curved hole and straight-sided material interface.

the cell in y-direction. The two materials are considered to be isotropic and linear-elastic. The
geometry of the hole is described with the following level set function

φf (x, y) = (x − L

2 )2 + (y − L

2 )2 − 1 (4.38)

which leads to the following indicator function

α(x) =
{

1 φf (x) ≥ 0
α0 = 10−12 otherwise (4.39)

The material interface is also given by the following level set function

φi(x, y) = y . (4.40)

In the first try, we only apply the FCM with no enrichment term and increase the accuracy of
the simulation by elevating the polynomial order of the basis functions as p = 1, 2, . . . , 18.
It should be noted that, similar to the previous example, the adaptive quadtree integration is
applied to accurately compute the stiffness matrix and the load vector of the cell. In order to
assess the accuracy of the discretization, the stress component σxx along line AA′ is compared
to the reference solution in Fig. 4.30. The reference solution here corresponds to an overkill
solution obtained from an analysis using standard high-order FEM. The FCM results shown
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Figure 4.30: The stress component σxx along the line AA′ depicted in Fig. 4.29.
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Figure 4.31: The convergence behavior in terms of error in the energy norm for the FCM with
and without enrichment.
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in the figure are related to a case where p = 18. Not surprisingly, the results are oscillatory
because of the jump in the strains that cannot be represented by the smooth polynomials of the
FCM. As mentioned before, this also leads to a drop in the convergence rate; see Fig. 4.31. In
the second try, we enrich the Ansatz employing the PUM in order to improve the results. To
this end, the enrichment function F is defined with the help of Eqs. (4.22) and (4.40). The
enrichment function is added to the Ansatz through the PU shape functions, which are based on
the Lagrange polynomial in our case. The convergence behavior of the resulting discretization is
then examined by increasing the order of the Ansatz on the base mesh and the resulting enriched
shape function as pb = pe = 1, 2, . . . , 10. As shown in Fig. 4.30, the FCM with the enrichment
represents the stresses very accurately, both next to the material interface and around the hole.
The convergence rate of the method is significantly increased as well, as shown in Fig. 4.31. We
would like to stress the fact that the proposed method only enriches the Ansatz with respect to
the material interface, not the hole, because the fictitious domains can be represented accurately
by the standard FCM with no enrichment.
A very similar behavior can also be observed for problems involving curved material interfaces.
To demonstrate this, we will use an example that is very similar as the last one, only with a
curve-sided material interface; see Fig. 4.32. The geometry of the hole in this example is given

Parameters:
Plane stress conditions
Young’s modulus: E1 = 2.1 GPa
Young’s modulus: E2 = 21 GPa
Poisson’s ratio: ν1 = ν2 = 0.3
Body force: fy

b = 100 N/mm3

L = 4 mm, r = 1 mm
line AA′ from (−2, −2) to (2, 2)

L

L

r

r
A

A′

y

x

E2

E1

fy
b

Figure 4.32: One quadrilateral cell with a curved hole and curve-sided material interface.

by the following level set function

φf (x, y) = (x + L

2 )2 + (y + L

2 )2 − 1 (4.41)

The indicator function is again defined as (4.39). The material interface is also described as

φi(x, y) = (x − L

2 )2 + (y − L

2 )2 − 1 (4.42)

Similar to before, the standard FCM is unable to represent the stresses accurately because of
the material interface. In addition, increasing the polynomial order of the basis function in the
FCM is neither an effective nor an efficient way to improve the results. Figure 4.33 shows
the resulting von Mises stress σvM along the line AA′ obtained using the FCM. Figure 4.34
depicts the convergence behavior of the FCM when the polynomial order of the shape function
is increased as p = 1, 2, . . . , 18.
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Figure 4.33: The von Mises stress along the line AA′ depicted in Fig. 4.32.
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Figure 4.34: The convergence behavior in terms of the error in the energy norm for the FCM
with and without enrichment.
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To improve the FCM, we enrich the Ansatz by employing the PUM and shape functions that
can represent the kink in the solution at the material interface. The enrichment function in this
case is defined with the help of Eq. (4.22). Here, the polynomial orders that are used for the
level set function representation and the hat function are equal as pm = 2. The enrichment
function is then inserted into the Ansatz space using PU shape functions of higher order. The
resulting stresses for this method are shown in Fig. 4.33. As can be seen, the oscillations in the
stresses are removed. Figure 4.34 shows the convergence behavior of the method for the case
when the polynomial orders of the Ansatz on the base mesh and the enrichment are increased
simultaneously as pb = pe = 1, 2, . . . , 7. It is clear that the enrichment leads to a significant
improvement in the convergence behavior.

4.7.4 3D cube with cylindrical inclusion
The method presented in this chapter can also be extended to three-dimensional problems. To
demonstrate this, let us, as the next example, consider a thermal conduction problem on a cube
including a cylindrical core, as depicted in Fig. 4.35.

Parameters:
At the top: Θ = 1
At the bottom: Θ = 0
Thermal conductivity: κi

Θ = 10
Thermal conductivity: κm

Θ = 1
L = 4, r = 1
line AA′ from (0, 0, 0) to (4, 4, 4)

L

L

L

r

A

A′

y
x

z

κm
Θ

κi
Θ

Figure 4.35: Cube with a cylindrical inclusion.

The temperature at the top of the cube is fixed as Θ = 1, and to Θ = 0 at the bottom.
The governing equation of thermal conduction problems with no source of heat production and
isotropic material is the following

div �q = 0 on Ω (4.43)

which is known as the Laplace’s equation. Here, q is the heat flux vector which relates to the
temperature according to Fourier’s law of heat conduction

�q(�x) = −κΘ(�x) grad Θ(�x) , (4.44)

where κΘ(�x) is the thermal conductivity of the material under consideration. In the contemplated
example, the material properties of the matrix and inclusion are different: the inclusion is ten
times more conductive as compared to the matrix, i.e. κi

Θ = 10κm
Θ . In order to solve this problem

with the FEM, usually the strong form of the governing equations (4.43) are converted to the
weak form. Detailed information regarding this kind of procedure can be found in different works
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– see, for instance, [93]. For the sake of the numerical analysis of this problem, we employ the
FCM and apply a Cartesian grid with 5×5×1 cells, as depicted in Fig. 4.36a. The resulting mesh
includes 8 cut cells containing both materials and, accordingly, the material interface. Due to the

(a) (b)

Figure 4.36: (a) The applied FCM mesh and (b) the integration mesh generated by the adaptive
octree integration with 4 level of refinements.

material interface and the jump in the material properties in these cells, the standard FCM is not
suitable to obtain an accurate representation of the temperature field and the heat flux, especially
close to the material interface. Please note that we apply an Ansatz with a polynomial order
of p = 4 on the given FCM mesh, resulting in 2205 degrees of freedom. The adaptive octree
integration with 4 level of refinements is also applied in cells that include the material interface to
accurately account for the integrals with a discontinuous integrand. The integration mesh and the
resulting sub-cells generated by the applied integration technique are depicted in Fig. 4.36b. The
results of this analysis, in terms of the temperature and one of the gradient components along the
line AA′ shown in Fig. 4.35, are compared to the reference solution in Fig. 4.37. The reference
results correspond to an overkill solution employing the p-FEM and a geometrically conforming
mesh that resolves the geometrical boundaries and the material interface. The comparison to the
reference solution reveals that the overall solution characteristics are correctly captured by the
FCM, but the kink in the solution and the jump in the gradient are not accurately represented.
Increasing the polynomial order of the approximation will lead to improved results, but the jump
still cannot be accurately represented by the smooth polynomials. In order to improve the FCM
results, the approach presented in this chapter can be applied where the approximation space is
enriched with some special shape functions that allow for the kink in the solution. Here, we
utilize the PUM and define the enrichment function F with help of the SGFEM, employing the
following level set function, to describe the cylinder

φ(x, y, z) = (y − 2)2 + (z − 2)2

⎧⎪⎨
⎪⎩

0 < x < 4
0 < y < 4
0 < z < 4

(4.45)

The resulting enrichment function is implemented to the Ansatz employing PU shape functions
of order 1, leading to the shape functions of order pe = 3 in the enriched space. As a result, 32
extra degrees of freedom will be added to the standard degrees of freedom. Again, the adaptive
octree integration algorithm is employed to perform the numerical integration. As depicted in
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Figure 4.37: (a) The temperature and (b) one of the gradient components along the line AA′

depicted in Fig. 4.35.
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Fig. 4.37, the additional degrees of freedom allow to obtain a much better approximation of the
solution – especially in terms of the derivative of the solution.

4.7.5 Heterogeneous material
The FCM with the enrichment procedure presented in this chapter leads to an approach that is
very well suited to compute structures that consist of heterogeneous materials. Such a structure
is depicted in Fig. 4.38, for instance.

Parameters:
Plane stress conditions
Young’s modulus: Ec = 11.7 GPa
Young’s modulus: Es = 21 GPa
Poisson’s ratio: νc = νs = 0.3
Traction: T̂n = 100 MPa
L = 10 mm
line AA′ from (0, 3.5) to (0, 10)

L

L

A A′

y
x

T̂n

Figure 4.38: A two-dimensional plate with a heterogeneous material containing several inclusions
and holes.

The considered plate contains several holes and inclusions with circular and ellipsoidal ge-
ometries. The plate is made of copper, and the inclusions are taken to be steel. Both of the
materials are considered to be linear-elastic and isotropic. In addition, the plate is in the state
of plane stress conditions. A uniform normal traction acts on the plate from the top. In order to
simulate this structure with a standard FEM approach, either p- or h-version, a body-fitted mesh
is needed to resolve all the geometrical features of the structure. With the FCM, on the other
hand, the structure can be readily discretized with a structured mesh, for instance by a Cartesian
grid. In this example, we apply a mesh with 8 × 8 FCM cells, as depicted in Fig. 4.39a. With
this mesh, there are 20 cells that are cut by the material interface. Some of the cells also include
both the material interface as well as holes. In order to obtain an accurate representation of the
stresses, we need to enrich those cells that include a material interface. The enrichment can be
performed cell-wise, i.e. by enriching the Ansatz on each cell, or patch-wise, where several cells
are superimposed with an overlay mesh that includes the required enrichment terms. Here, we
apply the latter one. In this example, we define 3 overlay patches that cover the 3 inclusions, as
depicted in Fig. 4.39a. On these patches, the enrichment function is constructed with the help of
the SGFEM, which is explained in Section 4.4.1.1. With this method, the enrichment function
by construction vanishes at the boundary of the overlay patches, which subsequently assures the
C0 continuity of the approximation. In order to resolve the holes with the FCM, we apply shape
functions of order pb = 8. The enrichment shape functions are also defined to be of order pe = 8.
Since the base mesh and the overlay patches are cut by the material interfaces and holes, they
obey integrals with discontinuous integrands. To compute these integrals accurately, we apply
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Base cell

Overlay patch

Enriched zone

(a)

(b)

Figure 4.39: (a) The base and overlay meshes. The shaded area shows the cells that are enriched
with an overlay cell. (b) The integration mesh created with a quadtree algorithm.
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the adaptive quadtree integration, as explained in Chapter 3. The resulting quadtree structure is
depicted in Fig. 4.39b.

The resulting von Mises stress along line AA′ – as depicted in Fig. 4.38 – is compared to a
reference solution in Fig. 4.40. The reference results are obtained from an overkill solution em-

-100
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FCM with PUM enrichment
Abaqus

Figure 4.40: The von Mises stress along the line AA′ shown in Fig. 4.38.

ploying the commercial finite element analysis software Abaqus [1]. In the Abaqus discretiza-
tion, the domain of interest and all the geometrical features, such as the holes and the material
interfaces, are resolved by a sufficiently fine geometrically conforming mesh employing low-
order quadrilaterals, i.e. 4-node bilinear plane stress elements. As can be seen in Fig. 4.40, there
is a very good agreement between the Abaqus solution and the results obtained from the FCM
with PU enrichment. The von Mises stress is accurately resolved next to the holes. In addition,
the jump in the stresses due to the material interface is represented accurately as well.
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Chapter 5

The spectral cell method

An intricate field of the numerical analysis is the dynamic simulation of structures obeying
heterogeneous materials or complicated micro-structures under high frequency loadings. This
falls into the category of wave propagation problems. Important applications in this field include
structural health monitoring (SHM) [79], quantitative ultrasound (QUS) [111], active control
of vibrations and noise [78], or crack detection by monitoring heat induced by mechanical
loadings at the tip of cracks [17], to name a few. In order to account for problems like this, the
numerical model must be able to rely on adequately fine spatial and temporal discretizations to
assure a sufficiently accurate numerical simulation. As a result, the corresponding numerical
simulation procedure becomes computationally very demanding. In addition, because of the
complex geometries of these structures, it is usually difficult to obtain a proper mesh for them.
Thus, the numerical analysis of problems in this category poses many obstacles. Take the SHM,
for instance, that is a well-known technology to monitor and detect possible damages or defects
in components of structures. An optimal and effective application of such methods is of a great
importance as this makes it possible to take early actions and find remedies before the defect
reaches failure level. Here, the modeling and numerical simulation play a key role in obtaining
a clear understanding of the process and in establishing an optimal measurement procedure. In
the SHM, it is necessary to employ signals that include very high frequency contents in order to
be able to detect small-scale flaws. Accordingly, due to the presence of very short wavelengths
at high frequencies, it is essential to employ very fine temporal and spatial discretizations in
the corresponding FE model. This makes the numerical simulation very expensive. The whole
situation moves to a new and more cumbersome level – from a numerical simulation perspective
– when the structure under examination is composed of anisotropic and heterogeneous materials.
In these cases, the necessity of using body-fitted meshes is one of the main obstacles in the
numerical analysis. As another example, take the bone ultrasound technology or quantitative
ultrasound (QUS). The QUS is a new technology that, as an alternative to the conventional
X-ray method, can be used to detect fragile bones that exhibit a high fracture risk and require
treatment, which occurs in a disease called osteoporosis [111]. Osteoporosis, or porous bone
disease, is a condition that affects the bone structure, resulting in a major reduction in bone
density, leading to fragile bones that are highly prone to fracture. Ultrasound waves are an
appropriate tool to measure the mechanical properties of a structure, which is why they can
be considered as the appropriate means to test bone fragility or to detect osteoporosis. The
interpretation of ultrasound measurements in QUS, however, calls for computer modeling to
deepen our perception of the exact propagation path of ultrasound waves and other kinds of
waves that might occur. Here, the heterogeneous material composition of bones contributes
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substantially to the complexity to the task of computer modeling.

Due to its simple mesh generation and capability of delivering high convergence rates, the
finite cell method can be considered as a proper means for the numerical simulation of the afore-
mentioned problems. In this respect, an extension of the FCM was proposed by the author and
colleagues in [56, 57, 96, 97], where ideas from the spectral elements are combined with the
FCM. The main reason for using spectral elements is that they allow for a diagonal mass ma-
trix, which paves the way for exploiting the advantages of an explicit time-integration algorithm.
Consequently, the resulting method, referred to as the spectral cell method, allows an easy mesh
generation and a fast simulation technique that is needed for wave propagation problems. In
this chapter, we will study this method and discuss its computational properties taking several
numerical examples into account.

5.1 Temporal discretization and lumped mass matrix

In the case of elastodynamic analysis, the governing equations have to be discretzied in time in
addition to the spatial discretization. In our case, the spatial discretization leads to the semi-
discrete equation of motion discussed in Chapter 2, which is repeated here for the sake of sim-
plicity,

Semi-discrete equation of motion in matrix form

Given f(t), t ∈
]
0, t̂
[
, find d, t ∈

]
0, t̂
[
, such that

Md̈(t) + Kd(t) = f(t) t ∈
]
0, t̂
[

,

d(0) = d0 ,

ḋ(0) = ḋ0 ,

(5.1)

where the involved matrices are defined in Eq. (2.16). The element matrices are also defined
either in Eq. (2.17) or Eq. (2.26), depending on the applied spatial discretization method. The
above equation is a coupled system of second-order, linear, time-dependent, ordinary differential
equations that needs to be integrated in time. To this end, there are methods which satisfy
the above equation either at any time or at discrete time-steps, see, for instance, [25, 93, 184].
Here, we only focus on the latter case, i.e. methods which satisfy the above equation at discrete
time instances. Two of the most commonly applied methods in this category, referred to as the
direct integration approaches, are the Newmark method, which is an implicit time-integration
scheme, and the central difference method (CDM), which is an explicit time-integration scheme.
The temporal discretization of Eq. (5.1) and the step-by-step solution procedure employing the
mentioned algorithms are given in Alg. 2 and Alg. 31. In these algorithms, K∗ is the effective
stiffness matrix, r is the effective load vector, t denotes the discrete time, Δt is the time-step
size, and β and γ are the coefficients that control the stability and accuracy of the Newmark

1Please note that, here, we consider the case of an undamped system. For deliberations regarding the
damping, the interested reader is referred to [25, 93, 184].
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Algorithm 2 Newmark method
1: Form the global stiffness matrix K and the global mass matrix M
2: Initialize d0, ḋ0 ,d̈0
3: Select the time-step size Δt and the parameters

γ ≥ 1
2 and β ≥ 1

4

(1
2 + γ

)2

4: Form the effective stiffness matrix K∗ = K + 1
βΔt2 M

5: for t: for each time-step do
6: Compute the effective load vector at time t:

r = f t+Δt + M
(

1
βΔt2 dt + 1

βΔt
ḋt + 1 − 2β

2β
d̈t

)
7: Solve for displacements at time t + Δt:

K∗dt+Δt = r
8: Compute accelerations at time t + Δt:

d̈t+Δt = 1
βΔt2 (dt+Δt − dt) − 1

βΔt
ḋt − 1 − 2β

2β
d̈t

9: Compute velocities at time t + Δt:
ḋt+Δt = ḋt + (1 − γ) Δt d̈t + γΔt d̈t+Δt

10: end for

Algorithm 3 Central difference method
1: Form the global stiffness matrix K and the global mass matrix M
2: Initialize d0, ḋ0 ,d̈0
3: Select the time-step size Δt such that Δt ≤ Δtc

4: Compute d−Δt = d0 − Δt ḋ0 + Δt2

2 d̈0

5: Form the effective stiffness matrix K∗ = 1
Δt2 M

6: for t: for each time-step do
7: Compute the effective load vector at time t:

r = f t −
(

K − 2
Δt2 M

)
dt −

( 1
Δt2 M

)
dt−Δt

8: Solve for displacements at time t + Δt:
K∗dt+Δt = r

9: If required, compute accelerations at time t:
d̈t = 1

Δt2 (dt−Δt − 2dt + dt+Δt)
10: If required, compute velocities at time t:

ḋt = 1
2Δt

(dt+Δt − dt−Δt)
11: end for
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method. With the Newmark method, selecting β = 1/4 and γ = 1/2 results in a second-order
unconditionally stable algorithm. This means that if the Newmark method is applied using these
parameters, it is possible to choose the time-step size arbitrarily large. Nevertheless, the time-
step size needs to be small enough to achieve the required accuracy in the temporal discretization.
The CDM, on the other hand, is a second-order conditionally stable algorithm where, to rely on
a stable time-integration scheme, the time-step size must be smaller than a critical value, i.e.
Δt < Δtc. Here, Δtc is the critical time-step size. The critical time-step size is computed based
on the CFL condition [29] and is dependent on the spectral radius of M−1K. In the literature,
there are also other variants of the CDM that can bear larger critical time-step sizes or that have
interesting properties such as damping oscillations in the high-frequency range – see, for instance
[123, 133]. Although the CDM is conditionally stable, it is very attractive for problems where
the time-step size is restricted to be small due to the underlying physics of the problem at hand.
In other words, in some problems, e.g. wave propagation problems, the time-step size has to be
small – in the range of the critical time-step size – or even smaller to obtain a reasonable accuracy
in the temporal discretization. Under such circumstances, the stability of the corresponding time-
integration scheme is not a concern anymore. On the other hand, an interesting property here
is the possibility of reducing the computational expenditure of the time-integration algorithm by
employing a diagonal or lumped mass matrix. When a diagonal mass matrix is employed with
the CDM, the solution step in Alg. 3 becomes computationally very cheap, simple, and utterly
fast as

dt+Δt = (K∗)−1r = Δt2

Mii

r , (5.2)

where Mii > 0 are the diagonal entries of the mass matrix. Under these circumstances, the CDM
becomes a very fast time-stepping scheme because it is only involved with matrix-vector and
vector-vector multiplication operations, which are computationally cheap. In addition, it is not
necessary to assemble a stiffness matrix when using a lumped mass matrix, making it possible
to perform the computation element-wise [25].

The possibility of obtaining a lumped mass matrix is largely dependent on the type of shape
functions and the applied quadrature rule. When applying the hierarchical shape function based
on the Legendre polynomials – the standard FCM – the resulting mass matrix is fully populated,
independent from the employed quadrature rule. To the best of our knowledge, there is – unfor-
tunately – no applicable mass lumping technique for this set of shape functions yet. This means
that, with this set of shape functions, it is not possible to take advantage of a lumped mass matrix
and obtain a fast solution technique using the CDM. To avoid such a bottleneck, the applica-
tion of shape functions based on the Lagrange polynomials is suggested. With this set of shape
functions, it is possible to lump the mass matrix in different ways. One possible method is to
compute the mass matrix as usual by applying any standard quadrature rule and then lump the
mass matrix by employing either the row-sum technique or the HRZ2 method [43, 89, 93, 184].
Another possibility is to employ spectral elements where the shape functions are the Lagrange
polynomials defined at Gauss-Legendre-Lobatto (GLL) points and the numerical integration of
the mass matrix is carried out by applying the Gauss-Legendre-Lobatto (GLL) quadrature rule
[104, 120, 138, 148]. The Lagrange shape functions of order p are defined as

Np
i (ξ) =

p+1∏
j=1, j �=i

ξ − ξj

ξi − ξj

, i = 1, 2, . . . p + 1. (5.3)

2Hinton, Rock and Zienkiewicz (HRZ) are the authors of the procedure [89].
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Here, ξj are the nodes at which shape functions obey the Kronecker-Delta property

Np
i (ξj) = δij . (5.4)

In the case of spectral elements, ξj corresponds to the GLL nodes that are the (p + 1) roots of
[162]

(1 − ξ2)dLp

dξ
= 0, (5.5)

where Lp(ξ) are the Legendre polynomials of degree p, defined as

Lp(ξ) = 1
2pp!

dp

dξp
(ξ2 − 1)p . (5.6)

The GLL nodes, which are given in appendix A, are very close to Chen-Babuška points and,
therefore, shape functions defined at these points offer almost the same interpolation properties
as the ones defined at Chen-Babuška points. It is worth noting that the Lagrange shape functions
feature the partition of unity, i.e.

p+1∑
i=1

Np
i = 1 . (5.7)

The 1D shape functions up to order p = 4 are given in Table 5.1 and plotted in Fig. 5.1. The

Table 5.1: The 1D Lagrange shape functions up to order p = 4 defined at the GLL points.

Shape functions p = 1 p = 2 p = 3 p = 4

N1(ξ) 1
2(1 − ξ) 1

2ξ(ξ − 1) 1
8(1 − 5ξ2)(ξ − 1) 1

8ξ(7ξ2 − 3)(ξ − 1)
N2(ξ) 1

2(1 + ξ) (1 − ξ)(1 + ξ) 5
8(1 − ξ2)(1 −

√
5ξ) 7

24ξ(1 − ξ2)(7ξ −
√

21)
N3(ξ) 1

2ξ(ξ + 1) 5
8(1 − ξ2)(1 +

√
5ξ) 1

21(1 − ξ2)(21 − 49ξ2)
N4(ξ) −1

8(1 − 5ξ2)(1 + ξ) 7
24ξ(1 − ξ2)(7ξ +

√
21)

N5(ξ) 1
8ξ(7ξ2 − 3)(ξ + 1)

2D and 3D shape functions can be obtained by applying the tensor-product of the 1D shape
functions.

One of the interesting properties of the Lagrange shape functions defined at the GLL points is
that the resulting mass matrix is lumped automatically when the GLL quadrature rule of order
ng = p + 1 is applied to compute the element matrices. In order to explain this, let us take a look
at the computation of the mass matrix of a 1D cell

M c =
∫
Ωc

ρNTN dΩ =
ng∑

k=1
ρ NT(ξk)N(ξk)wk det J c , (5.8)

where the shape functions are based on Lagrange polynomials of order p defined at the GLL
points and the GLL quadrature includes ng = p + 1 integration points. Due to the Kronecker-
Delta property of the shape functions at the GLL points, the following holds

Np
i (ξk) = δik . (5.9)
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Figure 5.1: The one-dimensional Lagrange shape functions up to order p = 4 defined at the GLL
points.
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Inserting (5.9) in (5.8) and assuming that the density is constant in the cell, the entries of the
mass matrix are computed as [43]

Mc,ij =
ng∑

k=1
ρ Ni(ξk)Nj(ξk)wk det J c =

ng∑
k=1

ρ δikδjkwk det J c = ρ wj δij det J c , (5.10)

leading to a lumped mass matrix. This is a very elegant approach to obtain a lumped mass
matrix, since it is not necessary to carry out additional operation on the mass matrix to convert
it to a lumped mass matrix. It should, however, be borne in mind that a GLL quadrature of
order ng = p + 1 is only suitable to exactly compute the integral of polynomials up to the order
2ng −3 = 2p−1. Nonetheless, the integrands of the mass and stiffness matrices are generally of
order 2p, meaning that this approach leads to under-integrated matrices3. Fortunately, it has been
shown that, despite the under-integrated matrices in this approach, it is still possible to obtain
accurate results [46–48, 57, 97, 162]. Another property of the Lagrange shape functions defined
at the GLL points is that they are very efficient for the simulation of wave propagation problems.
This is due to the fact that this set of shape functions is essentially similar to the sin and cos
functions in a Fourier series [18, 19]. Moreover, they merely require π degrees of freedom
per wavelength to resolve the underlying waves, thus allowing to employ larger elements than
compared to the minimum propagating wavelength [18, 19, 176].

5.2 Spectral cell method and mass lumping in cut
cells

We combine spectral elements with the FCM, leading to the spectral cell method (SCM), to
provide a simple mesh generation and fast simulation technique for wave propagation problems.
This means, for the spatial discretization on cells, we thus utilize Lagrange shape functions of
order p defined at the GLL points. In order to obtain a lumped mass matrix, we apply the GLL
quadrature rule of order ng = p + 1 for the numerical integration of unbroken cells. For the
cut cells, however, we usually have to apply other types of integration algorithms, such as those
proposed in Chapter 3, to achieve accurate integration results. Consequently, the resulting mass
matrix in cut cells is not lumped anymore, but, in general, fully populated. Subsequently, the
resulting global mass matrix is almost lumped. In order to obtain a perfectly lumped global mass
matrix and take advantage of the CDM, we thus need to retain the diagonal pattern of the mass
matrix of cut cells. In the following, we will consider other techniques to achieve this goal –
such as the row-sum technique, the mass scaling method, or the HRZ method.

5.2.1 Row-sum technique for cut cells
The row-sum technique is one of the standard procedures to obtain a lumped mass matrix [46]. In
this method, the global lumped mass matrix Mlump is computed from the consistently computed
global mass matrix M as

M lump
ij = δij

nD∑
j=1

Mij for i = 1, 2, . . . , nD, (5.11)

3To avoid under-integration of the stiffness matrix, it is possible to integrate it with different quadrature
rules applying a proper order.
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where nD is the total number of degrees of freedom of the overall system. The global mass
matrix is usually computed consistently, i.e. by performing a full integration instead of an under-
integration. Dauksher and Emery [47] have shown that, for the standard FEM, this simple
technique yields very accurate results while preserving the mass of the structure and deliver-
ing non-zero and non-negative entries on the diagonal of the mass matrix. However, our studies
in [56, 57] reveal that the row-sum technique, unfortunately, is not suitable for cut cells and,
unfavorably, it may lead to zero or negative entries on the main diagonal of the mass matrix.

5.2.2 Mass scaling technique
Another option to obtain a diagonal mass matrix in cut cells is to apply the mass scaling ap-
proach, as proposed in [97], which is similar to the approach suggested in [67]. Based on this
method, the first step is to treat the cut cell as if it were unbroken and to compute the non-
dimensional lumped mass matrix of the cell at hand on the standard domain � as

M� =
∫
� NTN d�∫

� d� ,

M lump
std = lump(M�) = diag(m1, m2, ..., mn) ,

(5.12)

where mi denotes the entries on the diagonal of the non-dimensional lumped mass matrix of
the standard unbroken cell M lump

� . The lumping procedure on the standard domain can be
performed by applying any standard technique, e.g. the GLL quadrature or row-sum. Next,
in order to preserve the mass of the structure, we scale M lump

� with the mass of the cut cell Mcell

that is

Mcell =
∫
Ωc

ρ α(x) dΩ . (5.13)

Note that the above integral obeys a discontinuous integrand due to the presence of α(x). To
compute it accurately, we should thus apply one of the algorithms presented in Chapter 3. The
resulting lumped mass matrix of the cut cell M lump

c is finally given as

M lump
c = Mcell M lump

� . (5.14)

Apart from preserving the mass, this type of mass lumping also always results in positive entries
on the diagonal of M lump

c , provided that the lumping technique applied on the standard cell has
such a property. It should, however, be noted that, in this method, we disregard the geometry
of the cut cell and also the distribution pattern of the material. These simplifications might
deteriorate the performance of this approach. We will examine the performance of this method
in Section 5.3.1.

5.2.3 Diagonal scaling technique
The diagonal scaling method, also known as HRZ lumping technique [89], is originally proposed
for the standard FEM. Here, we extend it to cut cells [97]. In this approach, first the consistent
mass matrix of the cut cell M c given in Eq. (2.26) is computed by applying any kind of suitable
integration technique, such as those presented in Chapter 3. Then, the diagonal entries of the
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lumped mass matrix M lump
c are computed by scaling the diagonal entries of the consistent mass

matrix as

M lump
c,ij = s δij Mc,ij (5.15)

where the scaling factor s is given as

s = d · Mcell∑nd
i=1 Mc,ii

(5.16)

Here, nd is the number of degrees of freedom associated to the cut cell, d denotes the spatial
dimension of the problem under consideration (d = 1, 2, 3), and Mcell is the total mass of the
cell given in Eq. (5.13). Please note that in this method, only the entries of the main diagonal
of the consistent mass matrix enter the computation of the lumped mass matrix. Thus, to save
computational costs, we can avoid computing other entries of the consistent mass matrix. The
diagonal scaling is computationally slightly more expensive than the mass scaling technique
since, in this case, instead of Mcell, M c has to be computed with integration algorithms designed
especially for the cut cells. Nevertheless, we expect more accurate results from this method
as compared to the mass scaling approach because the entries on the diagonal of the lumped
mass matrix are directly computed from the consistent mass matrix, which is why they carry
information about the geometry of the cut and also the distribution pattern of the material inside
the cell. The performance of this method will be assessed in the following section.

5.3 Numerical examples
In this section, we investigate the performance of the spectral cell method with the aid of several
numerical examples. To this end, we contemplate examples that are of interest in the scope of
structural health monitoring of thin-walled structures where guided elastic waves are employed
for damage detection purposes [79, 139, 140, 163, 164]. All the computations here are carried
out with the in-house code AdhoC [61], which is a parallel high-order program that was extended
for FCM and SCM applications. The parallelization is carried out with the help of OpenMP [12]
on a shared memory computer architecture with eight CPUs, each with six cores.

5.3.1 Lamb waves in a 2D plate
Before discussing the performance of the SCM, we would at first like to compare the convergence
behavior of the spectral element method to the standard FEM and study the performance of
different temporal and spatial discretizations. To this end, we model the propagation of Lamb
waves [109] in a two-dimensional plate, as depicted in Fig. 5.2.

The plate under consideration is made of aluminum, and it is under plane strain conditions.
The material is assumed to be isotropic and in a linear state. Damping is neglected. The structure
is excited in y-direction by a time-dependent force F (t) given as

F (t) = F̂ sin(ωt) sin2
(

ωt

2n

)
0 ≤ t ≤ n

f
, (5.17)

where ω = 2πf denotes the central circular frequency, n is the number of cycles determining
the width of the excited frequency band around the central frequency f , and F̂ is the amplitude
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Parameters:
Plane strain conditions
Young’s modulus: E = 70.0 GPa
Poisson’s ratio: ν = 0.33
Density: ρ = 2700 kg/m3

F (t)

200 mm 400 mm

5 mmx

yP

Figure 5.2: Two-dimensional aluminum plate excited by F (t).

of the excitation force. For this example, we set F̂ = 0.5 N, f = 250 kHz and n = 5. This type
of excitation is of advantage for structural health monitoring applications because the frequency
content is narrow-banded. The excitation force in the time domain and the frequency domain are
depicted in Fig. 5.3. For the sake of spatial discretization in this example, one case features the p-
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Figure 5.3: The excitation force in (a) the time domain and (b) the frequency domain.

version of the FEM together with hierarchical shape functions based on the integrated Legendre
polynomials. In this case, the domain of interest is discretized with 200 × 2 elements, and the
polynomial order of the shape functions is varied as p = 2, 3, . . . , 9 to increase the accuracy of
the spatial discretization. In another case, the spectral elements are applied, considering both the
h-refinement and the p-refinement. In the case of the h-refinement of the spectral elements, the
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polynomial order remains unchanged as p = 2 while the size of the elements is reduced. The
applied meshes include 200 × 2, 400 × 4, 800 × 8, 1600 × 16, and 3200 × 32 elements. Note
that the smaller numbers here indicate the refinements in y-direction, whereas the bigger ones are
related to the subdivisions in x-direction. In the case of the p-refinement of the spectral elements,
the mesh with 200 × 2 elements is employed, and the accuracy of the spatial discretization is
increased by elevating the polynomial order of the shape functions as p = 2, 3, . . . , 9. The
total simulation time is t = 120 μs. For the temporal discretization in the case of the p-version
FEM, we only consider the Newmark method. In the case of the spectral element method, the
mass matrix is lumped by applying the GLL quadrature of order ng = p + 1, so we utilize
the CDM to take advantage of the fast solution step. Due to the applied excitation force, the
time-step size has to be smaller than 1 μs to obtain accurate results. That is why we consider
Δt = 0.1 μs, Δt = 0.01 μs, and Δt = 0.001 μs. With respect to the numerical implementation
of the excitation load, we apply the method described in [57].

All the contemplated models are able to simulate the displacement field. The time history of
the displacements at the observation point P depicted in Fig. 5.2 is shown in Fig. 5.4. Although

-5.0

-2.5

0.0

2.5

5.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0

u x
 ×

 1
0-1

2  [
m

]

t [μs]

(a) Displacement in x-direction

-8.0

-4.0

0.0

4.0

8.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0

u y
 ×

 1
0-1

2  [
m

]

t [μs]

(b) Displacement in y-direction

Figure 5.4: Time history of the observation point P vs. time.

it is usually only the displacements are of interest in applications like this, we take a look at
the convergence of the quantities related to derivatives, i.e. the stresses, which – regarding the
numerical simulation – are more error-prone. To this end, we study the accumulation of the error
in von Mises stress σvM during the simulation as

eσvM =

√√√√∑nt
i=1(σvM − σref

vM)2
i∑nt

i=1(σref
vM)2

i

× 100 [%] , (5.18)
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where the stresses are monitored at the observation point depicted in Fig. 5.2, and nt is the total
number of time-steps chosen in the simulation. The reference results are related to an overkill
solution computed by applying the standard FEM with p = 10, Δt = 10−4 μs on a mesh that
contains 200 × 2 elements. In Fig. 5.5, we compare the h- and p-refinement of the SEM for
different time-steps. We can clearly observe the effect of the spatial and temporal discretiza-
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Figure 5.5: Convergence behavior of the h- and p-refinement of the SEM.

tions. If the time-step size is rather large, the error in temporal discretization is dominant, and
increasing the number of degrees of freedom of the spatial discretization does not improve the
results. However, the influence of the spatial discretization comes into view if the time-step size
is small enough. We also observe that in this problem, it is computationally more economic – in
terms of the degrees of freedom – to apply the p-refinement instead of the h-refinement.

Figure 5.6 compares the p-version of the SEM and the p-version of the FEM for different time-
step sizes. Please note that in the case of the FEM, we apply the Newmark method, whereas the
CDM is employed with the SEM. As can be seen, the convergence behavior of the SEM is
similar to that of the FEM. This indicates that an under-integration in the SEM is not in fact
detrimental. In order to get an impression of the computational time of the applied methods,
Table 5.2 provides details for the case of Δt = 0.01 μs. The results are compared for an error

Table 5.2: Computational time related to the simulation of the problem shown in Fig. 5.2.

Time [s]

Model nD eσvM
K∗

only once
K∗d=r

every time-step Total

p-FEM, p = 5, Newmark ≈ 12,000 ≈ 0.81% ≈ 0.09 ≈ 0.25 ≈ 3600
h-SEM, p = 2, CDM ≈ 42,000 ≈ 0.74% ≈ 0.23 ≈ 0.12 ≈ 1800
p-SEM, p = 3, CDM ≈ 17,000 ≈ 0.17% ≈ 0.16 ≈ 0.03 ≈ 400

level of eσvM < 1%. Since the problem at hand is in linear-elastic regime, the effective stiffness
matrix does not change during the simulation. Therefore, it is sufficient to compute K∗ just once
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Figure 5.6: Convergence behavior of the p-refinement of the SEM and FEM.

and only update the effective load vector in Alg. 2 and Alg. 3 at every time-step. We can see
that applying the CDM with a lumped mass matrix will generally lead to a faster simulation than
the p-version of the FEM with the Newmark method. In addition, we observe that the p-version
SEM is 4.5 times faster than the h-version SEM, due to the fact that the p-version SEM requires
less degrees of freedom for the same level of accuracy. It is worth mentioning that this example
is considered as a smooth problem, and it is expected that the p-refinement is more effective
than the h-refinement. In addition, it should be also mentioned that with the p-version FEM, the
expenditure related to the solution step during the time-integration can be reduced by performing
LU decomposition of the effective stiffness matrix once and carrying out a backward substitution
at every time-step [25]. In this thesis, however, we will not use techniques like this.

5.3.2 Lamb waves in a perforated plate

In order to examine the performance of the proposed mass lumping techniques for cut cells
suggested in Section 5.2, we consider a very similar setting as in the previous example. In
this case, however, the plate under consideration is perforated by a circular hole at the position
shown in Fig. 5.7. The structure under consideration is excited by two equal time-dependent
forces acting in opposite directions at the left-hand side. These forces are similar to the previous
example, but with F̂ = 1 N; see Eq. (5.17). Here, we apply the SCM and discretize the domain
of interest with a Cartesian grid containing 200 × 2 cells. The polynomial order of the Lagrange
shape functions is chosen to be p = 6, and the time-step size is Δt = 0.01 μs where the time-
integration algorithm is the CDM. Under these circumstances, there are four cut cells in the
grid, while the remaining cells are unbroken. The underlying integrals of the unbroken cells are
computed by employing the GLL quadrature of order ng = 7, yielding a lumped mass matrix
for these cells. For the cut cells, we apply the adaptive quadtree integration as explained in
Chapter 3. The resulting sub-cells generated during the integration with 6 level of quadtree
refinements are depicted in Fig. 5.8. To lump the mass matrix of the cut cells, we apply the mass
scaling (5.14) and the diagonal scaling (5.15), and we take a look at the displacement history
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Parameters:
Plane strain conditions
Young’s modulus: E = 70.0 GPa
Poisson’s ratio: ν = 0.33
Density: ρ = 2700 kg/m3

F1(t)

F2(t) 150 mm 450 mm

5 mm3 mm

r = 1 mm

x

y
P

Figure 5.7: Two-dimensional aluminum plate perforated by a circle and excited by two time-
dependent forces.

Figure 5.8: Sub-cells generated during the adaptive quadtree integration with 6 level of refine-
ments.

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


5.3 Numerical examples 125

at point P as depicted in Fig. 5.7. Please note that this point is located inside one of the cut
cells right at the boundary of the hole. The results are compared to the reference solution in
Fig. 5.9. The reference results in this case are obtained by an overkill solution by applying the
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Figure 5.9: Displacement history at the observation point P vs. time when employing (a) the
mass scaling and (b) the diagonal scaling.

standard high-order FEM with a conforming mesh, using the blending function method with a
trigonometric function to exactly resolve the geometry of the circle. The polynomial order used
to obtain the overkill solution is p = 9, and the time-integration is performed by applying the
Newmark method with Δt = 0.001 μs. As it was expected, the diagonal scaling matches the
reference solution better, whereas the results related to the mass scaling exhibit an overshooting,
especially close to the peaks. This is mainly due to the fact that in the diagonal scaling, the
geometry of the boundary within the cut cell is taken into account, while it is ignored in the mass
scaling. Following this observation, we suggest to only apply the diagonal scaling for further
applications. In addition, the study of the dispersion behavior of the SCM with the diagonal
scaling technique performed by the author and colleagues in [97] shows that the dispersion of
the method is in the same range of the standard spectral element method. This aspect makes the
method an attractive alternative to the spectral element method where the mesh generation might
be an obstacle in the simulation.

5.3.3 Lamb waves in a 2D porous plate
The next example to be considered is a porous plate, as depicted in Fig. 5.10. The material
property and the excitation forces are the same as in the previous example. The pores are circles
with a radius of 1 mm. As the spatial discretization, we consider the h-version and the p-version
FEM as well as the p-version FCM. In the p-version FEM and FCM, the shape functions are
based on the integrated Legendre polynomials, whereas in the h-version they are based on the
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Parameters:
Plane strain conditions
Young’s modulus: E = 70.0 GPa
Poisson’s ratio: ν = 0.33
Density: ρ = 2700 kg/m3
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Figure 5.10: Two-dimensional aluminum porous plate excited by two time-dependent forces.

Lagrange shape functions defined at the GLL points. As another case, we consider the p-version
of the SCM and apply the diagonal scaling for the cut cells. In the case of the h-FEM, the shape
functions are of order p = 2, and the accuracy of the spatial discretization is raised by uniformly
increasing the number of elements, which increases the accuracy of the geometry representation
at the same time. In the case of the p-FEM, the mesh is left unchanged, and the spatial discretiza-
tion error is reduced by increasing the polynomial order of the shape functions as p = 2, 3, . . . , 8.
In this case, we apply the blending function technique using trigonometric functions to reduce
the error in the geometry representation [36, 64, 102, 170]. For the FCM and SCM, the mesh
is a Cartesian grid containing 400 × 4 cells, and the accuracy in the spatial discretization is in-
creased by elevating the polynomial order of the shape functions as p = 2, 3, . . . , 8. In cases
like this, the geometry is resolved during the numerical integration of the cells, so we apply the
adaptive quadtree integration with a sufficient number of tree-refinements to diminish the error
of the geometrical representation. Figure 5.11 shows part of the meshes that are applied in this
example. For the sake of the temporal discretization, we apply the Newmark method in the
case of the p-FEM and the FCM. For the SCM, we employ the CDM – and we apply both the
Newmark method and the CDM to the case of the h-FEM. The entire simulation time is 120 μs,
and the time-step size is chosen to be Δt = 0.01 μs. In order to be able to judge the accuracy
of the results, we consider an overkill solution based on a sufficiently fine high-order mesh in-
cluding 4694 elements with a polynomial order of p = 9 and adequately fine time-step size of
Δt = 0.001 μs.

Figure 5.12 shows the displacement history at different sample points, as depicted in Fig. 5.10.
In order to judge the accuracy of each method, we again take a look at the convergence behavior
of the accumulated error in von Mises stress during the simulation at the point P2 next to one of
the holes in terms of Eq. (5.18); see Fig. 5.13. Regarding this example, it should be mentioned
that the h-FEM with the CDM only leads to converged results in connection with the very coarse
mesh. As this is due to the stability problem of the time-stepping scheme, we merely list the
results of the h-FEM obtained using the Newmark method. In the case of the SCM, the CDM
with the given time-step size led to unstable time-integration for the case of p = 8 due to the fact
that Δt > Δtc, which is why we only show the results up to p ≤ 7.
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(a) The FCM/SCM mesh

(b) The p-FEM mesh

(c) The h-FEM mesh

Figure 5.11: Part of the applied meshes for the example of porous plate.
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Figure 5.12: Displacement history at the different observation points vs. time.
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Figure 5.13: The point-wise error accumulation of the von Mises stress at the observation point
P2 vs. the number of degrees of freedom.

As depicted in Fig. 5.13 the p-version of the FCM and the FEM both show an exponential rate
of convergence, whereas the rate of convergence of the h-FEM is algebraic. The p-version of the
SCM leads to a higher rate of convergence as compared to the h-FEM and a slightly lower rate
as compared to the p-version of the FEM and the FCM. This lower rate of convergence of the p-
version SCM might be due to the under-integrated mass matrix of this approach. Nevertheless, it
is worth noting that with p ≥ 4 the SCM already describes the displacement field very accurately
for the SHM applications.

The great potential of the SCM is revealed when we look at the CPU time; see Fig. 5.14, where
the error in the von Mises stress is plotted versus the CPU time. Very attractively, the SCM yields
the fastest solution approach of all. Table 5.3 lists the figures, comparing the results for almost
the same level of accuracy in terms of Eq. (5.18). We can see that the CPU time related to the

Table 5.3: Computational time related to the simulation of the problem shown in Fig. 5.10.

Time [s]

Model nD eσvM
K∗

only once
K∗d=r

every time-step Total

h-FEM, p = 2, Newmark ≈ 213,000 ≈ 1.8% ≈ 2.66 ≈ 5.96 ≈ 86,000
p-FEM, p = 6, Newmark ≈ 28,000 ≈ 1.1% ≈ 0.49 ≈ 0.84 ≈ 10,000
FCM, p = 8, Newmark ≈ 51,000 ≈ 0.7% ≈ 94.73 ≈ 2.27 ≈ 33,000
SCM, p = 7, CDM ≈ 59,000 ≈ 2.1% ≈ 112.58 ≈ 0.20 ≈ 2800

computation of the effective stiffness matrix of the FCM and the SCM is very high, which is
due to the applied adaptive quadtree integration algorithm. Nevertheless, the effective stiffness
matrix needs to be computed only once. Thus, its computational cost is amortized on the number
of time-steps. On the other hand, the CPU time related to solving the equation system of the SCM
is very low, due to the fact that the effective stiffness matrix is diagonal as a result of applying
mass lumping. It should also be noted that, in the case of the Newmark method, it is possible to
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Figure 5.14: The point-wise error accumulation of the von Mises stress at the observation point
P2 vs. the CPU time.

reduce the computational cost spent in the solution step when the effective stiffness matrix does
not change during time. To this end, we can apply a direct solver and factorize the system once
– and then merely perform a backward substitution at every time-step. Herein, however, we do
not apply such techniques. Comparing the total CPU times in Table 5.3 reveals that the SCM is
almost 31 times faster than the h-FEM and 3 times faster than the p-FEM. We should also take
into account that the task of the mesh generation in the SCM is very expedient, and that the mesh
is available at hardly any cost. As compared to the FCM, when the cost of mesh generation is
the same, the SCM is almost 12 times faster.

5.3.4 Wave propagation in a sandwich plate
By way of the last example in this chapter, we take a look at the numerical simulation of wave
propagation in a three-dimensional sandwich plate, as depicted in Fig. 5.15. The structure under

Parameters:
Metallic covers

E = 70 MPa
ρ = 2700 kg/m3

ν = 0.33

Foam-like core

E = 3 MPa
ρ = 50 kg/m3

ν = 0.3

F (t)

F (t)

Figure 5.15: A sandwich plate excited by two time-dependent forces.
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consideration consists of two metallic sheets that are made of aluminum and a core that is a foam-
like material. The materials of both metallic sheets and the core are considered to be isotropic
and in a linear state. The covers are of square shape with an edge size of 288 mm and a thickness
of 4.8 mm. The thickness of the foam amounts to 48 mm. The structure at hand is excited by two
forces acting in opposite directions at one corner of the structure – as depicted in Fig. 5.15. The
excitation forces are given in (5.17), where F̂ = 1 N, f = 250 kHz and n = 5. The geometry of
the core is directly derived from a qCT scan. The size of each voxel is 0.48 × 0.48 × 0.48 mm3.
With such a resolution, the core contains 600×600 voxels in x- and y-directions, and 100 voxels
in the thickness direction. In order to mesh the core of the sandwich plate with the SCM, we
readily apply a Cartesian grid with 30 × 30 × 5 cells where each cell includes 20 × 20 × 20
voxels. 1525 of these cells are empty, i.e. they contain no material and are thus discarded. Each
of the cover plates is also discretized with a Cartesian mesh with 30 × 30 cells in plane and 2
in thickness. In total, the model therefore consists of nc = 6575 cells. The resulting mesh is
depicted in Fig. 5.16a. Such a mesh is obtained automatically and without any difficulty within
a few seconds. With such a mesh, and applying a tensor-product space of order p = 3, the model
contains almost nD ≈ 6.5 × 105 degrees of freedom. It is worth mentioning that, to simulate
a structure like this with the voxel-based FEM, approximately 11 million hexahedral elements
would be needed only to discretize the core. In this example, we apply only the SCM in which
the underlying mass matrix of unbroken cells is lumped by applying a GLL quadrature rule with
ng = 4 Gauss points in each spatial direction. For the sake of the mass lumping of cut cells, we
apply a composed voxel integration and lump the mass matrix employing diagonal scaling.

The result of simulating 80 μs of the wave propagation is depicted in Fig. 5.16. In this example,
in order to have an accurate representation of the wave propagation, the time-step size is chosen
to be 0.001 μs leading to nt = 80,000 time-steps. Such a time-step size is in the range of the
critical time-step size of explicit time-integration algorithms. Thanks to the diagonal pattern
of the mass matrix in the SCM, we can efficiently employ the central difference method as the
time-integration algorithm and perform the simulation at about tCPU = 15 h.
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(a) FCM mesh (b) t = 9 μs

(c) t = 30 μs (d) t = 50 μs

(e) t = 60 μs (f) t = 80 μs

Figure 5.16: (a) The SCM mesh and (b) to (f) show the displacement field in the covers.
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Chapter 6

Summary and Outlook

The FCM offers a powerful discretization method for problems in which the mesh generation is
the main difficulty of the numerical analysis. The main motivation of this work was to improve
this method from the viewpoint of numerical integration and the local enrichment. We were also
interested in extending the application of the FCM to wave propagation problems on structures
that obey complicated geometries. The main achievements of this work are to be summarized as
follows.

• Numerical integration of the FCM: We discussed different numerical integration
schemes in the context of the FCM. Accordingly, we proposed a novel approach based
on the moment fitting method which takes advantage of a boundary representation of the
integration domain and the divergence theorem to construct on-the-fly a specific quadra-
ture rule for each particular cut cell. In the scope of the proposed method, we decided
to trade off the optimality of the quadrature to the simplicity of the procedure by placing
the integration points inside the integration domain a priori. This simplification leads to
a linear system in the moment fitting, which is easy to solve. As a result, the obtained
quadrature rules are not optimal regarding the number and the location of the integration
points. Nevertheless – in comparison to the adaptive integration algorithm, which is com-
monly employed in the FCM – they usually obey a several orders of magnitude lower
number of integration points for the same level of accuracy. It should, however, be men-
tioned that the overhead introduced due to setting up the moment fitting method is usually
higher than the adaptive integration. As a result, the proposed method is very suitable for
cases where the quadrature rule has to be constructed only once but is then used several
times. This situation appears in almost all nonlinear problems where the stiffness matrix
has to be computed several times during the Newton-Raphson algorithm. Furthermore,
the moment fitting method is also of high interest in cases where numerically expensive
computations have to be carried out on each integration point, for instance in elastoplastic
problems. The resulting quadrature rules based on the moment fitting method – in their
best case scenario – require p + 1 integration points to accurately integrate polynomials of
order p in cut cells. This is not much more expensive than the standard Gauss-Legendre
quadrature rule, which employs �p+1/2� integration points to deliver a similar accuracy in
unbroken cells. As a result, the FCM with the moment fitting method only requires slightly
more effort in terms of numerical integration in cut cells as compared to unbroken cells.
This turns the FCM to a powerful approach for problems involving complex geometries
– it offers simple mesh generation, a high convergence rate, and it is only slightly more
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computationally expensive than the standard finite element method.

• Local enrichment of the FCM: In order to account for weak discontinuities at material
interfaces, we proposed to locally enrich the FCM Ansatz only in those cells that include
the material interface. The introduced local enrichment procedure is based on either the
hp-d method, the partition of unity method, or a combination of both. Along this way,
we first proposed a robust and efficient approach to interpolate the level set function that
describes the location of the material interface. The suggested strategy employs Lagrange
shape functions defined at Chen-Babuška points, where the accuracy of the level set rep-
resentation can be increased by performing both an h- and a p-refinement. In many cases,
however, we observed that it is advantageous to increase the accuracy of the interpolation
by performing a p-refinement. Knowing the location of the material interface in cells that
are cut by the interface, we locally enrich the Ansatz space by either hierarchically intro-
ducing local meshes on the corresponding cell via the hp-d method or by adding especially
designed shape functions to the Ansatz by employing the partition of unity approach. In the
case of the hp-d method, it is also possible to employ the partition of unity method on the
hierarchically superimposed meshes. In the hp-d method, the problem of hanging nodes –
which could arise due to the different resolutions of the base mesh and the hierarchically
added meshes – is avoided by applying homogeneous Dirichlet boundary conditions on the
boundary of the enriched zone. In the case of the partition of unity method, the required
continuity of the approximation is achieved by designing the enrichment function in such
a way that it vanishes at the boundary of the enrichment region. We showed that both of
the proposed methods are effective for problems in solid mechanics including material in-
terfaces. However, the local enrichment through the partition of unity method proved to be
more efficient in the considered cases. This is mainly due to the fact that, in this method,
the additional degrees of freedom can be added to the Ansatz space more purposefully. On
the other hand, the hp-d method offers a very elegant approach to perform local h- and
p-refinements without facing the problems of hanging nodes. This could be very inter-
esting in cases where it is not possible to construct a suitable enrichment function. Such
cases are, for instance, problems that include crack tips in 3D cases or problems including
reentrant corners.

• Extension of the FCM to wave propagation problem: With regard to this point, we
developed a combination of the FCM with spectral elements. The resulting approach,
the spectral cell method, features a lumped mass matrix that makes it easier to exploit
the advantages of an explicit time-integration algorithm – such as, for example, the cen-
tral difference method. In the spectral cell method, the shape functions are based on the
tensor-product of Lagrange polynomials of order p, defined at the Gauss-Legendre-Lobatto
points. In order to lump the mass matrix of unbroken cells, we employed a tensor-product
of the 1D Gauss-Legendre-Lobatto quadrature rule with p + 1 Gauss points. Due to the
Kronecker-Delta property of the applied shape functions at the Gauss-Legendre-Lobatto
points, the resulting mass matrix of the cells is lumped automatically. For the cut cells,
where other types of numerical integration algorithm have to be applied to correctly ac-
count for the integrals with discontinuous integrands, we investigated different mass lump-
ing techniques. We found out that the diagonal scaling method is a suitable choice for our
need. In this method, the mass matrices of the cut cells are computed consistently by
applying a proper integration technique before they are lumped by applying the diagonal
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scaling. This lumping technique simultaneously conserves the mass of the structure and
ensures positive and non-zero entries on the main diagonal of the mass matrix. As a result,
the spectral cell method serves to obtain a perfectly diagonal global mass matrix, which in
turn makes the solution of the system straightforward and fast – provided that the central
difference method is employed. Our studies in 2D and 3D reveal that the proposed method
offers almost the same convergence behavior as the standard FCM and FEM, while it cuts
down the expenses significantly.

Now let us look ahead to possible aspects of future research

• In order to construct quadrature rules on cut cells with the moment fitting method, we fixed
the location and the number of the integration points a priori. Such simplification may have
a negative effect on the condition number of the resulting equation system in the moment
fitting method. In order to improve the performance of the method, it is therefore necessary
to find a better approximation of the integration points. This can be achieved, for instance,
by estimating the optimal location of the integration points using the Schwarz–Christoffel
conformal mapping [131]. Another option is to solve the moment fitting method in its
general form by applying optimization techniques. Nevertheless, it should be mentioned
that these methods are, in general, computationally expensive.

• In this thesis, we studied the moment fitting method for linear-elastic problems. It is of
interest to investigate the performance of this method for elastoplastic, hyperelastic and
nonlinear problems as well.

• The local enrichment procedure proposed in this thesis is very flexible and allows to take
into account different kinds of discontinuities and singularities. In our applications, we
focused on the case where each cell only contains one source of discontinuity, i.e. cells
that are cut only by one material interface. It would thus be interesting to extend this
method to cases where a cell is cut by several material interfaces.

• The spectral cell method offers a very fast and reliable technique for the numerical analy-
sis of wave propagation in geometrically complex problems. In this thesis, we focused on
the wave propagation in problems involving only one type of material. Therefore, it would
be interesting to extend the method to heterogeneous materials, where – due to local char-
acteristics such as discontinuities in material properties or cracks – different wavelengths
may occur. A very detailed mesh is usually needed to capture such features, and this leads
to a high computational effort [78, 111]. A practical approach to avoid this problem is to
employ the local enrichment strategy proposed in this thesis. In this way, it is possible to
describe the localized features in a numerically efficient manner. One of the main issues
here is related to non-uniform meshes, which are inherent in the hp-d approach. It has
been shown that the non-uniform meshes may cause artificial numerical effects in time-
dependent numerical simulations [78, 116, 135]. The artificial effects are generally due
to the reflecting waves at the boundaries between the meshes, which have no physical in-
terpretation. It is therefore necessary to systematically study these effects and classify the
limits they may impose on the modeling procedure of the SCM combined with the hp-d
method.

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


136

Appendix A

Gaussian quadrature rules

A.1 Gauss-Legendre quadrature

n abscissas ξi weight factors wi

1 0.000000000000000e+00 2.000000000000000e+00
2 5.773502691896258e-01 1.000000000000000e+00

-5.773502691896258e-01 1.000000000000000e+00
3 7.745966692414834e-01 5.555555555555556e-01

0.000000000000000e+00 8.888888888888889e-01
-7.745966692414834e-01 5.555555555555556e-01

4 8.611363115940526e-01 3.478548451374539e-01
3.399810435848563e-01 6.521451548625461e-01

-3.399810435848563e-01 6.521451548625461e-01
-8.611363115940526e-01 3.478548451374539e-01

5 9.061798459386640e-01 2.369268850561891e-01
5.384693101056831e-01 4.786286704993665e-01

0.000000000000000e+00 5.688888888888889e-01
-5.384693101056831e-01 4.786286704993665e-01
-9.061798459386640e-01 2.369268850561891e-01

6 9.324695142031520e-01 1.713244923791703e-01
6.612093864662645e-01 3.607615730481386e-01
2.386191860831969e-01 4.679139345726910e-01

-2.386191860831969e-01 4.679139345726910e-01
-6.612093864662645e-01 3.607615730481386e-01
-9.324695142031520e-01 1.713244923791703e-01

7 9.491079123427585e-01 1.294849661688697e-01
7.415311855993944e-01 2.797053914892767e-01
4.058451513773972e-01 3.818300505051189e-01

0.000000000000000e+00 4.179591836734694e-01
-4.058451513773972e-01 3.818300505051189e-01
-7.415311855993944e-01 2.797053914892767e-01
-9.491079123427585e-01 1.294849661688697e-01

8 9.602898564975362e-01 1.012285362903763e-01
7.966664774136267e-01 2.223810344533745e-01
5.255324099163290e-01 3.137066458778873e-01
1.834346424956498e-01 3.626837833783620e-01

-1.834346424956498e-01 3.626837833783620e-01
-5.255324099163290e-01 3.137066458778873e-01
-7.966664774136267e-01 2.223810344533745e-01
-9.602898564975362e-01 1.012285362903763e-01

Table A.1: Abscissas and weight factors for Gauss-Legendre quadrature.
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A.2 Gauss-Legendre-Lobatto quadrature

n abscissas ξi weight factors wi

1 0.00000000000000000 2.0000000000000000
2 -1.00000000000000000 1.0000000000000000

1.00000000000000000 1.0000000000000000
3 -1.00000000000000000 0.3333333333333333

0.00000000000000000 1.3333333333333333
1.00000000000000000 0.3333333333333333

4 -1.00000000000000000 0.1666666666666667
-0.44721359549995780 0.8333333333333333
0.44721359549995780 0.8333333333333333
1.00000000000000000 0.1666666666666667

5 -1.00000000000000000 0.1000000000000000
-0.65465367070797710 0.5444444444444444
0.00000000000000000 0.7111111111111111
0.65465367070797698 0.5444444444444444
1.00000000000000000 0.1000000000000000

6 -1.00000000000000000 0.0666666666666667
-0.76505532392946463 0.3784749562978469
-0.28523151648064499 0.5548583770354865
0.28523151648064510 0.5548583770354862
0.76505532392946451 0.3784749562978471
1.00000000000000000 0.0666666666666667

7 -1.00000000000000000 0.0476190476190476
-0.83022389627856708 0.2768260473615660
-0.46884879347071418 0.4317453812098626
0.00000000000000000 0.4876190476190476
0.46884879347071423 0.4317453812098627
0.83022389627856685 0.2768260473615661
1.00000000000000000 0.0476190476190476

8 -1.00000000000000000 0.0357142857142857
-0.87174014850960668 0.2107042271435060
-0.59170018143314218 0.3411226924835044
-0.20929921790247885 0.4124587946587039
0.20929921790247885 0.4124587946587039
0.59170018143314218 0.3411226924835044
0.87174014850960646 0.2107042271435061
1.00000000000000000 0.0357142857142857

Table A.2: Abscissas and weight factors for Gauss-Legendre-Lobatto quadrature.

https://doi.org/10.51202/9783186348180 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:50:40. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186348180


138

Appendix B

Polynomial integrands

In Chapter 3 polynomials of different orders are considered to investigate the accuracy of the
discussed numerical integration algorithms. These polynomials are based on the the hierarchic
shape functions of order p = 1, 2, 3, ..., 8 given as [170]

N2(ξ) = 1/2(1 + ξ) ,

N3(ξ) = 1/4
√

6
(
ξ2 − 1

)
,

N4(ξ) = 1/4
√

10
(
ξ2 − 1

)
ξ ,

N5(ξ) = 1/16
√

14
(
5 ξ4 − 6 ξ2 + 1

)
, (B.1)

N6(ξ) = 3/16
√

2ξ
(
7 ξ4 − 10 ξ2 + 3

)
,

N7(ξ) = 1/32
√

22
(
21 ξ6 − 35 ξ4 + 15 ξ2 − 1

)
,

N8(ξ) = 1/32
√

26ξ
(
33 ξ6 − 63 ξ4 + 35 ξ2 − 5

)
,

N9(ξ) = 1/256
√

30
(
−140 ξ2 − 924 ξ6 + 630 ξ4 + 5 + 429 ξ8

)
.

A polynomial integrand of order p is defined as

Pp(ξ) = Np+1(ξ)Np+1(η)Np+1(ζ) . (B.2)
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Appendix C

Chen-Babuška points

p abscissas ξi

3 -1.0
-0.4177913013559897
0.4177913013559897

1.0
4 -1.0

-0.6209113046899123
0.0

0.6209113046899123
1.0

5 -1.0
-0.7341266671891752
-0.2689070447719729
0.2689070447719729
0.7341266671891752

1.0
6 -1.0

-0.8034402382691066
-0.4461215299911067

0.0
0.4461215299911067
0.8034402382691066

1.0
7 -1.0

-0.8488719610366557
-0.5674306027472533
-0.1992877299056662
0.1992877299056662
0.5674306027472533
0.8488719610366557

1.0
8 -1.0

-0.8802308527184540
-0.6535334790799030
-0.3477879716116667

0.0
0.3477879716116667
0.6535334790799030
0.8802308527184540

1.0

Table C.1: Chen-Babuška points for p = 3, . . . , 8
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