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On Comparing Results from CB-SEM and PLS-SEM:
Five Perspectives and Five Recommendations

By Edward E. Rigdon, Marko Sarstedt and Christian M. Ringle

To estimate structural equation models, re-
searchers can draw on two main approaches:
Covariance-based structural equation model-
ing (CB-SEM) and partial least squares struc-
tural equation modeling (PLS-SEM). Con-
cerns about the limitations of the different ap-
proaches might lead researchers to seek re-
assurance by comparing results across ap-
proaches. But should researchers expect the
results from CB-SEM and PLS-SEM to agree,
if the structure of the two models is otherwise
the same? Differences in philosophy of sci-
ence and different expectations about the re-
search situation underlie five different per-
spectives on this question. We argue that the
comparison of results from CB-SEM and
PLS-SEM is misleading and misguided, ca-
pable of generating both false confidence and
false concern. Instead of seeking confidence
in the comparison of results across methods,
which differ in their specific requirements,
computational procedures, and imposed con-
straints on the model, researchers should fo-
cus on more fundamental aspects of research
design. Based on our discussion, we derive
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recommendations for applied research using
SEM.

Introduction

“...it should always be the aim of the experimenter not to
revel in statistical methods (when he does revel and not
swear) but steadily to diminish, by continual improve-
ment of his experimental methods, the necessity for their

use and the influence they have on his conclusions.”
(Yule, 1921, p. 106)

Statistical methods abstract away from the data, which
researchers can see, to things that are unknown, whether
those things are population parameters like means or var-
iances, or unobserved conceptual variables — psychologi-
cal attributes like customer satisfaction. Are these un-
knowns being estimated or represented correctly? A re-
searcher’s reputation and the fortunes of clients ride on
the soundness of results. Simulations can show the sorts
of results that will occur when certain assumptions are
valid and pre-defined conditions hold, but in real appli-
cations, these assumptions and background conditions
hold only to a limited degree, itself unknown. Moreover,
statistical models, like all models, are only approxima-
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Publication Focus of the Study
Binz Astrachan, Patel, & Wanzenried Comparison of CB-SEM and PLS-SEM for model development and testing in family
(2014) business research.
Chin (2010) Comparison of CB-SEM and PLS-SEM while mainly offering guidelines on how to write a
PLS-SEM report.
Chin & Newsted (1999) Contrasts the efficacy of CB-SEM and PLS-SEM in small sample research.

Chin, Peterson, & Brown (2008)
SEM and PLS-SEM.

Fornell & Bookstein (1982)

Gefen, Rigdon, & Straub (2011)

General discussion of SEM in marketing, which also highlights differences between CB-

Comparison of parameter estimation in CB-SEM and PLS-SEM.
Guidelines for using SEM in administrative and social science research, including aspects

on how to choose between CB-SEM and PLS-SEM.

Gefen, Straub, & Boudreau (2000)

Hair et al. (2011)

Hair, Sarstedt, Ringle, & Mena, (2012)
marketing research.

Tutorial on CB-SEM and PLS-SEM, including a general comparison.
Comparison of CB-SEM and PLS-SEM and guidelines for method choice.
Comparison of CB-SEM and PLS-SEM, while providing a review of PLS-SEM use in

Hair, Hollingsworth, Randolph, & Chong Updated and expanded assessment of PLS-SEM use in information systems research, while

(2017b)

Joreskog & Wold (1982)
SEM.

Kaufmann & Gaeckler (2015)

offering rules of thumb for choosing between CB-SEM and PLS-SEM.
Explanation of methodological similarities and differences between CB-SEM and PLS-

Comparison of CB-SEM and PLS-SEM, while providing a review of PLS-SEM use in

supply chain management research.

Lee, Petter, Fayard, & Robinson (2011)
accounting research.
Lohmoller (1989)
modeling.
Peng and Lai (2012)

Comparison of CB-SEM and PLS-SEM, while providing a review of PLS-SEM use in
Discusses the efficacy of CB-SEM and PLS-SEM for structural versus predictive

Comparison of CB-SEM and PLS-SEM, while providing a review of PLS-SEM use in

operations management research.

Richter, Sinkovics, Ringle, & Schligel

Review of CB-SEM and PLS-SEM use in international business research.
Contrasts the underlying assumptions of CB-SEM and PLS-SEM with regard to the nature

Introduction of PLS-SEM for family business researchers, while offering a brief

(2016)

Sarstedt, Hair, Ringle, Thiele, &

Gudergan (2016) of the measurement models and the data.
Sarstedt, Ringle, Smith, Reams, & Hair

(2014) comparison with CB-SEM.

Scholderer & Balderjahn (2005)

Discusses methodological differences between CB-SEM and PLS-SEM along with popular

misconceptions regarding the methods’ use. Provides recommendations for SEM use.

Scholderer & Balderjahn (2006)

A similar focus as in Scholderer and Balderjahn (2005) but with a much stronger focus on

the statistical conceptions underlying the SEM types.

Willaby, Costa, Burns, MacCann, &
Roberts (2015)

Introduction of PLS-SEM for testing complex models in psychology, including a
comparison with CB-SEM.

Tab. 1: Conceptual Comparisons of CB-SEM and PLS-SEM

tions of a complex reality: both their strength and their
weakness lie in simplification, which involves error.

In these difficult straits, researchers naturally look for as-
surance, and one logical approach is to seek similarity in
results from different methods. If a researcher is not sure
which of several methods to use, then using multiple
methods and achieving similar results seems to offer as-
surance that, at the least, the choice of method carries no
substantial consequences. Obtaining different results,
however, may suggest that one method is “correct” and
the others are “wrong,” or at least that conclusions are
method-dependent.

Structural equation modeling (SEM), almost from its
very beginning, has been divided between covariance-
based SEM (CB-SEM; Joreskog, 1967; Joreskog, 1969,
1971) and composite-based SEM (Tenenhaus, Esposito
Vinzi, Chatelin, & Lauro, 2005; Wold, 1974, 1982). One
of the first composite-based approaches, partial least
squares SEM (PLS-SEM), was conceived as an alternate

means for accomplishing the same goal as the CB-SEM
approach, with advantages in some instances, but with
disadvantages in situations where the necessary condi-
tions supporting the optimal properties of the CB-SEM
approach could be expected to hold (e.g., Chin, 1998;
Hair, Ringle, & Sarstedt, 2011; Joreskog & Wold, 1982).
Numerous studies have reviewed the concrete conditions
that favor the use of either method, focusing on aspects
such as their efficacy for estimating reflectively vs. for-
matively specified measurement models, distributional
assumptions, and sample size requirements (Table 1).
Rather than trust that these conditions hold in a particular
instance, researchers typically compare results from PLS-
SEM and other composite-based SEM methods such as
generalized structured component analysis (GSCA;
Hwang, 2009), or even regressions based on sum scores
(e.g., Goodhue, Lewis, & Thompson 2012) with those
from CB-SEM on the grounds of simulated data — Table 2
offers an overview of prior simulation studies comparing
CB-SEM, PLS-SEM, and related estimators.
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Model Estimation
Methods

Key Findings

Publication Data
Generation

Dijkstra & Henseler Factor
(2015b) model
Goodhue, Lewis, & Factor
Thompson (2012)  model
Hwang, Malhotra,  Factor
Kim, Tomiuk, & model
Hong (2010)

Lu, Kwan, Thomas, Factor

& Cedzynski (2011) model

Factor
model

Reinartz, Haenlein,
& Henseler (2009)

CB-SEM including the
ML, GLS, WLS, DWLS,
and ULS approaches, as
well as PLS-SEM, PLSc,
and OLS regression with
sum scores

ML-based CB-SEM,
PLS-SEM, and OLS
regression with

sum scores

ML-based CB-SEM,
PLS-SEM, and GSCA

CB-SEM including the
Croon, Skrondal-Laake,
and ML approaches, as
well as PLS-SEM

ML-based CB-SEM and
PLS-SEM

The GLS and WLS (CB-SEM) methods exhibit non-convergence issue
in certain situations. PLS-SEM and regression with sum scores provide
less accurate estimates, while PLSc and especially the ML (CB-SEM)
methods provide consistent outcomes. Inconsistent estimates entail
Type I and Type II errors.

Both PLS-SEM and regression with sum scores are less accurate than
CB-SEM. PLS-SEM performs at equal levels compared with the other
techniques in terms of statistical power and avoidance of false
positives. These findings also hold for small sample sizes.

When the model is correctly specified, CB-SEM tends to better recover
the parameters than PLS-SEM and GSCA (i.e., CB-SEM has a higher
accuracy).

The CB-SEM estimates converge to the pre-specified parameter value
as the sample size increases (i.e., the estimates have a low relative bias
and are consistent). PLS-SEM estimates are not consistent and show
higher variability in coverage (i.e., an increase of statistical power
when the sample size increases); this variability declines with more
indicators per measurement models and higher outer loadings. For
small sample sizes, PLS-SEM has the highest statistical power.

If the sample size is large (e.g., more than 250 observations), CB-
SEM has higher parameter accuracy and consistency than PLS-SEM.
When the sample size is small, in comparison with CB-SEM, PLS-

SEM has always larger or equal statistical power.

Sarstedt et al. (2016) Composite
model /
factor model

ML-based CB-SEM,
PLS-SEM, and PLSc

PLS-SEM shows (almost) no bias when estimating data from a
composite model population. In contrast, CBSEM and PLSc
estimations show severe biases. When estimating data from common

factor populations with more than 250 observations, CB-SEM's and
PLSc’s bias is small and diminishes with more data. PLS-SEM
returns to some extent biased results. For small sample sizes, in
comparison with CB-SEM and PLSc, this bias of PLS-SEM is
relatively low,

Note: DWLS = diagonally weighted least squares, GLS = generalized least squares, GSCA = generalized structured component
analysis, ML = maximum likelihood, OLS = ordinary least squares, PLS-SEM = partial least squares structural equation modeling,
PLSc = consistent partial least squares structural equation modeling, ULS = unweighted least squares, WLS = weighted least squares.

Tab. 2: Simulation Studies Comparing Parameter Recovery Capabilities of CB-SEM and PLS-SEM’

These studies sparked an at times heated debate among
scholars, particularly about the merits of the PLS-SEM
method, which resulted in the formation of two opposing
camps. One group of scholars, supportive of the (com-
posite-based) PLS-SEM method, has emphasized the
method’s prediction-orientation and capabilities to han-
dle complex models, small sample sizes, and formatively
specified constructs (e.g., Chin, 2010; Hair et al., 2011;
Joreskog & Wold, 1982). The other group has noted that
PLS-SEM is not a (factor-based) latent variable method,
producing biased and inconsistent parameter estimates
(e.g., Ronkko, Antonakis, McIntosh, & Edwards, 2016;
Ronkko & Evermann, 2013; Ronkko, McIntosh, & Anto-
nakis, 2015). Naturally, such debates and particularly
forceful rejections of one method such as “there is no use
for PLS whatsoever” (Antonakis, Bendahan, Jacquart, &
Lalive, 2010, p. 1103) or researchers should “discontinue
the use of PLS” (Ronkkd et al., 2016, p. 24) might upset
researchers, particularly PhD students. If PLS-SEM pro-

! Other simulation studies that compare CB-SEM and PLS-SEM
address topics such as model fit (Dijkstra & Henseler, 2015a) and
the methods’ capabilities for multigroup analysis (Qureshi &
Compeau, 2009), and prediction (Evermann & Tate, 2016).
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duces “wrong” results whereas CB-SEM produces “cor-
rect” results, why would anyone ever support the use of
PLS-SEM?

But should researchers expect results from CB-SEM and
PLS-SEM to agree, if the structure of the two models be-
ing estimated is otherwise the same? This question is sta-
tistical at its core, but it also goes beyond statistics, ad-
dressing the role of the model in the research enterprise.
As we will argue in this manuscript, there is no univocal
answer to this question. As the dominance of empiricism
in philosophy of science circles has given way to realist
perspectives, so have views changed regarding the nature
of the conceptual variables and constructs that populate
theoretical and statistical models in the social sciences —
see, for example, Bollen (1989) and Bollen and Diaman-
topoulos (2017).

In this manuscript, we highlight five different perspec-
tives on comparing results from CB-SEM and PLS-
SEM. These perspectives imply that the universal rejec-
tion of one method over the other is shortsighted as such
a step necessarily rests on assumptions about unknown
entities in a model and the parameter estimation. We ar-
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gue that researchers’ functional background and adher-
ence to a specific position in philosophy of science con-
tribute to the confusion over which method is “right” and
which one is “wrong.” Based on our descriptions, we of-
fer five recommendations that share a common theme:
Any empirical comparison of results from CB-SEM and
PLS-SEM - despite considerable research interest (Table
2) — is misguided, capable of providing both false confi-
dence and false concern. Instead of seeking confidence in
the comparison of results from the different approaches,
researchers should instead focus on more fundamental as-
pects of modeling, measurement, and statistical analysis.

Five perspectives

Preamble

The following five perspectives have in common that
they abstract away from the concrete differences be-
tween the model estimates under specific conditions as
typically researched in simulation studies. Instead, they
address the underlying philosophical, theoretical, and
conceptual aspects of model building and estimation to
provide practical recommendations for researchers in
marketing and other disciplines. We identified these five
perspectives to generically systematize the broad scope
of relevant issues underlying SEM. Discussing them in
the proposed order does not impose a hierarchy but sup-
ports the flow of argument — all perspectives have the
same raison d’étre.

Perspective #1: Different Estimators

From one perspective, CB-SEM and PLS-SEM should
yield the same results, because they are viewed as two
methods intended to accomplish the same statistical end:
estimating a series of structural equations that (1) repre-
sent causal processes, and (2) can be modeled pictorially
to enable a clear conceptualization of the theory under
study (Byrne, 1998). With exploratory techniques,
whether factor analysis or principal components analy-
sis, the end was data reduction — reducing the dimension-
ality of the data (e.g., Velicer & Jackson, 1990; Wida-
man, 1993). On this basis, Velicer and Jackson (1990, p.
22) argued that results from factor analysis and principal
components analysis were generally comparable and that
“there is no basis to assume that either method is more
accurate.” The confirmatory thrust which really launched
SEM can be traced to Spearman’s (1904) works on gen-
eral intelligence and his insistence that the common fac-
tor derived in his true score model was nothing less than
general intelligence itself. The true score was the lone
systematic cause of variation across multiple observed
variables — and, Spearman (1904) alleged, across almost
any valid test of any ability whatsoever.

Factor analysis achieved a purification, boiling away the
unwanted elements within the observed variables, leaving
only items with high correlations to represent the underly-
ing unobserved entity. Spearman’s (1904) theory of a sin-

gle general cause gave way to models with multiple corre-
lated attributes or conceptual variables. Still, factor analy-
sis, along with econometric and path models, inspired
Joreskog’s (1969) work devising an inferential test for an
a priori factor model with structured relations. And Her-
man Wold, Joreskog’s “Doktorvater”, the originator of
PLS-SEM (Wold, 1966, 1974), in turn, was inspired to
find least squares approaches for doing the same thing
(Dijkstra, 2014), in a technology environment where
computing time was in short supply. This composite-
based method was invented with the explicit intent of ap-
proximating results from Joreskog’s (1969) maximum
likelihood confirmatory factor analysis. So naturally re-
searchers have evaluated the quality of an approximation
against the standard being approximated, starting with the
early works of Areskoug (1982), Joreskog and Wold
(1982), and Lohmoller (1989), and continuing with
numerous simulation studies contrasting CB-SEM and
PLS-SEM (Table 2).

If PLS-SEM is an approximation of the CB-SEM ap-
proach, then researchers have a right to expect that its re-
sults will closely adhere to those produced by CB-SEM.
If not, then the approximation is deficient and should be
discarded. This, indeed, is the line taken by authors who
have been especially critical of PLS-SEM, noting that its
“path estimates are biased” (Westland, 2015, p. 37) or
that PLS-SEM entails “biased and inconsistent estima-
tion” (Ronkko et al., 2016, p. 14). Calling for the aban-
donment of PLS-SEM seems to be the logical conse-
quence. Potential doubts of such a strong call bring us to
the second perspective.

Perspective #2: Different Models

From a second perspective, one should not expect the
same results from CB-SEM and PLS-SEM, because the
statistical models are not equivalent. Even though Her-
man Wold adopted the verbal and even the graphical rep-
resentations of factor analysis for his composite-based
alternative, and embraced the goal of producing similar
results (Joreskog & Wold, 1982), he never claimed that
his method was a form of factor analysis, even when sug-
gesting that PLS-SEM is “deliberately approximate” to
CB-SEM (Hui & Wold, 1982, p. 127).

CB-SEM and PLS-SEM employ different statistical mod-
els (Joreskog & Wold, 1982), which assume fundamental-
ly different measurement philosophies (Sarstedt et al.,
2016). CB-SEM models the constructs as common factors
that explain the covariation between their associated indi-
cators. The scores of these common factors are neither
known nor needed in the estimation of model parameters.
That is, common factors can generally not be expressed
solely as a function of the data in the model — a part of the
common factor remains an arbitrary quantity, subject to
rules but capable of taking on an infinite range of values
(e.g., Mulaik & McDonald, 1978; Schonemann & Wang,
1972; Steiger, 1979). In fact, only under very special con-
ditions do factors become determinate (Krijnen, Dijkstra,
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& Gill, 1998). Composites in PLS-SEM, by contrast, are
determinate functions of the other variables in the
model.> A determinate function does not mean just pre-
dicted by but rather implies that the composite is by defi-
nition equal to a (usually) weighted sum of a specific
subset of the model’s manifest variables. This means
that, given a set of parameter estimates and a new case or
set of values for the observed variables, or even a what-if
involving a hypothetical set of values, a researcher — or
an auditor following a researcher’s trail — can calculate
the implications of those observed values for the depen-
dent variables in the model (Shmueli, Ray, Velasquez
Estrada, & Chatla, 2016). Such a clear audit trail does
not exist for indeterminate factors.

Using the composites as input, PLS-SEM applies a series
of regressions with the objective of maximizing the ex-
plained variance of the endogenous construct(s). As with
predictor variables in a regression, however, covariances
among the manifest variables in PLS-SEM and other
composite-based method are generally unconstrained.
Even in variations, like Mode A estimation in PLS-SEM,
where standard treatments depict the observed variables
as dependent on the composite, there is no constraint on
the residuals for those observed variables (e.g., Tenen-
haus, 2008; Tenenhaus et al., 2005). By contrast, CB-
SEM is not possible with fully unconstrained residuals,
because the model will quickly have negative degrees of
freedom (Hoyle, 2014). Wold (1985, p. 584) suggested
that PLS-SEM users should check the assumption of un-
correlated residuals as “a partial test of the realism of the
model.” However, there is no compelling reason to do so
as PLS-SEM and composite-based methods in general do
not logically imply that assumption (e.g., Gefen et al.,
2011). Hence, while CB-SEM and PLS-SEM may draw
on the same theoretical model, the statistical models as-
sumed by the methods differ fundamentally due to the
methods’ differing assumptions, requirements, and im-
posed constraints (McDonald, 1996; Sarstedt et al.,
2016; Tenenhaus, 2008).

In light of the differences in the methods’ statistical mod-
els, Marcoulides, Chin, and Saunders (2012) referred to
any contrasting of CB-SEM and PLS-SEM as “compar-
ing apples with oranges” (p. 725), a concern that has been
voiced by many other authors in similar form (e.g.,
Hwang et al., 2010; Lohmoller, 1989; Schneeweilf,
1991). Responding to this criticism, researchers have re-
cently started evaluating the performance of methods
such as PLS-SEM and GSCA using composite model da-
ta (e.g., Becker, Rai, & Rigdon, 2013; Hair, Hult, Ringle,
Sarstedt, & Thiele, 2017d). These studies show that PLS-
SEM and GSCA are consistent estimators when the un-

% Note that factor models and composite models are not equivalent
to reflective and composite indicators. While the model types indi-
cate whether indicator covariances (factor model) or linear combi-
nations of indicators (composite model) define the nature of the
data (Sarstedt et al., 2016), the indicator type refers to the theoreti-
cal specification of the measurement models based on measure-
ment theory (Bollen, 2011).
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derlying population is composite model-based, contra-
dicting prior research that assumed factor model-based
populations, where these methods have been shown to
slightly overestimate measurement model parameters and
underestimate structural model parameters (Table 2).* Re-
latedly, Sarstedt et al. (2016) recently showed that CB-
SEM’s parameter bias can be substantial when (errone-
ously) used on data from composite model populations.
Jointly, these results empirically substantiate that the two
approaches to SEM are neither the same nor interchange-
able, though transformations have been found to turn ca-
nonical correlation results into maximum likelihood esti-
mates for the inter-battery factor model (Browne, 1979;
Tucker, 1958), or to transform PLS-SEM parameter esti-
mates into consistent estimates of factor model parame-
ters (Dijkstra & Henseler, 2015b).

Perspective #3: Same Phenomena

From a third perspective, researchers should expect simi-
lar results from CB-SEM and PLS-SEM, because both
methods are tapping the same real-world phenomena —
unobservable conceptual variables like quality, customer
satisfaction, and loyalty in marketing. Here, though, dif-
fering approaches to philosophy of science provide dif-
ferent views of what “real-world phenomena” means, in
an SEM context. Of course, broad approaches to philoso-
phy of science, even individual approaches, are far from
monolithic, more like movements than individual posi-
tions, offering a range of variation even within a single
general position. Still, philosophy of science has experi-
enced substantial change over the years, being succes-
sively dominated by forms of idealism, empiricism, and
realism, with important implications for SEM.

The classical idealist position rejected the notion of any
knowable reality outside the mind (Hunt, 1991). Such a
reality might exist, but there was no way to prove it. The
mind is all there is, and notions like “customer satisfac-
tion” are purely mental constructions. In reaction, empir-
icism insisted that the mind was not competent to define
reality (Hunt, 1991). Science, it argued, was constrained
by data, limited only to that which could be systematical-
ly observed. So “customer satisfaction,” for example,
must be defined in terms of data, a function of observed
variables. Operationalism, an extreme form of empiri-
cism, explicitly defined every variable in terms of specif-
ic data gathering operations, and denied existence to any-
thing, including central psychological variables like in-
telligence, beyond that specific set of operations (Chang,
2009). Realism, by contrast, argues that a mind-indepen-
dent world exists, and that science can achieve under-
standing about that world, even about conceptual vari-
ables like “customer satisfaction,” which cannot be di-

* In fact, PLS-SEM pioneers claimed only that estimates based on
factor model data were “consistent at large,” meaning that they
correspond to those produced by factor-based SEM when sample
size and number of measurement indicators are infinite, provided
that the data stem from a factor model population (Hui & Wold,
1982).
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rectly observed (Chakravartty, 2007; Haig & Evers,
2016). For the realist, the conceptual variable exists inde-
pendent of observation and transcends data — though re-
search on unobservable entities is fraught with chal-
lenges when it comes to validating inferences.

But if both CB-SEM and PLS-SEM are tapping the same
phenomena, what phenomena are those? For the true em-
piricist, data are the object of study and the only legiti-
mate subject matter of science. A term like “customer
satisfaction” must refer to a function of data. When Wold
(1975), for example, described his “Nonlinear Iterative
Partial Least Squares” method, a precursor to PLS-SEM,
he wrote about the composites in his model serving as
proxies for the group of observed variables that formed
each composite. Similarly, an empiricist using CB-SEM
might define “customer satisfaction” as the common fac-
tor derived from a set of indicators. Consistent with his
empiricist orientation, Spearman (1904) had no problem
equating general intelligence itself with his statistical
rendering of it. Empiricism continued to dominate phi-
losophy of science in the social sciences throughout the
period when SEM was emerging, and it has had a pro-
found impact on thinking in the field, as it has on statisti-
cal education generally.

The tight linkage between modern psychometrics and
CB-SEM depends upon an empiricist identification of
the common factor with the conceptual variable. If the
common factor extracted from a set of observed vari-
ables is, in fact, identical with the conceptual variable
that a researcher seeks to study, then one can assess the
construct validity by examining the strength of the rela-
tionship between factor and indicators (i.e., the loadings;
Homburg & Giering, 1997). The disturbances of the indi-
vidual items — the part of each indicator not associated
with the factor — are then “measurement errors.” Con-
struct validity can be assessed purely as a function of
model parameters. There is no need to ask whether a fac-
tor labeled “customer satisfaction” actually behaves like
the conceptual variable “customer satisfaction,” because
the factor and the conceptual variable by definition are
the same thing. Empiricists using PLS-SEM would grant
the same status to their composites.

By contrast, the realist will recognize “‘customer satisfac-
tion” as being an actual attribute of persons, a real fea-
ture of the world beyond the laboratory, which is cap-
tured imperfectly by statistical analysis. Both the factors
in CB-SEM and the composites in PLS-SEM are proxies
for the conceptual variables themselves. Inferences
based on the use of proxy variables must face additional
scrutiny, because invalid proxies will invalidate infer-
ences based upon them. A realist cannot test construct
validity purely within the confines of a statistical model,
because the realist cannot assume that proxy and concep-
tual variable are identical. A realist’s proxies refer to ac-
tual entities external to the statistical model, and so evi-
dence for construct validity must also refer to those enti-
ties, comparing the behavior of each proxy to what is

known or believed about the actual psychological attri-
bute. The disturbances in a factor model are not “mea-
surement errors,” but only disturbances, so their absence
in PLS-SEM never meant that PLS-SEM “does not com-
pensate for measurement error” (Goodhue et al. 2012, p.
981; see also Ronkkod 2014). Instead, “measurement er-
ror” is better taken to describe the gap between proxy
and conceptual variable, whether a researcher uses both
CB-SEM and PLS-SEM. Still, for the realist, both ap-
proaches to SEM are attempts to study precisely the
same thing, and so, in a perfect world, the different ap-
proaches absolutely must agree, or else there is a signifi-
cant validity issue — though that agreement need not
mean that either method’s results are “correct.”

Perspective #4: Imperfect World

Yet, researchers must acknowledge the practical prob-
lems that come with applying statistical methods in actu-
al research situations. From this fourth perspective, re-
searchers should not expect similar results from CB-
SEM and PLS-SEM because, even though they ultimate-
ly address the same phenomena, the methods are typical-
ly applied in suboptimal situations, where different ap-
proaches fall short for different reasons. Within the realm
of CB-SEM, for example, maximum likelihood estima-
tion and generalized least squares estimation are asymp-
totically equivalent when assumptions hold, but equiva-
lence fails when assumptions are violated (Bollen, 1989).
In this regard, the only reality is the statistical reality.
There is no need for an external reality. One can fabricate
data under suboptimal conditions and observe predict-
able discrepancies between estimation methods (Hense-
ler, Dijkstra, Sarstedt, Ringle, Diamantopoulos, Straub,
Ketchen, Hair, Hult, & Calantone, 2014).

Recent research has witnessed such approaches where
researchers have used highly stylized model constella-
tions to demonstrate limitations of the PLS-SEM meth-
od, which improve our understanding of the method’s
performance. However, constellations such as Ronkko
and Evermann’s (2013) two-construct model with a zero
relationship depict boundary conditions that have very
little resemblance with real-world settings, offering no
grounds for abandoning the use of this or any other SEM
method. Or as Henseler et al. (2014, p. 202) note: “For
all methods, no matter how impressive their pedigree
(maximum likelihood being no exception), one can find
situations where they do not work as advertised. One can
always construct a setup where a given method, any
method, ‘fails’.”

From a realist perspective, however, there is an external
reality, and researchers want to see results from CB-SEM
and PLS-SEM converging upon that reality. But these
methods are often applied in conditions that undermine
the ability of their factors or composites to faithfully and
efficiently represent the conceptual variables that popu-
late theoretical models. Primary problems include (1)
low sample size, (2) few indicators, and (3) ex post mod-
ification.
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Small sample size

SEM methods are often applied to data sets that are too
small. Particularly the PLS-SEM literature has long sug-
gested that the method can be applied when sample size
is very small. This tradition carries back at least to Wold
(1982), who argued that PLS-SEM “worked” even when
sample size was less than the number of observed vari-
ables. PLS-SEM retains its basic functionality in such
conditions because the method does not estimate all
model parameters simultaneously. Instead, as its name
implies, it only estimates partial model structures, one
equation at a time (e.g., Tenenhaus et al., 2005). There-
fore, minimum sample size requirements to produce
model estimates depend on the complexity of single
equations, which usually is substantially less than the
complexity of the overall model. Furthermore, PLS-
SEM’s reliance on bootstrapping for standard errors also
helps to preserve basic functionality at low sample sizes.
For years, the “ten times rule” has provided an informal
standard (e.g., Chin, 1998; Hair et al., 2011) according to
which the minimum sample size must be ten times the
largest number of predictors in any equation in the sys-
tem being estimated — regardless of the size of the system
overall. Numerous studies have called the legitimacy of
the ten times rule into question (e.g., Goodhue et al.,
2012; Kock & Hadaya, 2017; Ronkké & Evermann,
2013), including two that used composite model data in
their analyses. Specifically, Becker et al. (2013) demon-
strated that, when sample size is small, PLS-SEM per-
forms poorly in terms of out-of-sample prediction (i.e.,
the ability to take parameter estimates, calculated from a
sample, and make predictions about the larger popula-
tion). More recently, Hair et al. (2017d) found that PLS-
SEM produces substantially biased parameter estimates
in the measurement models when sample size is small.
These results suggest that caution needs to be exercised
when interpreting PLS-SEM results on an item level
since the biases produced in this situation potentially cast
doubt on any prioritization on the grounds of indicator
weights. However, Hair et al. (2017d) also found that
PLS-SEM’s performance in the structural model where
the relative deviations for small sample sizes are compa-
rable to those produced by CB-SEM for sample sizes of
250 to 500 when estimating factor model-based data
(Reinartz et al., 2009).

Compared to PLS-SEM, small sample sizes are much
more of an issue for CB-SEM, which typically produces
inadmissible solutions unless several hundred observa-
tions are available. Maximum likelihood’s sample size
demands were a primary motivator for Wold’s develop-
ing his least squares alternative (Joreskog & Wold,
1982), but from a realist perspective, both approaches to
SEM are large sample methods (Rigdon, 2016). Of
course, the sample size requirements can vary even with-
in the same statistical method, depending on the specific
criteria that are most important to researchers, as Max-
well (2000), for example, describes in connection with
regression. Nevertheless, one clear conclusion from Be-
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cker et al.’s (2013) simulations is that, in the absence of a
large sample size, researchers who judge their results
against criteria like out-of-sample prediction will do as
well or better to simply sum their multiple indicators into
unit-weight composites. Similarly, Hair et al. (2017d)
have shown that unit-weight composites outperform in-
dicator-weighting methods such as PLS-SEM in terms of
bias and consistency when sample size is small and mea-
surement models have many indicators. In this situation,
the bias in indicator weights due to sampling variability
is higher than the bias resulting from the assignment of
equal weights. With many indicators per measurement
model, the average weights decrease, which amplifies
this effect.

Few indicators

Besides the use of small samples, the performance of
SEM methods is also hampered by the use of too few ob-
served variables per factor/composite. The mechanism
underlying the effect of using few indicators is different
for CB-SEM and PLS-SEM. With composites as used in
PLS-SEM, the relationship is more straightforward, a
function of random variance. Let C be a composite of p
weighted variables x, (i=1,...p), i.e.,

P
C=i§,wixi, (1)

where the w;s are the multiplier weights for multiplying
each respective variable before adding it to the compos-
ite. Then, the variance of the composite C is given by

p i-1

»
o= 21 w,0; + 2; Z;, WW; 0, (2)
p =
where o7 is the variance of x, and o, (=ltop,j=1toi,
i#j) the covariance between different indicators x; and X;
(Mulaik, 2010, equation 3.21, p. 83). That is, the vari-
ance of a sum is equal to the sum of the components’ var-
iances plus twice the sum of their covariances, each ad-
justed by the weights. Random variance is orthogonal, so
it plays no part in the covariances. Thus, a composite can
be expected to have less random variance than its com-
ponents — much less as the number of independent com-
ponents increases. So the composite will be more reliable
and, thus, more strongly associated with any criterion,
such as the real-world phenomenon that the composite
represents in the statistical model (Henseler et al., 2014;
Rigdon, 2012).

With CB-SEM, the relation between method perfor-
mance and number of indicators is more indirect, operat-
ing through factor indeterminacy (Grice, 2001), which
declines as the number of indicators per factor and the
strength of their relations with the factors increase (Gutt-
man, 1955) — the strength of relations between factors
and indicators is itself a function of the degree of random
variance in the observed variables (when the factor mod-
el holds; also see Guttman, 1958). For the realist who
takes an actual real-world phenomenon to be the ultimate
criterion of validity, factor indeterminacy has an impor-
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tant consequence. While the indeterminacy of a common
factor does not affect parameter estimates within the
same factor model, it does limit the correlation between
the indeterminate common factor and any other variable
outside the given factor model (Steiger, 1979). This is
important because the real-world phenomenon (e.g., the
actual customer satisfaction) is itself outside the factor
model — if it could be included within the model, there
would be no need for a proxy of any kind. To summarize,
the validity of measurement produced by CB-SEM and
PLS-SEM is likely to be limited when researchers use
few indicators in the measurement models.

Ex post modification

The ex post model modification that has become an inte-
gral element of practically every SEM study (Bagozzi &
Yi, 2012; Hair, Babin, & Krey, 2017a; Hair, Hult, Ringle,
& Sarstedt, 2017c; Rigdon, 2013) widens the gap be-
tween the two methods. Now, if users were aware of the
real-world criterion, and could match their work-in-pro-
gress against that criterion, then CB-SEM and PLS-SEM
might be observed to converge over the course of a re-
search program, both approaching a better match to the
criterion. Instead, researchers are invited to optimize on
purely statistical criteria that, at best, are indifferent to
outside matters like the real world. For CB-SEM users,
the relevant standards are the ¥ statistic or alternative fit
indices (e.g., Bagozzi & Yi, 2012). For users of PLS-
SEM methods, typical standards are the structural model
R?, the statistical significance of parameter estimates
(e.g., Hair, Sarstedt, Pieper, & Ringle, 2012a; Hair, et al.,
2012b; Ringle, Sarstedt, & Straub, 2012), and, more re-
cently, the model’s out-of-sample predictive power
(Shmueli et al., 2016). In either event, these statistical
standards often drive researchers into modifying their
models in various ways, adding or deleting parameters
and, often enough, discarding indicators or entire con-
structs (e.g., Cliff, 1983; Sarstedt, Ringle, Henseler, &
Hair, 2014). The movement to satisfy distinct statistical
criteria seems likely to drive apart CB-SEM results from
PLS-SEM results. In regard to the external criterion of an
actual real-world phenomenon, deleting indicators or
constructs tends to increase the influence of factor inde-
terminacy or random variance, weakening the relation-
ship with the external criterion (Diamantopoulos, Sars-
tedt, Fuchs, Wilczynski, & Kaiser, 2012).

More generally, it is implausible that ex post modifica-
tions intended to improve purely internal statistical crite-
ria will at the same time drive results to converge upon
any external criterion. Fit indices only aim at affirming
attributes of the statistical model, not at affirming identi-
ty of the conceptual variables or their behavior.

Perspective #5: The Long View

The fifth and final perspective is that CB-SEM and PLS-
SEM methods should converge on the same answers
about relations between unobserved conceptual variables

if both types of methods are applied under favorable con-
ditions. The latter may include large samples, many indi-
cators per measurement model, all closely tied to the
phenomena under study, and a commitment across a cu-
mulative research program to develop measures that
faithfully represent particular conceptual variables. Un-
der those conditions, it must be true that multiple ap-
proaches lead to the same conclusions, or else there is no
ground for inferring validity.

Researchers, however, must address the real-world phe-
nomena under study, and the real-world consequences
that follow. Hence, they need to maintain a focus on the
intended outcome rather than focusing strictly on mere
statistical byproducts of a certain method. In fact, applied
researchers often are not interested in exact coefficient
values and precise significances but rather in finding sa-
lient relationships that warrant managerial attention.
Simple graphical inspections of the data often suffice for
qualitatively interpreting outcomes and substantiating a
priori expectations. Statistical methods that quantify
these outcomes may be taken to provide additional assur-
ance but may also convey a spurious accuracy, given that
the exact results reported depend on the many idiosyn-
crasies of the data, definitions, and measurement opera-
tionalizations.

Only repeated examinations of a certain phenomenon
provide confidence for the prevalence of some effect
(Begley & loannidis, 2015; Jasny, Chin, Chong, & Vig-
nieri, 2011; Open_Science_Collaboration & Kappes,
2014). From this view, differences between CB-SEM
and PLS-SEM, which typically occur at the second deci-
mal place when the data stem from a factor model popu-
lation (e.g., Reinartz et al., 2009; Sarstedt et al., 2016),
are of little relevance.

Five recommendations

In most papers like this one, the ‘“Recommendations”
section, following the back-and-forth at the heart of the
paper, amounts to a choice of one method or the other.
However, as our prior discussions have shown, there is
not the single best option as the choice of a method de-
pends on the explicit or implicit assumptions a researcher
makes regarding the phenomena under study and our
ability to measure them comprehensively. Researchers in
psychometrics will likely view the factor model as the
standard of comparison and reject any effort to represent
unobservable phenomena with composite variables as an
“indicator weighting cannot meaningfully reduce the ef-
fect of measurement error in the composites” (Ronkko et
al., 2016, p. 12). Researchers in econometrics, however,
will likely subscribe to the proxy nature of measurement,
as their field has long dealt with issues related to the use
of a proxy when a variable specified in a theoretical
model was unobservable and thus unavailable for statisti-
cal model estimation (e.g., Wickens, 1972). Yet others
may acknowledge the practical problems when applying
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statistical methods, which limit their ability to fully im-
plement their research program. For example, research-
ers wishing to estimate very complex models quickly
reach limits when using CB-SEM, which might motivate
them to subscribe to a more pragmatic view about mea-
suring the phenomena of interest.

Following Yule (1921), we believe that the choice be-
tween CB-SEM and PLS-SEM may be of secondary im-
portance compared to the many research design choices
that researchers face when attempting to learn about the
behavior of unobserved conceptual variables. It is all too
easy to be distracted by purely statistical concerns, and to
fall into a sort of ritualistic behavior (Gigerenzer, 2004),
engaging in the “cargo cult science” warned against by
Feynman (1974). Cookbook, mechanistic approaches to
research seem perennially popular. SEM’s affection for
overall fit indices and “cut-off values” are all part of a
grand ritual aimed at gaining publication, but which may
have nothing to do with learning about any real-world
phenomenon (Cliff, 1983). Studies that dramatize differ-
ences in the methods (Ronkko et al., 2016; Ronkko &
Evermann, 2013), thereby inflating the relevance of
method choice, have contributed to this development.
That is our first recommendation: Focus on the actual
phenomenon you are supposedly studying, and don’t let
the modeling get in the way of the learning.

The second recommendation, also inspired by Yule
(1921), is to put the other design aspects of research back
on the table. Researchers can wreck a project well before
the statistical analysis, but in research reports employing
SEM, too often the data seem to be taken as given, as if
handed down on tablets. Of course, researchers may dis-
card individual cases or whole observed variables in the
course of their statistical analysis, but that is as an alter-
native to critiquing the source of the data, and perhaps
acknowledging that the data are entirely unsuitable for
the purpose. As Sir Ronald Fisher (1938, p. 17) noted:

“Immensely laborious calculations on inferior data may
increase the yield [of the information contained in the da-
ta] from 95 to 100 per cent. A gain of 5 per cent, of per-
haps a small total. A competent overhauling of the pro-
cess of collection, or of the experimental design, may of-
ten increase the yield ten or twelve fold, for the same
cost in time and labor. To consult the statistician after the
experiment is finished is often merely to ask him to con-
duct a post mortem examination. He can perhaps say
what the experiment died of.”

As researchers have warned before, design fundamentals
are sometimes forgotten when employing high-powered
statistical tools (e.g., Cliff, 1983; de Leeuw, 1985). Dif-
ferent aspects of the research process contribute differ-
ently to the process’ ultimate success. Some research de-
sign choices such as questionnaire design contribute to
putting information into the data, while others, like the
choice of statistical method, contribute to extracting the
information from the data. Different statistical methods
may have marginal advantages in extracting information,
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under different conditions, but no statistical method can
find information that is not there. Hence, we recommend
that researchers should more strongly focus on building
data sets that can credibly lead to insight.

Our third recommendation is that researchers use a tech-
nique that is consistent with the type of model that they
intend to estimate — in other words, that they correctly
estimate their chosen model. There has been a tendency
in the literature to treat CB-SEM and PLS-SEM as if
they were estimating the same model. They are not. Re-
searchers who intend to estimate a factor model should
use CB-SEM, while researchers intending to estimate a
model of composites should use a composite-based
method like PLS-SEM, GSCA, or another in that class
(e.g., Dijkstra & Henseler, 2011; Tenenhaus & Tenen-
haus, 2011). Researchers who wish to estimate a model
that includes a mix of factors and composites face limit-
ed choices, the one possibility currently being Dijkstra
and Henseler’s (2015a, 2015b) consistent PLS method,
which involves estimating a composite model and then
converting (some) parameter estimates to those consis-
tent with a factor model.

It is not always easy to have clarity on this seemingly
straightforward matter, because these methods are often
described with unclear language. Researchers refer to
“constructs” or “latent variables” (Michell, 2013) rather
than referring to either common factors or composites.
“Latent variables” are a feature of conceptual or theoreti-
cal models, not statistical models. Different statistical
packages can estimate either factor models or composite
models, with consistent PLS having some ability to
bridge the gap, and researchers should use a package that
can estimate the model in which the researcher is inter-
ested.

But this leaves a central question — perhaps the most cen-
tral question for the journal’s special issue — still unan-
swered: which type of model should researchers intend
to estimate? This question must be answered within a
specific context. Obviously, if a researcher knows the da-
ta generating process, then they should use that same
model. Unfortunately, we only know this in situations
where data are fabricated, as in simulation studies. In the
normal course of applied research, collected data are the
result of an unknown (and probably messy) process, neu-
tralizing any argument about matching the model to the
process. Still, researchers may be participating in an es-
tablished research program. Ideally, a research program
progressing incrementally will yield lessons about which
approach produces the best proxies — proxies that best
replicate the behavior of the conceptual variables that the
proxies represent. In such a case, of course, we encour-
age researchers to take the fullest advantage of this prior
knowledge.

But then, what about research efforts that are new, and
not part of an ongoing research program? Although no
one would recommend this situation to any novice re-
searcher, it probably occurs regularly. Again, consider
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the situation. The researcher has only a limited grasp of
the conceptual variables themselves, and may have limit-
ed experience with the instrument used to collect the da-
ta. Perhaps the data are already in hand, or perhaps the
data are still to be collected, leaving open the possibility
that the researcher could make adjustments depending on
the analytical method to be chosen.

This, indeed, is a situation for which Wold long ago rec-
ommended PLS-SEM (e.g., Wold, 1974, 1980, 1985)
and which we adhere to in our fourth recommendation.
Instead of fretting about conforming to the constraints of
a factor model, which no one expects to hold exactly,
anyway (e.g., Asparouhov, Muthén, & Morin, 2015; Cu-
deck & Henly, 1991; Joreskog, 1969), in a situation that
is “data-rich and theory-skeletal” (Lohmoller & Wold,
1980, p. 1), PLS-SEM enables the researcher to examine
the data and evaluate many different configurations. This
characteristic is particularly beneficial in big data appli-
cations, which typically focus on prediction, rely on
complex models with little theoretical substantiation
(Stieglitz, Dang-Xuan, Bruns, & Neuberger, 2014), and
often lack a comprehensive support on the grounds of
measurement theory (Rigdon, 2013).

Some purists will object that this sounds like a fishing
expedition, as opposed to the theory-first single line of
inference approach so often described in journal articles
(and so rarely followed in practice). But an exploratory
approach is not in itself deficient. Rather, the problem
lies in pairing exploratory modeling with inferences that
presume a single test of a clearly stated hypothesis. Sta-
tistics designed for the single hypothesis test, like the
typical p-value, are clearly inappropriate in an explorato-
ry environment (Wasserstein & Lazar, 2016). The prod-
ucts of the exploratory effort are not conclusive answers
but rather clues, which may (or may not) point the dili-
gent researcher in a profitable direction.

In recommending PLS-SEM for exploratory settings, we
are not, by way of contrast, recommending the sole reli-
ance on CB-SEM for confirmatory settings, nor are we
endorsing the range of conventional notions of when to
favor one or the other approach as laid out in dozens of
articles (e.g., Hair et al., 2011; Kaufmann & Gaeckler,
2015; Peng & Lai, 2012). As noted previously, the
choice between CB-SEM and PLS-SEM has been over-
emphasized in the methodological literature and is of
secondary importance in a research endeavor. Important-
ly, this notion is not only based on a difference in quality
of results — which is usually marginal in situations com-
monly encountered in applied research (e.g., Henseler et
al., 2014) — but rather on the ease of obtaining results,
which can only be suggestive of potential relationships.
The supporting assumptions and constraints of the CB-
SEM approach are particularly unlikely to hold in an ex-
ploratory context (Asparouhov & Muthén, 2009; Kline,
2016). Hence, the explorer’s time would be better invest-
ed in exploring possibilities, rather than in chasing im-
probabilities.

There is never one unique model that characterizes the
empirical evidence within a theoretical framework. Vari-
ations may offer theoretically justified alternatives for
explaining the phenomenon under study. Therefore, our
fifth recommendation is that researchers should more
routinely explore theoretically justified alternative mod-
els for explaining the phenomenon under study. Model
comparisons are crucial for advancing scientific knowl-
edge, and are imperative to assess the strength of one
theory over another (Canham, Cole, & Lauenroth, 2003).
For example, Popper (1959) argued that comparing alter-
native explanations (or possible causes) is a crucial step
prior to any attempt at the falsification of a theory. Simi-
larly, Platt (1964, p. 350) argued that researchers should
entertain a “conflict between ideas” by devising and
comparing alternative explanations (models) in any giv-
en study. Both CB-SEM and PLS-SEM are well
equipped for such comparisons. In CB-SEM, model
comparisons typically rely on y? difference tests when
models are nested (Anderson & Gerbing, 1988) and
model selection criteria when models are non-nested
(Rust, Lee, & Valente, 1995). The latter set of metrics
can also be used in PLS-SEM. For example, Sharma et
al. (2015) compare the performance of several model se-
lection criteria in choosing the best model in a set of
competing models in a PLS-SEM context.

Conclusion

It is important to underline our first two recommenda-
tions. We believe that quality data lead to quality infer-
ences and that no statistical method turns bad data into
good data. We are also concerned that our limited recom-
mendation of PLS-SEM — which one would easily expect
given our publication track record in the field — will be
misunderstood. Often enough, an author writes (as we
ourselves have done, now and then), “Here is a situation
where you should use method X,” and all that gets quot-
ed is, “...use method X.” In response to the hostility com-
ing from some quarters of the CB-SEM community, it is
all too tempting to return fire and make broad claims for
PLS-SEM. We think it is best to leave such sniping to
thin-skinned politicians and encourage researchers to
consider the entirety of the research process.
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