
Majsa Ammouriova, Juliana Castaneda,
Rafael David Tordecilla and Angel A. Juan

Heuristics to Solve a Team Orienteering Problem

Abstract
Combinatorial optimization problems are challenging, especially in the real
world. Several heuristics could be utilized to solve them. These heuristics
differ in their characteristics and solutions found to the problems. One
example of the real-world problem was the picking and distribution of
face shields at the beginning of the Covid-19 pandemic. Solutions to this
problem were needed every day to arrange their picking and distribution.
This problem was modelled as a team orienteering problem. Accordingly,
heuristics might be used to solve it. These heuristics might be modified to
handle instances of large problems and the stochasticity of different data
input. This chapter presents the basics of the team orienteering problem and
two heuristics used to solve it. Python might be used to realize the heuristics
and run experiments to compare the heuristics.

Keywords
Team orienteering problem, heuristics, GRASP, savings-based heuristic, lo­
gistics, healthcare logistics

Overview

The Internet of Things (IoT) has been a rapidly expanding technology at the
industrial level. Nowadays, a network of objects is surrounded by electro­
nic systems, software, sensors, and network connectivity, which enable the
collection, storage, and exchange of large data. This network requires opti­
mal data management systems that enable the efficient operation of physical
processes. In transportation logistics, more and more systems are being used
that automatically monitor vehicle movement, location, status, among other
parameters, and generate alerts or make intelligent decisions about them.
Solving problems in transportation and logistics is a challenging task today.
These problems might be formulated as combinatorial optimization pro­
blems. In a combinatorial optimization problem, the search space consists

1

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

of a finite space of elements. These elements are selected and arranged in
a solution. The number of potential solutions increases exponentially with
the number of elements in the search space.

In order to solve combinatorial optimization problems, several heu­
ristics could be utilized. As a result, an optimum or promising solution
might be identified depending on the problem and the heuristic. For
example, an optimum solution could be guaranteed for small problems.
However, for large problems, a promising solution might be identified.

Solving a combinatorial optimization problem becomes challenging if
real-time problems are being solved. For example, the integration of the
Internet of Things (IoT). In this case, a solution should be recommended
within a small time window, immediately. Agile optimization concepts are
utilized to handle these problems.

In this chapter, a real case study is presented. This case study appeared
at the beginning of the Covid-19 pandemic because of the shortage of
face shields. Volunteers printed these shields using their 3D printers, and
other volunteers registered to pick up these printed items. This problem
is an example of IoT integration and was a challenging task because the
decisions were to be made by the following day to assign routes for each
volunteer driver. The number of drivers varied from one day to another. To
solve this problem, several heuristics might be used. Their performance was
evaluated and compared. As a result, students can compare the performance
of different heuristics using a real-world case study.

Didactic Fundamentals

Target Group
The course has been designed for a lecture on analytics for bachelor’s or
master’s students in industrial engineering, statistics, and logistics.

Prerequisites
Basic knowledge of programming, analytical capabilities, applied optimiza­
tion, data plotting, scientific paper reading, and report writing is required.

Learning Resources
Learning materials involve presentations and videos, reading, and exercises.
These materials are uploaded onto a Moodle learning platform. In the
following sections, the basics related to this use case are presented.

1.1

1.1.1

1.1.2

1.1.3

308 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Learning Objectives and Competence

Learning outcomes in this chapter based on Bloom’s taxonomy and lab-spe­
cific psychomotor skill extensions are:
• Remember

• Students should remember and define the team orienteering problem
(TOP).

• Students should be able to reproduce program codes to solve the TOP.
• Understand

• Students should distinguish between different methods used to solve
the TOP.

• Students should report their findings in a short report.
• Apply

• Students should apply the GRASP heuristic learned to solve the TOP’s
instances.

• Analyze
• Students should analyze the results obtained and compare the perfor­

mance of heuristics in different experiments.
• Evaluate

• Students should evaluate their code and modify it.
• Create

• Students should be able to describe their results in a report.
• Specific psychomotor skills provided through lab-elements

• Students will learn how to establish their Python program to solve the
TOP.

• Students will learn how to evaluate a heuristic used to solve the TOP.

Use Case

User Story

Martha is an expert in Operations Research who lives in Barcelona and
is worried about the growing number of Covid-19 cases in this region
and the increasing burden they are placing on healthcare centers. Her bro­
ther, Michael, who is a doctor and works long shifts in a hospital, has
told her about shortages of protective elements such as face shields, ear

1.2

2

2.1

Heuristics to Solve a Team Orienteering Problem 309

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

savers, door openers, and similar sanitary items. Although these elements
were not frequently used before the pandemic, the crisis caused healthcare
staff to require extra protection, increasing the demand for such elements
unexpectedly. Michael and his colleagues in the hospital knew about an
initiative called “Coronamakers”, or simply “Makers”. This initiative is a new
community of people who have 3D printers at their respective houses and
volunteered to provide these items to hospitals and healthcare centers.

Nevertheless, once the hundreds of volunteers in the surrounding area
of Barcelona guaranteed the protective items’ production, a logistics prob­
lem arose: volunteers were unable to deliver the printed elements by them­
selves, given both the lockdown restrictions and a large number of items.
Hence, only a few external vehicles were able to visit Makers’ houses to
collect the 3D-printed items and deliver them to healthcare centers. During
a conversation about this problem between Martha and Michael, she told
him about some math and computational tools she had employed to sol­
ve similar problems in the past. She explained to him that, in general,
these tools are called heuristics, and they provide fast and good solutions
to transportation, manufacturing, and other complex problems. Therefore,
heuristics are quite suitable to solve the logistics problem since, although
they are not capable of providing optimal solutions, the speedy growth in
Covid-19 cases required good-quality solutions that could be obtained in a
short time (minutes or seconds).

Immediately after this conversation, Martha and Michael contacted the
Makers. Martha offered to solve this logistics problem, together with her re­
search group at Super open University. Moreover, Michael recruited a group
of six friends who worked as volunteer drivers. All the friends expressed
their willingness to join this project and claimed to be ready once Michael
and Martha indicated both the Makers’ houses that each driver should visit
and the sequence in which these visits had to be carried out. Hence, this was
a real and complex problem that Martha’s research group had to solve by
defining collection routes to maximize the number of items collected.

Martha’s group needed to consider a series of conditions or constraints
that had to be met to keep the computational model as realistic as possible.
Firstly, all the Makers’ houses and the healthcare centre locations were iden­
tified using Cartesian coordinates. Secondly, the drivers’ time was limited,
i.e., each route could not exceed a maximum number of hours per day due
to curfew hours during the pandemic period. Given both these constraints
and the limited number of volunteer drivers, the drivers might not visit
all the Makers on the same day. Therefore, an additional decision had to
be made regarding which Makers should be visited. Fortunately, since this
case represents a daily challenge, Martha knew that Makers who were not

310 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

visited on a particular day could be visited on the following days. Thirdly,
vehicles were considered virtually unlimited in capacity since the size of the
items to be transported was small. Finally, both the travel times between the
locations and the visiting time in each house were known. The former is
the time taken to travel between any pair of houses or healthcare centres.
The latter is the time spent by the driver in carrying out a collection at each
house.

After a short discussion with her colleagues at the research group, Mar­
tha concluded that this real-world problem should be modelled as the Team
Orienteering Problem (TOP). Two reasons led to this decision: the TOP
allowed some houses to be skipped, given the strict time limit; and the
TOP’s typical objective maximized the total reward collected after visiting
the houses. In this case, it was so obvious to Martha’s group that the reward
each Maker offered was the number of 3D-printed items to be collected.

Tasks

Tasks for students:
• Formulate the TOP to be solved by Martha and her colleagues:

• Define decision variables
• Define the objective’s function
• Define the constraints

• Propose more than one heuristic to solve the problem
• Implement the heuristics using Python
• Run experiments and compare the heuristics based on the results obtai­

ned

Team Orienteering Problem

The TOP is derived from the orienteering problem (OP), an outdoor sport
practiced in a mountainous area, where a player has a compass and a map.
The player starts at a specific checkpoint from which he/she has to visit as
many checkpoints as possible within a set time limit and finally return to
the starting point. Each checkpoint has a score associated with it, so the
game’s objective is to maximize the total score. As the time to return to the
starting point is limited, not all checkpoints can be visited. Therefore, the
player must select the checkpoints with the highest contribution to his/her
total score (Chao et al., 1996). The OP is an NP-hard problem that can be
considered a combination of the knapsack problem and the travelling sales­

2.2

3

Heuristics to Solve a Team Orienteering Problem 311

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

man problem (TSP) (Vansteenwegen et al. 2011). The knapsack problem is
an optimization problem in which a number of items are placed inside a
fixed-size knapsack. The items have a given weight, and the objective is to fit
as many items as possible into the knapsack given the weight constraint on
it (Salkin & De Kluyver, 1975). The TSP is an optimization problem with a
given list of cities and distances between each pair of cities, and the objective
is to find the shortest possible route that allows the players to visit each city
exactly once and return to the origin city (Flood, 1956). When the game
is extended from a single individual to teams of two or more players, it is
called TOP. Each team member must visit as many selected checkpoints as
possible within a given time and, then, return to the starting point. Thus,
each checkpoint is visited once, and the total score is maximized (Chao et al.
1996).

The TOP was modelled by Chao et al. (1996) as a multi-level optimizati­
on problem. In the first level, the nodes to be visited are selected. In the
second level, the selected nodes are assigned to the vehicles in the fleet.
Finally, the construction of the routes for each vehicle is done on the third
level. According to Gunawan et al. (2016), the TOP can be mathematically
defined as a set of nodes N = 1, . . . , N  , where each node i ∈ N   is asso­
ciated with a non-negative reward, ri . The start node and the end node are
described by node 1 and N  , respectively. The objective function of the TOP
maximizes the total reward collected from selected nodes by determining
routes that are limited by a given time budget, Tmax , and the time between
nodes i  and j  is tij . It is assumed that rewards can be added and that each
node can be visited once at most.

The problem is formulated as an integer programming model with the
following decision variables: xij = 1  if a visit of node i  is followed by the
visit of node j , otherwise it is 0; and ui  is used in subtour elimination
constraints and allows the position of the nodes visited in the route to be
determined (cf. Gunawan et al. 2016); subtours represent round tours. The
objective’s function maximizes the total rewards collected (Equation. 1). The
constraints (cf. Gunawan et al. 2016) ensure that: (i) routes start from node 1
and end at node N   (Equation 2); (ii) the connectivity of routes guarantees
that each node is visited once at most (Equation 3); (iii) the total travel time
is limited by Tmax  (Equation 4); (iv) subtours are prevented (Equations 5 and
6).

312 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Maximize ∑i = 2N − 1∑j = 2N rixij  (1)

subject to: ∑j = 2N x1j = ∑i = 2N − 1xi N = 1   (2)

i = 2N − 1xik = j = 2N xkj ≤ 1; ∀k = 2, N − 1   (3)

i = 2N − 1 j = 2N tijxij ≤ Tmax  (4)2 ≤ ui ≤ N ; ∀i = 2, . . . , N   (5)ui − uj + 1 ≤ N − 1 1 − xij ; ∀i = 2, . . . , N   (6)

  
Heuristic 1: Greedy Randomized Adaptive Search

The greedy randomized adaptive search procedure (GRASP) is the first
heuristic described to solve the TOP. It belongs to trajectory methods based
on using a single solution and seeing how it evolves or when the number
of iterations increases. The basic concepts and key information on Python
implementation of GRASP are presented below.

GRASP Basic Concepts

GRASP is a metaheuristic and a global optimization algorithm. The soluti­
on strategy consists of an iterative random sampling of greedy stochastic
solutions and the use of a local search heuristic to refine them to a locally
optimal solution (Feo & Resende, 1995). Conceptually, GRASP is composed
of two phases: (i) the intelligent construction of an initial solution through
the greedy lexical function, and (ii) a local search near the constructed
solution to find an improvement. Throughout the process, the best global
solution is maintained. Feo & Resende (1995) present the basic generic
pseudocode of a generic GRASP as shown in Figure 1. The first two lines
correspond to the inputs of the problem. After that, the iterative process
occurs between lines 3 and 9. Lines 4 and 5 are the GRASP construction and
local search phases, respectively (detailed in Figures 2 and 3). This process is
iterative and checks whether the solution generated is better than the best
solution found. Accordingly, the best solution is updated as is shown in
lines 6 to 8. Finally, the iterative process ends if a stopping criterion is met,
such as the maximum number of iterations is reached, and the best solution
is returned.

4

4.1

Heuristics to Solve a Team Orienteering Problem 313

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Procedure GRASP (MAX_ITERATIONS, SEED)
1 Best_solution = 0;
2 Read_Input();
3 for k=1,2,..., MAX_ITERATIONS Do
4 Solution = Greedy_Randomized_Construction (SEED);
5 Solution = Local_Search(Solution);
6 If Solution is better than Best_solution Then
7 UpdateSolution(Solution, Best_solution);
8 end if
9 end for
10 return (Best_solution);

end GRASP

Pseudocode of a generic GRASP based on Feo & Resende (1995)

Figure 2 presents the pseudocode of the greedy randomized construction,
which utilizes uniform randomization to select the most promising ele­
ments of a restricted list of candidates. The restricted list of candidates
includes solution elements and restricts the characteristics of elements that
can be selected in each iteration. The number of selected elements from the
lists might be constrained by a pre-specified number (n ) or a percentage of
the number of elements in the list. A logical type of behaviour is defined
to guarantee a random selection of elements from the list to explore a
solution space. This list is sorted from the most promising element to the
least promising one based on their effect on the objective’s function. Each
item in the list is assigned a probability (p ) of being selected. Then, this list
is reduced, considering the n  of most promising elements.

Figure 1:

314 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Procedure GreedyRandomizedConstruction (SEED)
1 Solution = 0;
2 Sort the candidate elements according to their incremental costs;
3 while solution is not complete Do
4 Build the Restricted Candidate List;
5 Select from the Restricted Candidate List and element v at random;
6 Solution = Solution ⋃ {v};
7 Re-sort the candidate elements according to their incremental costs;
8 end while
9 return (Solution);

end GreedyRandomizedConstruction

Pseudocode of a generic GRASP construction phase based on Feo & Re­
sende (1995)

Procedure LocalSearch(Solution)
1 while Solution is not locally optimal Do
2 Find s’ ∈ N such that f(s’) ≤ f(Solution);
3 Solution = s’;
4 end while
5 return (Solution);

end LocalSearch

Pseudocode of a generic local search phase based on Feo & Resende
(1995)

The greedy randomized construction starts by initializing a solution in line
1 of the pseudocode in Figure 2. In the loop between lines 3 and 9, one
feasible solution is iteratively constructed by selecting one element from the
list at a time. First, the restricted list of candidates is constructed in line 4.
Then, a candidate from the list is randomly selected in line 5 and added to
the solution in line 6. At each construction iteration, the choice of the next
node is determined by sorting nodes in a candidate list with respect to a
greedy function. This function measures the reward of selecting each node.
The heuristic is adaptive because the rewards associated with each node
are updated at each iteration of the construction phase to reflect changes

Figure 2:

Figure 3:

Heuristics to Solve a Team Orienteering Problem 315

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

brought by selecting the previous node. The probabilistic component of
selecting the best candidates does not always select the best one because its
behavior is entirely random. Finally, the effect of the selected node on the
reward is calculated, and the greedy function is adapted in line 7.

Figure 3 presents the pseudocode of the generic local search phase,
which is used to improve constructed solutions. The local search algorithm
works iteratively by successively replacing the current solution with a better
solution in its neighborhood. It terminates when no better solution in the
neighborhood is found. Its effectiveness is based on the proper choice of
a neighborhood’s structure, efficient neighborhood search techniques, and
the starting solution. Thus, the neighborhood structure for a given problem
relates a solution to the problem to a subset of solutions based on each
solution. A solution is then considered locally optimal if there is no better
solution in that subset of solutions.

Key Information for Python Implementation

The implementation of the GRASP heuristic in Python is based on those
made by Jason Brownlee1 and Sain Panyam2. Using the well-known instance
called berlin52 is recommended3. The parameters to be set to find the best
solution, for instance, are the maximum number of iterations (outer loop),
the maximum number of iterations without improvement, and the greedy
factor, the percentage of the elements in the sorted list to be considered by
the algorithm.

Implementing the local search in the GRASP might be formulated as
a nested loop and generates new solutions based on a stochastic operator.
This operator selects non-consecutive edges and swaps them to obtain new
connections between the edges, calculating the Euclidean distance between
them. Then, it reverses the edges between them to complete the path. The
local search keeps track of the best solution and the new solution. Minor
modifications are applied to the original solution, and if the new solution
with those changes is better than the original or initial solution, the new
solution becomes the new best solution (more details are found on the Moodle
platform).

4.2

1 http://www.cleveralgorithms.com/
2 https://www.saipanyam.net/2011/06/clever-algorithms-python.html
3 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/XML-TSPLIB/instances/

316 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

http://www.cleveralgorithms.com
https://www.saipanyam.net/2011/06/clever-algorithms-python.html
https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cleveralgorithms.com
https://www.saipanyam.net/2011/06/clever-algorithms-python.html

Heuristic 2: Savings-Based Heuristic

The second heuristic is based on the concept of the well-known savings
heuristic of Clarke and Wright (1964). This savings-based heuristic handles
small and large instances of the TOP (Panadero et al., 2020). The basic
concepts and key information on the Python4 implementation of this heu­
ristic are presented below, and the detailed explanation can be checked on
Moodle or in the available references.

Savings-based Heuristic Basic Concepts

The savings-based heuristic starts with a dummy solution from the origin
to the destination, where one route per node is considered; each node is
connected to the origin and the destination nodes. Since the origin and
destination are two different nodes, the connecting arcs are oriented in a
specific direction. Basically, a vehicle leaves the origin depot (node 0), visits
node i , and then continues its journey to the destination depot (node i + 1 ).
Merging arcs occur when precedence constraints are satisfied. Thus, if a
route in this dummy solution does not satisfy the driving range constraint,
the associated customer is discarded from the problem; this node cannot
be reached with the current fleet of vehicles. Since the objective function
of the TOP maximizes the rewards collected in a limited available time,
the "saving" is associated with each arc connecting two different customers.
This saving is related to the reward obtained by visiting both customers
on the same route rather than using two different routes (Panadero et al.
2020). Figure 4 presents the basic generic pseudocode of the savings-based
heuristic.

5

5.1

4 https://docs.python.org/3/library/index.html

Heuristics to Solve a Team Orienteering Problem 317

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://docs.python.org/3/library/index.html
https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://docs.python.org/3/library/index.html

Savings-Based Heuristic (SEED, Nodes)
1 sol  createDummySolution(Nodes);
2 SavingsList  computeSortedSavingsList(Nodes);
3 While (SavingsList is not empty) do
4 edge  selectNextEdge(SavingsLists)
5 iRoute  getStartingRoute(edge)
6 jRoute  getClosingRoute(edge)
7 travelTimeNewRoute  validate MergeDrivingConstraints(NewRoute)
8 isMergeValid  validateMergeDrivingConstraints
9 if (isMergeValid) then
10 sol UpdateSolution(newRoute, iRoute, jRoute, sol)
11 end if
12 deleteEdgeFromList(edge);
13 end While
14 SortRouteByProfit(sol)
15 deleteRoutesByProfit (sol, maxVehicles)
16 return sol

Pseudocode of a generic savings-based heuristic according to Juan et al.
(2020)

The enriched savings heuristic considers a linear combination of classical
savings defined by Clarke and Wright (1964) and the reward associated
with an arc. Both quantities must be in the same order of magnitude for
this linear combination. Mathematically, this represents the efficiency or
enriched savings and defines the relevance given to each of the parameters
to be optimized, the original savings based on distance or time, and the
utility or reward of the visiting node.

There are two associated savings for each arc, depending on the actual
direction in which the arc is traversed. After calculating all the savings, the
list of arcs can be sorted from the highest to the lowest savings. From this
list, the route merging starts. In each iteration, the arc at the top of the
sorted list is selected. This arc connects two routes, which are merged into
a new route as long as this new route does not violate the driving range
restriction. Finally, the list of routes is sorted according to the total rewards
provided to select as many routes as possible from this list, considering the
restricted number of vehicles in the fleet (Panadero et al. 2020).

Key Information for Python Implementation

The implementation of the savings-based heuristic in Python starts by defi­
ning different classes: Node, Edge, Route, and Solution. The class Node con­
tains the information associated with the nodes. The class Edge contains the

Figure 4:

5.2

318 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

information on the edges connecting nodes and the concept of efficiency.
The class Route is a list of connected edges, the path’s cost, and the total re­
wards (demand) collected. The class Solution counts the number of solutions
and stores related information on each one of them. Detailed information
on each class is available in the learning materials available to the students,
as is the complete development of the metaheuristic.

For the construction of edges and nodes, a list of nodes is constructed
in which the first node is node 0   and the destination node is node − 1  .
Then, an edge (arc) is created between each node and other nodes, and the
Euclidean distance is calculated accordingly. The efficiency list is a linear
combination using α  and 1 – α  , where α  is a prespecified factor e.g., 0.7,
as explained in Section 5.1. The resulting efficiency list is then sorted from
the highest to the lowest value.

The construction of a dummy solution, which is the route from the
origin to a node and then to the destination, is used to create the initial
solution. The total reward for each route created in the dummy solution
is also calculated. From there, the algorithm starts performing the iterative
process of edge selection and route merging, based on the following condi­
tions: (i) the resulting merged route must not exist in the defined routes;
(ii) the first node must be linked to the origin and the last one to the
destination; and (iii) the cost after merging the routes should not exceed the
maximum time allowed. The merging process must start with a while loop,
where the conditions are evaluated, and the merging process occurs. The
loop must be executed several times.

In a final step, the solution is sorted by the merged routes generated.
Since the final solution needs a certain number of routes given by the
number of vehicles in the fleet, unnecessarily stored information must be
eliminated. Finally, printing and plotting the solution using the networkx
library is recommended.

Further Input: Comparison between Heuristics

In our studies, we would like to compare heuristics and select a heuristic
to be adapted. For the comparison, statistical tests are used to differentiate
between different approaches and heuristics (Beiranvand et al. 2017). In
order to compare heuristics, benchmark data sets are used. The heuristics
are compared with respect to their performance, such as the quality of
the recommended solutions and efficiency (Beiranvand et al. 2017). The
difference between recommended solutions and the best-known solution

6

Heuristics to Solve a Team Orienteering Problem 319

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

defines the quality of the solutions, and the efficiency of a heuristic might
be represented by the time required to get a solution.

In the statistical tests statements, we define hypotheses (Montgomery
and Runger 2007, Sheskin 2011). A null hypothesis, H0 , states that no
difference between the heuristics exists, while an alternative hypothesis, H1 ,
defines a claim to be tested. For example, H0:S1 − S2 = 0  and H1:S2 > S1 . H0 states that solutions S1  and S2  found by two heuristics do not differ, and H1  states that the solution found by heuristic 2 is better than the solution
found by heuristic 1 with respect to profit, S2 > S1 . The statistical tests are
performed with strong evidence required to reject H0 . If H0  is rejected, H1  is
accepted.

The selection of a statistical test depends on the parameter being tested, S , and the sample size. In our comparisons, the sample size is defined by the
number of heuristic runs on a benchmark data set. Examples of statistical
tests are parametric tests and non-parametric tests (Sheskin 2011). Several
assumptions are required to utilize parametric tests: (i) tested samples are
selected randomly from their populations; (ii) the distribution of the popu­
lation follows normal distribution; and (iii) the variance of the population
is homogenous. If one of the assumptions is violated, non-parametric tests
should be used. Non-parametric tests have the advantage of being suitable to
test small samples with (n  < 30).

If a heuristic is run more than 30 times on a benchmark data set, a t -test could be used (Montgomery and Runger 2007). In the t -test, the
mean of the solutions, μ , of the two heuristics considered is calculated and
compared. The p -value of the test defines “the smallest level of significance
that would lead to the rejection of the null hypothesis H0  with the given
data” (Montgomery and Runger 2007, p. 300). The p -value is compared to α , significance level. If the p -value is smaller than α , H1  is accepted and it is
concluded that both heuristics differ significantly (μ1 ≠ μ2  . Otherwise, H0 
cannot be rejected. The common values for α  are 10% or 5%.

In addition to statistical tests, we can plot the experiment’s results and
tabulate them to highlight the difference between heuristics (Beiranvand et
al. 2017). For example, the change of the best solutions found by a heuristic
could be plotted versus the number of iterations. The best solutions found
by a heuristic in different runs can be tabulated and compared to other
heuristics by calculating the difference between them, a gap.

320 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Assessment

Students work in groups to solve the routing problem, like the one descri­
bed in Section 2 with their respective tasks (Section 2.2), implementing the
heuristics in Python and comparing the heuristics described. First, students
should select a problem to solve. Then, they design their experiments and
run them. Finally, the results collected should be tabulated and analyzed
in a group report. In advanced challenges, students modify the heuristics
to become more agile by introducing biased randomization (the material is
available on Moodle).

The group report is submitted to a tutor for feedback on the analysis
and the experiments performed. Students use this feedback to assess their
work and benefit from it in their future analyses. In addition, students can
have group discussions to discuss their findings and ideas.

Abbreviations

GRASP Greedy Randomized Adaptive Search Procedure
IoT Internet of Things
OP Orienteering Problem
TOP Team Orienteering Problem
TSP Traveling Salesman Problem

References

Beiranvand, V., Hare, W., & Lucet, Y. (2017). Best practices for comparing optimization algo­
rithms. Optimization and Engineering, 18(4), 815–848. https://doi.org/10.1007/s11081-017
-9366-1.

Chao, I. M., Golden, B. L., & Wasil, E. A. (1996). The team orienteering problem. Euro­
pean journal of operational research, 88(3), 464–474. https://doi.org/10.1016/0377-2
217(94)00289-4.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number
of delivery points. Operations research, 12(4), 568–581. https://doi.org/10.1287/opre.12.4.
568.

Feo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of
global optimization, 6(2), 109–133. https://doi.org/10.1007/BF01096763.

Flood, M. M. (1956). The traveling-salesman problem. Operations research, 4(1), 61–75. https://
doi.org/10.1287/opre.4.1.61

7

Heuristics to Solve a Team Orienteering Problem 321

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1016/0377-2217
https://doi.org/10.1016/0377-2217
https://doi.org/10.1287/opre.12.4.568
https://doi.org/10.1287/opre.12.4.568
https://doi.org/10.1007/BF01096763
https://doi.org/10.1287/opre.4.1.61
https://doi.org/10.1287/opre.4.1.61
https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1016/0377-2217
https://doi.org/10.1016/0377-2217
https://doi.org/10.1287/opre.12.4.568
https://doi.org/10.1287/opre.12.4.568
https://doi.org/10.1007/BF01096763
https://doi.org/10.1287/opre.4.1.61
https://doi.org/10.1287/opre.4.1.61

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem: A survey of
recent variants, solution approaches and applications. European Journal of Operational
Research, 255(2), 315–332. https://doi.org/10.1016/j.ejor.2016.04.059.

Juan, A. A., Freixes, A., Panadero, J., Serrat, C., & Estrada-Moreno, A. (2020). Routing dro­
nes in smart cities: A biased-randomized algorithm for solving the team orienteering
problem in real time. Transportation Research Procedia, 47, 243–250. https://doi.org/10.1016/
j.trpro.2020.03.095

Montgomery, D. C., & Runger, G. C. (2018). Applied Statistics and Probability for Engineers
(7th ed.). Wiley.

Panadero, J., Juan, A. A., Bayliss, C., & Currie, C. (2020). Maximising reward from a team
of surveillance drones: A simheuristic approach to the stochastic team orienteering prob­
lem. European Journal of Industrial Engineering, 14(4), 485–516. https://doi.org/10.1504/
EJIE.2020.108581.

Salkin, H. M., & De Kluyver, C. A. (1975). The knapsack problem: a survey. Naval Research
Logistics Quarterly, 22(1), 127–144. https://doi.org/10.1002/nav.3800220110

Sheskin, D. (2011). Handbook of parametric and nonparametric statistical procedures (5th ed.).
CRC Press.

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem:
A survey. European Journal of Operational Research, 209(1), 1–10. https://doi.org/10.1016/
j.ejor.2010.03.045.

322 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.1016/j.ejor.2016.04.059
https://doi.org/10.1016/j.trpro.2020.03.095
https://doi.org/10.1016/j.trpro.2020.03.095
https://doi.org/10.1504/EJIE.2020.108581
https://doi.org/10.1504/EJIE.2020.108581
https://doi.org/10.1002/nav.3800220110
https://doi.org/10.1016/j.ejor.2010.03.045
https://doi.org/10.1016/j.ejor.2010.03.045
https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1016/j.ejor.2016.04.059
https://doi.org/10.1016/j.trpro.2020.03.095
https://doi.org/10.1016/j.trpro.2020.03.095
https://doi.org/10.1504/EJIE.2020.108581
https://doi.org/10.1504/EJIE.2020.108581
https://doi.org/10.1002/nav.3800220110
https://doi.org/10.1016/j.ejor.2010.03.045
https://doi.org/10.1016/j.ejor.2010.03.045

Template Didactical Concept — Handout for Teachers

Title Name of the Concept
Heuristics to Solve the Team Orienteering Problem

Lab Environment
X-Heuristics in Intelligent Transportation, Sustainable Logistics, and Smart
Cities.

Didactical Analysis

Students should utilize Python to optimize a given function. Then, they are
asked to construct their Python code for the greedy randomized adaptive se­
arch procedure (GRASP) and the Clarke & Wright Savings (CWS) heuristic
to solve the team orienteering problem (TOP).

Target Group
The course targets bachelor’s and master’s students in industrial enginee­
ring, statistics, and logistics. These students need basic programming know­
ledge, analytics, applied optimization and simulation, data plotting, scienti­
fic paper reading, and report writing. The requirements target beginners,
while optional exercises target advanced or expert students.

Institutional Requirements
The primary resource is a computer and access to the material. A Python
language environment should be installed, e.g., Pycharm, to run experi­
ments. The tutor needs to be familiar with the problem presented and
the Python code used to solve it. These problems are fundamental in trans­
portation and logistics, and the Python programming language is one of
the easiest programming languages. Students may raise questions regarding
running experiments and debugging the code.

Learning Objectives
• Students should remember and define the TOP.
• Students should be able to reproduce program codes to solve the TOP.
• Students should understand the basic heuristic used to solve the TOP.
• Students should apply the heuristic learned to solve the TOP’s instances.

1

2

Heuristics to Solve a Team Orienteering Problem 323

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

• Students should analyze the results obtained.
• Students should evaluate their code and modify it.
• Students should be able to describe their results in a report.

Subject Matter
This handout is related to the “Heuristics to Solve the Team Orienteering
Problem” educational chapter. In this chapter, the GRASP and Clarke and
Wright heuristics are introduced. In addition, implementation of Python is
presented. The explanations are presented as videos in the Moodle course,
and additional reading is recommended.

Didactical Concept

Methodical Implementation
• The concept of chapters is presented in a video, where the problem and

the heuristic to solve it are presented.
• The students are asked to be divided into groups with 2 to 3 students per

group to work on the exercises; thus, the learning is collaborative.
• A bigger group discussion could be arranged for all students in some

circumstances.

Media
The material required is explained in videos (uploaded on the Moodle
course). In the next version of the course, quizzes could be added there.

Learning Organization
Students work in groups; thus, students interact with their colleagues in
their group. Further discussion could be arranged between groups, especial­
ly for optional exercises. These students could use the video conferencing
platforms for meetings and discussions. The students could contact the tutor
if they do not find an answer to their question or need more help. The
videos are about one hour long, and students require discussions after the
video and to do experiments; thus, the lecture's content and exercises are
scheduled to last two weeks.

3

324 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Feedback and Evaluation
Students should present their experiment results as plots/reports and explain
their findings. Thus, the evaluation could be based on their analysis and
understanding of the presented concept. Each chapter is evaluated after two
weeks of its release, and the evaluation may include suggestions to improve
the analysis. This feedback enhances students’ learning and their analysis.

Expert Tips
Similarly to the situation in any programming lab, students raise many basic
questions regarding code implementation. Students should be advised to
use the debug to understand the code and rectify their errors.

Authors

Dr. Majsa Ammouriova
Universitat Oberta de Catalunya
Internet Interdisciplinary Institute
Rambla del Poblenou, 156
08018 Barcelona, Spain
mammouriova@uoc.edu

Eng. Juliana Castaneda
Universitat Oberta de Catalunya
Internet Interdisciplinary Institute
Rambla del Poblenou, 156
08018 Barcelona, Spain
jcastanedaji@uoc.edu

Heuristics to Solve a Team Orienteering Problem 325

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://mailto:mammouriova@uoc.edu
https://mailto:jcastanedaji@uoc.edu
https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://mailto:mammouriova@uoc.edu
https://mailto:jcastanedaji@uoc.edu

Eng. Rafael David Tordecilla
Universitat Oberta de Catalunya
Internet Interdisciplinary Institute
Rambla del Poblenou, 156
08018 Barcelona, Spain
rtordecilla@uoc.edu

Prof. Angel A. Juan
Universitat Oberta de Catalunya
Internet Interdisciplinary Institute
Rambla del Poblenou, 156
08018 Barcelona, Spain
https://ajuanp.wordpress.com/
ajuanp@uoc.edu

326 Majsa Ammouriova, Juliana Castaneda, Rafael David Tordecilla and Angel A. Juan

https://doi.org/10.5771/9783957104106-307 - am 19.01.2026, 22:55:55. https://www.inlibra.com/de/agb - Open Access -

https://mailto:rtordecilla@uoc.edu
https://mailto:ajuanp@uoc.edu
https://doi.org/10.5771/9783957104106-307
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://mailto:rtordecilla@uoc.edu
https://mailto:ajuanp@uoc.edu

	1 Overview
	1.1 Didactic Fundamentals
	1.1.1 Target Group
	1.1.2 Prerequisites
	1.1.3 Learning Resources

	1.2 Learning Objectives and Competence

	2 Use Case
	2.1 User Story
	2.2 Tasks

	3 Team Orienteering Problem
	4 Heuristic 1: Greedy Randomized Adaptive Search
	4.1 GRASP Basic Concepts
	4.2 Key Information for Python Implementation

	5 Heuristic 2: Savings-Based Heuristic
	5.1 Savings-based Heuristic Basic Concepts
	5.2 Key Information for Python Implementation

	6 Further Input: Comparison between Heuristics
	7 Assessment
	Abbreviations
	References
	1 Template Didactical Concept — Handout for Teachers
	Title Name of the Concept
	Lab Environment

	2 Didactical Analysis
	Target Group
	Institutional Requirements
	Learning Objectives

	3 Didactical Concept
	Methodical Implementation

	Authors

