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XIV Zusammenfassung 

Zusammenfassung 

Bei lastgerechter Auslegung können mit endlosfaserverstärkten Verbundwerkstoffen 
Bauteile mit hoher Leichtbaugüte entwickelt werden. Die Vorteile, welche sich 
durch die hohe Festigkeit bei gleichzeitig geringem Gewicht ergeben, rechtfertigen 
trotz der im Vergleich zu traditionellen Werkstoffen oft höheren Herstellkosten in 
immer mehr Industriezweigen ihren Einsatz. Jedoch gehen mit den Möglichkeiten, 
die mechanischen Eigenschaften lokal gezielt beeinflussen zu können, auch kompli-
ziertere Wirkzusammenhänge einher, welche Konstruktionen deutlich herausfor-
dernder machen. Auch können die durch die oft manuellen Herstellverfahren be-
dingten Streuungen einen großen Einfluss auf die Eigenschaften des Endprodukts 
haben. 

Aus diesem Grund ist das Ziel dieser Arbeit, auf Basis der Finite-Elemente-
Methode (FEM) ein Vorgehen zu erarbeiten, welches den Produktentwickler in der 
frühen Entwicklungsphase unterstützt, einen bestehenden Lagenaufbau im Sinne 
einer geringen Gesamtmasse bei gleichzeitiger Gewährleistung einer definierten Si-
cherheit zu verbessern. Dazu wird im ersten Schritt das Vorgehen für Kalibrierun-
gen von Simulationsmodellen endlosfaserverstärkter Bauteile erarbeitet, bei wel-
chem sowohl streuende skalare Größen als auch streuende Felder über den Abgleich 
mit Versuchen an die realen Gegebenheiten angepasst werden. Um unnötige Itera-
tionen bei der Abstimmung zwischen Versuch und Simulation zu sparen, wird er-
läutert, wie für solch einen Abgleich mittels Pretest Analyse die aussagekräftigsten 
Messpunkte im Vorfeld ermittelt werden können. Aus den Ergebnissen mehrerer 
Kalibrierungen wird die Streucharakteristik abgeleitet und für den weiteren Verlauf 
zur Verfügung gestellt. Im zweiten Schritt wird die Robust Design Optimierung 
(RDO) durchgeführt, bei welcher der Lagenaufbau unter Vorgabe von Zielen so 
optimiert wird, dass gleichzeitig unter den im ersten Schritt ermittelten Eingangs-
streuungen die Sicherheit des Designs gewährleistet werden kann. Dieser iterative 
Prozess ist so gestaltet, dass eine hohe Genauigkeit bei möglichst geringem Zeit-
aufwand erreicht wird, um den Einsatz für industrielle Bauteile zu ermöglichen. 

Abschließend wird das Vorgehen an Praxisbeispielen getestet und bewertet. Für die 
Beurteilung des Vorgehens bei der Kalibrierung wird die Simulation eines von 
Hand gefertigtes drapiertes Schalenmodell angepasst und anschließend durch eine 
Robustheitsbewertung Handlungsempfehlungen zur Verbesserung der Sicherheit 
erarbeitet. Als zweites Beispiel werden Simulationen von aus CFK gefertigten 
Roadbook-Grundträgern der Firma KTM Technologies mit mehreren gefertigten 
Prüflingen kalibriert und anschließend den iterativen Schritten der Robust Design 
Optimierung unter Berücksichtigung eines neuen Lastfalls unterzogen. Die 
Ergebnisse dienen abschließend ebenfalls zur Festlegung konkreter Handlungs-
empfehlungen.  
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Zusammenfassung XV 

Abstract 

Components made of continous fiber-reinforced plastics can reach a great light-
weight potential if the material is aligned with the direction of the force. The ad-
vantages that come along with the high stiffness at low mass justify the use in a 
wide range of industry although the manufacturing cost might be higher than for 
other conventional materials.  But with the possibilities to locally influence the me-
chanical properties there are complicated mechanismen that must be handled and 
that can be quite challenging for constructions. And also the manufacturing pro-
cesses which are often done by hand can have significant scatter that might influ-
ence the product performance in a negative way. 

For this reason the objective of this work is to develop an approach based on the 
finite element method that supports the product developer in the early embodiment 
design stage to improve an existing layer stack in terms of low weight while keep-
ing the probability of failure low. For this purpose the calibration procedure for 
simulations of continous fiber-reinforced plastics is shown first. Here, scalar entites 
as well as spacially varying fields are adapted to match the behavior of the product 
under real-world conditions. In order to save unnecessary iterations while calibrat-
ing simulations to experimental results, pretest analyses are described which can be 
used to determine the most informative measurement points in advance. From the 
results of several calibrations the scatter charactersitics will be derived and made 
available for the next step. In the second step the robust design optimization is 
carried out where the layer stack is changed in such a way that predefined objec-
tives are met as good as possible and the safety can be guaranteed for the scatter 
conditions gained from the first step. This is an iterative process which is done 
with the aspect of keeping the total calculation time low while guaranteeing a high 
accuracy as these are the prerequisites to allow the use in praxis. 

Finally, the approach is tested and evaluated with practical examples. To judge 
about the calibration procedure the simulation of a draped shell structure that is 
made by hand will be adapted and recommendations to improve safety will be 
made based on the results of a robustness evaluation. The second example is a 
CFK roadbook base carrier from the company KTM Technologies. Simulations are 
set up and calibrated with experimental results of several parts. Finally a robust 
design optimization for a new load case is done where the results are changes in the 
layer stack as well as insights in how to decrease the propability of failure. 
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